Sample records for ontology-based semantic similarity

  1. The next generation of similarity measures that fully explore the semantics in biomedical ontologies.

    PubMed

    Couto, Francisco M; Pinto, H Sofia

    2013-10-01

    There is a prominent trend to augment and improve the formality of biomedical ontologies. For example, this is shown by the current effort on adding description logic axioms, such as disjointness. One of the key ontology applications that can take advantage of this effort is the conceptual (functional) similarity measurement. The presence of description logic axioms in biomedical ontologies make the current structural or extensional approaches weaker and further away from providing sound semantics-based similarity measures. Although beneficial in small ontologies, the exploration of description logic axioms by semantics-based similarity measures is computational expensive. This limitation is critical for biomedical ontologies that normally contain thousands of concepts. Thus in the process of gaining their rightful place, biomedical functional similarity measures have to take the journey of finding how this rich and powerful knowledge can be fully explored while keeping feasible computational costs. This manuscript aims at promoting and guiding the development of compelling tools that deliver what the biomedical community will require in a near future: a next-generation of biomedical similarity measures that efficiently and fully explore the semantics present in biomedical ontologies.

  2. Semantic Similarity in Biomedical Ontologies

    PubMed Central

    Pesquita, Catia; Faria, Daniel; Falcão, André O.; Lord, Phillip; Couto, Francisco M.

    2009-01-01

    In recent years, ontologies have become a mainstream topic in biomedical research. When biological entities are described using a common schema, such as an ontology, they can be compared by means of their annotations. This type of comparison is called semantic similarity, since it assesses the degree of relatedness between two entities by the similarity in meaning of their annotations. The application of semantic similarity to biomedical ontologies is recent; nevertheless, several studies have been published in the last few years describing and evaluating diverse approaches. Semantic similarity has become a valuable tool for validating the results drawn from biomedical studies such as gene clustering, gene expression data analysis, prediction and validation of molecular interactions, and disease gene prioritization. We review semantic similarity measures applied to biomedical ontologies and propose their classification according to the strategies they employ: node-based versus edge-based and pairwise versus groupwise. We also present comparative assessment studies and discuss the implications of their results. We survey the existing implementations of semantic similarity measures, and we describe examples of applications to biomedical research. This will clarify how biomedical researchers can benefit from semantic similarity measures and help them choose the approach most suitable for their studies. Biomedical ontologies are evolving toward increased coverage, formality, and integration, and their use for annotation is increasingly becoming a focus of both effort by biomedical experts and application of automated annotation procedures to create corpora of higher quality and completeness than are currently available. Given that semantic similarity measures are directly dependent on these evolutions, we can expect to see them gaining more relevance and even becoming as essential as sequence similarity is today in biomedical research. PMID:19649320

  3. Ontology Alignment Architecture for Semantic Sensor Web Integration

    PubMed Central

    Fernandez, Susel; Marsa-Maestre, Ivan; Velasco, Juan R.; Alarcos, Bernardo

    2013-01-01

    Sensor networks are a concept that has become very popular in data acquisition and processing for multiple applications in different fields such as industrial, medicine, home automation, environmental detection, etc. Today, with the proliferation of small communication devices with sensors that collect environmental data, semantic Web technologies are becoming closely related with sensor networks. The linking of elements from Semantic Web technologies with sensor networks has been called Semantic Sensor Web and has among its main features the use of ontologies. One of the key challenges of using ontologies in sensor networks is to provide mechanisms to integrate and exchange knowledge from heterogeneous sources (that is, dealing with semantic heterogeneity). Ontology alignment is the process of bringing ontologies into mutual agreement by the automatic discovery of mappings between related concepts. This paper presents a system for ontology alignment in the Semantic Sensor Web which uses fuzzy logic techniques to combine similarity measures between entities of different ontologies. The proposed approach focuses on two key elements: the terminological similarity, which takes into account the linguistic and semantic information of the context of the entity's names, and the structural similarity, based on both the internal and relational structure of the concepts. This work has been validated using sensor network ontologies and the Ontology Alignment Evaluation Initiative (OAEI) tests. The results show that the proposed techniques outperform previous approaches in terms of precision and recall. PMID:24051523

  4. Ontology alignment architecture for semantic sensor Web integration.

    PubMed

    Fernandez, Susel; Marsa-Maestre, Ivan; Velasco, Juan R; Alarcos, Bernardo

    2013-09-18

    Sensor networks are a concept that has become very popular in data acquisition and processing for multiple applications in different fields such as industrial, medicine, home automation, environmental detection, etc. Today, with the proliferation of small communication devices with sensors that collect environmental data, semantic Web technologies are becoming closely related with sensor networks. The linking of elements from Semantic Web technologies with sensor networks has been called Semantic Sensor Web and has among its main features the use of ontologies. One of the key challenges of using ontologies in sensor networks is to provide mechanisms to integrate and exchange knowledge from heterogeneous sources (that is, dealing with semantic heterogeneity). Ontology alignment is the process of bringing ontologies into mutual agreement by the automatic discovery of mappings between related concepts. This paper presents a system for ontology alignment in the Semantic Sensor Web which uses fuzzy logic techniques to combine similarity measures between entities of different ontologies. The proposed approach focuses on two key elements: the terminological similarity, which takes into account the linguistic and semantic information of the context of the entity's names, and the structural similarity, based on both the internal and relational structure of the concepts. This work has been validated using sensor network ontologies and the Ontology Alignment Evaluation Initiative (OAEI) tests. The results show that the proposed techniques outperform previous approaches in terms of precision and recall.

  5. A graph-based semantic similarity measure for the gene ontology.

    PubMed

    Alvarez, Marco A; Yan, Changhui

    2011-12-01

    Existing methods for calculating semantic similarities between pairs of Gene Ontology (GO) terms and gene products often rely on external databases like Gene Ontology Annotation (GOA) that annotate gene products using the GO terms. This dependency leads to some limitations in real applications. Here, we present a semantic similarity algorithm (SSA), that relies exclusively on the GO. When calculating the semantic similarity between a pair of input GO terms, SSA takes into account the shortest path between them, the depth of their nearest common ancestor, and a novel similarity score calculated between the definitions of the involved GO terms. In our work, we use SSA to calculate semantic similarities between pairs of proteins by combining pairwise semantic similarities between the GO terms that annotate the involved proteins. The reliability of SSA was evaluated by comparing the resulting semantic similarities between proteins with the functional similarities between proteins derived from expert annotations or sequence similarity. Comparisons with existing state-of-the-art methods showed that SSA is highly competitive with the other methods. SSA provides a reliable measure for semantics similarity independent of external databases of functional-annotation observations.

  6. Improving the measurement of semantic similarity by combining gene ontology and co-functional network: a random walk based approach.

    PubMed

    Peng, Jiajie; Zhang, Xuanshuo; Hui, Weiwei; Lu, Junya; Li, Qianqian; Liu, Shuhui; Shang, Xuequn

    2018-03-19

    Gene Ontology (GO) is one of the most popular bioinformatics resources. In the past decade, Gene Ontology-based gene semantic similarity has been effectively used to model gene-to-gene interactions in multiple research areas. However, most existing semantic similarity approaches rely only on GO annotations and structure, or incorporate only local interactions in the co-functional network. This may lead to inaccurate GO-based similarity resulting from the incomplete GO topology structure and gene annotations. We present NETSIM2, a new network-based method that allows researchers to measure GO-based gene functional similarities by considering the global structure of the co-functional network with a random walk with restart (RWR)-based method, and by selecting the significant term pairs to decrease the noise information. Based on the EC number (Enzyme Commission)-based groups of yeast and Arabidopsis, evaluation test shows that NETSIM2 can enhance the accuracy of Gene Ontology-based gene functional similarity. Using NETSIM2 as an example, we found that the accuracy of semantic similarities can be significantly improved after effectively incorporating the global gene-to-gene interactions in the co-functional network, especially on the species that gene annotations in GO are far from complete.

  7. Semantic similarity between ontologies at different scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Qingpeng; Haglin, David J.

    In the past decade, existing and new knowledge and datasets has been encoded in different ontologies for semantic web and biomedical research. The size of ontologies is often very large in terms of number of concepts and relationships, which makes the analysis of ontologies and the represented knowledge graph computational and time consuming. As the ontologies of various semantic web and biomedical applications usually show explicit hierarchical structures, it is interesting to explore the trade-offs between ontological scales and preservation/precision of results when we analyze ontologies. This paper presents the first effort of examining the capability of this idea viamore » studying the relationship between scaling biomedical ontologies at different levels and the semantic similarity values. We evaluate the semantic similarity between three Gene Ontology slims (Plant, Yeast, and Candida, among which the latter two belong to the same kingdom—Fungi) using four popular measures commonly applied to biomedical ontologies (Resnik, Lin, Jiang-Conrath, and SimRel). The results of this study demonstrate that with proper selection of scaling levels and similarity measures, we can significantly reduce the size of ontologies without losing substantial detail. In particular, the performance of Jiang-Conrath and Lin are more reliable and stable than that of the other two in this experiment, as proven by (a) consistently showing that Yeast and Candida are more similar (as compared to Plant) at different scales, and (b) small deviations of the similarity values after excluding a majority of nodes from several lower scales. This study provides a deeper understanding of the application of semantic similarity to biomedical ontologies, and shed light on how to choose appropriate semantic similarity measures for biomedical engineering.« less

  8. A-DaGO-Fun: an adaptable Gene Ontology semantic similarity-based functional analysis tool.

    PubMed

    Mazandu, Gaston K; Chimusa, Emile R; Mbiyavanga, Mamana; Mulder, Nicola J

    2016-02-01

    Gene Ontology (GO) semantic similarity measures are being used for biological knowledge discovery based on GO annotations by integrating biological information contained in the GO structure into data analyses. To empower users to quickly compute, manipulate and explore these measures, we introduce A-DaGO-Fun (ADaptable Gene Ontology semantic similarity-based Functional analysis). It is a portable software package integrating all known GO information content-based semantic similarity measures and relevant biological applications associated with these measures. A-DaGO-Fun has the advantage not only of handling datasets from the current high-throughput genome-wide applications, but also allowing users to choose the most relevant semantic similarity approach for their biological applications and to adapt a given module to their needs. A-DaGO-Fun is freely available to the research community at http://web.cbio.uct.ac.za/ITGOM/adagofun. It is implemented in Linux using Python under free software (GNU General Public Licence). gmazandu@cbio.uct.ac.za or Nicola.Mulder@uct.ac.za Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Constructing Adverse Outcome Pathways: a Demonstration of ...

    EPA Pesticide Factsheets

    Adverse outcome pathway (AOP) provides a conceptual framework to evaluate and integrate chemical toxicity and its effects across the levels of biological organization. As such, it is essential to develop a resource-efficient and effective approach to extend molecular initiating events (MIEs) of chemicals to their downstream phenotypes of a greater regulatory relevance. A number of ongoing public phenomics (high throughput phenotyping) efforts have been generating abundant phenotypic data annotated with ontology terms. These phenotypes can be analyzed semantically and linked to MIEs of interest, all in the context of a knowledge base integrated from a variety of ontologies for various species and knowledge domains. In such analyses, two phenotypic profiles (PPs; anchored by genes or diseases) each characterized by multiple ontology terms are compared for their semantic similarities within a common ontology graph, but across boundaries of species and knowledge domains. Taking advantage of publicly available ontologies and software tool kits, we have implemented an OS-Mapping (Ontology-based Semantics Mapping) approach as a Java application, and constructed a network of 19383 PPs as nodes with edges weighed by their pairwise semantic similarity scores. Individual PPs were assembled from public phenomics data. Out of possible 1.87×108 pairwise connections among these nodes, about 71% of them have similarity scores between 0.2 and the maximum possible of 1.0.

  10. Semantic enrichment of clinical models towards semantic interoperability. The heart failure summary use case.

    PubMed

    Martínez-Costa, Catalina; Cornet, Ronald; Karlsson, Daniel; Schulz, Stefan; Kalra, Dipak

    2015-05-01

    To improve semantic interoperability of electronic health records (EHRs) by ontology-based mediation across syntactically heterogeneous representations of the same or similar clinical information. Our approach is based on a semantic layer that consists of: (1) a set of ontologies supported by (2) a set of semantic patterns. The first aspect of the semantic layer helps standardize the clinical information modeling task and the second shields modelers from the complexity of ontology modeling. We applied this approach to heterogeneous representations of an excerpt of a heart failure summary. Using a set of finite top-level patterns to derive semantic patterns, we demonstrate that those patterns, or compositions thereof, can be used to represent information from clinical models. Homogeneous querying of the same or similar information, when represented according to heterogeneous clinical models, is feasible. Our approach focuses on the meaning embedded in EHRs, regardless of their structure. This complex task requires a clear ontological commitment (ie, agreement to consistently use the shared vocabulary within some context), together with formalization rules. These requirements are supported by semantic patterns. Other potential uses of this approach, such as clinical models validation, require further investigation. We show how an ontology-based representation of a clinical summary, guided by semantic patterns, allows homogeneous querying of heterogeneous information structures. Whether there are a finite number of top-level patterns is an open question. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Using ontology-based semantic similarity to facilitate the article screening process for systematic reviews.

    PubMed

    Ji, Xiaonan; Ritter, Alan; Yen, Po-Yin

    2017-05-01

    Systematic Reviews (SRs) are utilized to summarize evidence from high quality studies and are considered the preferred source of evidence-based practice (EBP). However, conducting SRs can be time and labor intensive due to the high cost of article screening. In previous studies, we demonstrated utilizing established (lexical) article relationships to facilitate the identification of relevant articles in an efficient and effective manner. Here we propose to enhance article relationships with background semantic knowledge derived from Unified Medical Language System (UMLS) concepts and ontologies. We developed a pipelined semantic concepts representation process to represent articles from an SR into an optimized and enriched semantic space of UMLS concepts. Throughout the process, we leveraged concepts and concept relations encoded in biomedical ontologies (SNOMED-CT and MeSH) within the UMLS framework to prompt concept features of each article. Article relationships (similarities) were established and represented as a semantic article network, which was readily applied to assist with the article screening process. We incorporated the concept of active learning to simulate an interactive article recommendation process, and evaluated the performance on 15 completed SRs. We used work saved over sampling at 95% recall (WSS95) as the performance measure. We compared the WSS95 performance of our ontology-based semantic approach to existing lexical feature approaches and corpus-based semantic approaches, and found that we had better WSS95 in most SRs. We also had the highest average WSS95 of 43.81% and the highest total WSS95 of 657.18%. We demonstrated using ontology-based semantics to facilitate the identification of relevant articles for SRs. Effective concepts and concept relations derived from UMLS ontologies can be utilized to establish article semantic relationships. Our approach provided a promising performance and can easily apply to any SR topics in the biomedical domain with generalizability. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Determining the semantic similarities among Gene Ontology terms.

    PubMed

    Taha, Kamal

    2013-05-01

    We present in this paper novel techniques that determine the semantic relationships among GeneOntology (GO) terms. We implemented these techniques in a prototype system called GoSE, which resides between user application and GO database. Given a set S of GO terms, GoSE would return another set S' of GO terms, where each term in S' is semantically related to each term in S. Most current research is focused on determining the semantic similarities among GO ontology terms based solely on their IDs and proximity to one another in the GO graph structure, while overlooking the contexts of the terms, which may lead to erroneous results. The context of a GO term T is the set of other terms, whose existence in the GO graph structure is dependent on T. We propose novel techniques that determine the contexts of terms based on the concept of existence dependency. We present a stack-based sort-merge algorithm employing these techniques for determining the semantic similarities among GO terms.We evaluated GoSE experimentally and compared it with three existing methods. The results of measuring the semantic similarities among genes in KEGG and Pfam pathways retrieved from the DBGET and Sanger Pfam databases, respectively, have shown that our method outperforms the other three methods in recall and precision.

  13. Semantic Similarity between Web Documents Using Ontology

    NASA Astrophysics Data System (ADS)

    Chahal, Poonam; Singh Tomer, Manjeet; Kumar, Suresh

    2018-06-01

    The World Wide Web is the source of information available in the structure of interlinked web pages. However, the procedure of extracting significant information with the assistance of search engine is incredibly critical. This is for the reason that web information is written mainly by using natural language, and further available to individual human. Several efforts have been made in semantic similarity computation between documents using words, concepts and concepts relationship but still the outcome available are not as per the user requirements. This paper proposes a novel technique for computation of semantic similarity between documents that not only takes concepts available in documents but also relationships that are available between the concepts. In our approach documents are being processed by making ontology of the documents using base ontology and a dictionary containing concepts records. Each such record is made up of the probable words which represents a given concept. Finally, document ontology's are compared to find their semantic similarity by taking the relationships among concepts. Relevant concepts and relations between the concepts have been explored by capturing author and user intention. The proposed semantic analysis technique provides improved results as compared to the existing techniques.

  14. Semantic Similarity between Web Documents Using Ontology

    NASA Astrophysics Data System (ADS)

    Chahal, Poonam; Singh Tomer, Manjeet; Kumar, Suresh

    2018-03-01

    The World Wide Web is the source of information available in the structure of interlinked web pages. However, the procedure of extracting significant information with the assistance of search engine is incredibly critical. This is for the reason that web information is written mainly by using natural language, and further available to individual human. Several efforts have been made in semantic similarity computation between documents using words, concepts and concepts relationship but still the outcome available are not as per the user requirements. This paper proposes a novel technique for computation of semantic similarity between documents that not only takes concepts available in documents but also relationships that are available between the concepts. In our approach documents are being processed by making ontology of the documents using base ontology and a dictionary containing concepts records. Each such record is made up of the probable words which represents a given concept. Finally, document ontology's are compared to find their semantic similarity by taking the relationships among concepts. Relevant concepts and relations between the concepts have been explored by capturing author and user intention. The proposed semantic analysis technique provides improved results as compared to the existing techniques.

  15. Inferring ontology graph structures using OWL reasoning.

    PubMed

    Rodríguez-García, Miguel Ángel; Hoehndorf, Robert

    2018-01-05

    Ontologies are representations of a conceptualization of a domain. Traditionally, ontologies in biology were represented as directed acyclic graphs (DAG) which represent the backbone taxonomy and additional relations between classes. These graphs are widely exploited for data analysis in the form of ontology enrichment or computation of semantic similarity. More recently, ontologies are developed in a formal language such as the Web Ontology Language (OWL) and consist of a set of axioms through which classes are defined or constrained. While the taxonomy of an ontology can be inferred directly from the axioms of an ontology as one of the standard OWL reasoning tasks, creating general graph structures from OWL ontologies that exploit the ontologies' semantic content remains a challenge. We developed a method to transform ontologies into graphs using an automated reasoner while taking into account all relations between classes. Searching for (existential) patterns in the deductive closure of ontologies, we can identify relations between classes that are implied but not asserted and generate graph structures that encode for a large part of the ontologies' semantic content. We demonstrate the advantages of our method by applying it to inference of protein-protein interactions through semantic similarity over the Gene Ontology and demonstrate that performance is increased when graph structures are inferred using deductive inference according to our method. Our software and experiment results are available at http://github.com/bio-ontology-research-group/Onto2Graph . Onto2Graph is a method to generate graph structures from OWL ontologies using automated reasoning. The resulting graphs can be used for improved ontology visualization and ontology-based data analysis.

  16. GOssTo: a stand-alone application and a web tool for calculating semantic similarities on the Gene Ontology.

    PubMed

    Caniza, Horacio; Romero, Alfonso E; Heron, Samuel; Yang, Haixuan; Devoto, Alessandra; Frasca, Marco; Mesiti, Marco; Valentini, Giorgio; Paccanaro, Alberto

    2014-08-01

    We present GOssTo, the Gene Ontology semantic similarity Tool, a user-friendly software system for calculating semantic similarities between gene products according to the Gene Ontology. GOssTo is bundled with six semantic similarity measures, including both term- and graph-based measures, and has extension capabilities to allow the user to add new similarities. Importantly, for any measure, GOssTo can also calculate the Random Walk Contribution that has been shown to greatly improve the accuracy of similarity measures. GOssTo is very fast, easy to use, and it allows the calculation of similarities on a genomic scale in a few minutes on a regular desktop machine. alberto@cs.rhul.ac.uk GOssTo is available both as a stand-alone application running on GNU/Linux, Windows and MacOS from www.paccanarolab.org/gossto and as a web application from www.paccanarolab.org/gosstoweb. The stand-alone application features a simple and concise command line interface for easy integration into high-throughput data processing pipelines. © The Author 2014. Published by Oxford University Press.

  17. BioPortal: An Open-Source Community-Based Ontology Repository

    NASA Astrophysics Data System (ADS)

    Noy, N.; NCBO Team

    2011-12-01

    Advances in computing power and new computational techniques have changed the way researchers approach science. In many fields, one of the most fruitful approaches has been to use semantically aware software to break down the barriers among disparate domains, systems, data sources, and technologies. Such software facilitates data aggregation, improves search, and ultimately allows the detection of new associations that were previously not detectable. Achieving these analyses requires software systems that take advantage of the semantics and that can intelligently negotiate domains and knowledge sources, identifying commonality across systems that use different and conflicting vocabularies, while understanding apparent differences that may be concealed by the use of superficially similar terms. An ontology, a semantically rich vocabulary for a domain of interest, is the cornerstone of software for bridging systems, domains, and resources. However, as ontologies become the foundation of all semantic technologies in e-science, we must develop an infrastructure for sharing ontologies, finding and evaluating them, integrating and mapping among them, and using ontologies in applications that help scientists process their data. BioPortal [1] is an open-source on-line community-based ontology repository that has been used as a critical component of semantic infrastructure in several domains, including biomedicine and bio-geochemical data. BioPortal, uses the social approaches in the Web 2.0 style to bring structure and order to the collection of biomedical ontologies. It enables users to provide and discuss a wide array of knowledge components, from submitting the ontologies themselves, to commenting on and discussing classes in the ontologies, to reviewing ontologies in the context of their own ontology-based projects, to creating mappings between overlapping ontologies and discussing and critiquing the mappings. Critically, it provides web-service access to all its content, enabling its integration in semantically enriched applications. [1] Noy, N.F., Shah, N.H., et al., BioPortal: ontologies and integrated data resources at the click of a mouse. Nucleic Acids Res, 2009. 37(Web Server issue): p. W170-3.

  18. Protein-protein interaction inference based on semantic similarity of Gene Ontology terms.

    PubMed

    Zhang, Shu-Bo; Tang, Qiang-Rong

    2016-07-21

    Identifying protein-protein interactions is important in molecular biology. Experimental methods to this issue have their limitations, and computational approaches have attracted more and more attentions from the biological community. The semantic similarity derived from the Gene Ontology (GO) annotation has been regarded as one of the most powerful indicators for protein interaction. However, conventional methods based on GO similarity fail to take advantage of the specificity of GO terms in the ontology graph. We proposed a GO-based method to predict protein-protein interaction by integrating different kinds of similarity measures derived from the intrinsic structure of GO graph. We extended five existing methods to derive the semantic similarity measures from the descending part of two GO terms in the GO graph, then adopted a feature integration strategy to combines both the ascending and the descending similarity scores derived from the three sub-ontologies to construct various kinds of features to characterize each protein pair. Support vector machines (SVM) were employed as discriminate classifiers, and five-fold cross validation experiments were conducted on both human and yeast protein-protein interaction datasets to evaluate the performance of different kinds of integrated features, the experimental results suggest the best performance of the feature that combines information from both the ascending and the descending parts of the three ontologies. Our method is appealing for effective prediction of protein-protein interaction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Ontology-based vector space model and fuzzy query expansion to retrieve knowledge on medical computational problem solutions.

    PubMed

    Bratsas, Charalampos; Koutkias, Vassilis; Kaimakamis, Evangelos; Bamidis, Panagiotis; Maglaveras, Nicos

    2007-01-01

    Medical Computational Problem (MCP) solving is related to medical problems and their computerized algorithmic solutions. In this paper, an extension of an ontology-based model to fuzzy logic is presented, as a means to enhance the information retrieval (IR) procedure in semantic management of MCPs. We present herein the methodology followed for the fuzzy expansion of the ontology model, the fuzzy query expansion procedure, as well as an appropriate ontology-based Vector Space Model (VSM) that was constructed for efficient mapping of user-defined MCP search criteria and MCP acquired knowledge. The relevant fuzzy thesaurus is constructed by calculating the simultaneous occurrences of terms and the term-to-term similarities derived from the ontology that utilizes UMLS (Unified Medical Language System) concepts by using Concept Unique Identifiers (CUI), synonyms, semantic types, and broader-narrower relationships for fuzzy query expansion. The current approach constitutes a sophisticated advance for effective, semantics-based MCP-related IR.

  20. Optimal Threshold Determination for Interpreting Semantic Similarity and Particularity: Application to the Comparison of Gene Sets and Metabolic Pathways Using GO and ChEBI

    PubMed Central

    Bettembourg, Charles; Diot, Christian; Dameron, Olivier

    2015-01-01

    Background The analysis of gene annotations referencing back to Gene Ontology plays an important role in the interpretation of high-throughput experiments results. This analysis typically involves semantic similarity and particularity measures that quantify the importance of the Gene Ontology annotations. However, there is currently no sound method supporting the interpretation of the similarity and particularity values in order to determine whether two genes are similar or whether one gene has some significant particular function. Interpretation is frequently based either on an implicit threshold, or an arbitrary one (typically 0.5). Here we investigate a method for determining thresholds supporting the interpretation of the results of a semantic comparison. Results We propose a method for determining the optimal similarity threshold by minimizing the proportions of false-positive and false-negative similarity matches. We compared the distributions of the similarity values of pairs of similar genes and pairs of non-similar genes. These comparisons were performed separately for all three branches of the Gene Ontology. In all situations, we found overlap between the similar and the non-similar distributions, indicating that some similar genes had a similarity value lower than the similarity value of some non-similar genes. We then extend this method to the semantic particularity measure and to a similarity measure applied to the ChEBI ontology. Thresholds were evaluated over the whole HomoloGene database. For each group of homologous genes, we computed all the similarity and particularity values between pairs of genes. Finally, we focused on the PPAR multigene family to show that the similarity and particularity patterns obtained with our thresholds were better at discriminating orthologs and paralogs than those obtained using default thresholds. Conclusion We developed a method for determining optimal semantic similarity and particularity thresholds. We applied this method on the GO and ChEBI ontologies. Qualitative analysis using the thresholds on the PPAR multigene family yielded biologically-relevant patterns. PMID:26230274

  1. Filtering Gene Ontology semantic similarity for identifying protein complexes in large protein interaction networks.

    PubMed

    Wang, Jian; Xie, Dong; Lin, Hongfei; Yang, Zhihao; Zhang, Yijia

    2012-06-21

    Many biological processes recognize in particular the importance of protein complexes, and various computational approaches have been developed to identify complexes from protein-protein interaction (PPI) networks. However, high false-positive rate of PPIs leads to challenging identification. A protein semantic similarity measure is proposed in this study, based on the ontology structure of Gene Ontology (GO) terms and GO annotations to estimate the reliability of interactions in PPI networks. Interaction pairs with low GO semantic similarity are removed from the network as unreliable interactions. Then, a cluster-expanding algorithm is used to detect complexes with core-attachment structure on filtered network. Our method is applied to three different yeast PPI networks. The effectiveness of our method is examined on two benchmark complex datasets. Experimental results show that our method performed better than other state-of-the-art approaches in most evaluation metrics. The method detects protein complexes from large scale PPI networks by filtering GO semantic similarity. Removing interactions with low GO similarity significantly improves the performance of complex identification. The expanding strategy is also effective to identify attachment proteins of complexes.

  2. On combining image-based and ontological semantic dissimilarities for medical image retrieval applications

    PubMed Central

    Kurtz, Camille; Depeursinge, Adrien; Napel, Sandy; Beaulieu, Christopher F.; Rubin, Daniel L.

    2014-01-01

    Computer-assisted image retrieval applications can assist radiologists by identifying similar images in archives as a means to providing decision support. In the classical case, images are described using low-level features extracted from their contents, and an appropriate distance is used to find the best matches in the feature space. However, using low-level image features to fully capture the visual appearance of diseases is challenging and the semantic gap between these features and the high-level visual concepts in radiology may impair the system performance. To deal with this issue, the use of semantic terms to provide high-level descriptions of radiological image contents has recently been advocated. Nevertheless, most of the existing semantic image retrieval strategies are limited by two factors: they require manual annotation of the images using semantic terms and they ignore the intrinsic visual and semantic relationships between these annotations during the comparison of the images. Based on these considerations, we propose an image retrieval framework based on semantic features that relies on two main strategies: (1) automatic “soft” prediction of ontological terms that describe the image contents from multi-scale Riesz wavelets and (2) retrieval of similar images by evaluating the similarity between their annotations using a new term dissimilarity measure, which takes into account both image-based and ontological term relations. The combination of these strategies provides a means of accurately retrieving similar images in databases based on image annotations and can be considered as a potential solution to the semantic gap problem. We validated this approach in the context of the retrieval of liver lesions from computed tomographic (CT) images and annotated with semantic terms of the RadLex ontology. The relevance of the retrieval results was assessed using two protocols: evaluation relative to a dissimilarity reference standard defined for pairs of images on a 25-images dataset, and evaluation relative to the diagnoses of the retrieved images on a 72-images dataset. A normalized discounted cumulative gain (NDCG) score of more than 0.92 was obtained with the first protocol, while AUC scores of more than 0.77 were obtained with the second protocol. This automatical approach could provide real-time decision support to radiologists by showing them similar images with associated diagnoses and, where available, responses to therapies. PMID:25036769

  3. The semantic measures library and toolkit: fast computation of semantic similarity and relatedness using biomedical ontologies.

    PubMed

    Harispe, Sébastien; Ranwez, Sylvie; Janaqi, Stefan; Montmain, Jacky

    2014-03-01

    The semantic measures library and toolkit are robust open-source and easy to use software solutions dedicated to semantic measures. They can be used for large-scale computations and analyses of semantic similarities between terms/concepts defined in terminologies and ontologies. The comparison of entities (e.g. genes) annotated by concepts is also supported. A large collection of measures is available. Not limited to a specific application context, the library and the toolkit can be used with various controlled vocabularies and ontology specifications (e.g. Open Biomedical Ontology, Resource Description Framework). The project targets both designers and practitioners of semantic measures providing a JAVA library, as well as a command-line tool that can be used on personal computers or computer clusters. Downloads, documentation, tutorials, evaluation and support are available at http://www.semantic-measures-library.org.

  4. GOSAP: Gene Ontology-Based Semantic Alignment of Biological Pathways.

    PubMed

    Gamalielsson, Jonas; Olsson, Bjorn

    2008-01-01

    We present a new method for semantic comparison of biological pathways, aiming to discover evolutionary conservation of pathways between species. Our method uses all three sub-ontologies of Gene Ontology (GO) and a measure of semantic similarity to calculate match scores between gene products. These scores are used for finding local pairwise pathway alignments. This approach has the advantage of being applicable to all types of pathways where nodes are gene products, e.g., regulatory pathways, signalling pathways and metabolic enzyme-to-enzyme pathways. We demonstrate the usefulness of the method using regulatory and metabolic pathways from E. coli and S. cerevisiae as examples.

  5. A grammar-based semantic similarity algorithm for natural language sentences.

    PubMed

    Lee, Ming Che; Chang, Jia Wei; Hsieh, Tung Cheng

    2014-01-01

    This paper presents a grammar and semantic corpus based similarity algorithm for natural language sentences. Natural language, in opposition to "artificial language", such as computer programming languages, is the language used by the general public for daily communication. Traditional information retrieval approaches, such as vector models, LSA, HAL, or even the ontology-based approaches that extend to include concept similarity comparison instead of cooccurrence terms/words, may not always determine the perfect matching while there is no obvious relation or concept overlap between two natural language sentences. This paper proposes a sentence similarity algorithm that takes advantage of corpus-based ontology and grammatical rules to overcome the addressed problems. Experiments on two famous benchmarks demonstrate that the proposed algorithm has a significant performance improvement in sentences/short-texts with arbitrary syntax and structure.

  6. Similarity Based Semantic Web Service Match

    NASA Astrophysics Data System (ADS)

    Peng, Hui; Niu, Wenjia; Huang, Ronghuai

    Semantic web service discovery aims at returning the most matching advertised services to the service requester by comparing the semantic of the request service with an advertised service. The semantic of a web service are described in terms of inputs, outputs, preconditions and results in Ontology Web Language for Service (OWL-S) which formalized by W3C. In this paper we proposed an algorithm to calculate the semantic similarity of two services by weighted averaging their inputs and outputs similarities. Case study and applications show the effectiveness of our algorithm in service match.

  7. Investigating Correlation between Protein Sequence Similarity and Semantic Similarity Using Gene Ontology Annotations.

    PubMed

    Ikram, Najmul; Qadir, Muhammad Abdul; Afzal, Muhammad Tanvir

    2018-01-01

    Sequence similarity is a commonly used measure to compare proteins. With the increasing use of ontologies, semantic (function) similarity is getting importance. The correlation between these measures has been applied in the evaluation of new semantic similarity methods, and in protein function prediction. In this research, we investigate the relationship between the two similarity methods. The results suggest absence of a strong correlation between sequence and semantic similarities. There is a large number of proteins with low sequence similarity and high semantic similarity. We observe that Pearson's correlation coefficient is not sufficient to explain the nature of this relationship. Interestingly, the term semantic similarity values above 0 and below 1 do not seem to play a role in improving the correlation. That is, the correlation coefficient depends only on the number of common GO terms in proteins under comparison, and the semantic similarity measurement method does not influence it. Semantic similarity and sequence similarity have a distinct behavior. These findings are of significant effect for future works on protein comparison, and will help understand the semantic similarity between proteins in a better way.

  8. Ontology- and graph-based similarity assessment in biological networks.

    PubMed

    Wang, Haiying; Zheng, Huiru; Azuaje, Francisco

    2010-10-15

    A standard systems-based approach to biomarker and drug target discovery consists of placing putative biomarkers in the context of a network of biological interactions, followed by different 'guilt-by-association' analyses. The latter is typically done based on network structural features. Here, an alternative analysis approach in which the networks are analyzed on a 'semantic similarity' space is reported. Such information is extracted from ontology-based functional annotations. We present SimTrek, a Cytoscape plugin for ontology-based similarity assessment in biological networks. http://rosalind.infj.ulst.ac.uk/SimTrek.html francisco.azuaje@crp-sante.lu Supplementary data are available at Bioinformatics online.

  9. iSMART: Ontology-based Semantic Query of CDA Documents

    PubMed Central

    Liu, Shengping; Ni, Yuan; Mei, Jing; Li, Hanyu; Xie, Guotong; Hu, Gang; Liu, Haifeng; Hou, Xueqiao; Pan, Yue

    2009-01-01

    The Health Level 7 Clinical Document Architecture (CDA) is widely accepted as the format for electronic clinical document. With the rich ontological references in CDA documents, the ontology-based semantic query could be performed to retrieve CDA documents. In this paper, we present iSMART (interactive Semantic MedicAl Record reTrieval), a prototype system designed for ontology-based semantic query of CDA documents. The clinical information in CDA documents will be extracted into RDF triples by a declarative XML to RDF transformer. An ontology reasoner is developed to infer additional information by combining the background knowledge from SNOMED CT ontology. Then an RDF query engine is leveraged to enable the semantic queries. This system has been evaluated using the real clinical documents collected from a large hospital in southern China. PMID:20351883

  10. A Grammar-Based Semantic Similarity Algorithm for Natural Language Sentences

    PubMed Central

    Chang, Jia Wei; Hsieh, Tung Cheng

    2014-01-01

    This paper presents a grammar and semantic corpus based similarity algorithm for natural language sentences. Natural language, in opposition to “artificial language”, such as computer programming languages, is the language used by the general public for daily communication. Traditional information retrieval approaches, such as vector models, LSA, HAL, or even the ontology-based approaches that extend to include concept similarity comparison instead of cooccurrence terms/words, may not always determine the perfect matching while there is no obvious relation or concept overlap between two natural language sentences. This paper proposes a sentence similarity algorithm that takes advantage of corpus-based ontology and grammatical rules to overcome the addressed problems. Experiments on two famous benchmarks demonstrate that the proposed algorithm has a significant performance improvement in sentences/short-texts with arbitrary syntax and structure. PMID:24982952

  11. Semantics-Based Interoperability Framework for the Geosciences

    NASA Astrophysics Data System (ADS)

    Sinha, A.; Malik, Z.; Raskin, R.; Barnes, C.; Fox, P.; McGuinness, D.; Lin, K.

    2008-12-01

    Interoperability between heterogeneous data, tools and services is required to transform data to knowledge. To meet geoscience-oriented societal challenges such as forcing of climate change induced by volcanic eruptions, we suggest the need to develop semantic interoperability for data, services, and processes. Because such scientific endeavors require integration of multiple data bases associated with global enterprises, implicit semantic-based integration is impossible. Instead, explicit semantics are needed to facilitate interoperability and integration. Although different types of integration models are available (syntactic or semantic) we suggest that semantic interoperability is likely to be the most successful pathway. Clearly, the geoscience community would benefit from utilization of existing XML-based data models, such as GeoSciML, WaterML, etc to rapidly advance semantic interoperability and integration. We recognize that such integration will require a "meanings-based search, reasoning and information brokering", which will be facilitated through inter-ontology relationships (ontologies defined for each discipline). We suggest that Markup languages (MLs) and ontologies can be seen as "data integration facilitators", working at different abstraction levels. Therefore, we propose to use an ontology-based data registration and discovery approach to compliment mark-up languages through semantic data enrichment. Ontologies allow the use of formal and descriptive logic statements which permits expressive query capabilities for data integration through reasoning. We have developed domain ontologies (EPONT) to capture the concept behind data. EPONT ontologies are associated with existing ontologies such as SUMO, DOLCE and SWEET. Although significant efforts have gone into developing data (object) ontologies, we advance the idea of developing semantic frameworks for additional ontologies that deal with processes and services. This evolutionary step will facilitate the integrative capabilities of scientists as we examine the relationships between data and external factors such as processes that may influence our understanding of "why" certain events happen. We emphasize the need to go from analysis of data to concepts related to scientific principles of thermodynamics, kinetics, heat flow, mass transfer, etc. Towards meeting these objectives, we report on a pair of related service engines: DIA (Discovery, integration and analysis), and SEDRE (Semantically-Enabled Data Registration Engine) that utilize ontologies for semantic interoperability and integration.

  12. Fuzzy ontologies for semantic interpretation of remotely sensed images

    NASA Astrophysics Data System (ADS)

    Djerriri, Khelifa; Malki, Mimoun

    2015-10-01

    Object-based image classification consists in the assignment of object that share similar attributes to object categories. To perform such a task the remote sensing expert uses its personal knowledge, which is rarely formalized. Ontologies have been proposed as solution to represent domain knowledge agreed by domain experts in a formal and machine readable language. Classical ontology languages are not appropriate to deal with imprecision or vagueness in knowledge. Fortunately, Description Logics for the semantic web has been enhanced by various approaches to handle such knowledge. This paper presents the extension of the traditional ontology-based interpretation with fuzzy ontology of main land-cover classes in Landsat8-OLI scenes (vegetation, built-up areas, water bodies, shadow, clouds, forests) objects. A good classification of image objects was obtained and the results highlight the potential of the method to be replicated over time and space in the perspective of transferability of the procedure.

  13. Fast gene ontology based clustering for microarray experiments.

    PubMed

    Ovaska, Kristian; Laakso, Marko; Hautaniemi, Sampsa

    2008-11-21

    Analysis of a microarray experiment often results in a list of hundreds of disease-associated genes. In order to suggest common biological processes and functions for these genes, Gene Ontology annotations with statistical testing are widely used. However, these analyses can produce a very large number of significantly altered biological processes. Thus, it is often challenging to interpret GO results and identify novel testable biological hypotheses. We present fast software for advanced gene annotation using semantic similarity for Gene Ontology terms combined with clustering and heat map visualisation. The methodology allows rapid identification of genes sharing the same Gene Ontology cluster. Our R based semantic similarity open-source package has a speed advantage of over 2000-fold compared to existing implementations. From the resulting hierarchical clustering dendrogram genes sharing a GO term can be identified, and their differences in the gene expression patterns can be seen from the heat map. These methods facilitate advanced annotation of genes resulting from data analysis.

  14. The SWAN Scientific Discourse Ontology

    PubMed Central

    Ciccarese, Paolo; Wu, Elizabeth; Kinoshita, June; Wong, Gwendolyn T.; Ocana, Marco; Ruttenberg, Alan

    2015-01-01

    SWAN (Semantic Web Application in Neuromedicine) is a project to construct a semantically-organized, community-curated, distributed knowledge base of Theory, Evidence, and Discussion in biomedicine. Unlike Wikipedia and similar approaches, SWAN’s ontology is designed to represent and foreground both harmonizing and contradictory assertions within the total community discourse. Releases of the software, content and ontology will be initially by and for the Alzheimer Disease (AD) research community, with the obvious potential for extension into other disease research areas. The Alzheimer Research Forum, a 4,000-member web community for AD researchers, will host SWAN’s initial public release, currently scheduled for late 2007. This paper presents the current version of SWAN’s ontology of scientific discourse and presents our current thinking about its evolution including extensions and alignment with related communities, projects and ontologies. PMID:18583197

  15. The Fusion Model of Intelligent Transportation Systems Based on the Urban Traffic Ontology

    NASA Astrophysics Data System (ADS)

    Yang, Wang-Dong; Wang, Tao

    On these issues unified representation of urban transport information using urban transport ontology, it defines the statute and the algebraic operations of semantic fusion in ontology level in order to achieve the fusion of urban traffic information in the semantic completeness and consistency. Thus this paper takes advantage of the semantic completeness of the ontology to build urban traffic ontology model with which we resolve the problems as ontology mergence and equivalence verification in semantic fusion of traffic information integration. Information integration in urban transport can increase the function of semantic fusion, and reduce the amount of data integration of urban traffic information as well enhance the efficiency and integrity of traffic information query for the help, through the practical application of intelligent traffic information integration platform of Changde city, the paper has practically proved that the semantic fusion based on ontology increases the effect and efficiency of the urban traffic information integration, reduces the storage quantity, and improve query efficiency and information completeness.

  16. Semantic SenseLab: implementing the vision of the Semantic Web in neuroscience

    PubMed Central

    Samwald, Matthias; Chen, Huajun; Ruttenberg, Alan; Lim, Ernest; Marenco, Luis; Miller, Perry; Shepherd, Gordon; Cheung, Kei-Hoi

    2011-01-01

    Summary Objective Integrative neuroscience research needs a scalable informatics framework that enables semantic integration of diverse types of neuroscience data. This paper describes the use of the Web Ontology Language (OWL) and other Semantic Web technologies for the representation and integration of molecular-level data provided by several of SenseLab suite of neuroscience databases. Methods Based on the original database structure, we semi-automatically translated the databases into OWL ontologies with manual addition of semantic enrichment. The SenseLab ontologies are extensively linked to other biomedical Semantic Web resources, including the Subcellular Anatomy Ontology, Brain Architecture Management System, the Gene Ontology, BIRNLex and UniProt. The SenseLab ontologies have also been mapped to the Basic Formal Ontology and Relation Ontology, which helps ease interoperability with many other existing and future biomedical ontologies for the Semantic Web. In addition, approaches to representing contradictory research statements are described. The SenseLab ontologies are designed for use on the Semantic Web that enables their integration into a growing collection of biomedical information resources. Conclusion We demonstrate that our approach can yield significant potential benefits and that the Semantic Web is rapidly becoming mature enough to realize its anticipated promises. The ontologies are available online at http://neuroweb.med.yale.edu/senselab/ PMID:20006477

  17. Semantic SenseLab: Implementing the vision of the Semantic Web in neuroscience.

    PubMed

    Samwald, Matthias; Chen, Huajun; Ruttenberg, Alan; Lim, Ernest; Marenco, Luis; Miller, Perry; Shepherd, Gordon; Cheung, Kei-Hoi

    2010-01-01

    Integrative neuroscience research needs a scalable informatics framework that enables semantic integration of diverse types of neuroscience data. This paper describes the use of the Web Ontology Language (OWL) and other Semantic Web technologies for the representation and integration of molecular-level data provided by several of SenseLab suite of neuroscience databases. Based on the original database structure, we semi-automatically translated the databases into OWL ontologies with manual addition of semantic enrichment. The SenseLab ontologies are extensively linked to other biomedical Semantic Web resources, including the Subcellular Anatomy Ontology, Brain Architecture Management System, the Gene Ontology, BIRNLex and UniProt. The SenseLab ontologies have also been mapped to the Basic Formal Ontology and Relation Ontology, which helps ease interoperability with many other existing and future biomedical ontologies for the Semantic Web. In addition, approaches to representing contradictory research statements are described. The SenseLab ontologies are designed for use on the Semantic Web that enables their integration into a growing collection of biomedical information resources. We demonstrate that our approach can yield significant potential benefits and that the Semantic Web is rapidly becoming mature enough to realize its anticipated promises. The ontologies are available online at http://neuroweb.med.yale.edu/senselab/. 2009 Elsevier B.V. All rights reserved.

  18. BIOSSES: a semantic sentence similarity estimation system for the biomedical domain.

    PubMed

    Sogancioglu, Gizem; Öztürk, Hakime; Özgür, Arzucan

    2017-07-15

    The amount of information available in textual format is rapidly increasing in the biomedical domain. Therefore, natural language processing (NLP) applications are becoming increasingly important to facilitate the retrieval and analysis of these data. Computing the semantic similarity between sentences is an important component in many NLP tasks including text retrieval and summarization. A number of approaches have been proposed for semantic sentence similarity estimation for generic English. However, our experiments showed that such approaches do not effectively cover biomedical knowledge and produce poor results for biomedical text. We propose several approaches for sentence-level semantic similarity computation in the biomedical domain, including string similarity measures and measures based on the distributed vector representations of sentences learned in an unsupervised manner from a large biomedical corpus. In addition, ontology-based approaches are presented that utilize general and domain-specific ontologies. Finally, a supervised regression based model is developed that effectively combines the different similarity computation metrics. A benchmark data set consisting of 100 sentence pairs from the biomedical literature is manually annotated by five human experts and used for evaluating the proposed methods. The experiments showed that the supervised semantic sentence similarity computation approach obtained the best performance (0.836 correlation with gold standard human annotations) and improved over the state-of-the-art domain-independent systems up to 42.6% in terms of the Pearson correlation metric. A web-based system for biomedical semantic sentence similarity computation, the source code, and the annotated benchmark data set are available at: http://tabilab.cmpe.boun.edu.tr/BIOSSES/ . gizemsogancioglu@gmail.com or arzucan.ozgur@boun.edu.tr. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  19. SoFoCles: feature filtering for microarray classification based on gene ontology.

    PubMed

    Papachristoudis, Georgios; Diplaris, Sotiris; Mitkas, Pericles A

    2010-02-01

    Marker gene selection has been an important research topic in the classification analysis of gene expression data. Current methods try to reduce the "curse of dimensionality" by using statistical intra-feature set calculations, or classifiers that are based on the given dataset. In this paper, we present SoFoCles, an interactive tool that enables semantic feature filtering in microarray classification problems with the use of external, well-defined knowledge retrieved from the Gene Ontology. The notion of semantic similarity is used to derive genes that are involved in the same biological path during the microarray experiment, by enriching a feature set that has been initially produced with legacy methods. Among its other functionalities, SoFoCles offers a large repository of semantic similarity methods that are used in order to derive feature sets and marker genes. The structure and functionality of the tool are discussed in detail, as well as its ability to improve classification accuracy. Through experimental evaluation, SoFoCles is shown to outperform other classification schemes in terms of classification accuracy in two real datasets using different semantic similarity computation approaches.

  20. Ontology Matching with Semantic Verification.

    PubMed

    Jean-Mary, Yves R; Shironoshita, E Patrick; Kabuka, Mansur R

    2009-09-01

    ASMOV (Automated Semantic Matching of Ontologies with Verification) is a novel algorithm that uses lexical and structural characteristics of two ontologies to iteratively calculate a similarity measure between them, derives an alignment, and then verifies it to ensure that it does not contain semantic inconsistencies. In this paper, we describe the ASMOV algorithm, and then present experimental results that measure its accuracy using the OAEI 2008 tests, and that evaluate its use with two different thesauri: WordNet, and the Unified Medical Language System (UMLS). These results show the increased accuracy obtained by combining lexical, structural and extensional matchers with semantic verification, and demonstrate the advantage of using a domain-specific thesaurus for the alignment of specialized ontologies.

  1. Survey on Ontology Mapping

    NASA Astrophysics Data System (ADS)

    Zhu, Junwu

    To create a sharable semantic space in which the terms from different domain ontology or knowledge system, Ontology mapping become a hot research point in Semantic Web Community. In this paper, motivated factors of ontology mapping research are given firstly, and then 5 dominating theories and methods, such as information accessing technology, machine learning, linguistics, structure graph and similarity, are illustrated according their technology class. Before we analyses the new requirements and takes a long view, the contributions of these theories and methods are summarized in details. At last, this paper suggest to design a group of semantic connector with the ability of migration learning for OWL-2 extended with constrains and the ontology mapping theory of axiom, so as to provide a new methodology for ontology mapping.

  2. The effects of shared information on semantic calculations in the gene ontology.

    PubMed

    Bible, Paul W; Sun, Hong-Wei; Morasso, Maria I; Loganantharaj, Rasiah; Wei, Lai

    2017-01-01

    The structured vocabulary that describes gene function, the gene ontology (GO), serves as a powerful tool in biological research. One application of GO in computational biology calculates semantic similarity between two concepts to make inferences about the functional similarity of genes. A class of term similarity algorithms explicitly calculates the shared information (SI) between concepts then substitutes this calculation into traditional term similarity measures such as Resnik, Lin, and Jiang-Conrath. Alternative SI approaches, when combined with ontology choice and term similarity type, lead to many gene-to-gene similarity measures. No thorough investigation has been made into the behavior, complexity, and performance of semantic methods derived from distinct SI approaches. We apply bootstrapping to compare the generalized performance of 57 gene-to-gene semantic measures across six benchmarks. Considering the number of measures, we additionally evaluate whether these methods can be leveraged through ensemble machine learning to improve prediction performance. Results showed that the choice of ontology type most strongly influenced performance across all evaluations. Combining measures into an ensemble classifier reduces cross-validation error beyond any individual measure for protein interaction prediction. This improvement resulted from information gained through the combination of ontology types as ensemble methods within each GO type offered no improvement. These results demonstrate that multiple SI measures can be leveraged for machine learning tasks such as automated gene function prediction by incorporating methods from across the ontologies. To facilitate future research in this area, we developed the GO Graph Tool Kit (GGTK), an open source C++ library with Python interface (github.com/paulbible/ggtk).

  3. Web information retrieval based on ontology

    NASA Astrophysics Data System (ADS)

    Zhang, Jian

    2013-03-01

    The purpose of the Information Retrieval (IR) is to find a set of documents that are relevant for a specific information need of a user. Traditional Information Retrieval model commonly used in commercial search engine is based on keyword indexing system and Boolean logic queries. One big drawback of traditional information retrieval is that they typically retrieve information without an explicitly defined domain of interest to the users so that a lot of no relevance information returns to users, which burden the user to pick up useful answer from these no relevance results. In order to tackle this issue, many semantic web information retrieval models have been proposed recently. The main advantage of Semantic Web is to enhance search mechanisms with the use of Ontology's mechanisms. In this paper, we present our approach to personalize web search engine based on ontology. In addition, key techniques are also discussed in our paper. Compared to previous research, our works concentrate on the semantic similarity and the whole process including query submission and information annotation.

  4. CNTRO: A Semantic Web Ontology for Temporal Relation Inferencing in Clinical Narratives.

    PubMed

    Tao, Cui; Wei, Wei-Qi; Solbrig, Harold R; Savova, Guergana; Chute, Christopher G

    2010-11-13

    Using Semantic-Web specifications to represent temporal information in clinical narratives is an important step for temporal reasoning and answering time-oriented queries. Existing temporal models are either not compatible with the powerful reasoning tools developed for the Semantic Web, or designed only for structured clinical data and therefore are not ready to be applied on natural-language-based clinical narrative reports directly. We have developed a Semantic-Web ontology which is called Clinical Narrative Temporal Relation ontology. Using this ontology, temporal information in clinical narratives can be represented as RDF (Resource Description Framework) triples. More temporal information and relations can then be inferred by Semantic-Web based reasoning tools. Experimental results show that this ontology can represent temporal information in real clinical narratives successfully.

  5. An approach to development of ontological knowledge base in the field of scientific and research activity in Russia

    NASA Astrophysics Data System (ADS)

    Murtazina, M. Sh; Avdeenko, T. V.

    2018-05-01

    The state of art and the progress in application of semantic technologies in the field of scientific and research activity have been analyzed. Even elementary empirical comparison has shown that the semantic search engines are superior in all respects to conventional search technologies. However, semantic information technologies are insufficiently used in the field of scientific and research activity in Russia. In present paper an approach to construction of ontological model of knowledge base is proposed. The ontological model is based on the upper-level ontology and the RDF mechanism for linking several domain ontologies. The ontological model is implemented in the Protégé environment.

  6. Constructing a Geology Ontology Using a Relational Database

    NASA Astrophysics Data System (ADS)

    Hou, W.; Yang, L.; Yin, S.; Ye, J.; Clarke, K.

    2013-12-01

    In geology community, the creation of a common geology ontology has become a useful means to solve problems of data integration, knowledge transformation and the interoperation of multi-source, heterogeneous and multiple scale geological data. Currently, human-computer interaction methods and relational database-based methods are the primary ontology construction methods. Some human-computer interaction methods such as the Geo-rule based method, the ontology life cycle method and the module design method have been proposed for applied geological ontologies. Essentially, the relational database-based method is a reverse engineering of abstracted semantic information from an existing database. The key is to construct rules for the transformation of database entities into the ontology. Relative to the human-computer interaction method, relational database-based methods can use existing resources and the stated semantic relationships among geological entities. However, two problems challenge the development and application. One is the transformation of multiple inheritances and nested relationships and their representation in an ontology. The other is that most of these methods do not measure the semantic retention of the transformation process. In this study, we focused on constructing a rule set to convert the semantics in a geological database into a geological ontology. According to the relational schema of a geological database, a conversion approach is presented to convert a geological spatial database to an OWL-based geological ontology, which is based on identifying semantics such as entities, relationships, inheritance relationships, nested relationships and cluster relationships. The semantic integrity of the transformation was verified using an inverse mapping process. In a geological ontology, an inheritance and union operations between superclass and subclass were used to present the nested relationship in a geochronology and the multiple inheritances relationship. Based on a Quaternary database of downtown of Foshan city, Guangdong Province, in Southern China, a geological ontology was constructed using the proposed method. To measure the maintenance of semantics in the conversation process and the results, an inverse mapping from the ontology to a relational database was tested based on a proposed conversation rule. The comparison of schema and entities and the reduction of tables between the inverse database and the original database illustrated that the proposed method retains the semantic information well during the conversation process. An application for abstracting sandstone information showed that semantic relationships among concepts in the geological database were successfully reorganized in the constructed ontology. Key words: geological ontology; geological spatial database; multiple inheritance; OWL Acknowledgement: This research is jointly funded by the Specialized Research Fund for the Doctoral Program of Higher Education of China (RFDP) (20100171120001), NSFC (41102207) and the Fundamental Research Funds for the Central Universities (12lgpy19).

  7. Spatial information semantic query based on SPARQL

    NASA Astrophysics Data System (ADS)

    Xiao, Zhifeng; Huang, Lei; Zhai, Xiaofang

    2009-10-01

    How can the efficiency of spatial information inquiries be enhanced in today's fast-growing information age? We are rich in geospatial data but poor in up-to-date geospatial information and knowledge that are ready to be accessed by public users. This paper adopts an approach for querying spatial semantic by building an Web Ontology language(OWL) format ontology and introducing SPARQL Protocol and RDF Query Language(SPARQL) to search spatial semantic relations. It is important to establish spatial semantics that support for effective spatial reasoning for performing semantic query. Compared to earlier keyword-based and information retrieval techniques that rely on syntax, we use semantic approaches in our spatial queries system. Semantic approaches need to be developed by ontology, so we use OWL to describe spatial information extracted by the large-scale map of Wuhan. Spatial information expressed by ontology with formal semantics is available to machines for processing and to people for understanding. The approach is illustrated by introducing a case study for using SPARQL to query geo-spatial ontology instances of Wuhan. The paper shows that making use of SPARQL to search OWL ontology instances can ensure the result's accuracy and applicability. The result also indicates constructing a geo-spatial semantic query system has positive efforts on forming spatial query and retrieval.

  8. Semantic technologies in a decision support system

    NASA Astrophysics Data System (ADS)

    Wasielewska, K.; Ganzha, M.; Paprzycki, M.; Bǎdicǎ, C.; Ivanovic, M.; Lirkov, I.

    2015-10-01

    The aim of our work is to design a decision support system based on ontological representation of domain(s) and semantic technologies. Specifically, we consider the case when Grid / Cloud user describes his/her requirements regarding a "resource" as a class expression from an ontology, while the instances of (the same) ontology represent available resources. The goal is to help the user to find the best option with respect to his/her requirements, while remembering that user's knowledge may be "limited." In this context, we discuss multiple approaches based on semantic data processing, which involve different "forms" of user interaction with the system. Specifically, we consider: (a) ontological matchmaking based on SPARQL queries and class expression, (b) graph-based semantic closeness of instances representing user requirements (constructed from the class expression) and available resources, and (c) multicriterial analysis based on the AHP method, which utilizes expert domain knowledge (also ontologically represented).

  9. Ontology Reuse in Geoscience Semantic Applications

    NASA Astrophysics Data System (ADS)

    Mayernik, M. S.; Gross, M. B.; Daniels, M. D.; Rowan, L. R.; Stott, D.; Maull, K. E.; Khan, H.; Corson-Rikert, J.

    2015-12-01

    The tension between local ontology development and wider ontology connections is fundamental to the Semantic web. It is often unclear, however, what the key decision points should be for new semantic web applications in deciding when to reuse existing ontologies and when to develop original ontologies. In addition, with the growth of semantic web ontologies and applications, new semantic web applications can struggle to efficiently and effectively identify and select ontologies to reuse. This presentation will describe the ontology comparison, selection, and consolidation effort within the EarthCollab project. UCAR, Cornell University, and UNAVCO are collaborating on the EarthCollab project to use semantic web technologies to enable the discovery of the research output from a diverse array of projects. The EarthCollab project is using the VIVO Semantic web software suite to increase discoverability of research information and data related to the following two geoscience-based communities: (1) the Bering Sea Project, an interdisciplinary field program whose data archive is hosted by NCAR's Earth Observing Laboratory (EOL), and (2) diverse research projects informed by geodesy through the UNAVCO geodetic facility and consortium. This presentation will outline of EarthCollab use cases, and provide an overview of key ontologies being used, including the VIVO-Integrated Semantic Framework (VIVO-ISF), Global Change Information System (GCIS), and Data Catalog (DCAT) ontologies. We will discuss issues related to bringing these ontologies together to provide a robust ontological structure to support the EarthCollab use cases. It is rare that a single pre-existing ontology meets all of a new application's needs. New projects need to stitch ontologies together in ways that fit into the broader semantic web ecosystem.

  10. Hybrid ontology for semantic information retrieval model using keyword matching indexing system.

    PubMed

    Uthayan, K R; Mala, G S Anandha

    2015-01-01

    Ontology is the process of growth and elucidation of concepts of an information domain being common for a group of users. Establishing ontology into information retrieval is a normal method to develop searching effects of relevant information users require. Keywords matching process with historical or information domain is significant in recent calculations for assisting the best match for specific input queries. This research presents a better querying mechanism for information retrieval which integrates the ontology queries with keyword search. The ontology-based query is changed into a primary order to predicate logic uncertainty which is used for routing the query to the appropriate servers. Matching algorithms characterize warm area of researches in computer science and artificial intelligence. In text matching, it is more dependable to study semantics model and query for conditions of semantic matching. This research develops the semantic matching results between input queries and information in ontology field. The contributed algorithm is a hybrid method that is based on matching extracted instances from the queries and information field. The queries and information domain is focused on semantic matching, to discover the best match and to progress the executive process. In conclusion, the hybrid ontology in semantic web is sufficient to retrieve the documents when compared to standard ontology.

  11. Hybrid Ontology for Semantic Information Retrieval Model Using Keyword Matching Indexing System

    PubMed Central

    Uthayan, K. R.; Anandha Mala, G. S.

    2015-01-01

    Ontology is the process of growth and elucidation of concepts of an information domain being common for a group of users. Establishing ontology into information retrieval is a normal method to develop searching effects of relevant information users require. Keywords matching process with historical or information domain is significant in recent calculations for assisting the best match for specific input queries. This research presents a better querying mechanism for information retrieval which integrates the ontology queries with keyword search. The ontology-based query is changed into a primary order to predicate logic uncertainty which is used for routing the query to the appropriate servers. Matching algorithms characterize warm area of researches in computer science and artificial intelligence. In text matching, it is more dependable to study semantics model and query for conditions of semantic matching. This research develops the semantic matching results between input queries and information in ontology field. The contributed algorithm is a hybrid method that is based on matching extracted instances from the queries and information field. The queries and information domain is focused on semantic matching, to discover the best match and to progress the executive process. In conclusion, the hybrid ontology in semantic web is sufficient to retrieve the documents when compared to standard ontology. PMID:25922851

  12. Discovering gene annotations in biomedical text databases

    PubMed Central

    Cakmak, Ali; Ozsoyoglu, Gultekin

    2008-01-01

    Background Genes and gene products are frequently annotated with Gene Ontology concepts based on the evidence provided in genomics articles. Manually locating and curating information about a genomic entity from the biomedical literature requires vast amounts of human effort. Hence, there is clearly a need forautomated computational tools to annotate the genes and gene products with Gene Ontology concepts by computationally capturing the related knowledge embedded in textual data. Results In this article, we present an automated genomic entity annotation system, GEANN, which extracts information about the characteristics of genes and gene products in article abstracts from PubMed, and translates the discoveredknowledge into Gene Ontology (GO) concepts, a widely-used standardized vocabulary of genomic traits. GEANN utilizes textual "extraction patterns", and a semantic matching framework to locate phrases matching to a pattern and produce Gene Ontology annotations for genes and gene products. In our experiments, GEANN has reached to the precision level of 78% at therecall level of 61%. On a select set of Gene Ontology concepts, GEANN either outperforms or is comparable to two other automated annotation studies. Use of WordNet for semantic pattern matching improves the precision and recall by 24% and 15%, respectively, and the improvement due to semantic pattern matching becomes more apparent as the Gene Ontology terms become more general. Conclusion GEANN is useful for two distinct purposes: (i) automating the annotation of genomic entities with Gene Ontology concepts, and (ii) providing existing annotations with additional "evidence articles" from the literature. The use of textual extraction patterns that are constructed based on the existing annotations achieve high precision. The semantic pattern matching framework provides a more flexible pattern matching scheme with respect to "exactmatching" with the advantage of locating approximate pattern occurrences with similar semantics. Relatively low recall performance of our pattern-based approach may be enhanced either by employing a probabilistic annotation framework based on the annotation neighbourhoods in textual data, or, alternatively, the statistical enrichment threshold may be adjusted to lower values for applications that put more value on achieving higher recall values. PMID:18325104

  13. Discovering gene annotations in biomedical text databases.

    PubMed

    Cakmak, Ali; Ozsoyoglu, Gultekin

    2008-03-06

    Genes and gene products are frequently annotated with Gene Ontology concepts based on the evidence provided in genomics articles. Manually locating and curating information about a genomic entity from the biomedical literature requires vast amounts of human effort. Hence, there is clearly a need forautomated computational tools to annotate the genes and gene products with Gene Ontology concepts by computationally capturing the related knowledge embedded in textual data. In this article, we present an automated genomic entity annotation system, GEANN, which extracts information about the characteristics of genes and gene products in article abstracts from PubMed, and translates the discoveredknowledge into Gene Ontology (GO) concepts, a widely-used standardized vocabulary of genomic traits. GEANN utilizes textual "extraction patterns", and a semantic matching framework to locate phrases matching to a pattern and produce Gene Ontology annotations for genes and gene products. In our experiments, GEANN has reached to the precision level of 78% at therecall level of 61%. On a select set of Gene Ontology concepts, GEANN either outperforms or is comparable to two other automated annotation studies. Use of WordNet for semantic pattern matching improves the precision and recall by 24% and 15%, respectively, and the improvement due to semantic pattern matching becomes more apparent as the Gene Ontology terms become more general. GEANN is useful for two distinct purposes: (i) automating the annotation of genomic entities with Gene Ontology concepts, and (ii) providing existing annotations with additional "evidence articles" from the literature. The use of textual extraction patterns that are constructed based on the existing annotations achieve high precision. The semantic pattern matching framework provides a more flexible pattern matching scheme with respect to "exactmatching" with the advantage of locating approximate pattern occurrences with similar semantics. Relatively low recall performance of our pattern-based approach may be enhanced either by employing a probabilistic annotation framework based on the annotation neighbourhoods in textual data, or, alternatively, the statistical enrichment threshold may be adjusted to lower values for applications that put more value on achieving higher recall values.

  14. Inferring gene ontologies from pairwise similarity data

    PubMed Central

    Kramer, Michael; Dutkowski, Janusz; Yu, Michael; Bafna, Vineet; Ideker, Trey

    2014-01-01

    Motivation: While the manually curated Gene Ontology (GO) is widely used, inferring a GO directly from -omics data is a compelling new problem. Recognizing that ontologies are a directed acyclic graph (DAG) of terms and hierarchical relations, algorithms are needed that: analyze a full matrix of gene–gene pairwise similarities from -omics data;infer true hierarchical structure in these data rather than enforcing hierarchy as a computational artifact; andrespect biological pleiotropy, by which a term in the hierarchy can relate to multiple higher level terms. Methods addressing these requirements are just beginning to emerge—none has been evaluated for GO inference. Methods: We consider two algorithms [Clique Extracted Ontology (CliXO), LocalFitness] that uniquely satisfy these requirements, compared with methods including standard clustering. CliXO is a new approach that finds maximal cliques in a network induced by progressive thresholding of a similarity matrix. We evaluate each method’s ability to reconstruct the GO biological process ontology from a similarity matrix based on (a) semantic similarities for GO itself or (b) three -omics datasets for yeast. Results: For task (a) using semantic similarity, CliXO accurately reconstructs GO (>99% precision, recall) and outperforms other approaches (<20% precision, <20% recall). For task (b) using -omics data, CliXO outperforms other methods using two -omics datasets and achieves ∼30% precision and recall using YeastNet v3, similar to an earlier approach (Network Extracted Ontology) and better than LocalFitness or standard clustering (20–25% precision, recall). Conclusion: This study provides algorithmic foundation for building gene ontologies by capturing hierarchical and pleiotropic structure embedded in biomolecular data. Contact: tideker@ucsd.edu PMID:24932003

  15. Clinical Diagnostics in Human Genetics with Semantic Similarity Searches in Ontologies

    PubMed Central

    Köhler, Sebastian; Schulz, Marcel H.; Krawitz, Peter; Bauer, Sebastian; Dölken, Sandra; Ott, Claus E.; Mundlos, Christine; Horn, Denise; Mundlos, Stefan; Robinson, Peter N.

    2009-01-01

    The differential diagnostic process attempts to identify candidate diseases that best explain a set of clinical features. This process can be complicated by the fact that the features can have varying degrees of specificity, as well as by the presence of features unrelated to the disease itself. Depending on the experience of the physician and the availability of laboratory tests, clinical abnormalities may be described in greater or lesser detail. We have adapted semantic similarity metrics to measure phenotypic similarity between queries and hereditary diseases annotated with the use of the Human Phenotype Ontology (HPO) and have developed a statistical model to assign p values to the resulting similarity scores, which can be used to rank the candidate diseases. We show that our approach outperforms simpler term-matching approaches that do not take the semantic interrelationships between terms into account. The advantage of our approach was greater for queries containing phenotypic noise or imprecise clinical descriptions. The semantic network defined by the HPO can be used to refine the differential diagnosis by suggesting clinical features that, if present, best differentiate among the candidate diagnoses. Thus, semantic similarity searches in ontologies represent a useful way of harnessing the semantic structure of human phenotypic abnormalities to help with the differential diagnosis. We have implemented our methods in a freely available web application for the field of human Mendelian disorders. PMID:19800049

  16. Semantic similarity measures in the biomedical domain by leveraging a web search engine.

    PubMed

    Hsieh, Sheau-Ling; Chang, Wen-Yung; Chen, Chi-Huang; Weng, Yung-Ching

    2013-07-01

    Various researches in web related semantic similarity measures have been deployed. However, measuring semantic similarity between two terms remains a challenging task. The traditional ontology-based methodologies have a limitation that both concepts must be resided in the same ontology tree(s). Unfortunately, in practice, the assumption is not always applicable. On the other hand, if the corpus is sufficiently adequate, the corpus-based methodologies can overcome the limitation. Now, the web is a continuous and enormous growth corpus. Therefore, a method of estimating semantic similarity is proposed via exploiting the page counts of two biomedical concepts returned by Google AJAX web search engine. The features are extracted as the co-occurrence patterns of two given terms P and Q, by querying P, Q, as well as P AND Q, and the web search hit counts of the defined lexico-syntactic patterns. These similarity scores of different patterns are evaluated, by adapting support vector machines for classification, to leverage the robustness of semantic similarity measures. Experimental results validating against two datasets: dataset 1 provided by A. Hliaoutakis; dataset 2 provided by T. Pedersen, are presented and discussed. In dataset 1, the proposed approach achieves the best correlation coefficient (0.802) under SNOMED-CT. In dataset 2, the proposed method obtains the best correlation coefficient (SNOMED-CT: 0.705; MeSH: 0.723) with physician scores comparing with measures of other methods. However, the correlation coefficients (SNOMED-CT: 0.496; MeSH: 0.539) with coder scores received opposite outcomes. In conclusion, the semantic similarity findings of the proposed method are close to those of physicians' ratings. Furthermore, the study provides a cornerstone investigation for extracting fully relevant information from digitizing, free-text medical records in the National Taiwan University Hospital database.

  17. MELLO: Medical lifelog ontology for data terms from self-tracking and lifelog devices.

    PubMed

    Kim, Hye Hyeon; Lee, Soo Youn; Baik, Su Youn; Kim, Ju Han

    2015-12-01

    The increasing use of health self-tracking devices is making the integration of heterogeneous data and shared decision-making more challenging. Computational analysis of lifelog data has been hampered by the lack of semantic and syntactic consistency among lifelog terms and related ontologies. Medical lifelog ontology (MELLO) was developed by identifying lifelog concepts and relationships between concepts, and it provides clear definitions by following ontology development methods. MELLO aims to support the classification and semantic mapping of lifelog data from diverse health self-tracking devices. MELLO was developed using the General Formal Ontology method with a manual iterative process comprising five steps: (1) defining the scope of lifelog data, (2) identifying lifelog concepts, (3) assigning relationships among MELLO concepts, (4) developing MELLO properties (e.g., synonyms, preferred terms, and definitions) for each MELLO concept, and (5) evaluating representative layers of the ontology content. An evaluation was performed by classifying 11 devices into 3 classes by subjects, and performing pairwise comparisons of lifelog terms among 5 devices in each class as measured using the Jaccard similarity index. MELLO represents a comprehensive knowledge base of 1998 lifelog concepts, with 4996 synonyms for 1211 (61%) concepts and 1395 definitions for 926 (46%) concepts. The MELLO Browser and MELLO Mapper provide convenient access and annotating non-standard proprietary terms with MELLO (http://mello.snubi.org/). MELLO covers 88.1% of lifelog terms from 11 health self-tracking devices and uses simple string matching to match semantically similar terms provided by various devices that are not yet integrated. The results from the comparisons of Jaccard similarities between simple string matching and MELLO matching revealed increases of 2.5, 2.2, and 5.7 folds for physical activity,body measure, and sleep classes, respectively. MELLO is the first ontology for representing health-related lifelog data with rich contents including definitions, synonyms, and semantic relationships. MELLO fills the semantic gap between heterogeneous lifelog terms that are generated by diverse health self-tracking devices. The unified representation of lifelog terms facilitated by MELLO can help describe an individual's lifestyle and environmental factors, which can be included with user-generated data for clinical research and thereby enhance data integration and sharing. Copyright © 2015. Published by Elsevier Ireland Ltd.

  18. Semi-automated ontology generation and evolution

    NASA Astrophysics Data System (ADS)

    Stirtzinger, Anthony P.; Anken, Craig S.

    2009-05-01

    Extending the notion of data models or object models, ontology can provide rich semantic definition not only to the meta-data but also to the instance data of domain knowledge, making these semantic definitions available in machine readable form. However, the generation of an effective ontology is a difficult task involving considerable labor and skill. This paper discusses an Ontology Generation and Evolution Processor (OGEP) aimed at automating this process, only requesting user input when un-resolvable ambiguous situations occur. OGEP directly attacks the main barrier which prevents automated (or self learning) ontology generation: the ability to understand the meaning of artifacts and the relationships the artifacts have to the domain space. OGEP leverages existing lexical to ontological mappings in the form of WordNet, and Suggested Upper Merged Ontology (SUMO) integrated with a semantic pattern-based structure referred to as the Semantic Grounding Mechanism (SGM) and implemented as a Corpus Reasoner. The OGEP processing is initiated by a Corpus Parser performing a lexical analysis of the corpus, reading in a document (or corpus) and preparing it for processing by annotating words and phrases. After the Corpus Parser is done, the Corpus Reasoner uses the parts of speech output to determine the semantic meaning of a word or phrase. The Corpus Reasoner is the crux of the OGEP system, analyzing, extrapolating, and evolving data from free text into cohesive semantic relationships. The Semantic Grounding Mechanism provides a basis for identifying and mapping semantic relationships. By blending together the WordNet lexicon and SUMO ontological layout, the SGM is given breadth and depth in its ability to extrapolate semantic relationships between domain entities. The combination of all these components results in an innovative approach to user assisted semantic-based ontology generation. This paper will describe the OGEP technology in the context of the architectural components referenced above and identify a potential technology transition path to Scott AFB's Tanker Airlift Control Center (TACC) which serves as the Air Operations Center (AOC) for the Air Mobility Command (AMC).

  19. Ontology based heterogeneous materials database integration and semantic query

    NASA Astrophysics Data System (ADS)

    Zhao, Shuai; Qian, Quan

    2017-10-01

    Materials digital data, high throughput experiments and high throughput computations are regarded as three key pillars of materials genome initiatives. With the fast growth of materials data, the integration and sharing of data is very urgent, that has gradually become a hot topic of materials informatics. Due to the lack of semantic description, it is difficult to integrate data deeply in semantic level when adopting the conventional heterogeneous database integration approaches such as federal database or data warehouse. In this paper, a semantic integration method is proposed to create the semantic ontology by extracting the database schema semi-automatically. Other heterogeneous databases are integrated to the ontology by means of relational algebra and the rooted graph. Based on integrated ontology, semantic query can be done using SPARQL. During the experiments, two world famous First Principle Computational databases, OQMD and Materials Project are used as the integration targets, which show the availability and effectiveness of our method.

  20. MENTOR: an enabler for interoperable intelligent systems

    NASA Astrophysics Data System (ADS)

    Sarraipa, João; Jardim-Goncalves, Ricardo; Steiger-Garcao, Adolfo

    2010-07-01

    A community with knowledge organisation based on ontologies will enable an increase in the computational intelligence of its information systems. However, due to the worldwide diversity of communities, a high number of knowledge representation elements, which are not semantically coincident, have appeared representing the same segment of reality, becoming a barrier to business communications. Even if a domain community uses the same kind of technologies in its information systems, such as ontologies, it doesn't solve its semantics differences. In order to solve this interoperability problem, a solution is to use a reference ontology as an intermediary in the communications between the community enterprises and the outside, while allowing the enterprises to keep their own ontology and semantics unchanged internally. This work proposes MENTOR, a methodology to support the development of a common reference ontology for a group of organisations sharing the same business domain. This methodology is based on the mediator ontology (MO) concept, which assists the semantic transformations among each enterprise's ontology and the referential one. The MO enables each organisation to keep its own terminology, glossary and ontological structures, while providing seamless communication and interaction with the others.

  1. GOClonto: an ontological clustering approach for conceptualizing PubMed abstracts.

    PubMed

    Zheng, Hai-Tao; Borchert, Charles; Kim, Hong-Gee

    2010-02-01

    Concurrent with progress in biomedical sciences, an overwhelming of textual knowledge is accumulating in the biomedical literature. PubMed is the most comprehensive database collecting and managing biomedical literature. To help researchers easily understand collections of PubMed abstracts, numerous clustering methods have been proposed to group similar abstracts based on their shared features. However, most of these methods do not explore the semantic relationships among groupings of documents, which could help better illuminate the groupings of PubMed abstracts. To address this issue, we proposed an ontological clustering method called GOClonto for conceptualizing PubMed abstracts. GOClonto uses latent semantic analysis (LSA) and gene ontology (GO) to identify key gene-related concepts and their relationships as well as allocate PubMed abstracts based on these key gene-related concepts. Based on two PubMed abstract collections, the experimental results show that GOClonto is able to identify key gene-related concepts and outperforms the STC (suffix tree clustering) algorithm, the Lingo algorithm, the Fuzzy Ants algorithm, and the clustering based TRS (tolerance rough set) algorithm. Moreover, the two ontologies generated by GOClonto show significant informative conceptual structures.

  2. A Hybrid Knowledge-Based and Data-Driven Approach to Identifying Semantically Similar Concepts

    PubMed Central

    Pivovarov, Rimma; Elhadad, Noémie

    2012-01-01

    An open research question when leveraging ontological knowledge is when to treat different concepts separately from each other and when to aggregate them. For instance, concepts for the terms "paroxysmal cough" and "nocturnal cough" might be aggregated in a kidney disease study, but should be left separate in a pneumonia study. Determining whether two concepts are similar enough to be aggregated can help build better datasets for data mining purposes and avoid signal dilution. Quantifying the similarity among concepts is a difficult task, however, in part because such similarity is context-dependent. We propose a comprehensive method, which computes a similarity score for a concept pair by combining data-driven and ontology-driven knowledge. We demonstrate our method on concepts from SNOMED-CT and on a corpus of clinical notes of patients with chronic kidney disease. By combining information from usage patterns in clinical notes and from ontological structure, the method can prune out concepts that are simply related from those which are semantically similar. When evaluated against a list of concept pairs annotated for similarity, our method reaches an AUC (area under the curve) of 92%. PMID:22289420

  3. From SNOMED CT to Uberon: Transferability of evaluation methodology between similarly structured ontologies.

    PubMed

    Elhanan, Gai; Ochs, Christopher; Mejino, Jose L V; Liu, Hao; Mungall, Christopher J; Perl, Yehoshua

    2017-06-01

    To examine whether disjoint partial-area taxonomy, a semantically-based evaluation methodology that has been successfully tested in SNOMED CT, will perform with similar effectiveness on Uberon, an anatomical ontology that belongs to a structurally similar family of ontologies as SNOMED CT. A disjoint partial-area taxonomy was generated for Uberon. One hundred randomly selected test concepts that overlap between partial-areas were matched to a same size control sample of non-overlapping concepts. The samples were blindly inspected for non-critical issues and presumptive errors first by a general domain expert whose results were then confirmed or rejected by a highly experienced anatomical ontology domain expert. Reported issues were subsequently reviewed by Uberon's curators. Overlapping concepts in Uberon's disjoint partial-area taxonomy exhibited a significantly higher rate of all issues. Clear-cut presumptive errors trended similarly but did not reach statistical significance. A sub-analysis of overlapping concepts with three or more relationship types indicated a much higher rate of issues. Overlapping concepts from Uberon's disjoint abstraction network are quite likely (up to 28.9%) to exhibit issues. The results suggest that the methodology can transfer well between same family ontologies. Although Uberon exhibited relatively few overlapping concepts, the methodology can be combined with other semantic indicators to expand the process to other concepts within the ontology that will generate high yields of discovered issues. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Ontology-Based Retrieval of Spatially Related Objects for Location Based Services

    NASA Astrophysics Data System (ADS)

    Haav, Hele-Mai; Kaljuvee, Aivi; Luts, Martin; Vajakas, Toivo

    Advanced Location Based Service (LBS) applications have to integrate information stored in GIS, information about users' preferences (profile) as well as contextual information and information about application itself. Ontology engineering provides methods to semantically integrate several data sources. We propose an ontology-driven LBS development framework: the paper describes the architecture of ontologies and their usage for retrieval of spatially related objects relevant to the user. Our main contribution is to enable personalised ontology driven LBS by providing a novel approach for defining personalised semantic spatial relationships by means of ontologies. The approach is illustrated by an industrial case study.

  5. Semantically optiMize the dAta seRvice operaTion (SMART) system for better data discovery and access

    NASA Astrophysics Data System (ADS)

    Yang, C.; Huang, T.; Armstrong, E. M.; Moroni, D. F.; Liu, K.; Gui, Z.

    2013-12-01

    Abstract: We present a Semantically optiMize the dAta seRvice operaTion (SMART) system for better data discovery and access across the NASA data systems, Global Earth Observation System of Systems (GEOSS) Clearinghouse and Data.gov to facilitate scientists to select Earth observation data that fit better their needs in four aspects: 1. Integrating and interfacing the SMART system to include the functionality of a) semantic reasoning based on Jena, an open source semantic reasoning engine, b) semantic similarity calculation, c) recommendation based on spatiotemporal, semantic, and user workflow patterns, and d) ranking results based on similarity between search terms and data ontology. 2. Collaborating with data user communities to a) capture science data ontology and record relevant ontology triple stores, b) analyze and mine user search and download patterns, c) integrate SMART into metadata-centric discovery system for community-wide usage and feedback, and d) customizing data discovery, search and access user interface to include the ranked results, recommendation components, and semantic based navigations. 3. Laying the groundwork to interface the SMART system with other data search and discovery systems as an open source data search and discovery solution. The SMART systems leverages NASA, GEO, FGDC data discovery, search and access for the Earth science community by enabling scientists to readily discover and access data appropriate to their endeavors, increasing the efficiency of data exploration and decreasing the time that scientists must spend on searching, downloading, and processing the datasets most applicable to their research. By incorporating the SMART system, it is a likely aim that the time being devoted to discovering the most applicable dataset will be substantially reduced, thereby reducing the number of user inquiries and likewise reducing the time and resources expended by a data center in addressing user inquiries. Keywords: EarthCube; ECHO, DAACs, GeoPlatform; Geospatial Cyberinfrastructure References: 1. Yang, P., Evans, J., Cole, M., Alameh, N., Marley, S., & Bambacus, M., (2007). The Emerging Concepts and Applications of the Spatial Web Portal. Photogrammetry Engineering &Remote Sensing,73(6):691-698. 2. Zhang, C, Zhao, T. and W. Li. (2010). The Framework of a Geospatial Semantic Web based Spatial Decision Support System for Digital Earth. International Journal of Digital Earth. 3(2):111-134. 3. Yang C., Raskin R., Goodchild M.F., Gahegan M., 2010, Geospatial Cyberinfrastructure: Past, Present and Future,Computers, Environment, and Urban Systems, 34(4):264-277. 4. Liu K., Yang C., Li W., Gui Z., Xu C., Xia J., 2013. Using ontology and similarity calculations to rank Earth science data searching results, International Journal of Geospatial Information Applications. (in press)

  6. Ontology-based knowledge representation for resolution of semantic heterogeneity in GIS

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Xiao, Han; Wang, Limin; Han, Jialing

    2017-07-01

    Lack of semantic interoperability in geographical information systems has been identified as the main obstacle for data sharing and database integration. The new method should be found to overcome the problems of semantic heterogeneity. Ontologies are considered to be one approach to support geographic information sharing. This paper presents an ontology-driven integration approach to help in detecting and possibly resolving semantic conflicts. Its originality is that each data source participating in the integration process contains an ontology that defines the meaning of its own data. This approach ensures the automation of the integration through regulation of semantic integration algorithm. Finally, land classification in field GIS is described as the example.

  7. A fuzzy-ontology-oriented case-based reasoning framework for semantic diabetes diagnosis.

    PubMed

    El-Sappagh, Shaker; Elmogy, Mohammed; Riad, A M

    2015-11-01

    Case-based reasoning (CBR) is a problem-solving paradigm that uses past knowledge to interpret or solve new problems. It is suitable for experience-based and theory-less problems. Building a semantically intelligent CBR that mimic the expert thinking can solve many problems especially medical ones. Knowledge-intensive CBR using formal ontologies is an evolvement of this paradigm. Ontologies can be used for case representation and storage, and it can be used as a background knowledge. Using standard medical ontologies, such as SNOMED CT, enhances the interoperability and integration with the health care systems. Moreover, utilizing vague or imprecise knowledge further improves the CBR semantic effectiveness. This paper proposes a fuzzy ontology-based CBR framework. It proposes a fuzzy case-base OWL2 ontology, and a fuzzy semantic retrieval algorithm that handles many feature types. This framework is implemented and tested on the diabetes diagnosis problem. The fuzzy ontology is populated with 60 real diabetic cases. The effectiveness of the proposed approach is illustrated with a set of experiments and case studies. The resulting system can answer complex medical queries related to semantic understanding of medical concepts and handling of vague terms. The resulting fuzzy case-base ontology has 63 concepts, 54 (fuzzy) object properties, 138 (fuzzy) datatype properties, 105 fuzzy datatypes, and 2640 instances. The system achieves an accuracy of 97.67%. We compare our framework with existing CBR systems and a set of five machine-learning classifiers; our system outperforms all of these systems. Building an integrated CBR system can improve its performance. Representing CBR knowledge using the fuzzy ontology and building a case retrieval algorithm that treats different features differently improves the accuracy of the resulting systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Analysis and visualization of disease courses in a semantically-enabled cancer registry.

    PubMed

    Esteban-Gil, Angel; Fernández-Breis, Jesualdo Tomás; Boeker, Martin

    2017-09-29

    Regional and epidemiological cancer registries are important for cancer research and the quality management of cancer treatment. Many technological solutions are available to collect and analyse data for cancer registries nowadays. However, the lack of a well-defined common semantic model is a problem when user-defined analyses and data linking to external resources are required. The objectives of this study are: (1) design of a semantic model for local cancer registries; (2) development of a semantically-enabled cancer registry based on this model; and (3) semantic exploitation of the cancer registry for analysing and visualising disease courses. Our proposal is based on our previous results and experience working with semantic technologies. Data stored in a cancer registry database were transformed into RDF employing a process driven by OWL ontologies. The semantic representation of the data was then processed to extract semantic patient profiles, which were exploited by means of SPARQL queries to identify groups of similar patients and to analyse the disease timelines of patients. Based on the requirements analysis, we have produced a draft of an ontology that models the semantics of a local cancer registry in a pragmatic extensible way. We have implemented a Semantic Web platform that allows transforming and storing data from cancer registries in RDF. This platform also permits users to formulate incremental user-defined queries through a graphical user interface. The query results can be displayed in several customisable ways. The complex disease timelines of individual patients can be clearly represented. Different events, e.g. different therapies and disease courses, are presented according to their temporal and causal relations. The presented platform is an example of the parallel development of ontologies and applications that take advantage of semantic web technologies in the medical field. The semantic structure of the representation renders it easy to analyse key figures of the patients and their evolution at different granularity levels.

  9. DaGO-Fun: tool for Gene Ontology-based functional analysis using term information content measures.

    PubMed

    Mazandu, Gaston K; Mulder, Nicola J

    2013-09-25

    The use of Gene Ontology (GO) data in protein analyses have largely contributed to the improved outcomes of these analyses. Several GO semantic similarity measures have been proposed in recent years and provide tools that allow the integration of biological knowledge embedded in the GO structure into different biological analyses. There is a need for a unified tool that provides the scientific community with the opportunity to explore these different GO similarity measure approaches and their biological applications. We have developed DaGO-Fun, an online tool available at http://web.cbio.uct.ac.za/ITGOM, which incorporates many different GO similarity measures for exploring, analyzing and comparing GO terms and proteins within the context of GO. It uses GO data and UniProt proteins with their GO annotations as provided by the Gene Ontology Annotation (GOA) project to precompute GO term information content (IC), enabling rapid response to user queries. The DaGO-Fun online tool presents the advantage of integrating all the relevant IC-based GO similarity measures, including topology- and annotation-based approaches to facilitate effective exploration of these measures, thus enabling users to choose the most relevant approach for their application. Furthermore, this tool includes several biological applications related to GO semantic similarity scores, including the retrieval of genes based on their GO annotations, the clustering of functionally related genes within a set, and term enrichment analysis.

  10. ELE: An Ontology-Based System Integrating Semantic Search and E-Learning Technologies

    ERIC Educational Resources Information Center

    Barbagallo, A.; Formica, A.

    2017-01-01

    ELSE (E-Learning for the Semantic ECM) is an ontology-based system which integrates semantic search methodologies and e-learning technologies. It has been developed within a project of the CME (Continuing Medical Education) program--ECM (Educazione Continua nella Medicina) for Italian participants. ELSE allows the creation of e-learning courses…

  11. A rapid place name locating algorithm based on ontology qualitative retrieval, ranking and recommendation

    NASA Astrophysics Data System (ADS)

    Fan, Hong; Zhu, Anfeng; Zhang, Weixia

    2015-12-01

    In order to meet the rapid positioning of 12315 complaints, aiming at the natural language expression of telephone complaints, a semantic retrieval framework is proposed which is based on natural language parsing and geographical names ontology reasoning. Among them, a search result ranking and recommended algorithms is proposed which is regarding both geo-name conceptual similarity and spatial geometry relation similarity. The experiments show that this method can assist the operator to quickly find location of 12,315 complaints, increased industry and commerce customer satisfaction.

  12. A Gene Ontology Tutorial in Python.

    PubMed

    Vesztrocy, Alex Warwick; Dessimoz, Christophe

    2017-01-01

    This chapter is a tutorial on using Gene Ontology resources in the Python programming language. This entails querying the Gene Ontology graph, retrieving Gene Ontology annotations, performing gene enrichment analyses, and computing basic semantic similarity between GO terms. An interactive version of the tutorial, including solutions, is available at http://gohandbook.org .

  13. The ontology-based answers (OBA) service: a connector for embedded usage of ontologies in applications.

    PubMed

    Dönitz, Jürgen; Wingender, Edgar

    2012-01-01

    The semantic web depends on the use of ontologies to let electronic systems interpret contextual information. Optimally, the handling and access of ontologies should be completely transparent to the user. As a means to this end, we have developed a service that attempts to bridge the gap between experts in a certain knowledge domain, ontologists, and application developers. The ontology-based answers (OBA) service introduced here can be embedded into custom applications to grant access to the classes of ontologies and their relations as most important structural features as well as to information encoded in the relations between ontology classes. Thus computational biologists can benefit from ontologies without detailed knowledge about the respective ontology. The content of ontologies is mapped to a graph of connected objects which is compatible to the object-oriented programming style in Java. Semantic functions implement knowledge about the complex semantics of an ontology beyond the class hierarchy and "partOf" relations. By using these OBA functions an application can, for example, provide a semantic search function, or (in the examples outlined) map an anatomical structure to the organs it belongs to. The semantic functions relieve the application developer from the necessity of acquiring in-depth knowledge about the semantics and curation guidelines of the used ontologies by implementing the required knowledge. The architecture of the OBA service encapsulates the logic to process ontologies in order to achieve a separation from the application logic. A public server with the current plugins is available and can be used with the provided connector in a custom application in scenarios analogous to the presented use cases. The server and the client are freely available if a project requires the use of custom plugins or non-public ontologies. The OBA service and further documentation is available at http://www.bioinf.med.uni-goettingen.de/projects/oba.

  14. The ontology-based answers (OBA) service: a connector for embedded usage of ontologies in applications

    PubMed Central

    Dönitz, Jürgen; Wingender, Edgar

    2012-01-01

    The semantic web depends on the use of ontologies to let electronic systems interpret contextual information. Optimally, the handling and access of ontologies should be completely transparent to the user. As a means to this end, we have developed a service that attempts to bridge the gap between experts in a certain knowledge domain, ontologists, and application developers. The ontology-based answers (OBA) service introduced here can be embedded into custom applications to grant access to the classes of ontologies and their relations as most important structural features as well as to information encoded in the relations between ontology classes. Thus computational biologists can benefit from ontologies without detailed knowledge about the respective ontology. The content of ontologies is mapped to a graph of connected objects which is compatible to the object-oriented programming style in Java. Semantic functions implement knowledge about the complex semantics of an ontology beyond the class hierarchy and “partOf” relations. By using these OBA functions an application can, for example, provide a semantic search function, or (in the examples outlined) map an anatomical structure to the organs it belongs to. The semantic functions relieve the application developer from the necessity of acquiring in-depth knowledge about the semantics and curation guidelines of the used ontologies by implementing the required knowledge. The architecture of the OBA service encapsulates the logic to process ontologies in order to achieve a separation from the application logic. A public server with the current plugins is available and can be used with the provided connector in a custom application in scenarios analogous to the presented use cases. The server and the client are freely available if a project requires the use of custom plugins or non-public ontologies. The OBA service and further documentation is available at http://www.bioinf.med.uni-goettingen.de/projects/oba PMID:23060901

  15. Semantic web data warehousing for caGrid.

    PubMed

    McCusker, James P; Phillips, Joshua A; González Beltrán, Alejandra; Finkelstein, Anthony; Krauthammer, Michael

    2009-10-01

    The National Cancer Institute (NCI) is developing caGrid as a means for sharing cancer-related data and services. As more data sets become available on caGrid, we need effective ways of accessing and integrating this information. Although the data models exposed on caGrid are semantically well annotated, it is currently up to the caGrid client to infer relationships between the different models and their classes. In this paper, we present a Semantic Web-based data warehouse (Corvus) for creating relationships among caGrid models. This is accomplished through the transformation of semantically-annotated caBIG Unified Modeling Language (UML) information models into Web Ontology Language (OWL) ontologies that preserve those semantics. We demonstrate the validity of the approach by Semantic Extraction, Transformation and Loading (SETL) of data from two caGrid data sources, caTissue and caArray, as well as alignment and query of those sources in Corvus. We argue that semantic integration is necessary for integration of data from distributed web services and that Corvus is a useful way of accomplishing this. Our approach is generalizable and of broad utility to researchers facing similar integration challenges.

  16. A shortest-path graph kernel for estimating gene product semantic similarity.

    PubMed

    Alvarez, Marco A; Qi, Xiaojun; Yan, Changhui

    2011-07-29

    Existing methods for calculating semantic similarity between gene products using the Gene Ontology (GO) often rely on external resources, which are not part of the ontology. Consequently, changes in these external resources like biased term distribution caused by shifting of hot research topics, will affect the calculation of semantic similarity. One way to avoid this problem is to use semantic methods that are "intrinsic" to the ontology, i.e. independent of external knowledge. We present a shortest-path graph kernel (spgk) method that relies exclusively on the GO and its structure. In spgk, a gene product is represented by an induced subgraph of the GO, which consists of all the GO terms annotating it. Then a shortest-path graph kernel is used to compute the similarity between two graphs. In a comprehensive evaluation using a benchmark dataset, spgk compares favorably with other methods that depend on external resources. Compared with simUI, a method that is also intrinsic to GO, spgk achieves slightly better results on the benchmark dataset. Statistical tests show that the improvement is significant when the resolution and EC similarity correlation coefficient are used to measure the performance, but is insignificant when the Pfam similarity correlation coefficient is used. Spgk uses a graph kernel method in polynomial time to exploit the structure of the GO to calculate semantic similarity between gene products. It provides an alternative to both methods that use external resources and "intrinsic" methods with comparable performance.

  17. A hierarchical knowledge-based approach for retrieving similar medical images described with semantic annotations

    PubMed Central

    Kurtz, Camille; Beaulieu, Christopher F.; Napel, Sandy; Rubin, Daniel L.

    2014-01-01

    Computer-assisted image retrieval applications could assist radiologist interpretations by identifying similar images in large archives as a means to providing decision support. However, the semantic gap between low-level image features and their high level semantics may impair the system performances. Indeed, it can be challenging to comprehensively characterize the images using low-level imaging features to fully capture the visual appearance of diseases on images, and recently the use of semantic terms has been advocated to provide semantic descriptions of the visual contents of images. However, most of the existing image retrieval strategies do not consider the intrinsic properties of these terms during the comparison of the images beyond treating them as simple binary (presence/absence) features. We propose a new framework that includes semantic features in images and that enables retrieval of similar images in large databases based on their semantic relations. It is based on two main steps: (1) annotation of the images with semantic terms extracted from an ontology, and (2) evaluation of the similarity of image pairs by computing the similarity between the terms using the Hierarchical Semantic-Based Distance (HSBD) coupled to an ontological measure. The combination of these two steps provides a means of capturing the semantic correlations among the terms used to characterize the images that can be considered as a potential solution to deal with the semantic gap problem. We validate this approach in the context of the retrieval and the classification of 2D regions of interest (ROIs) extracted from computed tomographic (CT) images of the liver. Under this framework, retrieval accuracy of more than 0.96 was obtained on a 30-images dataset using the Normalized Discounted Cumulative Gain (NDCG) index that is a standard technique used to measure the effectiveness of information retrieval algorithms when a separate reference standard is available. Classification results of more than 95% were obtained on a 77-images dataset. For comparison purpose, the use of the Earth Mover's Distance (EMD), which is an alternative distance metric that considers all the existing relations among the terms, led to results retrieval accuracy of 0.95 and classification results of 93% with a higher computational cost. The results provided by the presented framework are competitive with the state-of-the-art and emphasize the usefulness of the proposed methodology for radiology image retrieval and classification. PMID:24632078

  18. Using ontological inference and hierarchical matchmaking to overcome semantic heterogeneity in remote sensing-based biodiversity monitoring

    NASA Astrophysics Data System (ADS)

    Nieland, Simon; Kleinschmit, Birgit; Förster, Michael

    2015-05-01

    Ontology-based applications hold promise in improving spatial data interoperability. In this work we use remote sensing-based biodiversity information and apply semantic formalisation and ontological inference to show improvements in data interoperability/comparability. The proposed methodology includes an observation-based, "bottom-up" engineering approach for remote sensing applications and gives a practical example of semantic mediation of geospatial products. We apply the methodology to three different nomenclatures used for remote sensing-based classification of two heathland nature conservation areas in Belgium and Germany. We analysed sensor nomenclatures with respect to their semantic formalisation and their bio-geographical differences. The results indicate that a hierarchical and transparent nomenclature is far more important for transferability than the sensor or study area. The inclusion of additional information, not necessarily belonging to a vegetation class description, is a key factor for the future success of using semantics for interoperability in remote sensing.

  19. The semantic web and computer vision: old AI meets new AI

    NASA Astrophysics Data System (ADS)

    Mundy, J. L.; Dong, Y.; Gilliam, A.; Wagner, R.

    2018-04-01

    There has been vast process in linking semantic information across the billions of web pages through the use of ontologies encoded in the Web Ontology Language (OWL) based on the Resource Description Framework (RDF). A prime example is the Wikipedia where the knowledge contained in its more than four million pages is encoded in an ontological database called DBPedia http://wiki.dbpedia.org/. Web-based query tools can retrieve semantic information from DBPedia encoded in interlinked ontologies that can be accessed using natural language. This paper will show how this vast context can be used to automate the process of querying images and other geospatial data in support of report changes in structures and activities. Computer vision algorithms are selected and provided with context based on natural language requests for monitoring and analysis. The resulting reports provide semantically linked observations from images and 3D surface models.

  20. HybridGO-Loc: mining hybrid features on gene ontology for predicting subcellular localization of multi-location proteins.

    PubMed

    Wan, Shibiao; Mak, Man-Wai; Kung, Sun-Yuan

    2014-01-01

    Protein subcellular localization prediction, as an essential step to elucidate the functions in vivo of proteins and identify drugs targets, has been extensively studied in previous decades. Instead of only determining subcellular localization of single-label proteins, recent studies have focused on predicting both single- and multi-location proteins. Computational methods based on Gene Ontology (GO) have been demonstrated to be superior to methods based on other features. However, existing GO-based methods focus on the occurrences of GO terms and disregard their relationships. This paper proposes a multi-label subcellular-localization predictor, namely HybridGO-Loc, that leverages not only the GO term occurrences but also the inter-term relationships. This is achieved by hybridizing the GO frequencies of occurrences and the semantic similarity between GO terms. Given a protein, a set of GO terms are retrieved by searching against the gene ontology database, using the accession numbers of homologous proteins obtained via BLAST search as the keys. The frequency of GO occurrences and semantic similarity (SS) between GO terms are used to formulate frequency vectors and semantic similarity vectors, respectively, which are subsequently hybridized to construct fusion vectors. An adaptive-decision based multi-label support vector machine (SVM) classifier is proposed to classify the fusion vectors. Experimental results based on recent benchmark datasets and a new dataset containing novel proteins show that the proposed hybrid-feature predictor significantly outperforms predictors based on individual GO features as well as other state-of-the-art predictors. For readers' convenience, the HybridGO-Loc server, which is for predicting virus or plant proteins, is available online at http://bioinfo.eie.polyu.edu.hk/HybridGoServer/.

  1. A DNA-based semantic fusion model for remote sensing data.

    PubMed

    Sun, Heng; Weng, Jian; Yu, Guangchuang; Massawe, Richard H

    2013-01-01

    Semantic technology plays a key role in various domains, from conversation understanding to algorithm analysis. As the most efficient semantic tool, ontology can represent, process and manage the widespread knowledge. Nowadays, many researchers use ontology to collect and organize data's semantic information in order to maximize research productivity. In this paper, we firstly describe our work on the development of a remote sensing data ontology, with a primary focus on semantic fusion-driven research for big data. Our ontology is made up of 1,264 concepts and 2,030 semantic relationships. However, the growth of big data is straining the capacities of current semantic fusion and reasoning practices. Considering the massive parallelism of DNA strands, we propose a novel DNA-based semantic fusion model. In this model, a parallel strategy is developed to encode the semantic information in DNA for a large volume of remote sensing data. The semantic information is read in a parallel and bit-wise manner and an individual bit is converted to a base. By doing so, a considerable amount of conversion time can be saved, i.e., the cluster-based multi-processes program can reduce the conversion time from 81,536 seconds to 4,937 seconds for 4.34 GB source data files. Moreover, the size of result file recording DNA sequences is 54.51 GB for parallel C program compared with 57.89 GB for sequential Perl. This shows that our parallel method can also reduce the DNA synthesis cost. In addition, data types are encoded in our model, which is a basis for building type system in our future DNA computer. Finally, we describe theoretically an algorithm for DNA-based semantic fusion. This algorithm enables the process of integration of the knowledge from disparate remote sensing data sources into a consistent, accurate, and complete representation. This process depends solely on ligation reaction and screening operations instead of the ontology.

  2. A DNA-Based Semantic Fusion Model for Remote Sensing Data

    PubMed Central

    Sun, Heng; Weng, Jian; Yu, Guangchuang; Massawe, Richard H.

    2013-01-01

    Semantic technology plays a key role in various domains, from conversation understanding to algorithm analysis. As the most efficient semantic tool, ontology can represent, process and manage the widespread knowledge. Nowadays, many researchers use ontology to collect and organize data's semantic information in order to maximize research productivity. In this paper, we firstly describe our work on the development of a remote sensing data ontology, with a primary focus on semantic fusion-driven research for big data. Our ontology is made up of 1,264 concepts and 2,030 semantic relationships. However, the growth of big data is straining the capacities of current semantic fusion and reasoning practices. Considering the massive parallelism of DNA strands, we propose a novel DNA-based semantic fusion model. In this model, a parallel strategy is developed to encode the semantic information in DNA for a large volume of remote sensing data. The semantic information is read in a parallel and bit-wise manner and an individual bit is converted to a base. By doing so, a considerable amount of conversion time can be saved, i.e., the cluster-based multi-processes program can reduce the conversion time from 81,536 seconds to 4,937 seconds for 4.34 GB source data files. Moreover, the size of result file recording DNA sequences is 54.51 GB for parallel C program compared with 57.89 GB for sequential Perl. This shows that our parallel method can also reduce the DNA synthesis cost. In addition, data types are encoded in our model, which is a basis for building type system in our future DNA computer. Finally, we describe theoretically an algorithm for DNA-based semantic fusion. This algorithm enables the process of integration of the knowledge from disparate remote sensing data sources into a consistent, accurate, and complete representation. This process depends solely on ligation reaction and screening operations instead of the ontology. PMID:24116207

  3. Formal ontologies in biomedical knowledge representation.

    PubMed

    Schulz, S; Jansen, L

    2013-01-01

    Medical decision support and other intelligent applications in the life sciences depend on increasing amounts of digital information. Knowledge bases as well as formal ontologies are being used to organize biomedical knowledge and data. However, these two kinds of artefacts are not always clearly distinguished. Whereas the popular RDF(S) standard provides an intuitive triple-based representation, it is semantically weak. Description logics based ontology languages like OWL-DL carry a clear-cut semantics, but they are computationally expensive, and they are often misinterpreted to encode all kinds of statements, including those which are not ontological. We distinguish four kinds of statements needed to comprehensively represent domain knowledge: universal statements, terminological statements, statements about particulars and contingent statements. We argue that the task of formal ontologies is solely to represent universal statements, while the non-ontological kinds of statements can nevertheless be connected with ontological representations. To illustrate these four types of representations, we use a running example from parasitology. We finally formulate recommendations for semantically adequate ontologies that can efficiently be used as a stable framework for more context-dependent biomedical knowledge representation and reasoning applications like clinical decision support systems.

  4. Semantics-enabled service discovery framework in the SIMDAT pharma grid.

    PubMed

    Qu, Cangtao; Zimmermann, Falk; Kumpf, Kai; Kamuzinzi, Richard; Ledent, Valérie; Herzog, Robert

    2008-03-01

    We present the design and implementation of a semantics-enabled service discovery framework in the data Grids for process and product development using numerical simulation and knowledge discovery (SIMDAT) Pharma Grid, an industry-oriented Grid environment for integrating thousands of Grid-enabled biological data services and analysis services. The framework consists of three major components: the Web ontology language (OWL)-description logic (DL)-based biological domain ontology, OWL Web service ontology (OWL-S)-based service annotation, and semantic matchmaker based on the ontology reasoning. Built upon the framework, workflow technologies are extensively exploited in the SIMDAT to assist biologists in (semi)automatically performing in silico experiments. We present a typical usage scenario through the case study of a biological workflow: IXodus.

  5. Measuring semantic similarities by combining gene ontology annotations and gene co-function networks

    DOE PAGES

    Peng, Jiajie; Uygun, Sahra; Kim, Taehyong; ...

    2015-02-14

    Background: Gene Ontology (GO) has been used widely to study functional relationships between genes. The current semantic similarity measures rely only on GO annotations and GO structure. This limits the power of GO-based similarity because of the limited proportion of genes that are annotated to GO in most organisms. Results: We introduce a novel approach called NETSIM (network-based similarity measure) that incorporates information from gene co-function networks in addition to using the GO structure and annotations. Using metabolic reaction maps of yeast, Arabidopsis, and human, we demonstrate that NETSIM can improve the accuracy of GO term similarities. We also demonstratemore » that NETSIM works well even for genomes with sparser gene annotation data. We applied NETSIM on large Arabidopsis gene families such as cytochrome P450 monooxygenases to group the members functionally and show that this grouping could facilitate functional characterization of genes in these families. Conclusions: Using NETSIM as an example, we demonstrated that the performance of a semantic similarity measure could be significantly improved after incorporating genome-specific information. NETSIM incorporates both GO annotations and gene co-function network data as a priori knowledge in the model. Therefore, functional similarities of GO terms that are not explicitly encoded in GO but are relevant in a taxon-specific manner become measurable when GO annotations are limited.« less

  6. An approach to define semantics for BPM systems interoperability

    NASA Astrophysics Data System (ADS)

    Rico, Mariela; Caliusco, María Laura; Chiotti, Omar; Rosa Galli, María

    2015-04-01

    This article proposes defining semantics for Business Process Management systems interoperability through the ontology of Electronic Business Documents (EBD) used to interchange the information required to perform cross-organizational processes. The semantic model generated allows aligning enterprise's business processes to support cross-organizational processes by matching the business ontology of each business partner with the EBD ontology. The result is a flexible software architecture that allows dynamically defining cross-organizational business processes by reusing the EBD ontology. For developing the semantic model, a method is presented, which is based on a strategy for discovering entity features whose interpretation depends on the context, and representing them for enriching the ontology. The proposed method complements ontology learning techniques that can not infer semantic features not represented in data sources. In order to improve the representation of these entity features, the method proposes using widely accepted ontologies, for representing time entities and relations, physical quantities, measurement units, official country names, and currencies and funds, among others. When the ontologies reuse is not possible, the method proposes identifying whether that feature is simple or complex, and defines a strategy to be followed. An empirical validation of the approach has been performed through a case study.

  7. Combined semantic and similarity search in medical image databases

    NASA Astrophysics Data System (ADS)

    Seifert, Sascha; Thoma, Marisa; Stegmaier, Florian; Hammon, Matthias; Kramer, Martin; Huber, Martin; Kriegel, Hans-Peter; Cavallaro, Alexander; Comaniciu, Dorin

    2011-03-01

    The current diagnostic process at hospitals is mainly based on reviewing and comparing images coming from multiple time points and modalities in order to monitor disease progression over a period of time. However, for ambiguous cases the radiologist deeply relies on reference literature or second opinion. Although there is a vast amount of acquired images stored in PACS systems which could be reused for decision support, these data sets suffer from weak search capabilities. Thus, we present a search methodology which enables the physician to fulfill intelligent search scenarios on medical image databases combining ontology-based semantic and appearance-based similarity search. It enabled the elimination of 12% of the top ten hits which would arise without taking the semantic context into account.

  8. DaGO-Fun: tool for Gene Ontology-based functional analysis using term information content measures

    PubMed Central

    2013-01-01

    Background The use of Gene Ontology (GO) data in protein analyses have largely contributed to the improved outcomes of these analyses. Several GO semantic similarity measures have been proposed in recent years and provide tools that allow the integration of biological knowledge embedded in the GO structure into different biological analyses. There is a need for a unified tool that provides the scientific community with the opportunity to explore these different GO similarity measure approaches and their biological applications. Results We have developed DaGO-Fun, an online tool available at http://web.cbio.uct.ac.za/ITGOM, which incorporates many different GO similarity measures for exploring, analyzing and comparing GO terms and proteins within the context of GO. It uses GO data and UniProt proteins with their GO annotations as provided by the Gene Ontology Annotation (GOA) project to precompute GO term information content (IC), enabling rapid response to user queries. Conclusions The DaGO-Fun online tool presents the advantage of integrating all the relevant IC-based GO similarity measures, including topology- and annotation-based approaches to facilitate effective exploration of these measures, thus enabling users to choose the most relevant approach for their application. Furthermore, this tool includes several biological applications related to GO semantic similarity scores, including the retrieval of genes based on their GO annotations, the clustering of functionally related genes within a set, and term enrichment analysis. PMID:24067102

  9. InteGO2: A web tool for measuring and visualizing gene semantic similarities using Gene Ontology

    DOE PAGES

    Peng, Jiajie; Li, Hongxiang; Liu, Yongzhuang; ...

    2016-08-31

    Here, the Gene Ontology (GO) has been used in high-throughput omics research as a major bioinformatics resource. The hierarchical structure of GO provides users a convenient platform for biological information abstraction and hypothesis testing. Computational methods have been developed to identify functionally similar genes. However, none of the existing measurements take into account all the rich information in GO. Similarly, using these existing methods, web-based applications have been constructed to compute gene functional similarities, and to provide pure text-based outputs. Without a graphical visualization interface, it is difficult for result interpretation. As a result, we present InteGO2, a web toolmore » that allows researchers to calculate the GO-based gene semantic similarities using seven widely used GO-based similarity measurements. Also, we provide an integrative measurement that synergistically integrates all the individual measurements to improve the overall performance. Using HTML5 and cytoscape.js, we provide a graphical interface in InteGO2 to visualize the resulting gene functional association networks. In conclusion, InteGO2 is an easy-to-use HTML5 based web tool. With it, researchers can measure gene or gene product functional similarity conveniently, and visualize the network of functional interactions in a graphical interface.« less

  10. InteGO2: a web tool for measuring and visualizing gene semantic similarities using Gene Ontology.

    PubMed

    Peng, Jiajie; Li, Hongxiang; Liu, Yongzhuang; Juan, Liran; Jiang, Qinghua; Wang, Yadong; Chen, Jin

    2016-08-31

    The Gene Ontology (GO) has been used in high-throughput omics research as a major bioinformatics resource. The hierarchical structure of GO provides users a convenient platform for biological information abstraction and hypothesis testing. Computational methods have been developed to identify functionally similar genes. However, none of the existing measurements take into account all the rich information in GO. Similarly, using these existing methods, web-based applications have been constructed to compute gene functional similarities, and to provide pure text-based outputs. Without a graphical visualization interface, it is difficult for result interpretation. We present InteGO2, a web tool that allows researchers to calculate the GO-based gene semantic similarities using seven widely used GO-based similarity measurements. Also, we provide an integrative measurement that synergistically integrates all the individual measurements to improve the overall performance. Using HTML5 and cytoscape.js, we provide a graphical interface in InteGO2 to visualize the resulting gene functional association networks. InteGO2 is an easy-to-use HTML5 based web tool. With it, researchers can measure gene or gene product functional similarity conveniently, and visualize the network of functional interactions in a graphical interface. InteGO2 can be accessed via http://mlg.hit.edu.cn:8089/ .

  11. InteGO2: A web tool for measuring and visualizing gene semantic similarities using Gene Ontology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Jiajie; Li, Hongxiang; Liu, Yongzhuang

    Here, the Gene Ontology (GO) has been used in high-throughput omics research as a major bioinformatics resource. The hierarchical structure of GO provides users a convenient platform for biological information abstraction and hypothesis testing. Computational methods have been developed to identify functionally similar genes. However, none of the existing measurements take into account all the rich information in GO. Similarly, using these existing methods, web-based applications have been constructed to compute gene functional similarities, and to provide pure text-based outputs. Without a graphical visualization interface, it is difficult for result interpretation. As a result, we present InteGO2, a web toolmore » that allows researchers to calculate the GO-based gene semantic similarities using seven widely used GO-based similarity measurements. Also, we provide an integrative measurement that synergistically integrates all the individual measurements to improve the overall performance. Using HTML5 and cytoscape.js, we provide a graphical interface in InteGO2 to visualize the resulting gene functional association networks. In conclusion, InteGO2 is an easy-to-use HTML5 based web tool. With it, researchers can measure gene or gene product functional similarity conveniently, and visualize the network of functional interactions in a graphical interface.« less

  12. Application of Alignment Methodologies to Spatial Ontologies in the Hydro Domain

    NASA Astrophysics Data System (ADS)

    Lieberman, J. E.; Cheatham, M.; Varanka, D.

    2015-12-01

    Ontologies are playing an increasing role in facilitating mediation and translation between datasets representing diverse schemas, vocabularies, or knowledge communities. This role is relatively straightforward when there is one ontology comprising all relevant common concepts that can be mapped to entities in each dataset. Frequently, one common ontology has not been agreed to. Either each dataset is represented by a distinct ontology, or there are multiple candidates for commonality. Either the one most appropriate (expressive, relevant, correct) ontology must be chosen, or else concepts and relationships matched across multiple ontologies through an alignment process so that they may be used in concert to carry out mediation or other semantic operations. A resulting alignment can be effective to the extent that entities in in the ontologies represent differing terminology for comparable conceptual knowledge. In cases such as spatial ontologies, though, ontological entities may also represent disparate conceptualizations of space according to the discernment methods and application domains on which they are based. One ontology's wetland concept may overlap in space with another ontology's recharge zone or wildlife range or water feature. In order to evaluate alignment with respect to spatial ontologies, alignment has been applied to a series of ontologies pertaining to surface water that are used variously in hydrography (characterization of water features), hydrology (study of water cycling), and water quality (nutrient and contaminant transport) application domains. There is frequently a need to mediate between datasets in each domain in order to develop broader understanding of surface water systems, so there is a practical as well theoretical value in the alignment. From a domain expertise standpoint, the ontologies under consideration clearly contain some concepts that are spatially as well as conceptually identical and then others with less clear similarities in either sense. Our study serves both to determine the limits of standard methods for aligning spatial ontologies and to suggest new methods of calculating similarity axioms that take into account semantic, spatial, and cognitive criteria relevant to fitness for relevant usage scenarios.

  13. Semantics of data and service registration to advance interdisciplinary information and data access.

    NASA Astrophysics Data System (ADS)

    Fox, P. P.; McGuinness, D. L.; Raskin, R.; Sinha, A. K.

    2008-12-01

    In developing an application of semantic web methods and technologies to address the integration of heterogeneous and interdisciplinary earth-science datasets, we have developed methodologies for creating rich semantic descriptions (ontologies) of the application domains. We have leveraged and extended where possible existing ontology frameworks such as SWEET. As a result of this semantic approach, we have also utilized ontologic descriptions of key enabling elements of the application, such as the registration of datasets with ontologies at several levels of granularity. This has enabled the location and usage of the data across disciplines. We are also realizing the need to develop similar semantic registration of web service data holdings as well as those provided with community and/or standard markup languages (e.g. GeoSciML). This level of semantic enablement extending beyond domain terms and relations significantly enhances our ability to provide a coherent semantic data framework for data and information systems. Much of this work is on the frontier of technology development and we will present the current and near-future capabilities we are developing. This work arises from the Semantically-Enabled Science Data Integration (SESDI) project, which is an NASA/ESTO/ACCESS-funded project involving the High Altitude Observatory at the National Center for Atmospheric Research (NCAR), McGuinness Associates Consulting, NASA/JPL and Virginia Polytechnic University.

  14. ontologyX: a suite of R packages for working with ontological data.

    PubMed

    Greene, Daniel; Richardson, Sylvia; Turro, Ernest

    2017-04-01

    Ontologies are widely used constructs for encoding and analyzing biomedical data, but the absence of simple and consistent tools has made exploratory and systematic analysis of such data unnecessarily difficult. Here we present three packages which aim to simplify such procedures. The ontologyIndex package enables arbitrary ontologies to be read into R, supports representation of ontological objects by native R types, and provides a parsimonius set of performant functions for querying ontologies. ontologySimilarity and ontologyPlot extend ontologyIndex with functionality for straightforward visualization and semantic similarity calculations, including statistical routines. ontologyIndex , ontologyPlot and ontologySimilarity are all available on the Comprehensive R Archive Network website under https://cran.r-project.org/web/packages/ . Daniel Greene dg333@cam.ac.uk. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  15. Semantic web data warehousing for caGrid

    PubMed Central

    McCusker, James P; Phillips, Joshua A; Beltrán, Alejandra González; Finkelstein, Anthony; Krauthammer, Michael

    2009-01-01

    The National Cancer Institute (NCI) is developing caGrid as a means for sharing cancer-related data and services. As more data sets become available on caGrid, we need effective ways of accessing and integrating this information. Although the data models exposed on caGrid are semantically well annotated, it is currently up to the caGrid client to infer relationships between the different models and their classes. In this paper, we present a Semantic Web-based data warehouse (Corvus) for creating relationships among caGrid models. This is accomplished through the transformation of semantically-annotated caBIG® Unified Modeling Language (UML) information models into Web Ontology Language (OWL) ontologies that preserve those semantics. We demonstrate the validity of the approach by Semantic Extraction, Transformation and Loading (SETL) of data from two caGrid data sources, caTissue and caArray, as well as alignment and query of those sources in Corvus. We argue that semantic integration is necessary for integration of data from distributed web services and that Corvus is a useful way of accomplishing this. Our approach is generalizable and of broad utility to researchers facing similar integration challenges. PMID:19796399

  16. Semantic querying of relational data for clinical intelligence: a semantic web services-based approach

    PubMed Central

    2013-01-01

    Background Clinical Intelligence, as a research and engineering discipline, is dedicated to the development of tools for data analysis for the purposes of clinical research, surveillance, and effective health care management. Self-service ad hoc querying of clinical data is one desirable type of functionality. Since most of the data are currently stored in relational or similar form, ad hoc querying is problematic as it requires specialised technical skills and the knowledge of particular data schemas. Results A possible solution is semantic querying where the user formulates queries in terms of domain ontologies that are much easier to navigate and comprehend than data schemas. In this article, we are exploring the possibility of using SADI Semantic Web services for semantic querying of clinical data. We have developed a prototype of a semantic querying infrastructure for the surveillance of, and research on, hospital-acquired infections. Conclusions Our results suggest that SADI can support ad-hoc, self-service, semantic queries of relational data in a Clinical Intelligence context. The use of SADI compares favourably with approaches based on declarative semantic mappings from data schemas to ontologies, such as query rewriting and RDFizing by materialisation, because it can easily cope with situations when (i) some computation is required to turn relational data into RDF or OWL, e.g., to implement temporal reasoning, or (ii) integration with external data sources is necessary. PMID:23497556

  17. Assessment of semantic similarity between proteins using information content and topological properties of the Gene Ontology graph.

    PubMed

    Dutta, Pritha; Basu, Subhadip; Kundu, Mahantapas

    2017-03-31

    The semantic similarity between two interacting proteins can be estimated by combining the similarity scores of the GO terms associated with the proteins. Greater number of similar GO annotations between two proteins indicates greater interaction affinity. Existing semantic similarity measures make use of the GO graph structure, the information content of GO terms, or a combination of both. In this paper, we present a hybrid approach which utilizes both the topological features of the GO graph and information contents of the GO terms. More specifically, we 1) consider a fuzzy clustering of the GO graph based on the level of association of the GO terms, 2) estimate the GO term memberships to each cluster center based on the respective shortest path lengths, and 3) assign weightage to GO term pairs on the basis of their dissimilarity with respect to the cluster centers. We test the performance of our semantic similarity measure against seven other previously published similarity measures using benchmark protein-protein interaction datasets of Homo sapiens and Saccharomyces cerevisiae based on sequence similarity, Pfam similarity, area under ROC curve and F1 measure.

  18. The Evidence-base for Using Ontologies and Semantic Integration Methodologies to Support Integrated Chronic Disease Management in Primary and Ambulatory Care: Realist Review. Contribution of the IMIA Primary Health Care Informatics WG.

    PubMed

    Liyanage, H; Liaw, S-T; Kuziemsky, C; Terry, A L; Jones, S; Soler, J K; de Lusignan, S

    2013-01-01

    Most chronic diseases are managed in primary and ambulatory care. The chronic care model (CCM) suggests a wide range of community, technological, team and patient factors contribute to effective chronic disease management. Ontologies have the capability to enable formalised linkage of heterogeneous data sources as might be found across the elements of the CCM. To describe the evidence base for using ontologies and other semantic integration methods to support chronic disease management. We reviewed the evidence-base for the use of ontologies and other semantic integration methods within and across the elements of the CCM. We report them using a realist review describing the context in which the mechanism was applied, and any outcome measures. Most evidence was descriptive with an almost complete absence of empirical research and important gaps in the evidence-base. We found some use of ontologies and semantic integration methods for community support of the medical home and for care in the community. Ubiquitous information technology (IT) and other IT tools were deployed to support self-management support, use of shared registries, health behavioural models and knowledge discovery tools to improve delivery system design. Data quality issues restricted the use of clinical data; however there was an increased use of interoperable data and health system integration. Ontologies and semantic integration methods are emergent with limited evidence-base for their implementation. However, they have the potential to integrate the disparate community wide data sources to provide the information necessary for effective chronic disease management.

  19. Gene function prediction based on Gene Ontology Hierarchy Preserving Hashing.

    PubMed

    Zhao, Yingwen; Fu, Guangyuan; Wang, Jun; Guo, Maozu; Yu, Guoxian

    2018-02-23

    Gene Ontology (GO) uses structured vocabularies (or terms) to describe the molecular functions, biological roles, and cellular locations of gene products in a hierarchical ontology. GO annotations associate genes with GO terms and indicate the given gene products carrying out the biological functions described by the relevant terms. However, predicting correct GO annotations for genes from a massive set of GO terms as defined by GO is a difficult challenge. To combat with this challenge, we introduce a Gene Ontology Hierarchy Preserving Hashing (HPHash) based semantic method for gene function prediction. HPHash firstly measures the taxonomic similarity between GO terms. It then uses a hierarchy preserving hashing technique to keep the hierarchical order between GO terms, and to optimize a series of hashing functions to encode massive GO terms via compact binary codes. After that, HPHash utilizes these hashing functions to project the gene-term association matrix into a low-dimensional one and performs semantic similarity based gene function prediction in the low-dimensional space. Experimental results on three model species (Homo sapiens, Mus musculus and Rattus norvegicus) for interspecies gene function prediction show that HPHash performs better than other related approaches and it is robust to the number of hash functions. In addition, we also take HPHash as a plugin for BLAST based gene function prediction. From the experimental results, HPHash again significantly improves the prediction performance. The codes of HPHash are available at: http://mlda.swu.edu.cn/codes.php?name=HPHash. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Ontology-aided Data Fusion (Invited)

    NASA Astrophysics Data System (ADS)

    Raskin, R.

    2009-12-01

    An ontology provides semantic descriptions that are analogous to those in a dictionary, but are readable by both computers and humans. A data or service is semantically annotated when it is formally associated with elements of an ontology. The ESIP Federation Semantic Web Cluster has developed a set of ontologies to describe datatypes and data services that can be used to support automated data fusion. The service ontology includes descriptors of the service function, its inputs/outputs, and its invocation method. The datatype descriptors resemble typical metadata fields (data format, data model, data structure, originator, etc.) augmented with descriptions of the meaning of the data. These ontologies, in combination with the SWEET science ontology, enable a registered data fusion service to be chained together and implemented that is scientifically meaningful based on machine understanding of the associated data and services. This presentation describes initial results and experiences in automated data fusion.

  1. Ontology design patterns to disambiguate relations between genes and gene products in GENIA

    PubMed Central

    2011-01-01

    Motivation Annotated reference corpora play an important role in biomedical information extraction. A semantic annotation of the natural language texts in these reference corpora using formal ontologies is challenging due to the inherent ambiguity of natural language. The provision of formal definitions and axioms for semantic annotations offers the means for ensuring consistency as well as enables the development of verifiable annotation guidelines. Consistent semantic annotations facilitate the automatic discovery of new information through deductive inferences. Results We provide a formal characterization of the relations used in the recent GENIA corpus annotations. For this purpose, we both select existing axiom systems based on the desired properties of the relations within the domain and develop new axioms for several relations. To apply this ontology of relations to the semantic annotation of text corpora, we implement two ontology design patterns. In addition, we provide a software application to convert annotated GENIA abstracts into OWL ontologies by combining both the ontology of relations and the design patterns. As a result, the GENIA abstracts become available as OWL ontologies and are amenable for automated verification, deductive inferences and other knowledge-based applications. Availability Documentation, implementation and examples are available from http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/. PMID:22166341

  2. The eXtensible ontology development (XOD) principles and tool implementation to support ontology interoperability.

    PubMed

    He, Yongqun; Xiang, Zuoshuang; Zheng, Jie; Lin, Yu; Overton, James A; Ong, Edison

    2018-01-12

    Ontologies are critical to data/metadata and knowledge standardization, sharing, and analysis. With hundreds of biological and biomedical ontologies developed, it has become critical to ensure ontology interoperability and the usage of interoperable ontologies for standardized data representation and integration. The suite of web-based Ontoanimal tools (e.g., Ontofox, Ontorat, and Ontobee) support different aspects of extensible ontology development. By summarizing the common features of Ontoanimal and other similar tools, we identified and proposed an "eXtensible Ontology Development" (XOD) strategy and its associated four principles. These XOD principles reuse existing terms and semantic relations from reliable ontologies, develop and apply well-established ontology design patterns (ODPs), and involve community efforts to support new ontology development, promoting standardized and interoperable data and knowledge representation and integration. The adoption of the XOD strategy, together with robust XOD tool development, will greatly support ontology interoperability and robust ontology applications to support data to be Findable, Accessible, Interoperable and Reusable (i.e., FAIR).

  3. Entrez Neuron RDFa: a pragmatic semantic web application for data integration in neuroscience research.

    PubMed

    Samwald, Matthias; Lim, Ernest; Masiar, Peter; Marenco, Luis; Chen, Huajun; Morse, Thomas; Mutalik, Pradeep; Shepherd, Gordon; Miller, Perry; Cheung, Kei-Hoi

    2009-01-01

    The amount of biomedical data available in Semantic Web formats has been rapidly growing in recent years. While these formats are machine-friendly, user-friendly web interfaces allowing easy querying of these data are typically lacking. We present "Entrez Neuron", a pilot neuron-centric interface that allows for keyword-based queries against a coherent repository of OWL ontologies. These ontologies describe neuronal structures, physiology, mathematical models and microscopy images. The returned query results are organized hierarchically according to brain architecture. Where possible, the application makes use of entities from the Open Biomedical Ontologies (OBO) and the 'HCLS knowledgebase' developed by the W3C Interest Group for Health Care and Life Science. It makes use of the emerging RDFa standard to embed ontology fragments and semantic annotations within its HTML-based user interface. The application and underlying ontologies demonstrate how Semantic Web technologies can be used for information integration within a curated information repository and between curated information repositories. It also demonstrates how information integration can be accomplished on the client side, through simple copying and pasting of portions of documents that contain RDFa markup.

  4. What is in a contour map? A region-based logical formalization of contour semantics

    USGS Publications Warehouse

    Usery, E. Lynn; Hahmann, Torsten

    2015-01-01

    This paper analyses and formalizes contour semantics in a first-order logic ontology that forms the basis for enabling computational common sense reasoning about contour information. The elicited contour semantics comprises four key concepts – contour regions, contour lines, contour values, and contour sets – and their subclasses and associated relations, which are grounded in an existing qualitative spatial ontology. All concepts and relations are illustrated and motivated by physical-geographic features identifiable on topographic contour maps. The encoding of the semantics of contour concepts in first-order logic and a derived conceptual model as basis for an OWL ontology lay the foundation for fully automated, semantically-aware qualitative and quantitative reasoning about contours.

  5. A Weighted Multipath Measurement Based on Gene Ontology for Estimating Gene Products Similarity

    PubMed Central

    Liu, Lizhen; Dai, Xuemin; Song, Wei; Lu, Jingli

    2014-01-01

    Abstract Many different methods have been proposed for calculating the semantic similarity of term pairs based on gene ontology (GO). Most existing methods are based on information content (IC), and the methods based on IC are used more commonly than those based on the structure of GO. However, most IC-based methods not only fail to handle identical annotations but also show a strong bias toward well-annotated proteins. We propose a new method called weighted multipath measurement (WMM) for estimating the semantic similarity of gene products based on the structure of the GO. We not only considered the contribution of every path between two GO terms but also took the depth of the lowest common ancestors into account. We assigned different weights for different kinds of edges in GO graph. The similarity values calculated by WMM can be reused because they are only relative to the characteristics of GO terms. Experimental results showed that the similarity values obtained by WMM have a higher accuracy. We compared the performance of WMM with that of other methods using GO data and gene annotation datasets for yeast and humans downloaded from the GO database. We found that WMM is more suited for prediction of gene function than most existing IC-based methods and that it can distinguish proteins with identical annotations (two proteins are annotated with the same terms) from each other. PMID:25229994

  6. Informatics in radiology: radiology gamuts ontology: differential diagnosis for the Semantic Web.

    PubMed

    Budovec, Joseph J; Lam, Cesar A; Kahn, Charles E

    2014-01-01

    The Semantic Web is an effort to add semantics, or "meaning," to empower automated searching and processing of Web-based information. The overarching goal of the Semantic Web is to enable users to more easily find, share, and combine information. Critical to this vision are knowledge models called ontologies, which define a set of concepts and formalize the relations between them. Ontologies have been developed to manage and exploit the large and rapidly growing volume of information in biomedical domains. In diagnostic radiology, lists of differential diagnoses of imaging observations, called gamuts, provide an important source of knowledge. The Radiology Gamuts Ontology (RGO) is a formal knowledge model of differential diagnoses in radiology that includes 1674 differential diagnoses, 19,017 terms, and 52,976 links between terms. Its knowledge is used to provide an interactive, freely available online reference of radiology gamuts ( www.gamuts.net ). A Web service allows its content to be discovered and consumed by other information systems. The RGO integrates radiologic knowledge with other biomedical ontologies as part of the Semantic Web. © RSNA, 2014.

  7. The Semantic Retrieval of Spatial Data Service Based on Ontology in SIG

    NASA Astrophysics Data System (ADS)

    Sun, S.; Liu, D.; Li, G.; Yu, W.

    2011-08-01

    The research of SIG (Spatial Information Grid) mainly solves the problem of how to connect different computing resources, so that users can use all the resources in the Grid transparently and seamlessly. In SIG, spatial data service is described in some kinds of specifications, which use different meta-information of each kind of services. This kind of standardization cannot resolve the problem of semantic heterogeneity, which may limit user to obtain the required resources. This paper tries to solve two kinds of semantic heterogeneities (name heterogeneity and structure heterogeneity) in spatial data service retrieval based on ontology, and also, based on the hierarchical subsumption relationship among concept in ontology, the query words can be extended and more resource can be matched and found for user. These applications of ontology in spatial data resource retrieval can help to improve the capability of keyword matching, and find more related resources.

  8. CelOWS: an ontology based framework for the provision of semantic web services related to biological models.

    PubMed

    Matos, Ely Edison; Campos, Fernanda; Braga, Regina; Palazzi, Daniele

    2010-02-01

    The amount of information generated by biological research has lead to an intensive use of models. Mathematical and computational modeling needs accurate description to share, reuse and simulate models as formulated by original authors. In this paper, we introduce the Cell Component Ontology (CelO), expressed in OWL-DL. This ontology captures both the structure of a cell model and the properties of functional components. We use this ontology in a Web project (CelOWS) to describe, query and compose CellML models, using semantic web services. It aims to improve reuse and composition of existent components and allow semantic validation of new models.

  9. Ontologies as integrative tools for plant science

    PubMed Central

    Walls, Ramona L.; Athreya, Balaji; Cooper, Laurel; Elser, Justin; Gandolfo, Maria A.; Jaiswal, Pankaj; Mungall, Christopher J.; Preece, Justin; Rensing, Stefan; Smith, Barry; Stevenson, Dennis W.

    2012-01-01

    Premise of the study Bio-ontologies are essential tools for accessing and analyzing the rapidly growing pool of plant genomic and phenomic data. Ontologies provide structured vocabularies to support consistent aggregation of data and a semantic framework for automated analyses and reasoning. They are a key component of the semantic web. Methods This paper provides background on what bio-ontologies are, why they are relevant to botany, and the principles of ontology development. It includes an overview of ontologies and related resources that are relevant to plant science, with a detailed description of the Plant Ontology (PO). We discuss the challenges of building an ontology that covers all green plants (Viridiplantae). Key results Ontologies can advance plant science in four keys areas: (1) comparative genetics, genomics, phenomics, and development; (2) taxonomy and systematics; (3) semantic applications; and (4) education. Conclusions Bio-ontologies offer a flexible framework for comparative plant biology, based on common botanical understanding. As genomic and phenomic data become available for more species, we anticipate that the annotation of data with ontology terms will become less centralized, while at the same time, the need for cross-species queries will become more common, causing more researchers in plant science to turn to ontologies. PMID:22847540

  10. Building an ontology of pulmonary diseases with natural language processing tools using textual corpora.

    PubMed

    Baneyx, Audrey; Charlet, Jean; Jaulent, Marie-Christine

    2007-01-01

    Pathologies and acts are classified in thesauri to help physicians to code their activity. In practice, the use of thesauri is not sufficient to reduce variability in coding and thesauri are not suitable for computer processing. We think the automation of the coding task requires a conceptual modeling of medical items: an ontology. Our task is to help lung specialists code acts and diagnoses with software that represents medical knowledge of this concerned specialty by an ontology. The objective of the reported work was to build an ontology of pulmonary diseases dedicated to the coding process. To carry out this objective, we develop a precise methodological process for the knowledge engineer in order to build various types of medical ontologies. This process is based on the need to express precisely in natural language the meaning of each concept using differential semantics principles. A differential ontology is a hierarchy of concepts and relationships organized according to their similarities and differences. Our main research hypothesis is to apply natural language processing tools to corpora to develop the resources needed to build the ontology. We consider two corpora, one composed of patient discharge summaries and the other being a teaching book. We propose to combine two approaches to enrich the ontology building: (i) a method which consists of building terminological resources through distributional analysis and (ii) a method based on the observation of corpus sequences in order to reveal semantic relationships. Our ontology currently includes 1550 concepts and the software implementing the coding process is still under development. Results show that the proposed approach is operational and indicates that the combination of these methods and the comparison of the resulting terminological structures give interesting clues to a knowledge engineer for the building of an ontology.

  11. Alignment of the UMLS semantic network with BioTop: methodology and assessment.

    PubMed

    Schulz, Stefan; Beisswanger, Elena; van den Hoek, László; Bodenreider, Olivier; van Mulligen, Erik M

    2009-06-15

    For many years, the Unified Medical Language System (UMLS) semantic network (SN) has been used as an upper-level semantic framework for the categorization of terms from terminological resources in biomedicine. BioTop has recently been developed as an upper-level ontology for the biomedical domain. In contrast to the SN, it is founded upon strict ontological principles, using OWL DL as a formal representation language, which has become standard in the semantic Web. In order to make logic-based reasoning available for the resources annotated or categorized with the SN, a mapping ontology was developed aligning the SN with BioTop. The theoretical foundations and the practical realization of the alignment are being described, with a focus on the design decisions taken, the problems encountered and the adaptations of BioTop that became necessary. For evaluation purposes, UMLS concept pairs obtained from MEDLINE abstracts by a named entity recognition system were tested for possible semantic relationships. Furthermore, all semantic-type combinations that occur in the UMLS Metathesaurus were checked for satisfiability. The effort-intensive alignment process required major design changes and enhancements of BioTop and brought up several design errors that could be fixed. A comparison between a human curator and the ontology yielded only a low agreement. Ontology reasoning was also used to successfully identify 133 inconsistent semantic-type combinations. BioTop, the OWL DL representation of the UMLS SN, and the mapping ontology are available at http://www.purl.org/biotop/.

  12. Interoperability between biomedical ontologies through relation expansion, upper-level ontologies and automatic reasoning.

    PubMed

    Hoehndorf, Robert; Dumontier, Michel; Oellrich, Anika; Rebholz-Schuhmann, Dietrich; Schofield, Paul N; Gkoutos, Georgios V

    2011-01-01

    Researchers design ontologies as a means to accurately annotate and integrate experimental data across heterogeneous and disparate data- and knowledge bases. Formal ontologies make the semantics of terms and relations explicit such that automated reasoning can be used to verify the consistency of knowledge. However, many biomedical ontologies do not sufficiently formalize the semantics of their relations and are therefore limited with respect to automated reasoning for large scale data integration and knowledge discovery. We describe a method to improve automated reasoning over biomedical ontologies and identify several thousand contradictory class definitions. Our approach aligns terms in biomedical ontologies with foundational classes in a top-level ontology and formalizes composite relations as class expressions. We describe the semi-automated repair of contradictions and demonstrate expressive queries over interoperable ontologies. Our work forms an important cornerstone for data integration, automatic inference and knowledge discovery based on formal representations of knowledge. Our results and analysis software are available at http://bioonto.de/pmwiki.php/Main/ReasonableOntologies.

  13. Entrez Neuron RDFa: a pragmatic Semantic Web application for data integration in neuroscience research

    PubMed Central

    Samwald, Matthias; Lim, Ernest; Masiar, Peter; Marenco, Luis; Chen, Huajun; Morse, Thomas; Mutalik, Pradeep; Shepherd, Gordon; Miller, Perry; Cheung, Kei-Hoi

    2013-01-01

    The amount of biomedical data available in Semantic Web formats has been rapidly growing in recent years. While these formats are machine-friendly, user-friendly web interfaces allowing easy querying of these data are typically lacking. We present “Entrez Neuron”, a pilot neuron-centric interface that allows for keyword-based queries against a coherent repository of OWL ontologies. These ontologies describe neuronal structures, physiology, mathematical models and microscopy images. The returned query results are organized hierarchically according to brain architecture. Where possible, the application makes use of entities from the Open Biomedical Ontologies (OBO) and the ‘HCLS knowledgebase’ developed by the W3C Interest Group for Health Care and Life Science. It makes use of the emerging RDFa standard to embed ontology fragments and semantic annotations within its HTML-based user interface. The application and underlying ontologies demonstrates how Semantic Web technologies can be used for information integration within a curated information repository and between curated information repositories. It also demonstrates how information integration can be accomplished on the client side, through simple copying and pasting of portions of documents that contain RDFa markup. PMID:19745321

  14. Semantics-driven modelling of user preferences for information retrieval in the biomedical domain.

    PubMed

    Gladun, Anatoly; Rogushina, Julia; Valencia-García, Rafael; Béjar, Rodrigo Martínez

    2013-03-01

    A large amount of biomedical and genomic data are currently available on the Internet. However, data are distributed into heterogeneous biological information sources, with little or even no organization. Semantic technologies provide a consistent and reliable basis with which to confront the challenges involved in the organization, manipulation and visualization of data and knowledge. One of the knowledge representation techniques used in semantic processing is the ontology, which is commonly defined as a formal and explicit specification of a shared conceptualization of a domain of interest. The work presented here introduces a set of interoperable algorithms that can use domain and ontological information to improve information-retrieval processes. This work presents an ontology-based information-retrieval system for the biomedical domain. This system, with which some experiments have been carried out that are described in this paper, is based on the use of domain ontologies for the creation and normalization of lightweight ontologies that represent user preferences in a determined domain in order to improve information-retrieval processes.

  15. Integrating semantic dimension into openEHR archetypes for the management of cerebral palsy electronic medical records.

    PubMed

    Ellouze, Afef Samet; Bouaziz, Rafik; Ghorbel, Hanen

    2016-10-01

    Integrating semantic dimension into clinical archetypes is necessary once modeling medical records. First, it enables semantic interoperability and, it offers applying semantic activities on clinical data and provides a higher design quality of Electronic Medical Record (EMR) systems. However, to obtain these advantages, designers need to use archetypes that cover semantic features of clinical concepts involved in their specific applications. In fact, most of archetypes filed within open repositories are expressed in the Archetype Definition Language (ALD) which allows defining only the syntactic structure of clinical concepts weakening semantic activities on the EMR content in the semantic web environment. This paper focuses on the modeling of an EMR prototype for infants affected by Cerebral Palsy (CP), using the dual model approach and integrating semantic web technologies. Such a modeling provides a better delivery of quality of care and ensures semantic interoperability between all involved therapies' information systems. First, data to be documented are identified and collected from the involved therapies. Subsequently, data are analyzed and arranged into archetypes expressed in accordance of ADL. During this step, open archetype repositories are explored, in order to find the suitable archetypes. Then, ADL archetypes are transformed into archetypes expressed in OWL-DL (Ontology Web Language - Description Language). Finally, we construct an ontological source related to these archetypes enabling hence their annotation to facilitate data extraction and providing possibility to exercise semantic activities on such archetypes. Semantic dimension integration into EMR modeled in accordance to the archetype approach. The feasibility of our solution is shown through the development of a prototype, baptized "CP-SMS", which ensures semantic exploitation of CP EMR. This prototype provides the following features: (i) creation of CP EMR instances and their checking by using a knowledge base which we have constructed by interviews with domain experts, (ii) translation of initially CP ADL archetypes into CP OWL-DL archetypes, (iii) creation of an ontological source which we can use to annotate obtained archetypes and (vi) enrichment and supply of the ontological source and integration of semantic relations by providing hence fueling the ontology with new concepts, ensuring consistency and eliminating ambiguity between concepts. The degree of semantic interoperability that could be reached between EMR systems depends strongly on the quality of the used archetypes. Thus, the integration of semantic dimension in archetypes modeling process is crucial. By creating an ontological source and annotating archetypes, we create a supportive platform ensuring semantic interoperability between archetypes-based EMR-systems. Copyright © 2016. Published by Elsevier Inc.

  16. Use artificial neural network to align biological ontologies.

    PubMed

    Huang, Jingshan; Dang, Jiangbo; Huhns, Michael N; Zheng, W Jim

    2008-09-16

    Being formal, declarative knowledge representation models, ontologies help to address the problem of imprecise terminologies in biological and biomedical research. However, ontologies constructed under the auspices of the Open Biomedical Ontologies (OBO) group have exhibited a great deal of variety, because different parties can design ontologies according to their own conceptual views of the world. It is therefore becoming critical to align ontologies from different parties. During automated/semi-automated alignment across biological ontologies, different semantic aspects, i.e., concept name, concept properties, and concept relationships, contribute in different degrees to alignment results. Therefore, a vector of weights must be assigned to these semantic aspects. It is not trivial to determine what those weights should be, and current methodologies depend a lot on human heuristics. In this paper, we take an artificial neural network approach to learn and adjust these weights, and thereby support a new ontology alignment algorithm, customized for biological ontologies, with the purpose of avoiding some disadvantages in both rule-based and learning-based aligning algorithms. This approach has been evaluated by aligning two real-world biological ontologies, whose features include huge file size, very few instances, concept names in numerical strings, and others. The promising experiment results verify our proposed hypothesis, i.e., three weights for semantic aspects learned from a subset of concepts are representative of all concepts in the same ontology. Therefore, our method represents a large leap forward towards automating biological ontology alignment.

  17. An Ontology Based Approach to Information Security

    NASA Astrophysics Data System (ADS)

    Pereira, Teresa; Santos, Henrique

    The semantically structure of knowledge, based on ontology approaches have been increasingly adopted by several expertise from diverse domains. Recently ontologies have been moved from the philosophical and metaphysics disciplines to be used in the construction of models to describe a specific theory of a domain. The development and the use of ontologies promote the creation of a unique standard to represent concepts within a specific knowledge domain. In the scope of information security systems the use of an ontology to formalize and represent the concepts of security information challenge the mechanisms and techniques currently used. This paper intends to present a conceptual implementation model of an ontology defined in the security domain. The model presented contains the semantic concepts based on the information security standard ISO/IEC_JTC1, and their relationships to other concepts, defined in a subset of the information security domain.

  18. Developing a semantic web model for medical differential diagnosis recommendation.

    PubMed

    Mohammed, Osama; Benlamri, Rachid

    2014-10-01

    In this paper we describe a novel model for differential diagnosis designed to make recommendations by utilizing semantic web technologies. The model is a response to a number of requirements, ranging from incorporating essential clinical diagnostic semantics to the integration of data mining for the process of identifying candidate diseases that best explain a set of clinical features. We introduce two major components, which we find essential to the construction of an integral differential diagnosis recommendation model: the evidence-based recommender component and the proximity-based recommender component. Both approaches are driven by disease diagnosis ontologies designed specifically to enable the process of generating diagnostic recommendations. These ontologies are the disease symptom ontology and the patient ontology. The evidence-based diagnosis process develops dynamic rules based on standardized clinical pathways. The proximity-based component employs data mining to provide clinicians with diagnosis predictions, as well as generates new diagnosis rules from provided training datasets. This article describes the integration between these two components along with the developed diagnosis ontologies to form a novel medical differential diagnosis recommendation model. This article also provides test cases from the implementation of the overall model, which shows quite promising diagnostic recommendation results.

  19. DMTO: a realistic ontology for standard diabetes mellitus treatment.

    PubMed

    El-Sappagh, Shaker; Kwak, Daehan; Ali, Farman; Kwak, Kyung-Sup

    2018-02-06

    Treatment of type 2 diabetes mellitus (T2DM) is a complex problem. A clinical decision support system (CDSS) based on massive and distributed electronic health record data can facilitate the automation of this process and enhance its accuracy. The most important component of any CDSS is its knowledge base. This knowledge base can be formulated using ontologies. The formal description logic of ontology supports the inference of hidden knowledge. Building a complete, coherent, consistent, interoperable, and sharable ontology is a challenge. This paper introduces the first version of the newly constructed Diabetes Mellitus Treatment Ontology (DMTO) as a basis for shared-semantics, domain-specific, standard, machine-readable, and interoperable knowledge relevant to T2DM treatment. It is a comprehensive ontology and provides the highest coverage and the most complete picture of coded knowledge about T2DM patients' current conditions, previous profiles, and T2DM-related aspects, including complications, symptoms, lab tests, interactions, treatment plan (TP) frameworks, and glucose-related diseases and medications. It adheres to the design principles recommended by the Open Biomedical Ontologies Foundry and is based on ontological realism that follows the principles of the Basic Formal Ontology and the Ontology for General Medical Science. DMTO is implemented under Protégé 5.0 in Web Ontology Language (OWL) 2 format and is publicly available through the National Center for Biomedical Ontology's BioPortal at http://bioportal.bioontology.org/ontologies/DMTO . The current version of DMTO includes more than 10,700 classes, 277 relations, 39,425 annotations, 214 semantic rules, and 62,974 axioms. We provide proof of concept for this approach to modeling TPs. The ontology is able to collect and analyze most features of T2DM as well as customize chronic TPs with the most appropriate drugs, foods, and physical exercises. DMTO is ready to be used as a knowledge base for semantically intelligent and distributed CDSS systems.

  20. A Systematic Analysis of Term Reuse and Term Overlap across Biomedical Ontologies

    PubMed Central

    Kamdar, Maulik R.; Tudorache, Tania; Musen, Mark A.

    2016-01-01

    Reusing ontologies and their terms is a principle and best practice that most ontology development methodologies strongly encourage. Reuse comes with the promise to support the semantic interoperability and to reduce engineering costs. In this paper, we present a descriptive study of the current extent of term reuse and overlap among biomedical ontologies. We use the corpus of biomedical ontologies stored in the BioPortal repository, and analyze different types of reuse and overlap constructs. While we find an approximate term overlap between 25–31%, the term reuse is only <9%, with most ontologies reusing fewer than 5% of their terms from a small set of popular ontologies. Clustering analysis shows that the terms reused by a common set of ontologies have >90% semantic similarity, hinting that ontology developers tend to reuse terms that are sibling or parent–child nodes. We validate this finding by analysing the logs generated from a Protégé plugin that enables developers to reuse terms from BioPortal. We find most reuse constructs were 2-level subtrees on the higher levels of the class hierarchy. We developed a Web application that visualizes reuse dependencies and overlap among ontologies, and that proposes similar terms from BioPortal for a term of interest. We also identified a set of error patterns that indicate that ontology developers did intend to reuse terms from other ontologies, but that they were using different and sometimes incorrect representations. Our results stipulate the need for semi-automated tools that augment term reuse in the ontology engineering process through personalized recommendations. PMID:28819351

  1. Ontology Design of Influential People Identification Using Centrality

    NASA Astrophysics Data System (ADS)

    Maulana Awangga, Rolly; Yusril, Muhammad; Setyawan, Helmi

    2018-04-01

    Identifying influential people as a node in a graph theory commonly calculated by social network analysis. The social network data has the user as node and edge as relation forming a friend relation graph. This research is conducting different meaning of every nodes relation in the social network. Ontology was perfect match science to describe the social network data as conceptual and domain. Ontology gives essential relationship in a social network more than a current graph. Ontology proposed as a standard for knowledge representation for the semantic web by World Wide Web Consortium. The formal data representation use Resource Description Framework (RDF) and Web Ontology Language (OWL) which is strategic for Open Knowledge-Based website data. Ontology used in the semantic description for a relationship in the social network, it is open to developing semantic based relationship ontology by adding and modifying various and different relationship to have influential people as a conclusion. This research proposes a model using OWL and RDF for influential people identification in the social network. The study use degree centrality, between ness centrality, and closeness centrality measurement for data validation. As a conclusion, influential people identification in Facebook can use proposed Ontology model in the Group, Photos, Photo Tag, Friends, Events and Works data.

  2. GalenOWL: Ontology-based drug recommendations discovery

    PubMed Central

    2012-01-01

    Background Identification of drug-drug and drug-diseases interactions can pose a difficult problem to cope with, as the increasingly large number of available drugs coupled with the ongoing research activities in the pharmaceutical domain, make the task of discovering relevant information difficult. Although international standards, such as the ICD-10 classification and the UNII registration, have been developed in order to enable efficient knowledge sharing, medical staff needs to be constantly updated in order to effectively discover drug interactions before prescription. The use of Semantic Web technologies has been proposed in earlier works, in order to tackle this problem. Results This work presents a semantic-enabled online service, named GalenOWL, capable of offering real time drug-drug and drug-diseases interaction discovery. For enabling this kind of service, medical information and terminology had to be translated to ontological terms and be appropriately coupled with medical knowledge of the field. International standards such as the aforementioned ICD-10 and UNII, provide the backbone of the common representation of medical data, while the medical knowledge of drug interactions is represented by a rule base which makes use of the aforementioned standards. Details of the system architecture are presented while also giving an outline of the difficulties that had to be overcome. A comparison of the developed ontology-based system with a similar system developed using a traditional business logic rule engine is performed, giving insights on the advantages and drawbacks of both implementations. Conclusions The use of Semantic Web technologies has been found to be a good match for developing drug recommendation systems. Ontologies can effectively encapsulate medical knowledge and rule-based reasoning can capture and encode the drug interactions knowledge. PMID:23256945

  3. Ontology Research and Development. Part 1-A Review of Ontology Generation.

    ERIC Educational Resources Information Center

    Ding, Ying; Foo, Schubert

    2002-01-01

    Discusses the role of ontology in knowledge representation, including enabling content-based access, interoperability, communications, and new levels of service on the Semantic Web; reviews current ontology generation studies and projects as well as problems facing such research; and discusses ontology mapping, information extraction, natural…

  4. A transversal approach to predict gene product networks from ontology-based similarity

    PubMed Central

    Chabalier, Julie; Mosser, Jean; Burgun, Anita

    2007-01-01

    Background Interpretation of transcriptomic data is usually made through a "standard" approach which consists in clustering the genes according to their expression patterns and exploiting Gene Ontology (GO) annotations within each expression cluster. This approach makes it difficult to underline functional relationships between gene products that belong to different expression clusters. To address this issue, we propose a transversal analysis that aims to predict functional networks based on a combination of GO processes and data expression. Results The transversal approach presented in this paper consists in computing the semantic similarity between gene products in a Vector Space Model. Through a weighting scheme over the annotations, we take into account the representativity of the terms that annotate a gene product. Comparing annotation vectors results in a matrix of gene product similarities. Combined with expression data, the matrix is displayed as a set of functional gene networks. The transversal approach was applied to 186 genes related to the enterocyte differentiation stages. This approach resulted in 18 functional networks proved to be biologically relevant. These results were compared with those obtained through a standard approach and with an approach based on information content similarity. Conclusion Complementary to the standard approach, the transversal approach offers new insight into the cellular mechanisms and reveals new research hypotheses by combining gene product networks based on semantic similarity, and data expression. PMID:17605807

  5. The MMI Device Ontology: Enabling Sensor Integration

    NASA Astrophysics Data System (ADS)

    Rueda, C.; Galbraith, N.; Morris, R. A.; Bermudez, L. E.; Graybeal, J.; Arko, R. A.; Mmi Device Ontology Working Group

    2010-12-01

    The Marine Metadata Interoperability (MMI) project has developed an ontology for devices to describe sensors and sensor networks. This ontology is implemented in the W3C Web Ontology Language (OWL) and provides an extensible conceptual model and controlled vocabularies for describing heterogeneous instrument types, with different data characteristics, and their attributes. It can help users populate metadata records for sensors; associate devices with their platforms, deployments, measurement capabilities and restrictions; aid in discovery of sensor data, both historic and real-time; and improve the interoperability of observational oceanographic data sets. We developed the MMI Device Ontology following a community-based approach. By building on and integrating other models and ontologies from related disciplines, we sought to facilitate semantic interoperability while avoiding duplication. Key concepts and insights from various communities, including the Open Geospatial Consortium (eg., SensorML and Observations and Measurements specifications), Semantic Web for Earth and Environmental Terminology (SWEET), and W3C Semantic Sensor Network Incubator Group, have significantly enriched the development of the ontology. Individuals ranging from instrument designers, science data producers and consumers to ontology specialists and other technologists contributed to the work. Applications of the MMI Device Ontology are underway for several community use cases. These include vessel-mounted multibeam mapping sonars for the Rolling Deck to Repository (R2R) program and description of diverse instruments on deepwater Ocean Reference Stations for the OceanSITES program. These trials involve creation of records completely describing instruments, either by individual instances or by manufacturer and model. Individual terms in the MMI Device Ontology can be referenced with their corresponding Uniform Resource Identifiers (URIs) in sensor-related metadata specifications (e.g., SensorML, NetCDF). These identifiers can be resolved through a web browser, or other client applications via HTTP against the MMI Ontology Registry and Repository (ORR), where the ontology is maintained. SPARQL-based query capabilities, which are enhanced with reasoning, along with several supported output formats, allow the effective interaction of diverse client applications with the semantic information associated with the device ontology. In this presentation we describe the process for the development of the MMI Device Ontology and illustrate extensions and applications that demonstrate the benefits of adopting this semantic approach, including example queries involving inference. We also highlight the issues encountered and future work.

  6. Ontology-Driven Knowledge-Based Health-Care System, An Emerging Area - Challenges And Opportunities - Indian Scenario

    NASA Astrophysics Data System (ADS)

    Sunitha, A.; Babu, G. Suresh

    2014-11-01

    Recent studies in the decision making efforts in the area of public healthcare systems have been tremendously inspired and influenced by the entry of ontology. Ontology driven systems results in the effective implementation of healthcare strategies for the policy makers. The central source of knowledge is the ontology containing all the relevant domain concepts such as locations, diseases, environments and their domain sensitive inter-relationships which is the prime objective, concern and the motivation behind this paper. The paper further focuses on the development of a semantic knowledge-base for public healthcare system. This paper describes the approach and methodologies in bringing out a novel conceptual theme in establishing a firm linkage between three different ontologies related to diseases, places and environments in one integrated platform. This platform correlates the real-time mechanisms prevailing within the semantic knowledgebase and establishing their inter-relationships for the first time in India. This is hoped to formulate a strong foundation for establishing a much awaited basic need for a meaningful healthcare decision making system in the country. Introduction through a wide range of best practices facilitate the adoption of this approach for better appreciation, understanding and long term outcomes in the area. The methods and approach illustrated in the paper relate to health mapping methods, reusability of health applications, and interoperability issues based on mapping of the data attributes with ontology concepts in generating semantic integrated data driving an inference engine for user-interfaced semantic queries.

  7. Research on designing ontologies for location-based services

    NASA Astrophysics Data System (ADS)

    Cheng, Gang; Du, Qingyun; Cai, Zhongliang; Huang, Maojun; Zhao, Haiyun

    2007-06-01

    With the far and wide applications of Location-Based Services (LBS), the call for more semantic and accurate services is emerging. From a semantic viewpoint, the major characteristic of, and challenge for, LBS is the fact that they serve as mediator between a possibly unknown user and possibly a priori unknown services. While some geographic information technology standards provide the basis for syntactic interoperability, they do not yet provide methods for dealing with problems of semantic heterogeneity. In this paper we design ontologies for LBS which are used for the identification and association of semantically corresponding concepts to overcome the semantic problems. In order to better understand the semantic content of the data in LBS, we analyze several elements both data and services involved. Then, we model these data and services in a way that captures their peculiarities and allows their sharing between users and services and exchange among different LBS, when desired. For this, we use the Protégé-OWL plug-in for creating hybrid hierarchy of ontologies to enhance the semantic content both the user information and the services have. To argue about the design choices and show their applicability, we present a simple example from a characteristic real world application.

  8. Closed-Loop Lifecycle Management of Service and Product in the Internet of Things: Semantic Framework for Knowledge Integration.

    PubMed

    Yoo, Min-Jung; Grozel, Clément; Kiritsis, Dimitris

    2016-07-08

    This paper describes our conceptual framework of closed-loop lifecycle information sharing for product-service in the Internet of Things (IoT). The framework is based on the ontology model of product-service and a type of IoT message standard, Open Messaging Interface (O-MI) and Open Data Format (O-DF), which ensures data communication. (1) BACKGROUND: Based on an existing product lifecycle management (PLM) methodology, we enhanced the ontology model for the purpose of integrating efficiently the product-service ontology model that was newly developed; (2) METHODS: The IoT message transfer layer is vertically integrated into a semantic knowledge framework inside which a Semantic Info-Node Agent (SINA) uses the message format as a common protocol of product-service lifecycle data transfer; (3) RESULTS: The product-service ontology model facilitates information retrieval and knowledge extraction during the product lifecycle, while making more information available for the sake of service business creation. The vertical integration of IoT message transfer, encompassing all semantic layers, helps achieve a more flexible and modular approach to knowledge sharing in an IoT environment; (4) Contribution: A semantic data annotation applied to IoT can contribute to enhancing collected data types, which entails a richer knowledge extraction. The ontology-based PLM model enables as well the horizontal integration of heterogeneous PLM data while breaking traditional vertical information silos; (5) CONCLUSION: The framework was applied to a fictive case study with an electric car service for the purpose of demonstration. For the purpose of demonstrating the feasibility of the approach, the semantic model is implemented in Sesame APIs, which play the role of an Internet-connected Resource Description Framework (RDF) database.

  9. Closed-Loop Lifecycle Management of Service and Product in the Internet of Things: Semantic Framework for Knowledge Integration

    PubMed Central

    Yoo, Min-Jung; Grozel, Clément; Kiritsis, Dimitris

    2016-01-01

    This paper describes our conceptual framework of closed-loop lifecycle information sharing for product-service in the Internet of Things (IoT). The framework is based on the ontology model of product-service and a type of IoT message standard, Open Messaging Interface (O-MI) and Open Data Format (O-DF), which ensures data communication. (1) Background: Based on an existing product lifecycle management (PLM) methodology, we enhanced the ontology model for the purpose of integrating efficiently the product-service ontology model that was newly developed; (2) Methods: The IoT message transfer layer is vertically integrated into a semantic knowledge framework inside which a Semantic Info-Node Agent (SINA) uses the message format as a common protocol of product-service lifecycle data transfer; (3) Results: The product-service ontology model facilitates information retrieval and knowledge extraction during the product lifecycle, while making more information available for the sake of service business creation. The vertical integration of IoT message transfer, encompassing all semantic layers, helps achieve a more flexible and modular approach to knowledge sharing in an IoT environment; (4) Contribution: A semantic data annotation applied to IoT can contribute to enhancing collected data types, which entails a richer knowledge extraction. The ontology-based PLM model enables as well the horizontal integration of heterogeneous PLM data while breaking traditional vertical information silos; (5) Conclusion: The framework was applied to a fictive case study with an electric car service for the purpose of demonstration. For the purpose of demonstrating the feasibility of the approach, the semantic model is implemented in Sesame APIs, which play the role of an Internet-connected Resource Description Framework (RDF) database. PMID:27399717

  10. Modelling and approaching pragmatic interoperability of distributed geoscience data

    NASA Astrophysics Data System (ADS)

    Ma, Xiaogang

    2010-05-01

    Interoperability of geodata, which is essential for sharing information and discovering insights within a cyberinfrastructure, is receiving increasing attention. A key requirement of interoperability in the context of geodata sharing is that data provided by local sources can be accessed, decoded, understood and appropriately used by external users. Various researchers have discussed that there are four levels in data interoperability issues: system, syntax, schematics and semantics, which respectively relate to the platform, encoding, structure and meaning of geodata. Ontology-driven approaches have been significantly studied addressing schematic and semantic interoperability issues of geodata in the last decade. There are different types, e.g. top-level ontologies, domain ontologies and application ontologies and display forms, e.g. glossaries, thesauri, conceptual schemas and logical theories. Many geodata providers are maintaining their identified local application ontologies in order to drive standardization in local databases. However, semantic heterogeneities often exist between these local ontologies, even though they are derived from equivalent disciplines. In contrast, common ontologies are being studied in different geoscience disciplines (e.g., NAMD, SWEET, etc.) as a standardization procedure to coordinate diverse local ontologies. Semantic mediation, e.g. mapping between local ontologies, or mapping local ontologies to common ontologies, has been studied as an effective way of achieving semantic interoperability between local ontologies thus reconciling semantic heterogeneities in multi-source geodata. Nevertheless, confusion still exists in the research field of semantic interoperability. One problem is caused by eliminating elements of local pragmatic contexts in semantic mediation. Comparing to the context-independent feature of a common domain ontology, local application ontologies are closely related to elements (e.g., people, time, location, intention, procedure, consequence, etc.) of local pragmatic contexts and thus context-dependent. Elimination of these elements will inevitably lead to information loss in semantic mediation between local ontologies. Correspondingly, understanding and effect of exchanged data in a new context may differ from that in its original context. Another problem is the dilemma on how to find a balance between flexibility and standardization of local ontologies, because ontologies are not fixed, but continuously evolving. It is commonly realized that we cannot use a unified ontology to replace all local ontologies because they are context-dependent and need flexibility. However, without coordination of standards, freely developed local ontologies and databases will bring enormous work of mediation between them. Finding a balance between standardization and flexibility for evolving ontologies, in a practical sense, requires negotiations (i.e. conversations, agreements and collaborations) between different local pragmatic contexts. The purpose of this work is to set up a computer-friendly model representing local pragmatic contexts (i.e. geodata sources), and propose a practical semantic negotiation procedure for approaching pragmatic interoperability between local pragmatic contexts. Information agents, objective facts and subjective dimensions are reviewed as elements of a conceptual model for representing pragmatic contexts. The author uses them to draw a practical semantic negotiation procedure approaching pragmatic interoperability of distributed geodata. The proposed conceptual model and semantic negotiation procedure were encoded with Description Logic, and then applied to analyze and manipulate semantic negotiations between different local ontologies within the National Mineral Resources Assessment (NMRA) project of China, which involves multi-source and multi-subject geodata sharing.

  11. Development of Health Information Search Engine Based on Metadata and Ontology

    PubMed Central

    Song, Tae-Min; Jin, Dal-Lae

    2014-01-01

    Objectives The aim of the study was to develop a metadata and ontology-based health information search engine ensuring semantic interoperability to collect and provide health information using different application programs. Methods Health information metadata ontology was developed using a distributed semantic Web content publishing model based on vocabularies used to index the contents generated by the information producers as well as those used to search the contents by the users. Vocabulary for health information ontology was mapped to the Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT), and a list of about 1,500 terms was proposed. The metadata schema used in this study was developed by adding an element describing the target audience to the Dublin Core Metadata Element Set. Results A metadata schema and an ontology ensuring interoperability of health information available on the internet were developed. The metadata and ontology-based health information search engine developed in this study produced a better search result compared to existing search engines. Conclusions Health information search engine based on metadata and ontology will provide reliable health information to both information producer and information consumers. PMID:24872907

  12. Development of health information search engine based on metadata and ontology.

    PubMed

    Song, Tae-Min; Park, Hyeoun-Ae; Jin, Dal-Lae

    2014-04-01

    The aim of the study was to develop a metadata and ontology-based health information search engine ensuring semantic interoperability to collect and provide health information using different application programs. Health information metadata ontology was developed using a distributed semantic Web content publishing model based on vocabularies used to index the contents generated by the information producers as well as those used to search the contents by the users. Vocabulary for health information ontology was mapped to the Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT), and a list of about 1,500 terms was proposed. The metadata schema used in this study was developed by adding an element describing the target audience to the Dublin Core Metadata Element Set. A metadata schema and an ontology ensuring interoperability of health information available on the internet were developed. The metadata and ontology-based health information search engine developed in this study produced a better search result compared to existing search engines. Health information search engine based on metadata and ontology will provide reliable health information to both information producer and information consumers.

  13. Tableau Calculus for the Logic of Comparative Similarity over Arbitrary Distance Spaces

    NASA Astrophysics Data System (ADS)

    Alenda, Régis; Olivetti, Nicola

    The logic CSL (first introduced by Sheremet, Tishkovsky, Wolter and Zakharyaschev in 2005) allows one to reason about distance comparison and similarity comparison within a modal language. The logic can express assertions of the kind "A is closer/more similar to B than to C" and has a natural application to spatial reasoning, as well as to reasoning about concept similarity in ontologies. The semantics of CSL is defined in terms of models based on different classes of distance spaces and it generalizes the logic S4 u of topological spaces. In this paper we consider CSL defined over arbitrary distance spaces. The logic comprises a binary modality to represent comparative similarity and a unary modality to express the existence of the minimum of a set of distances. We first show that the semantics of CSL can be equivalently defined in terms of preferential models. As a consequence we obtain the finite model property of the logic with respect to its preferential semantic, a property that does not hold with respect to the original distance-space semantics. Next we present an analytic tableau calculus based on its preferential semantics. The calculus provides a decision procedure for the logic, its termination is obtained by imposing suitable blocking restrictions.

  14. Structure Discovery in Large Semantic Graphs Using Extant Ontological Scaling and Descriptive Statistics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    al-Saffar, Sinan; Joslyn, Cliff A.; Chappell, Alan R.

    As semantic datasets grow to be very large and divergent, there is a need to identify and exploit their inherent semantic structure for discovery and optimization. Towards that end, we present here a novel methodology to identify the semantic structures inherent in an arbitrary semantic graph dataset. We first present the concept of an extant ontology as a statistical description of the semantic relations present amongst the typed entities modeled in the graph. This serves as a model of the underlying semantic structure to aid in discovery and visualization. We then describe a method of ontological scaling in which themore » ontology is employed as a hierarchical scaling filter to infer different resolution levels at which the graph structures are to be viewed or analyzed. We illustrate these methods on three large and publicly available semantic datasets containing more than one billion edges each. Keywords-Semantic Web; Visualization; Ontology; Multi-resolution Data Mining;« less

  15. A bibliometric and visual analysis of global geo-ontology research

    NASA Astrophysics Data System (ADS)

    Li, Lin; Liu, Yu; Zhu, Haihong; Ying, Shen; Luo, Qinyao; Luo, Heng; Kuai, Xi; Xia, Hui; Shen, Hang

    2017-02-01

    In this paper, the results of a bibliometric and visual analysis of geo-ontology research articles collected from the Web of Science (WOS) database between 1999 and 2014 are presented. The numbers of national institutions and published papers are visualized and a global research heat map is drawn, illustrating an overview of global geo-ontology research. In addition, we present a chord diagram of countries and perform a visual cluster analysis of a knowledge co-citation network of references, disclosing potential academic communities and identifying key points, main research areas, and future research trends. The International Journal of Geographical Information Science, Progress in Human Geography, and Computers & Geosciences are the most active journals. The USA makes the largest contributions to geo-ontology research by virtue of its highest numbers of independent and collaborative papers, and its dominance was also confirmed in the country chord diagram. The majority of institutions are in the USA, Western Europe, and Eastern Asia. Wuhan University, University of Munster, and the Chinese Academy of Sciences are notable geo-ontology institutions. Keywords such as "Semantic Web," "GIS," and "space" have attracted a great deal of attention. "Semantic granularity in ontology-driven geographic information systems, "Ontologies in support of activities in geographical space" and "A translation approach to portable ontology specifications" have the highest cited centrality. Geographical space, computer-human interaction, and ontology cognition are the three main research areas of geo-ontology. The semantic mismatch between the producers and users of ontology data as well as error propagation in interdisciplinary and cross-linguistic data reuse needs to be solved. In addition, the development of geo-ontology modeling primitives based on OWL (Web Ontology Language)and finding methods to automatically rework data in Semantic Web are needed. Furthermore, the topological relations between geographical entities still require further study.

  16. Methodology for the inference of gene function from phenotype data.

    PubMed

    Ascensao, Joao A; Dolan, Mary E; Hill, David P; Blake, Judith A

    2014-12-12

    Biomedical ontologies are increasingly instrumental in the advancement of biological research primarily through their use to efficiently consolidate large amounts of data into structured, accessible sets. However, ontology development and usage can be hampered by the segregation of knowledge by domain that occurs due to independent development and use of the ontologies. The ability to infer data associated with one ontology to data associated with another ontology would prove useful in expanding information content and scope. We here focus on relating two ontologies: the Gene Ontology (GO), which encodes canonical gene function, and the Mammalian Phenotype Ontology (MP), which describes non-canonical phenotypes, using statistical methods to suggest GO functional annotations from existing MP phenotype annotations. This work is in contrast to previous studies that have focused on inferring gene function from phenotype primarily through lexical or semantic similarity measures. We have designed and tested a set of algorithms that represents a novel methodology to define rules for predicting gene function by examining the emergent structure and relationships between the gene functions and phenotypes rather than inspecting the terms semantically. The algorithms inspect relationships among multiple phenotype terms to deduce if there are cases where they all arise from a single gene function. We apply this methodology to data about genes in the laboratory mouse that are formally represented in the Mouse Genome Informatics (MGI) resource. From the data, 7444 rule instances were generated from five generalized rules, resulting in 4818 unique GO functional predictions for 1796 genes. We show that our method is capable of inferring high-quality functional annotations from curated phenotype data. As well as creating inferred annotations, our method has the potential to allow for the elucidation of unforeseen, biologically significant associations between gene function and phenotypes that would be overlooked by a semantics-based approach. Future work will include the implementation of the described algorithms for a variety of other model organism databases, taking full advantage of the abundance of available high quality curated data.

  17. OmniSearch: a semantic search system based on the Ontology for MIcroRNA Target (OMIT) for microRNA-target gene interaction data.

    PubMed

    Huang, Jingshan; Gutierrez, Fernando; Strachan, Harrison J; Dou, Dejing; Huang, Weili; Smith, Barry; Blake, Judith A; Eilbeck, Karen; Natale, Darren A; Lin, Yu; Wu, Bin; Silva, Nisansa de; Wang, Xiaowei; Liu, Zixing; Borchert, Glen M; Tan, Ming; Ruttenberg, Alan

    2016-01-01

    As a special class of non-coding RNAs (ncRNAs), microRNAs (miRNAs) perform important roles in numerous biological and pathological processes. The realization of miRNA functions depends largely on how miRNAs regulate specific target genes. It is therefore critical to identify, analyze, and cross-reference miRNA-target interactions to better explore and delineate miRNA functions. Semantic technologies can help in this regard. We previously developed a miRNA domain-specific application ontology, Ontology for MIcroRNA Target (OMIT), whose goal was to serve as a foundation for semantic annotation, data integration, and semantic search in the miRNA field. In this paper we describe our continuing effort to develop the OMIT, and demonstrate its use within a semantic search system, OmniSearch, designed to facilitate knowledge capture of miRNA-target interaction data. Important changes in the current version OMIT are summarized as: (1) following a modularized ontology design (with 2559 terms imported from the NCRO ontology); (2) encoding all 1884 human miRNAs (vs. 300 in previous versions); and (3) setting up a GitHub project site along with an issue tracker for more effective community collaboration on the ontology development. The OMIT ontology is free and open to all users, accessible at: http://purl.obolibrary.org/obo/omit.owl. The OmniSearch system is also free and open to all users, accessible at: http://omnisearch.soc.southalabama.edu/index.php/Software.

  18. What Four Million Mappings Can Tell You about Two Hundred Ontologies

    NASA Astrophysics Data System (ADS)

    Ghazvinian, Amir; Noy, Natalya F.; Jonquet, Clement; Shah, Nigam; Musen, Mark A.

    The field of biomedicine has embraced the Semantic Web probably more than any other field. As a result, there is a large number of biomedical ontologies covering overlapping areas of the field. We have developed BioPortal—an open community-based repository of biomedical ontologies. We analyzed ontologies and terminologies in BioPortal and the Unified Medical Language System (UMLS), creating more than 4 million mappings between concepts in these ontologies and terminologies based on the lexical similarity of concept names and synonyms. We then analyzed the mappings and what they tell us about the ontologies themselves, the structure of the ontology repository, and the ways in which the mappings can help in the process of ontology design and evaluation. For example, we can use the mappings to guide users who are new to a field to the most pertinent ontologies in that field, to identify areas of the domain that are not covered sufficiently by the ontologies in the repository, and to identify which ontologies will serve well as background knowledge in domain-specific tools. While we used a specific (but large) ontology repository for the study, we believe that the lessons we learned about the value of a large-scale set of mappings to ontology users and developers are general and apply in many other domains.

  19. An ontological case base engineering methodology for diabetes management.

    PubMed

    El-Sappagh, Shaker H; El-Masri, Samir; Elmogy, Mohammed; Riad, A M; Saddik, Basema

    2014-08-01

    Ontology engineering covers issues related to ontology development and use. In Case Based Reasoning (CBR) system, ontology plays two main roles; the first as case base and the second as domain ontology. However, the ontology engineering literature does not provide adequate guidance on how to build, evaluate, and maintain ontologies. This paper proposes an ontology engineering methodology to generate case bases in the medical domain. It mainly focuses on the research of case representation in the form of ontology to support the case semantic retrieval and enhance all knowledge intensive CBR processes. A case study on diabetes diagnosis case base will be provided to evaluate the proposed methodology.

  20. An ontology design pattern for surface water features

    USGS Publications Warehouse

    Sinha, Gaurav; Mark, David; Kolas, Dave; Varanka, Dalia; Romero, Boleslo E.; Feng, Chen-Chieh; Usery, E. Lynn; Liebermann, Joshua; Sorokine, Alexandre

    2014-01-01

    Surface water is a primary concept of human experience but concepts are captured in cultures and languages in many different ways. Still, many commonalities exist due to the physical basis of many of the properties and categories. An abstract ontology of surface water features based only on those physical properties of landscape features has the best potential for serving as a foundational domain ontology for other more context-dependent ontologies. The Surface Water ontology design pattern was developed both for domain knowledge distillation and to serve as a conceptual building-block for more complex or specialized surface water ontologies. A fundamental distinction is made in this ontology between landscape features that act as containers (e.g., stream channels, basins) and the bodies of water (e.g., rivers, lakes) that occupy those containers. Concave (container) landforms semantics are specified in a Dry module and the semantics of contained bodies of water in a Wet module. The pattern is implemented in OWL, but Description Logic axioms and a detailed explanation is provided in this paper. The OWL ontology will be an important contribution to Semantic Web vocabulary for annotating surface water feature datasets. Also provided is a discussion of why there is a need to complement the pattern with other ontologies, especially the previously developed Surface Network pattern. Finally, the practical value of the pattern in semantic querying of surface water datasets is illustrated through an annotated geospatial dataset and sample queries using the classes of the Surface Water pattern.

  1. Computable visually observed phenotype ontological framework for plants

    PubMed Central

    2011-01-01

    Background The ability to search for and precisely compare similar phenotypic appearances within and across species has vast potential in plant science and genetic research. The difficulty in doing so lies in the fact that many visual phenotypic data, especially visually observed phenotypes that often times cannot be directly measured quantitatively, are in the form of text annotations, and these descriptions are plagued by semantic ambiguity, heterogeneity, and low granularity. Though several bio-ontologies have been developed to standardize phenotypic (and genotypic) information and permit comparisons across species, these semantic issues persist and prevent precise analysis and retrieval of information. A framework suitable for the modeling and analysis of precise computable representations of such phenotypic appearances is needed. Results We have developed a new framework called the Computable Visually Observed Phenotype Ontological Framework for plants. This work provides a novel quantitative view of descriptions of plant phenotypes that leverages existing bio-ontologies and utilizes a computational approach to capture and represent domain knowledge in a machine-interpretable form. This is accomplished by means of a robust and accurate semantic mapping module that automatically maps high-level semantics to low-level measurements computed from phenotype imagery. The framework was applied to two different plant species with semantic rules mined and an ontology constructed. Rule quality was evaluated and showed high quality rules for most semantics. This framework also facilitates automatic annotation of phenotype images and can be adopted by different plant communities to aid in their research. Conclusions The Computable Visually Observed Phenotype Ontological Framework for plants has been developed for more efficient and accurate management of visually observed phenotypes, which play a significant role in plant genomics research. The uniqueness of this framework is its ability to bridge the knowledge of informaticians and plant science researchers by translating descriptions of visually observed phenotypes into standardized, machine-understandable representations, thus enabling the development of advanced information retrieval and phenotype annotation analysis tools for the plant science community. PMID:21702966

  2. Ontology-based geospatial data query and integration

    USGS Publications Warehouse

    Zhao, T.; Zhang, C.; Wei, M.; Peng, Z.-R.

    2008-01-01

    Geospatial data sharing is an increasingly important subject as large amount of data is produced by a variety of sources, stored in incompatible formats, and accessible through different GIS applications. Past efforts to enable sharing have produced standardized data format such as GML and data access protocols such as Web Feature Service (WFS). While these standards help enabling client applications to gain access to heterogeneous data stored in different formats from diverse sources, the usability of the access is limited due to the lack of data semantics encoded in the WFS feature types. Past research has used ontology languages to describe the semantics of geospatial data but ontology-based queries cannot be applied directly to legacy data stored in databases or shapefiles, or to feature data in WFS services. This paper presents a method to enable ontology query on spatial data available from WFS services and on data stored in databases. We do not create ontology instances explicitly and thus avoid the problems of data replication. Instead, user queries are rewritten to WFS getFeature requests and SQL queries to database. The method also has the benefits of being able to utilize existing tools of databases, WFS, and GML while enabling query based on ontology semantics. ?? 2008 Springer-Verlag Berlin Heidelberg.

  3. Semantic Interoperability Almost Without Using The Same Vocabulary: Is It Possible?

    NASA Astrophysics Data System (ADS)

    Krisnadhi, A. A.

    2016-12-01

    Semantic interoperability, which is a key requirement in realizing cross-repository data integration, is often understood as using the same ontology or vocabulary. Consequently, within a particular domain, one can easily assume that there has to be one unifying domain ontology covering as many vocabulary terms in the domain as possible in order to realize any form of data integration across multiple data sources. Furthermore, the desire to provide very precise definition of those many terms led to the development of huge, foundational and domain ontologies that are comprehensive, but too complicated, restrictive, monolithic, and difficult to use and reuse, which cause common data providers to avoid using them. This problem is especially true in a domain as diverse as geosciences as it is virtually impossible to reach an agreement to the semantics of many terms (e.g., there are hundreds of definitions of forest used throughout the world). To overcome this challenge, modular ontology architecture has emerged in recent years, fueled among others, by advances in the ontology design pattern research. Each ontology pattern models only one key notion. It can act as a small module of a larger ontology. Such a module is developed in such a way that it is largely independent of how other notions in the same domain are modeled. This leads to an increased reusability. Furthermore, an ontology formed out of such modules would have an improved understandability over large, monolithic ontologies. Semantic interoperability in the aforementioned architecture is not achieved by enforcing the use of the same vocabulary, but rather, promoting alignment to the same ontology patterns. In this work, we elaborate how this architecture realizes the above idea. In particular, we describe how multiple data sources with differing perspectives and vocabularies can interoperate through this architecture. Building the solution upon semantic technologies such as Linked Data and the Web Ontology Language (OWL), we demonstrate how a data integration solution based on this idea can be realized over different data repositories.

  4. Mapping between the OBO and OWL ontology languages.

    PubMed

    Tirmizi, Syed Hamid; Aitken, Stuart; Moreira, Dilvan A; Mungall, Chris; Sequeda, Juan; Shah, Nigam H; Miranker, Daniel P

    2011-03-07

    Ontologies are commonly used in biomedicine to organize concepts to describe domains such as anatomies, environments, experiment, taxonomies etc. NCBO BioPortal currently hosts about 180 different biomedical ontologies. These ontologies have been mainly expressed in either the Open Biomedical Ontology (OBO) format or the Web Ontology Language (OWL). OBO emerged from the Gene Ontology, and supports most of the biomedical ontology content. In comparison, OWL is a Semantic Web language, and is supported by the World Wide Web consortium together with integral query languages, rule languages and distributed infrastructure for information interchange. These features are highly desirable for the OBO content as well. A convenient method for leveraging these features for OBO ontologies is by transforming OBO ontologies to OWL. We have developed a methodology for translating OBO ontologies to OWL using the organization of the Semantic Web itself to guide the work. The approach reveals that the constructs of OBO can be grouped together to form a similar layer cake. Thus we were able to decompose the problem into two parts. Most OBO constructs have easy and obvious equivalence to a construct in OWL. A small subset of OBO constructs requires deeper consideration. We have defined transformations for all constructs in an effort to foster a standard common mapping between OBO and OWL. Our mapping produces OWL-DL, a Description Logics based subset of OWL with desirable computational properties for efficiency and correctness. Our Java implementation of the mapping is part of the official Gene Ontology project source. Our transformation system provides a lossless roundtrip mapping for OBO ontologies, i.e. an OBO ontology may be translated to OWL and back without loss of knowledge. In addition, it provides a roadmap for bridging the gap between the two ontology languages in order to enable the use of ontology content in a language independent manner.

  5. Mapping between the OBO and OWL ontology languages

    PubMed Central

    2011-01-01

    Background Ontologies are commonly used in biomedicine to organize concepts to describe domains such as anatomies, environments, experiment, taxonomies etc. NCBO BioPortal currently hosts about 180 different biomedical ontologies. These ontologies have been mainly expressed in either the Open Biomedical Ontology (OBO) format or the Web Ontology Language (OWL). OBO emerged from the Gene Ontology, and supports most of the biomedical ontology content. In comparison, OWL is a Semantic Web language, and is supported by the World Wide Web consortium together with integral query languages, rule languages and distributed infrastructure for information interchange. These features are highly desirable for the OBO content as well. A convenient method for leveraging these features for OBO ontologies is by transforming OBO ontologies to OWL. Results We have developed a methodology for translating OBO ontologies to OWL using the organization of the Semantic Web itself to guide the work. The approach reveals that the constructs of OBO can be grouped together to form a similar layer cake. Thus we were able to decompose the problem into two parts. Most OBO constructs have easy and obvious equivalence to a construct in OWL. A small subset of OBO constructs requires deeper consideration. We have defined transformations for all constructs in an effort to foster a standard common mapping between OBO and OWL. Our mapping produces OWL-DL, a Description Logics based subset of OWL with desirable computational properties for efficiency and correctness. Our Java implementation of the mapping is part of the official Gene Ontology project source. Conclusions Our transformation system provides a lossless roundtrip mapping for OBO ontologies, i.e. an OBO ontology may be translated to OWL and back without loss of knowledge. In addition, it provides a roadmap for bridging the gap between the two ontology languages in order to enable the use of ontology content in a language independent manner. PMID:21388572

  6. VuWiki: An Ontology-Based Semantic Wiki for Vulnerability Assessments

    NASA Astrophysics Data System (ADS)

    Khazai, Bijan; Kunz-Plapp, Tina; Büscher, Christian; Wegner, Antje

    2014-05-01

    The concept of vulnerability, as well as its implementation in vulnerability assessments, is used in various disciplines and contexts ranging from disaster management and reduction to ecology, public health or climate change and adaptation, and a corresponding multitude of ideas about how to conceptualize and measure vulnerability exists. Three decades of research in vulnerability have generated a complex and growing body of knowledge that challenges newcomers, practitioners and even experienced researchers. To provide a structured representation of the knowledge field "vulnerability assessment", we have set up an ontology-based semantic wiki for reviewing and representing vulnerability assessments: VuWiki, www.vuwiki.org. Based on a survey of 55 vulnerability assessment studies, we first developed an ontology as an explicit reference system for describing vulnerability assessments. We developed the ontology in a theoretically controlled manner based on general systems theory and guided by principles for ontology development in the field of earth and environment (Raskin and Pan 2005). Four key questions form the first level "branches" or categories of the developed ontology: (1) Vulnerability of what? (2) Vulnerability to what? (3) What reference framework was used in the vulnerability assessment?, and (4) What methodological approach was used in the vulnerability assessment? These questions correspond to the basic, abstract structure of the knowledge domain of vulnerability assessments and have been deduced from theories and concepts of various disciplines. The ontology was then implemented in a semantic wiki which allows for the classification and annotation of vulnerability assessments. As a semantic wiki, VuWiki does not aim at "synthesizing" a holistic and overarching model of vulnerability. Instead, it provides both scientists and practitioners with a uniform ontology as a reference system and offers easy and structured access to the knowledge field of vulnerability assessments with the possibility for any user to retrieve assessments using specific research criteria. Furthermore, Vuwiki can serve as a collaborative knowledge platform that allows for the active participation of those generating and using the knowledge represented in the wiki.

  7. Introduction to geospatial semantics and technology workshop handbook

    USGS Publications Warehouse

    Varanka, Dalia E.

    2012-01-01

    The workshop is a tutorial on introductory geospatial semantics with hands-on exercises using standard Web browsers. The workshop is divided into two sections, general semantics on the Web and specific examples of geospatial semantics using data from The National Map of the U.S. Geological Survey and the Open Ontology Repository. The general semantics section includes information and access to publicly available semantic archives. The specific session includes information on geospatial semantics with access to semantically enhanced data for hydrography, transportation, boundaries, and names. The Open Ontology Repository offers open-source ontologies for public use.

  8. An ontology based information system for the management of institutional repository's collections

    NASA Astrophysics Data System (ADS)

    Tsolakidis, A.; Kakoulidis, P.; Skourlas, C.

    2015-02-01

    In this paper we discuss a simple methodological approach to create, and customize institutional repositories for the domain of the technological education. The use of the open source software platform of DSpace is proposed to build up the repository application and provide access to digital resources including research papers, dissertations, administrative documents, educational material, etc. Also the use of owl ontologies is proposed for indexing and accessing the various, heterogeneous items stored in the repository. Customization and operation of a platform for the selection and use of terms or parts of similar existing owl ontologies is also described. This platform could be based on the open source software Protégé that supports owl, is widely used, and also supports visualization, SPARQL etc. The combined use of the owl platform and the DSpace repository form a basis for creating customized ontologies, accommodating the semantic metadata of items and facilitating searching.

  9. USI: a fast and accurate approach for conceptual document annotation.

    PubMed

    Fiorini, Nicolas; Ranwez, Sylvie; Montmain, Jacky; Ranwez, Vincent

    2015-03-14

    Semantic approaches such as concept-based information retrieval rely on a corpus in which resources are indexed by concepts belonging to a domain ontology. In order to keep such applications up-to-date, new entities need to be frequently annotated to enrich the corpus. However, this task is time-consuming and requires a high-level of expertise in both the domain and the related ontology. Different strategies have thus been proposed to ease this indexing process, each one taking advantage from the features of the document. In this paper we present USI (User-oriented Semantic Indexer), a fast and intuitive method for indexing tasks. We introduce a solution to suggest a conceptual annotation for new entities based on related already indexed documents. Our results, compared to those obtained by previous authors using the MeSH thesaurus and a dataset of biomedical papers, show that the method surpasses text-specific methods in terms of both quality and speed. Evaluations are done via usual metrics and semantic similarity. By only relying on neighbor documents, the User-oriented Semantic Indexer does not need a representative learning set. Yet, it provides better results than the other approaches by giving a consistent annotation scored with a global criterion - instead of one score per concept.

  10. Content-based image retrieval with ontological ranking

    NASA Astrophysics Data System (ADS)

    Tsai, Shen-Fu; Tsai, Min-Hsuan; Huang, Thomas S.

    2010-02-01

    Images are a much more powerful medium of expression than text, as the adage says: "One picture is worth a thousand words." It is because compared with text consisting of an array of words, an image has more degrees of freedom and therefore a more complicated structure. However, the less limited structure of images presents researchers in the computer vision community a tough task of teaching machines to understand and organize images, especially when a limit number of learning examples and background knowledge are given. The advance of internet and web technology in the past decade has changed the way human gain knowledge. People, hence, can exchange knowledge with others by discussing and contributing information on the web. As a result, the web pages in the internet have become a living and growing source of information. One is therefore tempted to wonder whether machines can learn from the web knowledge base as well. Indeed, it is possible to make computer learn from the internet and provide human with more meaningful knowledge. In this work, we explore this novel possibility on image understanding applied to semantic image search. We exploit web resources to obtain links from images to keywords and a semantic ontology constituting human's general knowledge. The former maps visual content to related text in contrast to the traditional way of associating images with surrounding text; the latter provides relations between concepts for machines to understand to what extent and in what sense an image is close to the image search query. With the aid of these two tools, the resulting image search system is thus content-based and moreover, organized. The returned images are ranked and organized such that semantically similar images are grouped together and given a rank based on the semantic closeness to the input query. The novelty of the system is twofold: first, images are retrieved not only based on text cues but their actual contents as well; second, the grouping is different from pure visual similarity clustering. More specifically, the inferred concepts of each image in the group are examined in the context of a huge concept ontology to determine their true relations with what people have in mind when doing image search.

  11. An Approach to Folksonomy-Based Ontology Maintenance for Learning Environments

    ERIC Educational Resources Information Center

    Gasevic, D.; Zouaq, Amal; Torniai, Carlo; Jovanovic, J.; Hatala, Marek

    2011-01-01

    Recent research in learning technologies has demonstrated many promising contributions from the use of ontologies and semantic web technologies for the development of advanced learning environments. In spite of those benefits, ontology development and maintenance remain the key research challenges to be solved before ontology-enhanced learning…

  12. A Concept Hierarchy Based Ontology Mapping Approach

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Liu, Weiru; Bell, David

    Ontology mapping is one of the most important tasks for ontology interoperability and its main aim is to find semantic relationships between entities (i.e. concept, attribute, and relation) of two ontologies. However, most of the current methods only consider one to one (1:1) mappings. In this paper we propose a new approach (CHM: Concept Hierarchy based Mapping approach) which can find simple (1:1) mappings and complex (m:1 or 1:m) mappings simultaneously. First, we propose a new method to represent the concept names of entities. This method is based on the hierarchical structure of an ontology such that each concept name of entity in the ontology is included in a set. The parent-child relationship in the hierarchical structure of an ontology is then extended as a set-inclusion relationship between the sets for the parent and the child. Second, we compute the similarities between entities based on the new representation of entities in ontologies. Third, after generating the mapping candidates, we select the best mapping result for each source entity. We design a new algorithm based on the Apriori algorithm for selecting the mapping results. Finally, we obtain simple (1:1) and complex (m:1 or 1:m) mappings. Our experimental results and comparisons with related work indicate that utilizing this method in dealing with ontology mapping is a promising way to improve the overall mapping results.

  13. An Ontology-based Architecture for Integration of Clinical Trials Management Applications

    PubMed Central

    Shankar, Ravi D.; Martins, Susana B.; O’Connor, Martin; Parrish, David B.; Das, Amar K.

    2007-01-01

    Management of complex clinical trials involves coordinated-use of a myriad of software applications by trial personnel. The applications typically use distinct knowledge representations and generate enormous amount of information during the course of a trial. It becomes vital that the applications exchange trial semantics in order for efficient management of the trials and subsequent analysis of clinical trial data. Existing model-based frameworks do not address the requirements of semantic integration of heterogeneous applications. We have built an ontology-based architecture to support interoperation of clinical trial software applications. Central to our approach is a suite of clinical trial ontologies, which we call Epoch, that define the vocabulary and semantics necessary to represent information on clinical trials. We are continuing to demonstrate and validate our approach with different clinical trials management applications and with growing number of clinical trials. PMID:18693919

  14. Towards an ontology for data quality in integrated chronic disease management: a realist review of the literature.

    PubMed

    Liaw, S T; Rahimi, A; Ray, P; Taggart, J; Dennis, S; de Lusignan, S; Jalaludin, B; Yeo, A E T; Talaei-Khoei, A

    2013-01-01

    Effective use of routine data to support integrated chronic disease management (CDM) and population health is dependent on underlying data quality (DQ) and, for cross system use of data, semantic interoperability. An ontological approach to DQ is a potential solution but research in this area is limited and fragmented. Identify mechanisms, including ontologies, to manage DQ in integrated CDM and whether improved DQ will better measure health outcomes. A realist review of English language studies (January 2001-March 2011) which addressed data quality, used ontology-based approaches and is relevant to CDM. We screened 245 papers, excluded 26 duplicates, 135 on abstract review and 31 on full-text review; leaving 61 papers for critical appraisal. Of the 33 papers that examined ontologies in chronic disease management, 13 defined data quality and 15 used ontologies for DQ. Most saw DQ as a multidimensional construct, the most used dimensions being completeness, accuracy, correctness, consistency and timeliness. The majority of studies reported tool design and development (80%), implementation (23%), and descriptive evaluations (15%). Ontological approaches were used to address semantic interoperability, decision support, flexibility of information management and integration/linkage, and complexity of information models. DQ lacks a consensus conceptual framework and definition. DQ and ontological research is relatively immature with little rigorous evaluation studies published. Ontology-based applications could support automated processes to address DQ and semantic interoperability in repositories of routinely collected data to deliver integrated CDM. We advocate moving to ontology-based design of information systems to enable more reliable use of routine data to measure health mechanisms and impacts. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  15. Towards an Approach of Semantic Access Control for Cloud Computing

    NASA Astrophysics Data System (ADS)

    Hu, Luokai; Ying, Shi; Jia, Xiangyang; Zhao, Kai

    With the development of cloud computing, the mutual understandability among distributed Access Control Policies (ACPs) has become an important issue in the security field of cloud computing. Semantic Web technology provides the solution to semantic interoperability of heterogeneous applications. In this paper, we analysis existing access control methods and present a new Semantic Access Control Policy Language (SACPL) for describing ACPs in cloud computing environment. Access Control Oriented Ontology System (ACOOS) is designed as the semantic basis of SACPL. Ontology-based SACPL language can effectively solve the interoperability issue of distributed ACPs. This study enriches the research that the semantic web technology is applied in the field of security, and provides a new way of thinking of access control in cloud computing.

  16. Model Driven Engineering with Ontology Technologies

    NASA Astrophysics Data System (ADS)

    Staab, Steffen; Walter, Tobias; Gröner, Gerd; Parreiras, Fernando Silva

    Ontologies constitute formal models of some aspect of the world that may be used for drawing interesting logical conclusions even for large models. Software models capture relevant characteristics of a software artifact to be developed, yet, most often these software models have limited formal semantics, or the underlying (often graphical) software language varies from case to case in a way that makes it hard if not impossible to fix its semantics. In this contribution, we survey the use of ontology technologies for software modeling in order to carry over advantages from ontology technologies to the software modeling domain. It will turn out that ontology-based metamodels constitute a core means for exploiting expressive ontology reasoning in the software modeling domain while remaining flexible enough to accommodate varying needs of software modelers.

  17. Semantic Integration for Marine Science Interoperability Using Web Technologies

    NASA Astrophysics Data System (ADS)

    Rueda, C.; Bermudez, L.; Graybeal, J.; Isenor, A. W.

    2008-12-01

    The Marine Metadata Interoperability Project, MMI (http://marinemetadata.org) promotes the exchange, integration, and use of marine data through enhanced data publishing, discovery, documentation, and accessibility. A key effort is the definition of an Architectural Framework and Operational Concept for Semantic Interoperability (http://marinemetadata.org/sfc), which is complemented with the development of tools that realize critical use cases in semantic interoperability. In this presentation, we describe a set of such Semantic Web tools that allow performing important interoperability tasks, ranging from the creation of controlled vocabularies and the mapping of terms across multiple ontologies, to the online registration, storage, and search services needed to work with the ontologies (http://mmisw.org). This set of services uses Web standards and technologies, including Resource Description Framework (RDF), Web Ontology language (OWL), Web services, and toolkits for Rich Internet Application development. We will describe the following components: MMI Ontology Registry: The MMI Ontology Registry and Repository provides registry and storage services for ontologies. Entries in the registry are associated with projects defined by the registered users. Also, sophisticated search functions, for example according to metadata items and vocabulary terms, are provided. Client applications can submit search requests using the WC3 SPARQL Query Language for RDF. Voc2RDF: This component converts an ASCII comma-delimited set of terms and definitions into an RDF file. Voc2RDF facilitates the creation of controlled vocabularies by using a simple form-based user interface. Created vocabularies and their descriptive metadata can be submitted to the MMI Ontology Registry for versioning and community access. VINE: The Vocabulary Integration Environment component allows the user to map vocabulary terms across multiple ontologies. Various relationships can be established, for example exactMatch, narrowerThan, and subClassOf. VINE can compute inferred mappings based on the given associations. Attributes about each mapping, like comments and a confidence level, can also be included. VINE also supports registering and storing resulting mapping files in the Ontology Registry. The presentation will describe the application of semantic technologies in general, and our planned applications in particular, to solve data management problems in the marine and environmental sciences.

  18. Inferring the semantic relationships of words within an ontology using random indexing: applications to pharmacogenomics.

    PubMed

    Percha, Bethany; Altman, Russ B

    2013-01-01

    The biomedical literature presents a uniquely challenging text mining problem. Sentences are long and complex, the subject matter is highly specialized with a distinct vocabulary, and producing annotated training data for this domain is time consuming and expensive. In this environment, unsupervised text mining methods that do not rely on annotated training data are valuable. Here we investigate the use of random indexing, an automated method for producing vector-space semantic representations of words from large, unlabeled corpora, to address the problem of term normalization in sentences describing drugs and genes. We show that random indexing produces similarity scores that capture some of the structure of PHARE, a manually curated ontology of pharmacogenomics concepts. We further show that random indexing can be used to identify likely word candidates for inclusion in the ontology, and can help localize these new labels among classes and roles within the ontology.

  19. Inferring the semantic relationships of words within an ontology using random indexing: applications to pharmacogenomics

    PubMed Central

    Percha, Bethany; Altman, Russ B.

    2013-01-01

    The biomedical literature presents a uniquely challenging text mining problem. Sentences are long and complex, the subject matter is highly specialized with a distinct vocabulary, and producing annotated training data for this domain is time consuming and expensive. In this environment, unsupervised text mining methods that do not rely on annotated training data are valuable. Here we investigate the use of random indexing, an automated method for producing vector-space semantic representations of words from large, unlabeled corpora, to address the problem of term normalization in sentences describing drugs and genes. We show that random indexing produces similarity scores that capture some of the structure of PHARE, a manually curated ontology of pharmacogenomics concepts. We further show that random indexing can be used to identify likely word candidates for inclusion in the ontology, and can help localize these new labels among classes and roles within the ontology. PMID:24551397

  20. Development of Semantic Description for Multiscale Models of Thermo-Mechanical Treatment of Metal Alloys

    NASA Astrophysics Data System (ADS)

    Macioł, Piotr; Regulski, Krzysztof

    2016-08-01

    We present a process of semantic meta-model development for data management in an adaptable multiscale modeling framework. The main problems in ontology design are discussed, and a solution achieved as a result of the research is presented. The main concepts concerning the application and data management background for multiscale modeling were derived from the AM3 approach—object-oriented Agile multiscale modeling methodology. The ontological description of multiscale models enables validation of semantic correctness of data interchange between submodels. We also present a possibility of using the ontological model as a supervisor in conjunction with a multiscale model controller and a knowledge base system. Multiscale modeling formal ontology (MMFO), designed for describing multiscale models' data and structures, is presented. A need for applying meta-ontology in the MMFO development process is discussed. Examples of MMFO application in describing thermo-mechanical treatment of metal alloys are discussed. Present and future applications of MMFO are described.

  1. ADEpedia: a scalable and standardized knowledge base of Adverse Drug Events using semantic web technology.

    PubMed

    Jiang, Guoqian; Solbrig, Harold R; Chute, Christopher G

    2011-01-01

    A source of semantically coded Adverse Drug Event (ADE) data can be useful for identifying common phenotypes related to ADEs. We proposed a comprehensive framework for building a standardized ADE knowledge base (called ADEpedia) through combining ontology-based approach with semantic web technology. The framework comprises four primary modules: 1) an XML2RDF transformation module; 2) a data normalization module based on NCBO Open Biomedical Annotator; 3) a RDF store based persistence module; and 4) a front-end module based on a Semantic Wiki for the review and curation. A prototype is successfully implemented to demonstrate the capability of the system to integrate multiple drug data and ontology resources and open web services for the ADE data standardization. A preliminary evaluation is performed to demonstrate the usefulness of the system, including the performance of the NCBO annotator. In conclusion, the semantic web technology provides a highly scalable framework for ADE data source integration and standard query service.

  2. DeMO: An Ontology for Discrete-event Modeling and Simulation.

    PubMed

    Silver, Gregory A; Miller, John A; Hybinette, Maria; Baramidze, Gregory; York, William S

    2011-09-01

    Several fields have created ontologies for their subdomains. For example, the biological sciences have developed extensive ontologies such as the Gene Ontology, which is considered a great success. Ontologies could provide similar advantages to the Modeling and Simulation community. They provide a way to establish common vocabularies and capture knowledge about a particular domain with community-wide agreement. Ontologies can support significantly improved (semantic) search and browsing, integration of heterogeneous information sources, and improved knowledge discovery capabilities. This paper discusses the design and development of an ontology for Modeling and Simulation called the Discrete-event Modeling Ontology (DeMO), and it presents prototype applications that demonstrate various uses and benefits that such an ontology may provide to the Modeling and Simulation community.

  3. DeMO: An Ontology for Discrete-event Modeling and Simulation

    PubMed Central

    Silver, Gregory A; Miller, John A; Hybinette, Maria; Baramidze, Gregory; York, William S

    2011-01-01

    Several fields have created ontologies for their subdomains. For example, the biological sciences have developed extensive ontologies such as the Gene Ontology, which is considered a great success. Ontologies could provide similar advantages to the Modeling and Simulation community. They provide a way to establish common vocabularies and capture knowledge about a particular domain with community-wide agreement. Ontologies can support significantly improved (semantic) search and browsing, integration of heterogeneous information sources, and improved knowledge discovery capabilities. This paper discusses the design and development of an ontology for Modeling and Simulation called the Discrete-event Modeling Ontology (DeMO), and it presents prototype applications that demonstrate various uses and benefits that such an ontology may provide to the Modeling and Simulation community. PMID:22919114

  4. Integration of Neuroimaging and Microarray Datasets through Mapping and Model-Theoretic Semantic Decomposition of Unstructured Phenotypes

    PubMed Central

    Pantazatos, Spiro P.; Li, Jianrong; Pavlidis, Paul; Lussier, Yves A.

    2009-01-01

    An approach towards heterogeneous neuroscience dataset integration is proposed that uses Natural Language Processing (NLP) and a knowledge-based phenotype organizer system (PhenOS) to link ontology-anchored terms to underlying data from each database, and then maps these terms based on a computable model of disease (SNOMED CT®). The approach was implemented using sample datasets from fMRIDC, GEO, The Whole Brain Atlas and Neuronames, and allowed for complex queries such as “List all disorders with a finding site of brain region X, and then find the semantically related references in all participating databases based on the ontological model of the disease or its anatomical and morphological attributes”. Precision of the NLP-derived coding of the unstructured phenotypes in each dataset was 88% (n = 50), and precision of the semantic mapping between these terms across datasets was 98% (n = 100). To our knowledge, this is the first example of the use of both semantic decomposition of disease relationships and hierarchical information found in ontologies to integrate heterogeneous phenotypes across clinical and molecular datasets. PMID:20495688

  5. Organizational Knowledge Transfer Using Ontologies and a Rule-Based System

    NASA Astrophysics Data System (ADS)

    Okabe, Masao; Yoshioka, Akiko; Kobayashi, Keido; Yamaguchi, Takahira

    In recent automated and integrated manufacturing, so-called intelligence skill is becoming more and more important and its efficient transfer to next-generation engineers is one of the urgent issues. In this paper, we propose a new approach without costly OJT (on-the-job training), that is, combinational usage of a domain ontology, a rule ontology and a rule-based system. Intelligence skill can be decomposed into pieces of simple engineering rules. A rule ontology consists of these engineering rules as primitives and the semantic relations among them. A domain ontology consists of technical terms in the engineering rules and the semantic relations among them. A rule ontology helps novices get the total picture of the intelligence skill and a domain ontology helps them understand the exact meanings of the engineering rules. A rule-based system helps domain experts externalize their tacit intelligence skill to ontologies and also helps novices internalize them. As a case study, we applied our proposal to some actual job at a remote control and maintenance office of hydroelectric power stations in Tokyo Electric Power Co., Inc. We also did an evaluation experiment for this case study and the result supports our proposal.

  6. A User-Centric Knowledge Creation Model in a Web of Object-Enabled Internet of Things Environment

    PubMed Central

    Kibria, Muhammad Golam; Fattah, Sheik Mohammad Mostakim; Jeong, Kwanghyeon; Chong, Ilyoung; Jeong, Youn-Kwae

    2015-01-01

    User-centric service features in a Web of Object-enabled Internet of Things environment can be provided by using a semantic ontology that classifies and integrates objects on the World Wide Web as well as shares and merges context-aware information and accumulated knowledge. The semantic ontology is applied on a Web of Object platform to virtualize the real world physical devices and information to form virtual objects that represent the features and capabilities of devices in the virtual world. Detailed information and functionalities of multiple virtual objects are combined with service rules to form composite virtual objects that offer context-aware knowledge-based services, where context awareness plays an important role in enabling automatic modification of the system to reconfigure the services based on the context. Converting the raw data into meaningful information and connecting the information to form the knowledge and storing and reusing the objects in the knowledge base can both be expressed by semantic ontology. In this paper, a knowledge creation model that synchronizes a service logistic model and a virtual world knowledge model on a Web of Object platform has been proposed. To realize the context-aware knowledge-based service creation and execution, a conceptual semantic ontology model has been developed and a prototype has been implemented for a use case scenario of emergency service. PMID:26393609

  7. A User-Centric Knowledge Creation Model in a Web of Object-Enabled Internet of Things Environment.

    PubMed

    Kibria, Muhammad Golam; Fattah, Sheik Mohammad Mostakim; Jeong, Kwanghyeon; Chong, Ilyoung; Jeong, Youn-Kwae

    2015-09-18

    User-centric service features in a Web of Object-enabled Internet of Things environment can be provided by using a semantic ontology that classifies and integrates objects on the World Wide Web as well as shares and merges context-aware information and accumulated knowledge. The semantic ontology is applied on a Web of Object platform to virtualize the real world physical devices and information to form virtual objects that represent the features and capabilities of devices in the virtual world. Detailed information and functionalities of multiple virtual objects are combined with service rules to form composite virtual objects that offer context-aware knowledge-based services, where context awareness plays an important role in enabling automatic modification of the system to reconfigure the services based on the context. Converting the raw data into meaningful information and connecting the information to form the knowledge and storing and reusing the objects in the knowledge base can both be expressed by semantic ontology. In this paper, a knowledge creation model that synchronizes a service logistic model and a virtual world knowledge model on a Web of Object platform has been proposed. To realize the context-aware knowledge-based service creation and execution, a conceptual semantic ontology model has been developed and a prototype has been implemented for a use case scenario of emergency service.

  8. Exploring information from the topology beneath the Gene Ontology terms to improve semantic similarity measures.

    PubMed

    Zhang, Shu-Bo; Lai, Jian-Huang

    2016-07-15

    Measuring the similarity between pairs of biological entities is important in molecular biology. The introduction of Gene Ontology (GO) provides us with a promising approach to quantifying the semantic similarity between two genes or gene products. This kind of similarity measure is closely associated with the GO terms annotated to biological entities under consideration and the structure of the GO graph. However, previous works in this field mainly focused on the upper part of the graph, and seldom concerned about the lower part. In this study, we aim to explore information from the lower part of the GO graph for better semantic similarity. We proposed a framework to quantify the similarity measure beneath a term pair, which takes into account both the information two ancestral terms share and the probability that they co-occur with their common descendants. The effectiveness of our approach was evaluated against seven typical measurements on public platform CESSM, protein-protein interaction and gene expression datasets. Experimental results consistently show that the similarity derived from the lower part contributes to better semantic similarity measure. The promising features of our approach are the following: (1) it provides a mirror model to characterize the information two ancestral terms share with respect to their common descendant; (2) it quantifies the probability that two terms co-occur with their common descendant in an efficient way; and (3) our framework can effectively capture the similarity measure beneath two terms, which can serve as an add-on to improve traditional semantic similarity measure between two GO terms. The algorithm was implemented in Matlab and is freely available from http://ejl.org.cn/bio/GOBeneath/. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Interoperability between phenotype and anatomy ontologies.

    PubMed

    Hoehndorf, Robert; Oellrich, Anika; Rebholz-Schuhmann, Dietrich

    2010-12-15

    Phenotypic information is important for the analysis of the molecular mechanisms underlying disease. A formal ontological representation of phenotypic information can help to identify, interpret and infer phenotypic traits based on experimental findings. The methods that are currently used to represent data and information about phenotypes fail to make the semantics of the phenotypic trait explicit and do not interoperate with ontologies of anatomy and other domains. Therefore, valuable resources for the analysis of phenotype studies remain unconnected and inaccessible to automated analysis and reasoning. We provide a framework to formalize phenotypic descriptions and make their semantics explicit. Based on this formalization, we provide the means to integrate phenotypic descriptions with ontologies of other domains, in particular anatomy and physiology. We demonstrate how our framework leads to the capability to represent disease phenotypes, perform powerful queries that were not possible before and infer additional knowledge. http://bioonto.de/pmwiki.php/Main/PheneOntology.

  10. On Constructing, Grouping and Using Topical Ontology for Semantic Matching

    NASA Astrophysics Data System (ADS)

    Tang, Yan; de Baer, Peter; Zhao, Gang; Meersman, Robert

    An ontology topic is used to group concepts from different contexts (or even from different domain ontologies). This paper presents a pattern-driven modeling methodology for constructing and grouping topics in an ontology (PAD-ON methodology), which is used for matching similarities between competences in the human resource management (HRM) domain. The methodology is supported by a tool called PAD-ON. This paper demonstrates our recent achievement in the work from the EC Prolix project. The paper approach is applied to the training processes at British Telecom as the test bed.

  11. Data mart construction based on semantic annotation of scientific articles: A case study for the prioritization of drug targets.

    PubMed

    Teixeira, Marlon Amaro Coelho; Belloze, Kele Teixeira; Cavalcanti, Maria Cláudia; Silva-Junior, Floriano P

    2018-04-01

    Semantic text annotation enables the association of semantic information (ontology concepts) to text expressions (terms), which are readable by software agents. In the scientific scenario, this is particularly useful because it reveals a lot of scientific discoveries that are hidden within academic articles. The Biomedical area has more than 300 ontologies, most of them composed of over 500 concepts. These ontologies can be used to annotate scientific papers and thus, facilitate data extraction. However, in the context of a scientific research, a simple keyword-based query using the interface of a digital scientific texts library can return more than a thousand hits. The analysis of such a large set of texts, annotated with such numerous and large ontologies, is not an easy task. Therefore, the main objective of this work is to provide a method that could facilitate this task. This work describes a method called Text and Ontology ETL (TOETL), to build an analytical view over such texts. First, a corpus of selected papers is semantically annotated using distinct ontologies. Then, the annotation data is extracted, organized and aggregated into the dimensional schema of a data mart. Besides the TOETL method, this work illustrates its application through the development of the TaP DM (Target Prioritization data mart). This data mart has focus on the research of gene essentiality, a key concept to be considered when searching for genes showing potential as anti-infective drug targets. This work reveals that the proposed approach is a relevant tool to support decision making in the prioritization of new drug targets, being more efficient than the keyword-based traditional tools. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Generating Researcher Networks with Identified Persons on a Semantic Service Platform

    NASA Astrophysics Data System (ADS)

    Jung, Hanmin; Lee, Mikyoung; Kim, Pyung; Lee, Seungwoo

    This paper describes a Semantic Web-based method to acquire researcher networks by means of identification scheme, ontology, and reasoning. Three steps are required to realize it; resolving co-references, finding experts, and generating researcher networks. We adopt OntoFrame as an underlying semantic service platform and apply reasoning to make direct relations between far-off classes in ontology schema. 453,124 Elsevier journal articles with metadata and full-text documents in information technology and biomedical domains have been loaded and served on the platform as a test set.

  13. MeSH-informed enrichment analysis and MeSH-guided semantic similarity among functional terms and gene products in chicken

    USDA-ARS?s Scientific Manuscript database

    Such Biomedical vocabularies and ontologies aid in recapitulating biological knowledge. The annotation of gene products is mainly accelerated by Gene Ontology (GO) and more recently by Medical Subject Headings (MeSH). MeSH is the National Library of Medicine's controlled vocabulary and it is making ...

  14. A Formal Theory for Modular ERDF Ontologies

    NASA Astrophysics Data System (ADS)

    Analyti, Anastasia; Antoniou, Grigoris; Damásio, Carlos Viegas

    The success of the Semantic Web is impossible without any form of modularity, encapsulation, and access control. In an earlier paper, we extended RDF graphs with weak and strong negation, as well as derivation rules. The ERDF #n-stable model semantics of the extended RDF framework (ERDF) is defined, extending RDF(S) semantics. In this paper, we propose a framework for modular ERDF ontologies, called modular ERDF framework, which enables collaborative reasoning over a set of ERDF ontologies, while support for hidden knowledge is also provided. In particular, the modular ERDF stable model semantics of modular ERDF ontologies is defined, extending the ERDF #n-stable model semantics. Our proposed framework supports local semantics and different points of view, local closed-world and open-world assumptions, and scoped negation-as-failure. Several complexity results are provided.

  15. KaBOB: ontology-based semantic integration of biomedical databases.

    PubMed

    Livingston, Kevin M; Bada, Michael; Baumgartner, William A; Hunter, Lawrence E

    2015-04-23

    The ability to query many independent biological databases using a common ontology-based semantic model would facilitate deeper integration and more effective utilization of these diverse and rapidly growing resources. Despite ongoing work moving toward shared data formats and linked identifiers, significant problems persist in semantic data integration in order to establish shared identity and shared meaning across heterogeneous biomedical data sources. We present five processes for semantic data integration that, when applied collectively, solve seven key problems. These processes include making explicit the differences between biomedical concepts and database records, aggregating sets of identifiers denoting the same biomedical concepts across data sources, and using declaratively represented forward-chaining rules to take information that is variably represented in source databases and integrating it into a consistent biomedical representation. We demonstrate these processes and solutions by presenting KaBOB (the Knowledge Base Of Biomedicine), a knowledge base of semantically integrated data from 18 prominent biomedical databases using common representations grounded in Open Biomedical Ontologies. An instance of KaBOB with data about humans and seven major model organisms can be built using on the order of 500 million RDF triples. All source code for building KaBOB is available under an open-source license. KaBOB is an integrated knowledge base of biomedical data representationally based in prominent, actively maintained Open Biomedical Ontologies, thus enabling queries of the underlying data in terms of biomedical concepts (e.g., genes and gene products, interactions and processes) rather than features of source-specific data schemas or file formats. KaBOB resolves many of the issues that routinely plague biomedical researchers intending to work with data from multiple data sources and provides a platform for ongoing data integration and development and for formal reasoning over a wealth of integrated biomedical data.

  16. Clinical phenotype-based gene prioritization: an initial study using semantic similarity and the human phenotype ontology.

    PubMed

    Masino, Aaron J; Dechene, Elizabeth T; Dulik, Matthew C; Wilkens, Alisha; Spinner, Nancy B; Krantz, Ian D; Pennington, Jeffrey W; Robinson, Peter N; White, Peter S

    2014-07-21

    Exome sequencing is a promising method for diagnosing patients with a complex phenotype. However, variant interpretation relative to patient phenotype can be challenging in some scenarios, particularly clinical assessment of rare complex phenotypes. Each patient's sequence reveals many possibly damaging variants that must be individually assessed to establish clear association with patient phenotype. To assist interpretation, we implemented an algorithm that ranks a given set of genes relative to patient phenotype. The algorithm orders genes by the semantic similarity computed between phenotypic descriptors associated with each gene and those describing the patient. Phenotypic descriptor terms are taken from the Human Phenotype Ontology (HPO) and semantic similarity is derived from each term's information content. Model validation was performed via simulation and with clinical data. We simulated 33 Mendelian diseases with 100 patients per disease. We modeled clinical conditions by adding noise and imprecision, i.e. phenotypic terms unrelated to the disease and terms less specific than the actual disease terms. We ranked the causative gene against all 2488 HPO annotated genes. The median causative gene rank was 1 for the optimal and noise cases, 12 for the imprecision case, and 60 for the imprecision with noise case. Additionally, we examined a clinical cohort of subjects with hearing impairment. The disease gene median rank was 22. However, when also considering the patient's exome data and filtering non-exomic and common variants, the median rank improved to 3. Semantic similarity can rank a causative gene highly within a gene list relative to patient phenotype characteristics, provided that imprecision is mitigated. The clinical case results suggest that phenotype rank combined with variant analysis provides significant improvement over the individual approaches. We expect that this combined prioritization approach may increase accuracy and decrease effort for clinical genetic diagnosis.

  17. Using ontologies to improve semantic interoperability in health data.

    PubMed

    Liyanage, Harshana; Krause, Paul; De Lusignan, Simon

    2015-07-10

    The present-day health data ecosystem comprises a wide array of complex heterogeneous data sources. A wide range of clinical, health care, social and other clinically relevant information are stored in these data sources. These data exist either as structured data or as free-text. These data are generally individual person-based records, but social care data are generally case based and less formal data sources may be shared by groups. The structured data may be organised in a proprietary way or be coded using one-of-many coding, classification or terminologies that have often evolved in isolation and designed to meet the needs of the context that they have been developed. This has resulted in a wide range of semantic interoperability issues that make the integration of data held on these different systems changing. We present semantic interoperability challenges and describe a classification of these. We propose a four-step process and a toolkit for those wishing to work more ontologically, progressing from the identification and specification of concepts to validating a final ontology. The four steps are: (1) the identification and specification of data sources; (2) the conceptualisation of semantic meaning; (3) defining to what extent routine data can be used as a measure of the process or outcome of care required in a particular study or audit and (4) the formalisation and validation of the final ontology. The toolkit is an extension of a previous schema created to formalise the development of ontologies related to chronic disease management. The extensions are focused on facilitating rapid building of ontologies for time-critical research studies.

  18. Generic-distributed framework for cloud services marketplace based on unified ontology.

    PubMed

    Hasan, Samer; Valli Kumari, V

    2017-11-01

    Cloud computing is a pattern for delivering ubiquitous and on demand computing resources based on pay-as-you-use financial model. Typically, cloud providers advertise cloud service descriptions in various formats on the Internet. On the other hand, cloud consumers use available search engines (Google and Yahoo) to explore cloud service descriptions and find the adequate service. Unfortunately, general purpose search engines are not designed to provide a small and complete set of results, which makes the process a big challenge. This paper presents a generic-distrusted framework for cloud services marketplace to automate cloud services discovery and selection process, and remove the barriers between service providers and consumers. Additionally, this work implements two instances of generic framework by adopting two different matching algorithms; namely dominant and recessive attributes algorithm borrowed from gene science and semantic similarity algorithm based on unified cloud service ontology. Finally, this paper presents unified cloud services ontology and models the real-life cloud services according to the proposed ontology. To the best of the authors' knowledge, this is the first attempt to build a cloud services marketplace where cloud providers and cloud consumers can trend cloud services as utilities. In comparison with existing work, semantic approach reduced the execution time by 20% and maintained the same values for all other parameters. On the other hand, dominant and recessive attributes approach reduced the execution time by 57% but showed lower value for recall.

  19. Defining Resilience and Vulnerability Based on Ontology Engineering Approach

    NASA Astrophysics Data System (ADS)

    Kumazawa, T.; Matsui, T.; Endo, A.

    2014-12-01

    It is necessary to reflect the concepts of resilience and vulnerability into the assessment framework of "Human-Environmental Security", but it is also in difficulty to identify the linkage between both concepts because of the difference of the academic community which has discussed each concept. The authors have been developing the ontology which deals with the sustainability of the social-ecological systems (SESs). Resilience and vulnerability are also the concepts in the target world which this ontology covers. Based on this point, this paper aims at explicating the semantic relationship between the concepts of resilience and vulnerability based on ontology engineering approach. For this purpose, we first examine the definitions of resilience and vulnerability which the existing literatures proposed. Second, we incorporate the definitions in the ontology dealing with sustainability of SESs. Finally, we focus on the "Water-Energy-Food Nexus Index" to assess Human-Environmental Security, and clarify how the concepts of resilience and vulnerability are linked semantically through the concepts included in these index items.

  20. Ontology Based Quality Evaluation for Spatial Data

    NASA Astrophysics Data System (ADS)

    Yılmaz, C.; Cömert, Ç.

    2015-08-01

    Many institutions will be providing data to the National Spatial Data Infrastructure (NSDI). Current technical background of the NSDI is based on syntactic web services. It is expected that this will be replaced by semantic web services. The quality of the data provided is important in terms of the decision-making process and the accuracy of transactions. Therefore, the data quality needs to be tested. This topic has been neglected in Turkey. Data quality control for NSDI may be done by private or public "data accreditation" institutions. A methodology is required for data quality evaluation. There are studies for data quality including ISO standards, academic studies and software to evaluate spatial data quality. ISO 19157 standard defines the data quality elements. Proprietary software such as, 1Spatial's 1Validate and ESRI's Data Reviewer offers quality evaluation based on their own classification of rules. Commonly, rule based approaches are used for geospatial data quality check. In this study, we look for the technical components to devise and implement a rule based approach with ontologies using free and open source software in semantic web context. Semantic web uses ontologies to deliver well-defined web resources and make them accessible to end-users and processes. We have created an ontology conforming to the geospatial data and defined some sample rules to show how to test data with respect to data quality elements including; attribute, topo-semantic and geometrical consistency using free and open source software. To test data against rules, sample GeoSPARQL queries are created, associated with specifications.

  1. A web-based system architecture for ontology-based data integration in the domain of IT benchmarking

    NASA Astrophysics Data System (ADS)

    Pfaff, Matthias; Krcmar, Helmut

    2018-03-01

    In the domain of IT benchmarking (ITBM), a variety of data and information are collected. Although these data serve as the basis for business analyses, no unified semantic representation of such data yet exists. Consequently, data analysis across different distributed data sets and different benchmarks is almost impossible. This paper presents a system architecture and prototypical implementation for an integrated data management of distributed databases based on a domain-specific ontology. To preserve the semantic meaning of the data, the ITBM ontology is linked to data sources and functions as the central concept for database access. Thus, additional databases can be integrated by linking them to this domain-specific ontology and are directly available for further business analyses. Moreover, the web-based system supports the process of mapping ontology concepts to external databases by introducing a semi-automatic mapping recommender and by visualizing possible mapping candidates. The system also provides a natural language interface to easily query linked databases. The expected result of this ontology-based approach of knowledge representation and data access is an increase in knowledge and data sharing in this domain, which will enhance existing business analysis methods.

  2. Logic-based assessment of the compatibility of UMLS ontology sources

    PubMed Central

    2011-01-01

    Background The UMLS Metathesaurus (UMLS-Meta) is currently the most comprehensive effort for integrating independently-developed medical thesauri and ontologies. UMLS-Meta is being used in many applications, including PubMed and ClinicalTrials.gov. The integration of new sources combines automatic techniques, expert assessment, and auditing protocols. The automatic techniques currently in use, however, are mostly based on lexical algorithms and often disregard the semantics of the sources being integrated. Results In this paper, we argue that UMLS-Meta’s current design and auditing methodologies could be significantly enhanced by taking into account the logic-based semantics of the ontology sources. We provide empirical evidence suggesting that UMLS-Meta in its 2009AA version contains a significant number of errors; these errors become immediately apparent if the rich semantics of the ontology sources is taken into account, manifesting themselves as unintended logical consequences that follow from the ontology sources together with the information in UMLS-Meta. We then propose general principles and specific logic-based techniques to effectively detect and repair such errors. Conclusions Our results suggest that the methodologies employed in the design of UMLS-Meta are not only very costly in terms of human effort, but also error-prone. The techniques presented here can be useful for both reducing human effort in the design and maintenance of UMLS-Meta and improving the quality of its contents. PMID:21388571

  3. A semantically-aided architecture for a web-based monitoring system for carotid atherosclerosis.

    PubMed

    Kolias, Vassileios D; Stamou, Giorgos; Golemati, Spyretta; Stoitsis, Giannis; Gkekas, Christos D; Liapis, Christos D; Nikita, Konstantina S

    2015-08-01

    Carotid atherosclerosis is a multifactorial disease and its clinical diagnosis depends on the evaluation of heterogeneous clinical data, such as imaging exams, biochemical tests and the patient's clinical history. The lack of interoperability between Health Information Systems (HIS) does not allow the physicians to acquire all the necessary data for the diagnostic process. In this paper, a semantically-aided architecture is proposed for a web-based monitoring system for carotid atherosclerosis that is able to gather and unify heterogeneous data with the use of an ontology and to create a common interface for data access enhancing the interoperability of HIS. The architecture is based on an application ontology of carotid atherosclerosis that is used to (a) integrate heterogeneous data sources on the basis of semantic representation and ontological reasoning and (b) access the critical information using SPARQL query rewriting and ontology-based data access services. The architecture was tested over a carotid atherosclerosis dataset consisting of the imaging exams and the clinical profile of 233 patients, using a set of complex queries, constructed by the physicians. The proposed architecture was evaluated with respect to the complexity of the queries that the physicians could make and the retrieval speed. The proposed architecture gave promising results in terms of interoperability, data integration of heterogeneous sources with an ontological way and expanded capabilities of query and retrieval in HIS.

  4. Ontology-Based Search of Genomic Metadata.

    PubMed

    Fernandez, Javier D; Lenzerini, Maurizio; Masseroli, Marco; Venco, Francesco; Ceri, Stefano

    2016-01-01

    The Encyclopedia of DNA Elements (ENCODE) is a huge and still expanding public repository of more than 4,000 experiments and 25,000 data files, assembled by a large international consortium since 2007; unknown biological knowledge can be extracted from these huge and largely unexplored data, leading to data-driven genomic, transcriptomic, and epigenomic discoveries. Yet, search of relevant datasets for knowledge discovery is limitedly supported: metadata describing ENCODE datasets are quite simple and incomplete, and not described by a coherent underlying ontology. Here, we show how to overcome this limitation, by adopting an ENCODE metadata searching approach which uses high-quality ontological knowledge and state-of-the-art indexing technologies. Specifically, we developed S.O.S. GeM (http://www.bioinformatics.deib.polimi.it/SOSGeM/), a system supporting effective semantic search and retrieval of ENCODE datasets. First, we constructed a Semantic Knowledge Base by starting with concepts extracted from ENCODE metadata, matched to and expanded on biomedical ontologies integrated in the well-established Unified Medical Language System. We prove that this inference method is sound and complete. Then, we leveraged the Semantic Knowledge Base to semantically search ENCODE data from arbitrary biologists' queries. This allows correctly finding more datasets than those extracted by a purely syntactic search, as supported by the other available systems. We empirically show the relevance of found datasets to the biologists' queries.

  5. Modular Knowledge Representation and Reasoning in the Semantic Web

    NASA Astrophysics Data System (ADS)

    Serafini, Luciano; Homola, Martin

    Construction of modular ontologies by combining different modules is becoming a necessity in ontology engineering in order to cope with the increasing complexity of the ontologies and the domains they represent. The modular ontology approach takes inspiration from software engineering, where modularization is a widely acknowledged feature. Distributed reasoning is the other side of the coin of modular ontologies: given an ontology comprising of a set of modules, it is desired to perform reasoning by combination of multiple reasoning processes performed locally on each of the modules. In the last ten years, a number of approaches for combining logics has been developed in order to formalize modular ontologies. In this chapter, we survey and compare the main formalisms for modular ontologies and distributed reasoning in the Semantic Web. We select four formalisms build on formal logical grounds of Description Logics: Distributed Description Logics, ℰ-connections, Package-based Description Logics and Integrated Distributed Description Logics. We concentrate on expressivity and distinctive modeling features of each framework. We also discuss reasoning capabilities of each framework.

  6. Regular paths in SparQL: querying the NCI Thesaurus.

    PubMed

    Detwiler, Landon T; Suciu, Dan; Brinkley, James F

    2008-11-06

    OWL, the Web Ontology Language, provides syntax and semantics for representing knowledge for the semantic web. Many of the constructs of OWL have a basis in the field of description logics. While the formal underpinnings of description logics have lead to a highly computable language, it has come at a cognitive cost. OWL ontologies are often unintuitive to readers lacking a strong logic background. In this work we describe GLEEN, a regular path expression library, which extends the RDF query language SparQL to support complex path expressions over OWL and other RDF-based ontologies. We illustrate the utility of GLEEN by showing how it can be used in a query-based approach to defining simpler, more intuitive views of OWL ontologies. In particular we show how relatively simple GLEEN-enhanced SparQL queries can create views of the OWL version of the NCI Thesaurus that match the views generated by the web-based NCI browser.

  7. HuPSON: the human physiology simulation ontology.

    PubMed

    Gündel, Michaela; Younesi, Erfan; Malhotra, Ashutosh; Wang, Jiali; Li, Hui; Zhang, Bijun; de Bono, Bernard; Mevissen, Heinz-Theodor; Hofmann-Apitius, Martin

    2013-11-22

    Large biomedical simulation initiatives, such as the Virtual Physiological Human (VPH), are substantially dependent on controlled vocabularies to facilitate the exchange of information, of data and of models. Hindering these initiatives is a lack of a comprehensive ontology that covers the essential concepts of the simulation domain. We propose a first version of a newly constructed ontology, HuPSON, as a basis for shared semantics and interoperability of simulations, of models, of algorithms and of other resources in this domain. The ontology is based on the Basic Formal Ontology, and adheres to the MIREOT principles; the constructed ontology has been evaluated via structural features, competency questions and use case scenarios.The ontology is freely available at: http://www.scai.fraunhofer.de/en/business-research-areas/bioinformatics/downloads.html (owl files) and http://bishop.scai.fraunhofer.de/scaiview/ (browser). HuPSON provides a framework for a) annotating simulation experiments, b) retrieving relevant information that are required for modelling, c) enabling interoperability of algorithmic approaches used in biomedical simulation, d) comparing simulation results and e) linking knowledge-based approaches to simulation-based approaches. It is meant to foster a more rapid uptake of semantic technologies in the modelling and simulation domain, with particular focus on the VPH domain.

  8. Progress toward a Semantic eScience Framework; building on advanced cyberinfrastructure

    NASA Astrophysics Data System (ADS)

    McGuinness, D. L.; Fox, P. A.; West, P.; Rozell, E.; Zednik, S.; Chang, C.

    2010-12-01

    The configurable and extensible semantic eScience framework (SESF) has begun development and implementation of several semantic application components. Extensions and improvements to several ontologies have been made based on distinct interdisciplinary use cases ranging from solar physics, to biologicl and chemical oceanography. Importantly, these semantic representations mediate access to a diverse set of existing and emerging cyberinfrastructure. Among the advances are the population of triple stores with web accessible query services. A triple store is akin to a relational data store where the basic stored unit is a subject-predicate-object tuple. Access via a query is provided by the W3 Recommendation language specification SPARQL. Upon this middle tier of semantic cyberinfrastructure, we have developed several forms of semantic faceted search, including provenance-awareness. We report on the rapid advances in semantic technologies and tools and how we are sustaining the software path for the required technical advances as well as the ontology improvements and increased functionality of the semantic applications including how they are integrated into web-based portals (e.g. Drupal) and web services. Lastly, we indicate future work direction and opportunities for collaboration.

  9. An integrative approach for measuring semantic similarities using gene ontology.

    PubMed

    Peng, Jiajie; Li, Hongxiang; Jiang, Qinghua; Wang, Yadong; Chen, Jin

    2014-01-01

    Gene Ontology (GO) provides rich information and a convenient way to study gene functional similarity, which has been successfully used in various applications. However, the existing GO based similarity measurements have limited functions for only a subset of GO information is considered in each measure. An appropriate integration of the existing measures to take into account more information in GO is demanding. We propose a novel integrative measure called InteGO2 to automatically select appropriate seed measures and then to integrate them using a metaheuristic search method. The experiment results show that InteGO2 significantly improves the performance of gene similarity in human, Arabidopsis and yeast on both molecular function and biological process GO categories. InteGO2 computes gene-to-gene similarities more accurately than tested existing measures and has high robustness. The supplementary document and software are available at http://mlg.hit.edu.cn:8082/.

  10. Semantic web for integrated network analysis in biomedicine.

    PubMed

    Chen, Huajun; Ding, Li; Wu, Zhaohui; Yu, Tong; Dhanapalan, Lavanya; Chen, Jake Y

    2009-03-01

    The Semantic Web technology enables integration of heterogeneous data on the World Wide Web by making the semantics of data explicit through formal ontologies. In this article, we survey the feasibility and state of the art of utilizing the Semantic Web technology to represent, integrate and analyze the knowledge in various biomedical networks. We introduce a new conceptual framework, semantic graph mining, to enable researchers to integrate graph mining with ontology reasoning in network data analysis. Through four case studies, we demonstrate how semantic graph mining can be applied to the analysis of disease-causal genes, Gene Ontology category cross-talks, drug efficacy analysis and herb-drug interactions analysis.

  11. Application of the Financial Industry Business Ontology (FIBO) for development of a financial organization ontology

    NASA Astrophysics Data System (ADS)

    Petrova, G. G.; Tuzovsky, A. F.; Aksenova, N. V.

    2017-01-01

    The article considers an approach to a formalized description and meaning harmonization for financial terms and means of semantic modeling. Ontologies for the semantic models are described with the help of special languages developed for the Semantic Web. Results of FIBO application to solution of different tasks in the Russian financial sector are given.

  12. A Semi-Automatic Approach to Construct Vietnamese Ontology from Online Text

    ERIC Educational Resources Information Center

    Nguyen, Bao-An; Yang, Don-Lin

    2012-01-01

    An ontology is an effective formal representation of knowledge used commonly in artificial intelligence, semantic web, software engineering, and information retrieval. In open and distance learning, ontologies are used as knowledge bases for e-learning supplements, educational recommenders, and question answering systems that support students with…

  13. Semantics based approach for analyzing disease-target associations.

    PubMed

    Kaalia, Rama; Ghosh, Indira

    2016-08-01

    A complex disease is caused by heterogeneous biological interactions between genes and their products along with the influence of environmental factors. There have been many attempts for understanding the cause of these diseases using experimental, statistical and computational methods. In the present work the objective is to address the challenge of representation and integration of information from heterogeneous biomedical aspects of a complex disease using semantics based approach. Semantic web technology is used to design Disease Association Ontology (DAO-db) for representation and integration of disease associated information with diabetes as the case study. The functional associations of disease genes are integrated using RDF graphs of DAO-db. Three semantic web based scoring algorithms (PageRank, HITS (Hyperlink Induced Topic Search) and HITS with semantic weights) are used to score the gene nodes on the basis of their functional interactions in the graph. Disease Association Ontology for Diabetes (DAO-db) provides a standard ontology-driven platform for describing genes, proteins, pathways involved in diabetes and for integrating functional associations from various interaction levels (gene-disease, gene-pathway, gene-function, gene-cellular component and protein-protein interactions). An automatic instance loader module is also developed in present work that helps in adding instances to DAO-db on a large scale. Our ontology provides a framework for querying and analyzing the disease associated information in the form of RDF graphs. The above developed methodology is used to predict novel potential targets involved in diabetes disease from the long list of loose (statistically associated) gene-disease associations. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Sharing and reusing multimedia multilingual educational resources in medicine.

    PubMed

    Zdrahal, Zdenek; Knoth, Petr; Mulholland, Paul; Collins, Trevor

    2013-01-01

    The paper describes the Eurogene portal for sharing and reusing multilingual multimedia educational resources in human genetics. The content is annotated using concepts of two ontologies and a topic hierarchy. The ontology annotation is used to guide search and for calculating semantically similar content. Educational resources can be aggregated into learning packages. The system is in routine use since 2009.

  15. An improved method for functional similarity analysis of genes based on Gene Ontology.

    PubMed

    Tian, Zhen; Wang, Chunyu; Guo, Maozu; Liu, Xiaoyan; Teng, Zhixia

    2016-12-23

    Measures of gene functional similarity are essential tools for gene clustering, gene function prediction, evaluation of protein-protein interaction, disease gene prioritization and other applications. In recent years, many gene functional similarity methods have been proposed based on the semantic similarity of GO terms. However, these leading approaches may make errorprone judgments especially when they measure the specificity of GO terms as well as the IC of a term set. Therefore, how to estimate the gene functional similarity reliably is still a challenging problem. We propose WIS, an effective method to measure the gene functional similarity. First of all, WIS computes the IC of a term by employing its depth, the number of its ancestors as well as the topology of its descendants in the GO graph. Secondly, WIS calculates the IC of a term set by means of considering the weighted inherited semantics of terms. Finally, WIS estimates the gene functional similarity based on the IC overlap ratio of term sets. WIS is superior to some other representative measures on the experiments of functional classification of genes in a biological pathway, collaborative evaluation of GO-based semantic similarity measures, protein-protein interaction prediction and correlation with gene expression. Further analysis suggests that WIS takes fully into account the specificity of terms and the weighted inherited semantics of terms between GO terms. The proposed WIS method is an effective and reliable way to compare gene function. The web service of WIS is freely available at http://nclab.hit.edu.cn/WIS/ .

  16. Expert2OWL: A Methodology for Pattern-Based Ontology Development.

    PubMed

    Tahar, Kais; Xu, Jie; Herre, Heinrich

    2017-01-01

    The formalization of expert knowledge enables a broad spectrum of applications employing ontologies as underlying technology. These include eLearning, Semantic Web and expert systems. However, the manual construction of such ontologies is time-consuming and thus expensive. Moreover, experts are often unfamiliar with the syntax and semantics of formal ontology languages such as OWL and usually have no experience in developing formal ontologies. To overcome these barriers, we developed a new method and tool, called Expert2OWL that provides efficient features to support the construction of OWL ontologies using GFO (General Formal Ontology) as a top-level ontology. This method allows a close and effective collaboration between ontologists and domain experts. Essentially, this tool integrates Excel spreadsheets as part of a pattern-based ontology development and refinement process. Expert2OWL enables us to expedite the development process and modularize the resulting ontologies. We applied this method in the field of Chinese Herbal Medicine (CHM) and used Expert2OWL to automatically generate an accurate Chinese Herbology ontology (CHO). The expressivity of CHO was tested and evaluated using ontology query languages SPARQL and DL. CHO shows promising results and can generate answers to important scientific questions such as which Chinese herbal formulas contain which substances, which substances treat which diseases, and which ones are the most frequently used in CHM.

  17. A unified approach for debugging is-a structure and mappings in networked taxonomies

    PubMed Central

    2013-01-01

    Background With the increased use of ontologies and ontology mappings in semantically-enabled applications such as ontology-based search and data integration, the issue of detecting and repairing defects in ontologies and ontology mappings has become increasingly important. These defects can lead to wrong or incomplete results for the applications. Results We propose a unified framework for debugging the is-a structure of and mappings between taxonomies, the most used kind of ontologies. We present theory and algorithms as well as an implemented system RepOSE, that supports a domain expert in detecting and repairing missing and wrong is-a relations and mappings. We also discuss two experiments performed by domain experts: an experiment on the Anatomy ontologies from the Ontology Alignment Evaluation Initiative, and a debugging session for the Swedish National Food Agency. Conclusions Semantically-enabled applications need high quality ontologies and ontology mappings. One key aspect is the detection and removal of defects in the ontologies and ontology mappings. Our system RepOSE provides an environment that supports domain experts to deal with this issue. We have shown the usefulness of the approach in two experiments by detecting and repairing circa 200 and 30 defects, respectively. PMID:23548155

  18. The agent-based spatial information semantic grid

    NASA Astrophysics Data System (ADS)

    Cui, Wei; Zhu, YaQiong; Zhou, Yong; Li, Deren

    2006-10-01

    Analyzing the characteristic of multi-Agent and geographic Ontology, The concept of the Agent-based Spatial Information Semantic Grid (ASISG) is defined and the architecture of the ASISG is advanced. ASISG is composed with Multi-Agents and geographic Ontology. The Multi-Agent Systems are composed with User Agents, General Ontology Agent, Geo-Agents, Broker Agents, Resource Agents, Spatial Data Analysis Agents, Spatial Data Access Agents, Task Execution Agent and Monitor Agent. The architecture of ASISG have three layers, they are the fabric layer, the grid management layer and the application layer. The fabric layer what is composed with Data Access Agent, Resource Agent and Geo-Agent encapsulates the data of spatial information system so that exhibits a conceptual interface for the Grid management layer. The Grid management layer, which is composed with General Ontology Agent, Task Execution Agent and Monitor Agent and Data Analysis Agent, used a hybrid method to manage all resources that were registered in a General Ontology Agent that is described by a General Ontology System. The hybrid method is assembled by resource dissemination and resource discovery. The resource dissemination push resource from Local Ontology Agent to General Ontology Agent and the resource discovery pull resource from the General Ontology Agent to Local Ontology Agents. The Local Ontology Agent is derived from special domain and describes the semantic information of local GIS. The nature of the Local Ontology Agents can be filtrated to construct a virtual organization what could provides a global scheme. The virtual organization lightens the burdens of guests because they need not search information site by site manually. The application layer what is composed with User Agent, Geo-Agent and Task Execution Agent can apply a corresponding interface to a domain user. The functions that ASISG should provide are: 1) It integrates different spatial information systems on the semantic The Grid management layer establishes a virtual environment that integrates seamlessly all GIS notes. 2) When the resource management system searches data on different spatial information systems, it transfers the meaning of different Local Ontology Agents rather than access data directly. So the ability of search and query can be said to be on the semantic level. 3) The data access procedure is transparent to guests, that is, they could access the information from remote site as current disk because the General Ontology Agent could automatically link data by the Data Agents that link the Ontology concept to GIS data. 4) The capability of processing massive spatial data. Storing, accessing and managing massive spatial data from TB to PB; efficiently analyzing and processing spatial data to produce model, information and knowledge; and providing 3D and multimedia visualization services. 5) The capability of high performance computing and processing on spatial information. Solving spatial problems with high precision, high quality, and on a large scale; and process spatial information in real time or on time, with high-speed and high efficiency. 6) The capability of sharing spatial resources. The distributed heterogeneous spatial information resources are Shared and realizing integrated and inter-operated on semantic level, so as to make best use of spatial information resources,such as computing resources, storage devices, spatial data (integrating from GIS, RS and GPS), spatial applications and services, GIS platforms, 7) The capability of integrating legacy GIS system. A ASISG can not only be used to construct new advanced spatial application systems, but also integrate legacy GIS system, so as to keep extensibility and inheritance and guarantee investment of users. 8) The capability of collaboration. Large-scale spatial information applications and services always involve different departments in different geographic places, so remote and uniform services are needed. 9) The capability of supporting integration of heterogeneous systems. Large-scale spatial information systems are always synthetically applications, so ASISG should provide interoperation and consistency through adopting open and applied technology standards. 10) The capability of adapting dynamic changes. Business requirements, application patterns, management strategies, and IT products always change endlessly for any departments, so ASISG should be self-adaptive. Two examples are provided in this paper, those examples provide a detailed way on how you design your semantic grid based on Multi-Agent systems and Ontology. In conclusion, the semantic grid of spatial information system could improve the ability of the integration and interoperability of spatial information grid.

  19. SSWAP: A Simple Semantic Web Architecture and Protocol for semantic web services

    PubMed Central

    Gessler, Damian DG; Schiltz, Gary S; May, Greg D; Avraham, Shulamit; Town, Christopher D; Grant, David; Nelson, Rex T

    2009-01-01

    Background SSWAP (Simple Semantic Web Architecture and Protocol; pronounced "swap") is an architecture, protocol, and platform for using reasoning to semantically integrate heterogeneous disparate data and services on the web. SSWAP was developed as a hybrid semantic web services technology to overcome limitations found in both pure web service technologies and pure semantic web technologies. Results There are currently over 2400 resources published in SSWAP. Approximately two dozen are custom-written services for QTL (Quantitative Trait Loci) and mapping data for legumes and grasses (grains). The remaining are wrappers to Nucleic Acids Research Database and Web Server entries. As an architecture, SSWAP establishes how clients (users of data, services, and ontologies), providers (suppliers of data, services, and ontologies), and discovery servers (semantic search engines) interact to allow for the description, querying, discovery, invocation, and response of semantic web services. As a protocol, SSWAP provides the vocabulary and semantics to allow clients, providers, and discovery servers to engage in semantic web services. The protocol is based on the W3C-sanctioned first-order description logic language OWL DL. As an open source platform, a discovery server running at (as in to "swap info") uses the description logic reasoner Pellet to integrate semantic resources. The platform hosts an interactive guide to the protocol at , developer tools at , and a portal to third-party ontologies at (a "swap meet"). Conclusion SSWAP addresses the three basic requirements of a semantic web services architecture (i.e., a common syntax, shared semantic, and semantic discovery) while addressing three technology limitations common in distributed service systems: i.e., i) the fatal mutability of traditional interfaces, ii) the rigidity and fragility of static subsumption hierarchies, and iii) the confounding of content, structure, and presentation. SSWAP is novel by establishing the concept of a canonical yet mutable OWL DL graph that allows data and service providers to describe their resources, to allow discovery servers to offer semantically rich search engines, to allow clients to discover and invoke those resources, and to allow providers to respond with semantically tagged data. SSWAP allows for a mix-and-match of terms from both new and legacy third-party ontologies in these graphs. PMID:19775460

  20. An ontology-driven tool for structured data acquisition using Web forms.

    PubMed

    Gonçalves, Rafael S; Tu, Samson W; Nyulas, Csongor I; Tierney, Michael J; Musen, Mark A

    2017-08-01

    Structured data acquisition is a common task that is widely performed in biomedicine. However, current solutions for this task are far from providing a means to structure data in such a way that it can be automatically employed in decision making (e.g., in our example application domain of clinical functional assessment, for determining eligibility for disability benefits) based on conclusions derived from acquired data (e.g., assessment of impaired motor function). To use data in these settings, we need it structured in a way that can be exploited by automated reasoning systems, for instance, in the Web Ontology Language (OWL); the de facto ontology language for the Web. We tackle the problem of generating Web-based assessment forms from OWL ontologies, and aggregating input gathered through these forms as an ontology of "semantically-enriched" form data that can be queried using an RDF query language, such as SPARQL. We developed an ontology-based structured data acquisition system, which we present through its specific application to the clinical functional assessment domain. We found that data gathered through our system is highly amenable to automatic analysis using queries. We demonstrated how ontologies can be used to help structuring Web-based forms and to semantically enrich the data elements of the acquired structured data. The ontologies associated with the enriched data elements enable automated inferences and provide a rich vocabulary for performing queries.

  1. Adaptive Semantic and Social Web-based learning and assessment environment for the STEM

    NASA Astrophysics Data System (ADS)

    Babaie, Hassan; Atchison, Chris; Sunderraman, Rajshekhar

    2014-05-01

    We are building a cloud- and Semantic Web-based personalized, adaptive learning environment for the STEM fields that integrates and leverages Social Web technologies to allow instructors and authors of learning material to collaborate in semi-automatic development and update of their common domain and task ontologies and building their learning resources. The semi-automatic ontology learning and development minimize issues related to the design and maintenance of domain ontologies by knowledge engineers who do not have any knowledge of the domain. The social web component of the personal adaptive system will allow individual and group learners to interact with each other and discuss their own learning experience and understanding of course material, and resolve issues related to their class assignments. The adaptive system will be capable of representing key knowledge concepts in different ways and difficulty levels based on learners' differences, and lead to different understanding of the same STEM content by different learners. It will adapt specific pedagogical strategies to individual learners based on their characteristics, cognition, and preferences, allow authors to assemble remotely accessed learning material into courses, and provide facilities for instructors to assess (in real time) the perception of students of course material, monitor their progress in the learning process, and generate timely feedback based on their understanding or misconceptions. The system applies a set of ontologies that structure the learning process, with multiple user friendly Web interfaces. These include the learning ontology (models learning objects, educational resources, and learning goal); context ontology (supports adaptive strategy by detecting student situation), domain ontology (structures concepts and context), learner ontology (models student profile, preferences, and behavior), task ontologies, technological ontology (defines devices and places that surround the student), pedagogy ontology, and learner ontology (defines time constraint, comment, profile).

  2. Developing an Ontology for Ocean Biogeochemistry Data

    NASA Astrophysics Data System (ADS)

    Chandler, C. L.; Allison, M. D.; Groman, R. C.; West, P.; Zednik, S.; Maffei, A. R.

    2010-12-01

    Semantic Web technologies offer great promise for enabling new and better scientific research. However, significant challenges must be met before the promise of the Semantic Web can be realized for a discipline as diverse as oceanography. Evolving expectations for open access to research data combined with the complexity of global ecosystem science research themes present a significant challenge, and one that is best met through an informatics approach. The Biological and Chemical Oceanography Data Management Office (BCO-DMO) is funded by the National Science Foundation Division of Ocean Sciences to work with ocean biogeochemistry researchers to improve access to data resulting from their respective programs. In an effort to improve data access, BCO-DMO staff members are collaborating with researchers from the Tetherless World Constellation (Rensselaer Polytechnic Institute) to develop an ontology that formally describes the concepts and relationships in the data managed by the BCO-DMO. The project required transforming a legacy system of human-readable, flat files of metadata to well-ordered controlled vocabularies to a fully developed ontology. To improve semantic interoperability, terms from the BCO-DMO controlled vocabularies are being mapped to controlled vocabulary terms adopted by other oceanographic data management organizations. While the entire process has proven to be difficult, time-consuming and labor-intensive, the work has been rewarding and is a necessary prerequisite for the eventual incorporation of Semantic Web tools. From the beginning of the project, development of the ontology has been guided by a use case based approach. The use cases were derived from data access related requests received from members of the research community served by the BCO-DMO. The resultant ontology satisfies the requirements of the use cases and reflects the information stored in the metadata database. The BCO-DMO metadata database currently contains information that powers several different user and machine-to-machine interfaces to the BCO-DMO data repositories. One goal of the ontology development project is to enable subsequent development of semantically-enabled components (e.g. faceted search) to enhance the power of those interfaces. Addition of semantic capabilities to the existing data interfaces will improve data access through enhanced data discovery. In addition to sharing the ontology, we will describe the challenges encountered thus far in the project, the technologies currently being used, and the strategies associated with the use case based informatics approach.

  3. Using Ontologies to Formalize Services Specifications in Multi-Agent Systems

    NASA Technical Reports Server (NTRS)

    Breitman, Karin Koogan; Filho, Aluizio Haendchen; Haeusler, Edward Hermann

    2004-01-01

    One key issue in multi-agent systems (MAS) is their ability to interact and exchange information autonomously across applications. To secure agent interoperability, designers must rely on a communication protocol that allows software agents to exchange meaningful information. In this paper we propose using ontologies as such communication protocol. Ontologies capture the semantics of the operations and services provided by agents, allowing interoperability and information exchange in a MAS. Ontologies are a formal, machine processable, representation that allows to capture the semantics of a domain and, to derive meaningful information by way of logical inference. In our proposal we use a formal knowledge representation language (OWL) that translates into Description Logics (a subset of first order logic), thus eliminating ambiguities and providing a solid base for machine based inference. The main contribution of this approach is to make the requirements explicit, centralize the specification in a single document (the ontology itself), at the same that it provides a formal, unambiguous representation that can be processed by automated inference machines.

  4. NCBO Resource Index: Ontology-Based Search and Mining of Biomedical Resources

    PubMed Central

    Jonquet, Clement; LePendu, Paea; Falconer, Sean; Coulet, Adrien; Noy, Natalya F.; Musen, Mark A.; Shah, Nigam H.

    2011-01-01

    The volume of publicly available data in biomedicine is constantly increasing. However, these data are stored in different formats and on different platforms. Integrating these data will enable us to facilitate the pace of medical discoveries by providing scientists with a unified view of this diverse information. Under the auspices of the National Center for Biomedical Ontology (NCBO), we have developed the Resource Index—a growing, large-scale ontology-based index of more than twenty heterogeneous biomedical resources. The resources come from a variety of repositories maintained by organizations from around the world. We use a set of over 200 publicly available ontologies contributed by researchers in various domains to annotate the elements in these resources. We use the semantics that the ontologies encode, such as different properties of classes, the class hierarchies, and the mappings between ontologies, in order to improve the search experience for the Resource Index user. Our user interface enables scientists to search the multiple resources quickly and efficiently using domain terms, without even being aware that there is semantics “under the hood.” PMID:21918645

  5. NCBO Resource Index: Ontology-Based Search and Mining of Biomedical Resources.

    PubMed

    Jonquet, Clement; Lependu, Paea; Falconer, Sean; Coulet, Adrien; Noy, Natalya F; Musen, Mark A; Shah, Nigam H

    2011-09-01

    The volume of publicly available data in biomedicine is constantly increasing. However, these data are stored in different formats and on different platforms. Integrating these data will enable us to facilitate the pace of medical discoveries by providing scientists with a unified view of this diverse information. Under the auspices of the National Center for Biomedical Ontology (NCBO), we have developed the Resource Index-a growing, large-scale ontology-based index of more than twenty heterogeneous biomedical resources. The resources come from a variety of repositories maintained by organizations from around the world. We use a set of over 200 publicly available ontologies contributed by researchers in various domains to annotate the elements in these resources. We use the semantics that the ontologies encode, such as different properties of classes, the class hierarchies, and the mappings between ontologies, in order to improve the search experience for the Resource Index user. Our user interface enables scientists to search the multiple resources quickly and efficiently using domain terms, without even being aware that there is semantics "under the hood."

  6. FoodWiki: Ontology-Driven Mobile Safe Food Consumption System.

    PubMed

    Çelik, Duygu

    2015-01-01

    An ontology-driven safe food consumption mobile system is considered. Over 3,000 compounds are being added to processed food, with numerous effects on the food: to add color, stabilize, texturize, preserve, sweeten, thicken, add flavor, soften, emulsify, and so forth. According to World Health Organization, governments have lately focused on legislation to reduce such ingredients or compounds in manufactured foods as they may have side effects causing health risks such as heart disease, cancer, diabetes, allergens, and obesity. By supervising what and how much to eat as well as what not to eat, we can maximize a patient's life quality through avoidance of unhealthy ingredients. Smart e-health systems with powerful knowledge bases can provide suggestions of appropriate foods to individuals. Next-generation smart knowledgebase systems will not only include traditional syntactic-based search, which limits the utility of the search results, but will also provide semantics for rich searching. In this paper, performance of concept matching of food ingredients is semantic-based, meaning that it runs its own semantic based rule set to infer meaningful results through the proposed Ontology-Driven Mobile Safe Food Consumption System (FoodWiki).

  7. ER2OWL: Generating OWL Ontology from ER Diagram

    NASA Astrophysics Data System (ADS)

    Fahad, Muhammad

    Ontology is the fundamental part of Semantic Web. The goal of W3C is to bring the web into (its full potential) a semantic web with reusing previous systems and artifacts. Most legacy systems have been documented in structural analysis and structured design (SASD), especially in simple or Extended ER Diagram (ERD). Such systems need up-gradation to become the part of semantic web. In this paper, we present ERD to OWL-DL ontology transformation rules at concrete level. These rules facilitate an easy and understandable transformation from ERD to OWL. The set of rules for transformation is tested on a structured analysis and design example. The framework provides OWL ontology for semantic web fundamental. This framework helps software engineers in upgrading the structured analysis and design artifact ERD, to components of semantic web. Moreover our transformation tool, ER2OWL, reduces the cost and time for building OWL ontologies with the reuse of existing entity relationship models.

  8. Leveraging electronic healthcare record standards and semantic web technologies for the identification of patient cohorts

    PubMed Central

    Fernández-Breis, Jesualdo Tomás; Maldonado, José Alberto; Marcos, Mar; Legaz-García, María del Carmen; Moner, David; Torres-Sospedra, Joaquín; Esteban-Gil, Angel; Martínez-Salvador, Begoña; Robles, Montserrat

    2013-01-01

    Background The secondary use of electronic healthcare records (EHRs) often requires the identification of patient cohorts. In this context, an important problem is the heterogeneity of clinical data sources, which can be overcome with the combined use of standardized information models, virtual health records, and semantic technologies, since each of them contributes to solving aspects related to the semantic interoperability of EHR data. Objective To develop methods allowing for a direct use of EHR data for the identification of patient cohorts leveraging current EHR standards and semantic web technologies. Materials and methods We propose to take advantage of the best features of working with EHR standards and ontologies. Our proposal is based on our previous results and experience working with both technological infrastructures. Our main principle is to perform each activity at the abstraction level with the most appropriate technology available. This means that part of the processing will be performed using archetypes (ie, data level) and the rest using ontologies (ie, knowledge level). Our approach will start working with EHR data in proprietary format, which will be first normalized and elaborated using EHR standards and then transformed into a semantic representation, which will be exploited by automated reasoning. Results We have applied our approach to protocols for colorectal cancer screening. The results comprise the archetypes, ontologies, and datasets developed for the standardization and semantic analysis of EHR data. Anonymized real data have been used and the patients have been successfully classified by the risk of developing colorectal cancer. Conclusions This work provides new insights in how archetypes and ontologies can be effectively combined for EHR-driven phenotyping. The methodological approach can be applied to other problems provided that suitable archetypes, ontologies, and classification rules can be designed. PMID:23934950

  9. Leveraging electronic healthcare record standards and semantic web technologies for the identification of patient cohorts.

    PubMed

    Fernández-Breis, Jesualdo Tomás; Maldonado, José Alberto; Marcos, Mar; Legaz-García, María del Carmen; Moner, David; Torres-Sospedra, Joaquín; Esteban-Gil, Angel; Martínez-Salvador, Begoña; Robles, Montserrat

    2013-12-01

    The secondary use of electronic healthcare records (EHRs) often requires the identification of patient cohorts. In this context, an important problem is the heterogeneity of clinical data sources, which can be overcome with the combined use of standardized information models, virtual health records, and semantic technologies, since each of them contributes to solving aspects related to the semantic interoperability of EHR data. To develop methods allowing for a direct use of EHR data for the identification of patient cohorts leveraging current EHR standards and semantic web technologies. We propose to take advantage of the best features of working with EHR standards and ontologies. Our proposal is based on our previous results and experience working with both technological infrastructures. Our main principle is to perform each activity at the abstraction level with the most appropriate technology available. This means that part of the processing will be performed using archetypes (ie, data level) and the rest using ontologies (ie, knowledge level). Our approach will start working with EHR data in proprietary format, which will be first normalized and elaborated using EHR standards and then transformed into a semantic representation, which will be exploited by automated reasoning. We have applied our approach to protocols for colorectal cancer screening. The results comprise the archetypes, ontologies, and datasets developed for the standardization and semantic analysis of EHR data. Anonymized real data have been used and the patients have been successfully classified by the risk of developing colorectal cancer. This work provides new insights in how archetypes and ontologies can be effectively combined for EHR-driven phenotyping. The methodological approach can be applied to other problems provided that suitable archetypes, ontologies, and classification rules can be designed.

  10. Ontology-based knowledge management for personalized adverse drug events detection.

    PubMed

    Cao, Feng; Sun, Xingzhi; Wang, Xiaoyuan; Li, Bo; Li, Jing; Pan, Yue

    2011-01-01

    Since Adverse Drug Event (ADE) has become a leading cause of death around the world, there arises high demand for helping clinicians or patients to identify possible hazards from drug effects. Motivated by this, we present a personalized ADE detection system, with the focus on applying ontology-based knowledge management techniques to enhance ADE detection services. The development of electronic health records makes it possible to automate the personalized ADE detection, i.e., to take patient clinical conditions into account during ADE detection. Specifically, we define the ADE ontology to uniformly manage the ADE knowledge from multiple sources. We take advantage of the rich semantics from the terminology SNOMED-CT and apply it to ADE detection via the semantic query and reasoning.

  11. Semantics in support of biodiversity knowledge discovery: an introduction to the biological collections ontology and related ontologies.

    PubMed

    Walls, Ramona L; Deck, John; Guralnick, Robert; Baskauf, Steve; Beaman, Reed; Blum, Stanley; Bowers, Shawn; Buttigieg, Pier Luigi; Davies, Neil; Endresen, Dag; Gandolfo, Maria Alejandra; Hanner, Robert; Janning, Alyssa; Krishtalka, Leonard; Matsunaga, Andréa; Midford, Peter; Morrison, Norman; Ó Tuama, Éamonn; Schildhauer, Mark; Smith, Barry; Stucky, Brian J; Thomer, Andrea; Wieczorek, John; Whitacre, Jamie; Wooley, John

    2014-01-01

    The study of biodiversity spans many disciplines and includes data pertaining to species distributions and abundances, genetic sequences, trait measurements, and ecological niches, complemented by information on collection and measurement protocols. A review of the current landscape of metadata standards and ontologies in biodiversity science suggests that existing standards such as the Darwin Core terminology are inadequate for describing biodiversity data in a semantically meaningful and computationally useful way. Existing ontologies, such as the Gene Ontology and others in the Open Biological and Biomedical Ontologies (OBO) Foundry library, provide a semantic structure but lack many of the necessary terms to describe biodiversity data in all its dimensions. In this paper, we describe the motivation for and ongoing development of a new Biological Collections Ontology, the Environment Ontology, and the Population and Community Ontology. These ontologies share the aim of improving data aggregation and integration across the biodiversity domain and can be used to describe physical samples and sampling processes (for example, collection, extraction, and preservation techniques), as well as biodiversity observations that involve no physical sampling. Together they encompass studies of: 1) individual organisms, including voucher specimens from ecological studies and museum specimens, 2) bulk or environmental samples (e.g., gut contents, soil, water) that include DNA, other molecules, and potentially many organisms, especially microbes, and 3) survey-based ecological observations. We discuss how these ontologies can be applied to biodiversity use cases that span genetic, organismal, and ecosystem levels of organization. We argue that if adopted as a standard and rigorously applied and enriched by the biodiversity community, these ontologies would significantly reduce barriers to data discovery, integration, and exchange among biodiversity resources and researchers.

  12. Semantics in Support of Biodiversity Knowledge Discovery: An Introduction to the Biological Collections Ontology and Related Ontologies

    PubMed Central

    Baskauf, Steve; Blum, Stanley; Bowers, Shawn; Davies, Neil; Endresen, Dag; Gandolfo, Maria Alejandra; Hanner, Robert; Janning, Alyssa; Krishtalka, Leonard; Matsunaga, Andréa; Midford, Peter; Tuama, Éamonn Ó.; Schildhauer, Mark; Smith, Barry; Stucky, Brian J.; Thomer, Andrea; Wieczorek, John; Whitacre, Jamie; Wooley, John

    2014-01-01

    The study of biodiversity spans many disciplines and includes data pertaining to species distributions and abundances, genetic sequences, trait measurements, and ecological niches, complemented by information on collection and measurement protocols. A review of the current landscape of metadata standards and ontologies in biodiversity science suggests that existing standards such as the Darwin Core terminology are inadequate for describing biodiversity data in a semantically meaningful and computationally useful way. Existing ontologies, such as the Gene Ontology and others in the Open Biological and Biomedical Ontologies (OBO) Foundry library, provide a semantic structure but lack many of the necessary terms to describe biodiversity data in all its dimensions. In this paper, we describe the motivation for and ongoing development of a new Biological Collections Ontology, the Environment Ontology, and the Population and Community Ontology. These ontologies share the aim of improving data aggregation and integration across the biodiversity domain and can be used to describe physical samples and sampling processes (for example, collection, extraction, and preservation techniques), as well as biodiversity observations that involve no physical sampling. Together they encompass studies of: 1) individual organisms, including voucher specimens from ecological studies and museum specimens, 2) bulk or environmental samples (e.g., gut contents, soil, water) that include DNA, other molecules, and potentially many organisms, especially microbes, and 3) survey-based ecological observations. We discuss how these ontologies can be applied to biodiversity use cases that span genetic, organismal, and ecosystem levels of organization. We argue that if adopted as a standard and rigorously applied and enriched by the biodiversity community, these ontologies would significantly reduce barriers to data discovery, integration, and exchange among biodiversity resources and researchers. PMID:24595056

  13. A concept ideation framework for medical device design.

    PubMed

    Hagedorn, Thomas J; Grosse, Ian R; Krishnamurty, Sundar

    2015-06-01

    Medical device design is a challenging process, often requiring collaboration between medical and engineering domain experts. This collaboration can be best institutionalized through systematic knowledge transfer between the two domains coupled with effective knowledge management throughout the design innovation process. Toward this goal, we present the development of a semantic framework for medical device design that unifies a large medical ontology with detailed engineering functional models along with the repository of design innovation information contained in the US Patent Database. As part of our development, existing medical, engineering, and patent document ontologies were modified and interlinked to create a comprehensive medical device innovation and design tool with appropriate properties and semantic relations to facilitate knowledge capture, enrich existing knowledge, and enable effective knowledge reuse for different scenarios. The result is a Concept Ideation Framework for Medical Device Design (CIFMeDD). Key features of the resulting framework include function-based searching and automated inter-domain reasoning to uniquely enable identification of functionally similar procedures, tools, and inventions from multiple domains based on simple semantic searches. The significance and usefulness of the resulting framework for aiding in conceptual design and innovation in the medical realm are explored via two case studies examining medical device design problems. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. An Ontology-Based Approach to Incorporate User-Generated Geo-Content Into Sdi

    NASA Astrophysics Data System (ADS)

    Deng, D.-P.; Lemmens, R.

    2011-08-01

    The Web is changing the way people share and communicate information because of emergence of various Web technologies, which enable people to contribute information on the Web. User-Generated Geo-Content (UGGC) is a potential resource of geographic information. Due to the different production methods, UGGC often cannot fit in geographic information model. There is a semantic gap between UGGC and formal geographic information. To integrate UGGC into geographic information, this study conducts an ontology-based process to bridge this semantic gap. This ontology-based process includes five steps: Collection, Extraction, Formalization, Mapping, and Deployment. In addition, this study implements this process on Twitter messages, which is relevant to Japan Earthquake disaster. By using this process, we extract disaster relief information from Twitter messages, and develop a knowledge base for GeoSPARQL queries in disaster relief information.

  15. QTLTableMiner++: semantic mining of QTL tables in scientific articles.

    PubMed

    Singh, Gurnoor; Kuzniar, Arnold; van Mulligen, Erik M; Gavai, Anand; Bachem, Christian W; Visser, Richard G F; Finkers, Richard

    2018-05-25

    A quantitative trait locus (QTL) is a genomic region that correlates with a phenotype. Most of the experimental information about QTL mapping studies is described in tables of scientific publications. Traditional text mining techniques aim to extract information from unstructured text rather than from tables. We present QTLTableMiner ++ (QTM), a table mining tool that extracts and semantically annotates QTL information buried in (heterogeneous) tables of plant science literature. QTM is a command line tool written in the Java programming language. This tool takes scientific articles from the Europe PMC repository as input, extracts QTL tables using keyword matching and ontology-based concept identification. The tables are further normalized using rules derived from table properties such as captions, column headers and table footers. Furthermore, table columns are classified into three categories namely column descriptors, properties and values based on column headers and data types of cell entries. Abbreviations found in the tables are expanded using the Schwartz and Hearst algorithm. Finally, the content of QTL tables is semantically enriched with domain-specific ontologies (e.g. Crop Ontology, Plant Ontology and Trait Ontology) using the Apache Solr search platform and the results are stored in a relational database and a text file. The performance of the QTM tool was assessed by precision and recall based on the information retrieved from two manually annotated corpora of open access articles, i.e. QTL mapping studies in tomato (Solanum lycopersicum) and in potato (S. tuberosum). In summary, QTM detected QTL statements in tomato with 74.53% precision and 92.56% recall and in potato with 82.82% precision and 98.94% recall. QTM is a unique tool that aids in providing QTL information in machine-readable and semantically interoperable formats.

  16. Querying phenotype-genotype relationships on patient datasets using semantic web technology: the example of Cerebrotendinous xanthomatosis.

    PubMed

    Taboada, María; Martínez, Diego; Pilo, Belén; Jiménez-Escrig, Adriano; Robinson, Peter N; Sobrido, María J

    2012-07-31

    Semantic Web technology can considerably catalyze translational genetics and genomics research in medicine, where the interchange of information between basic research and clinical levels becomes crucial. This exchange involves mapping abstract phenotype descriptions from research resources, such as knowledge databases and catalogs, to unstructured datasets produced through experimental methods and clinical practice. This is especially true for the construction of mutation databases. This paper presents a way of harmonizing abstract phenotype descriptions with patient data from clinical practice, and querying this dataset about relationships between phenotypes and genetic variants, at different levels of abstraction. Due to the current availability of ontological and terminological resources that have already reached some consensus in biomedicine, a reuse-based ontology engineering approach was followed. The proposed approach uses the Ontology Web Language (OWL) to represent the phenotype ontology and the patient model, the Semantic Web Rule Language (SWRL) to bridge the gap between phenotype descriptions and clinical data, and the Semantic Query Web Rule Language (SQWRL) to query relevant phenotype-genotype bidirectional relationships. The work tests the use of semantic web technology in the biomedical research domain named cerebrotendinous xanthomatosis (CTX), using a real dataset and ontologies. A framework to query relevant phenotype-genotype bidirectional relationships is provided. Phenotype descriptions and patient data were harmonized by defining 28 Horn-like rules in terms of the OWL concepts. In total, 24 patterns of SWQRL queries were designed following the initial list of competency questions. As the approach is based on OWL, the semantic of the framework adapts the standard logical model of an open world assumption. This work demonstrates how semantic web technologies can be used to support flexible representation and computational inference mechanisms required to query patient datasets at different levels of abstraction. The open world assumption is especially good for describing only partially known phenotype-genotype relationships, in a way that is easily extensible. In future, this type of approach could offer researchers a valuable resource to infer new data from patient data for statistical analysis in translational research. In conclusion, phenotype description formalization and mapping to clinical data are two key elements for interchanging knowledge between basic and clinical research.

  17. Publication, discovery and interoperability of Clinical Decision Support Systems: A Linked Data approach.

    PubMed

    Marco-Ruiz, Luis; Pedrinaci, Carlos; Maldonado, J A; Panziera, Luca; Chen, Rong; Bellika, J Gustav

    2016-08-01

    The high costs involved in the development of Clinical Decision Support Systems (CDSS) make it necessary to share their functionality across different systems and organizations. Service Oriented Architectures (SOA) have been proposed to allow reusing CDSS by encapsulating them in a Web service. However, strong barriers in sharing CDS functionality are still present as a consequence of lack of expressiveness of services' interfaces. Linked Services are the evolution of the Semantic Web Services paradigm to process Linked Data. They aim to provide semantic descriptions over SOA implementations to overcome the limitations derived from the syntactic nature of Web services technologies. To facilitate the publication, discovery and interoperability of CDS services by evolving them into Linked Services that expose their interfaces as Linked Data. We developed methods and models to enhance CDS SOA as Linked Services that define a rich semantic layer based on machine interpretable ontologies that powers their interoperability and reuse. These ontologies provided unambiguous descriptions of CDS services properties to expose them to the Web of Data. We developed models compliant with Linked Data principles to create a semantic representation of the components that compose CDS services. To evaluate our approach we implemented a set of CDS Linked Services using a Web service definition ontology. The definitions of Web services were linked to the models developed in order to attach unambiguous semantics to the service components. All models were bound to SNOMED-CT and public ontologies (e.g. Dublin Core) in order to count on a lingua franca to explore them. Discovery and analysis of CDS services based on machine interpretable models was performed reasoning over the ontologies built. Linked Services can be used effectively to expose CDS services to the Web of Data by building on current CDS standards. This allows building shared Linked Knowledge Bases to provide machine interpretable semantics to the CDS service description alleviating the challenges on interoperability and reuse. Linked Services allow for building 'digital libraries' of distributed CDS services that can be hosted and maintained in different organizations. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Text-Content-Analysis based on the Syntactic Correlations between Ontologies

    NASA Astrophysics Data System (ADS)

    Tenschert, Axel; Kotsiopoulos, Ioannis; Koller, Bastian

    The work presented in this chapter is concerned with the analysis of semantic knowledge structures, represented in the form of Ontologies, through which Service Level Agreements (SLAs) are enriched with new semantic data. The objective of the enrichment process is to enable SLA negotiation in a way that is much more convenient for a Service Users. For this purpose the deployment of an SLA-Management-System as well as the development of an analyzing procedure for Ontologies is required. This chapter will refer to the BREIN, the FinGrid and the LarKC projects. The analyzing procedure examines the syntactic correlations of several Ontologies whose focus lies in the field of mechanical engineering. A method of analyzing text and content is developed as part of this procedure. In order to so, we introduce a formalism as well as a method for understanding content. The analysis and methods are integrated to an SLA Management System which enables a Service User to interact with the system as a service by negotiating the user requests and including the semantic knowledge. Through negotiation between Service User and Service Provider the analysis procedure considers the user requests by extending the SLAs with semantic knowledge. Through this the economic use of an SLA-Management-System is increased by the enhancement of SLAs with semantic knowledge structures. The main focus of this chapter is the analyzing procedure, respectively the Text-Content-Analysis, which provides the mentioned semantic knowledge structures.

  19. Semantically Enhanced Recommender Systems

    NASA Astrophysics Data System (ADS)

    Ruiz-Montiel, Manuela; Aldana-Montes, José F.

    Recommender Systems have become a significant area in the context of web personalization, given the large amount of available data. Ontologies can be widely taken advantage of in recommender systems, since they provide a means of classifying and discovering of new information about the items to recommend, about user profiles and even about their context. We have developed a semantically enhanced recommender system based on this kind of ontologies. In this paper we present a description of the proposed system.

  20. Semantic similarity measurement between gene ontology terms based on exclusively inherited shared information.

    PubMed

    Zhang, Shu-Bo; Lai, Jian-Huang

    2015-03-01

    Quantifying the semantic similarities between pairs of terms in the Gene Ontology (GO) structure can help to explore the functional relationships between biological entities. A common approach to this problem is to measure the information they have in common based on the information content of their common ancestors. However, many studies have their limitations in measuring the information two GO terms share. This study presented a new measurement, exclusively inherited shared information (EISI) that captured the information shared by two terms based on an intuitive observation on the multiple inheritance relationships among the terms in the GO graph. EISI was derived from the information content of the exclusively inherited common ancestors (EICAs), which were screened from the common ancestors according to the attribute of their direct children. The effectiveness of EISI was evaluated against some state-of-the-art measurements on both artificial and real datasets, it produced more relevant results with experts' scores on the artificial dataset, and supported the prior knowledge of gene function in pathways on the Saccharomyces genome database (SGD). The promising features of EISI are the following: (1) it provides a more effective way to characterize the semantic relationship between two GO terms by taking into account multiple common ancestors related, and (2) can quickly detect all EICAs with time complexity of O(n), which is much more efficient than other methods based on disjunctive common ancestors. It is a promising alternative to multiple inheritance based methods for practical applications on large-scale dataset. The algorithm EISI was implemented in Matlab and is freely available from http://treaton.evai.pl/EISI/. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. HuPSON: the human physiology simulation ontology

    PubMed Central

    2013-01-01

    Background Large biomedical simulation initiatives, such as the Virtual Physiological Human (VPH), are substantially dependent on controlled vocabularies to facilitate the exchange of information, of data and of models. Hindering these initiatives is a lack of a comprehensive ontology that covers the essential concepts of the simulation domain. Results We propose a first version of a newly constructed ontology, HuPSON, as a basis for shared semantics and interoperability of simulations, of models, of algorithms and of other resources in this domain. The ontology is based on the Basic Formal Ontology, and adheres to the MIREOT principles; the constructed ontology has been evaluated via structural features, competency questions and use case scenarios. The ontology is freely available at: http://www.scai.fraunhofer.de/en/business-research-areas/bioinformatics/downloads.html (owl files) and http://bishop.scai.fraunhofer.de/scaiview/ (browser). Conclusions HuPSON provides a framework for a) annotating simulation experiments, b) retrieving relevant information that are required for modelling, c) enabling interoperability of algorithmic approaches used in biomedical simulation, d) comparing simulation results and e) linking knowledge-based approaches to simulation-based approaches. It is meant to foster a more rapid uptake of semantic technologies in the modelling and simulation domain, with particular focus on the VPH domain. PMID:24267822

  2. HealthCyberMap: a semantic visual browser of medical Internet resources based on clinical codes and the human body metaphor.

    PubMed

    Kamel Boulos, Maged N; Roudsari, Abdul V; Carso N, Ewart R

    2002-12-01

    HealthCyberMap (HCM-http://healthcybermap.semanticweb.org) is a web-based service for healthcare professionals and librarians, patients and the public in general that aims at mapping parts of the health information resources in cyberspace in novel ways to improve their retrieval and navigation. HCM adopts a clinical metadata framework built upon a clinical coding ontology for the semantic indexing, classification and browsing of Internet health information resources. A resource metadata base holds information about selected resources. HCM then uses GIS (Geographic Information Systems) spatialization methods to generate interactive navigational cybermaps from the metadata base. These visual cybermaps are based on familiar medical metaphors. HCM cybermaps can be considered as semantically spatialized, ontology-based browsing views of the underlying resource metadata base. Using a clinical coding scheme as a metric for spatialization ('semantic distance') is unique to HCM and is very much suited for the semantic categorization and navigation of Internet health information resources. Clinical codes ensure reliable and unambiguous topical indexing of these resources. HCM also introduces a useful form of cyberspatial analysis for the detection of topical coverage gaps in the resource metadata base using choropleth (shaded) maps of human body systems.

  3. GeoSciGraph: An Ontological Framework for EarthCube Semantic Infrastructure

    NASA Astrophysics Data System (ADS)

    Gupta, A.; Schachne, A.; Condit, C.; Valentine, D.; Richard, S.; Zaslavsky, I.

    2015-12-01

    The CINERGI (Community Inventory of EarthCube Resources for Geosciences Interoperability) project compiles an inventory of a wide variety of earth science resources including documents, catalogs, vocabularies, data models, data services, process models, information repositories, domain-specific ontologies etc. developed by research groups and data practitioners. We have developed a multidisciplinary semantic framework called GeoSciGraph semantic ingration of earth science resources. An integrated ontology is constructed with Basic Formal Ontology (BFO) as its upper ontology and currently ingests multiple component ontologies including the SWEET ontology, GeoSciML's lithology ontology, Tematres controlled vocabulary server, GeoNames, GCMD vocabularies on equipment, platforms and institutions, software ontology, CUAHSI hydrology vocabulary, the environmental ontology (ENVO) and several more. These ontologies are connected through bridging axioms; GeoSciGraph identifies lexically close terms and creates equivalence class or subclass relationships between them after human verification. GeoSciGraph allows a community to create community-specific customizations of the integrated ontology. GeoSciGraph uses the Neo4J,a graph database that can hold several billion concepts and relationships. GeoSciGraph provides a number of REST services that can be called by other software modules like the CINERGI information augmentation pipeline. 1) Vocabulary services are used to find exact and approximate terms, term categories (community-provided clusters of terms e.g., measurement-related terms or environmental material related terms), synonyms, term definitions and annotations. 2) Lexical services are used for text parsing to find entities, which can then be included into the ontology by a domain expert. 3) Graph services provide the ability to perform traversal centric operations e.g., finding paths and neighborhoods which can be used to perform ontological operations like computing transitive closure (e.g., finding all subclasses of rocks). 4) Annotation services are used to adorn an arbitrary block of text (e.g., from a NOAA catalog record) with ontology terms. The system has been used to ontologically integrate diverse sources like Science-base, NOAA records, PETDB.

  4. OntoPop: An Ontology Population System for the Semantic Web

    NASA Astrophysics Data System (ADS)

    Thongkrau, Theerayut; Lalitrojwong, Pattarachai

    The development of ontology at the instance level requires the extraction of the terms defining the instances from various data sources. These instances then are linked to the concepts of the ontology, and relationships are created between these instances for the next step. However, before establishing links among data, ontology engineers must classify terms or instances from a web document into an ontology concept. The tool for help ontology engineer in this task is called ontology population. The present research is not suitable for ontology development applications, such as long time processing or analyzing large or noisy data sets. OntoPop system introduces a methodology to solve these problems, which comprises two parts. First, we select meaningful features from syntactic relations, which can produce more significant features than any other method. Second, we differentiate feature meaning and reduce noise based on latent semantic analysis. Experimental evaluation demonstrates that the OntoPop works well, significantly out-performing the accuracy of 49.64%, a learning accuracy of 76.93%, and executes time of 5.46 second/instance.

  5. Stakeholder Analysis for the CF Counter-IED Training Courses

    DTIC Science & Technology

    2010-05-01

    for more than purely research purposes when the experimenter is present. 3.1.3 Learning Style- based Adaptation The Index of Learning Styles (Felder...student. It is recommended that the Adaption Module uses the same ontology based reasoning approach as the Evaluation Module. RacerPro is the recommended...reasoner. RacerPro is used as a system for managing semantic web ontologies based on Web Ontology Language (OWL). The design phase will confirm

  6. Constructive Ontology Engineering

    ERIC Educational Resources Information Center

    Sousan, William L.

    2010-01-01

    The proliferation of the Semantic Web depends on ontologies for knowledge sharing, semantic annotation, data fusion, and descriptions of data for machine interpretation. However, ontologies are difficult to create and maintain. In addition, their structure and content may vary depending on the application and domain. Several methods described in…

  7. FunSimMat: a comprehensive functional similarity database

    PubMed Central

    Schlicker, Andreas; Albrecht, Mario

    2008-01-01

    Functional similarity based on Gene Ontology (GO) annotation is used in diverse applications like gene clustering, gene expression data analysis, protein interaction prediction and evaluation. However, there exists no comprehensive resource of functional similarity values although such a database would facilitate the use of functional similarity measures in different applications. Here, we describe FunSimMat (Functional Similarity Matrix, http://funsimmat.bioinf.mpi-inf.mpg.de/), a large new database that provides several different semantic similarity measures for GO terms. It offers various precomputed functional similarity values for proteins contained in UniProtKB and for protein families in Pfam and SMART. The web interface allows users to efficiently perform both semantic similarity searches with GO terms and functional similarity searches with proteins or protein families. All results can be downloaded in tab-delimited files for use with other tools. An additional XML–RPC interface gives automatic online access to FunSimMat for programs and remote services. PMID:17932054

  8. Semantics-informed geological maps: Conceptual modeling and knowledge encoding

    NASA Astrophysics Data System (ADS)

    Lombardo, Vincenzo; Piana, Fabrizio; Mimmo, Dario

    2018-07-01

    This paper introduces a novel, semantics-informed geologic mapping process, whose application domain is the production of a synthetic geologic map of a large administrative region. A number of approaches concerning the expression of geologic knowledge through UML schemata and ontologies have been around for more than a decade. These approaches have yielded resources that concern specific domains, such as, e.g., lithology. We develop a conceptual model that aims at building a digital encoding of several domains of geologic knowledge, in order to support the interoperability of the sources. We apply the devised terminological base to the classification of the elements of a geologic map of the Italian Western Alps and northern Apennines (Piemonte region). The digitally encoded knowledge base is a merged set of ontologies, called OntoGeonous. The encoding process identifies the objects of the semantic encoding, the geologic units, gathers the relevant information about such objects from authoritative resources, such as GeoSciML (giving priority to the application schemata reported in the INSPIRE Encoding Cookbook), and expresses the statements by means of axioms encoded in the Web Ontology Language (OWL). To support interoperability, OntoGeonous interlinks the general concepts by referring to the upper part level of ontology SWEET (developed by NASA), and imports knowledge that is already encoded in ontological format (e.g., ontology Simple Lithology). Machine-readable knowledge allows for consistency checking and for classification of the geological map data through algorithms of automatic reasoning.

  9. The Semanticscience Integrated Ontology (SIO) for biomedical research and knowledge discovery

    PubMed Central

    2014-01-01

    The Semanticscience Integrated Ontology (SIO) is an ontology to facilitate biomedical knowledge discovery. SIO features a simple upper level comprised of essential types and relations for the rich description of arbitrary (real, hypothesized, virtual, fictional) objects, processes and their attributes. SIO specifies simple design patterns to describe and associate qualities, capabilities, functions, quantities, and informational entities including textual, geometrical, and mathematical entities, and provides specific extensions in the domains of chemistry, biology, biochemistry, and bioinformatics. SIO provides an ontological foundation for the Bio2RDF linked data for the life sciences project and is used for semantic integration and discovery for SADI-based semantic web services. SIO is freely available to all users under a creative commons by attribution license. See website for further information: http://sio.semanticscience.org. PMID:24602174

  10. The methodology of semantic analysis for extracting physical effects

    NASA Astrophysics Data System (ADS)

    Fomenkova, M. A.; Kamaev, V. A.; Korobkin, D. M.; Fomenkov, S. A.

    2017-01-01

    The paper represents new methodology of semantic analysis for physical effects extracting. This methodology is based on the Tuzov ontology that formally describes the Russian language. In this paper, semantic patterns were described to extract structural physical information in the form of physical effects. A new algorithm of text analysis was described.

  11. Comprehensive Analysis of Semantic Web Reasoners and Tools: A Survey

    ERIC Educational Resources Information Center

    Khamparia, Aditya; Pandey, Babita

    2017-01-01

    Ontologies are emerging as best representation techniques for knowledge based context domains. The continuing need for interoperation, collaboration and effective information retrieval has lead to the creation of semantic web with the help of tools and reasoners which manages personalized information. The future of semantic web lies in an ontology…

  12. OntoCR: A CEN/ISO-13606 clinical repository based on ontologies.

    PubMed

    Lozano-Rubí, Raimundo; Muñoz Carrero, Adolfo; Serrano Balazote, Pablo; Pastor, Xavier

    2016-04-01

    To design a new semantically interoperable clinical repository, based on ontologies, conforming to CEN/ISO 13606 standard. The approach followed is to extend OntoCRF, a framework for the development of clinical repositories based on ontologies. The meta-model of OntoCRF has been extended by incorporating an OWL model integrating CEN/ISO 13606, ISO 21090 and SNOMED CT structure. This approach has demonstrated a complete evaluation cycle involving the creation of the meta-model in OWL format, the creation of a simple test application, and the communication of standardized extracts to another organization. Using a CEN/ISO 13606 based system, an indefinite number of archetypes can be merged (and reused) to build new applications. Our approach, based on the use of ontologies, maintains data storage independent of content specification. With this approach, relational technology can be used for storage, maintaining extensibility capabilities. The present work demonstrates that it is possible to build a native CEN/ISO 13606 repository for the storage of clinical data. We have demonstrated semantic interoperability of clinical information using CEN/ISO 13606 extracts. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. The MMI Semantic Framework: Rosetta Stones for Earth Sciences

    NASA Astrophysics Data System (ADS)

    Rueda, C.; Bermudez, L. E.; Graybeal, J.; Alexander, P.

    2009-12-01

    Semantic interoperability—the exchange of meaning among computer systems—is needed to successfully share data in Ocean Science and across all Earth sciences. The best approach toward semantic interoperability requires a designed framework, and operationally tested tools and infrastructure within that framework. Currently available technologies make a scientific semantic framework feasible, but its development requires sustainable architectural vision and development processes. This presentation outlines the MMI Semantic Framework, including recent progress on it and its client applications. The MMI Semantic Framework consists of tools, infrastructure, and operational and community procedures and best practices, to meet short-term and long-term semantic interoperability goals. The design and prioritization of the semantic framework capabilities are based on real-world scenarios in Earth observation systems. We describe some key uses cases, as well as the associated requirements for building the overall infrastructure, which is realized through the MMI Ontology Registry and Repository. This system includes support for community creation and sharing of semantic content, ontology registration, version management, and seamless integration of user-friendly tools and application programming interfaces. The presentation describes the architectural components for semantic mediation, registry and repository for vocabularies, ontology, and term mappings. We show how the technologies and approaches in the framework can address community needs for managing and exchanging semantic information. We will demonstrate how different types of users and client applications exploit the tools and services for data aggregation, visualization, archiving, and integration. Specific examples from OOSTethys (http://www.oostethys.org) and the Ocean Observatories Initiative Cyberinfrastructure (http://www.oceanobservatories.org) will be cited. Finally, we show how semantic augmentation of web services standards could be performed using framework tools.

  14. Developing a Domain Ontology: the Case of Water Cycle and Hydrology

    NASA Astrophysics Data System (ADS)

    Gupta, H.; Pozzi, W.; Piasecki, M.; Imam, B.; Houser, P.; Raskin, R.; Ramachandran, R.; Martinez Baquero, G.

    2008-12-01

    A semantic web ontology enables semantic data integration and semantic smart searching. Several organizations have attempted to implement smart registration and integration or searching using ontologies. These are the NOESIS (NSF project: LEAD) and HydroSeek (NSF project: CUAHS HIS) data discovery engines and the NSF project GEON. All three applications use ontologies to discover data from multiple sources and projects. The NASA WaterNet project was established to identify creative, innovative ways to bridge NASA research results to real world applications, linking decision support needs to available data, observations, and modeling capability. WaterNet (NASA project) utilized the smart query tool Noesis as a testbed to test whether different ontologies (and different catalog searches) could be combined to match resources with user needs. NOESIS contains the upper level SWEET ontology that accepts plug in domain ontologies to refine user search queries, reducing the burden of multiple keyword searches. Another smart search interface was that developed for CUAHSI, HydroSeek, that uses a multi-layered concept search ontology, tagging variables names from any number of data sources to specific leaf and higher level concepts on which the search is executed. This approach has proven to be quite successful in mitigating semantic heterogeneity as the user does not need to know the semantic specifics of each data source system but just uses a set of common keywords to discover the data for a specific temporal and geospatial domain. This presentation will show tests with Noesis and Hydroseek lead to the conclusion that the construction of a complex, and highly heterogeneous water cycle ontology requires multiple ontology modules. To illustrate the complexity and heterogeneity of a water cycle ontology, Hydroseek successfully utilizes WaterOneFlow to integrate data across multiple different data collections, such as USGS NWIS. However,different methodologies are employed by the Earth Science, the Hydrological, and Hydraulic Engineering Communities, and each community employs models that require different input data. If a sub-domain ontology is created for each of these,describing water balance calculations, then the resulting structure of the semantic network describing these various terms can be rather complex, heterogeneous, and overlapping, and will require "mapping" between equivalent terms in the ontologies, along with the development of an upper level conceptual or domain ontology to utilize and link to those already in existence.

  15. SSWAP: A Simple Semantic Web Architecture and Protocol for semantic web services.

    PubMed

    Gessler, Damian D G; Schiltz, Gary S; May, Greg D; Avraham, Shulamit; Town, Christopher D; Grant, David; Nelson, Rex T

    2009-09-23

    SSWAP (Simple Semantic Web Architecture and Protocol; pronounced "swap") is an architecture, protocol, and platform for using reasoning to semantically integrate heterogeneous disparate data and services on the web. SSWAP was developed as a hybrid semantic web services technology to overcome limitations found in both pure web service technologies and pure semantic web technologies. There are currently over 2400 resources published in SSWAP. Approximately two dozen are custom-written services for QTL (Quantitative Trait Loci) and mapping data for legumes and grasses (grains). The remaining are wrappers to Nucleic Acids Research Database and Web Server entries. As an architecture, SSWAP establishes how clients (users of data, services, and ontologies), providers (suppliers of data, services, and ontologies), and discovery servers (semantic search engines) interact to allow for the description, querying, discovery, invocation, and response of semantic web services. As a protocol, SSWAP provides the vocabulary and semantics to allow clients, providers, and discovery servers to engage in semantic web services. The protocol is based on the W3C-sanctioned first-order description logic language OWL DL. As an open source platform, a discovery server running at http://sswap.info (as in to "swap info") uses the description logic reasoner Pellet to integrate semantic resources. The platform hosts an interactive guide to the protocol at http://sswap.info/protocol.jsp, developer tools at http://sswap.info/developer.jsp, and a portal to third-party ontologies at http://sswapmeet.sswap.info (a "swap meet"). SSWAP addresses the three basic requirements of a semantic web services architecture (i.e., a common syntax, shared semantic, and semantic discovery) while addressing three technology limitations common in distributed service systems: i.e., i) the fatal mutability of traditional interfaces, ii) the rigidity and fragility of static subsumption hierarchies, and iii) the confounding of content, structure, and presentation. SSWAP is novel by establishing the concept of a canonical yet mutable OWL DL graph that allows data and service providers to describe their resources, to allow discovery servers to offer semantically rich search engines, to allow clients to discover and invoke those resources, and to allow providers to respond with semantically tagged data. SSWAP allows for a mix-and-match of terms from both new and legacy third-party ontologies in these graphs.

  16. Towards a semantic medical Web: HealthCyberMap's tool for building an RDF metadata base of health information resources based on the Qualified Dublin Core Metadata Set.

    PubMed

    Boulos, Maged N; Roudsari, Abdul V; Carson, Ewart R

    2002-07-01

    HealthCyberMap (http://healthcybermap.semanticweb.org/) aims at mapping Internet health information resources in novel ways for enhanced retrieval and navigation. This is achieved by collecting appropriate resource metadata in an unambiguous form that preserves semantics. We modelled a qualified Dublin Core (DC) metadata set ontology with extra elements for resource quality and geographical provenance in Prot g -2000. A metadata collection form helps acquiring resource instance data within Prot g . The DC subject field is populated with UMLS terms directly imported from UMLS Knowledge Source Server using UMLS tab, a Prot g -2000 plug-in. The project is saved in RDFS/RDF. The ontology and associated form serve as a free tool for building and maintaining an RDF medical resource metadata base. The UMLS tab enables browsing and searching for concepts that best describe a resource, and importing them to DC subject fields. The resultant metadata base can be used with a search and inference engine, and have textual and/or visual navigation interface(s) applied to it, to ultimately build a medical Semantic Web portal. Different ways of exploiting Prot g -2000 RDF output are discussed. By making the context and semantics of resources, not merely their raw text and formatting, amenable to computer 'understanding,' we can build a Semantic Web that is more useful to humans than the current Web. This requires proper use of metadata and ontologies. Clinical codes can reliably describe the subjects of medical resources, establish the semantic relationships (as defined by underlying coding scheme) between related resources, and automate their topical categorisation.

  17. Using AberOWL for fast and scalable reasoning over BioPortal ontologies.

    PubMed

    Slater, Luke; Gkoutos, Georgios V; Schofield, Paul N; Hoehndorf, Robert

    2016-08-08

    Reasoning over biomedical ontologies using their OWL semantics has traditionally been a challenging task due to the high theoretical complexity of OWL-based automated reasoning. As a consequence, ontology repositories, as well as most other tools utilizing ontologies, either provide access to ontologies without use of automated reasoning, or limit the number of ontologies for which automated reasoning-based access is provided. We apply the AberOWL infrastructure to provide automated reasoning-based access to all accessible and consistent ontologies in BioPortal (368 ontologies). We perform an extensive performance evaluation to determine query times, both for queries of different complexity and for queries that are performed in parallel over the ontologies. We demonstrate that, with the exception of a few ontologies, even complex and parallel queries can now be answered in milliseconds, therefore allowing automated reasoning to be used on a large scale, to run in parallel, and with rapid response times.

  18. Transformation of standardized clinical models based on OWL technologies: from CEM to OpenEHR archetypes

    PubMed Central

    Legaz-García, María del Carmen; Menárguez-Tortosa, Marcos; Fernández-Breis, Jesualdo Tomás; Chute, Christopher G; Tao, Cui

    2015-01-01

    Introduction The semantic interoperability of electronic healthcare records (EHRs) systems is a major challenge in the medical informatics area. International initiatives pursue the use of semantically interoperable clinical models, and ontologies have frequently been used in semantic interoperability efforts. The objective of this paper is to propose a generic, ontology-based, flexible approach for supporting the automatic transformation of clinical models, which is illustrated for the transformation of Clinical Element Models (CEMs) into openEHR archetypes. Methods Our transformation method exploits the fact that the information models of the most relevant EHR specifications are available in the Web Ontology Language (OWL). The transformation approach is based on defining mappings between those ontological structures. We propose a way in which CEM entities can be transformed into openEHR by using transformation templates and OWL as common representation formalism. The transformation architecture exploits the reasoning and inferencing capabilities of OWL technologies. Results We have devised a generic, flexible approach for the transformation of clinical models, implemented for the unidirectional transformation from CEM to openEHR, a series of reusable transformation templates, a proof-of-concept implementation, and a set of openEHR archetypes that validate the methodological approach. Conclusions We have been able to transform CEM into archetypes in an automatic, flexible, reusable transformation approach that could be extended to other clinical model specifications. We exploit the potential of OWL technologies for supporting the transformation process. We believe that our approach could be useful for international efforts in the area of semantic interoperability of EHR systems. PMID:25670753

  19. Fish Ontology framework for taxonomy-based fish recognition

    PubMed Central

    Ali, Najib M.; Khan, Haris A.; Then, Amy Y-Hui; Ving Ching, Chong; Gaur, Manas

    2017-01-01

    Life science ontologies play an important role in Semantic Web. Given the diversity in fish species and the associated wealth of information, it is imperative to develop an ontology capable of linking and integrating this information in an automated fashion. As such, we introduce the Fish Ontology (FO), an automated classification architecture of existing fish taxa which provides taxonomic information on unknown fish based on metadata restrictions. It is designed to support knowledge discovery, provide semantic annotation of fish and fisheries resources, data integration, and information retrieval. Automated classification for unknown specimens is a unique feature that currently does not appear to exist in other known ontologies. Examples of automated classification for major groups of fish are demonstrated, showing the inferred information by introducing several restrictions at the species or specimen level. The current version of FO has 1,830 classes, includes widely used fisheries terminology, and models major aspects of fish taxonomy, grouping, and character. With more than 30,000 known fish species globally, the FO will be an indispensable tool for fish scientists and other interested users. PMID:28929028

  20. Using Web Ontology Language to Integrate Heterogeneous Databases in the Neurosciences

    PubMed Central

    Lam, Hugo Y.K.; Marenco, Luis; Shepherd, Gordon M.; Miller, Perry L.; Cheung, Kei-Hoi

    2006-01-01

    Integrative neuroscience involves the integration and analysis of diverse types of neuroscience data involving many different experimental techniques. This data will increasingly be distributed across many heterogeneous databases that are web-accessible. Currently, these databases do not expose their schemas (database structures) and their contents to web applications/agents in a standardized, machine-friendly way. This limits database interoperation. To address this problem, we describe a pilot project that illustrates how neuroscience databases can be expressed using the Web Ontology Language, which is a semantically-rich ontological language, as a common data representation language to facilitate complex cross-database queries. In this pilot project, an existing tool called “D2RQ” was used to translate two neuroscience databases (NeuronDB and CoCoDat) into OWL, and the resulting OWL ontologies were then merged. An OWL-based reasoner (Racer) was then used to provide a sophisticated query language (nRQL) to perform integrated queries across the two databases based on the merged ontology. This pilot project is one step toward exploring the use of semantic web technologies in the neurosciences. PMID:17238384

  1. Enhancing Geoscience Research Discovery Through the Semantic Web

    NASA Astrophysics Data System (ADS)

    Rowan, Linda R.; Gross, M. Benjamin; Mayernik, Matthew; Khan, Huda; Boler, Frances; Maull, Keith; Stott, Don; Williams, Steve; Corson-Rikert, Jon; Johns, Erica M.; Daniels, Michael; Krafft, Dean B.; Meertens, Charles

    2016-04-01

    UNAVCO, UCAR, and Cornell University are working together to leverage semantic web technologies to enable discovery of people, datasets, publications and other research products, as well as the connections between them. The EarthCollab project, a U.S. National Science Foundation EarthCube Building Block, is enhancing an existing open-source semantic web application, VIVO, to enhance connectivity across distributed networks of researchers and resources related to the following two geoscience-based communities: (1) the Bering Sea Project, an interdisciplinary field program whose data archive is hosted by NCAR's Earth Observing Laboratory (EOL), and (2) UNAVCO, a geodetic facility and consortium that supports diverse research projects informed by geodesy. People, publications, datasets and grant information have been mapped to an extended version of the VIVO-ISF ontology and ingested into VIVO's database. Much of the VIVO ontology was built for the life sciences, so we have added some components of existing geoscience-based ontologies and a few terms from a local ontology that we created. The UNAVCO VIVO instance, connect.unavco.org, utilizes persistent identifiers whenever possible; for example using ORCIDs for people, publication DOIs, data DOIs and unique NSF grant numbers. Data is ingested using a custom set of scripts that include the ability to perform basic automated and curated disambiguation. VIVO can display a page for every object ingested, including connections to other objects in the VIVO database. A dataset page, for example, includes the dataset type, time interval, DOI, related publications, and authors. The dataset type field provides a connection to all other datasets of the same type. The author's page shows, among other information, related datasets and co-authors. Information previously spread across several unconnected databases is now stored in a single location. In addition to VIVO's default display, the new database can be queried using SPARQL, a query language for semantic data. EarthCollab is extending the VIVO web application. One such extension is the ability to cross-link separate VIVO instances across institutions, allowing local display of externally curated information. For example, Cornell's VIVO faculty pages will display UNAVCO's dataset information and UNAVCO's VIVO will display Cornell faculty member contact and position information. About half of UNAVCO's membership is international and we hope to connect our data to institutions in other countries with a similar approach. Additional extensions, including enhanced geospatial capabilities, will be developed based on task-centered usability testing.

  2. Ontology-Based e-Assessment for Accounting Education

    ERIC Educational Resources Information Center

    Litherland, Kate; Carmichael, Patrick; Martínez-García, Agustina

    2013-01-01

    This summary reports on a pilot of a novel, ontology-based e-assessment system in accounting. The system, OeLe, uses emerging semantic technologies to offer an online assessment environment capable of marking students' free text answers to questions of a conceptual nature. It does this by matching their response with a "concept map" or…

  3. Strategic Industrial Alliances in Paper Industry: XML- vs Ontology-Based Integration Platforms

    ERIC Educational Resources Information Center

    Naumenko, Anton; Nikitin, Sergiy; Terziyan, Vagan; Zharko, Andriy

    2005-01-01

    Purpose: To identify cases related to design of ICT platforms for industrial alliances, where the use of Ontology-driven architectures based on Semantic web standards is more advantageous than application of conventional modeling together with XML standards. Design/methodology/approach: A comparative analysis of the two latest and the most obvious…

  4. FoodWiki: Ontology-Driven Mobile Safe Food Consumption System

    PubMed Central

    Çelik, Duygu

    2015-01-01

    An ontology-driven safe food consumption mobile system is considered. Over 3,000 compounds are being added to processed food, with numerous effects on the food: to add color, stabilize, texturize, preserve, sweeten, thicken, add flavor, soften, emulsify, and so forth. According to World Health Organization, governments have lately focused on legislation to reduce such ingredients or compounds in manufactured foods as they may have side effects causing health risks such as heart disease, cancer, diabetes, allergens, and obesity. By supervising what and how much to eat as well as what not to eat, we can maximize a patient's life quality through avoidance of unhealthy ingredients. Smart e-health systems with powerful knowledge bases can provide suggestions of appropriate foods to individuals. Next-generation smart knowledgebase systems will not only include traditional syntactic-based search, which limits the utility of the search results, but will also provide semantics for rich searching. In this paper, performance of concept matching of food ingredients is semantic-based, meaning that it runs its own semantic based rule set to infer meaningful results through the proposed Ontology-Driven Mobile Safe Food Consumption System (FoodWiki). PMID:26221624

  5. Federated ontology-based queries over cancer data

    PubMed Central

    2012-01-01

    Background Personalised medicine provides patients with treatments that are specific to their genetic profiles. It requires efficient data sharing of disparate data types across a variety of scientific disciplines, such as molecular biology, pathology, radiology and clinical practice. Personalised medicine aims to offer the safest and most effective therapeutic strategy based on the gene variations of each subject. In particular, this is valid in oncology, where knowledge about genetic mutations has already led to new therapies. Current molecular biology techniques (microarrays, proteomics, epigenetic technology and improved DNA sequencing technology) enable better characterisation of cancer tumours. The vast amounts of data, however, coupled with the use of different terms - or semantic heterogeneity - in each discipline makes the retrieval and integration of information difficult. Results Existing software infrastructures for data-sharing in the cancer domain, such as caGrid, support access to distributed information. caGrid follows a service-oriented model-driven architecture. Each data source in caGrid is associated with metadata at increasing levels of abstraction, including syntactic, structural, reference and domain metadata. The domain metadata consists of ontology-based annotations associated with the structural information of each data source. However, caGrid's current querying functionality is given at the structural metadata level, without capitalising on the ontology-based annotations. This paper presents the design of and theoretical foundations for distributed ontology-based queries over cancer research data. Concept-based queries are reformulated to the target query language, where join conditions between multiple data sources are found by exploiting the semantic annotations. The system has been implemented, as a proof of concept, over the caGrid infrastructure. The approach is applicable to other model-driven architectures. A graphical user interface has been developed, supporting ontology-based queries over caGrid data sources. An extensive evaluation of the query reformulation technique is included. Conclusions To support personalised medicine in oncology, it is crucial to retrieve and integrate molecular, pathology, radiology and clinical data in an efficient manner. The semantic heterogeneity of the data makes this a challenging task. Ontologies provide a formal framework to support querying and integration. This paper provides an ontology-based solution for querying distributed databases over service-oriented, model-driven infrastructures. PMID:22373043

  6. An Observation Capability Semantic-Associated Approach to the Selection of Remote Sensing Satellite Sensors: A Case Study of Flood Observations in the Jinsha River Basin

    PubMed Central

    Hu, Chuli; Li, Jie; Lin, Xin

    2018-01-01

    Observation schedules depend upon the accurate understanding of a single sensor’s observation capability and the interrelated observation capability information on multiple sensors. The general ontologies for sensors and observations are abundant. However, few observation capability ontologies for satellite sensors are available, and no study has described the dynamic associations among the observation capabilities of multiple sensors used for integrated observational planning. This limitation results in a failure to realize effective sensor selection. This paper develops a sensor observation capability association (SOCA) ontology model that is resolved around the task-sensor-observation capability (TSOC) ontology pattern. The pattern is developed considering the stimulus-sensor-observation (SSO) ontology design pattern, which focuses on facilitating sensor selection for one observation task. The core aim of the SOCA ontology model is to achieve an observation capability semantic association. A prototype system called SemOCAssociation was developed, and an experiment was conducted for flood observations in the Jinsha River basin in China. The results of this experiment verified that the SOCA ontology based association method can help sensor planners intuitively and accurately make evidence-based sensor selection decisions for a given flood observation task, which facilitates efficient and effective observational planning for flood satellite sensors. PMID:29883425

  7. An Observation Capability Semantic-Associated Approach to the Selection of Remote Sensing Satellite Sensors: A Case Study of Flood Observations in the Jinsha River Basin.

    PubMed

    Hu, Chuli; Li, Jie; Lin, Xin; Chen, Nengcheng; Yang, Chao

    2018-05-21

    Observation schedules depend upon the accurate understanding of a single sensor’s observation capability and the interrelated observation capability information on multiple sensors. The general ontologies for sensors and observations are abundant. However, few observation capability ontologies for satellite sensors are available, and no study has described the dynamic associations among the observation capabilities of multiple sensors used for integrated observational planning. This limitation results in a failure to realize effective sensor selection. This paper develops a sensor observation capability association (SOCA) ontology model that is resolved around the task-sensor-observation capability (TSOC) ontology pattern. The pattern is developed considering the stimulus-sensor-observation (SSO) ontology design pattern, which focuses on facilitating sensor selection for one observation task. The core aim of the SOCA ontology model is to achieve an observation capability semantic association. A prototype system called SemOCAssociation was developed, and an experiment was conducted for flood observations in the Jinsha River basin in China. The results of this experiment verified that the SOCA ontology based association method can help sensor planners intuitively and accurately make evidence-based sensor selection decisions for a given flood observation task, which facilitates efficient and effective observational planning for flood satellite sensors.

  8. Integrating reasoning and clinical archetypes using OWL ontologies and SWRL rules.

    PubMed

    Lezcano, Leonardo; Sicilia, Miguel-Angel; Rodríguez-Solano, Carlos

    2011-04-01

    Semantic interoperability is essential to facilitate the computerized support for alerts, workflow management and evidence-based healthcare across heterogeneous electronic health record (EHR) systems. Clinical archetypes, which are formal definitions of specific clinical concepts defined as specializations of a generic reference (information) model, provide a mechanism to express data structures in a shared and interoperable way. However, currently available archetype languages do not provide direct support for mapping to formal ontologies and then exploiting reasoning on clinical knowledge, which are key ingredients of full semantic interoperability, as stated in the SemanticHEALTH report [1]. This paper reports on an approach to translate definitions expressed in the openEHR Archetype Definition Language (ADL) to a formal representation expressed using the Ontology Web Language (OWL). The formal representations are then integrated with rules expressed with Semantic Web Rule Language (SWRL) expressions, providing an approach to apply the SWRL rules to concrete instances of clinical data. Sharing the knowledge expressed in the form of rules is consistent with the philosophy of open sharing, encouraged by archetypes. Our approach also allows the reuse of formal knowledge, expressed through ontologies, and extends reuse to propositions of declarative knowledge, such as those encoded in clinical guidelines. This paper describes the ADL-to-OWL translation approach, describes the techniques to map archetypes to formal ontologies, and demonstrates how rules can be applied to the resulting representation. We provide examples taken from a patient safety alerting system to illustrate our approach. Copyright © 2010 Elsevier Inc. All rights reserved.

  9. Annotating Diseases Using Human Phenotype Ontology Improves Prediction of Disease-Associated Long Non-coding RNAs.

    PubMed

    Le, Duc-Hau; Dao, Lan T M

    2018-05-23

    Recently, many long non-coding RNAs (lncRNAs) have been identified and their biological function has been characterized; however, our understanding of their underlying molecular mechanisms related to disease is still limited. To overcome the limitation in experimentally identifying disease-lncRNA associations, computational methods have been proposed as a powerful tool to predict such associations. These methods are usually based on the similarities between diseases or lncRNAs since it was reported that similar diseases are associated with functionally similar lncRNAs. Therefore, prediction performance is highly dependent on how well the similarities can be captured. Previous studies have calculated the similarity between two diseases by mapping exactly each disease to a single Disease Ontology (DO) term, and then use a semantic similarity measure to calculate the similarity between them. However, the problem of this approach is that a disease can be described by more than one DO terms. Until now, there is no annotation database of DO terms for diseases except for genes. In contrast, Human Phenotype Ontology (HPO) is designed to fully annotate human disease phenotypes. Therefore, in this study, we constructed disease similarity networks/matrices using HPO instead of DO. Then, we used these networks/matrices as inputs of two representative machine learning-based and network-based ranking algorithms, that is, regularized least square and heterogeneous graph-based inference, respectively. The results showed that the prediction performance of the two algorithms on HPO-based is better than that on DO-based networks/matrices. In addition, our method can predict 11 novel cancer-associated lncRNAs, which are supported by literature evidence. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. DOLCE ROCKS: Integrating Foundational and Geoscience Ontologies--Preliminary Results for the Integration of Concepts from DOLCE, GeoSciML, and SWEET

    NASA Astrophysics Data System (ADS)

    Brodaric, B.; Probst, F.

    2007-12-01

    Ontologies are being developed bottom-up in many geoscience domains to aid semantic-enabled computing. The contents of these ontologies are typically partitioned along domain boundaries, such as geology, geophsyics, hydrology, or are developed for specific data sets or processing needs. At the same time, very general foundational ontologies are being independently developed top-down to help facilitate integration of knowledge across such domains, and to provide homogeneity to the organization of knowledge within the domains. In this work we investigate the suitability of integrating the DOLCE foundational ontology with concepts from two prominent geoscience knowledge representations, GeoSciML and SWEET, to investigate the alignment of the concepts found within the foundational and domain representations. The geoscience concepts are partially mapped to each other and to those in the foundational ontology, via the subclass and other relations, resulting in an integrated OWL-based ontology called DOLCE ROCKS. These preliminary results demonstrate variable alignment between the foundational and domain concepts, and also between the domain concepts. Further work is required to ascertain the impact of this integrated ontology approach on broader geoscience ontology design, on the unification of domain ontologies, as well as their use within semantic-enabled geoscience applications.

  11. Towards Semantic Modelling of Business Processes for Networked Enterprises

    NASA Astrophysics Data System (ADS)

    Furdík, Karol; Mach, Marián; Sabol, Tomáš

    The paper presents an approach to the semantic modelling and annotation of business processes and information resources, as it was designed within the FP7 ICT EU project SPIKE to support creation and maintenance of short-term business alliances and networked enterprises. A methodology for the development of the resource ontology, as a shareable knowledge model for semantic description of business processes, is proposed. Systematically collected user requirements, conceptual models implied by the selected implementation platform as well as available ontology resources and standards are employed in the ontology creation. The process of semantic annotation is described and illustrated using an example taken from a real application case.

  12. An ontology-driven semantic mash-up of gene and biological pathway information: Application to the domain of nicotine dependence

    PubMed Central

    Sahoo, Satya S.; Bodenreider, Olivier; Rutter, Joni L.; Skinner, Karen J.; Sheth, Amit P.

    2008-01-01

    Objectives This paper illustrates how Semantic Web technologies (especially RDF, OWL, and SPARQL) can support information integration and make it easy to create semantic mashups (semantically integrated resources). In the context of understanding the genetic basis of nicotine dependence, we integrate gene and pathway information and show how three complex biological queries can be answered by the integrated knowledge base. Methods We use an ontology-driven approach to integrate two gene resources (Entrez Gene and HomoloGene) and three pathway resources (KEGG, Reactome and BioCyc), for five organisms, including humans. We created the Entrez Knowledge Model (EKoM), an information model in OWL for the gene resources, and integrated it with the extant BioPAX ontology designed for pathway resources. The integrated schema is populated with data from the pathway resources, publicly available in BioPAX-compatible format, and gene resources for which a population procedure was created. The SPARQL query language is used to formulate queries over the integrated knowledge base to answer the three biological queries. Results Simple SPARQL queries could easily identify hub genes, i.e., those genes whose gene products participate in many pathways or interact with many other gene products. The identification of the genes expressed in the brain turned out to be more difficult, due to the lack of a common identification scheme for proteins. Conclusion Semantic Web technologies provide a valid framework for information integration in the life sciences. Ontology-driven integration represents a flexible, sustainable and extensible solution to the integration of large volumes of information. Additional resources, which enable the creation of mappings between information sources, are required to compensate for heterogeneity across namespaces. Resource page http://knoesis.wright.edu/research/lifesci/integration/structured_data/JBI-2008/ PMID:18395495

  13. An ontology-driven semantic mashup of gene and biological pathway information: application to the domain of nicotine dependence.

    PubMed

    Sahoo, Satya S; Bodenreider, Olivier; Rutter, Joni L; Skinner, Karen J; Sheth, Amit P

    2008-10-01

    This paper illustrates how Semantic Web technologies (especially RDF, OWL, and SPARQL) can support information integration and make it easy to create semantic mashups (semantically integrated resources). In the context of understanding the genetic basis of nicotine dependence, we integrate gene and pathway information and show how three complex biological queries can be answered by the integrated knowledge base. We use an ontology-driven approach to integrate two gene resources (Entrez Gene and HomoloGene) and three pathway resources (KEGG, Reactome and BioCyc), for five organisms, including humans. We created the Entrez Knowledge Model (EKoM), an information model in OWL for the gene resources, and integrated it with the extant BioPAX ontology designed for pathway resources. The integrated schema is populated with data from the pathway resources, publicly available in BioPAX-compatible format, and gene resources for which a population procedure was created. The SPARQL query language is used to formulate queries over the integrated knowledge base to answer the three biological queries. Simple SPARQL queries could easily identify hub genes, i.e., those genes whose gene products participate in many pathways or interact with many other gene products. The identification of the genes expressed in the brain turned out to be more difficult, due to the lack of a common identification scheme for proteins. Semantic Web technologies provide a valid framework for information integration in the life sciences. Ontology-driven integration represents a flexible, sustainable and extensible solution to the integration of large volumes of information. Additional resources, which enable the creation of mappings between information sources, are required to compensate for heterogeneity across namespaces. RESOURCE PAGE: http://knoesis.wright.edu/research/lifesci/integration/structured_data/JBI-2008/

  14. A Software Engineering Approach based on WebML and BPMN to the Mediation Scenario of the SWS Challenge

    NASA Astrophysics Data System (ADS)

    Brambilla, Marco; Ceri, Stefano; Valle, Emanuele Della; Facca, Federico M.; Tziviskou, Christina

    Although Semantic Web Services are expected to produce a revolution in the development of Web-based systems, very few enterprise-wide design experiences are available; one of the main reasons is the lack of sound Software Engineering methods and tools for the deployment of Semantic Web applications. In this chapter, we present an approach to software development for the Semantic Web based on classical Software Engineering methods (i.e., formal business process development, computer-aided and component-based software design, and automatic code generation) and on semantic methods and tools (i.e., ontology engineering, semantic service annotation and discovery).

  15. Noesis: Ontology based Scoped Search Engine and Resource Aggregator for Atmospheric Science

    NASA Astrophysics Data System (ADS)

    Ramachandran, R.; Movva, S.; Li, X.; Cherukuri, P.; Graves, S.

    2006-12-01

    The goal for search engines is to return results that are both accurate and complete. The search engines should find only what you really want and find everything you really want. Search engines (even meta search engines) lack semantics. The basis for search is simply based on string matching between the user's query term and the resource database and the semantics associated with the search string is not captured. For example, if an atmospheric scientist is searching for "pressure" related web resources, most search engines return inaccurate results such as web resources related to blood pressure. In this presentation Noesis, which is a meta-search engine and a resource aggregator that uses domain ontologies to provide scoped search capabilities will be described. Noesis uses domain ontologies to help the user scope the search query to ensure that the search results are both accurate and complete. The domain ontologies guide the user to refine their search query and thereby reduce the user's burden of experimenting with different search strings. Semantics are captured by refining the query terms to cover synonyms, specializations, generalizations and related concepts. Noesis also serves as a resource aggregator. It categorizes the search results from different online resources such as education materials, publications, datasets, web search engines that might be of interest to the user.

  16. Towards Agile Ontology Maintenance

    NASA Astrophysics Data System (ADS)

    Luczak-Rösch, Markus

    Ontologies are an appropriate means to represent knowledge on the Web. Research on ontology engineering reached practices for an integrative lifecycle support. However, a broader success of ontologies in Web-based information systems remains unreached while the more lightweight semantic approaches are rather successful. We assume, paired with the emerging trend of services and microservices on the Web, new dynamic scenarios gain momentum in which a shared knowledge base is made available to several dynamically changing services with disparate requirements. Our work envisions a step towards such a dynamic scenario in which an ontology adapts to the requirements of the accessing services and applications as well as the user's needs in an agile way and reduces the experts' involvement in ontology maintenance processes.

  17. OMOGENIA: A Semantically Driven Collaborative Environment

    NASA Astrophysics Data System (ADS)

    Liapis, Aggelos

    Ontology creation can be thought of as a social procedure. Indeed the concepts involved in general need to be elicited from communities of domain experts and end-users by teams of knowledge engineers. Many problems in ontology creation appear to resemble certain problems in software design, particularly with respect to the setup of collaborative systems. For instance, the resolution of conceptual conflicts between formalized ontologies is a major engineering problem as ontologies move into widespread use on the semantic web. Such conflict resolution often requires human collaboration and cannot be achieved by automated methods with the exception of simple cases. In this chapter we discuss research in the field of computer-supported cooperative work (CSCW) that focuses on classification and which throws light on ontology building. Furthermore, we present a semantically driven collaborative environment called OMOGENIA as a natural way to display and examine the structure of an evolving ontology in a collaborative setting.

  18. Data-driven Ontology Development: A Case Study at NASA's Atmospheric Science Data Center

    NASA Astrophysics Data System (ADS)

    Hertz, J.; Huffer, E.; Kusterer, J.

    2012-12-01

    Well-founded ontologies are key to enabling transformative semantic technologies and accelerating scientific research. One example is semantically enabled search and discovery, making scientific data accessible and more understandable by accurately modeling a complex domain. The ontology creation process remains a challenge for many anxious to pursue semantic technologies. The key may be that the creation process -- whether formal, community-based, automated or semi-automated -- should encompass not only a foundational core and supplemental resources but also a focus on the purpose or mission the ontology is created to support. Are there tools or processes to de-mystify, assess or enhance the resulting ontology? We suggest that comparison and analysis of a domain-focused ontology can be made using text engineering tools for information extraction, tokenizers, named entity transducers and others. The results are analyzed to ensure the ontology reflects the core purpose of the domain's mission and that the ontology integrates and describes the supporting data in the language of the domain - how the science is analyzed and discussed among all users of the data. Commonalities and relationships among domain resources describing the Clouds and Earth's Radiant Energy (CERES) Bi-Directional Scan (BDS) datasets from NASA's Atmospheric Science Data Center are compared. The domain resources include: a formal ontology created for CERES; scientific works such as papers, conference proceedings and notes; information extracted from the datasets (i.e., header metadata); and BDS scientific documentation (Algorithm Theoretical Basis Documents, collection guides, data quality summaries and others). These resources are analyzed using the open source software General Architecture for Text Engineering, a mature framework for computational tasks involving human language.

  19. Querying phenotype-genotype relationships on patient datasets using semantic web technology: the example of cerebrotendinous xanthomatosis

    PubMed Central

    2012-01-01

    Background Semantic Web technology can considerably catalyze translational genetics and genomics research in medicine, where the interchange of information between basic research and clinical levels becomes crucial. This exchange involves mapping abstract phenotype descriptions from research resources, such as knowledge databases and catalogs, to unstructured datasets produced through experimental methods and clinical practice. This is especially true for the construction of mutation databases. This paper presents a way of harmonizing abstract phenotype descriptions with patient data from clinical practice, and querying this dataset about relationships between phenotypes and genetic variants, at different levels of abstraction. Methods Due to the current availability of ontological and terminological resources that have already reached some consensus in biomedicine, a reuse-based ontology engineering approach was followed. The proposed approach uses the Ontology Web Language (OWL) to represent the phenotype ontology and the patient model, the Semantic Web Rule Language (SWRL) to bridge the gap between phenotype descriptions and clinical data, and the Semantic Query Web Rule Language (SQWRL) to query relevant phenotype-genotype bidirectional relationships. The work tests the use of semantic web technology in the biomedical research domain named cerebrotendinous xanthomatosis (CTX), using a real dataset and ontologies. Results A framework to query relevant phenotype-genotype bidirectional relationships is provided. Phenotype descriptions and patient data were harmonized by defining 28 Horn-like rules in terms of the OWL concepts. In total, 24 patterns of SWQRL queries were designed following the initial list of competency questions. As the approach is based on OWL, the semantic of the framework adapts the standard logical model of an open world assumption. Conclusions This work demonstrates how semantic web technologies can be used to support flexible representation and computational inference mechanisms required to query patient datasets at different levels of abstraction. The open world assumption is especially good for describing only partially known phenotype-genotype relationships, in a way that is easily extensible. In future, this type of approach could offer researchers a valuable resource to infer new data from patient data for statistical analysis in translational research. In conclusion, phenotype description formalization and mapping to clinical data are two key elements for interchanging knowledge between basic and clinical research. PMID:22849591

  20. Handling Real-World Context Awareness, Uncertainty and Vagueness in Real-Time Human Activity Tracking and Recognition with a Fuzzy Ontology-Based Hybrid Method

    PubMed Central

    Díaz-Rodríguez, Natalia; Cadahía, Olmo León; Cuéllar, Manuel Pegalajar; Lilius, Johan; Calvo-Flores, Miguel Delgado

    2014-01-01

    Human activity recognition is a key task in ambient intelligence applications to achieve proper ambient assisted living. There has been remarkable progress in this domain, but some challenges still remain to obtain robust methods. Our goal in this work is to provide a system that allows the modeling and recognition of a set of complex activities in real life scenarios involving interaction with the environment. The proposed framework is a hybrid model that comprises two main modules: a low level sub-activity recognizer, based on data-driven methods, and a high-level activity recognizer, implemented with a fuzzy ontology to include the semantic interpretation of actions performed by users. The fuzzy ontology is fed by the sub-activities recognized by the low level data-driven component and provides fuzzy ontological reasoning to recognize both the activities and their influence in the environment with semantics. An additional benefit of the approach is the ability to handle vagueness and uncertainty in the knowledge-based module, which substantially outperforms the treatment of incomplete and/or imprecise data with respect to classic crisp ontologies. We validate these advantages with the public CAD-120 dataset (Cornell Activity Dataset), achieving an accuracy of 90.1% and 91.07% for low-level and high-level activities, respectively. This entails an improvement over fully data-driven or ontology-based approaches. PMID:25268914

  1. Developing a semantically rich ontology for the biobank-administration domain

    PubMed Central

    2013-01-01

    Background Biobanks are a critical resource for translational science. Recently, semantic web technologies such as ontologies have been found useful in retrieving research data from biobanks. However, recent research has also shown that there is a lack of data about the administrative aspects of biobanks. These data would be helpful to answer research-relevant questions such as what is the scope of specimens collected in a biobank, what is the curation status of the specimens, and what is the contact information for curators of biobanks. Our use cases include giving researchers the ability to retrieve key administrative data (e.g. contact information, contact's affiliation, etc.) about the biobanks where specific specimens of interest are stored. Thus, our goal is to provide an ontology that represents the administrative entities in biobanking and their relations. We base our ontology development on a set of 53 data attributes called MIABIS, which were in part the result of semantic integration efforts of the European Biobanking and Biomolecular Resources Research Infrastructure (BBMRI). The previous work on MIABIS provided the domain analysis for our ontology. We report on a test of our ontology against competency questions that we derived from the initial BBMRI use cases. Future work includes additional ontology development to answer additional competency questions from these use cases. Results We created an open-source ontology of biobank administration called Ontologized MIABIS (OMIABIS) coded in OWL 2.0 and developed according to the principles of the OBO Foundry. It re-uses pre-existing ontologies when possible in cooperation with developers of other ontologies in related domains, such as the Ontology of Biomedical Investigation. OMIABIS provides a formalized representation of biobanks and their administration. Using the ontology and a set of Description Logic queries derived from the competency questions that we identified, we were able to retrieve test data with perfect accuracy. In addition, we began development of a mapping from the ontology to pre-existing biobank data structures commonly used in the U.S. Conclusions In conclusion, we created OMIABIS, an ontology of biobank administration. We found that basing its development on pre-existing resources to meet the BBMRI use cases resulted in a biobanking ontology that is re-useable in environments other than BBMRI. Our ontology retrieved all true positives and no false positives when queried according to the competency questions we derived from the BBMRI use cases. Mapping OMIABIS to a data structure used for biospecimen collections in a medical center in Little Rock, AR showed adequate coverage of our ontology. PMID:24103726

  2. Knowledge Discovery from Biomedical Ontologies in Cross Domains.

    PubMed

    Shen, Feichen; Lee, Yugyung

    2016-01-01

    In recent years, there is an increasing demand for sharing and integration of medical data in biomedical research. In order to improve a health care system, it is required to support the integration of data by facilitating semantic interoperability systems and practices. Semantic interoperability is difficult to achieve in these systems as the conceptual models underlying datasets are not fully exploited. In this paper, we propose a semantic framework, called Medical Knowledge Discovery and Data Mining (MedKDD), that aims to build a topic hierarchy and serve the semantic interoperability between different ontologies. For the purpose, we fully focus on the discovery of semantic patterns about the association of relations in the heterogeneous information network representing different types of objects and relationships in multiple biological ontologies and the creation of a topic hierarchy through the analysis of the discovered patterns. These patterns are used to cluster heterogeneous information networks into a set of smaller topic graphs in a hierarchical manner and then to conduct cross domain knowledge discovery from the multiple biological ontologies. Thus, patterns made a greater contribution in the knowledge discovery across multiple ontologies. We have demonstrated the cross domain knowledge discovery in the MedKDD framework using a case study with 9 primary biological ontologies from Bio2RDF and compared it with the cross domain query processing approach, namely SLAP. We have confirmed the effectiveness of the MedKDD framework in knowledge discovery from multiple medical ontologies.

  3. Knowledge Discovery from Biomedical Ontologies in Cross Domains

    PubMed Central

    Shen, Feichen; Lee, Yugyung

    2016-01-01

    In recent years, there is an increasing demand for sharing and integration of medical data in biomedical research. In order to improve a health care system, it is required to support the integration of data by facilitating semantic interoperability systems and practices. Semantic interoperability is difficult to achieve in these systems as the conceptual models underlying datasets are not fully exploited. In this paper, we propose a semantic framework, called Medical Knowledge Discovery and Data Mining (MedKDD), that aims to build a topic hierarchy and serve the semantic interoperability between different ontologies. For the purpose, we fully focus on the discovery of semantic patterns about the association of relations in the heterogeneous information network representing different types of objects and relationships in multiple biological ontologies and the creation of a topic hierarchy through the analysis of the discovered patterns. These patterns are used to cluster heterogeneous information networks into a set of smaller topic graphs in a hierarchical manner and then to conduct cross domain knowledge discovery from the multiple biological ontologies. Thus, patterns made a greater contribution in the knowledge discovery across multiple ontologies. We have demonstrated the cross domain knowledge discovery in the MedKDD framework using a case study with 9 primary biological ontologies from Bio2RDF and compared it with the cross domain query processing approach, namely SLAP. We have confirmed the effectiveness of the MedKDD framework in knowledge discovery from multiple medical ontologies. PMID:27548262

  4. Ontology based decision system for breast cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Trabelsi Ben Ameur, Soumaya; Cloppet, Florence; Wendling, Laurent; Sellami, Dorra

    2018-04-01

    In this paper, we focus on analysis and diagnosis of breast masses inspired by expert concepts and rules. Accordingly, a Bag of Words is built based on the ontology of breast cancer diagnosis, accurately described in the Breast Imaging Reporting and Data System. To fill the gap between low level knowledge and expert concepts, a semantic annotation is developed using a machine learning tool. Then, breast masses are classified into benign or malignant according to expert rules implicitly modeled with a set of classifiers (KNN, ANN, SVM and Decision Tree). This semantic context of analysis offers a frame where we can include external factors and other meta-knowledge such as patient risk factors as well as exploiting more than one modality. Based on MRI and DECEDM modalities, our developed system leads a recognition rate of 99.7% with Decision Tree where an improvement of 24.7 % is obtained owing to semantic analysis.

  5. simDEF: definition-based semantic similarity measure of gene ontology terms for functional similarity analysis of genes.

    PubMed

    Pesaranghader, Ahmad; Matwin, Stan; Sokolova, Marina; Beiko, Robert G

    2016-05-01

    Measures of protein functional similarity are essential tools for function prediction, evaluation of protein-protein interactions (PPIs) and other applications. Several existing methods perform comparisons between proteins based on the semantic similarity of their GO terms; however, these measures are highly sensitive to modifications in the topological structure of GO, tend to be focused on specific analytical tasks and concentrate on the GO terms themselves rather than considering their textual definitions. We introduce simDEF, an efficient method for measuring semantic similarity of GO terms using their GO definitions, which is based on the Gloss Vector measure commonly used in natural language processing. The simDEF approach builds optimized definition vectors for all relevant GO terms, and expresses the similarity of a pair of proteins as the cosine of the angle between their definition vectors. Relative to existing similarity measures, when validated on a yeast reference database, simDEF improves correlation with sequence homology by up to 50%, shows a correlation improvement >4% with gene expression in the biological process hierarchy of GO and increases PPI predictability by > 2.5% in F1 score for molecular function hierarchy. Datasets, results and source code are available at http://kiwi.cs.dal.ca/Software/simDEF CONTACT: ahmad.pgh@dal.ca or beiko@cs.dal.ca Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Unintended consequences of existential quantifications in biomedical ontologies

    PubMed Central

    2011-01-01

    Background The Open Biomedical Ontologies (OBO) Foundry is a collection of freely available ontologically structured controlled vocabularies in the biomedical domain. Most of them are disseminated via both the OBO Flatfile Format and the semantic web format Web Ontology Language (OWL), which draws upon formal logic. Based on the interpretations underlying OWL description logics (OWL-DL) semantics, we scrutinize the OWL-DL releases of OBO ontologies to assess whether their logical axioms correspond to the meaning intended by their authors. Results We analyzed ontologies and ontology cross products available via the OBO Foundry site http://www.obofoundry.org for existential restrictions (someValuesFrom), from which we examined a random sample of 2,836 clauses. According to a rating done by four experts, 23% of all existential restrictions in OBO Foundry candidate ontologies are suspicious (Cohens' κ = 0.78). We found a smaller proportion of existential restrictions in OBO Foundry cross products are suspicious, but in this case an accurate quantitative judgment is not possible due to a low inter-rater agreement (κ = 0.07). We identified several typical modeling problems, for which satisfactory ontology design patterns based on OWL-DL were proposed. We further describe several usability issues with OBO ontologies, including the lack of ontological commitment for several common terms, and the proliferation of domain-specific relations. Conclusions The current OWL releases of OBO Foundry (and Foundry candidate) ontologies contain numerous assertions which do not properly describe the underlying biological reality, or are ambiguous and difficult to interpret. The solution is a better anchoring in upper ontologies and a restriction to relatively few, well defined relation types with given domain and range constraints. PMID:22115278

  7. Terminology representation guidelines for biomedical ontologies in the semantic web notations.

    PubMed

    Tao, Cui; Pathak, Jyotishman; Solbrig, Harold R; Wei, Wei-Qi; Chute, Christopher G

    2013-02-01

    Terminologies and ontologies are increasingly prevalent in healthcare and biomedicine. However they suffer from inconsistent renderings, distribution formats, and syntax that make applications through common terminologies services challenging. To address the problem, one could posit a shared representation syntax, associated schema, and tags. We identified a set of commonly-used elements in biomedical ontologies and terminologies based on our experience with the Common Terminology Services 2 (CTS2) Specification as well as the Lexical Grid (LexGrid) project. We propose guidelines for precisely such a shared terminology model, and recommend tags assembled from SKOS, OWL, Dublin Core, RDF Schema, and DCMI meta-terms. We divide these guidelines into lexical information (e.g. synonyms, and definitions) and semantic information (e.g. hierarchies). The latter we distinguish for use by informal terminologies vs. formal ontologies. We then evaluate the guidelines with a spectrum of widely used terminologies and ontologies to examine how the lexical guidelines are implemented, and whether our proposed guidelines would enhance interoperability. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Water Quality Vocabulary Development and Deployment

    NASA Astrophysics Data System (ADS)

    Simons, B. A.; Yu, J.; Cox, S. J.

    2013-12-01

    Semantic descriptions of observed properties and associated units of measure are fundamental to understanding of environmental observations, including groundwater, surface water and marine water quality. Semantic descriptions can be captured in machine-readable ontologies and vocabularies, thus providing support for the annotation of observation values from the disparate data sources with appropriate and accurate metadata, which is critical for achieving semantic interoperability. However, current stand-alone water quality vocabularies provide limited support for cross-system comparisons or data fusion. To enhance semantic interoperability, the alignment of water-quality properties with definitions of chemical entities and units of measure in existing widely-used vocabularies is required. Modern ontologies and vocabularies are expressed, organized and deployed using Semantic Web technologies. We developed an ontology for observed properties (i.e. a model for expressing appropriate controlled vocabularies) which extends the NASA/TopQuadrant QUDT ontology for Unit and QuantityKind with two additional classes and two properties (see accompanying paper by Cox, Simons and Yu). We use our ontology to populate the Water Quality vocabulary with a set of individuals of each of the four key classes (and their subclasses), and add appropriate relationships between these individuals. This ontology is aligned with other relevant stand-alone Water Quality vocabularies and domain ontologies. Developing the Water Quality vocabulary involved two main steps. First, the Water Quality vocabulary was populated with individuals of the ObservedProperty class, which was determined from a census of existing datasets and services. Each ObservedProperty individual relates to other individuals of Unit and QuantityKind (taken from QUDT where possible), and to IdentifiedObject individuals. As a large fraction of observed water quality data are classified by the chemical substance involved, the IdentifiedObject individuals are linked to the ChEBI ontology for definitions of chemical substances.. Second, to allow compatibility with SKOS-based tools and to ensure the vocabulary does not violate the meta-modelling constraints of the OWL-DL profile, the relevant classes in QUDT are declared to be subclasses of SKOS Concept and a shadow SKOS view of ChEBI was generated (as ChEBI models all elements and substances as OWL classes). The provenance of each SKOS concept shadowing an OWL class is recorded using the PROV-O ontology. Some aspects of these processing steps can be automated through SPARQL queries, while other aspects must be done manually. For maintenance and provenance purposes, the complete vocabulary and ontologies are persisted in around 20 separate RDF files (in addition to the QUDT and ChEBI sources), each of which constitutes a separate RDF graph and reflects the various aspects of above steps. The vocabularies are published in multiple ways: - For download as files from the ontology URI - At a SPARQL endpoint - Through a URI-based SKOS API (SISSvoc) - Through search UIs built on top of the SPARQL endpoint or SISSvoc service

  9. An ontology for sensor networks

    NASA Astrophysics Data System (ADS)

    Compton, Michael; Neuhaus, Holger; Bermudez, Luis; Cox, Simon

    2010-05-01

    Sensors and networks of sensors are important ways of monitoring and digitizing reality. As the number and size of sensor networks grows, so too does the amount of data collected. Users of such networks typically need to discover the sensors and data that fit their needs without necessarily understanding the complexities of the network itself. The burden on users is eased if the network and its data are expressed in terms of concepts familiar to the users and their job functions, rather than in terms of the network or how it was designed. Furthermore, the task of collecting and combining data from multiple sensor networks is made easier if metadata about the data and the networks is stored in a format and conceptual models that is amenable to machine reasoning and inference. While the OGC's (Open Geospatial Consortium) SWE (Sensor Web Enablement) standards provide for the description and access to data and metadata for sensors, they do not provide facilities for abstraction, categorization, and reasoning consistent with standard technologies. Once sensors and networks are described using rich semantics (that is, by using logic to describe the sensors, the domain of interest, and the measurements) then reasoning and classification can be used to analyse and categorise data, relate measurements with similar information content, and manage, query and task sensors. This will enable types of automated processing and logical assurance built on OGC standards. The W3C SSN-XG (Semantic Sensor Networks Incubator Group) is producing a generic ontology to describe sensors, their environment and the measurements they make. The ontology provides definitions for the structure of sensors and observations, leaving the details of the observed domain unspecified. This allows abstract representations of real world entities, which are not observed directly but through their observable qualities. Domain semantics, units of measurement, time and time series, and location and mobility ontologies can be easily attached when instantiating the ontology for any particular sensors in a domain. After a review of previous work on the specification of sensors, the group is developing the ontology in conjunction with use case development. Part of the difficulty of such work is that relevant concepts from for example OGC standards and other ontologies must be identified and aligned and also placed in a consistent and logically correct way into the ontology. In terms of alignment with OGC's SWE, the ontology is intended to be able to model concepts from SensorML and O&M. Similar to SensorML and O&M, the ontology is based around concepts of systems, processes, and observations. It supports the description of the physical and processing structure of sensors. Sensors are not constrained to physical sensing devices: rather a sensor is anything that can estimate or calculate the value of a phenomenon, so a device or computational process or combination could play the role of a sensor. The representation of a sensor in the ontology links together what is measured (the domain phenomena), the sensor's physical and other properties and its functions and processing. Parts of the ontology are well aligned with SensorML and O&M, but parts are not, and the group is working to understand how differences from (and alignment with) the OGC standards affect the application of the ontology.

  10. Ontology-Based Administration of Web Directories

    NASA Astrophysics Data System (ADS)

    Horvat, Marko; Gledec, Gordan; Bogunović, Nikola

    Administration of a Web directory and maintenance of its content and the associated structure is a delicate and labor intensive task performed exclusively by human domain experts. Subsequently there is an imminent risk of a directory structures becoming unbalanced, uneven and difficult to use to all except for a few users proficient with the particular Web directory and its domain. These problems emphasize the need to establish two important issues: i) generic and objective measures of Web directories structure quality, and ii) mechanism for fully automated development of a Web directory's structure. In this paper we demonstrate how to formally and fully integrate Web directories with the Semantic Web vision. We propose a set of criteria for evaluation of a Web directory's structure quality. Some criterion functions are based on heuristics while others require the application of ontologies. We also suggest an ontology-based algorithm for construction of Web directories. By using ontologies to describe the semantics of Web resources and Web directories' categories it is possible to define algorithms that can build or rearrange the structure of a Web directory. Assessment procedures can provide feedback and help steer the ontology-based construction process. The issues raised in the article can be equally applied to new and existing Web directories.

  11. The Semantic Mapping of Archival Metadata to the CIDOC CRM Ontology

    ERIC Educational Resources Information Center

    Bountouri, Lina; Gergatsoulis, Manolis

    2011-01-01

    In this article we analyze the main semantics of archival description, expressed through Encoded Archival Description (EAD). Our main target is to map the semantics of EAD to the CIDOC Conceptual Reference Model (CIDOC CRM) ontology as part of a wider integration architecture of cultural heritage metadata. Through this analysis, it is concluded…

  12. The Ontological Perspectives of the Semantic Web and the Metadata Harvesting Protocol: Applications of Metadata for Improving Web Search.

    ERIC Educational Resources Information Center

    Fast, Karl V.; Campbell, D. Grant

    2001-01-01

    Compares the implied ontological frameworks of the Open Archives Initiative Protocol for Metadata Harvesting and the World Wide Web Consortium's Semantic Web. Discusses current search engine technology, semantic markup, indexing principles of special libraries and online databases, and componentization and the distinction between data and…

  13. Designing learning management system interoperability in semantic web

    NASA Astrophysics Data System (ADS)

    Anistyasari, Y.; Sarno, R.; Rochmawati, N.

    2018-01-01

    The extensive adoption of learning management system (LMS) has set the focus on the interoperability requirement. Interoperability is the ability of different computer systems, applications or services to communicate, share and exchange data, information, and knowledge in a precise, effective and consistent way. Semantic web technology and the use of ontologies are able to provide the required computational semantics and interoperability for the automation of tasks in LMS. The purpose of this study is to design learning management system interoperability in the semantic web which currently has not been investigated deeply. Moodle is utilized to design the interoperability. Several database tables of Moodle are enhanced and some features are added. The semantic web interoperability is provided by exploited ontology in content materials. The ontology is further utilized as a searching tool to match user’s queries and available courses. It is concluded that LMS interoperability in Semantic Web is possible to be performed.

  14. Exploration of SWRL Rule Bases through Visualization, Paraphrasing, and Categorization of Rules

    NASA Astrophysics Data System (ADS)

    Hassanpour, Saeed; O'Connor, Martin J.; Das, Amar K.

    Rule bases are increasingly being used as repositories of knowledge content on the Semantic Web. As the size and complexity of these rule bases increases, developers and end users need methods of rule abstraction to facilitate rule management. In this paper, we describe a rule abstraction method for Semantic Web Rule Language (SWRL) rules that is based on lexical analysis and a set of heuristics. Our method results in a tree data structure that we exploit in creating techniques to visualize, paraphrase, and categorize SWRL rules. We evaluate our approach by applying it to several biomedical ontologies that contain SWRL rules, and show how the results reveal rule patterns within the rule base. We have implemented our method as a plug-in tool for Protégé-OWL, the most widely used ontology modeling software for the Semantic Web. Our tool can allow users to rapidly explore content and patterns in SWRL rule bases, enabling their acquisition and management.

  15. A unified software framework for deriving, visualizing, and exploring abstraction networks for ontologies

    PubMed Central

    Ochs, Christopher; Geller, James; Perl, Yehoshua; Musen, Mark A.

    2016-01-01

    Software tools play a critical role in the development and maintenance of biomedical ontologies. One important task that is difficult without software tools is ontology quality assurance. In previous work, we have introduced different kinds of abstraction networks to provide a theoretical foundation for ontology quality assurance tools. Abstraction networks summarize the structure and content of ontologies. One kind of abstraction network that we have used repeatedly to support ontology quality assurance is the partial-area taxonomy. It summarizes structurally and semantically similar concepts within an ontology. However, the use of partial-area taxonomies was ad hoc and not generalizable. In this paper, we describe the Ontology Abstraction Framework (OAF), a unified framework and software system for deriving, visualizing, and exploring partial-area taxonomy abstraction networks. The OAF includes support for various ontology representations (e.g., OWL and SNOMED CT's relational format). A Protégé plugin for deriving “live partial-area taxonomies” is demonstrated. PMID:27345947

  16. A unified software framework for deriving, visualizing, and exploring abstraction networks for ontologies.

    PubMed

    Ochs, Christopher; Geller, James; Perl, Yehoshua; Musen, Mark A

    2016-08-01

    Software tools play a critical role in the development and maintenance of biomedical ontologies. One important task that is difficult without software tools is ontology quality assurance. In previous work, we have introduced different kinds of abstraction networks to provide a theoretical foundation for ontology quality assurance tools. Abstraction networks summarize the structure and content of ontologies. One kind of abstraction network that we have used repeatedly to support ontology quality assurance is the partial-area taxonomy. It summarizes structurally and semantically similar concepts within an ontology. However, the use of partial-area taxonomies was ad hoc and not generalizable. In this paper, we describe the Ontology Abstraction Framework (OAF), a unified framework and software system for deriving, visualizing, and exploring partial-area taxonomy abstraction networks. The OAF includes support for various ontology representations (e.g., OWL and SNOMED CT's relational format). A Protégé plugin for deriving "live partial-area taxonomies" is demonstrated. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. GoWeb: a semantic search engine for the life science web.

    PubMed

    Dietze, Heiko; Schroeder, Michael

    2009-10-01

    Current search engines are keyword-based. Semantic technologies promise a next generation of semantic search engines, which will be able to answer questions. Current approaches either apply natural language processing to unstructured text or they assume the existence of structured statements over which they can reason. Here, we introduce a third approach, GoWeb, which combines classical keyword-based Web search with text-mining and ontologies to navigate large results sets and facilitate question answering. We evaluate GoWeb on three benchmarks of questions on genes and functions, on symptoms and diseases, and on proteins and diseases. The first benchmark is based on the BioCreAtivE 1 Task 2 and links 457 gene names with 1352 functions. GoWeb finds 58% of the functional GeneOntology annotations. The second benchmark is based on 26 case reports and links symptoms with diseases. GoWeb achieves 77% success rate improving an existing approach by nearly 20%. The third benchmark is based on 28 questions in the TREC genomics challenge and links proteins to diseases. GoWeb achieves a success rate of 79%. GoWeb's combination of classical Web search with text-mining and ontologies is a first step towards answering questions in the biomedical domain. GoWeb is online at: http://www.gopubmed.org/goweb.

  18. CASAS: A tool for composing automatically and semantically astrophysical services

    NASA Astrophysics Data System (ADS)

    Louge, T.; Karray, M. H.; Archimède, B.; Knödlseder, J.

    2017-07-01

    Multiple astronomical datasets are available through internet and the astrophysical Distributed Computing Infrastructure (DCI) called Virtual Observatory (VO). Some scientific workflow technologies exist for retrieving and combining data from those sources. However selection of relevant services, automation of the workflows composition and the lack of user-friendly platforms remain a concern. This paper presents CASAS, a tool for semantic web services composition in astrophysics. This tool proposes automatic composition of astrophysical web services and brings a semantics-based, automatic composition of workflows. It widens the services choice and eases the use of heterogeneous services. Semantic web services composition relies on ontologies for elaborating the services composition; this work is based on Astrophysical Services ONtology (ASON). ASON had its structure mostly inherited from the VO services capacities. Nevertheless, our approach is not limited to the VO and brings VO plus non-VO services together without the need for premade recipes. CASAS is available for use through a simple web interface.

  19. A common layer of interoperability for biomedical ontologies based on OWL EL.

    PubMed

    Hoehndorf, Robert; Dumontier, Michel; Oellrich, Anika; Wimalaratne, Sarala; Rebholz-Schuhmann, Dietrich; Schofield, Paul; Gkoutos, Georgios V

    2011-04-01

    Ontologies are essential in biomedical research due to their ability to semantically integrate content from different scientific databases and resources. Their application improves capabilities for querying and mining biological knowledge. An increasing number of ontologies is being developed for this purpose, and considerable effort is invested into formally defining them in order to represent their semantics explicitly. However, current biomedical ontologies do not facilitate data integration and interoperability yet, since reasoning over these ontologies is very complex and cannot be performed efficiently or is even impossible. We propose the use of less expressive subsets of ontology representation languages to enable efficient reasoning and achieve the goal of genuine interoperability between ontologies. We present and evaluate EL Vira, a framework that transforms OWL ontologies into the OWL EL subset, thereby enabling the use of tractable reasoning. We illustrate which OWL constructs and inferences are kept and lost following the conversion and demonstrate the performance gain of reasoning indicated by the significant reduction of processing time. We applied EL Vira to the open biomedical ontologies and provide a repository of ontologies resulting from this conversion. EL Vira creates a common layer of ontological interoperability that, for the first time, enables the creation of software solutions that can employ biomedical ontologies to perform inferences and answer complex queries to support scientific analyses. The EL Vira software is available from http://el-vira.googlecode.com and converted OBO ontologies and their mappings are available from http://bioonto.gen.cam.ac.uk/el-ont.

  20. Assigning clinical codes with data-driven concept representation on Dutch clinical free text.

    PubMed

    Scheurwegs, Elyne; Luyckx, Kim; Luyten, Léon; Goethals, Bart; Daelemans, Walter

    2017-05-01

    Clinical codes are used for public reporting purposes, are fundamental to determining public financing for hospitals, and form the basis for reimbursement claims to insurance providers. They are assigned to a patient stay to reflect the diagnosis and performed procedures during that stay. This paper aims to enrich algorithms for automated clinical coding by taking a data-driven approach and by using unsupervised and semi-supervised techniques for the extraction of multi-word expressions that convey a generalisable medical meaning (referred to as concepts). Several methods for extracting concepts from text are compared, two of which are constructed from a large unannotated corpus of clinical free text. A distributional semantic model (i.c. the word2vec skip-gram model) is used to generalize over concepts and retrieve relations between them. These methods are validated on three sets of patient stay data, in the disease areas of urology, cardiology, and gastroenterology. The datasets are in Dutch, which introduces a limitation on available concept definitions from expert-based ontologies (e.g. UMLS). The results show that when expert-based knowledge in ontologies is unavailable, concepts derived from raw clinical texts are a reliable alternative. Both concepts derived from raw clinical texts perform and concepts derived from expert-created dictionaries outperform a bag-of-words approach in clinical code assignment. Adding features based on tokens that appear in a semantically similar context has a positive influence for predicting diagnostic codes. Furthermore, the experiments indicate that a distributional semantics model can find relations between semantically related concepts in texts but also introduces erroneous and redundant relations, which can undermine clinical coding performance. Copyright © 2017. Published by Elsevier Inc.

  1. Investigating implicit knowledge in ontologies with application to the anatomical domain.

    PubMed

    Zhang, S; Bodenreider, O

    2004-01-01

    Knowledge in biomedical ontologies can be explicitly represented (often by means of semantic relations), but may also be implicit, i.e., embedded in the concept names and inferable from various combinations of semantic relations. This paper investigates implicit knowledge in two ontologies of anatomy: the Foundational Model of Anatomy and GALEN. The methods consist of extracting the knowledge explicitly represented, acquiring the implicit knowledge through augmentation and inference techniques, and identifying the origin of each semantic relation. The number of relations (12 million in FMA and 4.6 million in GALEN), broken down by source, is presented. Major findings include: each technique provides specific relations; and many relations can be generated by more than one technique. The application of these findings to ontology auditing, validation, and maintenance is discussed, as well as the application to ontology integration.

  2. Transformation of standardized clinical models based on OWL technologies: from CEM to OpenEHR archetypes.

    PubMed

    Legaz-García, María del Carmen; Menárguez-Tortosa, Marcos; Fernández-Breis, Jesualdo Tomás; Chute, Christopher G; Tao, Cui

    2015-05-01

    The semantic interoperability of electronic healthcare records (EHRs) systems is a major challenge in the medical informatics area. International initiatives pursue the use of semantically interoperable clinical models, and ontologies have frequently been used in semantic interoperability efforts. The objective of this paper is to propose a generic, ontology-based, flexible approach for supporting the automatic transformation of clinical models, which is illustrated for the transformation of Clinical Element Models (CEMs) into openEHR archetypes. Our transformation method exploits the fact that the information models of the most relevant EHR specifications are available in the Web Ontology Language (OWL). The transformation approach is based on defining mappings between those ontological structures. We propose a way in which CEM entities can be transformed into openEHR by using transformation templates and OWL as common representation formalism. The transformation architecture exploits the reasoning and inferencing capabilities of OWL technologies. We have devised a generic, flexible approach for the transformation of clinical models, implemented for the unidirectional transformation from CEM to openEHR, a series of reusable transformation templates, a proof-of-concept implementation, and a set of openEHR archetypes that validate the methodological approach. We have been able to transform CEM into archetypes in an automatic, flexible, reusable transformation approach that could be extended to other clinical model specifications. We exploit the potential of OWL technologies for supporting the transformation process. We believe that our approach could be useful for international efforts in the area of semantic interoperability of EHR systems. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Exploring biomedical ontology mappings with graph theory methods.

    PubMed

    Kocbek, Simon; Kim, Jin-Dong

    2017-01-01

    In the era of semantic web, life science ontologies play an important role in tasks such as annotating biological objects, linking relevant data pieces, and verifying data consistency. Understanding ontology structures and overlapping ontologies is essential for tasks such as ontology reuse and development. We present an exploratory study where we examine structure and look for patterns in BioPortal, a comprehensive publicly available repository of live science ontologies. We report an analysis of biomedical ontology mapping data over time. We apply graph theory methods such as Modularity Analysis and Betweenness Centrality to analyse data gathered at five different time points. We identify communities, i.e., sets of overlapping ontologies, and define similar and closest communities. We demonstrate evolution of identified communities over time and identify core ontologies of the closest communities. We use BioPortal project and category data to measure community coherence. We also validate identified communities with their mutual mentions in scientific literature. With comparing mapping data gathered at five different time points, we identified similar and closest communities of overlapping ontologies, and demonstrated evolution of communities over time. Results showed that anatomy and health ontologies tend to form more isolated communities compared to other categories. We also showed that communities contain all or the majority of ontologies being used in narrower projects. In addition, we identified major changes in mapping data after migration to BioPortal Version 4.

  4. Combining the Generic Entity-Attribute-Value Model and Terminological Models into a Common Ontology to Enable Data Integration and Decision Support.

    PubMed

    Bouaud, Jacques; Guézennec, Gilles; Séroussi, Brigitte

    2018-01-01

    The integration of clinical information models and termino-ontological models into a unique ontological framework is highly desirable for it facilitates data integration and management using the same formal mechanisms for both data concepts and information model components. This is particularly true for knowledge-based decision support tools that aim to take advantage of all facets of semantic web technologies in merging ontological reasoning, concept classification, and rule-based inferences. We present an ontology template that combines generic data model components with (parts of) existing termino-ontological resources. The approach is developed for the guideline-based decision support module on breast cancer management within the DESIREE European project. The approach is based on the entity attribute value model and could be extended to other domains.

  5. Using Semantic Association to Extend and Infer Literature-Oriented Relativity Between Terms.

    PubMed

    Cheng, Liang; Li, Jie; Hu, Yang; Jiang, Yue; Liu, Yongzhuang; Chu, Yanshuo; Wang, Zhenxing; Wang, Yadong

    2015-01-01

    Relative terms often appear together in the literature. Methods have been presented for weighting relativity of pairwise terms by their co-occurring literature and inferring new relationship. Terms in the literature are also in the directed acyclic graph of ontologies, such as Gene Ontology and Disease Ontology. Therefore, semantic association between terms may help for establishing relativities between terms in literature. However, current methods do not use these associations. In this paper, an adjusted R-scaled score (ARSS) based on information content (ARSSIC) method is introduced to infer new relationship between terms. First, set inclusion relationship between terms of ontology was exploited to extend relationships between these terms and literature. Next, the ARSS method was presented to measure relativity between terms across ontologies according to these extensional relationships. Then, the ARSSIC method using ratios of information shared of term's ancestors was designed to infer new relationship between terms across ontologies. The result of the experiment shows that ARSS identified more pairs of statistically significant terms based on corresponding gene sets than other methods. And the high average area under the receiver operating characteristic curve (0.9293) shows that ARSSIC achieved a high true positive rate and a low false positive rate. Data is available at http://mlg.hit.edu.cn/ARSSIC/.

  6. Validating EHR clinical models using ontology patterns.

    PubMed

    Martínez-Costa, Catalina; Schulz, Stefan

    2017-12-01

    Clinical models are artefacts that specify how information is structured in electronic health records (EHRs). However, the makeup of clinical models is not guided by any formal constraint beyond a semantically vague information model. We address this gap by advocating ontology design patterns as a mechanism that makes the semantics of clinical models explicit. This paper demonstrates how ontology design patterns can validate existing clinical models using SHACL. Based on the Clinical Information Modelling Initiative (CIMI), we show how ontology patterns detect both modeling and terminology binding errors in CIMI models. SHACL, a W3C constraint language for the validation of RDF graphs, builds on the concept of "Shape", a description of data in terms of expected cardinalities, datatypes and other restrictions. SHACL, as opposed to OWL, subscribes to the Closed World Assumption (CWA) and is therefore more suitable for the validation of clinical models. We have demonstrated the feasibility of the approach by manually describing the correspondences between six CIMI clinical models represented in RDF and two SHACL ontology design patterns. Using a Java-based SHACL implementation, we found at least eleven modeling and binding errors within these CIMI models. This demonstrates the usefulness of ontology design patterns not only as a modeling tool but also as a tool for validation. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Relating UMLS semantic types and task-based ontology to computer-interpretable clinical practice guidelines.

    PubMed

    Kumar, Anand; Ciccarese, Paolo; Quaglini, Silvana; Stefanelli, Mario; Caffi, Ezio; Boiocchi, Lorenzo

    2003-01-01

    Medical knowledge in clinical practice guideline (GL) texts is the source of task-based computer-interpretable clinical guideline models (CIGMs). We have used Unified Medical Language System (UMLS) semantic types (STs) to understand the percentage of GL text which belongs to a particular ST. We also use UMLS semantic network together with the CIGM-specific ontology to derive a semantic meaning behind the GL text. In order to achieve this objective, we took nine GL texts from the National Guideline Clearinghouse (NGC) and marked up the text dealing with a particular ST. The STs we took into consideration were restricted taking into account the requirements of a task-based CIGM. We used DARPA Agent Markup Language and Ontology Inference Layer (DAML + OIL) to create the UMLS and CIGM specific semantic network. For the latter, as a bench test, we used the 1999 WHO-International Society of Hypertension Guidelines for the Management of Hypertension. We took into consideration the UMLS STs closest to the clinical tasks. The percentage of the GL text dealing with the ST "Health Care Activity" and subtypes "Laboratory Procedure", "Diagnostic Procedure" and "Therapeutic or Preventive Procedure" were measured. The parts of text belonging to other STs or comments were separated. A mapping of terms belonging to other STs was done to the STs under "HCA" for representation in DAML + OIL. As a result, we found that the three STs under "HCA" were the predominant STs present in the GL text. In cases where the terms of related STs existed, they were mapped into one of the three STs. The DAML + OIL representation was able to describe the hierarchy in task-based CIGMs. To conclude, we understood that the three STs could be used to represent the semantic network of the task-bases CIGMs. We identified some mapping operators which could be used for the mapping of other STs into these.

  8. Ontology-guided data preparation for discovering genotype-phenotype relationships.

    PubMed

    Coulet, Adrien; Smaïl-Tabbone, Malika; Benlian, Pascale; Napoli, Amedeo; Devignes, Marie-Dominique

    2008-04-25

    Complexity and amount of post-genomic data constitute two major factors limiting the application of Knowledge Discovery in Databases (KDD) methods in life sciences. Bio-ontologies may nowadays play key roles in knowledge discovery in life science providing semantics to data and to extracted units, by taking advantage of the progress of Semantic Web technologies concerning the understanding and availability of tools for knowledge representation, extraction, and reasoning. This paper presents a method that exploits bio-ontologies for guiding data selection within the preparation step of the KDD process. We propose three scenarios in which domain knowledge and ontology elements such as subsumption, properties, class descriptions, are taken into account for data selection, before the data mining step. Each of these scenarios is illustrated within a case-study relative to the search of genotype-phenotype relationships in a familial hypercholesterolemia dataset. The guiding of data selection based on domain knowledge is analysed and shows a direct influence on the volume and significance of the data mining results. The method proposed in this paper is an efficient alternative to numerical methods for data selection based on domain knowledge. In turn, the results of this study may be reused in ontology modelling and data integration.

  9. Semantic Data Access Services at NASA's Atmospheric Science Data Center

    NASA Astrophysics Data System (ADS)

    Huffer, E.; Hertz, J.; Kusterer, J.

    2012-12-01

    The corpus of Earth Science data products at the Atmospheric Science Data Center at NASA's Langley Research Center comprises a widely heterogeneous set of products, even among those whose subject matter is very similar. Two distinct data products may both contain data on the same parameter, for instance, solar irradiance; but the instruments used, and the circumstances under which the data were collected and processed, may differ significantly. Understanding the differences is critical to using the data effectively. Data distribution services must be able to provide prospective users with enough information to allow them to meaningfully compare and evaluate the data products offered. Semantic technologies - ontologies, triple stores, reasoners, linked data - offer functionality for addressing this issue. Ontologies can provide robust, high-fidelity domain models that serve as common schema for discovering, evaluating, comparing and integrating data from disparate products. Reasoning engines and triple stores can leverage ontologies to support intelligent search applications that allow users to discover, query, retrieve, and easily reformat data from a broad spectrum of sources. We argue that because of the extremely complex nature of scientific data, data distribution systems should wholeheartedly embrace semantic technologies in order to make their data accessible to a broad array of prospective end users, and to ensure that the data they provide will be clearly understood and used appropriately by consumers. Toward this end, we propose a distribution system in which formal ontological models that accurately and comprehensively represent the ASDC's data domain, and fully leverage the expressivity and inferential capabilities of first order logic, are used to generate graph-based representations of the relevant relationships among data sets, observational systems, metadata files, and geospatial, temporal and scientific parameters to help prospective data consumers navigate directly to relevant data sets and query, subset, retrieve and compare the measurement and calculation data they contain. A critical part of developing semantically-enabled data distribution capabilities is developing an ontology that adequately describes 1) the data products - their structure, their content, and any supporting documentation; 2) the data domain - the objects and processes that the products denote; and 3) the relationship between the data and the domain. The ontology, in addition, should be machine readable and capable of integrating with the larger data distribution system to provide an interactive user experience. We will demonstrate how a formal, high-fidelity, queriable ontology representing the atmospheric science domain objects and data products, together with a robust set of inference rules for generating interactive graphs, allows researchers to navigate quickly and painlessly through the large volume of data at the ASDC. Scientists will be able to discover data products that exactly meet their particular criteria, link to information about the instruments and processing methods that generated the data; and compare and contrast related products.

  10. To ontologise or not to ontologise: An information model for a geospatial knowledge infrastructure

    NASA Astrophysics Data System (ADS)

    Stock, Kristin; Stojanovic, Tim; Reitsma, Femke; Ou, Yang; Bishr, Mohamed; Ortmann, Jens; Robertson, Anne

    2012-08-01

    A geospatial knowledge infrastructure consists of a set of interoperable components, including software, information, hardware, procedures and standards, that work together to support advanced discovery and creation of geoscientific resources, including publications, data sets and web services. The focus of the work presented is the development of such an infrastructure for resource discovery. Advanced resource discovery is intended to support scientists in finding resources that meet their needs, and focuses on representing the semantic details of the scientific resources, including the detailed aspects of the science that led to the resource being created. This paper describes an information model for a geospatial knowledge infrastructure that uses ontologies to represent these semantic details, including knowledge about domain concepts, the scientific elements of the resource (analysis methods, theories and scientific processes) and web services. This semantic information can be used to enable more intelligent search over scientific resources, and to support new ways to infer and visualise scientific knowledge. The work describes the requirements for semantic support of a knowledge infrastructure, and analyses the different options for information storage based on the twin goals of semantic richness and syntactic interoperability to allow communication between different infrastructures. Such interoperability is achieved by the use of open standards, and the architecture of the knowledge infrastructure adopts such standards, particularly from the geospatial community. The paper then describes an information model that uses a range of different types of ontologies, explaining those ontologies and their content. The information model was successfully implemented in a working geospatial knowledge infrastructure, but the evaluation identified some issues in creating the ontologies.

  11. Construction of an ortholog database using the semantic web technology for integrative analysis of genomic data.

    PubMed

    Chiba, Hirokazu; Nishide, Hiroyo; Uchiyama, Ikuo

    2015-01-01

    Recently, various types of biological data, including genomic sequences, have been rapidly accumulating. To discover biological knowledge from such growing heterogeneous data, a flexible framework for data integration is necessary. Ortholog information is a central resource for interlinking corresponding genes among different organisms, and the Semantic Web provides a key technology for the flexible integration of heterogeneous data. We have constructed an ortholog database using the Semantic Web technology, aiming at the integration of numerous genomic data and various types of biological information. To formalize the structure of the ortholog information in the Semantic Web, we have constructed the Ortholog Ontology (OrthO). While the OrthO is a compact ontology for general use, it is designed to be extended to the description of database-specific concepts. On the basis of OrthO, we described the ortholog information from our Microbial Genome Database for Comparative Analysis (MBGD) in the form of Resource Description Framework (RDF) and made it available through the SPARQL endpoint, which accepts arbitrary queries specified by users. In this framework based on the OrthO, the biological data of different organisms can be integrated using the ortholog information as a hub. Besides, the ortholog information from different data sources can be compared with each other using the OrthO as a shared ontology. Here we show some examples demonstrating that the ortholog information described in RDF can be used to link various biological data such as taxonomy information and Gene Ontology. Thus, the ortholog database using the Semantic Web technology can contribute to biological knowledge discovery through integrative data analysis.

  12. SemantEco: a semantically powered modular architecture for integrating distributed environmental and ecological data

    USGS Publications Warehouse

    Patton, Evan W.; Seyed, Patrice; Wang, Ping; Fu, Linyun; Dein, F. Joshua; Bristol, R. Sky; McGuinness, Deborah L.

    2014-01-01

    We aim to inform the development of decision support tools for resource managers who need to examine large complex ecosystems and make recommendations in the face of many tradeoffs and conflicting drivers. We take a semantic technology approach, leveraging background ontologies and the growing body of linked open data. In previous work, we designed and implemented a semantically enabled environmental monitoring framework called SemantEco and used it to build a water quality portal named SemantAqua. Our previous system included foundational ontologies to support environmental regulation violations and relevant human health effects. In this work, we discuss SemantEco’s new architecture that supports modular extensions and makes it easier to support additional domains. Our enhanced framework includes foundational ontologies to support modeling of wildlife observation and wildlife health impacts, thereby enabling deeper and broader support for more holistically examining the effects of environmental pollution on ecosystems. We conclude with a discussion of how, through the application of semantic technologies, modular designs will make it easier for resource managers to bring in new sources of data to support more complex use cases.

  13. Matching biomedical ontologies based on formal concept analysis.

    PubMed

    Zhao, Mengyi; Zhang, Songmao; Li, Weizhuo; Chen, Guowei

    2018-03-19

    The goal of ontology matching is to identify correspondences between entities from different yet overlapping ontologies so as to facilitate semantic integration, reuse and interoperability. As a well developed mathematical model for analyzing individuals and structuring concepts, Formal Concept Analysis (FCA) has been applied to ontology matching (OM) tasks since the beginning of OM research, whereas ontological knowledge exploited in FCA-based methods is limited. This motivates the study in this paper, i.e., to empower FCA with as much as ontological knowledge as possible for identifying mappings across ontologies. We propose a method based on Formal Concept Analysis to identify and validate mappings across ontologies, including one-to-one mappings, complex mappings and correspondences between object properties. Our method, called FCA-Map, incrementally generates a total of five types of formal contexts and extracts mappings from the lattices derived. First, the token-based formal context describes how class names, labels and synonyms share lexical tokens, leading to lexical mappings (anchors) across ontologies. Second, the relation-based formal context describes how classes are in taxonomic, partonomic and disjoint relationships with the anchors, leading to positive and negative structural evidence for validating the lexical matching. Third, the positive relation-based context can be used to discover structural mappings. Afterwards, the property-based formal context describes how object properties are used in axioms to connect anchor classes across ontologies, leading to property mappings. Last, the restriction-based formal context describes co-occurrence of classes across ontologies in anonymous ancestors of anchors, from which extended structural mappings and complex mappings can be identified. Evaluation on the Anatomy, the Large Biomedical Ontologies, and the Disease and Phenotype track of the 2016 Ontology Alignment Evaluation Initiative campaign demonstrates the effectiveness of FCA-Map and its competitiveness with the top-ranked systems. FCA-Map can achieve a better balance between precision and recall for large-scale domain ontologies through constructing multiple FCA structures, whereas it performs unsatisfactorily for smaller-sized ontologies with less lexical and semantic expressions. Compared with other FCA-based OM systems, the study in this paper is more comprehensive as an attempt to push the envelope of the Formal Concept Analysis formalism in ontology matching tasks. Five types of formal contexts are constructed incrementally, and their derived concept lattices are used to cluster the commonalities among classes at lexical and structural level, respectively. Experiments on large, real-world domain ontologies show promising results and reveal the power of FCA.

  14. CI-Miner: A Semantic Methodology to Integrate Scientists, Data and Documents through the Use of Cyber-Infrastructure

    NASA Astrophysics Data System (ADS)

    Pinheiro da Silva, P.; CyberShARE Center of Excellence

    2011-12-01

    Scientists today face the challenge of rethinking the manner in which they document and make available their processes and data in an international cyber-infrastructure of shared resources. Some relevant examples of new scientific practices in the realm of computational and data extraction sciences include: large scale data discovery; data integration; data sharing across distinct scientific domains, systematic management of trust and uncertainty; and comprehensive support for explaining processes and results. This talk introduces CI-Miner - an innovative hands-on, open-source, community-driven methodology to integrate these new scientific practices. It has been developed in collaboration with scientists, with the purpose of capturing, storing and retrieving knowledge about scientific processes and their products, thereby further supporting a new generation of science techniques based on data exploration. CI-Miner uses semantic annotations in the form of W3C Ontology Web Language-based ontologies and Proof Markup Language (PML)-based provenance to represent knowledge. This methodology specializes in general-purpose ontologies, projected into workflow-driven ontologies(WDOs) and into semantic abstract workflows (SAWs). Provenance in PML is CI-Miner's integrative component, which allows scientists to retrieve and reason with the knowledge represented in these new semantic documents. It serves additionally as a platform to share such collected knowledge with the scientific community participating in the international cyber-infrastructure. The integrated semantic documents that are tailored for the use of human epistemic agents may also be utilized by machine epistemic agents, since the documents are based on W3C Resource Description Framework (RDF) notation. This talk is grounded upon interdisciplinary lessons learned through the use of CI-Miner in support of government-funded national and international cyber-infrastructure initiatives in the areas of geo-sciences (NSF-GEON and NSF-EarthScope), environmental sciences (CEON, NSF NEON, NSF-LTER and DOE-Ameri-Flux), and solar physics (VSTO and NSF-SPCDIS). The discussion on provenance is based on the use of PML in support of projects in collaboration with government organizations (DARPA, ARDA, NSF, DHS and DOE), research organizations (NCAR and PNNL), and industries (IBM and SRI International).

  15. Kernel Methods for Mining Instance Data in Ontologies

    NASA Astrophysics Data System (ADS)

    Bloehdorn, Stephan; Sure, York

    The amount of ontologies and meta data available on the Web is constantly growing. The successful application of machine learning techniques for learning of ontologies from textual data, i.e. mining for the Semantic Web, contributes to this trend. However, no principal approaches exist so far for mining from the Semantic Web. We investigate how machine learning algorithms can be made amenable for directly taking advantage of the rich knowledge expressed in ontologies and associated instance data. Kernel methods have been successfully employed in various learning tasks and provide a clean framework for interfacing between non-vectorial data and machine learning algorithms. In this spirit, we express the problem of mining instances in ontologies as the problem of defining valid corresponding kernels. We present a principled framework for designing such kernels by means of decomposing the kernel computation into specialized kernels for selected characteristics of an ontology which can be flexibly assembled and tuned. Initial experiments on real world Semantic Web data enjoy promising results and show the usefulness of our approach.

  16. Versioning System for Distributed Ontology Development

    DTIC Science & Technology

    2016-02-02

    Semantic   Web   community. For example, the distributed and isolated development requirement may apply to non‐cyber  range communities of public ontology... semantic   web .” However, we observe that the  maintenance of an ontology and its reuse is not a high priority for the majority of the publicly available... Semantic )  Web . AAAI Spring Symposium: Symbiotic Relationships between  Semantic   Web  and  Knowledge Engineering. 2008.  [LHK09] Matthias Loskyll

  17. A Process for the Representation of openEHR ADL Archetypes in OWL Ontologies.

    PubMed

    Porn, Alex Mateus; Peres, Leticia Mara; Didonet Del Fabro, Marcos

    2015-01-01

    ADL is a formal language to express archetypes, independent of standards or domain. However, its specification is not precise enough in relation to the specialization and semantic of archetypes, presenting difficulties in implementation and a few available tools. Archetypes may be implemented using other languages such as XML or OWL, increasing integration with Semantic Web tools. Exchanging and transforming data can be better implemented with semantics oriented models, for example using OWL which is a language to define and instantiate Web ontologies defined by W3C. OWL permits defining significant, detailed, precise and consistent distinctions among classes, properties and relations by the user, ensuring the consistency of knowledge than using ADL techniques. This paper presents a process of an openEHR ADL archetypes representation in OWL ontologies. This process consists of ADL archetypes conversion in OWL ontologies and validation of OWL resultant ontologies using the mutation test.

  18. The ACGT Master Ontology and its applications – Towards an ontology-driven cancer research and management system

    PubMed Central

    Brochhausen, Mathias; Spear, Andrew D.; Cocos, Cristian; Weiler, Gabriele; Martín, Luis; Anguita, Alberto; Stenzhorn, Holger; Daskalaki, Evangelia; Schera, Fatima; Schwarz, Ulf; Sfakianakis, Stelios; Kiefer, Stephan; Dörr, Martin; Graf, Norbert; Tsiknakis, Manolis

    2017-01-01

    Objective This paper introduces the objectives, methods and results of ontology development in the EU co-funded project Advancing Clinico-genomic Trials on Cancer – Open Grid Services for Improving Medical Knowledge Discovery (ACGT). While the available data in the life sciences has recently grown both in amount and quality, the full exploitation of it is being hindered by the use of different underlying technologies, coding systems, category schemes and reporting methods on the part of different research groups. The goal of the ACGT project is to contribute to the resolution of these problems by developing an ontology-driven, semantic grid services infrastructure that will enable efficient execution of discovery-driven scientific workflows in the context of multi-centric, post-genomic clinical trials. The focus of the present paper is the ACGT Master Ontology (MO). Methods ACGT project researchers undertook a systematic review of existing domain and upper-level ontologies, as well as of existing ontology design software, implementation methods, and end-user interfaces. This included the careful study of best practices, design principles and evaluation methods for ontology design, maintenance, implementation, and versioning, as well as for use on the part of domain experts and clinicians. Results To date, the results of the ACGT project include (i) the development of a master ontology (the ACGT-MO) based on clearly defined principles of ontology development and evaluation; (ii) the development of a technical infra-structure (the ACGT Platform) that implements the ACGT-MO utilizing independent tools, components and resources that have been developed based on open architectural standards, and which includes an application updating and evolving the ontology efficiently in response to end-user needs; and (iii) the development of an Ontology-based Trial Management Application (ObTiMA) that integrates the ACGT-MO into the design process of clinical trials in order to guarantee automatic semantic integration without the need to perform a separate mapping process. PMID:20438862

  19. Translating standards into practice - one Semantic Web API for Gene Expression.

    PubMed

    Deus, Helena F; Prud'hommeaux, Eric; Miller, Michael; Zhao, Jun; Malone, James; Adamusiak, Tomasz; McCusker, Jim; Das, Sudeshna; Rocca Serra, Philippe; Fox, Ronan; Marshall, M Scott

    2012-08-01

    Sharing and describing experimental results unambiguously with sufficient detail to enable replication of results is a fundamental tenet of scientific research. In today's cluttered world of "-omics" sciences, data standards and standardized use of terminologies and ontologies for biomedical informatics play an important role in reporting high-throughput experiment results in formats that can be interpreted by both researchers and analytical tools. Increasing adoption of Semantic Web and Linked Data technologies for the integration of heterogeneous and distributed health care and life sciences (HCLSs) datasets has made the reuse of standards even more pressing; dynamic semantic query federation can be used for integrative bioinformatics when ontologies and identifiers are reused across data instances. We present here a methodology to integrate the results and experimental context of three different representations of microarray-based transcriptomic experiments: the Gene Expression Atlas, the W3C BioRDF task force approach to reporting Provenance of Microarray Experiments, and the HSCI blood genomics project. Our approach does not attempt to improve the expressivity of existing standards for genomics but, instead, to enable integration of existing datasets published from microarray-based transcriptomic experiments. SPARQL Construct is used to create a posteriori mappings of concepts and properties and linking rules that match entities based on query constraints. We discuss how our integrative approach can encourage reuse of the Experimental Factor Ontology (EFO) and the Ontology for Biomedical Investigations (OBIs) for the reporting of experimental context and results of gene expression studies. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Intelligent resource discovery using ontology-based resource profiles

    NASA Technical Reports Server (NTRS)

    Hughes, J. Steven; Crichton, Dan; Kelly, Sean; Crichton, Jerry; Tran, Thuy

    2004-01-01

    Successful resource discovery across heterogeneous repositories is strongly dependent on the semantic and syntactic homogeneity of the associated resource descriptions. Ideally, resource descriptions are easily extracted from pre-existing standardized sources, expressed using standard syntactic and semantic structures, and managed and accessed within a distributed, flexible, and scaleable software framework.

  1. Ontology modularization to improve semantic medical image annotation.

    PubMed

    Wennerberg, Pinar; Schulz, Klaus; Buitelaar, Paul

    2011-02-01

    Searching for medical images and patient reports is a significant challenge in a clinical setting. The contents of such documents are often not described in sufficient detail thus making it difficult to utilize the inherent wealth of information contained within them. Semantic image annotation addresses this problem by describing the contents of images and reports using medical ontologies. Medical images and patient reports are then linked to each other through common annotations. Subsequently, search algorithms can more effectively find related sets of documents on the basis of these semantic descriptions. A prerequisite to realizing such a semantic search engine is that the data contained within should have been previously annotated with concepts from medical ontologies. One major challenge in this regard is the size and complexity of medical ontologies as annotation sources. Manual annotation is particularly time consuming labor intensive in a clinical environment. In this article we propose an approach to reducing the size of clinical ontologies for more efficient manual image and text annotation. More precisely, our goal is to identify smaller fragments of a large anatomy ontology that are relevant for annotating medical images from patients suffering from lymphoma. Our work is in the area of ontology modularization, which is a recent and active field of research. We describe our approach, methods and data set in detail and we discuss our results. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. Conceptual Model Formalization in a Semantic Interoperability Service Framework: Transforming Relational Database Schemas to OWL.

    PubMed

    Bravo, Carlos; Suarez, Carlos; González, Carolina; López, Diego; Blobel, Bernd

    2014-01-01

    Healthcare information is distributed through multiple heterogeneous and autonomous systems. Access to, and sharing of, distributed information sources are a challenging task. To contribute to meeting this challenge, this paper presents a formal, complete and semi-automatic transformation service from Relational Databases to Web Ontology Language. The proposed service makes use of an algorithm that allows to transform several data models of different domains by deploying mainly inheritance rules. The paper emphasizes the relevance of integrating the proposed approach into an ontology-based interoperability service to achieve semantic interoperability.

  3. Lessons learned in deploying a cloud-based knowledge platform for the Earth Science Information Partners Federation (ESIP)

    NASA Astrophysics Data System (ADS)

    Pouchard, L. C.; Depriest, A.; Huhns, M.

    2012-12-01

    Ontologies and semantic technologies are an essential infrastructure component of systems supporting knowledge integration in the Earth Sciences. Numerous earth science ontologies exist, but are hard to discover because they tend to be hosted with the projects that develop them. There are often few quality measures and sparse metadata associated with these ontologies, such as modification dates, versioning, purpose, number of classes, and properties. Projects often develop ontologies for their own needs without considering existing ontology entities or derivations from formal and more basic ontologies. The result is mostly orthogonal ontologies, and ontologies that are not modular enough to reuse in part or adapt for new purposes, in spite of existing, standards for ontology representation. Additional obstacles to sharing and reuse include a lack of maintenance once a project is completed. The obstacles prevent the full exploitation of semantic technologies in a context where they could become needed enablers for service discovery and for matching data with services. To start addressing this gap, we have deployed BioPortal, a mature, domain-independent ontology and semantic service system developed by the National Center for Biomedical Ontologies (NCBO), on the ESIP Testbed under the governance of the ESIP Semantic Web cluster. ESIP provides a forum for a broad-based, distributed community of data and information technology practitioners and stakeholders to coordinate their efforts and develop new ideas for interoperability solutions. The Testbed provides an environment where innovations and best practices can be explored and evaluated. One objective of this deployment is to provide a community platform that would harness the organizational and cyber infrastructure provided by ESIP at minimal costs. Another objective is to host ontology services on a scalable, public cloud and investigate the business case for crowd sourcing of ontology maintenance. We deployed the system on Amazon 's Elastic Compute Cloud (EC2) where ESIP maintains an account. Our approach had three phases: 1) set up a private cloud environment at the University of South Carolina to become familiar with the complex architecture of the system and enable some basic customization, 2) coordinate the production of a Virtual Appliance for the system with NCBO and deploy it on the Amazon cloud, and 3) outreach to the ESIP community to solicit participation, populate the repository, and develop new use cases. Phase 2 is nearing completion and Phase 3 is underway. Ontologies were gathered during updates to the ESIP cluster. Discussion points included the criteria for a shareable ontology and how to determine the best size for an ontology to be reusable. Outreach highlighted that the system can start addressing an integration of discovery frameworks via linking data and services in a pull model (data and service casting), a key issue of the Discovery cluster. This work thus presents several contributions: 1) technology injection from another domain into the earth sciences, 2) the deployment of a mature knowledge platform on the EC2 cloud, and 3) the successful engagement of the community through the ESIP clusters and Testbed model.

  4. [Analysis of health terminologies for use as ontologies in healthcare information systems].

    PubMed

    Romá-Ferri, Maria Teresa; Palomar, Manuel

    2008-01-01

    Ontologies are a resource that allow the concept of meaning to be represented informatically, thus avoiding the limitations imposed by standardized terms. The objective of this study was to establish the extent to which terminologies could be used for the design of ontologies, which could be serve as an aid to resolve problems such as semantic interoperability and knowledge reusability in healthcare information systems. To determine the extent to which terminologies could be used as ontologies, six of the most important terminologies in clinical, epidemiologic, documentation and administrative-economic contexts were analyzed. The following characteristics were verified: conceptual coverage, hierarchical structure, conceptual granularity of the categories, conceptual relations, and the language used for conceptual representation. MeSH, DeCS and UMLS ontologies were considered lightweight. The main differences among these ontologies concern conceptual specification, the types of relation and the restrictions among the associated concepts. SNOMED and GALEN ontologies have declaratory formalism, based on logical descriptions. These ontologies include explicit qualities and show greater restrictions among associated concepts and rule combinations and were consequently considered as heavyweight. Analysis of the declared representation of the terminologies shows the extent to which they could be reused as ontologies. Their degree of usability depends on whether the aim is for healthcare information systems to solve problems of semantic interoperability (lightweight ontologies) or to reuse the systems' knowledge as an aid to decision making (heavyweight ontologies) and for non-structured information retrieval, extraction, and classification.

  5. Creating personalised clinical pathways by semantic interoperability with electronic health records.

    PubMed

    Wang, Hua-Qiong; Li, Jing-Song; Zhang, Yi-Fan; Suzuki, Muneou; Araki, Kenji

    2013-06-01

    There is a growing realisation that clinical pathways (CPs) are vital for improving the treatment quality of healthcare organisations. However, treatment personalisation is one of the main challenges when implementing CPs, and the inadequate dynamic adaptability restricts the practicality of CPs. The purpose of this study is to improve the practicality of CPs using semantic interoperability between knowledge-based CPs and semantic electronic health records (EHRs). Simple protocol and resource description framework query language is used to gather patient information from semantic EHRs. The gathered patient information is entered into the CP ontology represented by web ontology language. Then, after reasoning over rules described by semantic web rule language in the Jena semantic framework, we adjust the standardised CPs to meet different patients' practical needs. A CP for acute appendicitis is used as an example to illustrate how to achieve CP customisation based on the semantic interoperability between knowledge-based CPs and semantic EHRs. A personalised care plan is generated by comprehensively analysing the patient's personal allergy history and past medical history, which are stored in semantic EHRs. Additionally, by monitoring the patient's clinical information, an exception is recorded and handled during CP execution. According to execution results of the actual example, the solutions we present are shown to be technically feasible. This study contributes towards improving the clinical personalised practicality of standardised CPs. In addition, this study establishes the foundation for future work on the research and development of an independent CP system. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. DOSE: an R/Bioconductor package for disease ontology semantic and enrichment analysis.

    PubMed

    Yu, Guangchuang; Wang, Li-Gen; Yan, Guang-Rong; He, Qing-Yu

    2015-02-15

    Disease ontology (DO) annotates human genes in the context of disease. DO is important annotation in translating molecular findings from high-throughput data to clinical relevance. DOSE is an R package providing semantic similarity computations among DO terms and genes which allows biologists to explore the similarities of diseases and of gene functions in disease perspective. Enrichment analyses including hypergeometric model and gene set enrichment analysis are also implemented to support discovering disease associations of high-throughput biological data. This allows biologists to verify disease relevance in a biological experiment and identify unexpected disease associations. Comparison among gene clusters is also supported. DOSE is released under Artistic-2.0 License. The source code and documents are freely available through Bioconductor (http://www.bioconductor.org/packages/release/bioc/html/DOSE.html). Supplementary data are available at Bioinformatics online. gcyu@connect.hku.hk or tqyhe@jnu.edu.cn. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Developing a modular architecture for creation of rule-based clinical diagnostic criteria.

    PubMed

    Hong, Na; Pathak, Jyotishman; Chute, Christopher G; Jiang, Guoqian

    2016-01-01

    With recent advances in computerized patient records system, there is an urgent need for producing computable and standards-based clinical diagnostic criteria. Notably, constructing rule-based clinical diagnosis criteria has become one of the goals in the International Classification of Diseases (ICD)-11 revision. However, few studies have been done in building a unified architecture to support the need for diagnostic criteria computerization. In this study, we present a modular architecture for enabling the creation of rule-based clinical diagnostic criteria leveraging Semantic Web technologies. The architecture consists of two modules: an authoring module that utilizes a standards-based information model and a translation module that leverages Semantic Web Rule Language (SWRL). In a prototype implementation, we created a diagnostic criteria upper ontology (DCUO) that integrates ICD-11 content model with the Quality Data Model (QDM). Using the DCUO, we developed a transformation tool that converts QDM-based diagnostic criteria into Semantic Web Rule Language (SWRL) representation. We evaluated the domain coverage of the upper ontology model using randomly selected diagnostic criteria from broad domains (n = 20). We also tested the transformation algorithms using 6 QDM templates for ontology population and 15 QDM-based criteria data for rule generation. As the results, the first draft of DCUO contains 14 root classes, 21 subclasses, 6 object properties and 1 data property. Investigation Findings, and Signs and Symptoms are the two most commonly used element types. All 6 HQMF templates are successfully parsed and populated into their corresponding domain specific ontologies and 14 rules (93.3 %) passed the rule validation. Our efforts in developing and prototyping a modular architecture provide useful insight into how to build a scalable solution to support diagnostic criteria representation and computerization.

  8. An ontological system for interoperable spatial generalisation in biodiversity monitoring

    NASA Astrophysics Data System (ADS)

    Nieland, Simon; Moran, Niklas; Kleinschmit, Birgit; Förster, Michael

    2015-11-01

    Semantic heterogeneity remains a barrier to data comparability and standardisation of results in different fields of spatial research. Because of its thematic complexity, differing acquisition methods and national nomenclatures, interoperability of biodiversity monitoring information is especially difficult. Since data collection methods and interpretation manuals broadly vary there is a need for automatised, objective methodologies for the generation of comparable data-sets. Ontology-based applications offer vast opportunities in data management and standardisation. This study examines two data-sets of protected heathlands in Germany and Belgium which are based on remote sensing image classification and semantically formalised in an OWL2 ontology. The proposed methodology uses semantic relations of the two data-sets, which are (semi-)automatically derived from remote sensing imagery, to generate objective and comparable information about the status of protected areas by utilising kernel-based spatial reclassification. This automatised method suggests a generalisation approach, which is able to generate delineation of Special Areas of Conservation (SAC) of the European biodiversity Natura 2000 network. Furthermore, it is able to transfer generalisation rules between areas surveyed with varying acquisition methods in different countries by taking into account automated inference of the underlying semantics. The generalisation results were compared with the manual delineation of terrestrial monitoring. For the different habitats in the two sites an accuracy of above 70% was detected. However, it has to be highlighted that the delineation of the ground-truth data inherits a high degree of uncertainty, which is discussed in this study.

  9. Improvements to the Ontology-based Metadata Portal for Unified Semantics (OlyMPUS)

    NASA Astrophysics Data System (ADS)

    Linsinbigler, M. A.; Gleason, J. L.; Huffer, E.

    2016-12-01

    The Ontology-based Metadata Portal for Unified Semantics (OlyMPUS), funded by the NASA Earth Science Technology Office Advanced Information Systems Technology program, is an end-to-end system designed to support Earth Science data consumers and data providers, enabling the latter to register data sets and provision them with the semantically rich metadata that drives the Ontology-Driven Interactive Search Environment for Earth Sciences (ODISEES). OlyMPUS complements the ODISEES' data discovery system with an intelligent tool to enable data producers to auto-generate semantically enhanced metadata and upload it to the metadata repository that drives ODISEES. Like ODISEES, the OlyMPUS metadata provisioning tool leverages robust semantics, a NoSQL database and query engine, an automated reasoning engine that performs first- and second-order deductive inferencing, and uses a controlled vocabulary to support data interoperability and automated analytics. The ODISEES data discovery portal leverages this metadata to provide a seamless data discovery and access experience for data consumers who are interested in comparing and contrasting the multiple Earth science data products available across NASA data centers. Olympus will support scientists' services and tools for performing complex analyses and identifying correlations and non-obvious relationships across all types of Earth System phenomena using the full spectrum of NASA Earth Science data available. By providing an intelligent discovery portal that supplies users - both human users and machines - with detailed information about data products, their contents and their structure, ODISEES will reduce the level of effort required to identify and prepare large volumes of data for analysis. This poster will explain how OlyMPUS leverages deductive reasoning and other technologies to create an integrated environment for generating and exploiting semantically rich metadata.

  10. Semantic Web-based digital, field and virtual geological

    NASA Astrophysics Data System (ADS)

    Babaie, H. A.

    2012-12-01

    Digital, field and virtual Semantic Web-based education (SWBE) of geological mapping requires the construction of a set of searchable, reusable, and interoperable digital learning objects (LO) for learners, teachers, and authors. These self-contained units of learning may be text, image, or audio, describing, for example, how to calculate the true dip of a layer from two structural contours or find the apparent dip along a line of section. A collection of multi-media LOs can be integrated, through domain and task ontologies, with mapping-related learning activities and Web services, for example, to search for the description of lithostratigraphic units in an area, or plotting orientation data on stereonet. Domain ontologies (e.g., GeologicStructure, Lithostratigraphy, Rock) represent knowledge in formal languages (RDF, OWL) by explicitly specifying concepts, relations, and theories involved in geological mapping. These ontologies are used by task ontologies that formalize the semantics of computational tasks (e.g., measuring the true thickness of a formation) and activities (e.g., construction of cross section) for all actors to solve specific problems (making map, instruction, learning support, authoring). A SWBE system for geological mapping should also involve ontologies to formalize teaching strategy (pedagogical styles), learner model (e.g., for student performance, personalization of learning), interface (entry points for activities of all actors), communication (exchange of messages among different components and actors), and educational Web services (for interoperability). In this ontology-based environment, actors interact with the LOs through educational servers, that manage (reuse, edit, delete, store) ontologies, and through tools which communicate with Web services to collect resources and links to other tools. Digital geological mapping involves a location-based, spatial organization of geological elements in a set of GIS thematic layers. Each layer in the stack assembles a set of polygonal (e.g., formation, member, intrusion), linear (e.g., fault, contact), and/or point (e.g., sample or measurement site) geological elements. These feature classes, represented in domain ontologies by classes, have their own sets of property (attribute, association relation) and topological (e.g., overlap, adjacency, containment), and network (cross-cuttings; connectivity) relationships. Since geological mapping involves describing and depicting different aspects of each feature class (e.g., contact, formation, structure), the same geographic region may be investigated by different communities, for example, for its stratigraphy, rock type, structure, soil type, and isotopic and paleontological age, using sets of ontologies. These data can become interconnected applying the Semantic Web technologies, on the Linked Open Data Cloud, based on their underlying common geographic coordinates. Sets of geological data published on the Cloud will include multiple RDF links to Cloud's geospatial nodes such as GeoNames and Linked GeoData. During mapping, a device such as smartphone, laptop, or iPad, with GPS and GIS capability and a DBpedia Mobile client, can use the current position to discover and query all the geological linked data, and add new data to the thematic layers and publish them to the Cloud.

  11. Semantic Service Design for Collaborative Business Processes in Internetworked Enterprises

    NASA Astrophysics Data System (ADS)

    Bianchini, Devis; Cappiello, Cinzia; de Antonellis, Valeria; Pernici, Barbara

    Modern collaborating enterprises can be seen as borderless organizations whose processes are dynamically transformed and integrated with the ones of their partners (Internetworked Enterprises, IE), thus enabling the design of collaborative business processes. The adoption of Semantic Web and service-oriented technologies for implementing collaboration in such distributed and heterogeneous environments promises significant benefits. IE can model their own processes independently by using the Software as a Service paradigm (SaaS). Each enterprise maintains a catalog of available services and these can be shared across IE and reused to build up complex collaborative processes. Moreover, each enterprise can adopt its own terminology and concepts to describe business processes and component services. This brings requirements to manage semantic heterogeneity in process descriptions which are distributed across different enterprise systems. To enable effective service-based collaboration, IEs have to standardize their process descriptions and model them through component services using the same approach and principles. For enabling collaborative business processes across IE, services should be designed following an homogeneous approach, possibly maintaining a uniform level of granularity. In the paper we propose an ontology-based semantic modeling approach apt to enrich and reconcile semantics of process descriptions to facilitate process knowledge management and to enable semantic service design (by discovery, reuse and integration of process elements/constructs). The approach brings together Semantic Web technologies, techniques in process modeling, ontology building and semantic matching in order to provide a comprehensive semantic modeling framework.

  12. Recognizing lexical and semantic change patterns in evolving life science ontologies to inform mapping adaptation.

    PubMed

    Dos Reis, Julio Cesar; Dinh, Duy; Da Silveira, Marcos; Pruski, Cédric; Reynaud-Delaître, Chantal

    2015-03-01

    Mappings established between life science ontologies require significant efforts to maintain them up to date due to the size and frequent evolution of these ontologies. In consequence, automatic methods for applying modifications on mappings are highly demanded. The accuracy of such methods relies on the available description about the evolution of ontologies, especially regarding concepts involved in mappings. However, from one ontology version to another, a further understanding of ontology changes relevant for supporting mapping adaptation is typically lacking. This research work defines a set of change patterns at the level of concept attributes, and proposes original methods to automatically recognize instances of these patterns based on the similarity between attributes denoting the evolving concepts. This investigation evaluates the benefits of the proposed methods and the influence of the recognized change patterns to select the strategies for mapping adaptation. The summary of the findings is as follows: (1) the Precision (>60%) and Recall (>35%) achieved by comparing manually identified change patterns with the automatic ones; (2) a set of potential impact of recognized change patterns on the way mappings is adapted. We found that the detected correlations cover ∼66% of the mapping adaptation actions with a positive impact; and (3) the influence of the similarity coefficient calculated between concept attributes on the performance of the recognition algorithms. The experimental evaluations conducted with real life science ontologies showed the effectiveness of our approach to accurately characterize ontology evolution at the level of concept attributes. This investigation confirmed the relevance of the proposed change patterns to support decisions on mapping adaptation. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. A semantic medical multimedia retrieval approach using ontology information hiding.

    PubMed

    Guo, Kehua; Zhang, Shigeng

    2013-01-01

    Searching useful information from unstructured medical multimedia data has been a difficult problem in information retrieval. This paper reports an effective semantic medical multimedia retrieval approach which can reflect the users' query intent. Firstly, semantic annotations will be given to the multimedia documents in the medical multimedia database. Secondly, the ontology that represented semantic information will be hidden in the head of the multimedia documents. The main innovations of this approach are cross-type retrieval support and semantic information preservation. Experimental results indicate a good precision and efficiency of our approach for medical multimedia retrieval in comparison with some traditional approaches.

  14. Enacting the Semantic Web: Ontological Orderings, Negotiated Standards, and Human-Machine Translations

    ERIC Educational Resources Information Center

    McCarthy, Matthew T.

    2017-01-01

    Artificial intelligence (AI) that is based upon semantic search has become one of the dominant means for accessing information in recent years. This is particularly the case in mobile contexts, as search-based AI are embedded in each of the major mobile operating systems. The implications are such that information is becoming less a matter of…

  15. A Hybrid Approach to Finding Relevant Social Media Content for Complex Domain Specific Information Needs.

    PubMed

    Cameron, Delroy; Sheth, Amit P; Jaykumar, Nishita; Thirunarayan, Krishnaprasad; Anand, Gaurish; Smith, Gary A

    2014-12-01

    While contemporary semantic search systems offer to improve classical keyword-based search, they are not always adequate for complex domain specific information needs. The domain of prescription drug abuse, for example, requires knowledge of both ontological concepts and "intelligible constructs" not typically modeled in ontologies. These intelligible constructs convey essential information that include notions of intensity, frequency, interval, dosage and sentiments, which could be important to the holistic needs of the information seeker. In this paper, we present a hybrid approach to domain specific information retrieval that integrates ontology-driven query interpretation with synonym-based query expansion and domain specific rules, to facilitate search in social media on prescription drug abuse. Our framework is based on a context-free grammar (CFG) that defines the query language of constructs interpretable by the search system. The grammar provides two levels of semantic interpretation: 1) a top-level CFG that facilitates retrieval of diverse textual patterns, which belong to broad templates and 2) a low-level CFG that enables interpretation of specific expressions belonging to such textual patterns. These low-level expressions occur as concepts from four different categories of data: 1) ontological concepts, 2) concepts in lexicons (such as emotions and sentiments), 3) concepts in lexicons with only partial ontology representation, called lexico-ontology concepts (such as side effects and routes of administration (ROA)), and 4) domain specific expressions (such as date, time, interval, frequency and dosage) derived solely through rules. Our approach is embodied in a novel Semantic Web platform called PREDOSE, which provides search support for complex domain specific information needs in prescription drug abuse epidemiology. When applied to a corpus of over 1 million drug abuse-related web forum posts, our search framework proved effective in retrieving relevant documents when compared with three existing search systems.

  16. User centered and ontology based information retrieval system for life sciences.

    PubMed

    Sy, Mohameth-François; Ranwez, Sylvie; Montmain, Jacky; Regnault, Armelle; Crampes, Michel; Ranwez, Vincent

    2012-01-25

    Because of the increasing number of electronic resources, designing efficient tools to retrieve and exploit them is a major challenge. Some improvements have been offered by semantic Web technologies and applications based on domain ontologies. In life science, for instance, the Gene Ontology is widely exploited in genomic applications and the Medical Subject Headings is the basis of biomedical publications indexation and information retrieval process proposed by PubMed. However current search engines suffer from two main drawbacks: there is limited user interaction with the list of retrieved resources and no explanation for their adequacy to the query is provided. Users may thus be confused by the selection and have no idea on how to adapt their queries so that the results match their expectations. This paper describes an information retrieval system that relies on domain ontology to widen the set of relevant documents that is retrieved and that uses a graphical rendering of query results to favor user interactions. Semantic proximities between ontology concepts and aggregating models are used to assess documents adequacy with respect to a query. The selection of documents is displayed in a semantic map to provide graphical indications that make explicit to what extent they match the user's query; this man/machine interface favors a more interactive and iterative exploration of data corpus, by facilitating query concepts weighting and visual explanation. We illustrate the benefit of using this information retrieval system on two case studies one of which aiming at collecting human genes related to transcription factors involved in hemopoiesis pathway. The ontology based information retrieval system described in this paper (OBIRS) is freely available at: http://www.ontotoolkit.mines-ales.fr/ObirsClient/. This environment is a first step towards a user centred application in which the system enlightens relevant information to provide decision help.

  17. User centered and ontology based information retrieval system for life sciences

    PubMed Central

    2012-01-01

    Background Because of the increasing number of electronic resources, designing efficient tools to retrieve and exploit them is a major challenge. Some improvements have been offered by semantic Web technologies and applications based on domain ontologies. In life science, for instance, the Gene Ontology is widely exploited in genomic applications and the Medical Subject Headings is the basis of biomedical publications indexation and information retrieval process proposed by PubMed. However current search engines suffer from two main drawbacks: there is limited user interaction with the list of retrieved resources and no explanation for their adequacy to the query is provided. Users may thus be confused by the selection and have no idea on how to adapt their queries so that the results match their expectations. Results This paper describes an information retrieval system that relies on domain ontology to widen the set of relevant documents that is retrieved and that uses a graphical rendering of query results to favor user interactions. Semantic proximities between ontology concepts and aggregating models are used to assess documents adequacy with respect to a query. The selection of documents is displayed in a semantic map to provide graphical indications that make explicit to what extent they match the user's query; this man/machine interface favors a more interactive and iterative exploration of data corpus, by facilitating query concepts weighting and visual explanation. We illustrate the benefit of using this information retrieval system on two case studies one of which aiming at collecting human genes related to transcription factors involved in hemopoiesis pathway. Conclusions The ontology based information retrieval system described in this paper (OBIRS) is freely available at: http://www.ontotoolkit.mines-ales.fr/ObirsClient/. This environment is a first step towards a user centred application in which the system enlightens relevant information to provide decision help. PMID:22373375

  18. A Hybrid Approach to Finding Relevant Social Media Content for Complex Domain Specific Information Needs

    PubMed Central

    Cameron, Delroy; Sheth, Amit P.; Jaykumar, Nishita; Thirunarayan, Krishnaprasad; Anand, Gaurish; Smith, Gary A.

    2015-01-01

    While contemporary semantic search systems offer to improve classical keyword-based search, they are not always adequate for complex domain specific information needs. The domain of prescription drug abuse, for example, requires knowledge of both ontological concepts and “intelligible constructs” not typically modeled in ontologies. These intelligible constructs convey essential information that include notions of intensity, frequency, interval, dosage and sentiments, which could be important to the holistic needs of the information seeker. In this paper, we present a hybrid approach to domain specific information retrieval that integrates ontology-driven query interpretation with synonym-based query expansion and domain specific rules, to facilitate search in social media on prescription drug abuse. Our framework is based on a context-free grammar (CFG) that defines the query language of constructs interpretable by the search system. The grammar provides two levels of semantic interpretation: 1) a top-level CFG that facilitates retrieval of diverse textual patterns, which belong to broad templates and 2) a low-level CFG that enables interpretation of specific expressions belonging to such textual patterns. These low-level expressions occur as concepts from four different categories of data: 1) ontological concepts, 2) concepts in lexicons (such as emotions and sentiments), 3) concepts in lexicons with only partial ontology representation, called lexico-ontology concepts (such as side effects and routes of administration (ROA)), and 4) domain specific expressions (such as date, time, interval, frequency and dosage) derived solely through rules. Our approach is embodied in a novel Semantic Web platform called PREDOSE, which provides search support for complex domain specific information needs in prescription drug abuse epidemiology. When applied to a corpus of over 1 million drug abuse-related web forum posts, our search framework proved effective in retrieving relevant documents when compared with three existing search systems. PMID:25814917

  19. Modelling expertise at different levels of granularity using semantic similarity measures in the context of collaborative knowledge-curation platforms.

    PubMed

    Ziaimatin, Hasti; Groza, Tudor; Tudorache, Tania; Hunter, Jane

    2016-12-01

    Collaboration platforms provide a dynamic environment where the content is subject to ongoing evolution through expert contributions. The knowledge embedded in such platforms is not static as it evolves through incremental refinements - or micro-contributions. Such refinements provide vast resources of tacit knowledge and experience. In our previous work, we proposed and evaluated a Semantic and Time-dependent Expertise Profiling (STEP) approach for capturing expertise from micro-contributions. In this paper we extend our investigation to structured micro-contributions that emerge from an ontology engineering environment, such as the one built for developing the International Classification of Diseases (ICD) revision 11. We take advantage of the semantically related nature of these structured micro-contributions to showcase two major aspects: (i) a novel semantic similarity metric, in addition to an approach for creating bottom-up baseline expertise profiles using expertise centroids; and (ii) the application of STEP in this new environment combined with the use of the same semantic similarity measure to both compare STEP against baseline profiles, as well as to investigate the coverage of these baseline profiles by STEP.

  20. Research on Extension of Sparql Ontology Query Language Considering the Computation of Indoor Spatial Relations

    NASA Astrophysics Data System (ADS)

    Li, C.; Zhu, X.; Guo, W.; Liu, Y.; Huang, H.

    2015-05-01

    A method suitable for indoor complex semantic query considering the computation of indoor spatial relations is provided According to the characteristics of indoor space. This paper designs ontology model describing the space related information of humans, events and Indoor space objects (e.g. Storey and Room) as well as their relations to meet the indoor semantic query. The ontology concepts are used in IndoorSPARQL query language which extends SPARQL syntax for representing and querying indoor space. And four types specific primitives for indoor query, "Adjacent", "Opposite", "Vertical" and "Contain", are defined as query functions in IndoorSPARQL used to support quantitative spatial computations. Also a method is proposed to analysis the query language. Finally this paper adopts this method to realize indoor semantic query on the study area through constructing the ontology model for the study building. The experimental results show that the method proposed in this paper can effectively support complex indoor space semantic query.

  1. Semantic similarity analysis of protein data: assessment with biological features and issues.

    PubMed

    Guzzi, Pietro H; Mina, Marco; Guerra, Concettina; Cannataro, Mario

    2012-09-01

    The integration of proteomics data with biological knowledge is a recent trend in bioinformatics. A lot of biological information is available and is spread on different sources and encoded in different ontologies (e.g. Gene Ontology). Annotating existing protein data with biological information may enable the use (and the development) of algorithms that use biological ontologies as framework to mine annotated data. Recently many methodologies and algorithms that use ontologies to extract knowledge from data, as well as to analyse ontologies themselves have been proposed and applied to other fields. Conversely, the use of such annotations for the analysis of protein data is a relatively novel research area that is currently becoming more and more central in research. Existing approaches span from the definition of the similarity among genes and proteins on the basis of the annotating terms, to the definition of novel algorithms that use such similarities for mining protein data on a proteome-wide scale. This work, after the definition of main concept of such analysis, presents a systematic discussion and comparison of main approaches. Finally, remaining challenges, as well as possible future directions of research are presented.

  2. Research on geo-ontology construction based on spatial affairs

    NASA Astrophysics Data System (ADS)

    Li, Bin; Liu, Jiping; Shi, Lihong

    2008-12-01

    Geo-ontology, a kind of domain ontology, is used to make the knowledge, information and data of concerned geographical science in the abstract to form a series of single object or entity with common cognition. These single object or entity can compose a specific system in some certain way and can be disposed on conception and given specific definition at the same time. Ultimately, these above-mentioned worked results can be expressed in some manners of formalization. The main aim of constructing geo-ontology is to get the knowledge of the domain of geography, and provide the commonly approbatory vocabularies in the domain, as well as give the definite definition about these geographical vocabularies and mutual relations between them in the mode of formalization at different hiberarchy. Consequently, the modeling tool of conception model of describing geographic Information System at the hiberarchy of semantic meaning and knowledge can be provided to solve the semantic conception of information exchange in geographical space and make them possess the comparatively possible characters of accuracy, maturity and universality, etc. In fact, some experiments have been made to validate geo-ontology. During the course of studying, Geo-ontology oriented to flood can be described and constructed by making the method based on geo-spatial affairs to serve the governmental departments at all levels to deal with flood. Thereinto, intelligent retrieve and service based on geoontology of disaster are main functions known from the traditional manner by using keywords. For instance, the function of dealing with disaster information based on geo-ontology can be provided when a supposed flood happened in a certain city. The correlative officers can input some words, such as "city name, flood", which have been realized semantic label, to get the information they needed when they browse different websites. The information, including basic geographical information and flood distributing and change about flood with different scales and ranges in the city, can be distilled intellectively and on its own initiative from the geo-ontology database. Besides, correlative statistical information can also be provided to the governmental departments at all levels to help them to carry out timely measures of fighting back disaster and rescue. Compared with the past manners, the efficiency of dealing with flood information has been improved to some extent than ever because plenty of information irrespective and interferential to flood in different websites can be sieved in advance based on the retrieve method oriented to Geo-ontology. In a word, it will take the pursuers long time to study geo-ontology due to actual limited resource. But then, geo-ontology will be sure to further perfect correspondingly especially in the field of Geographic Information System owing to its more and more factual applications.

  3. Recommendation of standardized health learning contents using archetypes and semantic web technologies.

    PubMed

    Legaz-García, María del Carmen; Martínez-Costa, Catalina; Menárguez-Tortosa, Marcos; Fernández-Breis, Jesualdo Tomás

    2012-01-01

    Linking Electronic Healthcare Records (EHR) content to educational materials has been considered a key international recommendation to enable clinical engagement and to promote patient safety. This would suggest citizens to access reliable information available on the web and to guide them properly. In this paper, we describe an approach in that direction, based on the use of dual model EHR standards and standardized educational contents. The recommendation method will be based on the semantic coverage of the learning content repository for a particular archetype, which will be calculated by applying semantic web technologies like ontologies and semantic annotations.

  4. F-OWL: An Inference Engine for Semantic Web

    NASA Technical Reports Server (NTRS)

    Zou, Youyong; Finin, Tim; Chen, Harry

    2004-01-01

    Understanding and using the data and knowledge encoded in semantic web documents requires an inference engine. F-OWL is an inference engine for the semantic web language OWL language based on F-logic, an approach to defining frame-based systems in logic. F-OWL is implemented using XSB and Flora-2 and takes full advantage of their features. We describe how F-OWL computes ontology entailment and compare it with other description logic based approaches. We also describe TAGA, a trading agent environment that we have used as a test bed for F-OWL and to explore how multiagent systems can use semantic web concepts and technology.

  5. A novel paradigm for cell and molecule interaction ontology: from the CMM model to IMGT-ONTOLOGY

    PubMed Central

    2010-01-01

    Background Biology is moving fast toward the virtuous circle of other disciplines: from data to quantitative modeling and back to data. Models are usually developed by mathematicians, physicists, and computer scientists to translate qualitative or semi-quantitative biological knowledge into a quantitative approach. To eliminate semantic confusion between biology and other disciplines, it is necessary to have a list of the most important and frequently used concepts coherently defined. Results We propose a novel paradigm for generating new concepts for an ontology, starting from model rather than developing a database. We apply that approach to generate concepts for cell and molecule interaction starting from an agent based model. This effort provides a solid infrastructure that is useful to overcome the semantic ambiguities that arise between biologists and mathematicians, physicists, and computer scientists, when they interact in a multidisciplinary field. Conclusions This effort represents the first attempt at linking molecule ontology with cell ontology, in IMGT-ONTOLOGY, the well established ontology in immunogenetics and immunoinformatics, and a paradigm for life science biology. With the increasing use of models in biology and medicine, the need to link different levels, from molecules to cells to tissues and organs, is increasingly important. PMID:20167082

  6. Knowledge retrieval from PubMed abstracts and electronic medical records with the Multiple Sclerosis Ontology.

    PubMed

    Malhotra, Ashutosh; Gündel, Michaela; Rajput, Abdul Mateen; Mevissen, Heinz-Theodor; Saiz, Albert; Pastor, Xavier; Lozano-Rubi, Raimundo; Martinez-Lapiscina, Elena H; Martinez-Lapsicina, Elena H; Zubizarreta, Irati; Mueller, Bernd; Kotelnikova, Ekaterina; Toldo, Luca; Hofmann-Apitius, Martin; Villoslada, Pablo

    2015-01-01

    In order to retrieve useful information from scientific literature and electronic medical records (EMR) we developed an ontology specific for Multiple Sclerosis (MS). The MS Ontology was created using scientific literature and expert review under the Protégé OWL environment. We developed a dictionary with semantic synonyms and translations to different languages for mining EMR. The MS Ontology was integrated with other ontologies and dictionaries (diseases/comorbidities, gene/protein, pathways, drug) into the text-mining tool SCAIView. We analyzed the EMRs from 624 patients with MS using the MS ontology dictionary in order to identify drug usage and comorbidities in MS. Testing competency questions and functional evaluation using F statistics further validated the usefulness of MS ontology. Validation of the lexicalized ontology by means of named entity recognition-based methods showed an adequate performance (F score = 0.73). The MS Ontology retrieved 80% of the genes associated with MS from scientific abstracts and identified additional pathways targeted by approved disease-modifying drugs (e.g. apoptosis pathways associated with mitoxantrone, rituximab and fingolimod). The analysis of the EMR from patients with MS identified current usage of disease modifying drugs and symptomatic therapy as well as comorbidities, which are in agreement with recent reports. The MS Ontology provides a semantic framework that is able to automatically extract information from both scientific literature and EMR from patients with MS, revealing new pathogenesis insights as well as new clinical information.

  7. Ontology Research and Development. Part 2 - A Review of Ontology Mapping and Evolving.

    ERIC Educational Resources Information Center

    Ding, Ying; Foo, Schubert

    2002-01-01

    Reviews ontology research and development, specifically ontology mapping and evolving. Highlights include an overview of ontology mapping projects; maintaining existing ontologies and extending them as appropriate when new information or knowledge is acquired; and ontology's role and the future of the World Wide Web, or Semantic Web. (Contains 55…

  8. GFVO: the Genomic Feature and Variation Ontology.

    PubMed

    Baran, Joachim; Durgahee, Bibi Sehnaaz Begum; Eilbeck, Karen; Antezana, Erick; Hoehndorf, Robert; Dumontier, Michel

    2015-01-01

    Falling costs in genomic laboratory experiments have led to a steady increase of genomic feature and variation data. Multiple genomic data formats exist for sharing these data, and whilst they are similar, they are addressing slightly different data viewpoints and are consequently not fully compatible with each other. The fragmentation of data format specifications makes it hard to integrate and interpret data for further analysis with information from multiple data providers. As a solution, a new ontology is presented here for annotating and representing genomic feature and variation dataset contents. The Genomic Feature and Variation Ontology (GFVO) specifically addresses genomic data as it is regularly shared using the GFF3 (incl. FASTA), GTF, GVF and VCF file formats. GFVO simplifies data integration and enables linking of genomic annotations across datasets through common semantics of genomic types and relations. Availability and implementation. The latest stable release of the ontology is available via its base URI; previous and development versions are available at the ontology's GitHub repository: https://github.com/BioInterchange/Ontologies; versions of the ontology are indexed through BioPortal (without external class-/property-equivalences due to BioPortal release 4.10 limitations); examples and reference documentation is provided on a separate web-page: http://www.biointerchange.org/ontologies.html. GFVO version 1.0.2 is licensed under the CC0 1.0 Universal license (https://creativecommons.org/publicdomain/zero/1.0) and therefore de facto within the public domain; the ontology can be appropriated without attribution for commercial and non-commercial use.

  9. The environment ontology in 2016: bridging domains with increased scope, semantic density, and interoperation

    DOE PAGES

    Buttigieg, Pier Luigi; Pafilis, Evangelos; Lewis, Suzanna E.; ...

    2016-09-23

    Background: The Environment Ontology (ENVO; http://www.environmentontology.org/), first described in 2013, is a resource and research target for the semantically controlled description of environmental entities. The ontology's initial aim was the representation of the biomes, environmental features, and environmental materials pertinent to genomic and microbiome-related investigations. However, the need for environmental semantics is common to a multitude of fields, and ENVO's use has steadily grown since its initial description. We have thus expanded, enhanced, and generalised the ontology to support its increasingly diverse applications. Methods: We have updated our development suite to promote expressivity, consistency, and speed: we now develop ENVOmore » in the Web Ontology Language (OWL) and employ templating methods to accelerate class creation. We have also taken steps to better align ENVO with the Open Biological and Biomedical Ontologies (OBO) Foundry principles and interoperate with existing OBO ontologies. Further, we applied text-mining approaches to extract habitat information from the Encyclopedia of Life and automatically create experimental habitat classes within ENVO. Results: Relative to its state in 2013, ENVO's content, scope, and implementation have been enhanced and much of its existing content revised for improved semantic representation. ENVO now offers representations of habitats, environmental processes, anthropogenic environments, and entities relevant to environmental health initiatives and the global Sustainable Development Agenda for 2030. Several branches of ENVO have been used to incubate and seed new ontologies in previously unrepresented domains such as food and agronomy. The current release version of the ontology, in OWL format, is available at http://purl.obolibrary.org/obo/envo.owl. Conclusions: ENVO has been shaped into an ontology which bridges multiple domains including biomedicine, natural and anthropogenic ecology, 'omics, and socioeconomic development. Through continued interactions with our users and partners, particularly those performing data archiving and sythesis, we anticipate that ENVO's growth will accelerate in 2017. As always, we invite further contributions and collaboration to advance the semantic representation of the environment, ranging from geographic features and environmental materials, across habitats and ecosystems, to everyday objects in household settings.« less

  10. The environment ontology in 2016: bridging domains with increased scope, semantic density, and interoperation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buttigieg, Pier Luigi; Pafilis, Evangelos; Lewis, Suzanna E.

    Background: The Environment Ontology (ENVO; http://www.environmentontology.org/), first described in 2013, is a resource and research target for the semantically controlled description of environmental entities. The ontology's initial aim was the representation of the biomes, environmental features, and environmental materials pertinent to genomic and microbiome-related investigations. However, the need for environmental semantics is common to a multitude of fields, and ENVO's use has steadily grown since its initial description. We have thus expanded, enhanced, and generalised the ontology to support its increasingly diverse applications. Methods: We have updated our development suite to promote expressivity, consistency, and speed: we now develop ENVOmore » in the Web Ontology Language (OWL) and employ templating methods to accelerate class creation. We have also taken steps to better align ENVO with the Open Biological and Biomedical Ontologies (OBO) Foundry principles and interoperate with existing OBO ontologies. Further, we applied text-mining approaches to extract habitat information from the Encyclopedia of Life and automatically create experimental habitat classes within ENVO. Results: Relative to its state in 2013, ENVO's content, scope, and implementation have been enhanced and much of its existing content revised for improved semantic representation. ENVO now offers representations of habitats, environmental processes, anthropogenic environments, and entities relevant to environmental health initiatives and the global Sustainable Development Agenda for 2030. Several branches of ENVO have been used to incubate and seed new ontologies in previously unrepresented domains such as food and agronomy. The current release version of the ontology, in OWL format, is available at http://purl.obolibrary.org/obo/envo.owl. Conclusions: ENVO has been shaped into an ontology which bridges multiple domains including biomedicine, natural and anthropogenic ecology, 'omics, and socioeconomic development. Through continued interactions with our users and partners, particularly those performing data archiving and sythesis, we anticipate that ENVO's growth will accelerate in 2017. As always, we invite further contributions and collaboration to advance the semantic representation of the environment, ranging from geographic features and environmental materials, across habitats and ecosystems, to everyday objects in household settings.« less

  11. The environment ontology in 2016: bridging domains with increased scope, semantic density, and interoperation.

    PubMed

    Buttigieg, Pier Luigi; Pafilis, Evangelos; Lewis, Suzanna E; Schildhauer, Mark P; Walls, Ramona L; Mungall, Christopher J

    2016-09-23

    The Environment Ontology (ENVO; http://www.environmentontology.org/ ), first described in 2013, is a resource and research target for the semantically controlled description of environmental entities. The ontology's initial aim was the representation of the biomes, environmental features, and environmental materials pertinent to genomic and microbiome-related investigations. However, the need for environmental semantics is common to a multitude of fields, and ENVO's use has steadily grown since its initial description. We have thus expanded, enhanced, and generalised the ontology to support its increasingly diverse applications. We have updated our development suite to promote expressivity, consistency, and speed: we now develop ENVO in the Web Ontology Language (OWL) and employ templating methods to accelerate class creation. We have also taken steps to better align ENVO with the Open Biological and Biomedical Ontologies (OBO) Foundry principles and interoperate with existing OBO ontologies. Further, we applied text-mining approaches to extract habitat information from the Encyclopedia of Life and automatically create experimental habitat classes within ENVO. Relative to its state in 2013, ENVO's content, scope, and implementation have been enhanced and much of its existing content revised for improved semantic representation. ENVO now offers representations of habitats, environmental processes, anthropogenic environments, and entities relevant to environmental health initiatives and the global Sustainable Development Agenda for 2030. Several branches of ENVO have been used to incubate and seed new ontologies in previously unrepresented domains such as food and agronomy. The current release version of the ontology, in OWL format, is available at http://purl.obolibrary.org/obo/envo.owl . ENVO has been shaped into an ontology which bridges multiple domains including biomedicine, natural and anthropogenic ecology, 'omics, and socioeconomic development. Through continued interactions with our users and partners, particularly those performing data archiving and sythesis, we anticipate that ENVO's growth will accelerate in 2017. As always, we invite further contributions and collaboration to advance the semantic representation of the environment, ranging from geographic features and environmental materials, across habitats and ecosystems, to everyday objects in household settings.

  12. The Semantic eScience Framework

    NASA Astrophysics Data System (ADS)

    McGuinness, Deborah; Fox, Peter; Hendler, James

    2010-05-01

    The goal of this effort is to design and implement a configurable and extensible semantic eScience framework (SESF). Configuration requires research into accommodating different levels of semantic expressivity and user requirements from use cases. Extensibility is being achieved in a modular approach to the semantic encodings (i.e. ontologies) performed in community settings, i.e. an ontology framework into which specific applications all the way up to communities can extend the semantics for their needs.We report on how we are accommodating the rapid advances in semantic technologies and tools and the sustainable software path for the future (certain) technical advances. In addition to a generalization of the current data science interface, we will present plans for an upper-level interface suitable for use by clearinghouses, and/or educational portals, digital libraries, and other disciplines.SESF builds upon previous work in the Virtual Solar-Terrestrial Observatory. The VSTO utilizes leading edge knowledge representation, query and reasoning techniques to support knowledge-enhanced search, data access, integration, and manipulation. It encodes term meanings and their inter-relationships in ontologies anduses these ontologies and associated inference engines to semantically enable the data services. The Semantically-Enabled Science Data Integration (SESDI) project implemented data integration capabilities among three sub-disciplines; solar radiation, volcanic outgassing and atmospheric structure using extensions to existingmodular ontolgies and used the VSTO data framework, while adding smart faceted search and semantic data registrationtools. The Semantic Provenance Capture in Data Ingest Systems (SPCDIS) has added explanation provenance capabilities to an observational data ingest pipeline for images of the Sun providing a set of tools to answer diverseend user questions such as ``Why does this image look bad?. http://tw.rpi.edu/portal/SESF

  13. The Semantic eScience Framework

    NASA Astrophysics Data System (ADS)

    Fox, P. A.; McGuinness, D. L.

    2009-12-01

    The goal of this effort is to design and implement a configurable and extensible semantic eScience framework (SESF). Configuration requires research into accommodating different levels of semantic expressivity and user requirements from use cases. Extensibility is being achieved in a modular approach to the semantic encodings (i.e. ontologies) performed in community settings, i.e. an ontology framework into which specific applications all the way up to communities can extend the semantics for their needs.We report on how we are accommodating the rapid advances in semantic technologies and tools and the sustainable software path for the future (certain) technical advances. In addition to a generalization of the current data science interface, we will present plans for an upper-level interface suitable for use by clearinghouses, and/or educational portals, digital libraries, and other disciplines.SESF builds upon previous work in the Virtual Solar-Terrestrial Observatory. The VSTO utilizes leading edge knowledge representation, query and reasoning techniques to support knowledge-enhanced search, data access, integration, and manipulation. It encodes term meanings and their inter-relationships in ontologies anduses these ontologies and associated inference engines to semantically enable the data services. The Semantically-Enabled Science Data Integration (SESDI) project implemented data integration capabilities among three sub-disciplines; solar radiation, volcanic outgassing and atmospheric structure using extensions to existingmodular ontolgies and used the VSTO data framework, while adding smart faceted search and semantic data registrationtools. The Semantic Provenance Capture in Data Ingest Systems (SPCDIS) has added explanation provenance capabilities to an observational data ingest pipeline for images of the Sun providing a set of tools to answer diverseend user questions such as ``Why does this image look bad?.

  14. Spatial Data Integration Using Ontology-Based Approach

    NASA Astrophysics Data System (ADS)

    Hasani, S.; Sadeghi-Niaraki, A.; Jelokhani-Niaraki, M.

    2015-12-01

    In today's world, the necessity for spatial data for various organizations is becoming so crucial that many of these organizations have begun to produce spatial data for that purpose. In some circumstances, the need to obtain real time integrated data requires sustainable mechanism to process real-time integration. Case in point, the disater management situations that requires obtaining real time data from various sources of information. One of the problematic challenges in the mentioned situation is the high degree of heterogeneity between different organizations data. To solve this issue, we introduce an ontology-based method to provide sharing and integration capabilities for the existing databases. In addition to resolving semantic heterogeneity, better access to information is also provided by our proposed method. Our approach is consisted of three steps, the first step is identification of the object in a relational database, then the semantic relationships between them are modelled and subsequently, the ontology of each database is created. In a second step, the relative ontology will be inserted into the database and the relationship of each class of ontology will be inserted into the new created column in database tables. Last step is consisted of a platform based on service-oriented architecture, which allows integration of data. This is done by using the concept of ontology mapping. The proposed approach, in addition to being fast and low cost, makes the process of data integration easy and the data remains unchanged and thus takes advantage of the legacy application provided.

  15. Combining semantic technologies with a content-based image retrieval system - Preliminary considerations

    NASA Astrophysics Data System (ADS)

    Chmiel, P.; Ganzha, M.; Jaworska, T.; Paprzycki, M.

    2017-10-01

    Nowadays, as a part of systematic growth of volume, and variety, of information that can be found on the Internet, we observe also dramatic increase in sizes of available image collections. There are many ways to help users browsing / selecting images of interest. One of popular approaches are Content-Based Image Retrieval (CBIR) systems, which allow users to search for images that match their interests, expressed in the form of images (query by example). However, we believe that image search and retrieval could take advantage of semantic technologies. We have decided to test this hypothesis. Specifically, on the basis of knowledge captured in the CBIR, we have developed a domain ontology of residential real estate (detached houses, in particular). This allows us to semantically represent each image (and its constitutive architectural elements) represented within the CBIR. The proposed ontology was extended to capture not only the elements resulting from image segmentation, but also "spatial relations" between them. As a result, a new approach to querying the image database (semantic querying) has materialized, thus extending capabilities of the developed system.

  16. Evaluation of need for ontologies to manage domain content for the Reportable Conditions Knowledge Management System.

    PubMed

    Eilbeck, Karen L; Lipstein, Julie; McGarvey, Sunanda; Staes, Catherine J

    2014-01-01

    The Reportable Condition Knowledge Management System (RCKMS) is envisioned to be a single, comprehensive, authoritative, real-time portal to author, view and access computable information about reportable conditions. The system is designed for use by hospitals, laboratories, health information exchanges, and providers to meet public health reporting requirements. The RCKMS Knowledge Representation Workgroup was tasked to explore the need for ontologies to support RCKMS functionality. The workgroup reviewed relevant projects and defined criteria to evaluate candidate knowledge domain areas for ontology development. The use of ontologies is justified for this project to unify the semantics used to describe similar reportable events and concepts between different jurisdictions and over time, to aid data integration, and to manage large, unwieldy datasets that evolve, and are sometimes externally managed.

  17. A Learning Design Ontology Based on the IMS Specification

    ERIC Educational Resources Information Center

    Amorim, Ricardo R.; Lama, Manuel; Sanchez, Eduardo; Riera, Adolfo; Vila, Xose A.

    2006-01-01

    In this paper, we present an ontology to represent the semantics of the IMS Learning Design (IMS LD) specification, a meta-language used to describe the main elements of the learning design process. The motivation of this work relies on the expressiveness limitations found on the current XML-Schema implementation of the IMS LD conceptual model. To…

  18. EMSE at TREC 2015 Clinical Decision Support Track

    DTIC Science & Technology

    2015-11-20

    pseudo relevant documents, semantic ressources of UMLS , and a hybrid approach called SMERA that combines LSI and UMLS based approaches. Only three of...approach to query expansion uses ontologies ( UMLS ) and a lo- cal approach based on pseudo relevant feedback documents using LSI. A brief description of...pseudo relevance feedback documents, and a semantic method based on UMLS concepts. The LSI-based method was used only to expand summary terms that can’t

  19. SemantGeo: Powering Ecological and Environment Data Discovery and Search with Standards-Based Geospatial Reasoning

    NASA Astrophysics Data System (ADS)

    Seyed, P.; Ashby, B.; Khan, I.; Patton, E. W.; McGuinness, D. L.

    2013-12-01

    Recent efforts to create and leverage standards for geospatial data specification and inference include the GeoSPARQL standard, Geospatial OWL ontologies (e.g., GAZ, Geonames), and RDF triple stores that support GeoSPARQL (e.g., AllegroGraph, Parliament) that use RDF instance data for geospatial features of interest. However, there remains a gap on how best to fuse software engineering best practices and GeoSPARQL within semantic web applications to enable flexible search driven by geospatial reasoning. In this abstract we introduce the SemantGeo module for the SemantEco framework that helps fill this gap, enabling scientists find data using geospatial semantics and reasoning. SemantGeo provides multiple types of geospatial reasoning for SemantEco modules. The server side implementation uses the Parliament SPARQL Endpoint accessed via a Tomcat servlet. SemantGeo uses the Google Maps API for user-specified polygon construction and JsTree for providing containment and categorical hierarchies for search. SemantGeo uses GeoSPARQL for spatial reasoning alone and in concert with RDFS/OWL reasoning capabilities to determine, e.g., what geofeatures are within, partially overlap with, or within a certain distance from, a given polygon. We also leverage qualitative relationships defined by the Gazetteer ontology that are composites of spatial relationships as well as administrative designations or geophysical phenomena. We provide multiple mechanisms for exploring data, such as polygon (map-based) and named-feature (hierarchy-based) selection, that enable flexible search constraints using boolean combination of selections. JsTree-based hierarchical search facets present named features and include a 'part of' hierarchy (e.g., measurement-site-01, Lake George, Adirondack Region, NY State) and type hierarchies (e.g., nodes in the hierarchy for WaterBody, Park, MeasurementSite), depending on the ';axis of choice' option selected. Using GeoSPARQL and aforementioned ontology, these hierarchies are constrained based on polygon selection, where the corresponding polygons of the contained features are visually rendered to assist exploration. Once measurement sites are plotted based on initial search, subsequent searches using JsTree selections can extend the previous based on nearby waterbodies in some semantic relationship of interest. For example, ';tributary of' captures water bodies that flow into the current one, and extending the original search to include tributaries of the observed water body is useful to environmental scientists for isolating the source of characteristic levels, including pollutants. Ultimately any SemantEco module can leverage SemantGeo's underlying APIs, leveraged in a deployment of SemantEco that combines EPA and USGS water quality data, and one customized for searching data available from the Darrin Freshwater Institute. Future work will address generating RDF geometry data from shape files, aligning RDF data sources to better leverage qualitative and spatial relationships, and validating newly generated RDF data adhering to the GeoSPARQL standard.

  20. Ontology construction and application in practice case study of health tourism in Thailand.

    PubMed

    Chantrapornchai, Chantana; Choksuchat, Chidchanok

    2016-01-01

    Ontology is one of the key components in semantic webs. It contains the core knowledge for an effective search. However, building ontology requires the carefully-collected knowledge which is very domain-sensitive. In this work, we present the practice of ontology construction for a case study of health tourism in Thailand. The whole process follows the METHONTOLOGY approach, which consists of phases: information gathering, corpus study, ontology engineering, evaluation, publishing, and the application construction. Different sources of data such as structure web documents like HTML and other documents are acquired in the information gathering process. The tourism corpora from various tourism texts and standards are explored. The ontology is evaluated in two aspects: automatic reasoning using Pellet, and RacerPro, and the questionnaires, used to evaluate by experts of the domains: tourism domain experts and ontology experts. The ontology usability is demonstrated via the semantic web application and via example axioms. The developed ontology is actually the first health tourism ontology in Thailand with the published application.

  1. Semantics-based plausible reasoning to extend the knowledge coverage of medical knowledge bases for improved clinical decision support.

    PubMed

    Mohammadhassanzadeh, Hossein; Van Woensel, William; Abidi, Samina Raza; Abidi, Syed Sibte Raza

    2017-01-01

    Capturing complete medical knowledge is challenging-often due to incomplete patient Electronic Health Records (EHR), but also because of valuable, tacit medical knowledge hidden away in physicians' experiences. To extend the coverage of incomplete medical knowledge-based systems beyond their deductive closure, and thus enhance their decision-support capabilities, we argue that innovative, multi-strategy reasoning approaches should be applied. In particular, plausible reasoning mechanisms apply patterns from human thought processes, such as generalization, similarity and interpolation, based on attributional, hierarchical, and relational knowledge. Plausible reasoning mechanisms include inductive reasoning , which generalizes the commonalities among the data to induce new rules, and analogical reasoning , which is guided by data similarities to infer new facts. By further leveraging rich, biomedical Semantic Web ontologies to represent medical knowledge, both known and tentative, we increase the accuracy and expressivity of plausible reasoning, and cope with issues such as data heterogeneity, inconsistency and interoperability. In this paper, we present a Semantic Web-based, multi-strategy reasoning approach, which integrates deductive and plausible reasoning and exploits Semantic Web technology to solve complex clinical decision support queries. We evaluated our system using a real-world medical dataset of patients with hepatitis, from which we randomly removed different percentages of data (5%, 10%, 15%, and 20%) to reflect scenarios with increasing amounts of incomplete medical knowledge. To increase the reliability of the results, we generated 5 independent datasets for each percentage of missing values, which resulted in 20 experimental datasets (in addition to the original dataset). The results show that plausibly inferred knowledge extends the coverage of the knowledge base by, on average, 2%, 7%, 12%, and 16% for datasets with, respectively, 5%, 10%, 15%, and 20% of missing values. This expansion in the KB coverage allowed solving complex disease diagnostic queries that were previously unresolvable, without losing the correctness of the answers. However, compared to deductive reasoning, data-intensive plausible reasoning mechanisms yield a significant performance overhead. We observed that plausible reasoning approaches, by generating tentative inferences and leveraging domain knowledge of experts, allow us to extend the coverage of medical knowledge bases, resulting in improved clinical decision support. Second, by leveraging OWL ontological knowledge, we are able to increase the expressivity and accuracy of plausible reasoning methods. Third, our approach is applicable to clinical decision support systems for a range of chronic diseases.

  2. Context-Based Tourism Information Filtering with a Semantic Rule Engine

    PubMed Central

    Lamsfus, Carlos; Martin, David; Alzua-Sorzabal, Aurkene; López-de-Ipiña, Diego; Torres-Manzanera, Emilio

    2012-01-01

    This paper presents the CONCERT framework, a push/filter information consumption paradigm, based on a rule-based semantic contextual information system for tourism. CONCERT suggests a specific insight of the notion of context from a human mobility perspective. It focuses on the particular characteristics and requirements of travellers and addresses the drawbacks found in other approaches. Additionally, CONCERT suggests the use of digital broadcasting as push communication technology, whereby tourism information is disseminated to mobile devices. This information is then automatically filtered by a network of ontologies and offered to tourists on the screen. The results obtained in the experiments carried out show evidence that the information disseminated through digital broadcasting can be manipulated by the network of ontologies, providing contextualized information that produces user satisfaction. PMID:22778584

  3. Context-based tourism information filtering with a semantic rule engine.

    PubMed

    Lamsfus, Carlos; Martin, David; Alzua-Sorzabal, Aurkene; López-de-Ipiña, Diego; Torres-Manzanera, Emilio

    2012-01-01

    This paper presents the CONCERT framework, a push/filter information consumption paradigm, based on a rule-based semantic contextual information system for tourism. CONCERT suggests a specific insight of the notion of context from a human mobility perspective. It focuses on the particular characteristics and requirements of travellers and addresses the drawbacks found in other approaches. Additionally, CONCERT suggests the use of digital broadcasting as push communication technology, whereby tourism information is disseminated to mobile devices. This information is then automatically filtered by a network of ontologies and offered to tourists on the screen. The results obtained in the experiments carried out show evidence that the information disseminated through digital broadcasting can be manipulated by the network of ontologies, providing contextualized information that produces user satisfaction.

  4. A Semantic Medical Multimedia Retrieval Approach Using Ontology Information Hiding

    PubMed Central

    Guo, Kehua; Zhang, Shigeng

    2013-01-01

    Searching useful information from unstructured medical multimedia data has been a difficult problem in information retrieval. This paper reports an effective semantic medical multimedia retrieval approach which can reflect the users' query intent. Firstly, semantic annotations will be given to the multimedia documents in the medical multimedia database. Secondly, the ontology that represented semantic information will be hidden in the head of the multimedia documents. The main innovations of this approach are cross-type retrieval support and semantic information preservation. Experimental results indicate a good precision and efficiency of our approach for medical multimedia retrieval in comparison with some traditional approaches. PMID:24082915

  5. OlyMPUS - The Ontology-based Metadata Portal for Unified Semantics

    NASA Astrophysics Data System (ADS)

    Huffer, E.; Gleason, J. L.

    2015-12-01

    The Ontology-based Metadata Portal for Unified Semantics (OlyMPUS), funded by the NASA Earth Science Technology Office Advanced Information Systems Technology program, is an end-to-end system designed to support data consumers and data providers, enabling the latter to register their data sets and provision them with the semantically rich metadata that drives the Ontology-Driven Interactive Search Environment for Earth Sciences (ODISEES). OlyMPUS leverages the semantics and reasoning capabilities of ODISEES to provide data producers with a semi-automated interface for producing the semantically rich metadata needed to support ODISEES' data discovery and access services. It integrates the ODISEES metadata search system with multiple NASA data delivery tools to enable data consumers to create customized data sets for download to their computers, or for NASA Advanced Supercomputing (NAS) facility registered users, directly to NAS storage resources for access by applications running on NAS supercomputers. A core function of NASA's Earth Science Division is research and analysis that uses the full spectrum of data products available in NASA archives. Scientists need to perform complex analyses that identify correlations and non-obvious relationships across all types of Earth System phenomena. Comprehensive analytics are hindered, however, by the fact that many Earth science data products are disparate and hard to synthesize. Variations in how data are collected, processed, gridded, and stored, create challenges for data interoperability and synthesis, which are exacerbated by the sheer volume of available data. Robust, semantically rich metadata can support tools for data discovery and facilitate machine-to-machine transactions with services such as data subsetting, regridding, and reformatting. Such capabilities are critical to enabling the research activities integral to NASA's strategic plans. However, as metadata requirements increase and competing standards emerge, metadata provisioning becomes increasingly burdensome to data producers. The OlyMPUS system helps data providers produce semantically rich metadata, making their data more accessible to data consumers, and helps data consumers quickly discover and download the right data for their research.

  6. Addressing the Challenges of Multi-Domain Data Integration with the SemantEco Framework

    NASA Astrophysics Data System (ADS)

    Patton, E. W.; Seyed, P.; McGuinness, D. L.

    2013-12-01

    Data integration across multiple domains will continue to be a challenge with the proliferation of big data in the sciences. Data origination issues and how data are manipulated are critical to enable scientists to understand and consume disparate datasets as research becomes more multidisciplinary. We present the SemantEco framework as an exemplar for designing an integrative portal for data discovery, exploration, and interpretation that uses best practice W3C Recommendations. We use the Resource Description Framework (RDF) with extensible ontologies described in the Web Ontology Language (OWL) to provide graph-based data representation. Furthermore, SemantEco ingests data via the software package csv2rdf4lod, which generates data provenance using the W3C provenance recommendation (PROV). Our presentation will discuss benefits and challenges of semantic integration, their effect on runtime performance, and how the SemantEco framework assisted in identifying performance issues and improved query performance across multiple domains by an order of magnitude. SemantEco benefits from a semantic approach that provides an 'open world', which allows data to incrementally change just as it does in the real world. SemantEco modules may load new ontologies and data using the W3C's SPARQL Protocol and RDF Query Language via HTTP. Modules may also provide user interface elements for applications and query capabilities to support new use cases. Modules can associate with domains, which are first-class objects in SemantEco. This enables SemantEco to perform integration and reasoning both within and across domains on module-provided data. The SemantEco framework has been used to construct a web portal for environmental and ecological data. The portal includes water and air quality data from the U.S. Geological Survey (USGS) and Environmental Protection Agency (EPA) and species observation counts for birds and fish from the Avian Knowledge Network and the Santa Barbara Long Term Ecological Research, respectively. We provide regulation ontologies using OWL2 datatype facets to detect out-of-range measurements for environmental standards set by the EPA, i.a. Users adjust queries using module-defined facets and a map presents the resulting measurement sites. Custom icons identify sites that violate regulations, making them easy to locate. Selecting a site gives the option of charting spatially proximate data from different domains over time. Our portal currently provides 1.6 billion triples of scientific data in RDF. We segment data by ZIP code and reasoning over 2157 measurements with our EPA regulation ontology that contains 131 regulations takes 2.5 seconds on a 2.4 GHz Intel Core 2 Quad with 8 GB of RAM. SemantEco's modular design and reasoning capabilities make it an exemplar for building multidisciplinary data integration tools that provide data access to scientists and the general population alike. Its provenance tracking provides accountability and its reasoning services can assist users in interpreting data. Future work includes support for geographical queries using the Open Geospatial Consortium's GeoSPARQL standard.

  7. Research of three level match method about semantic web service based on ontology

    NASA Astrophysics Data System (ADS)

    Xiao, Jie; Cai, Fang

    2011-10-01

    An important step of Web service Application is the discovery of useful services. Keywords are used in service discovery in traditional technology like UDDI and WSDL, with the disadvantage of user intervention, lack of semantic description and low accuracy. To cope with these problems, OWL-S is introduced and extended with QoS attributes to describe the attribute and functions of Web Services. A three-level service matching algorithm based on ontology and QOS in proposed in this paper. Our algorithm can match web service by utilizing the service profile, QoS parameters together with input and output of the service. Simulation results shows that it greatly enhanced the speed of service matching while high accuracy is also guaranteed.

  8. CDAO-Store: Ontology-driven Data Integration for Phylogenetic Analysis

    PubMed Central

    2011-01-01

    Background The Comparative Data Analysis Ontology (CDAO) is an ontology developed, as part of the EvoInfo and EvoIO groups supported by the National Evolutionary Synthesis Center, to provide semantic descriptions of data and transformations commonly found in the domain of phylogenetic analysis. The core concepts of the ontology enable the description of phylogenetic trees and associated character data matrices. Results Using CDAO as the semantic back-end, we developed a triple-store, named CDAO-Store. CDAO-Store is a RDF-based store of phylogenetic data, including a complete import of TreeBASE. CDAO-Store provides a programmatic interface, in the form of web services, and a web-based front-end, to perform both user-defined as well as domain-specific queries; domain-specific queries include search for nearest common ancestors, minimum spanning clades, filter multiple trees in the store by size, author, taxa, tree identifier, algorithm or method. In addition, CDAO-Store provides a visualization front-end, called CDAO-Explorer, which can be used to view both character data matrices and trees extracted from the CDAO-Store. CDAO-Store provides import capabilities, enabling the addition of new data to the triple-store; files in PHYLIP, MEGA, nexml, and NEXUS formats can be imported and their CDAO representations added to the triple-store. Conclusions CDAO-Store is made up of a versatile and integrated set of tools to support phylogenetic analysis. To the best of our knowledge, CDAO-Store is the first semantically-aware repository of phylogenetic data with domain-specific querying capabilities. The portal to CDAO-Store is available at http://www.cs.nmsu.edu/~cdaostore. PMID:21496247

  9. CDAO-store: ontology-driven data integration for phylogenetic analysis.

    PubMed

    Chisham, Brandon; Wright, Ben; Le, Trung; Son, Tran Cao; Pontelli, Enrico

    2011-04-15

    The Comparative Data Analysis Ontology (CDAO) is an ontology developed, as part of the EvoInfo and EvoIO groups supported by the National Evolutionary Synthesis Center, to provide semantic descriptions of data and transformations commonly found in the domain of phylogenetic analysis. The core concepts of the ontology enable the description of phylogenetic trees and associated character data matrices. Using CDAO as the semantic back-end, we developed a triple-store, named CDAO-Store. CDAO-Store is a RDF-based store of phylogenetic data, including a complete import of TreeBASE. CDAO-Store provides a programmatic interface, in the form of web services, and a web-based front-end, to perform both user-defined as well as domain-specific queries; domain-specific queries include search for nearest common ancestors, minimum spanning clades, filter multiple trees in the store by size, author, taxa, tree identifier, algorithm or method. In addition, CDAO-Store provides a visualization front-end, called CDAO-Explorer, which can be used to view both character data matrices and trees extracted from the CDAO-Store. CDAO-Store provides import capabilities, enabling the addition of new data to the triple-store; files in PHYLIP, MEGA, nexml, and NEXUS formats can be imported and their CDAO representations added to the triple-store. CDAO-Store is made up of a versatile and integrated set of tools to support phylogenetic analysis. To the best of our knowledge, CDAO-Store is the first semantically-aware repository of phylogenetic data with domain-specific querying capabilities. The portal to CDAO-Store is available at http://www.cs.nmsu.edu/~cdaostore.

  10. Automatically Expanding the Synonym Set of SNOMED CT using Wikipedia.

    PubMed

    Schlegel, Daniel R; Crowner, Chris; Elkin, Peter L

    2015-01-01

    Clinical terminologies and ontologies are often used in natural language processing/understanding tasks as a method for semantically tagging text. One ontology commonly used for this task is SNOMED CT. Natural language is rich and varied: many different combinations of words may be used to express the same idea. It is therefore essential that ontologies and terminologies have a rich set of synonyms. One source of synonyms is Wikipedia. We examine methods for aligning concepts in SNOMED CT with articles in Wikipedia so that newly-found synonyms may be added to SNOMED CT. Our experiments show promising results and provide guidance to researchers who wish to use Wikipedia for similar tasks.

  11. Ontology-based content analysis of US patent applications from 2001-2010.

    PubMed

    Weber, Lutz; Böhme, Timo; Irmer, Matthias

    2013-01-01

    Ontology-based semantic text analysis methods allow to automatically extract knowledge relationships and data from text documents. In this review, we have applied these technologies for the systematic analysis of pharmaceutical patents. Hierarchical concepts from the knowledge domains of chemical compounds, diseases and proteins were used to annotate full-text US patent applications that deal with pharmacological activities of chemical compounds and filed in the years 2001-2010. Compounds claimed in these applications have been classified into their respective compound classes to review the distribution of scaffold types or general compound classes such as natural products in a time-dependent manner. Similarly, the target proteins and claimed utility of the compounds have been classified and the most relevant were extracted. The method presented allows the discovery of the main areas of innovation as well as emerging fields of patenting activities - providing a broad statistical basis for competitor analysis and decision-making efforts.

  12. Semantically Interoperable XML Data

    PubMed Central

    Vergara-Niedermayr, Cristobal; Wang, Fusheng; Pan, Tony; Kurc, Tahsin; Saltz, Joel

    2013-01-01

    XML is ubiquitously used as an information exchange platform for web-based applications in healthcare, life sciences, and many other domains. Proliferating XML data are now managed through latest native XML database technologies. XML data sources conforming to common XML schemas could be shared and integrated with syntactic interoperability. Semantic interoperability can be achieved through semantic annotations of data models using common data elements linked to concepts from ontologies. In this paper, we present a framework and software system to support the development of semantic interoperable XML based data sources that can be shared through a Grid infrastructure. We also present our work on supporting semantic validated XML data through semantic annotations for XML Schema, semantic validation and semantic authoring of XML data. We demonstrate the use of the system for a biomedical database of medical image annotations and markups. PMID:25298789

  13. Building a semi-automatic ontology learning and construction system for geosciences

    NASA Astrophysics Data System (ADS)

    Babaie, H. A.; Sunderraman, R.; Zhu, Y.

    2013-12-01

    We are developing an ontology learning and construction framework that allows continuous, semi-automatic knowledge extraction, verification, validation, and maintenance by potentially a very large group of collaborating domain experts in any geosciences field. The system brings geoscientists from the side-lines to the center stage of ontology building, allowing them to collaboratively construct and enrich new ontologies, and merge, align, and integrate existing ontologies and tools. These constantly evolving ontologies can more effectively address community's interests, purposes, tools, and change. The goal is to minimize the cost and time of building ontologies, and maximize the quality, usability, and adoption of ontologies by the community. Our system will be a domain-independent ontology learning framework that applies natural language processing, allowing users to enter their ontology in a semi-structured form, and a combined Semantic Web and Social Web approach that lets direct participation of geoscientists who have no skill in the design and development of their domain ontologies. A controlled natural language (CNL) interface and an integrated authoring and editing tool automatically convert syntactically correct CNL text into formal OWL constructs. The WebProtege-based system will allow a potentially large group of geoscientists, from multiple domains, to crowd source and participate in the structuring of their knowledge model by sharing their knowledge through critiquing, testing, verifying, adopting, and updating of the concept models (ontologies). We will use cloud storage for all data and knowledge base components of the system, such as users, domain ontologies, discussion forums, and semantic wikis that can be accessed and queried by geoscientists in each domain. We will use NoSQL databases such as MongoDB as a service in the cloud environment. MongoDB uses the lightweight JSON format, which makes it convenient and easy to build Web applications using just HTML5 and Javascript, thereby avoiding cumbersome server side coding present in the traditional approaches. The JSON format used in MongoDB is also suitable for storing and querying RDF data. We will store the domain ontologies and associated linked data in JSON/RDF formats. Our Web interface will be built upon the open source and configurable WebProtege ontology editor. We will develop a simplified mobile version of our user interface which will automatically detect the hosting device and adjust the user interface layout to accommodate different screen sizes. We will also use the Semantic Media Wiki that allows the user to store and query the data within the wiki pages. By using HTML 5, JavaScript, and WebGL, we aim to create an interactive, dynamic, and multi-dimensional user interface that presents various geosciences data sets in a natural and intuitive way.

  14. ADO: a disease ontology representing the domain knowledge specific to Alzheimer's disease.

    PubMed

    Malhotra, Ashutosh; Younesi, Erfan; Gündel, Michaela; Müller, Bernd; Heneka, Michael T; Hofmann-Apitius, Martin

    2014-03-01

    Biomedical ontologies offer the capability to structure and represent domain-specific knowledge semantically. Disease-specific ontologies can facilitate knowledge exchange across multiple disciplines, and ontology-driven mining approaches can generate great value for modeling disease mechanisms. However, in the case of neurodegenerative diseases such as Alzheimer's disease, there is a lack of formal representation of the relevant knowledge domain. Alzheimer's disease ontology (ADO) is constructed in accordance to the ontology building life cycle. The Protégé OWL editor was used as a tool for building ADO in Ontology Web Language format. ADO was developed with the purpose of containing information relevant to four main biological views-preclinical, clinical, etiological, and molecular/cellular mechanisms-and was enriched by adding synonyms and references. Validation of the lexicalized ontology by means of named entity recognition-based methods showed a satisfactory performance (F score = 72%). In addition to structural and functional evaluation, a clinical expert in the field performed a manual evaluation and curation of ADO. Through integration of ADO into an information retrieval environment, we show that the ontology supports semantic search in scientific text. The usefulness of ADO is authenticated by dedicated use case scenarios. Development of ADO as an open ADO is a first attempt to organize information related to Alzheimer's disease in a formalized, structured manner. We demonstrate that ADO is able to capture both established and scattered knowledge existing in scientific text. Copyright © 2014 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  15. The Semantic Web: From Representation to Realization

    NASA Astrophysics Data System (ADS)

    Thórisson, Kristinn R.; Spivack, Nova; Wissner, James M.

    A semantically-linked web of electronic information - the Semantic Web - promises numerous benefits including increased precision in automated information sorting, searching, organizing and summarizing. Realizing this requires significantly more reliable meta-information than is readily available today. It also requires a better way to represent information that supports unified management of diverse data and diverse Manipulation methods: from basic keywords to various types of artificial intelligence, to the highest level of intelligent manipulation - the human mind. How this is best done is far from obvious. Relying solely on hand-crafted annotation and ontologies, or solely on artificial intelligence techniques, seems less likely for success than a combination of the two. In this paper describe an integrated, complete solution to these challenges that has already been implemented and tested with hundreds of thousands of users. It is based on an ontological representational level we call SemCards that combines ontological rigour with flexible user interface constructs. SemCards are machine- and human-readable digital entities that allow non-experts to create and use semantic content, while empowering machines to better assist and participate in the process. SemCards enable users to easily create semantically-grounded data that in turn acts as examples for automation processes, creating a positive iterative feedback loop of metadata creation and refinement between user and machine. They provide a holistic solution to the Semantic Web, supporting powerful management of the full lifecycle of data, including its creation, retrieval, classification, sorting and sharing. We have implemented the SemCard technology on the semantic Web site Twine.com, showing that the technology is indeed versatile and scalable. Here we present the key ideas behind SemCards and describe the initial implementation of the technology.

  16. Research on presentation and query service of geo-spatial data based on ontology

    NASA Astrophysics Data System (ADS)

    Li, Hong-wei; Li, Qin-chao; Cai, Chang

    2008-10-01

    The paper analyzed the deficiency on presentation and query of geo-spatial data existed in current GIS, discussed the advantages that ontology possessed in formalization of geo-spatial data and the presentation of semantic granularity, taken land-use classification system as an example to construct domain ontology, and described it by OWL; realized the grade level and category presentation of land-use data benefited from the thoughts of vertical and horizontal navigation; and then discussed query mode of geo-spatial data based on ontology, including data query based on types and grade levels, instances and spatial relation, and synthetic query based on types and instances; these methods enriched query mode of current GIS, and is a useful attempt; point out that the key point of the presentation and query of spatial data based on ontology is to construct domain ontology that can correctly reflect geo-concept and its spatial relation and realize its fine formalization description.

  17. Spatiotemporal integration of molecular and anatomical data in virtual reality using semantic mapping.

    PubMed

    Soh, Jung; Turinsky, Andrei L; Trinh, Quang M; Chang, Jasmine; Sabhaney, Ajay; Dong, Xiaoli; Gordon, Paul Mk; Janzen, Ryan Pw; Hau, David; Xia, Jianguo; Wishart, David S; Sensen, Christoph W

    2009-01-01

    We have developed a computational framework for spatiotemporal integration of molecular and anatomical datasets in a virtual reality environment. Using two case studies involving gene expression data and pharmacokinetic data, respectively, we demonstrate how existing knowledge bases for molecular data can be semantically mapped onto a standardized anatomical context of human body. Our data mapping methodology uses ontological representations of heterogeneous biomedical datasets and an ontology reasoner to create complex semantic descriptions of biomedical processes. This framework provides a means to systematically combine an increasing amount of biomedical imaging and numerical data into spatiotemporally coherent graphical representations. Our work enables medical researchers with different expertise to simulate complex phenomena visually and to develop insights through the use of shared data, thus paving the way for pathological inference, developmental pattern discovery and biomedical hypothesis testing.

  18. Publication and Retrieval of Computational Chemical-Physical Data Via the Semantic Web. Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ostlund, Neil

    This research showed the feasibility of applying the concepts of the Semantic Web to Computation Chemistry. We have created the first web portal (www.chemsem.com) that allows data created in the calculations of quantum chemistry, and other such chemistry calculations to be placed on the web in a way that makes the data accessible to scientists in a semantic form never before possible. The semantic web nature of the portal allows data to be searched, found, and used as an advance over the usual approach of a relational database. The semantic data on our portal has the nature of a Giantmore » Global Graph (GGG) that can be easily merged with related data and searched globally via a SPARQL Protocol and RDF Query Language (SPARQL) that makes global searches for data easier than with traditional methods. Our Semantic Web Portal requires that the data be understood by a computer and hence defined by an ontology (vocabulary). This ontology is used by the computer in understanding the data. We have created such an ontology for computational chemistry (purl.org/gc) that encapsulates a broad knowledge of the field of computational chemistry. We refer to this ontology as the Gainesville Core. While it is perhaps the first ontology for computational chemistry and is used by our portal, it is only a start of what must be a long multi-partner effort to define computational chemistry. In conjunction with the above efforts we have defined a new potential file standard (Common Standard for eXchange – CSX for computational chemistry data). This CSX file is the precursor of data in the Resource Description Framework (RDF) form that the semantic web requires. Our portal translates CSX files (as well as other computational chemistry data files) into RDF files that are part of the graph database that the semantic web employs. We propose a CSX file as a convenient way to encapsulate computational chemistry data.« less

  19. A unified architecture for biomedical search engines based on semantic web technologies.

    PubMed

    Jalali, Vahid; Matash Borujerdi, Mohammad Reza

    2011-04-01

    There is a huge growth in the volume of published biomedical research in recent years. Many medical search engines are designed and developed to address the over growing information needs of biomedical experts and curators. Significant progress has been made in utilizing the knowledge embedded in medical ontologies and controlled vocabularies to assist these engines. However, the lack of common architecture for utilized ontologies and overall retrieval process, hampers evaluating different search engines and interoperability between them under unified conditions. In this paper, a unified architecture for medical search engines is introduced. Proposed model contains standard schemas declared in semantic web languages for ontologies and documents used by search engines. Unified models for annotation and retrieval processes are other parts of introduced architecture. A sample search engine is also designed and implemented based on the proposed architecture in this paper. The search engine is evaluated using two test collections and results are reported in terms of precision vs. recall and mean average precision for different approaches used by this search engine.

  20. The OceanLink Project

    NASA Astrophysics Data System (ADS)

    Narock, T.; Arko, R. A.; Carbotte, S. M.; Chandler, C. L.; Cheatham, M.; Finin, T.; Hitzler, P.; Krisnadhi, A.; Raymond, L. M.; Shepherd, A.; Wiebe, P. H.

    2014-12-01

    A wide spectrum of maturing methods and tools, collectively characterized as the Semantic Web, is helping to vastly improve the dissemination of scientific research. Creating semantic integration requires input from both domain and cyberinfrastructure scientists. OceanLink, an NSF EarthCube Building Block, is demonstrating semantic technologies through the integration of geoscience data repositories, library holdings, conference abstracts, and funded research awards. Meeting project objectives involves applying semantic technologies to support data representation, discovery, sharing and integration. Our semantic cyberinfrastructure components include ontology design patterns, Linked Data collections, semantic provenance, and associated services to enhance data and knowledge discovery, interoperation, and integration. We discuss how these components are integrated, the continued automated and semi-automated creation of semantic metadata, and techniques we have developed to integrate ontologies, link resources, and preserve provenance and attribution.

  1. On Building an Ontological Knowledge Base for Managing Patient Safety Events.

    PubMed

    Liang, Chen; Gong, Yang

    2015-01-01

    Over the past decade, improving healthcare quality and safety through patient safety event reporting systems has drawn much attention. Unfortunately, such systems are suffering from low data quality, inefficient data entry and ineffective information retrieval. For improving the systems, we develop a semantic web ontology based on the WHO International Classification for Patient Safety (ICPS) and AHRQ Common Formats for patient safety event reporting. The ontology holds potential in enhancing knowledge management and information retrieval, as well as providing flexible data entry and case analysis for both reporters and reviewers of patient safety events. In this paper, we detailed our efforts in data acquisition, transformation, implementation and initial evaluation of the ontology.

  2. Integrating HL7 RIM and ontology for unified knowledge and data representation in clinical decision support systems.

    PubMed

    Zhang, Yi-Fan; Tian, Yu; Zhou, Tian-Shu; Araki, Kenji; Li, Jing-Song

    2016-01-01

    The broad adoption of clinical decision support systems within clinical practice has been hampered mainly by the difficulty in expressing domain knowledge and patient data in a unified formalism. This paper presents a semantic-based approach to the unified representation of healthcare domain knowledge and patient data for practical clinical decision making applications. A four-phase knowledge engineering cycle is implemented to develop a semantic healthcare knowledge base based on an HL7 reference information model, including an ontology to model domain knowledge and patient data and an expression repository to encode clinical decision making rules and queries. A semantic clinical decision support system is designed to provide patient-specific healthcare recommendations based on the knowledge base and patient data. The proposed solution is evaluated in the case study of type 2 diabetes mellitus inpatient management. The knowledge base is successfully instantiated with relevant domain knowledge and testing patient data. Ontology-level evaluation confirms model validity. Application-level evaluation of diagnostic accuracy reaches a sensitivity of 97.5%, a specificity of 100%, and a precision of 98%; an acceptance rate of 97.3% is given by domain experts for the recommended care plan orders. The proposed solution has been successfully validated in the case study as providing clinical decision support at a high accuracy and acceptance rate. The evaluation results demonstrate the technical feasibility and application prospect of our approach. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Classification of high resolution remote sensing image based on geo-ontology and conditional random fields

    NASA Astrophysics Data System (ADS)

    Hong, Liang

    2013-10-01

    The availability of high spatial resolution remote sensing data provides new opportunities for urban land-cover classification. More geometric details can be observed in the high resolution remote sensing image, Also Ground objects in the high resolution remote sensing image have displayed rich texture, structure, shape and hierarchical semantic characters. More landscape elements are represented by a small group of pixels. Recently years, the an object-based remote sensing analysis methodology is widely accepted and applied in high resolution remote sensing image processing. The classification method based on Geo-ontology and conditional random fields is presented in this paper. The proposed method is made up of four blocks: (1) the hierarchical ground objects semantic framework is constructed based on geoontology; (2) segmentation by mean-shift algorithm, which image objects are generated. And the mean-shift method is to get boundary preserved and spectrally homogeneous over-segmentation regions ;(3) the relations between the hierarchical ground objects semantic and over-segmentation regions are defined based on conditional random fields framework ;(4) the hierarchical classification results are obtained based on geo-ontology and conditional random fields. Finally, high-resolution remote sensed image data -GeoEye, is used to testify the performance of the presented method. And the experimental results have shown the superiority of this method to the eCognition method both on the effectively and accuracy, which implies it is suitable for the classification of high resolution remote sensing image.

  4. An infrastructure for ontology-based information systems in biomedicine: RICORDO case study.

    PubMed

    Wimalaratne, Sarala M; Grenon, Pierre; Hoehndorf, Robert; Gkoutos, Georgios V; de Bono, Bernard

    2012-02-01

    The article presents an infrastructure for supporting the semantic interoperability of biomedical resources based on the management (storing and inference-based querying) of their ontology-based annotations. This infrastructure consists of: (i) a repository to store and query ontology-based annotations; (ii) a knowledge base server with an inference engine to support the storage of and reasoning over ontologies used in the annotation of resources; (iii) a set of applications and services allowing interaction with the integrated repository and knowledge base. The infrastructure is being prototyped and developed and evaluated by the RICORDO project in support of the knowledge management of biomedical resources, including physiology and pharmacology models and associated clinical data. The RICORDO toolkit and its source code are freely available from http://ricordo.eu/relevant-resources. sarala@ebi.ac.uk.

  5. Semantic integration to identify overlapping functional modules in protein interaction networks

    PubMed Central

    Cho, Young-Rae; Hwang, Woochang; Ramanathan, Murali; Zhang, Aidong

    2007-01-01

    Background The systematic analysis of protein-protein interactions can enable a better understanding of cellular organization, processes and functions. Functional modules can be identified from the protein interaction networks derived from experimental data sets. However, these analyses are challenging because of the presence of unreliable interactions and the complex connectivity of the network. The integration of protein-protein interactions with the data from other sources can be leveraged for improving the effectiveness of functional module detection algorithms. Results We have developed novel metrics, called semantic similarity and semantic interactivity, which use Gene Ontology (GO) annotations to measure the reliability of protein-protein interactions. The protein interaction networks can be converted into a weighted graph representation by assigning the reliability values to each interaction as a weight. We presented a flow-based modularization algorithm to efficiently identify overlapping modules in the weighted interaction networks. The experimental results show that the semantic similarity and semantic interactivity of interacting pairs were positively correlated with functional co-occurrence. The effectiveness of the algorithm for identifying modules was evaluated using functional categories from the MIPS database. We demonstrated that our algorithm had higher accuracy compared to other competing approaches. Conclusion The integration of protein interaction networks with GO annotation data and the capability of detecting overlapping modules substantially improve the accuracy of module identification. PMID:17650343

  6. Ontology-based approaches for cross-enterprise collaboration: a literature review on semantic business process management

    NASA Astrophysics Data System (ADS)

    Hoang, Hanh H.; Jung, Jason J.; Tran, Chi P.

    2014-11-01

    Based on an in-depth analysis of the existing approaches in applying semantic technologies to business process management (BPM) research in the perspective of cross-enterprise collaboration or so-called business-to-business integration, we analyse, discuss and compare methodologies, applications and best practices of the surveyed approaches with the proposed criteria. This article identifies various relevant research directions in semantic BPM (SBPM). Founded on the result of our investigation, we summarise the state of art of SBPM. We also address areas and directions for further research activities.

  7. Robust Deep Semantics for Language Understanding

    DTIC Science & Technology

    focus on five areas: deep learning, textual inferential relations, relation and event extraction by distant supervision , semantic parsing and...ontology expansion, and coreference resolution. As time went by, the program focus converged towards emphasizing technologies for knowledge base...natural logic methods for text understanding, improved mention coreference algorithms, and the further development of multilingual tools in CoreNLP.

  8. On2broker: Semantic-Based Access to Information Sources at the WWW.

    ERIC Educational Resources Information Center

    Fensel, Dieter; Angele, Jurgen; Decker, Stefan; Erdmann, Michael; Schnurr, Hans-Peter; Staab, Steffen; Studer, Rudi; Witt, Andreas

    On2broker provides brokering services to improve access to heterogeneous, distributed, and semistructured information sources as they are presented in the World Wide Web. It relies on the use of ontologies to make explicit the semantics of Web pages. This paper discusses the general architecture and main components (i.e., query engine, information…

  9. A Semantic-Oriented Approach for Organizing and Developing Annotation for E-Learning

    ERIC Educational Resources Information Center

    Brut, Mihaela M.; Sedes, Florence; Dumitrescu, Stefan D.

    2011-01-01

    This paper presents a solution to extend the IEEE LOM standard with ontology-based semantic annotations for efficient use of learning objects outside Learning Management Systems. The data model corresponding to this approach is first presented. The proposed indexing technique for this model development in order to acquire a better annotation of…

  10. Application of Ontologies for Big Earth Data

    NASA Astrophysics Data System (ADS)

    Huang, T.; Chang, G.; Armstrong, E. M.; Boening, C.

    2014-12-01

    Connected data is smarter data! Earth Science research infrastructure must do more than just being able to support temporal, geospatial discovery of satellite data. As the Earth Science data archives continue to expand across NASA data centers, the research communities are demanding smarter data services. A successful research infrastructure must be able to present researchers the complete picture, that is, datasets with linked citations, related interdisciplinary data, imageries, current events, social media discussions, and scientific data tools that are relevant to the particular dataset. The popular Semantic Web for Earth and Environmental Terminology (SWEET) ontologies is a collection of ontologies and concepts designed to improve discovery and application of Earth Science data. The SWEET ontologies collection was initially developed to capture the relationships between keywords in the NASA Global Change Master Directory (GCMD). Over the years this popular ontologies collection has expanded to cover over 200 ontologies and 6000 concepts to enable scalable classification of Earth system science concepts and Space science. This presentation discusses the semantic web technologies as the enabling technology for data-intensive science. We will discuss the application of the SWEET ontologies as a critical component in knowledge-driven research infrastructure for some of the recent projects, which include the DARPA Ontological System for Context Artifact and Resources (OSCAR), 2013 NASA ACCESS Virtual Quality Screening Service (VQSS), and the 2013 NASA Sea Level Change Portal (SLCP) projects. The presentation will also discuss the benefits in using semantic web technologies in developing research infrastructure for Big Earth Science Data in an attempt to "accommodate all domains and provide the necessary glue for information to be cross-linked, correlated, and discovered in a semantically rich manner." [1] [1] Savas Parastatidis: A platform for all that we know: creating a knowledge-driven research infrastructure. The Fourth Paradigm 2009: 165-172

  11. A Semantic Approach for Knowledge Discovery to Help Mitigate Habitat Loss in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Ramachandran, R.; Maskey, M.; Graves, S.; Hardin, D.

    2008-12-01

    Noesis is a meta-search engine and a resource aggregator that uses domain ontologies to provide scoped search capabilities. Ontologies enable Noesis to help users refine their searches for information on the open web and in hidden web locations such as data catalogues with standardized, but discipline specific vocabularies. Through its ontologies Noesis provides a guided refinement of search queries which produces complete and accurate searches while reducing the user's burden to experiment with different search strings. All search results are organized by categories (e. g. all results from Google are grouped together) which may be selected or omitted according to the desire of the user. During the past two years ontologies were developed for sea grasses in the Gulf of Mexico and were used to support a habitat restoration demonstration project. Currently these ontologies are being augmented to address the special characteristics of mangroves. These new ontologies will extend the demonstration project to broader regions of the Gulf including protected mangrove locations in coastal Mexico. Noesis contributes to the decision making process by producing a comprehensive list of relevant resources based on the semantic information contained in the ontologies. Ontologies are organized in a tree like taxonomies, where the child nodes represent the Specializations and the parent nodes represent the Generalizations of a node or concept. Specializations can be used to provide more detailed search, while generalizations are used to make the search broader. Ontologies are also used to link two syntactically different terms to one semantic concept (synonyms). Appending a synonym to the query expands the search, thus providing better search coverage. Every concept has a set of properties that are neither in the same inheritance hierarchy (Specializations / Generalizations) nor equivalent (synonyms). These are called Related Concepts and they are captured in the ontology through property relationships. By using Related Concepts users can search for resources with respect to a particular property. Noesis automatically generates searches that include all of these capabilities, removing the burden from the user and producing broader and more accurate search results. This presentation will demonstrate the features of Noesis and describe its application to habitat studies in the Gulf of Mexico.

  12. OpenBiodiv-O: ontology of the OpenBiodiv knowledge management system.

    PubMed

    Senderov, Viktor; Simov, Kiril; Franz, Nico; Stoev, Pavel; Catapano, Terry; Agosti, Donat; Sautter, Guido; Morris, Robert A; Penev, Lyubomir

    2018-01-18

    The biodiversity domain, and in particular biological taxonomy, is moving in the direction of semantization of its research outputs. The present work introduces OpenBiodiv-O, the ontology that serves as the basis of the OpenBiodiv Knowledge Management System. Our intent is to provide an ontology that fills the gaps between ontologies for biodiversity resources, such as DarwinCore-based ontologies, and semantic publishing ontologies, such as the SPAR Ontologies. We bridge this gap by providing an ontology focusing on biological taxonomy. OpenBiodiv-O introduces classes, properties, and axioms in the domains of scholarly biodiversity publishing and biological taxonomy and aligns them with several important domain ontologies (FaBiO, DoCO, DwC, Darwin-SW, NOMEN, ENVO). By doing so, it bridges the ontological gap across scholarly biodiversity publishing and biological taxonomy and allows for the creation of a Linked Open Dataset (LOD) of biodiversity information (a biodiversity knowledge graph) and enables the creation of the OpenBiodiv Knowledge Management System. A key feature of the ontology is that it is an ontology of the scientific process of biological taxonomy and not of any particular state of knowledge. This feature allows it to express a multiplicity of scientific opinions. The resulting OpenBiodiv knowledge system may gain a high level of trust in the scientific community as it does not force a scientific opinion on its users (e.g. practicing taxonomists, library researchers, etc.), but rather provides the tools for experts to encode different views as science progresses. OpenBiodiv-O provides a conceptual model of the structure of a biodiversity publication and the development of related taxonomic concepts. It also serves as the basis for the OpenBiodiv Knowledge Management System.

  13. Coupling ontology driven semantic representation with multilingual natural language generation for tuning international terminologies.

    PubMed

    Rassinoux, Anne-Marie; Baud, Robert H; Rodrigues, Jean-Marie; Lovis, Christian; Geissbühler, Antoine

    2007-01-01

    The importance of clinical communication between providers, consumers and others, as well as the requisite for computer interoperability, strengthens the need for sharing common accepted terminologies. Under the directives of the World Health Organization (WHO), an approach is currently being conducted in Australia to adopt a standardized terminology for medical procedures that is intended to become an international reference. In order to achieve such a standard, a collaborative approach is adopted, in line with the successful experiment conducted for the development of the new French coding system CCAM. Different coding centres are involved in setting up a semantic representation of each term using a formal ontological structure expressed through a logic-based representation language. From this language-independent representation, multilingual natural language generation (NLG) is performed to produce noun phrases in various languages that are further compared for consistency with the original terms. Outcomes are presented for the assessment of the International Classification of Health Interventions (ICHI) and its translation into Portuguese. The initial results clearly emphasize the feasibility and cost-effectiveness of the proposed method for handling both a different classification and an additional language. NLG tools, based on ontology driven semantic representation, facilitate the discovery of ambiguous and inconsistent terms, and, as such, should be promoted for establishing coherent international terminologies.

  14. Landscape features, standards, and semantics in U.S. national topographic mapping databases

    USGS Publications Warehouse

    Varanka, Dalia

    2009-01-01

    The objective of this paper is to examine the contrast between local, field-surveyed topographical representation and feature representation in digital, centralized databases and to clarify their ontological implications. The semantics of these two approaches are contrasted by examining the categorization of features by subject domains inherent to national topographic mapping. When comparing five USGS topographic mapping domain and feature lists, results indicate that multiple semantic meanings and ontology rules were applied to the initial digital database, but were lost as databases became more centralized at national scales, and common semantics were replaced by technological terms.

  15. Ontology Development and Evolution in the Accident Investigation Domain

    NASA Technical Reports Server (NTRS)

    Carvalho, Robert; Berrios, Dan; Williams, James

    2004-01-01

    InvestiigationOrganizer (IO) is a collaborative semantic web system designed to support the conduct of mishap investigations. IO provides a common repository for a wide range of mishap related information, allowing investigators to integrate evidence, causal models, and investigation results. IO has been used to support investigations ranging from a small property damage case to the loss of the Space Shuttle Columbia. Through IO'S use in these investigations, we have learned significant lessons? about the application of ontologies and semantic systems to solving real-world problems. This paper will describe the development of the ontology within IO, from the initial development, its growth in response to user requests during use in investigations, and the recent work that was done to control the results of that growth. This paper will also describe the lessons learned from this experience and how they may apply to the implementaton of future ontologies and semantic systems.

  16. Improving integrative searching of systems chemical biology data using semantic annotation.

    PubMed

    Chen, Bin; Ding, Ying; Wild, David J

    2012-03-08

    Systems chemical biology and chemogenomics are considered critical, integrative disciplines in modern biomedical research, but require data mining of large, integrated, heterogeneous datasets from chemistry and biology. We previously developed an RDF-based resource called Chem2Bio2RDF that enabled querying of such data using the SPARQL query language. Whilst this work has proved useful in its own right as one of the first major resources in these disciplines, its utility could be greatly improved by the application of an ontology for annotation of the nodes and edges in the RDF graph, enabling a much richer range of semantic queries to be issued. We developed a generalized chemogenomics and systems chemical biology OWL ontology called Chem2Bio2OWL that describes the semantics of chemical compounds, drugs, protein targets, pathways, genes, diseases and side-effects, and the relationships between them. The ontology also includes data provenance. We used it to annotate our Chem2Bio2RDF dataset, making it a rich semantic resource. Through a series of scientific case studies we demonstrate how this (i) simplifies the process of building SPARQL queries, (ii) enables useful new kinds of queries on the data and (iii) makes possible intelligent reasoning and semantic graph mining in chemogenomics and systems chemical biology. Chem2Bio2OWL is available at http://chem2bio2rdf.org/owl. The document is available at http://chem2bio2owl.wikispaces.com.

  17. Process model-based atomic service discovery and composition of composite semantic web services using web ontology language for services (OWL-S)

    NASA Astrophysics Data System (ADS)

    Paulraj, D.; Swamynathan, S.; Madhaiyan, M.

    2012-11-01

    Web Service composition has become indispensable as a single web service cannot satisfy complex functional requirements. Composition of services has received much interest to support business-to-business (B2B) or enterprise application integration. An important component of the service composition is the discovery of relevant services. In Semantic Web Services (SWS), service discovery is generally achieved by using service profile of Ontology Web Languages for Services (OWL-S). The profile of the service is a derived and concise description but not a functional part of the service. The information contained in the service profile is sufficient for atomic service discovery, but it is not sufficient for the discovery of composite semantic web services (CSWS). The purpose of this article is two-fold: first to prove that the process model is a better choice than the service profile for service discovery. Second, to facilitate the composition of inter-organisational CSWS by proposing a new composition method which uses process ontology. The proposed service composition approach uses an algorithm which performs a fine grained match at the level of atomic process rather than at the level of the entire service in a composite semantic web service. Many works carried out in this area have proposed solutions only for the composition of atomic services and this article proposes a solution for the composition of composite semantic web services.

  18. ODISEES: A New Paradigm in Data Access

    NASA Astrophysics Data System (ADS)

    Huffer, E.; Little, M. M.; Kusterer, J.

    2013-12-01

    As part of its ongoing efforts to improve access to data, the Atmospheric Science Data Center has developed a high-precision Earth Science domain ontology (the 'ES Ontology') implemented in a graph database ('the Semantic Metadata Repository') that is used to store detailed, semantically-enhanced, parameter-level metadata for ASDC data products. The ES Ontology provides the semantic infrastructure needed to drive the ASDC's Ontology-Driven Interactive Search Environment for Earth Science ('ODISEES'), a data discovery and access tool, and will support additional data services such as analytics and visualization. The ES ontology is designed on the premise that naming conventions alone are not adequate to provide the information needed by prospective data consumers to assess the suitability of a given dataset for their research requirements; nor are current metadata conventions adequate to support seamless machine-to-machine interactions between file servers and end-user applications. Data consumers need information not only about what two data elements have in common, but also about how they are different. End-user applications need consistent, detailed metadata to support real-time data interoperability. The ES ontology is a highly precise, bottom-up, queriable model of the Earth Science domain that focuses on critical details about the measurable phenomena, instrument techniques, data processing methods, and data file structures. Earth Science parameters are described in detail in the ES Ontology and mapped to the corresponding variables that occur in ASDC datasets. Variables are in turn mapped to well-annotated representations of the datasets that they occur in, the instrument(s) used to create them, the instrument platforms, the processing methods, etc., creating a linked-data structure that allows both human and machine users to access a wealth of information critical to understanding and manipulating the data. The mappings are recorded in the Semantic Metadata Repository as RDF-triples. An off-the-shelf Ontology Development Environment and a custom Metadata Conversion Tool comprise a human-machine/machine-machine hybrid tool that partially automates the creation of metadata as RDF-triples by interfacing with existing metadata repositories and providing a user interface that solicits input from a human user, when needed. RDF-triples are pushed to the Ontology Development Environment, where a reasoning engine executes a series of inference rules whose antecedent conditions can be satisfied by the initial set of RDF-triples, thereby generating the additional detailed metadata that is missing in existing repositories. A SPARQL Endpoint, a web-based query service and a Graphical User Interface allow prospective data consumers - even those with no familiarity with NASA data products - to search the metadata repository to find and order data products that meet their exact specifications. A web-based API will provide an interface for machine-to-machine transactions.

  19. A core observational data model for enhancing the interoperability of ontologically annotated environmental data

    NASA Astrophysics Data System (ADS)

    Schildhauer, M.; Bermudez, L. E.; Bowers, S.; Dibner, P. C.; Gries, C.; Jones, M. B.; McGuinness, D. L.; Cao, H.; Cox, S. J.; Kelling, S.; Lagoze, C.; Lapp, H.; Madin, J.

    2010-12-01

    Research in the environmental sciences often requires accessing diverse data, collected by numerous data providers over varying spatiotemporal scales, incorporating specialized measurements from a range of instruments. These measurements are typically documented using idiosyncratic, disciplinary specific terms, and stored in management systems ranging from desktop spreadsheets to the Cloud, where the information is often further decomposed or stylized in unpredictable ways. This situation creates major informatics challenges for broadly discovering, interpreting, and merging the data necessary for integrative earth science research. A number of scientific disciplines have recognized these issues, and been developing semantically enhanced data storage frameworks, typically based on ontologies, to enable communities to better circumscribe and clarify the content of data objects within their domain of practice. There is concern, however, that cross-domain compatibility of these semantic solutions could become problematic. We describe here our efforts to address this issue by developing a core, unified Observational Data Model, that should greatly facilitate interoperability among the semantic solutions growing organically within diverse scientific domains. Observational Data Models have emerged independently from several distinct scientific communities, including the biodiversity sciences, ecology, evolution, geospatial sciences, and hydrology, to name a few. Informatics projects striving for data integration within each of these domains had converged on identifying "observations" and "measurements" as fundamental abstractions that provide useful "templates" through which scientific data can be linked— at the structural, composited, or even cell value levels— to domain terms stored in ontologies or other forms of controlled vocabularies. The Scientific Observations Network, SONet (http://sonet.ecoinformatics.org) brings together a number of these observational data efforts, and is harmonizing their models. The specific observational data models currently under consideration include the OGC's Observations and Measurements Encoding Standard, O&M; the ecological community's Extensible Observation Ontology, OBOE'; the evolutionary community's Entity-Quality model, EQ; and the VSTO core classes, intended for describing atmospheric and solar-terrestrial phenomena, VSTO.OWL. These models all share high structural similarities, expressed in different languages (e.g. UML or OWL), and are intended for use with very different forms of data. The main focus of this talk will be describing these Observational Data Models, and more importantly, how harmonizing these will catalyze semantically enhanced access to large additional data resources across the earth and life sciences.

  20. Remembering the Important Things: Semantic Importance in Stream Reasoning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Rui; Greaves, Mark T.; Smith, William P.

    Reasoning and querying over data streams rely on the abil- ity to deliver a sequence of stream snapshots to the processing algo- rithms. These snapshots are typically provided using windows as views into streams and associated window management strategies. Generally, the goal of any window management strategy is to preserve the most im- portant data in the current window and preferentially evict the rest, so that the retained data can continue to be exploited. A simple timestamp- based strategy is rst-in-rst-out (FIFO), in which items are replaced in strict order of arrival. All timestamp-based strategies implicitly assume that a temporalmore » ordering reliably re ects importance to the processing task at hand, and thus that window management using timestamps will maximize the ability of the processing algorithms to deliver accurate interpretations of the stream. In this work, we explore a general no- tion of semantic importance that can be used for window management for streams of RDF data using semantically-aware processing algorithms like deduction or semantic query. Semantic importance exploits the infor- mation carried in RDF and surrounding ontologies for ranking window data in terms of its likely contribution to the processing algorithms. We explore the general semantic categories of query contribution, prove- nance, and trustworthiness, as well as the contribution of domain-specic ontologies. We describe how these categories behave using several con- crete examples. Finally, we consider how a stream window management strategy based on semantic importance could improve overall processing performance, especially as available window sizes decrease.« less

  1. A Semantic Cooperation and Interoperability Platform for the European Chambers of Commerce

    NASA Astrophysics Data System (ADS)

    Missikoff, Michele; Taglino, Francesco

    The LD-CAST project aims at developing a semantic cooperation and interoperability platform for the European Chambers of Commerce. Some of the key issues that this platform addresses are: The variety and number of different kinds of resources (i.e., business processes, concrete services) that concur to achieve a business service The diversity of cultural and procedural models emerging when composing articulated cross-country services The limited possibility of reusing similar services in different contexts (for instance, supporting the same service between different countries: an Italian-Romanian cooperation is different from an Italian-Polish one) The objective of the LD-CAST platform, and in particular of the semantic services provided therein, is to address the above problems with flexible solutions. We aim at introducing high levels of flexibility, both at the time of development of business processes and concrete services (i.e., operational services offered by service providers), with the possibility of dynamically binding c-services to the selected BP, according to user needs. To this end, an approach based on semantic services and a reference ontology has been proposed.

  2. Towards a Framework for Developing Semantic Relatedness Reference Standards

    PubMed Central

    Pakhomov, Serguei V.S.; Pedersen, Ted; McInnes, Bridget; Melton, Genevieve B.; Ruggieri, Alexander; Chute, Christopher G.

    2010-01-01

    Our objective is to develop a framework for creating reference standards for functional testing of computerized measures of semantic relatedness. Currently, research on computerized approaches to semantic relatedness between biomedical concepts relies on reference standards created for specific purposes using a variety of methods for their analysis. In most cases, these reference standards are not publicly available and the published information provided in manuscripts that evaluate computerized semantic relatedness measurement approaches is not sufficient to reproduce the results. Our proposed framework is based on the experiences of medical informatics and computational linguistics communities and addresses practical and theoretical issues with creating reference standards for semantic relatedness. We demonstrate the use of the framework on a pilot set of 101 medical term pairs rated for semantic relatedness by 13 medical coding experts. While the reliability of this particular reference standard is in the “moderate” range; we show that using clustering and factor analyses offers a data-driven approach to finding systematic differences among raters and identifying groups of potential outliers. We test two ontology-based measures of relatedness and provide both the reference standard containing individual ratings and the R program used to analyze the ratings as open-source. Currently, these resources are intended to be used to reproduce and compare results of studies involving computerized measures of semantic relatedness. Our framework may be extended to the development of reference standards in other research areas in medical informatics including automatic classification, information retrieval from medical records and vocabulary/ontology development. PMID:21044697

  3. Evaluation of need for ontologies to manage domain content for the Reportable Conditions Knowledge Management System

    PubMed Central

    Eilbeck, Karen L.; Lipstein, Julie; McGarvey, Sunanda; Staes, Catherine J.

    2014-01-01

    The Reportable Condition Knowledge Management System (RCKMS) is envisioned to be a single, comprehensive, authoritative, real-time portal to author, view and access computable information about reportable conditions. The system is designed for use by hospitals, laboratories, health information exchanges, and providers to meet public health reporting requirements. The RCKMS Knowledge Representation Workgroup was tasked to explore the need for ontologies to support RCKMS functionality. The workgroup reviewed relevant projects and defined criteria to evaluate candidate knowledge domain areas for ontology development. The use of ontologies is justified for this project to unify the semantics used to describe similar reportable events and concepts between different jurisdictions and over time, to aid data integration, and to manage large, unwieldy datasets that evolve, and are sometimes externally managed. PMID:25954354

  4. Supporting ontology adaptation and versioning based on a graph of relevance

    NASA Astrophysics Data System (ADS)

    Sassi, Najla; Jaziri, Wassim; Alharbi, Saad

    2016-11-01

    Ontologies recently have become a topic of interest in computer science since they are seen as a semantic support to explicit and enrich data-models as well as to ensure interoperability of data. Moreover, supporting ontology adaptation becomes essential and extremely important, mainly when using ontologies in changing environments. An important issue when dealing with ontology adaptation is the management of several versions. Ontology versioning is a complex and multifaceted problem as it should take into account change management, versions storage and access, consistency issues, etc. The purpose of this paper is to propose an approach and tool for ontology adaptation and versioning. A series of techniques are proposed to 'safely' evolve a given ontology and produce a new consistent version. The ontology versions are ordered in a graph according to their relevance. The relevance is computed based on four criteria: conceptualisation, usage frequency, abstraction and completeness. The techniques to carry out the versioning process are implemented in the Consistology tool, which has been developed to assist users in expressing adaptation requirements and managing ontology versions.

  5. SemanticOrganizer: A Customizable Semantic Repository for Distributed NASA Project Teams

    NASA Technical Reports Server (NTRS)

    Keller, Richard M.; Berrios, Daniel C.; Carvalho, Robert E.; Hall, David R.; Rich, Stephen J.; Sturken, Ian B.; Swanson, Keith J.; Wolfe, Shawn R.

    2004-01-01

    SemanticOrganizer is a collaborative knowledge management system designed to support distributed NASA projects, including diverse teams of scientists, engineers, and accident investigators. The system provides a customizable, semantically structured information repository that stores work products relevant to multiple projects of differing types. SemanticOrganizer is one of the earliest and largest semantic web applications deployed at NASA to date, and has been used in diverse contexts ranging from the investigation of Space Shuttle Columbia's accident to the search for life on other planets. Although the underlying repository employs a single unified ontology, access control and ontology customization mechanisms make the repository contents appear different for each project team. This paper describes SemanticOrganizer, its customization facilities, and a sampling of its applications. The paper also summarizes some key lessons learned from building and fielding a successful semantic web application across a wide-ranging set of domains with diverse users.

  6. Semantic modeling of plastic deformation of polycrystalline rock

    NASA Astrophysics Data System (ADS)

    Babaie, Hassan A.; Davarpanah, Armita

    2018-02-01

    We have developed the first iteration of the Plastic Rock Deformation (PRD) ontology by modeling the semantics of a selected set of deformational processes and mechanisms that produce, reconfigure, displace, and/or consume the material components of inhomogeneous polycrystalline rocks. The PRD knowledge model also classifies and formalizes the properties (relations) that hold between instances of the dynamic physical and chemical processes and the rock components, the complex physio-chemical, mathematical, and informational concepts of the plastic rock deformation system, the measured or calculated laboratory testing conditions, experimental procedures and protocols, the state and system variables, and the empirical flow laws that define the inter-relationships among the variables. The ontology reuses classes and properties from several existing ontologies that are built for physics, chemistry, biology, and mathematics. With its flexible design, the PRD ontology is well positioned to incrementally develop into a model that more fully represents the knowledge of plastic deformation of polycrystalline rocks in the future. The domain ontology will be used to consistently annotate varied data and information related to the microstructures and the physical and chemical processes that produce them at different spatial and temporal scales in the laboratory and in the solid Earth. The PRDKB knowledge base, when built based on the ontology, will help the community of experimental structural geologists and metamorphic petrologists to coherently and uniformly distribute, discover, access, share, and use their data through automated reasoning and integration and query of heterogeneous experimental deformation data that originate from autonomous rock testing laboratories.

  7. Modelling expertise at different levels of granularity using semantic similarity measures in the context of collaborative knowledge-curation platforms

    PubMed Central

    Groza, Tudor; Tudorache, Tania; Hunter, Jane

    2015-01-01

    Collaboration platforms provide a dynamic environment where the content is subject to ongoing evolution through expert contributions. The knowledge embedded in such platforms is not static as it evolves through incremental refinements – or micro-contributions. Such refinements provide vast resources of tacit knowledge and experience. In our previous work, we proposed and evaluated a Semantic and Time-dependent Expertise Profiling (STEP) approach for capturing expertise from micro-contributions. In this paper we extend our investigation to structured micro-contributions that emerge from an ontology engineering environment, such as the one built for developing the International Classification of Diseases (ICD) revision 11. We take advantage of the semantically related nature of these structured micro-contributions to showcase two major aspects: (i) a novel semantic similarity metric, in addition to an approach for creating bottom-up baseline expertise profiles using expertise centroids; and (ii) the application of STEP in this new environment combined with the use of the same semantic similarity measure to both compare STEP against baseline profiles, as well as to investigate the coverage of these baseline profiles by STEP. PMID:28077914

  8. Solar-Terrestrial Ontology Development

    NASA Astrophysics Data System (ADS)

    McGuinness, D.; Fox, P.; Middleton, D.; Garcia, J.; Cinquni, L.; West, P.; Darnell, J. A.; Benedict, J.

    2005-12-01

    The development of an interdisciplinary virtual observatory (the Virtual Solar-Terrestrial Observatory; VSTO) as a scalable environment for searching, integrating, and analyzing databases distributed over the Internet requires a higher level of semantic interoperability than here-to-fore required by most (if not all) distributed data systems or discipline specific virtual observatories. The formalization of semantics using ontologies and their encodings for the internet (e.g. OWL - the Web Ontology Language), as well as the use of accompanying tools, such as reasoning, inference and explanation, open up both a substantial leap in options for interoperability and in the need for formal development principles to guide ontology development and use within modern, multi-tiered network data environments. In this presentation, we outline the formal methodologies we utilize in the VSTO project, the currently developed use-cases, ontologies and their relation to existing ontologies (such as SWEET).

  9. Ontology-Based Multiple Choice Question Generation

    PubMed Central

    Al-Yahya, Maha

    2014-01-01

    With recent advancements in Semantic Web technologies, a new trend in MCQ item generation has emerged through the use of ontologies. Ontologies are knowledge representation structures that formally describe entities in a domain and their relationships, thus enabling automated inference and reasoning. Ontology-based MCQ item generation is still in its infancy, but substantial research efforts are being made in the field. However, the applicability of these models for use in an educational setting has not been thoroughly evaluated. In this paper, we present an experimental evaluation of an ontology-based MCQ item generation system known as OntoQue. The evaluation was conducted using two different domain ontologies. The findings of this study show that ontology-based MCQ generation systems produce satisfactory MCQ items to a certain extent. However, the evaluation also revealed a number of shortcomings with current ontology-based MCQ item generation systems with regard to the educational significance of an automatically constructed MCQ item, the knowledge level it addresses, and its language structure. Furthermore, for the task to be successful in producing high-quality MCQ items for learning assessments, this study suggests a novel, holistic view that incorporates learning content, learning objectives, lexical knowledge, and scenarios into a single cohesive framework. PMID:24982937

  10. An Approach to Formalizing Ontology Driven Semantic Integration: Concepts, Dimensions and Framework

    ERIC Educational Resources Information Center

    Gao, Wenlong

    2012-01-01

    The ontology approach has been accepted as a very promising approach to semantic integration today. However, because of the diversity of focuses and its various connections to other research domains, the core concepts, theoretical and technical approaches, and research areas of this domain still remain unclear. Such ambiguity makes it difficult to…

  11. Centrality-based Selection of Semantic Resources for Geosciences

    NASA Astrophysics Data System (ADS)

    Cerba, Otakar; Jedlicka, Karel

    2017-04-01

    Semantical questions intervene almost in all disciplines dealing with geographic data and information, because relevant semantics is crucial for any way of communication and interaction among humans as well as among machines. But the existence of such a large number of different semantic resources (such as various thesauri, controlled vocabularies, knowledge bases or ontologies) makes the process of semantics implementation much more difficult and complicates the use of the advantages of semantics. This is because in many cases users are not able to find the most suitable resource for their purposes. The research presented in this paper introduces a methodology consisting of an analysis of identical relations in Linked Data space, which covers a majority of semantic resources, to find a suitable resource of semantic information. Identical links interconnect representations of an object or a concept in various semantic resources. Therefore this type of relations is considered to be crucial from the view of Linked Data, because these links provide new additional information, including various views on one concept based on different cultural or regional aspects (so-called social role of Linked Data). For these reasons it is possible to declare that one reasonable criterion for feasible semantic resources for almost all domains, including geosciences, is their position in a network of interconnected semantic resources and level of linking to other knowledge bases and similar products. The presented methodology is based on searching of mutual connections between various instances of one concept using "follow your nose" approach. The extracted data on interconnections between semantic resources are arranged to directed graphs and processed by various metrics patterned on centrality computing (degree, closeness or betweenness centrality). Semantic resources recommended by the research could be used for providing semantically described keywords for metadata records or as names of items in data models. Such an approach enables much more efficient data harmonization, integration, sharing and exploitation. * * * * This publication was supported by the project LO1506 of the Czech Ministry of Education, Youth and Sports. This publication was supported by project Data-Driven Bioeconomy (DataBio) from the ICT-15-2016-2017, Big Data PPP call.

  12. Automated Predictive Big Data Analytics Using Ontology Based Semantics.

    PubMed

    Nural, Mustafa V; Cotterell, Michael E; Peng, Hao; Xie, Rui; Ma, Ping; Miller, John A

    2015-10-01

    Predictive analytics in the big data era is taking on an ever increasingly important role. Issues related to choice on modeling technique, estimation procedure (or algorithm) and efficient execution can present significant challenges. For example, selection of appropriate and optimal models for big data analytics often requires careful investigation and considerable expertise which might not always be readily available. In this paper, we propose to use semantic technology to assist data analysts and data scientists in selecting appropriate modeling techniques and building specific models as well as the rationale for the techniques and models selected. To formally describe the modeling techniques, models and results, we developed the Analytics Ontology that supports inferencing for semi-automated model selection. The SCALATION framework, which currently supports over thirty modeling techniques for predictive big data analytics is used as a testbed for evaluating the use of semantic technology.

  13. Automated Predictive Big Data Analytics Using Ontology Based Semantics

    PubMed Central

    Nural, Mustafa V.; Cotterell, Michael E.; Peng, Hao; Xie, Rui; Ma, Ping; Miller, John A.

    2017-01-01

    Predictive analytics in the big data era is taking on an ever increasingly important role. Issues related to choice on modeling technique, estimation procedure (or algorithm) and efficient execution can present significant challenges. For example, selection of appropriate and optimal models for big data analytics often requires careful investigation and considerable expertise which might not always be readily available. In this paper, we propose to use semantic technology to assist data analysts and data scientists in selecting appropriate modeling techniques and building specific models as well as the rationale for the techniques and models selected. To formally describe the modeling techniques, models and results, we developed the Analytics Ontology that supports inferencing for semi-automated model selection. The SCALATION framework, which currently supports over thirty modeling techniques for predictive big data analytics is used as a testbed for evaluating the use of semantic technology. PMID:29657954

  14. Knowledge Evolution in Distributed Geoscience Datasets and the Role of Semantic Technologies

    NASA Astrophysics Data System (ADS)

    Ma, X.

    2014-12-01

    Knowledge evolves in geoscience, and the evolution is reflected in datasets. In a context with distributed data sources, the evolution of knowledge may cause considerable challenges to data management and re-use. For example, a short news published in 2009 (Mascarelli, 2009) revealed the geoscience community's concern that the International Commission on Stratigraphy's change to the definition of Quaternary may bring heavy reworking of geologic maps. Now we are in the era of the World Wide Web, and geoscience knowledge is increasingly modeled and encoded in the form of ontologies and vocabularies by using semantic technologies. Accordingly, knowledge evolution leads to a consequence called ontology dynamics. Flouris et al. (2008) summarized 10 topics of general ontology changes/dynamics such as: ontology mapping, morphism, evolution, debugging and versioning, etc. Ontology dynamics makes impacts at several stages of a data life cycle and causes challenges, such as: the request for reworking of the extant data in a data center, semantic mismatch among data sources, differentiated understanding of a same piece of dataset between data providers and data users, as well as error propagation in cross-discipline data discovery and re-use (Ma et al., 2014). This presentation will analyze the best practices in the geoscience community so far and summarize a few recommendations to reduce the negative impacts of ontology dynamics in a data life cycle, including: communities of practice and collaboration on ontology and vocabulary building, link data records to standardized terms, and methods for (semi-)automatic reworking of datasets using semantic technologies. References: Flouris, G., Manakanatas, D., Kondylakis, H., Plexousakis, D., Antoniou, G., 2008. Ontology change: classification and survey. The Knowledge Engineering Review 23 (2), 117-152. Ma, X., Fox, P., Rozell, E., West, P., Zednik, S., 2014. Ontology dynamics in a data life cycle: Challenges and recommendations from a Geoscience Perspective. Journal of Earth Science 25 (2), 407-412. Mascarelli, A.L., 2009. Quaternary geologists win timescale vote. Nature 459, 624.

  15. Ontology-Based Method for Fault Diagnosis of Loaders.

    PubMed

    Xu, Feixiang; Liu, Xinhui; Chen, Wei; Zhou, Chen; Cao, Bingwei

    2018-02-28

    This paper proposes an ontology-based fault diagnosis method which overcomes the difficulty of understanding complex fault diagnosis knowledge of loaders and offers a universal approach for fault diagnosis of all loaders. This method contains the following components: (1) An ontology-based fault diagnosis model is proposed to achieve the integrating, sharing and reusing of fault diagnosis knowledge for loaders; (2) combined with ontology, CBR (case-based reasoning) is introduced to realize effective and accurate fault diagnoses following four steps (feature selection, case-retrieval, case-matching and case-updating); and (3) in order to cover the shortages of the CBR method due to the lack of concerned cases, ontology based RBR (rule-based reasoning) is put forward through building SWRL (Semantic Web Rule Language) rules. An application program is also developed to implement the above methods to assist in finding the fault causes, fault locations and maintenance measures of loaders. In addition, the program is validated through analyzing a case study.

  16. Ontology-Based Method for Fault Diagnosis of Loaders

    PubMed Central

    Liu, Xinhui; Chen, Wei; Zhou, Chen; Cao, Bingwei

    2018-01-01

    This paper proposes an ontology-based fault diagnosis method which overcomes the difficulty of understanding complex fault diagnosis knowledge of loaders and offers a universal approach for fault diagnosis of all loaders. This method contains the following components: (1) An ontology-based fault diagnosis model is proposed to achieve the integrating, sharing and reusing of fault diagnosis knowledge for loaders; (2) combined with ontology, CBR (case-based reasoning) is introduced to realize effective and accurate fault diagnoses following four steps (feature selection, case-retrieval, case-matching and case-updating); and (3) in order to cover the shortages of the CBR method due to the lack of concerned cases, ontology based RBR (rule-based reasoning) is put forward through building SWRL (Semantic Web Rule Language) rules. An application program is also developed to implement the above methods to assist in finding the fault causes, fault locations and maintenance measures of loaders. In addition, the program is validated through analyzing a case study. PMID:29495646

  17. Relationship auditing of the FMA ontology

    PubMed Central

    Gu, Huanying (Helen); Wei, Duo; Mejino, Jose L.V.; Elhanan, Gai

    2010-01-01

    The Foundational Model of Anatomy (FMA) ontology is a domain reference ontology based on a disciplined modeling approach. Due to its large size, semantic complexity and manual data entry process, errors and inconsistencies are unavoidable and might remain within the FMA structure without detection. In this paper, we present computable methods to highlight candidate concepts for various relationship assignment errors. The process starts with locating structures formed by transitive structural relationships (part_of, tributary_of, branch_of) and examine their assignments in the context of the IS-A hierarchy. The algorithms were designed to detect five major categories of possible incorrect relationship assignments: circular, mutually exclusive, redundant, inconsistent, and missed entries. A domain expert reviewed samples of these presumptive errors to confirm the findings. Seven thousand and fifty-two presumptive errors were detected, the largest proportion related to part_of relationship assignments. The results highlight the fact that errors are unavoidable in complex ontologies and that well designed algorithms can help domain experts to focus on concepts with high likelihood of errors and maximize their effort to ensure consistency and reliability. In the future similar methods might be integrated with data entry processes to offer real-time error detection. PMID:19475727

  18. Exploiting Semantic Web Technologies to Develop OWL-Based Clinical Practice Guideline Execution Engines.

    PubMed

    Jafarpour, Borna; Abidi, Samina Raza; Abidi, Syed Sibte Raza

    2016-01-01

    Computerizing paper-based CPG and then executing them can provide evidence-informed decision support to physicians at the point of care. Semantic web technologies especially web ontology language (OWL) ontologies have been profusely used to represent computerized CPG. Using semantic web reasoning capabilities to execute OWL-based computerized CPG unties them from a specific custom-built CPG execution engine and increases their shareability as any OWL reasoner and triple store can be utilized for CPG execution. However, existing semantic web reasoning-based CPG execution engines suffer from lack of ability to execute CPG with high levels of expressivity, high cognitive load of computerization of paper-based CPG and updating their computerized versions. In order to address these limitations, we have developed three CPG execution engines based on OWL 1 DL, OWL 2 DL and OWL 2 DL + semantic web rule language (SWRL). OWL 1 DL serves as the base execution engine capable of executing a wide range of CPG constructs, however for executing highly complex CPG the OWL 2 DL and OWL 2 DL + SWRL offer additional executional capabilities. We evaluated the technical performance and medical correctness of our execution engines using a range of CPG. Technical evaluations show the efficiency of our CPG execution engines in terms of CPU time and validity of the generated recommendation in comparison to existing CPG execution engines. Medical evaluations by domain experts show the validity of the CPG-mediated therapy plans in terms of relevance, safety, and ordering for a wide range of patient scenarios.

  19. Realist Ontology and Natural Processes: A Semantic Tool to Analyze the Presentation of the Osmosis Concept in Science Texts

    ERIC Educational Resources Information Center

    Spinelli Barria, Michele; Morales, Cecilia; Merino, Cristian; Quiroz, Waldo

    2016-01-01

    In this work, we developed an ontological tool, based on the scientific realism of Mario Bunge, for the analysis of the presentation of natural processes in science textbooks. This tool was applied to analyze the presentation of the concept of osmosis in 16 chemistry and biology books at different educational levels. The results showed that more…

  20. Ontology based standardization of Petri net modeling for signaling pathways.

    PubMed

    Takai-Igarashi, Takako

    2005-01-01

    Taking account of the great availability of Petri nets in modeling and analyzing large complicated signaling networks, semantics of Petri nets is in need of systematization for the purpose of consistency and reusability of the models. This paper reports on standardization of units of Petri nets on the basis of an ontology that gives an intrinsic definition to the process of signaling in signaling pathways.

  1. Ontology based standardization of petri net modeling for signaling pathways.

    PubMed

    Takai-Igarashi, Takako

    2011-01-01

    Taking account of the great availability of Petri nets in modeling and analyzing large complicated signaling networks, semantics of Petri nets is in need of systematization for the purpose of consistency and reusability of the models. This paper reports on standardization of units of Petri nets on the basis of an ontology that gives an intrinsic definition to the process of signaling in signaling pathways.

  2. Ontology driven modeling for the knowledge of genetic susceptibility to disease.

    PubMed

    Lin, Yu; Sakamoto, Norihiro

    2009-05-12

    For the machine helped exploring the relationships between genetic factors and complex diseases, a well-structured conceptual framework of the background knowledge is needed. However, because of the complexity of determining a genetic susceptibility factor, there is no formalization for the knowledge of genetic susceptibility to disease, which makes the interoperability between systems impossible. Thus, the ontology modeling language OWL was used for formalization in this paper. After introducing the Semantic Web and OWL language propagated by W3C, we applied text mining technology combined with competency questions to specify the classes of the ontology. Then, an N-ary pattern was adopted to describe the relationships among these defined classes. Based on the former work of OGSF-DM (Ontology of Genetic Susceptibility Factors to Diabetes Mellitus), we formalized the definition of "Genetic Susceptibility", "Genetic Susceptibility Factor" and other classes by using OWL-DL modeling language; and a reasoner automatically performed the classification of the class "Genetic Susceptibility Factor". The ontology driven modeling is used for formalization the knowledge of genetic susceptibility to complex diseases. More importantly, when a class has been completely formalized in an ontology, the OWL reasoning can automatically compute the classification of the class, in our case, the class of "Genetic Susceptibility Factors". With more types of genetic susceptibility factors obtained from the laboratory research, our ontologies always needs to be refined, and many new classes must be taken into account to harmonize with the ontologies. Using the ontologies to develop the semantic web needs to be applied in the future.

  3. An improved approach to infer protein-protein interaction based on a hierarchical vector space model.

    PubMed

    Zhang, Jiongmin; Jia, Ke; Jia, Jinmeng; Qian, Ying

    2018-04-27

    Comparing and classifying functions of gene products are important in today's biomedical research. The semantic similarity derived from the Gene Ontology (GO) annotation has been regarded as one of the most widely used indicators for protein interaction. Among the various approaches proposed, those based on the vector space model are relatively simple, but their effectiveness is far from satisfying. We propose a Hierarchical Vector Space Model (HVSM) for computing semantic similarity between different genes or their products, which enhances the basic vector space model by introducing the relation between GO terms. Besides the directly annotated terms, HVSM also takes their ancestors and descendants related by "is_a" and "part_of" relations into account. Moreover, HVSM introduces the concept of a Certainty Factor to calibrate the semantic similarity based on the number of terms annotated to genes. To assess the performance of our method, we applied HVSM to Homo sapiens and Saccharomyces cerevisiae protein-protein interaction datasets. Compared with TCSS, Resnik, and other classic similarity measures, HVSM achieved significant improvement for distinguishing positive from negative protein interactions. We also tested its correlation with sequence, EC, and Pfam similarity using online tool CESSM. HVSM showed an improvement of up to 4% compared to TCSS, 8% compared to IntelliGO, 12% compared to basic VSM, 6% compared to Resnik, 8% compared to Lin, 11% compared to Jiang, 8% compared to Schlicker, and 11% compared to SimGIC using AUC scores. CESSM test showed HVSM was comparable to SimGIC, and superior to all other similarity measures in CESSM as well as TCSS. Supplementary information and the software are available at https://github.com/kejia1215/HVSM .

  4. Fuel Crime Conceptualization through Specialization of Ontology for Investigation Management System

    NASA Astrophysics Data System (ADS)

    Cybulka, Jolanta

    We undertook the task of building the conceptual model of a particular economic offense, called "a fuel crime". This model is thought of as a part of a larger conceptualization, which comprises consensual semantics underlying the knowledge base of a system, aimed at supporting the teamwork of investigators of economic crimes. Because such a knowledge-based system represents a perspective on economic crimes, it should be carefully modeled. This can be done with the help of an expressive enough ontology. To achieve our goal we use the constructive descriptions and situations (c.DnS) design pattern, which enables us to construct an extensible, layered ontology in a top-down manner: c.DnS top layer is specialized by the reference ontology for investigation management system, that in turn, is specialized by the ontology of the fuel crime.

  5. A two-staged approach to developing and evaluating an ontology for delivering personalized education to diabetic patients.

    PubMed

    Quinn, Susan; Bond, Raymond; Nugent, Chris

    2018-09-01

    Ontologies are often used in biomedical and health domains to provide a concise and consistent means of attributing meaning to medical terminology. While they are novices in terms of ontology engineering, the evaluation of an ontology by domain specialists provides an opportunity to enhance its objectivity, accuracy, and coverage of the domain itself. This paper provides an evaluation of the viability of using ontology engineering novices to evaluate and enrich an ontology that can be used for personalized diabetic patient education. We describe a methodology for engaging healthcare and information technology specialists with a range of ontology engineering tasks. We used 87.8% of the data collected to validate the accuracy of our ontological model. The contributions also enabled a 16% increase in the class size and an 18% increase in object properties. Furthermore, we propose that ontology engineering novices can make valuable contributions to ontology development. Application-specific evaluation of the ontology using a semantic-web-based architecture is also discussed.

  6. Interoperable cross-domain semantic and geospatial framework for automatic change detection

    NASA Astrophysics Data System (ADS)

    Kuo, Chiao-Ling; Hong, Jung-Hong

    2016-01-01

    With the increasingly diverse types of geospatial data established over the last few decades, semantic interoperability in integrated applications has attracted much interest in the field of Geographic Information System (GIS). This paper proposes a new strategy and framework to process cross-domain geodata at the semantic level. This framework leverages the semantic equivalence of concepts between domains through bridge ontology and facilitates the integrated use of different domain data, which has been long considered as an essential superiority of GIS, but is impeded by the lack of understanding about the semantics implicitly hidden in the data. We choose the task of change detection to demonstrate how the introduction of ontology concept can effectively make the integration possible. We analyze the common properties of geodata and change detection factors, then construct rules and summarize possible change scenario for making final decisions. The use of topographic map data to detect changes in land use shows promising success, as far as the improvement of efficiency and level of automation is concerned. We believe the ontology-oriented approach will enable a new way for data integration across different domains from the perspective of semantic interoperability, and even open a new dimensionality for the future GIS.

  7. Impact of ontology evolution on functional analyses.

    PubMed

    Groß, Anika; Hartung, Michael; Prüfer, Kay; Kelso, Janet; Rahm, Erhard

    2012-10-15

    Ontologies are used in the annotation and analysis of biological data. As knowledge accumulates, ontologies and annotation undergo constant modifications to reflect this new knowledge. These modifications may influence the results of statistical applications such as functional enrichment analyses that describe experimental data in terms of ontological groupings. Here, we investigate to what degree modifications of the Gene Ontology (GO) impact these statistical analyses for both experimental and simulated data. The analysis is based on new measures for the stability of result sets and considers different ontology and annotation changes. Our results show that past changes in the GO are non-uniformly distributed over different branches of the ontology. Considering the semantic relatedness of significant categories in analysis results allows a more realistic stability assessment for functional enrichment studies. We observe that the results of term-enrichment analyses tend to be surprisingly stable despite changes in ontology and annotation.

  8. Towards Linked Open Services and Processes

    NASA Astrophysics Data System (ADS)

    Krummenacher, Reto; Norton, Barry; Marte, Adrian

    The combination of semantic technology and Web services in form of 'Semantic Web Services' has until now been oriented towards extension of the WS-* stack with ontology-based descriptions. The same time, there is a strong movement away from this stack - for which the 'Web' part is little more than branding - towards RESTful services. The Linked Open Data initiative is a keen adopter of this approach and exposes many datasets via SPARQL endpoints and RESTful services. Our developing approach of 'Linked Open Services', whose current state is described in this paper, accommodates such Linked Data endpoints and general RESTful services alongside WS-* stack-based services with descriptions based on RDF and SPARQL. This capitalises on the Linked Data Cloud and makes service description and comprehension more easy and direct to the growing Linked Data community. Along the way, we show how the existing link between service messaging and the semantic viewpoint, commonly called 'lifting and lowering', is usually unduly restricted to ontology-based classification and misses how the effect of a service contributes to the knowledge of its consumer. Our SPARQL-based approach helps also in the composition of services as knowledge-centric processes, and encourages the development and exposure of services that communicate RDF.

  9. The development of non-coding RNA ontology.

    PubMed

    Huang, Jingshan; Eilbeck, Karen; Smith, Barry; Blake, Judith A; Dou, Dejing; Huang, Weili; Natale, Darren A; Ruttenberg, Alan; Huan, Jun; Zimmermann, Michael T; Jiang, Guoqian; Lin, Yu; Wu, Bin; Strachan, Harrison J; de Silva, Nisansa; Kasukurthi, Mohan Vamsi; Jha, Vikash Kumar; He, Yongqun; Zhang, Shaojie; Wang, Xiaowei; Liu, Zixing; Borchert, Glen M; Tan, Ming

    2016-01-01

    Identification of non-coding RNAs (ncRNAs) has been significantly improved over the past decade. On the other hand, semantic annotation of ncRNA data is facing critical challenges due to the lack of a comprehensive ontology to serve as common data elements and data exchange standards in the field. We developed the Non-Coding RNA Ontology (NCRO) to handle this situation. By providing a formally defined ncRNA controlled vocabulary, the NCRO aims to fill a specific and highly needed niche in semantic annotation of large amounts of ncRNA biological and clinical data.

  10. Surreptitious, Evolving and Participative Ontology Development: An End-User Oriented Ontology Development Methodology

    ERIC Educational Resources Information Center

    Bachore, Zelalem

    2012-01-01

    Ontology not only is considered to be the backbone of the semantic web but also plays a significant role in distributed and heterogeneous information systems. However, ontology still faces limited application and adoption to date. One of the major problems is that prevailing engineering-oriented methodologies for building ontologies do not…

  11. A Semantic Grid Oriented to E-Tourism

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao Ming

    With increasing complexity of tourism business models and tasks, there is a clear need of the next generation e-Tourism infrastructure to support flexible automation, integration, computation, storage, and collaboration. Currently several enabling technologies such as semantic Web, Web service, agent and grid computing have been applied in the different e-Tourism applications, however there is no a unified framework to be able to integrate all of them. So this paper presents a promising e-Tourism framework based on emerging semantic grid, in which a number of key design issues are discussed including architecture, ontologies structure, semantic reconciliation, service and resource discovery, role based authorization and intelligent agent. The paper finally provides the implementation of the framework.

  12. Ontology-Based Vaccine Adverse Event Representation and Analysis.

    PubMed

    Xie, Jiangan; He, Yongqun

    2017-01-01

    Vaccine is the one of the greatest inventions of modern medicine that has contributed most to the relief of human misery and the exciting increase in life expectancy. In 1796, an English country physician, Edward Jenner, discovered that inoculating mankind with cowpox can protect them from smallpox (Riedel S, Edward Jenner and the history of smallpox and vaccination. Proceedings (Baylor University. Medical Center) 18(1):21, 2005). Based on the vaccination worldwide, we finally succeeded in the eradication of smallpox in 1977 (Henderson, Vaccine 29:D7-D9, 2011). Other disabling and lethal diseases, like poliomyelitis and measles, are targeted for eradication (Bonanni, Vaccine 17:S120-S125, 1999).Although vaccine development and administration are tremendously successful and cost-effective practices to human health, no vaccine is 100% safe for everyone because each person reacts to vaccinations differently given different genetic background and health conditions. Although all licensed vaccines are generally safe for the majority of people, vaccinees may still suffer adverse events (AEs) in reaction to various vaccines, some of which can be serious or even fatal (Haber et al., Drug Saf 32(4):309-323, 2009). Hence, the double-edged sword of vaccination remains a concern.To support integrative AE data collection and analysis, it is critical to adopt an AE normalization strategy. In the past decades, different controlled terminologies, including the Medical Dictionary for Regulatory Activities (MedDRA) (Brown EG, Wood L, Wood S, et al., Drug Saf 20(2):109-117, 1999), the Common Terminology Criteria for Adverse Events (CTCAE) (NCI, The Common Terminology Criteria for Adverse Events (CTCAE). Available from: http://evs.nci.nih.gov/ftp1/CTCAE/About.html . Access on 7 Oct 2015), and the World Health Organization (WHO) Adverse Reactions Terminology (WHO-ART) (WHO, The WHO Adverse Reaction Terminology - WHO-ART. Available from: https://www.umc-products.com/graphics/28010.pdf ), have been developed with a specific aim to standardize AE categorization. However, these controlled terminologies have many drawbacks, such as lack of textual definitions, poorly defined hierarchies, and lack of semantic axioms that provide logical relations among terms. A biomedical ontology is a set of consensus-based and computer and human interpretable terms and relations that represent entities in a specific biomedical domain and how they relate each other. To represent and analyze vaccine adverse events (VAEs), our research group has initiated and led the development of a community-based ontology: the Ontology of Adverse Events (OAE) (He et al., J Biomed Semant 5:29, 2014). The OAE has been found to have advantages to overcome the drawbacks of those controlled terminologies (He et al., Curr Pharmacol Rep :1-16. doi:10.1007/s40495-016-0055-0, 2014). By expanding the OAE and the community-based Vaccine Ontology (VO) (He et al., VO: vaccine ontology. In The 1st International Conference on Biomedical Ontology (ICBO-2009). Nature Precedings, Buffalo. http://precedings.nature.com/documents/3552/version/1 ; J Biomed Semant 2(Suppl 2):S8; J Biomed Semant 3(1):17, 2009; Ozgur et al., J Biomed Semant 2(2):S8, 2011; Lin Y, He Y, J Biomed Semant 3(1):17, 2012), we have also developed the Ontology of Vaccine Adverse Events (OVAE) to represent known VAEs associated with licensed vaccines (Marcos E, Zhao B, He Y, J Biomed Semant 4:40, 2013).In this book chapter, we will first introduce the basic information of VAEs, VAE safety surveillance systems, and how to specifically query and analyze VAEs using the US VAE database VAERS (Chen et al., Vaccine 12(10):960-960, 1994). In the second half of the chapter, we will introduce the development and applications of the OAE and OVAE. Throughout this chapter, we will use the influenza vaccine Flublok as the vaccine example to launch the corresponding elaboration (Huber VC, McCullers JA, Curr Opin Mol Ther 10(1):75-85, 2008). Flublok is a recombinant hemagglutinin influenza vaccine indicated for active immunization against disease caused by influenza virus subtypes A and type B. On January 16, 2013, Flublok was approved by the FDA for the prevention of seasonal influenza in people 18 years and older in the USA. Now, more than 3 years later, an exploration of the reported AEs associated with this vaccine is urgently needed.

  13. BiOSS: A system for biomedical ontology selection.

    PubMed

    Martínez-Romero, Marcos; Vázquez-Naya, José M; Pereira, Javier; Pazos, Alejandro

    2014-04-01

    In biomedical informatics, ontologies are considered a key technology for annotating, retrieving and sharing the huge volume of publicly available data. Due to the increasing amount, complexity and variety of existing biomedical ontologies, choosing the ones to be used in a semantic annotation problem or to design a specific application is a difficult task. As a consequence, the design of approaches and tools addressed to facilitate the selection of biomedical ontologies is becoming a priority. In this paper we present BiOSS, a novel system for the selection of biomedical ontologies. BiOSS evaluates the adequacy of an ontology to a given domain according to three different criteria: (1) the extent to which the ontology covers the domain; (2) the semantic richness of the ontology in the domain; (3) the popularity of the ontology in the biomedical community. BiOSS has been applied to 5 representative problems of ontology selection. It also has been compared to existing methods and tools. Results are promising and show the usefulness of BiOSS to solve real-world ontology selection problems. BiOSS is openly available both as a web tool and a web service. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. The Translational Medicine Ontology and Knowledge Base: driving personalized medicine by bridging the gap between bench and bedside

    PubMed Central

    2011-01-01

    Background Translational medicine requires the integration of knowledge using heterogeneous data from health care to the life sciences. Here, we describe a collaborative effort to produce a prototype Translational Medicine Knowledge Base (TMKB) capable of answering questions relating to clinical practice and pharmaceutical drug discovery. Results We developed the Translational Medicine Ontology (TMO) as a unifying ontology to integrate chemical, genomic and proteomic data with disease, treatment, and electronic health records. We demonstrate the use of Semantic Web technologies in the integration of patient and biomedical data, and reveal how such a knowledge base can aid physicians in providing tailored patient care and facilitate the recruitment of patients into active clinical trials. Thus, patients, physicians and researchers may explore the knowledge base to better understand therapeutic options, efficacy, and mechanisms of action. Conclusions This work takes an important step in using Semantic Web technologies to facilitate integration of relevant, distributed, external sources and progress towards a computational platform to support personalized medicine. Availability TMO can be downloaded from http://code.google.com/p/translationalmedicineontology and TMKB can be accessed at http://tm.semanticscience.org/sparql. PMID:21624155

  15. Toward semantic-based retrieval of visual information: a model-based approach

    NASA Astrophysics Data System (ADS)

    Park, Youngchoon; Golshani, Forouzan; Panchanathan, Sethuraman

    2002-07-01

    This paper center around the problem of automated visual content classification. To enable classification based image or visual object retrieval, we propose a new image representation scheme called visual context descriptor (VCD) that is a multidimensional vector in which each element represents the frequency of a unique visual property of an image or a region. VCD utilizes the predetermined quality dimensions (i.e., types of features and quantization level) and semantic model templates mined in priori. Not only observed visual cues, but also contextually relevant visual features are proportionally incorporated in VCD. Contextual relevance of a visual cue to a semantic class is determined by using correlation analysis of ground truth samples. Such co-occurrence analysis of visual cues requires transformation of a real-valued visual feature vector (e.g., color histogram, Gabor texture, etc.,) into a discrete event (e.g., terms in text). Good-feature to track, rule of thirds, iterative k-means clustering and TSVQ are involved in transformation of feature vectors into unified symbolic representations called visual terms. Similarity-based visual cue frequency estimation is also proposed and used for ensuring the correctness of model learning and matching since sparseness of sample data causes the unstable results of frequency estimation of visual cues. The proposed method naturally allows integration of heterogeneous visual or temporal or spatial cues in a single classification or matching framework, and can be easily integrated into a semantic knowledge base such as thesaurus, and ontology. Robust semantic visual model template creation and object based image retrieval are demonstrated based on the proposed content description scheme.

  16. From Patient Discharge Summaries to an Ontology for Psychiatry.

    PubMed

    Richard, Marion; Aimé, Xavier; Jaulent, Marie-Christine; Krebs, Marie-Odile; Charlet, Jean

    2017-01-01

    Psychiatry aims at detecting symptoms, providing diagnoses and treating mental disorders. We developed ONTOPSYCHIA, an ontology for psychiatry in three modules: social and environmental factors of mental disorders, mental disorders, and treatments. The use of ONTOPSYCHIA, associated with dedicated tools, will facilitate semantic research in Patient Discharge Summaries (PDS). To develop the first module of the ontology we propose a PDS text analysis in order to explicit psychiatry concepts. We decided to set aside classifications during the construction of the modu le, to focus only on the information contained in PDS (bottom-up approach) and to return to domain classifications solely for the enrichment phase (top-down approach). Then, we focused our work on the development of the LOVMI methodology (Les Ontologies Validées par Méthode Interactive - Ontologies Validated by Interactive Method), which aims to provide a methodological framework to validate the structure and the semantic of an ontology.

  17. Semantic Support for Complex Ecosystem Research Environments

    NASA Astrophysics Data System (ADS)

    Klawonn, M.; McGuinness, D. L.; Pinheiro, P.; Santos, H. O.; Chastain, K.

    2015-12-01

    As ecosystems come under increasing stresses from diverse sources, there is growing interest in research efforts aimed at monitoring, modeling, and improving understanding of ecosystems and protection options. We aimed to provide a semantic infrastructure capable of representing data initially related to one large aquatic ecosystem research effort - the Jefferson project at Lake George. This effort includes significant historical observational data, extensive sensor-based monitoring data, experimental data, as well as model and simulation data covering topics including lake circulation, watershed runoff, lake biome food webs, etc. The initial measurement representation has been centered on monitoring data and related provenance. We developed a human-aware sensor network ontology (HASNetO) that leverages existing ontologies (PROV-O, OBOE, VSTO*) in support of measurement annotations. We explicitly support the human-aware aspects of human sensor deployment and collection activity to help capture key provenance that often is lacking. Our foundational ontology has since been generalized into a family of ontologies and used to create our human-aware data collection infrastructure that now supports the integration of measurement data along with simulation data. Interestingly, we have also utilized the same infrastructure to work with partners who have some more specific needs for specifying the environmental conditions where measurements occur, for example, knowing that an air temperature is not an external air temperature, but of the air temperature when windows are shut and curtains are open. We have also leveraged the same infrastructure to work with partners more interested in modeling smart cities with data feeds more related to people, mobility, environment, and living. We will introduce our human-aware data collection infrastructure, and demonstrate how it uses HASNetO and its supporting SOLR-based search platform to support data integration and semantic browsing. Further we will present learnings from its use in three relatively diverse large ecosystem research efforts and highlight some benefits and challenges related to our semantically-enhanced foundation.

  18. Evaluation of an ontological resource for pharmacovigilance.

    PubMed

    Jaulent, Marie-Christine; Alecu, Iulian

    2009-01-01

    In this work, we present a methodology for evaluating an ontology designed in a previous study to describe adverse drug reactions. We evaluate it in term of its fitness for grouping cases in pharmacovigilance. We define as gold standard the Standardized MedDRA Queries (SMQs) developed manually to group terms representing similar medical conditions. We perform an automatic search in the ontology in order to retrieve concepts related to the medical conditions. An optimal query is built for each medical condition. The evaluation relies on the comparison between the terms in the SMQ and the terms subsumed by the query. The result is quantified by sensitivity and specificity. We applied this methodology for 24 SMQs and we obtain a mean sensitivity of 0.82. This work allows validating the semantic resource and provides, in perspective, tools to maintain the ontology while the knowledge is evolving.

  19. Modeling and formal representation of geospatial knowledge for the Geospatial Semantic Web

    NASA Astrophysics Data System (ADS)

    Huang, Hong; Gong, Jianya

    2008-12-01

    GML can only achieve geospatial interoperation at syntactic level. However, it is necessary to resolve difference of spatial cognition in the first place in most occasions, so ontology was introduced to describe geospatial information and services. But it is obviously difficult and improper to let users to find, match and compose services, especially in some occasions there are complicated business logics. Currently, with the gradual introduction of Semantic Web technology (e.g., OWL, SWRL), the focus of the interoperation of geospatial information has shifted from syntactic level to Semantic and even automatic, intelligent level. In this way, Geospatial Semantic Web (GSM) can be put forward as an augmentation to the Semantic Web that additionally includes geospatial abstractions as well as related reasoning, representation and query mechanisms. To advance the implementation of GSM, we first attempt to construct the mechanism of modeling and formal representation of geospatial knowledge, which are also two mostly foundational phases in knowledge engineering (KE). Our attitude in this paper is quite pragmatical: we argue that geospatial context is a formal model of the discriminate environment characters of geospatial knowledge, and the derivation, understanding and using of geospatial knowledge are located in geospatial context. Therefore, first, we put forward a primitive hierarchy of geospatial knowledge referencing first order logic, formal ontologies, rules and GML. Second, a metamodel of geospatial context is proposed and we use the modeling methods and representation languages of formal ontologies to process geospatial context. Thirdly, we extend Web Process Service (WPS) to be compatible with local DLL for geoprocessing and possess inference capability based on OWL.

  20. COEUS: “semantic web in a box” for biomedical applications

    PubMed Central

    2012-01-01

    Background As the “omics” revolution unfolds, the growth in data quantity and diversity is bringing about the need for pioneering bioinformatics software, capable of significantly improving the research workflow. To cope with these computer science demands, biomedical software engineers are adopting emerging semantic web technologies that better suit the life sciences domain. The latter’s complex relationships are easily mapped into semantic web graphs, enabling a superior understanding of collected knowledge. Despite increased awareness of semantic web technologies in bioinformatics, their use is still limited. Results COEUS is a new semantic web framework, aiming at a streamlined application development cycle and following a “semantic web in a box” approach. The framework provides a single package including advanced data integration and triplification tools, base ontologies, a web-oriented engine and a flexible exploration API. Resources can be integrated from heterogeneous sources, including CSV and XML files or SQL and SPARQL query results, and mapped directly to one or more ontologies. Advanced interoperability features include REST services, a SPARQL endpoint and LinkedData publication. These enable the creation of multiple applications for web, desktop or mobile environments, and empower a new knowledge federation layer. Conclusions The platform, targeted at biomedical application developers, provides a complete skeleton ready for rapid application deployment, enhancing the creation of new semantic information systems. COEUS is available as open source at http://bioinformatics.ua.pt/coeus/. PMID:23244467

  1. COEUS: "semantic web in a box" for biomedical applications.

    PubMed

    Lopes, Pedro; Oliveira, José Luís

    2012-12-17

    As the "omics" revolution unfolds, the growth in data quantity and diversity is bringing about the need for pioneering bioinformatics software, capable of significantly improving the research workflow. To cope with these computer science demands, biomedical software engineers are adopting emerging semantic web technologies that better suit the life sciences domain. The latter's complex relationships are easily mapped into semantic web graphs, enabling a superior understanding of collected knowledge. Despite increased awareness of semantic web technologies in bioinformatics, their use is still limited. COEUS is a new semantic web framework, aiming at a streamlined application development cycle and following a "semantic web in a box" approach. The framework provides a single package including advanced data integration and triplification tools, base ontologies, a web-oriented engine and a flexible exploration API. Resources can be integrated from heterogeneous sources, including CSV and XML files or SQL and SPARQL query results, and mapped directly to one or more ontologies. Advanced interoperability features include REST services, a SPARQL endpoint and LinkedData publication. These enable the creation of multiple applications for web, desktop or mobile environments, and empower a new knowledge federation layer. The platform, targeted at biomedical application developers, provides a complete skeleton ready for rapid application deployment, enhancing the creation of new semantic information systems. COEUS is available as open source at http://bioinformatics.ua.pt/coeus/.

  2. Enhancing Users' Participation in Business Process Modeling through Ontology-Based Training

    NASA Astrophysics Data System (ADS)

    Macris, A.; Malamateniou, F.; Vassilacopoulos, G.

    Successful business process design requires active participation of users who are familiar with organizational activities and business process modelling concepts. Hence, there is a need to provide users with reusable, flexible, agile and adaptable training material in order to enable them instil their knowledge and expertise in business process design and automation activities. Knowledge reusability is of paramount importance in designing training material on process modelling since it enables users participate actively in process design/redesign activities stimulated by the changing business environment. This paper presents a prototype approach for the design and use of training material that provides significant advantages to both the designer (knowledge - content reusability and semantic web enabling) and the user (semantic search, knowledge navigation and knowledge dissemination). The approach is based on externalizing domain knowledge in the form of ontology-based knowledge networks (i.e. training scenarios serving specific training needs) so that it is made reusable.

  3. Effects of Semantic Web Based Learning on Pre-Service Teachers' ICT Learning Achievement and Satisfaction

    ERIC Educational Resources Information Center

    Karalar, Halit; Korucu, Agah Tugrul

    2016-01-01

    Although the Semantic Web offers many opportunities for learners, effects of it in the classroom is not well known. Therefore, in this study explanations have been stated as how the learning objects defined by means of using the terminology in a developed ontology and kept in objects repository should be presented to learners with the aim of…

  4. Towards a framework for developing semantic relatedness reference standards.

    PubMed

    Pakhomov, Serguei V S; Pedersen, Ted; McInnes, Bridget; Melton, Genevieve B; Ruggieri, Alexander; Chute, Christopher G

    2011-04-01

    Our objective is to develop a framework for creating reference standards for functional testing of computerized measures of semantic relatedness. Currently, research on computerized approaches to semantic relatedness between biomedical concepts relies on reference standards created for specific purposes using a variety of methods for their analysis. In most cases, these reference standards are not publicly available and the published information provided in manuscripts that evaluate computerized semantic relatedness measurement approaches is not sufficient to reproduce the results. Our proposed framework is based on the experiences of medical informatics and computational linguistics communities and addresses practical and theoretical issues with creating reference standards for semantic relatedness. We demonstrate the use of the framework on a pilot set of 101 medical term pairs rated for semantic relatedness by 13 medical coding experts. While the reliability of this particular reference standard is in the "moderate" range; we show that using clustering and factor analyses offers a data-driven approach to finding systematic differences among raters and identifying groups of potential outliers. We test two ontology-based measures of relatedness and provide both the reference standard containing individual ratings and the R program used to analyze the ratings as open-source. Currently, these resources are intended to be used to reproduce and compare results of studies involving computerized measures of semantic relatedness. Our framework may be extended to the development of reference standards in other research areas in medical informatics including automatic classification, information retrieval from medical records and vocabulary/ontology development. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. The Digital electronic Guideline Library (DeGeL): a hybrid framework for representation and use of clinical guidelines.

    PubMed

    Shahar, Yuval; Young, Ohad; Shalom, Erez; Mayaffit, Alon; Moskovitch, Robert; Hessing, Alon; Galperin, Maya

    2004-01-01

    We propose to present a poster (and potentially also a demonstration of the implemented system) summarizing the current state of our work on a hybrid, multiple-format representation of clinical guidelines that facilitates conversion of guidelines from free text to a formal representation. We describe a distributed Web-based architecture (DeGeL) and a set of tools using the hybrid representation. The tools enable performing tasks such as guideline specification, semantic markup, search, retrieval, visualization, eligibility determination, runtime application and retrospective quality assessment. The representation includes four parallel formats: Free text (one or more original sources); semistructured text (labeled by the target guideline-ontology semantic labels); semiformal text (which includes some control specification); and a formal, machine-executable representation. The specification, indexing, search, retrieval, and browsing tools are essentially independent of the ontology chosen for guideline representation, but editing the semi-formal and formal formats requires ontology-specific tools, which we have developed in the case of the Asbru guideline-specification language. The four formats support increasingly sophisticated computational tasks. The hybrid guidelines are stored in a Web-based library. All tools, such as for runtime guideline application or retrospective quality assessment, are designed to operate on all representations. We demonstrate the hybrid framework by providing examples from the semantic markup and search tools.

  6. An Approach to Information Management for AIR7000 with Metadata and Ontologies

    DTIC Science & Technology

    2009-10-01

    metadata. We then propose an approach based on Semantic Technologies including the Resource Description Framework (RDF) and Upper Ontologies, for the...mandating specific metadata schemas can result in interoperability problems. For example, many standards within the ADO mandate the use of XML for metadata...such problems, we propose an archi- tecture in which different metadata schemes can inter operate. By using RDF (Resource Description Framework ) as a

  7. Predicting Visual Semantic Descriptive Terms from Radiological Image Data: Preliminary Results with Liver Lesions in CT

    PubMed Central

    Depeursinge, Adrien; Kurtz, Camille; Beaulieu, Christopher F.; Napel, Sandy; Rubin, Daniel L.

    2014-01-01

    We describe a framework to model visual semantics of liver lesions in CT images in order to predict the visual semantic terms (VST) reported by radiologists in describing these lesions. Computational models of VST are learned from image data using high–order steerable Riesz wavelets and support vector machines (SVM). The organization of scales and directions that are specific to every VST are modeled as linear combinations of directional Riesz wavelets. The models obtained are steerable, which means that any orientation of the model can be synthesized from linear combinations of the basis filters. The latter property is leveraged to model VST independently from their local orientation. In a first step, these models are used to predict the presence of each semantic term that describes liver lesions. In a second step, the distances between all VST models are calculated to establish a non–hierarchical computationally–derived ontology of VST containing inter–term synonymy and complementarity. A preliminary evaluation of the proposed framework was carried out using 74 liver lesions annotated with a set of 18 VSTs from the RadLex ontology. A leave–one–patient–out cross–validation resulted in an average area under the ROC curve of 0.853 for predicting the presence of each VST when using SVMs in a feature space combining the magnitudes of the steered models with CT intensities. Likelihood maps are created for each VST, which enables high transparency of the information modeled. The computationally–derived ontology obtained from the VST models was found to be consistent with the underlying semantics of the visual terms. It was found to be complementary to the RadLex ontology, and constitutes a potential method to link the image content to visual semantics. The proposed framework is expected to foster human–computer synergies for the interpretation of radiological images while using rotation–covariant computational models of VSTs to (1) quantify their local likelihood and (2) explicitly link them with pixel–based image content in the context of a given imaging domain. PMID:24808406

  8. A Digital Knowledge Preservation Platform for Environmental Sciences

    NASA Astrophysics Data System (ADS)

    Aguilar Gómez, Fernando; de Lucas, Jesús Marco; Pertinez, Esther; Palacio, Aida; Perez, David

    2017-04-01

    The Digital Knowledge Preservation Platform is the evolution of a pilot project for Open Data supporting the full research data life cycle. It is currently being evolved at IFCA (Instituto de Física de Cantabria) as a combination of different open tools that have been extended: DMPTool (https://dmptool.org/) with pilot semantics features (RDF export, parameters definition), INVENIO (http://invenio-software.org/ ) customized version to integrate the entire research data life cycle and Jupyter (http://jupyter.org/) as processing tool and reproducibility environment. This complete platform aims to provide an integrated environment for research data management following the FAIR+R principles: -Findable: The Web portal based on Invenio provides a search engine and all elements including metadata to make them easily findable. -Accessible: Both data and software are available online with internal PIDs and DOIs (provided by Datacite). -Interoperable: Datasets can be combined to perform new analysis. The OAI-PMH standard is also integrated. -Re-usable: different licenses types and embargo periods can be defined. -+Reproducible: directly integrated with cloud computing resources. The deployment of the entire system over a Cloud framework helps to build a dynamic and scalable solution, not only for managing open datasets but also as a useful tool for the final user, who is able to directly process and analyse the open data. In parallel, the direct use of semantics and metadata is being explored and integrated in the framework. Ontologies, being a knowledge representation, can contribute to define the elements and relationships of the research data life cycle, including DMP, datasets, software, etc. The first advantage of developing an ontology of a knowledge domain is that they provide a common vocabulary hierarchy (i.e. a conceptual schema) that can be used and standardized by all the agents interested in the domain (either humans or machines). This way of using ontologies is one of the basis of the Semantic Web, where ontologies are set to play a key role in establishing a common terminology between agents. To develop the ontology we are using a graphical tool called Protégé. Protégé is a graphical ontology-development tool which supports a rich knowledge model and it is open-source and freely available. However in order to process and manage the ontology from the web framework, we are using Semantic MediaWiki, which is able to process queries. Semantic MediaWiki is an extension of MediaWiki where we can do semantic search and export data in RDF and CSV format. This system is used as a testbed for the potential use of semantics in a more general environment. This Digital Knowledge Preservation Platform is very closed related to INDIGO-DataCloud project (https://www.indigo-datacloud.eu) since the same data life cycle approach is taking into account (Planning, Collect, Curate, Analyze, Publish, Preserve). INDIGO-DataCloud solutions will be able to support all the different elements in the system, as we showed in the last Research Data Alliance Plenary. This presentation will show the different elements on the system and how they work, as well as the roadmap of their continuous integration.

  9. Sealife: a semantic grid browser for the life sciences applied to the study of infectious diseases.

    PubMed

    Schroeder, Michael; Burger, Albert; Kostkova, Patty; Stevens, Robert; Habermann, Bianca; Dieng-Kuntz, Rose

    2006-01-01

    The objective of Sealife is the conception and realisation of a semantic Grid browser for the life sciences, which will link the existing Web to the currently emerging eScience infrastructure. The SeaLife Browser will allow users to automatically link a host of Web servers and Web/Grid services to the Web content he/she is visiting. This will be accomplished using eScience's growing number of Web/Grid Services and its XML-based standards and ontologies. The browser will identify terms in the pages being browsed through the background knowledge held in ontologies. Through the use of Semantic Hyperlinks, which link identified ontology terms to servers and services, the SeaLife Browser will offer a new dimension of context-based information integration. In this paper, we give an overview over the different components of the browser and their interplay. This SeaLife Browser will be demonstrated within three application scenarios in evidence-based medicine, literature & patent mining, and molecular biology, all relating to the study of infectious diseases. The three applications vertically integrate the molecule/cell, the tissue/organ and the patient/population level by covering the analysis of high-throughput screening data for endocytosis (the molecular entry pathway into the cell), the expression of proteins in the spatial context of tissue and organs, and a high-level library on infectious diseases designed for clinicians and their patients. For more information see http://www.biote.ctu-dresden.de/sealife.

  10. Querying archetype-based EHRs by search ontology-based XPath engineering.

    PubMed

    Kropf, Stefan; Uciteli, Alexandr; Schierle, Katrin; Krücken, Peter; Denecke, Kerstin; Herre, Heinrich

    2018-05-11

    Legacy data and new structured data can be stored in a standardized format as XML-based EHRs on XML databases. Querying documents on these databases is crucial for answering research questions. Instead of using free text searches, that lead to false positive results, the precision can be increased by constraining the search to certain parts of documents. A search ontology-based specification of queries on XML documents defines search concepts and relates them to parts in the XML document structure. Such query specification method is practically introduced and evaluated by applying concrete research questions formulated in natural language on a data collection for information retrieval purposes. The search is performed by search ontology-based XPath engineering that reuses ontologies and XML-related W3C standards. The key result is that the specification of research questions can be supported by the usage of search ontology-based XPath engineering. A deeper recognition of entities and a semantic understanding of the content is necessary for a further improvement of precision and recall. Key limitation is that the application of the introduced process requires skills in ontology and software development. In future, the time consuming ontology development could be overcome by implementing a new clinical role: the clinical ontologist. The introduced Search Ontology XML extension connects Search Terms to certain parts in XML documents and enables an ontology-based definition of queries. Search ontology-based XPath engineering can support research question answering by the specification of complex XPath expressions without deep syntax knowledge about XPaths.

  11. An interactive ontology-driven information system for simulating background radiation and generating scenarios for testing special nuclear materials detection algorithms

    DOE PAGES

    Sorokine, Alexandre; Schlicher, Bob G.; Ward, Richard C.; ...

    2015-05-22

    This paper describes an original approach to generating scenarios for the purpose of testing the algorithms used to detect special nuclear materials (SNM) that incorporates the use of ontologies. Separating the signal of SNM from the background requires sophisticated algorithms. To assist in developing such algorithms, there is a need for scenarios that capture a very wide range of variables affecting the detection process, depending on the type of detector being used. To provide such a cpability, we developed an ontology-driven information system (ODIS) for generating scenarios that can be used in creating scenarios for testing of algorithms for SNMmore » detection. The ontology-driven scenario generator (ODSG) is an ODIS based on information supplied by subject matter experts and other documentation. The details of the creation of the ontology, the development of the ontology-driven information system, and the design of the web user interface (UI) are presented along with specific examples of scenarios generated using the ODSG. We demonstrate that the paradigm behind the ODSG is capable of addressing the problem of semantic complexity at both the user and developer levels. Compared to traditional approaches, an ODIS provides benefits such as faithful representation of the users' domain conceptualization, simplified management of very large and semantically diverse datasets, and the ability to handle frequent changes to the application and the UI. Furthermore, the approach makes possible the generation of a much larger number of specific scenarios based on limited user-supplied information« less

  12. Common IED exploitation target set ontology

    NASA Astrophysics Data System (ADS)

    Russomanno, David J.; Qualls, Joseph; Wowczuk, Zenovy; Franken, Paul; Robinson, William

    2010-04-01

    The Common IED Exploitation Target Set (CIEDETS) ontology provides a comprehensive semantic data model for capturing knowledge about sensors, platforms, missions, environments, and other aspects of systems under test. The ontology also includes representative IEDs; modeled as explosives, camouflage, concealment objects, and other background objects, which comprise an overall threat scene. The ontology is represented using the Web Ontology Language and the SPARQL Protocol and RDF Query Language, which ensures portability of the acquired knowledge base across applications. The resulting knowledge base is a component of the CIEDETS application, which is intended to support the end user sensor test and evaluation community. CIEDETS associates a system under test to a subset of cataloged threats based on the probability that the system will detect the threat. The associations between systems under test, threats, and the detection probabilities are established based on a hybrid reasoning strategy, which applies a combination of heuristics and simplified modeling techniques. Besides supporting the CIEDETS application, which is focused on efficient and consistent system testing, the ontology can be leveraged in a myriad of other applications, including serving as a knowledge source for mission planning tools.

  13. Using semantic technologies and the OSU ontology for modelling context and activities in multi-sensory surveillance systems

    NASA Astrophysics Data System (ADS)

    Gómez A, Héctor F.; Martínez-Tomás, Rafael; Arias Tapia, Susana A.; Rincón Zamorano, Mariano

    2014-04-01

    Automatic systems that monitor human behaviour for detecting security problems are a challenge today. Previously, our group defined the Horus framework, which is a modular architecture for the integration of multi-sensor monitoring stages. In this work, structure and technologies required for high-level semantic stages of Horus are proposed, and the associated methodological principles established with the aim of recognising specific behaviours and situations. Our methodology distinguishes three semantic levels of events: low level (compromised with sensors), medium level (compromised with context), and high level (target behaviours). The ontology for surveillance and ubiquitous computing has been used to integrate ontologies from specific domains and together with semantic technologies have facilitated the modelling and implementation of scenes and situations by reusing components. A home context and a supermarket context were modelled following this approach, where three suspicious activities were monitored via different virtual sensors. The experiments demonstrate that our proposals facilitate the rapid prototyping of this kind of systems.

  14. NanoParticle Ontology for Cancer Nanotechnology Research

    PubMed Central

    Thomas, Dennis G.; Pappu, Rohit V.; Baker, Nathan A.

    2010-01-01

    Data generated from cancer nanotechnology research are so diverse and large in volume that it is difficult to share and efficiently use them without informatics tools. In particular, ontologies that provide a unifying knowledge framework for annotating the data are required to facilitate the semantic integration, knowledge-based searching, unambiguous interpretation, mining and inferencing of the data using informatics methods. In this paper, we discuss the design and development of NanoParticle Ontology (NPO), which is developed within the framework of the Basic Formal Ontology (BFO), and implemented in the Ontology Web Language (OWL) using well-defined ontology design principles. The NPO was developed to represent knowledge underlying the preparation, chemical composition, and characterization of nanomaterials involved in cancer research. Public releases of the NPO are available through BioPortal website, maintained by the National Center for Biomedical Ontology. Mechanisms for editorial and governance processes are being developed for the maintenance, review, and growth of the NPO. PMID:20211274

  15. GOMMA: a component-based infrastructure for managing and analyzing life science ontologies and their evolution

    PubMed Central

    2011-01-01

    Background Ontologies are increasingly used to structure and semantically describe entities of domains, such as genes and proteins in life sciences. Their increasing size and the high frequency of updates resulting in a large set of ontology versions necessitates efficient management and analysis of this data. Results We present GOMMA, a generic infrastructure for managing and analyzing life science ontologies and their evolution. GOMMA utilizes a generic repository to uniformly and efficiently manage ontology versions and different kinds of mappings. Furthermore, it provides components for ontology matching, and determining evolutionary ontology changes. These components are used by analysis tools, such as the Ontology Evolution Explorer (OnEX) and the detection of unstable ontology regions. We introduce the component-based infrastructure and show analysis results for selected components and life science applications. GOMMA is available at http://dbs.uni-leipzig.de/GOMMA. Conclusions GOMMA provides a comprehensive and scalable infrastructure to manage large life science ontologies and analyze their evolution. Key functions include a generic storage of ontology versions and mappings, support for ontology matching and determining ontology changes. The supported features for analyzing ontology changes are helpful to assess their impact on ontology-dependent applications such as for term enrichment. GOMMA complements OnEX by providing functionalities to manage various versions of mappings between two ontologies and allows combining different match approaches. PMID:21914205

  16. Semantics and metaphysics in informatics: toward an ontology of tasks.

    PubMed

    Figdor, Carrie

    2011-04-01

    This article clarifies three principles that should guide the development of any cognitive ontology. First, that an adequate cognitive ontology depends essentially on an adequate task ontology; second, that the goal of developing a cognitive ontology is independent of the goal of finding neural implementations of the processes referred to in the ontology; and third, that cognitive ontologies are neutral regarding the metaphysical relationship between cognitive and neural processes. Copyright © 2011 Cognitive Science Society, Inc.

  17. The chemical information ontology: provenance and disambiguation for chemical data on the biological semantic web.

    PubMed

    Hastings, Janna; Chepelev, Leonid; Willighagen, Egon; Adams, Nico; Steinbeck, Christoph; Dumontier, Michel

    2011-01-01

    Cheminformatics is the application of informatics techniques to solve chemical problems in silico. There are many areas in biology where cheminformatics plays an important role in computational research, including metabolism, proteomics, and systems biology. One critical aspect in the application of cheminformatics in these fields is the accurate exchange of data, which is increasingly accomplished through the use of ontologies. Ontologies are formal representations of objects and their properties using a logic-based ontology language. Many such ontologies are currently being developed to represent objects across all the domains of science. Ontologies enable the definition, classification, and support for querying objects in a particular domain, enabling intelligent computer applications to be built which support the work of scientists both within the domain of interest and across interrelated neighbouring domains. Modern chemical research relies on computational techniques to filter and organise data to maximise research productivity. The objects which are manipulated in these algorithms and procedures, as well as the algorithms and procedures themselves, enjoy a kind of virtual life within computers. We will call these information entities. Here, we describe our work in developing an ontology of chemical information entities, with a primary focus on data-driven research and the integration of calculated properties (descriptors) of chemical entities within a semantic web context. Our ontology distinguishes algorithmic, or procedural information from declarative, or factual information, and renders of particular importance the annotation of provenance to calculated data. The Chemical Information Ontology is being developed as an open collaborative project. More details, together with a downloadable OWL file, are available at http://code.google.com/p/semanticchemistry/ (license: CC-BY-SA).

  18. The Chemical Information Ontology: Provenance and Disambiguation for Chemical Data on the Biological Semantic Web

    PubMed Central

    Hastings, Janna; Chepelev, Leonid; Willighagen, Egon; Adams, Nico; Steinbeck, Christoph; Dumontier, Michel

    2011-01-01

    Cheminformatics is the application of informatics techniques to solve chemical problems in silico. There are many areas in biology where cheminformatics plays an important role in computational research, including metabolism, proteomics, and systems biology. One critical aspect in the application of cheminformatics in these fields is the accurate exchange of data, which is increasingly accomplished through the use of ontologies. Ontologies are formal representations of objects and their properties using a logic-based ontology language. Many such ontologies are currently being developed to represent objects across all the domains of science. Ontologies enable the definition, classification, and support for querying objects in a particular domain, enabling intelligent computer applications to be built which support the work of scientists both within the domain of interest and across interrelated neighbouring domains. Modern chemical research relies on computational techniques to filter and organise data to maximise research productivity. The objects which are manipulated in these algorithms and procedures, as well as the algorithms and procedures themselves, enjoy a kind of virtual life within computers. We will call these information entities. Here, we describe our work in developing an ontology of chemical information entities, with a primary focus on data-driven research and the integration of calculated properties (descriptors) of chemical entities within a semantic web context. Our ontology distinguishes algorithmic, or procedural information from declarative, or factual information, and renders of particular importance the annotation of provenance to calculated data. The Chemical Information Ontology is being developed as an open collaborative project. More details, together with a downloadable OWL file, are available at http://code.google.com/p/semanticchemistry/ (license: CC-BY-SA). PMID:21991315

  19. Semantics-Based Intelligent Indexing and Retrieval of Digital Images - A Case Study

    NASA Astrophysics Data System (ADS)

    Osman, Taha; Thakker, Dhavalkumar; Schaefer, Gerald

    The proliferation of digital media has led to a huge interest in classifying and indexing media objects for generic search and usage. In particular, we are witnessing colossal growth in digital image repositories that are difficult to navigate using free-text search mechanisms, which often return inaccurate matches as they typically rely on statistical analysis of query keyword recurrence in the image annotation or surrounding text. In this chapter we present a semantically enabled image annotation and retrieval engine that is designed to satisfy the requirements of commercial image collections market in terms of both accuracy and efficiency of the retrieval process. Our search engine relies on methodically structured ontologies for image annotation, thus allowing for more intelligent reasoning about the image content and subsequently obtaining a more accurate set of results and a richer set of alternatives matchmaking the original query. We also show how our well-analysed and designed domain ontology contributes to the implicit expansion of user queries as well as presenting our initial thoughts on exploiting lexical databases for explicit semantic-based query expansion.

  20. Development and Evaluation of a Low Fertility Ontology for Analyzing Social Data in Korea.

    PubMed

    Lee, Ji-Hyun; Park, Hyeoun-Ae; Song, Tae-Min

    2016-01-01

    The purpose of this study is to develop a low fertility ontology for collecting and analyzing social data. A low fertility ontology was developed according to Ontology Development 101 and formally represented using Protégé. The content coverage of the ontology was evaluated using 1,387 narratives posted by the public and 63 narratives posted by public servants. Six super-classes of the ontology were developed based on Bronfenbrenner's ecological system theory with an individual in the center and environmental systems impacting their as surroundings. In total, 568 unique concepts were extracted from the narratives. Out of these concepts, 424(74.6%) concepts were lexically or semantically mapped, 67(11.8%) were either broadly or narrowly mapped to the ontology concepts. Remaining 77(13.6%) concepts were not mapped to any of the ontology concepts. This ontology can be used as a framework to understand low fertility problems using social data in Korea.

  1. Application of Ontology Technology in Health Statistic Data Analysis.

    PubMed

    Guo, Minjiang; Hu, Hongpu; Lei, Xingyun

    2017-01-01

    Research Purpose: establish health management ontology for analysis of health statistic data. Proposed Methods: this paper established health management ontology based on the analysis of the concepts in China Health Statistics Yearbook, and used protégé to define the syntactic and semantic structure of health statistical data. six classes of top-level ontology concepts and their subclasses had been extracted and the object properties and data properties were defined to establish the construction of these classes. By ontology instantiation, we can integrate multi-source heterogeneous data and enable administrators to have an overall understanding and analysis of the health statistic data. ontology technology provides a comprehensive and unified information integration structure of the health management domain and lays a foundation for the efficient analysis of multi-source and heterogeneous health system management data and enhancement of the management efficiency.

  2. Matching disease and phenotype ontologies in the ontology alignment evaluation initiative.

    PubMed

    Harrow, Ian; Jiménez-Ruiz, Ernesto; Splendiani, Andrea; Romacker, Martin; Woollard, Peter; Markel, Scott; Alam-Faruque, Yasmin; Koch, Martin; Malone, James; Waaler, Arild

    2017-12-02

    The disease and phenotype track was designed to evaluate the relative performance of ontology matching systems that generate mappings between source ontologies. Disease and phenotype ontologies are important for applications such as data mining, data integration and knowledge management to support translational science in drug discovery and understanding the genetics of disease. Eleven systems (out of 21 OAEI participating systems) were able to cope with at least one of the tasks in the Disease and Phenotype track. AML, FCA-Map, LogMap(Bio) and PhenoMF systems produced the top results for ontology matching in comparison to consensus alignments. The results against manually curated mappings proved to be more difficult most likely because these mapping sets comprised mostly subsumption relationships rather than equivalence. Manual assessment of unique equivalence mappings showed that AML, LogMap(Bio) and PhenoMF systems have the highest precision results. Four systems gave the highest performance for matching disease and phenotype ontologies. These systems coped well with the detection of equivalence matches, but struggled to detect semantic similarity. This deserves more attention in the future development of ontology matching systems. The findings of this evaluation show that such systems could help to automate equivalence matching in the workflow of curators, who maintain ontology mapping services in numerous domains such as disease and phenotype.

  3. Semantic Web Ontology and Data Integration: a Case Study in Aiding Psychiatric Drug Repurposing.

    PubMed

    Liang, Chen; Sun, Jingchun; Tao, Cui

    2015-01-01

    There remain significant difficulties selecting probable candidate drugs from existing databases. We describe an ontology-oriented approach to represent the nexus between genes, drugs, phenotypes, symptoms, and diseases from multiple information sources. We also report a case study in which we attempted to explore candidate drugs effective for bipolar disorder and epilepsy. We constructed an ontology incorporating knowledge between the two diseases and performed semantic reasoning tasks with the ontology. The results suggested 48 candidate drugs that hold promise for further breakthrough. The evaluation demonstrated the validity our approach. Our approach prioritizes the candidate drugs that have potential associations among genes, phenotypes and symptoms, and thus facilitates the data integration and drug repurposing in psychiatric disorders.

  4. Interoperability Between Coastal Web Atlases Using Semantic Mediation: A Case Study of the International Coastal Atlas Network (ICAN)

    NASA Astrophysics Data System (ADS)

    Wright, D. J.; Lassoued, Y.; Dwyer, N.; Haddad, T.; Bermudez, L. E.; Dunne, D.

    2009-12-01

    Coastal mapping plays an important role in informing marine spatial planning, resource management, maritime safety, hazard assessment and even national sovereignty. As such, there is now a plethora of data/metadata catalogs, pre-made maps, tabular and text information on resource availability and exploitation, and decision-making tools. A recent trend has been to encapsulate these in a special class of web-enabled geographic information systems called a coastal web atlas (CWA). While multiple benefits are derived from tailor-made atlases, there is great value added from the integration of disparate CWAs. CWAs linked to one another can query more successfully to optimize planning and decision-making. If a dataset is missing in one atlas, it may be immediately located in another. Similar datasets in two atlases may be combined to enhance study in either region. *But how best to achieve semantic interoperability to mitigate vague data queries, concepts or natural language semantics when retrieving and integrating data and information?* We report on the development of a new prototype seeking to interoperate between two initial CWAs: the Marine Irish Digital Atlas (MIDA) and the Oregon Coastal Atlas (OCA). These two mature atlases are used as a testbed for more regional connections, with the intent for the OCA to use lessons learned to develop a regional network of CWAs along the west coast, and for MIDA to do the same in building and strengthening atlas networks with the UK, Belgium, and other parts of Europe. Our prototype uses semantic interoperability via services harmonization and ontology mediation, allowing local atlases to use their own data structures, and vocabularies (ontologies). We use standard technologies such as OGC Web Map Services (WMS) for delivering maps, and OGC Catalogue Service for the Web (CSW) for delivering and querying ISO-19139 metadata. The metadata records of a given CWA use a given ontology of terms called local ontology. Human or machine users formulate their requests using a common ontology of metadata terms, called global ontology. A CSW mediator rewrites the user’s request into CSW requests over local CSWs using their own (local) ontologies, collects the results and sends them back to the user. To extend the system, we have recently added global maritime boundaries and are also considering nearshore ocean observing system data. Ongoing work includes adding WFS, error management, and exception handling, enabling Smart Searches, and writing full documentation. This prototype is a central research project of the new International Coastal Atlas Network (ICAN), a group of 30+ organizations from 14 nations (and growing) dedicated to seeking interoperability approaches to CWAs in support of coastal zone management and the translation of coastal science to coastal decision-making.

  5. Development and use of Ontologies Inside the Neuroscience Information Framework: A Practical Approach

    PubMed Central

    Imam, Fahim T.; Larson, Stephen D.; Bandrowski, Anita; Grethe, Jeffery S.; Gupta, Amarnath; Martone, Maryann E.

    2012-01-01

    An initiative of the NIH Blueprint for neuroscience research, the Neuroscience Information Framework (NIF) project advances neuroscience by enabling discovery and access to public research data and tools worldwide through an open source, semantically enhanced search portal. One of the critical components for the overall NIF system, the NIF Standardized Ontologies (NIFSTD), provides an extensive collection of standard neuroscience concepts along with their synonyms and relationships. The knowledge models defined in the NIFSTD ontologies enable an effective concept-based search over heterogeneous types of web-accessible information entities in NIF’s production system. NIFSTD covers major domains in neuroscience, including diseases, brain anatomy, cell types, sub-cellular anatomy, small molecules, techniques, and resource descriptors. Since the first production release in 2008, NIF has grown significantly in content and functionality, particularly with respect to the ontologies and ontology-based services that drive the NIF system. We present here on the structure, design principles, community engagement, and the current state of NIFSTD ontologies. PMID:22737162

  6. Towards Web 3.0: taxonomies and ontologies for medical education -- a systematic review.

    PubMed

    Blaum, Wolf E; Jarczweski, Anne; Balzer, Felix; Stötzner, Philip; Ahlers, Olaf

    2013-01-01

    Both for curricular development and mapping, as well as for orientation within the mounting supply of learning resources in medical education, the Semantic Web ("Web 3.0") poses a low-threshold, effective tool that enables identification of content related items across system boundaries. Replacement of the currently required manual with an automatically generated link, which is based on content and semantics, requires the use of a suitably structured vocabulary for a machine-readable description of object content. Aim of this study is to compile the existing taxonomies and ontologies used for the annotation of medical content and learning resources, to compare those using selected criteria, and to verify their suitability in the context described above. Based on a systematic literature search, existing taxonomies and ontologies for the description of medical learning resources were identified. Through web searches and/or direct contact with the respective editors, each of the structured vocabularies thus identified were examined in regards to topic, structure, language, scope, maintenance, and technology of the taxonomy/ontology. In addition, suitability for use in the Semantic Web was verified. Among 20 identified publications, 14 structured vocabularies were identified, which differed rather strongly in regards to language, scope, currency, and maintenance. None of the identified vocabularies fulfilled the necessary criteria for content description of medical curricula and learning resources in the German-speaking world. While moving towards Web 3.0, a significant problem lies in the selection and use of an appropriate German vocabulary for the machine-readable description of object content. Possible solutions include development, translation and/or combination of existing vocabularies, possibly including partial translations of English vocabularies.

  7. An ontology-based semantic configuration approach to constructing Data as a Service for enterprises

    NASA Astrophysics Data System (ADS)

    Cai, Hongming; Xie, Cheng; Jiang, Lihong; Fang, Lu; Huang, Chenxi

    2016-03-01

    To align business strategies with IT systems, enterprises should rapidly implement new applications based on existing information with complex associations to adapt to the continually changing external business environment. Thus, Data as a Service (DaaS) has become an enabling technology for enterprise through information integration and the configuration of existing distributed enterprise systems and heterogonous data sources. However, business modelling, system configuration and model alignment face challenges at the design and execution stages. To provide a comprehensive solution to facilitate data-centric application design in a highly complex and large-scale situation, a configurable ontology-based service integrated platform (COSIP) is proposed to support business modelling, system configuration and execution management. First, a meta-resource model is constructed and used to describe and encapsulate information resources by way of multi-view business modelling. Then, based on ontologies, three semantic configuration patterns, namely composite resource configuration, business scene configuration and runtime environment configuration, are designed to systematically connect business goals with executable applications. Finally, a software architecture based on model-view-controller (MVC) is provided and used to assemble components for software implementation. The result of the case study demonstrates that the proposed approach provides a flexible method of implementing data-centric applications.

  8. Semantically Enriched Data Access Policies in eHealth.

    PubMed

    Drozdowicz, Michał; Ganzha, Maria; Paprzycki, Marcin

    2016-11-01

    Internet of Things (IoT) requires novel solutions to facilitate autonomous, though controlled, resource access. Access policies have to facilitate interactions between heterogeneous entities (devices and humans). Here, we focus our attention on access control in eHealth. We propose an approach based on enriching policies, based on well-known and widely-used eXtensible Access Control Markup Language, with semantics. In the paper we describe an implementation of a Policy Information Point integrated with the HL7 Security and Privacy Ontology.

  9. Ontology development for provenance tracing in National Climate Assessment of the US Global Change Research Program

    NASA Astrophysics Data System (ADS)

    Ma, X.; Zheng, J. G.; Goldstein, J.; Duggan, B.; Xu, J.; Du, C.; Akkiraju, A.; Aulenbach, S.; Tilmes, C.; Fox, P. A.

    2013-12-01

    The periodical National Climate Assessment (NCA) of the US Global Change Research Program (USGCRP) [1] produces reports about findings of global climate change and the impacts of climate change on the United States. Those findings are of great public and academic concerns and are used in policy and management decisions, which make the provenance information of findings in those reports especially important. The USGCRP is developing a Global Change Information System (GCIS), in which the NCA reports and associated provenance information are the primary records. We were modeling and developing Semantic Web applications for the GCIS. By applying a use case-driven iterative methodology [2], we developed an ontology [3] to represent the content structure of a report and the associated provenance information. We also mapped the classes and properties in our ontology into the W3C PROV-O ontology [4] to realize the formal presentation of provenance. We successfully implemented the ontology in several pilot systems for a recent National Climate Assessment report (i.e., the NCA3). They provide users the functionalities to browse and search provenance information with topics of interest. Provenance information of the NCA3 has been made structured and interoperable by applying the developed ontology. Besides the pilot systems we developed, other tools and services are also able to interact with the data in the context of the 'Web of data' and thus create added values. Our research shows that the use case-driven iterative method bridges the gap between Semantic Web researchers and earth and environmental scientists and is able to be deployed rapidly for developing Semantic Web applications. Our work also provides first-hand experience for re-using the W3C PROV-O ontology in the field of earth and environmental sciences, as the PROV-O ontology is recently ratified (on 04/30/2013) by the W3C as a recommendation and relevant applications are still rare. [1] http://www.globalchange.gov [2] Fox, P., McGuinness, D.L., 2008. TWC Semantic Web Methodology. Accessible at: http://tw.rpi.edu/web/doc/TWC_SemanticWebMethodology [3] https://scm.escience.rpi.edu/svn/public/projects/gcis/trunk/rdf/schema/GCISOntology.ttl [4] http://www.w3.org/TR/prov-o/

  10. An RDF/OWL knowledge base for query answering and decision support in clinical pharmacogenetics.

    PubMed

    Samwald, Matthias; Freimuth, Robert; Luciano, Joanne S; Lin, Simon; Powers, Robert L; Marshall, M Scott; Adlassnig, Klaus-Peter; Dumontier, Michel; Boyce, Richard D

    2013-01-01

    Genetic testing for personalizing pharmacotherapy is bound to become an important part of clinical routine. To address associated issues with data management and quality, we are creating a semantic knowledge base for clinical pharmacogenetics. The knowledge base is made up of three components: an expressive ontology formalized in the Web Ontology Language (OWL 2 DL), a Resource Description Framework (RDF) model for capturing detailed results of manual annotation of pharmacogenomic information in drug product labels, and an RDF conversion of relevant biomedical datasets. Our work goes beyond the state of the art in that it makes both automated reasoning as well as query answering as simple as possible, and the reasoning capabilities go beyond the capabilities of previously described ontologies.

  11. Ontology-based Vaccine and Drug Adverse Event Representation and Theory-guided Systematic Causal Network Analysis toward Integrative Pharmacovigilance Research.

    PubMed

    He, Yongqun

    2016-06-01

    Compared with controlled terminologies ( e.g. , MedDRA, CTCAE, and WHO-ART), the community-based Ontology of AEs (OAE) has many advantages in adverse event (AE) classifications. The OAE-derived Ontology of Vaccine AEs (OVAE) and Ontology of Drug Neuropathy AEs (ODNAE) serve as AE knowledge bases and support data integration and analysis. The Immune Response Gene Network Theory explains molecular mechanisms of vaccine-related AEs. The OneNet Theory of Life treats the whole process of a life of an organism as a single complex and dynamic network ( i.e. , OneNet). A new "OneNet effectiveness" tenet is proposed here to expand the OneNet theory. Derived from the OneNet theory, the author hypothesizes that one human uses one single genotype-rooted mechanism to respond to different vaccinations and drug treatments, and experimentally identified mechanisms are manifestations of the OneNet blueprint mechanism under specific conditions. The theories and ontologies interact together as semantic frameworks to support integrative pharmacovigilance research.

  12. XSemantic: An Extension of LCA Based XML Semantic Search

    NASA Astrophysics Data System (ADS)

    Supasitthimethee, Umaporn; Shimizu, Toshiyuki; Yoshikawa, Masatoshi; Porkaew, Kriengkrai

    One of the most convenient ways to query XML data is a keyword search because it does not require any knowledge of XML structure or learning a new user interface. However, the keyword search is ambiguous. The users may use different terms to search for the same information. Furthermore, it is difficult for a system to decide which node is likely to be chosen as a return node and how much information should be included in the result. To address these challenges, we propose an XML semantic search based on keywords called XSemantic. On the one hand, we give three definitions to complete in terms of semantics. Firstly, the semantic term expansion, our system is robust from the ambiguous keywords by using the domain ontology. Secondly, to return semantic meaningful answers, we automatically infer the return information from the user queries and take advantage of the shortest path to return meaningful connections between keywords. Thirdly, we present the semantic ranking that reflects the degree of similarity as well as the semantic relationship so that the search results with the higher relevance are presented to the users first. On the other hand, in the LCA and the proximity search approaches, we investigated the problem of information included in the search results. Therefore, we introduce the notion of the Lowest Common Element Ancestor (LCEA) and define our simple rule without any requirement on the schema information such as the DTD or XML Schema. The first experiment indicated that XSemantic not only properly infers the return information but also generates compact meaningful results. Additionally, the benefits of our proposed semantics are demonstrated by the second experiment.

  13. A semantic web ontology for small molecules and their biological targets.

    PubMed

    Choi, Jooyoung; Davis, Melissa J; Newman, Andrew F; Ragan, Mark A

    2010-05-24

    A wide range of data on sequences, structures, pathways, and networks of genes and gene products is available for hypothesis testing and discovery in biological and biomedical research. However, data describing the physical, chemical, and biological properties of small molecules have not been well-integrated with these resources. Semantically rich representations of chemical data, combined with Semantic Web technologies, have the potential to enable the integration of small molecule and biomolecular data resources, expanding the scope and power of biomedical and pharmacological research. We employed the Semantic Web technologies Resource Description Framework (RDF) and Web Ontology Language (OWL) to generate a Small Molecule Ontology (SMO) that represents concepts and provides unique identifiers for biologically relevant properties of small molecules and their interactions with biomolecules, such as proteins. We instanced SMO using data from three public data sources, i.e., DrugBank, PubChem and UniProt, and converted to RDF triples. Evaluation of SMO by use of predetermined competency questions implemented as SPARQL queries demonstrated that data from chemical and biomolecular data sources were effectively represented and that useful knowledge can be extracted. These results illustrate the potential of Semantic Web technologies in chemical, biological, and pharmacological research and in drug discovery.

  14. Pedagogically-Driven Ontology Network for Conceptualizing the e-Learning Assessment Domain

    ERIC Educational Resources Information Center

    Romero, Lucila; North, Matthew; Gutiérrez, Milagros; Caliusco, Laura

    2015-01-01

    The use of ontologies as tools to guide the generation, organization and personalization of e-learning content, including e-assessment, has drawn attention of the researchers because ontologies can represent the knowledge of a given domain and researchers use the ontology to reason about it. Although the use of these semantic technologies tends to…

  15. Integrating Semantic Information in Metadata Descriptions for a Geoscience-wide Resource Inventory.

    NASA Astrophysics Data System (ADS)

    Zaslavsky, I.; Richard, S. M.; Gupta, A.; Valentine, D.; Whitenack, T.; Ozyurt, I. B.; Grethe, J. S.; Schachne, A.

    2016-12-01

    Integrating semantic information into legacy metadata catalogs is a challenging issue and so far has been mostly done on a limited scale. We present experience of CINERGI (Community Inventory of Earthcube Resources for Geoscience Interoperability), an NSF Earthcube Building Block project, in creating a large cross-disciplinary catalog of geoscience information resources to enable cross-domain discovery. The project developed a pipeline for automatically augmenting resource metadata, in particular generating keywords that describe metadata documents harvested from multiple geoscience information repositories or contributed by geoscientists through various channels including surveys and domain resource inventories. The pipeline examines available metadata descriptions using text parsing, vocabulary management and semantic annotation and graph navigation services of GeoSciGraph. GeoSciGraph, in turn, relies on a large cross-domain ontology of geoscience terms, which bridges several independently developed ontologies or taxonomies including SWEET, ENVO, YAGO, GeoSciML, GCMD, SWO, and CHEBI. The ontology content enables automatic extraction of keywords reflecting science domains, equipment used, geospatial features, measured properties, methods, processes, etc. We specifically focus on issues of cross-domain geoscience ontology creation, resolving several types of semantic conflicts among component ontologies or vocabularies, and constructing and managing facets for improved data discovery and navigation. The ontology and keyword generation rules are iteratively improved as pipeline results are presented to data managers for selective manual curation via a CINERGI Annotator user interface. We present lessons learned from applying CINERGI metadata augmentation pipeline to a number of federal agency and academic data registries, in the context of several use cases that require data discovery and integration across multiple earth science data catalogs of varying quality and completeness. The inventory is accessible at http://cinergi.sdsc.edu, and the CINERGI project web page is http://earthcube.org/group/cinergi

  16. Incremental Ontology-Based Extraction and Alignment in Semi-structured Documents

    NASA Astrophysics Data System (ADS)

    Thiam, Mouhamadou; Bennacer, Nacéra; Pernelle, Nathalie; Lô, Moussa

    SHIRIis an ontology-based system for integration of semi-structured documents related to a specific domain. The system’s purpose is to allow users to access to relevant parts of documents as answers to their queries. SHIRI uses RDF/OWL for representation of resources and SPARQL for their querying. It relies on an automatic, unsupervised and ontology-driven approach for extraction, alignment and semantic annotation of tagged elements of documents. In this paper, we focus on the Extract-Align algorithm which exploits a set of named entity and term patterns to extract term candidates to be aligned with the ontology. It proceeds in an incremental manner in order to populate the ontology with terms describing instances of the domain and to reduce the access to extern resources such as Web. We experiment it on a HTML corpus related to call for papers in computer science and the results that we obtain are very promising. These results show how the incremental behaviour of Extract-Align algorithm enriches the ontology and the number of terms (or named entities) aligned directly with the ontology increases.

  17. Semi Automatic Ontology Instantiation in the domain of Risk Management

    NASA Astrophysics Data System (ADS)

    Makki, Jawad; Alquier, Anne-Marie; Prince, Violaine

    One of the challenging tasks in the context of Ontological Engineering is to automatically or semi-automatically support the process of Ontology Learning and Ontology Population from semi-structured documents (texts). In this paper we describe a Semi-Automatic Ontology Instantiation method from natural language text, in the domain of Risk Management. This method is composed from three steps 1 ) Annotation with part-of-speech tags, 2) Semantic Relation Instances Extraction, 3) Ontology instantiation process. It's based on combined NLP techniques using human intervention between steps 2 and 3 for control and validation. Since it heavily relies on linguistic knowledge it is not domain dependent which is a good feature for portability between the different fields of risk management application. The proposed methodology uses the ontology of the PRIMA1 project (supported by the European community) as a Generic Domain Ontology and populates it via an available corpus. A first validation of the approach is done through an experiment with Chemical Fact Sheets from Environmental Protection Agency2.

  18. A web-based land cover classification system based on ontology model of different classification systems

    NASA Astrophysics Data System (ADS)

    Lin, Y.; Chen, X.

    2016-12-01

    Land cover classification systems used in remote sensing image data have been developed to meet the needs for depicting land covers in scientific investigations and policy decisions. However, accuracy assessments of a spate of data sets demonstrate that compared with the real physiognomy, each of the thematic map of specific land cover classification system contains some unavoidable flaws and unintended deviation. This work proposes a web-based land cover classification system, an integrated prototype, based on an ontology model of various classification systems, each of which is assigned the same weight in the final determination of land cover type. Ontology, a formal explication of specific concepts and relations, is employed in this prototype to build up the connections among different systems to resolve the naming conflicts. The process is initialized by measuring semantic similarity between terminologies in the systems and the search key to produce certain set of satisfied classifications, and carries on through searching the predefined relations in concepts of all classification systems to generate classification maps with user-specified land cover type highlighted, based on probability calculated by votes from data sets with different classification system adopted. The present system is verified and validated by comparing the classification results with those most common systems. Due to full consideration and meaningful expression of each classification system using ontology and the convenience that the web brings with itself, this system, as a preliminary model, proposes a flexible and extensible architecture for classification system integration and data fusion, thereby providing a strong foundation for the future work.

  19. Design and Implementation of e-Health System Based on Semantic Sensor Network Using IETF YANG.

    PubMed

    Jin, Wenquan; Kim, Do Hyeun

    2018-02-20

    Recently, healthcare services can be delivered effectively to patients anytime and anywhere using e-Health systems. e-Health systems are developed through Information and Communication Technologies (ICT) that involve sensors, mobiles, and web-based applications for the delivery of healthcare services and information. Remote healthcare is an important purpose of the e-Health system. Usually, the eHealth system includes heterogeneous sensors from diverse manufacturers producing data in different formats. Device interoperability and data normalization is a challenging task that needs research attention. Several solutions are proposed in the literature based on manual interpretation through explicit programming. However, programmatically implementing the interpretation of the data sender and data receiver in the e-Health system for the data transmission is counterproductive as modification will be required for each new device added into the system. In this paper, an e-Health system with the Semantic Sensor Network (SSN) is proposed to address the device interoperability issue. In the proposed system, we have used IETF YANG for modeling the semantic e-Health data to represent the information of e-Health sensors. This modeling scheme helps in provisioning semantic interoperability between devices and expressing the sensing data in a user-friendly manner. For this purpose, we have developed an ontology for e-Health data that supports different styles of data formats. The ontology is defined in YANG for provisioning semantic interpretation of sensing data in the system by constructing meta-models of e-Health sensors. The proposed approach assists in the auto-configuration of eHealth sensors and querying the sensor network with semantic interoperability support for the e-Health system.

  20. Design and Implementation of e-Health System Based on Semantic Sensor Network Using IETF YANG

    PubMed Central

    Kim, Do Hyeun

    2018-01-01

    Recently, healthcare services can be delivered effectively to patients anytime and anywhere using e-Health systems. e-Health systems are developed through Information and Communication Technologies (ICT) that involve sensors, mobiles, and web-based applications for the delivery of healthcare services and information. Remote healthcare is an important purpose of the e-Health system. Usually, the eHealth system includes heterogeneous sensors from diverse manufacturers producing data in different formats. Device interoperability and data normalization is a challenging task that needs research attention. Several solutions are proposed in the literature based on manual interpretation through explicit programming. However, programmatically implementing the interpretation of the data sender and data receiver in the e-Health system for the data transmission is counterproductive as modification will be required for each new device added into the system. In this paper, an e-Health system with the Semantic Sensor Network (SSN) is proposed to address the device interoperability issue. In the proposed system, we have used IETF YANG for modeling the semantic e-Health data to represent the information of e-Health sensors. This modeling scheme helps in provisioning semantic interoperability between devices and expressing the sensing data in a user-friendly manner. For this purpose, we have developed an ontology for e-Health data that supports different styles of data formats. The ontology is defined in YANG for provisioning semantic interpretation of sensing data in the system by constructing meta-models of e-Health sensors. The proposed approach assists in the auto-configuration of eHealth sensors and querying the sensor network with semantic interoperability support for the e-Health system. PMID:29461493

  1. The MGED Ontology: a resource for semantics-based description of microarray experiments.

    PubMed

    Whetzel, Patricia L; Parkinson, Helen; Causton, Helen C; Fan, Liju; Fostel, Jennifer; Fragoso, Gilberto; Game, Laurence; Heiskanen, Mervi; Morrison, Norman; Rocca-Serra, Philippe; Sansone, Susanna-Assunta; Taylor, Chris; White, Joseph; Stoeckert, Christian J

    2006-04-01

    The generation of large amounts of microarray data and the need to share these data bring challenges for both data management and annotation and highlights the need for standards. MIAME specifies the minimum information needed to describe a microarray experiment and the Microarray Gene Expression Object Model (MAGE-OM) and resulting MAGE-ML provide a mechanism to standardize data representation for data exchange, however a common terminology for data annotation is needed to support these standards. Here we describe the MGED Ontology (MO) developed by the Ontology Working Group of the Microarray Gene Expression Data (MGED) Society. The MO provides terms for annotating all aspects of a microarray experiment from the design of the experiment and array layout, through to the preparation of the biological sample and the protocols used to hybridize the RNA and analyze the data. The MO was developed to provide terms for annotating experiments in line with the MIAME guidelines, i.e. to provide the semantics to describe a microarray experiment according to the concepts specified in MIAME. The MO does not attempt to incorporate terms from existing ontologies, e.g. those that deal with anatomical parts or developmental stages terms, but provides a framework to reference terms in other ontologies and therefore facilitates the use of ontologies in microarray data annotation. The MGED Ontology version.1.2.0 is available as a file in both DAML and OWL formats at http://mged.sourceforge.net/ontologies/index.php. Release notes and annotation examples are provided. The MO is also provided via the NCICB's Enterprise Vocabulary System (http://nciterms.nci.nih.gov/NCIBrowser/Dictionary.do). Stoeckrt@pcbi.upenn.edu Supplementary data are available at Bioinformatics online.

  2. Combined use of semantics and metadata to manage Research Data Life Cycle in Environmental Sciences

    NASA Astrophysics Data System (ADS)

    Aguilar Gómez, Fernando; de Lucas, Jesús Marco; Pertinez, Esther; Palacio, Aida

    2017-04-01

    The use of metadata to contextualize datasets is quite extended in Earth System Sciences. There are some initiatives and available tools to help data managers to choose the best metadata standard that fit their use cases, like the DCC Metadata Directory (http://www.dcc.ac.uk/resources/metadata-standards). In our use case, we have been gathering physical, chemical and biological data from a water reservoir since 2010. A well metadata definition is crucial not only to contextualize our own data but also to integrate datasets from other sources like satellites or meteorological agencies. That is why we have chosen EML (Ecological Metadata Language), which integrates many different elements to define a dataset, including the project context, instrumentation and parameters definition, and the software used to process, provide quality controls and include the publication details. Those metadata elements can contribute to help both human and machines to understand and process the dataset. However, the use of metadata is not enough to fully support the data life cycle, from the Data Management Plan definition to the Publication and Re-use. To do so, we need to define not only metadata and attributes but also the relationships between them, so semantics are needed. Ontologies, being a knowledge representation, can contribute to define the elements of a research data life cycle, including DMP, datasets, software, etc. They also can define how the different elements are related between them and how they interact. The first advantage of developing an ontology of a knowledge domain is that they provide a common vocabulary hierarchy (i.e. a conceptual schema) that can be used and standardized by all the agents interested in the domain (either humans or machines). This way of using ontologies is one of the basis of the Semantic Web, where ontologies are set to play a key role in establishing a common terminology between agents. To develop an ontology we are using a graphical tool Protégé, which is a graphical ontology-development tool that supports a rich knowledge model and it is open-source and freely available. To process and manage the ontology, we are using Semantic MediaWiki, which is able to process queries. Semantic MediaWiki is an extension of MediaWiki where we can do semantic search and export data in RDF. Our final goal is integrating our data repository portal and semantic processing engine in order to have a complete system to manage the data life cycle stages and their relationships, including machine-actionable DMP solution, datasets and software management, computing resources for processing and analysis and publication features (DOI mint). This way we will be able to reproduce the full data life cycle chain warranting the FAIR+R principles.

  3. Semantic Network Adaptation Based on QoS Pattern Recognition for Multimedia Streams

    NASA Astrophysics Data System (ADS)

    Exposito, Ernesto; Gineste, Mathieu; Lamolle, Myriam; Gomez, Jorge

    This article proposes an ontology based pattern recognition methodology to compute and represent common QoS properties of the Application Data Units (ADU) of multimedia streams. The use of this ontology by mechanisms located at different layers of the communication architecture will allow implementing fine per-packet self-optimization of communication services regarding the actual application requirements. A case study showing how this methodology is used by error control mechanisms in the context of wireless networks is presented in order to demonstrate the feasibility and advantages of this approach.

  4. A method of extracting ontology module using concept relations for sharing knowledge in mobile cloud computing environment.

    PubMed

    Lee, Keonsoo; Rho, Seungmin; Lee, Seok-Won

    2014-01-01

    In mobile cloud computing environment, the cooperation of distributed computing objects is one of the most important requirements for providing successful cloud services. To satisfy this requirement, all the members, who are employed in the cooperation group, need to share the knowledge for mutual understanding. Even if ontology can be the right tool for this goal, there are several issues to make a right ontology. As the cost and complexity of managing knowledge increase according to the scale of the knowledge, reducing the size of ontology is one of the critical issues. In this paper, we propose a method of extracting ontology module to increase the utility of knowledge. For the given signature, this method extracts the ontology module, which is semantically self-contained to fulfill the needs of the service, by considering the syntactic structure and semantic relation of concepts. By employing this module, instead of the original ontology, the cooperation of computing objects can be performed with less computing load and complexity. In particular, when multiple external ontologies need to be combined for more complex services, this method can be used to optimize the size of shared knowledge.

  5. Augmenting Latent Dirichlet Allocation and Rank Threshold Detection with Ontologies

    DTIC Science & Technology

    2010-03-01

    Probabilistic Latent Semantic Indexing (PLSI) is an automated indexing information retrieval model [20]. It is based on a statistical latent class model which is...uses a statistical foundation that is more accurate in finding hidden semantic relationships [20]. The model uses factor analysis of count data, number...principle of statistical infer- ence which asserts that all of the information in a sample is contained in the likelihood function [20]. The statistical

  6. Continuation-like semantics for modeling structural process anomalies

    PubMed Central

    2012-01-01

    Background Biomedical ontologies usually encode knowledge that applies always or at least most of the time, that is in normal circumstances. But for some applications like phenotype ontologies it is becoming increasingly important to represent information about aberrations from a norm. These aberrations may be modifications of physiological structures, but also modifications of biological processes. Methods To facilitate precise definitions of process-related phenotypes, such as delayed eruption of the primary teeth or disrupted ocular pursuit movements, I introduce a modeling approach that draws inspiration from the use of continuations in the analysis of programming languages and apply a similar idea to ontological modeling. This approach characterises processes by describing their outcome up to a certain point and the way they will continue in the canonical case. Definitions of process types are then given in terms of their continuations and anomalous phenotypes are defined by their differences to the canonical definitions. Results The resulting model is capable of accurately representing structural process anomalies. It allows distinguishing between different anomaly kinds (delays, interruptions), gives identity criteria for interrupted processes, and explains why normal and anomalous process instances can be subsumed under a common type, thus establishing the connection between canonical and anomalous process-related phenotypes. Conclusion This paper shows how to to give semantically rich definitions of process-related phenotypes. These allow to expand the application areas of phenotype ontologies beyond literature annotation and establishment of genotype-phenotype associations to the detection of anomalies in suitably encoded datasets. PMID:23046705

  7. Ontological engineering versus metaphysics

    NASA Astrophysics Data System (ADS)

    Tataj, Emanuel; Tomanek, Roman; Mulawka, Jan

    2011-10-01

    It has been recognized that ontologies are a semantic version of world wide web and can be found in knowledge-based systems. A recent time survey of this field also suggest that practical artificial intelligence systems may be motivated by this research. Especially strong artificial intelligence as well as concept of homo computer can also benefit from their use. The main objective of this contribution is to present and review already created ontologies and identify the main advantages which derive such approach for knowledge management systems. We would like to present what ontological engineering borrows from metaphysics and what a feedback it can provide to natural language processing, simulations and modelling. The potential topics of further development from philosophical point of view is also underlined.

  8. GFD-Net: A novel semantic similarity methodology for the analysis of gene networks.

    PubMed

    Díaz-Montaña, Juan J; Díaz-Díaz, Norberto; Gómez-Vela, Francisco

    2017-04-01

    Since the popularization of biological network inference methods, it has become crucial to create methods to validate the resulting models. Here we present GFD-Net, the first methodology that applies the concept of semantic similarity to gene network analysis. GFD-Net combines the concept of semantic similarity with the use of gene network topology to analyze the functional dissimilarity of gene networks based on Gene Ontology (GO). The main innovation of GFD-Net lies in the way that semantic similarity is used to analyze gene networks taking into account the network topology. GFD-Net selects a functionality for each gene (specified by a GO term), weights each edge according to the dissimilarity between the nodes at its ends and calculates a quantitative measure of the network functional dissimilarity, i.e. a quantitative value of the degree of dissimilarity between the connected genes. The robustness of GFD-Net as a gene network validation tool was demonstrated by performing a ROC analysis on several network repositories. Furthermore, a well-known network was analyzed showing that GFD-Net can also be used to infer knowledge. The relevance of GFD-Net becomes more evident in Section "GFD-Net applied to the study of human diseases" where an example of how GFD-Net can be applied to the study of human diseases is presented. GFD-Net is available as an open-source Cytoscape app which offers a user-friendly interface to configure and execute the algorithm as well as the ability to visualize and interact with the results(http://apps.cytoscape.org/apps/gfdnet). Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Ontology Extraction Tools: An Empirical Study with Educators

    ERIC Educational Resources Information Center

    Hatala, M.; Gasevic, D.; Siadaty, M.; Jovanovic, J.; Torniai, C.

    2012-01-01

    Recent research in Technology-Enhanced Learning (TEL) demonstrated several important benefits that semantic technologies can bring to the TEL domain. An underlying assumption for most of these research efforts is the existence of a domain ontology. The second unspoken assumption follows that educators will build domain ontologies for their…

  10. Ontology-Driven Provenance Management in eScience: An Application in Parasite Research

    NASA Astrophysics Data System (ADS)

    Sahoo, Satya S.; Weatherly, D. Brent; Mutharaju, Raghava; Anantharam, Pramod; Sheth, Amit; Tarleton, Rick L.

    Provenance, from the French word "provenir", describes the lineage or history of a data entity. Provenance is critical information in scientific applications to verify experiment process, validate data quality and associate trust values with scientific results. Current industrial scale eScience projects require an end-to-end provenance management infrastructure. This infrastructure needs to be underpinned by formal semantics to enable analysis of large scale provenance information by software applications. Further, effective analysis of provenance information requires well-defined query mechanisms to support complex queries over large datasets. This paper introduces an ontology-driven provenance management infrastructure for biology experiment data, as part of the Semantic Problem Solving Environment (SPSE) for Trypanosoma cruzi (T.cruzi). This provenance infrastructure, called T.cruzi Provenance Management System (PMS), is underpinned by (a) a domain-specific provenance ontology called Parasite Experiment ontology, (b) specialized query operators for provenance analysis, and (c) a provenance query engine. The query engine uses a novel optimization technique based on materialized views called materialized provenance views (MPV) to scale with increasing data size and query complexity. This comprehensive ontology-driven provenance infrastructure not only allows effective tracking and management of ongoing experiments in the Tarleton Research Group at the Center for Tropical and Emerging Global Diseases (CTEGD), but also enables researchers to retrieve the complete provenance information of scientific results for publication in literature.

  11. EHR-based disease registries to support integrated care in a health neighbourhood: an ontology-based methodology.

    PubMed

    Liaw, Siaw-Teng; Taggart, Jane; Yu, Hairong

    2014-01-01

    Disease registries derived from Electronic Health Records (EHRs) are widely used for chronic disease management. We approached registries from the perspective of integrated care in a health neighbourhood, considering data quality issues such as semantic interoperability (consistency), accuracy, completeness and duplication. Our proposition is that a realist ontological approach is required to accurately identify patients in an EHR or data repository, assess data quality and fitness for use by the multidisciplinary integrated care team. We report on this approach with routinely collected data in a practice based research network in Australia.

  12. A Semantic Web-based System for Mining Genetic Mutations in Cancer Clinical Trials.

    PubMed

    Priya, Sambhawa; Jiang, Guoqian; Dasari, Surendra; Zimmermann, Michael T; Wang, Chen; Heflin, Jeff; Chute, Christopher G

    2015-01-01

    Textual eligibility criteria in clinical trial protocols contain important information about potential clinically relevant pharmacogenomic events. Manual curation for harvesting this evidence is intractable as it is error prone and time consuming. In this paper, we develop and evaluate a Semantic Web-based system that captures and manages mutation evidences and related contextual information from cancer clinical trials. The system has 2 main components: an NLP-based annotator and a Semantic Web ontology-based annotation manager. We evaluated the performance of the annotator in terms of precision and recall. We demonstrated the usefulness of the system by conducting case studies in retrieving relevant clinical trials using a collection of mutations identified from TCGA Leukemia patients and Atlas of Genetics and Cytogenetics in Oncology and Haematology. In conclusion, our system using Semantic Web technologies provides an effective framework for extraction, annotation, standardization and management of genetic mutations in cancer clinical trials.

  13. Toxicology ontology perspectives.

    PubMed

    Hardy, Barry; Apic, Gordana; Carthew, Philip; Clark, Dominic; Cook, David; Dix, Ian; Escher, Sylvia; Hastings, Janna; Heard, David J; Jeliazkova, Nina; Judson, Philip; Matis-Mitchell, Sherri; Mitic, Dragana; Myatt, Glenn; Shah, Imran; Spjuth, Ola; Tcheremenskaia, Olga; Toldo, Luca; Watson, David; White, Andrew; Yang, Chihae

    2012-01-01

    The field of predictive toxicology requires the development of open, public, computable, standardized toxicology vocabularies and ontologies to support the applications required by in silico, in vitro, and in vivo toxicology methods and related analysis and reporting activities. In this article we review ontology developments based on a set of perspectives showing how ontologies are being used in predictive toxicology initiatives and applications. Perspectives on resources and initiatives reviewed include OpenTox, eTOX, Pistoia Alliance, ToxWiz, Virtual Liver, EU-ADR, BEL, ToxML, and Bioclipse. We also review existing ontology developments in neighboring fields that can contribute to establishing an ontological framework for predictive toxicology. A significant set of resources is already available to provide a foundation for an ontological framework for 21st century mechanistic-based toxicology research. Ontologies such as ToxWiz provide a basis for application to toxicology investigations, whereas other ontologies under development in the biological, chemical, and biomedical communities could be incorporated in an extended future framework. OpenTox has provided a semantic web framework for the implementation of such ontologies into software applications and linked data resources. Bioclipse developers have shown the benefit of interoperability obtained through ontology by being able to link their workbench application with remote OpenTox web services. Although these developments are promising, an increased international coordination of efforts is greatly needed to develop a more unified, standardized, and open toxicology ontology framework.

  14. Text Mining to inform construction of Earth and Environmental Science Ontologies

    NASA Astrophysics Data System (ADS)

    Schildhauer, M.; Adams, B.; Rebich Hespanha, S.

    2013-12-01

    There is a clear need for better semantic representation of Earth and environmental concepts, to facilitate more effective discovery and re-use of information resources relevant to scientists doing integrative research. In order to develop general-purpose Earth and environmental science ontologies, however, it is necessary to represent concepts and relationships that span usage across multiple disciplines and scientific specialties. Traditional knowledge modeling through ontologies utilizes expert knowledge but inevitably favors the particular perspectives of the ontology engineers, as well as the domain experts who interacted with them. This often leads to ontologies that lack robust coverage of synonymy, while also missing important relationships among concepts that can be extremely useful for working scientists to be aware of. In this presentation we will discuss methods we have developed that utilize statistical topic modeling on a large corpus of Earth and environmental science articles, to expand coverage and disclose relationships among concepts in the Earth sciences. For our work we collected a corpus of over 121,000 abstracts from many of the top Earth and environmental science journals. We performed latent Dirichlet allocation topic modeling on this corpus to discover a set of latent topics, which consist of terms that commonly co-occur in abstracts. We match terms in the topics to concept labels in existing ontologies to reveal gaps, and we examine which terms are commonly associated in natural language discourse, to identify relationships that are important to formally model in ontologies. Our text mining methodology uncovers significant gaps in the content of some popular existing ontologies, and we show how, through a workflow involving human interpretation of topic models, we can bootstrap ontologies to have much better coverage and richer semantics. Because we base our methods directly on what working scientists are communicating about their research, it gives us an alternative bottom-up approach to populating and enriching ontologies, that complements more traditional knowledge modeling endeavors.

  15. A Collection of Features for Semantic Graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eliassi-Rad, T; Fodor, I K; Gallagher, B

    2007-05-02

    Semantic graphs are commonly used to represent data from one or more data sources. Such graphs extend traditional graphs by imposing types on both nodes and links. This type information defines permissible links among specified nodes and can be represented as a graph commonly referred to as an ontology or schema graph. Figure 1 depicts an ontology graph for data from National Association of Securities Dealers. Each node type and link type may also have a list of attributes. To capture the increased complexity of semantic graphs, concepts derived for standard graphs have to be extended. This document explains brieflymore » features commonly used to characterize graphs, and their extensions to semantic graphs. This document is divided into two sections. Section 2 contains the feature descriptions for static graphs. Section 3 extends the features for semantic graphs that vary over time.« less

  16. Semantic Analysis of Email Using Domain Ontologies and WordNet

    NASA Technical Reports Server (NTRS)

    Berrios, Daniel C.; Keller, Richard M.

    2005-01-01

    The problem of capturing and accessing knowledge in paper form has been supplanted by a problem of providing structure to vast amounts of electronic information. Systems that can construct semantic links for natural language documents like email messages automatically will be a crucial element of semantic email tools. We have designed an information extraction process that can leverage the knowledge already contained in an existing semantic web, recognizing references in email to existing nodes in a network of ontology instances by using linguistic knowledge and knowledge of the structure of the semantic web. We developed a heuristic score that uses several forms of evidence to detect references in email to existing nodes in the Semanticorganizer repository's network. While these scores cannot directly support automated probabilistic inference, they can be used to rank nodes by relevance and link those deemed most relevant to email messages.

  17. Efficient Results in Semantic Interoperability for Health Care. Findings from the Section on Knowledge Representation and Management.

    PubMed

    Soualmia, L F; Charlet, J

    2016-11-10

    To summarize excellent current research in the field of Knowledge Representation and Management (KRM) within the health and medical care domain. We provide a synopsis of the 2016 IMIA selected articles as well as a related synthetic overview of the current and future field activities. A first step of the selection was performed through MEDLINE querying with a list of MeSH descriptors completed by a list of terms adapted to the KRM section. The second step of the selection was completed by the two section editors who separately evaluated the set of 1,432 articles. The third step of the selection consisted of a collective work that merged the evaluation results to retain 15 articles for peer-review. The selection and evaluation process of this Yearbook's section on Knowledge Representation and Management has yielded four excellent and interesting articles regarding semantic interoperability for health care by gathering heterogeneous sources (knowledge and data) and auditing ontologies. In the first article, the authors present a solution based on standards and Semantic Web technologies to access distributed and heterogeneous datasets in the domain of breast cancer clinical trials. The second article describes a knowledge-based recommendation system that relies on ontologies and Semantic Web rules in the context of chronic diseases dietary. The third article is related to concept-recognition and text-mining to derive common human diseases model and a phenotypic network of common diseases. In the fourth article, the authors highlight the need for auditing the SNOMED CT. They propose to use a crowdbased method for ontology engineering. The current research activities further illustrate the continuous convergence of Knowledge Representation and Medical Informatics, with a focus this year on dedicated tools and methods to advance clinical care by proposing solutions to cope with the problem of semantic interoperability. Indeed, there is a need for powerful tools able to manage and interpret complex, large-scale and distributed datasets and knowledge bases, but also a need for user-friendly tools developed for the clinicians in their daily practice.

  18. Towards Infusing Giovanni with a Semantic and Provenance Aware Visualization System

    NASA Astrophysics Data System (ADS)

    Del Rio, N.; Pinheiro da Silva, P.; Leptoukh, G. G.; Lynnes, C.

    2011-12-01

    Giovanni is a Web-based application developed by GES DISC that provides simple and intuitive ways to visualize, analyze, and access vast amounts of Earth science remote sensed data. Currently, the Giovanni visualization module is only aware of the physical links (i.e., hard-coded) between data and services and consequently cannot be easily adapted to new visualization scenarios. VisKo, a semantically enabled visualization framework, can be leveraged by Giovanni as a semantic bridge between data and visualization. VisKo relates data and visualization services at conceptual (i.e., ontological) levels and relies on reasoning systems to leverage the conceptual relationships to automatically infer physical links, facilitating an adaptable environment for new visualization scenarios. This is particularly useful for Giovanni, which has been constantly retrofitted with new visualization software packages to keep up with advancement in visualization capabilities. During our prototype integration of Giovanni with VisKo, a number of future steps were identified that if implemented could cement the integration and promote our prototype to operational status. A number of integration issues arose including the mediation of different languages used by each system to characterize datasets; VisKo relies on semantic data characterization to "match-up" data with visualization processes. It was necessary to identify mappings between Giovanni XML provenance and Proof Markup Language, which is understood by VisKo. Although a translator was implemented based on identified mappings, a more elegant solution is to develop a domain data ontology specific to Giovanni and to "align" this ontology with PML, enabling VisKo to directly ingest the semantic descriptions of Giovanni data. Additionally, the relationship between dataset components (e.g., variables and attributes) and visualization plot components (e.g., geometries, axes, titles) should also be modeled. In Giovanni, meta-data descriptions are used to configure the different properties of the plots such as titles, color-tables, and variable-to-axis bindings. Giovanni services rely on a set of custom attributes and naming conventions that help identify the relationships between dataset components and plot properties. VisKo visualization services however are generic modules that do not rely on any domain specific conventions for identifying relationships between dataset attributes and plot configuration. Rather, VisKo services rely on parameters to configure specific behaviors of the generic services. The relationship between VisKo parameters and plot properties however has yet to formally documented, partly because VisKo regards plots as holistic entities without any internal structure from which to relate parameters. We understand the need for a visualization plot ontology that defines plot components, their retinal properties, such as position and color, and the relationship between the plot properties to controlling service parameter sets. The plot ontology would also be linked to our domain data ontology, providing VisKo with the comprehensive understanding about how data attributes can cue the configuration of plots, and how a specific plot configuration relates to service parameters.

  19. Developing an ontological explosion knowledge base for business continuity planning purposes.

    PubMed

    Mohammadfam, Iraj; Kalatpour, Omid; Golmohammadi, Rostam; Khotanlou, Hasan

    2013-01-01

    Industrial accidents are among the most known challenges to business continuity. Many organisations have lost their reputation following devastating accidents. To manage the risks of such accidents, it is necessary to accumulate sufficient knowledge regarding their roots, causes and preventive techniques. The required knowledge might be obtained through various approaches, including databases. Unfortunately, many databases are hampered by (among other things) static data presentations, a lack of semantic features, and the inability to present accident knowledge as discrete domains. This paper proposes the use of Protégé software to develop a knowledge base for the domain of explosion accidents. Such a structure has a higher capability to improve information retrieval compared with common accident databases. To accomplish this goal, a knowledge management process model was followed. The ontological explosion knowledge base (EKB) was built for further applications, including process accident knowledge retrieval and risk management. The paper will show how the EKB has a semantic feature that enables users to overcome some of the search constraints of existing accident databases.

  20. Gold-standard evaluation of a folksonomy-based ontology learning model

    NASA Astrophysics Data System (ADS)

    Djuana, E.

    2018-03-01

    Folksonomy, as one result of collaborative tagging process, has been acknowledged for its potential in improving categorization and searching of web resources. However, folksonomy contains ambiguities such as synonymy and polysemy as well as different abstractions or generality problem. To maximize its potential, some methods for associating tags of folksonomy with semantics and structural relationships have been proposed such as using ontology learning method. This paper evaluates our previous work in ontology learning according to gold-standard evaluation approach in comparison to a notable state-of-the-art work and several baselines. The results show that our method is comparable to the state-of the art work which further validate our approach as has been previously validated using task-based evaluation approach.

  1. Development of intelligent semantic search system for rubber research data in Thailand

    NASA Astrophysics Data System (ADS)

    Kaewboonma, Nattapong; Panawong, Jirapong; Pianhanuruk, Ekkawit; Buranarach, Marut

    2017-10-01

    The rubber production of Thailand increased not only by strong demand from the world market, but was also stimulated strongly through the replanting program of the Thai Government from 1961 onwards. With the continuous growth of rubber research data volume on the Web, the search for information has become a challenging task. Ontologies are used to improve the accuracy of information retrieval from the web by incorporating a degree of semantic analysis during the search. In this context, we propose an intelligent semantic search system for rubber research data in Thailand. The research methods included 1) analyzing domain knowledge, 2) ontologies development, and 3) intelligent semantic search system development to curate research data in trusted digital repositories may be shared among the wider Thailand rubber research community.

  2. ODISEES: Ontology-Driven Interactive Search Environment for Earth Sciences

    NASA Technical Reports Server (NTRS)

    Rutherford, Matthew T.; Huffer, Elisabeth B.; Kusterer, John M.; Quam, Brandi M.

    2015-01-01

    This paper discusses the Ontology-driven Interactive Search Environment for Earth Sciences (ODISEES) project currently being developed to aid researchers attempting to find usable data among an overabundance of closely related data. ODISEES' ontological structure relies on a modular, adaptable concept modeling approach, which allows the domain to be modeled more or less as it is without worrying about terminology or external requirements. In the model, variables are individually assigned semantic content based on the characteristics of the measurements they represent, allowing intuitive discovery and comparison of data without requiring the user to sift through large numbers of data sets and variables to find the desired information.

  3. linkedISA: semantic representation of ISA-Tab experimental metadata.

    PubMed

    González-Beltrán, Alejandra; Maguire, Eamonn; Sansone, Susanna-Assunta; Rocca-Serra, Philippe

    2014-01-01

    Reporting and sharing experimental metadata- such as the experimental design, characteristics of the samples, and procedures applied, along with the analysis results, in a standardised manner ensures that datasets are comprehensible and, in principle, reproducible, comparable and reusable. Furthermore, sharing datasets in formats designed for consumption by humans and machines will also maximize their use. The Investigation/Study/Assay (ISA) open source metadata tracking framework facilitates standards-compliant collection, curation, visualization, storage and sharing of datasets, leveraging on other platforms to enable analysis and publication. The ISA software suite includes several components used in increasingly diverse set of life science and biomedical domains; it is underpinned by a general-purpose format, ISA-Tab, and conversions exist into formats required by public repositories. While ISA-Tab works well mainly as a human readable format, we have also implemented a linked data approach to semantically define the ISA-Tab syntax. We present a semantic web representation of the ISA-Tab syntax that complements ISA-Tab's syntactic interoperability with semantic interoperability. We introduce the linkedISA conversion tool from ISA-Tab to the Resource Description Framework (RDF), supporting mappings from the ISA syntax to multiple community-defined, open ontologies and capitalising on user-provided ontology annotations in the experimental metadata. We describe insights of the implementation and how annotations can be expanded driven by the metadata. We applied the conversion tool as part of Bio-GraphIIn, a web-based application supporting integration of the semantically-rich experimental descriptions. Designed in a user-friendly manner, the Bio-GraphIIn interface hides most of the complexities to the users, exposing a familiar tabular view of the experimental description to allow seamless interaction with the RDF representation, and visualising descriptors to drive the query over the semantic representation of the experimental design. In addition, we defined queries over the linkedISA RDF representation and demonstrated its use over the linkedISA conversion of datasets from Nature' Scientific Data online publication. Our linked data approach has allowed us to: 1) make the ISA-Tab semantics explicit and machine-processable, 2) exploit the existing ontology-based annotations in the ISA-Tab experimental descriptions, 3) augment the ISA-Tab syntax with new descriptive elements, 4) visualise and query elements related to the experimental design. Reasoning over ISA-Tab metadata and associated data will facilitate data integration and knowledge discovery.

  4. Sentiment analysis of Chinese microblogging based on sentiment ontology: a case study of `7.23 Wenzhou Train Collision'

    NASA Astrophysics Data System (ADS)

    Shi, Wei; Wang, Hongwei; He, Shaoyi

    2013-12-01

    Sentiment analysis of microblogging texts can facilitate both organisations' public opinion monitoring and governments' response strategies development. Nevertheless, most of the existing analysis methods are conducted on Twitter, lacking of sentiment analysis of Chinese microblogging (Weibo), and they generally rely on a large number of manually annotated training or machine learning to perform sentiment classification, yielding with difficulties in application. This paper addresses these problems and employs a sentiment ontology model to examine sentiment analysis of Chinese microblogging. We conduct a sentiment analysis of all public microblogging posts about '7.23 Wenzhou Train Collision' broadcasted by Sina microblogging users between 23 July and 1 August 2011. For every day in this time period, we first extract eight dimensions of sentiment (expect, joy, love, surprise, anxiety, sorrow, angry, and hate), and then build fuzzy sentiment ontology based on HowNet and semantic similarity for sentiment analysis; we also establish computing methods of influence and sentiment of microblogging texts; and we finally explore the change of public sentiment after '7.23 Wenzhou Train Collision'. The results show that the established sentiment analysis method has excellent application, and the change of different emotional values can reflect the success or failure of guiding the public opinion by the government.

  5. From Cues to Nudge: A Knowledge-Based Framework for Surveillance of Healthcare-Associated Infections.

    PubMed

    Shaban-Nejad, Arash; Mamiya, Hiroshi; Riazanov, Alexandre; Forster, Alan J; Baker, Christopher J O; Tamblyn, Robyn; Buckeridge, David L

    2016-01-01

    We propose an integrated semantic web framework consisting of formal ontologies, web services, a reasoner and a rule engine that together recommend appropriate level of patient-care based on the defined semantic rules and guidelines. The classification of healthcare-associated infections within the HAIKU (Hospital Acquired Infections - Knowledge in Use) framework enables hospitals to consistently follow the standards along with their routine clinical practice and diagnosis coding to improve quality of care and patient safety. The HAI ontology (HAIO) groups over thousands of codes into a consistent hierarchy of concepts, along with relationships and axioms to capture knowledge on hospital-associated infections and complications with focus on the big four types, surgical site infections (SSIs), catheter-associated urinary tract infection (CAUTI); hospital-acquired pneumonia, and blood stream infection. By employing statistical inferencing in our study we use a set of heuristics to define the rule axioms to improve the SSI case detection. We also demonstrate how the occurrence of an SSI is identified using semantic e-triggers. The e-triggers will be used to improve our risk assessment of post-operative surgical site infections (SSIs) for patients undergoing certain type of surgeries (e.g., coronary artery bypass graft surgery (CABG)).

  6. Design and Implementation of Hydrologic Process Knowledge-base Ontology: A case study for the Infiltration Process

    NASA Astrophysics Data System (ADS)

    Elag, M.; Goodall, J. L.

    2013-12-01

    Hydrologic modeling often requires the re-use and integration of models from different disciplines to simulate complex environmental systems. Component-based modeling introduces a flexible approach for integrating physical-based processes across disciplinary boundaries. Several hydrologic-related modeling communities have adopted the component-based approach for simulating complex physical systems by integrating model components across disciplinary boundaries in a workflow. However, it is not always straightforward to create these interdisciplinary models due to the lack of sufficient knowledge about a hydrologic process. This shortcoming is a result of using informal methods for organizing and sharing information about a hydrologic process. A knowledge-based ontology provides such standards and is considered the ideal approach for overcoming this challenge. The aims of this research are to present the methodology used in analyzing the basic hydrologic domain in order to identify hydrologic processes, the ontology itself, and how the proposed ontology is integrated with the Water Resources Component (WRC) ontology. The proposed ontology standardizes the definitions of a hydrologic process, the relationships between hydrologic processes, and their associated scientific equations. The objective of the proposed Hydrologic Process (HP) Ontology is to advance the idea of creating a unified knowledge framework for components' metadata by introducing a domain-level ontology for hydrologic processes. The HP ontology is a step toward an explicit and robust domain knowledge framework that can be evolved through the contribution of domain users. Analysis of the hydrologic domain is accomplished using the Formal Concept Approach (FCA), in which the infiltration process, an important hydrologic process, is examined. Two infiltration methods, the Green-Ampt and Philip's methods, were used to demonstrate the implementation of information in the HP ontology. Furthermore, a SPARQL service is provided for semantic-based querying of the ontology.

  7. Towards a Consistent and Scientifically Accurate Drug Ontology.

    PubMed

    Hogan, William R; Hanna, Josh; Joseph, Eric; Brochhausen, Mathias

    2013-01-01

    Our use case for comparative effectiveness research requires an ontology of drugs that enables querying National Drug Codes (NDCs) by active ingredient, mechanism of action, physiological effect, and therapeutic class of the drug products they represent. We conducted an ontological analysis of drugs from the realist perspective, and evaluated existing drug terminology, ontology, and database artifacts from (1) the technical perspective, (2) the perspective of pharmacology and medical science (3) the perspective of description logic semantics (if they were available in Web Ontology Language or OWL), and (4) the perspective of our realism-based analysis of the domain. No existing resource was sufficient. Therefore, we built the Drug Ontology (DrOn) in OWL, which we populated with NDCs and other classes from RxNorm using only content created by the National Library of Medicine. We also built an application that uses DrOn to query for NDCs as outlined above, available at: http://ingarden.uams.edu/ingredients. The application uses an OWL-based description logic reasoner to execute end-user queries. DrOn is available at http://code.google.com/p/dr-on.

  8. AMMO-Prot: amine system project 3D-model finder.

    PubMed

    Navas-Delgado, Ismael; Montañez, Raúl; Pino-Angeles, Almudena; Moya-García, Aurelio A; Urdiales, José Luis; Sánchez-Jiménez, Francisca; Aldana-Montes, José F

    2008-04-25

    Amines are biogenic amino acid derivatives, which play pleiotropic and very important yet complex roles in animal physiology. For many other relevant biomolecules, biochemical and molecular data are being accumulated, which need to be integrated in order to be effective in the advance of biological knowledge in the field. For this purpose, a multidisciplinary group has started an ontology-based system named the Amine System Project (ASP) for which amine-related information is the validation bench. In this paper, we describe the Ontology-Based Mediator developed in the Amine System Project (http://asp.uma.es) using the infrastructure of Semantic Directories, and how this system has been used to solve a case related to amine metabolism-related protein structures. This infrastructure is used to publish and manage not only ontologies and their relationships, but also metadata relating to the resources committed with the ontologies. The system developed is available at http://asp.uma.es/WebMediator.

  9. Combining Archetypes, Ontologies and Formalization Enables Automated Computation of Quality Indicators.

    PubMed

    Legaz-García, María Del Carmen; Dentler, Kathrin; Fernández-Breis, Jesualdo Tomás; Cornet, Ronald

    2017-01-01

    ArchMS is a framework that represents clinical information and knowledge using ontologies in OWL, which facilitates semantic interoperability and thereby the exploitation and secondary use of clinical data. However, it does not yet support the automated assessment of quality of care. CLIF is a stepwise method to formalize quality indicators. The method has been implemented in the CLIF tool which supports its users in generating computable queries based on a patient data model which can be based on archetypes. To enable the automated computation of quality indicators using ontologies and archetypes, we tested whether ArchMS and the CLIF tool can be integrated. We successfully automated the process of generating SPARQL queries from quality indicators that have been formalized with CLIF and integrated them into ArchMS. Hence, ontologies and archetypes can be combined for the execution of formalized quality indicators.

  10. A Lexical-Ontological Resource for Consumer Healthcare

    NASA Astrophysics Data System (ADS)

    Cardillo, Elena; Serafini, Luciano; Tamilin, Andrei

    In Consumer Healthcare Informatics it is still difficult for laypeople to find, understand and act on health information, due to the persistent communication gap between specialized medical terminology and that used by healthcare consumers. Furthermore, existing clinically-oriented terminologies cannot provide sufficient support when integrated into consumer-oriented applications, so there is a need to create consumer-friendly terminologies reflecting the different ways healthcare consumers express and think about health topics. Following this direction, this work suggests a way to support the design of an ontology-based system that mitigates this gap, using knowledge engineering and semantic web technologies. The system is based on the development of a consumer-oriented medical terminology that will be integrated with other medical domain ontologies and terminologies into a medical ontology repository. This will support consumer-oriented healthcare systems, such as Personal Health Records, by providing many knowledge services to help users in accessing and managing their healthcare data.

  11. A Lexical-Ontological Resource for Consumer Heathcare

    NASA Astrophysics Data System (ADS)

    Cardillo, Elena

    In Consumer Healthcare Informatics it is still difficult for laypersons to understand and act on health information, due to the persistent communication gap between specialized medical terminology and that used by healthcare consumers. Furthermore, existing clinically-oriented terminologies cannot provide sufficient support when integrated into consumer-oriented applications, so there is a need to create consumer-friendly terminologies reflecting the different ways healthcare consumers express and think about health topics. Following this direction, this work suggests a way to support the design of an ontology-based system that mitigates this gap, using knowledge engineering and Semantic Web technologies. The system is based on the development of a consumer-oriented medical terminology which will be integrated with other existing domain ontologies/terminologies into a medical ontology repository. This will support consumer-oriented healthcare systems by providing many knowledge services to help users in accessing and managing their healthcare data.

  12. KneeTex: an ontology-driven system for information extraction from MRI reports.

    PubMed

    Spasić, Irena; Zhao, Bo; Jones, Christopher B; Button, Kate

    2015-01-01

    In the realm of knee pathology, magnetic resonance imaging (MRI) has the advantage of visualising all structures within the knee joint, which makes it a valuable tool for increasing diagnostic accuracy and planning surgical treatments. Therefore, clinical narratives found in MRI reports convey valuable diagnostic information. A range of studies have proven the feasibility of natural language processing for information extraction from clinical narratives. However, no study focused specifically on MRI reports in relation to knee pathology, possibly due to the complexity of knee anatomy and a wide range of conditions that may be associated with different anatomical entities. In this paper we describe KneeTex, an information extraction system that operates in this domain. As an ontology-driven information extraction system, KneeTex makes active use of an ontology to strongly guide and constrain text analysis. We used automatic term recognition to facilitate the development of a domain-specific ontology with sufficient detail and coverage for text mining applications. In combination with the ontology, high regularity of the sublanguage used in knee MRI reports allowed us to model its processing by a set of sophisticated lexico-semantic rules with minimal syntactic analysis. The main processing steps involve named entity recognition combined with coordination, enumeration, ambiguity and co-reference resolution, followed by text segmentation. Ontology-based semantic typing is then used to drive the template filling process. We adopted an existing ontology, TRAK (Taxonomy for RehAbilitation of Knee conditions), for use within KneeTex. The original TRAK ontology expanded from 1,292 concepts, 1,720 synonyms and 518 relationship instances to 1,621 concepts, 2,550 synonyms and 560 relationship instances. This provided KneeTex with a very fine-grained lexico-semantic knowledge base, which is highly attuned to the given sublanguage. Information extraction results were evaluated on a test set of 100 MRI reports. A gold standard consisted of 1,259 filled template records with the following slots: finding, finding qualifier, negation, certainty, anatomy and anatomy qualifier. KneeTex extracted information with precision of 98.00 %, recall of 97.63 % and F-measure of 97.81 %, the values of which are in line with human-like performance. KneeTex is an open-source, stand-alone application for information extraction from narrative reports that describe an MRI scan of the knee. Given an MRI report as input, the system outputs the corresponding clinical findings in the form of JavaScript Object Notation objects. The extracted information is mapped onto TRAK, an ontology that formally models knowledge relevant for the rehabilitation of knee conditions. As a result, formally structured and coded information allows for complex searches to be conducted efficiently over the original MRI reports, thereby effectively supporting epidemiologic studies of knee conditions.

  13. Semantator: semantic annotator for converting biomedical text to linked data.

    PubMed

    Tao, Cui; Song, Dezhao; Sharma, Deepak; Chute, Christopher G

    2013-10-01

    More than 80% of biomedical data is embedded in plain text. The unstructured nature of these text-based documents makes it challenging to easily browse and query the data of interest in them. One approach to facilitate browsing and querying biomedical text is to convert the plain text to a linked web of data, i.e., converting data originally in free text to structured formats with defined meta-level semantics. In this paper, we introduce Semantator (Semantic Annotator), a semantic-web-based environment for annotating data of interest in biomedical documents, browsing and querying the annotated data, and interactively refining annotation results if needed. Through Semantator, information of interest can be either annotated manually or semi-automatically using plug-in information extraction tools. The annotated results will be stored in RDF and can be queried using the SPARQL query language. In addition, semantic reasoners can be directly applied to the annotated data for consistency checking and knowledge inference. Semantator has been released online and was used by the biomedical ontology community who provided positive feedbacks. Our evaluation results indicated that (1) Semantator can perform the annotation functionalities as designed; (2) Semantator can be adopted in real applications in clinical and transactional research; and (3) the annotated results using Semantator can be easily used in Semantic-web-based reasoning tools for further inference. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Extending the DIDEO ontology to include entities from the natural product drug interaction domain of discourse.

    PubMed

    Judkins, John; Tay-Sontheimer, Jessica; Boyce, Richard D; Brochhausen, Mathias

    2018-05-09

    Prompted by the frequency of concomitant use of prescription drugs with natural products, and the lack of knowledge regarding the impact of pharmacokinetic-based natural product-drug interactions (PK-NPDIs), the United States National Center for Complementary and Integrative Health has established a center of excellence for PK-NPDI. The Center is creating a public database to help researchers (primarly pharmacologists and medicinal chemists) to share and access data, results, and methods from PK-NPDI studies. In order to represent the semantics of the data and foster interoperability, we are extending the Drug-Drug Interaction and Evidence Ontology (DIDEO) to include definitions for terms used by the data repository. This is feasible due to a number of similarities between pharmacokinetic drug-drug interactions and PK-NPDIs. To achieve this, we set up an iterative domain analysis in the following steps. In Step 1 PK-NPDI domain experts produce a list of terms and definitions based on data from PK-NPDI studies, in Step 2 an ontology expert creates ontologically appropriate classes and definitions from the list along with class axioms, in Step 3 there is an iterative editing process during which the domain experts and the ontology experts review, assess, and amend class labels and definitions and in Step 4 the ontology expert implements the new classes in the DIDEO development branch. This workflow often results in different labels and definitions for the new classes in DIDEO than the domain experts initially provided; the latter are preserved in DIDEO as separate annotations. Step 1 resulted in a list of 344 terms. During Step 2 we found that 9 of these terms already existed in DIDEO, and 6 existed in other OBO Foundry ontologies. These 6 were imported into DIDEO; additional terms from multiple OBO Foundry ontologies were also imported, either to serve as superclasses for new terms in the initial list or to build axioms for these terms. At the time of writing, 7 terms have definitions ready for review (Step 2), 64 are ready for implementation (Step 3) and 112 have been pushed to DIDEO (Step 4). Step 2 also suggested that 26 terms of the original list were redundant and did not need implementation; the domain experts agreed to remove them. Step 4 resulted in many terms being added to DIDEO that help to provide an additional layer of granularity in describing experimental conditions and results, e.g. transfected cultured cells used in metabolism studies and chemical reactions used in measuring enzyme activity. These terms also were integrated into the NaPDI repository. We found DIDEO to provide a sound foundation for semantic representation of PK-NPDI terms, and we have shown the novelty of the project in that DIDEO is the only ontology in which NPDI terms are formally defined.

  15. Software analysis in the semantic web

    NASA Astrophysics Data System (ADS)

    Taylor, Joshua; Hall, Robert T.

    2013-05-01

    Many approaches in software analysis, particularly dynamic malware analyis, benefit greatly from the use of linked data and other Semantic Web technology. In this paper, we describe AIS, Inc.'s Semantic Extractor (SemEx) component from the Malware Analysis and Attribution through Genetic Information (MAAGI) effort, funded under DARPA's Cyber Genome program. The SemEx generates OWL-based semantic models of high and low level behaviors in malware samples from system call traces generated by AIS's introspective hypervisor, IntroVirtTM. Within MAAGI, these semantic models were used by modules that cluster malware samples by functionality, and construct "genealogical" malware lineages. Herein, we describe the design, implementation, and use of the SemEx, as well as the C2DB, an OWL ontology used for representing software behavior and cyber-environments.

  16. Building the Knowledge Base to Support the Automatic Animation Generation of Chinese Traditional Architecture

    NASA Astrophysics Data System (ADS)

    Wei, Gongjin; Bai, Weijing; Yin, Meifang; Zhang, Songmao

    We present a practice of applying the Semantic Web technologies in the domain of Chinese traditional architecture. A knowledge base consisting of one ontology and four rule bases is built to support the automatic generation of animations that demonstrate the construction of various Chinese timber structures based on the user's input. Different Semantic Web formalisms are used, e.g., OWL DL, SWRL and Jess, to capture the domain knowledge, including the wooden components needed for a given building, construction sequence, and the 3D size and position of every piece of wood. Our experience in exploiting the current Semantic Web technologies in real-world application systems indicates their prominent advantages (such as the reasoning facilities and modeling tools) as well as the limitations (such as low efficiency).

  17. Integrated Semantics Service Platform for the Internet of Things: A Case Study of a Smart Office

    PubMed Central

    Ryu, Minwoo; Kim, Jaeho; Yun, Jaeseok

    2015-01-01

    The Internet of Things (IoT) allows machines and devices in the world to connect with each other and generate a huge amount of data, which has a great potential to provide useful knowledge across service domains. Combining the context of IoT with semantic technologies, we can build integrated semantic systems to support semantic interoperability. In this paper, we propose an integrated semantic service platform (ISSP) to support ontological models in various IoT-based service domains of a smart city. In particular, we address three main problems for providing integrated semantic services together with IoT systems: semantic discovery, dynamic semantic representation, and semantic data repository for IoT resources. To show the feasibility of the ISSP, we develop a prototype service for a smart office using the ISSP, which can provide a preset, personalized office environment by interpreting user text input via a smartphone. We also discuss a scenario to show how the ISSP-based method would help build a smart city, where services in each service domain can discover and exploit IoT resources that are wanted across domains. We expect that our method could eventually contribute to providing people in a smart city with more integrated, comprehensive services based on semantic interoperability. PMID:25608216

  18. Integrated semantics service platform for the Internet of Things: a case study of a smart office.

    PubMed

    Ryu, Minwoo; Kim, Jaeho; Yun, Jaeseok

    2015-01-19

    The Internet of Things (IoT) allows machines and devices in the world to connect with each other and generate a huge amount of data, which has a great potential to provide useful knowledge across service domains. Combining the context of IoT with semantic technologies, we can build integrated semantic systems to support semantic interoperability. In this paper, we propose an integrated semantic service platform (ISSP) to support ontological models in various IoT-based service domains of a smart city. In particular, we address three main problems for providing integrated semantic services together with IoT systems: semantic discovery, dynamic semantic representation, and semantic data repository for IoT resources. To show the feasibility of the ISSP, we develop a prototype service for a smart office using the ISSP, which can provide a preset, personalized office environment by interpreting user text input via a smartphone. We also discuss a scenario to show how the ISSP-based method would help build a smart city, where services in each service domain can discover and exploit IoT resources that are wanted across domains. We expect that our method could eventually contribute to providing people in a smart city with more integrated, comprehensive services based on semantic interoperability.

  19. eClims: An Extensible and Dynamic Integration Framework for Biomedical Information Systems.

    PubMed

    Savonnet, Marinette; Leclercq, Eric; Naubourg, Pierre

    2016-11-01

    Biomedical information systems (BIS) require consideration of three types of variability: data variability induced by new high throughput technologies, schema or model variability induced by large scale studies or new fields of research, and knowledge variability resulting from new discoveries. Beyond data heterogeneity, managing variabilities in the context of BIS requires extensible and dynamic integration process. In this paper, we focus on data and schema variabilities and we propose an integration framework based on ontologies, master data, and semantic annotations. The framework addresses issues related to: 1) collaborative work through a dynamic integration process; 2) variability among studies using an annotation mechanism; and 3) quality control over data and semantic annotations. Our approach relies on two levels of knowledge: BIS-related knowledge is modeled using an application ontology coupled with UML models that allow controlling data completeness and consistency, and domain knowledge is described by a domain ontology, which ensures data coherence. A system build with the eClims framework has been implemented and evaluated in the context of a proteomic platform.

  20. Ontology-based Vaccine and Drug Adverse Event Representation and Theory-guided Systematic Causal Network Analysis toward Integrative Pharmacovigilance Research

    PubMed Central

    He, Yongqun

    2016-01-01

    Compared with controlled terminologies (e.g., MedDRA, CTCAE, and WHO-ART), the community-based Ontology of AEs (OAE) has many advantages in adverse event (AE) classifications. The OAE-derived Ontology of Vaccine AEs (OVAE) and Ontology of Drug Neuropathy AEs (ODNAE) serve as AE knowledge bases and support data integration and analysis. The Immune Response Gene Network Theory explains molecular mechanisms of vaccine-related AEs. The OneNet Theory of Life treats the whole process of a life of an organism as a single complex and dynamic network (i.e., OneNet). A new “OneNet effectiveness” tenet is proposed here to expand the OneNet theory. Derived from the OneNet theory, the author hypothesizes that one human uses one single genotype-rooted mechanism to respond to different vaccinations and drug treatments, and experimentally identified mechanisms are manifestations of the OneNet blueprint mechanism under specific conditions. The theories and ontologies interact together as semantic frameworks to support integrative pharmacovigilance research. PMID:27458549

Top