Science.gov

Sample records for oocyte plasma membrane

  1. A novel method to determine the diffusional water permeability of oocyte plasma membranes.

    PubMed

    Iserovich, P; Kuang, K; Chun, T; Fischbarg, J

    1997-08-01

    Measurements of the cell membrane diffusional water permeability (Pd) are important to characterize water passage across water channels and across the lipid bilayer component of the membrane. Existing methods for those measurements are involved; however, we report here a simple procedure to estimate Pd in Xenopus laevis oocytes and similar large cells. Due to the different densities of H2O and D2O (heavy water), an oocyte transferred from normal medium to a D2O-based medium floats initially, but subsequently sinks when a certain amount of the water originally in them is replaced by the D2O that diffuses in. We describe how the 'flotation time' (time that oocytes float in a heavy water solution before they start sinking) yields the Pd of the plasma membrane. Determination of Pd by this procedure and by the rate of tritiated water (T2O) efflux give for Pd results which are very close: 2.2 +/- 0.2 (n = 8) and 2.0 +/- 0.1 (n = 6) microns/s, respectively (T = 10 degrees C). Furthermore, our method detects the increase in Pd elicited in oocytes by either expression of water channel proteins, or by treating them with the pore-forming antibiotic amphotericin B. This method appears useful to gauge the expression and function of pore-forming, water-permeable membrane proteins.

  2. Plasma membrane mediated action of progesterone in amphibian (Rana dybowskii) oocyte maturation.

    PubMed

    Bandyopadhyay, A; Bandyopadhyay, J; Choi, H H; Choi, H S; Kwon, H B

    1998-03-01

    The mechanism of progesterone action within the ovarian follicle was investigated in Rana dybowskii, by using immobilized progesterone. Fluorescein isothiocyanate-labeled progesterone 3-O-carboxymethyloxime-BSA (P-BSA) was localized on the outside surface of the denuded oocyte, which indicated that P-BSA did not cross the barrier of cell surface. Progesterone-BSA induced germinal vesicle breakdown (GVBD) of denuded oocytes in a dose-dependent manner but failed to induce GVBD of follicle wall-enclosed oocytes. The time course of P-BSA-induced GVBD in denuded oocytes was similar to that observed with progesterone. Furthermore, both P-BSA and progesterone induced oocyte maturation in the presence of RU486, a well-known nuclear progesterone receptor antagonist. Treatment of denuded oocytes with P-BSA resulted in a threefold increase in inositol triphosphate (IP3) and a fourfold increase in diacylglycerol levels within 10 min. Additionally protein kinase C (PKC) activity was markedly increased by 30 min of incubation following exposure to P-BSA. Such changes were not observed in denuded oocytes exposed to beta-estradiol-6-O-carboxymethyloxime-BSA, which failed to induce GVBD. These results suggest that progesterone acts initially at the oocyte surface where it triggers generation of membrane-mediated second messengers during oocyte maturation in amphibians.

  3. Effects of Different Maturation Systems on Bovine Oocyte Quality, Plasma Membrane Phospholipid Composition and Resistance to Vitrification and Warming

    PubMed Central

    Sprícigo, José F. W.; Diógenes, Mateus N.; Leme, Ligiane O.; Guimarães, Ana L.; Muterlle, Carolle V.; Silva, Bianca Damiani Marques; Solà-Oriol, David; Pivato, Ivo; Silva, Luciano Paulino; Dode, Margot A. N.

    2015-01-01

    The objective of this study was to evaluate the effects of different maturation systems on oocyte resistance after vitrification and on the phospholipid profile of the oocyte plasma membrane (PM). Four different maturation systems were tested: 1) in vitro maturation using immature oocytes aspirated from slaughterhouse ovaries (CONT; n = 136); 2) in vitro maturation using immature oocytes obtained by ovum pick-up (OPU) from unstimulated heifers (IMA; n = 433); 3) in vitro maturation using immature oocytes obtained by OPU from stimulated heifers (FSH; n = 444); and 4) in vivo maturation using oocytes obtained from heifers stimulated 24 hours prior by an injection of GnRH (MII; n = 658). A sample of matured oocytes from each fresh group was analyzed by matrix associated laser desorption-ionization (MALDI-TOF) to determine their PM composition. Then, half of the matured oocytes from each group were vitrified/warmed (CONT VIT, IMA VIT, FSH VIT and MII VIT), while the other half were used as fresh controls. Afterwards, the eight groups underwent IVF and IVC, and blastocyst development was assessed at D2, D7 and D8. A chi-square test was used to compare embryo development between the groups. Corresponding phospholipid ion intensity was expressed in arbitrary units, and following principal components analyses (PCA) the data were distributed on a 3D graph. Oocytes obtained from superstimulated animals showed a greater rate of developmental (P<0.05) at D7 (MII = 62.4±17.5% and FSH = 58.8±16.1%) compared to those obtained from unstimulated animals (CONT = 37.9±8.5% and IMA = 50.6±14.4%). However, the maturation system did not affect the resistance of oocytes to vitrification because the blastocyst rate at D7 was similar (P>0.05) for all groups (CONT VIT = 2.8±3.5%, IMA VIT = 2.9±4.0%, FSH VIT = 4.3±7.2% and MII VIT = 3.6±7.2%). MALDI-TOF revealed that oocytes from all maturation groups had similar phospholipid contents, except for 760.6 ([PC (34:1) + H]+), which was

  4. Determination of ionic permeability coefficients of the plasma membrane of Xenopus laevis oocytes under voltage clamp.

    PubMed

    Costa, P F; Emilio, M G; Fernandes, P L; Ferreira, H G; Ferreira, K G

    1989-06-01

    1. A method of estimating absolute ionic permeability coefficients which does not depend on the use of impermeant substitutes is reported. 2. The method is based on a pump leak model of the Xenopus laevis oocyte membrane. The procedure consists of measuring, in the same experiment, the pump current and the currents generated under voltage clamp by the partial substitution of one or two ions at a time. For each experimental condition, the measured currents are substituted in a Goldman-Hodgkin-Katz type equation with two unknowns (the permeability coefficients). The set of equations thus generated enables the computation of all the ionic permeability coefficients. 3. The Xenopus oocyte membrane (stages IV and V, Dumont, 1972) has been found to be permeable to conventional ion substitutes such as N-methyl-D-glucamine (NMG), sulphate, isethionate and gluconate. 4. The values for sodium, potassium and chloride permeability coefficients obtained from sixty-eight pooled experiments were, respectively, 5.44, 17.41 and 1.49 x 10(-8) cm s-1. 5. The diffusional currents for sodium, potassium and chloride computed from the experiments referred to above were, respectively, -1.16, 0.69 and -0.038 microA cm-2. 6. A stoichiometry of the Na+-K+ pump exchange of 3/1.8 was computed. 7. The intracellular concentrations of sodium, potassium and chloride ions, as determined by ion-selective microelectrodes, were, respectively, 10.1 +/- 0.66 mM (n = 12), 109.5 +/- 3.3 mM (n = 13) and 37.7 +/- 1.18 mM (n = 19), corresponding to equilibrium potentials of 61, -95 and -28 mV. 8. Since chloride is not at equilibrium across the membrane, we propose that there is an inward uphill Cl- transport. PMID:2600847

  5. The movement of water and cryoprotectants across the plasma membrane of mammalian oocytes and embryos and its relevance to vitrification.

    PubMed

    Edashige, Keisuke

    2016-08-25

    The permeability of the plasma membrane to water and cryoprotectants is one of the most important factors for determining suitable conditions for vitrification of mammalian oocytes and embryos. In mouse oocytes and early stage embryos, water and cryoprotectants move slowly, principally by simple diffusion. In contrast, in morulae (and probably blastocysts), water, glycerol, and ethylene glycerol move rapidly, principally by facilitated diffusion via aquaporin 3, and DMSO moves rapidly via channels other than aquaporin 3. However, propylene glycol moves principally by simple diffusion. In cows and pigs, similar results were obtained. However, in bovine morulae, DMSO moves principally by simple diffusion. In pigs, permeability to water, glycerol, and ethylene glycol increases not at the morula stage but at the blastocyst stage, and increases further at the expanded blastocyst stage. Therefore, in general, the permeability of mammalian oocytes and early stage embryos to water and cryoprotectants is low. Then, at later stages, the permeability to water and some cryoprotectants markedly increases and occurs by facilitated diffusion via channels, although there are some species-specific differences. PMID:27193425

  6. The movement of water and cryoprotectants across the plasma membrane of mammalian oocytes and embryos and its relevance to vitrification

    PubMed Central

    EDASHIGE, Keisuke

    2016-01-01

    The permeability of the plasma membrane to water and cryoprotectants is one of the most important factors for determining suitable conditions for vitrification of mammalian oocytes and embryos. In mouse oocytes and early stage embryos, water and cryoprotectants move slowly, principally by simple diffusion. In contrast, in morulae (and probably blastocysts), water, glycerol, and ethylene glycerol move rapidly, principally by facilitated diffusion via aquaporin 3, and DMSO moves rapidly via channels other than aquaporin 3. However, propylene glycol moves principally by simple diffusion. In cows and pigs, similar results were obtained. However, in bovine morulae, DMSO moves principally by simple diffusion. In pigs, permeability to water, glycerol, and ethylene glycol increases not at the morula stage but at the blastocyst stage, and increases further at the expanded blastocyst stage. Therefore, in general, the permeability of mammalian oocytes and early stage embryos to water and cryoprotectants is low. Then, at later stages, the permeability to water and some cryoprotectants markedly increases and occurs by facilitated diffusion via channels, although there are some species-specific differences. PMID:27193425

  7. Expression of functional neurotransmitter receptors in Xenopus oocytes after injection of human brain membranes

    NASA Astrophysics Data System (ADS)

    Miledi, Ricardo; Eusebi, Fabrizio; Martínez-Torres, Ataúlfo; Palma, Eleonora; Trettel, Flavia

    2002-10-01

    The Xenopus oocyte is a very powerful tool for studies of the structure and function of membrane proteins, e.g., messenger RNA extracted from the brain and injected into oocytes leads to the synthesis and membrane incorporation of many types of functional receptors and ion channels, and membrane vesicles from Torpedo electroplaques injected into oocytes fuse with the oocyte membrane and cause the appearance of functional Torpedo acetylcholine receptors and Cl channels. This approach was developed further to transplant already assembled neurotransmitter receptors from human brain cells to the plasma membrane of Xenopus oocytes. Membranes isolated from the temporal neocortex of a patient, operated for intractable epilepsy, were injected into oocytes and, within a few hours, the oocyte membrane acquired functional neurotransmitter receptors to -aminobutyric acid, -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, kainate, and glycine. These receptors were also expressed in the plasma membrane of oocytes injected with mRNA extracted from the temporal neocortex of the same patient. All of this makes the Xenopus oocyte a more useful model than it already is for studies of the structure and function of many human membrane proteins and opens the way to novel pathophysiological investigations of some human brain disorders.

  8. Control of spontaneous activation of rat oocytes by regulating plasma membrane Na+/Ca2+ exchanger activities.

    PubMed

    Cui, Wei; Zhang, Jie; Zhang, Chuan-Xin; Jiao, Guang-Zhong; Zhang, Min; Wang, Tian-Yang; Luo, Ming-Jiu; Tan, Jing-He

    2013-06-01

    Inhibiting oocyte spontaneous activation (SA) is essential for successful rat cloning by nuclear transfer (NT). This study tested the hypothesis that activities of the Na(+)/Ca(2+) exchanger (NCX) would decrease with oocyte aging and that SA of rat oocytes could be inhibited if the intraoocyte Ca(2+) rises were prevented by activating the NCX through increasing Na(+) concentrations in the culture medium. Elevating Na(+) levels in culture medium by supplementing NaCl inhibited SA of rat oocytes, while maintaining a constant level of maturation-promoting factor and mitogen-activated protein kinase activities. Experiments using the NCX inhibitor bepridil, the Na(+)/K(+)-ATPase inhibitor ouabain, and an assay for intraoocyte Ca(2+) concentrations showed that extracellular Na(+) inhibited rat oocyte SA by enhancing NCX activity and preventing intracellular Ca(2+) rises. Immunohistochemical quantification indicated that the density of NCX1 decreased significantly in aged oocytes that were prone to SA compared with that in freshly ovulated oocytes whose SA rates were low during in vitro culture. Cumulus cell NT showed that sham enucleation caused marked SA in freshly ovulated rat oocytes and that Na(+) supplementation prevented the manipulation-induced SA and improved the in vitro and in vivo development of rat somatic cell NT embryos. Taken together, the results have confirmed our hypothesis that the NCX is active in rat oocytes and its activity decreases with oocyte aging and that activating the NCX by increasing extracellular Na(+) inhibits SA of rat oocytes and improves the development of rat somatic cell NT embryos. These data are also important for understanding the mechanisms of oocyte aging. PMID:23677981

  9. Incorporation of Reconstituted Acetylcholine Receptors from Torpedo Into the Xenopus Oocyte Membrane

    NASA Astrophysics Data System (ADS)

    Morales, A.; Aleu, J.; Ivorra, I.; Ferragut, J. A.; Gonzalez-Ros, J. M.; Miledi, R.

    1995-08-01

    Xenopus oocytes are a valuable aid for studying the molecular structure and function of ionic channels and neurotransmitter receptors. Their use has recently been extended by the demonstration that oocytes can incorporate foreign membranes carrying preassembled receptors and channels. Here we show that when reconstituted in an artificial lipid matrix and injected into Xenopus oocytes, purified nicotinic acetylcholine receptors are efficiently inserted into the plasma membrane, where they form "clusters" of receptors that retain their native properties. This constitutes an innovative approach that, besides allowing the analyses of membrane fusion processes, is also a powerful technique for studying the characteristics and regulation of many membrane proteins (with their native stoichiometry and configuration) upon reinsertion into the membrane of a very convenient host cell system.

  10. Incorporation of reconstituted acetylcholine receptors from Torpedo into the Xenopus oocyte membrane.

    PubMed Central

    Morales, A; Aleu, J; Ivorra, I; Ferragut, J A; Gonzalez-Ros, J M; Miledi, R

    1995-01-01

    Xenopus oocytes are a valuable aid for studying the molecular structure and function of ionic channels and neurotransmitter receptors. Their use has recently been extended by the demonstration that oocytes can incorporate foreign membranes carrying preassembled receptors and channels. Here we show that when reconstituted in an artificial lipid matrix and injected into Xenopus oocytes, purified nicotinic acetylcholine receptors are efficiently inserted into the plasma membrane, where they form "clusters" of receptors that retain their native properties. This constitutes an innovative approach that, besides allowing the analyses of membrane fusion processes, is also a powerful technique for studying the characteristics and regulation of many membrane proteins (with their native stoichiometry and configuration) upon reinsertion into the membrane of a very convenient host cell system. Images Fig. 1 PMID:7667313

  11. Evidence from simultaneous intracellular- and surface-pH transients that carbonic anhydrase IV enhances CO2 fluxes across Xenopus oocyte plasma membranes.

    PubMed

    Musa-Aziz, Raif; Occhipinti, Rossana; Boron, Walter F

    2014-11-01

    Human carbonic anhydrase IV (CA IV) is GPI-anchored to the outer membrane surface, catalyzing CO2/HCO3 (-) hydration-dehydration. We examined effects of heterologously expressed CA IV on intracellular-pH (pHi) and surface-pH (pHS) transients caused by exposing oocytes to CO2/HCO3 (-)/pH 7.50. CO2 influx causes a sustained pHi fall and a transient pHS rise; CO2 efflux does the opposite. Both during CO2 addition and removal, CA IV increases magnitudes of maximal rate of pHi change (dpHi/dt)max, and maximal pHS change (ΔpHS) and decreases time constants for pHi changes (τpHi ) and pHS relaxations (τpHS ). Decreases in time constants indicate that CA IV enhances CO2 fluxes. Extracellular acetazolamide blocks all CA IV effects, but not those of injected CA II. Injected acetazolamide partially reduces CA IV effects. Thus, extracellular CA is required for, and the equivalent of cytosol-accessible CA augments, the effects of CA IV. Increasing the concentration of the extracellular non-CO2/HCO3 (-) buffer (i.e., HEPES), in the presence of extracellular CA or at high [CO2], accelerates CO2 influx. Simultaneous measurements with two pHS electrodes, one on the oocyte meridian perpendicular to the axis of flow and one downstream from the direction of extracellular-solution flow, reveal that the downstream electrode has a larger (i.e., slower) τpHS , indicating [CO2] asymmetry over the oocyte surface. A reaction-diffusion mathematical model (third paper in series) accounts for the above general features, and supports the conclusion that extracellular CA, which replenishes entering CO2 or consumes exiting CO2 at the extracellular surface, enhances the gradient driving CO2 influx across the cell membrane.

  12. Membrane Lipid Phase Transition Behavior of Oocytes from Three Gorgonian Corals in Relation to Chilling Injury

    PubMed Central

    Lin, Chiahsin; Kuo, Fu-Wen; Chavanich, Suchana; Viyakarn, Voranop

    2014-01-01

    The lipid phase transition (LPT) from the fluid liquid crystalline phase to the more rigid gel structure phase that occurs upon exposure to low temperatures can affect physical structure and function of cellular membranes. This study set out to investigate the membrane phase behavior of oocytes of three gorgonian corals; Junceela fragilis, J. juncea and Ellisella robusta,at different developmental stages after exposure to reduced temperatures. Oocytes were chilled to 5°C for 48, 96 or 144 h, and the LPT temperature (LPTT) was determined with Fourier Transform Infrared (FTIR) spectroscopy. The J. fragilis oocytes had a higher LPTT (∼23.0–23.7°C) than those of J. juncea and E. robusta oocytes (approximately 18.3–20.3°C). Upon chilling for 96 h at 5°C, the LPTTs of J. juncea and E. robusta oocytes in the early (18.0±1.0 and 18.3±0.6°C, respectively) and late (17.3±0.6 and 17.7±1.2°C, respectively) stages were significantly lower than those of J. fragilis oocytes (20.3±2.1 and 19.3±1.5°C for the early and late stages, respectively). The LPTTs of early stage gorgonian oocytes was significantly lower than those of late stage oocytes. These results suggest that the LPT of three gorgonian oocytes at different developmental stages may have been influenced by the phospholipid composition of their plasma membranes, which could have implications for their low temperature resistance. PMID:24671092

  13. Evidence from simultaneous intracellular- and surface-pH transients that carbonic anhydrase II enhances CO2 fluxes across Xenopus oocyte plasma membranes.

    PubMed

    Musa-Aziz, Raif; Occhipinti, Rossana; Boron, Walter F

    2014-11-01

    The α-carbonic anhydrases (CAs) are zinc-containing enzymes that catalyze the interconversion of CO2 and HCO3 (-). Here, we focus on human CA II (CA II), a ubiquitous cytoplasmic enzyme. In the second paper in this series, we examine CA IV at the extracellular surface. After microinjecting recombinant CA II in a Tris solution (or just Tris) into oocytes, we expose oocytes to 1.5% CO2/10 mM HCO3 (-)/pH 7.50 while using microelectrodes to monitor intracellular pH (pHi) and surface pH (pHS). CO2 influx causes the familiar sustained pHi fall as well as a transient pHS rise; CO2 efflux does the opposite. Both during CO2 addition and removal, CA II increases the magnitudes of the maximal rate of pHi change, (dpHi/dt)max, and the maximal change in pHS, ΔpHS. Preincubating oocytes with the inhibitor ethoxzolamide eliminates the effects of CA II. Compared with pHS, pHi begins to change only after a delay of ~9 s and its relaxation has a larger (i.e., slower) time constant (τpHi > τpHS ). Simultaneous measurements with two pHi electrodes, one superficial and one deep, suggest that impalement depth contributes to pHi delay and higher τpHi . Using higher CO2/HCO3 (-) levels, i.e., 5%/33 mM HCO3 (-) or 10%/66 mM HCO3 (-), increases (dpHi/dt)max and ΔpHS, though not in proportion to the increase in [CO2]. A reaction-diffusion mathematical model (described in the third paper in this series) accounts for the above general features and supports the conclusion that cytosolic CA-consuming entering CO2 or replenishing exiting CO2-increases CO2 fluxes across the cell membrane.

  14. MORPHOLOGY OF GAMETE MEMBRANE FUSION AND OF SPERM ENTRY INTO OOCYTES OF THE SEA URCHIN

    PubMed Central

    Franklin, Luther E.

    1965-01-01

    Sea urchin gametes predominate in molecular studies of fertilization, yet relatively little is known of the subcellular aspects of sperm entry in this group. Accordingly, it seemed desirable to make a detailed examination of sperm entry phenomena in sea urchins with the electron microscope. Gametes of the sea urchins Arbacia punctulata and Lytechinus variegatus were used in this study. Samples of eggs containing 2 to 8 per cent oocytes were selected and fixed with osmium tetroxide in sea water at various intervals after insemination. Fixed specimens were embedded in Epon 812, sectioned, and examined with an electron microscope. An apical vesicle was observed at the anterior end of the acrosome. The presence of this structure, together with other observations, suggested that initiation of the acrosome reaction in sea urchin sperm involves dehiscence of the acrosomal region with the subsequent release of the acrosomal granule. Contact and initial fusion of gamete membranes was observed in mature eggs and oocytes and invariably involved the extended acrosomal tubule of the spermatozoon. Only one spermatozoon normally enters the mature egg. The probability of locating such a sperm in ultrathin sections is exceedingly low. Several sperm do normally enter oocytes. Consequently, observations of sperm entry were primarily restricted to the latter. The manner of sperm entry into oocytes did not resemble phagocytosis. Organelles of the spermatozoon were progressively divested of their plasma membrane as they entered the ground cytoplasm of the oocyte fertilization cone. Initiation of the acrosome reaction, contact and initial fusion of gamete membranes, and sperm entry into oocytes of sea urchins conform to the Hydroides-Saccoglossus pattern of early fertilization events as described by Colwin and Colwin (13). PMID:19866669

  15. Criticality in Plasma Membranes

    NASA Astrophysics Data System (ADS)

    Machta, Benjamin; Papanikolaou, Stefanos; Sethna, James; Veatch, Sarah

    2011-03-01

    We are motivated by recent observations of micron-sized critical fluctuations in the 2d Ising Universality class in plasma membrane vesicles that are isolated from cortical cytoskeleton. We construct a minimal model of the plasma membrane's interaction with intact cytoskeleton which explains why large scale phase separation has not been observed in Vivo. In addition, we use analytical techniques from conformal field theory and numerical simulations to investigate the form of effective forces mediated by the membrane's proximity to criticality. We show that the range of this force is maximized near a critical point and we quantify its usefulness in mediating communication using techniques from information theory. Finally we use theoretical techniques from statistical physics in conjunction with Monte-Carlo simulations to understand how criticality can be used to increase the efficiency of membrane bound receptor mediated signaling. We expect that this sort of analysis will be broadly useful in understanding and quantifying the role of lipid ``rafts'' in a wide variety of membrane bound processes. Generally, we demonstrate that critical fluctuations provide a physical mechanism to organize and spatially segregate membrane components by providing channels for interaction over relatively large distances.

  16. The Ca2+-activated Cl- channel Ano1 controls microvilli length and membrane surface area in the oocyte.

    PubMed

    Courjaret, Raphael; Hodeify, Rawad; Hubrack, Satanay; Ibrahim, Awab; Dib, Maya; Daas, Sahar; Machaca, Khaled

    2016-07-01

    Ca(2+)-activated Cl(-) channels (CaCCs) play important physiological functions in epithelia and other tissues. In frog oocytes the CaCC Ano1 regulates resting membrane potential and the block to polyspermy. Here, we show that Ano1 expression increases the oocyte surface, revealing a novel function for Ano1 in regulating cell morphology. Confocal imaging shows that Ano1 increases microvilli length, which requires ERM-protein-dependent linkage to the cytoskeleton. A dominant-negative form of the ERM protein moesin precludes the Ano1-dependent increase in membrane area. Furthermore, both full-length and the truncated dominant-negative forms of moesin co-localize with Ano1 to the microvilli, and the two proteins co-immunoprecipitate. The Ano1-moesin interaction limits Ano1 lateral membrane mobility and contributes to microvilli scaffolding, therefore stabilizing larger membrane structures. Collectively, these results reveal a newly identified role for Ano1 in shaping the plasma membrane during oogenesis, with broad implications for the regulation of microvilli in epithelia. PMID:27173493

  17. Dynamics of intracellular phospholipid membrane organization during oocyte maturation and successful vitrification of immature oocytes retrieved by ovum pick-up in cattle.

    PubMed

    Aono, Akira; Nagatomo, Hiroaki; Takuma, Tetsuya; Nonaka, Rika; Ono, Yoshitaka; Wada, Yasuhiko; Abe, Yasuyuki; Takahashi, Masashi; Watanabe, Tomomasa; Kawahara, Manabu

    2013-05-01

    The objective was to determine if immature bovine oocytes with cumulus cells at the germinal vesicle (GV) stage could be vitrified by aluminum sheets (AS; pieces of sheet-like aluminum foil). Cleavage rates in fertilized oocytes previously vitrified by the AS procedure were higher than those vitrified by a nylon-mesh holder (NM) procedure (89.3 ± 2.1% vs. 65.0 ± 3.7%). Cleaved embryos derived from the AS but not from the NM procedures developed to blastocysts. Furthermore, to investigate the effects of vitrifying GV oocytes on cytoplasmic structure and on the ability to undergo cytoplasmic changes, the intracellular phospholipid membrane (IM) was stained with the lipophilic fluorescent dye, 3,3'-dioctadecyloxa-carbocyanine perchlorate. After vitrification by AS, the IM remained intact relative to that of oocytes vitrified by NM. During in vitro maturation, reorganization of the IM was also undamaged in oocytes vitrified by AS before oocyte maturation, and the IM within oocytes vitrified by the NM procedure was evidently impaired. Finally, vitrification (AS) was used for GV oocytes collected using the ovum pick-up method. A bull calf was born after in vitro production and subsequent embryo transfer. The vitrification techniques described herein should facilitate generation of viable in vitro production bovine blastocysts using oocytes recovered using the ovum pick-up method.

  18. Encapsulation of sex sorted boar semen: sperm membrane status and oocyte penetration parameters.

    PubMed

    Spinaci, Marcella; Chlapanidas, Theodora; Bucci, Diego; Vallorani, Claudia; Perteghella, Sara; Lucconi, Giulia; Communod, Ricardo; Vigo, Daniele; Galeati, Giovanna; Faustini, Massimo; Torre, Maria Luisa

    2013-03-01

    Although sorted semen is experimentally used for artificial, intrauterine, and intratubal insemination and in vitro fertilization, its commercial application in swine species is still far from a reality. This is because of the low sort rate and the large number of sperm required for routine artificial insemination in the pig, compared with other production animals, and the greater susceptibility of porcine spermatozoa to stress induced by the different sex sorting steps and the postsorting handling protocols. The encapsulation technology could overcome this limitation in vivo, protecting and allowing the slow release of low-dose sorted semen. The aim of this work was to evaluate the impact of the encapsulation process on viability, acrosome integrity, and on the in vitro fertilizing potential of sorted boar semen. Our results indicate that the encapsulation technique does not damage boar sorted semen; in fact, during a 72-hour storage, no differences were observed between liquid-stored sorted semen and encapsulated sorted semen in terms of plasma membrane (39.98 ± 14.38% vs. 44.32 ± 11.72%, respectively) and acrosome integrity (74.32 ± 12.17% vs. 66.07 ± 10.83%, respectively). Encapsulated sorted spermatozoa presented a lower penetration potential than nonencapsulated ones (47.02% vs. 24.57%, respectively, P < 0.0001), and a significant reduction of polyspermic fertilization (60.76% vs. 36.43%, respectively, polyspermic ova/total ova; P < 0.0001). However, no difference (P > 0.05) was observed in terms of total efficiency of fertilization expressed as normospermic oocytes/total oocytes (18.45% vs. 15.43% for sorted diluted and sorted encapsulated semen, respectively). The encapsulation could be an alternative method of storing of pig sex sorted spermatozoa and is potentially a promising technique in order to optimize the use of low dose of sexed spermatozoa in vivo. PMID:23261305

  19. Layered plasma polymer composite membranes

    DOEpatents

    Babcock, W.C.

    1994-10-11

    Layered plasma polymer composite fluid separation membranes are disclosed, which comprise alternating selective and permeable layers for a total of at least 2n layers, where n is [>=]2 and is the number of selective layers. 2 figs.

  20. Purification of Human and Mammalian Membrane Proteins Expressed in Xenopus laevis Frog Oocytes for Structural Studies.

    PubMed

    Boggavarapu, Rajendra; Hirschi, Stephan; Harder, Daniel; Meury, Marcel; Ucurum, Zöhre; Bergeron, Marc J; Fotiadis, Dimitrios

    2016-01-01

    This protocol describes the isolation of recombinant human and mammalian membrane proteins expressed in Xenopus laevis frog oocytes for structural studies. The cDNA-derived cRNA of the desired genes is injected into several hundreds of oocytes, which are incubated for several days to allow protein expression. Recombinant proteins are then purified via affinity chromatography. The novelty of this method comes from the design of a plasmid that produces multi-tagged proteins and, most importantly, the development of a protocol for efficiently discarding lipids, phospholipids, and lipoproteins from the oocyte egg yolk, which represent the major contaminants in protein purifications. Thus, the high protein purity and good yield obtained from this method allows protein structure determination by transmission electron microscopy of single detergent-solubilized protein particles and of 2D crystals of membrane protein embedded in lipid bilayers. Additionally, a radiotracer assay for functional analysis of the expressed target proteins in oocytes is described. Overall, this method is a valuable option for structural studies of mammalian and particularly human proteins, for which other expression systems often fail. PMID:27485339

  1. Plant Plasma Membrane Proteins 1

    PubMed Central

    Grimes, Howard D.; Breidenbach, R. William

    1987-01-01

    A major 75 kD protein group from the tomato plasma membrane was semipurified on polyacrylamide gels and used to raise a rabbit antiserum. The resulting antiserum recognized a single 75 kilodalton band from phase partitioned tomato plasma membrane (from both suspension cells and mature, green fruit) after resolution on one-dimensional polyacrylamide gels. Two-dimensional polyacrylamide gel analysis of proteins from tomato plasma membrane showed that the 75 kilodalton antiserum recognized a group of proteins ranging from 63.1 to 88.2 kilodaltons (mean = 75.6 kilodaltons) and with isoelectric point values ranging from 5.7 to 6.3. No other spots were visible on the two-dimensional blots. This antiserum was shown to bind protoplast surface epitopes by indirect immunofluorescence. The presence of this protein group in both monocotyledonous and dicotyledonous plants was established by immunoblotting the tomato 75 kilodalton antiserum against proteins obtained from plasma membrane-enriched fractions from corn roots and soybean roots. The data suggest that this 75 kilodalton protein group is a major proteinaceous component of the plant plasma membrane. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:16665801

  2. Intranuclear membranes and the formation of the first meiotic spindle in Xenos peckii (Acroschismus wheeleri) oocytes

    PubMed Central

    1983-01-01

    The ultrastructure of spindle formation during the first meiotic division in oocytes of the Strepsipteran insect Xenos peckii Kirby (Acroschismus wheeleri Pierce) was examined in serial thick (0.25- micron) and thin sections. During late prophase the nuclear envelope became extremely convoluted and fenestrated. At this time vesicular and tubular membrane elements permeated the nucleoplasm and formed a thin fusiform sheath, 5-7 micron in length, around each of the randomly oriented and condensing tetrads. These membrane elements appeared to arise from the nuclear envelope and/or in association with annulate lamellae in the nuclear region. All of the individual tetrads and their associated fusiform sheaths became aligned within the nucleus subsequent to the breakdown of the nuclear envelope. Microtubules (MTs) were found associated with membranes of the meiotic apparatus only after the nuclear envelope had broken down. Kinetochores, with associated MTs, were first recognizable as electron-opaque patches on the chromosomes at this time. The fully formed metaphase arrested Xenos oocyte meiotic apparatus contained an abundance of membranes and had diffuse poles that lacked distinct polar MT organizing centers. From these observations we conclude that the apparent individual chromosomal spindles--seen in the light microscope to form around each Xenos tetrad during "intranuclear prometaphase" (Hughes-Schrader, S., 1924, J. Morphol. 39:157-197)--actually form during late prophase, lack MTs, and are therefore not complete miniature bipolar spindles, as had been commonly assumed. Thus, the unique mode of spindle formation in Xenos oocytes cannot be used to support the hypothesis that chromosomes (kinetochores) induce the polymerization of their associated MTs. Our observation that MTs appeared in association with and parallel to tubular membrane components of the Xenos meiotic apparatus after these membranes became oriented with respect to the tetrads, is consistent with the

  3. The Plasma Membrane Calcium Pump

    NASA Technical Reports Server (NTRS)

    Rasmussen, H.

    1983-01-01

    Three aspect of cellular calcium metabolism in animal cells was discussed including the importance of the plasma membrane in calcium homeostasis, experiments dealing with the actual mechanism of the calcium pump, and the function of the pump in relationship to the mitochondria and to the function of calmodulin in the intact cell.

  4. Age-Associated Lipidome Changes in Metaphase II Mouse Oocytes

    PubMed Central

    Lee, Jae Won; Lee, Geun-Kyung; Suh, Chang Suk; Kim, Kwang Pyo; Lim, Hyunjung Jade

    2016-01-01

    The quality of mammalian oocytes declines with age, which negatively affects fertilization and developmental potential. The aging process often accompanies damages to macromolecules such as proteins, DNA, and lipids. To investigate if aged oocytes display an altered lipidome compared to young oocytes, we performed a global lipidomic analysis between oocytes from 4-week-old and 42 to 50-week-old mice. Increased oxidative stress is often considered as one of the main causes of cellular aging. Thus, we set up a group of 4-week-old oocytes treated with hydrogen peroxide (H2O2), a commonly used oxidative stressor, to compare if similar lipid species are altered between aged and oxidative-stressed oocytes. Between young and aged oocytes, we identified 26 decreased and 6 increased lipids in aged oocytes; and between young and H2O2-treated oocytes, we identified 35 decreased and 26 increased lipids in H2O2-treated oocytes. The decreased lipid species in these two comparisons were overlapped, whereas the increased lipid species were distinct. Multiple phospholipid classes, phosphatidic acid (PA), phosphatidylinositol (PI), phosphatidylserine (PS), and lysophosphatidylserine (LPS) significantly decreased both in H2O2-treated and aged oocytes, suggesting that the integrity of plasma membrane is similarly affected under these conditions. In contrast, a dramatic increase in diacylglycerol (DG) was only noted in H2O2-treated oocytes, indicating that the acute effect of H2O2-caused oxidative stress is distinct from aging-associated lipidome alteration. In H2O2-treated oocytes, the expression of lysophosphatidylcholine acyltransferase 1 increased along with increases in phosphatidylcholine. Overall, our data reveal that several classes of phospholipids are affected in aged oocytes, suggesting that the integrity of plasma membrane is associated with maintaining fertilization and developmental potential of mouse oocytes. PMID:26881843

  5. RNS60, a charge-stabilized nanostructure saline alters Xenopus Laevis oocyte biophysical membrane properties by enhancing mitochondrial ATP production

    PubMed Central

    Choi, Soonwook; Yu, Eunah; Kim, Duk-Soo; Sugimori, Mutsuyuki; Llinás, Rodolfo R

    2015-01-01

    We have examined the effects of RNS60, a 0.9% saline containing charge-stabilized oxygen nanobubble-based structures. RNS60 is generated by subjecting normal saline to Taylor–Couette–Poiseuille (TCP) flow under elevated oxygen pressure. This study, implemented in Xenopus laevis oocytes, addresses both the electrophysiological membrane properties and parallel biological processes in the cytoplasm. Intracellular recordings from defolliculated X. laevis oocytes were implemented in: (1) air oxygenated standard Ringer's solution, (2) RNS60-based Ringer's solution, (3) RNS10.3 (TCP-modified saline without excess oxygen)-based Ringer's, and (4) ONS60 (saline containing high pressure oxygen without TCP modification)-based Ringer's. RNS60-based Ringer's solution induced membrane hyperpolarization from the resting membrane potential. This effect was prevented by: (1) ouabain (a blocker of the sodium/potassium ATPase), (2) rotenone (a mitochondrial electron transfer chain inhibitor preventing usable ATP synthesis), and (3) oligomycin A (an inhibitor of ATP synthase) indicating that RNS60 effects intracellular ATP levels. Increased intracellular ATP levels following RNS60 treatment were directly demonstrated using luciferin/luciferase photon emission. These results indicate that RNS60 alters intrinsic the electrophysiological properties of the X. laevis oocyte membrane by increasing mitochondrial-based ATP synthesis. Ultrastructural analysis of the oocyte cytoplasm demonstrated increased mitochondrial length in the presence of RNS60-based Ringer's solution. It is concluded that the biological properties of RNS60 relate to its ability to optimize ATP synthesis. PMID:25742953

  6. RNS60, a charge-stabilized nanostructure saline alters Xenopus Laevis oocyte biophysical membrane properties by enhancing mitochondrial ATP production.

    PubMed

    Choi, Soonwook; Yu, Eunah; Kim, Duk-Soo; Sugimori, Mutsuyuki; Llinás, Rodolfo R

    2015-03-01

    We have examined the effects of RNS60, a 0.9% saline containing charge-stabilized oxygen nanobubble-based structures. RNS60 is generated by subjecting normal saline to Taylor-Couette-Poiseuille (TCP) flow under elevated oxygen pressure. This study, implemented in Xenopus laevis oocytes, addresses both the electrophysiological membrane properties and parallel biological processes in the cytoplasm. Intracellular recordings from defolliculated X. laevis oocytes were implemented in: (1) air oxygenated standard Ringer's solution, (2) RNS60-based Ringer's solution, (3) RNS10.3 (TCP-modified saline without excess oxygen)-based Ringer's, and (4) ONS60 (saline containing high pressure oxygen without TCP modification)-based Ringer's. RNS60-based Ringer's solution induced membrane hyperpolarization from the resting membrane potential. This effect was prevented by: (1) ouabain (a blocker of the sodium/potassium ATPase), (2) rotenone (a mitochondrial electron transfer chain inhibitor preventing usable ATP synthesis), and (3) oligomycin A (an inhibitor of ATP synthase) indicating that RNS60 effects intracellular ATP levels. Increased intracellular ATP levels following RNS60 treatment were directly demonstrated using luciferin/luciferase photon emission. These results indicate that RNS60 alters intrinsic the electrophysiological properties of the X. laevis oocyte membrane by increasing mitochondrial-based ATP synthesis. Ultrastructural analysis of the oocyte cytoplasm demonstrated increased mitochondrial length in the presence of RNS60-based Ringer's solution. It is concluded that the biological properties of RNS60 relate to its ability to optimize ATP synthesis.

  7. Phenotypes of Aging Postovulatory Oocytes After Somatic Cell Nuclear Transfer in Mice.

    PubMed

    Lee, Ah Reum; Shimoike, Takashi; Wakayama, Teruhiko; Kishigami, Satoshi

    2016-06-01

    Oocytes rapidly lose their developmental potential after ovulation, termed postovulatory oocyte aging, and often exhibit characteristic phenotypes, such as cytofragmentation, abnormal spindle shapes, and chromosome misalignments. Here, we reconstructed mouse oocytes using somatic cell nuclear transfer (SCNT) to reveal the effect of somatic cell-derived nuclei on oocyte physiology during aging. Normal oocytes started undergoing cytofragmentation 24 hours after oocyte collection; however, this occurred earlier in SCNT oocytes and was more severe at 48 hours, suggesting that the transferred somatic cell nuclei affected oocyte physiology. We found no difference in the status of acetylated α-tubulin (Ac-Tub) and α-tubulin (Tub) between normal and SCNT aging oocytes, but unlike normal oocytes, aging SCNT oocytes did not have astral microtubules. Interestingly, aging SCNT oocytes displayed more severely scattered chromosomes or irregularly shaped spindles. Observations of the microfilaments showed that, in normal oocytes, there was a clear actin ring beneath the plasma membrane and condensed microfilaments around the spindle (the actin cap) at 0 hours, and the actin filaments started degenerating at 1 hour, becoming completely disrupted and distributed to the cytoplasm at 24 hours. By contrast, in SCNT oocytes, an actin cap formed around the transplanted nuclei within 1 hour of SCNT, which was still present at 24 hours. Thus, SCNT oocytes age in a similar but distinct way, suggesting that they not only contain nuclei with abnormal epigenetics but are also physiologically different. PMID:27253626

  8. Cathepsin activities and membrane integrity of zebrafish (Danio rerio) oocytes after freezing to -196 degrees C using controlled slow cooling.

    PubMed

    Zhang, T; Rawson, D M; Tosti, L; Carnevali, O

    2008-04-01

    This study investigated enzymatic activity of cathepsins and the membrane integrity of zebrafish (Danio rerio) oocytes after freezing to -196 degrees C using controlled slow cooling. Stage III oocytes (>0.5mm), obtained through dissection of anaesthetised female fish and desegregation of ovarian cumulus, were exposed to 2M methanol or 2M DMSO (both prepared in Hank's medium) for 30min at 22 degrees C before being loaded into 0.5ml plastic straws and placed into a programmable cooler. After controlled slow freezing, samples were plunged into liquid nitrogen (LN) and held for at least 10min, and thawed by immersing straws into a 27 degrees C water bath for 10s. Thawed oocytes were washed twice in Hank's medium. Cathepsin activity and membrane integrity of oocytes were assessed both after cryoprotectant treatment at 22 degrees C and after freezing in LN. Cathepsin B and L colorimetric analyses were performed using substrates Z-Arg-ArgNNap and Z-Phe-Arg-4MbetaNA-HCl, respectively, and 2-naphthylamine and 4-methoxy-2-naphthylamine were used as standards. Cathepsin D activity was performed by analysing the level of hydrolytic action on haemoglobin. Oocytes membrane integrity was assessed using 0.2% Trypan blue staining for 5min. Analysis of cathepsin activities showed that whilst the activity of cathepsin B and D was not affected by 2M DMSO treatment, their activity was lowered when treated with 2M methanol. Following freezing to -196 degrees C, the activity of all cathepsins (B, D and L) was significantly decreased in both 2M DMSO and 2M methanol. Trypan blue staining showed that 63.0+/-11.3% and 72.7+/-5.2% oocytes membrane stayed intact after DMSO and methanol treatment for 30min at 22 degrees C, respectively, whilst 14.9+/-2.6% and 1.4+/-0.8% stayed intact after freezing in DMSO and methanol to -196 degrees C. The results indicate that cryoprotectant treatment and freezing modified the activities of lysosomal enzymes involved in oocyte maturation and yolk

  9. Lipid organization of the plasma membrane.

    PubMed

    Ingólfsson, Helgi I; Melo, Manuel N; van Eerden, Floris J; Arnarez, Clément; Lopez, Cesar A; Wassenaar, Tsjerk A; Periole, Xavier; de Vries, Alex H; Tieleman, D Peter; Marrink, Siewert J

    2014-10-15

    The detailed organization of cellular membranes remains rather elusive. Based on large-scale molecular dynamics simulations, we provide a high-resolution view of the lipid organization of a plasma membrane at an unprecedented level of complexity. Our plasma membrane model consists of 63 different lipid species, combining 14 types of headgroups and 11 types of tails asymmetrically distributed across the two leaflets, closely mimicking an idealized mammalian plasma membrane. We observe an enrichment of cholesterol in the outer leaflet and a general non-ideal lateral mixing of the different lipid species. Transient domains with liquid-ordered character form and disappear on the microsecond time scale. These domains are coupled across the two membrane leaflets. In the outer leaflet, distinct nanodomains consisting of gangliosides are observed. Phosphoinositides show preferential clustering in the inner leaflet. Our data provide a key view on the lateral organization of lipids in one of life's fundamental structures, the cell membrane.

  10. Reverse-osmosis membranes by plasma polymerization

    NASA Technical Reports Server (NTRS)

    Hollahan, J. R.; Wydeven, T.

    1972-01-01

    Thin allyl amine polymer films were developed using plasma polymerization. Resulting dry composite membranes effectively reject sodium chloride during reverse osmosis. Films are 98% sodium chloride rejective, and 46% urea rejective.

  11. Transport proteins of the plant plasma membrane

    NASA Technical Reports Server (NTRS)

    Assmann, S. M.; Haubrick, L. L.; Evans, M. L. (Principal Investigator)

    1996-01-01

    Recently developed molecular and genetic approaches have enabled the identification and functional characterization of novel genes encoding ion channels, ion carriers, and water channels of the plant plasma membrane.

  12. Plasma Membrane Intrinsic Proteins from Maize Cluster in Two Sequence Subgroups with Differential Aquaporin Activity1

    PubMed Central

    Chaumont, François; Barrieu, François; Jung, Rudolf; Chrispeels, Maarten J.

    2000-01-01

    The transport of water through membranes is regulated in part by aquaporins or water channel proteins. These proteins are members of the larger family of major intrinsic proteins (MIPs). Plant aquaporins are categorized as either tonoplast intrinsic proteins (TIPs) or plasma membrane intrinsic proteins (PIPs). Sequence analysis shows that PIPs form several subclasses. We report on the characterization of three maize (Zea mays) PIPs belonging to the PIP1 and PIP2 subfamilies (ZmPIP1a, ZmPIP1b, and ZmPIP2a). The ZmPIP2a clone has normal aquaporin activity in Xenopus laevis oocytes. ZmPIP1a and ZmPIP1b have no activity, and a review of the literature shows that most PIP1 proteins identified in other plants have no or very low activity in oocytes. Arabidopsis PIP1 proteins are the only exception. Control experiments show that this lack of activity of maize PIP1 proteins is not caused by their failure to arrive at the plasma membrane of the oocytes. ZmPIP1b also does not appear to facilitate the transport of any of the small solutes tried (glycerol, choline, ethanol, urea, and amino acids). These results are discussed in relationship to the function and regulation of the PIP family of aquaporins. PMID:10759498

  13. A receptor for the oocyte maturation-inducing hormone 17alpha,20beta,21-trihydroxy-4-pregnen-3-one on ovarian membranes of striped bass.

    PubMed

    King, W; Ghosh, S; Thomas, P; Sullivan, C V

    1997-01-01

    Previous studies have shown that blood plasma levels of 17alpha, 20beta-dihydroxy-4-pregnen-3-one (DHP) and 17alpha, 20beta, 21-trihydroxy-4-pregnen-3-one (20beta-S) increase in striped bass (Morone saxatilis) undergoing final oocyte maturation (FOM). Both hormones are produced by ovarian fragments undergoing hCG-induced germinal vesicle breakdown (GVBD) in vitro. In the present study, we investigated binding of DHP and 20beta-S to ovarian membranes from striped bass undergoing FOM. Saturable binding sites for DHP were not detected. Saturation of 20beta-S binding sites with 5 nM [3H]20beta-S occurred within 40 min at 0 degrees C (at 3 min, half of the maximum specific binding of steroid was calculated to have occurred), and the binding was pH-dependent. Scatchard analyses revealed the presence of a single class of high-affinity (dissociation constant [Kd] = 1.4 +/- 0.2 nM), limited-capacity (estimated concentration [Bmax] = 2.7 +/- 0.3 pmol/g ovary) 20beta-S binding sites on membranes from striped bass ovaries undergoing FOM. In contrast, only low levels of specific binding (Bmax < 0.04 pmol/g tissue) were detected on membranes from testes, liver, brain, and muscle. Ovarian membranes prepared from vitellogenic females also had low levels (Bmax < 0.1 pmol/g ovary) of specific 20beta-S binding, less than 5% of that found during FOM. Results of competition assays showed that DHP was approximately 250 times less effective than 20beta-S for displacing 20beta-S from ovarian membranes. In contrast, 20beta, 21-dihydroxy-4-pregnen-3-one was a very effective competitor, although it is only a weak inducer of oocyte GVBD in vitro. Of several other steroids tested, only progesterone showed affinity for the 20beta-S binding site within a physiological range of concentrations. Taken together with previous studies of striped bass FOM, these findings indicate that 20beta-S is the oocyte maturation-inducing steroid hormone in striped bass.

  14. Membrane plasma exchange in Goodpasture's syndrome.

    PubMed

    Keller, F; Offermann, G; Schultze, G; Wagner, K; Aulbert, E; Scholle, J; Faber, U; Maiga, M; Pommer, W

    1984-01-01

    We report two cases with Goodpasture's syndrome successfully treated by membrane plasma exchange. In both patients, pulmonary infiltrations and hemoptysis had already resolved after the first pulse methylprednisolone dose (1000 mg IV). Following plasma exchange, renal function did not further deteriorate in one patient and returned to normal in the other patient. From the clinical course of our patients and a review of the literature, we conclude that membrane plasma exchange is effective in preventing deterioration of renal function in Goodpasture's syndrome. Analysis of the literature shows that patients who respond to plasma exchange have significantly fewer crescents and lower plasma creatinine, while non-responders are more often oliguric or anuric and require dialysis at the time of plasma exchange.

  15. Plasma membrane disruption: repair, prevention, adaptation

    NASA Technical Reports Server (NTRS)

    McNeil, Paul L.; Steinhardt, Richard A.

    2003-01-01

    Many metazoan cells inhabit mechanically stressful environments and, consequently, their plasma membranes are frequently disrupted. Survival requires that the cell rapidly repair or reseal the disruption. Rapid resealing is an active and complex structural modification that employs endomembrane as its primary building block, and cytoskeletal and membrane fusion proteins as its catalysts. Endomembrane is delivered to the damaged plasma membrane through exocytosis, a ubiquitous Ca2+-triggered response to disruption. Tissue and cell level architecture prevent disruptions from occurring, either by shielding cells from damaging levels of force, or, when this is not possible, by promoting safe force transmission through the plasma membrane via protein-based cables and linkages. Prevention of disruption also can be a dynamic cell or tissue level adaptation triggered when a damaging level of mechanical stress is imposed. Disease results from failure of either the preventive or resealing mechanisms.

  16. The effect of amniotic membrane stem cells as donor nucleus on gene expression in reconstructed bovine oocytes.

    PubMed

    Nazari, Hassan; Shirazi, Abolfazl; Shams-Esfandabadi, Naser; Afzali, Azita; Ahmadi, Ebrahim

    2016-01-01

    Nuclear reprogramming of a differentiated cell in somatic cell nuclear transfer (SCNT) is a major concern in cloning procedures. Indeed, the nucleus of the donor cell often fails to express the genes which are a prerequisite for normal early embryo development. This study was aimed to evaluate the developmental competence and the expression pattern of some reprogramming related genes in bovine cloned embryos reconstructed with amniotic membrane stem cells (AMSCs) in comparison with those reconstructed with mesenchymal stem cells (MSCs) and adult fibroblasts (AF) as well as with in vitro fertilized (IVF) oocytes. In vitro matured abattoir-derived oocytes were considered as recipients and a hand-made cloning technique was employed for oocyte enucleation and nuclear transfer (NT) procedures. The expression pattern of genes involved in self-renewal and pluripotency (POU5F1, SOX2, NANOG), imprinting (IGF2, IGF2R), DNA methylation (DNMT1, DNMT3A), histone deacetylation (HDAC2), and apoptosis (BAX, BCL2) were evaluated in NT and IVF derived embryos. Despite the insignificant difference in cleavage rate between reconstructed and IVF oocytes, the blastocyst rate in the IVF group was higher than that of other groups. Among reconstructed oocytes, a higher blastocysts rate was observed in MSC-NT and AMSCs-NT derived embryos that were significantly higher than AF-NT derived ones. There were more similarities in the expression pattern of pluripotency and epigenetic modification genes between MSC-NT and IVF derived blastocysts compared with other groups. In conclusion, considering developmental competence, AMSCs, as alternative donors in SCNT procedure, like MSCs, were prone to have more advantage compared with AF. PMID:27389982

  17. Detection of oocyte perivitelline membrane-bound sperm: a tool for avian collection management

    PubMed Central

    Croyle, Kaitlin E.; Durrant, Barbara S.; Jensen, Thomas

    2015-01-01

    The success and sustainability of an avian breeding programme depend on managing productive and unproductive pairs. Given that each breeding season can be of immeasurable importance, it is critical to resolve pair fertility issues quickly. Such problems are traditionally diagnosed through behavioural observations, egg lay history and hatch rates, with a decision to re-pair generally taking one or more breeding seasons. In pairs producing incubated eggs that show little or no signs of embryonic development, determining fertility is difficult. Incorporating a technique to assess sperm presence on the oocyte could, in conjunction with behaviour and other data, facilitate a more timely re-pair decision. Detection of perivitelline membrane-bound (PVM-bound) sperm verifies successful copulation, sperm production and sperm functionality. Alternatively, a lack of detectable sperm, at least in freshly laid eggs, suggests no mating, lack of sperm production/function or sperm–oviduct incompatibility. This study demonstrated PVM-bound sperm detection by Hoechst staining in fresh to 24-day-incubated exotic eggs from 39 species representing 13 orders. However, a rapid and significant time-dependent loss of detectable PVM-bound sperm was observed following incubation of chicken eggs. The PCR detection of sperm in seven species, including two bacterially infected eggs, demonstrated that this method was not as reliable as visual detection using Hoechst staining. The absence of amplicons in visually positive PVMs was presumably due to large PVM size and low sperm count, resulting in DNA concentrations too low for standard PCR detection. In summary, this study demonstrated the feasibility and limitations of using PVM-bound sperm detection as a management tool for exotic avian species. We verified that sperm presence or absence on fluorescence microscopy can aid in the differentiation of fertile from infertile eggs to assist breeding managers in making prompt decisions for pair

  18. Microcompartments within the yeast plasma membrane.

    PubMed

    Merzendorfer, Hans; Heinisch, Jürgen J

    2013-02-01

    Recent research in cell biology makes it increasingly clear that the classical concept of compartmentation of eukaryotic cells into different organelles performing distinct functions has to be extended by microcompartmentation, i.e., the dynamic interaction of proteins, sugars, and lipids at a suborganellar level, which contributes significantly to a proper physiology. As different membrane compartments (MCs) have been described in the yeast plasma membrane, such as those defined by Can1 and Pma1 (MCCs and MCPs), Saccharomyces cerevisiae can serve as a model organism, which is amenable to genetic, biochemical, and microscopic studies. In this review, we compare the specialized microcompartment of the yeast bud neck with other plasma membrane substructures, focusing on eisosomes, cell wall integrity-sensing units, and chitin-synthesizing complexes. Together, they ensure a proper cell division at the end of mitosis, an intricately regulated process, which is essential for the survival and proliferation not only of fungal, but of all eukaryotic cells.

  19. Cholesterol Asymmetry in Synaptic Plasma Membranes

    PubMed Central

    Wood, W. Gibson; Igbavboa, Urule; Müller, Walter E.; Eckert, Gunter P.

    2010-01-01

    Lipids are essential for the structural and functional integrity of membranes. Membrane lipids are not randomly distributed but are localized in different domains. A common characteristic of these membrane domains is their association with cholesterol. Lipid rafts and caveolae are examples of cholesterol enriched domains, which have attracted keen interest. However, two other important cholesterol domains are the exofacial and cytofacial leaflets of the plasma membrane. The two leaflets that make up the bilayer differ in their fluidity, electrical charge, lipid distribution, and active sites of certain proteins. The synaptic plasma membrane (SPM) cytofacial leaflet contains over 85% of the total SPM cholesterol as compared with the exofacial leaflet. This asymmetric distribution of cholesterol is not fixed or immobile but can be modified by different conditions in vivo: 1) chronic ethanol consumption; 2) statins; 3) aging; and 4) apoE isoform. Several potential candidates have been proposed as mechanisms involved in regulation of SPM cholesterol asymmetry: apoE, low-density-lipoprotein receptor, sterol carrier protein-2, fatty acid binding proteins, polyunsaturated fatty acids, p-glycoprotein and caveolin-1. This review examines cholesterol asymmetry in SPM, potential mechanisms of regulation and impact on membrane structure and function. PMID:21214553

  20. Selective regulation of maize plasma membrane aquaporin trafficking and activity by the SNARE SYP121.

    PubMed

    Besserer, Arnaud; Burnotte, Emeline; Bienert, Gerd Patrick; Chevalier, Adrien S; Errachid, Abdelmounaim; Grefen, Christopher; Blatt, Michael R; Chaumont, François

    2012-08-01

    Plasma membrane intrinsic proteins (PIPs) are aquaporins facilitating the diffusion of water through the cell membrane. We previously showed that the traffic of the maize (Zea mays) PIP2;5 to the plasma membrane is dependent on the endoplasmic reticulum diacidic export motif. Here, we report that the post-Golgi traffic and water channel activity of PIP2;5 are regulated by the SNARE (for soluble N-ethylmaleimide-sensitive factor protein attachment protein receptor) SYP121, a plasma membrane resident syntaxin involved in vesicle traffic, signaling, and regulation of K(+) channels. We demonstrate that the expression of the dominant-negative SYP121-Sp2 fragment in maize mesophyll protoplasts or epidermal cells leads to a decrease in the delivery of PIP2;5 to the plasma membrane. Protoplast and oocyte swelling assays showed that PIP2;5 water channel activity is negatively affected by SYP121-Sp2. A combination of in vitro (copurification assays) and in vivo (bimolecular fluorescence complementation, Förster resonance energy transfer, and yeast split-ubiquitin) approaches allowed us to demonstrate that SYP121 and PIP2;5 physically interact. Together with previous data demonstrating the role of SYP121 in regulating K(+) channel trafficking and activity, these results suggest that SYP121 SNARE contributes to the regulation of the cell osmotic homeostasis.

  1. Selective Regulation of Maize Plasma Membrane Aquaporin Trafficking and Activity by the SNARE SYP121[W

    PubMed Central

    Besserer, Arnaud; Burnotte, Emeline; Bienert, Gerd Patrick; Chevalier, Adrien S.; Errachid, Abdelmounaim; Grefen, Christopher; Blatt, Michael R.; Chaumont, François

    2012-01-01

    Plasma membrane intrinsic proteins (PIPs) are aquaporins facilitating the diffusion of water through the cell membrane. We previously showed that the traffic of the maize (Zea mays) PIP2;5 to the plasma membrane is dependent on the endoplasmic reticulum diacidic export motif. Here, we report that the post-Golgi traffic and water channel activity of PIP2;5 are regulated by the SNARE (for soluble N-ethylmaleimide-sensitive factor protein attachment protein receptor) SYP121, a plasma membrane resident syntaxin involved in vesicle traffic, signaling, and regulation of K+ channels. We demonstrate that the expression of the dominant-negative SYP121-Sp2 fragment in maize mesophyll protoplasts or epidermal cells leads to a decrease in the delivery of PIP2;5 to the plasma membrane. Protoplast and oocyte swelling assays showed that PIP2;5 water channel activity is negatively affected by SYP121-Sp2. A combination of in vitro (copurification assays) and in vivo (bimolecular fluorescence complementation, Förster resonance energy transfer, and yeast split-ubiquitin) approaches allowed us to demonstrate that SYP121 and PIP2;5 physically interact. Together with previous data demonstrating the role of SYP121 in regulating K+ channel trafficking and activity, these results suggest that SYP121 SNARE contributes to the regulation of the cell osmotic homeostasis. PMID:22942383

  2. Selective regulation of maize plasma membrane aquaporin trafficking and activity by the SNARE SYP121.

    PubMed

    Besserer, Arnaud; Burnotte, Emeline; Bienert, Gerd Patrick; Chevalier, Adrien S; Errachid, Abdelmounaim; Grefen, Christopher; Blatt, Michael R; Chaumont, François

    2012-08-01

    Plasma membrane intrinsic proteins (PIPs) are aquaporins facilitating the diffusion of water through the cell membrane. We previously showed that the traffic of the maize (Zea mays) PIP2;5 to the plasma membrane is dependent on the endoplasmic reticulum diacidic export motif. Here, we report that the post-Golgi traffic and water channel activity of PIP2;5 are regulated by the SNARE (for soluble N-ethylmaleimide-sensitive factor protein attachment protein receptor) SYP121, a plasma membrane resident syntaxin involved in vesicle traffic, signaling, and regulation of K(+) channels. We demonstrate that the expression of the dominant-negative SYP121-Sp2 fragment in maize mesophyll protoplasts or epidermal cells leads to a decrease in the delivery of PIP2;5 to the plasma membrane. Protoplast and oocyte swelling assays showed that PIP2;5 water channel activity is negatively affected by SYP121-Sp2. A combination of in vitro (copurification assays) and in vivo (bimolecular fluorescence complementation, Förster resonance energy transfer, and yeast split-ubiquitin) approaches allowed us to demonstrate that SYP121 and PIP2;5 physically interact. Together with previous data demonstrating the role of SYP121 in regulating K(+) channel trafficking and activity, these results suggest that SYP121 SNARE contributes to the regulation of the cell osmotic homeostasis. PMID:22942383

  3. Cobalt oxide nanoparticles can enter inside the cells by crossing plasma membranes

    PubMed Central

    Bossi, Elena; Zanella, Daniele; Gornati, Rosalba; Bernardini, Giovanni

    2016-01-01

    The ability of nanoparticles (NPs) to be promptly uptaken by the cells makes them both dangerous and useful to human health. It was recently postulated that some NPs might cross the plasma membrane also by a non-endocytotic pathway gaining access to the cytoplasm. To this aim, after having filled mature Xenopus oocytes with Calcein, whose fluorescence is strongly quenched by divalent metal ions, we have exposed them to different cobalt NPs quantifying quenching as evidence of the increase of the concentration of Co2+ released by the NPs that entered into the cytoplasm. We demonstrated that cobalt oxide NPs, but not cobalt nor cobalt oxide NPs that were surrounded by a protein corona, can indeed cross plasma membranes. PMID:26924527

  4. Mitochondrial dynamics and their intracellular traffic in porcine oocytes.

    PubMed

    Yamochi, T; Hashimoto, S; Amo, A; Goto, H; Yamanaka, M; Inoue, M; Nakaoka, Y; Morimoto, Y

    2016-08-01

    Meiotic maturation of oocytes requires a variety of ATP-dependent reactions, such as germinal vesicle breakdown, spindle formation, and rearrangement of plasma membrane structure, which is required for fertilization. Mitochondria are accordingly expected be localized to subcellular sites of energy utilization. Although microtubule-dependent cellular traffic for mitochondria has been studied extensively in cultured neuronal (and some other somatic) cells, the molecular mechanism of their dynamics in mammalian oocytes at different stages of maturation remains obscure. The present work describes dynamic aspects of mitochondria in porcine oocytes at the germinal vesicle stage. After incubation of oocytes with MitoTracker Orange followed by centrifugation, mitochondria-enriched ooplasm was obtained using a glass needle and transferred into a recipient oocyte. The intracellular distribution of the fluorescent mitochondria was then observed over time using a laser scanning confocal microscopy equipped with an incubator. Kinetic analysis revealed that fluorescent mitochondria moved from central to subcortical areas of oocytes and were dispersed along plasma membranes. Such movement of mitochondria was inhibited by either cytochalasin B or cytochalasin D but not by colcemid, suggesting the involvement of microfilaments. This method of visualizing mitochondrial dynamics in live cells permits study of the pathophysiology of cytoskeleton-dependent intracellular traffic of mitochondria and associated energy metabolism during meiotic maturation of oocytes.

  5. Oxygen plasma modification of polyurethane membranes.

    PubMed

    Ozdemir, Yesim; Hasirci, Nesrin; Serbetci, Kemal

    2002-12-01

    Polyurethane membranes were prepared under nitrogen atmosphere by using various proportions of toluene diisocyanates (TDI) and polypropylene-ethylene glycol (P) with addition of no other ingredients such as catalysts, initiator or solvent in order to achieve medical purity. Effects of composition on mechanical properties were examined. In general, modulus and UTS values demonstrated an increase and PSBR demonstrated a decrease as the TDI/Polyol ratio of the polymer increased. Elastic modulus, ultimate tensile strength (UTS) and per cent strain before rupture (PSBR) values were found to be in the range of 1.4-5.4 MPa, 0.9-1.9 MPa, and 60.4-99.7%, respectively. Surfaces of the membranes were modified by oxygen plasma applying glow-discharge technique and the effect of applied plasma power (10 W or 100 W, 15 min) on surface hydrophilicity and on the attachment of Vero cells were studied. Water contact angle values of the plasma modified surfaces varied between 67 degrees and 46 degrees, demonstrating a decrease as the applied plasma power was increased. The unmodified material had 42-45 cells attached per cm(2). It was observed that as the applied power increased the number of attached cells first increased (60-70 cells/cm(2) at 10 W) and then decreased (27-40 cells/cm(2) at 100 W). These demonstrated that surface properties of polyurethanes can be modified by plasma-glow discharge technique to achieve the optimum levels of cell attachment. PMID:15348657

  6. Cellular membrane collapse by atmospheric-pressure plasma jet

    SciTech Connect

    Kim, Kangil; Sik Yang, Sang E-mail: ssyang@ajou.ac.kr; Jun Ahn, Hak; Lee, Jong-Soo E-mail: ssyang@ajou.ac.kr; Lee, Jae-Hyeok; Kim, Jae-Ho

    2014-01-06

    Cellular membrane dysfunction caused by air plasma in cancer cells has been studied to exploit atmospheric-pressure plasma jets for cancer therapy. Here, we report that plasma jet treatment of cervical cancer HeLa cells increased electrical conductivity across the cellular lipid membrane and caused simultaneous lipid oxidation and cellular membrane collapse. We made this finding by employing a self-manufactured microelectrode chip. Furthermore, increased roughness of the cellular lipid membrane and sequential collapse of the membrane were observed by atomic force microscopy following plasma jet treatment. These results suggest that the cellular membrane catastrophe occurs via coincident altered electrical conductivity, lipid oxidation, and membrane roughening caused by an atmospheric-pressure plasma jet, possibly resulting in cellular vulnerability to reactive species generated from the plasma as well as cytotoxicity to cancer cells.

  7. Cellular membrane collapse by atmospheric-pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Kim, Kangil; Jun Ahn, Hak; Lee, Jae-Hyeok; Kim, Jae-Ho; Sik Yang, Sang; Lee, Jong-Soo

    2014-01-01

    Cellular membrane dysfunction caused by air plasma in cancer cells has been studied to exploit atmospheric-pressure plasma jets for cancer therapy. Here, we report that plasma jet treatment of cervical cancer HeLa cells increased electrical conductivity across the cellular lipid membrane and caused simultaneous lipid oxidation and cellular membrane collapse. We made this finding by employing a self-manufactured microelectrode chip. Furthermore, increased roughness of the cellular lipid membrane and sequential collapse of the membrane were observed by atomic force microscopy following plasma jet treatment. These results suggest that the cellular membrane catastrophe occurs via coincident altered electrical conductivity, lipid oxidation, and membrane roughening caused by an atmospheric-pressure plasma jet, possibly resulting in cellular vulnerability to reactive species generated from the plasma as well as cytotoxicity to cancer cells.

  8. Mammalian plasma membrane proteins as potential biomarkers and drug targets.

    PubMed

    Rucevic, Marijana; Hixson, Douglas; Josic, Djuro

    2011-06-01

    Defining the plasma membrane proteome is crucial to understand the role of plasma membrane in fundamental biological processes. Change in membrane proteins is one of the first events that take place under pathological conditions, making plasma membrane proteins a likely source of potential disease biomarkers with prognostic or diagnostic potential. Membrane proteins are also potential targets for monoclonal antibodies and other drugs that block receptors or inhibit enzymes essential to the disease progress. Despite several advanced methods recently developed for the analysis of hydrophobic proteins and proteins with posttranslational modifications, integral membrane proteins are still under-represented in plasma membrane proteome. Recent advances in proteomic investigation of plasma membrane proteins, defining their roles as diagnostic and prognostic disease biomarkers and as target molecules in disease treatment, are presented.

  9. At the border: the plasma membrane-cell wall continuum.

    PubMed

    Liu, Zengyu; Persson, Staffan; Sánchez-Rodríguez, Clara

    2015-03-01

    Plant cells rely on their cell walls for directed growth and environmental adaptation. Synthesis and remodelling of the cell walls are membrane-related processes. During cell growth and exposure to external stimuli, there is a constant exchange of lipids, proteins, and other cell wall components between the cytosol and the plasma membrane/apoplast. This exchange of material and the localization of cell wall proteins at certain spots in the plasma membrane seem to rely on a particular membrane composition. In addition, sensors at the plasma membrane detect changes in the cell wall architecture, and activate cytoplasmic signalling schemes and ultimately cell wall remodelling. The apoplastic polysaccharide matrix is, on the other hand, crucial for preventing proteins diffusing uncontrollably in the membrane. Therefore, the cell wall-plasma membrane link is essential for plant development and responses to external stimuli. This review focuses on the relationship between the cell wall and plasma membrane, and its importance for plant tissue organization.

  10. Membrane potential modulates plasma membrane phospholipid dynamics and K-Ras signaling

    PubMed Central

    Zhou, Yong; Wong, Ching-On; Cho, Kwang-jin; van der Hoeven, Dharini; Liang, Hong; Thakur, Dhananiay P.; Luo, Jialie; Babic, Milos; Zinsmaier, Konrad E.; Zhu, Michael X.; Hu, Hongzhen; Venkatachalam, Kartik; Hancock, John F.

    2015-01-01

    Plasma membrane depolarization can trigger cell proliferation, but how membrane potential influences mitogenic signaling is uncertain. Here, we show that plasma membrane depolarization induces nanoscale reorganization of phosphatidylserine and phosphatidylinositol 4,5-bisphosphate but not other anionic phospholipids. K-Ras, which is targeted to the plasma membrane by electrostatic interactions with phosphatidylserine, in turn undergoes enhanced nanoclustering. Depolarization-induced changes in phosphatidylserine and K-Ras plasma membrane organization occur in fibroblasts, excitable neuroblastoma cells, and Drosophila neurons in vivo and robustly amplify K-Ras–dependent mitogen-activated protein kinase (MAPK) signaling. Conversely, plasma membrane repolarization disrupts K-Ras nanoclustering and inhibits MAPK signaling. By responding to voltage-induced changes in phosphatidylserine spatiotemporal dynamics, K-Ras nanoclusters set up the plasma membrane as a biological field-effect transistor, allowing membrane potential to control the gain in mitogenic signaling circuits. PMID:26293964

  11. The type and extent of injuries in vitrified mouse oocytes.

    PubMed

    Liang, Yang; Ning, Fang-Yong; Du, Wen-Jing; Wang, Chun-Sheng; Piao, Shan-Hua; An, Tie-Zhu

    2012-04-01

    To improve the vitrification of mouse oocytes using straws, we attempted to estimate the type and extent of injuries during vitrification with a vitrification solution EAFS10/10. Injuries in oocytes were assessed based on cellular viability, the integrity of the plasma membrane, the status of the meiotic spindle/chromosomes, and morphological appearance. For morphologically normal oocytes, the ability to be fertilized and to develop into blastocysts was examined. Morphological assessment revealed 15% of oocytes to be injured by intracellular ice formed during vitrification, and 10% by osmotic swelling during removal of the cryoprotectant. When assessed by the status of spindles/chromosomes, the most sensitive criterion, damage was found in 16% of oocytes without any treatment. This value was similar to the proportion of fresh oocytes that did not cleave after insemination (13%). On exposure to EAFS10/10, the spindles/chromosomes were affected in 33% of oocytes. The exposure reduced the rate of cleavage by 18% points and the rate of development into blastocysts by 19 points. Vitrification reduced these rates by 15% and 36% points, respectively. Although the mechanism responsible for this moderate toxic effect on developmental ability is not known, information obtained in the present study will be useful to develop a practical method for the vitrification of mouse oocytes using straws.

  12. The type and extent of injuries in vitrified mouse oocytes.

    PubMed

    Liang, Yang; Ning, Fang-Yong; Du, Wen-Jing; Wang, Chun-Sheng; Piao, Shan-Hua; An, Tie-Zhu

    2012-04-01

    To improve the vitrification of mouse oocytes using straws, we attempted to estimate the type and extent of injuries during vitrification with a vitrification solution EAFS10/10. Injuries in oocytes were assessed based on cellular viability, the integrity of the plasma membrane, the status of the meiotic spindle/chromosomes, and morphological appearance. For morphologically normal oocytes, the ability to be fertilized and to develop into blastocysts was examined. Morphological assessment revealed 15% of oocytes to be injured by intracellular ice formed during vitrification, and 10% by osmotic swelling during removal of the cryoprotectant. When assessed by the status of spindles/chromosomes, the most sensitive criterion, damage was found in 16% of oocytes without any treatment. This value was similar to the proportion of fresh oocytes that did not cleave after insemination (13%). On exposure to EAFS10/10, the spindles/chromosomes were affected in 33% of oocytes. The exposure reduced the rate of cleavage by 18% points and the rate of development into blastocysts by 19 points. Vitrification reduced these rates by 15% and 36% points, respectively. Although the mechanism responsible for this moderate toxic effect on developmental ability is not known, information obtained in the present study will be useful to develop a practical method for the vitrification of mouse oocytes using straws. PMID:22202671

  13. Mechanotransduction through the plasma membrane & cytoskeleton

    NASA Astrophysics Data System (ADS)

    Haase, Kristina; Pelling, Andrew

    2012-02-01

    Mechanical forces initiate immediate and long-term changes in cells; however the exact mechanisms remain unclear, albeit crucial for understanding the pathology of disease. We used combined confocal and atomic force microscopy (AFM) to investigate changes in cell morphology and elasticity in response to a mechanical stimulus. The AFM was used as a nano-indentor to gauge the response of the membrane and cytoskeleton (CSK) of HeLa cells. We observed their viscoelastic nature by probing cells transfected with a green fluorescent protein localized at the plasma membrane. Inhibition of acto-myosin contractility (AMc) resulted in a significant decrease of cellular elasticity, and a corresponding increase in mean deformation. We also investigated the rate at which the membrane and CSK deform and relax in response to a local force. The response to a local perturbation is nearly instantaneous for control cells and shows no statistical difference when compared to cells treated with CSK-inhibiting drugs. Inhibition of AMc affects the rate of recovery, in comparison to control cells which recover quite quickly (30-60s). Overall, we demonstrated short and long-term deformation and subsequent recovery of both the cell membrane and actin network in response to a local force.

  14. Regulation of Plasma Membrane Recycling by CFTR

    NASA Astrophysics Data System (ADS)

    Bradbury, Neil A.; Jilling, Tamas; Berta, Gabor; Sorscher, Eric J.; Bridges, Robert J.; Kirk, Kevin L.

    1992-04-01

    The gene that encodes the cystic fibrosis transmembrane conductance regulator (CFTR) is defective in patients with cystic fibrosis. Although the protein product of the CFTR gene has been proposed to function as a chloride ion channel, certain aspects of its function remain unclear. The role of CFTR in the adenosine 3',5'-monophosphate (cAMP)-dependent regulation of plasma membrane recycling was examined. Adenosine 3',5'-monophosphate is known to regulate endocytosis and exocytosis in chloride-secreting epithelial cells that express CFTR. However, mutant epithelial cells derived from a patient with cystic fibrosis exhibited no cAMP-dependent regulation of endocytosis and exocytosis until they were transfected with complementary DNA encoding wild-type CFTR. Thus, CFTR is critical for cAMP-dependent regulation of membrane recycling in epithelial tissues, and this function of CFTR could explain in part the pleiotropic nature of cystic fibrosis.

  15. Direct Recording of Trans-Plasma Membrane Electron Currents Mediated by a Member of the Cytochrome b561 Family of Soybean1

    PubMed Central

    Picco, Cristiana; Scholz-Starke, Joachim; Festa, Margherita; Costa, Alex; Sparla, Francesca; Trost, Paolo; Carpaneto, Armando

    2015-01-01

    Trans-plasma membrane electron transfer is achieved by b-type cytochromes of different families, and plays a fundamental role in diverse cellular processes involving two interacting redox couples that are physically separated by a phospholipid bilayer, such as iron uptake and redox signaling. Despite their importance, no direct recordings of trans-plasma membrane electron currents have been described in plants. In this work, we provide robust electrophysiological evidence of trans-plasma membrane electron flow mediated by a soybean (Glycine max) cytochrome b561 associated with a dopamine β-monooxygenase redox domain (CYBDOM), which localizes to the plasma membrane in transgenic Arabidopsis (Arabidopsis thaliana) plants and CYBDOM complementary RNA-injected Xenopus laevis oocytes. In oocytes, two-electrode voltage clamp experiments showed that CYBDOM-mediated currents were activated by extracellular electron acceptors in a concentration- and type-specific manner. Current amplitudes were voltage dependent, strongly potentiated in oocytes preinjected with ascorbate (the canonical electron donor for cytochrome b561), and abolished by mutating a highly conserved His residue (H292L) predicted to coordinate the cytoplasmic heme b group. We believe that this unique approach opens new perspectives in plant transmembrane electron transport and beyond. PMID:26282237

  16. Plasma membrane isolation using immobilized concanavalin A magnetic beads.

    PubMed

    Lee, Yu-Chen; Srajer Gajdosik, Martina; Josic, Djuro; Lin, Sue-Hwa

    2012-01-01

    Isolation of highly purified plasma membranes is the key step in constructing the plasma membrane proteome. Traditional plasma membrane isolation method takes advantage of the differential density of organelles. While differential centrifugation methods are sufficient to enrich for plasma membranes, the procedure is lengthy and results in low recovery of the membrane fraction. Importantly, there is significant contamination of the plasma membranes with other organelles. The traditional agarose affinity matrix is suitable for isolating proteins but has limitation in separating organelles due to the density of agarose. Immobilization of affinity ligands to magnetic beads allows separation of affinity matrix from organelles through magnets and could be developed for the isolation of organelles. We have developed a simple method for isolating plasma membranes using lectin concanavalin A (ConA) magnetic beads. ConA is immobilized onto magnetic beads by binding biotinylated ConA to streptavidin magnetic beads. The ConA magnetic beads are used to bind glycosylated proteins present in the membranes. The bound membranes are solubilized from the magnetic beads with a detergent containing the competing sugar alpha methyl mannoside. In this study, we describe the procedure of isolating rat liver plasma membranes using sucrose density gradient centrifugation as described by Neville. We then further purify the membrane fraction by using ConA magnetic beads. After this purification step, main liver plasma membrane proteins, especially the highly glycosylated ones and proteins containing transmembrane domains could be identified by LC-ESI-MS/MS. While not described here, the magnetic bead method can also be used to isolate plasma membranes from cell lysates. This membrane purification method should expedite the cataloging of plasma membrane proteome.

  17. Flow in a rotating membrane plasma separator.

    PubMed

    Lueptow, R M; Hajiloo, A

    1995-01-01

    Rotating filter separators are very effective in the separation of plasma from whole blood, but details of the flow field in the device have not been investigated. The flow in a commercial device has been modeled computationally using the finite element code FIDAP. Taylor vortices appear in the upstream end of the annulus but disappear in the downstream end because of increasing blood viscosity as plasma is removed. Fluid transport at the upstream end of the annulus results from both translation of Taylor vortices and fluid winding around the vortices. If the inertial effects of the axial flow are reduced, less fluid winds around the vortices and more fluid is transported by the translation of the vortices. The pressure at the membrane is nonuniform in the region where vortices appear, although the relative magnitude of the fluctuations is small.

  18. A Trial to Cryopreserve Immature Medaka (Oryzias latipes) Oocytes after Enhancing Their Permeability by Exogenous Expression of Aquaporin 3

    PubMed Central

    VALDEZ JR, Delgado M.; TSUCHIYA, Ryoma; SEKI, Shinsuke; SAIDA, Naoya; NIIMI, Saori; KOSHIMOTO, Chihiro; MATSUKAWA, Kazutsugu; KASAI, Magosaburo; EDASHIGE, Keisuke

    2013-01-01

    Abstract Fish oocytes have not been cryopreserved successfully, probably because it is difficult to prevent intracellular ice from forming. Previously, we have shown in medaka that immature oocytes are more suitable for cryopreservation than mature oocytes or embryos, in terms of permeability. We have also shown in immature medaka oocytes that the exogenous expression of aquaporin 3 (AQP3), a water/cryoprotectant channel, promotes the movement of water and cryoprotectants through the plasma membrane. In the present study, we attempted to cryopreserve immature medaka oocytes expressing AQP3. We first examined effects of hypertonic stress and the chemical toxicity of cryoprotectants on the survival of the AQP3-expressing oocytes. Exposure to hypertonic solutions containing sucrose decreased the survival of oocytes, but the expression of AQP3 did not affect sensitivity to hypertonic stress. Also, AQP3 expression did not markedly increase sensitivity to the toxicity of cryoprotectants. Of the four cryoprotectants tested, propylene glycol was the least toxic. Using a propylene glycol-based solution, therefore, we tried to cryopreserve immature oocytes by vitrification. During cooling with liquid nitrogen, all intact oocytes became opaque, but many AQP3-expressing oocytes remained transparent. This indicates that the expression of AQP3 is effective in preventing intracellular ice from forming during cooling. During warming, however, all the AQP3-expressing oocytes became opaque, indicating that intracellular ice formed. Therefore, the dehydration and permeation by propylene glycol were still insufficient. Further studies are necessary to realize the cryopreservation of fish oocytes. PMID:23337101

  19. FRET imaging in living maize cells reveals that plasma membrane aquaporins interact to regulate their subcellular localization.

    PubMed

    Zelazny, Enric; Borst, Jan Willem; Muylaert, Mélanie; Batoko, Henri; Hemminga, Marcus A; Chaumont, François

    2007-07-24

    Zea mays plasma membrane intrinsic proteins (ZmPIPs) fall into two groups, ZmPIP1s and ZmPIP2s, that exhibit different water channel activities when expressed in Xenopus oocytes. ZmPIP1s are inactive, whereas ZmPIP2s induce a marked increase in the membrane osmotic water permeability coefficient, P(f). We previously showed that, in Xenopus oocytes, ZmPIP1;2 and ZmPIP2;1 interact to increase the cell P(f). Here, we report the localization and interaction of ZmPIP1s and ZmPIP2s in living maize cells. ZmPIPs were fused to monomeric yellow fluorescent protein and/or monomeric cyan fluorescent protein and expressed transiently in maize mesophyll protoplasts. When expressed alone, ZmPIP1 fusion proteins were retained in the endoplasmic reticulum, whereas ZmPIP2s were found in the plasma membrane. Interestingly, when coexpressed with ZmPIP2s, ZmPIP1s were relocalized to the plasma membrane. Using FRET/fluorescence lifetime imaging microscopy, we demonstrated that this relocalization results from interaction between ZmPIP1s and ZmPIP2s. Immunoprecipitation experiments provided additional evidence for the association of ZmPIP1;2 and ZmPIP2;1 in maize roots and suspension cells. These data suggest that PIP1-PIP2 interaction is required for in planta PIP1 trafficking to the plasma membrane to modulate plasma membrane permeability. PMID:17636130

  20. Study on the mitochondrial activity and membrane potential after exposing later stage oocytes of two gorgonian corals (Junceella juncea and Junceella fragilis) to cryoprotectants.

    PubMed

    Tsai, S; Spikings, E; Huang, I-C; Lin, C

    2011-01-01

    Coral reefs provide a valuable habitat for many economically valuable fish and invertebrates. However, they are in serious jeopardy, threatened by increasing over-exploitation, pollution, habitat destruction, disease and global climate change. Here, we examined the effect of cryoprotectant exposure on mitochondrial activity and membrane potential in coral oocytes in order to find suitable cryoprotectants towards their successful cryopreservation. According to the No Observed Effect Concentrations (NOECs), methanol was found to be the least toxic cryoprotectant whilst DMSO was the most toxic cryoprotectant. The results also demonstrated that there were no significant differences (p > 0.05) in ATP concentrations between Junceella juncea and Junceella fragilis after exposure to all concentrations of all cryoprotectants for 30 min. Using confocal microscopy, JC-1 (5,50,6,60-tetrachloro-1,10,3,30-tetraethyl-imidacarbocyanine iodide) staining indicated that the mitochondrial membrane potential of Junceella fragilis oocytes reduced after 1 M and 2 M methanol treatment and a loss of the mitochondrial distribution pattern and poor green fluorescence after 3M methanol treatment. Therefore, even oocytes that show no adverse effect of cryoprotectants on survival might suffer some more subtle impacts. The results obtained from this study will provide a basis for development of protocols to cryopreserve the oocytes of gorgonian corals.

  1. Selective photosensitizer delivery into plasma membrane for effective photodynamic therapy.

    PubMed

    Kim, Jiyoung; Santos, Olavo Amorim; Park, Ji-Ho

    2014-10-10

    Subcellular localization of photosensitizers (PSs) determines the therapeutic efficacy in the photodynamic therapy. However, among the subcellular compartments, there has been little effort to deliver the PSs selectively into the plasma membrane and examine the phototherapeutic efficacy of membrane-localized PSs. Here, we developed a liposomal delivery system to localize the hydrophobic PSs selectively into the plasma membrane. The membrane fusogenic liposomes (MFLs), the membrane of which is engineered to fuse with the plasma membrane, was prepared for the membrane localization of PSs. The phototherapeutic efficacy of cells treated with ZnPc-loaded MFLs was superior over that of cells treated with ZnPc-loaded non-fusogenic liposomes, which is the conventional liposomal formulation that delivers the PSs into the intracellular compartments via endocytosis. The membrane localization of ZnPc molecules led to rapid membrane disruption upon irradiation and subsequent necrosis-like cell death. The membrane-localized generation of reactive oxygen species in the cells treated with ZnPc-loaded MFLs was likely to account for the effective disruption of plasma membrane. Thus, this work provides a novel delivery method to localize the PSs selectively into the plasma membrane with the enhanced phototherapeutic efficacy.

  2. Functional expression of murine multidrug resistance in Xenopus laevis oocytes

    SciTech Connect

    Castillo, G.; Vera, J.C.; Rosen, O.M. ); Yang, Chiaping Huang; Horwitz, S.B. )

    1990-06-01

    The development of multidrug resistance (MDR) is associated with the overproduction of a plasma membrane glycoprotein, P glycoprotein. Here the authors report the functional expression of a member of the murine MDR family of proteins and show that Xenopus oocytes injected with RNA encoding the mouse mdr1b P glycoprotein develop a MDR-like phenotype. Immunological analysis indicated that oocytes injected with the mdr1b RNA synthesized a protein with the size and immunological characteristics of the mouse mdr1b P glycoprotein. These oocytes exhibited a decreased accumulation of ({sup 3}H)vinblastine and showed an increased capacity to extrude the drug compared to control oocytes not expressing the P glycoprotein. In addition, competition experiments indicated that verapamil, vincristine, daunomycin, and quinidine, but not colchicine, can overcome the rapid drug efflux conferred by the expression of the mouse P glycoprotein.

  3. Interaction of lipophorin with Rhodnius prolixus oocytes: biochemical properties and the importance of blood feeding

    PubMed Central

    Entringer, Petter Franco; Grillo, Luciano Aparecido Meireles; Pontes, Emerson Guedes; Machado, Ednildo Alcântara; Gondim, Katia Calp

    2013-01-01

    Lipophorin (Lp) is the main haemolymphatic lipoprotein in insects and transports lipids between different organs. In adult females, lipophorin delivers lipids to growing oocytes. In this study, the interaction of this lipoprotein with the ovaries of Rhodnius prolixus was characterised using an oocyte membrane preparation and purified radiolabelled Lp (125I-Lp). Lp-specific binding to the oocyte membrane reached equilibrium after 40-60 min and when 125I-Lp was incubated with increasing amounts of membrane protein, corresponding increases in Lp binding were observed. The specific binding of Lp to the membrane preparation was a saturable process, with a Kdof 7.1 ± 0.9 x 10-8M and a maximal binding capacity of 430 ± 40 ng 125I-Lp/µg of membrane protein. The binding was calcium independent and pH sensitive, reaching its maximum at pH 5.2-5.7. Suramin inhibited the binding interaction between Lp and the oocyte membranes, which was completely abolished at 0.5 mM suramin. The oocyte membrane preparation from R. prolixus also showed binding to Lp from Manduca sexta. When Lp was fluorescently labelled and injected into vitellogenic females, the level of Lp-oocyte binding was much higher in females that were fed whole blood than in those fed blood plasma. PMID:24037104

  4. Order of lipid phases in model and plasma membranes

    PubMed Central

    Kaiser, Hermann-Josef; Lingwood, Daniel; Levental, Ilya; Sampaio, Julio L.; Kalvodova, Lucie; Rajendran, Lawrence; Simons, Kai

    2009-01-01

    Lipid rafts are nanoscopic assemblies of sphingolipids, cholesterol, and specific membrane proteins that contribute to lateral heterogeneity in eukaryotic membranes. Separation of artificial membranes into liquid-ordered (Lo) and liquid-disordered phases is regarded as a common model for this compartmentalization. However, tight lipid packing in Lo phases seems to conflict with efficient partitioning of raft-associated transmembrane (TM) proteins. To assess membrane order as a component of raft organization, we performed fluorescence spectroscopy and microscopy with the membrane probes Laurdan and C-laurdan. First, we assessed lipid packing in model membranes of various compositions and found cholesterol and acyl chain dependence of membrane order. Then we probed cell membranes by using two novel systems that exhibit inducible phase separation: giant plasma membrane vesicles [Baumgart et al. (2007) Proc Natl Acad Sci USA 104:3165–3170] and plasma membrane spheres. Notably, only the latter support selective inclusion of raft TM proteins with the ganglioside GM1 into one phase. We measured comparable small differences in order between the separated phases of both biomembranes. Lateral packing in the ordered phase of giant plasma membrane vesicles resembled the Lo domain of model membranes, whereas the GM1 phase in plasma membrane spheres exhibited considerably lower order, consistent with different partitioning of lipid and TM protein markers. Thus, lipid-mediated coalescence of the GM1 raft domain seems to be distinct from the formation of a Lo phase, suggesting additional interactions between proteins and lipids to be effective. PMID:19805351

  5. Characterization of multiple membrane progestin receptor (mPR) subtypes from the goldfish ovary and their roles in the induction of oocyte maturation.

    PubMed

    Tokumoto, Toshinobu; Tokumoto, Mika; Oshima, Takayuki; Shimizuguchi, Kumi; Fukuda, Tatsuya; Sugita, Etsuko; Suzuki, Manami; Sakae, Yu-ta; Akiyama, Yu-ichi; Nakayama, Ryo; Roy, Shimi Rani; Saydur Rahman, Md; Pang, Yefei; Dong, Jing; Thomas, Peter

    2012-05-15

    Oocyte maturation (OM) in goldfish is induced by the maturation inducing hormone (MIH) via its membrane receptor. Previously, we described the cloning of the membrane progesterone receptor alpha (mPRα or paqr7b) cDNA from a goldfish ovarian cDNA library and obtained experimental evidence that the mPRα protein is an intermediary in MIH induction of OM in goldfish. Three mPR subtypes have been identified in fish by cDNA cloning or by in silico analysis of genome sequence databases. In order to investigate the potential roles of the mPR subtypes in oocyte maturation, we cloned additional mPRs from a goldfish ovarian cDNA library. RACE amplification, and screening of the cDNA library identified one β (paqr8) and two γ subtypes (paqr5) (hereafter referred to as γ-1 and γ-2), respectively. Tissue distribution of mPR subtypes showed differential expression pattern. However, in addition to mPRα, the β, γ-1 and γ-2 subtypes were also expressed in follicle-enclosed oocytes. Cell lines expressing the β, γ-1 and γ-2 genes were established and their steroid binding properties compared. The β subtype exhibited higher binding affinity than the γ subtypes for 17,20β-DHP, the MIH in goldfish. Microinjection of goldfish oocytes with a morpholino antisense oligonucleotide to mPRβ blocked the induction of oocyte maturational competence, whereas injection of antisense oliogonucleotides to mPRγ-1 and γ-2 were ineffective. These results suggest that the goldfish mPRβ protein acts as an intermediary during MIH induction of OM in goldfish, in a manner similar to that described previously for mPRα.

  6. SLC41A2 encodes a plasma-membrane Mg2+ transporter

    PubMed Central

    Sahni, Jaya; Nelson, Bruce; Scharenberg, Andrew M.

    2006-01-01

    The TRPM7 (transient receptor potential melastatin 7) ion channel has been implicated in the uptake of Mg2+ into vertebrate cells, as elimination of TRPM7 expression through gene targeting in DT40 B-lymphocytes renders them unable to grow in the absence of supplemental Mg2+. However, a residual capacity of TRPM7-deficient cells to accumulate Mg2+ and proliferate when provided with supplemental Mg2+ suggests the existence of Mg2+ uptake mechanism(s) other than TRPM7. Evaluation of the expression of several members of the SLC41 (solute carrier family 41) family, which exhibit homology with the MgtE class of prokaryotic putative bivalent-cation transporters, demonstrated that one, SLC41A2 (solute carrier family 41 member 2), is expressed in both wild-type and TRPM7-deficient DT40 cells. Characterization of heterologously expressed SLC41A2 protein indicated that it is a plasma-membrane protein with an N-terminus-outside/C-terminus-inside 11-TM (transmembrane)-span topology, consistent with its functioning as a trans-plasma-membrane transporter. In contrast with a previous report of ion-channel activity associated with SLC41A2 expression in oocytes, investigation of whole cell currents in SLC41A2-expressing DT40 cells revealed no novel currents of any type associated with SLC41A2 expression. However, expression of SLC41A2 in TRPM7-deficient cells under the control of a doxycycline-inducible promoter was able to conditionally enhance their net uptake of 26Mg2+ and conditionally and dose-dependently provide them with the capacity to grow in the absence of supplemental Mg2+, observations strongly supporting a model whereby SLC41A2 directly mediates trans-plasma-membrane Mg2+ transport. Overall, our results suggest that SLC41A2 functions as a plasma-membrane Mg2+ transporter in vertebrate cells. PMID:16984228

  7. Solanaceae XIPs are plasma membrane aquaporins that facilitate the transport of many uncharged substrates.

    PubMed

    Bienert, Gerd Patrick; Bienert, Manuela Désirée; Jahn, Thomas Paul; Boutry, Marc; Chaumont, François

    2011-04-01

    Major intrinsic proteins (MIPs) transport water and uncharged solutes across membranes in all kingdoms of life. Recently, an uncharacterized MIP subfamily was identified in the genomes of plants and fungi and named X Intrinsic Proteins (XIPs). Here, we describe the genetic features, localization, expression, and functions of a group of Solanaceae XIPs. XIP cDNA and gDNA were cloned from tobacco, potato, tomato, and morning glory. A conserved sequence motif in the first intron of Solanaceae XIPs initiates an RNA-processing mechanism that results in two splice variants (α and β). When transiently or stably expressed in tobacco plants, yellow fluorescent protein-tagged NtXIP1;1α and NtXIP1;1β were both localized in the plasma membrane. Transgenic tobacco lines expressing NtXIP1;1-promoter-GUS constructs and RT-PCR studies showed that NtXIP1;1 was expressed in all organs. The NtXIP1;1 promoter was mainly active in cell layers facing the environment in all above-ground tissues. Heterologous expression of Solanaceae XIPs in Xenopus laevis oocytes and various Saccharomyces cerevisiae mutants demonstrated that these isoforms facilitate the transport of bulky solutes, such as glycerol, urea, and boric acid. In contrast, permeability for water was undetectable. These data suggest that XIPs function in the transport of uncharged solutes across the cell plasma membrane in specific plant tissues, including at the interface between the environment and external cell layers.

  8. PIP1 plasma membrane aquaporins in tobacco: from cellular effects to function in plants.

    PubMed

    Siefritz, Franka; Tyree, Melvin T; Lovisolo, Claudio; Schubert, Andrea; Kaldenhoff, Ralf

    2002-04-01

    The molecular functions of several aquaporins are well characterized (e.g., by analysis of aquaporin-expressing Xenopus oocytes). However, their significance in the physiology of water transport in multicellular organisms remains uncertain. The tobacco plasma membrane aquaporin NtAQP1 was used to elucidate this issue. By comparing antisense plants that were inhibited in NtAQP1 expression with control plants, we found evidence for NtAQP1 function in cellular and whole-plant water relations. The consequences of a decrease in cellular water permeability were determined by measurement of transpiration rate and stem and leaf water potential as well as growth experiments under extreme soil water depletion. Plants impaired in NtAQP1 expression showed reduced root hydraulic conductivity and lower water stress resistance. In conclusion, our results emphasize the importance of symplastic aquaporin-mediated water transport in whole-plant water relations. PMID:11971141

  9. Preparation of plasma-membrane subfractions from isolated rat hepatocytes.

    PubMed Central

    Wisher, M H; Evans, W H

    1977-01-01

    1. Rat livers were dissociated into their constituent cells by perfusion through the portal vein with a medium containing collagenase, and hepatocytes separated from non-parenchymal cells. 2. It is shown that the procedure described by Wisher & Evans [(1975) Biochem. J. 146, 375-388] for preparation of plasma membranes from liver tissue when applied to isolated hepatocytes also yielded subfractions of similar morphology and marker-enzyme distribution. 3. Thus the distribution of alkaline phosphodiesterase, 5'-nucleotidase and the basal and glucagon-stimulated adenylate cyclase among two 'light' vesicular and one 'heavy' junction-containing plasma-membrane subfractions paralleled that reported for tissue-derived plasma-membrane subfractions. 4. Increased recoveries and specific activities of plasma-membrane marker enzymes were obtained when soya-bean trypsin inhibitor was included in the collagenase-containing perfusion media used to dissociate the liver. 5. Polyacrylamide-gel-electrophoretic analysis of the corresponding plasma-membrane subfractions prepared from liver tissue and isolated hepatocytes were generally similar. 6. The results indicate that the functional polarity of the hepatocyte's plasma membrane is retained after tissue dissociation. The damage occurring to plasma-membrane ectoenzymes by the collagenase-perfusion procedure is discussed. Images PLATE 1 PLATE 2 PLATE 3 PMID:880246

  10. Membrane potential governs lateral segregation of plasma membrane proteins and lipids in yeast.

    PubMed

    Grossmann, Guido; Opekarová, Miroslava; Malinsky, Jan; Weig-Meckl, Ina; Tanner, Widmar

    2007-01-10

    The plasma membrane potential is mainly considered as the driving force for ion and nutrient translocation. Using the yeast Saccharomyces cerevisiae as a model organism, we have discovered a novel role of the membrane potential in the organization of the plasma membrane. Within the yeast plasma membrane, two non-overlapping sub-compartments can be visualized. The first one, represented by a network-like structure, is occupied by the proton ATPase, Pma1, and the second one, forming 300-nm patches, houses a number of proton symporters (Can1, Fur4, Tat2 and HUP1) and Sur7, a component of the recently described eisosomes. Evidence is presented that sterols, the main lipid constituent of the plasma membrane, also accumulate within the patchy compartment. It is documented that this compartmentation is highly dependent on the energization of the membrane. Plasma membrane depolarization causes reversible dispersion of the H(+)-symporters, not however of the Sur7 protein. Mitochondrial mutants, affected in plasma membrane energization, show a significantly lower degree of membrane protein segregation. In accordance with these observations, depolarized membranes also considerably change their physical properties (detergent sensitivity).

  11. The plasma membrane of Saccharomyces cerevisiae: structure, function, and biogenesis.

    PubMed Central

    van der Rest, M E; Kamminga, A H; Nakano, A; Anraku, Y; Poolman, B; Konings, W N

    1995-01-01

    The composition of phospholipids, sphingolipids, and sterols in the plasma membrane has a strong influence on the activity of the proteins associated or embedded in the lipid bilayer. Since most lipid-synthesizing enzymes in Saccharomyces cerevisiae are located in intracellular organelles, an extensive flux of lipids from these organelles to the plasma membrane is required. Although the pathway of protein traffic to the plasma membrane is similar to that of most of the lipids, the bulk flow of lipids is separate from vesicle-mediated protein transport. Recent advances in the analysis of membrane budding and membrane fusion indicate that the mechanisms of protein transport from the endoplasmic reticulum to the Golgi and from the Golgi to plasma membrane are similar. The majority of plasma membrane proteins transport solutes across the membrane. A number of ATP-dependent export systems have been detected that couple the hydrolysis of ATP to transport of molecules out of the cell. The hydrolysis of ATP by the plasma membrane H(+)-ATPase generates a proton motive force which is used to drive secondary transport processes. In S. cerevisiae, many substrates are transported by more than one system. Transport of monosaccharide is catalyzed by uniport systems, while transport of disaccharides, amino acids, and nucleosides is mediated by proton symport systems. Transport activity can be regulated at the level of transcription, e.g., induction and (catabolite) repression, but transport proteins can also be affected posttranslationally by a process termed catabolite inactivation. Catabolite inactivation is triggered by the addition of fermentable sugars, intracellular acidification, stress conditions, and/or nitrogen starvation. Phosphorylation and/or ubiquitination of the transport proteins has been proposed as an initial step in the controlled inactivation and degradation of the target enzyme. The use of artificial membranes, like secretory vesicles and plasma membranes

  12. Changes in plasma steroid levels during oocyte development in Indian shad, Tenualosa ilisha (Hamilton, 1822): role of gonadotropins on in vitro steroid production and development of oocyte maturational competence.

    PubMed

    Pramanick, Kousik; Kundu, Sourav; Paul, Sudipta; Mallick, Buddhadev; Moulik, Sujata Roy; Pal, Puja; Mukherjee, Dilip

    2013-10-01

    Circanual variations in plasma testosterone (T), 17-estradiol (E2), and 17,20-dihydroxy-4-pregnen-3-one (17,20-P) levels and ovarian steroid synthetic potential of Tenualosa ilisha of river Hooghly, West Bengal, India were examined. This fish exhibited bi-annual spawning; one during April-May and another during August-September. Coinciding with the GSI values, present study recorded a decline in plasma T and E2 levels from October, reaching their lowest values in January followed by a rapid rise in March when the ovary contained mostly vitellogenic follicles and remained high up to April (postvitellogenic stage). Plasma 17,20β-P level was detected in March and reached peak value in April during oocyte maturation. After spawning, all the steroid levels declined to reach lowest values in June. From June onwards, T and E2 levels again increased for the next cycle and peaked at the end of vitellogenesis. Plasma 17,20β-P was reappeared in August and reached maximum in September during oocyte maturation and spawning. Of the two gonadotropins tested, in vitro production of both T and E2 by the vitellogenic and postvitellogenic follicles was regulated by FSH and LH respectively. Production of 17,20-P by the post-vitellogenic follicles was regulated by LH only. Acquisition of in vitro oocyte maturational competence (OMC) was developed by the addition of HCG in culture medium. Treatment of a 3β-HSD inhibitor blocked LH-induced steroid production, but not development of OMC. Both Cycloheximide and actinomycin D inhibited LH-induced development of OMC, indicating the requirement of de novo protein synthesis for this process. PMID:24012178

  13. Fatty acid profiles from the plasma membrane and detergent resistant membranes of two plant species.

    PubMed

    Carmona-Salazar, Laura; El Hafidi, Mohammed; Gutiérrez-Nájera, Nora; Noyola-Martínez, Liliana; González-Solís, Ariadna; Gavilanes-Ruíz, Marina

    2015-01-01

    It is essential to establish the composition of the plant plasma membrane in order to understand its organization and behavior under continually changing environments. Knowledge of the lipid phase, in particular the fatty acid (FA) complex repertoire, is important since FAs determine many of the physical-chemical membrane properties. FAs are constituents of the membrane glycerolipid and sphingolipid backbones and can also be linked to some sterols. In addition, FAs are components of complex lipids that can constitute membrane micro-domains, and the use of detergent-resistant membranes is a common approach to study their composition. The diversity and cellular allocation of the membrane lipids containing FAs are very diverse and the approaches to analyze them provide only general information. In this work, a detailed FA analysis was performed using highly purified plasma membranes from bean leaves and germinating maize embryos and their respective detergent-resistant membrane preparations. The analyses showed the presence of a significant amount of very long chain FAs (containing 28C, 30C and 32C), in both plasma membrane preparations from bean and maize, that have not been previously reported. Herein is demonstrated that a significant enrichment of very long chain saturated FAs and saturated FAs can occur in detergent-resistant membrane preparations, as compared to the plasma membranes from both plant species. Considering that a thorough analysis of FAs is rarely performed in purified plasma membranes and detergent-resistant membranes, this work provides qualitative and quantitative evidence on the contributions of the length and saturation of FAs to the organization of the plant plasma membrane and detergent-resistant membranes.

  14. The Crucial Role of Zona Pellucida in Cryopreservation of Oocytes by Vitrification

    PubMed Central

    Choi, Jung Kyu; Yue, Tao; Huang, Haishui; Zhao, Gang; Zhang, Mingjun; He, Xiaoming

    2015-01-01

    Mammalian oocytes have a proteinaceous hydrogel-like outer shell known as the zona pellucida (ZP) that semi-encloses their plasma membrane and cytoplasm. In this study, we cryopreserved mouse oocytes either with or without ZP by vitrification. Our results show that the presence of an intact ZP could significantly improve the post-vitrification survival of oocytes to 92.1% from 13.3% for oocytes without ZP. Moreover, there was no significant difference in embryonic development between fresh and cryopreserved oocytes with ZP after in vitro fertilization (IVF). Further atomic force microscopy (AFM) analysis showed that the intact oocytes with ZP have an elastic modulus that is more than 85 times higher than that of oocytes without ZP. This may partially explain the important role of ZP in protecting the oocytes by resisting the mechanical stress due to possible ice formation during cryopreservation by vitrification. Collectively, this study reveals a new biophysical role of ZP during vitrification of oocytes and suggests microencapsulation of the many mammalian cells without a ZP in ZP-like hydrogel is an effective strategy to improve their survival post cryopreservation by vitrification. PMID:26297946

  15. Plasma membrane reorganization induced by chemical transformation in cultura

    SciTech Connect

    Packard, B.S.

    1984-04-01

    Induction of increased rigidity in the plasma membrane paralleling properties associated with a transformed state was suggested by two experiments. Fluorescence recovery after photobleaching (FRAP) indicated the induction of an environment in the plasma membrane where the synthetic fluorescent phospholipid collarein was immobile on the FRAP timescale. The other technique revealed the binding of epidermal growth factor (EGF) to a cryptic class of receptors which become accessible upon chemical transformation. These two lines of evidence are consistent with a reorganization of the plasma membrane induced by tumor promoters. 110 references, 38 figures, 4 tables.

  16. Functional roles of plasma membrane localized estrogen receptors.

    PubMed

    Sreeja, S; Thampan, RaghavaVarman

    2003-07-01

    A series of emerging data supports the existence and importance of plasma membrane localized estrogen receptors in a variety of cells that are targets for the steroid hormone action. When estradiol (E2) binds to the cell surface protein, the ensuing signal transduction event triggers downstream signaling cascades that contribute to important biological functions. Aside from the classical signaling through nuclear estrogen receptors, we have provided evidence for the functional roles of an estrogen receptor localized in the plasma membrane. This review highlights some of the recent advances made in the understanding of the genomic/non-genomic actions of plasma membrane localized estrogen receptors. PMID:15255376

  17. Effects of cryopreservation on meiotic spindles of oocytes and its dynamics after thawing: clinical implications in oocyte freezing--a review article.

    PubMed

    Chen, S U; Lien, Y R; Chao, K H; Ho, H N; Yang, Y S; Lee, T Y

    2003-04-28

    Embryo freezing has been a successful practice, but oocyte cryopreservation formerly achieved poorer results. This was mainly due to low rates of survival, fertilization, and development. The major dissimilarities for oocytes to embryos are the character of the plasma membrane, the presence of cortical granules, at the metaphase of meiosis II with the spindle system. In addition, the oocytes must be fertilized by sperm at the appropriate time. To improve the survival rate, a refined slow freezing method with increased sucrose concentration would dehydrate oocytes more sufficiently. Vitrification is another approach to prevent ice crystal formation. Intracytoplasmic sperm injection is used to overcome possible zona hardening from the release of cortical granules. The microtubules of meiotic spindles are vulnerable to the thermal changes and would depolymerize. Cryopreserved oocytes exhibited serious disturbances of the microtubules immediately after thawing. Fertilization of oocytes with disorganized spindles could lead to chromosomal aneuploidy, digyny, and arrest of cleavage. After incubation, the microtubules would repolymerize in a time-dependent way. Normal fertilization and development of cryopreserved oocytes improved after appropriate incubation and timing of insemination, compatible with recovery of the spindles. With the improvement of survival, fertilization, and cleavage, oocyte cryopreservation would gain an imperative role.

  18. Characterization of α-Crystallin-Plasma Membrane Binding*

    PubMed Central

    Cobb, Brian A.; Petrash, J. Mark

    2010-01-01

    α-Crystallin, a large lenticular protein complex made up of two related subunits (αA- and αB-crystallin), is known to associate increasingly with fiber cell plasma membranes with age and/or the onset of cataract. To understand better the binding mechanism, we developed a sensitive membrane binding assay using lens plasma membranes and recombinant human αA- and αB-crystallins conjugated to a small fluorescent tag (Alexa350®). Both αA and αB homopolymer complexes, as well as a reconstituted 3:1 heteromeric complex, bind to lens membranes in a specific, saturable, and partially irreversible manner that is sensitive to both time and temperature. The amount of α-crystallin that binds to the membrane increases under acidic pH conditions and upon removal of exposed intrinsic membrane protein domains but is not affected at high ionic strength, suggesting that α-crystallin binds to the fiber cell plasma membranes mainly through hydrophobic interactions. The binding capacity and affinity for the reconstituted 3:1 heteromeric complex were measured to be 3.45 ± 0.11 ng/μg of membrane and 4.57 ± 0.50 × 10−4 μg−1 of membrane, respectively. The present membrane binding data support the hypothesis that the physical properties of a mixed α-crystallin complex may hold particular relevance for the function of α-crystallin within the lens. PMID:10692476

  19. Composite plasma polymerized sulfonated polystyrene membrane for PEMFC

    SciTech Connect

    Nath, Bhabesh Kumar; Khan, Aziz; Chutia, Joyanti

    2015-10-15

    Highlights: • Methyl methane sulfonate (MMS) is used as the sulfonating agent. • The proton conductivity of the membrane is found to be 0.141 S cm{sup −1}. • Power density of fuel cell with styrene/MMS membrane is 0.5 W cm{sup −2}. • The membrane exhibits thermal stability up to 140 °C. - Abstract: This work presents the introduction of an organic compound methyl methane sulfonate (MMS) for the first time in fabrication of polystyrene based proton exchange membrane (PEM) by plasma polymerization process. The membrane is fabricated by co-polymerizing styrene and MMS in capacitively coupled continuous RF plasma. The chemical composition of the plasma polymerized polymer membrane is investigated using Fourier Transform Infrared Spectroscopy which reveals the formation of composite structure of styrene and MMS. The surface morphology studied using AFM and SEM depicts the effect of higher partial pressure of MMS on surface topography of the membrane. The proton transport property of the membrane studied using electrochemical impedance spectroscopy shows the achievement of maximum proton conductivity of 0.141 S cm{sup −1} which is comparable to Nafion 117 membrane. Fuel cell performance test of the synthesized membrane shows a maximum power density of 500 mW cm{sup −2} and current density of 0.62 A cm{sup −2} at 0.6 V.

  20. A study relating the composition of follicular fluid and blood plasma from individual Holstein dairy cows to the in vitro developmental competence of pooled abattoir-derived oocytes.

    PubMed

    Sutton-McDowall, Melanie L; Yelland, Robert; MacMillan, Keith L; Robker, Rebecca L; Thompson, Jeremy G

    2014-07-01

    The fertility of high-performance (high milk yield) dairy breeds such as the Holstein within the Australian dairy herd has been on the decline for the past two decades. The 12-month calving interval for pasture-based farming practices results in oocyte maturation coinciding with peak lactation, periods of negative energy balance, and energy partitioning for lactation, causing energy deficiency in some organ systems, including the reproductive system. Oocyte developmental competence (the ability to undergo successful fertilization, embryo development, and establishment of pregnancy) is intrinsically linked with the composition of follicular fluid (FF). The aim of this study was to determine if there was a relationship between the fat and carbohydrate levels in plasma and FF and the ability to support in vitro oocyte maturation (IVM). Plasma and FF were collected in vivo from eight Holstein cows between 52 and 151 days post-partum. Plasma glucose trended (P = 0.072) higher and triglyceride levels were significantly higher than in FF (P < 0.05), but there were no relationships between FF and plasma composition. Glucose FF concentration was negatively related to follicular lactate and nonesterified fatty acid (NEFA) levels and days post-partum. Conversely, FF triglyceride concentrations were positively related to FF NEFA levels and negatively related to milk fat and protein composition. Abattoir-derived cumulus-oocyte complexes were cultured in either 50% FF (FF-IVM) or 50% plasma (plasma-IVM), with on-time embryo development then assessed. Although there were no differences between animals, the blastocyst rates after FF-IVM were negatively related to plasma glucose and days post-partum and positively related to body condition score and plasma NEFA levels. In comparison to the previous studies, total NEFA levels in FF were not related to animal parameters and did not influence oocyte developmental competence in vitro. Results from this study suggest that days

  1. Protein-Centric N-Glycoproteomics Analysis of Membrane and Plasma Membrane Proteins

    PubMed Central

    2015-01-01

    The advent of proteomics technology has transformed our understanding of biological membranes. The challenges for studying membrane proteins have inspired the development of many analytical and bioanalytical tools, and the techniques of glycoproteomics have emerged as an effective means to enrich and characterize membrane and plasma-membrane proteomes. This Review summarizes the development of various glycoproteomics techniques to overcome the hurdles formed by the unique structures and behaviors of membrane proteins with a focus on N-glycoproteomics. Example contributions of N-glycoproteomics to the understanding of membrane biology are provided, and the areas that require future technical breakthroughs are discussed. PMID:24754784

  2. Enhancement of polycarbonate membrane permeability due to plasma polymerization precursors

    NASA Astrophysics Data System (ADS)

    Çökeliler, Dilek

    2013-03-01

    The diffusivity of different species through a membrane depends on several factors to illustrate the structure of the matrix, molecular size and concentration of the species and temperature. This study concerns the use of the low-pressure plasma process with different monomers to confer surface chemical character to polycarbonate membranes without altering their bulk properties for change membrane permeability. Track-etched polycarbonate membranes with 0.03 μm pore sizes were modified by plasma polymerization technique with two precursors; acrylic acid and allylamine in radio frequency discharge at certain plasma process conditions (discharge power: 20 W, exposure time: 10 min, frequency: 13.56 MHz). The transport properties of model organic acid (citric acid) was studied through unmodified and modified polycarbonate membranes by using diffusion cell system. Such plasma treated membranes were characterized by scanning electron microscopy, X-ray photoelectron spectroscopy and surface energy changes were studied by static contact angle measurements. These results showed that the change of surface properties could be used to improve the transport properties of the target substrates. The diffusion of citric acid through plasma treated polycarbonate membrane was increased about 54.1 ± 3.5% with precursor: allylamine while it was decreased 48.7 ± 2.5% with precursor acrylic acid. It was observed that the presences of proper functional group (like amino) in surfaces of pores can raise the affinity to citric acid and improve its transport rate.

  3. Facilitative plasma membrane transporters function during ER transit

    PubMed Central

    Takanaga, Hitomi; Frommer, Wolf B.

    2010-01-01

    Although biochemical studies suggested a high permeability of the endoplasmic reticulum (ER) membrane for small molecules, proteomics identified few specialized ER transporters. To test functionality of transporters during ER passage, we tested whether glucose transporters (GLUTs, SGLTs) destined for the plasma membrane are active during ER transit. HepG2 cells were characterized by low-affinity ER transport activity, suggesting that ER uptake is protein mediated. The much-reduced capacity of HEK293T cells to take up glucose across the plasma membrane correlated with low ER transport. Ectopic expression of GLUT1, -2, -4, or -9 induced GLUT isoform-specific ER transport activity in HEK293T cells. In contrast, the Na+-glucose cotransporter SGLT1 mediated efficient plasma membrane glucose transport but no detectable ER uptake, probably because of lack of a sufficient sodium gradient across the ER membrane. In conclusion, we demonstrate that GLUTs are sufficient for mediating ER glucose transport en route to the plasma membrane. Because of the low volume of the ER, trace amounts of these uniporters contribute to ER solute import during ER transit, while uniporters and cation-coupled transporters carry out export from the ER, together potentially explaining the low selectivity of ER transport. Expression levels and residence time of transporters in the ER, as well as their coupling mechanisms, could be key determinants of ER permeability.—Takanaga, H., Frommer, W. B. Facilitative plasma membrane transporters function during ER transit. PMID:20354141

  4. Glycan Moieties as Bait to Fish Plasma Membrane Proteins.

    PubMed

    Fang, Fei; Zhao, Qun; Sui, Zhigang; Liang, Yu; Jiang, Hao; Yang, Kaiguang; Liang, Zhen; Zhang, Lihua; Zhang, Yukui

    2016-05-17

    Plasma membrane proteome analysis is of significance for screening candidate biomarkers and drug targets. However, due to their low abundance and lack of specific groups that can enable their capture, the plasma membrane proteins (PMPs) are under-represented. On the basis of the fact that PMPs are embedded in or anchored to the phospholipid bilayer of the plasma membrane and the glycan moieties of proteins and lipids located on the plasma membrane are exposed outside of the cell surface, we proposed a strategy to capture PMPs, termed as glycan moieties-directed PMPs enrichment (GMDPE). With the glycan moieties exposed outside of the cells as bait to ensure the selectivity and the phospholipid bilayer as raft to provide the sensitivity, we applied this strategy into the plasma membrane proteome analysis of HeLa cells, and in total, 772 PMPs were identified, increased by 4.5 times compared to those identified by the reported cell surface biotinylation method. Notably, among them, 86 CD antigens and 16 ion channel proteins were confidently identified. All these results demonstrated that our proposed approach has great potential in the large scale plasma membrane proteome profiling.

  5. Plasma gonadotropin II, sex steroids, and thyroid hormones in wild striped bass (Morone saxatilis) during spermiation and final oocyte maturation.

    PubMed

    Mylonas, C C; Scott, A P; Zohar, Y

    1997-11-01

    The blood levels of gonadotropin II (GtH II), sex-steroid hormones, and thyroid hormones were determined in wild spermiating male striped bass (Morone saxatilis) in males and in females at various stages of final oocyte maturation (FOM), captured on their spawning grounds. The progression of spermiation was associated with increases in plasma GtH II and decreases in plasma testosterone (T), 11-ketotestosterone, and thyroxine (T4). Plasma triiodothyronine (T3) remained at high and relatively unchanged levels. Plasma levels of 17,20beta-dihydroxy-4-pregnen-3-one (17,20beta-P) and 17,20beta, 21-trihydroxy-4-pregnen-3-one (17,20beta,21-P), the proposed maturation-inducing steroids (MIS) in striped bass, were low and unchanged during the same period. It was concluded that low progestogen levels are adequate to induce spermiation in striped bass, and that higher levels may be associated with spawning behavior. In the females, based on the profiles of the studied hormones, FOM was separated into two phases. Early FOM, which included germinal vesicle (GV) migration and lipid-droplet coalescence, was associated with elevations in plasma GtH II, T, and estradiol 17beta. Late FOM, which included GV breakdown and yolk-globule coalescence, was associated with a further surge in plasma GtH II, increases in the levels of the two MIS, mainly 17, 20beta-P, and a drop in T4. Plasma T3 levels did not change during FOM. Examination of conjugated steroids demonstrated, in the males, a reduction in conjugated androgens at the peak of the spawning season and, in the females, a small increase in conjugated 17, 20beta-dihydroxylated and 5beta-reduced,3alpha-hydroxylated steroids after spawning. This is the most comprehensive report, to date, on the endocrine regulation of gonadal maturation in wild striped bass, demonstrating that a two-stage process of FOM is regulated by different endocrine signals, providing further evidence for the involvement of 17,20beta-P as a MIS in the females

  6. Importance of plasma membrane dynamics in chemical-induced carcinogenesis.

    PubMed

    Tekpli, Xavier; Holme, Jørn A; Sergent, Odile; Lagadic-Gossmann, Dominique

    2011-09-01

    In the last decade, a lot of patents have been filled regarding molecular biology and functions of cellular membranes. The membrane bilayer model has evolved from a static, passive, homogeneous barrier to a highly dynamic, asymmetric, heterogeneous structure composed of distinct domains. Changes in membrane fluidity and composition of microdomains have been proven to be involved in the regulation of many important physiological signaling pathways. Recently, several xenobiotics, including various drugs and environmental pollutants, have been reported to change plasma membrane characteristics, thereby altering cell physiology. Interestingly, it has been suggested that a cross talk between chemical-induced cellular membrane effects and DNA damages may be important for the final mutation outcome of genotoxic chemicals. Thus, effects on plasma membrane remodeling may give additional mechanistic explanations to how certain chemicals exert their carcinogenic effect. With respect to such effects, recent patents suggest to focus on plasma membrane and its components like caveolin-1 for cancer screening and chemotherapy. Here, we review the effects of environmental toxicants on cellular plasma membrane structure and function, and further describe possible implication for health and disease.

  7. Calcium signaling differentiation during Xenopus oocyte maturation.

    PubMed

    El-Jouni, Wassim; Jang, Byungwoo; Haun, Shirley; Machaca, Khaled

    2005-12-15

    Ca(2+) is the universal signal for egg activation at fertilization in all sexually reproducing species. The Ca(2+) signal at fertilization is necessary for egg activation and exhibits specialized spatial and temporal dynamics. Eggs acquire the ability to produce the fertilization-specific Ca(2+) signal during oocyte maturation. However, the mechanisms regulating Ca(2+) signaling differentiation during oocyte maturation remain largely unknown. At fertilization, Xenopus eggs produce a cytoplasmic Ca(2+) (Ca(2+)(cyt)) rise that lasts for several minutes, and is required for egg activation. Here, we show that during oocyte maturation Ca(2+) transport effectors are tightly modulated. The plasma membrane Ca(2+) ATPase (PMCA) is completely internalized during maturation, and is therefore unable to extrude Ca(2+) out of the cell. Furthermore, IP(3)-dependent Ca(2+) release is required for the sustained Ca(2+)(cyt) rise in eggs, showing that Ca(2+) that is pumped into the ER leaks back out through IP(3) receptors. This apparent futile cycle allows eggs to maintain elevated cytoplasmic Ca(2+) despite the limited available Ca(2+) in intracellular stores. Therefore, Ca(2+) signaling differentiates in a highly orchestrated fashion during Xenopus oocyte maturation endowing the egg with the capacity to produce a sustained Ca(2+)(cyt) transient at fertilization, which defines the egg's competence to activate and initiate embryonic development.

  8. Plasma membrane-associated platforms: dynamic scaffolds that organize membrane-associated events.

    PubMed

    Astro, Veronica; de Curtis, Ivan

    2015-03-10

    Specialized regions of the plasma membrane dedicated to diverse cellular processes, such as vesicle exocytosis, extracellular matrix remodeling, and cell migration, share a few cytosolic scaffold proteins that associate to form large plasma membrane-associated platforms (PMAPs). PMAPs organize signaling events and trafficking of membranes and molecules at specific membrane domains. On the basis of the intrinsic disorder of the proteins constituting the core of these PMAPs and of the dynamics of these structures at the periphery of motile cells, we propose a working model for the assembly and turnover of these platforms.

  9. Preparation of artificial plasma membrane mimicking vesicles with lipid asymmetry.

    PubMed

    Lin, Qingqing; London, Erwin

    2014-01-01

    Lipid asymmetry, the difference in lipid distribution across the lipid bilayer, is one of the most important features of eukaryotic cellular membranes. However, commonly used model membrane vesicles cannot provide control of lipid distribution between inner and outer leaflets. We recently developed methods to prepare asymmetric model membrane vesicles, but facile incorporation of a highly controlled level of cholesterol was not possible. In this study, using hydroxypropyl-α-cyclodextrin based lipid exchange, a simple method was devised to prepare large unilamellar model membrane vesicles that closely resemble mammalian plasma membranes in terms of their lipid composition and asymmetry (sphingomyelin (SM) and/or phosphatidylcholine (PC) outside/phosphatidylethanolamine (PE) and phosphatidylserine (PS) inside), and in which cholesterol content can be readily varied between 0 and 50 mol%. We call these model membranes "artificial plasma membrane mimicking" ("PMm") vesicles. Asymmetry was confirmed by both chemical labeling and measurement of the amount of externally-exposed anionic lipid. These vesicles should be superior and more realistic model membranes for studies of lipid-lipid and lipid-protein interaction in a lipid environment that resembles that of mammalian plasma membranes.

  10. Homeostasis of plasma membrane viscosity in fluctuating temperatures.

    PubMed

    Martinière, Alexandre; Shvedunova, Maria; Thomson, Adrian J W; Evans, Nicola H; Penfield, Steven; Runions, John; McWatters, Harriet G

    2011-10-01

    Temperature has a direct effect at the cellular level on an organism. For instance, in the case of biomembranes, cooling causes lipids to lose entropy and pack closely together. Reducing temperature should, in the absence of other factors, increase the viscosity of a lipid membrane. We have investigated the effect of temperature variation on plasma membrane (PM) viscosity. We used dispersion tracking of photoactivated green fluorescent protein (GFP) and fluorescence recovery after photobleaching in wild-type and desaturase mutant Arabidopsis thaliana plants along with membrane lipid saturation analysis to monitor the effect of temperature and membrane lipid composition on PM viscosity. Plasma membrane viscosity in A. thaliana is negatively correlated with ambient temperature only under constant-temperature conditions. In the more natural environment of temperature cycles, plants actively manage PM viscosity to counteract the direct effects of temperature. Plasma membrane viscosity is regulated by altering the proportion of desaturated fatty acids. In cold conditions, cell membranes accumulate desaturated fatty acids, which decreases membrane viscosity and vice versa. Moreover, we show that control of fatty acid desaturase 2 (FAD2)-dependent lipid desaturation is essential for this homeostasis of membrane viscosity. Finally, a lack of FAD2 function results in aberrant temperature responses. PMID:21762166

  11. Membrane associated cancer-oocyte neoantigen SAS1B/ovastacin is a candidate immunotherapeutic target for uterine tumors.

    PubMed

    Pires, Eusebio S; D'Souza, Ryan S; Needham, Marisa A; Herr, Austin K; Jazaeri, Amir A; Li, Hui; Stoler, Mark H; Anderson-Knapp, Kiley L; Thomas, Theodore; Mandal, Arabinda; Gougeon, Alain; Flickinger, Charles J; Bruns, David E; Pollok, Brian A; Herr, John C

    2015-10-01

    The metalloproteinase SAS1B [ovastacin, ASTL, astacin-like] was immunolocalized on the oolemma of ovulated human oocytes and in normal ovaries within the pool of growing oocytes where SAS1B protein was restricted to follicular stages spanning the primary-secondary follicle transition through ovulation. Gene-specific PCR and immunohistochemical studies revealed ASTL messages and SAS1B protein in both endometrioid [74%] and malignant mixed Mullerian tumors (MMMT) [87%] of the uterus. A MMMT-derived cell line, SNU539, expressed cell surface SAS1B that, after binding polyclonal antibodies, internalized into EEA1/LAMP1-positive early and late endosomes. Treatment of SNU539 cells with anti-SAS1B polyclonal antibodies caused growth arrest in the presence of active complement. A saporin-immunotoxin directed to SAS1B induced growth arrest and cell death. The oocyte restricted expression pattern of SAS1B among adult organs, cell-surface accessibility, internalization into the endocytic pathway, and tumor cell growth arrest induced by antibody-toxin conjugates suggest therapeutic approaches that would selectively target tumors while limiting adverse drug effects in healthy cells. The SAS1B metalloproteinase is proposed as a prototype cancer-oocyte tumor surface neoantigen for development of targeted immunotherapeutics with limited on-target/off tumor effects predicted to be restricted to the population of growing oocytes.

  12. Membrane associated cancer-oocyte neoantigen SAS1B/ovastacin is a candidate immunotherapeutic target for uterine tumors

    PubMed Central

    Pires, Eusebio S.; D'Souza, Ryan S.; Needham, Marisa A.; Herr, Austin K.; Jazaeri, Amir A.; Li, Hui; Stoler, Mark H.; Anderson-Knapp, Kiley L.; Thomas, Theodore; Mandal, Arabinda; Gougeon, Alain; Flickinger, Charles J.; Bruns, David E.; Pollok, Brian A.; Herr, John C.

    2015-01-01

    The metalloproteinase SAS1B [ovastacin, ASTL, astacin-like] was immunolocalized on the oolemma of ovulated human oocytes and in normal ovaries within the pool of growing oocytes where SAS1B protein was restricted to follicular stages spanning the primary-secondary follicle transition through ovulation. Gene-specific PCR and immunohistochemical studies revealed ASTL messages and SAS1B protein in both endometrioid [74%] and malignant mixed Mullerian tumors (MMMT) [87%] of the uterus. A MMMT-derived cell line, SNU539, expressed cell surface SAS1B that, after binding polyclonal antibodies, internalized into EEA1/LAMP1-positive early and late endosomes. Treatment of SNU539 cells with anti-SAS1B polyclonal antibodies caused growth arrest in the presence of active complement. A saporin-immunotoxin directed to SAS1B induced growth arrest and cell death. The oocyte restricted expression pattern of SAS1B among adult organs, cell-surface accessibility, internalization into the endocytic pathway, and tumor cell growth arrest induced by antibody-toxin conjugates suggest therapeutic approaches that would selectively target tumors while limiting adverse drug effects in healthy cells. The SAS1B metalloproteinase is proposed as a prototype cancer-oocyte tumor surface neoantigen for development of targeted immunotherapeutics with limited on-target/off tumor effects predicted to be restricted to the population of growing oocytes. PMID:26327203

  13. Limited and selective transfer of plasma membrane glycoproteins to membrane of secondary lysosomes

    SciTech Connect

    Haylett, T.; Thilo, L.

    1986-10-01

    Radioactive galactose, covalently bound to cell surface glycoconjugates on mouse macrophage cells, P388D/sub 1/, was used as a membrane marker to study the composition, and the kinetics of exchange, of plasma membrane-derived constituents in the membrane of secondary lysosomes. Secondary lysosomes were separated from endosomes and plasma membrane by self-forming Percoll density gradients. Horseradish peroxidase, taken up by fluid-phase pinocytosis, served as a vesicle contents marker to monitor transfer of endosomal contents into secondary lysosomes. Concurrently, the fraction of plasma membrane-derived label of secondary lysosomes increased by first order kinetics from <0.1% to a steady-state level of approx.2.5% of the total label. As analyzed by NaDodSO/sub 4/ PAGE, labeled molecules of M/sub r/ 160-190 kD were depleted and of the M/sub r/ 100-120 kD were enriched in lysosome membrane compared with the relative composition of label on the cell surface. No corresponding selectivity was observed for the degradation of label, with all M/sub r/ classes being affected to the same relative extent. The results indicate that endocytosis-derived transfer of plasma membrane constitutents to secondary lysosomes is a limited and selective process, and that only approx.1% of internalized membrane is recycled via a membrane pool of secondary lysosomes.

  14. There Is No Simple Model of the Plasma Membrane Organization

    PubMed Central

    Bernardino de la Serna, Jorge; Schütz, Gerhard J.; Eggeling, Christian; Cebecauer, Marek

    2016-01-01

    Ever since technologies enabled the characterization of eukaryotic plasma membranes, heterogeneities in the distributions of its constituents were observed. Over the years this led to the proposal of various models describing the plasma membrane organization such as lipid shells, picket-and-fences, lipid rafts, or protein islands, as addressed in numerous publications and reviews. Instead of emphasizing on one model we in this review give a brief overview over current models and highlight how current experimental work in one or the other way do not support the existence of a single overarching model. Instead, we highlight the vast variety of membrane properties and components, their influences and impacts. We believe that highlighting such controversial discoveries will stimulate unbiased research on plasma membrane organization and functionality, leading to a better understanding of this essential cellular structure. PMID:27747212

  15. Tools for phospho- and glycoproteomics of plasma membranes.

    PubMed

    Wiśniewski, Jacek R

    2011-07-01

    Analysis of plasma membrane proteins and their posttranslational modifications is considered as important for identification of disease markers and targets for drug treatment. Due to their insolubility in water, studying of plasma membrane proteins using mass spectrometry has been difficult for a long time. Recent technological developments in sample preparation together with important improvements in mass spectrometric analysis have facilitated analysis of these proteins and their posttranslational modifications. Now, large scale proteomic analyses allow identification of thousands of membrane proteins from minute amounts of sample. Optimized protocols for affinity enrichment of phosphorylated and glycosylated peptides have set new dimensions in the depth of characterization of these posttranslational modifications of plasma membrane proteins. Here, I summarize recent advances in proteomic technology for the characterization of the cell surface proteins and their modifications. In the focus are approaches allowing large scale mapping rather than analytical methods suitable for studying individual proteins or non-complex mixtures.

  16. Mechanisms underlying anomalous diffusion in the plasma membrane.

    PubMed

    Krapf, Diego

    2015-01-01

    The plasma membrane is a complex fluid where lipids and proteins undergo diffusive motion critical to biochemical reactions. Through quantitative imaging analyses such as single-particle tracking, it is observed that diffusion in the cell membrane is usually anomalous in the sense that the mean squared displacement is not linear with time. This chapter describes the different models that are employed to describe anomalous diffusion, paying special attention to the experimental evidence that supports these models in the plasma membrane. We review models based on anticorrelated displacements, such as fractional Brownian motion and obstructed diffusion, and nonstationary models such as continuous time random walks. We also emphasize evidence for the formation of distinct compartments that transiently form on the cell surface. Finally, we overview heterogeneous diffusion processes in the plasma membrane, which have recently attracted considerable interest. PMID:26015283

  17. Plasma membrane associated membranes (PAM) from Jurkat cells contain STIM1 protein is PAM involved in the capacitative calcium entry?

    PubMed

    Kozieł, Katarzyna; Lebiedzinska, Magdalena; Szabadkai, Gyorgy; Onopiuk, Marta; Brutkowski, Wojciech; Wierzbicka, Katarzyna; Wilczyński, Grzegorz; Pinton, Paolo; Duszyński, Jerzy; Zabłocki, Krzysztof; Wieckowski, Mariusz R

    2009-12-01

    A proper cooperation between the plasma membrane, the endoplasmic reticulum and the mitochondria seems to be essential for numerous cellular processes involved in Ca(2+) signalling and maintenance of Ca(2+) homeostasis. A presence of microsomal and mitochondrial proteins together with those characteristic for the plasma membrane in the fraction of the plasma membrane associated membranes (PAM) indicates a formation of stabile interactions between these three structures. We isolated the plasma membrane associated membranes from Jurkat cells and found its significant enrichment in the plasma membrane markers including plasma membrane Ca(2+)-ATPase, Na(+), K(+)-ATPase and CD3 as well as sarco/endoplasmic reticulum Ca(2+) ATPase as a marker of the endoplasmic reticulum membranes. In addition, two proteins involved in the store-operated Ca(2+) entry, Orai1 located in the plasma membrane and an endoplasmic reticulum protein STIM1 were found in this fraction. Furthermore, we observed a rearrangement of STIM1-containing protein complexes isolated from Jurkat cells undergoing stimulation by thapsigargin. We suggest that the inter-membrane compartment composed of the plasma membrane and the endoplasmic reticulum, and isolated as a stabile plasma membrane associated membranes fraction, might be involved in the store-operated Ca(2+) entry, and their formation and rebuilding have an important regulatory role in cellular Ca(2+) homeostasis.

  18. The dynamics of plant plasma membrane proteins: PINs and beyond.

    PubMed

    Luschnig, Christian; Vert, Grégory

    2014-08-01

    Plants are permanently situated in a fixed location and thus are well adapted to sense and respond to environmental stimuli and developmental cues. At the cellular level, several of these responses require delicate adjustments that affect the activity and steady-state levels of plasma membrane proteins. These adjustments involve both vesicular transport to the plasma membrane and protein internalization via endocytic sorting. A substantial part of our current knowledge of plant plasma membrane protein sorting is based on studies of PIN-FORMED (PIN) auxin transport proteins, which are found at distinct plasma membrane domains and have been implicated in directional efflux of the plant hormone auxin. Here, we discuss the mechanisms involved in establishing such polar protein distributions, focusing on PINs and other key plant plasma membrane proteins, and we highlight the pathways that allow for dynamic adjustments in protein distribution and turnover, which together constitute a versatile framework that underlies the remarkable capabilities of plants to adjust growth and development in their ever-changing environment.

  19. Surface modification of nanoporous alumina membranes by plasma polymerization

    NASA Astrophysics Data System (ADS)

    Losic, Dusan; Cole, Martin A.; Dollmann, Björn; Vasilev, Krasimir; Griesser, Hans J.

    2008-06-01

    The deposition of plasma polymer coatings onto porous alumina (PA) membranes was investigated with the aim of adjusting the surface chemistry and the pore size of the membranes. PA membranes from commercial sources with a range of pore diameters (20, 100 and 200 nm) were used and modified by plasma polymerization using n-heptylamine (HA) monomer, which resulted in a chemically reactive polymer surface with amino groups. Heptylamine plasma polymer (HAPP) layers with a thickness less than the pore diameter do not span the pores but reduce their diameter. Accordingly, by adjusting the deposition time and thus the thickness of the plasma polymer coating, it is feasible to produce any desired pore diameter. The structural and chemical properties of modified membranes were studied by scanning electron microscopy (SEM), atomic force microscopy (AFM) and x-ray electron spectroscopy (XPS). The resultant PA membranes with specific surface chemistry and controlled pore size are applicable for molecular separation, cell culture, bioreactors, biosensing, drug delivery, and engineering complex composite membranes.

  20. Does ATP cross the cell plasma membrane.

    PubMed Central

    Chaudry, I. H.

    1982-01-01

    Although there is an abundance of evidence which indicates that ATP is released as well as taken up by cells, the concept that ATP cannot cross the cell membrane has tended to prevail. This article reviews the evidence for the release as well as uptake of ATP by cells. The evidence presented by various investigators clearly indicates that ATP can cross the cell membrane and suggests that the release and uptake of ATP are physiological processes. PMID:7051582

  1. AQP4 plasma membrane trafficking or channel gating is not significantly modulated by phosphorylation at COOH-terminal serine residues.

    PubMed

    Assentoft, Mette; Larsen, Brian R; Olesen, Emma T B; Fenton, Robert A; MacAulay, Nanna

    2014-11-15

    Aquaporin 4 (AQP4) is the predominant water channel in the mammalian brain and is mainly expressed in the perivascular glial endfeet at the brain-blood interface. AQP4 serves as a water entry site during brain edema formation, and regulation of AQP4 may therefore be of therapeutic interest. Phosphorylation of aquaporins can regulate plasma membrane localization and, possibly, the unit water permeability via gating of the AQP channel itself. In vivo phosphorylation of six serine residues in the COOH terminus of AQP4 has been detected by mass spectrometry: Ser(276), Ser(285), Ser(315), Ser(316), Ser(321), and Ser(322). To address the role of these phosphorylation sites for AQP4 function, serine-to-alanine mutants were created to abolish the phosphorylation sites. All mutants were detected at the plasma membrane of transfected C6 cells, with the fraction of the total cellular AQP4 expressed at the plasma membrane of transfected C6 cells being similar between the wild-type (WT) and mutant forms of AQP4. Activation of protein kinases A, C, and G in primary astrocytic cultures did not affect the plasma membrane abundance of AQP4. The unit water permeability was determined for the mutant AQP4s upon heterologous expression in Xenopus laevis oocytes (along with serine-to-aspartate mutants of the same residues to mimic a phosphorylation). None of the mutant AQP4 constructs displayed alterations in the unit water permeability. Thus phosphorylation of six different serine residues in the COOH terminus of AQP4 appears not to be required for proper plasma membrane localization of AQP4 or to act as a molecular switch to gate the water channel.

  2. Rapid functional analysis in Xenopus oocytes of Po protein adhesive interactions.

    PubMed

    Yoshida, M; Colma, D R

    2001-06-01

    We have developed a coupled Xenopus oocyte expression system for evaluating the functional effects of mutations in known or suspected adhesion molecules, which allows for a very rapid assessment of intercellular adhesion. As a model protein, we first used Protein zero (Po), an adhesion molecule that mediates self-adhesion of the Schwann cell plasma membrane to form compact myelin in the mammalian PNS. A wide variety of mutations in Po cause certain human peripheral neuropathies, such as the Charcot-Marie-Tooth disease (CMT) type 1B and Dejerine-Sottas syndrome (DSS). After wild-type Po mRNA is injected, the protein is synthesized and correctly targeted to the oocyte cell surface. When two oocytes are paired, wild-type Po redistributes and concentrates at the cell-cell apposition region, and by electron microscopy, the oocyte pairs show close cell-cell appositions and are devoid of the microvilli that are observed in uninjected oocyte pairs. These are hallmark features of highly adhesive cell:cell interfaces. Several point mutations in Po were engineered, corresponding to the molecular defects in the CMT type 1B or DSS. The proteins encoded by these mutations reached the cell surface but failed to concentrate at the oocyte interface. Po carrying a point mutation that is found in DSS is not targeted on the plasma membrane and fail to accumulate at the cell-cell contact site. PMID:11519730

  3. Incapacity of Response to Disulfide-Reducing Agent in Triton X-100-Treated Oocytes of Starfish, Asterina pectinifera

    NASA Astrophysics Data System (ADS)

    Mita, Masatoshi

    2005-04-01

    Resumption of meiosis in starfish oocytes is induced by the natural maturation-inducing hormone, 1-methyladenine (1-MeAde). Oocyte maturation is also induced by the disulfide-reducing agent, dithiothreitol (DTT). Previous studies have shown that 1-MeAde controls meiosis by interacting with its receptors, which are located exclusively on oocyte plasma membrane. However, little is known about the mechanism of oocyte maturation induced by DTT. Thus, this study examined whether DTT interacts with 1-MeAde receptors to induce oocyte maturation. When oocytes were treated with Triton X-100, they failed to respond to 1-MeAde and DTT. Although the Triton X-100-treated oocytes recovered the capacity to respond to 1-MeAde during incubation in seawater, they remained unresponsive to DTT during seawater incubations. These results suggest that DTT does not interact with 1-MeAde receptors to induce oocyte maturation in starfish. It is possible that a protein essential for mediating DTT-induced maturation is eliminated from the oocytes surface following Triton X-100 treatment.

  4. Detection of glycoproteins in the Acanthamoeba plasma membrane

    SciTech Connect

    Paatero, G.I.L. ); Gahmberg, C.G. )

    1988-11-01

    In the present study the authors have shown that glycoproteins are present in the plasma membrane of Acanthamoeba castellanii by utilizing different radioactive labeling techniques. Plasma membrane proteins in the amoeba were iodinated by {sup 125}I-lactoperoxidase labeling and the solubilized radiolabeled glycoproteins were separated by lectin-Sepharose affinity chromatography followed by polyacrylamide gel electrophoresis. The periodate/NaB{sup 3}H{sub 4} and galactose oxidase/NaB{sup 3}H{sub 4} labeling techniques were used for labeling of surface carbohydrates in the amoeba. Several surface-labeled glycoproteins were observed in addition to a diffusely labeled region with M{sub r} of 55,000-75,000 seen on electrophoresis, which could represent glycolipids. The presence of glycoproteins in the plasma membrane of Acanthamoeba castellanii was confirmed by metabolic labeling with ({sup 35}S)methionine followed by lectin-Sepharose affinity chromatography and polyacrylamide gel electrophoresis.

  5. Membrane fusion by VAMP3 and plasma membrane t-SNAREs

    SciTech Connect

    Hu Chuan Hardee, Deborah; Minnear, Fred

    2007-09-10

    Pairing of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins on vesicles (v-SNAREs) and SNARE proteins on target membranes (t-SNAREs) mediates intracellular membrane fusion. VAMP3/cellubrevin is a v-SNARE that resides in recycling endosomes and endosome-derived transport vesicles. VAMP3 has been implicated in recycling of transferrin receptors, secretion of {alpha}-granules in platelets, and membrane trafficking during cell migration. Using a cell fusion assay, we examined membrane fusion capacity of the ternary complexes formed by VAMP3 and plasma membrane t-SNAREs syntaxin1, syntaxin4, SNAP-23 and SNAP-25. VAMP3 forms fusogenic pairing with t-SNARE complexes syntaxin1/SNAP-25, syntaxin1/SNAP-23 and syntaxin4/SNAP-25, but not with syntaxin4/SNAP-23. Deletion of the N-terminal domain of syntaxin4 enhanced membrane fusion more than two fold, indicating that the N-terminal domain negatively regulates membrane fusion. Differential membrane fusion capacities of the ternary v-/t-SNARE complexes suggest that transport vesicles containing VAMP3 have distinct membrane fusion kinetics with domains of the plasma membrane that present different t-SNARE proteins.

  6. Large Plasma Membrane Disruptions Are Rapidly Resealed by Ca2+-dependent Vesicle–Vesicle Fusion Events

    PubMed Central

    Terasaki, Mark; Miyake, Katsuya; McNeil, Paul L.

    1997-01-01

    A microneedle puncture of the fibroblast or sea urchin egg surface rapidly evokes a localized exocytotic reaction that may be required for the rapid resealing that follows this breach in plasma membrane integrity (Steinhardt, R.A,. G. Bi, and J.M. Alderton. 1994. Science (Wash. DC). 263:390–393). How this exocytotic reaction facilitates the resealing process is unknown. We found that starfish oocytes and sea urchin eggs rapidly reseal much larger disruptions than those produced with a microneedle. When an ∼40 by 10 μm surface patch was torn off, entry of fluorescein stachyose (FS; 1,000 mol wt) or fluorescein dextran (FDx; 10,000 mol wt) from extracellular sea water (SW) was not detected by confocal microscopy. Moreover, only a brief (∼5–10 s) rise in cytosolic Ca2+ was detected at the wound site. Several lines of evidence indicate that intracellular membranes are the primary source of the membrane recruited for this massive resealing event. When we injected FS-containing SW deep into the cells, a vesicle formed immediately, entrapping within its confines most of the FS. DiI staining and EM confirmed that the barrier delimiting injected SW was a membrane bilayer. The threshold for vesicle formation was ∼3 mM Ca2+ (SW is ∼10 mM Ca2+). The capacity of intracellular membranes for sealing off SW was further demonstrated by extruding egg cytoplasm from a micropipet into SW. A boundary immediately formed around such cytoplasm, entrapping FDx or FS dissolved in it. This entrapment did not occur in Ca2+-free SW (CFSW). When egg cytoplasm stratified by centrifugation was exposed to SW, only the yolk platelet–rich domain formed a membrane, suggesting that the yolk platelet is a critical element in this response and that the ER is not required. We propose that plasma membrane disruption evokes Ca2+ regulated vesicle–vesicle (including endocytic compartments but possibly excluding ER) fusion reactions. The function in resealing of this cytoplasmic fusion

  7. Signal transduction in mammalian oocytes during fertilization.

    PubMed

    Machaty, Zoltan

    2016-01-01

    Mammalian embryo development begins when the fertilizing sperm triggers a series of elevations in the oocyte's intracellular free Ca(2+) concentration. The elevations are the result of repeated release and re-uptake of Ca(2+) stored in the smooth endoplasmic reticulum. Ca(2+) release is primarily mediated by the phosphoinositide signaling system of the oocyte. The system is stimulated when the sperm causes the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) into inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG); IP3 then binds its receptor on the surface of the endoplasmic reticulum that induces Ca(2+) release. The manner in which the sperm generates IP3, the Ca(2+) mobilizing second messenger, has been the subject of extensive research for a long time. The sperm factor hypothesis has eventually gained general acceptance, according to which it is a molecule from the sperm that diffuses into the ooplasm and stimulates the phosphoinositide cascade. Much evidence now indicates that the sperm-derived factor is phospholipase C-zeta (PLCζ) that cleaves PIP2 and generates IP3, eventually leading to oocyte activation. A recent addition to the candidate sperm factor list is the post-acrosomal sheath WW domain-binding protein (PAWP), whose role at fertilization is currently under debate. Ca(2+) influx across the plasma membrane is also important as, in the absence of extracellular Ca(2+), the oscillations run down prematurely. In pig oocytes, the influx that sustains the oscillations seems to be regulated by the filling status of the stores, whereas in the mouse other mechanisms might be involved. This work summarizes the current understanding of Ca(2+) signaling in mammalian oocytes.

  8. Nanodomain stabilization dynamics in plasma membranes of biological cells

    NASA Astrophysics Data System (ADS)

    Das, Tamal; Maiti, Tapas K.; Chakraborty, Suman

    2011-02-01

    We discover that a synergistically amplifying role of stabilizing membrane proteins and continuous lipid recycling can explain the physics governing the stability, polydispersity, and dynamics of lipid raft domains in plasma membranes of biological cells. We establish the conjecture using a generalized order parameter based on theoretical formalism, endorsed by detailed scaling arguments and domain mapping. Quantitative agreements with morphological distributions of raft complexes, as obtained from Förster resonance energy transfer based visualization, support the present theoretical conjecture.

  9. The plasma membrane of microaerophilic protists: oxidative and nitrosative stress.

    PubMed

    Lloyd, D; Harris, J C; Biagini, G A; Hughes, M R; Maroulis, S; Bernard, C; Wadley, R B; Edwards, M R

    2004-05-01

    The trans-plasma-membrane electrochemical potential of microaerophilic protists was monitored by the use of voltage-sensitive charged lipophilic fluorophores; of the many available probes, the anionic oxonol dye bis(1,3-dibarbituric acid)-trimethine oxonol [DiBAC(4)(3)] is an example of one which has been successfully employed using fluorescence microscopy, confocal laser-scanning microscopy and flow cytometry. Several microaerophilic protists have been investigated with this dye; these were Giardia intestinalis, Trichomonas vaginalis, Tritrichomonas foetus, Hexamita inflata and Mastigamoeba punctachora. Under conditions where they exhibit normal vitality, these organisms exclude DiBAC(4)(3) by virtue of their maintenance of a plasma-membrane potential (negative inside). Uptake of the fluorophore is indicative of disturbance to this membrane (i.e. by inhibition of pump/leak balance, blockage of channels or generation of ionic leaks), and is indicative of metabolic perturbation or environmental stress. Here, it is shown that oxidative or nitrosative stress depolarizes the plasma membranes of the aforementioned O(2)-sensitive organisms and allows DiBAC(4)(3) influx. Oxonol uptake thereby provides a sensitive and early indication of plasma-membrane perturbation by agents that may lead to cytotoxicity and eventually to cell death by necrotic or apoptotic pathways.

  10. Magnetic apatite for structural insights on the plasma membrane.

    PubMed

    Stanca, Sarmiza E; Müller, Robert; Dellith, Jan; Nietzsche, Sandor; Stöckel, Stephan; Biskup, Christoph; Deckert, Volker; Krafft, Christoph; Popp, Jürgen; Fritzsche, Wolfgang

    2015-01-21

    The iron oxide-hydroxyapatite (FeOxHA) nanoparticles reported here differ from those reported before by their advantage of homogeneity and simple preparation; moreover, the presence of carboxymethyldextran (CMD), together with hydroxyapatite (HA), allows access to the cellular membrane, which makes our magnetic apatite unique. These nanoparticles combine magnetic behavior, Raman label ability and the property of interaction with the cellular membrane; they therefore represent an interesting material for structural differentiation of the cell membrane. It was observed by Raman spectroscopy, scanning electron microscopy (SEM) and fluorescence microscopy that FeOxHA adheres to the plasma membrane and does not penetrate the membrane. These insights make the nanoparticles a promising material for magnetic cell sorting, e.g. in microfluidic device applications.

  11. Organization and Dynamics of Receptor Proteins in a Plasma Membrane.

    PubMed

    Koldsø, Heidi; Sansom, Mark S P

    2015-11-25

    The interactions of membrane proteins are influenced by their lipid environment, with key lipid species able to regulate membrane protein function. Advances in high-resolution microscopy can reveal the organization and dynamics of proteins and lipids within living cells at resolutions <200 nm. Parallel advances in molecular simulations provide near-atomic-resolution models of the dynamics of the organization of membranes of in vivo-like complexity. We explore the dynamics of proteins and lipids in crowded and complex plasma membrane models, thereby closing the gap in length and complexity between computations and experiments. Our simulations provide insights into the mutual interplay between lipids and proteins in determining mesoscale (20-100 nm) fluctuations of the bilayer, and in enabling oligomerization and clustering of membrane proteins.

  12. Magnetic apatite for structural insights on the plasma membrane

    NASA Astrophysics Data System (ADS)

    Stanca, Sarmiza E.; Müller, Robert; Dellith, Jan; Nietzsche, Sandor; Stöckel, Stephan; Biskup, Christoph; Deckert, Volker; Krafft, Christoph; Popp, Jürgen; Fritzsche, Wolfgang

    2015-01-01

    The iron oxide-hydroxyapatite (FeOxHA) nanoparticles reported here differ from those reported before by their advantage of homogeneity and simple preparation; moreover, the presence of carboxymethyldextran (CMD), together with hydroxyapatite (HA), allows access to the cellular membrane, which makes our magnetic apatite unique. These nanoparticles combine magnetic behavior, Raman label ability and the property of interaction with the cellular membrane; they therefore represent an interesting material for structural differentiation of the cell membrane. It was observed by Raman spectroscopy, scanning electron microscopy (SEM) and fluorescence microscopy that FeOxHA adheres to the plasma membrane and does not penetrate the membrane. These insights make the nanoparticles a promising material for magnetic cell sorting, e.g. in microfluidic device applications.

  13. Mechanical properties of the plasma membrane of isolated plant protoplasts

    SciTech Connect

    Wolfe, J.; Steponkus, P.L.

    1983-01-01

    The volume of isolated protoplasts of rye (Secale cereale L. cv Puma) in a suspending solution at constant concentration is shown to be negligibly changed by tensions in the plasma membrane which approach that tension necessary to lyse them. This allows a detailed investigation of the plasma membrane stress-strain relation by micropipette aspiration. Over periods less than a second, the membrane behaves as an elastic two-dimensional fluid with an area modulus of elasticity of 230 millinewtons per meter. Over longer periods, the stress-strain relation approaches a surface energy law--the resting tension is independent of area and has a value of the order 100 micronewtons per meter. Over longer periods the untensioned area, which is defined as the area that would be occupied by the molecules in the membrane at any given time if the tension were zero, increases with time under large imposed tensions and decreases under sufficiently small tension. It is proposed that these long term responses are the result of exchange of material between the plane of the membrane and a reservoir of membrane material. The irreversibility of large contractions in area is demonstrated directly, and the behavior of protoplasts during osmotically induced cycles of contraction and expansion is explained in terms of the membrane stress-strain relation.

  14. Granuphilin exclusively mediates functional granule docking to the plasma membrane

    PubMed Central

    Mizuno, Kouichi; Fujita, Takuji; Gomi, Hiroshi; Izumi, Tetsuro

    2016-01-01

    In regulated exocytosis, it is generally assumed that vesicles must stably “dock” at the plasma membrane before they are primed to become fusion-competent. However, recent biophysical analyses in living cells that visualize fluorescent secretory granules have revealed that exocytic behaviors are not necessarily uniform: some granules beneath the plasma membrane are resistant to Ca2+ -triggered release, while others are accelerated to fuse without a pause for stable docking. These findings suggest that stable docking is unnecessary, and can even be inhibitory or nonfunctional, for fusion. Consistently, pancreatic β cells deficient in the Rab27 effector, granuphilin, lack insulin granules directly attached to the plasma membrane in electron micrographs but nevertheless exhibit augmented exocytosis. Here we directly compare the exocytic behaviors between granuphilin-positive and -negative insulin granules. Although granuphilin makes granules immobile and fusion-reluctant beneath the plasma membrane, those granuphilin-positive, docked granules release a portion of granuphilin upon fusion, and fuse at a frequency and time course similar to those of granuphilin-negative undocked granules. Furthermore, granuphilin forms a 180-nm cluster at the site of each docked granule, along with granuphilin-interacting Rab27a and Munc18-1 clusters. These findings indicate that granuphilin is an exclusive component of the functional and fusion-inhibitory docking machinery of secretory granules. PMID:27032672

  15. Regulation of the plasma membrane potential in Pneumocystis carinii.

    PubMed

    VanderHeyden, N; McLaughlin, G L; Docampo, R

    2000-02-15

    Many protists use a H(+) gradient across the plasma membrane, the proton motive force, to drive nutrient uptake. This force is generated in part by the plasma membrane potential (DeltaPsi). We investigated the regulation of the DeltaPsi in Pneumocystis carinii using the potentiometric fluorescent dye bisoxonol. The steady state DeltaPsi in a buffer containing Na(+) and K(+) (standard buffer) was found to be -78+/-8 mV. In the absence of Na(+) and K(+) (NMG buffer) or Cl(-) (gluconate buffer), DeltaPsi was not significantly changed suggesting that cation and anion conductances do not play a significant role in the regulation of DeltaPsi in P. carinii. The DeltaPsi was also not affected by inhibitors of the Na(+)/K(+)-ATPase, ouabain (1 mM), and the K(+)/H(+)-ATPase, omeprazole (1 mM). In contrast, inhibitors of the plasma membrane H(+)-ATPase, dicyclohexylcarbodiimide (100 microM), N-ethylmaleimide (100 microM) and diethylstilbestrol (25 microM), significantly depolarized the DeltaPsi to -43+/-7, -56+/-5 and -40+/-12 mV, respectively. The data support that the plasma membrane H(+)-ATPase plays a significant role in the regulation of DeltaPsi in P. carinii.

  16. Exclusive photorelease of signalling lipids at the plasma membrane

    PubMed Central

    Nadler, André; Yushchenko, Dmytro A.; Müller, Rainer; Stein, Frank; Feng, Suihan; Mulle, Christophe; Carta, Mario; Schultz, Carsten

    2015-01-01

    Photoactivation of caged biomolecules has become a powerful approach to study cellular signalling events. Here we report a method for anchoring and uncaging biomolecules exclusively at the outer leaflet of the plasma membrane by employing a photocleavable, sulfonated coumarin derivative. The novel caging group allows quantifying the reaction progress and efficiency of uncaging reactions in a live-cell microscopy setup, thereby greatly improving the control of uncaging experiments. We synthesized arachidonic acid derivatives bearing the new negatively charged or a neutral, membrane-permeant coumarin caging group to locally induce signalling either at the plasma membrane or on internal membranes in β-cells and brain slices derived from C57B1/6 mice. Uncaging at the plasma membrane triggers a strong enhancement of calcium oscillations in β-cells and a pronounced potentiation of synaptic transmission while uncaging inside cells blocks calcium oscillations in β-cells and causes a more transient effect on neuronal transmission, respectively. The precise subcellular site of arachidonic acid release is therefore crucial for signalling outcome in two independent systems. PMID:26686736

  17. Exclusive photorelease of signalling lipids at the plasma membrane.

    PubMed

    Nadler, André; Yushchenko, Dmytro A; Müller, Rainer; Stein, Frank; Feng, Suihan; Mulle, Christophe; Carta, Mario; Schultz, Carsten

    2015-12-21

    Photoactivation of caged biomolecules has become a powerful approach to study cellular signalling events. Here we report a method for anchoring and uncaging biomolecules exclusively at the outer leaflet of the plasma membrane by employing a photocleavable, sulfonated coumarin derivative. The novel caging group allows quantifying the reaction progress and efficiency of uncaging reactions in a live-cell microscopy setup, thereby greatly improving the control of uncaging experiments. We synthesized arachidonic acid derivatives bearing the new negatively charged or a neutral, membrane-permeant coumarin caging group to locally induce signalling either at the plasma membrane or on internal membranes in β-cells and brain slices derived from C57B1/6 mice. Uncaging at the plasma membrane triggers a strong enhancement of calcium oscillations in β-cells and a pronounced potentiation of synaptic transmission while uncaging inside cells blocks calcium oscillations in β-cells and causes a more transient effect on neuronal transmission, respectively. The precise subcellular site of arachidonic acid release is therefore crucial for signalling outcome in two independent systems.

  18. Requirement for Coenzyme Q in Plasma Membrane Electron Transport

    NASA Astrophysics Data System (ADS)

    Sun, I. L.; Sun, E. E.; Crane, F. L.; Morre, D. J.; Lindgren, A.; Low, H.

    1992-12-01

    Coenzyme Q is required in the electron transport system of rat hepatocyte and human erythrocyte plasma membranes. Extraction of coenzyme Q from the membrane decreases NADH dehydrogenase and NADH:oxygen oxidoreductase activity. Addition of coenzyme Q to the extracted membrane restores the activity. Partial restoration of activity is also found with α-tocopherylquinone, but not with vitamin K_1. Analogs of coenzyme Q inhibit NADH dehydrogenase and oxidase activity and the inhibition is reversed by added coenzyme Q. Ferricyanide reduction by transmembrane electron transport from HeLa cells is inhibited by coenzyme Q analogs and restored with added coenzyme Q10. Reduction of external ferricyanide and diferric transferrin by HeLa cells is accompanied by proton release from the cells. Inhibition of the reduction by coenzyme Q analogs also inhibits the proton release, and coenzyme Q10 restores the proton release activity. Trans-plasma membrane electron transport stimulates growth of serum-deficient cells, and added coenzyme Q10 increases growth of HeLa (human adenocarcinoma) and BALB/3T3 (mouse fibroblast) cells. The evidence is consistent with a function for coenzyme Q in a trans-plasma membrane electron transport system which influences cell growth.

  19. Control of Plasma Membrane Permeability by ABC Transporters

    PubMed Central

    Khakhina, Svetlana; Johnson, Soraya S.; Manoharlal, Raman; Russo, Sarah B.; Blugeon, Corinne; Lemoine, Sophie; Sunshine, Anna B.; Dunham, Maitreya J.; Cowart, L. Ashley; Devaux, Frédéric

    2014-01-01

    ATP-binding cassette transporters Pdr5 and Yor1 from Saccharomyces cerevisiae control the asymmetric distribution of phospholipids across the plasma membrane as well as serving as ATP-dependent drug efflux pumps. Mutant strains lacking these transporter proteins were found to exhibit very different resistance phenotypes to two inhibitors of sphingolipid biosynthesis that act either late (aureobasidin A [AbA]) or early (myriocin [Myr]) in the pathway leading to production of these important plasma membrane lipids. These pdr5Δ yor1 strains were highly AbA resistant but extremely sensitive to Myr. We provide evidence that these phenotypic changes are likely due to modulation of the plasma membrane flippase complexes, Dnf1/Lem3 and Dnf2/Lem3. Flippases act to move phospholipids from the outer to the inner leaflet of the plasma membrane. Genetic analyses indicate that lem3Δ mutant strains are highly AbA sensitive and Myr resistant. These phenotypes are fully epistatic to those seen in pdr5Δ yor1 strains. Direct analysis of AbA-induced signaling demonstrated that loss of Pdr5 and Yor1 inhibited the AbA-triggered phosphorylation of the AGC kinase Ypk1 and its substrate Orm1. Microarray experiments found that a pdr5Δ yor1 strain induced a Pdr1-dependent induction of the entire Pdr regulon. Our data support the view that Pdr5/Yor1 negatively regulate flippase function and activity of the nuclear Pdr1 transcription factor. Together, these data argue that the interaction of the ABC transporters Pdr5 and Yor1 with the Lem3-dependent flippases regulates permeability of AbA via control of plasma membrane protein function as seen for the high-affinity tryptophan permease Tat2. PMID:25724885

  20. Increase in multidrug transport activity is associated with oocyte maturation in sea stars.

    PubMed

    Roepke, Troy A; Hamdoun, Amro M; Cherr, Gary N

    2006-12-01

    In this study, we report on the presence of efflux transporter activity before oocyte maturation in sea stars and its upregulation after maturation. This activity is similar to the multidrug resistance (MDR) activity mediated by ATP binding cassette (ABC) efflux transporters. In sea star oocytes the efflux activity, as measured by exclusion of calcein-am, increased two-fold 3 h post-maturation. Experiments using specific and non-specific dyes and inhibitors demonstrated that the increase in transporter activity involves an ABCB protein, P-glycoprotein (P-gp), and an ABCC protein similar to the MDR-associated protein (MRP)-like transporters. Western blots using an antibody directed against mammalian P-gp recognized a 45 kDa protein in sea star oocytes that increased in abundance during maturation. An antibody directed against sea urchin ABCC proteins (MRP) recognized three proteins in immature oocytes and two in mature oocytes. Experiments using inhibitors suggest that translation and microtubule function are both required for post-maturation increases in transporter activity. Immunolabeling revealed translocation of stored ABCB proteins to the plasma cell membrane during maturation, and this translocation coincided with increased transport activity. These MDR transporters serve protective roles in oocytes and eggs, as demonstrated by sensitization of the oocytes to the maturation inhibitor, vinblastine, by MRP and PGP-specific transporter inhibitors.

  1. Expression and characterization of plasma membrane aquaporins in stomatal complexes of Zea mays.

    PubMed

    Heinen, Robert B; Bienert, Gerd Patrick; Cohen, David; Chevalier, Adrien S; Uehlein, Norbert; Hachez, Charles; Kaldenhoff, Ralf; Le Thiec, Didier; Chaumont, François

    2014-10-01

    Stomata, the microscopic pores on the surface of the aerial parts of plants, are bordered by two specialized cells, known as guard cells, which control the stomatal aperture according to endogenous and environmental signals. Like most movements occurring in plants, the opening and closing of stomata are based on hydraulic forces. During opening, the activation of plasma membrane and tonoplast transporters results in solute accumulation in the guard cells. To re-establish the perturbed osmotic equilibrium, water follows the solutes into the cells, leading to their swelling. Numerous studies have contributed to the understanding of the mechanism and regulation of stomatal movements. However, despite the importance of transmembrane water flow during this process, only a few studies have provided evidence for the involvement of water channels, called aquaporins. Here, we microdissected Zea mays stomatal complexes and showed that members of the aquaporin plasma membrane intrinsic protein (PIP) subfamily are expressed in these complexes and that their mRNA expression generally follows a diurnal pattern. The substrate specificity of two of the expressed ZmPIPs, ZmPIP1;5 and ZmPIP1;6, was investigated by heterologous expression in Xenopus oocytes and yeast cells. Our data show that both isoforms facilitate transmembrane water diffusion in the presence of the ZmPIP2;1 isoform. In addition, both display CO2 permeability comparable to that of the CO2 diffusion facilitator NtAQP1. These data indicate that ZmPIPs may have various physiological roles in stomatal complexes.

  2. Rapid Preparation of a Plasma Membrane Fraction: Western Blot Detection of Translocated Glucose Transporter 4 from Plasma Membrane of Muscle and Adipose Cells and Tissues.

    PubMed

    Yamamoto, Norio; Yamashita, Yoko; Yoshioka, Yasukiyo; Nishiumi, Shin; Ashida, Hitoshi

    2016-01-01

    Membrane proteins account for 70% to 80% of all pharmaceutical targets, indicating their clinical relevance and underscoring the importance of identifying differentially expressed membrane proteins that reflect distinct disease properties. The translocation of proteins from the bulk of the cytosol to the plasma membrane is a critical step in the transfer of information from membrane-embedded receptors or transporters to the cell interior. To understand how membrane proteins work, it is important to separate the membrane fraction of cells. This unit provides a protocol for rapidly obtaining plasma membrane fractions for western blot analysis. © 2016 by John Wiley & Sons, Inc. PMID:27479506

  3. Lipid signalling dynamics at the β-cell plasma membrane.

    PubMed

    Wuttke, Anne

    2015-04-01

    Pancreatic β-cells are clustered in islets of Langerhans and secrete insulin in response to increased concentrations of circulating glucose. Insulin in turn acts on liver, muscle and fat tissue to store energy and normalize the blood glucose level. Inappropriate insulin release may lead to impaired glucose tolerance and diabetes. In addition to glucose, other nutrients, neural stimuli and hormonal stimuli control insulin secretion. Many of these signals are perceived at the plasma membrane, which is also the site where insulin granules undergo exocytosis. Therefore, it is not surprising that membrane lipids play an important role in the regulation of insulin secretion. β-cells release insulin in a pulsatile fashion. Signalling lipids integrate the nutrient and neurohormonal inputs to fine-tune, shape and co-ordinate the pulsatility. An important group of signalling lipids are phosphoinositides and their downstream messengers. This MiniReview will discuss new insights into lipid signalling dynamics in β-cells obtained from live-cell imaging experiments with fluorescent translocation biosensors. The plasma membrane concentration of several phosphoinositides and of their downstream messengers changes rapidly upon nutrient or neurohormonal stimulation. Glucose induces the most complex spatio-temporal patterns, typically involving oscillations of messenger concentrations, which sometimes are locally restricted. The tightly controlled levels of lipid messengers can mediate specific binding of downstream effectors to the plasma membrane, contributing to the appropriate regulation of insulin secretion.

  4. From The Cover: Microtransplantation of functional receptors and channels from the Alzheimer's brain to frog oocytes

    NASA Astrophysics Data System (ADS)

    Miledi, R.; Dueñas, Z.; Martinez-Torres, A.; Kawas, C. H.; Eusebi, F.

    2004-02-01

    About a decade ago, cell membranes from the electric organ of Torpedo and from the rat brain were transplanted to frog oocytes, which thus acquired functional Torpedo and rat neurotransmitter receptors. Nevertheless, the great potential that this method has for studying human diseases has remained virtually untapped. Here, we show that cell membranes from the postmortem brains of humans that suffered Alzheimer's disease can be microtransplanted to the plasma membrane of Xenopus oocytes. We show also that these postmortem membranes carry neurotransmitter receptors and voltage-operated channels that are still functional, even after they have been kept frozen for many years. This method provides a new and powerful approach to study directly the functional characteristics and structure of receptors, channels, and other membrane proteins of the Alzheimer's brain. This knowledge may help in understanding the basis of Alzheimer's disease and also help in developing new treatments. -aminobutyric acid receptors | sodium channels | calcium channels | postmortem brain

  5. Imaging plasma membrane deformations with pTIRFM.

    PubMed

    Passmore, Daniel R; Rao, Tejeshwar C; Peleman, Andrew R; Anantharam, Arun

    2014-01-01

    To gain novel insights into the dynamics of exocytosis, our group focuses on the changes in lipid bilayer shape that must be precisely regulated during the fusion of vesicle and plasma membranes. These rapid and localized changes are achieved by dynamic interactions between lipids and specialized proteins that control membrane curvature. The absence of such interactions would not only have devastating consequences for vesicle fusion, but a host of other cellular functions that involve control of membrane shape. In recent years, the identity of a number of proteins with membrane-shaping properties has been determined. What remains missing is a roadmap of when, where, and how they act as fusion and content release progress. Our understanding of the molecular events that enable membrane remodeling has historically been limited by a lack of analytical methods that are sensitive to membrane curvature or have the temporal resolution to track rapid changes. PTIRFM satisfies both of these criteria. We discuss how pTIRFM is implemented to visualize and interpret rapid, submicron changes in the orientation of chromaffin cell membranes during dense core vesicle (DCV) fusion. The chromaffin cells we use are isolated from bovine adrenal glands. The membrane is stained with a lipophilic carbocyanine dye,1,1'-dioctadecyl-3,3,3',3'-tetramethylindodicarbocyanine, 4-chlorobenzenesulfonate, or diD. DiD intercalates in the membrane plane with a "fixed" orientation and is therefore sensitive to the polarization of the evanescent field. The diD-stained cell membrane is sequentially excited with orthogonal polarizations of a 561 nm laser (p-pol, s-pol). A 488 nm laser is used to visualize vesicle constituents and time the moment of fusion. Exocytosis is triggered by locally perfusing cells with a depolarizing KCl solution. Analysis is performed offline using custom-written software to understand how diD emission intensity changes relate to fusion pore dilation. PMID:24747638

  6. Imaging Plasma Membrane Deformations With pTIRFM

    PubMed Central

    Passmore, Daniel R.; Rao, Tejeshwar C.; Peleman, Andrew R.; Anantharam, Arun

    2014-01-01

    To gain novel insights into the dynamics of exocytosis, our group focuses on the changes in lipid bilayer shape that must be precisely regulated during the fusion of vesicle and plasma membranes. These rapid and localized changes are achieved by dynamic interactions between lipids and specialized proteins that control membrane curvature. The absence of such interactions would not only have devastating consequences for vesicle fusion, but a host of other cellular functions that involve control of membrane shape. In recent years, the identity of a number of proteins with membrane-shaping properties has been determined. What remains missing is a roadmap of when, where, and how they act as fusion and content release progress. Our understanding of the molecular events that enable membrane remodeling has historically been limited by a lack of analytical methods that are sensitive to membrane curvature or have the temporal resolution to track rapid changes. PTIRFM satisfies both of these criteria. We discuss how pTIRFM is implemented to visualize and interpret rapid, submicron changes in the orientation of chromaffin cell membranes during dense core vesicle (DCV) fusion. The chromaffin cells we use are isolated from bovine adrenal glands. The membrane is stained with a lipophilic carbocyanine dye,1,1'-dioctadecyl-3,3,3',3'-tetramethylindodicarbocyanine, 4-chlorobenzenesulfonate, or diD. DiD intercalates in the membrane plane with a "fixed" orientation and is therefore sensitive to the polarization of the evanescent field. The diD-stained cell membrane is sequentially excited with orthogonal polarizations of a 561 nm laser (p-pol, s-pol). A 488 nm laser is used to visualize vesicle constituents and time the moment of fusion. Exocytosis is triggered by locally perfusing cells with a depolarizing KCl solution. Analysis is performed offline using custom-written software to understand how diD emission intensity changes relate to fusion pore dilation. PMID:24747638

  7. A hyperpolarization-activated ion current of amphibian oocytes.

    PubMed

    Ochoa-de la Paz, L D; Salazar-Soto, D B; Reyes, J P; Miledi, R; Martinez-Torres, A

    2013-08-01

    A comparative analysis of a hyperpolarization-activated ion current present in amphibian oocytes was performed using the two-electrode voltage-clamp technique in Xenopus laevis, Xenopus tropicalis, and Ambystoma mexicanum. This current appears to be driven mainly by Cl(-) ions, is independent of Ca(2+), and is made evident by applying extremely negative voltage pulses; it shows a slow activating phase and little or no desensitization. The pharmacological profile of the current is complex. The different channel blocker used for Cl(-), K(+), Na(+) and Ca(2+) conductances, exhibited various degrees of inhibition depending of the species. The profiles illustrate the intricacy of the components that give rise to this current. During X. laevis oogenesis, the hyperpolarization-activated current is present at all stages of oocytes tested (II-VI), and the amplitude of the current increases from about 50 nA in stage I to more than 1 μA in stage VI; nevertheless, there was no apparent modification of the kinetics. Our results suggest that the hyperpolarization-activated current is present both in order Anura and Urodela oocytes. However, the electrophysiological and pharmacological characteristics are quite perplexing and seem to suggest a mixture of ionic conductances that includes the activation of both anionic and cationic channels, most probably transiently opened due to the extreme hyperpolarizion of the plasma membrane. As a possible mechanism for the generation of the current, a kinetic model which fits the data suggests the opening of pores in the plasma membrane whose ion selectivity is dependent on the extracellular Cl(-) concentration. The extreme voltage conditions could induce the opening of otherwise latent pores in plasma membrane proteins (i.e., carriers), resembling the ´slippage´ events already described for some carriers. These observations should be valuable for other groups trying to express cloned, voltage-dependent ion channels in oocytes of

  8. Transient disruptions of aortic endothelial cell plasma membranes.

    PubMed Central

    Yu, Q. C.; McNeil, P. L.

    1992-01-01

    Cells of gut, skin, and muscle frequently suffer transient survivable plasma membrane disruptions ("wounds") under physiological conditions, but it is not known whether endothelial cells of the aorta, which are constantly exposed to hemodynamically generated mechanical forces, similarly are injured in vivo. We have used serum albumin as a molecular probe for identifying endothelial cells of the rat aorta that incurred and survived transient plasma membrane wounds in vivo. Such wounded endothelial cells were in fact observed in the aortas of all rats examined. However, the percentage of wounded cells in the total aortic endothelial population varied remarkably between individuals ranging from 1.4% to 17.9% with a mean of 6.5% (+/- 4.6% SD). Wounded endothelial cells were heterogeneously distributed, being found in distinct clusters often in the shape of streaks aligned with the long axis of the vessel, or in the shape of partial or complete rims surrounding bifurcation openings, such as the ostia of the intercostal arteries. Physical exercise (running) did not increase the frequency of aortic endothelial cell membrane wounding, nor did spontaneous hypertension. Surprisingly, 80% of mitotic endothelial cell figures were identified as wounded. This article identified a previously unrecognized form of endothelial cell injury, survivable disruptions of the plasma membrane, and shows that injury to the endothelial cells of the normal aorta is far more commonplace than previously suspected. Plasma membrane wounding of endothelial cells could be linked to the initiation of atherosclerosis. Images Figure 1 Figure 3 Figure 4 Figure 5 Figure 11 Figure 6 Figure 8 PMID:1466399

  9. Analysis of lipid-composition changes in plasma membrane microdomains.

    PubMed

    Ogiso, Hideo; Taniguchi, Makoto; Okazaki, Toshiro

    2015-08-01

    Sphingolipids accumulate in plasma membrane microdomain sites, such as caveolae or lipid rafts. Such microdomains are considered to be important nexuses for signal transduction, although changes in the microdomain lipid components brought about by signaling are poorly understood. Here, we applied a cationic colloidal silica bead method to analyze plasma membrane lipids from monolayer cells cultured in a 10 cm dish. The detergent-resistant fraction from the silica bead-coated membrane was analyzed by LC-MS/MS to evaluate the microdomain lipids. This method revealed that glycosphingolipids composed the microdomains as a substitute for sphingomyelin (SM) in mouse embryonic fibroblasts (tMEFs) from an SM synthase 1/2 double KO (DKO) mouse. The rate of formation of the detergent-resistant region was unchanged compared with that of WT-tMEFs. C2-ceramide (Cer) stimulation caused greater elevations in diacylglycerol and phosphatidic acid levels than in Cer levels within the microdomains of WT-tMEFs. We also found that lipid changes in the microdomains of SM-deficient DKO-tMEFs caused by serum stimulation occurred in the same manner as that of WT-tMEFs. This practical method for analyzing membrane lipids will facilitate future comprehensive analyses of membrane microdomain-associated responses.

  10. A mechanism of raft formation on both plasma membrane layers

    NASA Astrophysics Data System (ADS)

    Sornbundit, Kan; Modchang, Charin; Triampo, Wannapong; Triampo, Darapond; Nuttavut, Narin

    2013-10-01

    A double-layered membrane model is proposed to explain raft formation and induction on extracellular (outer) and cytoplasmic (inner) leaflets of plasma membranes in a situation where only the outer layer has a tendency to phase-separate. In the model, lipid exchange with the surrounding medium is allowed on both layers, but lipid exchange between layers is not allowed. Simulations display domain stabilization on both layers. The effect of the lipid recycling frequencies on stationary domain sizes is also investigated. It is found that stationary domain sizes decrease when lipid recycling frequencies are stronger. Linear stability analysis is used to verify the results.

  11. Modulation of Erythrocyte Plasma Membrane Redox System Activity by Curcumin

    PubMed Central

    Singh, Prabhakar; Kesharwani, Rajesh Kumar; Misra, Krishna; Rizvi, Syed Ibrahim

    2016-01-01

    Plasma membrane redox system (PMRS) is an electron transport chain system ubiquitously present throughout all cell types. It transfers electron from intracellular substrates to extracellular acceptors for regulation of redox status. Curcumin, isolated from Curcuma longa, has modulatory effects on cellular physiology due to its membrane interaction ability and antioxidant potential. The present study investigates the effect of curcumin on PMRS activity of erythrocytes isolated from Wistar rats in vitro and in vivo and validated through an in silico docking simulation study using Molegro Virtual Docker (MVD). Effects of curcumin were also evaluated on level of glutathione (GSH) and the oxidant potential of plasma measured in terms of plasma ferric equivalent oxidative potentials (PFEOP). Results show that curcumin significantly (p < 0.01) downregulated the PMRS activity in a dose-dependent manner. Molecular docking results suggest that curcumin interacts with amino acids at the active site cavity of cytochrome b5 reductase, a key constituent of PMRS. Curcumin also increased the GSH level in erythrocytes and plasma while simultaneously decreasing the oxidant potential (PFEOP) of plasma. Altered PMRS activity and redox status are associated with the pathophysiology of several health complications including aging and diabetes; hence, the above finding may explain part of the role of curcumin in health beneficial effects. PMID:26904287

  12. Modulation of Erythrocyte Plasma Membrane Redox System Activity by Curcumin.

    PubMed

    Singh, Prabhakar; Kesharwani, Rajesh Kumar; Misra, Krishna; Rizvi, Syed Ibrahim

    2016-01-01

    Plasma membrane redox system (PMRS) is an electron transport chain system ubiquitously present throughout all cell types. It transfers electron from intracellular substrates to extracellular acceptors for regulation of redox status. Curcumin, isolated from Curcuma longa, has modulatory effects on cellular physiology due to its membrane interaction ability and antioxidant potential. The present study investigates the effect of curcumin on PMRS activity of erythrocytes isolated from Wistar rats in vitro and in vivo and validated through an in silico docking simulation study using Molegro Virtual Docker (MVD). Effects of curcumin were also evaluated on level of glutathione (GSH) and the oxidant potential of plasma measured in terms of plasma ferric equivalent oxidative potentials (PFEOP). Results show that curcumin significantly (p < 0.01) downregulated the PMRS activity in a dose-dependent manner. Molecular docking results suggest that curcumin interacts with amino acids at the active site cavity of cytochrome b 5 reductase, a key constituent of PMRS. Curcumin also increased the GSH level in erythrocytes and plasma while simultaneously decreasing the oxidant potential (PFEOP) of plasma. Altered PMRS activity and redox status are associated with the pathophysiology of several health complications including aging and diabetes; hence, the above finding may explain part of the role of curcumin in health beneficial effects. PMID:26904287

  13. RNAi-mediated downregulation of poplar plasma membrane intrinsic proteins (PIPs) changes plasma membrane proteome composition and affects leaf physiology.

    PubMed

    Bi, Zhen; Merl-Pham, Juliane; Uehlein, Norbert; Zimmer, Ina; Mühlhans, Stefanie; Aichler, Michaela; Walch, Axel Karl; Kaldenhoff, Ralf; Palme, Klaus; Schnitzler, Jörg-Peter; Block, Katja

    2015-10-14

    Plasma membrane intrinsic proteins (PIPs) are one subfamily of aquaporins that mediate the transmembrane transport of water. To reveal their function in poplar, we generated transgenic poplar plants in which the translation of PIP genes was downregulated by RNA interference investigated these plants with a comprehensive leaf plasma membrane proteome and physiome analysis. First, inhibition of PIP synthesis strongly altered the leaf plasma membrane protein composition. Strikingly, several signaling components and transporters involved in the regulation of stomatal movement were differentially regulated in transgenic poplars. Furthermore, hormonal crosstalk related to abscisic acid, auxin and brassinosteroids was altered, in addition to cell wall biosynthesis/cutinization, the organization of cellular structures and membrane trafficking. A physiological analysis confirmed the proteomic results. The leaves had wider opened stomata and higher net CO2 assimilation and transpiration rates as well as greater mesophyll conductance for CO2 (gm) and leaf hydraulic conductance (Kleaf). Based on these results, we conclude that PIP proteins not only play essential roles in whole leaf water and CO2 flux but have important roles in the regulation of stomatal movement. PMID:26248320

  14. Plasma Membrane Voltage Changes during Nanosecond Pulsed Electric Field Exposure

    PubMed Central

    Frey, W.; White, J. A.; Price, R. O.; Blackmore, P. F.; Joshi, R. P.; Nuccitelli, R.; Beebe, S. J.; Schoenbach, K. H.; Kolb, J. F.

    2006-01-01

    The change in the membrane potential of Jurkat cells in response to nanosecond pulsed electric fields was studied for pulses with a duration of 60 ns and maximum field strengths of ∼100 kV/cm (100 V/cell diameter). Membranes of Jurkat cells were stained with a fast voltage-sensitive dye, ANNINE-6, which has a subnanosecond voltage response time. A temporal resolution of 5 ns was achieved by the excitation of this dye with a tunable laser pulse. The laser pulse was synchronized with the applied electric field to record images at times before, during, and after exposure. When exposing the Jurkat cells to a pulse, the voltage across the membrane at the anodic pole of the cell reached values of 1.6 V after 15 ns, almost twice the voltage level generally required for electroporation. Voltages across the membrane on the side facing the cathode reached values of only 0.6 V in the same time period, indicating a strong asymmetry in conduction mechanisms in the membranes of the two opposite cell hemispheres. This small voltage drop of 0.6–1.6 V across the plasma membrane demonstrates that nearly the entire imposed electric field of 10 V/μm penetrates into the interior of the cell and every organelle. PMID:16513782

  15. Plasma membrane voltage changes during nanosecond pulsed electric field exposure.

    PubMed

    Frey, W; White, J A; Price, R O; Blackmore, P F; Joshi, R P; Nuccitelli, R; Beebe, S J; Schoenbach, K H; Kolb, J F

    2006-05-15

    The change in the membrane potential of Jurkat cells in response to nanosecond pulsed electric fields was studied for pulses with a duration of 60 ns and maximum field strengths of approximately 100 kV/cm (100 V/cell diameter). Membranes of Jurkat cells were stained with a fast voltage-sensitive dye, ANNINE-6, which has a subnanosecond voltage response time. A temporal resolution of 5 ns was achieved by the excitation of this dye with a tunable laser pulse. The laser pulse was synchronized with the applied electric field to record images at times before, during, and after exposure. When exposing the Jurkat cells to a pulse, the voltage across the membrane at the anodic pole of the cell reached values of 1.6 V after 15 ns, almost twice the voltage level generally required for electroporation. Voltages across the membrane on the side facing the cathode reached values of only 0.6 V in the same time period, indicating a strong asymmetry in conduction mechanisms in the membranes of the two opposite cell hemispheres. This small voltage drop of 0.6-1.6 V across the plasma membrane demonstrates that nearly the entire imposed electric field of 10 V/mum penetrates into the interior of the cell and every organelle.

  16. Neobiosynthesis of Glycosphingolipids by Plasma Membrane-associated Glycosyltransferases*

    PubMed Central

    Crespo, Pilar M.; Demichelis, Vanina Torres; Daniotti, José L.

    2010-01-01

    Gangliosides, complex glycosphingolipids containing sialic acids, are synthesized in the endoplasmic reticulum and in the Golgi complex. These neobiosynthesized gangliosides move via vesicular transport to the plasma membrane, becoming components of the external leaflet. Gangliosides can undergo endocytosis followed by recycling to the cell surface or sorting to the Golgi complex or lysosomes for remodeling and catabolism. Recently, glycosphingolipid catabolic enzymes (glycohydrolases) have been found to be associated with the plasma membrane, where they display activity on the membrane components. In this work, we demonstrated that ecto-ganglioside glycosyltransferases may catalyze ganglioside synthesis outside the Golgi compartment, particularly at the cell surface. Specifically, we report the first direct evidence of expression and activity of CMP-NeuAc:GM3 sialyltransferase (Sial-T2) at the cell surface of epithelial and melanoma cells, with membrane-integrated ecto-Sial-T2 being able to sialylate endogenously synthesized GM3 ganglioside as well as exogenously incorporated substrate. Interestingly, we also showed that ecto-Sial-T2 was able to synthesize GD3 ganglioside at the cell surface using the endogenously synthesized cytidine monophospho-N-acetylneuraminic acid (CMP-NeuAc) available at the extracellular milieu. In addition, the expression of UDP-GalNAc:LacCer/GM3/GD3 N-acetylgalactosaminyltransferase (GalNAc-T) was also detected at the cell surface of epithelial cells, whose catalytic activity was only observed after feeding the cells with exogenous GM3 substrate. Thus, the relative interplay between the plasma membrane-associated glycosyltransferase and glycohydrolase activities, even when acting on a common substrate, emerges as a potential level of regulation of the local glycosphingolipid composition in response to different external and internal stimuli. PMID:20639193

  17. Analysis of plasma membrane phosphoinositides from fusogenic carrot cells

    SciTech Connect

    Wheeler, J.J.; Boss, W.F.

    1987-04-01

    Phosphatidylinositol monophosphate (PIP) and phosphatidylinositol bisphosphate (PIP/sub 2/) were found to be associated with the plasma membrane-rich fractions isolated by aqueous polymer two-phase partitioning from fusogenic cells. They represented at least 5% and 0.7% of the total inositol-labeled lipids in the plasma membrane-rich fractions, respectively, and were present in a ratio of about 7:1 (PIP:PIP/sub 2/). In addition, two unidentified inositol-labeled compounds, which together were approximately 3% of the inositol-labeled lipids, were found predominantly in the plasma membrane-rich fractions and migrated between PIP/sub 2/ and PIP. The R/sub f/s of these compounds were approximately 0.31 and 0.34 in the solvent system CHCl/sub 3/:MeOH:15N NH/sub 4/OH:H/sub 2/O (90:90:7:22) using LK5 plates presoaked in 1% potassium oxalate. These compounds incorporated /sup 32/P/sub i/, (/sup 3/H)inositol and were hydrolyzed in mild base. These data suggested that they were glycero-phospholipids. Although the compounds did not comigrate with lysoPIP obtained from bovine brain (R/sub f/ approx. 0.35), when endogenous PIP was hydrolyzed to lysoPIP, the breakdown product migrated in the region of the unidentified inositol lipids.

  18. Properties of yeast Saccharomyces cerevisiae plasma membrane dicarboxylate transporter.

    PubMed

    Aliverdieva, D A; Mamaev, D V; Bondarenko, D I; Sholtz, K F

    2006-10-01

    Transport of succinate into Saccharomyces cerevisiae cells was determined using the endogenous coupled mitochondrial succinate oxidase system. The dependence of succinate oxidation rate on the substrate concentration was a curve with saturation. At neutral pH the K(m) value of the mitochondrial "succinate oxidase" was fivefold less than that of the cellular "succinate oxidase". O-Palmitoyl-L-malate, not penetrating across the plasma membrane, completely inhibited cell respiration in the presence of succinate but not glucose or pyruvate. The linear inhibition in Dixon plots indicates that the rate of succinate oxidation is limited by its transport across the plasmalemma. O-Palmitoyl-L-malate and L-malate were competitive inhibitors (the K(i) values were 6.6 +/- 1.3 microM and 17.5 +/- 1.1 mM, respectively). The rate of succinate transport was also competitively inhibited by the malonate derivative 2-undecyl malonate (K(i) = 7.8 +/- 1.2 microM) but not phosphate. Succinate transport across the plasma membrane of S. cerevisiae is not coupled with proton transport, but sodium ions are necessary. The plasma membrane of S. cerevisiae is established to have a carrier catalyzing the transport of dicarboxylates (succinate and possibly L-malate and malonate).

  19. Plasma membrane lipids and their role in fungal virulence.

    PubMed

    Rella, Antonella; Farnoud, Amir M; Del Poeta, Maurizio

    2016-01-01

    There has been considerable evidence in recent years suggesting that plasma membrane lipids are important regulators of fungal pathogenicity. Various glycolipids have been shown to impart virulent properties in several fungal species, while others have been shown to play a role in host defense. In addition to their role as virulence factors, lipids also contribute to other virulence mechanisms such as drug resistance, biofilm formation, and release of extracellular vesicles. In addition, lipids also affect the mechanical properties of the plasma membrane through the formation of packed microdomains composed mainly of sphingolipids and sterols. Changes in the composition of lipid microdomains have been shown to disrupt the localization of virulence factors and affect fungal pathogenicity. This review gathers evidence on the various roles of plasma membrane lipids in fungal virulence and how lipids might contribute to the different processes that occur during infection and treatment. Insight into the role of lipids in fungal virulence can lead to an improved understanding of the process of fungal pathogenesis and the development of new lipid-mediated therapeutic strategies.

  20. Molecular Cloning of Tomato Plasma Membrane H+-ATPase 1

    PubMed Central

    Ewing, Nicholas N.; Wimmers, Larry E.; Meyer, David J.; Chetelat, Roger T.; Bennett, Alan B.

    1990-01-01

    Two cDNA clones (LHA1 and LHA2) from tomato (Lycopersicon esculentum) which likely encode isoforms of the plasma membrane H+-ATPase were isolated. The longest cDNA (3229 base pairs), LHA1, comprises an open reading frame that encodes a 956 amino acid, 105 kilodalton polypeptide with several potential transmembrane domains. In vitro transcription and translation of LHA1 yields a major translation product of approximately 100 kilodaltons that is immunoprecipitable with antiserum to the corn root plasma membrane H+-ATPase. LHA2 encodes a portion of a coding sequence that is 96% identical to LHA1, suggesting that LHA2 encodes an isoform of the H+-ATPase. Genomic DNA gel blot analysis indicates that both LHA1 and LHA2 hybridize to a common set of six to eight restriction fragments at moderate stringency and to single distinct fragments at high stringency. LHA1 and LHA2 map to distinct sites on chromosomes three and six, respectively. RNA gel blot analysis indicates that both LHA1 and LHA2 hybridize to 3.4 kilobase pair transcripts present in both leaves and roots, although the LHA2 transcript is relatively more abundant in leaves than in roots. These results indicate that in tomato as many as six to eight genes may encode the plasma membrane H+-ATPase, two of which are expressed at the level of mRNA in both roots and leaves. Images Figure 3 Figure 4 Figure 5 Figure 7 PMID:16667929

  1. A critical survey of methods to detect plasma membrane rafts

    PubMed Central

    Klotzsch, Enrico; Schütz, Gerhard J.

    2013-01-01

    The plasma membrane is still one of the enigmatic cellular structures. Although the microscopic structure is getting clearer, not much is known about the organization at the nanometre level. Experimental difficulties have precluded unambiguous approaches, making the current picture rather fuzzy. In consequence, a variety of different membrane models has been proposed over the years, on the basis of different experimental strategies. Recent data obtained via high-resolution single-molecule microscopy shed new light on the existing hypotheses. We thus think it is a good time for reviewing the consistency of the existing models with the new data. In this paper, we summarize the available models in ten propositions, each of which is discussed critically with respect to the applied technologies and the strengths and weaknesses of the approaches. Our aim is to provide the reader with a sound basis for his own assessment. We close this chapter by exposing our picture of the membrane organization at the nanoscale. PMID:23267184

  2. Role of plasma membrane transporters in muscle metabolism.

    PubMed Central

    Zorzano, A; Fandos, C; Palacín, M

    2000-01-01

    Muscle plays a major role in metabolism. Thus it is a major glucose-utilizing tissue in the absorptive state, and changes in muscle insulin-stimulated glucose uptake alter whole-body glucose disposal. In some conditions, muscle preferentially uses lipid substrates, such as fatty acids or ketone bodies. Furthermore, muscle is the main reservoir of amino acids and protein. The activity of many different plasma membrane transporters, such as glucose carriers and transporters of carnitine, creatine and amino acids, play a crucial role in muscle metabolism by catalysing the influx or the efflux of substrates across the cell surface. In some cases, the membrane transport process is subjected to intense regulatory control and may become a potential pharmacological target, as is the case with the glucose transporter GLUT4. The goal of this review is the molecular characterization of muscle membrane transporter proteins, as well as the analysis of their possible regulatory role. PMID:10903126

  3. Super-resolution optical microscopy of lipid plasma membrane dynamics.

    PubMed

    Eggeling, Christian

    2015-01-01

    Plasma membrane dynamics are an important ruler of cellular activity, particularly through the interaction and diffusion dynamics of membrane-embedded proteins and lipids. FCS (fluorescence correlation spectroscopy) on an optical (confocal) microscope is a popular tool for investigating such dynamics. Unfortunately, its full applicability is constrained by the limited spatial resolution of a conventional optical microscope. The present chapter depicts the combination of optical super-resolution STED (stimulated emission depletion) microscopy with FCS, and why it is an important tool for investigating molecular membrane dynamics in living cells. Compared with conventional FCS, the STED-FCS approach demonstrates an improved possibility to distinguish free from anomalous molecular diffusion, and thus to give new insights into lipid-protein interactions and the traditional lipid 'raft' theory. PMID:25658345

  4. Xenopus tropicalis oocytes as an advantageous model system for the study of intracellular Ca2+ signalling

    PubMed Central

    Marchant, Jonathan S; Parker, Ian

    2001-01-01

    The purpose of this study was to compare oocytes from the pipid frogs Xenopus tropicalis and Xenopus laevis, with respect to their utility for studying Ca2+ signalling mechanisms and for expression of heterologous proteins. We show that X. tropicalis oocytes possess an intracellular Ca2+ store that is mobilized by inositol (1,4,5) trisphosphate (IP3). Ca2+ signalling is activated by endogenous lysophosphatidic acid receptors and cytosolic Ca2+ activates a plasma membrane chloride conductance. The spatiotemporal organization of cytosolic Ca2+ signals, from the microscopic architecture of elementary Ca2+ ‘puffs' to the macroscopic patterns of Ca2+ spiking are closely similar to the local and global patterns of Ca2+ release previously characterized in oocytes from X. laevis. By injecting X. tropicalis oocytes with cDNA encoding an ER-targeted fluorescent protein construct, we demonstrate the capacity of the X. tropicalis oocyte to readily express heterologous proteins. The organization of ER is polarized across the oocyte, with the IP3-releaseable store targeted within an ∼8 μm wide band that circumscribes the cell. We conclude that the X. tropicalis oocyte shares many of the characteristics that have made oocytes of X. laevis a favoured system for studying Ca2+ signalling mechanisms. Moreover, X. tropicalis oocytes display further practical advantages in terms of imaging depth, Ca2+ signal magnitude and electrical properties. These further enhance the appeal of X. tropicalis as an experimental system, in addition to its greater amenability to transgenic approaches. PMID:11264232

  5. An adhesion-based method for plasma membrane isolation: evaluating cholesterol extraction from cells and their membranes.

    PubMed

    Bezrukov, Ludmila; Blank, Paul S; Polozov, Ivan V; Zimmerberg, Joshua

    2009-11-15

    A method to isolate large quantities of directly accessible plasma membrane from attached cells is presented. The method is based on the adhesion of cells to an adsorbed layer of polylysine on glass plates, followed by hypotonic lysis with ice-cold distilled water and subsequent washing steps. Optimal conditions for coating glass plates and time for cell attachment were established. No additional chemical or mechanical treatments were used. Contamination of the isolated plasma membrane by cell organelles was less than 5%. The method uses inexpensive, commercially available polylysine and reusable glass plates. Plasma membrane preparations can be made in 15 min. Using this method, we determined that methyl-beta-cyclodextrin differentially extracts cholesterol from fibroblast cells and their plasma membranes and that these differences are temperature dependent. Determination of the cholesterol/phospholipid ratio from intact cells does not reflect methyl-beta-cyclodextrin plasma membrane extraction properties.

  6. Influence of nonequilibrium lipid transport, membrane compartmentalization, and membrane proteins on the lateral organization of the plasma membrane

    NASA Astrophysics Data System (ADS)

    Fan, Jun; Sammalkorpi, Maria; Haataja, Mikko

    2010-01-01

    Compositional lipid domains (lipid rafts) in plasma membranes are believed to be important components of many cellular processes. The mechanisms by which cells regulate the sizes, lifetimes, and spatial localization of these domains are rather poorly understood at the moment. We propose a robust mechanism for the formation of finite-sized lipid raft domains in plasma membranes, the competition between phase separation in an immiscible lipid system and active cellular lipid transport processes naturally leads to the formation of such domains. Simulations of a continuum model reveal that the raft size distribution is broad and the average raft size is strongly dependent on the rates of cellular and interlayer lipid transport processes. We demonstrate that spatiotemporal variations in the recycling may enable the cell to localize larger raft aggregates at specific parts along the membrane. Moreover, we show that membrane compartmentalization may further facilitate spatial localization of the raft domains. Finally, we demonstrate that local interactions with immobile membrane proteins can spatially localize the rafts and lead to further clustering.

  7. Photosynthesis Activates Plasma Membrane H+-ATPase via Sugar Accumulation.

    PubMed

    Okumura, Masaki; Inoue, Shin-Ichiro; Kuwata, Keiko; Kinoshita, Toshinori

    2016-05-01

    Plant plasma membrane H(+)-ATPase acts as a primary transporter via proton pumping and regulates diverse physiological responses by controlling secondary solute transport, pH homeostasis, and membrane potential. Phosphorylation of the penultimate threonine and the subsequent binding of 14-3-3 proteins in the carboxyl terminus of the enzyme are required for H(+)-ATPase activation. We showed previously that photosynthesis induces phosphorylation of the penultimate threonine in the nonvascular bryophyte Marchantia polymorpha However, (1) whether this response is conserved in vascular plants and (2) the process by which photosynthesis regulates H(+)-ATPase phosphorylation at the plasma membrane remain unresolved issues. Here, we report that photosynthesis induced the phosphorylation and activation of H(+)-ATPase in Arabidopsis (Arabidopsis thaliana) leaves via sugar accumulation. Light reversibly phosphorylated leaf H(+)-ATPase, and this process was inhibited by pharmacological and genetic suppression of photosynthesis. Immunohistochemical and biochemical analyses indicated that light-induced phosphorylation of H(+)-ATPase occurred autonomously in mesophyll cells. We also show that the phosphorylation status of H(+)-ATPase and photosynthetic sugar accumulation in leaves were positively correlated and that sugar treatment promoted phosphorylation. Furthermore, light-induced phosphorylation of H(+)-ATPase was strongly suppressed in a double mutant defective in ADP-glucose pyrophosphorylase and triose phosphate/phosphate translocator (adg1-1 tpt-2); these mutations strongly inhibited endogenous sugar accumulation. Overall, we show that photosynthesis activated H(+)-ATPase via sugar production in the mesophyll cells of vascular plants. Our work provides new insight into signaling from chloroplasts to the plasma membrane ion transport mechanism. PMID:27016447

  8. Dysferlinopathy Fibroblasts Are Defective in Plasma Membrane Repair

    PubMed Central

    Matsuda, Chie; Kiyosue, Kazuyuki; Nishino, Ichizo; Goto, Yuichi; Hayashi, Yukiko K.

    2015-01-01

    Background: Dysferlin is a sarcolemmal protein that is defective in Miyoshi myopathy and limb-girdle muscular dystrophy type 2B, and is involved in sarcolemmal repair. Primary cultured myoblasts and myotubes established from patient muscle biopsies have been widely utilized to explore the molecular mechanism of dysferlinopathy. Objectives: The purpose of this study was to explore the possible utility of dermal fibroblasts from dysferlin-deficient patients and SJL mice as a tool for studying dysferlinopathy. Methods: Dysferlin protein expression in fibroblasts from dysferlin-deficient patients and SJL mice was analyzed by immunoblotting and immunocytochemistry. The membrane wound-repair assay was performed on the fibroblasts using a confocal microscope equipped with a UV-laser. The membrane blebbing assay using hypotonic shock, in which normal membrane blebbing is detected only in the presence of dysferlin, was also performed using human and mouse fibroblasts. Results: Mis-sense mutated dysferlin was expressed at a very low level in fibroblasts from a dysferlinopathy patient, and lower expression level of truncated dysferlin was observed in SJL mouse fibroblast. Fibroblasts from patients with dysferlinopathy and SJL mice showed attenuated membrane repair and did not form membrane blebs in response to hypoosmotic shock. Proteosomal inhibitior increased mis-sense mutated or truncated dysferlin levels, and restored membrane blebbing, however, proteosomal inhibition failed to improve levels of dysferlin with non-sense or frame-shift mutation. Conclusion: Fibroblasts from dysferlinopathy patients and SJL mice showed attenuated plasma membrane repair, and could be a tool for studying dysferlinopathy. PMID:26579332

  9. Plant lipid environment and membrane enzymes: the case of the plasma membrane H+-ATPase.

    PubMed

    Morales-Cedillo, Francisco; González-Solís, Ariadna; Gutiérrez-Angoa, Lizbeth; Cano-Ramírez, Dora Luz; Gavilanes-Ruiz, Marina

    2015-04-01

    Several lipid classes constitute the universal matrix of the biological membranes. With their amphipathic nature, lipids not only build the continuous barrier that confers identity to every cell and organelle, but they are also active actors that modulate the activity of the proteins immersed in the lipid bilayer. The plasma membrane H(+)-ATPase, an enzyme from plant cells, is an excellent example of a transmembrane protein whose activity is influenced by the hydrophilic compartments at both sides of the membrane and by the hydrophobic domains of the lipid bilayer. As a result, an extensive documentation of the effect of numerous amphiphiles in the enzyme activity can be found. Detergents, membrane glycerolipids, and sterols can produce activation or inhibition of the enzyme activity. In some cases, these effects are associated with the lipids of the membrane bulk, but in others, a direct interaction of the lipid with the protein is involved. This review gives an account of reports related to the action of the membrane lipids on the H(+)-ATPase activity.

  10. Effects of freezing and cold acclimation on the plasma membrane of isolated protoplasts, progress report

    SciTech Connect

    Steponkus, P L

    1993-01-01

    Our goal is to provide a mechanistic understanding of the cellular and molecular aspects of freezing injury and cold acclimation from a perspective of the structural and functional integrity of the plasma membrane -- the primary site of freezing injury in winter cereals. We have utilized protoplasts isolated from leaves of winter rye (Secale cereale L. cv Puma) to study the cryobehavior of the plasma membrane during a freeze/thaw cycle. The focus of our current studies is on lesions in the plasma membrane that result from severe freeze-induced dehydration and result in the alteration of the semipermeable characteristics of the plasma membrane so that the protoplasts are osmotically unresponsive. In protoplasts isolated from non-acclimated rye leaves (NA protoplasts), injury is associated with the formation of aparticulate domains in the plasma membrane, aparticulate lamellae subtending the plasma membrane, and lamellar-to-hexagonal II phase transitions in the plasma membrane and the subtending lamellae. However, lamellar-to-hexagonal II phase transitions are not observed following severe dehydration of protoplasts isolated from cold-acclimated rye leaves (ACC protoplasts). Rather, injury is associated with the fracture-jump lesion,'' which, in freeze-fracture electron microscopy studies, is manifested as localized deviations in the fracture face of the plasma membrane. The fracture plane jumps'' from the plasma membrane to either subtending aparticulate lamellae or aparticulate regions of various endomembranes (predominantly chloroplast envelopes) that are in close apposition with the plasma membrane.

  11. Ultracytochemical localization and microprobe quantitation of calcium stores in the insect oocyte.

    PubMed

    Przełecka, A; Allakhverdov, B L; Głowacka, S K; Pogorelov, A G

    1986-01-01

    Detection of calcium in the follicles of Galleria mellonella (Lepidoptera) was performed using two cytochemical methods. Calcium precipitation was obtained either with ammonium oxalate (AO) or with N,N-naphtaloylhydroxylamine (NHA). In both cases the X-ray "on line" analysis monitored the presence of calcium in the oocytes, which was correlated with the accumulation of yolk spheres. Concentration of calcium in oocytes filled with yolk and treated with AO amounted to 9 mmoles per 1,000 g tissue wet weight. This value is similar to that calculated previously for follicles untreated with any reagent and prepared for the analysis by the freeze-drying technique (Przeļecka et al. 1980). Examination of the ultrastructure of oocytes treated with NHA revealed calcium precipitate at the follicular epithelium/oocyte interface, in endocytotic canaliculi and vesicles formed by the oocyte plasma membrane, in ooplasm, and in yolk spheres. In oocytes treated with AO, the calcium-precipitate intermingled with the precipitate produced by the osmium alone. The presumed cause of this phenomenon is discussed. PMID:3744899

  12. Maize plasma membrane aquaporin ZmPIP2;5, but not ZmPIP1;2, facilitates transmembrane diffusion of hydrogen peroxide.

    PubMed

    Bienert, Gerd P; Heinen, Robert B; Berny, Marie C; Chaumont, François

    2014-01-01

    Plant aquaporins play important roles in transmembrane water transport processes, but some also facilitate the diffusion of other small uncharged solutes ranging from gases to metalloids. Recent evidence suggests that the transmembrane movement of hydrogen peroxide, an intra- and intercellular multifunctional signaling and defense compound, can be regulated by aquaporins. We addressed the question whether maize aquaporins belonging to the plasma membrane intrinsic protein (PIP) subfamily facilitate hydrogen peroxide diffusion using heterologous expression in the yeast Saccharomyces cerevisiae. We showed that ZmPIP proteins belonging to the PIP1 and PIP2 groups were significantly expressed in yeast cells only after codon optimization of their cDNA. In accordance with previous localization studies in oocytes and plants, ZmPIP1;2 was mainly retained in intracellular membranes, while ZmPIP2;5 was localized to the plasma membrane. However, upon co-expression with ZmPIP2;5, ZmPIP1;2 was re-localized to the plasma membrane. Using a non-functional plasma membrane-localized ZmPIP2;5 mutant to deliver ZmPIP1;2 to the plasma membrane, we demonstrated that, in contrast to wild type ZmPIP2;5, ZmPIP1;2 was not permeable to hydrogen peroxide. Our study further highlighted the fact that, when using the yeast system, which is widely employed to study substrates for plant aquaporins and other transporters, although positive transport assay results allow direct conclusions to be drawn regarding solute permeability, negative results require additional control experiments to show that the protein is expressed and localized correctly before concluding on the lack of transport activity.

  13. The integrin-binding motif RGDS induces protein tyrosine phosphorylation without activation in Bufo arenarum (Amphibia) oocytes.

    PubMed

    Mouguelar, Valeria S; Cabada, Marcelo O; Coux, Gabriela

    2011-05-01

    Integrins are cell adhesion molecules that are thought to be involved in sperm-oocyte interaction. Nevertheless, their function in mammalian fertilization is still controversial, as different species behave differently. In amphibians, their role is mainly supported by Xenopus laevis studies, where RGDS peptide induces oocyte activation. We recently provided evidence suggesting the presence and involvement of integrins in the interaction of the oocyte plasma membrane (PM) with sperm in the amphibian Bufo arenarum. In order to understand the role of integrin homologs in oocytes and their possible contribution to egg activation mechanisms, we examined the presence of integrin subunits and the effect of RGDS peptide on oocytes and during fertilization. Western blot studies detected integrin subunits α5, αV and β1 in oocytes. In sperm, we could detect only the αV integrin subunit. We found that RGDS peptide was unable to elicit egg activation or MAPK dephosphorylation, but can induce reversible inhibition of fertilization. A similar partial inhibition was produced by an anti-β1 integrin antibody. Using an anti-phosphotyrosine antibody we found major changes in phosphotyrosine-containing proteins in egg extracts minutes after fertilization. Cytosol and PMs isolated from oocytes and fertilized eggs showed additional fertilization-induced phosphorylated proteins. Some of these were also present in cytosol and PMs from RGDS-treated oocytes (partially mimicking fertilization). These findings suggest that B. arenarum fertilization involves integrins (e.g. β1 subunit) as adhesion proteins. Our data support the view that RGDS-binding receptors may function as signaling receptors in B. arenarum oocytes, but integrin engagement by RGDS is not sufficient for oocyte activation. PMID:21339287

  14. Surface monofunctionalized polymethyl pentene hollow fiber membranes by plasma treatment and hemocompatibility modification for membrane oxygenators

    NASA Astrophysics Data System (ADS)

    Huang, Xin; Wang, Weiping; Zheng, Zhi; Fan, Wenling; Mao, Chun; Shi, Jialiang; Li, Lei

    2016-01-01

    The hemocompatibility of polymethyl pentene (PMP) hollow fiber membranes (HFMs) was improved through surface modification for membrane oxygenator applications. The modification was performed stepwise with the following: (1) oxygen plasma treatment, (2) functionalization of monosort hydroxyl groups through NaBH4 reduction, and (3) grafting 2-methacryloyloxyethyl phosphorylcholine (MPC) or heparin. SEM, ATR-FTIR, and XPS analyses were conducted to confirm successful grafting during the modification. The hemocompatibility of PMP HFMs was analyzed and compared through protein adsorption, platelet adhesion, and coagulation tests. Pure CO2 and O2 permeation rates, as well as in vitro gas exchange rates, were determined to evaluate the mass transfer properties of PMP HFMs. SEM results showed that different nanofibril topographies were introduced on the HFM surface. ATR-FTIR and XPS spectra indicated the presence of functionalization of monosort hydroxyl group and the grafting of MPC and heparin. Hemocompatibility evaluation results showed that the modified PMP HFMs presented optimal hemocompatibility compared with pristine HFMs. Gas permeation results revealed that gas permeation flux increased in the modified HFMs because of dense surface etching during the plasma treatment. The results of in vitro gas exchange rates showed that all modified PMP HFMs presented decreased gas exchange rates because of potential surface fluid wetting. The proposed strategy exhibits a potential for fabricating membrane oxygenators for biomedical applications to prevent coagulation formation and alter plasma-induced surface topology and composition.

  15. Effect of the expression of aquaporins 1 and 3 in mouse oocytes and compacted eight-cell embryos on the nucleation temperature for intracellular ice formation.

    PubMed

    Seki, Shinsuke; Edashige, Keisuke; Wada, Sakiko; Mazur, Peter

    2011-10-01

    The occurrence of intracellular ice formation (IIF) is the most important factor determining whether cells survive a cryopreservation procedure. What is not clear is the mechanism or route by which an external ice crystal can traverse the plasma membrane and cause the heterogeneous nucleation of the supercooled solution within the cell. We have hypothesized that one route is through preexisting pores in aquaporin (AQP) proteins that span the plasma membranes of many cell types. Since the plasma membrane of mature mouse oocytes expresses little AQP, we compared the ice nucleation temperature of native oocytes with that of oocytes induced to express AQP1 and AQP3. The oocytes were suspended in 1.0  M ethylene glycol in PBS for 15  min, cooled in a Linkam cryostage to -7.0  ° C, induced to freeze externally, and finally cooled at 20  ° C/min to -70  ° C. IIF that occurred during the 20  ° C/min cooling is manifested by abrupt black flashing. The mean IIF temperatures for native oocytes, for oocytes sham injected with water, for oocytes expressing AQP1, and for those expressing AQP3 were -34, -40, -35, and -25  ° C respectively. The fact that the ice nucleation temperature of oocytes expressing AQP3 was 10-15  ° C higher than the others is consistent with our hypothesis. AQP3 pores can supposedly be closed by low pH or by treatment with double-stranded Aqp3 RNA. However, when morulae were subjected to such treatments, the IIF temperature still remained high. A possible explanation is suggested.

  16. Solid polymer electrolyte composite membrane comprising plasma etched porous support

    DOEpatents

    Liu, Han; LaConti, Anthony B.

    2010-10-05

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a rigid, non-electrically-conducting support, the support preferably being a sheet of polyimide having a thickness of about 7.5 to 15 microns. The support has a plurality of cylindrical pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores, which preferably have a diameter of about 0.1 to 5 microns, are made by plasma etching and preferably are arranged in a defined pattern, for example, with fewer pores located in areas of high membrane stress and more pores located in areas of low membrane stress. The pores are filled with a first solid polymer electrolyte, such as a perfluorosulfonic acid (PFSA) polymer. A second solid polymer electrolyte, which may be the same as or different than the first solid polymer electrolyte, may be deposited over the top and/or bottom of the first solid polymer electrolyte.

  17. Expression of plasma membrane receptor genes during megakaryocyte development

    PubMed Central

    Sun, Sijie; Wang, Wenjing; Latchman, Yvette; Gao, Dayong; Aronow, Bruce

    2013-01-01

    Megakaryocyte (MK) development is critically informed by plasma membrane-localized receptors that integrate a multiplicity of environmental cues. Given that the current understanding about receptors and ligands involved in megakaryocytopoiesis is based on single targets, we performed a genome-wide search to identify a plasma membrane receptome for developing MKs. We identified 40 transmembrane receptor genes as being upregulated during MK development. Seven of the 40 receptor-associated genes were selected to validate the dataset. These genes included: interleukin-9 receptor (IL9R), transforming growth factor, β receptor II (TGFBR2), interleukin-4 receptor (IL4R), colony stimulating factor-2 receptor-beta (CSFR2B), adiponectin receptor (ADIPOR2), thrombin receptor (F2R), and interleukin-21 receptor (IL21R). RNA and protein analyses confirmed their expression in primary human MKs. Matched ligands to IL9R, TGFBR2, IL4R, CSFR2B, and ADIPOR2 affected megakaryocytopoiesis. IL9 was unique in its ability to increase the number of MKs formed. In contrast, MK colony formation was inhibited by adiponectin, TGF-β, IL4, and GM-CSF. The thrombin-F2R axis affected platelet function, but not MK development, while IL21 had no apparent detectable effects. ADP-induced platelet aggregation was suppressed by IL9, TGF-β, IL4, and adiponectin. Overall, six of seven of the plasma membrane receptors were confirmed to have functional roles in MK and platelet biology. Also, results show for the first time that adiponectin plays a regulatory role in MK development. Together these data support a strong likelihood that the 40 transmembrane genes identified as being upregulated during MK development will be an important resource to the research community for deciphering the complex repertoire of environmental cues regulating megakaryocytopoiesis and/or platelet function. PMID:23321270

  18. Na sup + -glycine cotransport in canalicular liver plasma membrane vesicles

    SciTech Connect

    Moseley, R.H.; Ballatori, N.; Murphy, S.M. Yale Univ. School of Medicine, New Haven, CT Univ. of Rochester School of Medicine and Dentistry, NY )

    1988-08-01

    By use of purified rat canalicular liver plasma membrane (cLPM) vesicles, the present study determined the driving forces for glycine transport across this membrane domain. Initial rates of ({sup 3}H)glycine uptake in cLPM vesicles were stimulated by an inwardly directed Na{sup +} gradient but not by a K{sup +} gradient. Na{sup +} gradient-dependent uptake of glycine demonstrated cation specificity for Na{sup +}, dependence on extravesicular Cl{sup {minus}}, stimulation by an intravesicular-negative membrane potential, and inhibition by dissipation of the Na{sup +} gradient with gramicidin D. Na{sup +} gradient-dependent glycine cotransport also demonstrated greater sensitivity to inhibition by sarcosine than 2-(methylamino)-isobutyric acid. Accelerated exchange diffusion of ({sup 3}H)glycine was demonstrated in the presence of Na{sup +} when cLPM vesicles were preloaded with glycine but not with L-alanine or L-proline. Substrate velocity analysis of net Na{sup +}-dependent ({sup 3}H)glycine uptake over the range of amino acid concentrations from 5 {mu}M to 5 mM demonstrated two saturable transport systems, one of high capacity and low affinity and one of low capacity and comparatively high affinity. These results indicate that, in addition to previously described neutral and anionic amino acid transport systems, Na{sup +} gradient-dependent glycine transport mechanisms are present on the canalicular domain of the liver plasma membrane. These canalicular reabsorptive mechanisms may serve to reclaim some of the glycine generated within the canalicular lumen from the intrabiliary hydrolysis of glutathione.

  19. Calcium Modulation of Plant Plasma Membrane-Bound Atpase Activities

    NASA Technical Reports Server (NTRS)

    Caldwell, C.

    1983-01-01

    The kinetic properties of barley enzyme are discussed and compared with those of other plants. Possibilities for calcium transport in the plasma membrane by proton pump and ATPase-dependent calcium pumps are explored. Topics covered include the ph phase of the enzyme; high affinity of barley for calcium; temperature dependence, activation enthalpy, and the types of ATPase catalytic sites. Attention is given to lipids which are both screened and bound by calcium. Studies show that barley has a calmodulin activated ATPase that is found in the presence of magnesium and calcium.

  20. Revisiting transbilayer distribution of lipids in the plasma membrane.

    PubMed

    Murate, Motohide; Kobayashi, Toshihide

    2016-01-01

    Whereas asymmetric transbilayer lipid distribution in the plasma membrane is well recognized, methods to examine the precise localization of lipids are limited. In this review, we critically evaluate the methods that are applied to study transbilayer asymmetry of lipids, summarizing the factors that influence the measurement. Although none of the present methods is perfect, the current application of immunoelectron microscopy-based technique provides a new picture of lipid asymmetry. Next, we summarize the transbilayer distribution of individual lipid in both erythrocytes and nucleated cells. Finally we discuss the concept of the interbilayer communication of lipids.

  1. Modification of polysulfone porous hollow fiber membranes by air plasma treatment

    NASA Astrophysics Data System (ADS)

    Volkov, V. V.; Ibragimov, R. G.; Abdullin, I. Sh; Gallyamov, R. T.; Ovcharova, A. A.; Bildyukevich, A. V.

    2016-09-01

    Air plasma treatment was used to enhance the surface hydrophilic properties of the polysulfone porous hollow fiber membranes prepared via a dry-wet phase invertion technique in the free spinning mode in air. Membranes prepared had porous asymmetric structure with macroporous support on the shell side and fine-porous selective layer on the lumen side. The wettability of the inner membrane surfaces were checked by contact angle measurements and FTIR was used to compare the surfaces before and after plasma treatment. Membrane morphology was examined with confocal scanning laser microscopy (CSLM). Contact angle measurements confirm that air plasma treatment affords improvement in the wettability of polysulfone membranes and FTIR results show that air plasmas chemically modify the lumen side membrane surface, however, there is no significant change in membranes chemical structure after modification. CSLM data obtained, as well as gas permeability (He and CO2) measurements show that after plasma treatment pore etching occurs.

  2. Effects of freezing and cold acclimation on the plasma membrane of isolated protoplasts

    SciTech Connect

    Steponkus, P.L.

    1991-01-01

    This project focuses on lesions in the plasma membrane of protoplasts that occur during freezing to temperatures below {minus}5{degrees} which result in changes in the semipermeablity of the plasma membrane. This injury, referred to as loss of osmotic responsiveness, is associated with the formation of large, aparticulate domains in the plasma membrane, aparticulate lamellae subtending the plasma membrane, and lamellar-to-hexagonal{sub II} phase transitions in the plasma membrane and subtending lamellar. The goals of this project are to provide a mechanistic understanding of the mechanism by which freeze-induced dehydration effects the formation of aparticulate domains and lamellar-to-hexagonal{sub II} phase transitions and to determine the mechanisms by which cold acclimation and cryoprotectants preclude or diminish these ultrastructural changes. Our working hypothesis is the formation of aparticulate domains and lamellar-to-hexagon{sub II} phase transitions in the plasma membrane and subtending lamellae are manifestations of hydration-dependent bilayer-bilayer interactions.

  3. PtdIns4P synthesis by PI4KIIIα at the plasma membrane and its impact on plasma membrane identity

    PubMed Central

    Nakatsu, Fubito; Baskin, Jeremy M.; Chung, Jeeyun; Tanner, Lukas B.; Shui, Guanghou; Lee, Sang Yoon; Pirruccello, Michelle; Hao, Mingming; Ingolia, Nicholas T.; Wenk, Markus R.

    2012-01-01

    Plasma membrane phosphatidylinositol (PI) 4-phosphate (PtdIns4P) has critical functions via both direct interactions and metabolic conversion to PI 4,5-bisphosphate (PtdIns(4,5)P2) and other downstream metabolites. However, mechanisms that control this PtdIns4P pool in cells of higher eukaryotes remain elusive. PI4KIIIα, the enzyme thought to synthesize this PtdIns4P pool, is reported to localize in the ER, contrary to the plasma membrane localization of its yeast homologue, Stt4. In this paper, we show that PI4KIIIα was targeted to the plasma membrane as part of an evolutionarily conserved complex containing Efr3/rolling blackout, which we found was a palmitoylated peripheral membrane protein. PI4KIIIα knockout cells exhibited a profound reduction of plasma membrane PtdIns4P but surprisingly only a modest reduction of PtdIns(4,5)P2 because of robust up-regulation of PtdIns4P 5-kinases. In these cells, however, much of the PtdIns(4,5)P2 was localized intracellularly, rather than at the plasma membrane as in control cells, along with proteins typically restricted to this membrane, revealing a major contribution of PI4KIIIα to the definition of plasma membrane identity. PMID:23229899

  4. Organized living: formation mechanisms and functions of plasma membrane domains in yeast.

    PubMed

    Ziółkowska, Natasza E; Christiano, Romain; Walther, Tobias C

    2012-03-01

    Plasma membrane proteins and lipids organize into lateral domains of specific composition. Domain formation is achieved by a combination of lipid-lipid and lipid-protein interactions, membrane-binding protein scaffolds and protein fences. The resulting domains function in membrane protein turnover and homeostasis, as well as in cell signaling. We review the mechanisms generating plasma membrane domains and the functional consequences of this organization, focusing on recent findings from research on the yeast model system.

  5. Carboxylic Acids Plasma Membrane Transporters in Saccharomyces cerevisiae.

    PubMed

    Casal, Margarida; Queirós, Odília; Talaia, Gabriel; Ribas, David; Paiva, Sandra

    2016-01-01

    This chapter covers the functionally characterized plasma membrane carboxylic acids transporters Jen1, Ady2, Fps1 and Pdr12 in the yeast Saccharomyces cerevisiae, addressing also their homologues in other microorganisms, as filamentous fungi and bacteria. Carboxylic acids can either be transported into the cells, to be used as nutrients, or extruded in response to acid stress conditions. The secondary active transporters Jen1 and Ady2 can mediate the uptake of the anionic form of these substrates by a H(+)-symport mechanism. The undissociated form of carboxylic acids is lipid-soluble, crossing the plasma membrane by simple diffusion. Furthermore, acetic acid can also be transported by facilitated diffusion via Fps1 channel. At the cytoplasmic physiological pH, the anionic form of the acid prevails and it can be exported by the Pdr12 pump. This review will highlight the mechanisms involving carboxylic acids transporters, and the way they operate according to the yeast cell response to environmental changes, as carbon source availability, extracellular pH and acid stress conditions.

  6. Bile acids modulate signaling by functional perturbation of plasma membrane domains.

    PubMed

    Zhou, Yong; Maxwell, Kelsey N; Sezgin, Erdinc; Lu, Maryia; Liang, Hong; Hancock, John F; Dial, Elizabeth J; Lichtenberger, Lenard M; Levental, Ilya

    2013-12-13

    Eukaryotic cell membranes are organized into functional lipid and protein domains, the most widely studied being membrane rafts. Although rafts have been associated with numerous plasma membrane functions, the mechanisms by which these domains themselves are regulated remain undefined. Bile acids (BAs), whose primary function is the solubilization of dietary lipids for digestion and absorption, can affect cells by interacting directly with membranes. To investigate whether these interactions affected domain organization in biological membranes, we assayed the effects of BAs on biomimetic synthetic liposomes, isolated plasma membranes, and live cells. At cytotoxic concentrations, BAs dissolved synthetic and cell-derived membranes and disrupted live cell plasma membranes, implicating plasma membrane damage as the mechanism for BA cellular toxicity. At subtoxic concentrations, BAs dramatically stabilized domain separation in Giant Plasma Membrane Vesicles without affecting protein partitioning between coexisting domains. Domain stabilization was the result of BA binding to and disordering the nonraft domain, thus promoting separation by enhancing domain immiscibility. Consistent with the physical changes observed in synthetic and isolated biological membranes, BAs reorganized intact cell membranes, as evaluated by the spatial distribution of membrane-anchored Ras isoforms. Nanoclustering of K-Ras, related to nonraft membrane domains, was enhanced in intact plasma membranes, whereas the organization of H-Ras was unaffected. BA-induced changes in Ras lateral segregation potentiated EGF-induced signaling through MAPK, confirming the ability of BAs to influence cell signal transduction by altering the physical properties of the plasma membrane. These observations suggest general, membrane-mediated mechanisms by which biological amphiphiles can produce their cellular effects.

  7. Size of lethality target in mouse immature oocytes determined with accelerated heavy ions.

    PubMed

    Straume, T; Dobson, R L; Kwan, T C

    1989-01-01

    Mouse immature oocytes were irradiated in vivo with highly charged, heavy ions from the Bevalac accelerator at the Lawrence Berkeley Laboratory. The particles used were 670-MeV/nucleon Si14+, 570-MeV/nucleon Ar18+, and 450-MeV/nucleon Fe26+. The cross-sectional area of the lethality target in these extremely radiosensitive cells was determined from fluence-response curves and information on energy deposition by delta rays. Results indicate a target cross-section larger than that of the nucleus, one which closely approximates the cross-sectional area of the entire oocyte. For 450-MeV/nucleon Fe26+ particles, the predicted target cross-sectional area is 120 +/- 16 microns2, comparing well with the microscopically determined cross-sectional area of 111 +/- 12 microns2 for these cells. The present results are in agreement with our previous target studies which implicate the oocyte plasma membrane.

  8. Size of lethality target in mouse immature oocytes determined with accelerated heavy ions.

    PubMed

    Straume, T; Dobson, R L; Kwan, T C

    1989-01-01

    Mouse immature oocytes were irradiated in vivo with highly charged, heavy ions from the Bevalac accelerator at the Lawrence Berkeley Laboratory. The particles used were 670-MeV/nucleon Si14+, 570-MeV/nucleon Ar18+, and 450-MeV/nucleon Fe26+. The cross-sectional area of the lethality target in these extremely radiosensitive cells was determined from fluence-response curves and information on energy deposition by delta rays. Results indicate a target cross-section larger than that of the nucleus, one which closely approximates the cross-sectional area of the entire oocyte. For 450-MeV/nucleon Fe26+ particles, the predicted target cross-sectional area is 120 +/- 16 microns2, comparing well with the microscopically determined cross-sectional area of 111 +/- 12 microns2 for these cells. The present results are in agreement with our previous target studies which implicate the oocyte plasma membrane. PMID:2657842

  9. Differential association of rat liver heparan sulfate proteoglycans in membranes of the Golgi apparatus and the plasma membrane

    SciTech Connect

    Brandan, E.; Hirschberg, C.B.

    1989-06-25

    Heparan sulfate proteoglycans (HSPG) of rat liver are associated with the plasma membrane in a hydrophobic intrinsic and a hydrophilic extrinsic form. We were interested in determining whether or not these two forms could be detected in the Golgi apparatus, the subcellular site of addition of oligosaccharides and sulfate to HSPG. In vivo and in vitro radiolabeled HSPG from rat liver Golgi apparatus membranes could only be solubilized with detergents that disrupt the membrane lipid bilayer, suggesting that they are solely associated via hydrophobic interactions. Both forms of HSPG were detected in plasma membranes of rat liver and isolated rat hepatocytes. The detergent-solubilized HSPG bound to octyl-Sepharose columns, whereas the hydrophilic form did not; this latter form, however, was released from the membrane by heparin. The hydrophobic anchor of HSPG in the Golgi and plasma membranes was insensitive to treatment with phosphatidylinositol-specific phospholipase C under conditions in which alkaline phosphatase was sensitive; this suggests that the hydrophobic anchor of HSPG is the core protein itself. Preliminary experiments suggest that the subcellular site of processing of the hydrophobic to the hydrophilic form of HSPG is the plasma membrane. A specific processing activity, probably a protease of the plasma membrane not present in serum or the endoplasmic reticulum membrane, converted hydrophobic HSPG of the Golgi membrane to the hydrophilic form. In addition, pulse-chase experiments with (35S)Na2SO4 in rats demonstrated that at short times, the bulk of the radiolabeled cellular HSPG was in the Golgi apparatus; later on, the bulk of the radioactivity was found in the plasma membrane, the only subcellular site where the hydrophilic form of HSPG was detected.

  10. Isolation of plasma and nuclear membranes of thymocytes. II. Biochemical composition

    PubMed Central

    1978-01-01

    Thymocyte plasma and nuclear membranes obtained by the procedure described in the accompanying paper were analyzed for their biochemical composition. Plasma membranes were very rich in phospholipid, cholesterol, sialic aicd; they did not contain nucleic acids. In comparison, nuclear membranes had a lower phospholipid to protein ratio and contained much less sialic acid and cholesterol. 50% of the cellular cholesterol and of the membrane-bound sialic acid were found in the plasma membranes, 14% in the nuclear membranes. Live cells were labeled with 131I, and the acid-insoluble radioactivity was followed in the subfractions. A good correlation with the distribution and enrichment of plasma membrane market-enzymes was obtained. Label enrichment was about 50-fold in the two lightest of the three plasma membrane fractions. 60% of the label was contained in the plasma membranes, only 4% in the nuclear membranes. Cross-contamination of these two types of membranes was thus negligible. Sodium dodecyl sulfate-gel electrophoresis revealed three different patterns specific for, respectively, plasma membranes, the microsomal-mitochondrial fraction, and nuclear membranes. Each pattern was characterized by a set of proteins and glycoproteins, among which high molecular weight glycoproteins could be considered as marker-proteins of, respectively, 280,000, 260,000, and 230,000 daltons. 131I-labeling of live cells tagged with a very high specific activity three glycoproteins of mol wt 280,000, 200,000, and 135,000 daltons. Nuclear membranes prepared from labeled isolated nuclei had a set of labeled proteins completely different from plasma membranes. PMID:307000

  11. Post-translational processing of purified human K-ras in Xenopus oocytes.

    PubMed

    Kaplan, J B; Sass, P M

    1991-01-01

    Membrane localization of ras p21 involves a complex series of post-translational processing events, including S-farnesylation of Cys-186, removal of three carboxyl-terminal amino acid residues, and methylation of the carboxyl-terminal farnesylcysteine residue. Palmitoylation of cysteine residues within the hypervariable region (amino acids 165-185) is also required for membrane localization of mammalian H-, N-, and K-ras(A). For K-ras(B), which contains no cysteine residues within the hypervariable region, a polybasic domain substitutes for palmitoylation as a second signal for plasma membrane targeting. In order to investigate the localization of K-ras(B) to the plasma membrane, we purified wild-type and mutant human K-ras(B) proteins from strains of E. coli harboring bacterial expression plasmids and injected them into Xenopus laevis oocytes. Our results show that wild-type and activated K-ras(B) proteins can be post-translationally modified and can induce meiotic maturation in Xenopus oocytes. A mutation at Cys-186 (Cys to Gly) abolished the ability of activated K-ras(B) to induce meiosis. Deprivation of isoprenyl precursors by the addition of lovastatin, a drug that blocks the synthesis of mevalonate, also abolished the ability of activated K-ras(B) to induce meiosis, although this inhibition could be overcome by the addition of exogenous mevalonate. Lovastatin did not block meiotic maturation induced by microinjection of purified mos protein, a component of the cytostatic factor that arrests Xenopus oocytes at the first meiotic prophase. These results indicate that post-translational isoprenylation of K-ras(B) is essential for plasma membrane targeting and induction of meiotic maturation in Xenopus oocytes and that further isoprenyl modification of proteins downstream from mos signal transduction is not essential for this process. PMID:16296004

  12. Phosphatidic acid phosphatase and phospholipdase A activities in plasma membranes from fusing muscle cells.

    PubMed

    Kent, C; Vagelos, P R

    1976-06-17

    Plasma membrane from fusing embryonic muscle cells were assayed for phospholipase A activity to determine if this enzyme plays a role in cell fusion. The membranes were assayed under a variety of conditions with phosphatidylcholine as the substrate and no phospholipase A activity was found. The plasma membranes did contain a phosphatidic acid phosphatase which was optimally active in the presence of Triton X-100 and glycerol. The enzyme activity was constant from pH 5.2 to 7.0, and did not require divalent cations. Over 97% of the phosphatidic acid phosphatase activity was in the particulate fraction. The subcellular distribution of the phosphatidic acid phosphatase was the same as the distributions of the plasma membrane markers, (Na+ + k+)-ATPase and the acetylcholine receptor, which indicates that this phosphatase is located exclusively in the plasma membranes. There was no detectable difference in the phosphatidic acid phosphatase activities of plasma membranes from fusing and non-fusing cells.

  13. Proteomic analysis of mouse liver plasma membrane: use of differential extraction to enrich hydrophobic membrane proteins.

    PubMed

    Zhang, Lijun; Xie, Jinyun; Wang, Xi'e; Liu, Xiaohui; Tang, Xinke; Cao, Rui; Hu, Weijun; Nie, Song; Fan, Chunming; Liang, Songping

    2005-11-01

    To comprehensively identify proteins of liver plasma membrane (PM), we isolated PMs from mouse liver by sucrose density gradient centrifugation. An optimized extraction method for whole PM proteins and several methods of differential extraction expected to enrich hydrophobic membrane proteins were tested. The extracted PM proteins were separated by 2-DE, and were identified by MALDI-TOF-MS, and ESI-quadrupole-TOF MS. As the complementary method, 1-DE-MS/MS was also used to identify PM proteins. The optimized lysis buffer containing urea, thiourea, CHAPS and NP-40 was able to extract more PM proteins, and treatment of PM samples with chloroform/methanol and sodium carbonate led to enrichment of more hydrophobic PM proteins. From the mouse liver PM fraction, 175 non-redundant gene products were identified, of which 88 (about 50%) were integral membrane proteins with one to seven transmembrane domains. The remaining products were probably membrane-associated and cytosolic proteins. The function distribution of all the identified liver PM proteins was analyzed; 40% represented enzymes, 12% receptors and 9% proteins with unknown function.

  14. Characterization of Membrane Protein Interactions in Plasma Membrane Derived Vesicles with Quantitative Imaging FRET

    PubMed Central

    Sarabipour, Sarvenaz; Del Piccolo, Nuala; Hristova, Kalina

    2016-01-01

    CONSPECTUS Here we describe an experimental tool, termed Quantitative Imaging Förster Resonance Energy Transfer (QI-FRET), which enables the quantitative characterization of membrane protein interactions. The QI-FRET methodology allows us to acquire binding curves and calculate association constants for complex membrane proteins in the native plasma membrane environment. The method utilizes FRET detection, and thus requires that the proteins of interest are labeled with florescent proteins, either FRET donors or FRET acceptors. Since plasma membranes of cells have complex topologies precluding the acquisition of two-dimensional binding curves, the FRET measurements are performed in plasma membrane derived vesicles which bud off cells as a result of chemical or osmotic stress. The results overviewed here are acquired in vesicles produced with an osmotic vesiculation buffer developed in our laboratory, which does not utilize harsh chemicals. The concentrations of the donor-labeled and the acceptor-labeled proteins are determined, along with the FRET efficiencies, in each vesicle. The experiments utilize transient transfection, such that a wide variety of concentrations is sampled. Then, data from hundreds of vesicles are combined to yield dimerization curves. Here we discuss recent findings about the dimerization of receptor tyrosine kinases (RTKs), membrane proteins that control cell growth and differentiation via lateral dimerization in the plasma membrane. We focus on the dimerization of fibroblast growth factor receptor 3 (FGFR3), an RTK that plays a critically important role in skeletal development. We study the role of different FGFR3 domains in FGFR3 dimerization in the absence of ligand, and we show that FGFR3 extracellular domains inhibit unliganded dimerization, while contacts between the juxtamembrane domains, which connect the transmembrane domains to the kinase domains, stabilize the unliganded FGFR3 dimers. Since FGFR3 has been documented to harbor

  15. Cytoarchitecture of Caudiverbera caudiverbera stage VI oocytes: a light and electron microscope study.

    PubMed

    Dabiké, M; Preller, A

    1999-06-01

    The general characteristics and salient features of the full-grown stage VI Caudiverbera caudiverbera oocyte at the light and electron microscopy level are described. The oocyte is a huge cell with radial symmetry and distinct polarity. A black animal hemisphere, rich in pigment granules and containing the nucleus, is clearly distinguished from the unpigmented white-yellowish vegetal hemisphere. The cell is surrounded by a highly invaginated plasma membrane, with numerous microvilli. The cortex underlying the plasma membrane contains cortical and pigment granules, mitochondria, rough endoplasmic reticulum and coated vesicles. Cytoskeletal components, such as actin filaments and microtubules, are also found in this region. The predominant structures, distributed throughout the cell, are the yolk platelets, which show a gradient in size with small platelets in the animal half and very large ones in the vegetal zone. Mitochondria are also very abundant in both hemispheres and clouds of these organelles are found in the perinuclear region, frequently associated with microtubules. Developed Golgi complexes are present in the cytoplasm and occasionally, annulate lamellae appear towards the inner zones. The nucleus is a large structure containing numerous nucleoli. The nuclear envelope is highly invaginated, especially at the side facing the vegetal pole. It is regularly perforated by large nuclear pores. Our results show that the structural organization of Caudiverbera oocytes, although similar to that of other amphibian oocytes, differs from them especially concerning the spatial distribution of several structural components.

  16. Phospholipid transfer activities in toad oocytes and developing embryos. [Bufo arenarum

    SciTech Connect

    Rusinol, A.; Salomon, R.A.; Bloj, B.

    1987-01-01

    The role of lipid transfer proteins during plasma membrane biogenesis was explored. Developing amphibia embryos were used because during their growth an active plasma membrane biosynthesis occurs together with negligible mitochondrial and endoplasmic reticulum proliferation. Sonicated vesicles, containing /sup 14/C-labeled phospholipids and /sup 3/H-labeled triolein, as donor particles and cross-linked erythrocyte ghosts as acceptor particles were used to measure phospholipid transfer activities in unfertilized oocytes and in developing embryos of the toad Bufo arenarum. Phosphatidylcholine transfer activity in pH 5.1 supernatant of unfertilized oocytes was 8-fold higher than the activity found in female toad liver supernatant, but dropped steadily after fertilization. After 20 hr of development, at the stage of late blastula, the phosphatidylcholine transfer activity had dropped 4-fold. Unfertilized oocyte supernatant exhibited phosphatidylinositol and phosphatidylethanolamine transfer activity also, but at the late blastula stage the former had dropped 18-fold and the latter was no longer detectable under our assay conditions. Our results show that fertilization does not trigger a phospholipid transport process catalyzed by lipid transfer proteins. Moreover, they imply that 75% of the phosphatidylcholine transfer activity and more than 95% of the phosphatidylinositol and phosphatidylethanolamine transfer activities present in pH 5.1 supernatants of unfertilized oocytes may not be essential for toad embryo development. Our findings do not rule out, however, that a phosphatidylcholine-specific lipid transfer protein could be required for embryo early growth.

  17. Isolation and characterization of the plasma membrane from the yeast Pichia pastoris.

    PubMed

    Grillitsch, Karlheinz; Tarazona, Pablo; Klug, Lisa; Wriessnegger, Tamara; Zellnig, Günther; Leitner, Erich; Feussner, Ivo; Daum, Günther

    2014-07-01

    Despite similarities of cellular membranes in all eukaryotes, every compartment displays characteristic and often unique features which are important for the functions of the specific organelles. In the present study, we biochemically characterized the plasma membrane of the methylotrophic yeast Pichia pastoris with emphasis on the lipids which form the matrix of this compartment. Prerequisite for this effort was the design of a standardized and reliable isolation protocol of the plasma membrane at high purity. Analysis of isolated plasma membrane samples from P. pastoris revealed an increase of phosphatidylserine and a decrease of phosphatidylcholine compared to bulk membranes. The amount of saturated fatty acids in the plasma membrane was higher than in total cell extracts. Ergosterol, the final product of the yeast sterol biosynthetic pathway, was found to be enriched in plasma membrane fractions, although markedly lower than in Saccharomyces cerevisiae. A further characteristic feature of the plasma membrane from P. pastoris was the enrichment of inositol phosphorylceramides over neutral sphingolipids, which accumulated in internal membranes. The detailed analysis of the P. pastoris plasma membrane is discussed in the light of cell biological features of this microorganism especially as a microbial cell factory for heterologous protein production.

  18. HIV-1 Nef disrupts membrane-microdomain-associated anterograde transport for plasma membrane delivery of selected Src family kinases.

    PubMed

    Pan, Xiaoyu; Geist, Miriam M; Rudolph, Jochen M; Nickel, Walter; Fackler, Oliver T

    2013-10-01

    HIV-1 Nef, an essential factor in AIDS pathogenesis, boosts virus replication in vivo. As one of its activities in CD4(+) T-lymphocytes, Nef potently retargets the Src family kinase (SFK) Lck but not closely related Fyn from the plasma membrane to recycling endosomes and the trans-Golgi network to tailor T-cell activation and optimize virus replication. Investigating the underlying mechanism we find Lck retargeting involves removal of the kinase from membrane microdomains. Moreover, Nef interferes with rapid vesicular transport of Lck to block anterograde transport and plasma membrane delivery of newly synthesized Lck. The sensitivity of Lck to Nef does not depend on functional domains of Lck but requires membrane insertion of the kinase. Surprisingly, the short N-terminal SH4 domain membrane anchor of Lck is necessary and sufficient to confer sensitivity to Nef-mediated anterograde transport block and microdomain extraction. In contrast, the SH4 domain of Fyn is inert to Nef-mediated manipulation. Nef thus interferes with a specialized membrane microdomain-associated pathway for plasma membrane delivery of newly synthesized Lck whose specificity is determined by the affinity of cargo for these sorting platforms. These results provide new insight into the mechanism of Nef action and the pathways used for SFK plasma membrane delivery. PMID:23601552

  19. Host Cell Plasma Membrane Phosphatidylserine Regulates the Assembly and Budding of Ebola Virus

    PubMed Central

    Adu-Gyamfi, Emmanuel; Johnson, Kristen A.; Fraser, Mark E.; Scott, Jordan L.; Soni, Smita P.; Jones, Keaton R.; Digman, Michelle A.; Gratton, Enrico; Tessier, Charles R.

    2015-01-01

    ABSTRACT Lipid-enveloped viruses replicate and bud from the host cell where they acquire their lipid coat. Ebola virus, which buds from the plasma membrane of the host cell, causes viral hemorrhagic fever and has a high fatality rate. To date, little has been known about how budding and egress of Ebola virus are mediated at the plasma membrane. We have found that the lipid phosphatidylserine (PS) regulates the assembly of Ebola virus matrix protein VP40. VP40 binds PS-containing membranes with nanomolar affinity, and binding of PS regulates VP40 localization and oligomerization on the plasma membrane inner leaflet. Further, alteration of PS levels in mammalian cells inhibits assembly and egress of VP40. Notably, interactions of VP40 with the plasma membrane induced exposure of PS on the outer leaflet of the plasma membrane at sites of egress, whereas PS is typically found only on the inner leaflet. Taking the data together, we present a model accounting for the role of plasma membrane PS in assembly of Ebola virus-like particles. IMPORTANCE The lipid-enveloped Ebola virus causes severe infection with a high mortality rate and currently lacks FDA-approved therapeutics or vaccines. Ebola virus harbors just seven genes in its genome, and there is a critical requirement for acquisition of its lipid envelope from the plasma membrane of the human cell that it infects during the replication process. There is, however, a dearth of information available on the required contents of this envelope for egress and subsequent attachment and entry. Here we demonstrate that plasma membrane phosphatidylserine is critical for Ebola virus budding from the host cell plasma membrane. This report, to our knowledge, is the first to highlight the role of lipids in human cell membranes in the Ebola virus replication cycle and draws a clear link between selective binding and transport of a lipid across the membrane of the human cell and use of that lipid for subsequent viral entry. PMID

  20. Thymocyte plasma membrane: the location of specific glucocorticoid binding sites

    SciTech Connect

    Sergeev, P.V.; Kalinin, G.V.; Dukhanin, A.S.

    1987-01-01

    In modern molecular endocrinology it is now possible to determine the localization of receptors for biologically active substances with the aid of ligands, with high affinity for the receptor, immobilized on polymers. The purpose of this paper is to study the ability of hydrocortisone (HC), immobilized on polyvinylpyrrolidone (PVP-HC), to reduce binding of tritium-HC by thymocytes of adrenalectomized rats. It is determined that specific binding sites for HC on rat thymocytes are also accessible for PVP-HC, which, due to the fact that this immobilized version of HC does not penetrate into the cell, leads to the conclusion that the binding sites for HC itself are located in the plasma membrane.

  1. Detection of boar sperm plasma membrane protein using Rhodamine 640; implications for cryobiology and physiology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhodamine 640 (R640) was used to detect changes in boar sperm plasma membrane protein (PMP) during cryopreservation; a poorly understood phenomenon. The protocol was adapted for boar sperm so that semen samples (n = 17) could be analyzed for PMP (R640 positive) and plasma membrane integrity (PMI; Y...

  2. Interaction between La(III) and proteins on the plasma membrane of horseradish

    NASA Astrophysics Data System (ADS)

    Yang, Guang-Mei; Chu, Yun-Xia; Lv, Xiao-Fen; Zhou, Qing; Huang, Xiao-Hua

    2012-06-01

    Lanthanum (La) is an important rare earth element in the ecological environment of plant. The proteins on the plasma membrane control the transport of molecules into and out of cell. It is very important to investigate the effect of La(III) on the proteins on the plasma membrane in the plant cell. In the present work, the interaction between La(III) and proteins on the plasma membrane of horseradish was investigated using optimization of the fluorescence microscopy and fluorescence spectroscopy. It is found that the fluorescence of the complex system of protoplasts and 1-aniline Kenai-8-sulfonic acid in horseradish treated with the low concentration of La(III) is increased compared with that of the control horseradish. The opposite effect is observed in horseradish treated with the high concentration of La(III). These results indicated that the low concentration of La(III) can interact with the proteins on the plasma membrane of horseradish, causing the improvement in the structure of proteins on the plasma membrane. The high concentration of La(III) can also interact with the proteins on the plasma membrane of horseradish, leading to the destruction of the structure of proteins on the plasma membrane. We demonstrate that the proteins on the plasma membrane are the targets of La(III) action on plant cell.

  3. Response of plasma membrane H+-ATPase in rice (Oryza sativa) seedlings to simulated acid rain.

    PubMed

    Liang, Chanjuan; Ge, Yuqing; Su, Lei; Bu, Jinjin

    2015-01-01

    Understanding the adaptation of plants to acid rain is important to find feasible approaches to alleviate such damage to plants. We studied effects of acid rain on plasma membrane H(+)-ATPase activity and transcription, intracellular H(+), membrane permeability, photosynthetic efficiency, and relative growth rate during stress and recovery periods. Simulated acid rain at pH 5.5 did not affect plasma membrane H(+)-ATPase activity, intracellular H(+), membrane permeability, photosynthetic efficiency, and relative growth rate. Plasma membrane H(+)-ATPase activity and transcription in leaves treated with acid rain at pH 3.5 was increased to maintain ion homeostasis by transporting excessive H(+) out of cells. Then intracellular H(+) was close to the control after a 5-day recovery, alleviating damage on membrane and sustaining photosynthetic efficiency and growth. Simulated acid rain at pH 2.5 inhibited plasma membrane H(+)-ATPase activity by decreasing the expression of H(+)-ATPase at transcription level, resulting in membrane damage and abnormal intracellular H(+), and reduction in photosynthetic efficiency and relative growth rate. After a 5-day recovery, all parameters in leaves treated with pH 2.5 acid rain show alleviated damage, implying that the increased plasma membrane H(+)-ATPase activity and its high expression were involved in repairing process in acid rain-stressed plants. Our study suggests that plasma membrane H(+)-ATPase can play a role in adaptation to acid rain for rice seedlings.

  4. Response of plasma membrane H+-ATPase in rice (Oryza sativa) seedlings to simulated acid rain.

    PubMed

    Liang, Chanjuan; Ge, Yuqing; Su, Lei; Bu, Jinjin

    2015-01-01

    Understanding the adaptation of plants to acid rain is important to find feasible approaches to alleviate such damage to plants. We studied effects of acid rain on plasma membrane H(+)-ATPase activity and transcription, intracellular H(+), membrane permeability, photosynthetic efficiency, and relative growth rate during stress and recovery periods. Simulated acid rain at pH 5.5 did not affect plasma membrane H(+)-ATPase activity, intracellular H(+), membrane permeability, photosynthetic efficiency, and relative growth rate. Plasma membrane H(+)-ATPase activity and transcription in leaves treated with acid rain at pH 3.5 was increased to maintain ion homeostasis by transporting excessive H(+) out of cells. Then intracellular H(+) was close to the control after a 5-day recovery, alleviating damage on membrane and sustaining photosynthetic efficiency and growth. Simulated acid rain at pH 2.5 inhibited plasma membrane H(+)-ATPase activity by decreasing the expression of H(+)-ATPase at transcription level, resulting in membrane damage and abnormal intracellular H(+), and reduction in photosynthetic efficiency and relative growth rate. After a 5-day recovery, all parameters in leaves treated with pH 2.5 acid rain show alleviated damage, implying that the increased plasma membrane H(+)-ATPase activity and its high expression were involved in repairing process in acid rain-stressed plants. Our study suggests that plasma membrane H(+)-ATPase can play a role in adaptation to acid rain for rice seedlings. PMID:25087500

  5. Liquid General Anesthetics Lower Critical Temperatures in Plasma Membrane Vesicles

    PubMed Central

    Gray, Ellyn; Karslake, Joshua; Machta, Benjamin B.; Veatch, Sarah L.

    2013-01-01

    A large and diverse array of small hydrophobic molecules induce general anesthesia. Their efficacy as anesthetics has been shown to correlate both with their affinity for a hydrophobic environment and with their potency in inhibiting certain ligand-gated ion channels. In this study we explore the effects that n-alcohols and other liquid anesthetics have on the two-dimensional miscibility critical point observed in cell-derived giant plasma membrane vesicles (GPMVs). We show that anesthetics depress the critical temperature (Tc) of these GPMVs without strongly altering the ratio of the two liquid phases found below Tc. The magnitude of this affect is consistent across n-alcohols when their concentration is rescaled by the median anesthetic concentration (AC50) for tadpole anesthesia, but not when plotted against the overall concentration in solution. At AC50 we see a 4°C downward shift in Tc, much larger than is typically seen in the main chain transition at these anesthetic concentrations. GPMV miscibility critical temperatures are also lowered to a similar extent by propofol, phenylethanol, and isopropanol when added at anesthetic concentrations, but not by tetradecanol or 2,6 diterbutylphenol, two structural analogs of general anesthetics that are hydrophobic but have no anesthetic potency. We propose that liquid general anesthetics provide an experimental tool for lowering critical temperatures in plasma membranes of intact cells, which we predict will reduce lipid-mediated heterogeneity in a way that is complimentary to increasing or decreasing cholesterol. Also, several possible implications of our results are discussed in the context of current models of anesthetic action on ligand-gated ion channels. PMID:24359747

  6. Actin dynamics provides membrane tension to merge fusing vesicles into the plasma membrane

    PubMed Central

    Wen, Peter J.; Grenklo, Staffan; Arpino, Gianvito; Tan, Xinyu; Liao, Hsien-Shun; Heureaux, Johanna; Peng, Shi-Yong; Chiang, Hsueh-Cheng; Hamid, Edaeni; Zhao, Wei-Dong; Shin, Wonchul; Näreoja, Tuomas; Evergren, Emma; Jin, Yinghui; Karlsson, Roger; Ebert, Steven N.; Jin, Albert; Liu, Allen P.; Shupliakov, Oleg; Wu, Ling-Gang

    2016-01-01

    Vesicle fusion is executed via formation of an Ω-shaped structure (Ω-profile), followed by closure (kiss-and-run) or merging of the Ω-profile into the plasma membrane (full fusion). Although Ω-profile closure limits release but recycles vesicles economically, Ω-profile merging facilitates release but couples to classical endocytosis for recycling. Despite its crucial role in determining exocytosis/endocytosis modes, how Ω-profile merging is mediated is poorly understood in endocrine cells and neurons containing small ∼30–300 nm vesicles. Here, using confocal and super-resolution STED imaging, force measurements, pharmacology and gene knockout, we show that dynamic assembly of filamentous actin, involving ATP hydrolysis, N-WASP and formin, mediates Ω-profile merging by providing sufficient plasma membrane tension to shrink the Ω-profile in neuroendocrine chromaffin cells containing ∼300 nm vesicles. Actin-directed compounds also induce Ω-profile accumulation at lamprey synaptic active zones, suggesting that actin may mediate Ω-profile merging at synapses. These results uncover molecular and biophysical mechanisms underlying Ω-profile merging. PMID:27576662

  7. Actin dynamics provides membrane tension to merge fusing vesicles into the plasma membrane.

    PubMed

    Wen, Peter J; Grenklo, Staffan; Arpino, Gianvito; Tan, Xinyu; Liao, Hsien-Shun; Heureaux, Johanna; Peng, Shi-Yong; Chiang, Hsueh-Cheng; Hamid, Edaeni; Zhao, Wei-Dong; Shin, Wonchul; Näreoja, Tuomas; Evergren, Emma; Jin, Yinghui; Karlsson, Roger; Ebert, Steven N; Jin, Albert; Liu, Allen P; Shupliakov, Oleg; Wu, Ling-Gang

    2016-01-01

    Vesicle fusion is executed via formation of an Ω-shaped structure (Ω-profile), followed by closure (kiss-and-run) or merging of the Ω-profile into the plasma membrane (full fusion). Although Ω-profile closure limits release but recycles vesicles economically, Ω-profile merging facilitates release but couples to classical endocytosis for recycling. Despite its crucial role in determining exocytosis/endocytosis modes, how Ω-profile merging is mediated is poorly understood in endocrine cells and neurons containing small ∼30-300 nm vesicles. Here, using confocal and super-resolution STED imaging, force measurements, pharmacology and gene knockout, we show that dynamic assembly of filamentous actin, involving ATP hydrolysis, N-WASP and formin, mediates Ω-profile merging by providing sufficient plasma membrane tension to shrink the Ω-profile in neuroendocrine chromaffin cells containing ∼300 nm vesicles. Actin-directed compounds also induce Ω-profile accumulation at lamprey synaptic active zones, suggesting that actin may mediate Ω-profile merging at synapses. These results uncover molecular and biophysical mechanisms underlying Ω-profile merging. PMID:27576662

  8. Modulation of Plasma Membrane Ca2+-ATPase by Neutral Phospholipids

    PubMed Central

    Pignataro, María Florencia; Dodes-Traian, Martín M.; González-Flecha, F. Luis; Sica, Mauricio; Mangialavori, Irene C.; Rossi, Juan Pablo F. C.

    2015-01-01

    The effects of lipids on membrane proteins are likely to be complex and unique for each membrane protein. Here we studied different detergent/phosphatidylcholine reconstitution media and tested their effects on plasma membrane Ca2+ pump (PMCA). We found that Ca2+-ATPase activity shows a biphasic behavior with respect to the detergent/phosphatidylcholine ratio. Moreover, the maximal Ca2+-ATPase activity largely depends on the length and the unsaturation degree of the hydrocarbon chain. Using static light scattering and fluorescence correlation spectroscopy, we monitored the changes in hydrodynamic radius of detergent/phosphatidylcholine particles during the micelle-vesicle transition. We found that, when PMCA is reconstituted in mixed micelles, neutral phospholipids increase the enzyme turnover. The biophysical changes associated with the transition from mixed micelles to bicelles increase the time of residence of the phosphorylated intermediate (EP), decreasing the enzyme turnover. Molecular dynamics simulations analysis of the interactions between PMCA and the phospholipid bilayer in which it is embedded show that in the 1,2-dioleoyl-sn-glycero-3-phosphocholine bilayer, charged residues of the protein are trapped in the hydrophobic core. Conversely, in the 1,2-dimyristoyl-sn-glycero-3-phosphocholine bilayer, the overall hydrophobic-hydrophilic requirements of the protein surface are fulfilled the best, reducing the thermodynamic cost of exposing charged residues to the hydrophobic core. The apparent mismatch produced by a 1,2-dioleoyl-sn-glycero-3-phosphocholine thicker bilayer could be a structural foundation to explain its functional effect on PMCA. PMID:25605721

  9. Enrichment of plasma membrane proteins using nanoparticle pellicles: comparison between silica and higher density nanoparticles.

    PubMed

    Choksawangkarn, Waeowalee; Kim, Sung-Kyoung; Cannon, Joe R; Edwards, Nathan J; Lee, Sang Bok; Fenselau, Catherine

    2013-03-01

    Proteomic and other characterization of plasma membrane proteins is made difficult by their low abundance, hydrophobicity, frequent carboxylation, and dynamic population. We and others have proposed that underrepresentation in LC-MS/MS analysis can be partially compensated by enriching the plasma membrane and its proteins using cationic nanoparticle pellicles. The nanoparticles increase the density of plasma membrane sheets and thus enhance separation by centrifugation from other lysed cellular components. Herein, we test the hypothesis that the use of nanoparticles with increased densities can provide enhanced enrichment of plasma membrane proteins for proteomic analysis. Multiple myeloma cells were grown and coated in suspension with three different pellicles of three different densities and both pellicle coated and uncoated suspensions analyzed by high-throughput LC-MS/MS. Enrichment was evaluated by the total number and the spectral counts of identified plasma membrane proteins.

  10. A membrane-separator interface for mass-spectrometric analysis of blood plasma

    NASA Astrophysics Data System (ADS)

    Elizarov, A. Yu.; Gerasimov, D. G.

    2014-09-01

    We demonstrate the possibility of rapid mass-spectrometric determination of the content of anesthetic agents in blood plasma with the aid of a membrane-separator interface. The interface employs a hydrophobic selective membrane that is capable of separating various anesthetic drugs (including inhalation anesthetic sevofluran, noninhalation anesthetic thiopental, hypnotic propofol, and opioid analgesic fentanyl) from the blood plasma and introducing samples into a mass spectrometer. Analysis of the blood plasma was not accompanied by the memory effect and did not lead to membrane degradation. Results of clinical investigation of the concentration of anesthetics in the blood plasma of patients are presented.

  11. Tetracyclines increase lipid phosphate phosphatase expression on plasma membranes and turnover of plasma lysophosphatidate.

    PubMed

    Tang, Xiaoyun; Zhao, Yuan Y; Dewald, Jay; Curtis, Jonathan M; Brindley, David N

    2016-04-01

    Extracellular lysophosphatidate and sphingosine 1-phosphate (S1P) are important bioactive lipids, which signal through G-protein-coupled receptors to stimulate cell growth and survival. The lysophosphatidate and S1P signals are terminated partly by degradation through three broad-specificity lipid phosphate phosphatases (LPPs) on the cell surface. Significantly, the expression of LPP1 and LPP3 is decreased in many cancers, and this increases the impact of lysophosphatidate and S1P signaling. However, relatively little is known about the physiological or pharmacological regulation of the expression of the different LPPs. We now show that treating several malignant and nonmalignant cell lines with 1 μg/ml tetracycline, doxycycline, or minocycline significantly increased the extracellular degradation of lysophosphatidate. S1P degradation was also increased in cells that expressed high LPP3 activity. These results depended on an increase in the stabilities of the three LPPs and increased expression on the plasma membrane. We tested the physiological significance of these results and showed that treating rats with doxycycline accelerated the clearance of lysophosphatidate, but not S1P, from the circulation. However, administering 100 mg/kg/day doxycycline to mice decreased plasma concentrations of lysophosphatidate and S1P. This study demonstrates a completely new property of tetracyclines in increasing the plasma membrane expression of the LPPs.

  12. Calcium and actin in the saga of awakening oocytes

    SciTech Connect

    Santella, Luigia Limatola, Nunzia; Chun, Jong T.

    2015-04-24

    The interaction of the spermatozoon with the egg at fertilization remains one of the most fascinating mysteries of life. Much of our scientific knowledge on fertilization comes from studies on sea urchin and starfish, which provide plenty of gametes. Large and transparent, these eggs have served as excellent model systems for studying egg activation and embryo development in seawater, a plain natural medium. Starfish oocytes allow the study of the cortical, cytoplasmic and nuclear changes during the meiotic maturation process, which can also be triggered in vitro by hormonal stimulation. These morphological and biochemical changes ensure successful fertilization of the eggs at the first metaphase. On the other hand, sea urchin eggs are fertilized after the completion of meiosis, and are particularly suitable for the study of sperm–egg interaction, early events of egg activation, and embryonic development, as a large number of mature eggs can be fertilized synchronously. Starfish and sea urchin eggs undergo abrupt changes in the cytoskeleton and ion fluxes in response to the fertilizing spermatozoon. The plasma membrane and cortex of an egg thus represent “excitable media” that quickly respond to the stimulus with the Ca{sup 2+} swings and structural changes. In this article, we review some of the key findings on the rapid dynamic rearrangements of the actin cytoskeleton in the oocyte/egg cortex upon hormonal or sperm stimulation and their roles in the modulation of the Ca{sup 2+} signals and in the control of monospermic fertilization. - Highlights: • Besides microtubules, microfilaments may anchor the nucleus to oocyte surface. • The cortical Ca{sup 2+} flash and wave at fertilization mirror electrical membrane change. • Artificial egg activation lacks microvilli extension in the perivitelline space. • Calcium is necessary but not sufficient for cortical granules exocytosis. • Actin cytoskeleton modulates Ca{sup 2+} release at oocyte maturation

  13. Red wine activates plasma membrane redox system in human erythrocytes.

    PubMed

    Tedesco, Idolo; Moccia, Stefania; Volpe, Silvestro; Alfieri, Giovanna; Strollo, Daniela; Bilotto, Stefania; Spagnuolo, Carmela; Di Renzo, Massimo; Aquino, Rita P; Russo, Gian Luigi

    2016-01-01

    In the present study, we report that polyphenols present in red wine obtained by a controlled microvinification process are able to protect human erythrocytes from oxidative stress and to activate Plasma Membrane Redox System (PMRS). Human plasma obtained from healthy subjects was incubated in the presence of whole red wine at a concentration corresponding to 9.13-73 μg/ml gallic acid equivalents to verify the capacity to protect against hypochlorous acid (HOCl)-induced plasma oxidation and to minimize chloramine formation. Red wine reduced hemolysis and chloramine formation induced by HOCl of 40 and 35%, respectively. PMRS present on human erythrocytes transfers electrons from intracellular molecules to extracellular electron acceptors. We demonstrated that whole red wine activated PMRS activity in human erythrocytes isolated from donors in a dose-dependent manner with a maximum at about 70-100 μg/ml gallic acid equivalents. We also showed that red wine increased glutathione (GSH) levels and erythrocytic antioxidant capacity, measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH) quenching assay. Furthermore, we reported that GSH played a crucial role in regulating PMRS activity in erythrocytes. In fact, the effect of iodoacetamide, an alkylating agent that induces depletion of intracellular GSH, was completely counteracted by red wine. Bioactive compounds present in red wine, such as gallic acid, resveratrol, catechin, and quercetin were unable to activate PMRS when tested at the concentrations normally present in aged red wines. On the contrary, the increase of PMRS activity was associated with the anthocyanin fraction, suggesting the capacity of this class of compounds to positively modulate PMRS enzymatic activity.

  14. Modeling of Fluid-Membrane Interaction in Cellular Microinjection Process

    NASA Astrophysics Data System (ADS)

    Karzar-Jeddi, Mehdi; Diaz, Jhon; Olgac, Nejat; Fan, Tai-Hsi

    2009-11-01

    Cellular microinjection is a well-accepted method to deliver matters such as sperm, nucleus, or macromolecules into biological cells. To improve the success rate of in vitro fertilization and to establish the ideal operating conditions for a novel computer controlled rotationally oscillating intracytoplasmic sperm injection (ICSI) technology, we investigate the fluid-membrane interactions in the ICSI procedure. The procedure consists of anchoring the oocyte (a developing egg) using a holding pipette, penetrating oocyte's zona pellucida (the outer membrane) and the oolemma (the plasma or inner membrane) using an injection micropipette, and finally to deliver sperm into the oocyte for fertilization. To predict the large deformation of the oocyte membranes up to the piercing of the oolemma and the motion of fluids across both membranes, the dynamic fluid-pipette-membrane interactions are formulated by the coupled Stokes' equations and the continuum membrane model based on Helfrich's energy theory. A boundary integral model is developed to simulate the transient membrane deformation and the local membrane stress induced by the longitudinal motion of the injection pipette. The model captures the essential features of the membranes shown on optical images of ICSI experiments, and is capable of suggesting the optimal deformation level of the oolemma to start the rotational oscillations for piercing into the oolemma.

  15. The Role of Microfilaments in Early Meiotic Maturation of Mouse Oocytes

    NASA Astrophysics Data System (ADS)

    Calarco, Patricia G.

    2005-04-01

    Mouse oocyte microfilaments (MF) were perturbed by depolymerization (cytochalasin B) or stabilization (jasplakinolide) and correlated meiotic defects examined by confocal microscopy. MF, microtubules, and mitochondria were vitally stained; centrosomes ([gamma]-tubulin), after fixation. MF depolymerization by cytochalasin in culture medium did not affect central migration of centrosomes, mitochondria, or nuclear breakdown (GVBD); some MF signal was localized around the germinal vesicle (GV). In maturation-blocking medium (containing IBMX), central movement was curtailed and cortical MF aggregations made the plasma membrane wavy. Occasional long MF suggested that not all MF were depolymerized. MF stabilization by jasplakinolide led to MF aggregations throughout the cytoplasm. GVBD occurred (unless IBMX was present) but no spindle formed. Over time, most oocytes constricted creating a dumbbell shape with MF concentrated under one-half of the oocyte cortex and on either side of the constriction. In IBMX medium, the MF-containing half of the dumbbell over time sequestered the GV, MF, mitochondria, and one to two large cortical centrosomes; the non-MF half appeared empty. Cumulus processes contacted the oocyte surface (detected by microtubule content) and mirrored MF distribution. Results demonstrated that MF play an essential role in meiosis, primarily through cortically mediated events, including centrosome localization, spindle (or GV) movement to the periphery, activation of (polar body) constriction, and establishment of oocyte polarity. The presence of a cortical “organizing pole” is hypothesized.

  16. Fluorescence interference contrast based approach to study real time interaction of melittin with plasma membranes

    NASA Astrophysics Data System (ADS)

    Gupta, Sharad; Gui, Dong; Zandi, Roya; Gill, Sarjeet; Mohideen, Umar

    2014-03-01

    Melittin is an anti-bacterial and hemolytic toxic peptide found in bee venom. Cell lysis behavior of peptides has been widely investigated, but the exact interaction mechanism of lytic peptides with lipid membranes and its constituents has not been understood completely. In this paper we study the melittin interaction with lipid plasma membranes in real time using non-invasive and non-contact fluorescence interference contrast microscopy (FLIC). Particularly the interaction of melittin with plasma membranes was studied in a controlled molecular environment, where these plasma membrane were composed of saturated lipid, 1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhPC) and unsaturated lipid, 1,2-dioleoyl-sn-glycero-3-phosphocholine(DOPC) with and without cholesterol. We found out that melittin starts to form nanometer size pores in the plasma membranes shortly after interacting with membranes. But the addition of cholesterol in plasma membrane slows down the pore formation process. Our results show that inclusion of cholesterol to the plasma membranes make them more resilient towards pore formation and lysis of membrane.

  17. Properties of Plasma Membrane from Pea Root Seedlings under Altered Gravity

    NASA Astrophysics Data System (ADS)

    Klymchuk, D.; Baranenko, V.; Vorobyova, T. V.; Kurylenko, I.; Chyzhykova, O.; Dubovoy, V.

    In this study, the properties of pea (Pisum sativum L.) plasma membrane were examined to determine how the membrane structure and functions are regulated in response to clinorotation (2 rev/min) conditions. Membrane preparations enriched by plasma membrane vesicles were obtained by aqueous two-phase partitioning from 6-day seedling roots. The specific characteristics of H^+-ATPase, lípid composition and peroxidation intensity as well as fluidity of lipid bilayer were analysed. ATP hydrolytic activity was inhibited by ortovanadate and was insensitive to aside and nitrate in sealed plasma membrane vesicles isolated from both clinorotated and control seedlings. Plasma membrane vesicles from clinorotated seedlings in comparison to controls were characterised by increase in the total lipid/protein ratio, ATP hydrolytic activity and intensifying of lipid peroxidation. Sitosterol and campesterol were the predominant free sterol species. Clinorotated seedlings contained a slightly higher level of unsaturated fatty acid than controls. Plasma membrane vesicles were labelled with pyrene and fluorescence originating from monomeric (I_M) molecules and excimeric (I_E) aggregates were measured. The calculated I_E/I_M values were higher in clinorotated seedlings compared with controls reflecting the reduction in membrane microviscosity. The involvement of the changes in plasma membrane lipid content and composition, fluidity and H^+-ATPase activity in response of pea seedlings to altered gravity is discussed.

  18. Golgi complex-plasma membrane trafficking directed by an autonomous, tribasic Golgi export signal.

    PubMed

    Parmar, Hirendrasinh B; Barry, Christopher; Kai, Fuiboon; Duncan, Roy

    2014-03-01

    Although numerous linear motifs that direct protein trafficking within cells have been identified, there are few examples of linear sorting signals mediating directed export of membrane proteins from the Golgi complex to the plasma membrane. The reovirus fusion-associated small transmembrane proteins are simple, single-pass transmembrane proteins that traffic through the endoplasmic reticulum-Golgi pathway to the plasma membrane, where they induce cell-cell membrane fusion. Here we show that a membrane-proximal, polybasic motif (PBM) in the cytosolic tail of p14 is essential for efficient export of p14 from the Golgi complex to the plasma membrane. Extensive mutagenic analysis reveals that the number, but not the identity or position, of basic residues present in the PBM dictates p14 export from the Golgi complex, with a minimum of three basic residues required for efficient Golgi export. Results further indicate that the tribasic motif does not affect plasma membrane retention of p14. Furthermore, introduction of the tribasic motif into a Golgi-localized, chimeric ERGIC-53 protein directs export from the Golgi complex to the plasma membrane. The p14 PBM is the first example of an autonomous, tribasic signal required for Golgi export to the plasma membrane.

  19. Relocalization of STIM1 in mouse oocytes at fertilization: early involvement of store-operated calcium entry.

    PubMed

    Gómez-Fernández, Carolina; Pozo-Guisado, Eulalia; Gañán-Parra, Miguel; Perianes, Mario J; Alvarez, Ignacio S; Martín-Romero, Francisco Javier

    2009-08-01

    Calcium waves represent one of the most important intracellular signaling events in oocytes at fertilization required for the exit from metaphase arrest and the resumption of the cell cycle. The molecular mechanism ruling this signaling has been described in terms of the contribution of intracellular calcium stores to calcium spikes. In this work, we considered the possible contribution of store-operated calcium entry (SOCE) to this signaling, by studying the localization of the protein STIM1 in oocytes. STIM1 has been suggested to play a key role in the recruitment and activation of plasma membrane calcium channels, and we show here that mature mouse oocytes express this protein distributed in discrete clusters throughout their periphery in resting cells, colocalizing with the endoplasmic reticulum marker calreticulin. However, immunolocalization of the endogenous STIM1 showed considerable redistribution over larger areas or patches covering the entire periphery of the oocyte during Ca(2+) store depletion induced with thapsigargin or ionomycin. Furthermore, pharmacological activation of endogenous phospholipase C induced a similar pattern of redistribution of STIM1 in the oocyte. Finally, fertilization of mouse oocytes revealed a significant and rapid relocalization of STIM1, similar to that found after pharmacological Ca(2+) store depletion. This particular relocalization supports a role for STIM1 and SOCE in the calcium signaling during early stages of fertilization.

  20. Relocalization of STIM1 in mouse oocytes at fertilization: early involvement of store-operated calcium entry.

    PubMed

    Gómez-Fernández, Carolina; Pozo-Guisado, Eulalia; Gañán-Parra, Miguel; Perianes, Mario J; Alvarez, Ignacio S; Martín-Romero, Francisco Javier

    2009-08-01

    Calcium waves represent one of the most important intracellular signaling events in oocytes at fertilization required for the exit from metaphase arrest and the resumption of the cell cycle. The molecular mechanism ruling this signaling has been described in terms of the contribution of intracellular calcium stores to calcium spikes. In this work, we considered the possible contribution of store-operated calcium entry (SOCE) to this signaling, by studying the localization of the protein STIM1 in oocytes. STIM1 has been suggested to play a key role in the recruitment and activation of plasma membrane calcium channels, and we show here that mature mouse oocytes express this protein distributed in discrete clusters throughout their periphery in resting cells, colocalizing with the endoplasmic reticulum marker calreticulin. However, immunolocalization of the endogenous STIM1 showed considerable redistribution over larger areas or patches covering the entire periphery of the oocyte during Ca(2+) store depletion induced with thapsigargin or ionomycin. Furthermore, pharmacological activation of endogenous phospholipase C induced a similar pattern of redistribution of STIM1 in the oocyte. Finally, fertilization of mouse oocytes revealed a significant and rapid relocalization of STIM1, similar to that found after pharmacological Ca(2+) store depletion. This particular relocalization supports a role for STIM1 and SOCE in the calcium signaling during early stages of fertilization. PMID:19470709

  1. Characterization of auxin-binding proteins from zucchini plasma membrane

    NASA Technical Reports Server (NTRS)

    Hicks, G. R.; Rice, M. S.; Lomax, T. L.

    1993-01-01

    We have previously identified two auxin-binding polypeptides in plasma membrane (PM) preparations from zucchini (Cucurbita pepo L.) (Hicks et al. 1989, Proc. Natl. Acad. Sci. USA 86, 4948-4952). These polypeptides have molecular weights of 40 kDa and 42 kDa and label specifically with the photoaffinity auxin analog 5-N3-7-3H-IAA (azido-IAA). Azido-IAA permits both the covalent and radioactive tagging of auxin-binding proteins and has allowed us to characterize further the 40-kDa and 42-kDa polypeptides, including the nature of their attachment to the PM, their relationship to each other, and their potential function. The azido-IAA-labeled polypeptides remain in the pelleted membrane fraction following high-salt and detergent washes, which indicates a tight and possibly integral association with the PM. Two-dimensional electrophoresis of partially purified azido-IAA-labeled protein demonstrates that, in addition to the major isoforms of the 40-kDa and 42-kDa polypeptides, which possess isoelectric points (pIs) of 8.2 and 7.2, respectively, several less abundant isoforms that display unique pIs are apparent at both molecular masses. Tryptic and chymotryptic digestion of the auxin-binding proteins indicates that the 40-kDa and 42-kDa polypeptides are closely related or are modifications of the same polypeptide. Phase extraction with the nonionic detergent Triton X-114 results in partitioning of the azido-IAA-labeled polypeptides into the aqueous (hydrophilic) phase. This apparently paradoxical behavior is also exhibited by certain integral membrane proteins that aggregate to form channels. The results of gel filtration indicate that the auxin-binding proteins do indeed aggregate strongly and that the polypeptides associate to form a dimer or multimeric complex in vivo. These characteristics are consistent with the hypothesis that the 40-kDa and 42-kDa polypeptides are subunits of a multimeric integral membrane protein which has an auxin-binding site, and which may

  2. Plasma membranes modified by plasma treatment or deposition as solid electrolytes for potential application in solid alkaline fuel cells.

    PubMed

    Reinholdt, Marc; Ilie, Alina; Roualdès, Stéphanie; Frugier, Jérémy; Schieda, Mauricio; Coutanceau, Christophe; Martemianov, Serguei; Flaud, Valérie; Beche, Eric; Durand, Jean

    2012-07-30

    In the highly competitive market of fuel cells, solid alkaline fuel cells using liquid fuel (such as cheap, non-toxic and non-valorized glycerol) and not requiring noble metal as catalyst seem quite promising. One of the main hurdles for emergence of such a technology is the development of a hydroxide-conducting membrane characterized by both high conductivity and low fuel permeability. Plasma treatments can enable to positively tune the main fuel cell membrane requirements. In this work, commercial ADP-Morgane® fluorinated polymer membranes and a new brand of cross-linked poly(aryl-ether) polymer membranes, named AMELI-32®, both containing quaternary ammonium functionalities, have been modified by argon plasma treatment or triallylamine-based plasma deposit. Under the concomitant etching/cross-linking/oxidation effects inherent to the plasma modification, transport properties (ionic exchange capacity, water uptake, ionic conductivity and fuel retention) of membranes have been improved. Consequently, using plasma modified ADP-Morgane® membrane as electrolyte in a solid alkaline fuel cell operating with glycerol as fuel has allowed increasing the maximum power density by a factor 3 when compared to the untreated membrane.

  3. Plasma Membranes Modified by Plasma Treatment or Deposition as Solid Electrolytes for Potential Application in Solid Alkaline Fuel Cells

    PubMed Central

    Reinholdt, Marc; Ilie, Alina; Roualdès, Stéphanie; Frugier, Jérémy; Schieda, Mauricio; Coutanceau, Christophe; Martemianov, Serguei; Flaud, Valérie; Beche, Eric; Durand, Jean

    2012-01-01

    In the highly competitive market of fuel cells, solid alkaline fuel cells using liquid fuel (such as cheap, non-toxic and non-valorized glycerol) and not requiring noble metal as catalyst seem quite promising. One of the main hurdles for emergence of such a technology is the development of a hydroxide-conducting membrane characterized by both high conductivity and low fuel permeability. Plasma treatments can enable to positively tune the main fuel cell membrane requirements. In this work, commercial ADP-Morgane® fluorinated polymer membranes and a new brand of cross-linked poly(aryl-ether) polymer membranes, named AMELI-32®, both containing quaternary ammonium functionalities, have been modified by argon plasma treatment or triallylamine-based plasma deposit. Under the concomitant etching/cross-linking/oxidation effects inherent to the plasma modification, transport properties (ionic exchange capacity, water uptake, ionic conductivity and fuel retention) of membranes have been improved. Consequently, using plasma modified ADP-Morgane® membrane as electrolyte in a solid alkaline fuel cell operating with glycerol as fuel has allowed increasing the maximum power density by a factor 3 when compared to the untreated membrane. PMID:24958295

  4. Plasma membranes modified by plasma treatment or deposition as solid electrolytes for potential application in solid alkaline fuel cells.

    PubMed

    Reinholdt, Marc; Ilie, Alina; Roualdès, Stéphanie; Frugier, Jérémy; Schieda, Mauricio; Coutanceau, Christophe; Martemianov, Serguei; Flaud, Valérie; Beche, Eric; Durand, Jean

    2012-01-01

    In the highly competitive market of fuel cells, solid alkaline fuel cells using liquid fuel (such as cheap, non-toxic and non-valorized glycerol) and not requiring noble metal as catalyst seem quite promising. One of the main hurdles for emergence of such a technology is the development of a hydroxide-conducting membrane characterized by both high conductivity and low fuel permeability. Plasma treatments can enable to positively tune the main fuel cell membrane requirements. In this work, commercial ADP-Morgane® fluorinated polymer membranes and a new brand of cross-linked poly(aryl-ether) polymer membranes, named AMELI-32®, both containing quaternary ammonium functionalities, have been modified by argon plasma treatment or triallylamine-based plasma deposit. Under the concomitant etching/cross-linking/oxidation effects inherent to the plasma modification, transport properties (ionic exchange capacity, water uptake, ionic conductivity and fuel retention) of membranes have been improved. Consequently, using plasma modified ADP-Morgane® membrane as electrolyte in a solid alkaline fuel cell operating with glycerol as fuel has allowed increasing the maximum power density by a factor 3 when compared to the untreated membrane. PMID:24958295

  5. Binding and Fusion of Extracellular Vesicles to the Plasma Membrane of Their Cell Targets

    PubMed Central

    Prada, Ilaria; Meldolesi, Jacopo

    2016-01-01

    Exosomes and ectosomes, extracellular vesicles of two types generated by all cells at multivesicular bodies and the plasma membrane, respectively, play critical roles in physiology and pathology. A key mechanism of their function, analogous for both types of vesicles, is the fusion of their membrane to the plasma membrane of specific target cells, followed by discharge to the cytoplasm of their luminal cargo containing proteins, RNAs, and DNA. Here we summarize the present knowledge about the interactions, binding and fusions of vesicles with the cell plasma membrane. The sequence initiates with dynamic interactions, during which vesicles roll over the plasma membrane, followed by the binding of specific membrane proteins to their cell receptors. Membrane binding is then converted rapidly into fusion by mechanisms analogous to those of retroviruses. Specifically, proteins of the extracellular vesicle membranes are structurally rearranged, and their hydrophobic sequences insert into the target cell plasma membrane which undergoes lipid reorganization, protein restructuring and membrane dimpling. Single fusions are not the only process of vesicle/cell interactions. Upon intracellular reassembly of their luminal cargoes, vesicles can be regenerated, released and fused horizontally to other target cells. Fusions of extracellular vesicles are relevant also for specific therapy processes, now intensely investigated. PMID:27517914

  6. Binding and Fusion of Extracellular Vesicles to the Plasma Membrane of Their Cell Targets.

    PubMed

    Prada, Ilaria; Meldolesi, Jacopo

    2016-01-01

    Exosomes and ectosomes, extracellular vesicles of two types generated by all cells at multivesicular bodies and the plasma membrane, respectively, play critical roles in physiology and pathology. A key mechanism of their function, analogous for both types of vesicles, is the fusion of their membrane to the plasma membrane of specific target cells, followed by discharge to the cytoplasm of their luminal cargo containing proteins, RNAs, and DNA. Here we summarize the present knowledge about the interactions, binding and fusions of vesicles with the cell plasma membrane. The sequence initiates with dynamic interactions, during which vesicles roll over the plasma membrane, followed by the binding of specific membrane proteins to their cell receptors. Membrane binding is then converted rapidly into fusion by mechanisms analogous to those of retroviruses. Specifically, proteins of the extracellular vesicle membranes are structurally rearranged, and their hydrophobic sequences insert into the target cell plasma membrane which undergoes lipid reorganization, protein restructuring and membrane dimpling. Single fusions are not the only process of vesicle/cell interactions. Upon intracellular reassembly of their luminal cargoes, vesicles can be regenerated, released and fused horizontally to other target cells. Fusions of extracellular vesicles are relevant also for specific therapy processes, now intensely investigated. PMID:27517914

  7. Ultrastructural preservation of plasma membranes by non-lethal slow freezing to liquid nitrogen temperature.

    PubMed

    Fujikawa, S; Miura, K

    1987-02-01

    Secondary hyphae of Lyophyllum ulmarium were shown to tolerate slow freezing, which allowed extracellular freezing, to -196 degrees C. A freeze-fracture study showed that under this non-lethal freezing condition, the plasma membrane of the secondary hyphae did not show any ultrastructural changes as compared with the control, except gross cellular shrinkage. Tertiary hyphae of Lyophyllum ulmarium, on the other hand, were completely injured by slow freezing to -196 degrees C, and the plasma membrane showed distinct intramembrane particle aggregation as a result of direct membrane contact caused by severe cellular deformation. It is suggested that the absence of freezing injury in the secondary hyphae was due to ultrastructural preservation of the plasma membrane, which resulted from avoidance of severe cellular deformation, while occurrence of freezing injury in the tertiary hyphae is considered to be due to ultrastructural changes in the plasma membrane caused by severe cellular deformation. PMID:3568151

  8. LIPID RAFTS, FLUID/FLUID PHASE SEPARATION, AND THEIR RELEVANCE TO PLASMA MEMBRANE STRUCTURE AND FUNCTION

    PubMed Central

    Sengupta, Prabuddha; Baird, Barbara; Holowka, David

    2007-01-01

    Novel biophysical approaches combined with modeling and new biochemical data have helped to recharge the lipid raft field and have contributed to the generation of a refined model of plasma membrane organization. In this review, we summarize new information in the context of previous literature to provide new insights into the spatial organization and dynamics of lipids and proteins in the plasma membrane of live cells. Recent findings of large-scale separation of liquid-ordered and liquid-disordered phases in plasma membrane vesicles demonstrate this capacity within the complex milieu of plasma membrane proteins and lipids. Roles for membrane heterogeneity and reorganization in immune cell activation are discussed in light of this new information. PMID:17764993

  9. Tailoring the properties of asymmetric cellulose acetate membranes by gas plasma etching.

    PubMed

    Olde Riekerink, M B; Engbers, G H M; Wessling, M; Feijen, J

    2002-01-15

    Cellulose triacetate (CTA) ultrafilters and cellulose acetate blend (CAB) desalination membranes were treated with a radiofrequency gas plasma (tetrafluoromethane (CF(4)) or carbon dioxide (CO(2)), 47-49 W, 0.04-0.08 mbar). Treatment times were varied between 15 s and 120 min. The plasma-treated top layer of the membranes was characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, and contact angle measurements to obtain information about surface structure, chemistry, and wettability, respectively. The membrane properties (e.g., permeability, selectivity, fouling) were studied by waterflux measurements, molecular weight cutoff measurements, and fouling experiments with bovine serum albumin. CO(2) plasma treatment resulted in gradual etching of the membrane's dense top layer. Permeation and selectivity changed significantly for treatment times of 0-15 min for CTA and 5-60 min for CAB membranes. Moreover, CTA membranes were hydrophilized during CO(2) plasma treatment whereas CF(4) plasma treatment led to hydrophobic surfaces due to strong fluorination of the top layer. This study shows that gas plasma etching can tailor the properties of asymmetric cellulose acetate membranes by simultaneously modifying the chemistry and structure of the top layer. The low fouling properties of CTA membranes were thereby largely maintained.

  10. Effect of plasma membrane fluidity on serotonin transport by endothelial cells

    SciTech Connect

    Block, E.R.; Edwards, D. )

    1987-11-01

    To evaluate the effect of plasma membrane fluidity of lung endothelial cells on serotonin transport, porcine pulmonary artery endothelial cells were incubated for 3 h with either 0.1 mM cholesterol hemisuccinate, 0.1 mM cis-vaccenic acid, or vehicle (control), after which plasma membrane fluidity and serotinin transport were measured. Fluorescence spectroscopy was used to measure fluidity in the plasma membrane. Serotonin uptake was calculated from the disappearance of ({sup 14}C)-serotonin from the culture medium. Cholesterol decreased fluidity in the subpolar head group and central and midacyl side-chain regions of the plasma membrane and decreased serotonin transport, whereas cis-vaccenic acid increased fluidity in the central and midacyl side-chain regions of the plasma membrane and also increased serotonin transport. Cis-vaccenic acid had no effect of fluidity in the subpolar head group region of the plasma membrane. These results provide evidence that the physical state of the central and midacyl chains within the pulmonary artery endothelial cell plasma membrane lipid bilayer modulates transmembrane transport of serotonin by these cells.

  11. Insulin-induced changes in mechanical characteristics of lipid bilayers modified by liver plasma membrane fragments.

    PubMed

    Hianik, T; Kavecanský, J; Zórad, S; Macho, L

    1988-04-01

    Insulin interaction with BLM with incorporated fragments of rat liver plasma membranes, containing hormone receptors, was studied by determining Young modulus of elasticity of bilayer lipid membranes in direction perpendicular to the surface, E. The presence of membrane proteins in a concentration of 60 micrograms.ml-1 induced a significant decrease in parameter E (to approx. 50%) as compared with values obtained in non-modified membranes during insulin action (concentration interval 10(-11)-10(-9) mol.l-1). The extent of the effect was dependent on the initial phase state of the membrane, on cholesterol content in BLM as well as on membrane proteins concentration in lipid bilayer.

  12. N-terminally myristoylated Ras proteins require palmitoylation or a polybasic domain for plasma membrane localization.

    PubMed

    Cadwallader, K A; Paterson, H; Macdonald, S G; Hancock, J F

    1994-07-01

    Plasma membrane targeting of Ras requires CAAX motif modifications together with a second signal from an adjacent polybasic domain or nearby cysteine palmitoylation sites. N-terminal myristoylation is known to restore membrane binding to H-ras C186S (C-186 is changed to S), a mutant protein in which all CAAX processing is abolished. We show here that myristoylated H-ras C186S is a substrate for palmitoyltransferase, despite the absence of C-terminal farnesylation, and that palmitoylation is absolutely required for plasma membrane targeting of myristoylated H-ras. Similarly, the polybasic domain is required for specific plasma membrane targeting of myristoylated K-ras. In contrast, the combination of myristoylation plus farnesylation results in the mislocalization of Ras to numerous intracellular membranes. Ras that is only myristoylated does not bind with a high affinity to any membrane. The specific targeting of Ras to the plasma membrane is therefore critically dependent on signals that are contained in the hypervariable domain but can be supported by N-terminal myristoylation or C-terminal prenylation. Interestingly, oncogenic Ras G12V that is localized correctly to the plasma membrane leads to mitogen-activated protein kinase activation irrespective of the combination of targeting signals used for localization, whereas Ras G12V that is mislocalized to the cytosol or to other membranes activates mitogen-activated protein kinase only if the Ras protein is farnesylated.

  13. Detection of cholesterol-rich microdomains in the inner leaflet of the plasma membrane

    SciTech Connect

    Hayashi, Masami; Shimada, Yukiko; Inomata, Mitsushi; Ohno-Iwashita, Yoshiko . E-mail: iwashita@tmig.or.jp

    2006-12-22

    The C-terminal domain (D4) of perfringolysin O binds selectively to cholesterol in cholesterol-rich microdomains. To address the issue of whether cholesterol-rich microdomains exist in the inner leaflet of the plasma membrane, we expressed D4 as a fusion protein with EGFP in MEF cells. More than half of the EGFP-D4 expressed in stable cell clones was bound to membranes in raft fractions. Depletion of membrane cholesterol with {beta}-cyclodextrin reduced the amount of EGFP-D4 localized in raft fractions, confirming EGFP-D4 binding to cholesterol-rich microdomains. Subfractionation of the raft fractions showed most of the EGFP-D4 bound to the plasma membrane rather than to intracellular membranes. Taken together, these results strongly suggest the existence of cholesterol-rich microdomains in the inner leaflet of the plasma membrane.

  14. A microfluidic platform for probing single cell plasma membranes using optically trapped Smart Droplet Microtools (SDMs).

    PubMed

    Lanigan, Peter M P; Ninkovic, Tanja; Chan, Karen; de Mello, Andrew J; Willison, Keith R; Klug, David R; Templer, Richard H; Neil, Mark A A; Ces, Oscar

    2009-04-21

    We recently introduced a novel platform based upon optically trapped lipid coated oil droplets (Smart Droplet Microtools-SDMs) that were able to form membrane tethers upon fusion with the plasma membrane of single cells. Material transfer from the plasma membrane to the droplet via the tether was seen to occur. Here we present a customised version of the SDM approach based upon detergent coated droplets deployed within a microfluidic format. These droplets are able to differentially solubilise the plasma membrane of single cells with spatial selectivity and without forming membrane tethers. The microfluidic format facilitates separation of the target cells from the bulk SDM population and from downstream analysis modules. Material transfer from the cell to the SDM was monitored by tracking membrane localized EGFP.

  15. Plasma membrane poration by opioid neuropeptides: a possible mechanism of pathological signal transduction.

    PubMed

    Maximyuk, O; Khmyz, V; Lindskog, C-J; Vukojević, V; Ivanova, T; Bazov, I; Hauser, K F; Bakalkin, G; Krishtal, O

    2015-01-01

    Neuropeptides induce signal transduction across the plasma membrane by acting through cell-surface receptors. The dynorphins, endogenous ligands for opioid receptors, are an exception; they also produce non-receptor-mediated effects causing pain and neurodegeneration. To understand non-receptor mechanism(s), we examined interactions of dynorphins with plasma membrane. Using fluorescence correlation spectroscopy and patch-clamp electrophysiology, we demonstrate that dynorphins accumulate in the membrane and induce a continuum of transient increases in ionic conductance. This phenomenon is consistent with stochastic formation of giant (~2.7 nm estimated diameter) unstructured non-ion-selective membrane pores. The potency of dynorphins to porate the plasma membrane correlates with their pathogenic effects in cellular and animal models. Membrane poration by dynorphins may represent a mechanism of pathological signal transduction. Persistent neuronal excitation by this mechanism may lead to profound neuropathological alterations, including neurodegeneration and cell death. PMID:25766322

  16. The strength of side chain hydrogen bonds in the plasma membrane

    NASA Astrophysics Data System (ADS)

    Hristova, Kalina; Sarabipour, Sarvenaz

    2013-03-01

    There are no direct quantitative measurements of hydrogen bond strengths in membrane proteins residing in their native cellular environment. To address this knowledge gap, here we use fluorescence resonance energy transfer (FRET) to measure the impact of hydrogen bonds on the stability of a membrane protein dimer in vesicles derived from eukaryotic plasma membranes, and we compare these results to previous measurements of hydrogen bond strengths in model lipid bilayers. We demonstrate that FRET measurements of membrane protein interactions in plasma membrane vesicles have the requisite sensitivity to quantify the strength of hydrogen bonds. We find that the hydrogen bond-mediated stabilization in the plasma membrane is small, only -0.7 kcal/mole. It is the same as in model lipid bilayers, despite the different nature and dielectric properties of the two environments.

  17. Microtubule Motors Power Plasma Membrane Tubulation in Clathrin-Independent Endocytosis

    PubMed Central

    Day, Charles A; Baetz, Nicholas W; Copeland, Courtney A; Kraft, Lewis J; Han, Bing; Tiwari, Ajit; Drake, Kimberly R; De Luca, Heidi; Chinnapen, Daniel J-F; Davidson, Michael W; Holmes, Randall K; Jobling, Michael G; Schroer, Trina A; Lencer, Wayne I; Kenworthy, Anne K

    2015-01-01

    How the plasma membrane is bent to accommodate clathrin-independent endocytosis remains uncertain. Recent studies suggest Shiga and cholera toxin induce membrane curvature required for their uptake into clathrin-independent carriers by binding and cross-linking multiple copies of their glycosphingolipid receptors on the plasma membrane. But it remains unclear if toxin-induced sphingolipid crosslinking provides sufficient mechanical force for deforming the plasma membrane, or if host cell factors also contribute to this process. To test this, we imaged the uptake of cholera toxin B-subunit into surface-derived tubular invaginations. We found that cholera toxin mutants that bind to only one glycosphingolipid receptor accumulated in tubules, and that toxin binding was entirely dispensable for membrane tubulations to form. Unexpectedly, the driving force for tubule extension was supplied by the combination of microtubules, dynein and dynactin, thus defining a novel mechanism for generating membrane curvature during clathrin-independent endocytosis. PMID:25690058

  18. Inhibition of Acid Sphingomyelinase Depletes Cellular Phosphatidylserine and Mislocalizes K-Ras from the Plasma Membrane.

    PubMed

    Cho, Kwang-Jin; van der Hoeven, Dharini; Zhou, Yong; Maekawa, Masashi; Ma, Xiaoping; Chen, Wei; Fairn, Gregory D; Hancock, John F

    2015-01-01

    K-Ras must localize to the plasma membrane for biological activity; thus, preventing plasma membrane interaction blocks K-Ras signal output. Here we show that inhibition of acid sphingomyelinase (ASM) mislocalizes both the K-Ras isoforms K-Ras4A and K-Ras4B from the plasma membrane to the endomembrane and inhibits their nanoclustering. We found that fendiline, a potent ASM inhibitor, reduces the phosphatidylserine (PtdSer) and cholesterol content of the inner plasma membrane. These lipid changes are causative because supplementation of fendiline-treated cells with exogenous PtdSer rapidly restores K-Ras4A and K-Ras4B plasma membrane binding, nanoclustering, and signal output. Conversely, supplementation with exogenous cholesterol restores K-Ras4A but not K-Ras4B nanoclustering. These experiments reveal different operational pools of PtdSer on the plasma membrane. Inhibition of ASM elevates cellular sphingomyelin and reduces cellular ceramide levels. Concordantly, delivery of recombinant ASM or exogenous ceramide to fendiline-treated cells rapidly relocalizes K-Ras4B and PtdSer to the plasma membrane. K-Ras4B mislocalization is also recapitulated in ASM-deficient Neimann-Pick type A and B fibroblasts. This study identifies sphingomyelin metabolism as an indirect regulator of K-Ras4A and K-Ras4B signaling through the control of PtdSer plasma membrane content. It also demonstrates the critical and selective importance of PtdSer to K-Ras4A and K-Ras4B plasma membrane binding and nanoscale spatial organization. PMID:26572827

  19. Photomodification of the electrical properties of the plasma membrane: a comparison between 6 different membrane-active photosensitizers.

    PubMed

    Killig, F; Kunz, L; Stark, G

    2001-05-01

    The present study deals with photomodification of the electrical properties of the plasma membrane of an epithelial cell line (opossum kidney (OK) cells). The effect of photofrin II (previously investigated) is compared with that of 5 other membrane-active sensitizers: sulfonated Zn-phthalocyanine, merocyanine 540, rose bengal, methylene blue and protoporphyrin IX (an endogenous sensitizer induced by addition of its biosynthetic precursor 5-aminolaevulinic acid). The study was performed in order to investigate whether photomodification of the ion transport properties of the plasma membrane by membrane-active sensitizers is a general and early event in cellular photosensitization. The changes in the electrical properties were monitored by application of the whole-cell and the inside-out configuration of the patch-clamp technique. Illumination in the presence of the compounds (apart from merocyanine 540) gave rise to similar changes of the electrical properties of the membrane: depolarization of the membrane potential, inactivation of a large-conductance, Ca2+-dependent K+-channel (maxi-KCa), and a strong increase of the leak conductance of the membrane. This similarity indicates the general character of the functional photomodifications by membrane-active sensitizers previously reported for photofrin II.

  20. Lipid-protein interactions in plasma membranes of fiber cells isolated from the human eye lens.

    PubMed

    Raguz, Marija; Mainali, Laxman; O'Brien, William J; Subczynski, Witold K

    2014-03-01

    The protein content in human lens membranes is extremely high, increases with age, and is higher in the nucleus as compared with the cortex, which should strongly affect the organization and properties of the lipid bilayer portion of intact membranes. To assess these effects, the intact cortical and nuclear fiber cell plasma membranes isolated from human lenses from 41- to 60-year-old donors were studied using electron paramagnetic resonance spin-labeling methods. Results were compared with those obtained for lens lipid membranes prepared from total lipid extracts from human eyes of the same age group [Mainali, L., Raguz, M., O'Brien, W. J., and Subczynski, W. K. (2013) Biochim. Biophys. Acta]. Differences were considered to be mainly due to the effect of membrane proteins. The lipid-bilayer portions of intact membranes were significantly less fluid than lipid bilayers of lens lipid membranes, prepared without proteins. The intact membranes were found to contain three distinct lipid environments termed the bulk lipid domain, boundary lipid domain, and trapped lipid domain. However, the cholesterol bilayer domain, which was detected in cortical and nuclear lens lipid membranes, was not detected in intact membranes. The relative amounts of bulk and trapped lipids were evaluated. The amount of lipids in domains uniquely formed due to the presence of membrane proteins was greater in nuclear membranes than in cortical membranes. Thus, it is evident that the rigidity of nuclear membranes is greater than that of cortical membranes. Also the permeability coefficients for oxygen measured in domains of nuclear membranes were significantly lower than appropriate coefficients measured in cortical membranes. Relationships between the organization of lipids into lipid domains in fiber cells plasma membranes and the organization of membrane proteins are discussed.

  1. Lipid-Protein Interactions in Plasma Membranes of Fiber Cells Isolated from the Human Eye Lens

    PubMed Central

    Raguz, Marija; Mainali, Laxman; O’Brien, William J.; Subczynski, Witold K.

    2014-01-01

    The protein content in human lens membranes is extremely high, increases with age, and is higher in the nucleus as compared with the cortex, which should strongly affect the organization and properties of the lipid bilayer portion of intact membranes. To assess these effects, the intact cortical and nuclear fiber cell plasma membranes isolated from human lenses from 41- to 60-year-old donors were studied using electron paramagnetic resonance spin-labeling methods. Results were compared with those obtained for lens lipid membranes prepared from total lipid extracts from human eyes of the same age group [Mainali,L., Raguz, M., O’Brien, W. J., and Subczynski, W. K. (2013) Biochim. Biophys. Acta]. Differences were considered to be mainly due to the effect of membrane proteins. The lipid-bilayer portions of intact membranes were significantly less fluid than lipid bilayers of lens lipid membranes, prepared without proteins. The intact membranes were found to contain three distinct lipid environments termed the bulk lipid domain, boundary lipid domain, and trapped lipid domain. However, the cholesterol bilayer domain, which was detected in cortical and nuclear lens lipid membranes, was not detected in intact membranes. The relative amounts of bulk and trapped lipids were evaluated. The amount of lipids in domains uniquely formed due to the presence of membrane proteins was greater in nuclear membranes than in cortical membranes. Thus, it is evident that the rigidity of nuclear membranes is greater than that of cortical membranes. Also the permeability coefficients for oxygen measured in domains of nuclear membranes were significantly lower than appropriate coefficients measured in cortical membranes. Relationships between the organization of lipids into lipid domains in fiber cells plasma membranes and the organization of membrane proteins are discussed. PMID:24486794

  2. Fast molecular tracking maps nanoscale dynamics of plasma membrane lipids

    PubMed Central

    Sahl, Steffen J.; Leutenegger, Marcel; Hilbert, Michael; Hell, Stefan W.; Eggeling, Christian

    2010-01-01

    We describe an optical method capable of tracking a single fluorescent molecule with a flexible choice of high spatial accuracy (∼10–20 nm standard deviation or ∼20–40 nm full-width-at-half-maximum) and temporal resolution (< 1 ms). The fluorescence signal during individual passages of fluorescent molecules through a spot of excitation light allows the sequential localization and thus spatio-temporal tracking of the molecule if its fluorescence is collected on at least three separate point detectors arranged in close proximity. We show two-dimensional trajectories of individual, small organic dye labeled lipids diffusing in the plasma membrane of living cells and directly observe transient events of trapping on < 20 nm spatial scales. The trapping is cholesterol-assisted and much more pronounced for a sphingo- than for a phosphoglycero-lipid, with average trapping times of ∼15 ms and < 4 ms, respectively. The results support previous STED nanoscopy measurements and suggest that, at least for nontreated cells, the transient interaction of a single lipid is confined to macromolecular dimensions. Our experimental approach demonstrates that fast molecular movements can be tracked with minimal invasion, which can reveal new important details of cellular nano-organization. PMID:20351247

  3. Bovine sperm plasma membrane proteomics through biotinylation and subcellular enrichment.

    PubMed

    Kasvandik, Sergo; Sillaste, Gerly; Velthut-Meikas, Agne; Mikelsaar, Aavo-Valdur; Hallap, Triin; Padrik, Peeter; Tenson, Tanel; Jaakma, Ülle; Kõks, Sulev; Salumets, Andres

    2015-06-01

    A significant proportion of mammalian fertilization is mediated through the proteomic composition of the sperm surface. These protein constituents can present as biomarkers to control and regulate breeding of agricultural animals. Previous studies have addressed the bovine sperm cell apical plasma membrane (PM) proteome with nitrogen cavitation enrichment. Alternative workflows would enable to expand the compositional data more globally around the entire sperm's surface. We used a cell surface biotin-labeling in combination with differential centrifugation to enrich sperm surface proteins. Using nano-LC MS/MS, 338 proteins were confidently identified in the PM-enriched proteome. Functional categories of sperm-egg interaction, protein turnover, metabolism as well as molecular transport, spermatogenesis, and signal transduction were represented by proteins with high quantitative signal in our study. A highly significant degree of enrichment was found for transmembrane and PM-targeted proteins. Among them, we also report proteins previously not described on bovine sperm (CPQ, CD58, CKLF, CPVL, GLB1L3, and LPCAT2B) of which CPQ and CPVL cell surface localization was further validated. A descriptive overview of the bovine sperm PM integral and peripheral proteins is provided to complement future studies on animal reproduction and its relation to sperm cell surface. All MS data have been deposited in the ProteomeXchange with identifier PXD001096 (http://proteomecentral.proteomexchange.org/dataset/PXD001096).

  4. Inhomogeneity Based Characterization of Distribution Patterns on the Plasma Membrane

    PubMed Central

    Paparelli, Laura; Corthout, Nikky; Wakefield, Devin L.; Sannerud, Ragna; Jovanovic-Talisman, Tijana; Annaert, Wim; Munck, Sebastian

    2016-01-01

    Cell surface protein and lipid molecules are organized in various patterns: randomly, along gradients, or clustered when segregated into discrete micro- and nano-domains. Their distribution is tightly coupled to events such as polarization, endocytosis, and intracellular signaling, but challenging to quantify using traditional techniques. Here we present a novel approach to quantify the distribution of plasma membrane proteins and lipids. This approach describes spatial patterns in degrees of inhomogeneity and incorporates an intensity-based correction to analyze images with a wide range of resolutions; we have termed it Quantitative Analysis of the Spatial distributions in Images using Mosaic segmentation and Dual parameter Optimization in Histograms (QuASIMoDOH). We tested its applicability using simulated microscopy images and images acquired by widefield microscopy, total internal reflection microscopy, structured illumination microscopy, and photoactivated localization microscopy. We validated QuASIMoDOH, successfully quantifying the distribution of protein and lipid molecules detected with several labeling techniques, in different cell model systems. We also used this method to characterize the reorganization of cell surface lipids in response to disrupted endosomal trafficking and to detect dynamic changes in the global and local organization of epidermal growth factor receptors across the cell surface. Our findings demonstrate that QuASIMoDOH can be used to assess protein and lipid patterns, quantifying distribution changes and spatial reorganization at the cell surface. An ImageJ/Fiji plugin of this analysis tool is provided. PMID:27603951

  5. Arrestin-mediated endocytosis of yeast plasma membrane transporters.

    PubMed

    Nikko, Elina; Pelham, Hugh R B

    2009-12-01

    Many plasma membrane transporters in yeast are endocytosed in response to excess substrate or certain stresses and degraded in the vacuole. Endocytosis invariably requires ubiquitination by the HECT domain ligase Rsp5. In the cases of the manganese transporter Smf1 and the amino acid transporters Can1, Lyp1 and Mup1 it has been shown that ubiquitination is mediated by arrestin-like adaptor proteins that bind to Rsp5 and recognize specific transporters. As yeast contains a large family of arrestins, this has been suggested as a general model for transporter regulation; however, analysis is complicated by redundancy amongst the arrestins. We have tested this model by removing all the arrestins and examining the requirements for endocytosis of four more transporters, Itr1 (inositol), Hxt6 (glucose), Fur4 (uracil) and Tat2 (tryptophan). This reveals functions for the arrestins Art5/Ygr068c and Art4/Rod1, and additional roles for Art1/Ldb19, Art2/Ecm21 and Art8/Csr2. It also reveals functional redundancy between arrestins and the arrestin-like adaptors Bul1 and Bul2. In addition, we show that delivery to the vacuole often requires multiple additional ubiquitin ligases or adaptors, including the RING domain ligase Pib1, and the adaptors Bsd2, Ear1 and Ssh4, some acting redundantly. We discuss the similarities and differences in the requirements for regulation of different transporters.

  6. Control of plasma membrane lipid homeostasis by the extended synaptotagmins

    PubMed Central

    Saheki, Yasunori; Bian, Xin; Schauder, Curtis M.; Sawaki, Yujin; Surma, Michal A.; Klose, Christian; Pincet, Frederic; Reinisch, Karin M.; De Camilli, Pietro

    2016-01-01

    Acute metabolic changes of plasma membrane (PM) lipids, such as those mediating signaling reactions, are rapidly compensated by homeostatic responses whose molecular basis is poorly understood. Here we show that the Extended-Synaptotagmins (E-Syts), ER proteins which function as PI(4,5)P2 and Ca2+-regulated tethers to the PM, participate in these responses. E-Syts transfer glycerolipids between bilayers in vitro and such transfer requires Ca2+ and their SMP domain, a lipid-harboring module. Genome edited cells lacking E-Syts do not exhibit abnormalities in the major glycerolipids at rest, but display enhanced and sustained accumulation of PM diacylglycerol (DAG) upon PI(4,5)P2 hydrolysis by PLC activation, which can be rescued by expression of E-Syt1, but not by mutant E-Syt1 lacking the SMP domain. The formation of E-Syts-dependent ER-PM tethers in response to stimuli that cleave PI(4,5)P2 and elevate Ca2+ may help reverse accumulation of DAG in the PM by transferring it to the ER for metabolic recycling. PMID:27065097

  7. Endocytic adaptors – social networking at the plasma membrane

    PubMed Central

    Reider, Amanda; Wendland, Beverly

    2011-01-01

    Receptor-mediated endocytosis is a dynamic process that is crucial for maintaining plasma membrane composition and controlling cell-signaling pathways. A variety of entry routes have evolved to ensure that the vast array of molecules on the cell surface can be differentially internalized by endocytosis. This diversity has extended to include a growing list of endocytic adaptor proteins, which are thought to initiate the internalization process. The key function of adaptors is to select the proteins that should be removed from the cell surface. Thus, they have a central role in defining the physiology of a cell. This has made the study of adaptor proteins a very active area of research that is ripe for exciting future discoveries. Here, we review recent work on how adaptors mediate endocytosis and address the following questions: what characteristics define an endocytic adaptor protein? What roles do these proteins fulfill in addition to selecting cargo and how might adaptors function in clathrin-independent endocytic pathways? Through the findings discussed in this Commentary, we hope to stimulate further characterization of known adaptors and expansion of the known repertoire by identification of new adaptors. PMID:21536832

  8. The plasma membrane transport systems and adaptation to salinity.

    PubMed

    Mansour, Mohamed Magdy F

    2014-11-15

    Salt stress represents one of the environmental challenges that drastically affect plant growth and yield. Evidence suggests that glycophytes and halophytes have a salt tolerance mechanisms working at the cellular level, and the plasma membrane (PM) is believed to be one facet of the cellular mechanisms. The responses of the PM transport proteins to salinity in contrasting species/cultivars were discussed. The review provides a comprehensive overview of the recent advances describing the crucial roles that the PM transport systems have in plant adaptation to salt. Several lines of evidence were presented to demonstrate the correlation between the PM transport proteins and adaptation of plants to high salinity. How alterations in these transport systems of the PM allow plants to cope with the salt stress was also addressed. Although inconsistencies exist in some of the information related to the responses of the PM transport proteins to salinity in different species/cultivars, their key roles in adaptation of plants to high salinity is obvious and evident, and cannot be precluded. Despite the promising results, detailed investigations at the cellular/molecular level are needed in some issues of the PM transport systems in response to salinity to further evaluate their implication in salt tolerance.

  9. Inhomogeneity Based Characterization of Distribution Patterns on the Plasma Membrane.

    PubMed

    Paparelli, Laura; Corthout, Nikky; Pavie, Benjamin; Wakefield, Devin L; Sannerud, Ragna; Jovanovic-Talisman, Tijana; Annaert, Wim; Munck, Sebastian

    2016-09-01

    Cell surface protein and lipid molecules are organized in various patterns: randomly, along gradients, or clustered when segregated into discrete micro- and nano-domains. Their distribution is tightly coupled to events such as polarization, endocytosis, and intracellular signaling, but challenging to quantify using traditional techniques. Here we present a novel approach to quantify the distribution of plasma membrane proteins and lipids. This approach describes spatial patterns in degrees of inhomogeneity and incorporates an intensity-based correction to analyze images with a wide range of resolutions; we have termed it Quantitative Analysis of the Spatial distributions in Images using Mosaic segmentation and Dual parameter Optimization in Histograms (QuASIMoDOH). We tested its applicability using simulated microscopy images and images acquired by widefield microscopy, total internal reflection microscopy, structured illumination microscopy, and photoactivated localization microscopy. We validated QuASIMoDOH, successfully quantifying the distribution of protein and lipid molecules detected with several labeling techniques, in different cell model systems. We also used this method to characterize the reorganization of cell surface lipids in response to disrupted endosomal trafficking and to detect dynamic changes in the global and local organization of epidermal growth factor receptors across the cell surface. Our findings demonstrate that QuASIMoDOH can be used to assess protein and lipid patterns, quantifying distribution changes and spatial reorganization at the cell surface. An ImageJ/Fiji plugin of this analysis tool is provided. PMID:27603951

  10. The plasma membrane transport systems and adaptation to salinity.

    PubMed

    Mansour, Mohamed Magdy F

    2014-11-15

    Salt stress represents one of the environmental challenges that drastically affect plant growth and yield. Evidence suggests that glycophytes and halophytes have a salt tolerance mechanisms working at the cellular level, and the plasma membrane (PM) is believed to be one facet of the cellular mechanisms. The responses of the PM transport proteins to salinity in contrasting species/cultivars were discussed. The review provides a comprehensive overview of the recent advances describing the crucial roles that the PM transport systems have in plant adaptation to salt. Several lines of evidence were presented to demonstrate the correlation between the PM transport proteins and adaptation of plants to high salinity. How alterations in these transport systems of the PM allow plants to cope with the salt stress was also addressed. Although inconsistencies exist in some of the information related to the responses of the PM transport proteins to salinity in different species/cultivars, their key roles in adaptation of plants to high salinity is obvious and evident, and cannot be precluded. Despite the promising results, detailed investigations at the cellular/molecular level are needed in some issues of the PM transport systems in response to salinity to further evaluate their implication in salt tolerance. PMID:25262536

  11. Vesicle-associated membrane protein 2 mediates trafficking of {alpha}5{beta}1 integrin to the plasma membrane

    SciTech Connect

    Hasan, Nazarul; Hu, Chuan

    2010-01-01

    Integrins are major receptors for cell adhesion to the extracellular matrix (ECM). As transmembrane proteins, the levels of integrins at the plasma membrane or the cell surface are ultimately determined by the balance between two vesicle trafficking events: endocytosis of integrins at the plasma membrane and exocytosis of the vesicles that transport integrins. Here, we report that vesicle-associated membrane protein 2 (VAMP2), a SNARE protein that mediates vesicle fusion with the plasma membrane, is involved in the trafficking of {alpha}5{beta}1 integrin. VAMP2 was present on vesicles containing endocytosed {beta}1 integrin. Small interfering RNA (siRNA) silencing of VAMP2 markedly reduced cell surface {alpha}5{beta}1 and inhibited cell adhesion and chemotactic migration to fibronectin, the ECM ligand of {alpha}5{beta}1, without altering cell surface expression of {alpha}2{beta}1 integrin or {alpha}3{beta}1 integrin. By contrast, silencing of VAMP8, another SNARE protein, had no effect on cell surface expression of the integrins or cell adhesion to fibronectin. In addition, VAMP2-mediated trafficking is involved in cell adhesion to collagen but not to laminin. Consistent with disruption of integrin functions in cell proliferation and survival, VAMP2 silencing diminished proliferation and triggered apoptosis. Collectively, these data indicate that VAMP2 mediates the trafficking of {alpha}5{beta}1 integrin to the plasma membrane and VAMP2-dependent integrin trafficking is critical in cell adhesion, migration and survival.

  12. Plasma membrane potential of the alga dunaliella, and its relation to osmoregulation.

    PubMed

    Oren-Shamir, M; Pick, U; Avron, M

    1990-06-01

    A fluorescent dye sensitive to membrane potential was used to follow the plasma-membrane potential in the unicellular halo-tolerant alga Dunaliella salina. The signal observed during dissipation of the plasma membrane potential by the addition of excess K(+) and valinomycin, or a protonophore, was taken as a measure of the preexisting potential. A resting potential of -85 to -100 millivolts (negative inside) was calculated. Following a hypertonic shock, the plasma membrane was rapidly hyperpolarized. This hyperpolarization was transient, and the algae resumed their resting potential about 30 minutes after the shock. The resting plasma membrane potential was decreased by vanadate and is concluded to be generated mostly by the plasma membrane ATPase of Dunaliella. The transient hyperpolarization following a hypertonic shock indicates, therefore, a transient activation of the ATPase. This is further corroborated by a rapid transient decrease in the intracellular ATP following a hypertonic shock and its inhibition by vanadate. It is suggested that activation of the plasma membrane ATPase may be the trigger for osmoregulation in Dunaliella. PMID:16667480

  13. Structural Rearrangements in CHO Cells After Disruption of Individual Cytoskeletal Elements and Plasma Membrane.

    PubMed

    Jokhadar, Špela Zemljič; Derganc, Jure

    2015-04-01

    Cellular structural integrity is provided primarily by the cytoskeleton, which comprises microtubules, actin filaments, and intermediate filaments. The plasma membrane has been also recognized as a mediator of physical forces, yet its contribution to the structural integrity of the cell as a whole is less clear. In order to investigate the relationship between the plasma membrane and the cytoskeleton, we selectively disrupted the plasma membrane and each of the cytoskeletal elements in Chinese hamster ovary cells and assessed subsequent changes in cellular structural integrity. Confocal microscopy was used to visualize cytoskeletal rearrangements, and optical tweezers were utilized to quantify membrane tether extraction. We found that cholesterol depletion from the plasma membrane resulted in rearrangements of all cytoskeletal elements. Conversely, the state of the plasma membrane, as assessed by tether extraction, was affected by disruption of any of the cytoskeletal elements, including microtubules and intermediate filaments, which are located mainly in the cell interior. The results demonstrate that, besides the cytoskeleton, the plasma membrane is an important contributor to cellular integrity, possibly by acting as an essential framework for cytoskeletal anchoring. In agreement with the tensegrity model of cell mechanics, our results support the notion of the cell as a prestressed structure. PMID:25395197

  14. [H2O2 induces changes in the plasma membrane of Saccharomyces cerevisiae].

    PubMed

    Sun, Tingli; Shi, Qingshan; Ouyang, Yousheng; Chen, Yiben

    2009-12-01

    This article reviews the recent studies on H2O2 adaptation of Saccharomyces cerevisiae. When the cell exposed in the H2O2 sub-lethal doses, the plasma membrane permeability decreased, meanwhile the plasma membrane fluidity is minished. These changes resulted in a gradient across the plasma membrane, which conferring a higher resistance to oxidative stress. Recent work has also shown that the yeast cells adapted to H2O2 would lead to several changes in the expression of genes coding the key enzymes involved in the biosynthesis of lipid profile and in the organization of lipid microdomains of the plasma membrane, which finally decreased its' permeability and fluidity. The reorganization of the plasma membrane might be the major mechanism of the H2O2 adaptation. Once the yeast cells adapted to the external H2O2, changes in plasma occurred. The H2O2 dependent signaling pathways in the plasma membrane might be activated by high levels of H2O2. But the details of the signaling events should still be further studies.

  15. Characterization of four plasma membrane aquaporins in tulip petals: a putative homolog is regulated by phosphorylation.

    PubMed

    Azad, Abul Kalam; Katsuhara, Maki; Sawa, Yoshihiro; Ishikawa, Takahiro; Shibata, Hitoshi

    2008-08-01

    We suggested previously that temperature-dependent tulip (Tulipa gesneriana) petal movement that is concomitant with water transport is regulated by reversible phosphorylation of an unidentified plasma membrane intrinsic protein (PIP). In this study, four full-length cDNAs of PIPs from tulip petals were identified and cloned. Two PIPs, namely TgPIP1;1 and TgPIP1;2, are members of the PIP1 subfamily, and the remaining two PIPs, namely TgPIP2;1 and TgPIP2;2, belong to the PIP2 subfamily of aquaporins and were named according to the nomenclature of PIP genes in plants. Of these four homologs, only TgPIP2;2 displayed significant water channel activity in the heterologous expression assay using Xenopus laevis oocytes. The water channel activity of this functional isoform was abolished by mercury and was affected by inhibitors of protein kinase and protein phosphatase. Using a site-directed mutagenesis approach to substitute several serine residues with alanine, and assessing water channel activity using the methylotrophic yeast Pichia pastoris expression assay, we showed that Ser35, Ser116 and Ser274 are the putative phosphorylation sites of TgPIP2;2. Real-time reverse transcription-PCR analysis revealed that the transcript levels of TgPIP1;1 and TgPIP1;2 in tulip petals, stems, leaves, bulbs and roots are very low when compared with those of TgPIP2;1 and TgPIP2;2. The transcript level of TgPIP2;1 is negligible in roots, and TgPIP2;2 is ubiquitously expressed in all organs with significant transcript levels. From the data reported herein, we suggest that TgPIP2;2 might be modulated by phosphorylation and dephosphorylation for regulating water channel activity, and may play a role in transcellular water transport in all tulip organs.

  16. Plasma deposition of silver nanoparticles on ultrafiltration membranes: antibacterial and anti-biofouling properties

    PubMed Central

    Cruz, Mercedes Cecilia; Ruano, Gustavo; Wolf, Marcus; Hecker, Dominic; Vidaurre, Elza Castro; Schmittgens, Ralph; Rajal, Verónica Beatriz

    2015-01-01

    A novel and versatile plasma reactor was used to modify Polyethersulphone commercial membranes. The equipment was applied to: i) functionalize the membranes with low-temperature plasmas, ii) deposit a film of poly(methyl methacrylate) (PMMA) by Plasma Enhanced Chemical Vapor Deposition (PECVD) and, iii) deposit silver nanoparticles (SNP) by Gas Flow Sputtering. Each modification process was performed in the same reactor consecutively, without exposure of the membranes to atmospheric air. Scanning electron microscopy and transmission electron microscopy were used to characterize the particles and modified membranes. SNP are evenly distributed on the membrane surface. Particle fixation and transport inside membranes were assessed before- and after-washing assays by X-ray photoelectron spectroscopy depth profiling analysis. PMMA addition improved SNP fixation. Plasma-treated membranes showed higher hydrophilicity. Anti-biofouling activity was successfully achieved against Gram-positive (Enterococcus faecalis) and -negative (Salmonella Typhimurium) bacteria. Therefore, disinfection by ultrafiltration showed substantial resistance to biofouling. The post-synthesis functionalization process developed provides a more efficient fabrication route for anti-biofouling and anti-bacterial membranes used in the water treatment field. To the best of our knowledge, this is the first report of a gas phase condensation process combined with a PECVD procedure in order to deposit SNP on commercial membranes to inhibit biofouling formation. PMID:26166926

  17. Plasma membrane microorganization of LR73 multidrug-resistant cells revealed by FCS

    NASA Astrophysics Data System (ADS)

    Winckler, Pascale; Jaffiol, Rodolphe; Cailler, Aurélie; Morjani, Hamid; Jeannesson, Pierre; Deturche, Régis

    2011-03-01

    Tumoral cells could present a multidrug resistance (MDR) to chemotherapeutic treatments. This drug resistance would be associated to biomechanisms occurring at the plasma membrane level, involving modification of membrane fluidity, drug permeability, presence of microdomains (rafts, caveolae...), and membrane proteins overexpression such as Pglycoprotein. Fluorescence correlation spectroscopy (FCS) is the relevant method to investigate locally the fluidity of biological membranes through the lateral diffusion of a fluorescent membrane probe. Thus, we use FCS to monitor the plasma membrane local organization of LR73 carcinoma cells and three derived multidrug-resistant cancer cells lines. Measurements were conducted at the single cell level, which enabled us to get a detailed overview of the plasma membrane microviscosity distribution of each cell line studied. Moreover, we propose 2D diffusion simulation based on a Monte Carlo model to investigate the membrane organisation in terms of microdomains. This simulation allows us to relate the differences in the fluidity distributions with microorganization changes in plasma membrane of MDR cells.

  18. The C-terminal Cytosolic Region of Rim21 Senses Alterations in Plasma Membrane Lipid Composition: INSIGHTS INTO SENSING MECHANISMS FOR PLASMA MEMBRANE LIPID ASYMMETRY.

    PubMed

    Nishino, Kanako; Obara, Keisuke; Kihara, Akio

    2015-12-25

    Yeast responds to alterations in plasma membrane lipid asymmetry and external alkalization via the sensor protein Rim21 in the Rim101 pathway. However, the sensing mechanism used by Rim21 remains unclear. Here, we found that the C-terminal cytosolic domain of Rim21 (Rim21C) fused with GFP was associated with the plasma membrane under normal conditions but dissociated upon alterations in lipid asymmetry or external alkalization. This indicates that Rim21C contains a sensor motif. Rim21C contains multiple clusters of charged residues. Among them, three consecutive Glu residues (EEE motif) were essential for Rim21 function and dissociation of Rim21C from the plasma membrane in response to changes in lipid asymmetry. In contrast, positively charged residues adjacent to the EEE motif were required for Rim21C to associate with the membrane. We therefore propose an "antenna hypothesis," in which Rim21C moves to or from the plasma membrane and functions as the sensing mechanism of Rim21.

  19. Hemagglutinin clusters in the plasma membrane are not enriched with cholesterol and sphingolipids.

    PubMed

    Wilson, Robert L; Frisz, Jessica F; Klitzing, Haley A; Zimmerberg, Joshua; Weber, Peter K; Kraft, Mary L

    2015-04-01

    The clusters of the influenza envelope protein, hemagglutinin, within the plasma membrane are hypothesized to be enriched with cholesterol and sphingolipids. Here, we directly tested this hypothesis by using high-resolution secondary ion mass spectrometry to image the distributions of antibody-labeled hemagglutinin and isotope-labeled cholesterol and sphingolipids in the plasma membranes of fibroblast cells that stably express hemagglutinin. We found that the hemagglutinin clusters were neither enriched with cholesterol nor colocalized with sphingolipid domains. Thus, hemagglutinin clustering and localization in the plasma membrane is not controlled by cohesive interactions between hemagglutinin and liquid-ordered domains enriched with cholesterol and sphingolipids, or from specific binding interactions between hemagglutinin, cholesterol, and/or the majority of sphingolipid species in the plasma membrane. PMID:25863057

  20. Rapid preparation of plasma membranes from avian lymphoid cells and fibroblasts for virus binding studies.

    PubMed

    Nieper, H; Müller, H

    1998-06-01

    A simple and rapid protocol for the preparation of plasma membranes from chicken embryo fibroblasts and chicken lymphoid cells was developed. Characterization of the preparations by morphological, biochemical and serological methods indicated the specific enrichment of the plasma membranes as well as cell surface proteins. Binding of infectious bursal disease virus (IBDV) particles was demonstrated after immobilization of the plasma membranes, and cell type-specific differences were observed. Although the results of these studies reflect the interaction between IBDV and isolated cells only partially, the advantages of these plasma membrane preparations, the specific enrichment of cell surface proteins, their constant quality and the possibility to store aliquots over several months, make them a useful tool for virus binding studies with avian cells. PMID:9694323

  1. Membrane-based Therapeutic Plasma Exchange: A New Frontier for Nephrologists.

    PubMed

    Gashti, Casey N

    2016-09-01

    Therapeutic plasma exchange has long been utilized to manage a variety of immune-mediated diseases. The underlying principle is the removal of a circulating pathogenic substance from the plasma and substitution with a replacement fluid. Different methodologies of plasma separation include the use of centrifuge, which relies on the variation in the specific gravity of blood components, and membrane-based separation, which relies on particle size. With advancements in technology and clinical insight into disease pathophysiology, membrane technology has become more biocompatible, safer, and more adaptable to conventional hemodialysis and hemofiltration machines. As such, nephrologists, who are familiar with management of extracorporeal blood purification systems, are increasingly involved with membrane-based plasma separation. This review aims to highlight the technical aspects of membrane-based separation, review the prescription for therapy, and draw comparisons with the centrifuge-based technique when applicable. PMID:27062015

  2. Sphingolipid domains in the plasma membranes of fibroblasts are not enriched with cholesterol

    SciTech Connect

    Frisz, Jessica F.; Klitzing, Haley A.; Lou, Kaiyan; Hutcheon, Ian D.; Weber, Peter K.; Zimmerberg, Joshua; Kraft, Mary L.

    2013-04-22

    The plasma membranes of mammalian cells are widely expected to contain domains that are enriched with cholesterol and sphingolipids. In this work, we have used high-resolution secondary ion mass spectrometry to directly map the distributions of isotope-labeled cholesterol and sphingolipids in the plasma membranes of intact fibroblast cells. Although acute cholesterol depletion reduced sphingolipid domain abundance, cholesterol was evenly distributed throughout the plasma membrane and was not enriched within the sphingolipid domains. As a result, we rule out favorable cholesterol-sphingolipid interactions as dictating plasma membrane organization in fibroblast cells. Because the sphingolipid domains are disrupted by drugs that depolymerize the cells actin cytoskeleton, cholesterol must instead affect the sphingolipid organization via an indirect mechanism that involves the cytoskeleton.

  3. Sphingolipid domains in the plasma membranes of fibroblasts are not enriched with cholesterol

    DOE PAGESBeta

    Frisz, Jessica F.; Klitzing, Haley A.; Lou, Kaiyan; Hutcheon, Ian D.; Weber, Peter K.; Zimmerberg, Joshua; Kraft, Mary L.

    2013-04-22

    The plasma membranes of mammalian cells are widely expected to contain domains that are enriched with cholesterol and sphingolipids. In this work, we have used high-resolution secondary ion mass spectrometry to directly map the distributions of isotope-labeled cholesterol and sphingolipids in the plasma membranes of intact fibroblast cells. Although acute cholesterol depletion reduced sphingolipid domain abundance, cholesterol was evenly distributed throughout the plasma membrane and was not enriched within the sphingolipid domains. As a result, we rule out favorable cholesterol-sphingolipid interactions as dictating plasma membrane organization in fibroblast cells. Because the sphingolipid domains are disrupted by drugs that depolymerize themore » cells actin cytoskeleton, cholesterol must instead affect the sphingolipid organization via an indirect mechanism that involves the cytoskeleton.« less

  4. Hemagglutinin Clusters in the Plasma Membrane Are Not Enriched with Cholesterol and Sphingolipids

    PubMed Central

    Wilson, Robert L.; Frisz, Jessica F.; Klitzing, Haley A.; Zimmerberg, Joshua; Weber, Peter K.; Kraft, Mary L.

    2015-01-01

    The clusters of the influenza envelope protein, hemagglutinin, within the plasma membrane are hypothesized to be enriched with cholesterol and sphingolipids. Here, we directly tested this hypothesis by using high-resolution secondary ion mass spectrometry to image the distributions of antibody-labeled hemagglutinin and isotope-labeled cholesterol and sphingolipids in the plasma membranes of fibroblast cells that stably express hemagglutinin. We found that the hemagglutinin clusters were neither enriched with cholesterol nor colocalized with sphingolipid domains. Thus, hemagglutinin clustering and localization in the plasma membrane is not controlled by cohesive interactions between hemagglutinin and liquid-ordered domains enriched with cholesterol and sphingolipids, or from specific binding interactions between hemagglutinin, cholesterol, and/or the majority of sphingolipid species in the plasma membrane. PMID:25863057

  5. Sphingolipid Domains in the Plasma Membranes of Fibroblasts Are Not Enriched with Cholesterol*

    PubMed Central

    Frisz, Jessica F.; Klitzing, Haley A.; Lou, Kaiyan; Hutcheon, Ian D.; Weber, Peter K.; Zimmerberg, Joshua; Kraft, Mary L.

    2013-01-01

    The plasma membranes of mammalian cells are widely expected to contain domains that are enriched with cholesterol and sphingolipids. In this work, we have used high-resolution secondary ion mass spectrometry to directly map the distributions of isotope-labeled cholesterol and sphingolipids in the plasma membranes of intact fibroblast cells. Although acute cholesterol depletion reduced sphingolipid domain abundance, cholesterol was evenly distributed throughout the plasma membrane and was not enriched within the sphingolipid domains. Thus, we rule out favorable cholesterol-sphingolipid interactions as dictating plasma membrane organization in fibroblast cells. Because the sphingolipid domains are disrupted by drugs that depolymerize the cells actin cytoskeleton, cholesterol must instead affect the sphingolipid organization via an indirect mechanism that involves the cytoskeleton. PMID:23609440

  6. Modification of pro-inflammatory signaling by dietary components: The plasma membrane as a target.

    PubMed

    Ciesielska, Anna; Kwiatkowska, Katarzyna

    2015-07-01

    You are what you eat - this well-known phrase properly describes the phenomenon of the effects of diet on acute and chronic inflammation. Several lipids and lipophilic compounds that are delivered with food or are produced in situ in pathological conditions exert immunomodulatory activity due to their interactions with the plasma membrane. This group of compounds includes cholesterol and its oxidized derivatives, fatty acids, α-tocopherol, and polyphenols. Despite their structural heterogeneity, all these compounds ultimately induce changes in plasma membrane architecture and fluidity. By doing this, they modulate the dynamics of plasma membrane receptors, such as TLR4. This receptor is activated by lipopolysaccharide, triggering acute inflammation during bacterial infection, which often leads to sepsis and is linked with diverse chronic inflammatory diseases. In this review, we discuss how the impact on plasma membrane properties contributes to the immunomodulatory activity of dietary compounds, pointing to the therapeutic potential of some of them. Also watch the Video Abstract. PMID:25966354

  7. Characterization and quantitation of concanavalin A binding by plasma membrane enriched fractions from soybean root

    SciTech Connect

    Berkowitz, R.L.; Travis, R.L.

    1981-11-01

    The binding of concanavalin A (Con A) to soybean root membranes in plasma membrane enriched fractions (recovered from the 34/45% interface of simplified discontinuous sucrose density gradients) was studied using a radiochemical assay employing tritated (/sup 3/H)-Con A. The effect of lectin concentration, time, and membrane protein concentration on the specific binding of /sup 3/H-Con A by the membranes was evaluated. Kinetic analyses showed that Con A will react with membranes in that fraction in a characteristic and predictable manner. The parameters for an optimal and standard binding assay were established. Maximal binding occurred with Con A concentrations in the range of 8 to 16% of the total membrane protein with incubation times greater than 40 min at 22 C. Approximately 10/sup 15/ molecules of /sup 3/H-Con A were bound per microgram of membrane protein at saturation. Binding was reversible. Greater than 92% of the total Con A bound at saturation was released by addition of ..cap alpha..-methyl mannoside. A major peak of /sup 3/H-Con A binding was also observed in fractions recovered from the 25/30% interface of a complex discontinuous sucrose density gradient when membranes were isolated in the absence of Mg/sup 2 +/. When high Mg/sup 2 +/ was present in the isolation and gradient media, the peak was shifted to a fraction recovered from the 34/38% sucrose interface. These results suggest that Con A binding sites are also present on membranes of the endoplasmic reticulum. The amount of Con A bound by endoplasmic reticulum membranes was at least twice the amount bound by membranes in plasma membrane enriched fractions when binding was compared on a per unit membrane protein basis. In contrast, mitochondrial inner membranes, which equilibrate at the same density as plasma membranes, had little ability to bind the lectin.

  8. NPA binding activity is peripheral to the plasma membrane and is associated with the cytoskeleton.

    PubMed Central

    Cox, D N; Muday, G K

    1994-01-01

    N-1-Naphthylphthalamic acid (NPA) binding activity is released into the supernatant when plasma membranes are subjected to high-salt treatment, indicating that this activity is peripherally associated with the membrane. Extraction of plasma membrane vesicles with Triton X-100 resulted in retention of NPA binding activity in the detergent-insoluble cytoskeletal pellet. Treatment of this pellet with KI released NPA binding activity, actin, and alpha-tubulin. Dialysis to remove KI led to the repolymerization of cytoskeletal elements and movement of NPA binding activity into an insoluble cytoskeletal pellet. NPA binding activity partitioned into the detergent-insoluble cytoskeletal pellet obtained from both zucchini and maize membranes and was released from these pellets by KI treatment. Treatment of a cytoskeletal pellet with cytochalasin B doubled NPA binding activity in the resulting supernatant. Together, these experiments indicate that NPA binding activity is peripherally associated with the plasma membrane and interacts with the cytoskeleton in vitro. PMID:11536654

  9. Expression patterns of genes encoding plasma membrane aquaporins during fruit development in cucumber (Cucumis sativus L.).

    PubMed

    Shi, Jin; Wang, Jinfang; Li, Ren; Li, Dianbo; Xu, Fengfeng; Sun, Qianqian; Zhao, Bin; Mao, Ai-Jun; Guo, Yang-Dong

    2015-11-01

    Aquaporins are membrane channels precisely regulating water movement through cell membranes in most living organisms. Despite the advances in the physiology of fruit development, their participation during fruit development in cucumber still barely understood. In this paper, the expressions of 12 genes encoding plasma membrane intrinsic proteins (PIPs) were analyzed during cucumber fruit development in our work. Based on the homology search with known PIPs from rice, Arabidopsis and strawberry, 12 cucumber PIP genes subfamily members were identified. Cellular localization assays indicated that CsPIPs were localized in the plasma membrane. The qRT-PCR analysis of CsPIPs showed that 12 CsPIPs were differentially expressed during fruit development. These results suggest that 12 genes encoding plasma membrane intrinsic proteins (CsPIPs) play very important roles in cucumber life cycle and the data generated will be helpful in understanding their precise roles during fruit development in cucumber.

  10. Adhesion and receptor clustering stabilizes lateral heterogeneity in cell plasma membranes

    NASA Astrophysics Data System (ADS)

    Veatch, Sarah

    2013-03-01

    The thermodynamic properties of plasma membrane lipids play a vital role in many functions that initiate at the mammalian cell surface. Some functions are thought to occur, at least in part, because plasma membrane lipids have a tendency to separate into two distinct liquid phases, called liquid-ordered and liquid-disordered. We find that isolated cell plasma membranes are poised near a miscibility critical point separating these two liquid phases, and postulate that critical composition fluctuations provide the physical basis of functional membrane heterogeneity in intact cells. In this talk I will describe several possible mechanisms through which dynamic fluctuations can be stabilized in super-critical membranes, and will present some preliminary evidence suggesting that these structures can be visualized in intact cells using quantitative super-resolution fluorescence localization imaging.

  11. Glucocorticoid hormones increase the activity of plasma membrane alkaline phosphodiesterase I in rat hepatoma cells.

    PubMed Central

    Rousseau, G G; Amar-Costesec, A; Verhaegen, M; Granner, D K

    1980-01-01

    In rat hepatoma cells the synthetic glucocorticoid dexamethasone causes a 3-fold increase in the activity of the plasma membrane enzyme alkaline phosphodiesterase I (oligonucleat 5'-nucleotidohydrolase, EC 3.1.4.1). The data are consistent with an induction phenomenon mediated by the glucocorticoid receptor involved in tyrosine aminotransferase induction. The effect on alkaline phosphodiesterase I is not a reflection of a general membrane effect of dexamethasone, because the activity of three other enzymes of the plasma membrane is unaffected. On the other hand, nucleoside diphosphatase (nucleoside diphosphate phosphohydrolase acting on ADP) activity is inhibited. Thus, two more enzymes sensitive to glucocorticoids have been identified in a cell line in which these hormones influence only very few gene products. This paper describes enzymatic changes in the plasma membrane of rat hepatoma cells in which glucocorticoids normalize a number of membrane-associated processes that are considered to be characteristic of transformed cells. PMID:6102383

  12. Hypoxia directly increases serotonin transport by porcine pulmonary artery endothelial cell (PAEC) plasma membrane vesicles

    SciTech Connect

    Bhat, G.B.; Block, E.R. )

    1990-02-26

    Alterations in the physical state and composition of membrane lipids have been shown to interfere with a number of critical cellular and membrane functions including transmembrane transport. The authors have reported that hypoxia has profound effects upon the physical state and lipid composition of the PAEC plasma membrane bilayer and have suggested that this is responsible for increased serotonin uptake by these cells. In order to determine whether hypoxia has a direct effect on the plasma membrane transport of serotonin, they measured serotonin transport activity (1) in plasma membrane vesicles isolated from normoxic (20% O{sub 2}-5% CO{sub 2}) and hypoxic (0% O{sub 2}-5% CO{sub 2}) PAEC and (2) in PAEC plasma membrane vesicles that were exposed directly to normoxia or hypoxia. A 24-h exposure of PAEC to hypoxia resulted in a 40% increase in specific serotonin transport by plasma membrane vesicles derived from these cells. When plasma membrane vesicles were isolated and then directly exposed to normoxia or hypoxia for 1 h at 37C, a 31% increase in specific 5-HT transport was observed in hypoxic vesicles. Hypoxia did not alter the Km of serotonin transport (normoxia = 3.47 {mu}M versus hypoxia = 3.76 {mu}M) but markedly increased the maximal rate of transport (V{sup max}) (normoxia = 202.4 pmol/min/mg protein versus hypoxia = 317.9 pmol/min/mg protein). These results indicate that hypoxia increases serotonin transport in PAEC by a direct effect on the plasma membrane leading to an increase in the effective number of transporter molecules without alteration in transporter affinity for serotonin.

  13. Immunoprecipitation of Plasma Membrane Receptor-Like Kinases for Identification of Phosphorylation Sites and Associated Proteins.

    PubMed

    Kadota, Yasuhiro; Macho, Alberto P; Zipfel, Cyril

    2016-01-01

    Membrane proteins are difficult to study for numerous reasons. The surface of membrane proteins is relatively hydrophobic and sometimes very unstable, additionally requiring detergents for their extraction from the membrane. This leads to challenges at all levels, including expression, solubilization, purification, identification of associated proteins, and the identification of post-translational modifications. However, recent advances in immunoprecipitation technology allow to isolate membrane proteins efficiently, facilitating the study of protein-protein interactions, the identification of novel associated proteins, and to identify post-translational modifications, such as phosphorylation. Here, we describe an optimized immunoprecipitation protocol for plant plasma membrane receptor-like kinases. PMID:26577786

  14. Prefracture and cold-fracture images of yeast plasma membranes.

    PubMed

    Steere, R L; Erbe, E F; Moseley, J M

    1980-07-01

    Fracture-temperature related differences in the ultrastructure of plasmalemma P faces of freeze-fractured baker's yeast (Saccharomyces cerevisiae) have been observed in high-resolution replicas prepared in freeze-etch systems pumped to 2 X 10(-7) torr in which the specimens were protected from contamination by use of liquid nitrogen-cooled shrouds. Two major P-face images were observed regardless of the source of the yeast, the age of the culture, the growth temperature, the physiological condition, or the suspending medium used: (a) a "cold-fracture image" with many strands closely associuated with tubelike particles (essentially the same image as those previously published for yeast freeze-fractured at 77 degrees K), and (b) a "prefracture image" characterized by the presence of more distinct tubelike particles with few or no associated strands (for aging cultures, the image recently referred to as "paracrystalline arrays" of "craterlike particles"). Both types of P-face image can be found in separate areas of single replicas and occasionally even within a single plasma membrane. Whereas portions of replicas known to be fractured at any temperature colder than 218 degrees K reveal only the cold-fracture image, prefracture images are found in cells intentionally fractured at 243 degrees K and in cracks or fissures which develop during the freezing of other specimens. These findings demonstrate that the prefracture image results from the fracturing of specimens at some temperature above 230 degrees K, no t from fracturing specimens at some temperature between 173 degrees and 77 degrees K, and not from the use of "starved" yeast cells. PMID:6998983

  15. Directing membrane chromatography to manufacture α1-antitrypsin from human plasma fraction IV.

    PubMed

    Fan, Jinxin; Luo, Jianquan; Song, Weijie; Chen, Xiangrong; Wan, Yinhua

    2015-12-01

    The surging demand for plasma proteins, mainly driven by the growing market and the development of new therapeutic indications, is promoting manufacturers to improve the throughput of plasma proteins. Due to the inherent convective mass transfer, membrane chromatography has been proved to be an efficient approach for extracting a small amount of target proteins from large-volume feed. In this study, α1-antitrypsin (AAT) was extracted from human plasma fraction IV by a two-step membrane chromatography. An anion-exchange membrane chromatography (AEMC) was used to capture the plasma proteins in bind/elute mode, and the obtained effluent was further polished by a hydrophobic interaction membrane chromatography (HIMC) in flow-through mode. Under optimal conditions, the recovery and purity of AAT achieved 87.0% and 0.58 AAT/protein (g/g) by AEMC, respectively. After the precise polishing by HIMC, the purity of AAT was 1.22 AAT/protein (g/g). The comparison results showed that membrane chromatography outperformed column chromatography in both steps because of its high throughput. This two-step membrane chromatography could obtain an AAT recovery of 83.3% and an activity recovery of 91.4%. The outcome of this work not only offers an alternative process for protein purification from plasma, but also provides guidelines for manufacturing product from a large-volume feed with multi-components by membrane chromatography.

  16. Yeast cell wall integrity sensors form specific plasma membrane microdomains important for signalling.

    PubMed

    Kock, Christian; Arlt, Henning; Ungermann, Christian; Heinisch, Jürgen J

    2016-09-01

    The cell wall integrity (CWI) pathway of the yeast Saccharomyces cerevisiae relies on the detection of cell surface stress by five sensors (Wsc1, Wsc2, Wsc3, Mid2, Mtl1). Each sensor contains a single transmembrane domain and a highly mannosylated extracellular region, and probably detects mechanical stress in the cell wall or the plasma membrane. We here studied the distribution of the five sensors at the cell surface by using fluorescently tagged variants in conjunction with marker proteins for established membrane compartments. We find that each of the sensors occupies a specific microdomain at the plasma membrane. The novel punctate 'membrane compartment occupied by Wsc1' (MCW) shows moderate overlap with other Wsc-type sensors, but not with those of the Mid-type sensors or other established plasma membrane domains. We further observed that sensor density and formation of the MCW compartment depends on the cysteine-rich head group near the N-terminus of Wsc1. Yet, signalling capacity depends more on the sensor density in the plasma membrane than on clustering within its microcompartment. We propose that the MCW microcompartment provides a quality control mechanism for retaining functional sensors at the plasma membrane to prevent them from endocytosis.

  17. Phospholipase D2 Localizes to the Plasma Membrane and Regulates Angiotensin II Receptor Endocytosis

    PubMed Central

    Du, Guangwei; Huang, Ping; Liang, Bruce T.; Frohman, Michael A.

    2004-01-01

    Phospholipase D (PLD) is a key facilitator of multiple types of membrane vesicle trafficking events. Two PLD isoforms, PLD1 and PLD2, exist in mammals. Initial studies based on overexpression studies suggested that in resting cells, human PLD1 localized primarily to the Golgi and perinuclear vesicles in multiple cell types. In contrast, overexpressed mouse PLD2 was observed to localize primarily to the plasma membrane, although internalization on membrane vesicles was observed subsequent to serum stimulation. A recent report has suggested that the assignment of PLD2 to the plasma membrane is in error, because the endogenous isoform in rat secretory cells was imaged and found to be present primarily in the Golgi apparatus. We have reexamined this issue by using a monoclonal antibody specific for mouse PLD2, and find, as reported initially using overexpression studies, that endogenous mouse PLD2 is detected most readily at the plasma membrane in multiple cell types. In addition, we report that mouse, rat, and human PLD2 when overexpressed all similarly localize to the plasma membrane in cell lines from all three species. Finally, studies conducted using overexpression of wild-type active or dominant-negative isoforms of PLD2 and RNA interference-mediated targeting of PLD2 suggest that PLD2 functions at the plasma membrane to facilitate endocytosis of the angiotensin II type 1 receptor. PMID:14718562

  18. Lipids and glycosphingolipids in caveolae and surrounding plasma membrane of primary rat adipocytes.

    PubMed

    Ortegren, Unn; Karlsson, Margareta; Blazic, Natascha; Blomqvist, Maria; Nystrom, Fredrik H; Gustavsson, Johanna; Fredman, Pam; Strålfors, Peter

    2004-05-01

    We have made a comprehensive and quantitative analysis of the lipid composition of caveolae from primary rat fat cells and compared the composition of plasma membrane inside and outside caveolae. We isolated caveolae from purified plasma membranes using ultrasonication in carbonate buffer to disrupt the membrane, or extraction with nonionic detergent, followed by density gradient ultracentrifugation. The carbonate-isolated caveolae fraction was further immunopurified using caveolin antibodies. Carbonate-isolated caveolae were enriched in cholesterol and sphingomyelin, and the concentration was three- and twofold higher, respectively, in caveolae compared to the surrounding plasma membrane. The concentration of glycerophospholipids was similar suggesting that glycerophospholipids constitute a constant core throughout the plasma membrane. The composition of detergent-insoluble fractions of the plasma membrane was very variable between preparations, but strongly enriched in sphingomyelin and depleted of glycerophospholipids compared to carbonate-isolated caveolae; indicating that detergent extraction is not a suitable technique for caveolae preparation. An average adipocyte caveola contained about 22 x 10(3) molecules of cholesterol, 7.5 x 10(3) of sphingomyelin and 23 x 10(3) of glycerophospholipid. The glycosphingolipid GD3 was highly enriched in caveolae, whereas GM3, GM1 and GD1a were present inside as well as outside the caveolae membrane. GD1b, GT1b, GM2, GQ1b, sulfatide and lactosylceramide sulfate were not detected in caveolae.

  19. Response of plasma membrane H+-ATPase to heavy metal stress in Cucumis sativus roots.

    PubMed

    Janicka-Russak, Małgorzata; Kabała, Katarzyna; Burzyński, Marek; Kłobus, Grazyna

    2008-01-01

    The effect of heavy metals on the modification of plasma membrane H(+)-ATPase (EC 3.6.3.14) activity in cucumber roots was studied. In plants stressed for 2 h with 10 microM or 100 microM Cd, Cu or Ni the hydrolytic as well as the transporting activity of H(+)-ATPase in the plasma membranes of root cells was decreased. Transcript levels of Cucumis sativus plasma membrane H(+)-ATPase in roots treated with 10 microM Cd, Cu, or Ni as well as with 100 microM Cu or Ni were similar to the control, indicating that the action of metals did not involve the gene expression level. Only in roots exposed to 100 microM Cd was the level of plasma membrane H(+)-ATPase mRNA markedly decreased. The inhibition of the plasma membrane proton pump caused by 100 microM Cd, Cu and Ni was partially diminished in the presence of cantharidin, a specific inhibitor of protein phosphatases. Western blot analysis with the antibody against phosphothreonine confirmed that decreased activity of plasma membrane H(+)-ATPase under heavy metals resulted from dephosphorylation of the enzyme protein. Taken together, these data strongly indicated that alteration of the enzyme under heavy metal stresses was mainly due to the post-translational modification of its proteins in short-term experiments.

  20. Response of plasma membrane H+-ATPase to heavy metal stress in Cucumis sativus roots

    PubMed Central

    Janicka-Russak, Małgorzata; Kabała, Katarzyna; Burzyński, Marek; Kłobus, Grażyna

    2008-01-01

    The effect of heavy metals on the modification of plasma membrane H+-ATPase (EC 3.6.3.14) activity in cucumber roots was studied. In plants stressed for 2 h with 10 μM or 100 μM Cd, Cu or Ni the hydrolytic as well as the transporting activity of H+-ATPase in the plasma membranes of root cells was decreased. Transcript levels of Cucumis sativus plasma membrane H+-ATPase in roots treated with 10 μM Cd, Cu, or Ni as well as with 100 μM Cu or Ni were similar to the control, indicating that the action of metals did not involve the gene expression level. Only in roots exposed to 100 μM Cd was the level of plasma membrane H+-ATPase mRNA markedly decreased. The inhibition of the plasma membrane proton pump caused by 100 μM Cd, Cu and Ni was partially diminished in the presence of cantharidin, a specific inhibitor of protein phosphatases. Western blot analysis with the antibody against phosphothreonine confirmed that decreased activity of plasma membrane H+-ATPase under heavy metals resulted from dephosphorylation of the enzyme protein. Taken together, these data strongly indicated that alteration of the enzyme under heavy metal stresses was mainly due to the post-translational modification of its proteins in short-term experiments. PMID:18820260

  1. High heterogeneity of plasma membrane microfluidity in multidrug-resistant cancer cells.

    PubMed

    Boutin, Céline; Roche, Yann; Millot, Christine; Deturche, Régis; Royer, Pascal; Manfait, Michel; Plain, Jéro Me; Jeannesson, Pierre; Millot, Jean-Marc; Jaffiol, Rodolphe

    2009-01-01

    Diffusion-time distribution analysis (DDA) has been used to explore the plasma membrane fluidity of multidrug-resistant cancer cells (LR73 carcinoma cells) and also to characterize the influence of various membrane agents present in the extracellular medium. DDA is a recent single-molecule technique, based on fluorescence correlation spectroscopy (FCS), well suited to retrieve local organization of cell membrane. The method was conducted on a large number of living cells, which enabled us to get a detailed overview of plasma membrane microviscosity, and plasma membrane micro-organization, between the cells of the same line. Thus, we clearly reveal the higher heterogeneity of plasma membrane in multidrug-resistant cancer cells in comparison with the nonresistant ones (denoted sensitive cells). We also display distinct modifications related to a membrane fluidity modulator, benzyl alcohol, and two revertants of multidrug resistance, verapamil and cyclosporin-A. A relation between the distribution of the diffusion-time values and the modification of membrane lateral heterogeneities is proposed.

  2. The Ebola virus matrix protein deeply penetrates the plasma membrane: an important step in viral egress.

    PubMed

    Soni, Smita P; Adu-Gyamfi, Emmanuel; Yong, Sylvia S; Jee, Clara S; Stahelin, Robert V

    2013-05-01

    Ebola virus, from the Filoviridae family has a high fatality rate in humans and nonhuman primates and to date, to the best of our knowledge, has no FDA approved vaccines or therapeutics. Viral protein 40 (VP40) is the major Ebola virus matrix protein that regulates assembly and egress of infectious Ebola virus particles. It is well established that VP40 assembles on the inner leaflet of the plasma membrane; however, the mechanistic details of VP40 membrane binding that are important for viral release remain to be elucidated. In this study, we used fluorescence quenching of a tryptophan on the membrane-binding interface with brominated lipids along with mutagenesis of VP40 to understand the depth of membrane penetration into lipid bilayers. Experimental results indicate that VP40 penetrates 8.1 Å into the hydrocarbon core of the plasma membrane bilayer. VP40 also induces substantial changes to membrane curvature as it tubulates liposomes and induces vesiculation into giant unilamellar vesicles, effects that are abrogated by hydrophobic mutations. This is a critical step in viral egress as cellular assays demonstrate that hydrophobic residues that penetrate deeply into the plasma membrane are essential for plasma membrane localization and virus-like particle formation and release from cells.

  3. [Isolation and characteristics of the plasma membrane fraction from the swine myometrium].

    PubMed

    Kondratiuk, T P; Bychenok, S F; Prishchepa, L A; Babich, L G; Kurskiĭ, M D

    1986-01-01

    An accelerated method is developed for isolating a fraction of plasma membranes of pig myometrium using ultracentrifugation within the sucrose density gradient (15% and 30%). The membranes possessed the high activity of 5'-nucleotidase and Na+, K+-ATPase and the low activity of rhotenon-insensitive NADH-cytochrome c reductase. The vesicularized preparations of plasma membranes are able of ATP-dependent accumulation of Ca2+ (7.5 +/- 0.3 nmol. 45Ca2+ per 1 mg of protein for 15 min). Phosphate increases the calcium accumulation in the presence of ATP and Mg2+. Ionophore A 23187 promotes a complete and rapid release of the previously active-accumulated calcium. The release of 45Ca2+ accumulated by the membrane fraction may be reached by introduction of 1 mM EGTA or DS-Na into the incubation medium, that evidences for the cation accumulation inside closed structures. Using concanavalin-A-sepharose 4B it is shown that 60% of membrane vesicles are turned inside out. The low saponine concentrations (0.0005%) which inhibit Ca2+-accumulation by plasma membranes but not by the endoplasmic reticulum inhibit this process by 60-70% in preparations of the isolated membrane fraction. The method has certain advantages over the previously applied methods used for isolating of plasma membrane fragments from smooth muscles. PMID:3016962

  4. High heterogeneity of plasma membrane microfluidity in multidrug-resistant cancer cells

    NASA Astrophysics Data System (ADS)

    Boutin, Céline; Roche, Yann; Millot, Christine; Deturche, Régis; Royer, Pascal; Manfait, Michel; Plain, Jérôme; Jeannesson, Pierre; Millot, Jean-Marc; Jaffiol, Rodolphe

    2009-05-01

    Diffusion-time distribution analysis (DDA) has been used to explore the plasma membrane fluidity of multidrug-resistant cancer cells (LR73 carcinoma cells) and also to characterize the influence of various membrane agents present in the extracellular medium. DDA is a recent single-molecule technique, based on fluorescence correlation spectroscopy (FCS), well suited to retrieve local organization of cell membrane. The method was conducted on a large number of living cells, which enabled us to get a detailed overview of plasma membrane microviscosity, and plasma membrane micro-organization, between the cells of the same line. Thus, we clearly reveal the higher heterogeneity of plasma membrane in multidrug-resistant cancer cells in comparison with the nonresistant ones (denoted sensitive cells). We also display distinct modifications related to a membrane fluidity modulator, benzyl alcohol, and two revertants of multidrug resistance, verapamil and cyclosporin-A. A relation between the distribution of the diffusion-time values and the modification of membrane lateral heterogeneities is proposed.

  5. Effect of a membrane-stabilizing compound on calcium binding to the plasma membrane of Acanthamoeba castellanii.

    PubMed

    Przełecka, A; Fritsch, R S; Wollweber, L; Sobota, A

    1980-01-01

    Binding of calcium ions at the plasma membrane was studied in Acanthamoeba cells pretreated with ZIMET 3164, a benzimidazole nitrogen mustard derivative, which is known to show a potent immunosuppressive action combined with a membrane-stabilizing effect in mice. For reference, 2 compounds were applied: ZIMET 3393 (Cytostasan¿), another benzimidazole mustard derivative, which exerts only a moderate membrane effect and acts as a strong cytostatic, and ZIMET 176/68, a barbituric acid derivative, which acts as an inhibitor of humoral immune responses but without membrane-stabilizing effect. Application of any of the 3 compounds does not reduce the appearance of calcium binding sites, visualized by means of ultracytochemical reaction, notwithstanding their different action in the mammalian organism. On the contrary, it was estimated by morphometric analysis that the number of Ca-dependent deposits was augmented after treatment with low doses of any of the 3 compounds, what seems to be connected with the induced metabolic disturbances in low molecular phosphates level. High doses and/or prolongation of treatment of the cells resulted in diminution of the number of deposits and induces profound disturbances in cell ultrastructure, probably due to the toxic action of the applied doses. In these cases, band-like structures crosslinking the two leaflets of the plasma membrane may be observed; it is suggested that they represent integral membrane proteins. PMID:6774578

  6. Store-operated calcium entry in human oocytes and sensitivity to oxidative stress.

    PubMed

    Martín-Romero, Francisco Javier; Ortíz-de-Galisteo, Jose Ramón; Lara-Laranjeira, Javier; Domínguez-Arroyo, Jose Antonio; González-Carrera, Ernesto; Alvarez, Ignacio S

    2008-02-01

    Calcium signaling is a cellular event that plays a key role at many steps of fertilization and early development. However, little is known regarding the contribution of extracellular Ca(2+) influx into the cell to this signaling in gametes and early embryos. To better know the significance of calcium entry on oocyte physiology, we have evaluated the mechanism of store-operated calcium entry (SOCE) in human metaphase II (MII) oocytes and its sensitivity to oxidative stress, one of the major factors implicated in the outcome of in vitro fertilization (IVF) techniques. We show that depletion of intracellular Ca(2+) stores through inhibition of sarco(endo)plasmic Ca(2+)-ATPase with thapsigargin triggers Ca(2+) entry in resting human oocytes. Ba(2+) and Mn(2+) influx was also stimulated following inhibition, and Ca(2+) entry was sensitive to pharmacological inhibition because the SOCE blocker 2-aminoethoxydiphenylborate (2-APB) reduced calcium and barium entry. These results support the conclusion that there is a plasma membrane mechanism responsible for the capacitative divalent cation entry in human oocytes. Moreover, the Ca(2+) entry mechanism described in MII oocytes was found to be highly sensitive to oxidative stress. Hydrogen peroxide, at micromolar concentrations that could mimic culture conditions in IVF, elicited an increase of [Ca(2+)](i) that was dependent on the presence of extracellular Ca(2+). This rise was preventable by 2-APB, indicating that it was mainly due to the enhanced influx through store-operated calcium channels. In sum, our results demonstrate the occurrence of SOCE in human MII oocytes and the modification of this pathway due to oxidative stress, with possible consequences in IVF. PMID:18003943

  7. Hsp30, the integral plasma membrane heat shock protein of Saccharomyces cerevisiae, is a stress-inducible regulator of plasma membrane H(+)-ATPase.

    PubMed

    Piper, P W; Ortiz-Calderon, C; Holyoak, C; Coote, P; Cole, M

    1997-03-01

    Saccharomyces cerevisiae has a single integral plasma membrane heat shock protein (Hsp). This Hsp30 is induced by several stresses, including heat shock, ethanol exposure, severe osmostress, weak organic acid exposure and glucose limitation. Plasma membrane H(+)-ATPase activities of heat shocked and weak acid-adapted, hsp30 mutant and wild-type cells, revealed that Hsp30 induction leads to a downregulation of the stress-stimulation of this H(+)-ATPase. Plasma membrane H(+)-ATPase activity consumes a substantial fraction of the ATP generated by the cell, a usage that will be increased by the H(+)-ATPase stimulation occurring with several Hsp30-inducing stresses. Hsp30 might therefore provide an energy conservation role, limiting excessive ATP consumption by plasma membrane H(+)-ATPase during prolonged stress exposure or glucose limitation. Consistent with the role of Hsp30 being energy conservation, Hsp30 null cultures give lower final biomass yields. They also have lower ATP levels, consistent with higher H(+)-ATPase activity, at the glucose exhaustion stage of batch fermentations (diauxic lag), when Hsp30 is normally induced. Loss of Hsp30 does not affect several stress tolerances but it extends the time needed for cells to adapt to growth under several stressful conditions where the maintenance of homeostasis will demand an unusually high usage of energy, hsp30 is the first yeast gene identified as both weak organic acid-inducible and assisting the adaptation to growth in the presence of these acids.

  8. Ultrastructural observation of oocytes in six types of stony corals.

    PubMed

    Tsai, Sujune; Chang, Wei-Chieh; Chavanich, Suchana; Viyakarn, Voranop; Lin, Chiahsin

    2016-08-01

    In this study, the ultrastructure of the oocytes of 6 types of scleractinian corals was observed by transmission electron microscopy (TEM). Moreover, histological and ultrastructural analyses were performed to improve our understanding of the organelles involved in coral oocyte formation. In all 6 stony coral species, the microvilli were tubular and directly grew from the surface of the oocyte membrane; yolk bodies, lipid granules, and cortical alveoli accounted for most of the volume inside the oocytes, suggesting that they are associated with energy storage and buoyancy. Clear differences were observed in the size of yolk bodies and lipid granules in the oocytes of the 6 stony coral species, which occupied approximately 55%-80% of the inner space of the oocytes. Galaxea fascicularis exhibited the largest lipid granule volume, but the oocytes contained only an average number of 12.45 lipid granules per unit area. Only Montipora incrassata oocytes contained symbiotic algae. The smallest size and proportion of lipid granules in M. incrassata oocytes may be attributed to the presence of symbiotic algae and large yolk bodies, which may help oocytes produce energy and function as a nutritional source. This study is crucial for improving the understanding of the basic biology of coral reproduction, and the ensuing datasets is critical for conservation-oriented studies seeking to cryopreserve corals during these times of dramatic global climate change. PMID:27265208

  9. Mechanism and structure of the plant plasma membrane Ca{sup 2+}-ATPase

    SciTech Connect

    Briskin, D.P.

    1993-12-31

    Objectives of this project were the following: development of an enriched preparation of the red beet plasma membrane Ca{sup 2+} ATPase in order to develop a procedure for detergent solubilization of the enzyme from the membrane using detergents, resolution by a method which could be upscaled for batch isolation, and then reconstitution into liposomes to allow characterization of Ca{sup 2+} transport by the purified enzyme and; characterization of the reaction mechanism for the coupling of nucleoside triphosphate hydrolysis to Ca{sup 2+} transport as mediated by the plasma membrane Ca{sup 2+} ATPase.

  10. Increased plasma membrane traffic in daunorubicin resistant P388 leukaemic cells. Effect of daunorubicin and verapamil.

    PubMed Central

    Sehested, M.; Skovsgaard, T.; van Deurs, B.; Winther-Nielsen, H.

    1987-01-01

    Numerous studies have indicated that the plasma membrane plays an important role in the development of resistance to anthracycline and vinca alkaloid drugs (pleiotropic resistance). We have previously shown that pleiotropically resistant Ehrlich ascites tumour cells, which are of epithelial origin, have a significantly increased plasma membrane traffic (endo/exocytosis) to the endosomal compartment compared to sensitive cells. The present study, using the same ultrastructural morphometric technique, has demonstrated a similar significant difference in plasma membrane traffic between daunorubicin resistant and sensitive P388 cell lines (which are of lymphoid origin). Furthermore, we have shown that this difference between the P388 sublines is accompanied by an approximately 4 fold increase in the plasma membrane area participating in recycling together with an increased endosomal volume, number and membrane area in resistant cells. Plasma membrane traffic in resistant cells was significantly inhibited by the calcium channel blocker verapamil, a well known modulator of anthracycline resistance, but unaffected by daunorubicin itself. The confirmation of this phenotype in an additional pleiotropically resistant cell type with a different histogenesis further supports a hypothesis of endosomal drug trapping and vesicular extrusion as a possible resistance mechanism. Images Figure 1 Figure 2 Figure 3 PMID:3435701

  11. Molecular characterization of a cold-induced plasma membrane protein gene from wheat.

    PubMed

    Koike, Michiya; Sutoh, Keita; Kawakami, Akira; Torada, Atsushi; Oono, Kiyoharu; Imai, Ryozo

    2005-12-01

    As a means to study the function of plasma membrane proteins during cold acclimation, we have isolated a cDNA clone for wpi6 which encodes a putative plasma membrane protein from cold-acclimated winter wheat. The wpi6 gene encodes a putative 5.9 kDa polypeptide with two predicted membrane-spanning domains, the sequence of which shows high sequence similarity with BLT101-family proteins from plants and yeast. Strong induction of wpi6 mRNA was observed during an early stage of cold acclimation in root and shoot tissues of both winter and spring wheat cultivars. In contrast to blt101 in barley, wpi6 mRNA was also induced by drought and salinity stresses, and exogenous application of ABA. Expression of wpi6 in a Deltapmp3 mutant of Saccharomyces cerevisiae, which is disturbed in plasma membrane potential due to the lack of a BLT101-family protein, partially complemented NaCl sensitivity of the mutant. Transient expression analysis of a WPI6::GFP fusion protein in onion epidermal cells revealed that WPI6 is localized in the plasma membrane. Taken together, these data suggested that WPI6 may have a protective role in maintaining plasma membrane function during cold acclimation in wheat.

  12. Characterization of a nucleotide stimulated aspartic proteinase in rat liver plasma membranes.

    PubMed

    Paule, C R; Larner, J

    1996-01-01

    Inositol phosphoglycan molecules are believed to mediate multiple intracellular actions of insulin. They are released from plasma membranes in response to insulin binding and are transported into the cell. Release of insulin mediators is stimulated by MnATP and MgATP and is inhibited by p-aminobenzamidine. Inositol phosphoglycan mediators may be released by a poorly characterized mechanism requiring proteolytic cleavage of an attached protein from the mediator and phospholipase cleavage of the mediator from its membrane anchor. We examined rat liver plasma membranes for proteinase activity stimulated by insulin and MnATP. Although we could not demonstrate insulin stimulation, we have found and characterized a nucleotide-stimulated aspartic proteinase bound to rat liver plasma membranes. We also detected and separated a soluble activating factor for the proteinase. The activating factor appears to be a protein with M(r) approximately 70 kDa. PMID:8876431

  13. Isolation and chemical characterization of plasma membranes from the yeast and mycelial forms of Candida albicans.

    PubMed

    Marriott, M S

    1975-01-01

    It has been possible to induce the yeast-mycelium transformation in Candida albicans by growth of the organism under completely defined conditions in batch culture. Protoplasts have been obtained from the two forms by using a lytic enzyme preparation from Streptomyces violaceus. A plasma membrane fraction was prepared by osmotic lysis of these protoplasts and fractionated by using a combination of differential and discontinuous sucrose density-gradient flotation centrifugation. The purity of this fraction was determined by radioactive dansylation and iodination of plasma membranes of intact protoplasts followed by localization of the radioactivity upon fractionation. This procedure demonstrated less than 4% contamination of the plasma membrane fraction with other cell membranes. Chemical analysis of this fraction revealed that the major components were protein and lipid. Membranes from the yeast form contained (w/w): 50% protein, 45% lipid, 9% carbohydrate and 0.3% nucleic acid. Plasma membranes from the mycelial form contained significantly more carbohydrate and were found to be composed of (w/w): 43% protein, 31% lipid, 25% carbohydrate and 0.5% nucleic acid. Marked differences were also observed between the phospholipid, free and esterified sterols, and total fatty acids of membranes from the two forms of the organism. PMID:1089750

  14. Mass spectrometric approach for identifying putative plasma membrane proteins of Arabidopsis leaves associated with cold acclimation.

    PubMed

    Kawamura, Yukio; Uemura, Matsuo

    2003-10-01

    Although enhancement of freezing tolerance in plants during cold acclimation is closely associated with an increase in the cryostability of plasma membrane, the molecular mechanism for the increased cryostability of plasma membrane is still to be elucidated. In Arabidopsis, enhanced freezing tolerance was detectable after cold acclimation at 2 degrees C for as short as 1 day, and maximum freezing tolerance was attained after 1 week. To identify the plasma membrane proteins that change in quantity in response to cold acclimation, a highly purified plasma membrane fraction was isolated from leaves before and during cold acclimation, and the proteins in the fraction were separated with gel electrophoresis. We found that there were substantial changes in the protein profiles after as short as 1 day of cold acclimation. Subsequently, using matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF MS), we identified 38 proteins that changed in quantity during cold acclimation. The proteins that changed in quantity during the first day of cold acclimation include those that are associated with membrane repair by membrane fusion, protection of the membrane against osmotic stress, enhancement of CO2 fixation, and proteolysis.

  15. Discs-Large and Strabismus are functionally linked to plasma membrane formation.

    PubMed

    Lee, Ok-Kyung; Frese, Kristopher K; James, Jennifer S; Chadda, Darshana; Chen, Zhi-Hong; Javier, Ronald T; Cho, Kyung-Ok

    2003-11-01

    During early embryogenesis in Drosophila melanogaster, extensive vesicle transport occurs to build cell boundaries for 6,000 nuclei. Here we show that this important process depends on a functional complex formed between the tumour suppressor and adaptor protein Discs-Large (Dlg) and the integral membrane protein Strabismus (Stbm)/Van Gogh (Vang). In support of this idea, embryos with mutations in either dlg or stbm displayed severe defects in plasma membrane formation. Conversely, overexpression of Dlg and Stbm synergistically induced excessive plasma membrane formation. In addition, ectopic co-expression of Stbm (which associated with post-Golgi vesicles) and the mammalian Dlg homologue SAP97/hDlg promoted translocation of SAP97 from the cytoplasm to both post-Golgi vesicles and the plasma membrane. This effect was dependent on the interaction between Stbm and SAP97. These findings suggest that the Dlg-Stbm complex recruits membrane-associated proteins and lipids from internal membranes to sites of new plasma membrane formation.

  16. Insulinotropic effect of high potassium concentration beyond plasma membrane depolarization.

    PubMed

    Belz, M; Willenborg, M; Görgler, N; Hamada, A; Schumacher, K; Rustenbeck, I

    2014-03-01

    The question whether K⁺ depolarization is an appropriate experimental substitute for the physiological nutrient-induced depolarization of the β-cell plasma membrane was investigated using primary mouse β-cells and islets. At basal glucose 40 mM K⁺ induced a massive monophasic response, whereas 15 mM K⁺ had only a minimal insulinotropic effect, even though the increase in the cytosolic Ca²⁺ concentration ([Ca²⁺]i) was not inferior to that by 20 mM glucose. In voltage-clamp experiments, Ca²⁺ influx appeared as nifedipine-inhibitable inward action currents in the presence of sulfonylurea plus TEA to block compensatory outward K⁺ currents. Under these conditions, 15 mM K⁺ induced prolonged action currents and 40 mM K⁺ transformed the action current pattern into a continuous inward current. Correspondingly, 15 mM K⁺ led to an oscillatory increase and 40 mM K⁺ to a plateau of [Ca²⁺]i superimposed on the [Ca²⁺]i elevated by sulfonylurea plus TEA. Raising K⁺ to 15 or 40 mM in the presence of sulfonylurea (±TEA) led to a fast further increase of insulin secretion. This was reduced to basal levels by nifedipine or CoCl₂. The effects of 15 mM K⁺ on depolarization, action currents, and insulin secretion were mimicked by adding 35 mM Cs⁺ and those of 40 mM K⁺ by adding 35 mM Rb⁺, in parallel with their ability to substitute for K⁺ as permeant cation. In conclusion, the alkali metals K⁺, Rb⁺, or Cs⁺ concentration-dependently transform the pattern of Ca²⁺ influx into the β-cell and may thus generate stimuli of supraphysiological strength for insulin secretion.

  17. Pregnancy-associated plasma protein-a production in rat granulosa cells: stimulation by follicle-stimulating hormone and inhibition by the oocyte-derived bone morphogenetic protein-15.

    PubMed

    Matsui, Motozumi; Sonntag, Barbara; Hwang, Seong Soo; Byerly, Tara; Hourvitz, Ariel; Adashi, Eli Y; Shimasaki, Shunichi; Erickson, Gregory F

    2004-08-01

    Pregnancy-associated plasma protein-A (PAPP-A) is the major IGF binding protein-4 (IGFBP-4) protease in follicular fluid, consistent with its proposed role in folliculogenesis. Despite growing interest, almost nothing is known about how PAPP-A expression is regulated in any tissue. Here we show that FSH and oocytes regulate PAPP-A expression in granulosa cells (GCs). By in situ hybridization, ovary PAPP-A mRNA was markedly increased by pregnant mare serum gonadotropin treatment, and the message was localized to the membrana GCs but not cumulus GCs (CGCs) of dominant follicles. To explore the mechanism, we used primary cultures of rat GCs. Control (untreated) cells produced little or no PAPP-A spontaneously. Conversely, FSH markedly stimulated PAPP-A mRNA and protein in a dose- and time-dependent fashion. Interestingly, PAPP-A expression in isolated CGCs was also strongly induced by FSH, and the induction was inhibited by added oocytes. To investigate the nature of the inhibition, we tested the effect of oocyte-derived bone morphogenetic protein-15 (BMP-15). BMP-15 alone had no effect on basal levels of PAPP-A expression by cultures of membrana GCs or CGCs. However, BMP-15 markedly inhibited the FSH stimulation of PAPP-A production in a dose-dependent manner. The cleavage of IGFBP-4 by conditioned media from FSH-treated GCs was completely inhibited by anti-PAPP-A antibody, indicating the IGFBP-4 protease secreted by GCs is PAPP-A. These results demonstrate stimulatory and inhibitory roles for FSH and BMP-15, respectively, in regulating PAPP-A production by GCs. We propose that FSH and oocyte-derived BMP-15 form a controlling network that ensures the spatiotemporal pattern of GC PAPP-A expression in the dominant follicle. PMID:15087430

  18. Membrane Compartmentalization Reducing the Mobility of Lipids and Proteins within a Model Plasma Membrane.

    PubMed

    Koldsø, Heidi; Reddy, Tyler; Fowler, Philip W; Duncan, Anna L; Sansom, Mark S P

    2016-09-01

    The cytoskeleton underlying cell membranes may influence the dynamic organization of proteins and lipids within the bilayer by immobilizing certain transmembrane (TM) proteins and forming corrals within the membrane. Here, we present coarse-grained resolution simulations of a biologically realistic membrane model of asymmetrically organized lipids and TM proteins. We determine the effects of a model of cytoskeletal immobilization of selected membrane proteins using long time scale coarse-grained molecular dynamics simulations. By introducing compartments with varying degrees of restraints within the membrane models, we are able to reveal how compartmentalization caused by cytoskeletal immobilization leads to reduced and anomalous diffusional mobility of both proteins and lipids. This in turn results in a reduced rate of protein dimerization within the membrane and of hopping of membrane proteins between compartments. These simulations provide a molecular realization of hierarchical models often invoked to explain single-molecule imaging studies of membrane proteins.

  19. Tuning the resistance of polycarbonate membranes by plasma-induced graft surface modification

    NASA Astrophysics Data System (ADS)

    Baumann, Lukas; Hegemann, Dirk; de Courten, Damien; Wolf, Martin; Rossi, René M.; Meier, Wolfgang P.; Scherer, Lukas J.

    2013-03-01

    To tune the permeability resistance of porous polycarbonate (PC) membranes for caffeine, their surfaces were plasma modified with different monomers in a grafting from process. These coatings provided characteristic surface hydrophilicities. It was found that membranes with more hydrophilic surfaces have lower resistances to let caffeine pass through than membranes with hydrophobic surfaces. Additionally, it was possible to post-modify a poly(2-aminoethyl methacrylate) (AEMA) coated PC membrane with octanoic acid (Oct) under mild conditions. This post modification allowed transforming a slightly hydrophilic PC-AEMA membrane with a moderate permeability resistance into a hydrophobic PC-AEMA-Oct membrane with a high permeability resistance. Overall, it was possible to tune the PC membrane resistance for caffeine in a range from 5100 up to 15,100 s/cm.

  20. Plasma Membrane Repair in Health and Disease.

    PubMed

    Demonbreun, Alexis R; McNally, Elizabeth M

    2016-01-01

    Since an intact membrane is required for normal cellular homeostasis, membrane repair is essential for cell survival. Human genetic studies, combined with the development of novel animal models and refinement of techniques to study cellular injury, have now uncovered series of repair proteins highly relevant for human health. Many of the deficient repair pathways manifest in skeletal muscle, where defective repair processes result in myopathies or other forms of muscle disease. Dysferlin is a membrane-associated protein implicated in sarcolemmal repair and also linked to other membrane functions including the maintenance of transverse tubules in muscle. MG53, annexins, and Eps15 homology domain-containing proteins interact with dysferlin to form a membrane repair complex and similarly have roles in membrane trafficking in muscle. These molecular features of membrane repair are not unique to skeletal muscle, but rather skeletal muscle, due to its high demands, is more dependent on an efficient repair process. Phosphatidylserine and phosphatidylinositol 4,5-bisphosphate, as well as Ca(2+), are central regulators of membrane organization during repair. Given the importance of muscle health in disease and in aging, these pathways are targets to enhance muscle function and recovery from injury. PMID:26781830

  1. Plasma Membrane Repair in Health and Disease.

    PubMed

    Demonbreun, Alexis R; McNally, Elizabeth M

    2016-01-01

    Since an intact membrane is required for normal cellular homeostasis, membrane repair is essential for cell survival. Human genetic studies, combined with the development of novel animal models and refinement of techniques to study cellular injury, have now uncovered series of repair proteins highly relevant for human health. Many of the deficient repair pathways manifest in skeletal muscle, where defective repair processes result in myopathies or other forms of muscle disease. Dysferlin is a membrane-associated protein implicated in sarcolemmal repair and also linked to other membrane functions including the maintenance of transverse tubules in muscle. MG53, annexins, and Eps15 homology domain-containing proteins interact with dysferlin to form a membrane repair complex and similarly have roles in membrane trafficking in muscle. These molecular features of membrane repair are not unique to skeletal muscle, but rather skeletal muscle, due to its high demands, is more dependent on an efficient repair process. Phosphatidylserine and phosphatidylinositol 4,5-bisphosphate, as well as Ca(2+), are central regulators of membrane organization during repair. Given the importance of muscle health in disease and in aging, these pathways are targets to enhance muscle function and recovery from injury.

  2. Characterization of plasma-induced cell membrane permeabilization: focus on OH radical distribution

    NASA Astrophysics Data System (ADS)

    Sasaki, Shota; Honda, Ryosuke; Hokari, Yutaro; Takashima, Keisuke; Kanzaki, Makoto; Kaneko, Toshiro

    2016-08-01

    Non-equilibrium atmospheric-pressure plasma (APP) is used medically for plasma-induced cell permeabilization. However, how plasma irradiation specifically triggers permeabilization remains unclear. In an attempt to identify the dominant factor(s), the distribution of plasma-produced reactive species was investigated, primarily focusing on OH radicals. A stronger plasma discharge, which produced more OH radicals in the gas phase, also produced more OH radicals in the liquid phase (OHaq), enhancing the cell membrane permeability. In addition, plasma irradiation-induced enhancement of cell membrane permeability decreased markedly with increased solution thickness (<1 mm), and the plasma-produced OHaq decayed in solution (diffusion length on the order of several hundred micrometers). Furthermore, the horizontally center-localized distribution of OHaq corresponded with the distribution of the permeabilized cells by plasma irradiation, while the overall plasma-produced oxidizing species in solution (detected by iodine-starch reaction) exhibited a doughnut-shaped horizontal distribution. These results suggest that OHaq, among the plasma-produced oxidizing species, represents the dominant factor in plasma-induced cell permeabilization. These results enhance the current understanding of the mechanism of APP as a cell-permeabilization tool.

  3. Plasma Membrane Factor XIIIA Transglutaminase Activity Regulates Osteoblast Matrix Secretion and Deposition by Affecting Microtubule Dynamics

    PubMed Central

    Al-Jallad, Hadil F.; Myneni, Vamsee D.; Piercy-Kotb, Sarah A.; Chabot, Nicolas; Mulani, Amina; Keillor, Jeffrey W.; Kaartinen, Mari T.

    2011-01-01

    Transglutaminase activity, arising potentially from transglutaminase 2 (TG2) and Factor XIIIA (FXIIIA), has been linked to osteoblast differentiation where it is required for type I collagen and fibronectin matrix deposition. In this study we have used an irreversible TG-inhibitor to ‘block –and-track’ enzyme(s) targeted during osteoblast differentiation. We show that the irreversible TG-inhibitor is highly potent in inhibiting osteoblast differentiation and mineralization and reduces secretion of both fibronectin and type I collagen and their release from the cell surface. Tracking of the dansyl probe by Western blotting and immunofluorescence microscopy demonstrated that the inhibitor targets plasma membrane-associated FXIIIA. TG2 appears not to contribute to crosslinking activity on the osteoblast surface. Inhibition of FXIIIA with NC9 resulted in defective secretory vesicle delivery to the plasma membrane which was attributable to a disorganized microtubule network and decreased microtubule association with the plasma membrane. NC9 inhibition of FXIIIA resulted in destabilization of microtubules as assessed by cellular Glu-tubulin levels. Furthermore, NC9 blocked modification of Glu-tubulin into 150 kDa high-molecular weight Glu-tubulin form which was specifically localized to the plasma membrane. FXIIIA enzyme and its crosslinking activity were colocalized with plasma membrane-associated tubulin, and thus, it appears that FXIIIA crosslinking activity is directed towards stabilizing the interaction of microtubules with the plasma membrane. Our work provides the first mechanistic cues as to how transglutaminase activity could affect protein secretion and matrix deposition in osteoblasts and suggests a novel function for plasma membrane FXIIIA in microtubule dynamics. PMID:21283799

  4. GPI-anchored proteins do not reside in ordered domains in the live cell plasma membrane

    PubMed Central

    Sevcsik, Eva; Brameshuber, Mario; Fölser, Martin; Weghuber, Julian; Honigmann, Alf; Schütz, Gerhard J.

    2015-01-01

    The organization of proteins and lipids in the plasma membrane has been subject of a long-lasting debate. Membrane rafts of higher lipid chain order were proposed to mediate protein interactions, but have thus far not been directly observed. Here, we use protein micropatterning combined with single-molecule tracking to put current models to the test: we rearranged lipid-anchored raft proteins (glycosylphosphatidylinositol(GPI)-anchored mGFP) directly in the live cell plasma membrane and measured the effect on the local membrane environment. Intriguingly, this treatment does neither nucleate the formation of an ordered membrane phase, nor result in any enrichment of nanoscopic ordered domains within the micropatterned regions. In contrast, we find that immobilized mGFP-GPIs behave as inert obstacles to the diffusion of other membrane constituents without influencing their membrane environment over distances beyond their physical size. Our results indicate that phase partitioning is not a fundamental element of protein organization in the plasma membrane. PMID:25897971

  5. GPI-anchored proteins do not reside in ordered domains in the live cell plasma membrane

    NASA Astrophysics Data System (ADS)

    Sevcsik, Eva; Brameshuber, Mario; Fölser, Martin; Weghuber, Julian; Honigmann, Alf; Schütz, Gerhard J.

    2015-04-01

    The organization of proteins and lipids in the plasma membrane has been the subject of a long-lasting debate. Membrane rafts of higher lipid chain order were proposed to mediate protein interactions, but have thus far not been directly observed. Here we use protein micropatterning combined with single-molecule tracking to put current models to the test: we rearranged lipid-anchored raft proteins (glycosylphosphatidylinositol(GPI)-anchored-mGFP) directly in the live cell plasma membrane and measured the effect on the local membrane environment. Intriguingly, this treatment does neither nucleate the formation of an ordered membrane phase nor result in any enrichment of nanoscopic-ordered domains within the micropatterned regions. In contrast, we find that immobilized mGFP-GPIs behave as inert obstacles to the diffusion of other membrane constituents without influencing their membrane environment over distances beyond their physical size. Our results indicate that phase partitioning is not a fundamental element of protein organization in the plasma membrane.

  6. Presence of membranous vesicles in cat seminal plasma: ultrastructural characteristics, protein profile and enzymatic activity.

    PubMed

    Polisca, A; Troisi, A; Minelli, A; Bellezza, I; Fontbonne, A; Zelli, R

    2015-02-01

    This study sought to verify the presence of membranous vesicles in cat seminal plasma by means of transmission electron microscopy and to identify protein profile and some of the enzymatic activities associated with these particles. The transmission electron microscopy observations showed the existence of different sized vesicular membranous structures of more or less spherical shape. These vesicles were surrounded by single-, double- or multiple-layered laminar membranes. The vesicle diameters ranged from 16.3 to 387.4 nm, with a mean of 116.5 ± 70.7 nm. Enzyme activity determinations showed the presence of dipeptilpeptidase IV, aminopeptidase, alkaline and acid phosphatase. To our knowledge, this is the first report that identifies and characterizes the membranous vesicles in cat seminal plasma. However, further studies are necessary to identify the exact site of production of these membranous vesicles in the cat male genital tract and to determine their specific roles in the reproductive events of this species.

  7. Effects of non-thermal plasma on the electrical properties of an erythrocyte membrane

    NASA Astrophysics Data System (ADS)

    Lee, Jin Young; Baik, Ku Youn; Kim, Tae Soo; Lim, Jaekwan; Uhm, Han S.; Choi, Eun Ha

    2015-09-01

    Non-thermal plasma is used here for membrane oxidation and permeabilization in which the electrical properties of an erythrocyte membrane are investigated after treatments. The zeta potential as measured by electrophoresis shows the increased negativity of the membrane surface potential (Ψs). The secondary electron emission coefficient ( γ) measured by a focused ion beam shows a decrease in the dipole potential (Ψd) of lipid molecules. The voltage-sensitive fluorescent intensity as measured by flow cytometry shows a decrease in the trans-membrane potential (ΔΨ) through the lipid bilayer membrane. These results allow us to take a step forward to unveil the complex events occurring in plasma-treated cells.

  8. Direct Capture of Functional Proteins from Mammalian Plasma Membranes into Nanodiscs.

    PubMed

    Roy, Jahnabi; Pondenis, Holly; Fan, Timothy M; Das, Aditi

    2015-10-20

    Mammalian plasma membrane proteins make up the largest class of drug targets yet are difficult to study in a cell free system because of their intransigent nature. Herein, we perform direct encapsulation of plasma membrane proteins derived from mammalian cells into a functional nanodisc library. Peptide fingerprinting was used to analyze the proteome of the incorporated proteins in nanodiscs and to further demonstrate that the lipid composition of the nanodiscs directly affects the class of protein that is incorporated. Furthermore, the functionality of the incorporated membrane proteome was evaluated by measuring the activity of membrane proteins: Na(+)/K(+)-ATPase and receptor tyrosine kinases. This work is the first report of the successful establishment and characterization of a cell free functional library of mammalian membrane proteins into nanodiscs.

  9. Technical aspects of the piezo, laser-assisted, and conventional methods for nuclear transfer of mouse oocytes and their efficiency and efficacy: Piezo minimizes damage of the ooplasmic membrane at injection.

    PubMed

    Chen, Shee-Uan; Chao, Kuang-Han; Chang, Chia-Yi; Hsieh, Fon-Jou; Ho, Hong-Nerng; Yang, Yu-Shih

    2004-04-01

    Assessment of the advantages and disadvantages of the piezo, laser, and conventional methods for nuclear transfer has remained elusive. Furthermore, although the piezo method had been used by some investigators for research of sperm injection and nuclear transfer for several years, many researchers have failed to operate the technique smoothly and achieve reproducible results. The procedures of nuclear transfer using piezo were ascertained and described in detail. Mouse oocytes were enucleated, and injected with cumulus cells using the piezo, laser, or conventional methods. We investigated the time needed and survival of nuclear transfer. Development was compared among the three methods and parthenogenetic control specimens. The average time of nuclear transfer for each oocyte was significantly shorter using the piezo (118 +/- 9 s) and laser methods (120 +/- 11 s) than using the conventional method (170 +/- 11 s). The damage rate was smaller for the piezo group (10%) than the laser (37%) and conventional (40%) groups. The percentages of blastocyst formation (14%, 12%, and 11%) and the number of nuclei of blastocysts (54 +/- 13, 51 +/- 11, and 52 +/- 12) were similar among the piezo, laser, and conventional groups, but significantly lower than for the control group (83%, 105 +/- 14). The piezo technique is more efficient than the conventional method for nuclear transfer. The laser method is easy to operate, but the equipment is expensive. In addition, piezo induced fewer traumas while breaking the membrane than the aspiration techniques used in the laser and conventional methods. PMID:15039993

  10. Cryopreservation of starfish oocytes.

    PubMed

    Hamaratoğlu, Fisun; Eroğlu, Ali; Toner, Mehmet; Sadler, Kirsten C

    2005-02-01

    Research from many laboratories over the past several decades indicates that invertebrate oocytes and eggs are extraordinarily difficult to freeze. Since starfish oocytes, eggs, and embryos are an important cell and developmental biology model system, there is great interest to cryopreserve these cells. Previous starfish oocyte cryopreservation studies using slow cooling protocols revealed that these cells are highly sensitive to osmotic stress and form intracellular ice at very high sub-zero temperatures, suggesting that common freezing methodologies may not prove useful. We report here that a short exposure to 1.5 M Me2SO/1 M trehalose in hypotonic salt solution followed by ultra-rapid cooling to cryogenic temperatures allows starfish oocytes to be cryopreserved with the average survival rate of 34% when normalized to control oocytes that were exposed to CPA, but not frozen. On average, 51% of the oocytes in 77% of the batches of frozen oocytes underwent meiotic maturation in response to the starfish maturation hormone, 1-methyladenine. In one experiment, eggs developing from thawed oocytes were capable of being fertilized and two developed into embryos. These data suggests that successful cryopreservation of starfish oocytes is possible, but will need further refinement to increase the numbers of fully competent embryos. PMID:15710368

  11. Cryopreservation of starfish oocytes.

    PubMed

    Hamaratoğlu, Fisun; Eroğlu, Ali; Toner, Mehmet; Sadler, Kirsten C

    2005-02-01

    Research from many laboratories over the past several decades indicates that invertebrate oocytes and eggs are extraordinarily difficult to freeze. Since starfish oocytes, eggs, and embryos are an important cell and developmental biology model system, there is great interest to cryopreserve these cells. Previous starfish oocyte cryopreservation studies using slow cooling protocols revealed that these cells are highly sensitive to osmotic stress and form intracellular ice at very high sub-zero temperatures, suggesting that common freezing methodologies may not prove useful. We report here that a short exposure to 1.5 M Me2SO/1 M trehalose in hypotonic salt solution followed by ultra-rapid cooling to cryogenic temperatures allows starfish oocytes to be cryopreserved with the average survival rate of 34% when normalized to control oocytes that were exposed to CPA, but not frozen. On average, 51% of the oocytes in 77% of the batches of frozen oocytes underwent meiotic maturation in response to the starfish maturation hormone, 1-methyladenine. In one experiment, eggs developing from thawed oocytes were capable of being fertilized and two developed into embryos. These data suggests that successful cryopreservation of starfish oocytes is possible, but will need further refinement to increase the numbers of fully competent embryos.

  12. The Anti-inflammatory Drug Indomethacin Alters Nanoclustering in Synthetic and Cell Plasma Membranes*

    PubMed Central

    Zhou, Yong; Plowman, Sarah J.; Lichtenberger, Lenard M.; Hancock, John F.

    2010-01-01

    The nonsteroidal anti-inflammatory drug indomethacin exhibits diverse biological effects, many of which have no clear molecular mechanism. Membrane-bound receptors and enzymes are sensitive to their phospholipid microenvironment. Amphipathic indomethacin could therefore potentially modulate cell signaling by changing membrane properties. Here we examined the effect of indomethacin on membrane lateral heterogeneity. Fluorescence lifetime imaging of cells expressing lipid-anchored probes revealed that treatment of BHK cells with therapeutic levels of indomethacin enhances cholesterol-dependent nanoclustering, but not cholesterol-independent nanoclustering. Immuno-electron microscopy and quantitative spatial mapping of intact plasma membrane sheets similarly showed a selective effect of indomethacin on promoting cholesterol-dependent, but not cholesterol-independent, nanoclustering. To further evaluate the biophysical effects of indomethacin, we measured fluorescence polarization of the phase-sensitive probe Laurdan and FRET between phase-partitioning probes in model bilayers. Therapeutic levels of indomethacin enhanced phase seperation in DPPC/DOPC/Chol (1:1:1) and DPPC/Chol membranes in a temperature-dependent manner, but had minimal effect on the phase behavior of pure DOPC at any temperature. Taken together, the imaging results on intact epithelial cells and the biophysical assays of model membranes suggest that indomethacin can enhance phase separation and stabilize cholesterol-dependent nanoclusters in biological membranes. These effects on membrane lateral heterogeneity may have significant consequences for cell signaling cascades that are assembled on the plasma membrane. PMID:20826816

  13. A rapid immunological procedure for the isolation of hormonally sensitive rat fat-cell plasma membrane.

    PubMed Central

    Luzio, J P; Newby, A C; Hales, C N

    1976-01-01

    1. A rapid method for the isolation of hormonally sensitive rat fat-cell plasma membranes was developed by using immunological techniques. 2. Rabbit anti-(rat erythrocyte) sera were raised and shown to cross-react with isolated rat fat-cells. 3. Isolated rat fat-cells were coated with rabbit anti-(rat erythrocyte) antibodies, homogenized and the homogenate made to react with an immunoadsorbent prepared by covalently coupling donkey anti-(rabbit globulin) antibodies to aminocellulose. Uptake of plasma membrane on to the immunoadsorbent was monitored by assaying the enzymes adenylate cyclase and 5'-nucleotidase and an immunological marker consisting of a 125I-labelled anti-(immunoglobulin G)-anti-cell antibody complex bound to the cells before fractionation. Contamination of the plasma-membrane preparation by other subcellular fractions was also investigated. 4. By using this technique, a method was developed allowing 25-40% recovery of plasma membrane from fat-cell homogenates within 30 min of homogenization. 5. Adenylate cyclase in the isolated plasma-membrane preparation was stimulated by 5 mum-adrenaline. Images PLATE 1 PMID:776177

  14. A phytochrome–phototropin light signaling complex at the plasma membrane

    PubMed Central

    Jaedicke, Katharina; Lichtenthäler, Anna Lena; Meyberg, Rabea; Zeidler, Mathias; Hughes, Jon

    2012-01-01

    Phytochromes are red/far-red photochromic photoreceptors central to regulating plant development. Although they are known to enter the nucleus upon light activation and, once there, regulate transcription, this is not the complete picture. Various phytochrome effects are manifested much too rapidly to derive from changes in gene expression, whereas others seem to occur without phytochrome entering the nucleus. Phytochromes also guide directional responses to light, excluding a genetic signaling route and implying instead plasma membrane association and a direct cytoplasmic signal. However, to date, no such association has been demonstrated. Here we report that a phytochrome subpopulation indeed associates physically with another photoreceptor, phototropin, at the plasma membrane. Yeast two-hybrid methods using functional photoreceptor molecules showed that the phytochrome steering growth direction in Physcomitrella protonemata binds several phototropins specifically in the photoactivated Pfr state. Split-YFP studies in planta showed that the interaction occurs exclusively at the plasma membrane. Coimmunoprecipitation experiments provided independent confirmation of in vivo phy-phot binding. Consistent with this interaction being associated with a cellular signal, we found that phytochrome-mediated tropic responses are impaired in Physcomitrella phot− mutants. Split-YFP revealed a similar interaction between Arabidopsis phytochrome A and phototropin 1 at the plasma membrane. These associations additionally provide a functional explanation for the evolution of neochrome photoreceptors. Our results imply that the elusive phytochrome cytoplasmic signal arises through binding and coaction with phototropin at the plasma membrane. PMID:22773817

  15. Fendiline Inhibits K-Ras Plasma Membrane Localization and Blocks K-Ras Signal Transmission

    PubMed Central

    van der Hoeven, Dharini; Cho, Kwang-jin; Ma, Xiaoping; Chigurupati, Sravanthi; Parton, Robert G.

    2013-01-01

    Ras proteins regulate signaling pathways important for cell growth, differentiation, and survival. Oncogenic mutant Ras proteins are commonly expressed in human tumors, with mutations of the K-Ras isoform being most prevalent. To be active, K-Ras must undergo posttranslational processing and associate with the plasma membrane. We therefore devised a high-content screening assay to search for inhibitors of K-Ras plasma membrane association. Using this assay, we identified fendiline, an L-type calcium channel blocker, as a specific inhibitor of K-Ras plasma membrane targeting with no detectable effect on the localization of H- and N-Ras. Other classes of L-type calcium channel blockers did not mislocalize K-Ras, suggesting a mechanism that is unrelated to calcium channel blockade. Fendiline did not inhibit K-Ras posttranslational processing but significantly reduced nanoclustering of K-Ras and redistributed K-Ras from the plasma membrane to the endoplasmic reticulum (ER), Golgi apparatus, endosomes, and cytosol. Fendiline significantly inhibited signaling downstream of constitutively active K-Ras and endogenous K-Ras signaling in cells transformed by oncogenic H-Ras. Consistent with these effects, fendiline blocked the proliferation of pancreatic, colon, lung, and endometrial cancer cell lines expressing oncogenic mutant K-Ras. Taken together, these results suggest that inhibitors of K-Ras plasma membrane localization may have utility as novel K-Ras-specific anticancer therapeutics. PMID:23129805

  16. Towards Enhanced Performance Thin-film Composite Membranes via Surface Plasma Modification.

    PubMed

    Reis, Rackel; Dumée, Ludovic F; Tardy, Blaise L; Dagastine, Raymond; Orbell, John D; Schutz, Jürg A; Duke, Mikel C

    2016-01-01

    Advancing the design of thin-film composite membrane surfaces is one of the most promising pathways to deal with treating varying water qualities and increase their long-term stability and permeability. Although plasma technologies have been explored for surface modification of bulk micro and ultrafiltration membrane materials, the modification of thin film composite membranes is yet to be systematically investigated. Here, the performance of commercial thin-film composite desalination membranes has been significantly enhanced by rapid and facile, low pressure, argon plasma activation. Pressure driven water desalination tests showed that at low power density, flux was improved by 22% without compromising salt rejection. Various plasma durations and excitation powers have been systematically evaluated to assess the impact of plasma glow reactions on the physico-chemical properties of these materials associated with permeability. With increasing power density, plasma treatment enhanced the hydrophilicity of the surfaces, where water contact angles decreasing by 70% were strongly correlated with increased negative charge and smooth uniform surface morphology. These results highlight a versatile chemical modification technique for post-treatment of commercial membrane products that provides uniform morphology and chemically altered surface properties.

  17. Towards Enhanced Performance Thin-film Composite Membranes via Surface Plasma Modification

    PubMed Central

    Reis, Rackel; Dumée, Ludovic F.; Tardy, Blaise L.; Dagastine, Raymond; Orbell, John D.; Schutz, Jürg A.; Duke, Mikel C.

    2016-01-01

    Advancing the design of thin-film composite membrane surfaces is one of the most promising pathways to deal with treating varying water qualities and increase their long-term stability and permeability. Although plasma technologies have been explored for surface modification of bulk micro and ultrafiltration membrane materials, the modification of thin film composite membranes is yet to be systematically investigated. Here, the performance of commercial thin-film composite desalination membranes has been significantly enhanced by rapid and facile, low pressure, argon plasma activation. Pressure driven water desalination tests showed that at low power density, flux was improved by 22% without compromising salt rejection. Various plasma durations and excitation powers have been systematically evaluated to assess the impact of plasma glow reactions on the physico-chemical properties of these materials associated with permeability. With increasing power density, plasma treatment enhanced the hydrophilicity of the surfaces, where water contact angles decreasing by 70% were strongly correlated with increased negative charge and smooth uniform surface morphology. These results highlight a versatile chemical modification technique for post-treatment of commercial membrane products that provides uniform morphology and chemically altered surface properties. PMID:27363670

  18. Visualization of the exocyst complex dynamics at the plasma membrane of Arabidopsis thaliana.

    PubMed

    Fendrych, Matyás; Synek, Lukás; Pecenková, Tamara; Drdová, Edita Janková; Sekeres, Juraj; de Rycke, Riet; Nowack, Moritz K; Zársky, Viktor

    2013-02-01

    The exocyst complex, an effector of Rho and Rab GTPases, is believed to function as an exocytotic vesicle tether at the plasma membrane before soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex formation. Exocyst subunits localize to secretory-active regions of the plasma membrane, exemplified by the outer domain of Arabidopsis root epidermal cells. Using variable-angle epifluorescence microscopy, we visualized the dynamics of exocyst subunits at this domain. The subunits colocalized in defined foci at the plasma membrane, distinct from endocytic sites. Exocyst foci were independent of cytoskeleton, although prolonged actin disruption led to changes in exocyst localization. Exocyst foci partially overlapped with vesicles visualized by VAMP721 v-SNARE, but the majority of the foci represent sites without vesicles, as indicated by electron microscopy and drug treatments, supporting the concept of the exocyst functioning as a dynamic particle. We observed a decrease of SEC6-green fluorescent protein foci in an exo70A1 exocyst mutant. Finally, we documented decreased VAMP721 trafficking to the plasma membrane in exo70A1 and exo84b mutants. Our data support the concept that the exocyst-complex subunits dynamically dock and undock at the plasma membrane to create sites primed for vesicle tethering.

  19. Towards Enhanced Performance Thin-film Composite Membranes via Surface Plasma Modification

    NASA Astrophysics Data System (ADS)

    Reis, Rackel; Dumée, Ludovic F.; Tardy, Blaise L.; Dagastine, Raymond; Orbell, John D.; Schutz, Jürg A.; Duke, Mikel C.

    2016-07-01

    Advancing the design of thin-film composite membrane surfaces is one of the most promising pathways to deal with treating varying water qualities and increase their long-term stability and permeability. Although plasma technologies have been explored for surface modification of bulk micro and ultrafiltration membrane materials, the modification of thin film composite membranes is yet to be systematically investigated. Here, the performance of commercial thin-film composite desalination membranes has been significantly enhanced by rapid and facile, low pressure, argon plasma activation. Pressure driven water desalination tests showed that at low power density, flux was improved by 22% without compromising salt rejection. Various plasma durations and excitation powers have been systematically evaluated to assess the impact of plasma glow reactions on the physico-chemical properties of these materials associated with permeability. With increasing power density, plasma treatment enhanced the hydrophilicity of the surfaces, where water contact angles decreasing by 70% were strongly correlated with increased negative charge and smooth uniform surface morphology. These results highlight a versatile chemical modification technique for post-treatment of commercial membrane products that provides uniform morphology and chemically altered surface properties.

  20. Receptor kinase-mediated control of primary active proton pumping at the plasma membrane.

    PubMed

    Fuglsang, Anja T; Kristensen, Astrid; Cuin, Tracey A; Schulze, Waltraud X; Persson, Jörgen; Thuesen, Kristina H; Ytting, Cecilie K; Oehlenschlæger, Christian B; Mahmood, Khalid; Sondergaard, Teis E; Shabala, Sergey; Palmgren, Michael G

    2014-12-01

    Acidification of the cell wall space outside the plasma membrane is required for plant growth and is the result of proton extrusion by the plasma membrane-localized H+-ATPases. Here we show that the major plasma membrane proton pumps in Arabidopsis, AHA1 and AHA2, interact directly in vitro and in planta with PSY1R, a receptor kinase of the plasma membrane that serves as a receptor for the peptide growth hormone PSY1. The intracellular protein kinase domain of PSY1R phosphorylates AHA2/AHA1 at Thr-881, situated in the autoinhibitory region I of the C-terminal domain. When expressed in a yeast heterologous expression system, the introduction of a negative charge at this position caused pump activation. Application of PSY1 to plant seedlings induced rapid in planta phosphorylation at Thr-881, concomitant with an instantaneous increase in proton efflux from roots. The direct interaction between AHA2 and PSY1R observed might provide a general paradigm for regulation of plasma membrane proton transport by receptor kinases.

  1. Activation of Raf as a result of recruitment to the plasma membrane.

    PubMed

    Stokoe, D; Macdonald, S G; Cadwallader, K; Symons, M; Hancock, J F

    1994-06-01

    The small guanine nucleotide binding protein Ras participates in a growth promoting signal transduction pathway. The mechanism by which interaction of Ras with the protein kinase Raf leads to activation of Raf was studied. Raf was targeted to the plasma membrane by addition of the COOH-terminal localization signals of K-ras. This modified form of Raf (RafCAAX) was activated to the same extent as Raf coexpressed with oncogenic mutant Ras. Plasma membrane localization rather than farnesylation or the presence of the additional COOH-terminal sequence accounted for the activation of RafCAAX. The activation of RafCAAX was completely independent of Ras; it was neither potentiated by oncogenic mutant Ras nor abrogated by dominant negative Ras. Raf, once recruited to the plasma membrane, was not anchored there by Ras; most activated Raf in cells was associated with plasma membrane cytoskeletal elements, not the lipid bilayer. Thus, Ras functions in the activation of Raf by recruiting Raf to the plasma membrane where a separate, Ras-independent, activation of Raf occurs.

  2. Towards Enhanced Performance Thin-film Composite Membranes via Surface Plasma Modification.

    PubMed

    Reis, Rackel; Dumée, Ludovic F; Tardy, Blaise L; Dagastine, Raymond; Orbell, John D; Schutz, Jürg A; Duke, Mikel C

    2016-01-01

    Advancing the design of thin-film composite membrane surfaces is one of the most promising pathways to deal with treating varying water qualities and increase their long-term stability and permeability. Although plasma technologies have been explored for surface modification of bulk micro and ultrafiltration membrane materials, the modification of thin film composite membranes is yet to be systematically investigated. Here, the performance of commercial thin-film composite desalination membranes has been significantly enhanced by rapid and facile, low pressure, argon plasma activation. Pressure driven water desalination tests showed that at low power density, flux was improved by 22% without compromising salt rejection. Various plasma durations and excitation powers have been systematically evaluated to assess the impact of plasma glow reactions on the physico-chemical properties of these materials associated with permeability. With increasing power density, plasma treatment enhanced the hydrophilicity of the surfaces, where water contact angles decreasing by 70% were strongly correlated with increased negative charge and smooth uniform surface morphology. These results highlight a versatile chemical modification technique for post-treatment of commercial membrane products that provides uniform morphology and chemically altered surface properties. PMID:27363670

  3. Purification of an Ion-Stimulated Adenosine Triphosphatase from Plant Roots: Association with Plasma Membranes

    PubMed Central

    Hodges, T. K.; Leonard, R. T.; Bracker, C. E.; Keenan, T. W.

    1972-01-01

    A membrane-bound adenosine triphosphatase (EC 3.6.1.3) that requires Mg++ and that is stimulated by monovalent ions has been purified 7- to 8-fold from homogenates of oat (Avena sativa L. Cult. Goodfield) roots by discontinuous sucrose-gradient centrifugation. The enzyme was substrate specific; adenosine triphosphate was hydrolyzed 25 times more rapidly than other nucleoside triphosphates. The membrane fraction containing adenosine triphosphatase was enriched in plasma membranes, which were identified by the presence of a glucan synthetase (EC 2.4.1.12), a high sterol to phospholipid ratio, and by a stain consisting of periodic acid, chromic acid, and phosphotungstic acid that is specific for plant plasma membranes. Oat-root plasma membranes and the associated adenosine triphosphatase were purified on either a 6-layer discontinuous sucrose gradient or on a simplified gradient consisting of only two sucrose layers. These results represent the first demonstration that plant plasma membranes contain an adenosine triphosphatase that is activated by monovalent ions, and this finding further implicates the enzyme in the absorption of inorganic ions by plant roots. Images PMID:16592027

  4. Surface characterization of the chitosan membrane after oxygen plasma treatment and its aging effect.

    PubMed

    Wang, Yingjun; Yin, Shiheng; Ren, Li; Zhao, Lianna

    2009-06-01

    Chitosan has received considerable attention for biomedical applications in recent years because of its biocompatibility and biodegradability. In this paper, angle-resolved x-ray photoelectron spectroscopy (ARXPS) was carried out to investigate the chemical groups' spatial orientation on the chitosan membrane surface. Oxygen plasma treatment was also employed to improve the surface hydrophilicity of the chitosan membrane. The results of ARXPS revealed the distribution of surface polar groups, such as-OH and O=CNH(2) toward the membrane bulk, which was the origin of the chitosan membrane surface hydrophobicity. The contact angle measurements and XPS results indicated that oxygen plasma treatment can markedly improve the surface hydrophilicity and surface energy of the chitosan membrane by incorporating oxygen-containing polar groups. With the existence of the aging process, the influence of plasma treatment was not permanent, it faded with storage time. The ARXPS result discovered that the reorientation of polar functional groups generated by plasma treatment toward the membrane bulk was primarily responsible for the aging effect.

  5. Multiple cellular proteins modulate the dynamics of K-ras association with the plasma membrane.

    PubMed

    Bhagatji, Pinkesh; Leventis, Rania; Rich, Rebecca; Lin, Chen-ju; Silvius, John R

    2010-11-17

    Although specific proteins have been identified that regulate the membrane association and facilitate intracellular transport of prenylated Rho- and Rab-family proteins, it is not known whether cellular proteins fulfill similar roles for other prenylated species, such as Ras-family proteins. We used a previously described method to evaluate how several cellular proteins, previously identified as potential binding partners (but not effectors) of K-ras4B, influence the dynamics of K-ras association with the plasma membrane. Overexpression of either PDEδ or PRA1 enhances, whereas knockdown of either protein reduces, the rate of dissociation of K-ras from the plasma membrane. Inhibition of calmodulin likewise reduces the rate of K-ras dissociation from the plasma membrane, in this case in a manner specific for the activated form of K-ras. By contrast, galectin-3 specifically reduces the rate of plasma membrane dissociation of activated K-ras, an effect that is blocked by the K-ras antagonist farnesylthiosalicylic acid (salirasib). Multiple cellular proteins thus control the dynamics of membrane association and intercompartmental movement of K-ras to an important degree even under basal cellular conditions.

  6. Accumulation of chlamydial lipopolysaccharide antigen in the plasma membranes of infected cells.

    PubMed Central

    Karimi, S. T.; Schloemer, R. H.; Wilde, C. E.

    1989-01-01

    The presence of a chlamydia-specified antigen associated with the plasma membrane of infected cell lines was demonstrated by indirect immunofluorescence staining with a monoclonal antibody, designated 47A2, specific for the chlamydial genus-specific lipopolysaccharide (LPS) antigen. Staining of HeLa, L-929, and McCoy cells infected with the L2 or F serovar of Chlamydia trachomatis was observed either without fixation or following aldehyde fixation and brief drying. The 47A2-reactive antigen appeared to be present on the plasma membrane, on bleb-like structures on the host cell surface, and on proximal processes of neighboring uninfected cells. Antibodies to chlamydial protein antigens such as the major outer membrane protein produced no surface staining under similar conditions. Membrane vesicles elaborated from infected cells were enriched for the 47A2-reactive antigen. Superinfection of chlamydia-infected cells with vesicular stomatitis virus, an enveloped virus which buds from the plasma membrane, allowed purification of progeny virions that were enriched with chlamydial LPS. These results are consistent with the presence of chlamydial LPS in the plasma membranes of infected host cells. Images PMID:2470679

  7. Adenosine triphosphate-dependent copper transport in isolated rat liver plasma membranes.

    PubMed Central

    Dijkstra, M; In 't Veld, G; van den Berg, G J; Müller, M; Kuipers, F; Vonk, R J

    1995-01-01

    The process of hepatobiliary copper (Cu) secretion is still poorly understood: Cu secretion as a complex with glutathione and transport via a lysosomal pathway have been proposed. The recent cloning and sequencing of the gene for Wilson disease indicates that Cu transport in liver cells may be mediated by a Cu transporting P-type ATPase. Biochemical evidence for ATP-dependent Cu transport in mammalian systems, however, has not been reported so far. We have investigated Cu transport in rat liver plasma membrane vesicles enriched in canalicular or basolateral membranes in the presence and absence of ATP (4 mM) and an ATP-regenerating system. The presence of ATP clearly stimulated uptake of radiolabeled Cu (64Cu, 10 microM) into canalicular plasma membrane vesicles and, to a lesser extent, also into basolateral plasma membrane vesicles. ATP-dependent Cu transport was dose-dependently inhibited by the P-type ATPase inhibitor vanadate, and showed saturation kinetics with an estimated Km of 8.6 microM and a Vmax of 6.9 nmol/min/mg protein. ATP-stimulated Cu uptake was similar in canalicular membrane vesicles of normal Wistar rats and those of mutant GY rats, expressing a congenital defect in the activity of the ATP-dependent canalicular glutathione-conjugate transporter (cMOAT). These studies demonstrate the presence of an ATP-dependent Cu transporting system in isolated plasma membrane fractions of rat liver distinct from cMOAT. PMID:7814642

  8. Eisosomes promote the ability of Sur7 to regulate plasma membrane organization in Candida albicans

    PubMed Central

    Wang, Hong X.; Douglas, Lois M.; Veselá, Petra; Rachel, Reinhard; Malinsky, Jan; Konopka, James B.

    2016-01-01

    The plasma membrane of the fungal pathogen Candida albicans forms a protective barrier that also mediates many processes needed for virulence, including cell wall synthesis, invasive hyphal morphogenesis, and nutrient uptake. Because compartmentalization of the plasma membrane is believed to coordinate these diverse activities, we examined plasma membrane microdomains termed eisosomes or membrane compartment of Can1 (MCC), which correspond to ∼200-nm-long furrows in the plasma membrane. A pil1∆ lsp1∆ mutant failed to form eisosomes and displayed strong defects in plasma membrane organization and morphogenesis, including extensive cell wall invaginations. Mutation of eisosome proteins Slm2, Pkh2, and Pkh3 did not cause similar cell wall defects, although pkh2∆ cells formed chains of furrows and pkh3∆ cells formed wider furrows, identifying novel roles for the Pkh protein kinases in regulating furrows. In contrast, the sur7∆ mutant formed cell wall invaginations similar to those for the pil1∆ lsp1∆ mutant even though it could form eisosomes and furrows. A PH-domain probe revealed that the regulatory lipid phosphatidylinositol 4,5-bisphosphate was enriched at sites of cell wall invaginations in both the sur7∆ and pil1∆ lsp1∆ cells, indicating that this contributes to the defects. The sur7∆ and pil1∆ lsp1∆ mutants displayed differential susceptibility to various types of stress, indicating that they affect overlapping but distinct functions. In support of this, many mutant phenotypes of the pil1∆ lsp1∆ cells were rescued by overexpressing SUR7. These results demonstrate that C. albicans eisosomes promote the ability of Sur7 to regulate plasma membrane organization. PMID:27009204

  9. Using fluorometry and ion-sensitive microelectrodes to study the functional expression of heterologously-expressed ion channels and transporters in Xenopus oocytes

    PubMed Central

    Musa-Aziz, Raif; Boron, Walter F.; Parker, Mark D.

    2010-01-01

    The Xenopus laevis oocyte is a model system for the electrophysiological study of exogenous ion transporters. Three main reasons make the oocyte suitable for this purpose: (a) it has a large cell size (~1 mm diameter), (b) it has an established capacity to produce—from microinjected mRNAs or cRNAs—exogenous ion transporters with close-to-physiological post-translational modifications and actions, and (c) its membranes contain endogenous ion-transport activities which are usually smaller in magnitude than the activities of exogenously-expressed ion transporters. The expression of ion-transporters as green-fluorescent-protein fusions allows the fluorometric assay of transporter yield in living oocytes. Monitoring of transporter-mediated movement of ions such as Cl−, H+ (and hence base equivalents like OH−1 and HCO3−), K+, and Na+ is achieved by positioning the tips of ion-sensitive microelectrodes inside the oocyte and/or at the surface of the oocyte plasma membrane. The use of ion-sensitive electrodes is critical for studying net ion-movements mediated by electroneutral transporters. The combined use of fluorometry and electrophysiology expedites transporter study by allowing measurement of transporter yield prior to electrophysiological study and correlation of relative transporter yield with transport rates. PMID:20051266

  10. Imaging excised apical plasma membrane patches of MDCK cells in physiological conditions with atomic force microscopy.

    PubMed

    Lärmer, J; Schneider, S W; Danker, T; Schwab, A; Oberleithner, H

    1997-07-01

    We combined the patch-clamp technique with atomic force microscopy (AFM) to visualize plasma membrane proteins protruding from the extracellular surface of cultured kidney cells (MDCK cells). To achieve molecular resolution, patches were mechanically isolated from whole MDCK cells by applying the patch-clamp technique. The excised inside-out patches were transferred on freshly cleaved mica and imaged with the AFM in air and under physiological conditions (i. e. in fluid). Thus, the resolution could be increased considerably (lateral and vertical resolutions 5 and 0.1 nm, respectively) as compared to experiments on intact cells, where plasma membrane proteins were hardly detectable. The apical plasma membrane surface of the MDCK cells showed multiple protrusions which could be identified as membrane proteins through the use of pronase. These proteins had a density of about 90 per micron(2), with heights between 1 and 9 nm, and lateral dimensions of 20-60 nm. Their frequency distribution showed a peak value of 3 nm for the protein height. A simplified assumption - modelling plasma membrane proteins as spherical structures protruding from the lipid bilayer - allowed an estimation of the possible molecular weights of these proteins. They range from 50 kDa to 710 kDa with a peak value of 125 kDa. We conclude that AFM can be used to study the molecular structures of membranes which were isolated with the patch-clamp technique. Individual membrane proteins and protein clusters, and their arrangement and distribution in a native plasma membrane can be visualized under physiological conditions, which is a first step for their identification. PMID:9178623

  11. The plasma membrane as a capacitor for energy and metabolism.

    PubMed

    Ray, Supriyo; Kassan, Adam; Busija, Anna R; Rangamani, Padmini; Patel, Hemal H

    2016-02-01

    When considering which components of the cell are the most critical to function and physiology, we naturally focus on the nucleus, the mitochondria that regulate energy and apoptotic signaling, or other organelles such as the endoplasmic reticulum, Golgi, ribosomes, etc. Few people will suggest that the membrane is the most critical element of a cell in terms of function and physiology. Those that consider the membrane critical will point to its obvious barrier function regulated by the lipid bilayer and numerous ion channels that regulate homeostatic gradients. What becomes evident upon closer inspection is that not all membranes are created equal and that there are lipid-rich microdomains that serve as platforms of signaling and a means of communication with the intracellular environment. In this review, we explore the evolution of membranes, focus on lipid-rich microdomains, and advance the novel concept that membranes serve as "capacitors for energy and metabolism." Within this framework, the membrane then is the primary and critical regulator of stress and disease adaptation of the cell.

  12. The plasma membrane as a capacitor for energy and metabolism.

    PubMed

    Ray, Supriyo; Kassan, Adam; Busija, Anna R; Rangamani, Padmini; Patel, Hemal H

    2016-02-01

    When considering which components of the cell are the most critical to function and physiology, we naturally focus on the nucleus, the mitochondria that regulate energy and apoptotic signaling, or other organelles such as the endoplasmic reticulum, Golgi, ribosomes, etc. Few people will suggest that the membrane is the most critical element of a cell in terms of function and physiology. Those that consider the membrane critical will point to its obvious barrier function regulated by the lipid bilayer and numerous ion channels that regulate homeostatic gradients. What becomes evident upon closer inspection is that not all membranes are created equal and that there are lipid-rich microdomains that serve as platforms of signaling and a means of communication with the intracellular environment. In this review, we explore the evolution of membranes, focus on lipid-rich microdomains, and advance the novel concept that membranes serve as "capacitors for energy and metabolism." Within this framework, the membrane then is the primary and critical regulator of stress and disease adaptation of the cell. PMID:26771520

  13. Rapid intramolecular turnover of N-linked glycans in plasma membrane glycoproteins. Extension of intramolecular turnover to the core sugars in plasma membrane glycoproteins of hepatoma.

    PubMed

    Tauber, R; Park, C S; Becker, A; Geyer, R; Reutter, W

    1989-12-01

    Plasma membrane glycoproteins of rat hepatocytes undergo a rapid terminal deglycosylation in that the terminal sugars of the oligosaccharide side chains are rapidly removed from the otherwise intact glycoproteins [Tauber, R., Park, C.S. & Reutter, W. (1983) Proc. Natl Acad. Sci. USA 80, 4026-4029]. The present paper demonstrates that this rapid intramolecular turnover of plasma membrane glycoproteins is not restricted to peripheral sugars but, in contrast to liver, in hepatoma the core sugars of the oligosaccharide chains are also involved. Intramolecular turnover was measured in Morris hepatoma 7777 in five plasma membrane glycoproteins with Mr of 85,000 (hgp85), 105,000 (hgp105), 115,000 (hgp115), 125,000 (hgp125), 175,000 (hgp175) (hgp = hepatoma glycoprotein) that were isolated and purified to homogeneity by concanavalin-A--Sepharose affinity chromatography and semipreparative SDS gel electrophoresis. Analysis of the carbohydrates of hgp85, hgp105, hgp115 and hgp125 revealed the presence of N-linked oligosaccharides containing L-fucose, D-galactose, D-mannose and N-acetyl-D-glucosamine, but only of trace amounts of N-acetyl-D-galactosamine; hgp175 additionally contained significant amounts of N-acetyl-D-galactosamine, indicating the presence of both N- and O-linked oligosaccharides. As shown by digestion with endoglucosaminidase H, the N-linked oligosaccharides of hgp105, hgp115, hgp125 and hgp175 were of the complex type, whereas hgp85 also contained oligosaccharides of the high-mannose type. Half-lives of the turnover of the oligosacharide chains and of the protein backbone of the five glycoproteins were measured in the plasma membrane in pulse-chase experiments in vivo, using L-[3H]fucose as a marker of terminal sugars, D-[3H]mannose as marker of a core sugar and L-[3H]leucine for labelling the protein backbone. Protein backbones of the five glycoproteins were degraded with individual half-lives ranging over 41-90 h with a mean of 66 h. Compared to the

  14. The relationship between cAMP, Ca(2)+, and transport of CFTR to the plasma membrane.

    PubMed

    Chen, P; Hwang, T C; Gillis, K D

    2001-08-01

    The mechanism whereby cAMP stimulates Cl(-) flux through CFTR ion channels in secretory epithelia remains controversial. It is generally accepted that phosphorylation by cAMP-dependent protein kinase increases the open probability of the CFTR channel. A more controversial hypothesis is that cAMP triggers the translocation of CFTR from an intracellular pool to the cell surface. We have monitored membrane turnover in Calu-3 cells, a cell line derived from human airway submucosal glands that expresses high levels of CFTR using membrane capacitance and FM1-43 fluorescence measurements. Using a conventional capacitance measurement technique, we observe an apparent increase in membrane capacitance in most cells that exhibit an increase in Cl(-) current. However, after we carefully correct our recordings for changes in membrane conductance, the apparent changes in capacitance are eliminated. Measurements using the fluorescent membrane marker FM1-43 also indicate that no changes in membrane turnover accompany the activation of CFTR. Robust membrane insertion can be triggered with photorelease of caged Ca(2)+ in Calu-3 cells. However, no increase in Cl(-) current accompanies Ca(2)+-evoked membrane fusion. We conclude that neither increases in cAMP or Ca(2)+ lead to transport of CFTR to the plasma membrane in Calu-3 cells. In addition, we conclude that membrane capacitance measurements must be interpreted with caution when large changes in membrane conductance occur. PMID:11479341

  15. ATP-dependent calcium transport across basal plasma membranes of human placental trophoblast

    SciTech Connect

    Fisher, G.J.; Kelley, L.K.; Smith, C.H.

    1987-01-01

    As a first step in understanding the cellular basis of maternal-fetal calcium transfer, the authors examined the characteristics of calcium uptake by a highly purified preparation of the syncytiotrophoblast basal (fetal facing) plasma membrane. In the presence of nanomolar concentrations of free calcium, basal membranes demonstrated substantial ATP-dependent calcium uptake. This uptake required magnesium, was not significantly affected by Na/sup +/ or K/sup +/ (50 mM), or sodium azide (10 mM). Intravesicular calcium was rapidly and completely released by the calcium ionophore rapidly and completely released by the calcium ionophore A23187. Calcium transport was significantly stimulated by the calcium-dependent regulatory protein calmodulin. Placental membrane fractions enriched in endoplasmic reticulum (ER) and mitochondria also demonstrated ATP-dependent calcium uptake. In contrast to basal membrane, mitochondrial calcium uptake was completely inhibited by azide. The rate of calcium uptake was completely inhibited by azide. The rate of calcium uptake by the ER was only 20% of that of basal membranes. They conclude that the placental basal plasma membrane possesses a high-affinity calcium transport system similar to that found in plasma membranes of a variety of cell types. This transporter is situated to permit it to function in vivo in maternal-fetal calcium transfer.

  16. Molecular dynamics study of lipid bilayers modeling the plasma membranes of mouse hepatocytes and hepatomas

    NASA Astrophysics Data System (ADS)

    Andoh, Yoshimichi; Aoki, Noriyuki; Okazaki, Susumu

    2016-02-01

    Molecular dynamics (MD) calculations of lipid bilayers modeling the plasma membranes of normal mouse hepatocytes and hepatomas in water have been performed under physiological isothermal-isobaric conditions (310.15 K and 1 atm). The changes in the membrane properties induced by hepatic canceration were investigated and were compared with previous MD calculations included in our previous study of the changes in membrane properties induced by murine thymic canceration. The calculated model membranes for normal hepatocytes and hepatomas comprised 23 and 24 kinds of lipids, respectively. These included phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, sphingomyelin, lysophospholipids, and cholesterol. We referred to previously published experimental values for the mole fraction of the lipids adopted in the present calculations. The calculated structural and dynamic properties of the membranes such as lateral structure, order parameters, lateral self-diffusion constants, and rotational correlation times all showed that hepatic canceration causes plasma membranes to become more ordered laterally and less fluid. Interestingly, this finding contrasts with the less ordered structure and increased fluidity of plasma membranes induced by thymic canceration observed in our previous MD study.

  17. Molecular dynamics study of lipid bilayers modeling the plasma membranes of mouse hepatocytes and hepatomas.

    PubMed

    Andoh, Yoshimichi; Aoki, Noriyuki; Okazaki, Susumu

    2016-02-28

    Molecular dynamics (MD) calculations of lipid bilayers modeling the plasma membranes of normal mouse hepatocytes and hepatomas in water have been performed under physiological isothermal-isobaric conditions (310.15 K and 1 atm). The changes in the membrane properties induced by hepatic canceration were investigated and were compared with previous MD calculations included in our previous study of the changes in membrane properties induced by murine thymic canceration. The calculated model membranes for normal hepatocytes and hepatomas comprised 23 and 24 kinds of lipids, respectively. These included phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, sphingomyelin, lysophospholipids, and cholesterol. We referred to previously published experimental values for the mole fraction of the lipids adopted in the present calculations. The calculated structural and dynamic properties of the membranes such as lateral structure, order parameters, lateral self-diffusion constants, and rotational correlation times all showed that hepatic canceration causes plasma membranes to become more ordered laterally and less fluid. Interestingly, this finding contrasts with the less ordered structure and increased fluidity of plasma membranes induced by thymic canceration observed in our previous MD study.

  18. Plasma membrane calcium pump activity is affected by the membrane protein concentration. Evidence for the involvement of the actin cytoskeleton

    PubMed Central

    Vanagas, Laura; Rossi, Rolando C.; Caride, Ariel J.; Filoteo, Adelaida G.; Strehler, Emanuel E.; Rossi, Juan Pablo F.C.

    2007-01-01

    Plasma membrane calcium pumps (PMCAs) are integral membrane proteins that actively expel Ca2+ from the cell. Specific Ca2+-ATPase activity of erythrocyte membranes increased steeply up to 1.5–5 times when the membrane protein concentration decreased from 50 μg/ml to 1 μg/ml. The activation by dilution was also observed for ATP-dependent Ca2+ uptake into vesicles from Sf9 over-expressing the PMCA 4b isoform, confirming that it is a property of the PMCA. Dilution of the protein did not modify the activation by ATP, Ca2+ or Ca2+-calmodulin. Treatment with non-ionic detergents did not abolish the dilution effect, suggesting that it was not due to resealing of the membrane vesicles. Pre-incubation of erythrocyte membranes with Cytochalasin D under conditions that promote actin polymerization abolished the dilution effect. Highly-purified, micellar PMCA showed no dilution effect and was not affected by Cytochalasin D. Taken together, these results suggest that the concentration-dependent behavior of the PMCA activity was due to interactions with cytoskeletal proteins. The dilution effect was also observed with different PMCA isoforms, indicating that this is a general phenomenon for all PMCAs. PMID:17481573

  19. Feedback regulation between plasma membrane tension and membrane-bending proteins organizes cell polarity during leading edge formation.

    PubMed

    Tsujita, Kazuya; Takenawa, Tadaomi; Itoh, Toshiki

    2015-06-01

    Tension applied to the plasma membrane (PM) is a global mechanical parameter involved in cell migration. However, how membrane tension regulates actin assembly is unknown. Here, we demonstrate that FBP17, a membrane-bending protein and an activator of WASP/N-WASP-dependent actin nucleation, is a PM tension sensor involved in leading edge formation. In migrating cells, FBP17 localizes to short membrane invaginations at the leading edge, while diminishing from the cell rear in response to PM tension increase. Conversely, following reduced PM tension, FBP17 dots randomly distribute throughout the cell, correlating with loss of polarized actin assembly on PM tension reduction. Actin protrusive force is required for the polarized accumulation, indicating a role for FBP17-mediated activation of WASP/N-WASP in PM tension generation. In vitro experiments show that FBP17 membrane-bending activity depends on liposomal membrane tension. Thus, FBP17 is the local activator of actin polymerization that is inhibited by PM tension in the feedback loop that regulates cell migration.

  20. How actin binds and assembles onto plasma membranes from Dictyostelium discoideum

    PubMed Central

    1988-01-01

    We have shown previously (Schwartz, M. A., and E. J. Luna. 1986. J. Cell Biol. 102: 2067-2075) that actin binds with positive cooperativity to plasma membranes from Dictyostelium discoideum. Actin is polymerized at the membrane surface even at concentrations well below the critical concentration for polymerization in solution. Low salt buffer that blocks actin polymerization in solution also prevents actin binding to membranes. To further explore the relationship between actin polymerization and binding to membranes, we prepared four chemically modified actins that appear to be incapable of polymerizing in solution. Three of these derivatives also lost their ability to bind to membranes. The fourth derivative (EF actin), in which histidine-40 is labeled with ethoxyformic anhydride, binds to membranes with reduced affinity. Binding curves exhibit positive cooperativity, and cross- linking experiments show that membrane-bound actin is multimeric. Thus, binding and polymerization are tightly coupled, and the ability of these membranes to polymerize actin is dramatically demonstrated. EF actin coassembles weakly with untreated actin in solution, but coassembles well on membranes. Binding by untreated actin and EF actin are mutually competitive, indicating that they bind to the same membrane sites. Hill plots indicate that an actin trimer is the minimum assembly state required for tight binding to membranes. The best explanation for our data is a model in which actin oligomers assemble by binding to clustered membrane sites with successive monomers on one side of the actin filament bound to the membrane. Individual binding affinities are expected to be low, but the overall actin-membrane avidity is high, due to multivalency. Our results imply that extracellular factors that cluster membrane proteins may create sites for the formation of actin nuclei and thus trigger actin polymerization in the cell. PMID:3392099

  1. Impact of ionic liquids in aqueous solution on bacterial plasma membranes studied with molecular dynamics simulations.

    PubMed

    Lim, Geraldine S; Zidar, Jernej; Cheong, Daniel W; Jaenicke, Stephan; Klähn, Marco

    2014-09-01

    The impact of five different imidazolium-based ionic liquids (ILs) diluted in water on the properties of a bacterial plasma membrane is investigated using molecular dynamics (MD) simulations. Cations considered are 1-octyl-3-methylimidazolium (OMIM), 1-octyloxymethyl-3-methylimidazolium (OXMIM), and 1-tetradecyl-3-methylimidazolium (TDMIM), as well as the anions chloride and lactate. The atomistic model of the membrane bilayer is designed to reproduce the lipid composition of the plasma membrane of Gram-negative Escherichia coli. Spontaneous insertion of cations into the membrane is observed in all ILs. Substantially more insertions of OMIM than of OXMIM occur and the presence of chloride reduces cation insertions compared to lactate. In contrast, anions do not adsorb onto the membrane surface nor diffuse into the bilayer. Once inserted, cations are oriented in parallel to membrane lipids with cation alkyl tails embedded into the hydrophobic membrane core, while the imidazolium-ring remains mostly exposed to the solvent. Such inserted cations are strongly associated with one to two phospholipids in the membrane. The overall order of lipids decreased after OMIM and OXMIM insertions, while on the contrary the order of lipids in the vicinity of TDMIM increased. The short alkyl tails of OMIM and OXMIM generate voids in the bilayer that are filled by curling lipids. This cation induced lipid disorder also reduces the average membrane thickness. This effect is not observed after TDMIM insertions due to the similar length of cation alkyl chain and the fatty acids of the lipids. This lipid-mimicking behavior of inserted TDMIM indicates a high membrane affinity of this cation that could lead to an enhanced accumulation of cations in the membrane over time. Overall, the simulations reveal how cations are inserted into the bacterial membrane and how such insertions change its properties. Moreover, the different roles of cations and anions are highlighted and the fundamental

  2. Members of rice plasma membrane intrinsic proteins subfamily are involved in arsenite permeability and tolerance in plants.

    PubMed

    Mosa, Kareem A; Kumar, Kundan; Chhikara, Sudesh; Mcdermott, Joseph; Liu, Zijuan; Musante, Craig; White, Jason C; Dhankher, Om Parkash

    2012-12-01

    Rice accumulates high level of arsenic (As) in its edible parts and thus plays an important role in the transfer of As into the food chain. However, the mechanisms of As uptake and its detoxification in rice are not well understood. Recently, members of the Nodulin 26-like intrinsic protein (NIP) subfamily of plant aquaporins were shown to transport arsenite in rice and Arabidopsis. Here we report that members of the rice plasma membrane intrinsic protein (PIP) subfamily are also involved in As tolerance and transport. Based on the homology search with the mammalian AQP9 and yeast Fps1 arsenite transporters, we identified and cloned five rice PIP gene subfamily members. qRT-PCR analysis of PIPs in rice root and shoot tissues revealed a significant down regulation of transcripts encoding OsPIP1;2, OsPIP1;3, OsPIP2;4, OsPIP2;6, and OsPIP2;7 in response to arsenite treatment. Heterologous expression of OsPIP2;4, OsPIP2;6, and OsPIP2;7 in Xenopus laevis oocytes significantly increased the uptake of arsenite. Overexpression of OsPIP2;4, OsPIP2;6, and OsPIP2;7 in Arabidopsis yielded enhanced arsenite tolerance and higher biomass accumulation. Further, these transgenic plants showed no significant accumulation of As in shoot and root tissues in long term uptake assays. Whereas, short duration exposure to arsenite caused both active influx and efflux of As in the roots. The data suggests a bidirectional arsenite permeability of rice PIPs in plants. These rice PIPs genes will be highly useful for engineering important food and biofuel crops for enhanced crop productivity on contaminated soils without increasing the accumulation of toxic As in the biomass or edible tissues. PMID:22350764

  3. Members of rice plasma membrane intrinsic proteins subfamily are involved in arsenite permeability and tolerance in plants.

    PubMed

    Mosa, Kareem A; Kumar, Kundan; Chhikara, Sudesh; Mcdermott, Joseph; Liu, Zijuan; Musante, Craig; White, Jason C; Dhankher, Om Parkash

    2012-12-01

    Rice accumulates high level of arsenic (As) in its edible parts and thus plays an important role in the transfer of As into the food chain. However, the mechanisms of As uptake and its detoxification in rice are not well understood. Recently, members of the Nodulin 26-like intrinsic protein (NIP) subfamily of plant aquaporins were shown to transport arsenite in rice and Arabidopsis. Here we report that members of the rice plasma membrane intrinsic protein (PIP) subfamily are also involved in As tolerance and transport. Based on the homology search with the mammalian AQP9 and yeast Fps1 arsenite transporters, we identified and cloned five rice PIP gene subfamily members. qRT-PCR analysis of PIPs in rice root and shoot tissues revealed a significant down regulation of transcripts encoding OsPIP1;2, OsPIP1;3, OsPIP2;4, OsPIP2;6, and OsPIP2;7 in response to arsenite treatment. Heterologous expression of OsPIP2;4, OsPIP2;6, and OsPIP2;7 in Xenopus laevis oocytes significantly increased the uptake of arsenite. Overexpression of OsPIP2;4, OsPIP2;6, and OsPIP2;7 in Arabidopsis yielded enhanced arsenite tolerance and higher biomass accumulation. Further, these transgenic plants showed no significant accumulation of As in shoot and root tissues in long term uptake assays. Whereas, short duration exposure to arsenite caused both active influx and efflux of As in the roots. The data suggests a bidirectional arsenite permeability of rice PIPs in plants. These rice PIPs genes will be highly useful for engineering important food and biofuel crops for enhanced crop productivity on contaminated soils without increasing the accumulation of toxic As in the biomass or edible tissues.

  4. Meiotic maturation and developmental capability of ovine oocytes at germinal vesicle stage following vitrification using different cryodevices.

    PubMed

    Quan, Guo Bo; Wu, Guo Quan; Wang, Ya Jing; Ma, Yuan; Lv, Chun Rong; Hong, Qiong Hua

    2016-02-01

    oocytes. The cleavage rate of oocytes vitrified with Cryoloop was similar to that of oocytes vitrified with open-pulled straws. However, the cleavage rate of vitrified oocytes in the CS group was significantly less than that in the OPS or Cryoloop group (P < 0.05). None of oocytes vitrified using conventional plastic straw developed to the blastocyst stage following IVF. There was no significant difference existing between OPS and Cryoloop with respect to the blastocyst rate. After staining with cFDA and PI, cumulus cells surrounding oocytes were partly damaged by vitrification and thawing while the membrane of vitrified oocyte still remained intact. In conclusion, vitrification can seriously damage ovine immature oocytes and cumulus cells surrounding oocytes, which may subsequently affect their developmental capability. Finally, this study further proves that increasing the freezing and thawing velocity benefits survival of vitrified immature oocytes.

  5. Small unilamellar liposomes as a membrane model for cell inactivation by cold atmospheric plasma treatment

    NASA Astrophysics Data System (ADS)

    Maheux, S.; Frache, G.; Thomann, J. S.; Clément, F.; Penny, C.; Belmonte, T.; Duday, D.

    2016-09-01

    Cold atmospheric plasma is thought to be a promising tool for numerous biomedical applications due to its ability to generate a large diversity of reactive species in a controlled way. In some cases, it can also generate pulsed electric fields at the zone of treatment, which can induce processes such as electroporation in cell membranes. However, the interaction of these reactive species and the pulse electric field with cells in a physiological medium is very complex, and we still need a better understanding in order to be useful for future applications. A way to reach this goal is to work with model cell membranes such as liposomes, with the simplest physiological liquid and in a controlled atmosphere in order to limit the number of parallel reactions and processes. In this paper, where this approach has been chosen, 1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC) small unilamellar vesicles (SUV) have been synthesized in a phosphate buffered aqueous solution, and this solution has been treated by a nanosecond pulsed plasma jet under a pure nitrogen atmosphere. It is only the composition of the plasma gas that has been changed in order to generate different cocktails of reactive species. After the quantification of the main plasma reactive species in the phosphate buffered saline (PBS) solution, structural, surface charge state, and chemical modifications generated on the plasma treated liposomes, due to the interaction with the plasma reactive species, have been carefully characterized. These results allow us to further understand the effect of plasma reactive species on model cell membranes in physiological liquids. The permeation through the liposomal membrane and the reaction of plasma reactive species with molecules encapsulated inside the liposomes have also been evaluated. New processes of degradation are finally presented and discussed, which come from the specific conditions of plasma treatment under the pure nitrogen atmosphere.

  6. A cell-free assay to determine the stoichiometry of plasma membrane proteins.

    PubMed

    Trigo, Cesar; Vivar, Juan P; Gonzalez, Carlos B; Brauchi, Sebastian

    2013-04-01

    Plasma membrane receptors, transporters, and ion channel molecules are often found as oligomeric structures that participate in signaling cascades essential for cell survival. Different states of protein oligomerization may play a role in functional control and allosteric regulation. Stochastic GFP-photobleaching (SGP) has emerged as an affordable and simple method to determine the stoichiometry of proteins at the plasma membrane. This non-invasive optical approach can be useful for total internal reflection of fluorescence microscopy (TIRFM), where signal-to-noise ratio is very high at the plasma membrane. Here, we report an alternative methodology implemented on a standard laser scanning confocal microscope (LSCM). The simplicity of our method will allow for its implementation in any epifluorescence microscope of choice.

  7. Polyphosphoinositides are present in plasma membranes isolated from fusogenic carrot cells

    SciTech Connect

    Wheeler, J.J.; Boss, W.F.

    1987-10-01

    Fusogenic carrot cells grown in suspension culture were labeled 12 hours with myo-(2-/sup 3/H)inositol. Plasma membranes were isolated from the prelabeled fusogenic carrot cells by both aqueous polymer two-phase partitioning and Renografin density gradients. With both methods, the plasma membrane-enriched fractions, as identified by marker enzymes, were enriched in (/sup 3/H)inositol-labeled phosphatidylinositol monophosphate (PIP) and phosphatidylinositol bisphosphate (PIP/sub 2/). An additional (/sup 3/H)inositol-labeled lipid, lysophosphatidylinositol monophosphate, which migrated between PIP and PIP/sub 2/ on thin layer plates, was found primarily in the plasma membrane-rich fraction of the fusogenic cells. This was in contrast to lysophosphatidylinositol which is found primarily in the lower phase, microsomal/mitchrondrial-rich fraction.

  8. Denitrification by plant roots? New aspects of plant plasma membrane-bound nitrate reductase.

    PubMed

    Eick, Manuela; Stöhr, Christine

    2012-10-01

    A specific form of plasma membrane-bound nitrate reductase in plants is restricted to roots. Two peptides originated from plasma membrane integral proteins isolated from Hordeum vulgare have been assigned as homologues to the subunit NarH of respiratory nitrate reductase of Escherichia coli. Corresponding sequences have been detected for predicted proteins of Populus trichocarpa with high degree of identities for the subunits NarH (75%) and NarG (65%), however, with less accordance for the subunit NarI. These findings coincide with biochemical properties, particularly in regard to the electron donors menadione and succinate. Together with the root-specific and plasma membrane-bound nitrite/NO reductase, nitric oxide is produced under hypoxic conditions in the presence of nitrate. In this context, a possible function in nitrate respiration of plant roots and an involvement of plants in denitrification processes are discussed.

  9. A fluorescent cholesterol analogue for observation of free cholesterol in the plasma membrane of live cells.

    PubMed

    Ogawa, Yoshikatsu; Tanaka, Mutsuo

    2016-01-01

    Free cholesterol in mammalian cells resides mostly in the plasma membrane, where it plays an important role in cellular homeostasis. We synthesized a new fluorescent cholesterol analogue that retained an intact alkyl chain and the sterane backbone of cholesterol. The hydroxyl group of cholesterol was converted into an amino group that was covalently linked to the fluorophore tetramethylrhodamine to retain the ability to form hydrogen bonds with adjacent molecules. Incubating live MDCK (Madin-Darby canine kidney) cells with our fluorescent cholesterol analogue resulted in the generation of intense signals that were detected by microscopy at the plasma membrane. Incubation with the analogue exerted minimal, if any, influence on cell growth, indicating that it could serve as a useful tool for analyzing free cholesterol at the plasma membrane.

  10. Transport of endocannabinoids across the plasma membrane and within the cell.

    PubMed

    Fowler, Christopher J

    2013-05-01

    Endocannabinoids are readily accumulated from the extracellular space by cells. Although their uptake properties have the appearance of a process of facilitated diffusion, it is by no means clear as to whether there is a plasma membrane transporter dedicated to this task. Intracellular carrier proteins that shuttle the endocannabinoid anandamide from the plasma membrane to its intracellular targets such as the metabolic enzyme, fatty acid amide hydrolase, have been identified. These include proteins with other primary functions, such as fatty-acid-binding proteins and heat shock protein 70, and possibly a fatty acid amide hydrolase-like anandamide transporter protein. Thus, anandamide uptake can be adequately described as a diffusion process across the plasma membrane followed by intracellular carrier-mediated transport to effector molecules, catabolic enzymes and sequestration sites, although it is recognized that different cells are likely to utilize different mechanisms of endocannabinoid transport depending upon the utility of the endocannabinoid for the cell in question. PMID:23441874

  11. The connection of cytoskeletal network with plasma membrane and the cell wall

    PubMed Central

    Liu, Zengyu; Persson, Staffan; Zhang, Yi

    2015-01-01

    The cell wall provides external support of the plant cells, while the cytoskeletons including the microtubules and the actin filaments constitute an internal framework. The cytoskeletons contribute to the cell wall biosynthesis by spatially and temporarily regulating the transportation and deposition of cell wall components. This tight control is achieved by the dynamic behavior of the cytoskeletons, but also through the tethering of these structures to the plasma membrane. This tethering may also extend beyond the plasma membrane and impact on the cell wall, possibly in the form of a feedback loop. In this review, we discuss the linking components between the cytoskeletons and the plasma membrane, and/or the cell wall. We also discuss the prospective roles of these components in cell wall biosynthesis and modifications, and aim to provide a platform for further studies in this field. PMID:25693826

  12. The connection of cytoskeletal network with plasma membrane and the cell wall.

    PubMed

    Liu, Zengyu; Persson, Staffan; Zhang, Yi

    2015-04-01

    The cell wall provides external support of the plant cells, while the cytoskeletons including the microtubules and the actin filaments constitute an internal framework. The cytoskeletons contribute to the cell wall biosynthesis by spatially and temporarily regulating the transportation and deposition of cell wall components. This tight control is achieved by the dynamic behavior of the cytoskeletons, but also through the tethering of these structures to the plasma membrane. This tethering may also extend beyond the plasma membrane and impact on the cell wall, possibly in the form of a feedback loop. In this review, we discuss the linking components between the cytoskeletons and the plasma membrane, and/or the cell wall. We also discuss the prospective roles of these components in cell wall biosynthesis and modifications, and aim to provide a platform for further studies in this field.

  13. Characterization of epidermal growth factor receptors on plasma membranes isolated from rat gastric mucosa

    SciTech Connect

    Hori, R.; Nomura, H.; Iwakawa, S.; Okumura, K. )

    1990-06-01

    The binding of human epidermal growth factor (hEGF), beta-urogastrone, to plasma membranes isolated from rat gastric mucosa was studied to characterize gastric EGF receptors. The binding of ({sup 125}I)hEGF was temperature dependent, reversible, and saturable. A single class of binding sites for EGF with a dissociation constant of 0.42 nM and maximal binding capacity of 42 fmol/mg protein was suggested. There was little change in the binding of ({sup 125}I)hEGF upon addition of peptide hormones (secretin, insulin), antiulcer drugs (cimetidine), or an ulcer-inducing reagent (aspirin). Cross-linking of ({sup 125}I)hEGF to gastric plasma membranes with the use of disuccinimidyl suberate resulted in the labeling of a protein of 150 kDa. These results indicate the presence of EGF receptors on plasma membranes of rat gastric mucosa.

  14. CFTR channel in oocytes from Xenopus laevis and its regulation by xShroom1 protein.

    PubMed

    Palma, Alejandra G; Galizia, Luciano; Kotsias, Basilio A; Marino, Gabriela I

    2016-05-01

    Shroom is a family of related proteins linked to the actin cytoskeleton. xShroom1 is constitutively expressed in Xenopus laevis oocytes, and it is required for the expression of the epithelial sodium channel (ENaC). As there is a close relationship between ENaC and the cystic fibrosis transmembrane regulator (CFTR), we examined the action of xShroom1 on CFTR expression and activity. Biotinylation was used to measure CFTR surface expression, and currents were registered with voltage clamp when stimulated with forskolin and 3-isobutyl-1-methylxanthine. Oocytes were coinjected with CFTR complementary RNAs (cRNAs) and xShroom1 sense or antisense oligonucleotides. We observed an increment in CFTR currents and CFTR surface expression in oocytes coinjected with CFTR and xShroom1 antisense oligonucleotides. MG-132, a proteasome inhibitor, did not prevent the increment in currents when xShroom1 was suppressed by antisense oligonucleotides. In addition, we inhibited the delivery of newly synthesized proteins to the plasma membrane with BFA and we found that the half-life of plasma membrane CFTR was prolonged when coinjected with the xShroom1 antisense oligonucleotides. Chloroquine, an inhibitor of the late endosome/lysosome, did not significantly increase CFTR currents when xShroom1 expression was inhibited. The higher expression of CFTR when xShroom1 is suppressed is in concordance with the functional studies suggesting that the suppression of the xShroom1 protein resulted in an increment in CFTR currents by promoting the increase of the half-life of CFTR in the plasma membrane. The role of xShroom1 in regulating CFTR expression could be relevant in the understanding of the channel malfunction in several diseases.

  15. Membrane proteins associated with sperm-oocyte interaction: A proteomic comparison between Kedah Kelantan (Bos indicus) and Mafriwal (Bos taurus × Bos indicus) sperm

    NASA Astrophysics Data System (ADS)

    Ashrafzadeh, Ali; Nathan, Sheila; Othman, Iekhsan; Yee, Tee Ting; Karsani, Saiful Anuar

    2013-11-01

    Production performance of European cattle breeds has significantly improved through various breeding programs. However, European breeds are more susceptible to heat stress compared to zebu cattle (Bos indicus) as their conception rate can range between 20 to 30% in hot seasons compared to winter. To identify cattle sperm proteins associated with zebu cattle higher fertility and heat tolerance in tropical environments, we utilised a proteomics-based approach to compare sperm from the highly fertile Malaysian indigenous breed, Kedah Kelantan (Bos indicus), with sperm from the sub-fertile crossbreed, Mafriwal (Bos taurus × Bos indicus). Frozen semen of three high performance bulls from each breed was processed to obtain live and pure sperm. Proteins were separated and gel bands were processed by in-gel tryptic digestion. For each breed, mass spectrometry data was acquired over 11 replicates. The analyzed data identified peptides with different expression levels (99% confidence level) and protein identification was determined by targeted MS/MS. Among the identified proteins associated with sperm-oocyte interaction, two proteins were up-regulated in Kedah Kelantan sperm and 7 proteins were up-regulated in or specific to Mafriwal. Our results suggest that the higher fertility of zebu cattle in tropical areas may not be related to more efficient sperm-oocyte interaction. Further analysis of the other regulated proteins in these two breeds may contribute further knowledge on the physiological reason/s for higher fertility and heat tolerance of Zebu cattle in tropical areas.

  16. S-Acylation of the cellulose synthase complex is essential for its plasma membrane localization.

    PubMed

    Kumar, Manoj; Wightman, Raymond; Atanassov, Ivan; Gupta, Anjali; Hurst, Charlotte H; Hemsley, Piers A; Turner, Simon

    2016-07-01

    Plant cellulose microfibrils are synthesized by a process that propels the cellulose synthase complex (CSC) through the plane of the plasma membrane. How interactions between membranes and the CSC are regulated is currently unknown. Here, we demonstrate that all catalytic subunits of the CSC, known as cellulose synthase A (CESA) proteins, are S-acylated. Analysis of Arabidopsis CESA7 reveals four cysteines in variable region 2 (VR2) and two cysteines at the carboxy terminus (CT) as S-acylation sites. Mutating both the VR2 and CT cysteines permits CSC assembly and trafficking to the Golgi but prevents localization to the plasma membrane. Estimates suggest that a single CSC contains more than 100 S-acyl groups, which greatly increase the hydrophobic nature of the CSC and likely influence its immediate membrane environment. PMID:27387950

  17. [Role of endoplasmic reticulum-plasma membrane junctions in intracellular calcium homeostasis and cardiovascular disease].

    PubMed

    Zhao, Ming; Jia, Hang-Huan; Xu, Man; Yu, Xiao-Jiang; Liu, Long-Zhu; Zang, Wei-Jin

    2016-08-25

    Calcium overload is one of the important mechanisms of cardiovascular disease. Endoplasmic reticulum is an important organelle which regulates intracellular calcium homeostasis by uptake, storage and mobilization of calcium. So it plays a critical role in regulation of intracellular calcium homeostasis. Endoplasmic reticulum, which is widely distributed in cytoplasm, has a large number of membrane junction sites. Recent studies have reported that these junction sites are distributed on plasma membrane and organelle membranes (mitochondria, lysosomes, Golgi apparatus, etc.), separately. They could form complexes to regulate calcium transport. In this review, we briefly outlined the recent research progresses of endoplasmic reticulum-plasma membrane junctions in intracellular calcium homeostasis and cardiovascular disease, which may offer a new strategy for prevention and treatment of cardiovascular disease. PMID:27546511

  18. Ergodic and nonergodic processes coexist in the plasma membrane as observed by single-molecule tracking

    PubMed Central

    Weigel, Aubrey V.; Simon, Blair; Tamkun, Michael M.; Krapf, Diego

    2011-01-01

    Diffusion in the plasma membrane of living cells is often found to display anomalous dynamics. However, the mechanism underlying this diffusion pattern remains highly controversial. Here, we study the physical mechanism underlying Kv2.1 potassium channel anomalous dynamics using single-molecule tracking. Our analysis includes both time series of individual trajectories and ensemble averages. We show that an ergodic and a nonergodic process coexist in the plasma membrane. The ergodic process resembles a fractal structure with its origin in macromolecular crowding in the cell membrane. The nonergodic process is found to be regulated by transient binding to the actin cytoskeleton and can be accurately modeled by a continuous-time random walk. When the cell is treated with drugs that inhibit actin polymerization, the diffusion pattern of Kv2.1 channels recovers ergodicity. However, the fractal structure that induces anomalous diffusion remains unaltered. These results have direct implications on the regulation of membrane receptor trafficking and signaling. PMID:21464280

  19. Na+/H+ Exchange Activity in the Plasma Membrane of Arabidopsis1

    PubMed Central

    Qiu, Quan-Sheng; Barkla, Bronwyn J.; Vera-Estrella, Rosario; Zhu, Jian-Kang; Schumaker, Karen S.

    2003-01-01

    In plants, Na+/H+ exchangers in the plasma membrane are critical for growth in high levels of salt, removing toxic Na+ from the cytoplasm by transport out of the cell. The molecular identity of a plasma membrane Na+/H+ exchanger in Arabidopsis (SOS1) has recently been determined. In this study, immunological analysis provided evidence that SOS1 localizes to the plasma membrane of leaves and roots. To characterize the transport activity of this protein, purified plasma membrane vesicles were isolated from leaves of Arabidopsis. Na+/H+ exchange activity, monitored as the ability of Na to dissipate an established pH gradient, was absent in plants grown without salt. However, exchange activity was induced when plants were grown in 250 mm NaCl and increased with prolonged salt exposure up to 8 d. H+-coupled exchange was specific for Na, because chloride salts of other monovalent cations did not dissipate the pH gradient. Na+/H+ exchange activity was dependent on Na (substrate) concentration, and kinetic analysis indicated that the affinity (apparent Km) of the transporter for Na+ is 22.8 mm. Data from two experimental approaches supports electroneutral exchange (one Na+ exchanged for one proton): (a) no change in membrane potential was measured during the exchange reaction, and (b) Na+/H+ exchange was unaffected by the presence or absence of a membrane potential. Results from this research provide a framework for future studies into the regulation of the plant plasma membrane Na+/H+ exchanger and its relative contribution to the maintenance of cellular Na+ homeostasis during plant growth in salt. PMID:12805632

  20. Heterogeneity of Arabinogalactan-Proteins on the Plasma Membrane of Rose Cells.

    PubMed Central

    Serpe, M. D.; Nothnagel, E. A.

    1996-01-01

    Arabinogalactan-proteins (AGPs) have been purified from the plasma membrane of suspension-cultured Paul's Scarlet rose (Rosa sp.) cells. The two most abundant and homogeneous plasma membrane AGP fractions were named plasma membrane AGP1 (PM-AGP1) and plasma membrane AGP2 (PM-AGP2) and had apparent molecular masses of 140 and 217 kD, respectively. Both PM-AGP1 and PM-AGP2 had [beta]-(1-3)-, [beta]-(1,6)-, and [beta]-(1,3,6)-galactopyranosyl residues, predominantly terminal [alpha]-arabinofuranosyl residues, and (1,4)- and terminal glucuronopyranosyl residues. The protein moieties of PM-AGP1 and PM-AGP2 were both rich in hydroxyproline, alanine, and serine, but differed in the abundance of hydroxyproline, which was 1.6 times higher in PM-AGP2 than in PM-AGP1. Another difference was the overall protein content, which was 3.7% (w/w) in PM-AGP1 and 15% in PM-AGP2. As judged by their behavior on reverse-phase chromatography, PM-AGP1 and PM-AGP2 were not more hydrophobic than AGPs from the cell wall or culture medium. In contrast, a minor plasma membrane AGP fraction eluted later on reverse-phase chromatography and was more negatively charged at pH 5 than either PM-AGP1 or PM-AGP2. The more negatively charged fraction contained molecules with a glycosyl composition characteristic of AGPs and included at least two different macromolecules. The results of this investigation indicate that Rosa plasma membrane contains at least four distinct AGPs or AGP-like molecules. These molecules differed from each other in size, charge, hydrophobicity, amino-acyl composition, and/or protein content. PMID:12226444

  1. Effects of freezing and cold acclimation on the plasma membrane of isolated protoplasts

    SciTech Connect

    Steponkus, P.L.

    1991-01-01

    The principal goal of our program is to provide a mechanistic understanding of the cellular and molecular aspects of freezing injury and cold acclimation from a perspective of the structural and functional integrity of the plasma membrane -- the primary site of freezing injury in winter cereals. Our immediate goals are (1) to provide an understanding of the mechanism by which freeze-induced dehydration affects the formation of aparticulate domains and lamellar-to-hexagonal{sub {parallel}} phase transitions in the plasma membrane of NA protoplasts, (2) to characterize the cellular and molecular mechanisms by which cold acclimation and cryoprotectants preclude or diminish these alterations in the plasma membrane of ACC protoplasts and (3) to elucidate the molecular basis for the lesion that limits the maximum freezing tolerance of cold-acclimated winter rye and which is believed to be the formation of domains of interdigitated lipids in the L{sub {beta}} phase. This past year our efforts have included (a) characterization of the ultrastructural changes in the plasma membrane that are associated with freezing injury of protoplasts isolated from cold-acclimated rye leaves; (b) determinations of the hydration characteristics of plasma membrane lipids and model lipid mixtures, including the thermal dependence of the hydration characteristics; (c) studies of dehydration-induced phase transitions and demixing in model systems of plasma membrane lipids; (d) differential scanning calorimetry studies to determine the amount of freezable/unfreezable water that is associated with lipids; and (e) preliminary cryo-SEM observations of in situ ice formation in rye leaves. 11 refs.

  2. Identification of type-2 phosphatidic acid phosphohydrolase (PAPH-2) in neutrophil plasma membranes.

    PubMed

    Boder, E; Taylor, G; Akard, L; Jansen, J; English, D

    1994-11-01

    Plasma membrane phosphatidic acid phosphohydrolase (PAPH) plays an important role in signal transduction by converting phosphatidic acid to diacylglycerol. PAPH-2, a Mg(2+)-independent, detergent-dependent enzyme involved in cellular signal transduction, is reportedly absent from the plasma membranes of neutrophilic leukocytes, a cell that responds to metabolic stimulation with abundant phospholipase D-dependent diacylglycerol generation. The present study was designed to resolve this discrepancy, focusing on the influence of cellular disruption techniques, detergent availability and cation sensitivity on the apparent distribution of PAPH in neutrophil subcellular fractions. The results clearly indicate the presence of two distinct types of PAPH within the particulate and cytosolic fractions of disrupted cells. Unlike the cytosolic enzyme, the particulate enzymes was not potentiated by magnesium and was strongly detergent-dependent. The soluble and particulate enzymes displayed dissimilar pH profiles. Separation of neutrophil particulate material into fractions rich in plasma membranes, specific granules and azurophilic granules by high speed discontinuous density gradient centrifugation revealed that the majority of the particulate activity was confined to plasma membranes. This activity was not inhibited by pretreatment with n-ethyl-maleimide in concentrations as high as 25 mM. PAPH activity recovered in the cytosolic fraction of disrupted neutrophils was almost completely inhibited by 5.0 mM n-ethylmaleimide. We conclude that resting neutrophils possess n-ethylmaleimide-resistant PAPH (type 2) within their plasma membranes. This enzyme may markedly influence the kinetics of cell activation by metabolizing second messengers generated as a result of activation of plasma membrane phospholipase D.

  3. Membrane potential shapes regulation of dopamine transporter trafficking at the plasma membrane

    PubMed Central

    Richardson, Ben D.; Saha, Kaustuv; Krout, Danielle; Cabrera, Elizabeth; Felts, Bruce; Henry, L. Keith; Swant, Jarod; Zou, Mu-Fa; Newman, Amy Hauck; Khoshbouei, Habibeh

    2016-01-01

    The dopaminergic system is essential for cognitive processes, including reward, attention and motor control. In addition to DA release and availability of synaptic DA receptors, timing and magnitude of DA neurotransmission depend on extracellular DA-level regulation by the dopamine transporter (DAT), the membrane expression and trafficking of which are highly dynamic. Data presented here from real-time TIRF (TIRFM) and confocal microscopy coupled with surface biotinylation and electrophysiology suggest that changes in the membrane potential alone, a universal yet dynamic cellular property, rapidly alter trafficking of DAT to and from the surface membrane. Broadly, these findings suggest that cell-surface DAT levels are sensitive to membrane potential changes, which can rapidly drive DAT internalization from and insertion into the cell membrane, thus having an impact on the capacity for DAT to regulate extracellular DA levels. PMID:26804245

  4. Glycaemia regulates the glucose transporter number in the plasma membrane of rat skeletal muscle.

    PubMed Central

    Dimitrakoudis, D; Ramlal, T; Rastogi, S; Vranic, M; Klip, A

    1992-01-01

    The number of glucose transporters was measured in isolated membranes from diabetic-rat skeletal muscle to determine the role of circulating blood glucose levels in the control of glucose uptake into skeletal muscle. Three experimental groups of animals were investigated in the post-absorptive state: normoglycaemic/normoinsulinaemic, hyperglycaemic/normoinsulinaemic and hyperglycaemic/normoinsulinaemic made normoglycaemic/normoinsulinaemic by phlorizin treatment. Hyperglycaemia caused a reversible decrease in total transporter number, as measured by cytochalasin B binding, in both plasma membranes and internal membranes of skeletal muscle. Changes in GLUT4 glucose transporter protein mirrored changes in cytochalasin B binding in plasma membranes. However, there was no recovery of GLUT4 levels in intracellular membranes with correction of glycaemia. GLUT4 mRNA levels decreased with hyperglycaemia and recovered only partially with correction of glycaemia. Conversely, GLUT1 glucose transporters were only detectable in the plasma membranes; the levels of this protein varied directly with glycaemia, i.e. in the opposite direction to GLUT4 glucose transporters. This study demonstrates that hyperglycaemia, in the absence of hypoinsulinaemia, is capable of down-regulating the glucose transport system in skeletal muscle, the major site of peripheral resistance to insulin-stimulated glucose transport in diabetes. Furthermore, correction of hyperglycaemia causes a complete restoration of the transport system in the basal state (determined by the transporter number in the plasma membrane), but possibly only an incomplete recovery of the transport system's ability to respond to insulin (since there is no recovery of GLUT4 levels in the intracellular membrane insulin-responsive transporter pool). Finally, the effect of hyperglycaemia is specific for glucose transporter isoforms, with GLUT1 and GLUT4 proteins varying respectively in parallel and opposite directions to levels of

  5. Roles of charged particles and reactive species on cell membrane permeabilization induced by atmospheric-pressure plasma irradiation

    NASA Astrophysics Data System (ADS)

    Sasaki, Shota; Kanzaki, Makoto; Hokari, Yutaro; Tominami, Kanako; Mokudai, Takayuki; Kanetaka, Hiroyasu; Kaneko, Toshiro

    2016-07-01

    As factors that influence cell membrane permeabilization during direct and indirect atmospheric-pressure plasma irradiation, charged particle influx, superoxide anion radicals (O2 -•), and hydrogen peroxide (H2O2) in plasma-irradiated solution were evaluated. These are the three strong candidate factors and might multiply contribute to cell membrane permeabilization. In particular, a shorter plasma diffusion distance leads to the enhancement of the direct effects such as charged particle influx and further increase cell membrane permeability. In addition, O2 -• dissipates over time (a life span of the order of minutes) in plasma-irradiated water, and the deactivation of a plasma-irradiated solution in term of cell membrane permeabilization occurs in a life span of the same order. These results could promote the understanding of the mechanism of plasma-induced cell membrane permeabilization.

  6. Plasma Membrane Repair Is Regulated Extracellularly by Proteases Released from Lysosomes.

    PubMed

    Castro-Gomes, Thiago; Corrotte, Matthias; Tam, Christina; Andrews, Norma W

    2016-01-01

    Eukaryotic cells rapidly repair wounds on their plasma membrane. Resealing is Ca(2+)-dependent, and involves exocytosis of lysosomes followed by massive endocytosis. Extracellular activity of the lysosomal enzyme acid sphingomyelinase was previously shown to promote endocytosis and wound removal. However, whether lysosomal proteases released during cell injury participate in resealing is unknown. Here we show that lysosomal proteases regulate plasma membrane repair. Extracellular proteolysis is detected shortly after cell wounding, and inhibition of this process blocks repair. Conversely, surface protein degradation facilitates plasma membrane resealing. The abundant lysosomal cysteine proteases cathepsin B and L, known to proteolytically remodel the extracellular matrix, are rapidly released upon cell injury and are required for efficient plasma membrane repair. In contrast, inhibition of aspartyl proteases or RNAi-mediated silencing of the lysosomal aspartyl protease cathepsin D enhances resealing, an effect associated with the accumulation of active acid sphingomyelinase on the cell surface. Thus, secreted lysosomal cysteine proteases may promote repair by facilitating membrane access of lysosomal acid sphingomyelinase, which promotes wound removal and is subsequently downregulated extracellularly by a process involving cathepsin D. PMID:27028538

  7. Identification of DNA-binding proteins on human umbilical vein endothelial cell plasma membrane.

    PubMed Central

    Chan, T M; Frampton, G; Cameron, J S

    1993-01-01

    The binding of anti-DNA antibodies to the endothelial cell is mediated through DNA, which forms a bridge between the immunoglobulin and the plasma membrane. We have shown that 32P-labelled DNA bound to the plasma membrane of human umbilical vein endothelial cells (HUVEC) by a saturable process, which could be competitively inhibited by non-radiolabelled DNA. In addition, DNA-binding was enhanced in HUVEC that had been treated with IL-1 alpha or tumour necrosis factor-alpha (TNF-alpha). DNA-binding proteins of mol. wt 46,000, 92,000, and 84,000 were identified by the binding of 32P-labelled DNA to plasma membrane proteins separated on SDS-PAGE. DNA-binding proteins of mol. wt 46,000 and 84,000 were also present in the cytosol and nucleus. Murine anti-DNA MoAb410 bound to a single band, at mol. wt 46,000, of plasma membrane protein, in the presence of DNA. Our results showed that DNA-binding proteins are present in different cellular fractions of endothelial cells. DNA-binding proteins on the cell membrane could participate in the in situ formation of immune deposits; and their presence in the cell nucleus suggests a potential role in the modulation of cell function. Images Fig. 3 Fig. 4 PMID:8419070

  8. Ssh4, Rcr2 and Rcr1 affect plasma membrane transporter activity in Saccharomyces cerevisiae.

    PubMed

    Kota, Jhansi; Melin-Larsson, Monika; Ljungdahl, Per O; Forsberg, Hanna

    2007-04-01

    Nutrient uptake in the yeast Saccharomyces cerevisiae is a highly regulated process. Cells adjust levels of nutrient transporters within the plasma membrane at multiple stages of the secretory and endosomal pathways. In the absence of the ER-membrane-localized chaperone Shr3, amino acid permeases (AAP) inefficiently fold and are largely retained in the ER. Consequently, shr3 null mutants exhibit greatly reduced rates of amino acid uptake due to lower levels of AAPs in their plasma membranes. To further our understanding of mechanisms affecting AAP localization, we identified SSH4 and RCR2 as high-copy suppressors of shr3 null mutations. The overexpression of SSH4, RCR2, or the RCR2 homolog RCR1 increases steady-state AAP levels, whereas the genetic inactivation of these genes reduces steady-state AAP levels. Additionally, the overexpression of any of these suppressor genes exerts a positive effect on phosphate and uracil uptake systems. Ssh4 and Rcr2 primarily localize to structures associated with the vacuole; however, Rcr2 also localizes to endosome-like vesicles. Our findings are consistent with a model in which Ssh4, Rcr2, and presumably Rcr1, function within the endosome-vacuole trafficking pathway, where they affect events that determine whether plasma membrane proteins are degraded or routed to the plasma membrane.

  9. Plasma Membrane Repair Is Regulated Extracellularly by Proteases Released from Lysosomes

    PubMed Central

    Castro-Gomes, Thiago; Corrotte, Matthias; Tam, Christina; Andrews, Norma W.

    2016-01-01

    Eukaryotic cells rapidly repair wounds on their plasma membrane. Resealing is Ca2+-dependent, and involves exocytosis of lysosomes followed by massive endocytosis. Extracellular activity of the lysosomal enzyme acid sphingomyelinase was previously shown to promote endocytosis and wound removal. However, whether lysosomal proteases released during cell injury participate in resealing is unknown. Here we show that lysosomal proteases regulate plasma membrane repair. Extracellular proteolysis is detected shortly after cell wounding, and inhibition of this process blocks repair. Conversely, surface protein degradation facilitates plasma membrane resealing. The abundant lysosomal cysteine proteases cathepsin B and L, known to proteolytically remodel the extracellular matrix, are rapidly released upon cell injury and are required for efficient plasma membrane repair. In contrast, inhibition of aspartyl proteases or RNAi-mediated silencing of the lysosomal aspartyl protease cathepsin D enhances resealing, an effect associated with the accumulation of active acid sphingomyelinase on the cell surface. Thus, secreted lysosomal cysteine proteases may promote repair by facilitating membrane access of lysosomal acid sphingomyelinase, which promotes wound removal and is subsequently downregulated extracellularly by a process involving cathepsin D. PMID:27028538

  10. Amine Enrichment of Thin-Film Composite Membranes via Low Pressure Plasma Polymerization for Antimicrobial Adhesion.

    PubMed

    Reis, Rackel; Dumée, Ludovic F; He, Li; She, Fenghua; Orbell, John D; Winther-Jensen, Bjorn; Duke, Mikel C

    2015-07-15

    Thin-film composite membranes, primarily based on poly(amide) (PA) semipermeable materials, are nowadays the dominant technology used in pressure driven water desalination systems. Despite offering superior water permeation and salt selectivity, their surface properties, such as their charge and roughness, cannot be extensively tuned due to the intrinsic fabrication process of the membranes by interfacial polymerization. The alteration of these properties would lead to a better control of the materials surface zeta potential, which is critical to finely tune selectivity and enhance the membrane materials stability when exposed to complex industrial waste streams. Low pressure plasma was employed to introduce amine functionalities onto the PA surface of commercially available thin-film composite (TFC) membranes. Morphological changes after plasma polymerization were analyzed by SEM and AFM, and average surface roughness decreased by 29%. Amine enrichment provided isoelectric point changes from pH 3.7 to 5.2 for 5 to 15 min of plasma polymerization time. Synchrotron FTIR mappings of the amine-modified surface indicated the addition of a discrete 60 nm film to the PA layer. Furthermore, metal affinity was confirmed by the enhanced binding of silver to the modified surface, supported by an increased antimicrobial functionality with demonstrable elimination of E. coli growth. Essential salt rejection was shown minimally compromised for faster polymerization processes. Plasma polymerization is therefore a viable route to producing functional amine enriched thin-film composite PA membrane surfaces. PMID:26083007

  11. Ca2+-Transport through Plasma Membrane as a Test of Auxin Sensitivity

    PubMed Central

    Kirpichnikova, Anastasia A.; Rudashevskaya, Elena L.; Yemelyanov, Vladislav V.; Shishova, Maria F.

    2014-01-01

    Auxin is one of the crucial regulators of plant growth and development. The discovered auxin cytosolic receptor (TIR1) is not involved in the perception of the hormone signal at the plasma membrane. Instead, another receptor, related to the ABP1, auxin binding protein1, is supposed to be responsible for the perception at the plasma membrane. One of the fast and sensitive auxin-induced reactions is an increase of Ca2+ cytosolic concentration, which is suggested to be dependent on the activation of Ca2+ influx through the plasma membrane. This investigation was carried out with a plasmalemma enriched vesicle fraction, obtained from etiolated maize coleoptiles. The magnitude of Ca2+ efflux through the membrane vesicles was estimated according to the shift of potential dependent fluorescent dye diS-C3-(5). The obtained results showed that during coleoptiles ageing (3rd, 4th and 5th days of seedling etiolated growth) the magnitude of Ca2+ efflux from inside-out vesicles was decreased. Addition of ABP1 led to a recovery of Ca2+ efflux to the level of the youngest and most sensitive cells. Moreover, the efflux was more sensitive, responding from 10−8 to 10−6 M 1-NAA, in vesicles containing ABP1, whereas native vesicles showed the highest efflux at 10−6 M 1-NAA. We suggest that auxin increases plasma membrane permeability to Ca2+ and that ABP1 is involved in modulation of this reaction. PMID:27135501

  12. Amine Enrichment of Thin-Film Composite Membranes via Low Pressure Plasma Polymerization for Antimicrobial Adhesion.

    PubMed

    Reis, Rackel; Dumée, Ludovic F; He, Li; She, Fenghua; Orbell, John D; Winther-Jensen, Bjorn; Duke, Mikel C

    2015-07-15

    Thin-film composite membranes, primarily based on poly(amide) (PA) semipermeable materials, are nowadays the dominant technology used in pressure driven water desalination systems. Despite offering superior water permeation and salt selectivity, their surface properties, such as their charge and roughness, cannot be extensively tuned due to the intrinsic fabrication process of the membranes by interfacial polymerization. The alteration of these properties would lead to a better control of the materials surface zeta potential, which is critical to finely tune selectivity and enhance the membrane materials stability when exposed to complex industrial waste streams. Low pressure plasma was employed to introduce amine functionalities onto the PA surface of commercially available thin-film composite (TFC) membranes. Morphological changes after plasma polymerization were analyzed by SEM and AFM, and average surface roughness decreased by 29%. Amine enrichment provided isoelectric point changes from pH 3.7 to 5.2 for 5 to 15 min of plasma polymerization time. Synchrotron FTIR mappings of the amine-modified surface indicated the addition of a discrete 60 nm film to the PA layer. Furthermore, metal affinity was confirmed by the enhanced binding of silver to the modified surface, supported by an increased antimicrobial functionality with demonstrable elimination of E. coli growth. Essential salt rejection was shown minimally compromised for faster polymerization processes. Plasma polymerization is therefore a viable route to producing functional amine enriched thin-film composite PA membrane surfaces.

  13. Impact of tightly focused femtosecond laser pulses on nucleolus-like bodies of mouse GV oocyte and the ability of mouse oocytes to mature.

    PubMed

    Astafev, A A; Zalesskiy, A D; Zatsepina, O V; Kostrov, A N; Krivoharchenko, A S; Osychenko, A A; Serobyan, G A; Nadtochenko, V A

    2016-03-01

    Using femtosecond laser radiation, nucleolus-like bodies (NLBs) of mouse oocytes were locally dissected without damage to zona pellucida, cytoplasmic membrane, nuclear membrane, and nucleoplasm surrounding NLB. It was found that, after dissection of 2.7 × 10(-11) cm(3) of NLB material, which is approximately 5.2% of 10 μm NLB volume, the probability of germinal vesicle oocyte development to metaphase II stage of meiosis decreased 3-7 times compared to the non-treated oocytes. This result indicates that NLB material organization is significant for mouse oocyte maturation. PMID:27193718

  14. Structure-Function Relationships of ErbB RTKs in the Plasma Membrane of Living Cells

    PubMed Central

    Arndt-Jovin, Donna J.; Botelho, Michelle G.; Jovin, Thomas M.

    2014-01-01

    We review the states of the ErbB family of receptor tyrosine kinases (RTKs), primarily the EGF receptor (EGFR, ErbB1, HER1) and the orphan receptor ErbB2 as they exist in living mammalian cells, focusing on four main aspects: (1) aggregation state and distribution in the plasma membrane; (2) conformational features of the receptors situated in the plasma membrane, compared to the crystallographic structures of the isolated extracellular domains; (3) coupling of receptor disposition on filopodia with the transduction of signaling ligand gradients; and (4) ligand-independent receptor activation by application of a magnetic field. PMID:24691959

  15. Localized topological changes of the plasma membrane upon exocytosis visualized by polarized TIRFM

    PubMed Central

    Onoa, Bibiana; Edwards, Robert H.; Holz, Ronald W.; Axelrod, Daniel

    2010-01-01

    Total internal reflection fluorescence microscopy (TIRFM) images the plasma membrane–cytosol interface and has allowed insights into the behavior of individual secretory granules before and during exocytosis. Much less is known about the dynamics of the other partner in exocytosis, the plasma membrane. In this study, we report the implementation of a TIRFM-based polarization technique to detect rapid submicrometer changes in plasma membrane topology as a result of exocytosis. A theoretical analysis of the technique is presented together with image simulations of predicted topologies of the postfusion granule membrane–plasma membrane complex. Experiments on diI-stained bovine adrenal chromaffin cells using polarized TIRFM demonstrate rapid and varied submicrometer changes in plasma membrane topology at sites of exocytosis that occur immediately upon fusion. We provide direct evidence for a persistent curvature in the exocytotic region that is altered by inhibition of dynamin guanosine triphosphatase activity and is temporally distinct from endocytosis measured by VMAT2-pHluorin. PMID:20142424

  16. Spatiotemporal mapping of diffusion dynamics and organization in plasma membranes

    NASA Astrophysics Data System (ADS)

    Bag, Nirmalya; Ng, Xue Wen; Sankaran, Jagadish; Wohland, Thorsten

    2016-09-01

    Imaging fluorescence correlation spectroscopy (FCS) and the related FCS diffusion law have been applied in recent years to investigate the diffusion modes of lipids and proteins in membranes. These efforts have provided new insights into the membrane structure below the optical diffraction limit, new information on the existence of lipid domains, and on the influence of the cytoskeleton on membrane dynamics. However, there has been no systematic study to evaluate how domain size, domain density, and the probe partition coefficient affect the resulting imaging FCS diffusion law parameters. Here, we characterize the effects of these factors on the FCS diffusion law through simulations and experiments on lipid bilayers and live cells. By segmenting images into smaller 7  ×  7 pixel areas, we can evaluate the FCS diffusion law on areas smaller than 2 µm and thus provide detailed maps of information on the membrane structure and heterogeneity at this length scale. We support and extend this analysis by deriving a mathematical expression to calculate the mean squared displacement (MSDACF) from the autocorrelation function of imaging FCS, and demonstrate that the MSDACF plots depend on the existence of nanoscopic domains. Based on the results, we derive limits for the detection of domains depending on their size, density, and relative viscosity in comparison to the surroundings. Finally, we apply these measurements to bilayers and live cells using imaging total internal reflection FCS and single plane illumination microscopy FCS.

  17. Specific photoaffinity labeling of two plasma membrane polypeptides with an azido auxin

    SciTech Connect

    Hicks, G.R.; Rayle, D.L.; Jones, A.M.; Lomax, T.L. )

    1989-07-01

    Plasma membrane vesicles were isolated from zucchini (Cucurbita pepo) hypocotyl tissue by aqueous phase partitioning and assessed for homogeneity by the use of membrane-specific enzyme assays. The highly pure plasma membrane vesicles maintained a pH differential across the membrane and accumulated a tritiated azido analogue of 3-indoleacetic acid (IAA), 5-azido-(7-{sup 3}H)IAA(({sup 3}H)N{sub 3}IAA), in a manner similar to the accumulation of ({sup 3}H)IAA. The association of the ({sup 3}H)N{sub 3}IAA with membrane vesicles was saturable and subject to competition by IAA and auxin analogues. Auxin-binding proteins were photoaffinity labeled by addition of ({sup 3}H)N{sub 3}IAA to plasma membrane vesicles prior to exposure to UV light and detected by subsequent NaDodSO{sub 4}/PAGE and fluorography. When the reaction temperature was lowered to {minus}196{degree}C, high-specific-activity labeling of a 40-kDa and a 42-kDa polypeptide was observed. Collectively, these results suggest that the radiolabeled polypeptides are auxin receptors. The covalent nature of the label should facilitate purification and further characterization of the receptors.

  18. Effect of oxidative stress on plasma membrane fluidity of THP-1 induced macrophages.

    PubMed

    de la Haba, Carlos; Palacio, José R; Martínez, Paz; Morros, Antoni

    2013-02-01

    Plasma membrane is one of the preferential targets of reactive oxygen species which cause lipid peroxidation. This process modifies membrane properties such as membrane fluidity, a very important physical feature known to modulate membrane protein localization and function. The aim of this study is to evaluate the effect of oxidative stress on plasma membrane fluidity regionalization of single living THP-1 macrophages. These cells were oxidized with H(2)O(2) at different concentrations, and plasma membrane fluidity was analyzed by two-photon microscopy in combination with the environment-sensitive probe Laurdan. Results show a significant H(2)O(2) concentration dependent increase in the frequency of rigid lipid regions, mainly attributable to lipid rafts, at the expense of the intermediate fluidity regions. A novel statistical analysis evaluated changes in size and number of lipid raft domains under oxidative stress conditions, as lipid rafts are platforms aiding cell signaling and are thought to have relevant roles in macrophage functions. It is shown that H(2)O(2) causes an increase in the number, but not the size, of raft domains. As macrophages are highly resistant to H(2)O(2), these new raft domains might be involved in cell survival pathways.

  19. Prostasomes of canine seminal plasma - zinc-binding ability and effects on motility characteristics and plasma membrane integrity of spermatozoa.

    PubMed

    Mogielnicka-Brzozowska, M; Strzeżek, R; Wasilewska, K; Kordan, W

    2015-06-01

    Prostasomes are small lipid membrane-confined vesicles that are involved in various fertilization-related processes. The aim of this study was to demonstrate canine seminal plasma prostasomes' ability to bind zinc ions, as well as examining their effects on sperm motility characteristics and plasma membrane integrity during cold storage. Ejaculates, collected from five cross-bred dogs (n = 50), were subjected to ultracentrifugation followed by gel filtration (GF) on a Superose 6 column. Prostasomes appeared as a single fraction in the elution profile. Transmission electron microscopy (TEM) analysis of canine prostasomes revealed the presence of membrane vesicles with diameters ranging from 20.3 to 301 nm. The zinc-affinity chromatography on a Chelating Sepharose Fast Flow - Zn(2 +) showed that from 93 to 100% of the prostasome proteins bind zinc ions (P(+) Zn). SDS-PAGE revealed that canine P(+) Zn comprised four protein bands, with low molecular weights (10.2-12 kDa). We have also shown a positive effect of prostasomes (p < 0.05), especially variant B (2% of total seminal plasma protein) on canine sperm motility parameters after 2 h storage at 5°C (TMOT%, 44.75 ± 5.18) and PMOT%, 12.42 ± 1.59) and VAP, VSL, VCL, when compared with Control (TMOT%, 7.30 ± 1.41 and PMOT%, 1.70 ± 0.42). Higher percentage of spermatozoa with intact plasma membrane (SYBR/PI dual staining) and intact acrosome (Giemsa stained), after 2 h storage at 5°C, was showed, in variant A (1.5% of total seminal plasma protein) and B, when compared with Control and variant C (2.5% of total seminal plasma protein). The prostasomes' effect on motility and plasma membrane integrity of canine cold-stored spermatozoa may be related to their ability to bind zinc ions and regulate their availability to the sperm.

  20. Membrane-based, sedimentation-assisted plasma separator for point-of-care applications.

    PubMed

    Liu, Changchun; Mauk, Michael; Gross, Robert; Bushman, Frederic D; Edelstein, Paul H; Collman, Ronald G; Bau, Haim H

    2013-11-01

    Often, high-sensitivity, point-of-care (POC) clinical tests, such as HIV viral load, require large volumes of plasma. Although centrifuges are ubiquitously used in clinical laboratories to separate plasma from whole blood, centrifugation is generally inappropriate for on-site testing. Suitable alternatives are not readily available to separate the relatively large volumes of plasma from milliliters of blood that may be needed to meet stringent limit-of-detection specifications for low-abundance target molecules. We report on a simple-to-use, low-cost, pump-free, membrane-based, sedimentation-assisted plasma separator capable of separating a relatively large volume of plasma from undiluted whole blood within minutes. This plasma separator consists of an asymmetric, porous, polysulfone membrane housed in a disposable chamber. The separation process takes advantage of both gravitational sedimentation of blood cells and size exclusion-based filtration. The plasma separator demonstrated a "blood in-plasma out" capability, consistently extracting 275 ± 33.5 μL of plasma from 1.8 mL of undiluted whole blood within less than 7 min. The device was used to separate plasma laden with HIV viruses from HIV virus-spiked whole blood with recovery efficiencies of 95.5% ± 3.5%, 88.0% ± 9.5%, and 81.5% ± 12.1% for viral loads of 35,000, 3500, and 350 copies/mL, respectively. The separation process is self-terminating to prevent excessive hemolysis. The HIV-laden plasma was then injected into our custom-made microfluidic chip for nucleic acid testing and was successfully subjected to reverse-transcriptase loop-mediated isothermal amplification (RT-LAMP), demonstrating that the plasma is sufficiently pure to support high-efficiency nucleic acid amplification.

  1. Membrane-based, sedimentation-assisted plasma separator for point-of-care applications

    PubMed Central

    Liu, Changchun; Mauk, Michael; Gross, Robert; Bushman, Frederic D.; Edelstein, Paul H.; Collman, Ronald G.; Bau, Haim H.

    2014-01-01

    Often, high sensitivity, point of care, clinical tests, such as HIV viral load, require large volumes of plasma. Although centrifuges are ubiquitously used in clinical laboratories to separate plasma from whole blood, centrifugation is generally inappropriate for on-site testing. Suitable alternatives are not readily available to separate the relatively large volumes of plasma from milliliters of blood that may be needed to meet stringent limit-of-detection specifications for low abundance target molecules. We report on a simple to use, low-cost, pump-free, membrane-based, sedimentation-assisted plasma separator capable of separating a relatively large volume of plasma from undiluted whole blood within minutes. This plasma separator consists of an asymmetric, porous, polysulfone membrane housed in a disposable chamber. The separation process takes advantage of both gravitational sedimentation of blood cells and size exclusion-based filtration. The plasma separator demonstrated a “blood in-plasma out” capability, consistently extracting 275 ±33.5 μL of plasma from 1.8 mL of undiluted whole blood in less than 7 min. The device was used to separate plasma laden with HIV viruses from HIV virus-spiked whole blood with recovery efficiencies of 95.5% ± 3.5%, 88.0% ± 9.5%, and 81.5% ± 12.1% for viral loads of 35,000, 3,500 and 350 copies/mL, respectively. The separation process is self-terminating to prevent excessive hemolysis. The HIV-laden plasma was then injected into our custom-made microfluidic chip for nucleic acid Testing And Was Successfully Subjected To Reverse Transcriptase Loop mediated isothermal amplification (RT-LAMP), demonstrating that the plasma is sufficiently pure to support high efficiency nucleic acid amplification. PMID:24099566

  2. Role of lipid-induced changes in plasma membrane in the biophysical shunt theory of psychopathology.

    PubMed

    Naisberg, Y; Weizman, A

    1997-04-01

    The existence of a lipid factor that either causes faulty lipid metabolism or directly contributes to the emergence of a biophysical shunt in neuronal membrane ionic flow propagation is proposed. The neuronal membrane contains a remarkable amount of phospholipids, glycolipids and cholesterol. It is assumed that, under certain unfavorable intrinsic states, the plasma membrane's lipid order and composition and, consequently, its cholesterol-to-phospholipid ratio, may change. This, in turn, may significantly modify membrane fluidity, altering the essential physical properties in the affected portions of the membrane and causing a disarray in the adjacent ion channels, leading to the establishment of a biophysical shunt in a loop-like operation, forming the basis for a variety of mental disorders. The present model offers a diet-induced lipid correction for the relief of psychopathological problems.

  3. Cross-tolerance of human placental plasma membranes of smokers to fluidizing effects of alcohol

    SciTech Connect

    Sastry, B.V.R.; Horst, M.A.; Naukam, R.J. )

    1991-03-11

    There is cross-tolerance between ethanol and several centrally acting drugs at the membrane level. In order to evaluate cross-tolerance between maternal smoking during pregnancy and alcohol, the authors have prepared plasma membranes of human term placentas from nonsmokers (NS, n=5) and smokers (S, 24 {plus minus} 8 cigarettes/day, n=5) and studied their microviscosities by steady state fluorescence polarization using trans-1,6-diphenyl-1,3,5-hexatriene as a fluorescent probe. These experiments gave the following results: (a) microviscosity was increased by maternal smoking; (b) alcohol decreased microviscosity of the membranes of smokers; (c) exogenous nicotine did not exert any significant effect on the membranes of smokers and nonsmokers. Therefore, the increase in the rigidity of placental plasma membranes is due to chronic smoking, and these membranes are tolerant to the fluidizing effects of alcohol. Cross-tolerance between smoking and ethanol suggests a common hydrophobic locus of the apparent adaptation at the membrane level.

  4. Membrane Protein Mobility and Orientation Preserved in Supported Bilayers Created Directly from Cell Plasma Membrane Blebs.

    PubMed

    Richards, Mark J; Hsia, Chih-Yun; Singh, Rohit R; Haider, Huma; Kumpf, Julia; Kawate, Toshimitsu; Daniel, Susan

    2016-03-29

    Membrane protein interactions with lipids are crucial for their native biological behavior, yet traditional characterization methods are often carried out on purified protein in the absence of lipids. We present a simple method to transfer membrane proteins expressed in mammalian cells to an assay-friendly, cushioned, supported lipid bilayer platform using cell blebs as an intermediate. Cell blebs, expressing either GPI-linked yellow fluorescent proteins or neon-green fused transmembrane P2X2 receptors, were induced to rupture on glass surfaces using PEGylated lipid vesicles, which resulted in planar supported membranes with over 50% mobility for multipass transmembrane proteins and over 90% for GPI-linked proteins. Fluorescent proteins were tracked, and their diffusion in supported bilayers characterized, using single molecule tracking and moment scaling spectrum (MSS) analysis. Diffusion was characterized for individual proteins as either free or confined, revealing details of the local lipid membrane heterogeneity surrounding the protein. A particularly useful result of our bilayer formation process is the protein orientation in the supported planar bilayer. For both the GPI-linked and transmembrane proteins used here, an enzymatic assay revealed that protein orientation in the planar bilayer results in the extracellular domains facing toward the bulk, and that the dominant mode of bleb rupture is via the "parachute" mechanism. Mobility, orientation, and preservation of the native lipid environment of the proteins using cell blebs offers advantages over proteoliposome reconstitution or disrupted cell membrane preparations, which necessarily result in significant scrambling of protein orientation and typically immobilized membrane proteins in SLBs. The bleb-based bilayer platform presented here is an important step toward integrating membrane proteomic studies on chip, especially for future studies aimed at understanding fundamental effects of lipid interactions

  5. Membrane Protein Mobility and Orientation Preserved in Supported Bilayers Created Directly from Cell Plasma Membrane Blebs.

    PubMed

    Richards, Mark J; Hsia, Chih-Yun; Singh, Rohit R; Haider, Huma; Kumpf, Julia; Kawate, Toshimitsu; Daniel, Susan

    2016-03-29

    Membrane protein interactions with lipids are crucial for their native biological behavior, yet traditional characterization methods are often carried out on purified protein in the absence of lipids. We present a simple method to transfer membrane proteins expressed in mammalian cells to an assay-friendly, cushioned, supported lipid bilayer platform using cell blebs as an intermediate. Cell blebs, expressing either GPI-linked yellow fluorescent proteins or neon-green fused transmembrane P2X2 receptors, were induced to rupture on glass surfaces using PEGylated lipid vesicles, which resulted in planar supported membranes with over 50% mobility for multipass transmembrane proteins and over 90% for GPI-linked proteins. Fluorescent proteins were tracked, and their diffusion in supported bilayers characterized, using single molecule tracking and moment scaling spectrum (MSS) analysis. Diffusion was characterized for individual proteins as either free or confined, revealing details of the local lipid membrane heterogeneity surrounding the protein. A particularly useful result of our bilayer formation process is the protein orientation in the supported planar bilayer. For both the GPI-linked and transmembrane proteins used here, an enzymatic assay revealed that protein orientation in the planar bilayer results in the extracellular domains facing toward the bulk, and that the dominant mode of bleb rupture is via the "parachute" mechanism. Mobility, orientation, and preservation of the native lipid environment of the proteins using cell blebs offers advantages over proteoliposome reconstitution or disrupted cell membrane preparations, which necessarily result in significant scrambling of protein orientation and typically immobilized membrane proteins in SLBs. The bleb-based bilayer platform presented here is an important step toward integrating membrane proteomic studies on chip, especially for future studies aimed at understanding fundamental effects of lipid interactions

  6. Trans-activity of Plasma Membrane-associated Ganglioside Sialyltransferase in Mammalian Cells*

    PubMed Central

    Vilcaes, Aldo A.; Demichelis, Vanina Torres; Daniotti, Jose L.

    2011-01-01

    Gangliosides are acidic glycosphingolipids that contain sialic acid residues and are expressed in nearly all vertebrate cells. They are synthesized at the Golgi complex by a combination of glycosyltransferase activities followed by vesicular delivery to the plasma membrane, where they participate in a variety of physiological as well as pathological processes. Recently, a number of enzymes of ganglioside anabolism and catabolism have been shown to be associated with the plasma membrane. In particular, it was observed that CMP-NeuAc:GM3 sialyltransferase (Sial-T2) is able to sialylate GM3 at the plasma membrane (cis-catalytic activity). In this work, we demonstrated that plasma membrane-integrated ecto-Sial-T2 also displays a trans-catalytic activity at the cell surface of epithelial and melanoma cells. By using a highly sensitive enzyme-linked immunosorbent assay combined with confocal fluorescence microscopy, we observed that ecto-Sial-T2 was able to sialylate hydrophobically or covalently immobilized GM3 onto a solid surface. More interestingly, we observed that ecto-Sial-T2 was able to sialylate GM3 exposed on the membrane of neighboring cells by using both the exogenous and endogenous donor substrate (CMP-N-acetylneuraminic acid) available at the extracellular milieu. In addition, the trans-activity of ecto-Sial-T2 was considerably reduced when the expression of the acceptor substrate was inhibited by using a specific inhibitor of biosynthesis of glycolipids, indicating the lipidic nature of the acceptor. Our findings provide the first direct evidence that an ecto-sialyltransferase is able to trans-sialylate substrates exposed in the plasma membrane from mammalian cells, which represents a novel insight into the molecular events that regulate the local glycosphingolipid composition. PMID:21768099

  7. Plasma membrane characterization, by scanning electron microscopy, of multipotent myoblasts-derived populations sorted using dielectrophoresis

    SciTech Connect

    Muratore, Massimo; Mitchell, Steve; Waterfall, Martin

    2013-09-06

    Highlights: •Dielectrophoretic separation/sorting of multipotent cells. •Plasma membrane microvilli structure of C2C12 and fibroblasts by SEM microscopy. •Cell cycle determination by Ki-67 in DEP-sorted cells. •Plasma membrane differences responsible for changes in membrane capacitance. -- Abstract: Multipotent progenitor cells have shown promise for use in biomedical applications and regenerative medicine. The implementation of such cells for clinical application requires a synchronized, phenotypically and/or genotypically, homogenous cell population. Here we have demonstrated the implementation of a biological tag-free dielectrophoretic device used for discrimination of multipotent myoblastic C2C12 model. The multipotent capabilities in differentiation, for these cells, diminishes with higher passage number, so for cultures above 70 passages only a small percentage of cells is able to differentiate into terminal myotubes. In this work we demonstrated that we could recover, above 96% purity, specific cell types from a mixed population of cells at high passage number without any biological tag using dielectrophoresis. The purity of the samples was confirmed by cytometric analysis using the cell specific marker embryonic myosin. To further investigate the dielectric properties of the cell plasma membrane we co-culture C2C12 with similar size, when in suspension, GFP-positive fibroblast as feeder layer. The level of separation between the cell types was above 98% purity which was confirmed by flow cytometry. These levels of separation are assumed to account for cell size and for the plasma membrane morphological differences between C2C12 and fibroblast unrelated to the stages of the cell cycle which was assessed by immunofluorescence staining. Plasma membrane conformational differences were further confirmed by scanning electron microscopy.

  8. Expression of a plasma membrane proteolipid during differentiation of neuronal and glial cells in primary culture.

    PubMed

    Shea, T B; Fischer, I; Sapirstein, V

    1986-09-01

    Plasma membrane proteolipid protein (PM-PLP) synthesis was examined in embryonic rat neurons and neonatal rat glial cells during differentiation in culture. Glial cultures were treated with 1 mM N6, O2, dibutyryl cyclic adenosine monophosphate (dbcAMP) following confluency to induce differentiation, which resulted in the elaboration of long cellular processes. However, no changes in the biosynthetic level of PM-PLP was observed during the differentiation of these cells. Neurons differentiated spontaneously in culture, forming cellular aggregates immediately following plating and elaborating a network of neurites over 7 days. The differentiation of neurons was accompanied by a seven-fold increase in PM-PLP synthesis with increases in biosynthetic increase in PM-PLP synthesis with increases in biosynthetic rate observed between days 1 and 3 and between days 3 and 7 in culture. Ultrastructural examination of neurons indicated that the Golgi apparatus was also developing during this period of time, with an increase in both the number of lamellae and generation of vesicles. The transport of PM-PLP to the plasma membrane was therefore examined in neurons at day 7 in culture by pulse labeling experiments with monensin and colchicine. Monensin (1 microM) was found to inhibit the appearance of radiolabeled PM-PLP in the plasma membrane by 63%, indicating that a functional Golgi apparatus is required for transport of PM-PLP to its target membrane. Colchicine (125 microM) also inhibited the appearance of newly synthesized PM-PLP in the plasma membrane by greater than 40%, suggesting that microtubules may also be required for PM-PLP transport to the plasma membrane. PMID:3016181

  9. Mutational scanning reveals the determinants of protein insertion and association energetics in the plasma membrane

    PubMed Central

    Elazar, Assaf; Weinstein, Jonathan; Biran, Ido; Fridman, Yearit; Bibi, Eitan; Fleishman, Sarel Jacob

    2016-01-01

    Insertion of helix-forming segments into the membrane and their association determines the structure, function, and expression levels of all plasma membrane proteins. However, systematic and reliable quantification of membrane-protein energetics has been challenging. We developed a deep mutational scanning method to monitor the effects of hundreds of point mutations on helix insertion and self-association within the bacterial inner membrane. The assay quantifies insertion energetics for all natural amino acids at 27 positions across the membrane, revealing that the hydrophobicity of biological membranes is significantly higher than appreciated. We further quantitate the contributions to membrane-protein insertion from positively charged residues at the cytoplasm-membrane interface and reveal large and unanticipated differences among these residues. Finally, we derive comprehensive mutational landscapes in the membrane domains of Glycophorin A and the ErbB2 oncogene, and find that insertion and self-association are strongly coupled in receptor homodimers. DOI: http://dx.doi.org/10.7554/eLife.12125.001 PMID:26824389

  10. Environmental impacts on the gonadotropic system in female Atlantic salmon (Salmo salar) during vitellogenesis: Photothermal effects on pituitary gonadotropins, ovarian gonadotropin receptor expression, plasma sex steroids and oocyte growth.

    PubMed

    Taranger, Geir Lasse; Muncaster, Simon; Norberg, Birgitta; Thorsen, Anders; Andersson, Eva

    2015-09-15

    The gonadotropic system and ovarian growth and development were studied during vitellogenesis in female Atlantic salmon subjected to either simulated natural photoperiod and ambient water temperature (NL-amb), or an accelerating photoperiod (short day of LD8:16 from May 10) combined with either warmed (ca 2°C above ambient; 8L-warm) or cooled water (ca 2°C below ambient; 8L-cold) from May to September. Monthly samples were collected from 10 females/group for determination of transcript levels of pituitary gonadotropin subunits (fshb and lhb) and ovarian gonadotropin receptors (fshr and lhr), plasma sex steroids (testosterone: T and estradiol-17β: E2), gonadosomatic index (GSI) and oocyte size. Short day in combination with either warmed or cooled water induced an earlier increase in pituitary fshb and lhb levels compared with NL-amb controls, and advanced ovarian growth and the seasonal profiles of T, E2. By contrast only minor effects were seen of the photothermal treatments on ovarian fshr and lhr. The 8L-cold had earlier increase in fshb, lhb and E2, but similar oocyte and gonadal growth as 8L-warm, suggesting that the 8L-cold group tried to compensate for the lower water temperature during the period of rapid gonadal growth by increasing fshb and E2 production. Both the 8L-warm and 8L-cold groups showed incomplete ovulation in a proportion of the females, possibly due to the photoperiod advancement resulting in earlier readiness of spawning occurring at a higher ambient temperature, or due to some reproductive dysfunction caused by photothermal interference with normal neuroendocrine regulation of oocyte development and maturation.

  11. Plasma Membrane Permeabilization by Trains of Ultrashort Electric Pulses

    PubMed Central

    Ibey, Bennett L.; Mixon, Dustin G.; Payne, Jason A.; Bowman, Angela; Sickendick, Karl; Wilmink, Gerald J.; Roach, W. Patrick; Pakhomov, Andrei G.

    2010-01-01

    Ultrashort electric pulses (USEP) cause long-lasting increase of cell membrane electrical conductance, and that a single USEP increased cell membrane electrical conductance proportionally to the absorbed dose (AD) with a threshold of about 10 mJ/g. The present study extends quantification of the membrane permeabilization effect to multiple USEP and employed a more accurate protocol that identified USEP effect as the difference between post- and pre-exposure conductance values (Δg) in individual cells. We showed that Δg can be increased by either increasing the number of pulses at a constant E-field, or by increasing the E-field at a constant number of pulses. For 60-ns pulses, an E-field threshold of 6 kV/cm for a single pulse was lowered to less than 1.7 kV/cm by applying 100-pulse or longer trains. However, the reduction of the E-field threshold was only achieved at the expense of a higher AD compared to a single pulse exposure. Furthermore, the effect of multiple pulses was not fully determined by AD, suggesting that cells permeabilized by the first pulse(s) in the train become less vulnerable to subsequent pulses. This explanation was corroborated by a model that treated multiple-pulse exposures as a series of single-pulse exposures and assumed an exponential decline of cell susceptibility to USEP as Δg increased after each pulse during the course of the train. PMID:20171148

  12. Specific photoaffinity labeling of two plasma membrane polypeptides with an azido auxin

    NASA Technical Reports Server (NTRS)

    Hicks, G. R.; Rayle, D. L.; Jones, A. M.; Lomax, T. L.

    1989-01-01

    Plasma membrane vesicles were isolated from zucchini (Cucurbita pepo) hypocotyl tissue by aqueous phase partitioning and assessed for homogeneity by the use of membrane-specific enzyme assays. The highly pure (ca. 95%) plasma membrane vesicles maintained a pH differential across the membrane and accumulated a tritiated azido analogue of 3-indoleacetic acid (IAA), 5-azido-[7-3H]IAA ([3H]N3IAA), in a manner similar to the accumulation of [3H]IAA. The association of the [3H]N3IAA with membrane vesicles was saturable and subject to competition by IAA and auxin analogues. Auxin-binding proteins were photoaffinity labeled by addition of [3H]N3IAA to plasma membrane vesicles prior to exposure to UV light (15 sec; 300 nm) and detected by subsequent NaDodSO4/PAGE and fluorography. When the reaction temperature was lowered to -196 degrees C, high-specific-activity labeling of a 40-kDa and a 42-kDa polypeptide was observed. Triton X-100 (0.1%) increased the specific activity of labeling and reduced the background, which suggests that the labeled polypeptides are intrinsic membrane proteins. The labeled polypeptides are of low abundance, as expected for auxin receptors. Further, the addition of IAA and auxin analogues to the photoaffinity reaction mixture resulted in reduced labeling that was qualitatively similar to their effects on the accumulation of radiolabeled IAA in membrane vesicles. Collectively, these results suggest that the radiolabeled polypeptides are auxin receptors. The covalent nature of the label should facilitate purification and further characterization of the receptors.

  13. Isolation of radio-iodinated apical and basal-lateral plasma membranes of toad bladder epithelium.

    PubMed

    Rodriguez, H J; Edelman, I S

    1979-04-01

    The apical and basal-lateral plasma membranes of toad bladder epithelium were radio-iodinated with the glucose-glucose oxidase-lactoperoxidase system. The covalently bound radio iodine was used as a marker during subcellular fractionation and membrane isolation. Homogenization conditions that ensured rupture of more than 80% of the cells without substantial nuclear damage were defined by Normarski optics. The nuclei were separated by differential centrifugation and the apical and basal-lateral components were resolved by differential and sucrose density gradient centrifugation. The apical components yielded two radioactive bands that were identified as glycocalyx and plasma membrane labeled with 125I. The basal-lateral components yielded a hetero-disperse pattern made up of at least 3 radioactive bands, but the bulk of the activity of ouabain-sensitive ATPase comigrated with only one of these bands. The mitochondia, identified by assays for cytochrome oxidase and NADH cytochrome c reductase activities, were separated from the radio-iodine labeled by centrifugation in sucrose density gradients under isokinetic conditions. The labeled glycocalyx and the slowly migrating components of basal-lateral labeling were separated from the radio-iodinated membranes by centrifugation at 100,000 x g x 1 hr after removal of the mitochrondria by the isokinetic method. The labeled membranes were then subjected to ultracentrifugation in sucrose density gradients under isopycnic conditions; the basal-lateral membranes containing ouabain-sensitive ATP-ase were well resolved from the apical membranes by this method. These results provide a relatively rapid method of attaining partial purification of the apical and basal-lateral plasma membranes of toad bladder epithelium. PMID:222911

  14. Reversal of carbon tetrachloride induced changes in microviscosity and lipid composition of liver plasma membrane by colchicine in rats.

    PubMed Central

    Solis-Herruzo, J A; De Gando, M; Ferrer, M P; Hernandez Muñoz, I; Fernandez-Boya, B; De la Torre, M P; Muñoz-Yague, M T

    1993-01-01

    Colchicine is beneficial in the treatment of cirrhotic patients, it prevents changes in plasma membrane bound enzymes induced by CCl4 intoxication. In this study, lipid composition and microviscosity were measured in liver plasma membranes isolated from rats given CCl4. Microviscosity values increased in rats given CCl4 for six weeks but fell considerably in those given CCl4 for 10 weeks. Both these changes were absent when colchicine was given with CCl4. The cholesterol/phospholipid molar ratios and lipid peroxide values increased but plasma membrane phospholipids, the length of fatty acyl chains, and the unsaturation index fell significantly after CCl4 intoxication. Colchicine treatment also prevented these changes. Changes in the lipid composition of liver plasma membranes were significantly correlated with lipid peroxidation. Colchicine prevents changes in the physicochemical properties of liver plasma membranes induced by longterm CCl4 treatment, probably by blocking peroxidation of unsaturated fatty acids. PMID:8244117

  15. Visualization of the solubilization process of the plasma membrane of a living cell by waveguide evanescent field fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Hassanzadeh, Abdollah; Ma, Heun Kan; Dixon, S. Jeffrey; Mittler, Silvia

    2012-07-01

    Waveguide evanescent field fluorescence microscopy (WEFF) is a novel microscopy technology that allows imaging of a cell's plasma membrane in the vicinity of a glass substrate with high axial resolution, low background and little photobleaching. Time-lapse imaging can be performed to investigate changes in cell morphology in the presence or absence of chemical agents. WEFF microscopy provides a method to investigate plasma membranes of living cells and allows a comparison to simplified model membranes immobilized on planar substrates. The interaction of the nonionic detergent Triton X-100 with plasma membranes of osteoblasts in an aqueous environment was investigated. Solubilization of the membranes very close to the waveguide surface was visualized and related to the three-stage solubilisation model proposed for liposomes and supported lipid bilayers. Findings for the plasma membranes of cells are in excellent agreement with results reported for these artificial model systems.

  16. Video Views and Reviews: Golgi Export, Targeting, and Plasma Membrane Caveolae

    ERIC Educational Resources Information Center

    Watters, Christopher

    2004-01-01

    In this article, the author reviews videos from "Molecular Biology of the Cell (MBC)" depicting various aspects of plasma membrane (PM) dynamics, including the targeting of newly synthesized components and the organization of those PM invaginations called caveolae. The papers accompanying these videos describe, respectively, the constitutive…

  17. Plasma membrane surface potential: dual effects upon ion uptake and toxicity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Electrical properties of plasma membranes (PMs), partially controlled by the ionic composition of the bathing medium, play significant roles in the distribution of ions at the exterior surface of PMs and in the transport of ions across PMs. The effects of coexistent cations (commonly Al3+, Ca2+, Mg...

  18. Independent localization of plasma membrane and chloroplast components during eyespot assembly.

    PubMed

    Mittelmeier, Telsa M; Thompson, Mark D; Öztürk, Esra; Dieckmann, Carol L

    2013-09-01

    Like many algae, Chlamydomonas reinhardtii is phototactic, using two anterior flagella to swim toward light optimal for photosynthesis. The flagella are responsive to signals initiated at the photosensory eyespot, which comprises photoreceptors in the plasma membrane and layers of pigment granules in the chloroplast. Phototaxis depends on placement of the eyespot at a specific asymmetric location relative to the flagella, basal bodies, and bundles of two or four highly acetylated microtubules, termed rootlets, which extend from the basal bodies toward the posterior of the cell. Previous work has shown that the eyespot is disassembled prior to cell division, and new eyespots are assembled in daughter cells adjacent to the nascent four-membered rootlet associated with the daughter basal body (D4), but the chronology of these assembly events has not been determined. Here we use immunofluorescence microscopy to follow assembly and acetylation of the D4 rootlet, localization of individual eyespot components in the plasma membrane or chloroplast envelope, and flagellar emergence during and immediately following cell division. We find that the D4 rootlet is assembled before the initiation of eyespot assembly, which occurs within the same time frame as rootlet acetylation and flagellar outgrowth. Photoreceptors in the plasma membrane are correctly localized in eyespot mutant cells lacking pigment granule layers, and chloroplast components of the eyespot assemble in mutant cells in which photoreceptor localization is retarded. The data suggest that plasma membrane and chloroplast components of the eyespot are independently responsive to a cytoskeletal positioning cue. PMID:23873865

  19. Double Potential Pulse Chronocoulometry for Detection of Plasma Membrane Cholesterol Efflux at Disk Platinum Microelectrodes

    PubMed Central

    West, Richard H.; Lu, Hui; Shaw, Kendrick; Chiel, Hillel J.; Kelley, Thomas J.; Burgess, James D.

    2016-01-01

    A double potential pulse scheme is reported for observation of cholesterol efflux from the plasma membrane of a single neuron cell. Capillary Pt disk microelectrodes having a thin glass insulator allow the 10 μm diameter electrode and cell to be viewed under optical magnification. The electrode, covalently functionalized with cholesterol oxidase, is positioned in contact with the cell surface resulting in enzyme catalyzed cholesterol oxidation and efflux of cholesterol from the plasma membrane at the electrode contact site. Enzymatically generated hydrogen peroxide accumulates at the electrode/cell interface during a 5 s hold-time and is oxidized during application of a potential pulse. A second, replicate potential pulse is applied 0.5 s after the first potential pulse to gauge background charge prior to significant accumulation of hydrogen peroxide. The difference in charge passed between the first and second potential pulse provides a measure of hydrogen peroxide generated by the enzyme and is an indication of the cholesterol efflux. Control experiments for bare Pt microelectrodes in contact with the cell plasma membrane show difference charge signals in the range of about 7–10 pC. Enzyme-modified electrodes in contact with the plasma membrane show signals in the range of 16–26 pC. PMID:27330196

  20. Method of preparing water purification membranes. [polymerization of allyl amine as thin films in plasma discharge

    NASA Technical Reports Server (NTRS)

    Hollahan, J. R.; Wydeven, T. J., Jr. (Inventor)

    1974-01-01

    Allyl amine and chemically related compounds are polymerized as thin films in the presence of a plasma discharge. The monomer compound can be polymerized by itself or in the presence of an additive gas to promote polymerization and act as a carrier. The polymerized films thus produced show outstanding advantages when used as reverse osmosis membranes.

  1. Asymmetry of plasma membrane lipid order in Madin-Darby Canine Kidney cells.

    PubMed

    Le Grimellec, C; Friedlander, G; Giocondi, M C

    1988-07-01

    Fluorescence anisotropy experiments have been done to estimate, in situ, the lipid order of the plasma membrane of polarized Madin-Darby Canine Kidney cells (MDCK) grown on glass cover slips and labeled by 1-[4-(trimethylamino)phenyl]-6-phenylhexa-1,3,5-triene (TMA-DPH), a specific marker of the plasma membrane of living cells. Fluorescence microscopy, back-exchange, and quenching experiments indicated that TMA-DPH labeled the highly ordered (r greater than or equal to 0.32, 37 degrees C) apical domain of the plasma membrane of confluent monolayers. Opening of tight junctions or addition of the probe to cell suspensions resulted in a homogeneous distribution of TMA-DPH over the cell surface and in a marked decrease in anisotropy (0.27 less than or equal to r less than or equal to 0.29) that was due neither to a direct effect of Ca2+ on the probe nor to a change in fluorescence lifetime. Our data indicate that the apical domain, likely the external leaflet, of the plasma membrane of polarized MDCK cells is much more ordered than its basolateral counterpart.

  2. Modified by air plasma polymer tack membranes as drainage material for antiglaucomatous operations

    NASA Astrophysics Data System (ADS)

    Ryazantseva, T. V.; Kravets, L. I.; Elinson, V. M.

    2014-06-01

    The morphological and clinical studies of poly(ethylene terephthalate) track membranes modified by air plasma as drainage materials for antiglaucomatous operations were performed. It was demonstrated their compatibility with eye tissues. Moreover, it was shown that a new drainage has a good lasting hypotensive effect and can be used as operation for refractory glaucoma surgery.

  3. Plasma chemical modification of track-etched membrane surface layer for improvement of their biomedical properties

    NASA Astrophysics Data System (ADS)

    Kravets, Liubov I.; Ryazantseva, Tatyana V.

    2013-12-01

    The morphological and clinical studies of poly(ethylene terephthalate) track-etched membrane modified by plasma of non-polymerizing gases as drainage materials for antiglaucomatous operations were performed. It was demonstrated their compatibility with eye tissues. Moreover, it was shown that a new drainage has a good lasting hypotensive effect and can be used as operation for refractory glaucoma surgery.

  4. Comparison of nanowire pellicles for plasma membrane enrichment: coating nanowires on cell.

    PubMed

    Kim, Sung-Kyoung; Rose, Rebecca; Choksawangkarn, Waeowalee; Graham, Lauren; Hu, Junkai; Fenselau, Catherine; Lee, Sang Bok

    2013-12-01

    A study is reported on the effect of nanowire density on the ease of pellicle formation and the enrichment of plasma membrane proteins for analysis by mass spectrometry. An optimized synthesis is reported for iron silicate nanowires with a narrow size range of 900 ±400 nm in length and 200 nm diameter. The nanowires were coated with Al2O3 and used to form pellicles around suspended multiple myeloma cells, which acted as a model for cells recovered from tissue samples. Lighter alumina-coated silica nanowires were also synthesized (Kim et al. 2013), which allowed a comparison of the construction of the two pellicles and of the effect of nanowire density on plasma membrane enrichment. Evidence is offered that the dense nanowire pellicle does not crush or distort these mammalian cells. Finally, the pellicles were incorporated into a mass-spectrometry-based proteomic workflow to analyze transmembrane proteins in the plasma membrane. In contrast to a prior comparison of the effect of density with nanoparticles pellicles (Choksawangkarn et al. 2013), nanowire density was not found to significantly affect the enrichment of the plasma membrane. However, nanowires with a favorable aspect for pellicle formation are more easily and reliably produced with iron silicate than with silica. Additionally, the method for pellicle formation was optimized through the use of iron silicate nanowires (ISNW), which is crucial to the improvement of PM protein enrichment and analysis.

  5. Evaluation of a new microporous filtration membrane system for therapeutic plasma exchange.

    PubMed

    Kurtz, S R; Carey, P M; McGill, M; Pineda, A A; Zaroulis, C G; Case, M T

    1987-01-01

    A new therapeutic plasma exchange device developed by Sarns Inc./3M was evaluated in plasmapheresis of 20 healthy volunteers and in a multicenter clinical study of therapeutic plasma exchange that included 49 patients. Safety and efficacy of plasma separation from whole blood were assessed for a module that contains Durapore microporous surfactant-free polyvinylidene fluoride membrane (Millipore Corp., Bedford, Mass., USA). The extra-corporeal volume was 80 ml. Citrate and heparin anticoagulants were utilized. Mean plasma separation efficiency was 62% with unhindered passage of plasma proteins through the membrane pores and no hemolysis or activation of complement as measured by total hemolytic complement (CH50) and C3 conversion. Mean decrease in platelet count after procedures was 10%. No severe reactions occurred, and citrate effects (13%) were comparable to values reported with centrifugal instruments. The Sarns Inc./3M Therapore device is a rapid, safe and efficient system for plasma exchange and potentially for source plasma collection. The principal benefits are small extracorporeal volume and cell-free filtrate.

  6. Dynamic Organization of Myristoylated Src in the Live Cell Plasma Membrane.

    PubMed

    Smith, Adam W; Huang, Hector H; Endres, Nicholas F; Rhodes, Christopher; Groves, Jay T

    2016-02-11

    The spatial organization of lipid-anchored proteins in the plasma membrane directly influences cell signaling, but measuring such organization in situ is experimentally challenging. The canonical oncogene, c-Src, is a lipid anchored protein that plays a key role in integrin-mediated signal transduction within focal adhesions and cell-cell junctions. Because of its activity in specific plasma membrane regions, structural motifs within the protein have been hypothesized to play an important role in its subcellular localization. This study used a combination of time-resolved fluorescence fluctuation spectroscopy and super-resolution microscopy to quantify the dynamic organization of c-Src in live cell membranes. Pulsed-interleaved excitation fluorescence cross-correlation spectroscopy (PIE-FCCS) showed that a small fraction of c-Src transiently sorts into membrane clusters that are several times larger than the monomers. Photoactivated localization microscopy (PALM) confirmed that c-Src partitions into clusters with low probability and showed that the characteristic size of the clusters is 10-80 nm. Finally, time-resolved fluorescence anisotropy measurements were used to quantify the rotational mobility of c-Src to determine how it interacts with its local environment. Taken together, these results build a quantitative description of the mobility and clustering behavior of the c-Src nonreceptor tyrosine kinase in the live cell plasma membrane. PMID:26771210

  7. Moesin, ezrin, and p205 are actin-binding proteins associated with neutrophil plasma membranes.

    PubMed Central

    Pestonjamasp, K; Amieva, M R; Strassel, C P; Nauseef, W M; Furthmayr, H; Luna, E J

    1995-01-01

    Actin-binding proteins in bovine neutrophil plasma membranes were identified using blot overlays with 125I-labeled F-actin. Along with surface-biotinylated proteins, membranes were enriched in major actin-binding polypeptides of 78, 81, and 205 kDa. Binding was specific for F-actin because G-actin did not bind. Further, unlabeled F-actin blocked the binding of 125I-labeled F-actin whereas other acidic biopolymers were relatively ineffective. Binding also was specifically inhibited by myosin subfragment 1, but not by CapZ or plasma gelsolin, suggesting that the membrane proteins, like myosin, bind along the sides of the actin filaments. The 78- and 81-kDa polypeptides were identified as moesin and ezrin, respectively, by co-migration on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoprecipitation with antibodies specific for moesin and ezrin. Although not present in detectable amounts in bovine neutrophils, radixin (a third and closely related member of this gene family) also bound 125I-labeled F-actin on blot overlays. Experiments with full-length and truncated bacterial fusion proteins localized the actin-binding site in moesin to the extreme carboxy terminus, a highly conserved sequence. Immunofluorescence micrographs of permeabilized cells and cell "footprints" showed moesin co-localization with actin at the cytoplasmic surface of the plasma membrane, consistent with a role as a membrane-actin-linking protein. Images PMID:7612961

  8. Simultaneous Measurements of Cytoplasmic K+ Concentration and the Plasma Membrane Electrical Parameters in Single Membrane Samples of Chara corallina

    PubMed Central

    Beilby, Mary J.; Blatt, Michael R.

    1986-01-01

    The electrophysiological properties of cytoplasm-rich fragments (single membrane samples) prepared from internodal cells of Chara corallina were explored in conjunction with K+-sensitive microelectrode and current-voltage (I-V) measurements. This system eliminated the problem of the inaccessible cytoplasmic layer, while preserving many of the electrical characteristics of the intact cells. In 0.1 millimolar external K concentration (Ko+), the resting conductance (membrane conductance Gm, 0.85 ± 0.25 Siemens per square meter (±standard error)) of the single membrane samples, was dominated by the proton pump, as suggested by the response of the near-linear I-V characteristic to changes in external pH. Initial cytoplasmic K+ activities (aK+), judged most reliable, gave values of 117 ± 67 millimolar; stable aK+ values were 77 ± 31 millimolar. Equilibrium potentials for K+ (Nernst equilibrium potential) (EK) calculated, using either of these data sets, were near the mean membrane potential (Vm). On a cell-to-cell basis, however, EK was generally negative of the Vm, despite an electrogenic contribution from the Chara proton pump. When Ko+ was increased to 1.0 millimolar or above, Gm rose (by 8- to 10-fold in 10 millimolar Ko+), the steady state I-V characteristics showed a region of negative slope conductance, and Vm followed EK. These results confirm previous studies which implicated a Ko+-induced and voltage-dependent permeability to K+ at the Chara plasma membrane. They provide an explanation for transitions between apparent Ko+-insensitive and Ko+-sensitive (`K+ electrode') behavior displayed by the membrane potential, as recorded in many algae and higher plant cells. PMID:16665044

  9. Differential effects of plasma membrane electric excitation on H+ fluxes and photosynthesis in characean cells.

    PubMed

    Bulychev, Alexander A; Kamzolkina, Natalia A

    2006-10-01

    Cells of characean algae exposed to illumination arrange plasma-membrane H(+) fluxes and photosynthesis in coordinated spatial patterns (bands). This study reveals that H(+) transport and photosynthesis patterns in these excitable cells are affected not only by light conditions but also by electric excitation of the plasma membrane. It is shown that generation of action potential (AP) temporally eliminates alkaline bands, suppresses O(2) evolution, and differentially affects primary reactions of photosystem II (PSII) in different cell regions. The quantum yield of PSII electron transport decreased after AP in the alkaline but not in acidic cell regions. The effects of electric excitation on fluorescence and the PSII electron flow were most pronounced at light-limiting conditions. Evidence was obtained that the shift in chlorophyll fluorescence after AP is due to the increase in DeltapH at thylakoid membranes. It is concluded that the AP-triggered pathways affecting ion transport and photosynthetic energy conversion are linked but not identical.

  10. The Structure of the Yeast Plasma Membrane SNARE Complex Reveals Destabilizing Water Filled Cavities

    SciTech Connect

    Strop, P.; Kaiser, S.E.; Vrljic, M.; Brunger, A.T.

    2009-05-26

    Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins form a complex that leads to membrane fusion between vesicles, organelles, and plasma membrane in all eukaryotic cells. We report the 1.7{angstrom} resolution structure of the SNARE complex that mediates exocytosis at the plasma membrane in the yeast Saccharomyces cerevisiae. Similar to its neuronal and endosomal homologues, the S. cerevisiae SNARE complex forms a parallel four-helix bundle in the center of which is an ionic layer. The S. cerevisiae SNARE complex exhibits increased helix bending near the ionic layer, contains water-filled cavities in the complex core, and exhibits reduced thermal stability relative to mammalian SNARE complexes. Mutagenesis experiments suggest that the water-filled cavities contribute to the lower stability of the S. cerevisiae complex.

  11. Synthesis of Proton-Exchange Membranes by a Plasma Polymerization Technique

    NASA Astrophysics Data System (ADS)

    Jiang, Zhongqing; Meng, Yuedong; Shi, Yicai

    2008-08-01

    An after-glow capacitively coupled discharge technique has been used to fabricate ultra-thin proton-exchange composite membranes in a plasma polymerization reactor, where styrene and acrylic acid are used as starting materials. During the preparation, the energy of the ionized particles extracted from the radio frequency glow discharge region to the plasma polymerization region can be easily controlled by adjusting the bias voltage applied to the screen grids and substrate. Therefore, the degradation of monomers can be effectively avoided, and the contents of the proton exchange groups on the obtained membranes could reach to a higher extent. The synthesized membranes are dense with uniform structure and are demonstrated as good proton conductors.

  12. Evidence for a plasma-membrane-bound nitrate reductase involved in nitrate uptake of Chlorella sorokiniana

    NASA Technical Reports Server (NTRS)

    Tischner, R.; Ward, M. R.; Huffaker, R. C.

    1989-01-01

    Anti-nitrate-reductase (NR) immunoglobulin-G (IgG) fragments inhibited nitrate uptake into Chlorella cells but had no affect on nitrate uptake. Intact anti-NR serum and preimmune IgG fragments had no affect on nitrate uptake. Membrane-associated NR was detected in plasma-membrane (PM) fractions isolated by aqueous two-phase partitioning. The PM-associated NR was not removed by sonicating PM vesicles in 500 mM NaCl and 1 mM ethylenediaminetetraacetic acid and represented up to 0.8% of the total Chlorella NR activity. The PM NR was solubilized by Triton X-100 and inactivated by Chlorella NR antiserum. Plasma-membrane NR was present in ammonium-grown Chlorella cells that completely lacked soluble NR activity. The subunit sizes of the PM and soluble NRs were 60 and 95 kDa, respectively, as determined by sodium-dodecyl-sulfate electrophoresis and western blotting.

  13. Influence of plasma-treatments on the structure, superstructure, and function of membrane lipids

    NASA Astrophysics Data System (ADS)

    Hammer, Malte U.; Forbrig, Enrico; Weltmann, Klaus-Dieter; Reuter, Stephan

    2012-10-01

    Every cell, eu- or prokaryotic, has a membrane as an interface to the environment. Every substance that is applied from outside the cell has to interact with it. This includes plasma-generated reactive species in the liquid cell environment created by plasma-treatment. By the Singer and Nicolson model, proteins are embedded in a lipid bilayer. Proteins are the functional elements, lipids are the structural elements. Due to the amphiphilic nature of the lipids, they form (super-) structures in an aqueous environment. The exact superstructure is determined by a structural parameter of the lipid, its shape. Here, we show experiments on lipids by fluorophore-based liposome assays and raman spectroscopy. The results show a membrane-activity of plasma-born reactive species against lipids and lipid structures. Based on this results and literature, we propose a model for a lesion-forming mechanism in membranes of some reactive species created by plasma-treatment. It is based on a hydrophobic-hydrophilic mismatch due to lipid peroxidization induced by reactive species generated in liquids by plasma-treatment.

  14. Membrane fusion-competent virus-like proteoliposomes and proteinaceous supported bilayers made directly from cell plasma membranes.

    PubMed

    Costello, Deirdre A; Hsia, Chih-Yun; Millet, Jean K; Porri, Teresa; Daniel, Susan

    2013-05-28

    Virus-like particles are useful materials for studying virus-host interactions in a safe manner. However, the standard production of pseudovirus based on the vesicular stomatitis virus (VSV) backbone is an intricate procedure that requires trained laboratory personnel. In this work, a new strategy for creating virus-like proteoliposomes (VLPLs) and virus-like supported bilayers (VLSBs) is presented. This strategy uses a cell blebbing technique to induce the formation of nanoscale vesicles from the plasma membrane of BHK cells expressing the hemagglutinin (HA) fusion protein of influenza X-31. These vesicles and supported bilayers contain HA and are used to carry out single particle membrane fusion events, monitored using total internal reflection fluorescence microscopy. The results of these studies show that the VLPLs and VLSBs contain HA proteins that are fully competent to carry out membrane fusion, including the formation of a fusion pore and the release of fluorophores loaded into vesicles. This new strategy for creating spherical and planar geometry virus-like membranes has many potential applications. VLPLs could be used to study fusion proteins of virulent viruses in a safe manner, or they could be used as therapeutic delivery particles to transport beneficial proteins coexpressed in the cells to a target cell. VLSBs could facilitate high throughput screening of antiviral drugs or pathogen-host cell interactions.

  15. Characterization of membrane protein interactions in plasma membrane derived vesicles with quantitative imaging Förster resonance energy transfer.

    PubMed

    Sarabipour, Sarvenaz; Del Piccolo, Nuala; Hristova, Kalina

    2015-08-18

    Here we describe an experimental tool, termed quantitative imaging Förster resonance energy transfer (QI-FRET), that enables the quantitative characterization of membrane protein interactions. The QI-FRET methodology allows us to acquire binding curves and calculate association constants for complex membrane proteins in the native plasma membrane environment. The method utilizes FRET detection, and thus requires that the proteins of interest are labeled with florescent proteins, either FRET donors or FRET acceptors. Since plasma membranes of cells have complex topologies precluding the acquisition of two-dimensional binding curves, the FRET measurements are performed in plasma membrane derived vesicles that bud off cells as a result of chemical or osmotic stress. The results overviewed here are acquired in vesicles produced with an osmotic vesiculation buffer developed in our laboratory, which does not utilize harsh chemicals. The concentrations of the donor-labeled and the acceptor-labeled proteins are determined, along with the FRET efficiencies, in each vesicle. The experiments utilize transient transfection, such that a wide variety of concentrations is sampled. Then, data from hundreds of vesicles are combined to yield dimerization curves. Here we discuss recent findings about the dimerization of receptor tyrosine kinases (RTKs), membrane proteins that control cell growth and differentiation via lateral dimerization in the plasma membrane. We focus on the dimerization of fibroblast growth factor receptor 3 (FGFR3), a RTK that plays a critically important role in skeletal development. We study the role of different FGFR3 domains in FGFR3 dimerization in the absence of ligand, and we show that FGFR3 extracellular domains inhibit unliganded dimerization, while contacts between the juxtamembrane domains, which connect the transmembrane domains to the kinase domains, stabilize the unliganded FGFR3 dimers. Since FGFR3 has been documented to harbor many pathogenic

  16. A method to modify PVDF microfiltration membrane via ATRP with low-temperature plasma pretreatment

    NASA Astrophysics Data System (ADS)

    Han, Yu; Song, Shuijun; Lu, Yin; Zhu, Dongfa

    2016-08-01

    The hydrophilic modification of a polyvinylidene fluoride (PVDF) microfiltration membrane via pretreatment with argon plasma and direct surface-initiated atom transfer radical polymerization (ATRP) was studied. Both modified and unmodified PVDF membranes were characterized by Fourier transform infrared spectroscopy (FTIR), water contact angle, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and pore size distribution measurements. FTIR and XPS spectra confirmed that sulfobetaine methacrylate (SBMA) had been grafted onto the membrane surface. The initial contact angle decreased from 87.0° to 29.8° and a water drop penetrated into the modified membrane completely in 8 s. The pore size distribution of the modified membrane exhibited a smaller mean value than that of the original membrane. The antifouling properties of the modified PVDF membrane were evaluated by a filtration test using bovine serum albumin (BSA) solution. The results showed that the initial flux of the modified membrane increased from 2140.1 L/m2 h to 2812.7 L/m2 h and the equilibrium flux of BSA solution increased from 31 L/m2 h to 53 L/m2 h.

  17. Independent mobility of proteins and lipids in the plasma membrane of Escherichia coli.

    PubMed

    Nenninger, Anja; Mastroianni, Giulia; Robson, Alexander; Lenn, Tchern; Xue, Quan; Leake, Mark C; Mullineaux, Conrad W

    2014-06-01

    Fluidity is essential for many biological membrane functions. The basis for understanding membrane structure remains the classic Singer-Nicolson model, in which proteins are embedded within a fluid lipid bilayer and able to diffuse laterally within a sea of lipid. Here we report lipid and protein diffusion in the plasma membrane of live cells of the bacterium Escherichia coli, using Fluorescence Recovery after Photobleaching (FRAP) and Total Internal Reflection Fluorescence (TIRF) microscopy to measure lateral diffusion coefficients. Lipid and protein mobility within the membrane were probed by visualizing an artificial fluorescent lipid and a simple model membrane protein consisting of a single membrane-spanning alpha-helix with a Green Fluorescent Protein (GFP) tag on the cytoplasmic side. The effective viscosity of the lipid bilayer is strongly temperature-dependent, as indicated by changes in the lipid diffusion coefficient. Surprisingly, the mobility of the model protein was unaffected by changes in the effective viscosity of the bulk lipid, and TIRF microscopy indicates that it clusters in segregated, mobile domains. We suggest that this segregation profoundly influences the physical behaviour of the protein in the membrane, with strong implications for bacterial membrane function and bacterial physiology.

  18. Short-Lived Cages Restrict Protein Diffusion in the Plasma Membrane

    PubMed Central

    Goiko, Maria; de Bruyn, John R.; Heit, Bryan

    2016-01-01

    The plasma membrane is a heterogeneous environment characterized by anomalous diffusion and the presence of microdomains that are molecularly distinct from the bulk membrane. Using single particle tracking of the C-type lectin CD93, we have identified for the first time the transient trapping of transmembrane proteins in cage-like microdomains which restrict protein diffusion. These cages are stabilized by actin-dependent confinement regions, but are separate structures with sizes and lifespans uncorrelated to those of the underlying actin corral. These membrane cages require cholesterol for their strength and stability, with cholesterol depletion decreasing both. Despite this, cages are much larger in size and are longer lived than lipid rafts, suggesting instead that cholesterol-dependent effects on membrane fluidity or molecular packing play a role in cage formation. This diffusional compartment in the plasma membrane has characteristics of both a diffusional barrier and a membrane microdomain, with a size and lifespan intermediate between short-lived microdomains such as lipid rafts and long-lasting diffusional barriers created by the actin cytoskeleton. PMID:27725698

  19. Polyethylene glycol acrylate-grafted polysulphone membrane for artificial lungs: plasma modification and haemocompatibility improvement.

    PubMed

    Wang, Weiping; Huang, Xin; Yin, Haiyan; Fan, Wenling; Zhang, Tao; Li, Lei; Mao, Chun

    2015-12-14

    In this study, polyethylene glycol acrylate (PEGA) was introduced onto the surface of polysulphone (PSF) membrane to prepare PSF-PEGA membranes through low-temperature plasma technology for haemocompatibility improvement of artificial lungs. The effects of plasma power, PEGA solution concentration and dipcoating temperature on surface modification were systematically investigated. Results of Fourier transform infrared spectroscopy, x-ray photoelectron spectroscopy and PEGA grafting degree confirmed that PEGA was successfully grafted onto the PSF membranes. Contact angle values showed that the hydrophilicity of the PSF-PEGA membrane surface increased by 21.5%. The results of the protein adsorption, platelet adhesion and coagulation tests further showed the excellent haemocompatibility of the modified membrane. Gas exchange tests also revealed that at a porcine blood flow rate of 5 l min(-1), O2 and CO2 exchange rates through the PSF-PEGA membrane were 198.6 and 170.9 ml min(-1), respectively; approximately this is the gas exchange capacity of commercial respiratory assistance devices.

  20. Characterization of Differential Protein Tethering at the Plasma Membrane in Response to Epidermal Growth Factor Signaling

    PubMed Central

    Looyenga, Brendan D.; MacKeigan, Jeffrey P.

    2013-01-01

    Physical tethering of membrane proteins to the cortical actin cytoskeleton provides functional organization to the plasma membrane and contributes to diverse cellular processes including cell signaling, vesicular trafficking, endocytosis, and migration. For these processes to occur, membrane protein tethering must be dynamically regulated in response to environmental cues. In this study, we describe a novel biochemical scheme for isolating the complement of plasma membrane proteins that are physically tethered to the actin cytoskeleton. We utilized this method in combination with tandem liquid chromatography/mass spectrometry (LC–MS/MS) to demonstrate that cytoskeletal tethering of membrane proteins is acutely regulated by epidermal growth factor (EGF) in normal human kidney (HK2) cells. Our results indicate that several proteins known to be involved in EGF signaling, as well as other proteins not traditionally associated with this pathway, are tethered to the cytoskeleton in dynamic fashion. Further analysis of one hit from our proteomic survey, the receptor phosphotyrosine phosphatase PTPRS, revealed a correlation between cytoskeletal tethering and endosomal trafficking in response to EGF. This finding parallels previous indications that PTPRS is involved in the desensitization of EGFR and provides a potential mechanism to coordinate localization of these two membrane proteins in the same compartment upon EGFR activation. PMID:22559174

  1. Polyethylene glycol acrylate-grafted polysulphone membrane for artificial lungs: plasma modification and haemocompatibility improvement.

    PubMed

    Wang, Weiping; Huang, Xin; Yin, Haiyan; Fan, Wenling; Zhang, Tao; Li, Lei; Mao, Chun

    2015-12-01

    In this study, polyethylene glycol acrylate (PEGA) was introduced onto the surface of polysulphone (PSF) membrane to prepare PSF-PEGA membranes through low-temperature plasma technology for haemocompatibility improvement of artificial lungs. The effects of plasma power, PEGA solution concentration and dipcoating temperature on surface modification were systematically investigated. Results of Fourier transform infrared spectroscopy, x-ray photoelectron spectroscopy and PEGA grafting degree confirmed that PEGA was successfully grafted onto the PSF membranes. Contact angle values showed that the hydrophilicity of the PSF-PEGA membrane surface increased by 21.5%. The results of the protein adsorption, platelet adhesion and coagulation tests further showed the excellent haemocompatibility of the modified membrane. Gas exchange tests also revealed that at a porcine blood flow rate of 5 l min(-1), O2 and CO2 exchange rates through the PSF-PEGA membrane were 198.6 and 170.9 ml min(-1), respectively; approximately this is the gas exchange capacity of commercial respiratory assistance devices. PMID:26658212

  2. Water permeability of polyethylene terephthalate track membranes modified in plasma of dimethylaniline

    NASA Astrophysics Data System (ADS)

    Kravets, Lyubov; Dmitriev, Serguei; Gilman, Alla; Drachev, Alexander

    2004-09-01

    The surface properties and hydrodynamic characteristics of composite membranes consisting of a porous substrate, on which a polymer layer from a direct current discharge in a mixture of air and vapours of dimethylaniline was deposited, have been investigated. As a substrate, we used poly(ethylene) terephthalate track membrane (PET TM) of the thickness of 10 μ m and the effective pore diameter of 0.215 μ m (pore density is 2\\cdot 10^8 cm-2). The performed researches show that when treating the membranes in plasma, two competing processes are observed: deposition of the polymer layer on a membrane surface, that testifies increase of the mass of sample, and etching of a polymeric matrix which causes growth of effective pore diameter. The last process is stipulated by presence of oxygen in the gas mixture. Decreasing the degree of overweight of the sample at increasing the treatment time leads us to a supposition that a dominating process in this case becomes the process of gas-discharge etching. In all cases, if treating PET TM, a drop of the water contact angle occurs, i.e. hydrophilization of the membrane surface takes place that is connected first of all with a grafting of polymer layer containing polar functional groups. The research in the hydrodynamic characteristics of the initial PET TM and the membranes modified in plasma at neutral and subacid pH value of filtrate leads to a linear dependence of their permeability upon the quantity of applied pressure. It is connected with a viscous character of the flow, that is, when the diameter of the pores of the membrane is much more than the size of the water molecules. This fact shows that the macromolecules of the deposited polymer layer in this case have a compact conformation, which does not hinder the water molecules infiltration. At a lower pH value of the filtrate, the picture cardinally changes. For modified in plasma membranes a diversion from the linear relation is observed. This means that in this case

  3. On-chip enucleation of an oocyte by untethered microrobots

    NASA Astrophysics Data System (ADS)

    Ichikawa, Akihiko; Sakuma, Shinya; Sugita, Masakuni; Shoda, Tatsuro; Tamakoshi, Takahiro; Akagi, Satoshi; Arai, Fumihito

    2014-09-01

    We propose a novel on-chip enucleation of an oocyte with zona pellucida by using a combination of untethered microrobots. To achieve enucleation within the closed space of a microfluidic chip, two microrobots, a microknife and a microgripper were integrated into the microfluidic chip. These microrobots were actuated by an external magnetic force produced by permanent magnets placed on the robotic stage. The tip of the microknife was designed by considering the biological geometric feature of an oocyte, i.e. the oocyte has a polar body in maturation stage II. Moreover, the microknife was fabricated by using grayscale lithography, which allows fabrication of three-dimensional microstructures. The microgripper has a gripping function that is independent of the driving mechanism. On-chip enucleation was demonstrated, and the enucleated oocytes are spherical, indicating that the cell membrane of the oocytes remained intact. To confirm successful enucleation using this method, we investigated the viability of oocytes after enucleation. The results show that the production rate, i.e. the ratio between the number of oocytes that reach the blastocyst stage and the number of bovine oocytes after nucleus transfer, is 100%. The technique will contribute to complex cell manipulation such as cell surgery in lab-on-a-chip devices.

  4. Ionizing radiations increase the activity of the cell surface glycohydrolases and the plasma membrane ceramide content.

    PubMed

    Aureli, Massimo; Bassi, Rosaria; Prinetti, Alessandro; Chiricozzi, Elena; Pappalardi, Brigida; Chigorno, Vanna; Di Muzio, Nadia; Loberto, Nicoletta; Sonnino, Sandro

    2012-12-01

    We detected significant levels of β-glucosidase, β-galactosidase, sialidase Neu3 and sphingomyelinase activities associated with the plasma membrane of fibroblasts from normal and Niemann-Pick subjects and of cells from breast, ovary, colon and neuroblastoma tumors in culture. All of the cells subjected to ionizing radiations showed an increase of the activity of plasma membrane β-glucosidase, β-galactosidase and sialidase Neu3, in addition of the well known increase of activity of plasma membrane sphingomyelinase, under similar conditions. Human breast cancer cell line T47D was studied in detail. In these cells the increase of activity of β-glucosidase and β-galactosidase was parallel to the increase of irradiation dose up to 60 Gy and continued with time, at least up to 72 h from irradiation. β-glucosidase increased up to 17 times and β-galactosidase up to 40 times with respect to control. Sialidase Neu3 and sphingomyelinase increased about 2 times at a dose of 20 Gy but no further significant differences were observed with increase of radiation dose and time. After irradiation, we observed a reduction of cell proliferation, an increase of apoptotic cell death and an increase of plasma membrane ceramide up to 3 times, with respect to control cells. Tritiated GM3 ganglioside has been administered to T47D cells under conditions that prevented the lysosomal catabolism. GM3 became component of the plasma membranes and was transformed into LacCer, GlcCer and ceramide. The quantity of ceramide produced in irradiated cells was about two times that of control cells.

  5. Glia plasma membrane transporters: Key players in glutamatergic neurotransmission.

    PubMed

    Flores-Méndez, Marco; Mendez-Flores, Orquidia G; Ortega, Arturo

    2016-09-01

    Glutamate, the main excitatory amino acid in the central nervous system, elicits its functions through the activation of specific membrane receptors that are expressed in neurons and glial cells. The re-cycling of this amino acid is carried out mostly through a continuous interplay between neurons and glia cells, given the fact that the removal of glutamate from the synaptic cleft depends mainly on glial glutamate transporters. Therefore, a functional and physical interaction between membrane transporters links glutamate uptake, transformation to glutamine and its release to the extra-synaptic space and its uptake to the pre-synaptic terminal. This sequence of events, best known as the glutamate/glutamine shuttle is central to glutamatergic transmission. In this sense, the uptake process triggers a complex series of biochemical cascades that modify the physiology of glial cells in the immediate, short and long term so as to be capable to take up, transform and release these amino acids in a regulated amount and in an appropriate time frame to sustain glutamatergic neurotransmission. Among the signaling cascades activated in glial cells by glutamate transporters, a sustained Na(+) and Ca(2+) influx, protein posttranslational modifications and gene expression regulation at the transcriptional and translational levels are present. Therefore, it is clear that the pivotal role of glial cells in the context of excitatory transmission has been constantly underestimated. PMID:27083407

  6. Surfactant-Increased Glyphosate Uptake into Plasma Membrane Vesicles Isolated from Common Lambsquarters Leaves.

    PubMed Central

    Riechers, D. E.; Wax, L. M.; Liebl, R. A.; Bush, D. R.

    1994-01-01

    Plasma membrane vesicles were isolated from mature leaves of lambsquarters (Chenopodium album L.) to investigate whether this membrane is a barrier to glyphosate uptake and whether surfactants possess differential abilities to enhance glyphosate permeability. Amino acids representing several structural classes showed [delta]pH-dependent transport, indicating that the proteins necessary for active, proton-coupled amino acid transport were present and functional. Glyphosate uptake was very low compared to the acidic amino acid glutamate, indicating that glyphosate is not utilizing an endogenous amino acid carrier to enter the leaf cells and that the plasma membrane appears to be a significant barrier to cellular uptake. In addition, glyphosate flux was much lower than that measured for either bentazon or atrazine, both lipid-permeable herbicides that diffuse through the bilayer. Glyphosate uptake was stimulated by 0.01% (v:v) MON 0818, the cationic surfactant used in the commercial formulation of this herbicide for foliar application. This concentration of surfactant did not disrupt the integrity of the plasma membrane vesicles, as evidenced by the stability of imposed pH gradients and active amino acid transport. Nonionic surfactants that disrupt the cuticle but that do not promote glyphosate toxicity in the field also increased glyphosate transport into the membrane vesicles. Thus, no correlation was observed between whole plant toxicity and surfactant-aided uptake. Current data suggest that surfactant efficacy may be the result of charged surfactants' ability to diffuse away from the cuticle into the subtending apoplastic space, where they act directly on the plasma membrane to increase glyphosate uptake. PMID:12232297

  7. Solubilization and Partial Purification of the Adenosine Triphosphatase from a Corn Root Plasma Membrane Fraction

    PubMed Central

    Dupont, Frances M.; Leonard, Robert T.

    1980-01-01

    The K+-stimulated ATPase was partially purified from a plasma membrane fraction from corn roots (WF9 × Mo 17) by solubilization with 30 millimolar octyl-β-d-glucopyranoside followed by precipitation with dilute ammonium sulfate. The specific activity of the enzyme was increased about five times by this procedure. The molecular weight of the detergent-extracted ATPase complex was estimated to be at least 500,000 daltons by chromatography on a Bio-Gel A-5m column. Negative staining electron microscopy indicated that the detergent-extracted material consisted of amorphous particles, while the ammonium sulfate precipitate was composed of uniform vesicles with an average diameter of 100 nanometers. The protein composition of the ammonium sulfate precipitate was significantly different from that of the plasma membrane fraction when compared by sodium dodecyl sulfate gel electrophoresis. The characteristics of the partially purified ATPase resembled those of the plasma membrane associated enzyme. The ATPase required Mg2+, was further stimulated by K+, was almost completely inhibited by 0.1 millimolar diethylstilbestrol, and was not affected by 5.0 micrograms per milliliter oligomycin. Although the detergents sodium cholate, deoxycholate, Triton X-100 and Lubrol WX also solubilized some membrane protein, none solubilized the K+-stimulated ATPase activity. Low concentrations of each detergent, including octyl-β-d-glucopyranoside, activated the ATPase and higher concentrations inactivated the enzyme. These results suggest that the plasma membrane ATPase is a large, integral membrane protein or protein complex that requires lipids to maintain its activity. Images PMID:16661309

  8. Active Trans-Plasma Membrane Water Cycling in Yeast Is Revealed by NMR

    PubMed Central

    Zhang, Yajie; Poirier-Quinot, Marie; Springer, Charles S.; Balschi, James A.

    2011-01-01

    Plasma membrane water transport is a crucial cellular phenomenon. Net water movement in response to an osmotic gradient changes cell volume. Steady-state exchange of water molecules, with no net flux or volume change, occurs by passive diffusion through the phospholipid bilayer and passage through membrane proteins. The hypothesis is tested that plasma membrane water exchange also correlates with ATP-driven membrane transport activity in yeast (Saccharomyces cerevisiae). Longitudinal 1H2O NMR relaxation time constant (T1) values were measured in yeast suspensions containing extracellular relaxation reagent. Two-site-exchange analysis quantified the reversible exchange kinetics as the mean intracellular water lifetime (τi), where τi−1 is the pseudo-first-order rate constant for water efflux. To modulate cellular ATP, yeast suspensions were bubbled with 95%O2/5%CO2 (O2) or 95%N2/5%CO2 (N2). ATP was high during O2, and τi−1 was 3.1 s−1 at 25°C. After changing to N2, ATP decreased and τi−1 was 1.8 s−1. The principal active yeast ion transport protein is the plasma membrane H+-ATPase. Studies using the H+-ATPase inhibitor ebselen or a yeast genetic strain with reduced H+-ATPase found reduced τi−1, notwithstanding high ATP. Steady-state water exchange correlates with H+-ATPase activity. At volume steady state, water is cycling across the plasma membrane in response to metabolic transport activity. PMID:22261073

  9. The C2 domains of granuphilin are high-affinity sensors for plasma membrane lipids.

    PubMed

    Lyakhova, Tatyana A; Knight, Jefferson D

    2014-09-01

    Membrane-targeting proteins are crucial components of many cell signaling pathways, including the secretion of insulin. Granuphilin, also known as synaptotagmin-like protein 4, functions in tethering secretory vesicles to the plasma membrane prior to exocytosis. Granuphilin docks to insulin secretory vesicles through interaction of its N-terminal domain with vesicular Rab proteins; however, the mechanisms of granuphilin plasma membrane targeting and release are less clear. Granuphilin contains two C2 domains, C2A and C2B, that interact with the plasma membrane lipid phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2]. The goal of this study was to determine membrane-binding mechanisms, affinities, and kinetics of both granuphilin C2 domains using fluorescence spectroscopic techniques. Results indicate that both C2A and C2B bind anionic lipids in a Ca(2+)-independent manner. The C2A domain binds liposomes containing a physiological mixture of lipids including 2% PI(4,5)P2 or PI(3,4,5)P3 with high affinity (apparent K(d, PIPx) of 2-5 nM), and binds nonspecifically with moderate affinity to anionic liposomes lacking phosphatidylinositol phosphate (PIPx) lipids. The C2B domain binds with sub-micromolar affinity to liposomes containing PI(4,5)P2 but does not have a measurable affinity for background anionic lipids. Both domains can be competed away from their target lipids by the soluble PIPx analog inositol-(1,2,3,4,5,6)-hexakisphosphate (IP6), which is a positive regulator of insulin secretion. Potential roles of these interactions in the docking and release of granuphilin from the plasma membrane are discussed.

  10. Cryobehavior of the plasma membrane in protoplasts isolated from cold-acclimated Arabidopsis leaves is related to surface area regulation.

    PubMed

    Yamazaki, Tomokazu; Kawamura, Yukio; Uemura, Matsuo

    2008-06-01

    Extracellular freezing in plants results in dehydration and mechanical stresses upon the plasma membrane. Plants that acquire enhanced freezing tolerance after cold acclimation can withstand these two physical stresses. To understand the tolerance to freeze-induced physical stresses, the cryobehavior of the plasma membrane was observed using protoplasts isolated from cold-acclimated Arabidopsis thaliana leaves with the combination of a lipophilic fluorescent dye FM 1-43 and cryomicroscopy. We found that many vesicular structures appeared in the cytoplasmic region near the plasma membrane just after extracellular freezing occurred. These structures, referred to as freeze-induced vesicular structures (FIVs), then developed horizontally near the plasma membrane during freezing. There was a strong correlation between the increase in individual FIV size and the decrease in the surface area of the protoplasts during freezing. Some FIVs fused with their neighbors as the temperature decreased. Occasionally, FIVs fused with the plasma membrane, which may be necessary to relax the stress upon the plasma membrane during freezing. Vesicular structures resembling FIVs were also induced when protoplasts were mechanically pressed between a coverslip and slide glass. Fewer FIVs formed when protoplasts were subjected to hyperosmotic solution, suggesting that FIV formation is associated with mechanical stress rather than dehydration. Collectively, these results suggest that cold-acclimated plant cells may balance membrane tension in the plasma membrane by regulating the surface area. This enables plant cells to withstand the direct mechanical stress imposed by extracellular freezing.

  11. Arabidopsis Synaptotagmin 1 Is Required for the Maintenance of Plasma Membrane Integrity and Cell Viability[W

    PubMed Central

    Schapire, Arnaldo L.; Voigt, Boris; Jasik, Jan; Rosado, Abel; Lopez-Cobollo, Rosa; Menzel, Diedrik; Salinas, Julio; Mancuso, Stefano; Valpuesta, Victoriano; Baluska, Frantisek; Botella, Miguel A.

    2008-01-01

    Plasma membrane repair in animal cells uses synaptotagmin 7, a Ca2+-activated membrane fusion protein that mediates delivery of intracellular membranes to wound sites by a mechanism resembling neuronal Ca2+-regulated exocytosis. Here, we show that loss of function of the homologous Arabidopsis thaliana Synaptotagmin 1 protein (SYT1) reduces the viability of cells as a consequence of a decrease in the integrity of the plasma membrane. This reduced integrity is enhanced in the syt1-2 null mutant in conditions of osmotic stress likely caused by a defective plasma membrane repair. Consistent with a role in plasma membrane repair, SYT1 is ubiquitously expressed, is located at the plasma membrane, and shares all domains characteristic of animal synaptotagmins (i.e., an N terminus-transmembrane domain and a cytoplasmic region containing two C2 domains with phospholipid binding activities). Our analyses support that membrane trafficking mediated by SYT1 is important for plasma membrane integrity and plant fitness. PMID:19088329

  12. Colloidal lanthanum as a marker for impaired plasma membrane permeability in ischemic dog myocardium.

    PubMed Central

    Hoffstein, S.; Gennaro, D. E.; Fox, A. C.; Hirsch, J.; Streuli, F.; Weissmann, G.

    1975-01-01

    Colloidal lanthanum salts have an average particle size of 40 degrees A; consequently, this electron-opaque marker remains extracellular and does not cross the intact plasma membrane. The affinity of lanthanum for calcium-binding sites on mitochondrial membranes makes it possible to demonstrate loss of plasma membrane integrity at the cellular level in ischemic myocardium. Biopsies were obtained from infarcted, marginal and normal areas 3 1/2 hours after ischemia was produced in 9 anesthetized closed-chest dogs by electrically induced thrombosis of the left anterior descending coronary artery. The tissue was immediately fixed in 4% glutaraldehyde and 0.1 M cacodylate buffer containing 1.3% La(NO3)3, pH 7.4, for 2 hours. In normal control tissue prepared this way the lanthanum tracer, as expected, was confirmed to the extracellular spaces, including, basement membranes, gap junctions and portions of the intercalated discs. Specimens taken near the center of frank infarctions all contained intracellular as well as extracellular lanthanum. Intracellular lanthanum could be seen evenly distributed around lipid droplets and in focal deposits around mitochondria. Only when mitochondria were disrupted did lanthanum gain access to internal sites on mitochondrial membranes. Areas marginal to the infarct contained cells in varying stages of degeneration including many that appeared normal by morphologic criteria alone. Intracellular lanthanum was present in many but not all of the marginal cells in which degenerative changes could be seen. Similarly a few of the cells that appeared morphologically normal contained intracellular lanthanum. The entry of lanthanum into some of these marginal cells and its exclusion from adjacent cells demonstrated that ischemic injury affects the permeability properties of the plasma membrane and independently of other intracellular morphologic changes and that lanthanum can be a sensitive indicator of such alteration in membrane permeability

  13. Plasma membranes as heat stress sensors: from lipid-controlled molecular switches to therapeutic applications.

    PubMed

    Török, Zsolt; Crul, Tim; Maresca, Bruno; Schütz, Gerhard J; Viana, Felix; Dindia, Laura; Piotto, Stefano; Brameshuber, Mario; Balogh, Gábor; Péter, Mária; Porta, Amalia; Trapani, Alfonso; Gombos, Imre; Glatz, Attila; Gungor, Burcin; Peksel, Begüm; Vigh, László; Csoboz, Bálint; Horváth, Ibolya; Vijayan, Mathilakath M; Hooper, Phillip L; Harwood, John L; Vigh, László

    2014-06-01

    The classic heat shock (stress) response (HSR) was originally attributed to protein denaturation. However, heat shock protein (Hsp) induction occurs in many circumstances where no protein denaturation is observed. Recently considerable evidence has been accumulated to the favor of the "Membrane Sensor Hypothesis" which predicts that the level of Hsps can be changed as a result of alterations to the plasma membrane. This is especially pertinent to mild heat shock, such as occurs in fever. In this condition the sensitivity of many transient receptor potential (TRP) channels is particularly notable. Small temperature stresses can modulate TRP gating significantly and this is influenced by lipids. In addition, stress hormones often modify plasma membrane structure and function and thus initiate a cascade of events, which may affect HSR. The major transactivator heat shock factor-1 integrates the signals originating from the plasma membrane and orchestrates the expression of individual heat shock genes. We describe how these observations can be tested at the molecular level, for example, with the use of membrane perturbers and through computational calculations. An important fact which now starts to be addressed is that membranes are not homogeneous nor do all cells react identically. Lipidomics and cell profiling are beginning to address the above two points. Finally, we observe that a deregulated HSR is found in a large number of important diseases where more detailed knowledge of the molecular mechanisms involved may offer timely opportunities for clinical interventions and new, innovative drug treatments. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.

  14. Expressing and Characterizing Mechanosensitive Channels in Xenopus Oocytes

    PubMed Central

    Maksaev, Grigory; Haswell, Elizabeth S.

    2015-01-01

    The oocytes of the African clawed frog (Xenopus laevis) comprise one of the most widely used membrane protein expression systems. While frequently used for studies of transporters and ion channels, the application of this system to the study of mechanosensitive ion channels has been overlooked, perhaps due to a relative abundance of native expression systems. Recent advances, however, have illustrated the advantages of the oocyte system for studying plant and bacterial mechanosensitive channels. Here we describe in detail the methods used for heterologous expression and characterization of bacterial and plant mechanosensitive channels in Xenopus oocytes. PMID:25981775

  15. Cotton plasma membrane intrinsic protein 2s (PIP2s) selectively interact to regulate their water channel activities and are required for fibre development.

    PubMed

    Li, Deng-Di; Ruan, Xiang-Mei; Zhang, Jie; Wu, Ya-Jie; Wang, Xiu-Lan; Li, Xue-Bao

    2013-08-01

    Aquaporins are thought to be associated with water transport and play important roles in cotton (Gossypium hirsutum) fibre elongation. Among aquaporins, plasma membrane intrinsic proteins (PIPs) constitute a plasma-membrane-specific subfamily and are further subdivided into PIP1 and PIP2 groups. In this study, four fibre-preferential GhPIP2 genes were functionally characterized. The selective interactions among GhPIP2s and their interaction proteins were studied in detail to elucidate the molecular mechanism of cotton fibre development. GhPIP2;3 interacted with GhPIP2;4 and GhPIP2;6, but GhPIP2;6 did not interact with GhPIP2;4. Coexpression of GhPIP2;3/2;4 or GhPIP2;3/2;6 resulted in a positive cooperative effect which increased the permeability coefficient of oocytes, while GhPIP2;4/2;6 did not. GhBCP2 (a blue copper-binding protein) inhibited GhPIP2;6 water channel activity through their interaction. Overexpression of GhPIP2 genes in yeast induced longitudinal growth of the host cells. By contrast, knockdown of expression of GhPIP2 genes in cotton by RNA interference markedly hindered fibre elongation. In conclusion, GhPIP2 proteins are the primary aquaporin isoforms in fibres. They selectively form hetero-oligomers in order to regulate their activities to meet the requirements for rapid fibre elongation.

  16. Co-overexpressing a plasma membrane and a vacuolar membrane sodium/proton antiporter significantly improves salt tolerance in transgenic Arabidopsis plants.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Arabidopsis gene AtNHX1 encodes a vacuolar membrane bound sodium/proton (Sodium/Hydrogen) antiporter that transports sodium into the vacuole and exports hydrogen into the cytoplasm. The Arabidopsis gene SOS1 encodes a plasma membrane bound sodium/hydrogen antiporter that exports sodium to the ex...

  17. Extra- and intra-cellular ice formation in Stage I and II Xenopus laevis oocytes.

    PubMed

    Guenther, James F; Seki, Shinsuke; Kleinhans, F W; Edashige, Keisuke; Roberts, Daniel M; Mazur, Peter

    2006-06-01

    We are currently investigating factors that influence intracellular ice formation (IIF) in mouse oocytes and oocytes of the frog Xenopus. A major reason for choosing these two species is that while their eggs normally do not possess aquaporin channels in their plasma membranes, these channels can be made to express. We wish to see whether IIF is affected by the presence of these channels. The present Xenopus study deals with control eggs not expressing aquaporins. The main factor studied has been the effect of a cryoprotective agent [ethylene glycol (EG) or glycerol] and its concentration. The general procedure was to (a) cool the oocytes on a cryostage to slightly below the temperatures at which extracellular ice formation occurs, (b) warm them to just below the melting point, and (c) then re-cool them to -50 degrees C at 10 degrees C/min. In the majority of cases, IIF occurs well into step (c), but a sizeable minority undergo IIF in steps (a) or (b). The former group we refer to as low-temperature flashers; the latter as high-temperature flashers. IIF is manifested as abrupt blackening of the egg, which we refer to as "flashing." Observations on the Linkam cryostage are restricted to Stage I and II oocytes, which have diameters of 200 300 microm. In the absence of a cryoprotective agent, that is in frog Ringers, the mean flash temperature for the low-temperature freezers is -11.4 degrees C, although a sizeable percentage flash at temperatures much closer to that of the EIF (-3.9 degrees C). When EG is present, the flash temperature for the low-temperatures freezers drops significantly to approximately -20 degrees C for EG concentrations ranging from 0.5 to 1.5 M. The presence of 1.5 M glycerol also substantially reduces the IIF temperature of the low-temperature freezers; namely, to -29 degrees C, but 0.5 and 1 M glycerol exert little or no effect. The IIF temperatures observed using the Linkam cryostage agree well with those estimated by calorimetry [F

  18. Production of fertile offspring from oocytes grown in vitro by nuclear transfer in cattle.

    PubMed

    Hirao, Yuji; Naruse, Kenji; Kaneda, Masahiro; Somfai, Tamas; Iga, Kosuke; Shimizu, Manabu; Akagi, Satoshi; Cao, Feng; Kono, Tomohiro; Nagai, Takashi; Takenouchi, Naoki

    2013-09-01

    Because of recent advancements in reproductive technology, oocytes have attained an increasingly enriched value as a unique cell population in the production of offspring. The growing oocytes in the ovary are an immediate potential source that serve this need; however, complete oocyte growth before use is crucial. Our research objective was to create in vitro-grown (IVG) oocytes that would have the ability to perform specialized activities, including nuclear reprogramming, as an alternative to in vivo-grown oocytes. Bovine oocyte-granulosa cell complexes with a mean oocyte diameter of approximately 100 μm were cultured on Millicell membrane inserts, with culture medium supplemented with 4% polyvinylpyrrolidone (molecular weight, 360,000), 20 ng/ml androstenedione, 2 mM hypoxanthine, and 5 ng/ml bone morphogenetic protein 7. Oocyte viability after the 14-day culture period was 95%, and there was a 71% increase in oocyte volume. Upon induction of oocyte maturation, 61% of the IVG oocytes extruded a polar body. Eighty-four percent of the reconstructed IVG oocytes that used cumulus cells as donor cells underwent cleavage, and half of them became blastocysts. DNA methylation analyses of the satellite I and II regions of the blastocysts revealed a similar highly methylated status in the cloned embryos derived from in vivo-grown and IVG oocytes. Finally, one of the nine embryos reconstructed from the IVG oocytes developed into a living calf following embryo transfer. Fertility of the offspring was confirmed. In conclusion, the potential of a proportion of the IVG oocytes was comparable to that of in vivo-grown oocytes.

  19. Partitioning, diffusion, and ligand binding of raft lipid analogs in model and cellular plasma membranes.

    PubMed

    Sezgin, Erdinc; Levental, Ilya; Grzybek, Michal; Schwarzmann, Günter; Mueller, Veronika; Honigmann, Alf; Belov, Vladimir N; Eggeling, Christian; Coskun, Unal; Simons, Kai; Schwille, Petra

    2012-07-01

    Several simplified membrane models featuring coexisting liquid disordered (Ld) and ordered (Lo) lipid phases have been developed to mimic the heterogeneous organization of cellular membranes, and thus, aid our understanding of the nature and functional role of ordered lipid-protein nanodomains, termed "rafts". In spite of their greatly reduced complexity, quantitative characterization of local lipid environments using model membranes is not trivial, and the parallels that can be drawn to cellular membranes are not always evident. Similarly, various fluorescently labeled lipid analogs have been used to study membrane organization and function in vitro, although the biological activity of these probes in relation to their native counterparts often remains uncharacterized. This is particularly true for raft-preferring lipids ("raft lipids", e.g. sphingolipids and sterols), whose domain preference is a strict function of their molecular architecture, and is thus susceptible to disruption by fluorescence labeling. Here, we analyze the phase partitioning of a multitude of fluorescent raft lipid analogs in synthetic Giant Unilamellar Vesicles (GUVs) and cell-derived Giant Plasma Membrane Vesicles (GPMVs). We observe complex partitioning behavior dependent on label size, polarity, charge and position, lipid headgroup, and membrane composition. Several of the raft lipid analogs partitioned into the ordered phase in GPMVs, in contrast to fully synthetic GUVs, in which most raft lipid analogs mis-partitioned to the disordered phase. This behavior correlates with the greatly enhanced order difference between coexisting phases in the synthetic system. In addition, not only partitioning, but also ligand binding of the lipids is perturbed upon labeling: while cholera toxin B binds unlabeled GM1 in the Lo phase, it binds fluorescently labeled GMI exclusively in the Ld phase. Fluorescence correlation spectroscopy (FCS) by stimulated emission depletion (STED) nanoscopy on intact

  20. Identification and expression of NEU3, a novel human sialidase associated to the plasma membrane.

    PubMed Central

    Monti, E; Bassi, M T; Papini, N; Riboni, M; Manzoni, M; Venerando, B; Croci, G; Preti, A; Ballabio, A; Tettamanti, G; Borsani, G

    2000-01-01

    Several mammalian sialidases have been described so far, suggesting the existence of numerous polypeptides with different tissue distributions, subcellular localizations and substrate specificities. Among these enzymes, plasma-membrane-associated sialidase(s) have a pivotal role in modulating the ganglioside content of the lipid bilayer, suggesting their involvement in the complex mechanisms governing cell-surface biological functions. Here we describe the identification and expression of a human plasma-membrane-associated sialidase, NEU3, isolated starting from an expressed sequence tag (EST) clone. The cDNA for this sialidase encodes a 428-residue protein containing a putative transmembrane helix, a YRIP (single-letter amino acid codes) motif and three Asp boxes characteristic of sialidases. The polypeptide shows high sequence identity (78%) with the membrane-associated sialidase recently purified and cloned from Bos taurus. Northern blot analysis showed a wide pattern of expression of the gene, in both adult and fetal human tissues. Transient expression in COS7 cells permitted the detection of a sialidase activity with high activity towards ganglioside substrates at a pH optimum of 3.8. Immunofluorescence staining of the transfected COS7 cells demonstrated the protein's localization in the plasma membrane. PMID:10861246

  1. The behaviour of the plasma membrane during plasmolysis: a study by UV microscopy.

    PubMed

    Lang-Pauluzzi, I

    2000-06-01

    A high resolution ultraviolet (UV) bright-field microscope was used to analyse the formation of Hechtian strands and the Hechtian reticulation that remain attached to the cell wall after plasmolysis and deplasmolysis of onion inner epidermal cells. In real time video images, UV microscopy allowed a detailed investigation of the dynamic behaviour of the plasma membrane during the processes of osmotic water loss and uptake. Furthermore, the role of cytoskeletal elements as possible linkers of the plasma membrane to the cell wall was probed by application of cytoskeletal drugs during plasmolysis. Microtubules were depolymerized in oryzalin, and latrunculin B was used to destabilize actin microfilaments. The results showed no visible changes in the formation of the Hechtian reticulation or strands. Plasmolysis forms appeared to be normal, indicating stong membrane-to-wall attachments independent of cytoskeletal elements. During re-expansion of the protoplast in deplasmolysis, the plasma membrane incorporated Hechtian strands and subprotoplasts, fused with the Hechtian reticulation and finally realigned at the cell wall.

  2. Evolutionary appearance of the plasma membrane H (+) -ATPase containing a penultimate threonine in the bryophyte.

    PubMed

    Okumura, Masaki; Takahashi, Koji; Inoue, Shin-Ichiro; Kinoshita, Toshinori

    2012-08-01

    The plasma membrane H (+) -ATPase provides the driving force for solute transport via an electrochemical gradient of H (+) across the plasma membrane, and regulates pH homeostasis and membrane potential in plant cells. However, the plasma membrane H (+) -ATPase in non-vascular plant bryophyte is largely unknown. Here, we show that the moss Physcomitrella patens, which is known as a model bryophyte, expresses both the penultimate Thr-containing H (+) -ATPase (pT H (+) -ATPase) and non-pT H (+) -ATPase as in the green algae, and that pT H (+) -ATPase is regulated by phosphorylation of its penultimate Thr. A search in the P. patens genome database revealed seven H (+) -ATPase genes, designated PpHA (Physcomitrella patens H (+) -ATPase). Six isoforms are the pT H (+) -ATPase; a remaining isoform is non-pT H (+) -ATPase. An apparent 95-kD protein was recognized by anti-H (+) -ATPase antibodies against an isoform of Arabidopsis thaliana and was phosphorylated on the penultimate Thr in response to a fungal toxin fusicoccin and light in protonemata, indicating that the 95-kD protein contains pT H (+) -ATPase. Furthermore, we could not detect the pT H (+) -ATPase in the charophyte alga Chara braunii, which is the closest relative of the land plants, by immunological methods. These results strongly suggest the pT H (+) -ATPase most likely appeared for the first time in bryophyte.

  3. Citrinin-induced fluidization of the plasma membrane of the fission yeast Schizosaccharomyces pombe.

    PubMed

    Blaskó, Ágnes; Mike, Nóra; Gróf, Pál; Gazdag, Zoltán; Czibulya, Zsuzsanna; Nagy, Lívia; Kunsági-Máté, Sándor; Pesti, Miklós

    2013-09-01

    Citrinin (CTN) is a toxic fungal metabolite that is a hazardous contaminant of foods and feeds. In the present study, its acute toxicity and effects on the plasma membrane of Schizosaccharomyces pombe were investigated. The minimum inhibitory concentration of CTN against the yeast cells proved to be 500 μM. Treatment with 0, 250, 500 or 1000 μM CTN for 60 min resulted in a 0%, 2%, 21% or 100% decrease, respectively, in the survival rate of the cell population. Treatment of cells with 0, 100, 500 or 1000 μM CTN for 20 min induced decrease in the phase-transition temperature of the 5-doxylstearic acid-labeled plasma membrane to 16.51, 16.04, 14.18 or 13.98°C, respectively as measured by electron paramagnetic resonance spectroscopy. This perturbation was accompanied by the efflux of essential K⁺ from the cells. The existence of an interaction between CTN and glutathione was detected for the first time by spectrofluorometry. Our observations may suggest a direct interaction of CTN with the free sulfhydryl groups of the integral proteins of the plasma membrane, leading to dose-dependent membrane fluidization. The change in fluidity disturbed the ionic homeostasis, contributing to the death of the cells, which is a novel aspect of CTN cytotoxicity. PMID:23851147

  4. Oxidized Phospholipids Inhibit the Formation of Cholesterol-Dependent Plasma Membrane Nanoplatforms.

    PubMed

    Brameshuber, Mario; Sevcsik, Eva; Rossboth, Benedikt K; Manner, Christina; Deigner, Hans-Peter; Peksel, Begüm; Péter, Mária; Török, Zsolt; Hermetter, Albin; Schütz, Gerhard J

    2016-01-01

    We previously developed a single-molecule microscopy method termed TOCCSL (thinning out clusters while conserving stoichiometry of labeling), which allows for direct imaging of stable nanoscopic platforms with raft-like properties diffusing in the plasma membrane. As a consensus raft marker, we chose monomeric GFP linked via a glycosylphosphatidylinositol (GPI) anchor to the cell membrane (mGFP-GPI). With this probe, we previously observed cholesterol-dependent homo-association to nanoplatforms diffusing in the plasma membrane of live CHO cells. Here, we report the release of this homo-association upon addition of 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine (POVPC) or 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphocholine, two oxidized phospholipids (oxPLs) that are typically present in oxidatively modified low-density lipoprotein. We found a dose-response relationship for mGFP-GPI nanoplatform disintegration upon addition of POVPC, correlating with the signal of the apoptosis marker Annexin V-Cy3. Similar concentrations of lysolipid showed no effect, indicating that the observed phenomena were not linked to properties of the lipid bilayer itself. Inhibition of acid sphingomyelinase by NB-19 before addition of POVPC completely abolished nanoplatform disintegration by oxPLs. In conclusion, we were able to determine how oxidized lipid species disrupt mGFP-GPI nanoplatforms in the plasma membrane. Our results favor an indirect mechanism involving acid sphingomyelinase activity rather than a direct interaction of oxPLs with nanoplatform constituents.

  5. Direct interaction with filamins modulates the stability and plasma membrane expression of CFTR

    PubMed Central

    Thelin, William R.; Chen, Yun; Gentzsch, Martina; Kreda, Silvia M.; Sallee, Jennifer L.; Scarlett, Cameron O.; Borchers, Christoph H.; Jacobson, Ken; Stutts, M. Jackson; Milgram, Sharon L.

    2007-01-01

    The role of the cystic fibrosis transmembrane conductance regulator (CFTR) as a cAMP-dependent chloride channel on the apical membrane of epithelia is well established. However, the processes by which CFTR is regulated on the cell surface are not clear. Here we report the identification of a protein-protein interaction between CFTR and the cytoskeletal filamin proteins. Using proteomic approaches, we identified filamins as proteins that associate with the extreme CFTR N terminus. Furthermore, we identified a disease-causing missense mutation in CFTR, serine 13 to phenylalanine (S13F), which disrupted this interaction. In cells, filamins tethered plasma membrane CFTR to the underlying actin network. This interaction stabilized CFTR at the cell surface and regulated the plasma membrane dynamics and confinement of the channel. In the absence of filamin binding, CFTR was internalized from the cell surface, where it prematurely accumulated in lysosomes and was ultimately degraded. Our data demonstrate what we believe to be a previously unrecognized role for the CFTR N terminus in the regulation of the plasma membrane stability and metabolic stability of CFTR. In addition, we elucidate the molecular defect associated with the S13F mutation. PMID:17235394

  6. Fertilization of C57BL/6 mouse sperm collected from cauda epididymides after preservation or transportation at 4 degrees C using laser-microdissected oocytes.

    PubMed

    Kaneko, Takehito; Fukumoto, Kiyoko; Haruguchi, Yukie; Kondo, Tomoko; Machida, Hiromi; Koga, Mika; Nakagawa, Yoshiko; Tsuchiyama, Shuuji; Saiki, Kiyora; Noshiba, Shiho; Nakagata, Naomi

    2009-08-01

    The C57BL/6 mouse is commonly used to produce transgenic and knockout strains for biomedical research. However, the motility and fertility of its sperm decrease markedly with freezing. Short-term preservation of sperm without freezing can avoid this. Furthermore, such samples can be transported safety without the special skills or equipment needed for the transportation of live animals or frozen products. We evaluated the motility and fertility of sperm collected from cauda epididymides after preservation or transportation at 4 degrees C. Oocytes with the zona pellucida subjected to laser-microdissection were used to assist fertilization in vitro. Although the motility of sperm gradually decreased with storage (P<0.05), no disruption of the sperm plasma membrane was seen. The proportion of zona-intact oocytes fertilized with sperm preserved for 0, 24, 48 and 72h were 70, 14, 5 and 1%, respectively. On the other hand, 45, 20 and 14% of laser-microdissected oocytes were fertilized by sperm preserved for 24, 48 and 72h, respectively (P<0.05). The fertility of sperm collected from cauda epididymides of two transgenic strains after transportation at 4 degrees C were also significantly increased using laser-microdissected oocytes rather than zona-intact oocytes (57 and 68% vs. 5%, P<0.05). Efficient production of offspring from sperm preserved or transported at 4 degrees C was achieved using laser-microdissected oocytes. Thus the fertility of sperm preserved or transported at 4 degrees C could be maintained, although motility gradually decreased with storage. Laser-microdissected oocytes will contribute to the efficient production of embryos and offspring using such preserved sperm samples.

  7. Outer Hair Cell Lateral Wall Structure Constrains the Mobility of Plasma Membrane Proteins.

    PubMed

    Yamashita, Tetsuji; Hakizimana, Pierre; Wu, Siva; Hassan, Ahmed; Jacob, Stefan; Temirov, Jamshid; Fang, Jie; Mellado-Lagarde, Marcia; Gursky, Richard; Horner, Linda; Leibiger, Barbara; Leijon, Sara; Centonze, Victoria E; Berggren, Per-Olof; Frase, Sharon; Auer, Manfred; Brownell, William E; Fridberger, Anders; Zuo, Jian

    2015-09-01

    Nature's fastest motors are the cochlear outer hair cells (OHCs). These sensory cells use a membrane protein, Slc26a5 (prestin), to generate mechanical force at high frequencies, which is essential for explaining the exquisite hearing sensitivity of mammalian ears. Previous studies suggest that Slc26a5 continuously diffuses within the membrane, but how can a freely moving motor protein effectively convey forces critical for hearing? To provide direct evidence in OHCs for freely moving Slc26a5 molecules, we created a knockin mouse where Slc26a5 is fused with YFP. These mice and four other strains expressing fluorescently labeled membrane proteins were used to examine their lateral diffusion in the OHC lateral wall. All five proteins showed minimal diffusion, but did move after pharmacological disruption of membrane-associated structures with a cholesterol-depleting agent and salicylate. Thus, our results demonstrate that OHC lateral wall structure constrains the mobility of plasma membrane proteins and that the integrity of such membrane-associated structures are critical for Slc26a5's active and structural roles. The structural constraint of membrane proteins may exemplify convergent evolution of cellular motors across species. Our findings also suggest a possible mechanism for disorders of cholesterol metabolism with hearing loss such as Niemann-Pick Type C diseases. PMID:26352669

  8. Outer Hair Cell Lateral Wall Structure Constrains the Mobility of Plasma Membrane Proteins

    PubMed Central

    Yamashita, Tetsuji; Hakizimana, Pierre; Wu, Siva; Hassan, Ahmed; Jacob, Stefan; Temirov, Jamshid; Fang, Jie; Mellado-Lagarde, Marcia; Gursky, Richard; Horner, Linda; Leibiger, Barbara; Leijon, Sara; Centonze, Victoria E.; Berggren, Per-Olof; Frase, Sharon; Auer, Manfred; Brownell, William E.; Fridberger, Anders; Zuo, Jian

    2015-01-01

    Nature’s fastest motors are the cochlear outer hair cells (OHCs). These sensory cells use a membrane protein, Slc26a5 (prestin), to generate mechanical force at high frequencies, which is essential for explaining the exquisite hearing sensitivity of mammalian ears. Previous studies suggest that Slc26a5 continuously diffuses within the membrane, but how can a freely moving motor protein effectively convey forces critical for hearing? To provide direct evidence in OHCs for freely moving Slc26a5 molecules, we created a knockin mouse where Slc26a5 is fused with YFP. These mice and four other strains expressing fluorescently labeled membrane proteins were used to examine their lateral diffusion in the OHC lateral wall. All five proteins showed minimal diffusion, but did move after pharmacological disruption of membrane-associated structures with a cholesterol-depleting agent and salicylate. Thus, our results demonstrate that OHC lateral wall structure constrains the mobility of plasma membrane proteins and that the integrity of such membrane-associated structures are critical for Slc26a5’s active and structural roles. The structural constraint of membrane proteins may exemplify convergent evolution of cellular motors across species. Our findings also suggest a possible mechanism for disorders of cholesterol metabolism with hearing loss such as Niemann-Pick Type C diseases. PMID:26352669

  9. Intrinsic stability of Brassicaceae plasma membrane in relation to changes in proteins and lipids as a response to salinity.

    PubMed

    Chalbi, Najla; Martínez-Ballesta, Ma Carmen; Youssef, Nabil Ben; Carvajal, Micaela

    2015-03-01

    Changes in plasma membrane lipids, such as sterols and fatty acids, have been observed as a result of salt stress. These alterations, together with modification of the plasma membrane protein profile, confer changes in the physical properties of the membrane to be taken into account for biotechnological uses. In our experiments, the relationship between lipids and proteins in three different Brassicaceae species differing in salinity tolerance (Brassica oleracea, B. napus and Cakile maritima) and the final plasma membrane stability were studied. The observed changes in the sterol (mainly an increase in sitosterol) and fatty acid composition (increase in RUFA) in each species led to physical adaptation of the plasma membrane to salt stress. The in vitro vesicles stability was higher in the less tolerant (B. oleracea) plants together with low lipoxygenase activity. These results indicate that the proteins/lipids ratio and lipid composition is an important aspect to take into account for the use of natural vesicles in plant biotechnology. PMID:25544590

  10. The effect of Amaranth oil on monolayers of artificial lipids and hepatocyte plasma membranes with adrenalin-induced stress.

    PubMed

    Yelisyeyeva, O P; Semen, K O; Ostrovska, G V; Kaminskyy, D V; Sirota, T V; Zarkovic, N; Mazur, D; Lutsyk, O D; Rybalchenko, K; Bast, A

    2014-03-15

    In this paper the oil from seeds of Amaranthus cruentus L. (AmO) was shown to be an efficient modulator of the physical chemical properties of artificial lipid and rat hepatocyte plasma membranes. AmO improved the membrane stability, their stress resistance and the adsorption of neurotensin to plasma membranes with the distinct biphasic interactions being observed even after adrenalin stress exposure. The analysis of pro-/antioxidant balance in rat blood revealed a mild prooxidant activity after AmO intake, which was accompanied by accumulation of oxidative destruction products in plasma membranes. This prooxidant action of AmO was corroborated in vitro in an adrenalin autooxidation model. On the other hand, the observed improved resistance to adrenalin stress in AmO supplemented rats was associated with an antioxidant response in blood and plasma membrane studies. The AmO effects can be attributed to the modulation of the metabolic pathways involved into oxygen and free radical homeostasis.

  11. Intrinsic stability of Brassicaceae plasma membrane in relation to changes in proteins and lipids as a response to salinity.

    PubMed

    Chalbi, Najla; Martínez-Ballesta, Ma Carmen; Youssef, Nabil Ben; Carvajal, Micaela

    2015-03-01

    Changes in plasma membrane lipids, such as sterols and fatty acids, have been observed as a result of salt stress. These alterations, together with modification of the plasma membrane protein profile, confer changes in the physical properties of the membrane to be taken into account for biotechnological uses. In our experiments, the relationship between lipids and proteins in three different Brassicaceae species differing in salinity tolerance (Brassica oleracea, B. napus and Cakile maritima) and the final plasma membrane stability were studied. The observed changes in the sterol (mainly an increase in sitosterol) and fatty acid composition (increase in RUFA) in each species led to physical adaptation of the plasma membrane to salt stress. The in vitro vesicles stability was higher in the less tolerant (B. oleracea) plants together with low lipoxygenase activity. These results indicate that the proteins/lipids ratio and lipid composition is an important aspect to take into account for the use of natural vesicles in plant biotechnology.

  12. Characterization of Plasma Membrane Proteins from Ovarian Cancer Cells Using Mass Spectrometry

    SciTech Connect

    Springer, David L.; Auberry, Deanna L.; Ahram, Mamoun; Adkins, Joshua N.; Feldhaus, Jane M.; Wahl, Jon H.; Wunsch, David M.; Rodland, Karin D.

    2003-01-01

    To determine how the repertoire of plasma membrane proteins change with disease state, specifically related to cancer, several methods for preparation of plasma membrane proteins were evaluated. Cultured cells derived from stage IV ovarian tumors were grown to 90% confluence and harvested in buffer containing CHAPS detergent. This preparation was centrifuged at low speed to remove insoluble cellular debris resulting in a crude homogenate. Glycosylated proteins in the crude homogenate were selectively enriched using lectin affinity chromatography. The crude homogenate and the lectin purified sample were prepared for mass spectrometric evaluation. The general procedure for protein identification began with trypsin digestion of protein fractions followed by separation by reversed phase liquid chromatography that was coupled directly to a conventional tandem mass spectrometer (i.e. LCQ ion trap). Mass and fragmentation data for the peptides were searched against a human proteome data base using the informatics program SEQUEST. Using this procedure 398 proteins were identified with high confidence, including receptors, membrane-associated ligands, proteases, phosphatases, as well as structural and adhesion proteins. Results indicate that lectin chromatography provides a select subset of proteins and that the number and quality of the identifications improve as does the confidence of the protein identifications for this subset. These results represent the first step in development of methods to separate and successfully identify plasma membrane proteins from advanced ovarian cancer cells. Further characterization of plasma membrane proteins will contribute to our understanding of the mechanisms underlying progression of this deadly disease and may lead to new targeted interventions as well as new biomarkers for diagnosis.

  13. Characterization of Plasma Membrane Proteins from Ovarian Cancer Cells Using Mass Spectrometry

    DOE PAGESBeta

    Springer, David L.; Auberry, Deanna L.; Ahram, Mamoun; Adkins, Joshua N.; Feldhaus, Jane M.; Wahl, Jon H.; Wunschel, David S.; Rodland, Karin D.

    2004-01-01

    To determine how the repertoire of plasma membrane proteins change with disease state, specifically related to cancer, several methods for preparation of plasma membrane proteins were evaluated. Cultured cells derived from stage IV ovarian tumors were grown to 90% confluence and harvested in buffer containing CHAPS detergent. This preparation was centrifuged at low speed to remove insoluble cellular debris resulting in a crude homogenate. Glycosylated proteins in the crude homogenate were selectively enriched using lectin affinity chromatography. The crude homogenate and the lectin purified sample were prepared for mass spectrometric evaluation. The general procedure for protein identification began with trypsinmore » digestion of protein fractions followed by separation by reversed phase liquid chromatography that was coupled directly to a conventional tandem mass spectrometer (i.e. LCQ ion trap). Mass and fragmentation data for the peptides were searched against a human proteome data base using the informatics program SEQUEST. Using this procedure 398 proteins were identified with high confidence, including receptors, membrane-associated ligands, proteases, phosphatases, as well as structural and adhesion proteins. Results indicate that lectin chromatography provides a select subset of proteins and that the number and quality of the identifications improve as does the confidence of the protein identifications for this subset. These results represent the first step in development of methods to separate and successfully identify plasma membrane proteins from advanced ovarian cancer cells. Further characterization of plasma membrane proteins will contribute to our understanding of the mechanisms underlying progression of this deadly disease and may lead to new targeted interventions as well as new biomarkers for diagnosis.« less

  14. Plasma membrane calcium channels in cancer: Alterations and consequences for cell proliferation and migration.

    PubMed

    Déliot, Nadine; Constantin, Bruno

    2015-10-01

    The study of calcium channels in molecular mechanisms of cancer transformation is still a novel area of research. Several studies, mostly conducted on cancer cell lines, however support the idea that a diversity of plasma membrane channels participates in the remodeling of Ca2+ homeostasis, which regulates various cancer hallmarks such as uncontrolled multiplication and increase in migration and invasion abilities. However few is still understood concerning the intracellular signaling cascades mobilized by calcium influx participating to cancer cell behavior. This review intends to gather some of these pathways dependent on plasma membrane calcium channels and described in prostate, breast and lung cancer cell lines. In these cancer cell types, the calcium channels involved in calcium signaling pathways promoting cancer behaviors are mostly non-voltage activated calcium channels and belong to the TRP superfamily (TRPC, TPRPV and TRPM families) and the Orai family. TRP and Orai channels are part of many signaling cascades involving the activation of transmembrane receptors by extracellular ligand from the tumor environment. TRPV can sense changes in the physical and chemical environment of cancer cells and TRPM7 are stretch activated and sensitive to cholesterol. Changes in activation and or expression of plasma-membrane calcium channels affect calcium-dependent signaling processes relevant to tumorigenesis. The studies cited in this review suggest that an increase in plasma membrane calcium channel expression and/or activity sustain an elevated calcium entry (constitutive or under the control of extracellular signals) promoting higher cell proliferation and migration in most cases. A variety of non-voltage-operated calcium channels display change expression and/or activity in a same cancer type and cooperate to the same process relevant to cancer cell behavior, or can be involved in a different sequence of events during the tumorigenesis. This article is part of a

  15. S100A11 is required for efficient plasma membrane repair and survival of invasive cancer cells

    PubMed Central

    Jaiswal, Jyoti K.; Lauritzen, Stine P.; Scheffer, Luana; Sakaguchi, Masakiyo; Bunkenborg, Jakob; Simon, Sanford M.; Kallunki, Tuula; Jäättelä, Marja; Nylandsted, Jesper

    2014-01-01

    Cell migration and invasion require increased plasma membrane dynamics and ability to navigate through dense stroma, thereby exposing plasma membrane to tremendous physical stress. Yet, it is largely unknown how metastatic cancer cells acquire an ability to cope with such stress. Here we show that S100A11, a calcium-binding protein up-regulated in a variety of metastatic cancers, is essential for efficient plasma membrane repair and survival of highly motile cancer cells. Plasma membrane injury-induced entry of calcium into the cell triggers recruitment of S100A11 and Annexin A2 to the site of injury. We show that S100A11 in a complex with Annexin A2 helps reseal the plasma membrane by facilitating polymerization of cortical F-actin and excision of the damaged part of the plasma membrane. These data reveal plasma membrane repair in general and S100A11 and Annexin A2 in particular, as new targets for the therapy of metastatic cancers. PMID:24806074

  16. Studies on rat liver plasma membrane. Altered protein and phospholipid metabolism after injection of D-galactosamine.

    PubMed Central

    Bachmann, W; Harms, E; Hassels, B; Henninger, H; Reuitter, W

    1977-01-01

    1. The metabolism of protein and phospholipid in rat liver plasma membranes isolated by the method of Neville [(1960) J. Biophys. Biochem. Cytol. 8, 413-422] was investigated 3 and 6 h after the injection of D-galactosamine in vivo. During this time, all the biochemical and morphological alterations associated with hepatitis developed. 2. After the injection of D-galactosamine the concentration of sphingomyelin in the plasma membrane decreased to below 60% of the control values. 3. The activity of 5'-nucleotidase (EC 3.1.3.5), which has been purified as a sphingomyelin-protein complex, decreased in the total homogenate as well as in the plasma-membrane fraction of livers of rats treated with galactosamine, to about 60% of the control values. 4. Protein synthesis, as measured by the incorporation of [14C]leucine into plasma membranes, was decreased to 45% of that of the controls. However, only small differences were observed in the amino acid composition of the plasma membrane after D-galactosamine treatment. 5. The protein composition of the plasma membranes was determined by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. The results showed a change from low- to high-molecular-weight proteins after the injection of galactosamine. 6. These results demonstrate different metabolic processes of the plasma membrane altered during the induction of galactosamine hepatitis. Images Fig. 1. PMID:597240

  17. Role of animal pole protuberance and microtubules during meiosis in sea cucumber Apostichopus japonicus oocytes

    NASA Astrophysics Data System (ADS)

    Pang, Zhenguo; Chang, Yaqing; Sun, Huiling; Yu, Jiaping

    2010-05-01

    Fully grown oocytes of Apostichopus japonicus have a cytoplasmic protuberance where the oocyte attaches to the follicle. The protuberance and the oolamina located on the opposite side of the oocyte indicate the animal-vegetal axis. Two pre-meiotic centrosomes are anchored to the protuberance by microtubules between centrosomes and protuberance. After meiosis reinitiation induced by DTT solution, the germinal vesicle (GV) migrates towards the protuberance. The GV breaks down after it migrates to the oocyte membrane on the protuberance side. The protuberance then contracts back into the oocyte and the first polar body extrudes from the site of the former protuberance. The second polar body forms beneath the first. Thus the oocyte protuberance indicates the presumptive animal pole well before maturation of the oocyte.

  18. Mitochondria Synthesize Melatonin to Ameliorate Its Function and Improve Mice Oocyte's Quality under in Vitro Conditions.

    PubMed

    He, Changjiu; Wang, Jing; Zhang, Zhenzhen; Yang, Minghui; Li, Yu; Tian, Xiuzhi; Ma, Teng; Tao, Jingli; Zhu, Kuanfeng; Song, Yukun; Ji, Pengyun; Liu, Guoshi

    2016-01-01

    The physiology of oocyte in vitro maturation remains elusive. Generally, the oocytes have a very low maturation rate under in vitro conditions. In the current study, we found that melatonin promotes the maturation of oocytes in which mitochondria play a pivotal role. It was identified that; (1) mitochondria are the major sites for melatonin synthesis in oocytes and they synthesize large amounts of melatonin during their maturation; (2) melatonin improves mitochondrial function by increased mtDNA copy, mitochondrial membrane potential (ΔΨm) and mitochondrial distribution and ATP production in oocytes; (3) the meiotic spindle assembly is enhanced; (4) melatonin reduces ROS production and inhibits 8-oxodG formation, thereby protecting potential DNA mutation from oxidative damage. As a result, melatonin improves the quality of oocytes, significantly accelerates the developmental ability of IVF embryo. The results provide novel knowledge on the physiology of oocyte's maturation, especially under in vitro conditions. PMID:27314334

  19. Insulin stimulates the generation from hepatic plasma membranes of modulators derived from an inositol glycolipid.

    PubMed Central

    Saltiel, A R; Cuatrecasas, P

    1986-01-01

    Insulin binding to plasma membrane receptors results in the generation of substances that acutely mimic the actions of the hormone on certain target enzymes. Two such substances, which modulate the activity of the high-affinity cAMP phosphodiesterase (EC 3.1.4.17), have been purified from hepatic plasma membranes. The two have similar properties and activities but can be resolved by ion-exchange chromatography and high-voltage electrophoresis. They exhibit a net negative charge, even at pH 1.9, and an apparent molecular weight of approximately 1400. The generation of these substances from membranes by insulin can be reproduced by addition of a phosphatidylinositol-specific phospholipase C purified from Staphylococcus aureus. This enzyme is known to selectively hydrolyze phosphatidylinositol and release from membranes several proteins that are covalently linked to phosphatidylinositol by a glycan anchor. Both enzyme-modulating substances appear to be generated by the phosphodiesterase cleavage of a phosphatidylinositol-containing glycolipid precursor that has been characterized by thin-layer chromatography. Some of the chemical properties of these substances have been examined. They appear to be related complex carbohydrate-phosphate substances containing glucosamine and inositol. These findings suggest that insulin may activate a selective phospholipase activity that hydrolyzes a membrane phospholipid, releasing a carbohydrate-containing molecule that regulates cAMP phosphodiesterase and perhaps other insulin-sensitive enzymes. PMID:3016721

  20. Plasma zinc status and membrane lipid composition in genetically diabetic mice (db/db)

    SciTech Connect

    Burke, J.P.; Fenton, M.R.

    1986-03-05

    Sex and age matched diabetic C57BL/Ks-db+/db+ mice (db/db) were sacrificed at eight weeks of age. Plasma samples were collected and zinc levels determined. Livers were excised and mitochondrial and microsomal membranes prepared. Aliquots of membrane fractions were subjected to lipid extraction and cholesterol (Cl), phospholipid (PL) and fatty acid analysis (FA) performed. Plasma zinc levels in db/db mice were elevated 25% compared to m/m controls (148.8+/-8.1 ..mu..g/dl vs. 118.9+/-14.9 ..mu..g/dl). Cholesterol and PL levels remained unchanged in both mitochondrial and microsomal membranes. Analysis of PL composition from db/db mitochondria by two dimensional thin layer chromatography revealed no change in the percentage of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) but a 40% decrease in cardiolipin. Slight increases were observed in the percentage of phosphatidylserine and phosphatidylinositol (PS+PI) in microsomes isolated from db/db mice. Fatty acid analysis of microsomal PC and PE showed a decrease of 28% in the 18:1/18:0 ratio as well as a 21% decrease in the ratio of 20:4/18:2 in db/db animals. Analysis of succinate dehydrogenase (mitochondrial) and glucose-6-phosphatase (microsomal) revealed significant decreases in activity in livers of db/db mice. The altered zinc metabolism as well as the changes in membrane lipid composition suggest that this may be a model to study the role of zinc in membrane structure.

  1. Quantitative Analysis of Self-Association and Mobility of Annexin A4 at the Plasma Membrane

    PubMed Central

    Crosby, Kevin C.; Postma, Marten; Hink, Mark A.; Zeelenberg, Christiaan H.C.; Adjobo-Hermans, Merel J.W.; Gadella, Theodorus W.J.

    2013-01-01

    Annexins, found in most eukaryotic species, are cytosolic proteins that are able to bind negatively-charged phospholipids in a calcium-dependent manner. Annexin A4 (AnxA4) has been implicated in diverse cellular processes, including the regulation of exocytosis and ion-transport; however, its precise mechanistic role is not fully understood. AnxA4 has been shown to aggregate on lipid layers upon Ca2+ binding in vitro, a characteristic that may be critical for its function. We have utilized advanced fluorescence microscopy to discern details on the mobility and self-assembly of AnxA4 after Ca2+ influx at the plasma membrane in living cells. Total internal reflection microscopy in combination with Förster resonance energy transfer reveals that there is a delay between initial plasma membrane binding and the beginning of self-assembly and this process continues after the cytoplasmic pool has completely relocated. Number-and-brightness analysis suggests that the predominant membrane bound mobile form of the protein is trimeric. There also exists a pool of AnxA4 that forms highly immobile aggregates at the membrane. Fluorescence recovery after photobleaching suggests that the relative proportion of these two forms varies and is correlated with membrane morphology. PMID:23663830

  2. Triggered Ca2+ influx is required for extended synaptotagmin 1-induced ER-plasma membrane tethering.

    PubMed

    Idevall-Hagren, Olof; Lü, Alice; Xie, Beichen; De Camilli, Pietro

    2015-09-01

    The extended synaptotagmins (E-Syts) are ER proteins that act as Ca(2+)-regulated tethers between the ER and the plasma membrane (PM) and have a putative role in lipid transport between the two membranes. Ca(2+) regulation of their tethering function, as well as the interplay of their different domains in such function, remains poorly understood. By exposing semi-intact cells to buffers of variable Ca(2+) concentrations, we found that binding of E-Syt1 to the PI(4,5)P2-rich PM critically requires its C2C and C2E domains and that the EC50 of such binding is in the low micromolar Ca(2+) range. Accordingly, E-Syt1 accumulation at ER-PM contact sites occurred only upon experimental manipulations known to achieve these levels of Ca(2+) via its influx from the extracellular medium, such as store-operated Ca(2+) entry in fibroblasts and membrane depolarization in β-cells. We also show that in spite of their very different physiological functions, membrane tethering by E-Syt1 (ER to PM) and by synaptotagmin (secretory vesicles to PM) undergo a similar regulation by plasma membrane lipids and cytosolic Ca(2+).

  3. Measuring Local Viscosities near Plasma Membranes of Living Cells with Photonic Force Microscopy

    PubMed Central

    Jünger, Felix; Kohler, Felix; Meinel, Andreas; Meyer, Tim; Nitschke, Roland; Erhard, Birgit; Rohrbach, Alexander

    2015-01-01

    The molecular processes of particle binding and endocytosis are influenced by the locally changing mobility of the particle nearby the plasma membrane of a living cell. However, it is unclear how the particle’s hydrodynamic drag and momentum vary locally and how they are mechanically transferred to the cell. We have measured the thermal fluctuations of a 1 μm-sized polystyrene sphere, which was placed in defined distances to plasma membranes of various cell types by using an optical trap and fast three-dimensional (3D) interferometric particle tracking. From the particle position fluctuations on a 30 μs timescale, we determined the distance-dependent change of the viscous drag in directions perpendicular and parallel to the cell membrane. Measurements on macrophages, adenocarcinoma cells, and epithelial cells revealed a significantly longer hydrodynamic coupling length of the particle to the membrane than those measured at giant unilamellar vesicles (GUVs) or a plane glass interface. In contrast to GUVs, there is also a strong increase in friction and in mean first passage time normal to the cell membrane. This hydrodynamic coupling transfers a different amount of momentum to the interior of living cells and might serve as an ultra-soft stimulus triggering further reactions. PMID:26331245

  4. Triggered Ca2+ influx is required for extended synaptotagmin 1-induced ER-plasma membrane tethering

    PubMed Central

    Idevall-Hagren, Olof; Lü, Alice; Xie, Beichen; De Camilli, Pietro

    2015-01-01

    The extended synaptotagmins (E-Syts) are ER proteins that act as Ca2+-regulated tethers between the ER and the plasma membrane (PM) and have a putative role in lipid transport between the two membranes. Ca2+ regulation of their tethering function, as well as the interplay of their different domains in such function, remains poorly understood. By exposing semi-intact cells to buffers of variable Ca2+ concentrations, we found that binding of E-Syt1 to the PI(4,5)P2-rich PM critically requires its C2C and C2E domains and that the EC50 of such binding is in the low micromolar Ca2+ range. Accordingly, E-Syt1 accumulation at ER-PM contact sites occurred only upon experimental manipulations known to achieve these levels of Ca2+ via its influx from the extracellular medium, such as store-operated Ca2+ entry in fibroblasts and membrane depolarization in β-cells. We also show that in spite of their very different physiological functions, membrane tethering by E-Syt1 (ER to PM) and by synaptotagmin (secretory vesicles to PM) undergo a similar regulation by plasma membrane lipids and cytosolic Ca2+. PMID:26202220

  5. Glucocorticoid interactions with ethanol effects on synaptic plasma membranes: influence on [125I]calmodulin binding.

    PubMed

    Sze, P Y

    1996-02-01

    Ca(++)-dependent binding of calmodulin (CaM) to brain synaptic plasma membranes is known to be inhibited by ethanol and stimulated by glucocorticoids. These opposite neurochemical actions between ethanol and the steroids in vitro are consistent with glucocorticoid antagonism of ethanol-induced sedation reported to occur in vivo. The present study was undertaken to characterize the interactions of corticosterone with ethanol effects on [125I]CaM binding in synaptic plasma membranes. From the shift of concentration-response curves when corticosterone and ethanol were present in combination, the interaction between steroid stimulation and ethanol inhibition occurred in an additive relationship over the range of their effective concentrations. From Scatchard analyses, ethanol-induced decrease in membrane affinity for [125I]CaM was antagonized by steroid-induced increase in the membrane affinity, indicating that the convergent event in their interaction was the alteration of membrane affinity for CaM. Glucocorticoid antagonism of ethanol inhibition of [125I]CaM binding exhibited a high degree of steroid specificity; steroids with glucocorticoid activity including cortisol, dexamethasone and triamcinolone were effective, whereas gonadal steroids and excitatory neuroactive steroid metabolites were ineffective. The demonstration that glucocorticoids antagonized the inhibition of CaM binding by ethanol provides support for the hypothesis that these steroids are among the endogenous factors that modulate neuronal sensitivity to ethanol.

  6. Aqueous two-phase partition applied to the isolation of plasma membranes and Golgi apparatus from cultured mammalian cells

    NASA Technical Reports Server (NTRS)

    Morre, D. M.; Morre, D. J.

    2000-01-01

    Partitioning in dextran-poly(ethylene)glycol (PEG) aqueous-aqueous phase systems represents a mature technology with many applications to separations of cells and to the preparation of membranes from mammalian cells. Most applications to membrane isolation and purification have focused on plasma membranes, plasma membrane domains and separation of right side-out and inside-out plasma membrane vesicles. The method exploits a combination of membrane properties, including charge and hydrophobicity. Purification is based upon differential distributions of the constituents in a sample between the two principal compartments of the two phases (upper and lower) and at the interface. The order of affinity of animal cell membranes for the upper phase is: endoplasmic reticulum plasma membranes. Salt concentrations and temperature affect partitioning behavior and must be precisely standardized. In some cases, it is more fortuitous to combine aqueous two-phase partition with other procedures to obtain a more highly purified preparation. A procedure is described for preparation of Golgi apparatus from transformed mammalian cells that combines aqueous two-phase partition and centrifugation. Also described is a periodic NADH oxidase, a new enzyme marker for right side-out plasma membrane vesicles not requiring detergent disruptions for measurement of activity.

  7. Proteomic analysis identifies interleukin 11 regulated plasma membrane proteins in human endometrial epithelial cells in vitro

    PubMed Central

    2011-01-01

    Background During the peri-implantation period, the embryo adheres to an adequately prepared or receptive endometrial surface epithelium. Abnormal embryo adhesion to the endometrium results in embryo implantation failure and infertility. Endometrial epithelial cell plasma membrane proteins critical in regulating adhesion may potentially be infertility biomarkers or targets for treating infertility. Interleukin (IL) 11 regulates human endometrial epithelial cells (hEEC) adhesion. Its production is abnormal in women with infertility. The objective of the study was to identify IL11 regulated plasma membrane proteins in hEEC in vitro using a proteomic approach. Methods Using a 2D-differential in-gel electrophoresis (DIGE) electrophoresis combined with LCMS/MS mass spectrometry approach, we identified 20 unique plasma membrane proteins differentially regulated by IL11 in ECC-1 cells, a hEEC derived cell line. Two IL11 regulated proteins with known roles in cell adhesion, annexin A2 (ANXA2) and flotillin-1 (FLOT1), were validated by Western blot and immunocytochemistry in hEEC lines (ECC-1 and an additional cell line, Ishikawa) and primary hEEC. Flotilin-1 was further validated by immunohistochemistry in human endometrium throughout the menstrual cycle (n = 6-8/cycle). Results 2D-DIGE analysis identified 4 spots that were significantly different between control and IL11 treated group. Of these 4 spots, there were 20 proteins that were identified with LCMS/MS. Two proteins; ANXA2 and FLOT1 were chosen for further analyses and have found to be significantly up-regulated following IL11 treatment. Western blot analysis showed a 2-fold and a 2.5-fold increase of ANXA2 in hEEC membrane fraction of ECC-1 and Ishikawa cells respectively. Similarly, a 1.8-fold and a 2.3/2.4-fold increase was also observed for FLOT1 in hEEC membrane fraction of ECC-1 and Ishikawa cells respectively. In vitro, IL11 induced stronger ANXA2 expression on cell surface of primary hEEC and ECC-1 whilst

  8. Sirtuin Activation: A Role for Plasma Membrane in the Cell Growth Puzzle

    PubMed Central

    2013-01-01

    For more than 20 years, the observation that impermeable oxidants can stimulate cell growth has not been satisfactorily explained. The discovery of sirtuins provides a logical answer to the puzzle. The NADH-dependent transplasma membrane electron transport system, which is stimulated by growth factors and interventions such as calorie restriction, can transfer electrons to external acceptors and protect against stress-induced apoptosis. We hypothesize that the activation of plasma membrane electron transport contributes to the cytosolic NAD+ pool required for sirtuin to activate transcription factors necessary for cell growth and survival. PMID:23033342

  9. The intracellular carboxyl terminal domain of Vangl proteins contains plasma membrane targeting signals

    PubMed Central

    Iliescu, Alexandra; Gros, Philippe

    2014-01-01

    Vangl1 and Vangl2 are integral membrane proteins that play a critical role in establishing planar cell polarity (PCP) in epithelial cells and are required for convergent extension (CE) movements during embryogenesis. Their proper targeting to the plasma membrane (PM) is required for function. We created discrete deletions at the amino and carboxy termini of Vangl1 and monitored the effect of the mutations on PM targeting in Madin–Darby canine kidney cells. Our results show that the Vangl1 amino terminus lacks PM targeting determinants, and these are restricted to the carboxy terminus, including the predicted PDZBM motif at the C-terminus. PMID:24452931

  10. Specific release of plasma membrane enzymes by a phosphatidylinositol-specific phospholipase C.

    PubMed

    Low, M G; Finean, J B

    1978-04-20

    The release of plasma membrane ecto-enzymes by a phosphatidylinositol-specific phospholipase C from Staphylococcus aureus was investigated. There was no effect on L-leucyl-beta-naphthylamidase, alkaline phosphodeisterase I and Ca2+- or MG2+-ATPase, but substantial proportions of the alkaline phosphatase and 5-nucleotidase were released. There was no simultaneous release of phospholipid and the solubilized enzymes were not exluded from Sepharose 6-B. It was therefore concluded that release was not a secondary consequence of membrane vesiculation but occurred as a result of the disruption of specific interactions involving the phosphatidylinositol molecule.

  11. Arabidopsis SNAREs SYP61 and SYP121 Coordinate the Trafficking of Plasma Membrane Aquaporin PIP2;7 to Modulate the Cell Membrane Water Permeability[W

    PubMed Central

    Hachez, Charles; Laloux, Timothée; Reinhardt, Hagen; Cavez, Damien; Degand, Hervé; Grefen, Christopher; De Rycke, Riet; Inzé, Dirk; Blatt, Michael R.; Russinova, Eugenia; Chaumont, François

    2014-01-01

    Plant plasma membrane intrinsic proteins (PIPs) are aquaporins that facilitate the passive movement of water and small neutral solutes through biological membranes. Here, we report that post-Golgi trafficking of PIP2;7 in Arabidopsis thaliana involves specific interactions with two syntaxin proteins, namely, the Qc-SNARE SYP61 and the Qa-SNARE SYP121, that the proper delivery of PIP2;7 to the plasma membrane depends on the activity of the two SNAREs, and that the SNAREs colocalize and physically interact. These findings are indicative of an important role for SYP61 and SYP121, possibly forming a SNARE complex. Our data support a model in which direct interactions between specific SNARE proteins and PIP aquaporins modulate their post-Golgi trafficking and thus contribute to the fine-tuning of the water permeability of the plasma membrane. PMID:25082856

  12. Destabilization of the plasma membrane of isolated plant protoplasts during a freeze-thaw cycle: the influence of cold acclimation

    SciTech Connect

    Steponkus, P.L.; Dowgert, M.F.; Gordon-Kamm, W.J.

    1983-01-01

    The functional characteristics of the plasma membrane in response to a free-thaw cycle are studied in isolated protoplasts with the plasma membrane still intact. Three different forms of injury have been characterized: intracellular ice formation, hypertonic-induced loss of osmotic responsiveness, and expansion-induced lysis. In this report, the influence of cold acclimation on the incidence of these forms of injury is emphasized. Isolated protoplasts are an excellent arena in which destabilization of the plasma membrane can be directly observed during a freeze-thaw cycle by cryomicroscopy. 65 references, 8 figures.

  13. Plasma Modified Polypropylene Membranes as the Lithium-Ion Battery Separators

    NASA Astrophysics Data System (ADS)

    Wang, Zhengduo; Zhu, Huiqin; Yang, Lizhen; Wang, Xinwei; Liu, Zhongwei; Chen, Qiang

    2016-04-01

    To reduce the thermal shrinkage of the polymeric separators and improve the safety of the Li-ion batteries, plasma treatment and plasma enhanced vapor chemical deposition (PECVD) of SiOx-like are carried out on polypropylene (PP) separators, respectively. Critical parameters for separator properties, such as the thermal shrinkage rate, porosity, wettability, and mechanical strength, are evaluated on the plasma treated PP membranes. O2 plasma treatment is found to remarkably improve the wettability, porosity and electrolyte uptake. PECVD SiOx-like coatings are found to be able to effectively reduce the thermal shrinkage rate of the membranes and increase the ionic conductivity. The electrolyte-philicity of the SiOx-like coating surface can be tuned by the varying O2 content in the gas mixture during the deposition. Though still acceptable, the mechanical strength is reduced after PECVD, which is due to the plasma etching. supported by National Natural Science Foundation of China (Nos. 11175024, 11375031), the Beijing Institute of Graphic and Communication Key Project of China (No. 23190113051), the Shenzhen Science and Technology Innovation Committee of China (No. JCYJ20130329181509637), BJNSFC (No. KZ201510015014), and the State Key Laboratory of Electrical Insulation and Power Equipment of China (No. EIPE15208)

  14. [Effect of plasma membrane ion permeability modulators on respiration and heat output of wheat roots].

    PubMed

    Alekseeva, V A; Gordon, L Kh; Loseva, N L; Rakhimova, G G; Tsentsevitskiĭ, A N

    2006-01-01

    A study was made of changes in the rates of respiration, heat production, and membrane characteristics in cells of excised roots of wheat seedlings under the modulation of plasma membrane ion permeability by two membrane active compounds: valinomycin (20 microM (V50)) and chlorpromazine (50 microM (CP50) and 100 microM (CP100)). Both compounds increased the loss of potassium ions, which correlated with the lowering of membrane potential, rate of respiration, and heat production after a 2 h exposure. The differences in alteration of these parameters were due to specific action of either compound on the membrane and to the extent of ion homeostasis disturbance. V20 had a weak effect on the studied parameters. V50 caused an increase of the rate of respiration and heat production, which enhanced following a prolonged action (5 h) and were associated with ion homeostatis restoration. The extent of alteration of membrane characteristics (an increase of potassium loss by roots, and lowering of cell membrane potential) as well as energy expense under the action of CP50 during the first period were more pronounced than in the presence of V50. During a prolonged action of CP50, the increase of respiration intensity and heat production correlated with partial recovery of ion homeostatis in cells. Essential lowering of membrane potential and substantial loss of potassium by cells, starting from the early stages of their response reaction, were followed by inhibition of respiration rate and heat production. Alterations of the structure and functional characteristics of excised root cells indicate the intensification of the membrane-tropic effect of a prolonged action of CP100, and the lack of cell energy resources.

  15. Properties of poly(ethylene terephthalate) track membranes with a polymer layer obtained by plasma polymerization of pyrrole vapors

    NASA Astrophysics Data System (ADS)

    Kravets, L.; Dmitriev, S.; Lizunov, N.; Satulu, V.; Mitu, B.; Dinescu, G.

    2010-03-01

    The structure and the charge transport properties of poly(ethylene terephthalate) track membrane modified by pyrrole plasma were studied. It was found that polymer deposition on the surface of a track membrane via plasma polymerization of pyrrole results in the creation of composite nanomembranes that, in the case of the formation of a semipermeable layer, possess asymmetric conductivity in electrolyte solutions - a rectification effect similar to that of a p-n junction in semiconductors. It is caused by presence in the membranes of two layers with different functional groups and also by the pore geometry. Such membranes can be used to create chemical and biochemical sensors.

  16. Maternal diabetes and oocyte quality

    PubMed Central

    Wang, Qiang; Moley, Kelle H.

    2016-01-01

    Maternal diabetes has been demonstrated to adversely affect preimplantation embryo development and pregnancy outcomes. Emerging evidence has implicated that these effects are associated with compromised oocyte competence. Several developmental defects during oocyte maturation in diabetic mice have been reported over past decades. Most recently, we further identified the structural, spatial and metabolic dysfunction of mitochondria in oocytes from diabetic mice, suggesting the impaired oocyte quality. These defects in the oocyte may be maternally transmitted to the embryo and then manifested later as developmental abnormalities in preimplantation embryo, congenital malformations, and even metabolic disease in the offspring. In this paper, we briefly review the effects of maternal diabetes on oocyte quality, with a particular emphasis on the mitochondrial dysfunction. The possible connection between dysfunctional oocyte mitochondria and reproductive failure of diabetic females, and the mechanism(s) by which maternal diabetes exerts its effects on the oocyte are also discussed. PMID:20226883

  17. Morphology-properties relationship of gas plasma treated hydrophobic meso-porous membranes and their improved performance for desalination by membrane distillation

    NASA Astrophysics Data System (ADS)

    Dumée, Ludovic F.; Alglave, Hortense; Chaffraix, Thomas; Lin, Bao; Magniez, Kevin; Schütz, Jürg

    2016-02-01

    The impact on performance of the surface energy and roughness of membrane materials used for direct contact membrane distillation are critical but yet poorly investigated parameters. The capacity to alter the wettability of highly hydrophobic materials such as poly(tetra-fluoro-ethylene) (PTFE) by gas plasma treatments is reported in this paper. An equally important contribution from this investigation arises from illu