Science.gov

Sample records for open biomedical annotator

  1. Ranking biomedical annotations with annotator's semantic relevancy.

    PubMed

    Wu, Aihua

    2014-01-01

    Biomedical annotation is a common and affective artifact for researchers to discuss, show opinion, and share discoveries. It becomes increasing popular in many online research communities, and implies much useful information. Ranking biomedical annotations is a critical problem for data user to efficiently get information. As the annotator's knowledge about the annotated entity normally determines quality of the annotations, we evaluate the knowledge, that is, semantic relationship between them, in two ways. The first is extracting relational information from credible websites by mining association rules between an annotator and a biomedical entity. The second way is frequent pattern mining from historical annotations, which reveals common features of biomedical entities that an annotator can annotate with high quality. We propose a weighted and concept-extended RDF model to represent an annotator, a biomedical entity, and their background attributes and merge information from the two ways as the context of an annotator. Based on that, we present a method to rank the annotations by evaluating their correctness according to user's vote and the semantic relevancy between the annotator and the annotated entity. The experimental results show that the approach is applicable and efficient even when data set is large. PMID:24899918

  2. Ranking Biomedical Annotations with Annotator's Semantic Relevancy

    PubMed Central

    2014-01-01

    Biomedical annotation is a common and affective artifact for researchers to discuss, show opinion, and share discoveries. It becomes increasing popular in many online research communities, and implies much useful information. Ranking biomedical annotations is a critical problem for data user to efficiently get information. As the annotator's knowledge about the annotated entity normally determines quality of the annotations, we evaluate the knowledge, that is, semantic relationship between them, in two ways. The first is extracting relational information from credible websites by mining association rules between an annotator and a biomedical entity. The second way is frequent pattern mining from historical annotations, which reveals common features of biomedical entities that an annotator can annotate with high quality. We propose a weighted and concept-extended RDF model to represent an annotator, a biomedical entity, and their background attributes and merge information from the two ways as the context of an annotator. Based on that, we present a method to rank the annotations by evaluating their correctness according to user's vote and the semantic relevancy between the annotator and the annotated entity. The experimental results show that the approach is applicable and efficient even when data set is large. PMID:24899918

  3. Semantator: semantic annotator for converting biomedical text to linked data.

    PubMed

    Tao, Cui; Song, Dezhao; Sharma, Deepak; Chute, Christopher G

    2013-10-01

    More than 80% of biomedical data is embedded in plain text. The unstructured nature of these text-based documents makes it challenging to easily browse and query the data of interest in them. One approach to facilitate browsing and querying biomedical text is to convert the plain text to a linked web of data, i.e., converting data originally in free text to structured formats with defined meta-level semantics. In this paper, we introduce Semantator (Semantic Annotator), a semantic-web-based environment for annotating data of interest in biomedical documents, browsing and querying the annotated data, and interactively refining annotation results if needed. Through Semantator, information of interest can be either annotated manually or semi-automatically using plug-in information extraction tools. The annotated results will be stored in RDF and can be queried using the SPARQL query language. In addition, semantic reasoners can be directly applied to the annotated data for consistency checking and knowledge inference. Semantator has been released online and was used by the biomedical ontology community who provided positive feedbacks. Our evaluation results indicated that (1) Semantator can perform the annotation functionalities as designed; (2) Semantator can be adopted in real applications in clinical and transactional research; and (3) the annotated results using Semantator can be easily used in Semantic-web-based reasoning tools for further inference.

  4. A survey on annotation tools for the biomedical literature.

    PubMed

    Neves, Mariana; Leser, Ulf

    2014-03-01

    New approaches to biomedical text mining crucially depend on the existence of comprehensive annotated corpora. Such corpora, commonly called gold standards, are important for learning patterns or models during the training phase, for evaluating and comparing the performance of algorithms and also for better understanding the information sought for by means of examples. Gold standards depend on human understanding and manual annotation of natural language text. This process is very time-consuming and expensive because it requires high intellectual effort from domain experts. Accordingly, the lack of gold standards is considered as one of the main bottlenecks for developing novel text mining methods. This situation led the development of tools that support humans in annotating texts. Such tools should be intuitive to use, should support a range of different input formats, should include visualization of annotated texts and should generate an easy-to-parse output format. Today, a range of tools which implement some of these functionalities are available. In this survey, we present a comprehensive survey of tools for supporting annotation of biomedical texts. Altogether, we considered almost 30 tools, 13 of which were selected for an in-depth comparison. The comparison was performed using predefined criteria and was accompanied by hands-on experiences whenever possible. Our survey shows that current tools can support many of the tasks in biomedical text annotation in a satisfying manner, but also that no tool can be considered as a true comprehensive solution.

  5. Open semantic annotation of scientific publications using DOMEO

    PubMed Central

    2012-01-01

    Background Our group has developed a useful shared software framework for performing, versioning, sharing and viewing Web annotations of a number of kinds, using an open representation model. Methods The Domeo Annotation Tool was developed in tandem with this open model, the Annotation Ontology (AO). Development of both the Annotation Framework and the open model was driven by requirements of several different types of alpha users, including bench scientists and biomedical curators from university research labs, online scientific communities, publishing and pharmaceutical companies. Several use cases were incrementally implemented by the toolkit. These use cases in biomedical communications include personal note-taking, group document annotation, semantic tagging, claim-evidence-context extraction, reagent tagging, and curation of textmining results from entity extraction algorithms. Results We report on the Domeo user interface here. Domeo has been deployed in beta release as part of the NIH Neuroscience Information Framework (NIF, http://www.neuinfo.org) and is scheduled for production deployment in the NIF’s next full release. Future papers will describe other aspects of this work in detail, including Annotation Framework Services and components for integrating with external textmining services, such as the NCBO Annotator web service, and with other textmining applications using the Apache UIMA framework. PMID:22541592

  6. An open annotation ontology for science on web 3.0

    PubMed Central

    2011-01-01

    Background There is currently a gap between the rich and expressive collection of published biomedical ontologies, and the natural language expression of biomedical papers consumed on a daily basis by scientific researchers. The purpose of this paper is to provide an open, shareable structure for dynamic integration of biomedical domain ontologies with the scientific document, in the form of an Annotation Ontology (AO), thus closing this gap and enabling application of formal biomedical ontologies directly to the literature as it emerges. Methods Initial requirements for AO were elicited by analysis of integration needs between biomedical web communities, and of needs for representing and integrating results of biomedical text mining. Analysis of strengths and weaknesses of previous efforts in this area was also performed. A series of increasingly refined annotation tools were then developed along with a metadata model in OWL, and deployed for feedback and additional requirements the ontology to users at a major pharmaceutical company and a major academic center. Further requirements and critiques of the model were also elicited through discussions with many colleagues and incorporated into the work. Results This paper presents Annotation Ontology (AO), an open ontology in OWL-DL for annotating scientific documents on the web. AO supports both human and algorithmic content annotation. It enables “stand-off” or independent metadata anchored to specific positions in a web document by any one of several methods. In AO, the document may be annotated but is not required to be under update control of the annotator. AO contains a provenance model to support versioning, and a set model for specifying groups and containers of annotation. AO is freely available under open source license at http://purl.org/ao/, and extensive documentation including screencasts is available on AO’s Google Code page: http://code.google.com/p/annotation-ontology/ . Conclusions The

  7. Large-scale biomedical concept recognition: an evaluation of current automatic annotators and their parameters

    PubMed Central

    2014-01-01

    Background Ontological concepts are useful for many different biomedical tasks. Concepts are difficult to recognize in text due to a disconnect between what is captured in an ontology and how the concepts are expressed in text. There are many recognizers for specific ontologies, but a general approach for concept recognition is an open problem. Results Three dictionary-based systems (MetaMap, NCBO Annotator, and ConceptMapper) are evaluated on eight biomedical ontologies in the Colorado Richly Annotated Full-Text (CRAFT) Corpus. Over 1,000 parameter combinations are examined, and best-performing parameters for each system-ontology pair are presented. Conclusions Baselines for concept recognition by three systems on eight biomedical ontologies are established (F-measures range from 0.14–0.83). Out of the three systems we tested, ConceptMapper is generally the best-performing system; it produces the highest F-measure of seven out of eight ontologies. Default parameters are not ideal for most systems on most ontologies; by changing parameters F-measure can be increased by up to 0.4. Not only are best performing parameters presented, but suggestions for choosing the best parameters based on ontology characteristics are presented. PMID:24571547

  8. Biomedical article retrieval using multimodal features and image annotations in region-based CBIR

    NASA Astrophysics Data System (ADS)

    You, Daekeun; Antani, Sameer; Demner-Fushman, Dina; Rahman, Md Mahmudur; Govindaraju, Venu; Thoma, George R.

    2010-01-01

    Biomedical images are invaluable in establishing diagnosis, acquiring technical skills, and implementing best practices in many areas of medicine. At present, images needed for instructional purposes or in support of clinical decisions appear in specialized databases and in biomedical articles, and are often not easily accessible to retrieval tools. Our goal is to automatically annotate images extracted from scientific publications with respect to their usefulness for clinical decision support and instructional purposes, and project the annotations onto images stored in databases by linking images through content-based image similarity. Authors often use text labels and pointers overlaid on figures and illustrations in the articles to highlight regions of interest (ROI). These annotations are then referenced in the caption text or figure citations in the article text. In previous research we have developed two methods (a heuristic and dynamic time warping-based methods) for localizing and recognizing such pointers on biomedical images. In this work, we add robustness to our previous efforts by using a machine learning based approach to localizing and recognizing the pointers. Identifying these can assist in extracting relevant image content at regions within the image that are likely to be highly relevant to the discussion in the article text. Image regions can then be annotated using biomedical concepts from extracted snippets of text pertaining to images in scientific biomedical articles that are identified using National Library of Medicine's Unified Medical Language System® (UMLS) Metathesaurus. The resulting regional annotation and extracted image content are then used as indices for biomedical article retrieval using the multimodal features and region-based content-based image retrieval (CBIR) techniques. The hypothesis that such an approach would improve biomedical document retrieval is validated through experiments on an expert-marked biomedical article

  9. Quantitative biomedical annotation using medical subject heading over-representation profiles (MeSHOPs)

    PubMed Central

    2012-01-01

    Background MEDLINE®/PubMed® indexes over 20 million biomedical articles, providing curated annotation of its contents using a controlled vocabulary known as Medical Subject Headings (MeSH). The MeSH vocabulary, developed over 50+ years, provides a broad coverage of topics across biomedical research. Distilling the essential biomedical themes for a topic of interest from the relevant literature is important to both understand the importance of related concepts and discover new relationships. Results We introduce a novel method for determining enriched curator-assigned MeSH annotations in a set of papers associated to a topic, such as a gene, an author or a disease. We generate MeSH Over-representation Profiles (MeSHOPs) to quantitatively summarize the annotations in a form convenient for further computational analysis and visualization. Based on a hypergeometric distribution of assigned terms, MeSHOPs statistically account for the prevalence of the associated biomedical annotation while highlighting unusually prevalent terms based on a specified background. MeSHOPs can be visualized using word clouds, providing a succinct quantitative graphical representation of the relative importance of terms. Using the publication dates of articles, MeSHOPs track changing patterns of annotation over time. Since MeSHOPs are quantitative vectors, MeSHOPs can be compared using standard techniques such as hierarchical clustering. The reliability of MeSHOP annotations is assessed based on the capacity to re-derive the subset of the Gene Ontology annotations with equivalent MeSH terms. Conclusions MeSHOPs allows quantitative measurement of the degree of association between any entity and the annotated medical concepts, based directly on relevant primary literature. Comparison of MeSHOPs allows entities to be related based on shared medical themes in their literature. A web interface is provided for generating and visualizing MeSHOPs. PMID:23017167

  10. Nomenclature-based data retrieval without prior annotation: facilitating biomedical data integration with fast doublet matching.

    PubMed

    Berman, Jules J

    2005-01-01

    Assigning nomenclature codes to biomedical data is an arduous, expensive and error-prone task. Data records are coded to to provide a common representation of contained concepts, allowing facile retrieval of records via a standard terminology. In the medical field, cancer registrars, nurses, pathologists, and private clinicians all understand the importance of annotating medical records with vocabularies that codify the names of diseases, procedures, billing categories, etc. Molecular biologists need codified medical records so that they can discover or validate relationships between experimental data and clinical data. This paper introduces a new approach to retrieving data records without prior coding. The approach achieves the same result as a search over pre-coded records. It retrieves all records that contain any terms that are synonymous with a user's query-term. A recently described fast algorithm (the doublet method) permits quick iterative searches over every synonym for any term from any nomenclature occurring in a dataset of any size. As a demonstration, a 105+ Megabyte corpus of Pubmed abstracts was searched for medical terms. Query terms were matched against either of two vocabularies and expanded as an array of equivalent search items. A single search term may have over one hundred nomenclature synonyms, all of which were searched against the full database. Iterative searches of a list of concept-equivalent terms involves many more operations than a single search over pre-annotated concept codes. Nonetheless, the doublet method achieved fast query response times (0.05 seconds using Snomed and 5 seconds using the Developmental Lineage Classification of Neoplasms, on a computer with a 2.89 GHz processor). Pre-annotated datasets lose their value when the chosen vocabulary is replaced by a different vocabulary or by a different version of the same vocabulary. The doublet method can employ any version of any vocabulary with no pre-annotation. In many

  11. Annotating the biomedical literature for the human variome

    PubMed Central

    Verspoor, Karin; Jimeno Yepes, Antonio; Cavedon, Lawrence; McIntosh, Tara; Herten-Crabb, Asha; Thomas, Zoë; Plazzer, John-Paul

    2013-01-01

    This article introduces the Variome Annotation Schema, a schema that aims to capture the core concepts and relations relevant to cataloguing and interpreting human genetic variation and its relationship to disease, as described in the published literature. The schema was inspired by the needs of the database curators of the International Society for Gastrointestinal Hereditary Tumours (InSiGHT) database, but is intended to have application to genetic variation information in a range of diseases. The schema has been applied to a small corpus of full text journal publications on the subject of inherited colorectal cancer. We show that the inter-annotator agreement on annotation of this corpus ranges from 0.78 to 0.95 F-score across different entity types when exact matching is measured, and improves to a minimum F-score of 0.87 when boundary matching is relaxed. Relations show more variability in agreement, but several are reliable, with the highest, cohort-has-size, reaching 0.90 F-score. We also explore the relevance of the schema to the InSiGHT database curation process. The schema and the corpus represent an important new resource for the development of text mining solutions that address relationships among patient cohorts, disease and genetic variation, and therefore, we also discuss the role text mining might play in the curation of information related to the human variome. The corpus is available at http://opennicta.com/home/health/variome. PMID:23584833

  12. Leveraging biomedical ontologies and annotation services to organize microbiome data from Mammalian hosts.

    PubMed

    Sarkar, Indra Neil

    2010-01-01

    A better understanding of commensal microbiotic communities ("microbiomes") may provide valuable insights to human health. Towards this goal, an essential step may be the development of approaches to organize data that can enable comparative hypotheses across mammalian microbiomes. The present study explores the feasibility of using existing biomedical informatics resources - especially focusing on those available at the National Center for Biomedical Ontology - to organize microbiome data contained within large sequence repositories, such as GenBank. The results indicate that the Foundational Model of Anatomy and SNOMED CT can be used to organize greater than 90% of the bacterial organisms associated with 10 domesticated mammalian species. The promising findings suggest that the current biomedical informatics infrastructure may be used towards the organizing of microbiome data beyond humans. Furthermore, the results identify key concepts that might be organized into a semantic structure for incorporation into subsequent annotations that could facilitate comparative biomedical hypotheses pertaining to human health. PMID:21347072

  13. Generation of silver standard concept annotations from biomedical texts with special relevance to phenotypes.

    PubMed

    Oellrich, Anika; Collier, Nigel; Smedley, Damian; Groza, Tudor

    2015-01-01

    Electronic health records and scientific articles possess differing linguistic characteristics that may impact the performance of natural language processing tools developed for one or the other. In this paper, we investigate the performance of four extant concept recognition tools: the clinical Text Analysis and Knowledge Extraction System (cTAKES), the National Center for Biomedical Ontology (NCBO) Annotator, the Biomedical Concept Annotation System (BeCAS) and MetaMap. Each of the four concept recognition systems is applied to four different corpora: the i2b2 corpus of clinical documents, a PubMed corpus of Medline abstracts, a clinical trails corpus and the ShARe/CLEF corpus. In addition, we assess the individual system performances with respect to one gold standard annotation set, available for the ShARe/CLEF corpus. Furthermore, we built a silver standard annotation set from the individual systems' output and assess the quality as well as the contribution of individual systems to the quality of the silver standard. Our results demonstrate that mainly the NCBO annotator and cTAKES contribute to the silver standard corpora (F1-measures in the range of 21% to 74%) and their quality (best F1-measure of 33%), independent from the type of text investigated. While BeCAS and MetaMap can contribute to the precision of silver standard annotations (precision of up to 42%), the F1-measure drops when combined with NCBO Annotator and cTAKES due to a low recall. In conclusion, the performances of individual systems need to be improved independently from the text types, and the leveraging strategies to best take advantage of individual systems' annotations need to be revised. The textual content of the PubMed corpus, accession numbers for the clinical trials corpus, and assigned annotations of the four concept recognition systems as well as the generated silver standard annotation sets are available from http://purl.org/phenotype/resources. The textual content of the Sh

  14. A Maximum-Entropy approach for accurate document annotation in the biomedical domain.

    PubMed

    Tsatsaronis, George; Macari, Natalia; Torge, Sunna; Dietze, Heiko; Schroeder, Michael

    2012-01-01

    The increasing number of scientific literature on the Web and the absence of efficient tools used for classifying and searching the documents are the two most important factors that influence the speed of the search and the quality of the results. Previous studies have shown that the usage of ontologies makes it possible to process document and query information at the semantic level, which greatly improves the search for the relevant information and makes one step further towards the Semantic Web. A fundamental step in these approaches is the annotation of documents with ontology concepts, which can also be seen as a classification task. In this paper we address this issue for the biomedical domain and present a new automated and robust method, based on a Maximum Entropy approach, for annotating biomedical literature documents with terms from the Medical Subject Headings (MeSH).The experimental evaluation shows that the suggested Maximum Entropy approach for annotating biomedical documents with MeSH terms is highly accurate, robust to the ambiguity of terms, and can provide very good performance even when a very small number of training documents is used. More precisely, we show that the proposed algorithm obtained an average F-measure of 92.4% (precision 99.41%, recall 86.77%) for the full range of the explored terms (4,078 MeSH terms), and that the algorithm's performance is resilient to terms' ambiguity, achieving an average F-measure of 92.42% (precision 99.32%, recall 86.87%) in the explored MeSH terms which were found to be ambiguous according to the Unified Medical Language System (UMLS) thesaurus. Finally, we compared the results of the suggested methodology with a Naive Bayes and a Decision Trees classification approach, and we show that the Maximum Entropy based approach performed with higher F-Measure in both ambiguous and monosemous MeSH terms.

  15. Open Biomedical Engineering education in Africa.

    PubMed

    Ahluwalia, Arti; Atwine, Daniel; De Maria, Carmelo; Ibingira, Charles; Kipkorir, Emmauel; Kiros, Fasil; Madete, June; Mazzei, Daniele; Molyneux, Elisabeth; Moonga, Kando; Moshi, Mainen; Nzomo, Martin; Oduol, Vitalice; Okuonzi, John

    2015-08-01

    Despite the virtual revolution, the mainstream academic community in most countries remains largely ignorant of the potential of web-based teaching resources and of the expansion of open source software, hardware and rapid prototyping. In the context of Biomedical Engineering (BME), where human safety and wellbeing is paramount, a high level of supervision and quality control is required before open source concepts can be embraced by universities and integrated into the curriculum. In the meantime, students, more than their teachers, have become attuned to continuous streams of digital information, and teaching methods need to adapt rapidly by giving them the skills to filter meaningful information and by supporting collaboration and co-construction of knowledge using open, cloud and crowd based technology. In this paper we present our experience in bringing these concepts to university education in Africa, as a way of enabling rapid development and self-sufficiency in health care. We describe the three summer schools held in sub-Saharan Africa where both students and teachers embraced the philosophy of open BME education with enthusiasm, and discuss the advantages and disadvantages of opening education in this way in the developing and developed world.

  16. Open Biomedical Engineering education in Africa.

    PubMed

    Ahluwalia, Arti; Atwine, Daniel; De Maria, Carmelo; Ibingira, Charles; Kipkorir, Emmauel; Kiros, Fasil; Madete, June; Mazzei, Daniele; Molyneux, Elisabeth; Moonga, Kando; Moshi, Mainen; Nzomo, Martin; Oduol, Vitalice; Okuonzi, John

    2015-08-01

    Despite the virtual revolution, the mainstream academic community in most countries remains largely ignorant of the potential of web-based teaching resources and of the expansion of open source software, hardware and rapid prototyping. In the context of Biomedical Engineering (BME), where human safety and wellbeing is paramount, a high level of supervision and quality control is required before open source concepts can be embraced by universities and integrated into the curriculum. In the meantime, students, more than their teachers, have become attuned to continuous streams of digital information, and teaching methods need to adapt rapidly by giving them the skills to filter meaningful information and by supporting collaboration and co-construction of knowledge using open, cloud and crowd based technology. In this paper we present our experience in bringing these concepts to university education in Africa, as a way of enabling rapid development and self-sufficiency in health care. We describe the three summer schools held in sub-Saharan Africa where both students and teachers embraced the philosophy of open BME education with enthusiasm, and discuss the advantages and disadvantages of opening education in this way in the developing and developed world. PMID:26737093

  17. Open Biomedical Ontology-based Medline exploration

    PubMed Central

    Xuan, Weijian; Dai, Manhong; Mirel, Barbara; Song, Jean; Athey, Brian; Watson, Stanley J; Meng, Fan

    2009-01-01

    Background Effective Medline database exploration is critical for the understanding of high throughput experimental results and the development of novel hypotheses about the mechanisms underlying the targeted biological processes. While existing solutions enhance Medline exploration through different approaches such as document clustering, network presentations of underlying conceptual relationships and the mapping of search results to MeSH and Gene Ontology trees, we believe the use of multiple ontologies from the Open Biomedical Ontology can greatly help researchers to explore literature from different perspectives as well as to quickly locate the most relevant Medline records for further investigation. Results We developed an ontology-based interactive Medline exploration solution called PubOnto to enable the interactive exploration and filtering of search results through the use of multiple ontologies from the OBO foundry. The PubOnto program is a rich internet application based on the FLEX platform. It contains a number of interactive tools, visualization capabilities, an open service architecture, and a customizable user interface. It is freely accessible at: . PMID:19426463

  18. WebMedSA: a web-based framework for segmenting and annotating medical images using biomedical ontologies

    NASA Astrophysics Data System (ADS)

    Vega, Francisco; Pérez, Wilson; Tello, Andrés.; Saquicela, Victor; Espinoza, Mauricio; Solano-Quinde, Lizandro; Vidal, Maria-Esther; La Cruz, Alexandra

    2015-12-01

    Advances in medical imaging have fostered medical diagnosis based on digital images. Consequently, the number of studies by medical images diagnosis increases, thus, collaborative work and tele-radiology systems are required to effectively scale up to this diagnosis trend. We tackle the problem of the collaborative access of medical images, and present WebMedSA, a framework to manage large datasets of medical images. WebMedSA relies on a PACS and supports the ontological annotation, as well as segmentation and visualization of the images based on their semantic description. Ontological annotations can be performed directly on the volumetric image or at different image planes (e.g., axial, coronal, or sagittal); furthermore, annotations can be complemented after applying a segmentation technique. WebMedSA is based on three main steps: (1) RDF-ization process for extracting, anonymizing, and serializing metadata comprised in DICOM medical images into RDF/XML; (2) Integration of different biomedical ontologies (using L-MOM library), making this approach ontology independent; and (3) segmentation and visualization of annotated data which is further used to generate new annotations according to expert knowledge, and validation. Initial user evaluations suggest that WebMedSA facilitates the exchange of knowledge between radiologists, and provides the basis for collaborative work among them.

  19. A selected annotated bibliography of the core biomedical literature pertaining to stroke, cervical spine, manipulation and head/neck movement

    PubMed Central

    Gotlib, Allan C.; Thiel, Haymo

    1985-01-01

    This manuscript’s purpose was to establish a knowledge base of information related to stroke and the cervical spine vascular structures, from both historical and current perspectives. The scientific biomedical literatures both indexed (ie. Index Medicus, CRAC) and non-indexed literature systems were scanned and the pertinent manuscripts were annotated. Citation is by occurence in the literature so that historical trends may be viewed more easily. No analysis of the reference material is offered. Suggested however is that: 1. complications to cervical spine manipulation are being recognized and reported with increasing frequency, 2. a cause and effect relationship between stroke and cervical spine manipulation has not been established, 3. a screening mechanism that is valid, reliable and reasonable needs to be established.

  20. BIOSMILE web search: a web application for annotating biomedical entities and relations.

    PubMed

    Dai, Hong-Jie; Huang, Chi-Hsin; Lin, Ryan T K; Tsai, Richard Tzong-Han; Hsu, Wen-Lian

    2008-07-01

    BIOSMILE web search (BWS), a web-based NCBI-PubMed search application, which can analyze articles for selected biomedical verbs and give users relational information, such as subject, object, location, manner, time, etc. After receiving keyword query input, BWS retrieves matching PubMed abstracts and lists them along with snippets by order of relevancy to protein-protein interaction. Users can then select articles for further analysis, and BWS will find and mark up biomedical relations in the text. The analysis results can be viewed in the abstract text or in table form. To date, BWS has been field tested by over 30 biologists and questionnaires have shown that subjects are highly satisfied with its capabilities and usability. BWS is accessible free of charge at http://bioservices.cse.yzu.edu.tw/BWS.

  1. Concept annotation in the CRAFT corpus

    PubMed Central

    2012-01-01

    Background Manually annotated corpora are critical for the training and evaluation of automated methods to identify concepts in biomedical text. Results This paper presents the concept annotations of the Colorado Richly Annotated Full-Text (CRAFT) Corpus, a collection of 97 full-length, open-access biomedical journal articles that have been annotated both semantically and syntactically to serve as a research resource for the biomedical natural-language-processing (NLP) community. CRAFT identifies all mentions of nearly all concepts from nine prominent biomedical ontologies and terminologies: the Cell Type Ontology, the Chemical Entities of Biological Interest ontology, the NCBI Taxonomy, the Protein Ontology, the Sequence Ontology, the entries of the Entrez Gene database, and the three subontologies of the Gene Ontology. The first public release includes the annotations for 67 of the 97 articles, reserving two sets of 15 articles for future text-mining competitions (after which these too will be released). Concept annotations were created based on a single set of guidelines, which has enabled us to achieve consistently high interannotator agreement. Conclusions As the initial 67-article release contains more than 560,000 tokens (and the full set more than 790,000 tokens), our corpus is among the largest gold-standard annotated biomedical corpora. Unlike most others, the journal articles that comprise the corpus are drawn from diverse biomedical disciplines and are marked up in their entirety. Additionally, with a concept-annotation count of nearly 100,000 in the 67-article subset (and more than 140,000 in the full collection), the scale of conceptual markup is also among the largest of comparable corpora. The concept annotations of the CRAFT Corpus have the potential to significantly advance biomedical text mining by providing a high-quality gold standard for NLP systems. The corpus, annotation guidelines, and other associated resources are freely available at http

  2. Distributed modules for text annotation and IE applied to the biomedical domain.

    PubMed

    Kirsch, Harald; Gaudan, Sylvain; Rebholz-Schuhmann, Dietrich

    2006-06-01

    Biological databases contain facts from scientific literature that have been curated by hand to ensure high quality. Curation is time-consuming and can be supported by information extraction methods. We present a server software infrastructure which allows to easily plug in modules to identify biologically interesting pieces of text to be then presented in a web interface to the curator. There are modules which identify UniProt, UMLS and GO terminology, gene and protein names, mutations and protein-protein interactions. UniProt, UMLS and GO concepts are automatically linked to the original source. The module for mutations is based on syntax patterns and the one for protein-protein interactions relies on chunk parsing. All modules work as separate servers possibly distributed on different machines and can be combined into processing pipelines as necessary. Communication is based on XML annotated text streams, each server processing the XML elements it is designed for, and possibly adding more information in the form of XML annotation. The server and the underlying software are available to the public.

  3. OpenCL based machine learning labeling of biomedical datasets

    NASA Astrophysics Data System (ADS)

    Amoros, Oscar; Escalera, Sergio; Puig, Anna

    2011-03-01

    In this paper, we propose a two-stage labeling method of large biomedical datasets through a parallel approach in a single GPU. Diagnostic methods, structures volume measurements, and visualization systems are of major importance for surgery planning, intra-operative imaging and image-guided surgery. In all cases, to provide an automatic and interactive method to label or to tag different structures contained into input data becomes imperative. Several approaches to label or segment biomedical datasets has been proposed to discriminate different anatomical structures in an output tagged dataset. Among existing methods, supervised learning methods for segmentation have been devised to easily analyze biomedical datasets by a non-expert user. However, they still have some problems concerning practical application, such as slow learning and testing speeds. In addition, recent technological developments have led to widespread availability of multi-core CPUs and GPUs, as well as new software languages, such as NVIDIA's CUDA and OpenCL, allowing to apply parallel programming paradigms in conventional personal computers. Adaboost classifier is one of the most widely applied methods for labeling in the Machine Learning community. In a first stage, Adaboost trains a binary classifier from a set of pre-labeled samples described by a set of features. This binary classifier is defined as a weighted combination of weak classifiers. Each weak classifier is a simple decision function estimated on a single feature value. Then, at the testing stage, each weak classifier is independently applied on the features of a set of unlabeled samples. In this work, we propose an alternative representation of the Adaboost binary classifier. We use this proposed representation to define a new GPU-based parallelized Adaboost testing stage using OpenCL. We provide numerical experiments based on large available data sets and we compare our results to CPU-based strategies in terms of time and

  4. Low cost open data acquisition system for biomedical applications

    NASA Astrophysics Data System (ADS)

    Zabolotny, Wojciech M.; Laniewski-Wollk, Przemyslaw; Zaworski, Wojciech

    2005-09-01

    In the biomedical applications it is often necessary to collect measurement data from different devices. It is relatively easy, if the devices are equipped with a MIB or Ethernet interface, however often they feature only the asynchronous serial link, and sometimes the measured values are available only as the analog signals. The system presented in the paper is a low cost alternative to commercially available data acquisition systems. The hardware and software architecture of the system is fully open, so it is possible to customize it for particular needs. The presented system offers various possibilities to connect it to the computer based data processing unit - e.g. using the USB or Ethernet ports. Both interfaces allow also to use many such systems in parallel to increase amount of serial and analog inputs. The open source software used in the system makes possible to process the acquired data with standard tools like MATLAB, Scilab or Octave, or with a dedicated, user supplied application.

  5. Micropublications: a semantic model for claims, evidence, arguments and annotations in biomedical communications

    PubMed Central

    2014-01-01

    where simpler, formalized and purely statement-based models, such as the nanopublications model, will not be sufficient. At the same time they will add significant value to, and are intentionally compatible with, statement-based formalizations. We suggest that micropublications, generated by useful software tools supporting such activities as writing, editing, reviewing, and discussion, will be of great value in improving the quality and tractability of biomedical communications. PMID:26261718

  6. Data annotation, recording and mapping system for the US open skies aircraft

    SciTech Connect

    Brown, B.W.; Goede, W.F.; Farmer, R.G.

    1996-11-01

    This paper discusses the system developed by Northrop Grumman for the Defense Nuclear Agency (DNA), US Air Force, and the On-Site Inspection Agency (OSIA) to comply with the data annotation and reporting provisions of the Open Skies Treaty. This system, called the Data Annotation, Recording and Mapping System (DARMS), has been installed on the US OC-135 and meets or exceeds all annotation requirements for the Open Skies Treaty. The Open Skies Treaty, which will enter into force in the near future, allows any of the 26 signatory countries to fly fixed wing aircraft with imaging sensors over any of the other treaty participants, upon very short notice, and with no restricted flight areas. Sensor types presently allowed by the treaty are: optical framing and panoramic film cameras; video cameras ranging from analog PAL color television cameras to the more sophisticated digital monochrome and color line scanning or framing cameras; infrared line scanners; and synthetic aperture radars. Each sensor type has specific performance parameters which are limited by the treaty, as well as specific annotation requirements which must be achieved upon full entry into force. DARMS supports U.S. compliance with the Opens Skies Treaty by means of three subsystems: the Data Annotation Subsytem (DAS), which annotates sensor media with data obtained from sensors and the aircraft`s avionics system; the Data Recording System (DRS), which records all sensor and flight events on magnetic media for later use in generating Treaty mandated mission reports; and the Dynamic Sensor Mapping Subsystem (DSMS), which provides observers and sensor operators with a real-time moving map displays of the progress of the mission, complete with instantaneous and cumulative sensor coverages. This paper will describe DARMS and its subsystems in greater detail, along with the supporting avionics sub-systems. 7 figs.

  7. For 481 biomedical open access journals, articles are not searchable in the Directory of Open Access Journals nor in conventional biomedical databases.

    PubMed

    Liljekvist, Mads Svane; Andresen, Kristoffer; Pommergaard, Hans-Christian; Rosenberg, Jacob

    2015-01-01

    Background. Open access (OA) journals allows access to research papers free of charge to the reader. Traditionally, biomedical researchers use databases like MEDLINE and EMBASE to discover new advances. However, biomedical OA journals might not fulfill such databases' criteria, hindering dissemination. The Directory of Open Access Journals (DOAJ) is a database exclusively listing OA journals. The aim of this study was to investigate DOAJ's coverage of biomedical OA journals compared with the conventional biomedical databases. Methods. Information on all journals listed in four conventional biomedical databases (MEDLINE, PubMed Central, EMBASE and SCOPUS) and DOAJ were gathered. Journals were included if they were (1) actively publishing, (2) full OA, (3) prospectively indexed in one or more database, and (4) of biomedical subject. Impact factor and journal language were also collected. DOAJ was compared with conventional databases regarding the proportion of journals covered, along with their impact factor and publishing language. The proportion of journals with articles indexed by DOAJ was determined. Results. In total, 3,236 biomedical OA journals were included in the study. Of the included journals, 86.7% were listed in DOAJ. Combined, the conventional biomedical databases listed 75.0% of the journals; 18.7% in MEDLINE; 36.5% in PubMed Central; 51.5% in SCOPUS and 50.6% in EMBASE. Of the journals in DOAJ, 88.7% published in English and 20.6% had received impact factor for 2012 compared with 93.5% and 26.0%, respectively, for journals in the conventional biomedical databases. A subset of 51.1% and 48.5% of the journals in DOAJ had articles indexed from 2012 and 2013, respectively. Of journals exclusively listed in DOAJ, one journal had received an impact factor for 2012, and 59.6% of the journals had no content from 2013 indexed in DOAJ. Conclusions. DOAJ is the most complete registry of biomedical OA journals compared with five conventional biomedical databases

  8. For 481 biomedical open access journals, articles are not searchable in the Directory of Open Access Journals nor in conventional biomedical databases

    PubMed Central

    Andresen, Kristoffer; Pommergaard, Hans-Christian; Rosenberg, Jacob

    2015-01-01

    Background. Open access (OA) journals allows access to research papers free of charge to the reader. Traditionally, biomedical researchers use databases like MEDLINE and EMBASE to discover new advances. However, biomedical OA journals might not fulfill such databases’ criteria, hindering dissemination. The Directory of Open Access Journals (DOAJ) is a database exclusively listing OA journals. The aim of this study was to investigate DOAJ’s coverage of biomedical OA journals compared with the conventional biomedical databases. Methods. Information on all journals listed in four conventional biomedical databases (MEDLINE, PubMed Central, EMBASE and SCOPUS) and DOAJ were gathered. Journals were included if they were (1) actively publishing, (2) full OA, (3) prospectively indexed in one or more database, and (4) of biomedical subject. Impact factor and journal language were also collected. DOAJ was compared with conventional databases regarding the proportion of journals covered, along with their impact factor and publishing language. The proportion of journals with articles indexed by DOAJ was determined. Results. In total, 3,236 biomedical OA journals were included in the study. Of the included journals, 86.7% were listed in DOAJ. Combined, the conventional biomedical databases listed 75.0% of the journals; 18.7% in MEDLINE; 36.5% in PubMed Central; 51.5% in SCOPUS and 50.6% in EMBASE. Of the journals in DOAJ, 88.7% published in English and 20.6% had received impact factor for 2012 compared with 93.5% and 26.0%, respectively, for journals in the conventional biomedical databases. A subset of 51.1% and 48.5% of the journals in DOAJ had articles indexed from 2012 and 2013, respectively. Of journals exclusively listed in DOAJ, one journal had received an impact factor for 2012, and 59.6% of the journals had no content from 2013 indexed in DOAJ. Conclusions. DOAJ is the most complete registry of biomedical OA journals compared with five conventional biomedical

  9. For 481 biomedical open access journals, articles are not searchable in the Directory of Open Access Journals nor in conventional biomedical databases.

    PubMed

    Liljekvist, Mads Svane; Andresen, Kristoffer; Pommergaard, Hans-Christian; Rosenberg, Jacob

    2015-01-01

    Background. Open access (OA) journals allows access to research papers free of charge to the reader. Traditionally, biomedical researchers use databases like MEDLINE and EMBASE to discover new advances. However, biomedical OA journals might not fulfill such databases' criteria, hindering dissemination. The Directory of Open Access Journals (DOAJ) is a database exclusively listing OA journals. The aim of this study was to investigate DOAJ's coverage of biomedical OA journals compared with the conventional biomedical databases. Methods. Information on all journals listed in four conventional biomedical databases (MEDLINE, PubMed Central, EMBASE and SCOPUS) and DOAJ were gathered. Journals were included if they were (1) actively publishing, (2) full OA, (3) prospectively indexed in one or more database, and (4) of biomedical subject. Impact factor and journal language were also collected. DOAJ was compared with conventional databases regarding the proportion of journals covered, along with their impact factor and publishing language. The proportion of journals with articles indexed by DOAJ was determined. Results. In total, 3,236 biomedical OA journals were included in the study. Of the included journals, 86.7% were listed in DOAJ. Combined, the conventional biomedical databases listed 75.0% of the journals; 18.7% in MEDLINE; 36.5% in PubMed Central; 51.5% in SCOPUS and 50.6% in EMBASE. Of the journals in DOAJ, 88.7% published in English and 20.6% had received impact factor for 2012 compared with 93.5% and 26.0%, respectively, for journals in the conventional biomedical databases. A subset of 51.1% and 48.5% of the journals in DOAJ had articles indexed from 2012 and 2013, respectively. Of journals exclusively listed in DOAJ, one journal had received an impact factor for 2012, and 59.6% of the journals had no content from 2013 indexed in DOAJ. Conclusions. DOAJ is the most complete registry of biomedical OA journals compared with five conventional biomedical databases

  10. SORTA: a system for ontology-based re-coding and technical annotation of biomedical phenotype data.

    PubMed

    Pang, Chao; Sollie, Annet; Sijtsma, Anna; Hendriksen, Dennis; Charbon, Bart; de Haan, Mark; de Boer, Tommy; Kelpin, Fleur; Jetten, Jonathan; van der Velde, Joeri K; Smidt, Nynke; Sijmons, Rolf; Hillege, Hans; Swertz, Morris A

    2015-01-01

    There is an urgent need to standardize the semantics of biomedical data values, such as phenotypes, to enable comparative and integrative analyses. However, it is unlikely that all studies will use the same data collection protocols. As a result, retrospective standardization is often required, which involves matching of original (unstructured or locally coded) data to widely used coding or ontology systems such as SNOMED CT (clinical terms), ICD-10 (International Classification of Disease) and HPO (Human Phenotype Ontology). This data curation process is usually a time-consuming process performed by a human expert. To help mechanize this process, we have developed SORTA, a computer-aided system for rapidly encoding free text or locally coded values to a formal coding system or ontology. SORTA matches original data values (uploaded in semicolon delimited format) to a target coding system (uploaded in Excel spreadsheet, OWL ontology web language or OBO open biomedical ontologies format). It then semi- automatically shortlists candidate codes for each data value using Lucene and n-gram based matching algorithms, and can also learn from matches chosen by human experts. We evaluated SORTA's applicability in two use cases. For the LifeLines biobank, we used SORTA to recode 90 000 free text values (including 5211 unique values) about physical exercise to MET (Metabolic Equivalent of Task) codes. For the CINEAS clinical symptom coding system, we used SORTA to map to HPO, enriching HPO when necessary (315 terms matched so far). Out of the shortlists at rank 1, we found a precision/recall of 0.97/0.98 in LifeLines and of 0.58/0.45 in CINEAS. More importantly, users found the tool both a major time saver and a quality improvement because SORTA reduced the chances of human mistakes. Thus, SORTA can dramatically ease data (re)coding tasks and we believe it will prove useful for many more projects. Database URL: http://molgenis.org/sorta or as an open source download from

  11. SORTA: a system for ontology-based re-coding and technical annotation of biomedical phenotype data

    PubMed Central

    Pang, Chao; Sollie, Annet; Sijtsma, Anna; Hendriksen, Dennis; Charbon, Bart; de Haan, Mark; de Boer, Tommy; Kelpin, Fleur; Jetten, Jonathan; van der Velde, Joeri K.; Smidt, Nynke; Sijmons, Rolf; Hillege, Hans; Swertz, Morris A.

    2015-01-01

    There is an urgent need to standardize the semantics of biomedical data values, such as phenotypes, to enable comparative and integrative analyses. However, it is unlikely that all studies will use the same data collection protocols. As a result, retrospective standardization is often required, which involves matching of original (unstructured or locally coded) data to widely used coding or ontology systems such as SNOMED CT (clinical terms), ICD-10 (International Classification of Disease) and HPO (Human Phenotype Ontology). This data curation process is usually a time-consuming process performed by a human expert. To help mechanize this process, we have developed SORTA, a computer-aided system for rapidly encoding free text or locally coded values to a formal coding system or ontology. SORTA matches original data values (uploaded in semicolon delimited format) to a target coding system (uploaded in Excel spreadsheet, OWL ontology web language or OBO open biomedical ontologies format). It then semi- automatically shortlists candidate codes for each data value using Lucene and n-gram based matching algorithms, and can also learn from matches chosen by human experts. We evaluated SORTA’s applicability in two use cases. For the LifeLines biobank, we used SORTA to recode 90 000 free text values (including 5211 unique values) about physical exercise to MET (Metabolic Equivalent of Task) codes. For the CINEAS clinical symptom coding system, we used SORTA to map to HPO, enriching HPO when necessary (315 terms matched so far). Out of the shortlists at rank 1, we found a precision/recall of 0.97/0.98 in LifeLines and of 0.58/0.45 in CINEAS. More importantly, users found the tool both a major time saver and a quality improvement because SORTA reduced the chances of human mistakes. Thus, SORTA can dramatically ease data (re)coding tasks and we believe it will prove useful for many more projects. Database URL: http://molgenis.org/sorta or as an open source download from

  12. SORTA: a system for ontology-based re-coding and technical annotation of biomedical phenotype data.

    PubMed

    Pang, Chao; Sollie, Annet; Sijtsma, Anna; Hendriksen, Dennis; Charbon, Bart; de Haan, Mark; de Boer, Tommy; Kelpin, Fleur; Jetten, Jonathan; van der Velde, Joeri K; Smidt, Nynke; Sijmons, Rolf; Hillege, Hans; Swertz, Morris A

    2015-01-01

    There is an urgent need to standardize the semantics of biomedical data values, such as phenotypes, to enable comparative and integrative analyses. However, it is unlikely that all studies will use the same data collection protocols. As a result, retrospective standardization is often required, which involves matching of original (unstructured or locally coded) data to widely used coding or ontology systems such as SNOMED CT (clinical terms), ICD-10 (International Classification of Disease) and HPO (Human Phenotype Ontology). This data curation process is usually a time-consuming process performed by a human expert. To help mechanize this process, we have developed SORTA, a computer-aided system for rapidly encoding free text or locally coded values to a formal coding system or ontology. SORTA matches original data values (uploaded in semicolon delimited format) to a target coding system (uploaded in Excel spreadsheet, OWL ontology web language or OBO open biomedical ontologies format). It then semi- automatically shortlists candidate codes for each data value using Lucene and n-gram based matching algorithms, and can also learn from matches chosen by human experts. We evaluated SORTA's applicability in two use cases. For the LifeLines biobank, we used SORTA to recode 90 000 free text values (including 5211 unique values) about physical exercise to MET (Metabolic Equivalent of Task) codes. For the CINEAS clinical symptom coding system, we used SORTA to map to HPO, enriching HPO when necessary (315 terms matched so far). Out of the shortlists at rank 1, we found a precision/recall of 0.97/0.98 in LifeLines and of 0.58/0.45 in CINEAS. More importantly, users found the tool both a major time saver and a quality improvement because SORTA reduced the chances of human mistakes. Thus, SORTA can dramatically ease data (re)coding tasks and we believe it will prove useful for many more projects. Database URL: http://molgenis.org/sorta or as an open source download from

  13. ORegAnno: an open-access community-driven resource for regulatory annotation.

    PubMed

    Griffith, Obi L; Montgomery, Stephen B; Bernier, Bridget; Chu, Bryan; Kasaian, Katayoon; Aerts, Stein; Mahony, Shaun; Sleumer, Monica C; Bilenky, Mikhail; Haeussler, Maximilian; Griffith, Malachi; Gallo, Steven M; Giardine, Belinda; Hooghe, Bart; Van Loo, Peter; Blanco, Enrique; Ticoll, Amy; Lithwick, Stuart; Portales-Casamar, Elodie; Donaldson, Ian J; Robertson, Gordon; Wadelius, Claes; De Bleser, Pieter; Vlieghe, Dominique; Halfon, Marc S; Wasserman, Wyeth; Hardison, Ross; Bergman, Casey M; Jones, Steven J M

    2008-01-01

    ORegAnno is an open-source, open-access database and literature curation system for community-based annotation of experimentally identified DNA regulatory regions, transcription factor binding sites and regulatory variants. The current release comprises 30 145 records curated from 922 publications and describing regulatory sequences for over 3853 genes and 465 transcription factors from 19 species. A new feature called the 'publication queue' allows users to input relevant papers from scientific literature as targets for annotation. The queue contains 4438 gene regulation papers entered by experts and another 54 351 identified by text-mining methods. Users can enter or 'check out' papers from the queue for manual curation using a series of user-friendly annotation pages. A typical record entry consists of species, sequence type, sequence, target gene, binding factor, experimental outcome and one or more lines of experimental evidence. An evidence ontology was developed to describe and categorize these experiments. Records are cross-referenced to Ensembl or Entrez gene identifiers, PubMed and dbSNP and can be visualized in the Ensembl or UCSC genome browsers. All data are freely available through search pages, XML data dumps or web services at: http://www.oreganno.org.

  14. ORegAnno: an open-access community-driven resource for regulatory annotation

    PubMed Central

    Griffith, Obi L.; Montgomery, Stephen B.; Bernier, Bridget; Chu, Bryan; Kasaian, Katayoon; Aerts, Stein; Mahony, Shaun; Sleumer, Monica C.; Bilenky, Mikhail; Haeussler, Maximilian; Griffith, Malachi; Gallo, Steven M.; Giardine, Belinda; Hooghe, Bart; Van Loo, Peter; Blanco, Enrique; Ticoll, Amy; Lithwick, Stuart; Portales-Casamar, Elodie; Donaldson, Ian J.; Robertson, Gordon; Wadelius, Claes; De Bleser, Pieter; Vlieghe, Dominique; Halfon, Marc S.; Wasserman, Wyeth; Hardison, Ross; Bergman, Casey M.; Jones, Steven J.M.

    2008-01-01

    ORegAnno is an open-source, open-access database and literature curation system for community-based annotation of experimentally identified DNA regulatory regions, transcription factor binding sites and regulatory variants. The current release comprises 30 145 records curated from 922 publications and describing regulatory sequences for over 3853 genes and 465 transcription factors from 19 species. A new feature called the ‘publication queue’ allows users to input relevant papers from scientific literature as targets for annotation. The queue contains 4438 gene regulation papers entered by experts and another 54 351 identified by text-mining methods. Users can enter or ‘check out’ papers from the queue for manual curation using a series of user-friendly annotation pages. A typical record entry consists of species, sequence type, sequence, target gene, binding factor, experimental outcome and one or more lines of experimental evidence. An evidence ontology was developed to describe and categorize these experiments. Records are cross-referenced to Ensembl or Entrez gene identifiers, PubMed and dbSNP and can be visualized in the Ensembl or UCSC genome browsers. All data are freely available through search pages, XML data dumps or web services at: http://www.oreganno.org. PMID:18006570

  15. WIRM: An Open Source Toolkit for Building Biomedical Web Applications

    PubMed Central

    Jakobovits, Rex M.; Rosse, Cornelius; Brinkley, James F.

    2002-01-01

    This article describes an innovative software toolkit that allows the creation of web applications that facilitate the acquisition, integration, and dissemination of multimedia biomedical data over the web, thereby reducing the cost of knowledge sharing. There is a lack of high-level web application development tools suitable for use by researchers, clinicians, and educators who are not skilled programmers. Our Web Interfacing Repository Manager (WIRM) is a software toolkit that reduces the complexity of building custom biomedical web applications. WIRM’s visual modeling tools enable domain experts to describe the structure of their knowledge, from which WIRM automatically generates full-featured, customizable content management systems. PMID:12386108

  16. The Use of Annotations in Examination Marking: Opening a Window into Markers' Minds

    ERIC Educational Resources Information Center

    Crisp, Victoria; Johnson, Martin

    2007-01-01

    This study investigated the functions of annotations, the role of annotations in markers' decision-making processes, whether annotations conform to conventions, and whether these vary according to subject area. Across subjects a number of scripts were analysed to survey which annotations are subject specific and which are more general. Twelve…

  17. Facilitating Full-text Access to Biomedical Literature Using Open Access Resources.

    PubMed

    Kang, Hongyu; Hou, Zhen; Li, Jiao

    2015-01-01

    Open access (OA) resources and local libraries often have their own literature databases, especially in the field of biomedicine. We have developed a method of linking a local library to a biomedical OA resource facilitating researchers' full-text article access. The method uses a model based on vector space to measure similarities between two articles in local library and OA resources. The method achieved an F-score of 99.61%. This method of article linkage and mapping between local library and OA resources is available for use. Through this work, we have improved the full-text access of the biomedical OA resources.

  18. Publishing biomedical journals on the World-Wide Web using an open architecture model.

    PubMed Central

    Shareck, E. P.; Greenes, R. A.

    1996-01-01

    BACKGROUND: In many respects, biomedical publications are ideally suited for distribution via the World-Wide Web, but economic concerns have prevented the rapid adoption of an on-line publishing model. PURPOSE: We report on our experiences with assisting biomedical journals in developing an online presence, issues that were encountered, and methods used to address these issues. Our approach is based on an open architecture that fosters adaptation and interconnection of biomedical resources. METHODS: We have worked with the New England Journal of Medicine (NEJM), as well as five other publishers. A set of tools and protocols was employed to develop a scalable and customizable solution for publishing journals on-line. RESULTS: In March, 1996, the New England Journal of Medicine published its first World-Wide Web issue. Explorations with other publishers have helped to generalize the model. CONCLUSIONS: Economic and technical issues play a major role in developing World-Wide Web publishing solutions. PMID:8947685

  19. Do open access biomedical journals benefit smaller countries? The Slovenian experience.

    PubMed

    Turk, Nana

    2011-06-01

    Scientists from smaller countries have problems gaining visibility for their research. Does open access publishing provide a solution? Slovenia is a small country with around 5000 medical doctors, 1300 dentists and 1000 pharmacists. A search of Slovenia's Bibliographic database was carried out to identity all biomedical journals and those which are open access. Slovenia has 18 medical open access journals, but none has an impact factor and only 10 are indexed by Slovenian and international bibliographic databases. The visibility and quality of medical papers is poor. The solution might be to reduce the number of journals and encourage Slovenian scientists to publish their best articles in them. PMID:21564498

  20. Annotated bibliography of the biomedical literature pertaining to chiropractic, pediatrics and manipulation in relation to the treatment of health conditions

    PubMed Central

    Gotlib, Allan C; Beingessner, Melanie

    1995-01-01

    Biomedical literature retrieval, both indexed and non-indexed, with respect to the application of manipulative therapy with therapeutic intent and pediatric health conditions (ages 0 to 17 years) yielded 66 discrete documents which met specified inclusion and exclusion criteria. There was one experimental study (RCT’s), 3 observational (cohort, case control) studies and 62 descriptive studies (case series, case reports, surveys, literature reviews). An independent rating panel determined consistency with a modified quality of evidence scale adopted from procedure ratings system 1 of Clinical Guidelines for Chiropractic Practice in Canada. Results indicate minimal Class 1 and Class 2 and some Class 3 evidence for a variety of pediatric conditions utilizing the application of manipulation with therapeutic intent.

  1. Data federation in the Biomedical Informatics Research Network: tools for semantic annotation and query of distributed multiscale brain data.

    PubMed

    Bug, William; Astahkov, Vadim; Boline, Jyl; Fennema-Notestine, Christine; Grethe, Jeffrey S; Gupta, Amarnath; Kennedy, David N; Rubin, Daniel L; Sanders, Brian; Turner, Jessica A; Martone, Maryann E

    2008-01-01

    The broadly defined mission of the Biomedical Informatics Research Network (BIRN, www.nbirn.net) is to better understand the causes human disease and the specific ways in which animal models inform that understanding. To construct the community-wide infrastructure for gathering, organizing and managing this knowledge, BIRN is developing a federated architecture for linking multiple databases across sites contributing data and knowledge. Navigating across these distributed data sources requires a shared semantic scheme and supporting software framework to actively link the disparate repositories. At the core of this knowledge organization is BIRNLex, a formally-represented ontology facilitating data exchange. Source curators enable database interoperability by mapping their schema and data to BIRNLex semantic classes thereby providing a means to cast BIRNLex-based queries against specific data sources in the federation. We will illustrate use of the source registration, term mapping, and query tools.

  2. Harvest: an open platform for developing web-based biomedical data discovery and reporting applications.

    PubMed

    Pennington, Jeffrey W; Ruth, Byron; Italia, Michael J; Miller, Jeffrey; Wrazien, Stacey; Loutrel, Jennifer G; Crenshaw, E Bryan; White, Peter S

    2014-01-01

    Biomedical researchers share a common challenge of making complex data understandable and accessible as they seek inherent relationships between attributes in disparate data types. Data discovery in this context is limited by a lack of query systems that efficiently show relationships between individual variables, but without the need to navigate underlying data models. We have addressed this need by developing Harvest, an open-source framework of modular components, and using it for the rapid development and deployment of custom data discovery software applications. Harvest incorporates visualizations of highly dimensional data in a web-based interface that promotes rapid exploration and export of any type of biomedical information, without exposing researchers to underlying data models. We evaluated Harvest with two cases: clinical data from pediatric cardiology and demonstration data from the OpenMRS project. Harvest's architecture and public open-source code offer a set of rapid application development tools to build data discovery applications for domain-specific biomedical data repositories. All resources, including the OpenMRS demonstration, can be found at http://harvest.research.chop.edu. PMID:24131510

  3. A Survey of Quality Assurance Practices in Biomedical Open Source Software Projects

    PubMed Central

    Koru, Günes; Neisa, Angelica; Umarji, Medha

    2007-01-01

    Background Open source (OS) software is continuously gaining recognition and use in the biomedical domain, for example, in health informatics and bioinformatics. Objectives Given the mission critical nature of applications in this domain and their potential impact on patient safety, it is important to understand to what degree and how effectively biomedical OS developers perform standard quality assurance (QA) activities such as peer reviews and testing. This would allow the users of biomedical OS software to better understand the quality risks, if any, and the developers to identify process improvement opportunities to produce higher quality software. Methods A survey of developers working on biomedical OS projects was conducted to examine the QA activities that are performed. We took a descriptive approach to summarize the implementation of QA activities and then examined some of the factors that may be related to the implementation of such practices. Results Our descriptive results show that 63% (95% CI, 54-72) of projects did not include peer reviews in their development process, while 82% (95% CI, 75-89) did include testing. Approximately 74% (95% CI, 67-81) of developers did not have a background in computing, 80% (95% CI, 74-87) were paid for their contributions to the project, and 52% (95% CI, 43-60) had PhDs. A multivariate logistic regression model to predict the implementation of peer reviews was not significant (likelihood ratio test = 16.86, 9 df, P = .051) and neither was a model to predict the implementation of testing (likelihood ratio test = 3.34, 9 df, P = .95). Conclusions Less attention is paid to peer review than testing. However, the former is a complementary, and necessary, QA practice rather than an alternative. Therefore, one can argue that there are quality risks, at least at this point in time, in transitioning biomedical OS software into any critical settings that may have operational, financial, or safety implications. Developers of

  4. Lessons learned in the generation of biomedical research datasets using Semantic Open Data technologies.

    PubMed

    Legaz-García, María del Carmen; Miñarro-Giménez, José Antonio; Menárguez-Tortosa, Marcos; Fernández-Breis, Jesualdo Tomás

    2015-01-01

    Biomedical research usually requires combining large volumes of data from multiple heterogeneous sources. Such heterogeneity makes difficult not only the generation of research-oriented dataset but also its exploitation. In recent years, the Open Data paradigm has proposed new ways for making data available in ways that sharing and integration are facilitated. Open Data approaches may pursue the generation of content readable only by humans and by both humans and machines, which are the ones of interest in our work. The Semantic Web provides a natural technological space for data integration and exploitation and offers a range of technologies for generating not only Open Datasets but also Linked Datasets, that is, open datasets linked to other open datasets. According to the Berners-Lee's classification, each open dataset can be given a rating between one and five stars attending to can be given to each dataset. In the last years, we have developed and applied our SWIT tool, which automates the generation of semantic datasets from heterogeneous data sources. SWIT produces four stars datasets, given that fifth one can be obtained by being the dataset linked from external ones. In this paper, we describe how we have applied the tool in two projects related to health care records and orthology data, as well as the major lessons learned from such efforts.

  5. ASGARD: an open-access database of annotated transcriptomes for emerging model arthropod species.

    PubMed

    Zeng, Victor; Extavour, Cassandra G

    2012-01-01

    The increased throughput and decreased cost of next-generation sequencing (NGS) have shifted the bottleneck genomic research from sequencing to annotation, analysis and accessibility. This is particularly challenging for research communities working on organisms that lack the basic infrastructure of a sequenced genome, or an efficient way to utilize whatever sequence data may be available. Here we present a new database, the Assembled Searchable Giant Arthropod Read Database (ASGARD). This database is a repository and search engine for transcriptomic data from arthropods that are of high interest to multiple research communities but currently lack sequenced genomes. We demonstrate the functionality and utility of ASGARD using de novo assembled transcriptomes from the milkweed bug Oncopeltus fasciatus, the cricket Gryllus bimaculatus and the amphipod crustacean Parhyale hawaiensis. We have annotated these transcriptomes to assign putative orthology, coding region determination, protein domain identification and Gene Ontology (GO) term annotation to all possible assembly products. ASGARD allows users to search all assemblies by orthology annotation, GO term annotation or Basic Local Alignment Search Tool. User-friendly features of ASGARD include search term auto-completion suggestions based on database content, the ability to download assembly product sequences in FASTA format, direct links to NCBI data for predicted orthologs and graphical representation of the location of protein domains and matches to similar sequences from the NCBI non-redundant database. ASGARD will be a useful repository for transcriptome data from future NGS studies on these and other emerging model arthropods, regardless of sequencing platform, assembly or annotation status. This database thus provides easy, one-stop access to multi-species annotated transcriptome information. We anticipate that this database will be useful for members of multiple research communities, including developmental

  6. ASGARD: an open-access database of annotated transcriptomes for emerging model arthropod species.

    PubMed

    Zeng, Victor; Extavour, Cassandra G

    2012-01-01

    The increased throughput and decreased cost of next-generation sequencing (NGS) have shifted the bottleneck genomic research from sequencing to annotation, analysis and accessibility. This is particularly challenging for research communities working on organisms that lack the basic infrastructure of a sequenced genome, or an efficient way to utilize whatever sequence data may be available. Here we present a new database, the Assembled Searchable Giant Arthropod Read Database (ASGARD). This database is a repository and search engine for transcriptomic data from arthropods that are of high interest to multiple research communities but currently lack sequenced genomes. We demonstrate the functionality and utility of ASGARD using de novo assembled transcriptomes from the milkweed bug Oncopeltus fasciatus, the cricket Gryllus bimaculatus and the amphipod crustacean Parhyale hawaiensis. We have annotated these transcriptomes to assign putative orthology, coding region determination, protein domain identification and Gene Ontology (GO) term annotation to all possible assembly products. ASGARD allows users to search all assemblies by orthology annotation, GO term annotation or Basic Local Alignment Search Tool. User-friendly features of ASGARD include search term auto-completion suggestions based on database content, the ability to download assembly product sequences in FASTA format, direct links to NCBI data for predicted orthologs and graphical representation of the location of protein domains and matches to similar sequences from the NCBI non-redundant database. ASGARD will be a useful repository for transcriptome data from future NGS studies on these and other emerging model arthropods, regardless of sequencing platform, assembly or annotation status. This database thus provides easy, one-stop access to multi-species annotated transcriptome information. We anticipate that this database will be useful for members of multiple research communities, including developmental

  7. Status of open access in the biomedical field in 2005*†

    PubMed Central

    Matsubayashi, Mamiko; Kurata, Keiko; Sakai, Yukiko; Morioka, Tomoko; Kato, Shinya; Mine, Shinji; Ueda, Shuichi

    2009-01-01

    Objectives: This study was designed to document the state of open access (OA) in the biomedical field in 2005. Methods: PubMed was used to collect bibliographic data on target articles published in 2005. PubMed, Google Scholar, Google, and OAIster were then used to establish the availability of free full text online for these publications. Articles were analyzed by type of OA, country, type of article, impact factor, publisher, and publishing model to provide insight into the current state of OA. Results: Twenty-seven percent of all the articles were accessible as OA articles. More than 70% of the OA articles were provided through journal websites. Mid-rank commercial publishers often provided OA articles in OA journals, while society publishers tended to provide OA articles in the context of a traditional subscription model. The rate of OA articles available from the websites of individual authors or in institutional repositories was quite low. Discussion/Conclusions: In 2005, OA in the biomedical field was achieved under an umbrella of existing scholarly communication systems. Typically, OA articles were published as part of subscription journals published by scholarly societies. OA journals published by BioMed Central contributed to a small portion of all OA articles. PMID:19159007

  8. The ImageJ ecosystem: An open platform for biomedical image analysis.

    PubMed

    Schindelin, Johannes; Rueden, Curtis T; Hiner, Mark C; Eliceiri, Kevin W

    2015-01-01

    Technology in microscopy advances rapidly, enabling increasingly affordable, faster, and more precise quantitative biomedical imaging, which necessitates correspondingly more-advanced image processing and analysis techniques. A wide range of software is available-from commercial to academic, special-purpose to Swiss army knife, small to large-but a key characteristic of software that is suitable for scientific inquiry is its accessibility. Open-source software is ideal for scientific endeavors because it can be freely inspected, modified, and redistributed; in particular, the open-software platform ImageJ has had a huge impact on the life sciences, and continues to do so. From its inception, ImageJ has grown significantly due largely to being freely available and its vibrant and helpful user community. Scientists as diverse as interested hobbyists, technical assistants, students, scientific staff, and advanced biology researchers use ImageJ on a daily basis, and exchange knowledge via its dedicated mailing list. Uses of ImageJ range from data visualization and teaching to advanced image processing and statistical analysis. The software's extensibility continues to attract biologists at all career stages as well as computer scientists who wish to effectively implement specific image-processing algorithms. In this review, we use the ImageJ project as a case study of how open-source software fosters its suites of software tools, making multitudes of image-analysis technology easily accessible to the scientific community. We specifically explore what makes ImageJ so popular, how it impacts the life sciences, how it inspires other projects, and how it is self-influenced by coevolving projects within the ImageJ ecosystem.

  9. The ImageJ ecosystem: An open platform for biomedical image analysis.

    PubMed

    Schindelin, Johannes; Rueden, Curtis T; Hiner, Mark C; Eliceiri, Kevin W

    2015-01-01

    Technology in microscopy advances rapidly, enabling increasingly affordable, faster, and more precise quantitative biomedical imaging, which necessitates correspondingly more-advanced image processing and analysis techniques. A wide range of software is available-from commercial to academic, special-purpose to Swiss army knife, small to large-but a key characteristic of software that is suitable for scientific inquiry is its accessibility. Open-source software is ideal for scientific endeavors because it can be freely inspected, modified, and redistributed; in particular, the open-software platform ImageJ has had a huge impact on the life sciences, and continues to do so. From its inception, ImageJ has grown significantly due largely to being freely available and its vibrant and helpful user community. Scientists as diverse as interested hobbyists, technical assistants, students, scientific staff, and advanced biology researchers use ImageJ on a daily basis, and exchange knowledge via its dedicated mailing list. Uses of ImageJ range from data visualization and teaching to advanced image processing and statistical analysis. The software's extensibility continues to attract biologists at all career stages as well as computer scientists who wish to effectively implement specific image-processing algorithms. In this review, we use the ImageJ project as a case study of how open-source software fosters its suites of software tools, making multitudes of image-analysis technology easily accessible to the scientific community. We specifically explore what makes ImageJ so popular, how it impacts the life sciences, how it inspires other projects, and how it is self-influenced by coevolving projects within the ImageJ ecosystem. PMID:26153368

  10. DeTEXT: A Database for Evaluating Text Extraction from Biomedical Literature Figures

    PubMed Central

    Yin, Xu-Cheng; Yang, Chun; Pei, Wei-Yi; Man, Haixia; Zhang, Jun; Learned-Miller, Erik; Yu, Hong

    2015-01-01

    Hundreds of millions of figures are available in biomedical literature, representing important biomedical experimental evidence. Since text is a rich source of information in figures, automatically extracting such text may assist in the task of mining figure information. A high-quality ground truth standard can greatly facilitate the development of an automated system. This article describes DeTEXT: A database for evaluating text extraction from biomedical literature figures. It is the first publicly available, human-annotated, high quality, and large-scale figure-text dataset with 288 full-text articles, 500 biomedical figures, and 9308 text regions. This article describes how figures were selected from open-access full-text biomedical articles and how annotation guidelines and annotation tools were developed. We also discuss the inter-annotator agreement and the reliability of the annotations. We summarize the statistics of the DeTEXT data and make available evaluation protocols for DeTEXT. Finally we lay out challenges we observed in the automated detection and recognition of figure text and discuss research directions in this area. DeTEXT is publicly available for downloading at http://prir.ustb.edu.cn/DeTEXT/. PMID:25951377

  11. KEGG orthology-based annotation of the predicted proteome of Acropora digitifera: ZoophyteBase - an open access and searchable database of a coral genome

    PubMed Central

    2013-01-01

    Background Contemporary coral reef research has firmly established that a genomic approach is urgently needed to better understand the effects of anthropogenic environmental stress and global climate change on coral holobiont interactions. Here we present KEGG orthology-based annotation of the complete genome sequence of the scleractinian coral Acropora digitifera and provide the first comprehensive view of the genome of a reef-building coral by applying advanced bioinformatics. Description Sequences from the KEGG database of protein function were used to construct hidden Markov models. These models were used to search the predicted proteome of A. digitifera to establish complete genomic annotation. The annotated dataset is published in ZoophyteBase, an open access format with different options for searching the data. A particularly useful feature is the ability to use a Google-like search engine that links query words to protein attributes. We present features of the annotation that underpin the molecular structure of key processes of coral physiology that include (1) regulatory proteins of symbiosis, (2) planula and early developmental proteins, (3) neural messengers, receptors and sensory proteins, (4) calcification and Ca2+-signalling proteins, (5) plant-derived proteins, (6) proteins of nitrogen metabolism, (7) DNA repair proteins, (8) stress response proteins, (9) antioxidant and redox-protective proteins, (10) proteins of cellular apoptosis, (11) microbial symbioses and pathogenicity proteins, (12) proteins of viral pathogenicity, (13) toxins and venom, (14) proteins of the chemical defensome and (15) coral epigenetics. Conclusions We advocate that providing annotation in an open-access searchable database available to the public domain will give an unprecedented foundation to interrogate the fundamental molecular structure and interactions of coral symbiosis and allow critical questions to be addressed at the genomic level based on combined aspects of

  12. LINNAEUS: A species name identification system for biomedical literature

    PubMed Central

    2010-01-01

    Background The task of recognizing and identifying species names in biomedical literature has recently been regarded as critical for a number of applications in text and data mining, including gene name recognition, species-specific document retrieval, and semantic enrichment of biomedical articles. Results In this paper we describe an open-source species name recognition and normalization software system, LINNAEUS, and evaluate its performance relative to several automatically generated biomedical corpora, as well as a novel corpus of full-text documents manually annotated for species mentions. LINNAEUS uses a dictionary-based approach (implemented as an efficient deterministic finite-state automaton) to identify species names and a set of heuristics to resolve ambiguous mentions. When compared against our manually annotated corpus, LINNAEUS performs with 94% recall and 97% precision at the mention level, and 98% recall and 90% precision at the document level. Our system successfully solves the problem of disambiguating uncertain species mentions, with 97% of all mentions in PubMed Central full-text documents resolved to unambiguous NCBI taxonomy identifiers. Conclusions LINNAEUS is an open source, stand-alone software system capable of recognizing and normalizing species name mentions with speed and accuracy, and can therefore be integrated into a range of bioinformatics and text-mining applications. The software and manually annotated corpus can be downloaded freely at http://linnaeus.sourceforge.net/. PMID:20149233

  13. Evolution of biomedical ontologies and mappings: Overview of recent approaches.

    PubMed

    Groß, Anika; Pruski, Cédric; Rahm, Erhard

    2016-01-01

    Biomedical ontologies are heavily used to annotate data, and different ontologies are often interlinked by ontology mappings. These ontology-based mappings and annotations are used in many applications and analysis tasks. Since biomedical ontologies are continuously updated dependent artifacts can become outdated and need to undergo evolution as well. Hence there is a need for largely automated approaches to keep ontology-based mappings up-to-date in the presence of evolving ontologies. In this article, we survey current approaches and novel directions in the context of ontology and mapping evolution. We will discuss requirements for mapping adaptation and provide a comprehensive overview on existing approaches. We will further identify open challenges and outline ideas for future developments. PMID:27642503

  14. BiOSS: A system for biomedical ontology selection.

    PubMed

    Martínez-Romero, Marcos; Vázquez-Naya, José M; Pereira, Javier; Pazos, Alejandro

    2014-04-01

    In biomedical informatics, ontologies are considered a key technology for annotating, retrieving and sharing the huge volume of publicly available data. Due to the increasing amount, complexity and variety of existing biomedical ontologies, choosing the ones to be used in a semantic annotation problem or to design a specific application is a difficult task. As a consequence, the design of approaches and tools addressed to facilitate the selection of biomedical ontologies is becoming a priority. In this paper we present BiOSS, a novel system for the selection of biomedical ontologies. BiOSS evaluates the adequacy of an ontology to a given domain according to three different criteria: (1) the extent to which the ontology covers the domain; (2) the semantic richness of the ontology in the domain; (3) the popularity of the ontology in the biomedical community. BiOSS has been applied to 5 representative problems of ontology selection. It also has been compared to existing methods and tools. Results are promising and show the usefulness of BiOSS to solve real-world ontology selection problems. BiOSS is openly available both as a web tool and a web service.

  15. xGDBvm: A Web GUI-Driven Workflow for Annotating Eukaryotic Genomes in the Cloud[OPEN

    PubMed Central

    Merchant, Nirav

    2016-01-01

    Genome-wide annotation of gene structure requires the integration of numerous computational steps. Currently, annotation is arguably best accomplished through collaboration of bioinformatics and domain experts, with broad community involvement. However, such a collaborative approach is not scalable at today’s pace of sequence generation. To address this problem, we developed the xGDBvm software, which uses an intuitive graphical user interface to access a number of common genome analysis and gene structure tools, preconfigured in a self-contained virtual machine image. Once their virtual machine instance is deployed through iPlant’s Atmosphere cloud services, users access the xGDBvm workflow via a unified Web interface to manage inputs, set program parameters, configure links to high-performance computing (HPC) resources, view and manage output, apply analysis and editing tools, or access contextual help. The xGDBvm workflow will mask the genome, compute spliced alignments from transcript and/or protein inputs (locally or on a remote HPC cluster), predict gene structures and gene structure quality, and display output in a public or private genome browser complete with accessory tools. Problematic gene predictions are flagged and can be reannotated using the integrated yrGATE annotation tool. xGDBvm can also be configured to append or replace existing data or load precomputed data. Multiple genomes can be annotated and displayed, and outputs can be archived for sharing or backup. xGDBvm can be adapted to a variety of use cases including de novo genome annotation, reannotation, comparison of different annotations, and training or teaching. PMID:27020957

  16. Annotating the Function of the Human Genome with Gene Ontology and Disease Ontology.

    PubMed

    Hu, Yang; Zhou, Wenyang; Ren, Jun; Dong, Lixiang; Wang, Yadong; Jin, Shuilin; Cheng, Liang

    2016-01-01

    Increasing evidences indicated that function annotation of human genome in molecular level and phenotype level is very important for systematic analysis of genes. In this study, we presented a framework named Gene2Function to annotate Gene Reference into Functions (GeneRIFs), in which each functional description of GeneRIFs could be annotated by a text mining tool Open Biomedical Annotator (OBA), and each Entrez gene could be mapped to Human Genome Organisation Gene Nomenclature Committee (HGNC) gene symbol. After annotating all the records about human genes of GeneRIFs, 288,869 associations between 13,148 mRNAs and 7,182 terms, 9,496 associations between 948 microRNAs and 533 terms, and 901 associations between 139 long noncoding RNAs (lncRNAs) and 297 terms were obtained as a comprehensive annotation resource of human genome. High consistency of term frequency of individual gene (Pearson correlation = 0.6401, p = 2.2e - 16) and gene frequency of individual term (Pearson correlation = 0.1298, p = 3.686e - 14) in GeneRIFs and GOA shows our annotation resource is very reliable. PMID:27635398

  17. Annotating the Function of the Human Genome with Gene Ontology and Disease Ontology

    PubMed Central

    Hu, Yang; Zhou, Wenyang; Ren, Jun; Dong, Lixiang

    2016-01-01

    Increasing evidences indicated that function annotation of human genome in molecular level and phenotype level is very important for systematic analysis of genes. In this study, we presented a framework named Gene2Function to annotate Gene Reference into Functions (GeneRIFs), in which each functional description of GeneRIFs could be annotated by a text mining tool Open Biomedical Annotator (OBA), and each Entrez gene could be mapped to Human Genome Organisation Gene Nomenclature Committee (HGNC) gene symbol. After annotating all the records about human genes of GeneRIFs, 288,869 associations between 13,148 mRNAs and 7,182 terms, 9,496 associations between 948 microRNAs and 533 terms, and 901 associations between 139 long noncoding RNAs (lncRNAs) and 297 terms were obtained as a comprehensive annotation resource of human genome. High consistency of term frequency of individual gene (Pearson correlation = 0.6401, p = 2.2e − 16) and gene frequency of individual term (Pearson correlation = 0.1298, p = 3.686e − 14) in GeneRIFs and GOA shows our annotation resource is very reliable. PMID:27635398

  18. Annotating the Function of the Human Genome with Gene Ontology and Disease Ontology

    PubMed Central

    Hu, Yang; Zhou, Wenyang; Ren, Jun; Dong, Lixiang

    2016-01-01

    Increasing evidences indicated that function annotation of human genome in molecular level and phenotype level is very important for systematic analysis of genes. In this study, we presented a framework named Gene2Function to annotate Gene Reference into Functions (GeneRIFs), in which each functional description of GeneRIFs could be annotated by a text mining tool Open Biomedical Annotator (OBA), and each Entrez gene could be mapped to Human Genome Organisation Gene Nomenclature Committee (HGNC) gene symbol. After annotating all the records about human genes of GeneRIFs, 288,869 associations between 13,148 mRNAs and 7,182 terms, 9,496 associations between 948 microRNAs and 533 terms, and 901 associations between 139 long noncoding RNAs (lncRNAs) and 297 terms were obtained as a comprehensive annotation resource of human genome. High consistency of term frequency of individual gene (Pearson correlation = 0.6401, p = 2.2e − 16) and gene frequency of individual term (Pearson correlation = 0.1298, p = 3.686e − 14) in GeneRIFs and GOA shows our annotation resource is very reliable.

  19. BioSimplify: an open source sentence simplification engine to improve recall in automatic biomedical information extraction.

    PubMed

    Jonnalagadda, Siddhartha; Gonzalez, Graciela

    2010-11-13

    BioSimplify is an open source tool written in Java that introduces and facilitates the use of a novel model for sentence simplification tuned for automatic discourse analysis and information extraction (as opposed to sentence simplification for improving human readability). The model is based on a "shot-gun" approach that produces many different (simpler) versions of the original sentence by combining variants of its constituent elements. This tool is optimized for processing biomedical scientific literature such as the abstracts indexed in PubMed. We tested our tool on its impact to the task of PPI extraction and it improved the f-score of the PPI tool by around 7%, with an improvement in recall of around 20%. The BioSimplify tool and test corpus can be downloaded from https://biosimplify.sourceforge.net.

  20. A Unified Framework for Biomedical Terminologies and Ontologies

    PubMed Central

    Ceusters, Werner; Smith, Barry

    2011-01-01

    The goal of the OBO (Open Biomedical Ontologies) Foundry initiative is to create and maintain an evolving collection of non-overlapping interoperable ontologies that will offer unambiguous representations of the types of entities in biological and biomedical reality. These ontologies are designed to serve non-redundant annotation of data and scientific text. To achieve these ends, the Foundry imposes strict requirements upon the ontologies eligible for inclusion. While these requirements are not met by most existing biomedical terminologies, the latter may nonetheless support the Foundry’s goal of consistent and non-redundant annotation if appropriate mappings of data annotated with their aid can be achieved. To construct such mappings in reliable fashion, however, it is necessary to analyze terminological resources from an ontologically realistic perspective in such a way as to identify the exact import of the ‘concepts’ and associated terms which they contain. We propose a framework for such analysis that is designed to maximize the degree to which legacy terminologies and the data coded with their aid can be successfully used for information-driven clinical and translational research. PMID:20841844

  1. The National Center for Biomedical Ontology: Advancing Biomedicinethrough Structured Organization of Scientific Knowledge

    SciTech Connect

    Rubin, Daniel L.; Lewis, Suzanna E.; Mungall, Chris J.; Misra,Sima; Westerfield, Monte; Ashburner, Michael; Sim, Ida; Chute,Christopher G.; Solbrig, Harold; Storey, Margaret-Anne; Smith, Barry; Day-Richter, John; Noy, Natalya F.; Musen, Mark A.

    2006-01-23

    The National Center for Biomedical Ontology (http://bioontology.org) is a consortium that comprises leading informaticians, biologists, clinicians, and ontologists funded by the NIH Roadmap to develop innovative technology and methods that allow scientists to record, manage, and disseminate biomedical information and knowledge in machine-processable form. The goals of the Center are: (1) to help unify the divergent and isolated efforts in ontology development by promoting high quality open-source, standards-based tools to create, manage, and use ontologies, (2) to create new software tools so that scientists can use ontologies to annotate and analyze biomedical data, (3) to provide a national resource for the ongoing evaluation, integration, and evolution of biomedical ontologies and associated tools and theories in the context of driving biomedical projects (DBPs), and (4) to disseminate the tools and resources of the Center and to identify, evaluate, and communicate best practices of ontology development to the biomedical community. The Center is working toward these objectives by providing tools to develop ontologies and to annotate experimental data, and by developing resources to integrate and relate existing ontologies as well as by creating repositories of biomedical data that are annotated using those ontologies. The Center is providing training workshops in ontology design, development, and usage, and is also pursuing research in ontology evaluation, quality, and use of ontologies to promote scientific discovery. Through the research activities within the Center, collaborations with the DBPs, and interactions with the biomedical community, our goal is to help scientists to work more effectively in the e-science paradigm, enhancing experiment design, experiment execution, data analysis, information synthesis, hypothesis generation and testing, and understand human disease.

  2. Opening pathways for underrepresented high school students to biomedical research careers: the Emory University RISE program.

    PubMed

    Rohrbaugh, Margaret C; Corces, Victor G

    2011-12-01

    Increasing the college graduation rates of underrepresented minority students in science disciplines is essential to attain a diverse workforce for the 21st century. The Research Internship and Science Education (RISE) program attempts to motivate and prepare students from the Atlanta Public School system, where underrepresented minority (URM) students comprise a majority of the population, for biomedical science careers by offering the opportunity to participate in an original research project. Students work in a research laboratory from the summer of their sophomore year until graduation, mentored by undergraduate and graduate students and postdoctoral fellows (postdocs). In addition, they receive instruction in college-level biology, scholastic assessment test (SAT) preparation classes, and help with the college application process. During the last 4 yr, RISE students have succeeded in the identification and characterization of a series of proteins involved in the regulation of nuclear organization and transcription. All but 1 of 39 RISE students have continued on to 4-year college undergraduate studies and 61% of those students are currently enrolled in science-related majors. These results suggest that the use of research-based experiences at the high school level may contribute to the increased recruitment of underrepresented students into science-related careers.

  3. Opening Pathways for Underrepresented High School Students to Biomedical Research Careers: The Emory University RISE Program

    PubMed Central

    Rohrbaugh, Margaret C.; Corces, Victor G.

    2011-01-01

    Increasing the college graduation rates of underrepresented minority students in science disciplines is essential to attain a diverse workforce for the 21st century. The Research Internship and Science Education (RISE) program attempts to motivate and prepare students from the Atlanta Public School system, where underrepresented minority (URM) students comprise a majority of the population, for biomedical science careers by offering the opportunity to participate in an original research project. Students work in a research laboratory from the summer of their sophomore year until graduation, mentored by undergraduate and graduate students and postdoctoral fellows (postdocs). In addition, they receive instruction in college-level biology, scholastic assessment test (SAT) preparation classes, and help with the college application process. During the last 4 yr, RISE students have succeeded in the identification and characterization of a series of proteins involved in the regulation of nuclear organization and transcription. All but 1 of 39 RISE students have continued on to 4-year college undergraduate studies and 61% of those students are currently enrolled in science-related majors. These results suggest that the use of research-based experiences at the high school level may contribute to the increased recruitment of underrepresented students into science-related careers. PMID:21926301

  4. The Virtual Skeleton Database: An Open Access Repository for Biomedical Research and Collaboration

    PubMed Central

    Bonaretti, Serena; Pfahrer, Marcel; Niklaus, Roman; Büchler, Philippe

    2013-01-01

    Background Statistical shape models are widely used in biomedical research. They are routinely implemented for automatic image segmentation or object identification in medical images. In these fields, however, the acquisition of the large training datasets, required to develop these models, is usually a time-consuming process. Even after this effort, the collections of datasets are often lost or mishandled resulting in replication of work. Objective To solve these problems, the Virtual Skeleton Database (VSD) is proposed as a centralized storage system where the data necessary to build statistical shape models can be stored and shared. Methods The VSD provides an online repository system tailored to the needs of the medical research community. The processing of the most common image file types, a statistical shape model framework, and an ontology-based search provide the generic tools to store, exchange, and retrieve digital medical datasets. The hosted data are accessible to the community, and collaborative research catalyzes their productivity. Results To illustrate the need for an online repository for medical research, three exemplary projects of the VSD are presented: (1) an international collaboration to achieve improvement in cochlear surgery and implant optimization, (2) a population-based analysis of femoral fracture risk between genders, and (3) an online application developed for the evaluation and comparison of the segmentation of brain tumors. Conclusions The VSD is a novel system for scientific collaboration for the medical image community with a data-centric concept and semantically driven search option for anatomical structures. The repository has been proven to be a useful tool for collaborative model building, as a resource for biomechanical population studies, or to enhance segmentation algorithms. PMID:24220210

  5. Validation of an open-source framework for the simulation of blood flow in biomedical devices

    NASA Astrophysics Data System (ADS)

    Quaini, Annalisa; Passerini, Tiziano; Villa, Umberto; Veneziani, Alessandro; Canic, Suncica

    2013-11-01

    We discuss the validation of an open source framework for the solution of problems arising in hemodynamics. The framework is assessed through experimental data for fluid flow in an idealized medical device with rigid boundaries. The core of the framework is an open source parallel finite element library that features several algorithms for fluid problems. The numerical results for the flow in the idealized medical device are in good quantitative agreement with the measured axial components of the velocity and pressures for flow rates corresponding to laminar, transitional, and turbulent regimes. A detailed account of the methods is provided. Support through grants NSF DMS-1109189 and NIH R01 HL70531 is gratefully acknowledged.

  6. Getting more out of biomedical documents with GATE's full lifecycle open source text analytics.

    PubMed

    Cunningham, Hamish; Tablan, Valentin; Roberts, Angus; Bontcheva, Kalina

    2013-01-01

    This software article describes the GATE family of open source text analysis tools and processes. GATE is one of the most widely used systems of its type with yearly download rates of tens of thousands and many active users in both academic and industrial contexts. In this paper we report three examples of GATE-based systems operating in the life sciences and in medicine. First, in genome-wide association studies which have contributed to discovery of a head and neck cancer mutation association. Second, medical records analysis which has significantly increased the statistical power of treatment/outcome models in the UK's largest psychiatric patient cohort. Third, richer constructs in drug-related searching. We also explore the ways in which the GATE family supports the various stages of the lifecycle present in our examples. We conclude that the deployment of text mining for document abstraction or rich search and navigation is best thought of as a process, and that with the right computational tools and data collection strategies this process can be made defined and repeatable. The GATE research programme is now 20 years old and has grown from its roots as a specialist development tool for text processing to become a rather comprehensive ecosystem, bringing together software developers, language engineers and research staff from diverse fields. GATE now has a strong claim to cover a uniquely wide range of the lifecycle of text analysis systems. It forms a focal point for the integration and reuse of advances that have been made by many people (the majority outside of the authors' own group) who work in text processing for biomedicine and other areas. GATE is available online <1> under GNU open source licences and runs on all major operating systems. Support is available from an active user and developer community and also on a commercial basis.

  7. Getting More Out of Biomedical Documents with GATE's Full Lifecycle Open Source Text Analytics

    PubMed Central

    Cunningham, Hamish; Tablan, Valentin; Roberts, Angus; Bontcheva, Kalina

    2013-01-01

    This software article describes the GATE family of open source text analysis tools and processes. GATE is one of the most widely used systems of its type with yearly download rates of tens of thousands and many active users in both academic and industrial contexts. In this paper we report three examples of GATE-based systems operating in the life sciences and in medicine. First, in genome-wide association studies which have contributed to discovery of a head and neck cancer mutation association. Second, medical records analysis which has significantly increased the statistical power of treatment/outcome models in the UK's largest psychiatric patient cohort. Third, richer constructs in drug-related searching. We also explore the ways in which the GATE family supports the various stages of the lifecycle present in our examples. We conclude that the deployment of text mining for document abstraction or rich search and navigation is best thought of as a process, and that with the right computational tools and data collection strategies this process can be made defined and repeatable. The GATE research programme is now 20 years old and has grown from its roots as a specialist development tool for text processing to become a rather comprehensive ecosystem, bringing together software developers, language engineers and research staff from diverse fields. GATE now has a strong claim to cover a uniquely wide range of the lifecycle of text analysis systems. It forms a focal point for the integration and reuse of advances that have been made by many people (the majority outside of the authors' own group) who work in text processing for biomedicine and other areas. GATE is available online <1> under GNU open source licences and runs on all major operating systems. Support is available from an active user and developer community and also on a commercial basis. PMID:23408875

  8. Computer systems for annotation of single molecule fragments

    DOEpatents

    Schwartz, David Charles; Severin, Jessica

    2016-07-19

    There are provided computer systems for visualizing and annotating single molecule images. Annotation systems in accordance with this disclosure allow a user to mark and annotate single molecules of interest and their restriction enzyme cut sites thereby determining the restriction fragments of single nucleic acid molecules. The markings and annotations may be automatically generated by the system in certain embodiments and they may be overlaid translucently onto the single molecule images. An image caching system may be implemented in the computer annotation systems to reduce image processing time. The annotation systems include one or more connectors connecting to one or more databases capable of storing single molecule data as well as other biomedical data. Such diverse array of data can be retrieved and used to validate the markings and annotations. The annotation systems may be implemented and deployed over a computer network. They may be ergonomically optimized to facilitate user interactions.

  9. Management of Dynamic Biomedical Terminologies: Current Status and Future Challenges

    PubMed Central

    Dos Reis, J. C.; Pruski, C.

    2015-01-01

    Summary Objectives Controlled terminologies and their dependent artefacts provide a consensual understanding of a domain while reducing ambiguities and enabling reasoning. However, the evolution of a domain’s knowledge directly impacts these terminologies and generates inconsistencies in the underlying biomedical information systems. In this article, we review existing work addressing the dynamic aspect of terminologies as well as their effects on mappings and semantic annotations. Methods We investigate approaches related to the identification, characterization and propagation of changes in terminologies, mappings and semantic annotations including techniques to update their content. Results and conclusion Based on the explored issues and existing methods, we outline open research challenges requiring investigation in the near future. PMID:26293859

  10. National Center for Biomedical Ontology: advancing biomedicine through structured organization of scientific knowledge.

    PubMed

    Rubin, Daniel L; Lewis, Suzanna E; Mungall, Chris J; Misra, Sima; Westerfield, Monte; Ashburner, Michael; Sim, Ida; Chute, Christopher G; Solbrig, Harold; Storey, Margaret-Anne; Smith, Barry; Day-Richter, John; Noy, Natalya F; Musen, Mark A

    2006-01-01

    The National Center for Biomedical Ontology is a consortium that comprises leading informaticians, biologists, clinicians, and ontologists, funded by the National Institutes of Health (NIH) Roadmap, to develop innovative technology and methods that allow scientists to record, manage, and disseminate biomedical information and knowledge in machine-processable form. The goals of the Center are (1) to help unify the divergent and isolated efforts in ontology development by promoting high quality open-source, standards-based tools to create, manage, and use ontologies, (2) to create new software tools so that scientists can use ontologies to annotate and analyze biomedical data, (3) to provide a national resource for the ongoing evaluation, integration, and evolution of biomedical ontologies and associated tools and theories in the context of driving biomedical projects (DBPs), and (4) to disseminate the tools and resources of the Center and to identify, evaluate, and communicate best practices of ontology development to the biomedical community. Through the research activities within the Center, collaborations with the DBPs, and interactions with the biomedical community, our goal is to help scientists to work more effectively in the e-science paradigm, enhancing experiment design, experiment execution, data analysis, information synthesis, hypothesis generation and testing, and understand human disease. PMID:16901225

  11. A multilingual gold-standard corpus for biomedical concept recognition: the Mantra GSC

    PubMed Central

    Clematide, Simon; Akhondi, Saber A; van Mulligen, Erik M; Rebholz-Schuhmann, Dietrich

    2015-01-01

    Objective To create a multilingual gold-standard corpus for biomedical concept recognition. Materials and methods We selected text units from different parallel corpora (Medline abstract titles, drug labels, biomedical patent claims) in English, French, German, Spanish, and Dutch. Three annotators per language independently annotated the biomedical concepts, based on a subset of the Unified Medical Language System and covering a wide range of semantic groups. To reduce the annotation workload, automatically generated preannotations were provided. Individual annotations were automatically harmonized and then adjudicated, and cross-language consistency checks were carried out to arrive at the final annotations. Results The number of final annotations was 5530. Inter-annotator agreement scores indicate good agreement (median F-score 0.79), and are similar to those between individual annotators and the gold standard. The automatically generated harmonized annotation set for each language performed equally well as the best annotator for that language. Discussion The use of automatic preannotations, harmonized annotations, and parallel corpora helped to keep the manual annotation efforts manageable. The inter-annotator agreement scores provide a reference standard for gauging the performance of automatic annotation techniques. Conclusion To our knowledge, this is the first gold-standard corpus for biomedical concept recognition in languages other than English. Other distinguishing features are the wide variety of semantic groups that are being covered, and the diversity of text genres that were annotated. PMID:25948699

  12. A modular framework for biomedical concept recognition

    PubMed Central

    2013-01-01

    Background Concept recognition is an essential task in biomedical information extraction, presenting several complex and unsolved challenges. The development of such solutions is typically performed in an ad-hoc manner or using general information extraction frameworks, which are not optimized for the biomedical domain and normally require the integration of complex external libraries and/or the development of custom tools. Results This article presents Neji, an open source framework optimized for biomedical concept recognition built around four key characteristics: modularity, scalability, speed, and usability. It integrates modules for biomedical natural language processing, such as sentence splitting, tokenization, lemmatization, part-of-speech tagging, chunking and dependency parsing. Concept recognition is provided through dictionary matching and machine learning with normalization methods. Neji also integrates an innovative concept tree implementation, supporting overlapped concept names and respective disambiguation techniques. The most popular input and output formats, namely Pubmed XML, IeXML, CoNLL and A1, are also supported. On top of the built-in functionalities, developers and researchers can implement new processing modules or pipelines, or use the provided command-line interface tool to build their own solutions, applying the most appropriate techniques to identify heterogeneous biomedical concepts. Neji was evaluated against three gold standard corpora with heterogeneous biomedical concepts (CRAFT, AnEM and NCBI disease corpus), achieving high performance results on named entity recognition (F1-measure for overlap matching: species 95%, cell 92%, cellular components 83%, gene and proteins 76%, chemicals 65%, biological processes and molecular functions 63%, disorders 85%, and anatomical entities 82%) and on entity normalization (F1-measure for overlap name matching and correct identifier included in the returned list of identifiers: species 88

  13. NCBI prokaryotic genome annotation pipeline.

    PubMed

    Tatusova, Tatiana; DiCuccio, Michael; Badretdin, Azat; Chetvernin, Vyacheslav; Nawrocki, Eric P; Zaslavsky, Leonid; Lomsadze, Alexandre; Pruitt, Kim D; Borodovsky, Mark; Ostell, James

    2016-08-19

    Recent technological advances have opened unprecedented opportunities for large-scale sequencing and analysis of populations of pathogenic species in disease outbreaks, as well as for large-scale diversity studies aimed at expanding our knowledge across the whole domain of prokaryotes. To meet the challenge of timely interpretation of structure, function and meaning of this vast genetic information, a comprehensive approach to automatic genome annotation is critically needed. In collaboration with Georgia Tech, NCBI has developed a new approach to genome annotation that combines alignment based methods with methods of predicting protein-coding and RNA genes and other functional elements directly from sequence. A new gene finding tool, GeneMarkS+, uses the combined evidence of protein and RNA placement by homology as an initial map of annotation to generate and modify ab initio gene predictions across the whole genome. Thus, the new NCBI's Prokaryotic Genome Annotation Pipeline (PGAP) relies more on sequence similarity when confident comparative data are available, while it relies more on statistical predictions in the absence of external evidence. The pipeline provides a framework for generation and analysis of annotation on the full breadth of prokaryotic taxonomy. For additional information on PGAP see https://www.ncbi.nlm.nih.gov/genome/annotation_prok/ and the NCBI Handbook, https://www.ncbi.nlm.nih.gov/books/NBK174280/. PMID:27342282

  14. NCBI prokaryotic genome annotation pipeline.

    PubMed

    Tatusova, Tatiana; DiCuccio, Michael; Badretdin, Azat; Chetvernin, Vyacheslav; Nawrocki, Eric P; Zaslavsky, Leonid; Lomsadze, Alexandre; Pruitt, Kim D; Borodovsky, Mark; Ostell, James

    2016-08-19

    Recent technological advances have opened unprecedented opportunities for large-scale sequencing and analysis of populations of pathogenic species in disease outbreaks, as well as for large-scale diversity studies aimed at expanding our knowledge across the whole domain of prokaryotes. To meet the challenge of timely interpretation of structure, function and meaning of this vast genetic information, a comprehensive approach to automatic genome annotation is critically needed. In collaboration with Georgia Tech, NCBI has developed a new approach to genome annotation that combines alignment based methods with methods of predicting protein-coding and RNA genes and other functional elements directly from sequence. A new gene finding tool, GeneMarkS+, uses the combined evidence of protein and RNA placement by homology as an initial map of annotation to generate and modify ab initio gene predictions across the whole genome. Thus, the new NCBI's Prokaryotic Genome Annotation Pipeline (PGAP) relies more on sequence similarity when confident comparative data are available, while it relies more on statistical predictions in the absence of external evidence. The pipeline provides a framework for generation and analysis of annotation on the full breadth of prokaryotic taxonomy. For additional information on PGAP see https://www.ncbi.nlm.nih.gov/genome/annotation_prok/ and the NCBI Handbook, https://www.ncbi.nlm.nih.gov/books/NBK174280/.

  15. Interpretation Errors related to the GO Annotation File Format

    PubMed Central

    Moreira, Dilvan A.; Shah, Nigam H.; Musen, Mark A.

    2007-01-01

    The Gene Ontology (GO) is the most widely used ontology for creating biomedical annotations. GO annotations are statements associating a biological entity with a GO term. These statements comprise a large dataset of biological knowledge that is used widely in biomedical research. GO Annotations are available as “gene association files” from the GO website in a tab-delimited file format (GO Annotation File Format) composed of rows of 15 tab-delimited fields. This simple format lacks the knowledge representation (KR) capabilities to represent unambiguously semantic relationships between each field. This paper demonstrates that this KR shortcoming leads users to interpret the files in ways that can be erroneous. We propose a complementary format to represent GO annotation files as knowledge bases using the W3C recommended Web Ontology Language (OWL). PMID:18693894

  16. Interpretation errors related to the GO annotation file format.

    PubMed

    Moreira, Dilvan A; Shah, Nigam H; Musen, Mark A

    2007-01-01

    The Gene Ontology (GO) is the most widely used ontology for creating biomedical annotations. GO annotations are statements associating a biological entity with a GO term. These statements comprise a large dataset of biological knowledge that is used widely in biomedical research. GO Annotations are available as "gene association files" from the GO website in a tab-delimited file format (GO Annotation File Format) composed of rows of 15 tab-delimited fields. This simple format lacks the knowledge representation (KR) capabilities to represent unambiguously semantic relationships between each field. This paper demonstrates that this KR shortcoming leads users to interpret the files in ways that can be erroneous. We propose a complementary format to represent GO annotation files as knowledge bases using the W3C recommended Web Ontology Language (OWL).

  17. Food environment, walkability, and public open spaces are associated with incident development of cardio-metabolic risk factors in a biomedical cohort.

    PubMed

    Paquet, Catherine; Coffee, Neil T; Haren, Matthew T; Howard, Natasha J; Adams, Robert J; Taylor, Anne W; Daniel, Mark

    2014-07-01

    We investigated whether residential environment characteristics related to food (unhealthful/healthful food sources ratio), walkability and public open spaces (POS; number, median size, greenness and type) were associated with incidence of four cardio-metabolic risk factors (pre-diabetes/diabetes, hypertension, dyslipidaemia, abdominal obesity) in a biomedical cohort (n=3205). Results revealed that the risk of developing pre-diabetes/diabetes was lower for participants in areas with larger POS and greater walkability. Incident abdominal obesity was positively associated with the unhealthful food environment index. No associations were found with hypertension or dyslipidaemia. Results provide new evidence for specific, prospective associations between the built environment and cardio-metabolic risk factors.

  18. The environment ontology: contextualising biological and biomedical entities

    PubMed Central

    2013-01-01

    As biological and biomedical research increasingly reference the environmental context of the biological entities under study, the need for formalisation and standardisation of environment descriptors is growing. The Environment Ontology (ENVO; http://www.environmentontology.org) is a community-led, open project which seeks to provide an ontology for specifying a wide range of environments relevant to multiple life science disciplines and, through an open participation model, to accommodate the terminological requirements of all those needing to annotate data using ontology classes. This paper summarises ENVO’s motivation, content, structure, adoption, and governance approach. The ontology is available from http://purl.obolibrary.org/obo/envo.owl - an OBO format version is also available by switching the file suffix to “obo”. PMID:24330602

  19. The National Center for Biomedical Ontology: Advancing Biomedicinethrough Structured Organization of Scientific Knowledge

    SciTech Connect

    Rubin, Daniel L.; Lewis, Suzanna E.; Mungall, Chris J.; Misra,Sima; Westerfield, Monte; Ashburner, Michael; Sim, Ida; Chute,Christopher G.; Solbrig, Harold; Storey, Margaret-Anne; Smith, Barry; Day-Richter, John; Noy, Natalya F.; Musen, Mark A.

    2006-01-23

    The National Center for Biomedical Ontology(http://bioontology.org) is a consortium that comprises leadinginformaticians, biologists, clinicians, and ontologists funded by the NIHRoadmap to develop innovative technology and methods that allowscientists to record, manage, and disseminate biomedical information andknowledge in machine-processable form. The goals of the Center are: (1)to help unify the divergent and isolated efforts in ontology developmentby promoting high quality open-source, standards-based tools to create,manage, and use ontologies, (2) to create new software tools so thatscientists can use ontologies to annotate and analyze biomedical data,(3) to provide a national resource for the ongoing evaluation,integration, and evolution of biomedical ontologies and associated toolsand theories in the context of driving biomedical projects (DBPs), and(4) to disseminate the tools and resources of the Center and to identify,evaluate, and communicate best practices of ontology development to thebiomedical community. The Center is working toward these objectives byproviding tools to develop ontologies and to annotate experimental data,and by developing resources to integrate and relate existing ontologiesas well as by creating repositories of biomedical data that are annotatedusing those ontologies. The Center is providing training workshops inontology design, development, and usage, and is also pursuing research inontology evaluation, quality, and use of ontologies to promote scientificdiscovery. Through the research activities within the Center,collaborations with the DBPs, and interactions with the biomedicalcommunity, our goal is to help scientists to work more effectively in thee-science paradigm, enhancing experiment design, experiment execution,data analysis, information synthesis, hypothesis generation and testing,and understand human disease.

  20. Biomedical Telectrodes

    NASA Technical Reports Server (NTRS)

    Shepherd, C. K.

    1989-01-01

    Compact transmitters eliminate need for wires to monitors. Biomedical telectrode is small electronic package that attaches to patient in manner similar to small adhesive bandage. Patient wearing biomedical telectrodes moves freely, without risk of breaking or entangling wire connections. Especially beneficial to patients undergoing electrocardiographic monitoring in intensive-care units in hospitals. Eliminates nuisance of coping with wire connections while dressing and going to toilet.

  1. Food environment, walkability, and public open spaces are associated with incident development of cardio-metabolic risk factors in a biomedical cohort.

    PubMed

    Paquet, Catherine; Coffee, Neil T; Haren, Matthew T; Howard, Natasha J; Adams, Robert J; Taylor, Anne W; Daniel, Mark

    2014-07-01

    We investigated whether residential environment characteristics related to food (unhealthful/healthful food sources ratio), walkability and public open spaces (POS; number, median size, greenness and type) were associated with incidence of four cardio-metabolic risk factors (pre-diabetes/diabetes, hypertension, dyslipidaemia, abdominal obesity) in a biomedical cohort (n=3205). Results revealed that the risk of developing pre-diabetes/diabetes was lower for participants in areas with larger POS and greater walkability. Incident abdominal obesity was positively associated with the unhealthful food environment index. No associations were found with hypertension or dyslipidaemia. Results provide new evidence for specific, prospective associations between the built environment and cardio-metabolic risk factors. PMID:24880234

  2. Virtual annotation: Verbal communication in virtual reality

    NASA Astrophysics Data System (ADS)

    Verlinden, Jouke C.; Bolter, Jay David; Vandermast, Charles

    A system that was developed to explore communication in virtual reality and which offers a simple and powerful method to embed verbal communication in simulations and visualizers by means of voice annotation is described. The prototype demonstrates that the addition of verbal communication opens up a range of new uses for virtual environments. A similar voice annotation facility is easily added to existing visualizers and simulations, and it enables reading, writing and communicating.

  3. Gene ontology annotation by density and gravitation models.

    PubMed

    Hou, Wen-Juan; Lin, Kevin Hsin-Yih; Chen, Hsin-Hsi

    2006-01-01

    Gene Ontology (GO) is developed to provide standard vocabularies of gene products in different databases. The process of annotating GO terms to genes requires curators to read through lengthy articles. Methods for speeding up or automating the annotation process are thus of great importance. We propose a GO annotation approach using full-text biomedical documents for directing more relevant papers to curators. This system explores word density and gravitation relationships between genes and GO terms. Different density and gravitation models are built and several evaluation criteria are employed to assess the effects of the proposed methods. PMID:17503384

  4. Gene ontology annotation by density and gravitation models.

    PubMed

    Hou, Wen-Juan; Lin, Kevin Hsin-Yih; Chen, Hsin-Hsi

    2006-01-01

    Gene Ontology (GO) is developed to provide standard vocabularies of gene products in different databases. The process of annotating GO terms to genes requires curators to read through lengthy articles. Methods for speeding up or automating the annotation process are thus of great importance. We propose a GO annotation approach using full-text biomedical documents for directing more relevant papers to curators. This system explores word density and gravitation relationships between genes and GO terms. Different density and gravitation models are built and several evaluation criteria are employed to assess the effects of the proposed methods.

  5. Enabling Ontology Based Semantic Queries in Biomedical Database Systems.

    PubMed

    Zheng, Shuai; Wang, Fusheng; Lu, James; Saltz, Joel

    2012-01-01

    While current biomedical ontology repositories offer primitive query capabilities, it is difficult or cumbersome to support ontology based semantic queries directly in semantically annotated biomedical databases. The problem may be largely attributed to the mismatch between the models of the ontologies and the databases, and the mismatch between the query interfaces of the two systems. To fully realize semantic query capabilities based on ontologies, we develop a system DBOntoLink to provide unified semantic query interfaces by extending database query languages. With DBOntoLink, semantic queries can be directly and naturally specified as extended functions of the database query languages without any programming needed. DBOntoLink is adaptable to different ontologies through customizations and supports major biomedical ontologies hosted at the NCBO BioPortal. We demonstrate the use of DBOntoLink in a real world biomedical database with semantically annotated medical image annotations. PMID:23404054

  6. Biomedical research

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Biomedical problems encountered by man in space which have been identified as a result of previous experience in simulated or actual spaceflight include cardiovascular deconditioning, motion sickness, bone loss, muscle atrophy, red cell alterations, fluid and electrolyte loss, radiation effects, radiation protection, behavior, and performance. The investigations and the findings in each of these areas were reviewed. A description of how biomedical research is organized within NASA, how it is funded, and how it is being reoriented to meet the needs of future manned space missions is also provided.

  7. Making web annotations persistent over time

    SciTech Connect

    Sanderson, Robert; Van De Sompel, Herbert

    2010-01-01

    As Digital Libraries (DL) become more aligned with the web architecture, their functional components need to be fundamentally rethought in terms of URIs and HTTP. Annotation, a core scholarly activity enabled by many DL solutions, exhibits a clearly unacceptable characteristic when existing models are applied to the web: due to the representations of web resources changing over time, an annotation made about a web resource today may no longer be relevant to the representation that is served from that same resource tomorrow. We assume the existence of archived versions of resources, and combine the temporal features of the emerging Open Annotation data model with the capability offered by the Memento framework that allows seamless navigation from the URI of a resource to archived versions of that resource, and arrive at a solution that provides guarantees regarding the persistence of web annotations over time. More specifically, we provide theoretical solutions and proof-of-concept experimental evaluations for two problems: reconstructing an existing annotation so that the correct archived version is displayed for all resources involved in the annotation, and retrieving all annotations that involve a given archived version of a web resource.

  8. Using Amazon’s Mechanical Turk for Annotating Medical Named Entities

    PubMed Central

    Yetisgen-Yildiz, Meliha; Solti, Imre; Xia, Fei

    2010-01-01

    Amazon’s Mechanical Turk (AMT) service is becoming increasingly popular in Natural Language Processing (NLP) research. In this poster, we report our findings in using AMT to annotate biomedical text extracted from clinical trial descriptions with three entity types: medical condition, medication, and laboratory test. We also describe our observations on AMT workers’ annotations. PMID:21785667

  9. Galileo Reader and Annotator

    NASA Astrophysics Data System (ADS)

    Besomi, O.

    2011-06-01

    In his readings, Galileo made frequent use of annotations. Here, I will offer a general glance at them by discussing the case of the annotations to the Libra astronomica published in 1619 by Orazio Grassi, a Jesuit mathematician of the Collegio Romano. The annotations directly reflect Galileo's reaction to Grassi's book in a heated debate between the two astronomers. Galileo and Grassi had opposite ideas about the nature of the comets, which resulted in different scientific and theological implications. The annotations represent the starting point for Galileo's reply to the Libra, namely Il Saggiatore, which was published four years later and dedicated to the new pope Urban VIII.

  10. Semantic annotation of biological concepts interplaying microbial cellular responses

    PubMed Central

    2011-01-01

    Background Automated extraction systems have become a time saving necessity in Systems Biology. Considerable human effort is needed to model, analyse and simulate biological networks. Thus, one of the challenges posed to Biomedical Text Mining tools is that of learning to recognise a wide variety of biological concepts with different functional roles to assist in these processes. Results Here, we present a novel corpus concerning the integrated cellular responses to nutrient starvation in the model-organism Escherichia coli. Our corpus is a unique resource in that it annotates biomedical concepts that play a functional role in expression, regulation and metabolism. Namely, it includes annotations for genetic information carriers (genes and DNA, RNA molecules), proteins (transcription factors, enzymes and transporters), small metabolites, physiological states and laboratory techniques. The corpus consists of 130 full-text papers with a total of 59043 annotations for 3649 different biomedical concepts; the two dominant classes are genes (highest number of unique concepts) and compounds (most frequently annotated concepts), whereas other important cellular concepts such as proteins account for no more than 10% of the annotated concepts. Conclusions To the best of our knowledge, a corpus that details such a wide range of biological concepts has never been presented to the text mining community. The inter-annotator agreement statistics provide evidence of the importance of a consolidated background when dealing with such complex descriptions, the ambiguities naturally arising from the terminology and their impact for modelling purposes. Availability is granted for the full-text corpora of 130 freely accessible documents, the annotation scheme and the annotation guidelines. Also, we include a corpus of 340 abstracts. PMID:22122862

  11. 77 FR 23810 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-20

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Biomedical Laboratory Research and Development and Clinical Science Research and Development Services... areas of biomedical, behavioral and clinical science research. The panel meetings will be open to...

  12. Publishing priorities of biomedical research funders

    PubMed Central

    Collins, Ellen

    2013-01-01

    Objectives To understand the publishing priorities, especially in relation to open access, of 10 UK biomedical research funders. Design Semistructured interviews. Setting 10 UK biomedical research funders. Participants 12 employees with responsibility for research management at 10 UK biomedical research funders; a purposive sample to represent a range of backgrounds and organisation types. Conclusions Publicly funded and large biomedical research funders are committed to open access publishing and are pleased with recent developments which have stimulated growth in this area. Smaller charitable funders are supportive of the aims of open access, but are concerned about the practical implications for their budgets and their funded researchers. Across the board, biomedical research funders are turning their attention to other priorities for sharing research outputs, including data, protocols and negative results. Further work is required to understand how smaller funders, including charitable funders, can support open access. PMID:24154520

  13. Web-based Video Annotation and its Applications

    NASA Astrophysics Data System (ADS)

    Yamamoto, Daisuke; Nagao, Katashi

    In this paper, we developed a Web-based video annotation system, named iVAS (intelligent Video Annotation Server). Audiences can associate any video content on the Internet with annotations. The system analyzes video content in order to acquire cut/shot information and color histograms. And it also automatically generates a Web page for editing annotations. Then, audiences can create annotation data by two methods. The first one helps the users to create text data such as person/object names, scene descriptions, and comments interactively. The second method facilitates the users associating any video fragments with their subjective impression by just clicking a mouse button. The generated annotation data are accumulated and managed by an XML database connected with iVAS. We also developed some application systems based on annotations such as video retrieval, video simplification, and video-content-based community support. One of the major advantages of our approach is easy integration of hand-coded and automatically-generated (such as color histograms and cut/shot information) annotations. Additionally, since our annotation system is open for public, we must consider some reliability or correctness of annotation data. We also developed an automatic evaluation method of annotation reliability using the users' feedback. In the future, these fundamental technologies will contribute to the formation of new communities centered around video content.

  14. Biomedical Conferences

    NASA Technical Reports Server (NTRS)

    1976-01-01

    As a result of Biomedical Conferences, Vivo Metric Systems Co. has produced cardiac electrodes based on NASA technology. Frequently in science, one highly specialized discipline is unaware of relevant advances made in other areas. In an attempt to familiarize researchers in a variety of disciplines with medical problems and needs, NASA has sponsored conferences that bring together university scientists, practicing physicians and manufacturers of medical instruments.

  15. Constructing a semantic predication gold standard from the biomedical literature

    PubMed Central

    2011-01-01

    Background Semantic relations increasingly underpin biomedical text mining and knowledge discovery applications. The success of such practical applications crucially depends on the quality of extracted relations, which can be assessed against a gold standard reference. Most such references in biomedical text mining focus on narrow subdomains and adopt different semantic representations, rendering them difficult to use for benchmarking independently developed relation extraction systems. In this article, we present a multi-phase gold standard annotation study, in which we annotated 500 sentences randomly selected from MEDLINE abstracts on a wide range of biomedical topics with 1371 semantic predications. The UMLS Metathesaurus served as the main source for conceptual information and the UMLS Semantic Network for relational information. We measured interannotator agreement and analyzed the annotations closely to identify some of the challenges in annotating biomedical text with relations based on an ontology or a terminology. Results We obtain fair to moderate interannotator agreement in the practice phase (0.378-0.475). With improved guidelines and additional semantic equivalence criteria, the agreement increases by 12% (0.415 to 0.536) in the main annotation phase. In addition, we find that agreement increases to 0.688 when the agreement calculation is limited to those predications that are based only on the explicitly provided UMLS concepts and relations. Conclusions While interannotator agreement in the practice phase confirms that conceptual annotation is a challenging task, the increasing agreement in the main annotation phase points out that an acceptable level of agreement can be achieved in multiple iterations, by setting stricter guidelines and establishing semantic equivalence criteria. Mapping text to ontological concepts emerges as the main challenge in conceptual annotation. Annotating predications involving biomolecular entities and processes is

  16. Biomedical technology in Franconia.

    PubMed

    Efferth, T

    2000-01-01

    Medical instrumentation and biotechnology business is developing rapidly in Franconia. The universities of Bayreuth, Erlangen-Nürnberg, and Würzburg hold upper ranks in biomedical extramural funding research. They have a high competence in biomedical research, medical instrumentation, and biotechnology. The association "BioMedTec Franken e.V" has been founded at the beginning of 1999 both to foster the information exchange between universities, industry and politics and to facilitate the establishment of biomedical companies by means of science parks. In the IGZ (Innovation and Foundation Center Nürnberg-Fürth-Erlangen) 4,500 square meters of space are currently shared by 19 novel companies. Since 1985 60 companies in the IGZ had a total turnover of about 74 Mio Euro. The TGZ (Technologie- und Gründerzentrum) in Würzburg provides space for 11 companies. For the specific needs of biomedical technology companies further science parks will be set up in the near future. A science park for medical instrumentation will be founded in Erlangen (IZMP, Innovations- und Gründerzentrum für Medizintechnik und Pharma in der Region Nürnberg, Fürch, Erlangen). Furthermore, a Biomedical Technology Center and a Research Center for Bicompatible Materials are to be founded in Würzburg and Bayreuth, respectively. Several communication platforms (Bayern Innovativ, FORWISS, FTT, KIM, N-TEC-VISIT, TBU, WETTI etc.) allow the transfer of local academic research activities to industrial utilization and open new co-operation possibilities. International pharmaceutical companies (Novartis, Nürnberg; Pharmacia Upjohn, Erlangen) are located in Franconia. Central Franconia represents a national focus for medical instrumentation. The Erlangen settlement of the Medical Engineering Section of Siemens employs 4,500 people including approximately 1,000 employees in the Siemens research center.

  17. Annotation extension through protein family annotation coherence metrics

    PubMed Central

    Bastos, Hugo P.; Clarke, Luka A.; Couto, Francisco M.

    2013-01-01

    Protein functional annotation consists in associating proteins with textual descriptors elucidating their biological roles. The bulk of annotation is done via automated procedures that ultimately rely on annotation transfer. Despite a large number of existing protein annotation procedures the ever growing protein space is never completely annotated. One of the facets of annotation incompleteness derives from annotation uncertainty. Often when protein function cannot be predicted with enough specificity it is instead conservatively annotated with more generic terms. In a scenario of protein families or functionally related (or even dissimilar) sets this leads to a more difficult task of using annotations to compare the extent of functional relatedness among all family or set members. However, we postulate that identifying sub-sets of functionally coherent proteins annotated at a very specific level, can help the annotation extension of other incompletely annotated proteins within the same family or functionally related set. As an example we analyse the status of annotation of a set of CAZy families belonging to the Polysaccharide Lyase class. We show that through the use of visualization methods and semantic similarity based metrics it is possible to identify families and respective annotation terms within them that are suitable for possible annotation extension. Based on our analysis we then propose a semi-automatic methodology leading to the extension of single annotation terms within these partially annotated protein sets or families. PMID:24130572

  18. The National Center for Biomedical Ontology.

    PubMed

    Musen, Mark A; Noy, Natalya F; Shah, Nigam H; Whetzel, Patricia L; Chute, Christopher G; Story, Margaret-Anne; Smith, Barry

    2012-01-01

    The National Center for Biomedical Ontology is now in its seventh year. The goals of this National Center for Biomedical Computing are to: create and maintain a repository of biomedical ontologies and terminologies; build tools and web services to enable the use of ontologies and terminologies in clinical and translational research; educate their trainees and the scientific community broadly about biomedical ontology and ontology-based technology and best practices; and collaborate with a variety of groups who develop and use ontologies and terminologies in biomedicine. The centerpiece of the National Center for Biomedical Ontology is a web-based resource known as BioPortal. BioPortal makes available for research in computationally useful forms more than 270 of the world's biomedical ontologies and terminologies, and supports a wide range of web services that enable investigators to use the ontologies to annotate and retrieve data, to generate value sets and special-purpose lexicons, and to perform advanced analytics on a wide range of biomedical data.

  19. An Introduction to Genome Annotation.

    PubMed

    Campbell, Michael S; Yandell, Mark

    2015-12-17

    Genome projects have evolved from large international undertakings to tractable endeavors for a single lab. Accurate genome annotation is critical for successful genomic, genetic, and molecular biology experiments. These annotations can be generated using a number of approaches and available software tools. This unit describes methods for genome annotation and a number of software tools commonly used in gene annotation.

  20. PREFACE: 17th International School on Condensed Matter Physics (ISCMP): Open Problems in Condensed Matter Physics, Biomedical Physics and their Applications

    NASA Astrophysics Data System (ADS)

    Dimova-Malinovska, Doriana; Nesheva, Diana; Pecheva, Emilia; Petrov, Alexander G.; Primatarowa, Marina T.

    2012-12-01

    We are pleased to introduce the Proceedings of the 17th International School on Condensed Matter Physics: Open Problems in Condensed Matter Physics, Biomedical Physics and their Applications, organized by the Institute of Solid State Physics of the Bulgarian Academy of Sciences. The Chairman of the School was Professor Alexander G Petrov. Like prior events, the School took place in the beautiful Black Sea resort of Saints Constantine and Helena near Varna, going back to the refurbished facilities of the Panorama hotel. Participants from 17 different countries delivered 31 invited lecturers and 78 posters, contributing through three sessions of poster presentations. Papers submitted to the Proceedings were refereed according to the high standards of the Journal of Physics: Conference Series and the accepted papers illustrate the diversity and the high level of the contributions. Not least significant factor for the success of the 17 ISCMP was the social program, both the organized events (Welcome and Farewell Parties) and the variety of pleasant local restaurants and beaches. Visits to the Archaeological Museum (rich in valuable gold treasures of the ancient Thracian culture) and to the famous rock monastery Aladja were organized for the participants from the Varna Municipality. These Proceedings are published for the second time by the Journal of Physics: Conference Series. We are grateful to the Journal's staff for supporting this idea. The Committee decided that the next event will take place again in Saints Constantine and Helena, 1-5 September 2014. It will be entitled: Challenges of the Nanoscale Science: Theory, Materials and Applications. Doriana Dimova-Malinovska, Diana Nesheva, Emilia Pecheva, Alexander G Petrov and Marina T Primatarowa Editors

  1. Annotation and visualization of endogenous retroviral sequences using the Distributed Annotation System (DAS) and eBioX

    PubMed Central

    Martínez Barrio, Álvaro; Lagercrantz, Erik; Sperber, Göran O; Blomberg, Jonas; Bongcam-Rudloff, Erik

    2009-01-01

    Background The Distributed Annotation System (DAS) is a widely used network protocol for sharing biological information. The distributed aspects of the protocol enable the use of various reference and annotation servers for connecting biological sequence data to pertinent annotations in order to depict an integrated view of the data for the final user. Results An annotation server has been devised to provide information about the endogenous retroviruses detected and annotated by a specialized in silico tool called RetroTector. We describe the procedure to implement the DAS 1.5 protocol commands necessary for constructing the DAS annotation server. We use our server to exemplify those steps. Data distribution is kept separated from visualization which is carried out by eBioX, an easy to use open source program incorporating multiple bioinformatics utilities. Some well characterized endogenous retroviruses are shown in two different DAS clients. A rapid analysis of areas free from retroviral insertions could be facilitated by our annotations. Conclusion The DAS protocol has shown to be advantageous in the distribution of endogenous retrovirus data. The distributed nature of the protocol is also found to aid in combining annotation and visualization along a genome in order to enhance the understanding of ERV contribution to its evolution. Reference and annotation servers are conjointly used by eBioX to provide visualization of ERV annotations as well as other data sources. Our DAS data source can be found in the central public DAS service repository, , or at . PMID:19534743

  2. National Space Biomedical Research Institute

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The National Space Biomedical Research Institute (NSBRI) sponsors and performs fundamental and applied space biomedical research with the mission of leading a world-class, national effort in integrated, critical path space biomedical research that supports NASA's Human Exploration and Development of Space (HEDS) Strategic Plan. It focuses on the enabling of long-term human presence in, development of, and exploration of space. This will be accomplished by: designing, implementing, and validating effective countermeasures to address the biological and environmental impediments to long-term human space flight; defining the molecular, cellular, organ-level, integrated responses and mechanistic relationships that ultimately determine these impediments, where such activity fosters the development of novel countermeasures; establishing biomedical support technologies to maximize human performance in space, reduce biomedical hazards to an acceptable level, and deliver quality medical care; transferring and disseminating the biomedical advances in knowledge and technology acquired through living and working in space to the benefit of mankind in space and on Earth, including the treatment of patients suffering from gravity- and radiation-related conditions on Earth; and ensuring open involvement of the scientific community, industry, and the public at large in the Institute's activities and fostering a robust collaboration with NASA, particularly through Johnson Space Center.

  3. Algal functional annotation tool

    SciTech Connect

    2012-07-12

    Abstract BACKGROUND: Progress in genome sequencing is proceeding at an exponential pace, and several new algal genomes are becoming available every year. One of the challenges facing the community is the association of protein sequences encoded in the genomes with biological function. While most genome assembly projects generate annotations for predicted protein sequences, they are usually limited and integrate functional terms from a limited number of databases. Another challenge is the use of annotations to interpret large lists of 'interesting' genes generated by genome-scale datasets. Previously, these gene lists had to be analyzed across several independent biological databases, often on a gene-by-gene basis. In contrast, several annotation databases, such as DAVID, integrate data from multiple functional databases and reveal underlying biological themes of large gene lists. While several such databases have been constructed for animals, none is currently available for the study of algae. Due to renewed interest in algae as potential sources of biofuels and the emergence of multiple algal genome sequences, a significant need has arisen for such a database to process the growing compendiums of algal genomic data. DESCRIPTION: The Algal Functional Annotation Tool is a web-based comprehensive analysis suite integrating annotation data from several pathway, ontology, and protein family databases. The current version provides annotation for the model alga Chlamydomonas reinhardtii, and in the future will include additional genomes. The site allows users to interpret large gene lists by identifying associated functional terms, and their enrichment. Additionally, expression data for several experimental conditions were compiled and analyzed to provide an expression-based enrichment search. A tool to search for functionally-related genes based on gene expression across these conditions is also provided. Other features include dynamic visualization of genes on KEGG

  4. Algal functional annotation tool

    2012-07-12

    Abstract BACKGROUND: Progress in genome sequencing is proceeding at an exponential pace, and several new algal genomes are becoming available every year. One of the challenges facing the community is the association of protein sequences encoded in the genomes with biological function. While most genome assembly projects generate annotations for predicted protein sequences, they are usually limited and integrate functional terms from a limited number of databases. Another challenge is the use of annotations tomore » interpret large lists of 'interesting' genes generated by genome-scale datasets. Previously, these gene lists had to be analyzed across several independent biological databases, often on a gene-by-gene basis. In contrast, several annotation databases, such as DAVID, integrate data from multiple functional databases and reveal underlying biological themes of large gene lists. While several such databases have been constructed for animals, none is currently available for the study of algae. Due to renewed interest in algae as potential sources of biofuels and the emergence of multiple algal genome sequences, a significant need has arisen for such a database to process the growing compendiums of algal genomic data. DESCRIPTION: The Algal Functional Annotation Tool is a web-based comprehensive analysis suite integrating annotation data from several pathway, ontology, and protein family databases. The current version provides annotation for the model alga Chlamydomonas reinhardtii, and in the future will include additional genomes. The site allows users to interpret large gene lists by identifying associated functional terms, and their enrichment. Additionally, expression data for several experimental conditions were compiled and analyzed to provide an expression-based enrichment search. A tool to search for functionally-related genes based on gene expression across these conditions is also provided. Other features include dynamic visualization of genes on

  5. Human Genome Annotation

    NASA Astrophysics Data System (ADS)

    Gerstein, Mark

    A central problem for 21st century science is annotating the human genome and making this annotation useful for the interpretation of personal genomes. My talk will focus on annotating the 99% of the genome that does not code for canonical genes, concentrating on intergenic features such as structural variants (SVs), pseudogenes (protein fossils), binding sites, and novel transcribed RNAs (ncRNAs). In particular, I will describe how we identify regulatory sites and variable blocks (SVs) based on processing next-generation sequencing experiments. I will further explain how we cluster together groups of sites to create larger annotations. Next, I will discuss a comprehensive pseudogene identification pipeline, which has enabled us to identify >10K pseudogenes in the genome and analyze their distribution with respect to age, protein family, and chromosomal location. Throughout, I will try to introduce some of the computational algorithms and approaches that are required for genome annotation. Much of this work has been carried out in the framework of the ENCODE, modENCODE, and 1000 genomes projects.

  6. Opening up Academic Biomedical Research

    NASA Video Gallery

    Eva Guinan, MD, Associate Professor of Pediatrics, Associate Direction, Center for Clinical and Translational Research at Harvard Medical School, was featured during the September 7, 2011 Innovatio...

  7. Algal functional annotation tool

    SciTech Connect

    Lopez, D.; Casero, D.; Cokus, S. J.; Merchant, S. S.; Pellegrini, M.

    2012-07-01

    The Algal Functional Annotation Tool is a web-based comprehensive analysis suite integrating annotation data from several pathway, ontology, and protein family databases. The current version provides annotation for the model alga Chlamydomonas reinhardtii, and in the future will include additional genomes. The site allows users to interpret large gene lists by identifying associated functional terms, and their enrichment. Additionally, expression data for several experimental conditions were compiled and analyzed to provide an expression-based enrichment search. A tool to search for functionally-related genes based on gene expression across these conditions is also provided. Other features include dynamic visualization of genes on KEGG pathway maps and batch gene identifier conversion.

  8. Re-Annotator: Annotation Pipeline for Microarray Probe Sequences.

    PubMed

    Arloth, Janine; Bader, Daniel M; Röh, Simone; Altmann, Andre

    2015-01-01

    Microarray technologies are established approaches for high throughput gene expression, methylation and genotyping analysis. An accurate mapping of the array probes is essential to generate reliable biological findings. However, manufacturers of the microarray platforms typically provide incomplete and outdated annotation tables, which often rely on older genome and transcriptome versions that differ substantially from up-to-date sequence databases. Here, we present the Re-Annotator, a re-annotation pipeline for microarray probe sequences. It is primarily designed for gene expression microarrays but can also be adapted to other types of microarrays. The Re-Annotator uses a custom-built mRNA reference database to identify the positions of gene expression array probe sequences. We applied Re-Annotator to the Illumina Human-HT12 v4 microarray platform and found that about one quarter (25%) of the probes differed from the manufacturer's annotation. In further computational experiments on experimental gene expression data, we compared Re-Annotator to another probe re-annotation tool, ReMOAT, and found that Re-Annotator provided an improved re-annotation of microarray probes. A thorough re-annotation of probe information is crucial to any microarray analysis. The Re-Annotator pipeline is freely available at http://sourceforge.net/projects/reannotator along with re-annotated files for Illumina microarrays HumanHT-12 v3/v4 and MouseRef-8 v2.

  9. Biomedical ultrasonoscope

    NASA Technical Reports Server (NTRS)

    Lee, R. D. (Inventor)

    1979-01-01

    The combination of a "C" mode scan electronics in a portable, battery powered biomedical ultrasonoscope having "A" and "M" mode scan electronics, the latter including a clock generator for generating clock pulses, a cathode ray tube having X, Y and Z axis inputs, a sweep generator connected between the clock generator and the X axis input of the cathode ray tube for generating a cathode ray sweep signal synchronized by the clock pulses, and a receiver adapted to be connected to the Z axis input of the cathode ray tube. The "C" mode scan electronics comprises a plurality of transducer elements arranged in a row and adapted to be positioned on the skin of the patient's body for converting a pulsed electrical signal to a pulsed ultrasonic signal, radiating the ultrasonic signal into the patient's body, picking up the echoes reflected from interfaces in the patient's body and converting the echoes to electrical signals; a plurality of transmitters, each transmitter being coupled to a respective transducer for transmitting a pulsed electrical signal thereto and for transmitting the converted electrical echo signals directly to the receiver, a sequencer connected between the clock generator and the plurality of transmitters and responsive to the clock pulses for firing the transmitters in cyclic order; and a staircase voltage generator connected between the clock generator and the Y axis input of the cathode ray tube for generating a staircase voltage having steps synchronized by the clock pulses.

  10. Automated extraction and semantic analysis of mutation impacts from the biomedical literature

    PubMed Central

    2012-01-01

    Background Mutations as sources of evolution have long been the focus of attention in the biomedical literature. Accessing the mutational information and their impacts on protein properties facilitates research in various domains, such as enzymology and pharmacology. However, manually curating the rich and fast growing repository of biomedical literature is expensive and time-consuming. As a solution, text mining approaches have increasingly been deployed in the biomedical domain. While the detection of single-point mutations is well covered by existing systems, challenges still exist in grounding impacts to their respective mutations and recognizing the affected protein properties, in particular kinetic and stability properties together with physical quantities. Results We present an ontology model for mutation impacts, together with a comprehensive text mining system for extracting and analysing mutation impact information from full-text articles. Organisms, as sources of proteins, are extracted to help disambiguation of genes and proteins. Our system then detects mutation series to correctly ground detected impacts using novel heuristics. It also extracts the affected protein properties, in particular kinetic and stability properties, as well as the magnitude of the effects and validates these relations against the domain ontology. The output of our system can be provided in various formats, in particular by populating an OWL-DL ontology, which can then be queried to provide structured information. The performance of the system is evaluated on our manually annotated corpora. In the impact detection task, our system achieves a precision of 70.4%-71.1%, a recall of 71.3%-71.5%, and grounds the detected impacts with an accuracy of 76.5%-77%. The developed system, including resources, evaluation data and end-user and developer documentation is freely available under an open source license at http://www.semanticsoftware.info/open-mutation-miner. Conclusion We present

  11. Annotation of Ehux ESTs

    SciTech Connect

    Kuo, Alan; Grigoriev, Igor

    2009-06-12

    22 percent ESTs do no align with scaffolds. EST Pipeleine assembles 17126 consensi from the noaligned ESTs. Annotation Pipeline predicts 8564 ORFS on the consensi. Domain analysis of ORFs reveals missing genes. Cluster analysis reveals missing genes. Expression analysis reveals potential strain specific genes.

  12. Annotation: The Savant Syndrome

    ERIC Educational Resources Information Center

    Heaton, Pamela; Wallace, Gregory L.

    2004-01-01

    Background: Whilst interest has focused on the origin and nature of the savant syndrome for over a century, it is only within the past two decades that empirical group studies have been carried out. Methods: The following annotation briefly reviews relevant research and also attempts to address outstanding issues in this research area.…

  13. Intellectuals in China: Annotations.

    ERIC Educational Resources Information Center

    Parker, Franklin

    This annotated bibliography of 72 books, journal articles, government reports, and newspaper feature stories focuses on the changing role of intellectuals in China, primarily since the 1949 Chinese Revolution. Particular attention is given to the Hundred Flowers Movement of 1957 and the Cultural Revolution. Most of the cited works are in English,…

  14. Collaborative Movie Annotation

    NASA Astrophysics Data System (ADS)

    Zad, Damon Daylamani; Agius, Harry

    In this paper, we focus on metadata for self-created movies like those found on YouTube and Google Video, the duration of which are increasing in line with falling upload restrictions. While simple tags may have been sufficient for most purposes for traditionally very short video footage that contains a relatively small amount of semantic content, this is not the case for movies of longer duration which embody more intricate semantics. Creating metadata is a time-consuming process that takes a great deal of individual effort; however, this effort can be greatly reduced by harnessing the power of Web 2.0 communities to create, update and maintain it. Consequently, we consider the annotation of movies within Web 2.0 environments, such that users create and share that metadata collaboratively and propose an architecture for collaborative movie annotation. This architecture arises from the results of an empirical experiment where metadata creation tools, YouTube and an MPEG-7 modelling tool, were used by users to create movie metadata. The next section discusses related work in the areas of collaborative retrieval and tagging. Then, we describe the experiments that were undertaken on a sample of 50 users. Next, the results are presented which provide some insight into how users interact with existing tools and systems for annotating movies. Based on these results, the paper then develops an architecture for collaborative movie annotation.

  15. Annotated Bibliography. First Edition.

    ERIC Educational Resources Information Center

    Haring, Norris G.

    An annotated bibliography which presents approximately 300 references from 1951 to 1973 on the education of severely/profoundly handicapped persons. Citations are grouped alphabetically by author's name within the following categories: characteristics and treatment, gross motor development, sensory and motor development, physical therapy for the…

  16. Ghostwriting: An Annotated Bibliography.

    ERIC Educational Resources Information Center

    Simmons, Donald B.

    Drawn from communication journals, historical and news magazines, business and industrial magazines, political science and world affairs journals, general interest periodicals, and literary and political review magazines, the approximately 90 entries in this annotated bibliography discuss ghostwriting as practiced through the ages and reveal the…

  17. Effective use of latent semantic indexing and computational linguistics in biological and biomedical applications.

    PubMed

    Chen, Hongyu; Martin, Bronwen; Daimon, Caitlin M; Maudsley, Stuart

    2013-01-01

    Text mining is rapidly becoming an essential technique for the annotation and analysis of large biological data sets. Biomedical literature currently increases at a rate of several thousand papers per week, making automated information retrieval methods the only feasible method of managing this expanding corpus. With the increasing prevalence of open-access journals and constant growth of publicly-available repositories of biomedical literature, literature mining has become much more effective with respect to the extraction of biomedically-relevant data. In recent years, text mining of popular databases such as MEDLINE has evolved from basic term-searches to more sophisticated natural language processing techniques, indexing and retrieval methods, structural analysis and integration of literature with associated metadata. In this review, we will focus on Latent Semantic Indexing (LSI), a computational linguistics technique increasingly used for a variety of biological purposes. It is noted for its ability to consistently outperform benchmark Boolean text searches and co-occurrence models at information retrieval and its power to extract indirect relationships within a data set. LSI has been used successfully to formulate new hypotheses, generate novel connections from existing data, and validate empirical data.

  18. Effective use of latent semantic indexing and computational linguistics in biological and biomedical applications

    PubMed Central

    Chen, Hongyu; Martin, Bronwen; Daimon, Caitlin M.; Maudsley, Stuart

    2012-01-01

    Text mining is rapidly becoming an essential technique for the annotation and analysis of large biological data sets. Biomedical literature currently increases at a rate of several thousand papers per week, making automated information retrieval methods the only feasible method of managing this expanding corpus. With the increasing prevalence of open-access journals and constant growth of publicly-available repositories of biomedical literature, literature mining has become much more effective with respect to the extraction of biomedically-relevant data. In recent years, text mining of popular databases such as MEDLINE has evolved from basic term-searches to more sophisticated natural language processing techniques, indexing and retrieval methods, structural analysis and integration of literature with associated metadata. In this review, we will focus on Latent Semantic Indexing (LSI), a computational linguistics technique increasingly used for a variety of biological purposes. It is noted for its ability to consistently outperform benchmark Boolean text searches and co-occurrence models at information retrieval and its power to extract indirect relationships within a data set. LSI has been used successfully to formulate new hypotheses, generate novel connections from existing data, and validate empirical data. PMID:23386833

  19. The annotation and the usage of scientific databases could be improved with public issue tracker software

    PubMed Central

    Dall'Olio, Giovanni Marco; Bertranpetit, Jaume; Laayouni, Hafid

    2010-01-01

    Since the publication of their longtime predecessor The Atlas of Protein Sequences and Structures in 1965 by Margaret Dayhoff, scientific databases have become a key factor in the organization of modern science. All the information and knowledge described in the novel scientific literature is translated into entries in many different scientific databases, making it possible to obtain very accurate information on a biological entity like genes or proteins without having to manually review the literature on it. However, even for the databases with the finest annotation procedures, errors or unclear parts sometimes appear in the publicly released version and influence the research of unaware scientists using them. The researcher that finds an error in a database is often left in a uncertain state, and often abandons the effort of reporting it because of a lack of a standard procedure to do so. In the present work, we propose that the simple adoption of a public error tracker application, as in many open software projects, could improve the quality of the annotations in many databases and encourage feedback from the scientific community on the data annotated publicly. In order to illustrate the situation, we describe a series of errors that we found and helped solve on the genes of a very well-known pathway in various biomedically relevant databases. We would like to show that, even if a majority of the most important scientific databases have procedures for reporting errors, these are usually not publicly visible, making the process of reporting errors time consuming and not useful. Also, the effort made by the user that reports the error often goes unacknowledged, putting him in a discouraging position. PMID:21186182

  20. AmiGO: online access to ontology and annotation data

    SciTech Connect

    Carbon, Seth; Ireland, Amelia; Mungall, Christopher J.; Shu, ShengQiang; Marshall, Brad; Lewis, Suzanna

    2009-01-15

    AmiGO is a web application that allows users to query, browse, and visualize ontologies and related gene product annotation (association) data. AmiGO can be used online at the Gene Ontology (GO) website to access the data provided by the GO Consortium; it can also be downloaded and installed to browse local ontologies and annotations. AmiGO is free open source software developed and maintained by the GO Consortium.

  1. Perceptions regarding biomedical engineering

    NASA Astrophysics Data System (ADS)

    Pearson, James E.

    1995-10-01

    Perceptions of biomedical engineering are important because they can influence private and public decisions on R&D funding and public policy. A survey was conducted of a group of persons active in biomedical engineering research in an attempt to determine the perceptions of the general public and of the biomedical community regarding biomedical engineering. The public is believed to have 'a little' knowledge of biomedical engineering, and to have a wide range of opinions on what biomedical engineers do. The survey respondents believe they are in general agreement with the public on several questions regarding biomedical engineering. However, the public is believed to be more inclined than workers in the field to think that biomedical engineering increases the cost of health care, and to be less supportive of increased R&D funding for health care technology.

  2. Porting a lexicalized-grammar parser to the biomedical domain.

    PubMed

    Rimell, Laura; Clark, Stephen

    2009-10-01

    This paper introduces a state-of-the-art, linguistically motivated statistical parser to the biomedical text mining community, and proposes a method of adapting it to the biomedical domain requiring only limited resources for data annotation. The parser was originally developed using the Penn Treebank and is therefore tuned to newspaper text. Our approach takes advantage of a lexicalized grammar formalism, Combinatory Categorial Grammar (ccg), to train the parser at a lower level of representation than full syntactic derivations. The ccg parser uses three levels of representation: a first level consisting of part-of-speech (pos) tags; a second level consisting of more fine-grained ccg lexical categories; and a third, hierarchical level consisting of ccg derivations. We find that simply retraining the pos tagger on biomedical data leads to a large improvement in parsing performance, and that using annotated data at the intermediate lexical category level of representation improves parsing accuracy further. We describe the procedure involved in evaluating the parser, and obtain accuracies for biomedical data in the same range as those reported for newspaper text, and higher than those previously reported for the biomedical resource on which we evaluate. Our conclusion is that porting newspaper parsers to the biomedical domain, at least for parsers which use lexicalized grammars, may not be as difficult as first thought. PMID:19141332

  3. Figure content analysis for improved biomedical article retrieval

    NASA Astrophysics Data System (ADS)

    You, Daekeun; Apostolova, Emilia; Antani, Sameer; Demner-Fushman, Dina; Thoma, George R.

    2009-01-01

    Biomedical images are invaluable in medical education and establishing clinical diagnosis. Clinical decision support (CDS) can be improved by combining biomedical text with automatically annotated images extracted from relevant biomedical publications. In a previous study we reported 76.6% accuracy using supervised machine learning on the feasibility of automatically classifying images by combining figure captions and image content for usefulness in finding clinical evidence. Image content extraction is traditionally applied on entire images or on pre-determined image regions. Figure images articles vary greatly limiting benefit of whole image extraction beyond gross categorization for CDS due to the large variety. However, text annotations and pointers on them indicate regions of interest (ROI) that are then referenced in the caption or discussion in the article text. We have previously reported 72.02% accuracy in text and symbols localization but we failed to take advantage of the referenced image locality. In this work we combine article text analysis and figure image analysis for localizing pointer (arrows, symbols) to extract ROI pointed that can then be used to measure meaningful image content and associate it with the identified biomedical concepts for improved (text and image) content-based retrieval of biomedical articles. Biomedical concepts are identified using National Library of Medicine's Unified Medical Language System (UMLS) Metathesaurus. Our methods report an average precision and recall of 92.3% and 75.3%, respectively on identifying pointing symbols in images from a randomly selected image subset made available through the ImageCLEF 2008 campaign.

  4. Biocompatibility of implantable biomedical devices

    NASA Astrophysics Data System (ADS)

    Lyu, Suping

    2008-03-01

    Biomedical devices have been broadly used to treat human disease, especially chronic diseases where pharmaceuticals are less effective. Heart valve and artificial joint are examples. Biomedical devices perform by delivering therapies such as electric stimulations, mechanical supports and biological actions. While the uses of biomedical devices are highly successful they can trigger adverse biological reactions as well. The property that medical devices perform with intended functions but not causing unacceptable adverse effects was called biocompatibility in the early time. As our understanding of biomaterial-biological interactions getting broader, biocompatibility has more meanings. In this talk, I will present some adverse biological reactions observed with implantable biomedical devices. Among them are surface fouling of implantable sensors, calcification with vascular devices, restenosis with stents, foreign particle migration and mechanical fractures of devices due to inflammation reactions. While these effects are repeatable, there are very few quantitative data and theories to define them. The purpose of this presentation is to introduce this biocompatibility concept to biophysicists to stimulate research interests at different angles. An open question is how to quantitatively understand the biocompatibility that, like many other biological processes, has not been quantified experimentally.

  5. The Ensembl gene annotation system.

    PubMed

    Aken, Bronwen L; Ayling, Sarah; Barrell, Daniel; Clarke, Laura; Curwen, Valery; Fairley, Susan; Fernandez Banet, Julio; Billis, Konstantinos; García Girón, Carlos; Hourlier, Thibaut; Howe, Kevin; Kähäri, Andreas; Kokocinski, Felix; Martin, Fergal J; Murphy, Daniel N; Nag, Rishi; Ruffier, Magali; Schuster, Michael; Tang, Y Amy; Vogel, Jan-Hinnerk; White, Simon; Zadissa, Amonida; Flicek, Paul; Searle, Stephen M J

    2016-01-01

    The Ensembl gene annotation system has been used to annotate over 70 different vertebrate species across a wide range of genome projects. Furthermore, it generates the automatic alignment-based annotation for the human and mouse GENCODE gene sets. The system is based on the alignment of biological sequences, including cDNAs, proteins and RNA-seq reads, to the target genome in order to construct candidate transcript models. Careful assessment and filtering of these candidate transcripts ultimately leads to the final gene set, which is made available on the Ensembl website. Here, we describe the annotation process in detail.Database URL: http://www.ensembl.org/index.html. PMID:27337980

  6. The Ensembl gene annotation system

    PubMed Central

    Aken, Bronwen L.; Ayling, Sarah; Barrell, Daniel; Clarke, Laura; Curwen, Valery; Fairley, Susan; Fernandez Banet, Julio; Billis, Konstantinos; García Girón, Carlos; Hourlier, Thibaut; Howe, Kevin; Kähäri, Andreas; Kokocinski, Felix; Martin, Fergal J.; Murphy, Daniel N.; Nag, Rishi; Ruffier, Magali; Schuster, Michael; Tang, Y. Amy; Vogel, Jan-Hinnerk; White, Simon; Zadissa, Amonida; Flicek, Paul

    2016-01-01

    The Ensembl gene annotation system has been used to annotate over 70 different vertebrate species across a wide range of genome projects. Furthermore, it generates the automatic alignment-based annotation for the human and mouse GENCODE gene sets. The system is based on the alignment of biological sequences, including cDNAs, proteins and RNA-seq reads, to the target genome in order to construct candidate transcript models. Careful assessment and filtering of these candidate transcripts ultimately leads to the final gene set, which is made available on the Ensembl website. Here, we describe the annotation process in detail. Database URL: http://www.ensembl.org/index.html PMID:27337980

  7. Biomedical Terminology Mapper for UML projects.

    PubMed

    Thibault, Julien C; Frey, Lewis

    2013-01-01

    As the biomedical community collects and generates more and more data, the need to describe these datasets for exchange and interoperability becomes crucial. This paper presents a mapping algorithm that can help developers expose local implementations described with UML through standard terminologies. The input UML class or attribute name is first normalized and tokenized, then lookups in a UMLS-based dictionary are performed. For the evaluation of the algorithm 142 UML projects were extracted from caGrid and automatically mapped to National Cancer Institute (NCI) terminology concepts. Resulting mappings at the UML class and attribute levels were compared to the manually curated annotations provided in caGrid. Results are promising and show that this type of algorithm could speed-up the tedious process of mapping local implementations to standard biomedical terminologies.

  8. The Ontology for Biomedical Investigations.

    PubMed

    Bandrowski, Anita; Brinkman, Ryan; Brochhausen, Mathias; Brush, Matthew H; Bug, Bill; Chibucos, Marcus C; Clancy, Kevin; Courtot, Mélanie; Derom, Dirk; Dumontier, Michel; Fan, Liju; Fostel, Jennifer; Fragoso, Gilberto; Gibson, Frank; Gonzalez-Beltran, Alejandra; Haendel, Melissa A; He, Yongqun; Heiskanen, Mervi; Hernandez-Boussard, Tina; Jensen, Mark; Lin, Yu; Lister, Allyson L; Lord, Phillip; Malone, James; Manduchi, Elisabetta; McGee, Monnie; Morrison, Norman; Overton, James A; Parkinson, Helen; Peters, Bjoern; Rocca-Serra, Philippe; Ruttenberg, Alan; Sansone, Susanna-Assunta; Scheuermann, Richard H; Schober, Daniel; Smith, Barry; Soldatova, Larisa N; Stoeckert, Christian J; Taylor, Chris F; Torniai, Carlo; Turner, Jessica A; Vita, Randi; Whetzel, Patricia L; Zheng, Jie

    2016-01-01

    The Ontology for Biomedical Investigations (OBI) is an ontology that provides terms with precisely defined meanings to describe all aspects of how investigations in the biological and medical domains are conducted. OBI re-uses ontologies that provide a representation of biomedical knowledge from the Open Biological and Biomedical Ontologies (OBO) project and adds the ability to describe how this knowledge was derived. We here describe the state of OBI and several applications that are using it, such as adding semantic expressivity to existing databases, building data entry forms, and enabling interoperability between knowledge resources. OBI covers all phases of the investigation process, such as planning, execution and reporting. It represents information and material entities that participate in these processes, as well as roles and functions. Prior to OBI, it was not possible to use a single internally consistent resource that could be applied to multiple types of experiments for these applications. OBI has made this possible by creating terms for entities involved in biological and medical investigations and by importing parts of other biomedical ontologies such as GO, Chemical Entities of Biological Interest (ChEBI) and Phenotype Attribute and Trait Ontology (PATO) without altering their meaning. OBI is being used in a wide range of projects covering genomics, multi-omics, immunology, and catalogs of services. OBI has also spawned other ontologies (Information Artifact Ontology) and methods for importing parts of ontologies (Minimum information to reference an external ontology term (MIREOT)). The OBI project is an open cross-disciplinary collaborative effort, encompassing multiple research communities from around the globe. To date, OBI has created 2366 classes and 40 relations along with textual and formal definitions. The OBI Consortium maintains a web resource (http://obi-ontology.org) providing details on the people, policies, and issues being addressed

  9. The Ontology for Biomedical Investigations

    PubMed Central

    Bandrowski, Anita; Brinkman, Ryan; Brochhausen, Mathias; Brush, Matthew H.; Chibucos, Marcus C.; Clancy, Kevin; Courtot, Mélanie; Derom, Dirk; Dumontier, Michel; Fan, Liju; Fostel, Jennifer; Fragoso, Gilberto; Gibson, Frank; Gonzalez-Beltran, Alejandra; Haendel, Melissa A.; He, Yongqun; Heiskanen, Mervi; Hernandez-Boussard, Tina; Jensen, Mark; Lin, Yu; Lister, Allyson L.; Lord, Phillip; Malone, James; Manduchi, Elisabetta; McGee, Monnie; Morrison, Norman; Overton, James A.; Parkinson, Helen; Peters, Bjoern; Rocca-Serra, Philippe; Ruttenberg, Alan; Sansone, Susanna-Assunta; Scheuermann, Richard H.; Schober, Daniel; Smith, Barry; Soldatova, Larisa N.; Stoeckert, Christian J.; Taylor, Chris F.; Torniai, Carlo; Turner, Jessica A.; Vita, Randi; Whetzel, Patricia L.; Zheng, Jie

    2016-01-01

    The Ontology for Biomedical Investigations (OBI) is an ontology that provides terms with precisely defined meanings to describe all aspects of how investigations in the biological and medical domains are conducted. OBI re-uses ontologies that provide a representation of biomedical knowledge from the Open Biological and Biomedical Ontologies (OBO) project and adds the ability to describe how this knowledge was derived. We here describe the state of OBI and several applications that are using it, such as adding semantic expressivity to existing databases, building data entry forms, and enabling interoperability between knowledge resources. OBI covers all phases of the investigation process, such as planning, execution and reporting. It represents information and material entities that participate in these processes, as well as roles and functions. Prior to OBI, it was not possible to use a single internally consistent resource that could be applied to multiple types of experiments for these applications. OBI has made this possible by creating terms for entities involved in biological and medical investigations and by importing parts of other biomedical ontologies such as GO, Chemical Entities of Biological Interest (ChEBI) and Phenotype Attribute and Trait Ontology (PATO) without altering their meaning. OBI is being used in a wide range of projects covering genomics, multi-omics, immunology, and catalogs of services. OBI has also spawned other ontologies (Information Artifact Ontology) and methods for importing parts of ontologies (Minimum information to reference an external ontology term (MIREOT)). The OBI project is an open cross-disciplinary collaborative effort, encompassing multiple research communities from around the globe. To date, OBI has created 2366 classes and 40 relations along with textual and formal definitions. The OBI Consortium maintains a web resource (http://obi-ontology.org) providing details on the people, policies, and issues being addressed

  10. The Ontology for Biomedical Investigations.

    PubMed

    Bandrowski, Anita; Brinkman, Ryan; Brochhausen, Mathias; Brush, Matthew H; Bug, Bill; Chibucos, Marcus C; Clancy, Kevin; Courtot, Mélanie; Derom, Dirk; Dumontier, Michel; Fan, Liju; Fostel, Jennifer; Fragoso, Gilberto; Gibson, Frank; Gonzalez-Beltran, Alejandra; Haendel, Melissa A; He, Yongqun; Heiskanen, Mervi; Hernandez-Boussard, Tina; Jensen, Mark; Lin, Yu; Lister, Allyson L; Lord, Phillip; Malone, James; Manduchi, Elisabetta; McGee, Monnie; Morrison, Norman; Overton, James A; Parkinson, Helen; Peters, Bjoern; Rocca-Serra, Philippe; Ruttenberg, Alan; Sansone, Susanna-Assunta; Scheuermann, Richard H; Schober, Daniel; Smith, Barry; Soldatova, Larisa N; Stoeckert, Christian J; Taylor, Chris F; Torniai, Carlo; Turner, Jessica A; Vita, Randi; Whetzel, Patricia L; Zheng, Jie

    2016-01-01

    The Ontology for Biomedical Investigations (OBI) is an ontology that provides terms with precisely defined meanings to describe all aspects of how investigations in the biological and medical domains are conducted. OBI re-uses ontologies that provide a representation of biomedical knowledge from the Open Biological and Biomedical Ontologies (OBO) project and adds the ability to describe how this knowledge was derived. We here describe the state of OBI and several applications that are using it, such as adding semantic expressivity to existing databases, building data entry forms, and enabling interoperability between knowledge resources. OBI covers all phases of the investigation process, such as planning, execution and reporting. It represents information and material entities that participate in these processes, as well as roles and functions. Prior to OBI, it was not possible to use a single internally consistent resource that could be applied to multiple types of experiments for these applications. OBI has made this possible by creating terms for entities involved in biological and medical investigations and by importing parts of other biomedical ontologies such as GO, Chemical Entities of Biological Interest (ChEBI) and Phenotype Attribute and Trait Ontology (PATO) without altering their meaning. OBI is being used in a wide range of projects covering genomics, multi-omics, immunology, and catalogs of services. OBI has also spawned other ontologies (Information Artifact Ontology) and methods for importing parts of ontologies (Minimum information to reference an external ontology term (MIREOT)). The OBI project is an open cross-disciplinary collaborative effort, encompassing multiple research communities from around the globe. To date, OBI has created 2366 classes and 40 relations along with textual and formal definitions. The OBI Consortium maintains a web resource (http://obi-ontology.org) providing details on the people, policies, and issues being addressed

  11. Drug Education: An Annotated Bibliography.

    ERIC Educational Resources Information Center

    Mathieson, Moira B.

    This bibliography consists of a total of 215 entries dealing with drug education, including curriculum guides, and drawn from documents in the ERIC system. There are two sections, the first containing 130 annotated citations of documents and journal articles, and the second containing 85 citations of journal articles without annotations, but with…

  12. Adult Basic Education Annotated Bibliography.

    ERIC Educational Resources Information Center

    Carter, Nancy B.

    This annotated bibliography contains sections divided according to area of study, and within each category materials are listed alphabetically by publisher. Publishers and mailing addresses are listed at the end of the bibliography. Throughout the annotations, whenever specific grade level divisions are not named, the regular Adult Basic Education…

  13. Morphosyntactic Annotation of CHILDES Transcripts

    ERIC Educational Resources Information Center

    Sagae, Kenji; Davis, Eric; Lavie, Alon; MacWhinney, Brian; Wintner, Shuly

    2010-01-01

    Corpora of child language are essential for research in child language acquisition and psycholinguistics. Linguistic annotation of the corpora provides researchers with better means for exploring the development of grammatical constructions and their usage. We describe a project whose goal is to annotate the English section of the CHILDES database…

  14. PAZAR: a framework for collection and dissemination of cis-regulatory sequence annotation

    PubMed Central

    Portales-Casamar, Elodie; Kirov, Stefan; Lim, Jonathan; Lithwick, Stuart; Swanson, Magdalena I; Ticoll, Amy; Snoddy, Jay; Wasserman, Wyeth W

    2007-01-01

    PAZAR is an open-access and open-source database of transcription factor and regulatory sequence annotation with associated web interface and programming tools for data submission and extraction. Curated boutique data collections can be maintained and disseminated through the unified schema of the mall-like PAZAR repository. The Pleiades Promoter Project collection of brain-linked regulatory sequences is introduced to demonstrate the depth of annotation possible within PAZAR. PAZAR, located at , is open for business. PMID:17916232

  15. Cross-domain targeted ontology subsets for annotation: the case of SNOMED CORE and RxNorm.

    PubMed

    López-García, Pablo; Lependu, Paea; Musen, Mark; Illarramendi, Arantza

    2014-02-01

    The benefits of using ontology subsets versus full ontologies are well-documented for many applications. In this study, we propose an efficient subset extraction approach for a domain using a biomedical ontology repository with mappings, a cross-ontology, and a source subset from a related domain. As a case study, we extracted a subset of drugs from RxNorm using the UMLS Metathesaurus, the NDF-RT cross-ontology, and the CORE problem list subset of SNOMED CT. The extracted subset, which we termed RxNorm/CORE, was 4% the size of the full RxNorm (0.4% when considering ingredients only). For evaluation, we used CORE and RxNorm/CORE as thesauri for the annotation of clinical documents and compared their performance to that of their respective full ontologies (i.e., SNOMED CT and RxNorm). The wide range in recall of both CORE (29-69%) and RxNorm/CORE (21-35%) suggests that more quantitative research is needed to assess the benefits of using ontology subsets as thesauri in annotation applications. Our approach to subset extraction, however, opens a door to help create other types of clinically useful domain specific subsets and acts as an alternative in scenarios where well-established subset extraction techniques might suffer from difficulties or cannot be applied.

  16. Entity linking for biomedical literature

    PubMed Central

    2015-01-01

    Background The Entity Linking (EL) task links entity mentions from an unstructured document to entities in a knowledge base. Although this problem is well-studied in news and social media, this problem has not received much attention in the life science domain. One outcome of tackling the EL problem in the life sciences domain is to enable scientists to build computational models of biological processes with more efficiency. However, simply applying a news-trained entity linker produces inadequate results. Methods Since existing supervised approaches require a large amount of manually-labeled training data, which is currently unavailable for the life science domain, we propose a novel unsupervised collective inference approach to link entities from unstructured full texts of biomedical literature to 300 ontologies. The approach leverages the rich semantic information and structures in ontologies for similarity computation and entity ranking. Results Without using any manual annotation, our approach significantly outperforms state-of-the-art supervised EL method (9% absolute gain in linking accuracy). Furthermore, the state-of-the-art supervised EL method requires 15,000 manually annotated entity mentions for training. These promising results establish a benchmark for the EL task in the life science domain. We also provide in depth analysis and discussion on both challenges and opportunities on automatic knowledge enrichment for scientific literature. Conclusions In this paper, we propose a novel unsupervised collective inference approach to address the EL problem in a new domain. We show that our unsupervised approach is able to outperform a current state-of-the-art supervised approach that has been trained with a large amount of manually labeled data. Life science presents an underrepresented domain for applying EL techniques. By providing a small benchmark data set and identifying opportunities, we hope to stimulate discussions across natural language processing

  17. Annotations in Refseq (GSC8 Meeting)

    SciTech Connect

    Tatusova, Tatiana

    2009-09-10

    The Genomic Standards Consortium was formed in September 2005. It is an international, open-membership working body which promotes standardization in the description of genomes and the exchange and integration of genomic data. The 2009 meeting was an activity of a five-year funding "Research Coordination Network" from the National Science Foundation and was organized held at the DOE Joint Genome Institute with organizational support provided by the JGI and by the University of California - San Diego. Tatiana Tatusova of NCBI discusses "Annotations in Refseq" at the Genomic Standards Consortium's 8th meeting at the DOE JGI in Walnut Creek, Calif. on Sept. 10, 2009.

  18. Annotations in Refseq (GSC8 Meeting)

    ScienceCinema

    Tatusova, Tatiana

    2016-07-12

    The Genomic Standards Consortium was formed in September 2005. It is an international, open-membership working body which promotes standardization in the description of genomes and the exchange and integration of genomic data. The 2009 meeting was an activity of a five-year funding "Research Coordination Network" from the National Science Foundation and was organized held at the DOE Joint Genome Institute with organizational support provided by the JGI and by the University of California - San Diego. Tatiana Tatusova of NCBI discusses "Annotations in Refseq" at the Genomic Standards Consortium's 8th meeting at the DOE JGI in Walnut Creek, Calif. on Sept. 10, 2009.

  19. Variobox: automatic detection and annotation of human genetic variants.

    PubMed

    Gaspar, Paulo; Lopes, Pedro; Oliveira, Jorge; Santos, Rosário; Dalgleish, Raymond; Oliveira, José Luís

    2014-02-01

    Triggered by the sequencing of the human genome, personalized medicine has been one of the fastest growing research areas in the last decade. Multiple software and hardware technologies have been developed by several projects, culminating in the exponential growth of genetic data. Considering the technological developments in this field, it is now fairly easy and inexpensive to obtain genetic profiles for unique individuals, such as those performed by several genetic analysis companies. The availability of computational tools that simplify genetic data analysis and the disclosure of biomedical evidences are of utmost importance. We present Variobox, a desktop tool to annotate, analyze, and compare human genes. Variobox obtains variant annotation data from WAVe, protein metadata annotations from Protein Data Bank, and sequences are obtained from Locus Reference Genomic or RefSeq databases. To explore the data, Variobox provides an advanced sequence visualization that enables agile navigation through genetic regions. DNA sequencing data can be compared with reference sequences retrieved from LRG or RefSeq records, identifying and automatically annotating new potential variants. These features and data, ranging from patient sequences to HGVS-compliant variant descriptions, are combined in an intuitive interface to analyze genes and variants. Variobox is a Java application, available at http://bioinformatics.ua.pt/variobox.

  20. Gene Ontology annotations and resources.

    PubMed

    Blake, J A; Dolan, M; Drabkin, H; Hill, D P; Li, Ni; Sitnikov, D; Bridges, S; Burgess, S; Buza, T; McCarthy, F; Peddinti, D; Pillai, L; Carbon, S; Dietze, H; Ireland, A; Lewis, S E; Mungall, C J; Gaudet, P; Chrisholm, R L; Fey, P; Kibbe, W A; Basu, S; Siegele, D A; McIntosh, B K; Renfro, D P; Zweifel, A E; Hu, J C; Brown, N H; Tweedie, S; Alam-Faruque, Y; Apweiler, R; Auchinchloss, A; Axelsen, K; Bely, B; Blatter, M -C; Bonilla, C; Bouguerleret, L; Boutet, E; Breuza, L; Bridge, A; Chan, W M; Chavali, G; Coudert, E; Dimmer, E; Estreicher, A; Famiglietti, L; Feuermann, M; Gos, A; Gruaz-Gumowski, N; Hieta, R; Hinz, C; Hulo, C; Huntley, R; James, J; Jungo, F; Keller, G; Laiho, K; Legge, D; Lemercier, P; Lieberherr, D; Magrane, M; Martin, M J; Masson, P; Mutowo-Muellenet, P; O'Donovan, C; Pedruzzi, I; Pichler, K; Poggioli, D; Porras Millán, P; Poux, S; Rivoire, C; Roechert, B; Sawford, T; Schneider, M; Stutz, A; Sundaram, S; Tognolli, M; Xenarios, I; Foulgar, R; Lomax, J; Roncaglia, P; Khodiyar, V K; Lovering, R C; Talmud, P J; Chibucos, M; Giglio, M Gwinn; Chang, H -Y; Hunter, S; McAnulla, C; Mitchell, A; Sangrador, A; Stephan, R; Harris, M A; Oliver, S G; Rutherford, K; Wood, V; Bahler, J; Lock, A; Kersey, P J; McDowall, D M; Staines, D M; Dwinell, M; Shimoyama, M; Laulederkind, S; Hayman, T; Wang, S -J; Petri, V; Lowry, T; D'Eustachio, P; Matthews, L; Balakrishnan, R; Binkley, G; Cherry, J M; Costanzo, M C; Dwight, S S; Engel, S R; Fisk, D G; Hitz, B C; Hong, E L; Karra, K; Miyasato, S R; Nash, R S; Park, J; Skrzypek, M S; Weng, S; Wong, E D; Berardini, T Z; Huala, E; Mi, H; Thomas, P D; Chan, J; Kishore, R; Sternberg, P; Van Auken, K; Howe, D; Westerfield, M

    2013-01-01

    The Gene Ontology (GO) Consortium (GOC, http://www.geneontology.org) is a community-based bioinformatics resource that classifies gene product function through the use of structured, controlled vocabularies. Over the past year, the GOC has implemented several processes to increase the quantity, quality and specificity of GO annotations. First, the number of manual, literature-based annotations has grown at an increasing rate. Second, as a result of a new 'phylogenetic annotation' process, manually reviewed, homology-based annotations are becoming available for a broad range of species. Third, the quality of GO annotations has been improved through a streamlined process for, and automated quality checks of, GO annotations deposited by different annotation groups. Fourth, the consistency and correctness of the ontology itself has increased by using automated reasoning tools. Finally, the GO has been expanded not only to cover new areas of biology through focused interaction with experts, but also to capture greater specificity in all areas of the ontology using tools for adding new combinatorial terms. The GOC works closely with other ontology developers to support integrated use of terminologies. The GOC supports its user community through the use of e-mail lists, social media and web-based resources.

  1. Gene Ontology annotations and resources.

    PubMed

    Blake, J A; Dolan, M; Drabkin, H; Hill, D P; Li, Ni; Sitnikov, D; Bridges, S; Burgess, S; Buza, T; McCarthy, F; Peddinti, D; Pillai, L; Carbon, S; Dietze, H; Ireland, A; Lewis, S E; Mungall, C J; Gaudet, P; Chrisholm, R L; Fey, P; Kibbe, W A; Basu, S; Siegele, D A; McIntosh, B K; Renfro, D P; Zweifel, A E; Hu, J C; Brown, N H; Tweedie, S; Alam-Faruque, Y; Apweiler, R; Auchinchloss, A; Axelsen, K; Bely, B; Blatter, M -C; Bonilla, C; Bouguerleret, L; Boutet, E; Breuza, L; Bridge, A; Chan, W M; Chavali, G; Coudert, E; Dimmer, E; Estreicher, A; Famiglietti, L; Feuermann, M; Gos, A; Gruaz-Gumowski, N; Hieta, R; Hinz, C; Hulo, C; Huntley, R; James, J; Jungo, F; Keller, G; Laiho, K; Legge, D; Lemercier, P; Lieberherr, D; Magrane, M; Martin, M J; Masson, P; Mutowo-Muellenet, P; O'Donovan, C; Pedruzzi, I; Pichler, K; Poggioli, D; Porras Millán, P; Poux, S; Rivoire, C; Roechert, B; Sawford, T; Schneider, M; Stutz, A; Sundaram, S; Tognolli, M; Xenarios, I; Foulgar, R; Lomax, J; Roncaglia, P; Khodiyar, V K; Lovering, R C; Talmud, P J; Chibucos, M; Giglio, M Gwinn; Chang, H -Y; Hunter, S; McAnulla, C; Mitchell, A; Sangrador, A; Stephan, R; Harris, M A; Oliver, S G; Rutherford, K; Wood, V; Bahler, J; Lock, A; Kersey, P J; McDowall, D M; Staines, D M; Dwinell, M; Shimoyama, M; Laulederkind, S; Hayman, T; Wang, S -J; Petri, V; Lowry, T; D'Eustachio, P; Matthews, L; Balakrishnan, R; Binkley, G; Cherry, J M; Costanzo, M C; Dwight, S S; Engel, S R; Fisk, D G; Hitz, B C; Hong, E L; Karra, K; Miyasato, S R; Nash, R S; Park, J; Skrzypek, M S; Weng, S; Wong, E D; Berardini, T Z; Huala, E; Mi, H; Thomas, P D; Chan, J; Kishore, R; Sternberg, P; Van Auken, K; Howe, D; Westerfield, M

    2013-01-01

    The Gene Ontology (GO) Consortium (GOC, http://www.geneontology.org) is a community-based bioinformatics resource that classifies gene product function through the use of structured, controlled vocabularies. Over the past year, the GOC has implemented several processes to increase the quantity, quality and specificity of GO annotations. First, the number of manual, literature-based annotations has grown at an increasing rate. Second, as a result of a new 'phylogenetic annotation' process, manually reviewed, homology-based annotations are becoming available for a broad range of species. Third, the quality of GO annotations has been improved through a streamlined process for, and automated quality checks of, GO annotations deposited by different annotation groups. Fourth, the consistency and correctness of the ontology itself has increased by using automated reasoning tools. Finally, the GO has been expanded not only to cover new areas of biology through focused interaction with experts, but also to capture greater specificity in all areas of the ontology using tools for adding new combinatorial terms. The GOC works closely with other ontology developers to support integrated use of terminologies. The GOC supports its user community through the use of e-mail lists, social media and web-based resources. PMID:23161678

  2. Biomedical Compounds from Marine organisms

    PubMed Central

    Jha, Rajeev Kumar; Zi-rong, Xu

    2004-01-01

    The Ocean, which is called the ‘mother of origin of life’, is also the source of structurally unique natural products that are mainly accumulated in living organisms. Several of these compounds show pharmacological activities and are helpful for the invention and discovery of bioactive compounds, primarily for deadly diseases like cancer, acquired immuno-deficiency syndrome (AIDS), arthritis, etc., while other compounds have been developed as analgesics or to treat inflammation, etc. The life-saving drugs are mainly found abundantly in microorganisms, algae and invertebrates, while they are scarce in vertebrates. Modern technologies have opened vast areas of research for the extraction of biomedical compounds from oceans and seas.

  3. GFam: a platform for automatic annotation of gene families

    PubMed Central

    Sasidharan, Rajkumar; Nepusz, Tamás; Swarbreck, David; Huala, Eva; Paccanaro, Alberto

    2012-01-01

    We have developed GFam, a platform for automatic annotation of gene/protein families. GFam provides a framework for genome initiatives and model organism resources to build domain-based families, derive meaningful functional labels and offers a seamless approach to propagate functional annotation across periodic genome updates. GFam is a hybrid approach that uses a greedy algorithm to chain component domains from InterPro annotation provided by its 12 member resources followed by a sequence-based connected component analysis of un-annotated sequence regions to derive consensus domain architecture for each sequence and subsequently generate families based on common architectures. Our integrated approach increases sequence coverage by 7.2 percentage points and residue coverage by 14.6 percentage points higher than the coverage relative to the best single-constituent database within InterPro for the proteome of Arabidopsis. The true power of GFam lies in maximizing annotation provided by the different InterPro data sources that offer resource-specific coverage for different regions of a sequence. GFam’s capability to capture higher sequence and residue coverage can be useful for genome annotation, comparative genomics and functional studies. GFam is a general-purpose software and can be used for any collection of protein sequences. The software is open source and can be obtained from http://www.paccanarolab.org/software/gfam/. PMID:22790981

  4. Automatic annotation of eukaryotic genes, pseudogenes and promoters

    PubMed Central

    Solovyev, Victor; Kosarev, Peter; Seledsov, Igor; Vorobyev, Denis

    2006-01-01

    Background The ENCODE gene prediction workshop (EGASP) has been organized to evaluate how well state-of-the-art automatic gene finding methods are able to reproduce the manual and experimental gene annotation of the human genome. We have used Softberry gene finding software to predict genes, pseudogenes and promoters in 44 selected ENCODE sequences representing approximately 1% (30 Mb) of the human genome. Predictions of gene finding programs were evaluated in terms of their ability to reproduce the ENCODE-HAVANA annotation. Results The Fgenesh++ gene prediction pipeline can identify 91% of coding nucleotides with a specificity of 90%. Our automatic pseudogene finder (PSF program) found 90% of the manually annotated pseudogenes and some new ones. The Fprom promoter prediction program identifies 80% of TATA promoters sequences with one false positive prediction per 2,000 base-pairs (bp) and 50% of TATA-less promoters with one false positive prediction per 650 bp. It can be used to identify transcription start sites upstream of annotated coding parts of genes found by gene prediction software. Conclusion We review our software and underlying methods for identifying these three important structural and functional genome components and discuss the accuracy of predictions, recent advances and open problems in annotating genomic sequences. We have demonstrated that our methods can be effectively used for initial automatic annotation of the eukaryotic genome. PMID:16925832

  5. National Space Biomedical Research Institute

    NASA Technical Reports Server (NTRS)

    2005-01-01

    NSBRI partners with NASA to develop countermeasures against the deleterious effects of long duration space flight. NSBRI's science and technology projects are directed toward this goal, which is accomplished by: 1. Designing, testing and validating effective countermeasures to address the biological and environmental impediments to long-term human space flight. 2. Defining the molecular, cellular, organ-level, integrated responses and mechanistic relationships that ultimately determine these impediments, where such activity fosters the development of novel countermeasures. 3. Establishing biomedical support technologies to maximize human performance in space, reduce biomedical hazards to an acceptable level and deliver quality medical care. 4. Transferring and disseminating the biomedical advances in knowledge and technology acquired through living and working in space to the general benefit of humankind; including the treatment of patients suffering from gravity- and radiation-related conditions on Earth. and 5. ensuring open involvement of the scientific community,industry and the public in the Institute's activities and fostering a robust collaboration with NASA, particularly through JSC.

  6. Biomedical applications engineering tasks

    NASA Technical Reports Server (NTRS)

    Laenger, C. J., Sr.

    1976-01-01

    The engineering tasks performed in response to needs articulated by clinicians are described. Initial contacts were made with these clinician-technology requestors by the Southwest Research Institute NASA Biomedical Applications Team. The basic purpose of the program was to effectively transfer aerospace technology into functional hardware to solve real biomedical problems.

  7. Trends in Biomedical Education.

    ERIC Educational Resources Information Center

    Peppas, Nicholas A.; Mallinson, Richard G.

    1982-01-01

    An analysis of trends in biomedical education within chemical education is presented. Data used for the analysis included: type/level of course, subjects taught, and textbook preferences. Results among others of the 1980 survey indicate that 28 out of 79 schools responding offer at least one course in biomedical engineering. (JN)

  8. Annotated Bibliography; Freedom of Information Center Reports and Summary Papers.

    ERIC Educational Resources Information Center

    Freedom of Information Center, Columbia, MO.

    This bibliography lists and annotates almost 400 information reports, opinion papers, and summary papers dealing with freedom of information. Topics covered include the nature of press freedom and increased press efforts toward more open access to information; the press situation in many foreign countries, including France, Sweden, Communist…

  9. Resources for Exceptional Adult Education: An Annotated Bibliography.

    ERIC Educational Resources Information Center

    Beltran, Alejandro C.; And Others

    This annotated bibliography describes materials that can be helpful to adult educators working with exceptional adults. The bibliography includes 186 citations of resource materials, assessment materials, training guides, curriculum guides, research findings, films, and general information. The opening section consists of citations of general…

  10. Selective, annotated bibliography on current south Asian issues. Final report

    SciTech Connect

    Blood, P.; Heitzman, J.; Levy, R.; Ross, R.; Curtiss, E.

    1986-04-01

    This bibliography provides selective annotations of open-source material on two current issues: nuclear developments in South Asia and tactics and organization of Afghan resistance groups. The monthly bibliography incorporates serials and monographs arranged alphabetically by author and title within each section.

  11. Selective, annotated bibliography on current south Asian issues. Final report

    SciTech Connect

    Blood, P.R.; Levy, R.J.; Heitzman, J.; LePoer, B.; Ross, R.

    1986-11-01

    This bibliography provides selective annotations of open-source material on two current issues: nuclear developments in South Asia, and tactics and organization of Afghan resistance groups. The monthly bibliography incorporates serials and monographs arranged alphabetically by author and title within each section.

  12. Selective, annotated bibliography on current south Asian issues. Final report

    SciTech Connect

    Blood, P.; Curtiss, E.; Heitzman, J.; LePoer, B.; Levy, R.

    1985-08-01

    This bibliography provides selective annotations of open-source material on two current issues: nuclear developments in South Asia and tactics and organization of Afghan resistance groups. The monthly bibliography incorporates serials and monographs arranged alphabetically by author and title within each section.

  13. Selective, annotated bibliography on current south Asian issues. Final report

    SciTech Connect

    Blood, P.R.; Curtiss, E.R.; Hietzman, J.; LePoer, B.A.; Levy, R.J.

    1985-11-01

    This bibliography provides selective annotations of open-source material on two current issues: nuclear developments in South Asia, and tactics and organization of Afghan resistance groups. The monthly bibliography incorporates serials and monographs arranged alphabetically by author and title within each section.

  14. Selective, annotated bibliography on current south Asian issues. Final report

    SciTech Connect

    Blood, P.R.; Curtiss, E.R.; Heitzman, J.; LePoer, B.A.; Levy, R.J.

    1985-12-01

    This bibliography provides selective annotations of open-source material on two current issues: nuclear developments in South Asia, and tactics and organization of Afghan resistance groups. The monthly bibliography incorporates serials and monographs arranged alphabetically by author and title within each section.

  15. Selective, annotated bibliography on current south Asian issues. Final report

    SciTech Connect

    Blood, P.; Ross, R.; LePoer, B.; Levy, R.; Curtiss, E.

    1987-08-01

    This bibliography provides selective annotations of open-source material on two current issues: nuclear developments in South Asia, and tactics and organization of Afghan resistance groups. The monthly bibliography incorporates serials and monographs arranged alphabetically by author and title within each section.

  16. Selective, annotated bibliography on current south Asian issues. Final report

    SciTech Connect

    Blood, P.; Curtiss, E.; Heitzman, J.; LePoer, B.; Levy, R.

    1985-09-01

    This bibliography provides selective annotations of open-source material on two current issues: nuclear developments in South Asia and tactics and organization of Afghan resistance groups. The monthly bibliography incorporates serials and monographs arranged alphabetically by author and title within each section.

  17. Selective, annotated bibliography on current south Asian issues. Final report

    SciTech Connect

    Blood, P.R.; Curtiss, E.R.; Heitzman, J.; LePoer, B.A.; Levy, R.J.

    1986-01-01

    This bibliography provides selective annotations of open source material on two current issues: nuclear developments in South Asia, and tactics and organization of Afghan resistance groups. The monthly bibliography incorporates serials and monographs arranged alphabetically by author and title within each section.

  18. Selective, annotated bibliography on current south Asian issues. Final report

    SciTech Connect

    Blood, P.; Makeig, D.C.; Heitzman, J.; Ross, R.; Curtiss, E.

    1986-10-01

    This bibliography provides selective annotations of open-source material on two current issues: nuclear developments in South Asia, and tactics and organization of Afghan resistance groups. The monthly bibliography incorporates serials and monographs arranged alphabetically by author and title within each section.

  19. Selective, annotated bibliography on current south Asian issues. Final report

    SciTech Connect

    Blood, P.; Curtiss, E.; Heitzman, J.; LePoer, B.; Levy, R.

    1987-09-01

    This bibliography provides selective annotations of open-source material on two current issues: nuclear developments in South Asia, and tactics and organization of Afghan resistance groups. The monthly bibliography incorporates serials and monographs arranged alphabetically by author and title within each section.

  20. Selective, annotated bibliography on current south Asian issues. Final report

    SciTech Connect

    Blood, P.R.; Curtiss, E.R.; Heitzman, J.; LePoer, B.A.; Levy, R.J.

    1985-07-01

    This bibliography procides selective annotations of open-source material on two current issues: nuclear developments in South Asia and tactics and organization of Afghan resistance groups. The monthly bibliography incorporates serials and monographs arranged alphabetically by author and title within each section.

  1. Selective, annotated bibliography on current south Asian issues. Final report

    SciTech Connect

    Blood, P.; Heitzman, J.; Levy, R.; Ross, R.; Curtiss, E.

    1988-08-01

    This bibliography provides selective annotations of open-source material on two current issues: nuclear developments in South Asia, and tactics and organization of Afghan resistance groups. The monthly bibliography incorporates serials and monographs arranged alphabetically by author and title within each section.

  2. Selective, annotated bibliography on current south Asian issues. Final report

    SciTech Connect

    Blood, P.; Heitzman, J.; Levy, R.; Levy, R.; Ross, R.

    1986-09-01

    This bibliography provides selective annotations of open-source material on two current issues: nuclear developments in South Asia, and tactics and organization of Afghan resistance groups. The monthly bibliography incorporates serials and monographs arranged alphabetically by author and title within each section.

  3. Selective, annotated bibliography on current south Asian issues. Final report

    SciTech Connect

    Blood, P.; Curtiss, E.; Heitzman, J.; LePoer, B.; Levy, R.

    1987-02-01

    This bibliography provides selective annotations of open source material on two current issues: nuclear developments in South Asia and tactics and organization of Afghan resistance groups. The monthly bibliography incorporates serials and monographs arranged alphabetically by author and title within each section.

  4. Selective, annotated bibliography on current south Asian issues. Final report

    SciTech Connect

    Blood, P.R.; Levy, R.J.; Heitzman, J.; Ross, R.; Curtiss, E.

    1987-01-01

    This bibliography provides selective annotations of open source material on two current issues: nuclear developments in South Asia, and tactics and organization of Afghan resistance groups. The monthly bibliography incorporates serials and monographs arranged alphabetically by author and title within each section.

  5. Selective, annotated bibliography on current south Asian issues. Final report

    SciTech Connect

    Blood, P.; Ross, R.; Levy, R.; Makeig, D.

    1987-03-01

    This bibliography provides selective annotations of open-source material on two current issues: nuclear developments in South Asia, and tactics and organization of Afghan resistance groups. The monthly bibliography incorporates serials and monographs arranged alphabetically by author and title within each section.

  6. Selective, annotated bibliography on current south Asian issues. Final report

    SciTech Connect

    Blood, P.; Heitzman, J.; Levy, R.; Ross, R.; Curtiss, E.

    1986-06-01

    This bibliography provides selective annotations of open-source material on two current issues: nuclear developments in South Asia and tactics and organization of Afghan resistance groups. The monthly bibliography incorporates serials and monographs arranged alphabetically by author and title within each section.

  7. Selective, annotated bibliography on current south Asian issues. Final report

    SciTech Connect

    Blood, P.; Heitzman, J.; Levy, R.; Ross, R.; Curtiss, E.

    1986-03-01

    This bibliography provides selective annotations of open-source material on two current issues: nuclear developments in South Asia, and tactics and organization of Afghan resistance groups. The monthly bibliography incorporates serials and monographs arranged alphabetically by author and title within each section.

  8. Selective, annotated bibliography on current south Asian issues. Final report

    SciTech Connect

    Blood, P.R.; Curtiss, E.R.; Heitzman, J.; LePoer, B.A.; Levy, R.J.

    1985-10-01

    This bibliography provides selective annotations of open-source material on two current issues: nuclear developments in South Asia, and tactics and organization of Afghan resistance groups. The monthly bibliography incorporates serials and monographs arranged alphabetically by author and title within each section.

  9. Selective, annotated bibliography on current south Asian issues

    SciTech Connect

    1987-07-01

    This bibliography provides selective annotations of open-source material on two current issues: nuclear developments in South Asia, and tactics and organization of Afghan resistance groups. The monthly bibliography incorporates serials and monographs arranged alphabetically by author and title within each section.

  10. Selective, annotated bibliography on current south Asian issues. Final report

    SciTech Connect

    Blood, P.; Heitzman, J.; Levy, R.; Ross, R.; Curtiss, E.

    1986-12-01

    This bibliography provides selective annotations of open-source material on two current issues: nuclear developments in South Asia and tactics and organization of Afghan resistance groups. The monthly bibliography incorporates serials and monographs arranged alphabetically by author and title within each section.

  11. Selective, annotated bibliography on current south Asian issues. Final report

    SciTech Connect

    Blood, P.; Heitzman, J.; Levy, R.; Curtiss, E.; LaPoer, B.

    1987-12-01

    This bibliography provides selective annotations of open source material on two current issues: nuclear developments in South Asia, and tactics and organization of Afghan resistance groups. The monthly bibliography incorporates serials and monographs arranged alphabetically by author and title within each section.

  12. Selective, annotated bibliography on current south Asian issues. Final report

    SciTech Connect

    Ross, R.R.; Blood, P.; Curtiss, E.; Heitzman, J.; LePoer, B.

    1986-05-01

    This bibliography provides selective annotations of open-source material on two current issues: nuclear developments in South Asia, and tactics and organization of Afghan resistance groups. The monthly bibliography incorporates serials and monographs arranged alphabetically by author and title within each section.

  13. Selective, annotated bibliography on current south Asian issues. Final report

    SciTech Connect

    Ross, R.; Makeig, D.; LePoer, B.; Heitzman, J.; Levy, R.

    1988-03-01

    This bibliography provides selective annotations of open-source material on two current issues: nuclear developments in South Asia, and tactics and organization of Afghan resistance groups. The monthly bibliography incorporates serials and monographs arranged alphabetically by author and title within each section.

  14. Selective, annotated bibliography on current south Asian issues. Final report

    SciTech Connect

    Blood, P.; Heitzman, J.; Levy, R.; Ross, R.; Curtiss, E.

    1986-07-01

    This bibliography provides selective annotations of open-source material on two current issues: nuclear developments in South Asia, and tactics and organization of Afghan resistance groups. The monthly bibliography incorporates serials and monographs arranged alphabetically by author and title within each section.

  15. Selective, annotated bibliography on current south Asian issues. Final report

    SciTech Connect

    Blood, P.; Curtiss, E.; Heitzman, J.; LePoer, B.; Levy, R.

    1986-02-01

    This bibliography provides selective annotations of open-source material on two current issues: nuclear developments in South Asia and tactics and organization of Afghan resistance groups. The monthly bibliography incorporates serials and monographs arranged alphabetically by author and title within each section.

  16. Exploring subdomain variation in biomedical language

    PubMed Central

    2011-01-01

    Background Applications of Natural Language Processing (NLP) technology to biomedical texts have generated significant interest in recent years. In this paper we identify and investigate the phenomenon of linguistic subdomain variation within the biomedical domain, i.e., the extent to which different subject areas of biomedicine are characterised by different linguistic behaviour. While variation at a coarser domain level such as between newswire and biomedical text is well-studied and known to affect the portability of NLP systems, we are the first to conduct an extensive investigation into more fine-grained levels of variation. Results Using the large OpenPMC text corpus, which spans the many subdomains of biomedicine, we investigate variation across a number of lexical, syntactic, semantic and discourse-related dimensions. These dimensions are chosen for their relevance to the performance of NLP systems. We use clustering techniques to analyse commonalities and distinctions among the subdomains. Conclusions We find that while patterns of inter-subdomain variation differ somewhat from one feature set to another, robust clusters can be identified that correspond to intuitive distinctions such as that between clinical and laboratory subjects. In particular, subdomains relating to genetics and molecular biology, which are the most common sources of material for training and evaluating biomedical NLP tools, are not representative of all biomedical subdomains. We conclude that an awareness of subdomain variation is important when considering the practical use of language processing applications by biomedical researchers. PMID:21619603

  17. Annotated Bibliography on Religious Development.

    ERIC Educational Resources Information Center

    Bucher, Anton A.; Reich, K. Helmut

    1991-01-01

    Presents an annotated bibliography on religious development that covers the areas of psychology and religion, measurement of religiousness, religious development during the life cycle, religious experiences, conversion, religion and morality, and images of God. (Author/BB)

  18. Patient Education: An Annotated Bibliography.

    ERIC Educational Resources Information Center

    Simmons, Jeannette

    Topics included in this annotated bibliography on patient education are (1) background on development of patient education programs, (2) patient education interventions, (3) references for health professionals, and (4) research and evaluation in patient education. (TA)

  19. Simbody: multibody dynamics for biomedical research

    PubMed Central

    Sherman, Michael A.; Seth, Ajay; Delp, Scott L.

    2015-01-01

    Multibody software designed for mechanical engineering has been successfully employed in biomedical research for many years. For real time operation some biomedical researchers have also adapted game physics engines. However, these tools were built for other purposes and do not fully address the needs of biomedical researchers using them to analyze the dynamics of biological structures and make clinically meaningful recommendations. We are addressing this problem through the development of an open source, extensible, high performance toolkit including a multibody mechanics library aimed at the needs of biomedical researchers. The resulting code, Simbody, supports research in a variety of fields including neuromuscular, prosthetic, and biomolecular simulation, and related research such as biologically-inspired design and control of humanoid robots and avatars. Simbody is the dynamics engine behind OpenSim, a widely used biomechanics simulation application. This article reviews issues that arise uniquely in biomedical research, and reports on the architecture, theory, and computational methods Simbody uses to address them. By addressing these needs explicitly Simbody provides a better match to the needs of researchers than can be obtained by adaptation of mechanical engineering or gaming codes. Simbody is a community resource, free for any purpose. We encourage wide adoption and invite contributions to the code base at https://simtk.org/home/simbody. PMID:25866705

  20. ORegAnno 3.0: a community-driven resource for curated regulatory annotation.

    PubMed

    Lesurf, Robert; Cotto, Kelsy C; Wang, Grace; Griffith, Malachi; Kasaian, Katayoon; Jones, Steven J M; Montgomery, Stephen B; Griffith, Obi L

    2016-01-01

    The Open Regulatory Annotation database (ORegAnno) is a resource for curated regulatory annotation. It contains information about regulatory regions, transcription factor binding sites, RNA binding sites, regulatory variants, haplotypes, and other regulatory elements. ORegAnno differentiates itself from other regulatory resources by facilitating crowd-sourced interpretation and annotation of regulatory observations from the literature and highly curated resources. It contains a comprehensive annotation scheme that aims to describe both the elements and outcomes of regulatory events. Moreover, ORegAnno assembles these disparate data sources and annotations into a single, high quality catalogue of curated regulatory information. The current release is an update of the database previously featured in the NAR Database Issue, and now contains 1 948 307 records, across 18 species, with a combined coverage of 334 215 080 bp. Complete records, annotation, and other associated data are available for browsing and download at http://www.oreganno.org/.

  1. Microtask crowdsourcing for disease mention annotation in PubMed abstracts.

    PubMed

    Good, Benjamin M; Nanis, Max; Wu, Chunlei; Su, Andrew I

    2015-01-01

    Identifying concepts and relationships in biomedical text enables knowledge to be applied in computational analyses. Many biological natural language processing (BioNLP) projects attempt to address this challenge, but the state of the art still leaves much room for improvement. Progress in BioNLP research depends on large, annotated corpora for evaluating information extraction systems and training machine learning models. Traditionally, such corpora are created by small numbers of expert annotators often working over extended periods of time. Recent studies have shown that workers on microtask crowdsourcing platforms such as Amazon's Mechanical Turk (AMT) can, in aggregate, generate high-quality annotations of biomedical text. Here, we investigated the use of the AMT in capturing disease mentions in PubMed abstracts. We used the NCBI Disease corpus as a gold standard for refining and benchmarking our crowdsourcing protocol. After several iterations, we arrived at a protocol that reproduced the annotations of the 593 documents in the 'training set' of this gold standard with an overall F measure of 0.872 (precision 0.862, recall 0.883). The output can also be tuned to optimize for precision (max = 0.984 when recall = 0.269) or recall (max = 0.980 when precision = 0.436). Each document was completed by 15 workers, and their annotations were merged based on a simple voting method. In total 145 workers combined to complete all 593 documents in the span of 9 days at a cost of $.066 per abstract per worker. The quality of the annotations, as judged with the F measure, increases with the number of workers assigned to each task; however minimal performance gains were observed beyond 8 workers per task. These results add further evidence that microtask crowdsourcing can be a valuable tool for generating well-annotated corpora in BioNLP. Data produced for this analysis are available at http://figshare.com/articles/Disease_Mention_Annotation_with_Mechanical_Turk/1126402.

  2. 76 FR 79273 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-21

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Eligibility of the Joint Biomedical Laboratory Research and Development and Clinical Science Research and... biomedical, behavioral, and clinical science research. The panel meeting will be open to the public...

  3. 76 FR 1212 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-07

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Eligibility of the Joint Biomedical Laboratory Research and Development and Clinical Science Research and... areas of biomedical, behavioral and clinical science research. The panel meeting will be open to...

  4. Automated annotation of chemical names in the literature with tunable accuracy

    PubMed Central

    2011-01-01

    Background A significant portion of the biomedical and chemical literature refers to small molecules. The accurate identification and annotation of compound name that are relevant to the topic of the given literature can establish links between scientific publications and various chemical and life science databases. Manual annotation is the preferred method for these works because well-trained indexers can understand the paper topics as well as recognize key terms. However, considering the hundreds of thousands of new papers published annually, an automatic annotation system with high precision and relevance can be a useful complement to manual annotation. Results An automated chemical name annotation system, MeSH Automated Annotations (MAA), was developed to annotate small molecule names in scientific abstracts with tunable accuracy. This system aims to reproduce the MeSH term annotations on biomedical and chemical literature that would be created by indexers. When comparing automated free text matching to those indexed manually of 26 thousand MEDLINE abstracts, more than 40% of the annotations were false-positive (FP) cases. To reduce the FP rate, MAA incorporated several filters to remove "incorrect" annotations caused by nonspecific, partial, and low relevance chemical names. In part, relevance was measured by the position of the chemical name in the text. Tunable accuracy was obtained by adding or restricting the sections of the text scanned for chemical names. The best precision obtained was 96% with a 28% recall rate. The best performance of MAA, as measured with the F statistic was 66%, which favorably compares to other chemical name annotation systems. Conclusions Accurate chemical name annotation can help researchers not only identify important chemical names in abstracts, but also match unindexed and unstructured abstracts to chemical records. The current work is tested against MEDLINE, but the algorithm is not specific to this corpus and it is possible

  5. Towards a Consensus Annotation System (GSC8 Meeting)

    ScienceCinema

    White, Owen [University of Maryland

    2016-07-12

    The Genomic Standards Consortium was formed in September 2005. It is an international, open-membership working body which promotes standardization in the description of genomes and the exchange and integration of genomic data. The 2009 meeting was an activity of a five-year funding "Research Coordination Network" from the National Science Foundation and was organized held at the DOE Joint Genome Institute with organizational support provided by the JGI and by the University of California - San Diego. "Comparing Annotations: Towards Consensus Annotation" at the Genomic Standards Consortium's 8th meeting at the DOE JGI in Walnut Creek, Calif. on Sept. 10, 2009

  6. Quantifying the Impact and Extent of Undocumented Biomedical Synonymy

    PubMed Central

    Blair, David R.; Wang, Kanix; Nestorov, Svetlozar; Evans, James A.; Rzhetsky, Andrey

    2014-01-01

    Synonymous relationships among biomedical terms are extensively annotated within specialized terminologies, implying that synonymy is important for practical computational applications within this field. It remains unclear, however, whether text mining actually benefits from documented synonymy and whether existing biomedical thesauri provide adequate coverage of these linguistic relationships. In this study, we examine the impact and extent of undocumented synonymy within a very large compendium of biomedical thesauri. First, we demonstrate that missing synonymy has a significant negative impact on named entity normalization, an important problem within the field of biomedical text mining. To estimate the amount synonymy currently missing from thesauri, we develop a probabilistic model for the construction of synonym terminologies that is capable of handling a wide range of potential biases, and we evaluate its performance using the broader domain of near-synonymy among general English words. Our model predicts that over 90% of these relationships are currently undocumented, a result that we support experimentally through “crowd-sourcing.” Finally, we apply our model to biomedical terminologies and predict that they are missing the vast majority (>90%) of the synonymous relationships they intend to document. Overall, our results expose the dramatic incompleteness of current biomedical thesauri and suggest the need for “next-generation,” high-coverage lexical terminologies. PMID:25255227

  7. Objective-guided image annotation.

    PubMed

    Mao, Qi; Tsang, Ivor Wai-Hung; Gao, Shenghua

    2013-04-01

    Automatic image annotation, which is usually formulated as a multi-label classification problem, is one of the major tools used to enhance the semantic understanding of web images. Many multimedia applications (e.g., tag-based image retrieval) can greatly benefit from image annotation. However, the insufficient performance of image annotation methods prevents these applications from being practical. On the other hand, specific measures are usually designed to evaluate how well one annotation method performs for a specific objective or application, but most image annotation methods do not consider optimization of these measures, so that they are inevitably trapped into suboptimal performance of these objective-specific measures. To address this issue, we first summarize a variety of objective-guided performance measures under a unified representation. Our analysis reveals that macro-averaging measures are very sensitive to infrequent keywords, and hamming measure is easily affected by skewed distributions. We then propose a unified multi-label learning framework, which directly optimizes a variety of objective-specific measures of multi-label learning tasks. Specifically, we first present a multilayer hierarchical structure of learning hypotheses for multi-label problems based on which a variety of loss functions with respect to objective-guided measures are defined. And then, we formulate these loss functions as relaxed surrogate functions and optimize them by structural SVMs. According to the analysis of various measures and the high time complexity of optimizing micro-averaging measures, in this paper, we focus on example-based measures that are tailor-made for image annotation tasks but are seldom explored in the literature. Experiments show consistency with the formal analysis on two widely used multi-label datasets, and demonstrate the superior performance of our proposed method over state-of-the-art baseline methods in terms of example-based measures on four

  8. Topics in Biomedical Optics: Introduction

    NASA Astrophysics Data System (ADS)

    Hebden, Jeremy C.; Boas, David A.; George, John S.; Durkin, Anthony J.

    2003-06-01

    The field of biomedical optics is experiencing tremendous growth. Biomedical technologies contribute in the creation of devices used in healthcare of various specialties (ophthalmology, cardiology, anesthesiology, and immunology, etc.). Recent research in biomedical optics is discussed. Overviews of meetings held at the 2002 Optical Society of America Biomedical Topical Meetings are presented.

  9. The center for expanded data annotation and retrieval.

    PubMed

    Musen, Mark A; Bean, Carol A; Cheung, Kei-Hoi; Dumontier, Michel; Durante, Kim A; Gevaert, Olivier; Gonzalez-Beltran, Alejandra; Khatri, Purvesh; Kleinstein, Steven H; O'Connor, Martin J; Pouliot, Yannick; Rocca-Serra, Philippe; Sansone, Susanna-Assunta; Wiser, Jeffrey A

    2015-11-01

    The Center for Expanded Data Annotation and Retrieval is studying the creation of comprehensive and expressive metadata for biomedical datasets to facilitate data discovery, data interpretation, and data reuse. We take advantage of emerging community-based standard templates for describing different kinds of biomedical datasets, and we investigate the use of computational techniques to help investigators to assemble templates and to fill in their values. We are creating a repository of metadata from which we plan to identify metadata patterns that will drive predictive data entry when filling in metadata templates. The metadata repository not only will capture annotations specified when experimental datasets are initially created, but also will incorporate links to the published literature, including secondary analyses and possible refinements or retractions of experimental interpretations. By working initially with the Human Immunology Project Consortium and the developers of the ImmPort data repository, we are developing and evaluating an end-to-end solution to the problems of metadata authoring and management that will generalize to other data-management environments. PMID:26112029

  10. The center for expanded data annotation and retrieval.

    PubMed

    Musen, Mark A; Bean, Carol A; Cheung, Kei-Hoi; Dumontier, Michel; Durante, Kim A; Gevaert, Olivier; Gonzalez-Beltran, Alejandra; Khatri, Purvesh; Kleinstein, Steven H; O'Connor, Martin J; Pouliot, Yannick; Rocca-Serra, Philippe; Sansone, Susanna-Assunta; Wiser, Jeffrey A

    2015-11-01

    The Center for Expanded Data Annotation and Retrieval is studying the creation of comprehensive and expressive metadata for biomedical datasets to facilitate data discovery, data interpretation, and data reuse. We take advantage of emerging community-based standard templates for describing different kinds of biomedical datasets, and we investigate the use of computational techniques to help investigators to assemble templates and to fill in their values. We are creating a repository of metadata from which we plan to identify metadata patterns that will drive predictive data entry when filling in metadata templates. The metadata repository not only will capture annotations specified when experimental datasets are initially created, but also will incorporate links to the published literature, including secondary analyses and possible refinements or retractions of experimental interpretations. By working initially with the Human Immunology Project Consortium and the developers of the ImmPort data repository, we are developing and evaluating an end-to-end solution to the problems of metadata authoring and management that will generalize to other data-management environments.

  11. Collective dynamics of social annotation.

    PubMed

    Cattuto, Ciro; Barrat, Alain; Baldassarri, Andrea; Schehr, Gregory; Loreto, Vittorio

    2009-06-30

    The enormous increase of popularity and use of the worldwide web has led in the recent years to important changes in the ways people communicate. An interesting example of this fact is provided by the now very popular social annotation systems, through which users annotate resources (such as web pages or digital photographs) with keywords known as "tags." Understanding the rich emergent structures resulting from the uncoordinated actions of users calls for an interdisciplinary effort. In particular concepts borrowed from statistical physics, such as random walks (RWs), and complex networks theory, can effectively contribute to the mathematical modeling of social annotation systems. Here, we show that the process of social annotation can be seen as a collective but uncoordinated exploration of an underlying semantic space, pictured as a graph, through a series of RWs. This modeling framework reproduces several aspects, thus far unexplained, of social annotation, among which are the peculiar growth of the size of the vocabulary used by the community and its complex network structure that represents an externalization of semantic structures grounded in cognition and that are typically hard to access. PMID:19506244

  12. A tool for sharing annotated research data: the "Category 0" UMLS (Unified Medical Language System) vocabularies

    PubMed Central

    Berman, Jules J

    2003-01-01

    Background Large biomedical data sets have become increasingly important resources for medical researchers. Modern biomedical data sets are annotated with standard terms to describe the data and to support data linking between databases. The largest curated listing of biomedical terms is the the National Library of Medicine's Unified Medical Language System (UMLS). The UMLS contains more than 2 million biomedical terms collected from nearly 100 medical vocabularies. Many of the vocabularies contained in the UMLS carry restrictions on their use, making it impossible to share or distribute UMLS-annotated research data. However, a subset of the UMLS vocabularies, designated Category 0 by UMLS, can be used to annotate and share data sets without violating the UMLS License Agreement. Methods The UMLS Category 0 vocabularies can be extracted from the parent UMLS metathesaurus using a Perl script supplied with this article. There are 43 Category 0 vocabularies that can be used freely for research purposes without violating the UMLS License Agreement. Among the Category 0 vocabularies are: MESH (Medical Subject Headings), NCBI (National Center for Bioinformatics) Taxonomy and ICD-9-CM (International Classification of Diseases-9-Clinical Modifiers). Results The extraction file containing all Category 0 terms and concepts is 72,581,138 bytes in length and contains 1,029,161 terms. The UMLS Metathesaurus MRCON file (January, 2003) is 151,048,493 bytes in length and contains 2,146,899 terms. Therefore the Category 0 vocabularies, in aggregate, are about half the size of the UMLS metathesaurus. A large publicly available listing of 567,921 different medical phrases were automatically coded using the full UMLS metatathesaurus and the Category 0 vocabularies. There were 545,321 phrases with one or more matches against UMLS terms while 468,785 phrases had one or more matches against the Category 0 terms. This indicates that when the two vocabularies are evaluated by their fitness

  13. Nanoparticles for Biomedical Imaging

    SciTech Connect

    Nune, Satish K.; Gunda, Padmaja; Thallapally, Praveen K.; Lin, Ying-Ying; Forrest, Laird M.; Berkland, Cory J.

    2009-11-01

    Background: Synthetic nanoparticles are emerging as versatile tools in biomedical applications, particularly in the area of biomedical imaging. Nanoparticles 1 to 100 nm in diameter possess dimensions comparable to biological functional units. Diverse surface chemistries, unique magnetic properties, tunable absorption and emission properties, and recent advances in the synthesis and engineering of various nanoparticles suggest their potential as probes for early detection of diseases such as cancer. Surface functionalization has further expanded the potential of nanoparticles as probes for molecular imaging. Objective: To summarize emerging research of nanoparticles for biomedical imaging with increased selectivity and reduced non-specific uptake with increased spatial resolution containing stabilizers conjugated with targeting ligands. Methods: This review summarizes recent technological advances in the synthesis of various nanoparticle probes, and surveys methods to improve the targeting of nanoparticles for their applications in biomedical imaging. Conclusion: Structural design of nanomaterials for biomedical imaging continues to expand and diversify. Synthetic methods have aimed to control the size and surface characteristics of nanoparticles to control distribution, half-life and elimination. Although molecular imaging applications using nanoparticles are advancing into clinical applications, challenges such as storage stability and long-term toxicology should continue to be addressed. Keywords: nanoparticle synthesis, surface modification, targeting, molecular imaging, and biomedical imaging.

  14. Towards comprehensive syntactic and semantic annotations of the clinical narrative

    PubMed Central

    Albright, Daniel; Lanfranchi, Arrick; Fredriksen, Anwen; Styler, William F; Warner, Colin; Hwang, Jena D; Choi, Jinho D; Dligach, Dmitriy; Nielsen, Rodney D; Martin, James; Ward, Wayne; Palmer, Martha; Savova, Guergana K

    2013-01-01

    Objective To create annotated clinical narratives with layers of syntactic and semantic labels to facilitate advances in clinical natural language processing (NLP). To develop NLP algorithms and open source components. Methods Manual annotation of a clinical narrative corpus of 127 606 tokens following the Treebank schema for syntactic information, PropBank schema for predicate-argument structures, and the Unified Medical Language System (UMLS) schema for semantic information. NLP components were developed. Results The final corpus consists of 13 091 sentences containing 1772 distinct predicate lemmas. Of the 766 newly created PropBank frames, 74 are verbs. There are 28 539 named entity (NE) annotations spread over 15 UMLS semantic groups, one UMLS semantic type, and the Person semantic category. The most frequent annotations belong to the UMLS semantic groups of Procedures (15.71%), Disorders (14.74%), Concepts and Ideas (15.10%), Anatomy (12.80%), Chemicals and Drugs (7.49%), and the UMLS semantic type of Sign or Symptom (12.46%). Inter-annotator agreement results: Treebank (0.926), PropBank (0.891–0.931), NE (0.697–0.750). The part-of-speech tagger, constituency parser, dependency parser, and semantic role labeler are built from the corpus and released open source. A significant limitation uncovered by this project is the need for the NLP community to develop a widely agreed-upon schema for the annotation of clinical concepts and their relations. Conclusions This project takes a foundational step towards bringing the field of clinical NLP up to par with NLP in the general domain. The corpus creation and NLP components provide a resource for research and application development that would have been previously impossible. PMID:23355458

  15. Manpower development for the biomedical industry space.

    PubMed

    Goh, James C H

    2013-01-01

    The Biomedical Sciences (BMS) Cluster is one of four key pillars of the Singapore economy. The Singapore Government has injected research funding for basic and translational research to attract companies to carry out their commercial R&D activities. To further intensify the R&D efforts, the National Research Foundation (NRF) was set up to coordinate the research activities of different agencies within the larger national framework and to fund strategic R&D initiatives. In recent years, funding agencies began to focus on support of translational and clinical research, particularly those with potential for commercialization. Translational research is beginning to have traction, in particular research funding for the development of innovation medical devices. Therefore, the Biomedical Sciences sector is projected to grow which means that there is a need to invest in human capital development to achieve sustainable growth. In support of this, education and training programs to strengthen the manpower capabilities for the Biomedical Sciences industry have been developed. In recent years, undergraduate and graduate degree courses in biomedical engineering/bioengineering have been developing at a rapid rate. The goal is to train students with skills to understand complex issues of biomedicine and to develop and implement of advanced technological applications to these problems. There are a variety of career opportunities open to graduates in biomedical engineering, however regardless of the type of career choices, students must not only focus on achieving good grades. They have to develop their marketability to employers through internships, overseas exchange programs, and involvement in leadership-type activities. Furthermore, curriculum has to be developed with biomedical innovation in mind and ensure relevance to the industry. The objective of this paper is to present the NUS Bioengineering undergraduate program in relation to manpower development for the biomedical

  16. Manpower development for the biomedical industry space.

    PubMed

    Goh, James C H

    2013-01-01

    The Biomedical Sciences (BMS) Cluster is one of four key pillars of the Singapore economy. The Singapore Government has injected research funding for basic and translational research to attract companies to carry out their commercial R&D activities. To further intensify the R&D efforts, the National Research Foundation (NRF) was set up to coordinate the research activities of different agencies within the larger national framework and to fund strategic R&D initiatives. In recent years, funding agencies began to focus on support of translational and clinical research, particularly those with potential for commercialization. Translational research is beginning to have traction, in particular research funding for the development of innovation medical devices. Therefore, the Biomedical Sciences sector is projected to grow which means that there is a need to invest in human capital development to achieve sustainable growth. In support of this, education and training programs to strengthen the manpower capabilities for the Biomedical Sciences industry have been developed. In recent years, undergraduate and graduate degree courses in biomedical engineering/bioengineering have been developing at a rapid rate. The goal is to train students with skills to understand complex issues of biomedicine and to develop and implement of advanced technological applications to these problems. There are a variety of career opportunities open to graduates in biomedical engineering, however regardless of the type of career choices, students must not only focus on achieving good grades. They have to develop their marketability to employers through internships, overseas exchange programs, and involvement in leadership-type activities. Furthermore, curriculum has to be developed with biomedical innovation in mind and ensure relevance to the industry. The objective of this paper is to present the NUS Bioengineering undergraduate program in relation to manpower development for the biomedical

  17. CoMAGC: a corpus with multi-faceted annotations of gene-cancer relations

    PubMed Central

    2013-01-01

    Background In order to access the large amount of information in biomedical literature about genes implicated in various cancers both efficiently and accurately, the aid of text mining (TM) systems is invaluable. Current TM systems do target either gene-cancer relations or biological processes involving genes and cancers, but the former type produces information not comprehensive enough to explain how a gene affects a cancer, and the latter does not provide a concise summary of gene-cancer relations. Results In this paper, we present a corpus for the development of TM systems that are specifically targeting gene-cancer relations but are still able to capture complex information in biomedical sentences. We describe CoMAGC, a corpus with multi-faceted annotations of gene-cancer relations. In CoMAGC, a piece of annotation is composed of four semantically orthogonal concepts that together express 1) how a gene changes, 2) how a cancer changes and 3) the causality between the gene and the cancer. The multi-faceted annotations are shown to have high inter-annotator agreement. In addition, we show that the annotations in CoMAGC allow us to infer the prospective roles of genes in cancers and to classify the genes into three classes according to the inferred roles. We encode the mapping between multi-faceted annotations and gene classes into 10 inference rules. The inference rules produce results with high accuracy as measured against human annotations. CoMAGC consists of 821 sentences on prostate, breast and ovarian cancers. Currently, we deal with changes in gene expression levels among other types of gene changes. The corpus is available at http://biopathway.org/CoMAGCunder the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0). Conclusions The corpus will be an important resource for the development of advanced TM systems on gene-cancer relations. PMID:24225062

  18. MEGANTE: a web-based system for integrated plant genome annotation.

    PubMed

    Numa, Hisataka; Itoh, Takeshi

    2014-01-01

    The recent advancement of high-throughput genome sequencing technologies has resulted in a considerable increase in demands for large-scale genome annotation. While annotation is a crucial step for downstream data analyses and experimental studies, this process requires substantial expertise and knowledge of bioinformatics. Here we present MEGANTE, a web-based annotation system that makes plant genome annotation easy for researchers unfamiliar with bioinformatics. Without any complicated configuration, users can perform genomic sequence annotations simply by uploading a sequence and selecting the species to query. MEGANTE automatically runs several analysis programs and integrates the results to select the appropriate consensus exon-intron structures and to predict open reading frames (ORFs) at each locus. Functional annotation, including a similarity search against known proteins and a functional domain search, are also performed for the predicted ORFs. The resultant annotation information is visualized with a widely used genome browser, GBrowse. For ease of analysis, the results can be downloaded in Microsoft Excel format. All of the query sequences and annotation results are stored on the server side so that users can access their own data from virtually anywhere on the web. The current release of MEGANTE targets 24 plant species from the Brassicaceae, Fabaceae, Musaceae, Poaceae, Salicaceae, Solanaceae, Rosaceae and Vitaceae families, and it allows users to submit a sequence up to 10 Mb in length and to save up to 100 sequences with the annotation information on the server. The MEGANTE web service is available at https://megante.dna.affrc.go.jp/.

  19. Preserving sequence annotations across reference sequences

    PubMed Central

    2014-01-01

    Background Matching and comparing sequence annotations of different reference sequences is vital to genomics research, yet many annotation formats do not specify the reference sequence types or versions used. This makes the integration of annotations from different sources difficult and error prone. Results As part of our effort to create linked data for interoperable sequence annotations, we present an RDF data model for sequence annotation using the ontological framework established by the OBO Foundry ontologies and the Basic Formal Ontology (BFO). We defined reference sequences as the common domain of integration for sequence annotations, and identified three semantic relationships between sequence annotations. In doing so, we created the Reference Sequence Annotation to compensate for gaps in the SO and in its mapping to BFO, particularly for annotations that refer to versions of consensus reference sequences. Moreover, we present three integration models for sequence annotations using different reference assemblies. Conclusions We demonstrated a working example of a sequence annotation instance, and how this instance can be linked to other annotations on different reference sequences. Sequence annotations in this format are semantically rich and can be integrated easily with different assemblies. We also identify other challenges of modeling reference sequences with the BFO. PMID:25093075

  20. Biomedical image processing

    SciTech Connect

    Huang, H.K.

    1981-01-01

    Biomedical image processing is a very broad field; it covers biomedical signal gathering, image forming, picture processing, and image display to medical diagnosis based on features extracted from images. This article reviews this topic in both its fundamentals and applications. In its fundamentals, some basic image processing techniques including outlining, deblurring, noise cleaning, filtering, search, classical analysis and texture analysis have been reviewed together with examples. The state-of-the-art image processing systems have been introduced and discussed in two categories: general purpose image processing systems and image analyzers. In order for these systems to be effective for biomedical applications, special biomedical image processing languages have to be developed. The combination of both hardware and software leads to clinical imaging devices. Two different types of clinical imaging devices have been discussed. There are radiological imagings which include radiography, thermography, ultrasound, nuclear medicine and CT. Among these, thermography is the most noninvasive but is limited in application due to the low energy of its source. X-ray CT is excellent for static anatomical images and is moving toward the measurement of dynamic function, whereas nuclear imaging is moving toward organ metabolism and ultrasound is toward tissue physical characteristics. Heart imaging is one of the most interesting and challenging research topics in biomedical image processing; current methods including the invasive-technique cineangiography, and noninvasive ultrasound, nuclear medicine, transmission, and emission CT methodologies have been reviewed.

  1. Nanoparticles for biomedical imaging

    PubMed Central

    Nune, Satish K; Gunda, Padmaja; Thallapally, Praveen K; Lin, Ying-Ying; Forrest, M Laird; Berkland, Cory J

    2011-01-01

    Background Synthetic nanoparticles are emerging as versatile tools in biomedical applications, particularly in the area of biomedical imaging. Nanoparticles 1 – 100 nm in diameter have dimensions comparable to biological functional units. Diverse surface chemistries, unique magnetic properties, tunable absorption and emission properties, and recent advances in the synthesis and engineering of various nanoparticles suggest their potential as probes for early detection of diseases such as cancer. Surface functionalization has expanded further the potential of nanoparticles as probes for molecular imaging. Objective To summarize emerging research of nanoparticles for biomedical imaging with increased selectivity and reduced nonspecific uptake with increased spatial resolution containing stabilizers conjugated with targeting ligands. Methods This review summarizes recent technological advances in the synthesis of various nanoparticle probes, and surveys methods to improve the targeting of nanoparticles for their application in biomedical imaging. Conclusion Structural design of nanomaterials for biomedical imaging continues to expand and diversify. Synthetic methods have aimed to control the size and surface characteristics of nanoparticles to control distribution, half-life and elimination. Although molecular imaging applications using nanoparticles are advancing into clinical applications, challenges such as storage stability and long-term toxicology should continue to be addressed. PMID:19743894

  2. Software Suite for Gene and Protein Annotation Prediction and Similarity Search.

    PubMed

    Chicco, Davide; Masseroli, Marco

    2015-01-01

    In the computational biology community, machine learning algorithms are key instruments for many applications, including the prediction of gene-functions based upon the available biomolecular annotations. Additionally, they may also be employed to compute similarity between genes or proteins. Here, we describe and discuss a software suite we developed to implement and make publicly available some of such prediction methods and a computational technique based upon Latent Semantic Indexing (LSI), which leverages both inferred and available annotations to search for semantically similar genes. The suite consists of three components. BioAnnotationPredictor is a computational software module to predict new gene-functions based upon Singular Value Decomposition of available annotations. SimilBio is a Web module that leverages annotations available or predicted by BioAnnotationPredictor to discover similarities between genes via LSI. The suite includes also SemSim, a new Web service built upon these modules to allow accessing them programmatically. We integrated SemSim in the Bio Search Computing framework (http://www.bioinformatics.deib. polimi.it/bio-seco/seco/), where users can exploit the Search Computing technology to run multi-topic complex queries on multiple integrated Web services. Accordingly, researchers may obtain ranked answers involving the computation of the functional similarity between genes in support of biomedical knowledge discovery.

  3. ProteomeCommons.org collaborative annotation and project management resource integrated with the Tranche repository.

    PubMed

    Hill, James A; Smith, Bryan E; Papoulias, Panagiotis G; Andrews, Philip C

    2010-06-01

    ProteomeCommons.org has implemented a resource that incorporates concepts of Web 2.0 social networking for collaborative annotation of data sets placed in the Tranche repository. The annotation tools are part of a project management resource that is effective for individual laboratories or large distributed groups. The creation of the resource was motivated by the need for a way to encourage annotation of data sets with high accuracy and compliance rates. The system is designed to respond to the dynamic nature of research in an easy-to-use fashion through the use of a dynamic data model that does not inhibit the innovation that is important for basic research. Placing the annotation tool within a project manager allows annotation to occur over the life of the project and provides the security and monitoring capabilities needed for large or small collaborative projects. The resource effectively supports distributed groups of investigators working on common data sets and is available immediately at https://ProteomeCommons.org . In addition, a silver compliant data resource based on ProteomeCommons.org has been developed for cancer Biomedical Informatics Grid (caBIG) to allow much broader access to the annotations describing data sets in the Tranche repository.

  4. Software Suite for Gene and Protein Annotation Prediction and Similarity Search.

    PubMed

    Chicco, Davide; Masseroli, Marco

    2015-01-01

    In the computational biology community, machine learning algorithms are key instruments for many applications, including the prediction of gene-functions based upon the available biomolecular annotations. Additionally, they may also be employed to compute similarity between genes or proteins. Here, we describe and discuss a software suite we developed to implement and make publicly available some of such prediction methods and a computational technique based upon Latent Semantic Indexing (LSI), which leverages both inferred and available annotations to search for semantically similar genes. The suite consists of three components. BioAnnotationPredictor is a computational software module to predict new gene-functions based upon Singular Value Decomposition of available annotations. SimilBio is a Web module that leverages annotations available or predicted by BioAnnotationPredictor to discover similarities between genes via LSI. The suite includes also SemSim, a new Web service built upon these modules to allow accessing them programmatically. We integrated SemSim in the Bio Search Computing framework (http://www.bioinformatics.deib. polimi.it/bio-seco/seco/), where users can exploit the Search Computing technology to run multi-topic complex queries on multiple integrated Web services. Accordingly, researchers may obtain ranked answers involving the computation of the functional similarity between genes in support of biomedical knowledge discovery. PMID:26357324

  5. Infant Feeding: An Annotated Bibliography.

    ERIC Educational Resources Information Center

    Crowhurst, Christine Marie, Comp.; Kumer, Bonnie Lee, Comp.

    Intended for parents, health professionals and allied health workers, and others involved in caring for infants and young children, this annotated bibliography brings together in one selective listing a review of over 700 current publications related to infant feeding. Reflecting current knowledge in infant feeding, the bibliography has as its…

  6. English Language Learners: Annotated Bibliography

    ERIC Educational Resources Information Center

    Hector-Mason, Anestine; Bardack, Sarah

    2010-01-01

    This annotated bibliography represents a first step toward compiling a comprehensive overview of current research on issues related to English language learners (ELLs). It is intended to be a resource for researchers, policymakers, administrators, and educators who are engaged in efforts to bridge the divide between research, policy, and practice…

  7. Appalachian Women. An Annotated Bibliography.

    ERIC Educational Resources Information Center

    Hamm, Mary Margo

    This bibliography compiles annotations of 178 books, journal articles, ERIC documents, and dissertations on Appalachian women and their social, cultural, and economic environment. Entries were published 1966-93 and are listed in the following categories: (1) authors and literary criticism; (2) bibliographies and resource guides; (3) economics,…

  8. Radiocarbon Dating: An Annotated Bibliography.

    ERIC Educational Resources Information Center

    Fortine, Suellen

    This selective annotated bibliography covers various sources of information on the radiocarbon dating method, including journal articles, conference proceedings, and reports, reflecting the most important and useful sources of the last 25 years. The bibliography is divided into five parts--general background on radiocarbon, radiocarbon dating,…

  9. Hispanic Heritage. An Annotated Bibliography.

    ERIC Educational Resources Information Center

    Denver Univ., CO. School of Education.

    This annotated bibliography of a wide range of materials for the social studies teacher is concerned with the Hispano heritage. The sections are introduced by a brief description. The sections are: 1) general materials, 2) the land and the people, 3) the European background, 4) Spain's colonial system, 5) the Spanish borderlands, 6) the Anglo…

  10. Rural Education: An Annotated Bibliography.

    ERIC Educational Resources Information Center

    Massey, Sara

    The 120-item annotated bibliography was compiled to facilitate the development of a recently approved course entitled "Topics in Rural Education" at the University of Maine at Machias. Although the dates range from 1964 to 1982, most of the materials were prepared in the 1970s and 1980s. The interrelatedness of the issues makes categorization…

  11. Workforce Reductions. An Annotated Bibliography.

    ERIC Educational Resources Information Center

    Hickok, Thomas A.; Hickok, Thomas A.

    This report, which is based on a review of practitioner-oriented sources and scholarly journals, uses a three-part framework to organize annotated bibliographies that, together, list a total of 104 sources that provide the following three perspectives on work force reduction issues: organizational, organizational-individual relationship, and…

  12. Vietnamese Amerasians: An Annotated Bibliography.

    ERIC Educational Resources Information Center

    Johnson, Mark C.; And Others

    This annotated bibliography on Vietnamese Amerasians includes primary and secondary sources as well as reviews of three documentary films. Sources were selected in order to provide an overview of the historical and political context of Amerasian resettlement and a review of the scant available research on coping and adaptation with this…

  13. Instructional Materials Centers; Annotated Bibliography.

    ERIC Educational Resources Information Center

    Poli, Rosario, Comp.

    An annotated bibliography lists 74 articles and reports on instructional materials centers (IMC) which appeared from 1967-70. The articles deal with such topics as the purposes of an IMC, guidelines for setting up an IMC, and the relationship of an IMC to technology. Most articles deal with use of an IMC on an elementary or secondary level, but…

  14. Nikos Kazantzakis: An Annotated Bibliography.

    ERIC Educational Resources Information Center

    Qiu, Kui

    This research paper consists of an annotated bibliography about Nikos Kazantzakis, one of the major modern Greek writers and author of "The Last Temptation of Christ,""Zorba the Greek," and many other works. Because of Kazantzakis' position in world literature there are many critical works about him; however, bibliographical control of these works…

  15. An Annotated Bibliography for Art.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul. Div. of Instruction.

    The annotated bibliography presents approximately 450 references about art for elementary, secondary, and professional levels. It is presented in three sections. Section one identifies 19 resources about art from a professional or teaching perspective. Included are books explaining how to teach various techniques to students of beginning or…

  16. Annotated Bibliography on Humanistic Education

    ERIC Educational Resources Information Center

    Ganung, Cynthia

    1975-01-01

    Part I of this annotated bibliography deals with books and articles on such topics as achievement motivation, process education, transactional analysis, discipline without punishment, role-playing, interpersonal skills, self-acceptance, moral education, self-awareness, values clarification, and non-verbal communication. Part II focuses on…

  17. MSDAC Resource Library Annotated Bibliography.

    ERIC Educational Resources Information Center

    Watson, Cristel; And Others

    This annotated bibliography lists books, films, filmstrips, recordings, and booklets on sex equity. Entries are arranged according to the following topics: career resources, curriculum resources, management, sex equity, sex roles, women's studies, student activities, and sex-fair fiction. Included in each entry are name of author, editor or…

  18. Multicultural Education. An Annotated Bibliography.

    ERIC Educational Resources Information Center

    Narang, H. L.

    This annotated bibliography contains references to books, journal articles, ERIC documents, doctoral dissertations, and audio-visual materials on the subject of multicultural education. Topics include integrating multiculturalism in school subjects, prejudice and discrimination, intercultural communication, ethnic identity and ethnic bias.…

  19. Systems Theory and Communication. Annotated Bibliography.

    ERIC Educational Resources Information Center

    Covington, William G., Jr.

    This annotated bibliography presents annotations of 31 books and journal articles dealing with systems theory and its relation to organizational communication, marketing, information theory, and cybernetics. Materials were published between 1963 and 1992 and are listed alphabetically by author. (RS)

  20. DEVA: An extensible ontology-based annotation model for visual document collections

    NASA Astrophysics Data System (ADS)

    Jelmini, Carlo; Marchand-Maillet, Stephane

    2003-01-01

    The description of visual documents is a fundamental aspect of any efficient information management system, but the process of manually annotating large collections of documents is tedious and far from being perfect. The need for a generic and extensible annotation model therefore arises. In this paper, we present DEVA, an open, generic and expressive multimedia annotation framework. DEVA is an extension of the Dublin Core specification. The model can represent the semantic content of any visual document. It is described in the ontology language DAML+OIL and can easily be extended with external specialized ontologies, adapting the vocabulary to the given application domain. In parallel, we present the Magritte annotation tool, which is an early prototype that validates the DEVA features. Magritte allows to manually annotating image collections. It is designed with a modular and extensible architecture, which enables the user to dynamically adapt the user interface to specialized ontologies merged into DEVA.

  1. Peer review of biomedical manuscripts: an update.

    PubMed

    Ludbrook, John

    2003-09-01

    There have been published at least two major sets of contributions to the matter of peer review of manuscripts since my last article on this topic. In one, the merits of truly open peer review, in which the names of authors and their affiliations are revealed to reviewers, and the names of reviewers to authors, are extolled. The other contribution is not so original, in that it exhorts biomedical investigators and authors to consult with professional statisticians. But the vigorous correspondence that followed was interesting. I have come down strongly in favour of open peer review for all biomedical journals. However, I have also warned investigators and authors that statisticians often do not agree and, sometimes, violently disagree. I suggest that it is time a prospective, comparative study of statistical reviewers and their reviews should be carried out.

  2. Improving Genome Assemblies and Annotations for Nonhuman Primates

    PubMed Central

    Norgren, Robert B.

    2013-01-01

    The study of nonhuman primates (NHP) is key to understanding human evolution, in addition to being an important model for biomedical research. NHPs are especially important for translational medicine. There are now exciting opportunities to greatly increase the utility of these models by incorporating Next Generation (NextGen) sequencing into study design. Unfortunately, the draft status of nonhuman genomes greatly constrains what can currently be accomplished with available technology. Although all genomes contain errors, draft assemblies and annotations contain so many mistakes that they make currently available nonhuman primate genomes misleading to investigators conducting evolutionary studies; and these genomes are of insufficient quality to serve as references for NextGen studies. Fortunately, NextGen sequencing can be used in the production of greatly improved genomes. Existing Sanger sequences can be supplemented with NextGen whole genome, and exomic genomic sequences to create new, more complete and correct assemblies. Additional physical mapping, and an incorporation of information about gene structure, can be used to improve assignment of scaffolds to chromosomes. In addition, mRNA-sequence data can be used to economically acquire transcriptome information, which can be used for annotation. Some highly polymorphic and complex regions, for example MHC class I and immunoglobulin loci, will require extra effort to properly assemble and annotate. However, for the vast majority of genes, a modest investment in money, and a somewhat greater investment in time, can greatly improve assemblies and annotations sufficient to produce true, reference grade nonhuman primate genomes. Such resources can reasonably be expected to transform nonhuman primate research. PMID:24174438

  3. Commercial Biomedical Experiments

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Experiments to seek solutions for a range of biomedical issues are at the heart of several investigations that will be hosted by the Commercial Instrumentation Technology Associates (ITA), Inc. Biomedical Experiments (CIBX-2) payload. CIBX-2 is unique, encompassing more than 20 separate experiments including cancer research, commercial experiments, and student hands-on experiments from 10 schools as part of ITA's ongoing University Among the Stars program. Valerie Cassanto of ITA checks the Canadian Protein Crystallization Experiment (CAPE) carried by STS-86 to Mir in 1997. The experiments are sponsored by NASA's Space Product Development Program (SPD).

  4. Commercial Biomedical Experiments Payload

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Experiments to seek solutions for a range of biomedical issues are at the heart of several investigations that will be hosted by the Commercial Instrumentation Technology Associates (ITA), Inc. The biomedical experiments CIBX-2 payload is unique, encompassing more than 20 separate experiments including cancer research, commercial experiments, and student hands-on experiments from 10 schools as part of ITA's ongoing University Among the stars program. Here, Astronaut Story Musgrave activates the CMIX-5 (Commercial MDA ITA experiment) payload in the Space Shuttle mid deck during the STS-80 mission in 1996 which is similar to CIBX-2. The experiments are sponsored by NASA's Space Product Development Program (SPD).

  5. Ethics in biomedical engineering.

    PubMed

    Morsy, Ahmed; Flexman, Jennifer

    2008-01-01

    This session focuses on a number of aspects of the subject of Ethics in Biomedical Engineering. The session starts by providing a case study of a company that manufactures artificial heart valves where the valves were failing at an unexpected rate. The case study focuses on Biomedical Engineers working at the company and how their education and training did not prepare them to deal properly with such situation. The second part of the session highlights the need to learn about various ethics rules and policies regulating research involving human or animal subjects.

  6. Biomedical materials and devices

    SciTech Connect

    Hanker, J. S. ); Giammara, B. L. )

    1989-01-01

    This conference reports on how biomedical materials and devices are undergoing important changes that require interdisciplinary approaches, innovation expertise, and access to sophisticated preparative and analytical equipment and methodologies. The interaction of materials scientists with biomedical, biotechnological, bioengineering and clinical scientists in the last decade has resulted in major advances in therapy. New therapeutic modalities and bioengineering methods and devices for the continuous removal of toxins or pathologic products present in arthritis, atherosclerosis and malignancy are presented. Novel monitoring and controlled drug delivery systems and discussions of materials such as blood or plasma substitutes, artificial organs, and bone graft substitutes are discussed.

  7. Biomedical enhancements as justice.

    PubMed

    Nam, Jeesoo

    2015-02-01

    Biomedical enhancements, the applications of medical technology to make better those who are neither ill nor deficient, have made great strides in the past few decades. Using Amartya Sen's capability approach as my framework, I argue in this article that far from being simply permissible, we have a prima facie moral obligation to use these new developments for the end goal of promoting social justice. In terms of both range and magnitude, the use of biomedical enhancements will mark a radical advance in how we compensate the most disadvantaged members of society.

  8. Supporting undergraduate biomedical entrepreneurship.

    PubMed

    Patterson, P E

    2004-01-01

    As biomedical innovations become more sophisticated and expensive to bring to market, an approach is needed to ensure the survival of the best ideas. The tactic used by Iowa State University to provide entrepreneurship opportunities for undergraduate students in biomedical areas is a model that has proven to be both distinctive and effective. Iowa State supports and fosters undergraduate student entrepreneurship efforts through the Pappajohn Center for Entrepreneurship. This unique partnership encourages ISU faculty, researchers, and students to become involved in the world of entrepreneurship, while allowing Iowa's business communities to gain access to a wide array of available resources, skills, and information from Iowa State University.

  9. ANNOTATED BIBLIOGRAPHY ON CREATIVITY AND GIFTEDNESS.

    ERIC Educational Resources Information Center

    GOWAN, JOHN CURTIS

    THIS ANNOTATED BIBLIOGRAPHY REPRESENTS A SAMPLING OF PUBLISHED WRITING ON CREATIVITY AND GIFTED CHILDREN SINCE 1960. THE LIST WAS COMPILED FOR EDUCATIONAL RESEARCHERS. IN A FEW INSTANCES THE ANNOTATIONS HAVE BEEN MODIFIED OR ABRIDGED FROM THOSE FOUND IN "PSYCHOLOGICAL ABSTRACTS" OR OTHER JOURNAL ABSTRACTS. SOME OF THE ANNOTATIONS HAVE PREVIOUSLY…

  10. Alcohol Education Materials; An Annotated Bibliography.

    ERIC Educational Resources Information Center

    Milgram, Gail Gleason

    This 873-item annotated bibliography cites books, pamphlets, leaflets, and other materials produced for education about alcohol from 1950 to May 1973. The major part of each annotation is a brief summary of the contents. The annotation also contains a statement of orientation or type of presentation and evaluative comments. Each item is classified…

  11. Annotation and Classification of Argumentative Writing Revisions

    ERIC Educational Resources Information Center

    Zhang, Fan; Litman, Diane

    2015-01-01

    This paper explores the annotation and classification of students' revision behaviors in argumentative writing. A sentence-level revision schema is proposed to capture why and how students make revisions. Based on the proposed schema, a small corpus of student essays and revisions was annotated. Studies show that manual annotation is reliable with…

  12. Determining similarity of scientific entities in annotation datasets

    PubMed Central

    Palma, Guillermo; Vidal, Maria-Esther; Haag, Eric; Raschid, Louiqa; Thor, Andreas

    2015-01-01

    Linked Open Data initiatives have made available a diversity of scientific collections where scientists have annotated entities in the datasets with controlled vocabulary terms from ontologies. Annotations encode scientific knowledge, which is captured in annotation datasets. Determining relatedness between annotated entities becomes a building block for pattern mining, e.g. identifying drug–drug relationships may depend on the similarity of the targets that interact with each drug. A diversity of similarity measures has been proposed in the literature to compute relatedness between a pair of entities. Each measure exploits some knowledge including the name, function, relationships with other entities, taxonomic neighborhood and semantic knowledge. We propose a novel general-purpose annotation similarity measure called ‘AnnSim’ that measures the relatedness between two entities based on the similarity of their annotations. We model AnnSim as a 1–1 maximum weight bipartite match and exploit properties of existing solvers to provide an efficient solution. We empirically study the performance of AnnSim on real-world datasets of drugs and disease associations from clinical trials and relationships between drugs and (genomic) targets. Using baselines that include a variety of measures, we identify where AnnSim can provide a deeper understanding of the semantics underlying the relatedness of a pair of entities or where it could lead to predicting new links or identifying potential novel patterns. Although AnnSim does not exploit knowledge or properties of a particular domain, its performance compares well with a variety of state-of-the-art domain-specific measures. Database URL: http://www.yeastgenome.org/ PMID:25725057

  13. Determining similarity of scientific entities in annotation datasets.

    PubMed

    Palma, Guillermo; Vidal, Maria-Esther; Haag, Eric; Raschid, Louiqa; Thor, Andreas

    2015-01-01

    Linked Open Data initiatives have made available a diversity of scientific collections where scientists have annotated entities in the datasets with controlled vocabulary terms from ontologies. Annotations encode scientific knowledge, which is captured in annotation datasets. Determining relatedness between annotated entities becomes a building block for pattern mining, e.g. identifying drug-drug relationships may depend on the similarity of the targets that interact with each drug. A diversity of similarity measures has been proposed in the literature to compute relatedness between a pair of entities. Each measure exploits some knowledge including the name, function, relationships with other entities, taxonomic neighborhood and semantic knowledge. We propose a novel general-purpose annotation similarity measure called 'AnnSim' that measures the relatedness between two entities based on the similarity of their annotations. We model AnnSim as a 1-1 maximum weight bipartite match and exploit properties of existing solvers to provide an efficient solution. We empirically study the performance of AnnSim on real-world datasets of drugs and disease associations from clinical trials and relationships between drugs and (genomic) targets. Using baselines that include a variety of measures, we identify where AnnSim can provide a deeper understanding of the semantics underlying the relatedness of a pair of entities or where it could lead to predicting new links or identifying potential novel patterns. Although AnnSim does not exploit knowledge or properties of a particular domain, its performance compares well with a variety of state-of-the-art domain-specific measures. Database URL: http://www.yeastgenome.org/ PMID:25725057

  14. Lynx web services for annotations and systems analysis of multi-gene disorders.

    PubMed

    Sulakhe, Dinanath; Taylor, Andrew; Balasubramanian, Sandhya; Feng, Bo; Xie, Bingqing; Börnigen, Daniela; Dave, Utpal J; Foster, Ian T; Gilliam, T Conrad; Maltsev, Natalia

    2014-07-01

    Lynx is a web-based integrated systems biology platform that supports annotation and analysis of experimental data and generation of weighted hypotheses on molecular mechanisms contributing to human phenotypes and disorders of interest. Lynx has integrated multiple classes of biomedical data (genomic, proteomic, pathways, phenotypic, toxicogenomic, contextual and others) from various public databases as well as manually curated data from our group and collaborators (LynxKB). Lynx provides tools for gene list enrichment analysis using multiple functional annotations and network-based gene prioritization. Lynx provides access to the integrated database and the analytical tools via REST based Web Services (http://lynx.ci.uchicago.edu/webservices.html). This comprises data retrieval services for specific functional annotations, services to search across the complete LynxKB (powered by Lucene), and services to access the analytical tools built within the Lynx platform.

  15. National Space Biomedical Research Institute Annual Report

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This report summarizes the activities of the National Space Biomedical Research Institute (NSBRI) during FY 2000. The NSBRI is responsible for the development of countermeasures against the deleterious effects of long-duration space flight and performs fundamental and applied space biomedical research directed towards this specific goal. Its mission is to lead a world-class, national effort in integrated, critical path space biomedical research that supports NASA's Human Exploration and Development of Space (HEDS) Strategic Plan by focusing on the enabling of long-term human presence in, development of, and exploration of space. This is accomplished by: designing, testing and validating effective countermeasures to address the biological and environmental impediments to long-term human space flight; defining the molecular, cellular, organ-level, integrated responses and mechanistic relationships that ultimately determine these impediments, where such activity fosters the development of novel countermeasures; establishing biomedical support technologies to maximize human performance in space, reduce biomedical hazards to an acceptable level, and deliver quality medical care; transferring and disseminating the biomedical advances in knowledge and technology acquired through living and working in space to the general benefit of mankind, including the treatment of patients suffering from gravity- and radiation-related conditions on Earth; and ensuring open involvement of the scientific community, industry and the public at large in the Institute's activities and fostering a robust collaboration with NASA, particularly through NASA's Lyndon B. Johnson Space Center. Attachment:Appendices (A,B,C,D,E,F,G,H,I,J,K,L,M,N,O, and P.).

  16. Next Generation Models for Storage and Representation of Microbial Biological Annotation

    SciTech Connect

    Quest, Daniel J; Land, Miriam L; Brettin, Thomas S; Cottingham, Robert W

    2010-01-01

    Background Traditional genome annotation systems were developed in a very different computing era, one where the World Wide Web was just emerging. Consequently, these systems are built as centralized black boxes focused on generating high quality annotation submissions to GenBank/EMBL supported by expert manual curation. The exponential growth of sequence data drives a growing need for increasingly higher quality and automatically generated annotation. Typical annotation pipelines utilize traditional database technologies, clustered computing resources, Perl, C, and UNIX file systems to process raw sequence data, identify genes, and predict and categorize gene function. These technologies tightly couple the annotation software system to hardware and third party software (e.g. relational database systems and schemas). This makes annotation systems hard to reproduce, inflexible to modification over time, difficult to assess, difficult to partition across multiple geographic sites, and difficult to understand for those who are not domain experts. These systems are not readily open to scrutiny and therefore not scientifically tractable. The advent of Semantic Web standards such as Resource Description Framework (RDF) and OWL Web Ontology Language (OWL) enables us to construct systems that address these challenges in a new comprehensive way. Results Here, we develop a framework for linking traditional data to OWL-based ontologies in genome annotation. We show how data standards can decouple hardware and third party software tools from annotation pipelines, thereby making annotation pipelines easier to reproduce and assess. An illustrative example shows how TURTLE (Terse RDF Triple Language) can be used as a human readable, but also semantically-aware, equivalent to GenBank/EMBL files. Conclusions The power of this approach lies in its ability to assemble annotation data from multiple databases across multiple locations into a representation that is understandable to

  17. Managing, Analysing, and Integrating Big Data in Medical Bioinformatics: Open Problems and Future Perspectives

    PubMed Central

    Merelli, Ivan; Pérez-Sánchez, Horacio; Gesing, Sandra; D'Agostino, Daniele

    2014-01-01

    The explosion of the data both in the biomedical research and in the healthcare systems demands urgent solutions. In particular, the research in omics sciences is moving from a hypothesis-driven to a data-driven approach. Healthcare is additionally always asking for a tighter integration with biomedical data in order to promote personalized medicine and to provide better treatments. Efficient analysis and interpretation of Big Data opens new avenues to explore molecular biology, new questions to ask about physiological and pathological states, and new ways to answer these open issues. Such analyses lead to better understanding of diseases and development of better and personalized diagnostics and therapeutics. However, such progresses are directly related to the availability of new solutions to deal with this huge amount of information. New paradigms are needed to store and access data, for its annotation and integration and finally for inferring knowledge and making it available to researchers. Bioinformatics can be viewed as the “glue” for all these processes. A clear awareness of present high performance computing (HPC) solutions in bioinformatics, Big Data analysis paradigms for computational biology, and the issues that are still open in the biomedical and healthcare fields represent the starting point to win this challenge. PMID:25254202

  18. Cloud Based Metalearning System for Predictive Modeling of Biomedical Data

    PubMed Central

    Vukićević, Milan

    2014-01-01

    Rapid growth and storage of biomedical data enabled many opportunities for predictive modeling and improvement of healthcare processes. On the other side analysis of such large amounts of data is a difficult and computationally intensive task for most existing data mining algorithms. This problem is addressed by proposing a cloud based system that integrates metalearning framework for ranking and selection of best predictive algorithms for data at hand and open source big data technologies for analysis of biomedical data. PMID:24892101

  19. Biomedical Engineering in Modern Society

    ERIC Educational Resources Information Center

    Attinger, E. O.

    1971-01-01

    Considers definition of biomedical engineering (BME) and how biomedical engineers should be trained. State of the art descriptions of BME and BME education are followed by a brief look at the future of BME. (TS)

  20. Dictionary-driven protein annotation.

    PubMed

    Rigoutsos, Isidore; Huynh, Tien; Floratos, Aris; Parida, Laxmi; Platt, Daniel

    2002-09-01

    Computational methods seeking to automatically determine the properties (functional, structural, physicochemical, etc.) of a protein directly from the sequence have long been the focus of numerous research groups. With the advent of advanced sequencing methods and systems, the number of amino acid sequences that are being deposited in the public databases has been increasing steadily. This has in turn generated a renewed demand for automated approaches that can annotate individual sequences and complete genomes quickly, exhaustively and objectively. In this paper, we present one such approach that is centered around and exploits the Bio-Dictionary, a collection of amino acid patterns that completely covers the natural sequence space and can capture functional and structural signals that have been reused during evolution, within and across protein families. Our annotation approach also makes use of a weighted, position-specific scoring scheme that is unaffected by the over-representation of well-conserved proteins and protein fragments in the databases used. For a given query sequence, the method permits one to determine, in a single pass, the following: local and global similarities between the query and any protein already present in a public database; the likeness of the query to all available archaeal/ bacterial/eukaryotic/viral sequences in the database as a function of amino acid position within the query; the character of secondary structure of the query as a function of amino acid position within the query; the cytoplasmic, transmembrane or extracellular behavior of the query; the nature and position of binding domains, active sites, post-translationally modified sites, signal peptides, etc. In terms of performance, the proposed method is exhaustive, objective and allows for the rapid annotation of individual sequences and full genomes. Annotation examples are presented and discussed in Results, including individual queries and complete genomes that were

  1. New in protein structure and function annotation: hotspots, single nucleotide polymorphisms and the 'Deep Web'.

    PubMed

    Bromberg, Yana; Yachdav, Guy; Ofran, Yanay; Schneider, Reinhard; Rost, Burkhard

    2009-05-01

    The rapidly increasing quantity of protein sequence data continues to widen the gap between available sequences and annotations. Comparative modeling suggests some aspects of the 3D structures of approximately half of all known proteins; homology- and network-based inferences annotate some aspect of function for a similar fraction of the proteome. For most known protein sequences, however, there is detailed knowledge about neither their function nor their structure. Comprehensive efforts towards the expert curation of sequence annotations have failed to meet the demand of the rapidly increasing number of available sequences. Only the automated prediction of protein function in the absence of homology can close the gap between available sequences and annotations in the foreseeable future. This review focuses on two novel methods for automated annotation, and briefly presents an outlook on how modern web software may revolutionize the field of protein sequence annotation. First, predictions of protein binding sites and functional hotspots, and the evolution of these into the most successful type of prediction of protein function from sequence will be discussed. Second, a new tool, comprehensive in silico mutagenesis, which contributes important novel predictions of function and at the same time prepares for the onset of the next sequencing revolution, will be described. While these two new sub-fields of protein prediction represent the breakthroughs that have been achieved methodologically, it will then be argued that a different development might further change the way biomedical researchers benefit from annotations: modern web software can connect the worldwide web in any browser with the 'Deep Web' (ie, proprietary data resources). The availability of this direct connection, and the resulting access to a wealth of data, may impact drug discovery and development more than any existing method that contributes to protein annotation.

  2. Adapting content-based image retrieval techniques for the semantic annotation of medical images.

    PubMed

    Kumar, Ashnil; Dyer, Shane; Kim, Jinman; Li, Changyang; Leong, Philip H W; Fulham, Michael; Feng, Dagan

    2016-04-01

    The automatic annotation of medical images is a prerequisite for building comprehensive semantic archives that can be used to enhance evidence-based diagnosis, physician education, and biomedical research. Annotation also has important applications in the automatic generation of structured radiology reports. Much of the prior research work has focused on annotating images with properties such as the modality of the image, or the biological system or body region being imaged. However, many challenges remain for the annotation of high-level semantic content in medical images (e.g., presence of calcification, vessel obstruction, etc.) due to the difficulty in discovering relationships and associations between low-level image features and high-level semantic concepts. This difficulty is further compounded by the lack of labelled training data. In this paper, we present a method for the automatic semantic annotation of medical images that leverages techniques from content-based image retrieval (CBIR). CBIR is a well-established image search technology that uses quantifiable low-level image features to represent the high-level semantic content depicted in those images. Our method extends CBIR techniques to identify or retrieve a collection of labelled images that have similar low-level features and then uses this collection to determine the best high-level semantic annotations. We demonstrate our annotation method using retrieval via weighted nearest-neighbour retrieval and multi-class classification to show that our approach is viable regardless of the underlying retrieval strategy. We experimentally compared our method with several well-established baseline techniques (classification and regression) and showed that our method achieved the highest accuracy in the annotation of liver computed tomography (CT) images.

  3. Management of information in distributed biomedical collaboratories.

    PubMed

    Keator, David B

    2009-01-01

    Organizing and annotating biomedical data in structured ways has gained much interest and focus in the last 30 years. Driven by decreases in digital storage costs and advances in genetics sequencing, imaging, electronic data collection, and microarray technologies, data is being collected at an alarming rate. The specialization of fields in biology and medicine demonstrates the need for somewhat different structures for storage and retrieval of data. For biologists, the need for structured information and integration across a number of domains drives development. For clinical researchers and hospitals, the need for a structured medical record accessible to, ideally, any medical practitioner who might require it during the course of research or patient treatment, patient confidentiality, and security are the driving developmental factors. Scientific data management systems generally consist of a few core services: a backend database system, a front-end graphical user interface, and an export/import mechanism or data interchange format to both get data into and out of the database and share data with collaborators. The chapter introduces some existing databases, distributed file systems, and interchange languages used within the biomedical research and clinical communities for scientific data management and exchange. PMID:19623483

  4. Careers in biomedical engineering.

    PubMed

    Madrid, R E; Rotger, V I; Herrera, M C

    2010-01-01

    Although biomedical engineering was started in Argentina about 35 years ago, it has had a sustained growth for the last 25 years in human resources, with the emergence of new undergraduate and postgraduate careers, as well as in research, knowledge, technological development, and health care.

  5. What is biomedical informatics?

    PubMed Central

    Bernstam, Elmer V.; Smith, Jack W.; Johnson, Todd R.

    2009-01-01

    Biomedical informatics lacks a clear and theoretically grounded definition. Many proposed definitions focus on data, information, and knowledge, but do not provide an adequate definition of these terms. Leveraging insights from the philosophy of information, we define informatics as the science of information, where information is data plus meaning. Biomedical informatics is the science of information as applied to or studied in the context of biomedicine. Defining the object of study of informatics as data plus meaning clearly distinguishes the field from related fields, such as computer science, statistics and biomedicine, which have different objects of study. The emphasis on data plus meaning also suggests that biomedical informatics problems tend to be difficult when they deal with concepts that are hard to capture using formal, computational definitions. In other words, problems where meaning must be considered are more difficult than problems where manipulating data without regard for meaning is sufficient. Furthermore, the definition implies that informatics research, teaching, and service should focus on biomedical information as data plus meaning rather than only computer applications in biomedicine. PMID:19683067

  6. Anatomy for Biomedical Engineers

    ERIC Educational Resources Information Center

    Carmichael, Stephen W.; Robb, Richard A.

    2008-01-01

    There is a perceived need for anatomy instruction for graduate students enrolled in a biomedical engineering program. This appeared especially important for students interested in and using medical images. These students typically did not have a strong background in biology. The authors arranged for students to dissect regions of the body that…

  7. Principles of Biomedical Ethics

    PubMed Central

    Athar, Shahid

    2012-01-01

    In this presentation, I will discuss the principles of biomedical and Islamic medical ethics and an interfaith perspective on end-of-life issues. I will also discuss three cases to exemplify some of the conflicts in ethical decision-making. PMID:23610498

  8. Biomedical Results of Apollo

    NASA Technical Reports Server (NTRS)

    Johnston, R. S. (Editor); Dietlein, L. F. (Editor); Berry, C. A. (Editor); Parker, James F. (Compiler); West, Vita (Compiler)

    1975-01-01

    The biomedical program developed for Apollo is described in detail. The findings are listed of those investigations which are conducted to assess the effects of space flight on man's physiological and functional capacities, and significant medical events in Apollo are documented. Topics discussed include crew health and inflight monitoring, preflight and postflight medical testing, inflight experiments, quarantine, and life support systems.

  9. EST-PAC a web package for EST annotation and protein sequence prediction

    PubMed Central

    Strahm, Yvan; Powell, David; Lefèvre, Christophe

    2006-01-01

    With the decreasing cost of DNA sequencing technology and the vast diversity of biological resources, researchers increasingly face the basic challenge of annotating a larger number of expressed sequences tags (EST) from a variety of species. This typically consists of a series of repetitive tasks, which should be automated and easy to use. The results of these annotation tasks need to be stored and organized in a consistent way. All these operations should be self-installing, platform independent, easy to customize and amenable to using distributed bioinformatics resources available on the Internet. In order to address these issues, we present EST-PAC a web oriented multi-platform software package for expressed sequences tag (EST) annotation. EST-PAC provides a solution for the administration of EST and protein sequence annotations accessible through a web interface. Three aspects of EST annotation are automated: 1) searching local or remote biological databases for sequence similarities using Blast services, 2) predicting protein coding sequence from EST data and, 3) annotating predicted protein sequences with functional domain predictions. In practice, EST-PAC integrates the BLASTALL suite, EST-Scan2 and HMMER in a relational database system accessible through a simple web interface. EST-PAC also takes advantage of the relational database to allow consistent storage, powerful queries of results and, management of the annotation process. The system allows users to customize annotation strategies and provides an open-source data-management environment for research and education in bioinformatics. PMID:17147782

  10. VariOtator, a Software Tool for Variation Annotation with the Variation Ontology.

    PubMed

    Schaafsma, Gerard C P; Vihinen, Mauno

    2016-04-01

    The Variation Ontology (VariO) is used for describing and annotating types, effects, consequences, and mechanisms of variations. To facilitate easy and consistent annotations, the online application VariOtator was developed. For variation type annotations, VariOtator is fully automated, accepting variant descriptions in Human Genome Variation Society (HGVS) format, and generating VariO terms, either with or without full lineage, that is, all parent terms. When a coding DNA variant description with a reference sequence is provided, VariOtator checks the description first with Mutalyzer and then generates the predicted RNA and protein descriptions with their respective VariO annotations. For the other sublevels, function, structure, and property, annotations cannot be automated, and VariOtator generates annotation based on provided details. For VariO terms relating to structure and property, one can use attribute terms as modifiers and evidence code terms for annotating experimental evidence. There is an online batch version, and stand-alone batch versions to be used with a Leiden Open Variation Database (LOVD) download file. A SOAP Web service allows client programs to access VariOtator programmatically. Thus, systematic variation effect and type annotations can be efficiently generated to allow easy use and integration of variations and their consequences. PMID:26773573

  11. Automatic annotation of organellar genomes with DOGMA

    SciTech Connect

    Wyman, Stacia; Jansen, Robert K.; Boore, Jeffrey L.

    2004-06-01

    Dual Organellar GenoMe Annotator (DOGMA) automates the annotation of extra-nuclear organellar (chloroplast and animal mitochondrial) genomes. It is a web-based package that allows the use of comparative BLAST searches to identify and annotate genes in a genome. DOGMA presents a list of putative genes to the user in a graphical format for viewing and editing. Annotations are stored on our password-protected server. Complete annotations can be extracted for direct submission to GenBank. Furthermore, intergenic regions of specified length can be extracted, as well the nucleotide sequences and amino acid sequences of the genes.

  12. Oncotator: cancer variant annotation tool.

    PubMed

    Ramos, Alex H; Lichtenstein, Lee; Gupta, Manaswi; Lawrence, Michael S; Pugh, Trevor J; Saksena, Gordon; Meyerson, Matthew; Getz, Gad

    2015-04-01

    Oncotator is a tool for annotating genomic point mutations and short nucleotide insertions/deletions (indels) with variant- and gene-centric information relevant to cancer researchers. This information is drawn from 14 different publicly available resources that have been pooled and indexed, and we provide an extensible framework to add additional data sources. Annotations linked to variants range from basic information, such as gene names and functional classification (e.g. missense), to cancer-specific data from resources such as the Catalogue of Somatic Mutations in Cancer (COSMIC), the Cancer Gene Census, and The Cancer Genome Atlas (TCGA). For local use, Oncotator is freely available as a python module hosted on Github (https://github.com/broadinstitute/oncotator). Furthermore, Oncotator is also available as a web service and web application at http://www.broadinstitute.org/oncotator/.

  13. Deep Question Answering for protein annotation.

    PubMed

    Gobeill, Julien; Gaudinat, Arnaud; Pasche, Emilie; Vishnyakova, Dina; Gaudet, Pascale; Bairoch, Amos; Ruch, Patrick

    2015-01-01

    Biomedical professionals have access to a huge amount of literature, but when they use a search engine, they often have to deal with too many documents to efficiently find the appropriate information in a reasonable time. In this perspective, question-answering (QA) engines are designed to display answers, which were automatically extracted from the retrieved documents. Standard QA engines in literature process a user question, then retrieve relevant documents and finally extract some possible answers out of these documents using various named-entity recognition processes. In our study, we try to answer complex genomics questions, which can be adequately answered only using Gene Ontology (GO) concepts. Such complex answers cannot be found using state-of-the-art dictionary- and redundancy-based QA engines. We compare the effectiveness of two dictionary-based classifiers for extracting correct GO answers from a large set of 100 retrieved abstracts per question. In the same way, we also investigate the power of GOCat, a GO supervised classifier. GOCat exploits the GOA database to propose GO concepts that were annotated by curators for similar abstracts. This approach is called deep QA, as it adds an original classification step, and exploits curated biological data to infer answers, which are not explicitly mentioned in the retrieved documents. We show that for complex answers such as protein functional descriptions, the redundancy phenomenon has a limited effect. Similarly usual dictionary-based approaches are relatively ineffective. In contrast, we demonstrate how existing curated data, beyond information extraction, can be exploited by a supervised classifier, such as GOCat, to massively improve both the quantity and the quality of the answers with a +100% improvement for both recall and precision. Database URL: http://eagl.unige.ch/DeepQA4PA/. PMID:26384372

  14. Deep Question Answering for protein annotation.

    PubMed

    Gobeill, Julien; Gaudinat, Arnaud; Pasche, Emilie; Vishnyakova, Dina; Gaudet, Pascale; Bairoch, Amos; Ruch, Patrick

    2015-01-01

    Biomedical professionals have access to a huge amount of literature, but when they use a search engine, they often have to deal with too many documents to efficiently find the appropriate information in a reasonable time. In this perspective, question-answering (QA) engines are designed to display answers, which were automatically extracted from the retrieved documents. Standard QA engines in literature process a user question, then retrieve relevant documents and finally extract some possible answers out of these documents using various named-entity recognition processes. In our study, we try to answer complex genomics questions, which can be adequately answered only using Gene Ontology (GO) concepts. Such complex answers cannot be found using state-of-the-art dictionary- and redundancy-based QA engines. We compare the effectiveness of two dictionary-based classifiers for extracting correct GO answers from a large set of 100 retrieved abstracts per question. In the same way, we also investigate the power of GOCat, a GO supervised classifier. GOCat exploits the GOA database to propose GO concepts that were annotated by curators for similar abstracts. This approach is called deep QA, as it adds an original classification step, and exploits curated biological data to infer answers, which are not explicitly mentioned in the retrieved documents. We show that for complex answers such as protein functional descriptions, the redundancy phenomenon has a limited effect. Similarly usual dictionary-based approaches are relatively ineffective. In contrast, we demonstrate how existing curated data, beyond information extraction, can be exploited by a supervised classifier, such as GOCat, to massively improve both the quantity and the quality of the answers with a +100% improvement for both recall and precision. Database URL: http://eagl.unige.ch/DeepQA4PA/.

  15. Use of Annotations for Component and Framework Interoperability

    NASA Astrophysics Data System (ADS)

    David, O.; Lloyd, W.; Carlson, J.; Leavesley, G. H.; Geter, F.

    2009-12-01

    western United States at the USDA NRCS National Water and Climate Center. PRMS is a component based modular precipitation-runoff model developed to evaluate the impacts of various combinations of precipitation, climate, and land use on streamflow and general basin hydrology. The new OMS 3.0 PRMS model source code is more concise and flexible as a result of using the new framework’s annotation based approach. The fully annotated components are now providing information directly for (i) model assembly and building, (ii) dataflow analysis for implicit multithreading, (iii) automated and comprehensive model documentation of component dependencies, physical data properties, (iv) automated model and component testing, and (v) automated audit-traceability to account for all model resources leading to a particular simulation result. Experience to date has demonstrated the multi-purpose value of using annotations. Annotations are also a feasible and practical method to enable interoperability among models and modeling frameworks. As a prototype example, model code annotations were used to generate binding and mediation code to allow the use of OMS 3.0 model components within the OpenMI context.

  16. Openings

    PubMed Central

    Selwyn, Peter A.

    2015-01-01

    Reviewing his clinic patient schedule for the day, a physician reflects on the history of a young woman he has been caring for over the past 9 years. What starts out as a routine visit then turns into a unique opening for communication and connection. A chance glimpse out the window of the exam room leads to a deeper meditation on parenthood, survival, and healing, not only for the patient but also for the physician. How many missed opportunities have we all had, without even realizing it, to allow this kind of fleeting but profound opening? PMID:26195687

  17. Graphene for Biomedical Implants

    NASA Astrophysics Data System (ADS)

    Moore, Thomas; Podila, Ramakrishna; Alexis, Frank; Rao, Apparao; Clemson Bioengineering Team; Clemson Physics Team

    2013-03-01

    In this study, we used graphene, a one-atom thick sheet of carbon atoms, to modify the surfaces of existing implant materials to enhance both bio- and hemo-compatibility. This novel effort meets all functional criteria for a biomedical implant coating as it is chemically inert, atomically smooth and highly durable, with the potential for greatly enhancing the effectiveness of such implants. Specifically, graphene coatings on nitinol, a widely used implant and stent material, showed that graphene coated nitinol (Gr-NiTi) supports excellent smooth muscle and endothelial cell growth leading to better cell proliferation. We further determined that the serum albumin adsorption on Gr-NiTi is greater than that of fibrinogen, an important and well understood criterion for promoting a lower thrombosis rate. These hemo-and biocompatible properties and associated charge transfer mechanisms, along with high strength, chemical inertness and durability give graphene an edge over most antithrombogenic coatings for biomedical implants and devices.

  18. Biomedical applications of photochemistry.

    PubMed

    Chan, Barbara Pui

    2010-10-01

    Photochemistry is the study of photochemical reactions between light and molecules. Recently, there have been increasing interests in using photochemical reactions in the fields of biomaterials and tissue engineering. This work revisits the components and mechanisms of photochemistry and reviews biomedical applications of photochemistry in various disciplines, including oncology, molecular biology, and biosurgery, with particular emphasis on tissue engineering. Finally, potential toxicities and research opportunities in this field are discussed.

  19. Computational algorithms to predict Gene Ontology annotations

    PubMed Central

    2015-01-01

    Background Gene function annotations, which are associations between a gene and a term of a controlled vocabulary describing gene functional features, are of paramount importance in modern biology. Datasets of these annotations, such as the ones provided by the Gene Ontology Consortium, are used to design novel biological experiments and interpret their results. Despite their importance, these sources of information have some known issues. They are incomplete, since biological knowledge is far from being definitive and it rapidly evolves, and some erroneous annotations may be present. Since the curation process of novel annotations is a costly procedure, both in economical and time terms, computational tools that can reliably predict likely annotations, and thus quicken the discovery of new gene annotations, are very useful. Methods We used a set of computational algorithms and weighting schemes to infer novel gene annotations from a set of known ones. We used the latent semantic analysis approach, implementing two popular algorithms (Latent Semantic Indexing and Probabilistic Latent Semantic Analysis) and propose a novel method, the Semantic IMproved Latent Semantic Analysis, which adds a clustering step on the set of considered genes. Furthermore, we propose the improvement of these algorithms by weighting the annotations in the input set. Results We tested our methods and their weighted variants on the Gene Ontology annotation sets of three model organism genes (Bos taurus, Danio rerio and Drosophila melanogaster ). The methods showed their ability in predicting novel gene annotations and the weighting procedures demonstrated to lead to a valuable improvement, although the obtained results vary according to the dimension of the input annotation set and the considered algorithm. Conclusions Out of the three considered methods, the Semantic IMproved Latent Semantic Analysis is the one that provides better results. In particular, when coupled with a proper

  20. Biomedical accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Freeman, Stewart P. H. T.; Vogel, John S.

    1995-05-01

    Ultrasensitive SIMS with accelerator based spectrometers has recently begun to be applied to biomedical problems. Certain very long-lived radioisotopes of very low natural abundances can be used to trace metabolism at environmental dose levels ( [greater-or-equal, slanted] z mol in mg samples). 14C in particular can be employed to label a myriad of compounds. Competing technologies typically require super environmental doses that can perturb the system under investigation, followed by uncertain extrapolation to the low dose regime. 41Ca and 26Al are also used as elemental tracers. Given the sensitivity of the accelerator method, care must be taken to avoid contamination of the mass spectrometer and the apparatus employed in prior sample handling including chemical separation. This infant field comprises the efforts of a dozen accelerator laboratories. The Center for Accelerator Mass Spectrometry has been particularly active. In addition to collaborating with groups further afield, we are researching the kinematics and binding of genotoxins in-house, and we support innovative uses of our capability in the disciplines of chemistry, pharmacology, nutrition and physiology within the University of California. The field can be expected to grow further given the numerous potential applications and the efforts of several groups and companies to integrate more the accelerator technology into biomedical research programs; the development of miniaturized accelerator systems and ion sources capable of interfacing to conventional HPLC and GMC, etc. apparatus for complementary chemical analysis is anticipated for biomedical laboratories.

  1. The Biomedical Resource Ontology (BRO) to enable resource discovery in clinical and translational research.

    PubMed

    Tenenbaum, Jessica D; Whetzel, Patricia L; Anderson, Kent; Borromeo, Charles D; Dinov, Ivo D; Gabriel, Davera; Kirschner, Beth; Mirel, Barbara; Morris, Tim; Noy, Natasha; Nyulas, Csongor; Rubenson, David; Saxman, Paul R; Singh, Harpreet; Whelan, Nancy; Wright, Zach; Athey, Brian D; Becich, Michael J; Ginsburg, Geoffrey S; Musen, Mark A; Smith, Kevin A; Tarantal, Alice F; Rubin, Daniel L; Lyster, Peter

    2011-02-01

    The biomedical research community relies on a diverse set of resources, both within their own institutions and at other research centers. In addition, an increasing number of shared electronic resources have been developed. Without effective means to locate and query these resources, it is challenging, if not impossible, for investigators to be aware of the myriad resources available, or to effectively perform resource discovery when the need arises. In this paper, we describe the development and use of the Biomedical Resource Ontology (BRO) to enable semantic annotation and discovery of biomedical resources. We also describe the Resource Discovery System (RDS) which is a federated, inter-institutional pilot project that uses the BRO to facilitate resource discovery on the Internet. Through the RDS framework and its associated Biositemaps infrastructure, the BRO facilitates semantic search and discovery of biomedical resources, breaking down barriers and streamlining scientific research that will improve human health.

  2. The Biomedical Resource Ontology (BRO) to Enable Resource Discovery in Clinical and Translational Research

    PubMed Central

    Tenenbaum, Jessica D.; Whetzel, Patricia L.; Anderson, Kent; Borromeo, Charles D.; Dinov, Ivo D.; Gabriel, Davera; Kirschner, Beth; Mirel, Barbara; Morris, Tim; Noy, Natasha; Nyulas, Csongor; Rubenson, David; Saxman, Paul R.; Singh, Harpreet; Whelan, Nancy; Wright, Zach; Athey, Brian D.; Becich, Michael J.; Ginsburg, Geoffrey S.; Musen, Mark A.; Smith, Kevin A.; Tarantal, Alice F.; Rubin, Daniel L; Lyster, Peter

    2010-01-01

    The biomedical research community relies on a diverse set of resources, both within their own institutions and at other research centers. In addition, an increasing number of shared electronic resources have been developed. Without effective means to locate and query these resources, it is challenging, if not impossible, for investigators to be aware of the myriad resources available, or to effectively perform resource discovery when the need arises. In this paper, we describe the development and use of the Biomedical Resource Ontology (BRO) to enable semantic annotation and discovery of biomedical resources. We also describe the Resource Discovery System (RDS) which is a federated, inter-institutional pilot project that uses the BRO to facilitate resource discovery on the Internet. Through the RDS framework and its associated Biositemaps infrastructure, the BRO facilitates semantic search and discovery of biomedical resources, breaking down barriers and streamlining scientific research that will improve human health. PMID:20955817

  3. Leveraging the national cyberinfrastructure for biomedical research

    PubMed Central

    LeDuc, Richard; Vaughn, Matthew; Fonner, John M; Sullivan, Michael; Williams, James G; Blood, Philip D; Taylor, James; Barnett, William

    2014-01-01

    In the USA, the national cyberinfrastructure refers to a system of research supercomputer and other IT facilities and the high speed networks that connect them. These resources have been heavily leveraged by scientists in disciplines such as high energy physics, astronomy, and climatology, but until recently they have been little used by biomedical researchers. We suggest that many of the ‘Big Data’ challenges facing the medical informatics community can be efficiently handled using national-scale cyberinfrastructure. Resources such as the Extreme Science and Discovery Environment, the Open Science Grid, and Internet2 provide economical and proven infrastructures for Big Data challenges, but these resources can be difficult to approach. Specialized web portals, support centers, and virtual organizations can be constructed on these resources to meet defined computational challenges, specifically for genomics. We provide examples of how this has been done in basic biology as an illustration for the biomedical informatics community. PMID:23964072

  4. Author Keywords in Biomedical Journal Articles

    PubMed Central

    Névéol, Aurélie; Doğan, Rezarta Islamaj; Lu, Zhiyong

    2010-01-01

    As an information retrieval system, PubMed® aims at providing efficient access to documents cited in MEDLINE®. For this purpose, it relies on matching representations of documents, as provided by authors and indexers to user queries. In this paper, we describe the growth of author keywords in biomedical journal articles and present a comparative study of author keywords and MeSH® indexing terms assigned by MEDLINE indexers to PubMed Central Open Access articles. A similarity metric is used to assess automatically the relatedness between pairs of author keywords and indexing terms. A set of 300 pairs is manually reviewed to evaluate the metric and characterize the relationships between author keywords and indexing terms. Results show that author keywords are increasingly available in biomedical articles and that over 60% of author keywords can be linked to a closely related indexing term. Finally, we discuss the potential impact of this work on indexing and terminology development. PMID:21347036

  5. [Big data, medical language and biomedical terminology systems].

    PubMed

    Schulz, Stefan; López-García, Pablo

    2015-08-01

    A variety of rich terminology systems, such as thesauri, classifications, nomenclatures and ontologies support information and knowledge processing in health care and biomedical research. Nevertheless, human language, manifested as individually written texts, persists as the primary carrier of information, in the description of disease courses or treatment episodes in electronic medical records, and in the description of biomedical research in scientific publications. In the context of the discussion about big data in biomedicine, we hypothesize that the abstraction of the individuality of natural language utterances into structured and semantically normalized information facilitates the use of statistical data analytics to distil new knowledge out of textual data from biomedical research and clinical routine. Computerized human language technologies are constantly evolving and are increasingly ready to annotate narratives with codes from biomedical terminology. However, this depends heavily on linguistic and terminological resources. The creation and maintenance of such resources is labor-intensive. Nevertheless, it is sensible to assume that big data methods can be used to support this process. Examples include the learning of hierarchical relationships, the grouping of synonymous terms into concepts and the disambiguation of homonyms. Although clear evidence is still lacking, the combination of natural language technologies, semantic resources, and big data analytics is promising.

  6. TriAnnot: A Versatile and High Performance Pipeline for the Automated Annotation of Plant Genomes

    PubMed Central

    Leroy, Philippe; Guilhot, Nicolas; Sakai, Hiroaki; Bernard, Aurélien; Choulet, Frédéric; Theil, Sébastien; Reboux, Sébastien; Amano, Naoki; Flutre, Timothée; Pelegrin, Céline; Ohyanagi, Hajime; Seidel, Michael; Giacomoni, Franck; Reichstadt, Mathieu; Alaux, Michael; Gicquello, Emmanuelle; Legeai, Fabrice; Cerutti, Lorenzo; Numa, Hisataka; Tanaka, Tsuyoshi; Mayer, Klaus; Itoh, Takeshi; Quesneville, Hadi; Feuillet, Catherine

    2012-01-01

    In support of the international effort to obtain a reference sequence of the bread wheat genome and to provide plant communities dealing with large and complex genomes with a versatile, easy-to-use online automated tool for annotation, we have developed the TriAnnot pipeline. Its modular architecture allows for the annotation and masking of transposable elements, the structural, and functional annotation of protein-coding genes with an evidence-based quality indexing, and the identification of conserved non-coding sequences and molecular markers. The TriAnnot pipeline is parallelized on a 712 CPU computing cluster that can run a 1-Gb sequence annotation in less than 5 days. It is accessible through a web interface for small scale analyses or through a server for large scale annotations. The performance of TriAnnot was evaluated in terms of sensitivity, specificity, and general fitness using curated reference sequence sets from rice and wheat. In less than 8 h, TriAnnot was able to predict more than 83% of the 3,748 CDS from rice chromosome 1 with a fitness of 67.4%. On a set of 12 reference Mb-sized contigs from wheat chromosome 3B, TriAnnot predicted and annotated 93.3% of the genes among which 54% were perfectly identified in accordance with the reference annotation. It also allowed the curation of 12 genes based on new biological evidences, increasing the percentage of perfect gene prediction to 63%. TriAnnot systematically showed a higher fitness than other annotation pipelines that are not improved for wheat. As it is easily adaptable to the annotation of other plant genomes, TriAnnot should become a useful resource for the annotation of large and complex genomes in the future. PMID:22645565

  7. Using ontology-based annotation to profile disease research

    PubMed Central

    Coulet, Adrien; LePendu, Paea; Shah, Nigam H

    2012-01-01

    Background Profiling the allocation and trend of research activity is of interest to funding agencies, administrators, and researchers. However, the lack of a common classification system hinders the comprehensive and systematic profiling of research activities. This study introduces ontology-based annotation as a method to overcome this difficulty. Analyzing over a decade of funding data and publication data, the trends of disease research are profiled across topics, across institutions, and over time. Results This study introduces and explores the notions of research sponsorship and allocation and shows that leaders of research activity can be identified within specific disease areas of interest, such as those with high mortality or high sponsorship. The funding profiles of disease topics readily cluster themselves in agreement with the ontology hierarchy and closely mirror the funding agency priorities. Finally, four temporal trends are identified among research topics. Conclusions This work utilizes disease ontology (DO)-based annotation to profile effectively the landscape of biomedical research activity. By using DO in this manner a use-case driven mechanism is also proposed to evaluate the utility of classification hierarchies. PMID:22494789

  8. The Gene Wiki: community intelligence applied to human gene annotation.

    PubMed

    Huss, Jon W; Lindenbaum, Pierre; Martone, Michael; Roberts, Donabel; Pizarro, Angel; Valafar, Faramarz; Hogenesch, John B; Su, Andrew I

    2010-01-01

    Annotating the function of all human genes is a critical, yet formidable, challenge. Current gene annotation efforts focus on centralized curation resources, but it is increasingly clear that this approach does not scale with the rapid growth of the biomedical literature. The Gene Wiki utilizes an alternative and complementary model based on the principle of community intelligence. Directly integrated within the online encyclopedia, Wikipedia, the goal of this effort is to build a gene-specific review article for every gene in the human genome, where each article is collaboratively written, continuously updated and community reviewed. Previously, we described the creation of Gene Wiki 'stubs' for approximately 9000 human genes. Here, we describe ongoing systematic improvements to these articles to increase their utility. Moreover, we retrospectively examine the community usage and improvement of the Gene Wiki, providing evidence of a critical mass of users and editors. Gene Wiki articles are freely accessible within the Wikipedia web site, and additional links and information are available at http://en.wikipedia.org/wiki/Portal:Gene_Wiki.

  9. Openness as infrastructure

    PubMed Central

    2011-01-01

    The advent of open access to peer reviewed scholarly literature in the biomedical sciences creates the opening to examine scholarship in general, and chemistry in particular, to see where and how novel forms of network technology can accelerate the scientific method. This paper examines broad trends in information access and openness with an eye towards their applications in chemistry. PMID:21999327

  10. NIH Funding for Biomedical Imaging

    NASA Astrophysics Data System (ADS)

    Conroy, Richard

    Biomedical imaging, and in particular MRI and CT, is often identified as among the top 10 most significant advances in healthcare in the 20th century. This presentation will describe some of the recent advances in medical physics and imaging being funded by NIH in this century and current funding opportunities. The presentation will also highlight the role of multidisciplinary research in bringing concepts from the physical sciences and applying them to challenges in biological and biomedical research.. NIH Funding for Biomedical Imaging.

  11. Biomedical systems analysis program

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Biomedical monitoring programs which were developed to provide a system analysis context for a unified hypothesis for adaptation to space flight are presented and discussed. A real-time system of data analysis and decision making to assure the greatest possible crew safety and mission success is described. Information about man's abilities, limitations, and characteristic reactions to weightless space flight was analyzed and simulation models were developed. The predictive capabilities of simulation models for fluid-electrolyte regulation, erythropoiesis regulation, and calcium regulation are discussed.

  12. 78 FR 76843 - National Institute of Biomedical Imaging and Bioengineering (NIBIB) Announcement of Requirements...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-19

    ...The National Institute of Biomedical Imaging and Bioengineering (NIBIB) DEBUT Challenge is open to teams of undergraduate students working on projects that develop innovative solutions to unmet health and clinical problems. NIBIB's mission is to improve health by leading the development and accelerating the application of biomedical technologies. The goals of the DEBUT Challenge are (1) to......

  13. 78 FR 28292 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-14

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Research and Development and Clinical Science Research and Development Services Scientific Merit Review... areas of biomedical, behavioral and clinical science research. The panel meetings will be open to...

  14. 77 FR 20489 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-04

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Biomedical Laboratory Research and Development and Clinical Science Research and Development Services... science research. The panel meetings will be open to the public for approximately one-half hour at...

  15. 77 FR 64598 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-22

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Biomedical Laboratory Research and Development and Clinical Science Research and Development Services..., behavioral and clinical science research. The panel meetings will be open to the public for approximately...

  16. 76 FR 24974 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-03

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... following four panels of the Joint Biomedical Laboratory Research and Development and Clinical Science... clinical science research. The panel meetings will be open to the public for approximately one hour at...

  17. 77 FR 26069 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-02

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... following three panels of the Joint Biomedical Laboratory Research and Development and Clinical Science..., behavioral and clinical science research. The panel meetings will be open to the public for approximately...

  18. Nuclear microscopy: biomedical applications

    NASA Astrophysics Data System (ADS)

    Watt, Frank; Landsberg, Judith P.

    1993-05-01

    Recent developments in high energy ion beam techniques and technology have enabled the scanning proton microprobe (SPM) to make advances in biomedical research. In particular the combination of proton induced X-ray emission (PIXE) to measure the elemental concentrations of inorganic elements, Rutherford backscattering spectrometry (RBS) to characterise the organic matrix, and scanning transmission ion microscopy (STIM) to provide information on the density and structure of the sample, represents a powerful set of techniques which can be applied simultaneously to the specimen under investigation. This paper reviews briefly the biomedical work using the proton microprobe that has been carried out since the 2nd Int. Conf. on Nuclear Microprobe Technology and Applications held in Melbourne, 1990. Three recent and diverse examples of medical research are also presented from work carried out using the Oxford SPM. The first is a preliminary experiment carried out using human hair as a monitor for potential toxicity, using PIXE elemental mapping across the hair cross section to differentiate between elements contained within the hair and contamination from external sources. The second example is in the use of STIM to map individual cells in freeze-dried tissue, showing the possibility of the in situ microanalysis of cells and their extracellular environment. The third is the use of PIXE, RBS and STIM to identify and analyse the elemental constituents of neuritic plaque cores in untreated freeze-dried Alzheimer's tissue. This work resolves a current controversy by revealing an absence of aluminium levels in plaque cores at the 15 ppm level.

  19. Biomedical applications of nisin.

    PubMed

    Shin, J M; Gwak, J W; Kamarajan, P; Fenno, J C; Rickard, A H; Kapila, Y L

    2016-06-01

    Nisin is a bacteriocin produced by a group of Gram-positive bacteria that belongs to Lactococcus and Streptococcus species. Nisin is classified as a Type A (I) lantibiotic that is synthesized from mRNA and the translated peptide contains several unusual amino acids due to post-translational modifications. Over the past few decades, nisin has been used widely as a food biopreservative. Since then, many natural and genetically modified variants of nisin have been identified and studied for their unique antimicrobial properties. Nisin is FDA approved and generally regarded as a safe peptide with recognized potential for clinical use. Over the past two decades the application of nisin has been extended to biomedical fields. Studies have reported that nisin can prevent the growth of drug-resistant bacterial strains, such as methicillin-resistant Staphylococcus aureus, Streptococcus pneumoniae, Enterococci and Clostridium difficile. Nisin has now been shown to have antimicrobial activity against both Gram-positive and Gram-negative disease-associated pathogens. Nisin has been reported to have anti-biofilm properties and can work synergistically in combination with conventional therapeutic drugs. In addition, like host-defence peptides, nisin may activate the adaptive immune response and have an immunomodulatory role. Increasing evidence indicates that nisin can influence the growth of tumours and exhibit selective cytotoxicity towards cancer cells. Collectively, the application of nisin has advanced beyond its role as a food biopreservative. Thus, this review will describe and compare studies on nisin and provide insight into its future biomedical applications.

  20. Biomedical Interdisciplinary Curriculum Project: BIP (Biomedical Instrumentation Package) User's Manual.

    ERIC Educational Resources Information Center

    Biomedical Interdisciplinary Curriculum Project, Berkeley, CA.

    Described is the Biomedical Instrument Package (BIP) and its use. The BIP was developed for use in understanding colorimetry, sound, electricity, and bioelectric phenomena. It can also be used in a wide range of measurements such as current, voltage, resistance, temperature, and pH. Though it was developed primarily for use in biomedical science…

  1. Nanoporous materials for biomedical devices.

    SciTech Connect

    Adiga, S. P.; Curtiss, L. A.; Elam, J. W.; Pellin, M. J.; Shih, C.-C.; Shin, C.-M.; Lin, S.-J.; Su, Y.-Y.; Gittard, S. D.; Zhang, J.; Narayan, R. J.; National Yang-Ming Univ.; Taipei Medical Univ.; Univ. of North Carolina at Chapel Hill

    2008-01-01

    Nanoporous materials are currently being developed for use in implantable drug delivery systems, bioartificial organs, and other novel medical devices. Advances in nanofabrication have made it possible to precisely control the pore size, pore distribution, porosity, and chemical properties of pores in nanoporous materials. As a result, these materials are attractive for regulating and sensing transport at the molecular level. In this work, the use of nanoporous membranes for biomedical applications is reviewed. The basic concepts underlying membrane transport are presented in the context of design considerations for efficient size sorting. Desirable properties of nanoporous membranes used in implantable devices, including biocompatibility and antibiofouling behavior, are also discussed. In addition, the use of surface modification techniques to improve the function of nanoporous membranes is reviewed. An intriguing possibility involves functionalizing nanoporous materials with smart polymers in order to modulate biomolecular transport in response to pH, temperature, ionic concentration, or other stimuli. These efforts open up avenues to develop smart medical devices that respond to specific physiological conditions.

  2. Developing biomedical ontologies collaboratively.

    PubMed

    Noy, Natalya F; Tudorache, Tania; de Coronado, Sherri; Musen, Mark A

    2008-01-01

    The development of ontologies that define entities and relationships among them has become essential for modern work in biomedicine. Ontologies are becoming so large in their coverage that no single centralized group of people can develop them effectively and ontology development becomes a community-based enterprise. In this paper we present Collaborative Protégé-a prototype tool that supports many aspects of community-based development, such as discussions integrated with ontology-editing process, chats, and annotation of changes. We have evaluated Collaborative Protégé in the context of the NCI Thesaurus development. Users have found the tool effective for carrying out discussions and recording design rationale. PMID:18998901

  3. Annotated Catalog of Bilingual Vocational Training Materials.

    ERIC Educational Resources Information Center

    Miranda (L.) and Associates, Bethesda, MD.

    This catalog contains annotations for 170 bilingual vocational training materials. Most of the materials are written in English, but materials written in 13 source languages and directed toward speakers of 17 target languages are provided. Annotations are provided for the following different types of documents: administrative, assessment and…

  4. Re-Entry Women: Annotated Bibliography.

    ERIC Educational Resources Information Center

    Porterfield, Patricia Lamb

    This is an annotated bibliography on topics related to reentry women. Topic categories include general and administrative issues, programs and services, needs assessment and evaluation, counseling and personal development, career planning and job placement, curriculum and instruction, admissions and recruiting, and financial aid. Annotations cite…

  5. Citizen Participation in Education: Annotated Bibliography.

    ERIC Educational Resources Information Center

    Davies, Don

    The emphasis in this annotated bibliography is citizen participation in education in the areas of decision making, policy development, and school governance. The focus is on the public school and school system rather than on private and parochial schools. One hundred fifty books, parts of books, and published reports are annotated, together with…

  6. Public School Choice: A Selected Annotated Bibliography.

    ERIC Educational Resources Information Center

    Crohn, Leslie; Hansen, Kenneth H.

    This annotated bibliography offers a sampling of a wide variety of viewpoints on the topic of school choice. Fourteen references selected for annotation, ranging from a 3-page journal article to a 266-page book, are listed at the beginning of the bibliography. Among the viewpoints that different authors represent are the following: (1) unlimited…

  7. Assisted annotation of medical free text using RapTAT

    PubMed Central

    Gobbel, Glenn T; Garvin, Jennifer; Reeves, Ruth; Cronin, Robert M; Heavirland, Julia; Williams, Jenifer; Weaver, Allison; Jayaramaraja, Shrimalini; Giuse, Dario; Speroff, Theodore; Brown, Steven H; Xu, Hua; Matheny, Michael E

    2014-01-01

    Objective To determine whether assisted annotation using interactive training can reduce the time required to annotate a clinical document corpus without introducing bias. Materials and methods A tool, RapTAT, was designed to assist annotation by iteratively pre-annotating probable phrases of interest within a document, presenting the annotations to a reviewer for correction, and then using the corrected annotations for further machine learning-based training before pre-annotating subsequent documents. Annotators reviewed 404 clinical notes either manually or using RapTAT assistance for concepts related to quality of care during heart failure treatment. Notes were divided into 20 batches of 19–21 documents for iterative annotation and training. Results The number of correct RapTAT pre-annotations increased significantly and annotation time per batch decreased by ∼50% over the course of annotation. Annotation rate increased from batch to batch for assisted but not manual reviewers. Pre-annotation F-measure increased from 0.5 to 0.6 to >0.80 (relative to both assisted reviewer and reference annotations) over the first three batches and more slowly thereafter. Overall inter-annotator agreement was significantly higher between RapTAT-assisted reviewers (0.89) than between manual reviewers (0.85). Discussion The tool reduced workload by decreasing the number of annotations needing to be added and helping reviewers to annotate at an increased rate. Agreement between the pre-annotations and reference standard, and agreement between the pre-annotations and assisted annotations, were similar throughout the annotation process, which suggests that pre-annotation did not introduce bias. Conclusions Pre-annotations generated by a tool capable of interactive training can reduce the time required to create an annotated document corpus by up to 50%. PMID:24431336

  8. High performance flexible electronics for biomedical devices.

    PubMed

    Salvatore, Giovanni A; Munzenrieder, Niko; Zysset, Christoph; Kinkeldei, Thomas; Petti, Luisa; Troster, Gerhard

    2014-01-01

    Plastic electronics is soft, deformable and lightweight and it is suitable for the realization of devices which can form an intimate interface with the body, be implanted or integrated into textile for wearable and biomedical applications. Here, we present flexible electronics based on amorphous oxide semiconductors (a-IGZO) whose performance can achieve MHz frequency even when bent around hair. We developed an assembly technique to integrate complex electronic functionalities into textile while preserving the softness of the garment. All this and further developments can open up new opportunities in health monitoring, biotechnology and telemedicine.

  9. Community-based Ontology Development, Annotation and Discussion with MediaWiki extension Ontokiwi and Ontokiwi-based Ontobedia.

    PubMed

    Ong, Edison; He, Yongqun

    2016-01-01

    Hundreds of biological and biomedical ontologies have been developed to support data standardization, integration and analysis. Although ontologies are typically developed for community usage, community efforts in ontology development are limited. To support ontology visualization, distribution, and community-based annotation and development, we have developed Ontokiwi, an ontology extension to the MediaWiki software. Ontokiwi displays hierarchical classes and ontological axioms. Ontology classes and axioms can be edited and added using Ontokiwi form or MediaWiki source editor. Ontokiwi also inherits MediaWiki features such as Wikitext editing and version control. Based on the Ontokiwi/MediaWiki software package, we have developed Ontobedia, which targets to support community-based development and annotations of biological and biomedical ontologies. As demonstrations, we have loaded the Ontology of Adverse Events (OAE) and the Cell Line Ontology (CLO) into Ontobedia. Our studies showed that Ontobedia was able to achieve expected Ontokiwi features. PMID:27570653

  10. Community-based Ontology Development, Annotation and Discussion with MediaWiki extension Ontokiwi and Ontokiwi-based Ontobedia

    PubMed Central

    Ong, Edison; He, Yongqun

    2016-01-01

    Hundreds of biological and biomedical ontologies have been developed to support data standardization, integration and analysis. Although ontologies are typically developed for community usage, community efforts in ontology development are limited. To support ontology visualization, distribution, and community-based annotation and development, we have developed Ontokiwi, an ontology extension to the MediaWiki software. Ontokiwi displays hierarchical classes and ontological axioms. Ontology classes and axioms can be edited and added using Ontokiwi form or MediaWiki source editor. Ontokiwi also inherits MediaWiki features such as Wikitext editing and version control. Based on the Ontokiwi/MediaWiki software package, we have developed Ontobedia, which targets to support community-based development and annotations of biological and biomedical ontologies. As demonstrations, we have loaded the Ontology of Adverse Events (OAE) and the Cell Line Ontology (CLO) into Ontobedia. Our studies showed that Ontobedia was able to achieve expected Ontokiwi features. PMID:27570653

  11. Crowdsourcing image annotation for nucleus detection and segmentation in computational pathology: evaluating experts, automated methods, and the crowd.

    PubMed

    Irshad, H; Montaser-Kouhsari, L; Waltz, G; Bucur, O; Nowak, J A; Dong, F; Knoblauch, N W; Beck, A H

    2015-01-01

    The development of tools in computational pathology to assist physicians and biomedical scientists in the diagnosis of disease requires access to high-quality annotated images for algorithm learning and evaluation. Generating high-quality expert-derived annotations is time-consuming and expensive. We explore the use of crowdsourcing for rapidly obtaining annotations for two core tasks in com- putational pathology: nucleus detection and nucleus segmentation. We designed and implemented crowdsourcing experiments using the CrowdFlower platform, which provides access to a large set of labor channel partners that accesses and manages millions of contributors worldwide. We obtained annotations from four types of annotators and compared concordance across these groups. We obtained: crowdsourced annotations for nucleus detection and segmentation on a total of 810 images; annotations using automated methods on 810 images; annotations from research fellows for detection and segmentation on 477 and 455 images, respectively; and expert pathologist-derived annotations for detection and segmentation on 80 and 63 images, respectively. For the crowdsourced annotations, we evaluated performance across a range of contributor skill levels (1, 2, or 3). The crowdsourced annotations (4,860 images in total) were completed in only a fraction of the time and cost required for obtaining annotations using traditional methods. For the nucleus detection task, the research fellow-derived annotations showed the strongest concordance with the expert pathologist- derived annotations (F-M =93.68%), followed by the crowd-sourced contributor levels 1,2, and 3 and the automated method, which showed relatively similar performance (F-M = 87.84%, 88.49%, 87.26%, and 86.99%, respectively). For the nucleus segmentation task, the crowdsourced contributor level 3-derived annotations, research fellow-derived annotations, and automated method showed the strongest concordance with the expert pathologist

  12. Proteogenomics: the needs and roles to be filled by proteomics in genome annotation

    SciTech Connect

    Ansong, Charles; Purvine, Samuel O.; Adkins, Joshua N.; Lipton, Mary S.; Smith, Richard D.

    2008-01-01

    While genome sequencing efforts reveal the basic building blocks of life, a genome sequence alone is insufficient for elucidating biological function. Genome annotation – the process of identifying genes and assigning function to each gene in a genome sequence – provides the means to elucidate biological function from sequence. Current state-of-the-art high throughput genome annotation uses a combination of comparative (sequence similarity data) and non-comparative (ab initio gene prediction algorithms) methods to identify open reading frames in genome sequences. Because approaches used to validate the presence of these open reading frames are typically based on the information derived from the annotated genomes, they cannot independently and unequivocally determine whether a predicted open reading frame is translated into a protein. With the ability to directly measure peptides arising from expressed proteins, high throughput liquid chromatography-tandem mass spectrometry-based proteomics, approaches can be used to verify coding regions of a genomic sequence. Here, we highlight several ways in which high throughput tandem mass spectrometry-based proteomics can improve the quality of genome annotations and suggest that it could be efficiently applied during the initial gene calling process so that the improvements are propagated through the subsequent functional annotation process.

  13. Facilitating functional annotation of chicken microarray data

    PubMed Central

    2009-01-01

    Background Modeling results from chicken microarray studies is challenging for researchers due to little functional annotation associated with these arrays. The Affymetrix GenChip chicken genome array, one of the biggest arrays that serve as a key research tool for the study of chicken functional genomics, is among the few arrays that link gene products to Gene Ontology (GO). However the GO annotation data presented by Affymetrix is incomplete, for example, they do not show references linked to manually annotated functions. In addition, there is no tool that facilitates microarray researchers to directly retrieve functional annotations for their datasets from the annotated arrays. This costs researchers amount of time in searching multiple GO databases for functional information. Results We have improved the breadth of functional annotations of the gene products associated with probesets on the Affymetrix chicken genome array by 45% and the quality of annotation by 14%. We have also identified the most significant diseases and disorders, different types of genes, and known drug targets represented on Affymetrix chicken genome array. To facilitate functional annotation of other arrays and microarray experimental datasets we developed an Array GO Mapper (AGOM) tool to help researchers to quickly retrieve corresponding functional information for their dataset. Conclusion Results from this study will directly facilitate annotation of other chicken arrays and microarray experimental datasets. Researchers will be able to quickly model their microarray dataset into more reliable biological functional information by using AGOM tool. The disease, disorders, gene types and drug targets revealed in the study will allow researchers to learn more about how genes function in complex biological systems and may lead to new drug discovery and development of therapies. The GO annotation data generated will be available for public use via AgBase website and will be updated on regular

  14. Professional Identification for Biomedical Engineers

    ERIC Educational Resources Information Center

    Long, Francis M.

    1973-01-01

    Discusses four methods of professional identification in biomedical engineering including registration, certification, accreditation, and possible membership qualification of the societies. Indicates that the destiny of the biomedical engineer may be under the control of a new profession, neither the medical nor the engineering. (CC)

  15. Biomedical Knowledge and Clinical Expertise.

    ERIC Educational Resources Information Center

    Boshuizen, Henny P. A.; Schmidt, Henk G.

    A study examined the application and availability of clinical and biomedical knowledge in the clinical reasoning of physicians as well as possible mechanisms responsible for changes in the organization of clinical and biomedical knowledge in the development from novice to expert. Subjects were 28 students (10 second year, 8 fourth year, and 10…

  16. Ordinal symbolic analysis and its application to biomedical recordings

    PubMed Central

    Amigó, José M.; Keller, Karsten; Unakafova, Valentina A.

    2015-01-01

    Ordinal symbolic analysis opens an interesting and powerful perspective on time-series analysis. Here, we review this relatively new approach and highlight its relation to symbolic dynamics and representations. Our exposition reaches from the general ideas up to recent developments, with special emphasis on its applications to biomedical recordings. The latter will be illustrated with epilepsy data. PMID:25548264

  17. Data Mining Algorithms for Classification of Complex Biomedical Data

    ERIC Educational Resources Information Center

    Lan, Liang

    2012-01-01

    In my dissertation, I will present my research which contributes to solve the following three open problems from biomedical informatics: (1) Multi-task approaches for microarray classification; (2) Multi-label classification of gene and protein prediction from multi-source biological data; (3) Spatial scan for movement data. In microarray…

  18. Large-scale annotation of small-molecule libraries using public databases.

    PubMed

    Zhou, Yingyao; Zhou, Bin; Chen, Kaisheng; Yan, S Frank; King, Frederick J; Jiang, Shumei; Winzeler, Elizabeth A

    2007-01-01

    While many large publicly accessible databases provide excellent annotation for biological macromolecules, the same is not true for small chemical compounds. Commercial data sources also fail to encompass an annotation interface for large numbers of compounds and tend to be cost prohibitive to be widely available to biomedical researchers. Therefore, using annotation information for the selection of lead compounds from a modern day high-throughput screening (HTS) campaign presently occurs only under a very limited scale. The recent rapid expansion of the NIH PubChem database provides an opportunity to link existing biological databases with compound catalogs and provides relevant information that potentially could improve the information garnered from large-scale screening efforts. Using the 2.5 million compound collection at the Genomics Institute of the Novartis Research Foundation (GNF) as a model, we determined that approximately 4% of the library contained compounds with potential annotation in such databases as PubChem and the World Drug Index (WDI) as well as related databases such as the Kyoto Encyclopedia of Genes and Genomes (KEGG) and ChemIDplus. Furthermore, the exact structure match analysis showed 32% of GNF compounds can be linked to third party databases via PubChem. We also showed annotations such as MeSH (medical subject headings) terms can be applied to in-house HTS databases in identifying signature biological inhibition profiles of interest as well as expediting the assay validation process. The automated annotation of thousands of screening hits in batch is becoming feasible and has the potential to play an essential role in the hit-to-lead decision making process.

  19. Biomedical informatics and translational medicine.

    PubMed

    Sarkar, Indra Neil

    2010-01-01

    Biomedical informatics involves a core set of methodologies that can provide a foundation for crossing the "translational barriers" associated with translational medicine. To this end, the fundamental aspects of biomedical informatics (e.g., bioinformatics, imaging informatics, clinical informatics, and public health informatics) may be essential in helping improve the ability to bring basic research findings to the bedside, evaluate the efficacy of interventions across communities, and enable the assessment of the eventual impact of translational medicine innovations on health policies. Here, a brief description is provided for a selection of key biomedical informatics topics (Decision Support, Natural Language Processing, Standards, Information Retrieval, and Electronic Health Records) and their relevance to translational medicine. Based on contributions and advancements in each of these topic areas, the article proposes that biomedical informatics practitioners ("biomedical informaticians") can be essential members of translational medicine teams. PMID:20187952

  20. Biomedical informatics and translational medicine

    PubMed Central

    2010-01-01

    Biomedical informatics involves a core set of methodologies that can provide a foundation for crossing the "translational barriers" associated with translational medicine. To this end, the fundamental aspects of biomedical informatics (e.g., bioinformatics, imaging informatics, clinical informatics, and public health informatics) may be essential in helping improve the ability to bring basic research findings to the bedside, evaluate the efficacy of interventions across communities, and enable the assessment of the eventual impact of translational medicine innovations on health policies. Here, a brief description is provided for a selection of key biomedical informatics topics (Decision Support, Natural Language Processing, Standards, Information Retrieval, and Electronic Health Records) and their relevance to translational medicine. Based on contributions and advancements in each of these topic areas, the article proposes that biomedical informatics practitioners ("biomedical informaticians") can be essential members of translational medicine teams. PMID:20187952

  1. Accessing Biomedical Literature in the Current Information Landscape

    PubMed Central

    Khare, Ritu; Leaman, Robert; Lu, Zhiyong

    2015-01-01

    i. Summary Biomedical and life sciences literature is unique because of its exponentially increasing volume and interdisciplinary nature. Biomedical literature access is essential for several types of users including biomedical researchers, clinicians, database curators, and bibliometricians. In the past few decades, several online search tools and literature archives, generic as well as biomedicine-specific, have been developed. We present this chapter in the light of three consecutive steps of literature access: searching for citations, retrieving full-text, and viewing the article. The first section presents the current state of practice of biomedical literature access, including an analysis of the search tools most frequently used by the users, including PubMed, Google Scholar, Web of Science, Scopus, and Embase, and a study on biomedical literature archives such as PubMed Central. The next section describes current research and the state-of-the-art systems motivated by the challenges a user faces during query formulation and interpretation of search results. The research solutions are classified into five key areas related to text and data mining, text similarity search, semantic search, query support, relevance ranking, and clustering results. Finally, the last section describes some predicted future trends for improving biomedical literature access, such as searching and reading articles on portable devices, and adoption of the open access policy. PMID:24788259

  2. Skylab biomedical hardware development

    NASA Technical Reports Server (NTRS)

    Huffstetler, W. J., Jr.; Lem, J. D.

    1974-01-01

    The development of hardware to support biomedical experimentation and operations in the Skylab vehicle presented unique technical problems. Designs were required to enable the accurate measurement of many varied physiological parameters and to compensate for zero g such that uninhibited equipment operation would be possible. Because of problems that occurred during the orbital workshop launch, special tests were run and new equipment was designed and built for use by the first Skylab crew. Design concepts used in the development of hardware to support cardiovascular, pulmonary, vestibular, body, and specimen mass measuring experiments are discussed. Additionally, major problem areas and the corresponding design solutions, as well as knowledge gained that will be pertinent for future life sciences hardware development, are presented.

  3. [Bonferroni in biomedical research].

    PubMed

    Assennato, G; Bruzzi, P

    2002-01-01

    The statistical methods for multiple comparisons are described in the paper. The pros and cons of Bonferroni correction versus more recent methods such as Holm correction are outlined. The lack of scientific consensus on the methods to be used in the different areas of biomedical research is shown by the disagreements, often quite harsh, between different statisticians. The papers presented at the meeting held in September 2001 in memory of Carlo Emilio Bonferroni, Rector of the Istituto Superiore di Scienze Economiche e Commerciali di Bari from 1925 to 1933 are summarized. In the meeting there was the historical reconstruction of the Bonferroni correction, from Boole (1850) to Olive Dunn (1959). In the meeting there was also a presentation concerning Bonferroni's ideas (he was a moderate frequentist) in the field of probability, appreciated even by a strong Bayesian such as de Finetti in his memorial talk given in 1961, one year after Bonferroni's death.

  4. Biomedical studies by PIXE

    NASA Astrophysics Data System (ADS)

    Afarideh, H.; Amirabadi, A.; Hadji-Saeid, S. M.; Mansourian, N.; Kaviani, K.; Zibafar, E.

    1996-04-01

    In the present biomedical research, PIXE a powerful technique for elemental analysis was employed to illustrate the importance of multi-elemental determination of serum trace elements in two cases of great medical interest. Those are evaluation of the desferroxamine drug (DPO), a widely used therapy for patient with β-thalassemia-Major (β-thal-M), and investigation of elemental variations in blood-serum in hyperbilirubinamia new-borns before and after blood transfusion (BT). The purpose of the work is to demonstrate the various aspects of PIXE analysis by some practical examples as well as to draw some general conclusions regarding the cure of those patients with the above mentioned disorders or diseases. To present in details each case, we divide the paper in two parts: part 1 and part 2 to consider the experimental procedure as well as the results individually.

  5. Linking Disparate Datasets of the Earth Sciences with the SemantEco Annotator

    NASA Astrophysics Data System (ADS)

    Seyed, P.; Chastain, K.; McGuinness, D. L.

    2013-12-01

    library of vocabularies to assist the user in locating terms to describe observed entities, their properties, and relationships. The Annotator leverages vocabulary definitions of these concepts to guide the user in describing data in a logically consistent manner. The vocabularies made available through the Annotator are open, as is the Annotator itself. We have taken a step towards making semantic annotation/translation of data more accessible. Our vision for the Annotator is as a tool that can be integrated into a semantic data 'workbench' environment, which would allow semantic annotation of a variety of data formats, using standard vocabularies. These vocabularies involved enable search for similar datasets, and integration with any semantically-enabled applications for analysis and visualization.

  6. Extracting semantically enriched events from biomedical literature

    PubMed Central

    2012-01-01

    Background Research into event-based text mining from the biomedical literature has been growing in popularity to facilitate the development of advanced biomedical text mining systems. Such technology permits advanced search, which goes beyond document or sentence-based retrieval. However, existing event-based systems typically ignore additional information within the textual context of events that can determine, amongst other things, whether an event represents a fact, hypothesis, experimental result or analysis of results, whether it describes new or previously reported knowledge, and whether it is speculated or negated. We refer to such contextual information as meta-knowledge. The automatic recognition of such information can permit the training of systems allowing finer-grained searching of events according to the meta-knowledge that is associated with them. Results Based on a corpus of 1,000 MEDLINE abstracts, fully manually annotated with both events and associated meta-knowledge, we have constructed a machine learning-based system that automatically assigns meta-knowledge information to events. This system has been integrated into EventMine, a state-of-the-art event extraction system, in order to create a more advanced system (EventMine-MK) that not only extracts events from text automatically, but also assigns five different types of meta-knowledge to these events. The meta-knowledge assignment module of EventMine-MK performs with macro-averaged F-scores in the range of 57-87% on the BioNLP’09 Shared Task corpus. EventMine-MK has been evaluated on the BioNLP’09 Shared Task subtask of detecting negated and speculated events. Our results show that EventMine-MK can outperform other state-of-the-art systems that participated in this task. Conclusions We have constructed the first practical system that extracts both events and associated, detailed meta-knowledge information from biomedical literature. The automatically assigned meta-knowledge information

  7. TEES 2.2: Biomedical Event Extraction for Diverse Corpora

    PubMed Central

    2015-01-01

    Background The Turku Event Extraction System (TEES) is a text mining program developed for the extraction of events, complex biomedical relationships, from scientific literature. Based on a graph-generation approach, the system detects events with the use of a rich feature set built via dependency parsing. The TEES system has achieved record performance in several of the shared tasks of its domain, and continues to be used in a variety of biomedical text mining tasks. Results The TEES system was quickly adapted to the BioNLP'13 Shared Task in order to provide a public baseline for derived systems. An automated approach was developed for learning the underlying annotation rules of event type, allowing immediate adaptation to the various subtasks, and leading to a first place in four out of eight tasks. The system for the automated learning of annotation rules is further enhanced in this paper to the point of requiring no manual adaptation to any of the BioNLP'13 tasks. Further, the scikit-learn machine learning library is integrated into the system, bringing a wide variety of machine learning methods usable with TEES in addition to the default SVM. A scikit-learn ensemble method is also used to analyze the importances of the features in the TEES feature sets. Conclusions The TEES system was introduced for the BioNLP'09 Shared Task and has since then demonstrated good performance in several other shared tasks. By applying the current TEES 2.2 system to multiple corpora from these past shared tasks an overarching analysis of the most promising methods and possible pitfalls in the evolving field of biomedical event extraction are presented. PMID:26551925

  8. dictyBase 2015: Expanding data and annotations in a new software environment

    PubMed Central

    Jimenez-Morales, David; Dodson, Robert J.; Chisholm, Rex L.

    2015-01-01

    dictyBase is the model organism database for the social amoeba Dictyostelium discoideum and related species. The primary mission of dictyBase is to provide the biomedical research community with well-integrated high quality data, and tools that enable original research. Data presented at dictyBase is obtained from sequencing centers, groups performing high throughput experiments such as large-scale mutagenesis studies, and RNAseq data, as well as a growing number of manually added functional gene annotations from the published literature, including Gene Ontology, strain, and phenotype annotations. Through the Dicty Stock Center we provide the community with an impressive amount of annotated strains and plasmids. Recently dictyBase accomplished a major overhaul to adapt an outdated infrastructure to the current technological advances, thus facilitating the implementation of innovative tools and comparative genomics. It also provides new strategies for high quality annotations that enable bench researchers to benefit from the rapidly increasing volume of available data. dictyBase is highly responsive to its users needs, building a successful relationship that capitalizes on the vast efforts of the Dictyostelium research community. dictyBase has become the trusted data resource for Dictyostelium investigators, other investigators or organizations seeking information about Dictyostelium, as well as educators who use this model system. PMID:26088819

  9. dictyBase 2015: Expanding data and annotations in a new software environment.

    PubMed

    Basu, Siddhartha; Fey, Petra; Jimenez-Morales, David; Dodson, Robert J; Chisholm, Rex L

    2015-08-01

    dictyBase is the model organism database for the social amoeba Dictyostelium discoideum and related species. The primary mission of dictyBase is to provide the biomedical research community with well-integrated high quality data, and tools that enable original research. Data presented at dictyBase is obtained from sequencing centers, groups performing high throughput experiments such as large-scale mutagenesis studies, and RNAseq data, as well as a growing number of manually added functional gene annotations from the published literature, including Gene Ontology, strain, and phenotype annotations. Through the Dicty Stock Center we provide the community with an impressive amount of annotated strains and plasmids. Recently, dictyBase accomplished a major overhaul to adapt an outdated infrastructure to the current technological advances, thus facilitating the implementation of innovative tools and comparative genomics. It also provides new strategies for high quality annotations that enable bench researchers to benefit from the rapidly increasing volume of available data. dictyBase is highly responsive to its users needs, building a successful relationship that capitalizes on the vast efforts of the Dictyostelium research community. dictyBase has become the trusted data resource for Dictyostelium investigators, other investigators or organizations seeking information about Dictyostelium, as well as educators who use this model system.

  10. CBioC: beyond a prototype for collaborative annotation of molecular interactions from the literature.

    PubMed

    Baral, C; Gonzalez, G; Gitter, A; Teegarden, C; Zeigler, A; Joshi-Topé, G

    2007-01-01

    In molecular biology research, looking for information on a particular entity such as a gene or a protein may lead to thousands of articles, making it impossible for a researcher to individually read these articles and even just their abstracts. Thus, there is a need to curate the literature to get various nuggets of knowledge, such as an interaction between two proteins, and store them in a database. However the body of existing biomedical articles is growing at a very fast rate, making it impossible to curate them manually. An alternative approach of using computers for automatic extraction has problem with accuracy. We propose to leverage the advantages of both techniques, extracting binary relationships between biological entities automatically from the biomedical literature and providing a platform that allows community collaboration in the annotation of the extracted relationships. Thus, the community of researchers that writes and reads the biomedical texts can use the server for searching our database of extracted facts, and as an easy-to-use web platform to annotate facts relevant to them. We presented a preliminary prototype as a proof of concept earlier(1). This paper presents the working implementation available for download at http://www.cbioc.org as a browser-plug in for both Internet Explorer and FireFox. This current version has been available since June of 2006, and has over 160 registered users from around the world. Aside from its use as an annotation tool, data from CBioC has also been used in computational methods with encouraging results. PMID:17951840

  11. Learning to rank figures within a biomedical article.

    PubMed

    Liu, Feifan; Yu, Hong

    2014-01-01

    Hundreds of millions of figures are available in biomedical literature, representing important biomedical experimental evidence. This ever-increasing sheer volume has made it difficult for scientists to effectively and accurately access figures of their interest, the process of which is crucial for validating research facts and for formulating or testing novel research hypotheses. Current figure search applications can't fully meet this challenge as the "bag of figures" assumption doesn't take into account the relationship among figures. In our previous study, hundreds of biomedical researchers have annotated articles in which they serve as corresponding authors. They ranked each figure in their paper based on a figure's importance at their discretion, referred to as "figure ranking". Using this collection of annotated data, we investigated computational approaches to automatically rank figures. We exploited and extended the state-of-the-art listwise learning-to-rank algorithms and developed a new supervised-learning model BioFigRank. The cross-validation results show that BioFigRank yielded the best performance compared with other state-of-the-art computational models, and the greedy feature selection can further boost the ranking performance significantly. Furthermore, we carry out the evaluation by comparing BioFigRank with three-level competitive domain-specific human experts: (1) First Author, (2) Non-Author-In-Domain-Expert who is not the author nor co-author of an article but who works in the same field of the corresponding author of the article, and (3) Non-Author-Out-Domain-Expert who is not the author nor co-author of an article and who may or may not work in the same field of the corresponding author of an article. Our results show that BioFigRank outperforms Non-Author-Out-Domain-Expert and performs as well as Non-Author-In-Domain-Expert. Although BioFigRank underperforms First Author, since most biomedical researchers are either in- or out

  12. Learning to Rank Figures within a Biomedical Article

    PubMed Central

    Liu, Feifan; Yu, Hong

    2014-01-01

    Hundreds of millions of figures are available in biomedical literature, representing important biomedical experimental evidence. This ever-increasing sheer volume has made it difficult for scientists to effectively and accurately access figures of their interest, the process of which is crucial for validating research facts and for formulating or testing novel research hypotheses. Current figure search applications can't fully meet this challenge as the “bag of figures” assumption doesn't take into account the relationship among figures. In our previous study, hundreds of biomedical researchers have annotated articles in which they serve as corresponding authors. They ranked each figure in their paper based on a figure's importance at their discretion, referred to as “figure ranking”. Using this collection of annotated data, we investigated computational approaches to automatically rank figures. We exploited and extended the state-of-the-art listwise learning-to-rank algorithms and developed a new supervised-learning model BioFigRank. The cross-validation results show that BioFigRank yielded the best performance compared with other state-of-the-art computational models, and the greedy feature selection can further boost the ranking performance significantly. Furthermore, we carry out the evaluation by comparing BioFigRank with three-level competitive domain-specific human experts: (1) First Author, (2) Non-Author-In-Domain-Expert who is not the author nor co-author of an article but who works in the same field of the corresponding author of the article, and (3) Non-Author-Out-Domain-Expert who is not the author nor co-author of an article and who may or may not work in the same field of the corresponding author of an article. Our results show that BioFigRank outperforms Non-Author-Out-Domain-Expert and performs as well as Non-Author-In-Domain-Expert. Although BioFigRank underperforms First Author, since most biomedical researchers are either in- or out

  13. BioBuilder as a database development and functional annotation platform for proteins

    PubMed Central

    Navarro, J Daniel; Talreja, Naveen; Peri, Suraj; Vrushabendra, BM; Rashmi, BP; Padma, N; Surendranath, Vineeth; Jonnalagadda, Chandra Kiran; Kousthub, PS; Deshpande, Nandan; Shanker, K; Pandey, Akhilesh

    2004-01-01

    Background The explosion in biological information creates the need for databases that are easy to develop, easy to maintain and can be easily manipulated by annotators who are most likely to be biologists. However, deployment of scalable and extensible databases is not an easy task and generally requires substantial expertise in database development. Results BioBuilder is a Zope-based software tool that was developed to facilitate intuitive creation of protein databases. Protein data can be entered and annotated through web forms along with the flexibility to add customized annotation features to protein entries. A built-in review system permits a global team of scientists to coordinate their annotation efforts. We have already used BioBuilder to develop Human Protein Reference Database , a comprehensive annotated repository of the human proteome. The data can be exported in the extensible markup language (XML) format, which is rapidly becoming as the standard format for data exchange. Conclusions As the proteomic data for several organisms begins to accumulate, BioBuilder will prove to be an invaluable platform for functional annotation and development of customizable protein centric databases. BioBuilder is open source and is available under the terms of LGPL. PMID:15099404

  14. MalaCards: an integrated compendium for diseases and their annotation

    PubMed Central

    Rappaport, Noa; Nativ, Noam; Stelzer, Gil; Twik, Michal; Guan-Golan, Yaron; Iny Stein, Tsippi; Bahir, Iris; Belinky, Frida; Morrey, C. Paul; Safran, Marilyn; Lancet, Doron

    2013-01-01

    Comprehensive disease classification, integration and annotation are crucial for biomedical discovery. At present, disease compilation is incomplete, heterogeneous and often lacking systematic inquiry mechanisms. We introduce MalaCards, an integrated database of human maladies and their annotations, modeled on the architecture and strategy of the GeneCards database of human genes. MalaCards mines and merges 44 data sources to generate a computerized card for each of 16 919 human diseases. Each MalaCard contains disease-specific prioritized annotations, as well as inter-disease connections, empowered by the GeneCards relational database, its searches and GeneDecks set analyses. First, we generate a disease list from 15 ranked sources, using disease-name unification heuristics. Next, we use four schemes to populate MalaCards sections: (i) directly interrogating disease resources, to establish integrated disease names, synonyms, summaries, drugs/therapeutics, clinical features, genetic tests and anatomical context; (ii) searching GeneCards for related publications, and for associated genes with corresponding relevance scores; (iii) analyzing disease-associated gene sets in GeneDecks to yield affiliated pathways, phenotypes, compounds and GO terms, sorted by a composite relevance score and presented with GeneCards links; and (iv) searching within MalaCards itself, e.g. for additional related diseases and anatomical context. The latter forms the basis for the construction of a disease network, based on shared MalaCards annotations, embodying associations based on etiology, clinical features and clinical conditions. This broadly disposed network has a power-law degree distribution, suggesting that this might be an inherent property of such networks. Work in progress includes hierarchical malady classification, ontological mapping and disease set analyses, striving to make MalaCards an even more effective tool for biomedical research. Database URL: http

  15. Annotating user-defined abstractions for optimization

    SciTech Connect

    Quinlan, D; Schordan, M; Vuduc, R; Yi, Q

    2005-12-05

    This paper discusses the features of an annotation language that we believe to be essential for optimizing user-defined abstractions. These features should capture semantics of function, data, and object-oriented abstractions, express abstraction equivalence (e.g., a class represents an array abstraction), and permit extension of traditional compiler optimizations to user-defined abstractions. Our future work will include developing a comprehensive annotation language for describing the semantics of general object-oriented abstractions, as well as automatically verifying and inferring the annotated semantics.

  16. Automated Knowledge Annotation for Dynamic Collaborative Environments

    SciTech Connect

    Cowell, Andrew J.; Gregory, Michelle L.; Marshall, Eric J.; McGrath, Liam R.

    2009-05-19

    This paper describes the Knowledge Encapsulation Framework (KEF), a suite of tools to enable automated knowledge annotation for modeling and simulation projects. This framework can be used to capture evidence (e.g., facts extracted from journal articles and government reports), discover new evidence (from similar peer-reviewed material as well as social media), enable discussions surrounding domain-specific topics and provide automatically generated semantic annotations for improved corpus investigation. The current KEF implementation is presented within a wiki environment, providing a simple but powerful collaborative space for team members to review, annotate, discuss and align evidence with their modeling frameworks.

  17. PHENOGO: ASSIGNING PHENOTYPIC CONTEXT TO GENE ONTOLOGY ANNOTATIONS WITH NATURAL LANGUAGE PROCESSING

    PubMed Central

    LUSSIER, YVES; BORLAWSKY, TARA; RAPPAPORT, DANIEL; LIU, YANG; FRIEDMAN, CAROL

    2010-01-01

    Natural language processing (NLP) is a high throughput technology because it can process vast quantities of text within a reasonable time period. It has the potential to substantially facilitate biomedical research by extracting, linking, and organizing massive amounts of information that occur in biomedical journal articles as well as in textual fields of biological databases. Until recently, much of the work in biological NLP and text mining has revolved around recognizing the occurrence of biomolecular entities in articles, and in extracting particular relationships among the entities. Now, researchers have recognized a need to link the extracted information to ontologies or knowledge bases, which is a more difficult task. One such knowledge base is Gene Ontology annotations (GOA), which significantly increases semantic computations over the function, cellular components and processes of genes. For multicellular organisms, these annotations can be refined with phenotypic context, such as the cell type, tissue, and organ because establishing phenotypic contexts in which a gene is expressed is a crucial step for understanding the development and the molecular underpinning of the pathophysiology of diseases. In this paper, we propose a system, PhenoGO, which automatically augments annotations in GOA with additional context. PhenoGO utilizes an existing NLP system, called BioMedLEE, an existing knowledge-based phenotype organizer system (PhenOS) in conjunction with MeSH indexing and established biomedical ontologies. More specifically, PhenoGO adds phenotypic contextual information to existing associations between gene products and GO terms as specified in GOA. The system also maps the context to identifiers that are associated with different biomedical ontologies, including the UMLS, Cell Ontology, Mouse Anatomy, NCBI taxonomy, GO, and Mammalian Phenotype Ontology. In addition, PhenoGO was evaluated for coding of anatomical and cellular information and assigning

  18. Crowdsourcing biomedical research: leveraging communities as innovation engines.

    PubMed

    Saez-Rodriguez, Julio; Costello, James C; Friend, Stephen H; Kellen, Michael R; Mangravite, Lara; Meyer, Pablo; Norman, Thea; Stolovitzky, Gustavo

    2016-07-15

    The generation of large-scale biomedical data is creating unprecedented opportunities for basic and translational science. Typically, the data producers perform initial analyses, but it is very likely that the most informative methods may reside with other groups. Crowdsourcing the analysis of complex and massive data has emerged as a framework to find robust methodologies. When the crowdsourcing is done in the form of collaborative scientific competitions, known as Challenges, the validation of the methods is inherently addressed. Challenges also encourage open innovation, create collaborative communities to solve diverse and important biomedical problems, and foster the creation and dissemination of well-curated data repositories. PMID:27418159

  19. Crowdsourcing biomedical research: leveraging communities as innovation engines.

    PubMed

    Saez-Rodriguez, Julio; Costello, James C; Friend, Stephen H; Kellen, Michael R; Mangravite, Lara; Meyer, Pablo; Norman, Thea; Stolovitzky, Gustavo

    2016-07-15

    The generation of large-scale biomedical data is creating unprecedented opportunities for basic and translational science. Typically, the data producers perform initial analyses, but it is very likely that the most informative methods may reside with other groups. Crowdsourcing the analysis of complex and massive data has emerged as a framework to find robust methodologies. When the crowdsourcing is done in the form of collaborative scientific competitions, known as Challenges, the validation of the methods is inherently addressed. Challenges also encourage open innovation, create collaborative communities to solve diverse and important biomedical problems, and foster the creation and dissemination of well-curated data repositories.

  20. National Space Biomedical Research Institute

    NASA Technical Reports Server (NTRS)

    2003-01-01

    In June 1996, NASA released a Cooperative Agreement Notice (CAN) inviting proposals to establish a National Space Biomedical Research Institute (9-CAN-96-01). This CAN stated that: The Mission of the Institute will be to lead a National effort for accomplishing the integrated, critical path, biomedical research necessary to support the long term human presence, development, and exploration of space and to enhance life on Earth by applying the resultant advances in human knowledge and technology acquired through living and working in space. The Institute will be the focal point of NASA sponsored space biomedical research. This statement has not been amended by NASA and remains the mission of the NSBRI.

  1. Database citation in full text biomedical articles.

    PubMed

    Kafkas, Şenay; Kim, Jee-Hyub; McEntyre, Johanna R

    2013-01-01

    Molecular biology and literature databases represent essential infrastructure for life science research. Effective integration of these data resources requires that there are structured cross-references at the level of individual articles and biological records. Here, we describe the current patterns of how database entries are cited in research articles, based on analysis of the full text Open Access articles available from Europe PMC. Focusing on citation of entries in the European Nucleotide Archive (ENA), UniProt and Protein Data Bank, Europe (PDBe), we demonstrate that text mining doubles the number of structured annotations of database record citations supplied in journal articles by publishers. Many thousands of new literature-database relationships are found by text mining, since these relationships are also not present in the set of articles cited by database records. We recommend that structured annotation of database records in articles is extended to other databases, such as ArrayExpress and Pfam, entries from which are also cited widely in the literature. The very high precision and high-throughput of this text-mining pipeline makes this activity possible both accurately and at low cost, which will allow the development of new integrated data services.

  2. An automated protein annotation filter for integrating web-based annotation tools

    PubMed Central

    Saravanan, Vijayakumar; Shanmughavel, Primanayagam

    2007-01-01

    A wide range of web based prediction and annotation tools are frequently used for determining protein function from sequence. However, parallel processing of sequences for annotation through web tools is not possible due to several constraints in functional programming for multiple queries. Here, we propose the development of APAF as an automated protein annotation filter to overcome some of these difficulties through an integrated approach. PMID:18188426

  3. An automated protein annotation filter for integrating web-based annotation tools.

    PubMed

    Saravanan, Vijayakumar; Shanmughavel, Primanayagam

    2007-12-15

    A wide range of web based prediction and annotation tools are frequently used for determining protein function from sequence. However, parallel processing of sequences for annotation through web tools is not possible due to several constraints in functional programming for multiple queries. Here, we propose the development of APAF as an automated protein annotation filter to overcome some of these difficulties through an integrated approach.

  4. Smart nanomaterials for biomedics.

    PubMed

    Choi, Soonmo; Tripathi, Anuj; Singh, Deepti

    2014-10-01

    Nanotechnology has become important in various disciplines of technology and science. It has proven to be a potential candidate for various applications ranging from biosensors to the delivery of genes and therapeutic agents to tissue engineering. Scaffolds for every application can be tailor made to have the appropriate physicochemical properties that will influence the in vivo system in the desired way. For highly sensitive and precise detection of specific signals or pathogenic markers, or for sensing the levels of particular analytes, fabricating target-specific nanomaterials can be very useful. Multi-functional nano-devices can be fabricated using different approaches to achieve multi-directional patterning in a scaffold with the ability to alter topographical cues at scale of less than or equal to 100 nm. Smart nanomaterials are made to understand the surrounding environment and act accordingly by either protecting the drug in hostile conditions or releasing the "payload" at the intended intracellular target site. All of this is achieved by exploiting polymers for their functional groups or incorporating conducting materials into a natural biopolymer to obtain a "smart material" that can be used for detection of circulating tumor cells, detection of differences in the body analytes, or repair of damaged tissue by acting as a cell culture scaffold. Nanotechnology has changed the nature of diagnosis and treatment in the biomedical field, and this review aims to bring together the most recent advances in smart nanomaterials. PMID:25992434

  5. [Bibliometry of biomedical periodicals].

    PubMed

    Similowski, T; Derenne, J P

    1995-01-01

    Bibliometry or the science citation index is a quantitative evaluation of periodical literature, biomedical or others. It depends above all on an analysis of citations which allows for a calculation of different indices characterising and classifying journals (number of articles published, frequency of citation, impact, topicality...). The applications of bibliometry are varied from the administration of library collections to the appreciation of the significance of a review in its own speciality area. By extension the bibliometry index are sometimes used to evaluate the importance of a discipline in the literature, the place of a nation within a discipline, the significance of certain opinions or the quality of research. The intrinsic limits of bibliometry are such that this last application should be handled with caution. In effect, various biases can mechanically affect the value of different indices and particularly the fact that an article appearing in a prestigious review should not prejudge its quality such as the relevance of the question posed, the validity of the methodology employed or the accuracy of the results. For this, the study of citations is insufficient and some qualitative or semi-quantitative criteria bearing on the contents of the article should be used (critical reading, gate analysis, etc.) This general review has, as its aim, to expose both the definitions and limits of bibliometry illustrating them with some information calculated from the principal respiratory journals.

  6. Genepi: a blackboard framework for genome annotation

    PubMed Central

    Descorps-Declère, Stéphane; Ziébelin, Danielle; Rechenmann, François; Viari, Alain

    2006-01-01

    Background Genome annotation can be viewed as an incremental, cooperative, data-driven, knowledge-based process that involves multiple methods to predict gene locations and structures. This process might have to be executed more than once and might be subjected to several revisions as the biological (new data) or methodological (new methods) knowledge evolves. In this context, although a lot of annotation platforms already exist, there is still a strong need for computer systems which take in charge, not only the primary annotation, but also the update and advance of the associated knowledge. In this paper, we propose to adopt a blackboard architecture for designing such a system Results We have implemented a blackboard framework (called Genepi) for developing automatic annotation systems. The system is not bound to any specific annotation strategy. Instead, the user will specify a blackboard structure in a configuration file and the system will instantiate and run this particular annotation strategy. The characteristics of this framework are presented and discussed. Specific adaptations to the classical blackboard architecture have been required, such as the description of the activation patterns of the knowledge sources by using an extended set of Allen's temporal relations. Although the system is robust enough to be used on real-size applications, it is of primary use to bioinformatics researchers who want to experiment with blackboard architectures. Conclusion In the context of genome annotation, blackboards have several interesting features related to the way methodological and biological knowledge can be updated. They can readily handle the cooperative (several methods are implied) and opportunistic (the flow of execution depends on the state of our knowledge) aspects of the annotation process. PMID:17038181

  7. Functionalized carbon nanotubes: biomedical applications

    PubMed Central

    Vardharajula, Sandhya; Ali, Sk Z; Tiwari, Pooja M; Eroğlu, Erdal; Vig, Komal; Dennis, Vida A; Singh, Shree R

    2012-01-01

    Carbon nanotubes (CNTs) are emerging as novel nanomaterials for various biomedical applications. CNTs can be used to deliver a variety of therapeutic agents, including biomolecules, to the target disease sites. In addition, their unparalleled optical and electrical properties make them excellent candidates for bioimaging and other biomedical applications. However, the high cytotoxicity of CNTs limits their use in humans and many biological systems. The biocompatibility and low cytotoxicity of CNTs are attributed to size, dose, duration, testing systems, and surface functionalization. The functionalization of CNTs improves their solubility and biocompatibility and alters their cellular interaction pathways, resulting in much-reduced cytotoxic effects. Functionalized CNTs are promising novel materials for a variety of biomedical applications. These potential applications are particularly enhanced by their ability to penetrate biological membranes with relatively low cytotoxicity. This review is directed towards the overview of CNTs and their functionalization for biomedical applications with minimal cytotoxicity. PMID:23091380

  8. New Directions for Biomedical Engineering

    ERIC Educational Resources Information Center

    Plonsey, Robert

    1973-01-01

    Discusses the definition of "biomedical engineering" and the development of educational programs in the field. Includes detailed descriptions of the roles of bioengineers, medical engineers, and chemical engineers. (CC)

  9. Biomedical electronics: potentialities and problems.

    PubMed

    LEDLEY, R S; LUSTED, L B

    1962-01-19

    The present annual expenditure in the biomedical sciences, now less than 2 percent of the funds appropriated for defense, must be significantly increased if the great gain that can result from the adequate application of electronic technology in biomedical science is to be realized. Such use of electronics in biomedical science holds promise of tremendous advances in the study of the origins of the life processes; it may result in spectacular advances in medical science, which could have a definite effect on individual health and longevity; it might pave the way for the discovery and development of whole new technologies based on intimate knowledge of biological processes. Great strides can be made in surmounting the major obstacles by combating apathy, through making the public and the industrial community aware of the potentialities of modern biomedical research, and by giving scientists adequate cross-disciplinary training and using the abilities of those so trained (1).

  10. Biomedical research publications, 1982 - 1983

    NASA Technical Reports Server (NTRS)

    Bolcik, C.; Pleasant, L. G.

    1983-01-01

    Cardiovascular deconditioning, motion sickness, bone alterations, muscle atrophy, blood cell alterations, fluid and electrolyte changes, radiation effects and protection, behavior and performance, and general biomedical research are covered in a bibliography of 444 items.

  11. JGI Plant Genomics Gene Annotation Pipeline

    SciTech Connect

    Shu, Shengqiang; Rokhsar, Dan; Goodstein, David; Hayes, David; Mitros, Therese

    2014-07-14

    Plant genomes vary in size and are highly complex with a high amount of repeats, genome duplication and tandem duplication. Gene encodes a wealth of information useful in studying organism and it is critical to have high quality and stable gene annotation. Thanks to advancement of sequencing technology, many plant species genomes have been sequenced and transcriptomes are also sequenced. To use these vastly large amounts of sequence data to make gene annotation or re-annotation in a timely fashion, an automatic pipeline is needed. JGI plant genomics gene annotation pipeline, called integrated gene call (IGC), is our effort toward this aim with aid of a RNA-seq transcriptome assembly pipeline. It utilizes several gene predictors based on homolog peptides and transcript ORFs. See Methods for detail. Here we present genome annotation of JGI flagship green plants produced by this pipeline plus Arabidopsis and rice except for chlamy which is done by a third party. The genome annotations of these species and others are used in our gene family build pipeline and accessible via JGI Phytozome portal whose URL and front page snapshot are shown below.

  12. DAS Writeback: A Collaborative Annotation System

    PubMed Central

    2011-01-01

    Background Centralised resources such as GenBank and UniProt are perfect examples of the major international efforts that have been made to integrate and share biological information. However, additional data that adds value to these resources needs a simple and rapid route to public access. The Distributed Annotation System (DAS) provides an adequate environment to integrate genomic and proteomic information from multiple sources, making this information accessible to the community. DAS offers a way to distribute and access information but it does not provide domain experts with the mechanisms to participate in the curation process of the available biological entities and their annotations. Results We designed and developed a Collaborative Annotation System for proteins called DAS Writeback. DAS writeback is a protocol extension of DAS to provide the functionalities of adding, editing and deleting annotations. We implemented this new specification as extensions of both a DAS server and a DAS client. The architecture was designed with the involvement of the DAS community and it was improved after performing usability experiments emulating a real annotation task. Conclusions We demonstrate that DAS Writeback is effective, usable and will provide the appropriate environment for the creation and evolution of community protein annotation. PMID:21569281

  13. Collaborative annotation of 3D crystallographic models.

    PubMed

    Hunter, J; Henderson, M; Khan, I

    2007-01-01

    This paper describes the AnnoCryst system-a tool that was designed to enable authenticated collaborators to share online discussions about 3D crystallographic structures through the asynchronous attachment, storage, and retrieval of annotations. Annotations are personal comments, interpretations, questions, assessments, or references that can be attached to files, data, digital objects, or Web pages. The AnnoCryst system enables annotations to be attached to 3D crystallographic models retrieved from either private local repositories (e.g., Fedora) or public online databases (e.g., Protein Data Bank or Inorganic Crystal Structure Database) via a Web browser. The system uses the Jmol plugin for viewing and manipulating the 3D crystal structures but extends Jmol by providing an additional interface through which annotations can be created, attached, stored, searched, browsed, and retrieved. The annotations are stored on a standardized Web annotation server (Annotea), which has been extended to support 3D macromolecular structures. Finally, the system is embedded within a security framework that is capable of authenticating users and restricting access only to trusted colleagues.

  14. John Glenn Biomedical Engineering Consortium

    NASA Technical Reports Server (NTRS)

    Nall, Marsha

    2004-01-01

    The John Glenn Biomedical Engineering Consortium is an inter-institutional research and technology development, beginning with ten projects in FY02 that are aimed at applying GRC expertise in fluid physics and sensor development with local biomedical expertise to mitigate the risks of space flight on the health, safety, and performance of astronauts. It is anticipated that several new technologies will be developed that are applicable to both medical needs in space and on earth.

  15. Biomedical engineer: an international job.

    PubMed

    Crolet, Jean-Marie

    2007-01-01

    Biomedical engineer is an international job for several reasons and it means that the knowledge of at least one foreign language is a necessity. A geographical and structural analysis of the biomedical sector concludes to the teaching of a second foreign language. But in spite of the presence of adequate means, it is not possible for us for the moment to set up such a teaching. This paper presents the solution we have chosen in the framework of Erasmus exchanges.

  16. Metabolic pathfinding using RPAIR annotation.

    PubMed

    Faust, Karoline; Croes, Didier; van Helden, Jacques

    2009-05-01

    Metabolic databases contain information about thousands of small molecules and reactions, which can be represented as networks. In the context of metabolic reconstruction, pathways can be inferred by searching optimal paths in such networks. A recurrent problem is the presence of pool metabolites (e.g., water, energy carriers, and cofactors), which are connected to hundreds of reactions, thus establishing irrelevant shortcuts between nodes of the network. One solution to this problem relies on weighted networks to penalize highly connected compounds. A more refined solution takes the chemical structure of reactants into account in order to differentiate between side and main compounds of a reaction. Thanks to an intensive annotation effort at KEGG, decompositions of reactions into reactant pairs (RPAIR) categorized by their role (main, trans, cofac, ligase, and leave) are now available. The goal of this article is to evaluate the impact of RPAIR data on pathfinding in metabolic networks. To this end, we measure the impact of different parameters concerning the construction of the metabolic network: mapping of reactions and reactant pairs onto a graph, use of selected categories of reactant pairs, weighting schemes for compounds and reactions, removal of highly connected metabolites, and reaction directionality. In total, we tested 104 combinations of parameters and identified their optimal values for pathfinding on the basis of 55 reference pathways from three organisms. The best-performing metabolic network combines the biochemical knowledge encoded by KEGG RPAIR with a weighting scheme penalizing highly connected compounds. With this network, we could recover reference pathways from Escherichia coli with an average accuracy of 93% (32 pathways), from Saccharomyces cerevisiae with an average accuracy of 66% (11 pathways), and from humans with an average accuracy of 70% (12 pathways). Our pathfinding approach is available as part of the Network Analysis Tools.

  17. Annotated checklist of Georgia birds

    USGS Publications Warehouse

    Beaton, G.; Sykes, P.W.; Parrish, J.W.

    2003-01-01

    This edition of the checklist includes 446 species, of which 407 are on the Regular Species List, 8 on the Provisional, and 31 on the Hypothetical. This new publication has been greatly expanded and much revised over the previous checklist (GOS Occasional Publ. No. 10, 1986, 48 pp., 6x9 inches) to a 7x10-inch format with an extensive Literature Cited section added, 22 species added to the Regular List, 2 to the Provisional List, and 9 to the Hypothetical List. Each species account is much more comprehensive over all previous editions of the checklist. Among some of the new features are citations for sources of most information used, high counts of individuals for each species on the Regular List, extreme dates of occurrence within physiographic regions, a list of abbreviations and acronyms, and for each species the highest form of verifiable documentation given with its repository institution with a catalog number. This checklist is helpful for anyone working with birds in the Southeastern United States or birding in that region. Sykes' contribution to this fifth edition of the Annotated Checklist of Georgia Birds includes: suggestion of the large format and spiral binding, use of Richard A. Parks' painting of the Barn Owl on the front cover, use of literature citations throughout, and inclusion of high counts for each species. Sykes helped plan all phases of the publication, wrote about 90% of the Introduction and 84 species accounts (Osprey through Red Phalarope), designed the four maps in the introduction section and format for the Literature Cited, and with Giff Beaton designed the layout of the title page.

  18. Micro/Nanostructured Films and Adhesives for Biomedical Applications.

    PubMed

    Lee, Jungkyu K; Kang, Sung Min; Yang, Sung Ho; Cho, Woo Kyung

    2015-12-01

    The advanced technologies available for micro/nanofabrication have opened new avenues for interdisciplinary approaches to solve the unmet medical needs of regenerative medicine and biomedical devices. This review highlights the recent developments in micro/nanostructured adhesives and films for biomedical applications, including waterproof seals for wounds or surgery sites, drug delivery, sensing human body signals, and optical imaging of human tissues. We describe in detail the fabrication processes required to prepare the adhesives and films, such as tape-based adhesives, nanofilms, and flexible and stretchable film-based electronic devices. We also discuss their biomedical functions, performance in vitro and in vivo, and the future research needed to improve the current systems.

  19. Development of thermal energy storage materials for biomedical applications.

    PubMed

    Shukla, A; Sharma, Atul; Shukla, Manjari; Chen, C R

    2015-01-01

    The phase change materials (PCMs) have been utilized widely for solar thermal energy storage (TES) devices. The quality of these materials to remain at a particular temperature during solid-liquid, liquid-solid phase transition can also be utilized for many biomedical applications as well and has been explored in recent past already. This study reports some novel PCMs developed by them, along with some existing PCMs, to be used for such biomedical applications. Interestingly, it was observed that the heating/cooling properties of these PCMs enhance the quality of a variety of biomedical applications with many advantages (non-electric, no risk of electric shock, easy to handle, easy to recharge thermally, long life, cheap and easily available, reusable) over existing applications. Results of the present study are quite interesting and exciting, opening a plethora of opportunities for more work on the subject, which require overlapping expertise of material scientists, biochemists and medical experts for broader social benefits. PMID:26103988

  20. Micro/Nanostructured Films and Adhesives for Biomedical Applications.

    PubMed

    Lee, Jungkyu K; Kang, Sung Min; Yang, Sung Ho; Cho, Woo Kyung

    2015-12-01

    The advanced technologies available for micro/nanofabrication have opened new avenues for interdisciplinary approaches to solve the unmet medical needs of regenerative medicine and biomedical devices. This review highlights the recent developments in micro/nanostructured adhesives and films for biomedical applications, including waterproof seals for wounds or surgery sites, drug delivery, sensing human body signals, and optical imaging of human tissues. We describe in detail the fabrication processes required to prepare the adhesives and films, such as tape-based adhesives, nanofilms, and flexible and stretchable film-based electronic devices. We also discuss their biomedical functions, performance in vitro and in vivo, and the future research needed to improve the current systems. PMID:26510305

  1. NASA's Biomedical Research Program

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The biomedical research program has been established to investigate the major physiological and psychological problems encountered by man when he undertakes spaceflight. The program seeks to obtain a better definition of each problem, an understanding of its underlying mechanism, and ultimately a means of prevention. In pursuing these goals the program also includes a major effort to develop the research tools and procedures it needs where these are not being developed elsewhere. After almost twenty years of manned spaceflight activities and after a much longer period of space related ground-based research, the program now recognizes two characteristics of spaceflight which are truly unique to space. These are weightlessness and one specific form of radiation. In its present stage of maturity much of the research focuses on mechanisms underlying the basic responses of man and animals to weightlessness. The program consists of nine elements. Eight of these are referable to specific physiological problems that have either been encountered in previous manned spaceflight or which are anticipated to occur as spaceflights last longer, traverse steeper orbital inclinations, or are otherwise different from previous missions. The ninth addresses problems that have neither arisen nor can be reasonably predicted but are suspected on the basis of theoretical models, ground-based animal research, or for other reasons. The program's current emphasis is directed toward the motion sickness problem because of its relevance to Space Shuttle operations. Increased awareness and understanding of the radiation hazard has resulted in more emphasis being placed on the biological effects of high energy, high mass number particulate radiation and upon radiation protection . Cardiovascular and musculoskeleta1 studies are pursued in recognition of the considerable fundamental knowledge that must be acquired in these areas before effective countermeasures to the effects of repetitive or long

  2. RPCs in biomedical applications

    NASA Astrophysics Data System (ADS)

    Belli, G.; De Vecchi, C.; Giroletti, E.; Guida, R.; Musitelli, G.; Nardò, R.; Necchi, M. M.; Pagano, D.; Ratti, S. P.; Sani, G.; Vicini, A.; Vitulo, P.; Viviani, C.

    2006-08-01

    We are studying possible applications of Resistive Plate Chambers (RPCs) in the biomedical domain such as Positron Emission Tomography (PET). The use of RPCs in PET can provide several improvements on the usual scintillation-based detectors. The most striking features are the extremely good spatial and time resolutions. They can be as low as 50 μm and 25 ps respectively, to be compared to the much higher intrinsic limits in bulk detectors. Much efforts have been made to investigate suitable materials to make RPCs sensitive to 511 keV photons. For this reason, we are studying different types of coating employing high Z materials with proper electrical resistivity. Later investigations explored the possibility of coating glass electrodes by mean of serigraphy techniques, employing oxide based mixtures with a high density of high Z materials; the efficiency is strongly dependent on its thickness and it reaches a maximum for a characteristic value that is a function of the compound (usually a few hundred microns). The most promising mixtures seem to be PbO, Bi 2O 3 and Tl 2O. Preliminary gamma efficiency measurements for a Multigap RPC prototype (MRPC) are presented as well as simulations using GEANT4-based framework. The MRPC has 5 gas gaps; their spacings are kept by 0.3 mm diameter nylon fishing line, electrodes are made of thin glasses (1 mm for the outer electrodes, 0.15-0.4 mm for the inner ones). The detector is enclosed in a metallic gas-tight box, filled with a C 2H 2F 4 92.5%, SF 6 2.5%, C 4H 10 5% mixture. Different gas mixtures are being studied increasing the SF6 percentage and results of efficiency as a function of the new mixtures will be presented.

  3. Biomedical photoacoustic imaging

    PubMed Central

    Beard, Paul

    2011-01-01

    Photoacoustic (PA) imaging, also called optoacoustic imaging, is a new biomedical imaging modality based on the use of laser-generated ultrasound that has emerged over the last decade. It is a hybrid modality, combining the high-contrast and spectroscopic-based specificity of optical imaging with the high spatial resolution of ultrasound imaging. In essence, a PA image can be regarded as an ultrasound image in which the contrast depends not on the mechanical and elastic properties of the tissue, but its optical properties, specifically optical absorption. As a consequence, it offers greater specificity than conventional ultrasound imaging with the ability to detect haemoglobin, lipids, water and other light-absorbing chomophores, but with greater penetration depth than purely optical imaging modalities that rely on ballistic photons. As well as visualizing anatomical structures such as the microvasculature, it can also provide functional information in the form of blood oxygenation, blood flow and temperature. All of this can be achieved over a wide range of length scales from micrometres to centimetres with scalable spatial resolution. These attributes lend PA imaging to a wide variety of applications in clinical medicine, preclinical research and basic biology for studying cancer, cardiovascular disease, abnormalities of the microcirculation and other conditions. With the emergence of a variety of truly compelling in vivo images obtained by a number of groups around the world in the last 2–3 years, the technique has come of age and the promise of PA imaging is now beginning to be realized. Recent highlights include the demonstration of whole-body small-animal imaging, the first demonstrations of molecular imaging, the introduction of new microscopy modes and the first steps towards clinical breast imaging being taken as well as a myriad of in vivo preclinical imaging studies. In this article, the underlying physical principles of the technique, its practical

  4. Biomedical photoacoustic imaging.

    PubMed

    Beard, Paul

    2011-08-01

    Photoacoustic (PA) imaging, also called optoacoustic imaging, is a new biomedical imaging modality based on the use of laser-generated ultrasound that has emerged over the last decade. It is a hybrid modality, combining the high-contrast and spectroscopic-based specificity of optical imaging with the high spatial resolution of ultrasound imaging. In essence, a PA image can be regarded as an ultrasound image in which the contrast depends not on the mechanical and elastic properties of the tissue, but its optical properties, specifically optical absorption. As a consequence, it offers greater specificity than conventional ultrasound imaging with the ability to detect haemoglobin, lipids, water and other light-absorbing chomophores, but with greater penetration depth than purely optical imaging modalities that rely on ballistic photons. As well as visualizing anatomical structures such as the microvasculature, it can also provide functional information in the form of blood oxygenation, blood flow and temperature. All of this can be achieved over a wide range of length scales from micrometres to centimetres with scalable spatial resolution. These attributes lend PA imaging to a wide variety of applications in clinical medicine, preclinical research and basic biology for studying cancer, cardiovascular disease, abnormalities of the microcirculation and other conditions. With the emergence of a variety of truly compelling in vivo images obtained by a number of groups around the world in the last 2-3 years, the technique has come of age and the promise of PA imaging is now beginning to be realized. Recent highlights include the demonstration of whole-body small-animal imaging, the first demonstrations of molecular imaging, the introduction of new microscopy modes and the first steps towards clinical breast imaging being taken as well as a myriad of in vivo preclinical imaging studies. In this article, the underlying physical principles of the technique, its practical

  5. XomAnnotate: Analysis of Heterogeneous and Complex Exome- A Step towards Translational Medicine

    PubMed Central

    Talukder, Asoke K.; Ravishankar, Shashidhar; Sasmal, Krittika; Gandham, Santhosh; Prabhukumar, Jyothsna; Achutharao, Prahalad H.; Barh, Debmalya; Blasi, Francesco

    2015-01-01

    In translational cancer medicine, implicated pathways and the relevant master genes are of focus. Exome's specificity, processing-time, and cost advantage makes it a compelling tool for this purpose. However, analysis of exome lacks reliable combinatory analysis tools and techniques. In this paper we present XomAnnotate – a meta- and functional-analysis software for exome. We compared UnifiedGenotyper, Freebayes, Delly, and Lumpy algorithms that were designed for whole-genome and combined their strengths in XomAnnotate for exome data through meta-analysis to identify comprehensive mutation profile (SNPs/SNVs, short inserts/deletes, and SVs) of patients. The mutation profile is annotated followed by functional analysis through pathway enrichment and network analysis to identify most critical genes and pathways implicated in the disease genesis. The efficacy of the software is verified through MDS and clustering and tested with available 11 familial non-BRCA1/BRCA2 breast cancer exome data. The results showed that the most significantly affected pathways across all samples are cell communication and antigen processing and presentation. ESCO1, HYAL1, RAF1 and PRKCA emerged as the key genes. Network analysis further showed the purine and propanotate metabolism pathways along with RAF1 and PRKCA genes to be master regulators in these patients. Therefore, XomAnnotate is able to use exome data to identify entire mutation landscape, pathways, and the master genes accurately with wide concordance from earlier microarray and whole-genome studies -- making it a suitable biomedical software for using exome in next-generation translational medicine. Availability http://www.iomics.in/research/XomAnnotate PMID:25905921

  6. Proceedings of the First Biennial Space Biomedical Investigators' Workshop

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The First Biennial Space Biomedical Investigators' Workshop, held January 11-13, 1999, was unique in that it assembled, for the first time, a broad cross section of NASA-funded biomedical researchers to present the current status of their projects and their plans for future investigations. All principal investigators with active, or recently-completed ground-based projects in NASA's Biomedical Research and Countermeasures Program that were funded through NASA's Office of Life and Microgravity Sciences and Applications were invited. Included were individual investigators funded through NASA Research Announcements, investigators with NASA Specialized Centers of Research and Training, investigators with the recently established National Space Biomedical Research Institute (NSBRI), and NASA civil servant investigators. Seventy-seven percent of all eligible projects were presented at the workshop. Thus, these Proceedings should provide a useful snapshot of the status of NASA-funded space biomedical research as of January 1999. An important workshop objective was to achieve free and open communication among the presenting investigators. Therefore, presentation of new and incomplete results, as well as hypotheses and ideas for future research, was encouraged. Comments and constructive criticisms from the presenters' colleagues were also encouraged. These ground rules resulted in many lively and useful discussions, during both the presentation sessions and informal evening gatherings and breaks.

  7. GO annotation in InterPro: why stability does not indicate accuracy in a sea of changing annotations.

    PubMed

    Sangrador-Vegas, Amaia; Mitchell, Alex L; Chang, Hsin-Yu; Yong, Siew-Yit; Finn, Robert D

    2016-01-01

    The removal of annotation from biological databases is often perceived as an indicator of erroneous annotation. As a corollary, annotation stability is considered to be a measure of reliability. However, diverse data-driven events can affect the stability of annotations in both primary protein sequence databases and the protein family databases that are built upon the sequence databases and used to help annotate them. Here, we describe some of these events and their consequences for the InterPro database, and demonstrate that annotation removal or reassignment is not always linked to incorrect annotation by the curator. Database URL: http://www.ebi.ac.uk/interpro.

  8. Annotated Chemical Patent Corpus: A Gold Standard for Text Mining

    PubMed Central

    Akhondi, Saber A.; Klenner, Alexander G.; Tyrchan, Christian; Manchala, Anil K.; Boppana, Kiran; Lowe, Daniel; Zimmermann, Marc; Jagarlapudi, Sarma A. R. P.; Sayle, Roger; Kors, Jan A.; Muresan, Sorel

    2014-01-01

    Exploring the chemical and biological space covered by patent applications is crucial in early-stage medicinal chemistry activities. Patent analysis can provide understanding of compound prior art, novelty checking, validation of biological assays, and identification of new starting points for chemical exploration. Extracting chemical and biological entities from patents through manual extraction by expert curators can take substantial amount of time and resources. Text mining methods can help to ease this process. To validate the performance of such methods, a manually annotated patent corpus is essential. In this study we have produced a large gold standard chemical patent corpus. We developed annotation guidelines and selected 200 full patents from the World Intellectual Property Organization, United States Patent and Trademark Office, and European Patent Office. The patents were pre-annotated automatically and made available to four independent annotator groups each consisting of two to ten annotators. The annotators marked chemicals in different subclasses, diseases, targets, and modes of action. Spelling mistakes and spurious line break due to optical character recognition errors were also annotated. A subset of 47 patents was annotated by at least three annotator groups, from which harmonized annotations and inter-annotator agreement scores were derived. One group annotated the full set. The patent corpus includes 400,125 annotations for the full set and 36,537 annotations for the harmonized set. All patents and annotated entities are publicly available at www.biosemantics.org. PMID:25268232

  9. Annotated chemical patent corpus: a gold standard for text mining.

    PubMed

    Akhondi, Saber A; Klenner, Alexander G; Tyrchan, Christian; Manchala, Anil K; Boppana, Kiran; Lowe, Daniel; Zimmermann, Marc; Jagarlapudi, Sarma A R P; Sayle, Roger; Kors, Jan A; Muresan, Sorel

    2014-01-01

    Exploring the chemical and biological space covered by patent applications is crucial in early-stage medicinal chemistry activities. Patent analysis can provide understanding of compound prior art, novelty checking, validation of biological assays, and identification of new starting points for chemical exploration. Extracting chemical and biological entities from patents through manual extraction by expert curators can take substantial amount of time and resources. Text mining methods can help to ease this process. To validate the performance of such methods, a manually annotated patent corpus is essential. In this study we have produced a large gold standard chemical patent corpus. We developed annotation guidelines and selected 200 full patents from the World Intellectual Property Organization, United States Patent and Trademark Office, and European Patent Office. The patents were pre-annotated automatically and made available to four independent annotator groups each consisting of two to ten annotators. The annotators marked chemicals in different subclasses, diseases, targets, and modes of action. Spelling mistakes and spurious line break due to optical character recognition errors were also annotated. A subset of 47 patents was annotated by at least three annotator groups, from which harmonized annotations and inter-annotator agreement scores were derived. One group annotated the full set. The patent corpus includes 400,125 annotations for the full set and 36,537 annotations for the harmonized set. All patents and annotated entities are publicly available at www.biosemantics.org.

  10. Annotated chemical patent corpus: a gold standard for text mining.

    PubMed

    Akhondi, Saber A; Klenner, Alexander G; Tyrchan, Christian; Manchala, Anil K; Boppana, Kiran; Lowe, Daniel; Zimmermann, Marc; Jagarlapudi, Sarma A R P; Sayle, Roger; Kors, Jan A; Muresan, Sorel

    2014-01-01

    Exploring the chemical and biological space covered by patent applications is crucial in early-stage medicinal chemistry activities. Patent analysis can provide understanding of compound prior art, novelty checking, validation of biological assays, and identification of new starting points for chemical exploration. Extracting chemical and biological entities from patents through manual extraction by expert curators can take substantial amount of time and resources. Text mining methods can help to ease this process. To validate the performance of such methods, a manually annotated patent corpus is essential. In this study we have produced a large gold standard chemical patent corpus. We developed annotation guidelines and selected 200 full patents from the World Intellectual Property Organization, United States Patent and Trademark Office, and European Patent Office. The patents were pre-annotated automatically and made available to four independent annotator groups each consisting of two to ten annotators. The annotators marked chemicals in different subclasses, diseases, targets, and modes of action. Spelling mistakes and spurious line break due to optical character recognition errors were also annotated. A subset of 47 patents was annotated by at least three annotator groups, from which harmonized annotations and inter-annotator agreement scores were derived. One group annotated the full set. The patent corpus includes 400,125 annotations for the full set and 36,537 annotations for the harmonized set. All patents and annotated entities are publicly available at www.biosemantics.org. PMID:25268232

  11. Biomedical Big Data Training Collaborative (BBDTC): An effort to bridge the talent gap in biomedical science and research

    PubMed Central

    Purawat, Shweta; Cowart, Charles; Amaro, Rommie E.; Altintas, Ilkay

    2016-01-01

    The BBDTC (https://biobigdata.ucsd.edu) is a community-oriented platform to encourage high-quality knowledge dissemination with the aim of growing a well-informed biomedical big data community through collaborative efforts on training and education. The BBDTC collaborative is an e-learning platform that supports the biomedical community to access, develop and deploy open training materials. The BBDTC supports Big Data skill training for biomedical scientists at all levels, and from varied backgrounds. The natural hierarchy of courses allows them to be broken into and handled as modules. Modules can be reused in the context of multiple courses and reshuffled, producing a new and different, dynamic course called a playlist. Users may create playlists to suit their learning requirements and share it with individual users or the wider public. BBDTC leverages the maturity and design of the HUBzero content-management platform for delivering educational content. To facilitate the migration of existing content, the BBDTC supports importing and exporting course material from the edX platform. Migration tools will be extended in the future to support other platforms. Hands-on training software packages, i.e., toolboxes, are supported through Amazon EC2 and Virtualbox virtualization technologies, and they are available as: (i) downloadable lightweight Virtualbox Images providing a standardized software tool environment with software packages and test data on their personal machines, and (ii) remotely accessible Amazon EC2 Virtual Machines for accessing biomedical big data tools and scalable big data experiments. At the moment, the BBDTC site contains three open Biomedical big data training courses with lecture contents, videos and hands-on training utilizing VM toolboxes, covering diverse topics. The courses have enhanced the hands-on learning environment by providing structured content that users can use at their own pace. A four course biomedical big data series is planned

  12. Non-Formal Education and Radio: A Selected, Annotated Bibliography. Annotated Bibliography #14.

    ERIC Educational Resources Information Center

    Vergeldt, Vicki; And Others

    Materials concerning the use of radio and mass communications for non-formal education and development are listed in a selected annotated bibliography, intended for those actively involved in non-formal education and development. Three sections contain annotated entries (which range from 1972-1983), each of which includes source information and…

  13. MixtureTree annotator: a program for automatic colorization and visual annotation of MixtureTree.

    PubMed

    Chen, Shu-Chuan; Ogata, Aaron

    2015-01-01

    The MixtureTree Annotator, written in JAVA, allows the user to automatically color any phylogenetic tree in Newick format generated from any phylogeny reconstruction program and output the Nexus file. By providing the ability to automatically color the tree by sequence name, the MixtureTree Annotator provides a unique advantage over any other programs which perform a similar function. In addition, the MixtureTree Annotator is the only package that can efficiently annotate the output produced by MixtureTree with mutation information and coalescent time information. In order to visualize the resulting output file, a modified version of FigTree is used. Certain popular methods, which lack good built-in visualization tools, for example, MEGA, Mesquite, PHY-FI, TreeView, treeGraph and Geneious, may give results with human errors due to either manually adding colors to each node or with other limitations, for example only using color based on a number, such as branch length, or by taxonomy. In addition to allowing the user to automatically color any given Newick tree by sequence name, the MixtureTree Annotator is the only method that allows the user to automatically annotate the resulting tree created by the MixtureTree program. The MixtureTree Annotator is fast and easy-to-use, while still allowing the user full control over the coloring and annotating process. PMID:25826378

  14. MixtureTree annotator: a program for automatic colorization and visual annotation of MixtureTree.

    PubMed

    Chen, Shu-Chuan; Ogata, Aaron

    2015-01-01

    The MixtureTree Annotator, written in JAVA, allows the user to automatically color any phylogenetic tree in Newick format generated from any phylogeny reconstruction program and output the Nexus file. By providing the ability to automatically color the tree by sequence name, the MixtureTree Annotator provides a unique advantage over any other programs which perform a similar function. In addition, the MixtureTree Annotator is the only package that can efficiently annotate the output produced by MixtureTree with mutation information and coalescent time information. In order to visualize the resulting output file, a modified version of FigTree is used. Certain popular methods, which lack good built-in visualization tools, for example, MEGA, Mesquite, PHY-FI, TreeView, treeGraph and Geneious, may give results with human errors due to either manually adding colors to each node or with other limitations, for example only using color based on a number, such as branch length, or by taxonomy. In addition to allowing the user to automatically color any given Newick tree by sequence name, the MixtureTree Annotator is the only method that allows the user to automatically annotate the resulting tree created by the MixtureTree program. The MixtureTree Annotator is fast and easy-to-use, while still allowing the user full control over the coloring and annotating process.

  15. ACID: annotation of cassette and integron data

    PubMed Central

    Joss, Michael J; Koenig, Jeremy E; Labbate, Maurizio; Polz, Martin F; Gillings, Michael R; Stokes, Harold W; Doolittle, W Ford; Boucher, Yan

    2009-01-01

    Background Although integrons and their associated gene cassettes are present in ~10% of bacteria and can represent up to 3% of the genome in which they are found, very few have been properly identified and annotated in public databases. These genetic elements have been overlooked in comparison to other vectors that facilitate lateral gene transfer between microorganisms. Description By automating the identification of integron integrase genes and of the non-coding cassette-associated attC recombination sites, we were able to assemble a database containing all publicly available sequence information regarding these genetic elements. Specialists manually curated the database and this information was used to improve the automated detection and annotation of integrons and their encoded gene cassettes. ACID (annotation of cassette and integron data) can be searched using a range of queries and the data can be downloaded in a number of formats. Users can readily annotate their own data and integrate it into ACID using the tools provided. Conclusion ACID is a community resource providing easy access to annotations of integrons and making tools available to detect them in novel sequence data. ACID also hosts a forum to prompt integron-related discussion, which can hopefully lead to a more universal definition of this genetic element. PMID:19383137

  16. Pathway Analysis Software: Annotation Errors and Solutions

    PubMed Central

    Henderson-MacLennan, Nicole K.; Papp, Jeanette C.; Talbot, C. Conover; McCabe, Edward R.B.; Presson, Angela P.

    2010-01-01

    Genetic databases contain a variety of annotation errors that often go unnoticed due to the large size of modern genetic data sets. Interpretation of these data sets requires bioinformatics tools that may contribute to this problem. While providing gene symbol annotations for identifiers (IDs) such as microarray probeset, RefSeq, GenBank and Entrez Gene is seemingly trivial, the accuracy is fundamental to any subsequent conclusions. We examine gene symbol annotations and results from three commercial pathway analysis software (PAS) packages: Ingenuity Pathways Analysis, GeneGO and Pathway Studio. We compare gene symbol annotations and canonical pathway results over time and among different input ID types. We find that PAS results can be affected by variation in gene symbol annotations across software releases and the input ID type analyzed. As a result, we offer suggestions for using commercial PAS and reporting microarray results to improve research quality. We propose a wiki type website to facilitate communication of bioinformatics software problems within the scientific community. PMID:20663702

  17. Automated analysis and annotation of basketball video

    NASA Astrophysics Data System (ADS)

    Saur, Drew D.; Tan, Yap-Peng; Kulkarni, Sanjeev R.; Ramadge, Peter J.

    1997-01-01

    Automated analysis and annotation of video sequences are important for digital video libraries, content-based video browsing and data mining projects. A successful video annotation system should provide users with useful video content summary in a reasonable processing time. Given the wide variety of video genres available today, automatically extracting meaningful video content for annotation still remains hard by using current available techniques. However, a wide range video has inherent structure such that some prior knowledge about the video content can be exploited to improve our understanding of the high-level video semantic content. In this paper, we develop tools and techniques for analyzing structured video by using the low-level information available directly from MPEG compressed video. Being able to work directly in the video compressed domain can greatly reduce the processing time and enhance storage efficiency. As a testbed, we have developed a basketball annotation system which combines the low-level information extracted from MPEG stream with the prior knowledge of basketball video structure to provide high level content analysis, annotation and browsing for events such as wide- angle and close-up views, fast breaks, steals, potential shots, number of possessions and possession times. We expect our approach can also be extended to structured video in other domains.

  18. Biomedical engineering undergraduate education in Latin America

    NASA Astrophysics Data System (ADS)

    Allende, R.; Morales, D.; Avendano, G.; Chabert, S.

    2007-11-01

    As in other parts of the World, in recent times there has been an increasing interest on Biomedical Engineering (BME) in Latin America (LA). This interest grows from the need for a larger number of such specialists, originated in a spreading use of health technologies. Indeed, at many universities, biomedical engineering departments have been created, which also brought along discussions on strategies to achieve the best education possible for both undergraduate and graduate programs. In these settings, different positions were taken as regards which subject to emphasize. In such a context, this work aimed to make a survey on the "state-of-the-art" of undergraduate BME education in LA, and to analyze the observed differences. Broadly speaking, similar education profiles are perceived in the entire continent, with main emphasis on electronics and bioinstrumentation, biology and informatics respectively. Much less relevance is given to biomechanics and biomaterials. This tendency is similar in Departments with many decades of experience or in newly opened ones.

  19. [Master course in biomedical engineering].

    PubMed

    Jobbágy, Akos; Benyó, Zoltán; Monos, Emil

    2009-11-22

    The Bologna Declaration aims at harmonizing the European higher education structure. In accordance with the Declaration, biomedical engineering will be offered as a master (MSc) course also in Hungary, from year 2009. Since 1995 biomedical engineering course has been held in cooperation of three universities: Semmelweis University, Budapest Veterinary University, and Budapest University of Technology and Economics. One of the latter's faculties, Faculty of Electrical Engineering and Informatics, has been responsible for the course. Students could start their biomedical engineering studies - usually in parallel with their first degree course - after they collected at least 180 ECTS credits. Consequently, the biomedical engineering course could have been considered as a master course even before the Bologna Declaration. Students had to collect 130 ECTS credits during the six-semester course. This is equivalent to four-semester full-time studies, because during the first three semesters the curriculum required to gain only one third of the usual ECTS credits. The paper gives a survey on the new biomedical engineering master course, briefly summing up also the subjects in the curriculum.

  20. Spintronic platforms for biomedical applications.

    PubMed

    Freitas, P P; Cardoso, F A; Martins, V C; Martins, S A M; Loureiro, J; Amaral, J; Chaves, R C; Cardoso, S; Fonseca, L P; Sebastião, A M; Pannetier-Lecoeur, M; Fermon, C

    2012-02-01

    Since the fundamental discovery of the giant magnetoresistance many spintronic devices have been developed and implemented in our daily life (e.g. information storage and automotive industry). Lately, advances in the sensors technology (higher sensitivity, smaller size) have potentiated other applications, namely in the biological area, leading to the emergence of novel biomedical platforms. In particular the investigation of spintronics and its application to the development of magnetoresistive (MR) biomolecular and biomedical platforms are giving rise to a new class of biomedical diagnostic devices, suitable for bench top bioassays as well as point-of-care and point-of-use devices. Herein, integrated spintronic biochip platforms for diagnostic and cytometric applications, hybrid systems incorporating magnetoresistive sensors applied to neuroelectronic studies and biomedical imaging, namely magneto-encephalography and magneto-cardiography, are reviewed. Also lab-on-a-chip MR-based platforms to perform biological studies at the single molecule level are discussed. Overall the potential and main characteristics of such MR-based biomedical devices, comparing to the existing technologies while giving particular examples of targeted applications, are addressed. PMID:22146898

  1. Construction of coffee transcriptome networks based on gene annotation semantics.

    PubMed

    Castillo, Luis F; Galeano, Narmer; Isaza, Gustavo A; Gaitán, Alvaro

    2012-07-24

    Gene annotation is a process that encompasses multiple approaches on the analysis of nucleic acids or protein sequences in order to assign structural and functional characteristics to gene models. When thousands of gene models are being described in an organism genome, construction and visualization of gene networks impose novel challenges in the understanding of complex expression patterns and the generation of new knowledge in genomics research. In order to take advantage of accumulated text data after conventional gene sequence analysis, this work applied semantics in combination with visualization tools to build transcriptome networks from a set of coffee gene annotations. A set of selected coffee transcriptome sequences, chosen by the quality of the sequence comparison reported by Basic Local Alignment Search Tool (BLAST) and Interproscan, were filtered out by coverage, identity, length of the query, and e-values. Meanwhile, term descriptors for molecular biology and biochemistry were obtained along the Wordnet dictionary in order to construct a Resource Description Framework (RDF) using Ruby scripts and Methontology to find associations between concepts. Relationships between sequence annotations and semantic concepts were graphically represented through a total of 6845 oriented vectors, which were reduced to 745 non-redundant associations. A large gene network connecting transcripts by way of relational concepts was created where detailed connections remain to be validated for biological significance based on current biochemical and genetics frameworks. Besides reusing text information in the generation of gene connections and for data mining purposes, this tool development opens the possibility to visualize complex and abundant transcriptome data, and triggers the formulation of new hypotheses in metabolic pathways analysis.

  2. TogoTable: cross-database annotation system using the Resource Description Framework (RDF) data model

    PubMed Central

    Kawano, Shin; Watanabe, Tsutomu; Mizuguchi, Sohei; Araki, Norie; Katayama, Toshiaki; Yamaguchi, Atsuko

    2014-01-01

    TogoTable (http://togotable.dbcls.jp/) is a web tool that adds user-specified annotations to a table that a user uploads. Annotations are drawn from several biological databases that use the Resource Description Framework (RDF) data model. TogoTable uses database identifiers (IDs) in the table as a query key for searching. RDF data, which form a network called Linked Open Data (LOD), can be searched from SPARQL endpoints using a SPARQL query language. Because TogoTable uses RDF, it can integrate annotations from not only the reference database to which the IDs originally belong, but also externally linked databases via the LOD network. For example, annotations in the Protein Data Bank can be retrieved using GeneID through links provided by the UniProt RDF. Because RDF has been standardized by the World Wide Web Consortium, any database with annotations based on the RDF data model can be easily incorporated into this tool. We believe that TogoTable is a valuable Web tool, particularly for experimental biologists who need to process huge amounts of data such as high-throughput experimental output. PMID:24829452

  3. Quantifying Variability of Manual Annotation in Cryo-Electron Tomograms.

    PubMed

    Hecksel, Corey W; Darrow, Michele C; Dai, Wei; Galaz-Montoya, Jesús G; Chin, Jessica A; Mitchell, Patrick G; Chen, Shurui; Jakana, Jemba; Schmid, Michael F; Chiu, Wah

    2016-06-01

    Although acknowledged to be variable and subjective, manual annotation of cryo-electron tomography data is commonly used to answer structural questions and to create a "ground truth" for evaluation of automated segmentation algorithms. Validation of such annotation is lacking, but is critical for understanding the reproducibility of manual annotations. Here, we used voxel-based similarity scores for a variety of specimens, ranging in complexity and segmented by several annotators, to quantify the variation among their annotations. In addition, we have identified procedures for merging annotations to reduce variability, thereby increasing the reliability of manual annotation. Based on our analyses, we find that it is necessary to combine multiple manual annotations to increase the confidence level for answering structural questions. We also make recommendations to guide algorithm development for automated annotation of features of interest. PMID:27225525

  4. The center for causal discovery of biomedical knowledge from big data.

    PubMed

    Cooper, Gregory F; Bahar, Ivet; Becich, Michael J; Benos, Panayiotis V; Berg, Jeremy; Espino, Jeremy U; Glymour, Clark; Jacobson, Rebecca Crowley; Kienholz, Michelle; Lee, Adrian V; Lu, Xinghua; Scheines, Richard

    2015-11-01

    The Big Data to Knowledge (BD2K) Center for Causal Discovery is developing and disseminating an integrated set of open source tools that support causal modeling and discovery of biomedical knowledge from large and complex biomedical datasets. The Center integrates teams of biomedical and data scientists focused on the refinement of existing and the development of new constraint-based and Bayesian algorithms based on causal Bayesian networks, the optimization of software for efficient operation in a supercomputing environment, and the testing of algorithms and software developed using real data from 3 representative driving biomedical projects: cancer driver mutations, lung disease, and the functional connectome of the human brain. Associated training activities provide both biomedical and data scientists with the knowledge and skills needed to apply and extend these tools. Collaborative activities with the BD2K Consortium further advance causal discovery tools and integrate tools and resources developed by other centers.

  5. The center for causal discovery of biomedical knowledge from big data

    PubMed Central

    Bahar, Ivet; Becich, Michael J; Benos, Panayiotis V; Berg, Jeremy; Espino, Jeremy U; Glymour, Clark; Jacobson, Rebecca Crowley; Kienholz, Michelle; Lee, Adrian V; Lu, Xinghua; Scheines, Richard

    2015-01-01

    The Big Data to Knowledge (BD2K) Center for Causal Discovery is developing and disseminating an integrated set of open source tools that support causal modeling and discovery of biomedical knowledge from large and complex biomedical datasets. The Center integrates teams of biomedical and data scientists focused on the refinement of existing and the development of new constraint-based and Bayesian algorithms based on causal Bayesian networks, the optimization of software for efficient operation in a supercomputing environment, and the testing of algorithms and software developed using real data from 3 representative driving biomedical projects: cancer driver mutations, lung disease, and the functional connectome of the human brain. Associated training activities provide both biomedical and data scientists with the knowledge and skills needed to apply and extend these tools. Collaborative activities with the BD2K Consortium further advance causal discovery tools and integrate tools and resources developed by other centers. PMID:26138794

  6. The center for causal discovery of biomedical knowledge from big data.

    PubMed

    Cooper, Gregory F; Bahar, Ivet; Becich, Michael J; Benos, Panayiotis V; Berg, Jeremy; Espino, Jeremy U; Glymour, Clark; Jacobson, Rebecca Crowley; Kienholz, Michelle; Lee, Adrian V; Lu, Xinghua; Scheines, Richard

    2015-11-01

    The Big Data to Knowledge (BD2K) Center for Causal Discovery is developing and disseminating an integrated set of open source tools that support causal modeling and discovery of biomedical knowledge from large and complex biomedical datasets. The Center integrates teams of biomedical and data scientists focused on the refinement of existing and the development of new constraint-based and Bayesian algorithms based on causal Bayesian networks, the optimization of software for efficient operation in a supercomputing environment, and the testing of algorithms and software developed using real data from 3 representative driving biomedical projects: cancer driver mutations, lung disease, and the functional connectome of the human brain. Associated training activities provide both biomedical and data scientists with the knowledge and skills needed to apply and extend these tools. Collaborative activities with the BD2K Consortium further advance causal discovery tools and integrate tools and resources developed by other centers. PMID:26138794

  7. Pathophysiologic mechanisms of biomedical nanomaterials.

    PubMed

    Wang, Liming; Chen, Chunying

    2016-05-15

    Nanomaterials (NMs) have been widespread used in biomedical fields, daily consuming, and even food industry. It is crucial to understand the safety and biomedical efficacy of NMs. In this review, we summarized the recent progress about the physiological and pathological effects of NMs from several levels: protein-nano interface, NM-subcellular structures, and cell-cell interaction. We focused on the detailed information of nano-bio interaction, especially about protein adsorption, intracellular trafficking, biological barriers, and signaling pathways as well as the associated mechanism mediated by nanomaterials. We also introduced related analytical methods that are meaningful and helpful for biomedical effect studies in the future. We believe that knowledge about pathophysiologic effects of NMs is not only significant for rational design of medical NMs but also helps predict their safety and further improve their applications in the future.

  8. Functional annotation of hypothetical proteins - A review.

    PubMed

    Sivashankari, Selvarajan; Shanmughavel, Piramanayagam

    2006-12-29

    The complete human genome sequences in the public database provide ways to understand the blue print of life. As of June 29, 2006, 27 archaeal, 326 bacterial and 21 eukaryotes is complete genomes are available and the sequencing for 316 bacterial, 24 archaeal, 126 eukaryotic genomes are in progress. The traditional biochemical/molecular experiments can assign accurate functions for genes in these genomes. However, the process is time-consuming and costly. Despite several efforts, only 50-60 % of genes have been annotated in most completely sequenced genomes. Automated genome sequence analysis and annotation may provide ways to understand genomes. Thus, determination of protein function is one of the challenging problems of the post-genome era. This demands bioinformatics to predict functions of un-annotated protein sequences by developing efficient tools. Here, we discuss some of the recent and popular approaches developed in Bioinformatics to predict functions for hypothetical proteins.

  9. I2Cnet medical image annotation service.

    PubMed

    Chronaki, C E; Zabulis, X; Orphanoudakis, S C

    1997-01-01

    I2Cnet (Image Indexing by Content network) aims to provide services related to the content-based management of images in healthcare over the World-Wide Web. Each I2Cnet server maintains an autonomous repository of medical images and related information. The annotation service of I2Cnet allows specialists to interact with the contents of the repository, adding comments or illustrations to medical images of interest. I2Cnet annotations may be communicated to other users via e-mail or posted to I2Cnet for inclusion in its local repositories. This paper discusses the annotation service of I2Cnet and argues that such services pave the way towards the evolution of active digital medical image libraries.

  10. Implantable biomedical devices on bioresorbable substrates

    DOEpatents

    Rogers, John A; Kim, Dae-Hyeong; Omenetto, Fiorenzo; Kaplan, David L; Litt, Brian; Viventi, Jonathan; Huang, Yonggang; Amsden, Jason

    2014-03-04

    Provided herein are implantable biomedical devices, methods of administering implantable biomedical devices, methods of making implantable biomedical devices, and methods of using implantable biomedical devices to actuate a target tissue or sense a parameter associated with the target tissue in a biological environment. Each implantable biomedical device comprises a bioresorbable substrate, an electronic device having a plurality of inorganic semiconductor components supported by the bioresorbable substrate, and a barrier layer encapsulating at least a portion of the inorganic semiconductor components. Upon contact with a biological environment the bioresorbable substrate is at least partially resorbed, thereby establishing conformal contact between the implantable biomedical device and the target tissue in the biological environment.

  11. Annotating images by mining image search results.

    PubMed

    Wang, Xin-Jing; Zhang, Lei; Li, Xirong; Ma, Wei-Ying

    2008-11-01

    Although it has been studied for years by the computer vision and machine learning communities, image annotation is still far from practical. In this paper, we propose a novel attempt at model-free image annotation, which is a data-driven approach that annotates images by mining their search results. Some 2.4 million images with their surrounding text are collected from a few photo forums to support this approach. The entire process is formulated in a divide-and-conquer framework where a query keyword is provided along with the uncaptioned image to improve both the effectiveness and efficiency. This is helpful when the collected data set is not dense everywhere. In this sense, our approach contains three steps: 1) the search process to discover visually and semantically similar search results, 2) the mining process to identify salient terms from textual descriptions of the search results, and 3) the annotation rejection process to filter out noisy terms yielded by Step 2. To ensure real-time annotation, two key techniques are leveraged-one is to map the high-dimensional image visual features into hash codes, the other is to implement it as a distributed system, of which the search and mining processes are provided as Web services. As a typical result, the entire process finishes in less than 1 second. Since no training data set is required, our approach enables annotating with unlimited vocabulary and is highly scalable and robust to outliers. Experimental results on both real Web images and a benchmark image data set show the effectiveness and efficiency of the proposed algorithm. It is also worth noting that, although the entire approach is illustrated within the divide-and conquer framework, a query keyword is not crucial to our current implementation. We provide experimental results to prove this.

  12. Biological database of images and genomes: tools for community annotations linking image and genomic information.

    PubMed

    Oberlin, Andrew T; Jurkovic, Dominika A; Balish, Mitchell F; Friedberg, Iddo

    2013-01-01

    Genomic data and biomedical imaging data are undergoing exponential growth. However, our understanding of the phenotype-genotype connection linking the two types of data is lagging behind. While there are many types of software that enable the manipulation and analysis of image data and genomic data as separate entities, there is no framework established for linking the two. We present a generic set of software tools, BioDIG, that allows linking of image data to genomic data. BioDIG tools can be applied to a wide range of research problems that require linking images to genomes. BioDIG features the following: rapid construction of web-based workbenches, community-based annotation, user management and web services. By using BioDIG to create websites, researchers and curators can rapidly annotate a large number of images with genomic information. Here we present the BioDIG software tools that include an image module, a genome module and a user management module. We also introduce a BioDIG-based website, MyDIG, which is being used to annotate images of mycoplasmas. PMID:23550062

  13. Biological Database of Images and Genomes: tools for community annotations linking image and genomic information

    PubMed Central

    Oberlin, Andrew T; Jurkovic, Dominika A; Balish, Mitchell F; Friedberg, Iddo

    2013-01-01

    Genomic data and biomedical imaging data are undergoing exponential growth. However, our understanding of the phenotype–genotype connection linking the two types of data is lagging behind. While there are many types of software that enable the manipulation and analysis of image data and genomic data as separate entities, there is no framework established for linking the two. We present a generic set of software tools, BioDIG, that allows linking of image data to genomic data. BioDIG tools can be applied to a wide range of research problems that require linking images to genomes. BioDIG features the following: rapid construction of web-based workbenches, community-based annotation, user management and web services. By using BioDIG to create websites, researchers and curators can rapidly annotate a large number of images with genomic information. Here we present the BioDIG software tools that include an image module, a genome module and a user management module. We also introduce a BioDIG-based website, MyDIG, which is being used to annotate images of mycoplasmas. Database URL: BioDIG website: http://biodig.org BioDIG source code repository: http://github.com/FriedbergLab/BioDIG The MyDIG database: http://mydig.biodig.org/ PMID:23550062

  14. MannDB: A microbial annotation database for protein characterization

    SciTech Connect

    Zhou, C; Lam, M; Smith, J; Zemla, A; Dyer, M; Kuczmarski, T; Vitalis, E; Slezak, T

    2006-05-19

    MannDB was created to meet a need for rapid, comprehensive automated protein sequence analyses to support selection of proteins suitable as targets for driving the development of reagents for pathogen or protein toxin detection. Because a large number of open-source tools were needed, it was necessary to produce a software system to scale the computations for whole-proteome analysis. Thus, we built a fully automated system for executing software tools and for storage, integration, and display of automated protein sequence analysis and annotation data. MannDB is a relational database that organizes data resulting from fully automated, high-throughput protein-sequence analyses using open-source tools. Types of analyses provided include predictions of cleavage, chemical properties, classification, features, functional assignment, post-translational modifications, motifs, antigenicity, and secondary structure. Proteomes (lists of hypothetical and known proteins) are downloaded and parsed from Genbank and then inserted into MannDB, and annotations from SwissProt are downloaded when identifiers are found in the Genbank entry or when identical sequences are identified. Currently 36 open-source tools are run against MannDB protein sequences either on local systems or by means of batch submission to external servers. In addition, BLAST against protein entries in MvirDB, our database of microbial virulence factors, is performed. A web client browser enables viewing of computational results and downloaded annotations, and a query tool enables structured and free-text search capabilities. When available, links to external databases, including MvirDB, are provided. MannDB contains whole-proteome analyses for at least one representative organism from each category of biological threat organism listed by APHIS, CDC, HHS, NIAID, USDA, USFDA, and WHO. MannDB comprises a large number of genomes and comprehensive protein sequence analyses representing organisms listed as high

  15. A comparison of biomedical databases.

    PubMed Central

    Mychko-Megrin, A Y

    1991-01-01

    Various published bibliographic and abstract services covering the period 1970-1988 were compared to analyze scope and coverage. A total of 7,281 articles and book titles (1,655 Soviet and 5,626 foreign) were selected on forty-one topics in different medical fields. The titles originated from three different samples but included all Soviet medical literature on the subjects. A distribution of biomedical serials from five databases is given by country, and twelve indices to assess the quality of biomedical databases are suggested. PMID:1884085

  16. Flexible sensors for biomedical technology.

    PubMed

    Vilela, Diana; Romeo, Agostino; Sánchez, Samuel

    2016-02-01

    Flexible sensing devices have gained a great deal of attention among the scientific community in recent years. The application of flexible sensors spans over several fields, including medicine, industrial automation, robotics, security, and human-machine interfacing. In particular, non-invasive health-monitoring devices are expected to play a key role in the improvement of patient life and in reducing costs associated with clinical and biomedical diagnostic procedures. Here, we focus on recent advances achieved in flexible devices applied on the human skin for biomedical and healthcare purposes. PMID:26675174

  17. Flexible sensors for biomedical technology.

    PubMed

    Vilela, Diana; Romeo, Agostino; Sánchez, Samuel

    2016-02-01

    Flexible sensing devices have gained a great deal of attention among the scientific community in recent years. The application of flexible sensors spans over several fields, including medicine, industrial automation, robotics, security, and human-machine interfacing. In particular, non-invasive health-monitoring devices are expected to play a key role in the improvement of patient life and in reducing costs associated with clinical and biomedical diagnostic procedures. Here, we focus on recent advances achieved in flexible devices applied on the human skin for biomedical and healthcare purposes.

  18. Biomedical Polar Research Workshop Minutes

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This workshop was conducted to provide a background of NASA and National Science Foundation goals, an overview of previous and current biomedical research, and a discussion about areas of potential future joint activities. The objectives of the joint research were: (1) to develop an understanding of the physiological, psychological, and behavioral alterations and adaptations to extreme environments of the polar regions; (2) to ensure the health, well-being, and performance of humans in these environments; and (3) to promote the application of biomedical research to improve the quality of life in all environments.

  19. Alginate: properties and biomedical applications

    PubMed Central

    Lee, Kuen Yong; Mooney, David J.

    2011-01-01

    Alginate is a biomaterial that has found numerous applications in biomedical science and engineering due to its favorable properties, including biocompatibility and ease of gelation. Alginate hydrogels have been particularly attractive in wound healing, drug delivery, and tissue engineering applications to date, as these gels retain structural similarity to the extracellular matrices in tissues and can be manipulated to play several critical roles. This review will provide a comprehensive overview of general properties of alginate and its hydrogels, their biomedical applications, and suggest new perspectives for future studies with these polymers. PMID:22125349

  20. Annotation for information extraction from mammography reports.

    PubMed

    Bozkurt, Selen; Gulkesen, Kemal Hakan; Rubin, Daniel

    2013-01-01

    Inter and intra-observer variability in mammographic interpretation is a challenging problem, and decision support systems (DSS) may be helpful to reduce variation in practice. Since radiology reports are created as unstructured text reports, Natural language processing (NLP) techniques are needed to extract structured information from reports in order to provide the inputs to DSS. Before creating NLP systems, producing high quality annotated data set is essential. The goal of this project is to develop an annotation schema to guide the information extraction tasks needed from free-text mammography reports. PMID:23823416

  1. An annotated bibliography of psychiatric medical ethics.

    PubMed

    Anzia, D J; La Puma, J

    1991-03-01

    We offer an annotated bibliography of psychiatric medical ethics that we hope will be useful for psychiatrists and other mental health professionals who are interested in the moral dimensions of psychiatric care. We present the educational and clinical rationale for the bibliography, ways to use the bibliography, and the bibliography itself. Using the American Psychiatric Association's Principles of Medical Ethics With Annotations Especially Applicable to Psychiatry as a principled framework, we selected references based primarily on educational and clinical relevance for physicians. We include both empirical and conceptual analyses of the ethical issues seen daily in the office, clinic, hospital, nursing home, and in society at large.

  2. High-throughput comparison, functional annotation, and metabolic modeling of plant genomes using the PlantSEED resource.

    PubMed

    Seaver, Samuel M D; Gerdes, Svetlana; Frelin, Océane; Lerma-Ortiz, Claudia; Bradbury, Louis M T; Zallot, Rémi; Hasnain, Ghulam; Niehaus, Thomas D; El Yacoubi, Basma; Pasternak, Shiran; Olson, Robert; Pusch, Gordon; Overbeek, Ross; Stevens, Rick; de Crécy-Lagard, Valérie; Ware, Doreen; Hanson, Andrew D; Henry, Christopher S

    2014-07-01

    The increasing number of sequenced plant genomes is placing new demands on the methods applied to analyze, annotate, and model these genomes. Today's annotation pipelines result in inconsistent gene assignments that complicate comparative analyses and prevent efficient construction of metabolic models. To overcome these problems, we have developed the PlantSEED, an integrated, metabolism-centric database to support subsystems-based annotation and metabolic model reconstruction for plant genomes. PlantSEED combines SEED subsystems technology, first developed for microbial genomes, with refined protein families and biochemical data to assign fully consistent functional annotations to orthologous genes, particularly those encoding primary metabolic pathways. Seamless integration with its parent, the prokaryotic SEED database, makes PlantSEED a unique environment for cross-kingdom comparative analysis of plant and bacterial genomes. The consistent annotations imposed by PlantSEED permit rapid reconstruction and modeling of primary metabolism for all plant genomes in the database. This feature opens the unique possibility of model-based assessment of the completeness and accuracy of gene annotation and thus allows computational identification of genes and pathways that are restricted to certain genomes or need better curation. We demonstrate the PlantSEED system by producing consistent annotations for 10 reference genomes. We also produce a functioning metabolic model for each genome, gapfilling to identify missing annotations and proposing gene candidates for missing annotations. Models are built around an extended biomass composition representing the most comprehensive published to date. To our knowledge, our models are the first to be published for seven of the genomes analyzed. PMID:24927599

  3. Solar Tutorial and Annotation Resource (STAR)

    NASA Astrophysics Data System (ADS)

    Showalter, C.; Rex, R.; Hurlburt, N. E.; Zita, E. J.

    2009-12-01

    We have written a software suite designed to facilitate solar data analysis by scientists, students, and the public, anticipating enormous datasets from future instruments. Our “STAR" suite includes an interactive learning section explaining 15 classes of solar events. Users learn software tools that exploit humans’ superior ability (over computers) to identify many events. Annotation tools include time slice generation to quantify loop oscillations, the interpolation of event shapes using natural cubic splines (for loops, sigmoids, and filaments) and closed cubic splines (for coronal holes). Learning these tools in an environment where examples are provided prepares new users to comfortably utilize annotation software with new data. Upon completion of our tutorial, users are presented with media of various solar events and asked to identify and annotate the images, to test their mastery of the system. Goals of the project include public input into the data analysis of very large datasets from future solar satellites, and increased public interest and knowledge about the Sun. In 2010, the Solar Dynamics Observatory (SDO) will be launched into orbit. SDO’s advancements in solar telescope technology will generate a terabyte per day of high-quality data, requiring innovation in data management. While major projects develop automated feature recognition software, so that computers can complete much of the initial event tagging and analysis, still, that software cannot annotate features such as sigmoids, coronal magnetic loops, coronal dimming, etc., due to large amounts of data concentrated in relatively small areas. Previously, solar physicists manually annotated these features, but with the imminent influx of data it is unrealistic to expect specialized researchers to examine every image that computers cannot fully process. A new approach is needed to efficiently process these data. Providing analysis tools and data access to students and the public have proven

  4. [Big Data: the great opportunities and challenges to microbiome and other biomedical research].

    PubMed

    Xu, Zhenjiang

    2015-02-01

    With the development of high-throughput technologies, biomedical data has been increasing exponentially in an explosive manner. This brings enormous opportunities and challenges to biomedical researchers on how to effectively utilize big data. Big data is different from traditional data in many ways, described as 3Vs - volume, variety and velocity. From the perspective of biomedical research, here I introduced the characteristics of big data, such as its messiness, re-usage and openness. Focusing on microbiome research of meta-analysis, the author discussed the prospective principles in data collection, challenges of privacy protection in data management, and the scalable tools in data analysis with examples from real life. PMID:25736105

  5. Current Progress of Genetically Engineered Pig Models for Biomedical Research

    PubMed Central

    Gün, Gökhan

    2014-01-01

    Abstract The first transgenic pigs were generated for agricultural purposes about three decades ago. Since then, the micromanipulation techniques of pig oocytes and embryos expanded from pronuclear injection of foreign DNA to somatic cell nuclear transfer, intracytoplasmic sperm injection-mediated gene transfer, lentiviral transduction, and cytoplasmic injection. Mechanistically, the passive transgenesis approach based on random integration of foreign DNA was developed to active genetic engineering techniques based on the transient activity of ectopic enzymes, such as transposases, recombinases, and programmable nucleases. Whole-genome sequencing and annotation of advanced genome maps of the pig complemented these developments. The full implementation of these tools promises to immensely increase the efficiency and, in parallel, to reduce the costs for the generation of genetically engineered pigs. Today, the major application of genetically engineered pigs is found in the field of biomedical disease modeling. It is anticipated that genetically engineered pigs will increasingly be used in biomedical research, since this model shows several similarities to humans with regard to physiology, metabolism, genome organization, pathology, and aging. PMID:25469311

  6. MedlineRanker: flexible ranking of biomedical literature.

    PubMed

    Fontaine, Jean-Fred; Barbosa-Silva, Adriano; Schaefer, Martin; Huska, Matthew R; Muro, Enrique M; Andrade-Navarro, Miguel A

    2009-07-01

    The biomedical literature is represented by millions of abstracts available in the Medline database. These abstracts can be queried with the PubMed interface, which provides a keyword-based Boolean search engine. This approach shows limitations in the retrieval of abstracts related to very specific topics, as it is difficult for a non-expert user to find all of the most relevant keywords related to a biomedical topic. Additionally, when searching for more general topics, the same approach may return hundreds of unranked references. To address these issues, text mining tools have been developed to help scientists focus on relevant abstracts. We have implemented the MedlineRanker webserver, which allows a flexible ranking of Medline for a topic of interest without expert knowledge. Given some abstracts related to a topic, the program deduces automatically the most discriminative words in comparison to a random selection. These words are used to score other abstracts, including those from not yet annotated recent publications, which can be then ranked by relevance. We show that our tool can be highly accurate and that it is able to process millions of abstracts in a practical amount of time. MedlineRanker is free for use and is available at http://cbdm.mdc-berlin.de/tools/medlineranker.

  7. MedlineRanker: flexible ranking of biomedical literature

    PubMed Central

    Fontaine, Jean-Fred; Barbosa-Silva, Adriano; Schaefer, Martin; Huska, Matthew R.; Muro, Enrique M.; Andrade-Navarro, Miguel A.

    2009-01-01

    The biomedical literature is represented by millions of abstracts available in the Medline database. These abstracts can be queried with the PubMed interface, which provides a keyword-based Boolean search engine. This approach shows limitations in the retrieval of abstracts related to very specific topics, as it is difficult for a non-expert user to find all of the most relevant keywords related to a biomedical topic. Additionally, when searching for more general topics, the same approach may return hundreds of unranked references. To address these issues, text mining tools have been developed to help scientists focus on relevant abstracts. We have implemented the MedlineRanker webserver, which allows a flexible ranking of Medline for a topic of interest without expert knowledge. Given some abstracts related to a topic, the program deduces automatically the most discriminative words in comparison to a random selection. These words are used to score other abstracts, including those from not yet annotated recent publications, which can be then ranked by relevance. We show that our tool can be highly accurate and that it is able to process millions of abstracts in a practical amount of time. MedlineRanker is free for use and is available at http://cbdm.mdc-berlin.de/tools/medlineranker. PMID:19429696

  8. National Space Biomedical Research Institute

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This report outlines the National Space Biomedical Research Institute's (NSBRI) activities during FY 2004, the Institute's seventh year. It is prepared in accordance with Cooperative Agreement NCC 9-58 between NASA's Lyndon B. Johnson Space Center (JSC) and the Institute's lead institution, Baylor College of Medicine.

  9. National Space Biomedical Research Institute

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This report outlines the activities of the National Space Biomedical Research Institute (NSBRI) during FY 2003, the sixth year of the NSBRI's programs. It is prepared in accordance with Cooperative Agreement NCC 9-58 between NASA's Lyndon B. Johnson Space Center (JSC) and the Institute's lead institution, Baylor College of Medicine.

  10. National Space Biomedical Research Institute

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This report outlines National Space Biomedical Research Institute (NSBRI) activities during FY 2001, the fourth year of the NSBRI's programs. It is prepared in accordance with Cooperative Agreement NCC 9-58 between NASA's Lyndon B. Johnson Space Center and Baylor College of Medicine (NSBRI).

  11. Biomedical Engineering Education in Perspective

    ERIC Educational Resources Information Center

    Gowen, Richard J.

    1973-01-01

    Discusses recent developments in the health care industry and their impact on the future of biomedical engineering education. Indicates that a more thorough understanding of the complex functions of the living organism can be acquired through the application of engineering techniques to problems of life sciences. (CC)

  12. Biomedical research publications: 1980 - 1982

    NASA Technical Reports Server (NTRS)

    Pleasant, L. G.; Limbach, L.

    1982-01-01

    Publications concerning the major physiological and psychological problems encountered by man when he undertakes space flight are listed. Nine research areas are included: cardiovascular deconditioning, motion sickness, bone alterations, muscle atrophy, blood cell alterations, fluid and eletrolyte changes, radiation effects and protection, behavior and performance, and general biomedical research.

  13. Sparse Methods for Biomedical Data

    PubMed Central

    Ye, Jieping; Liu, Jun

    2013-01-01

    Following recent technological revolutions, the investigation of massive biomedical data with growing scale, diversity, and complexity has taken a center stage in modern data analysis. Although complex, the underlying representations of many biomedical data are often sparse. For example, for a certain disease such as leukemia, even though humans have tens of thousands of genes, only a few genes are relevant to the disease; a gene network is sparse since a regulatory pathway involves only a small number of genes; many biomedical signals are sparse or compressible in the sense that they have concise representations when expressed in a proper basis. Therefore, finding sparse representations is fundamentally important for scientific discovery. Sparse methods based on the ℓ1 norm have attracted a great amount of research efforts in the past decade due to its sparsity-inducing property, convenient convexity, and strong theoretical guarantees. They have achieved great success in various applications such as biomarker selection, biological network construction, and magnetic resonance imaging. In this paper, we review state-of-the-art sparse methods and their applications to biomedical data. PMID:24076585

  14. Citation in Biomedical Journal Articles.

    ERIC Educational Resources Information Center

    Dubois, Betty Lou

    1988-01-01

    Examination of how biomedical scientists cite the published work of others in their own journal articles revealed that subjects tended to summarize or generalize others' articles and used few direct quotations and little paraphrasing. The results suggest ethical and instructional questions relating to which citation forms should be taught to…

  15. The SWAN biomedical discourse ontology.

    PubMed

    Ciccarese, Paolo; Wu, Elizabeth; Wong, Gwen; Ocana, Marco; Kinoshita, June; Ruttenberg, Alan; Clark, Tim

    2008-10-01

    Developing cures for highly complex diseases, such as neurodegenerative disorders, requires extensive interdisciplinary collaboration and exchange of biomedical information in context. Our ability to exchange such information across sub-specialties today is limited by the current scientific knowledge ecosystem's inability to properly contextualize and integrate data and discourse in machine-interpretable form. This inherently limits the productivity of research and the progress toward cures for devastating diseases such as Alzheimer's and Parkinson's. SWAN (Semantic Web Applications in Neuromedicine) is an interdisciplinary project to develop a practical, common, semantically structured, framework for biomedical discourse initially applied, but not limited, to significant problems in Alzheimer Disease (AD) research. The SWAN ontology has been developed in the context of building a series of applications for biomedical researchers, as well as in extensive discussions and collaborations with the larger bio-ontologies community. In this paper, we present and discuss the SWAN ontology of biomedical discourse. We ground its development theoretically, present its design approach, explain its main classes and their application, and show its relationship to other ongoing activities in biomedicine and bio-ontologies. PMID:18583197

  16. The SWAN biomedical discourse ontology.

    PubMed

    Ciccarese, Paolo; Wu, Elizabeth; Wong, Gwen; Ocana, Marco; Kinoshita, June; Ruttenberg, Alan; Clark, Tim

    2008-10-01

    Developing cures for highly complex diseases, such as neurodegenerative disorders, requires extensive interdisciplinary collaboration and exchange of biomedical information in context. Our ability to exchange such information across sub-specialties today is limited by the current scientific knowledge ecosystem's inability to properly contextualize and integrate data and discourse in machine-interpretable form. This inherently limits the productivity of research and the progress toward cures for devastating diseases such as Alzheimer's and Parkinson's. SWAN (Semantic Web Applications in Neuromedicine) is an interdisciplinary project to develop a practical, common, semantically structured, framework for biomedical discourse initially applied, but not limited, to significant problems in Alzheimer Disease (AD) research. The SWAN ontology has been developed in the context of building a series of applications for biomedical researchers, as well as in extensive discussions and collaborations with the larger bio-ontologies community. In this paper, we present and discuss the SWAN ontology of biomedical discourse. We ground its development theoretically, present its design approach, explain its main classes and their application, and show its relationship to other ongoing activities in biomedicine and bio-ontologies.

  17. Online Annotation--Research and Practices

    ERIC Educational Resources Information Center

    Glover, Ian; Xu, Zhijie; Hardaker, Glenn

    2007-01-01

    Annotation can be a valuable exercise when trying to understand new information. The technique can be used to create a "condensed" version of the original information for later review and to add additional information into the existing document. The growth in web-based learning materials and information sources has created requirement for systems…

  18. Effective function annotation through catalytic residue conservation.

    PubMed

    George, Richard A; Spriggs, Ruth V; Bartlett, Gail J; Gutteridge, Alex; MacArthur, Malcolm W; Porter, Craig T; Al-Lazikani, Bissan; Thornton, Janet M; Swindells, Mark B

    2005-08-30

    Because of the extreme impact of genome sequencing projects, protein sequences without accompanying experimental data now dominate public databases. Homology searches, by providing an opportunity to transfer functional information between related proteins, have become the de facto way to address this. Although a single, well annotated, close relationship will often facilitate sufficient annotation, this situation is not always the case, particularly if mutations are present in important functional residues. When only distant relationships are available, the transfer of function information is more tenuous, and the likelihood of encountering several well annotated proteins with different functions is increased. The consequence for a researcher is a range of candidate functions with little way of knowing which, if any, are correct. Here, we address the problem directly by introducing a computational approach to accurately identify and segregate related proteins into those with a functional similarity and those where function differs. This approach should find a wide range of applications, including the interpretation of genomics/proteomics data and the prioritization of targets for high-throughput structure determination. The method is generic, but here we concentrate on enzymes and apply high-quality catalytic site data. In addition to providing a series of comprehensive benchmarks to show the overall performance of our approach, we illustrate its utility with specific examples that include the correct identification of haptoglobin as a nonenzymatic relative of trypsin, discrimination of acid-d-amino acid ligases from a much larger ligase pool, and the successful annotation of BioH, a structural genomics target.

  19. Studies of Scientific Disciplines. An Annotated Bibliography.

    ERIC Educational Resources Information Center

    Weisz, Diane; Kruytbosch, Carlos

    Provided in this bibliography are annotated lists of social studies of science literature, arranged alphabetically by author in 13 disciplinary areas. These areas include astronomy; general biology; biochemistry and molecular biology; biomedicine; chemistry; earth and space sciences; economics; engineering; mathematics; physics; political science;…

  20. Counseling American Indians: An Annotated Bibliography.

    ERIC Educational Resources Information Center

    Tisdale, Elizabeth; Thomason, Timothy C.

    This bibliography presents 75 annotated entries on counseling and psychotherapy with American Indians. Entries include journal articles, books, book chapters, newspaper and newsletter articles, and conference papers, published 1964-96. Topics covered include counseling approaches and techniques, mental health services for Native Americans,…

  1. Core French: A Selected Annotated Resource List.

    ERIC Educational Resources Information Center

    Boyd, J. A.; Mollica, Anthony

    1985-01-01

    This is an annotated bibliography of: readers, workbooks, conversation books, cultural sources and readings, flash cards, duplicating or line masters, and media kits submitted by publishers as applicable to French second language instruction from kindergarten through senior high school levels. (MSE)

  2. Learning To Lead: An Annotated Bibliography.

    ERIC Educational Resources Information Center

    Stehno, Joe

    This annotated bibliography reviews some of the leadership development training programs currently being offered to business, industry, and educational personnel. Section 1 focuses on programs for corporate personnel. Section 2 reviews both preparatory and continuing professional education programs for top college and university administrators.…

  3. Reflective Annotations: On Becoming a Scholar

    ERIC Educational Resources Information Center

    Alexander, Mark; Taylor, Caroline; Greenberger, Scott; Watts, Margie; Balch, Riann

    2012-01-01

    This article presents the authors' reflective annotations on becoming a scholar. This paper begins with a discussion on socialization for teaching, followed by a discussion on socialization for service and sense of belonging. Then, it describes how the doctoral process evolves. Finally, it talks about adult learners who pursue doctoral education.

  4. Skin Cancer Education Materials: Selected Annotations.

    ERIC Educational Resources Information Center

    National Cancer Inst. (NIH), Bethesda, MD.

    This annotated bibliography presents 85 entries on a variety of approaches to cancer education. The entries are grouped under three broad headings, two of which contain smaller sub-divisions. The first heading, Public Education, contains prevention and general information, and non-print materials. The second heading, Professional Education,…

  5. Annotated bibliography of psychomotor testing. Technical report

    SciTech Connect

    Ervin, C.

    1987-03-01

    An annotated bibliography of 67 publications in the field of psychomotor testing has been prepared. The collection includes technical reports, journal articles, presented at scientific meetings, books and conference proceedings. The publications were assembled as preliminary work in the development of a dexterity test battery designed to measure the effects of chemical-defense-treatment drugs.

  6. Intellectual Freedom and Censorship: An Annotated Bibliography.

    ERIC Educational Resources Information Center

    Hoffmann, Frank

    Intended to act as a general introduction for high school and college students, this book presents an annotated bibliography of books, periodical articles, legal materials, and other documents dealing with the subject of intellectual freedom and censorship. The book is divided into five parts: (1) "The Theoretical Foundations of Censorship and…

  7. An Annotated Bibliography on Early Childhood.

    ERIC Educational Resources Information Center

    Michigan Univ., Ann Arbor. Architectural Research Lab.

    This annotated bibliography of more than 150 books and articles covers a wide range of topical areas concerned with the relationship of the young child to his environment. Among the 18 topics included are: child development; health, educational, staff, and community programs; infants and toddlers, handicapped children; Project Head Start; day…

  8. Environment and the Community: An Annotated Bibliography.

    ERIC Educational Resources Information Center

    Department of Housing and Urban Development, Washington, DC.

    Three hundred and nine citations of books, reports, and articles dating from 1964 to 1971 are included in this annotated bibliography, intended as a selection tool for concerned citizens, architects, builders, and city planners emphasizing the environment of American cities and communities. It is topically arranged into sixteen broad sections with…

  9. Nutrition & Adolescent Pregnancy: A Selected Annotated Bibliography.

    ERIC Educational Resources Information Center

    National Agricultural Library (USDA), Washington, DC.

    This annotated bibliography on nutrition and adolescent pregnancy is intended to be a source of technical assistance for nurses, nutritionists, physicians, educators, social workers, and other personnel concerned with improving the health of teenage mothers and their babies. It is divided into two major sections. The first section lists selected…

  10. Adolescent Reproductive Behaviour: An Annotated Bibliography.

    ERIC Educational Resources Information Center

    United Nations, New York, NY. Population Div.

    A general overview of the literature on adolescent fertility and closely related issues is provided in this annotated bibliography. Material on the following topics is included: (1) programs related to adolescent pregnancy, contraception, abortion, and births; (2) studies relating socioeconomic characteristics of pregnant adolescents to their…

  11. College Students in Transition: An Annotated Bibliography

    ERIC Educational Resources Information Center

    Foote, Stephanie M., Ed.; Hinkle, Sara M., Ed.; Kranzow, Jeannine, Ed.; Pistilli, Matthew D., Ed.; Miles, LaTonya Rease, Ed.; Simmons, Jannell G., Ed.

    2013-01-01

    The transition from high school to college is an important milestone, but it is only one of many steps in the journey through higher education. This volume is an annotated bibliography of the emerging literature examining the many other transitions students make beyond the first year, including the sophomore year, the transfer experience, and the…

  12. Suggested Books for Children: An Annotated Bibliography

    ERIC Educational Resources Information Center

    NHSA Dialog, 2008

    2008-01-01

    This article provides an annotated bibliography of various children's books. It includes listings of books that illustrate the dynamic relationships within the natural environment, economic context, racial and cultural identities, cross-group similarities and differences, gender, different abilities and stories of injustice and resistance.

  13. Participative Decision Making: An Annotated Bibliography.

    ERIC Educational Resources Information Center

    Henson, Ramon; Camp, Richaurd

    An annotated bibliography of 40 articles on participative decision making (PDM) published from 1968 through 1975 is presented. The following categories were used in summarizing each article: description, sample, type of study, variables, PDM variables, results and discussion. An introduction to the bibliography discusses some issues related to…

  14. Sex and Proxemics: An Annotated Bibliography.

    ERIC Educational Resources Information Center

    Nelson, Audrey A.

    This annotated bibliography focuses on the sex differences and similarities in two proxemic variables, physical distance and orientation of the body. The majority of the more than 90 titles, dating from 1965 to the present, are selected from the following sources: dissertation abstracts, social-psychology journals, communication journals, and…

  15. Small Group Communication: An Annotated Bibliography.

    ERIC Educational Resources Information Center

    Gouran, Dennis S.; Guadagnino, Christopher S.

    This annotated bibliography includes sources of information that are primarily concerned with problem solving, decision making, and processes of social influence in small groups, and secondarily deal with other aspects of communication and interaction in groups, such as conflict management and negotiation. The 57 entries, all dating from 1980…

  16. A Partially Annotated Political Communication Bibliography.

    ERIC Educational Resources Information Center

    Thornton, Barbara C.

    This 63-page annotated bibliography contains available materials in the area of political communication, a relatively new field of political science. Political communication includes facets of the election process and interaction between political parties and the voter. A variety of materials dating from 1960 to 1972 include books, pamphlets,…

  17. Rates of Comprehension: An Annotated Bibliography.

    ERIC Educational Resources Information Center

    Berger, Allen, Comp.; Peebles, James D., Comp.

    This booklet is a revision of an earlier annotated bibliography, "Speed Reading," compiled by Allen Berger in 1967 and revised in 1970. The 82 entries are arranged alphabetically by author in the following ten categories: tachistoscope and controlled pacing, paperback scanning, flexible rates of comprehension, retention of gains, perception,…

  18. Ontological Annotation with WordNet

    SciTech Connect

    Sanfilippo, Antonio P.; Tratz, Stephen C.; Gregory, Michelle L.; Chappell, Alan R.; Whitney, Paul D.; Posse, Christian; Paulson, Patrick R.; Baddeley, Bob; Hohimer, Ryan E.; White, Amanda M.

    2006-06-06

    Semantic Web applications require robust and accurate annotation tools that are capable of automating the assignment of ontological classes to words in naturally occurring text (ontological annotation). Most current ontologies do not include rich lexical databases and are therefore not easily integrated with word sense disambiguation algorithms that are needed to automate ontological annotation. WordNet provides a potentially ideal solution to this problem as it offers a highly structured lexical conceptual representation that has been extensively used to develop word sense disambiguation algorithms. However, WordNet has not been designed as an ontology, and while it can be easily turned into one, the result of doing this would present users with serious practical limitations due to the great number of concepts (synonym sets) it contains. Moreover, mapping WordNet to an existing ontology may be difficult and requires substantial labor. We propose to overcome these limitations by developing an analytical platform that (1) provides a WordNet-based ontology offering a manageable and yet comprehensive set of concept classes, (2) leverages the lexical richness of WordNet to give an extensive characterization of concept class in terms of lexical instances, and (3) integrates a class recognition algorithm that automates the assignment of concept classes to words in naturally occurring text. The ensuing framework makes available an ontological annotation platform that can be effectively integrated with intelligence analysis systems to facilitate evidence marshaling and sustain the creation and validation of inference models.

  19. Automating Ontological Annotation with WordNet

    SciTech Connect

    Sanfilippo, Antonio P.; Tratz, Stephen C.; Gregory, Michelle L.; Chappell, Alan R.; Whitney, Paul D.; Posse, Christian; Paulson, Patrick R.; Baddeley, Bob L.; Hohimer, Ryan E.; White, Amanda M.

    2006-01-22

    Semantic Web applications require robust and accurate annotation tools that are capable of automating the assignment of ontological classes to words in naturally occurring text (ontological annotation). Most current ontologies do not include rich lexical databases and are therefore not easily integrated with word sense disambiguation algorithms that are needed to automate ontological annotation. WordNet provides a potentially ideal solution to this problem as it offers a highly structured lexical conceptual representation that has been extensively used to develop word sense disambiguation algorithms. However, WordNet has not been designed as an ontology, and while it can be easily turned into one, the result of doing this would present users with serious practical limitations due to the great number of concepts (synonym sets) it contains. Moreover, mapping WordNet to an existing ontology may be difficult and requires substantial labor. We propose to overcome these limitations by developing an analytical platform that (1) provides a WordNet-based ontology offering a manageable and yet comprehensive set of concept classes, (2) leverages the lexical richness of WordNet to give an extensive characterization of concept class in terms of lexical instances, and (3) integrates a class recognition algorithm that automates the assignment of concept classes to words in naturally occurring text. The ensuing framework makes available an ontological annotation platform that can be effectively integrated with intelligence analysis systems to facilitate evidence marshaling and sustain the creation and validation of inference models.

  20. Document Delivery: An Annotated Selective Bibliography.

    ERIC Educational Resources Information Center

    Khalil, Mounir A.; Katz, Suzanne R.

    1992-01-01

    Presents a selective annotated bibliography of 61 items that deal with topics related to document delivery, including networks; hypertext; interlibrary loan; computer security; electronic publishing; copyright; online catalogs; resource sharing; electronic mail; electronic libraries; optical character recognition; microcomputers; liability issues;…

  1. An Annotated Journalism Bibliography; 1958-1968.

    ERIC Educational Resources Information Center

    Price, Warren C.; Pickett, Calder M.

    Annotated entries of 2172 books in journalism which have appeared between 1958 and 1968 comprise this volume. Materials are listed alphabetically, by author, and an index of names and subject headings is provided. General categories of entries are biographies, narratives of journalists at work, anthologies of journalistic writing, ethical and…

  2. Health Communication and Literacy: An Annotated Bibliography.

    ERIC Educational Resources Information Center

    Beveridge, Jennifer

    This annotated bibliography lists publications and World Wide Web sites dealing with health communication and literacy. The 51 publications, which were all published between 1982 and 1998, contain information about and/or for use in the following areas: assessment, assessment tools, elderly adults, empowerment, maternal and child health, patient…

  3. Revenue Producing Athletes: An Annotated Bibliography.

    ERIC Educational Resources Information Center

    Ervin, Leroy; And Others

    An annotated bibliography on revenue producing sports is presented, with attention to: Proposition 48, exploitation of athletes, legal proceedings, research related to athletes and academic performance, psychological characteristics of athletes, and counseling programs for athletes. Introductions to each of the six topics are included. The section…

  4. Annotated Psychodynamic Bibliography for Residents in Psychiatry

    PubMed Central

    CALIGOR, EVE

    1996-01-01

    The author provides an annotated bibliography to introduce psychodynamic psychotherapy and psychoanalysis to residents in psychiatry. The emphasis of the selection is on relevance to practice. The entries are grouped by topic, levels of difficulty are noted, and readings are identified as being of either current or historic relevance. PMID:22700303

  5. The Mentally Retarded Offender: Annotated Bibliography.

    ERIC Educational Resources Information Center

    Schilit, Jeffrey; And Others

    An annotated bibliography of approximately 150 books and articles on the mentally retarded offender as well as 30 nonannotated entries are provided. Topics covered include such areas as characteristics of mentally retarded delinquents, rehabilitation of the retarded offender, community services for retarded persons, rights of the mentally…

  6. The Community; A Classified, Annotated Bibliography.

    ERIC Educational Resources Information Center

    Payne, Raymond, Comp.; Bailey, Wilfrid C., Comp.

    This is a classified retrospective bibliography of 839 items on the community (about 140 are annotated) from rural sociology and agricultural economics departments and sections, agricultural experiment stations, extension services, and related agencies. Items are categorized as follows: bibliography and reference lists; location and delineation of…

  7. Chemical Principles Revisited: Annotating Reaction Equations.

    ERIC Educational Resources Information Center

    Tykodi, R. J.

    1987-01-01

    Urges chemistry teachers to have students annotate the chemical reactions in aqueous-solutions that they see in their textbooks and witness in the laboratory. Suggests this will help students recognize the reaction type more readily. Examples are given for gas formation, precipitate formation, redox interaction, acid-base interaction, and…

  8. Teleconferencing, an annotated bibliography, volume 3

    NASA Technical Reports Server (NTRS)

    Shervis, K.

    1971-01-01

    In this annotated and indexed listing of works on teleconferencing, emphasis has been placed upon teleconferencing as real-time, two way audio communication with or without visual aids. However, works on the use of television in two-way or multiway nets, data transmission, regional communications networks and on telecommunications in general are also included.

  9. The Alaska Eskimos. A Selected, Annotated Bibliography.

    ERIC Educational Resources Information Center

    Hippler, Arthur E.; Wood, John R.

    This annotated bibliography, containing approximately 732 entries, provides a general overview of English literature concerning Alaska Eskimos and cities. Although the earliest date of publication is 1843, the majority of the works have been done since 1900; there are no entries published later than 1975. Section I lists the works alphabetically…

  10. An Annotated Bibliography of Migrant Related Materials.

    ERIC Educational Resources Information Center

    Florida Atlantic Univ., Boca Raton.

    Over 1,000 annotated entries in this bibliography present a wide variety of materials related to the teaching and understanding of the migrant and culturally deprived student. Materials are divided into 6 major content areas: (1) health, (2) information on migrants and culturally disadvantaged, (3) curriculum materials, (4) guidance, (5)…

  11. Communication and Sexuality: An Annotated Bibliography.

    ERIC Educational Resources Information Center

    Buley, Jerry, Comp.; And Others

    The entries in this annotated bibliography represent books, educational journals, dissertations, popular magazines, and research studies that deal with the topic of communication and sexuality. Arranged alphabetically by author and also indexed according to subject matter, the titles span a variety of topics, including the following: sex and…

  12. Research: Annotated Bibliography of New Canadian Studies.

    ERIC Educational Resources Information Center

    Toronto Board of Education (Ontario). Research Dept.

    This annotated bibliography of twenty-one research reports that provide knowledge about various cultures and educational experiences of the major ethnic groups in the Toronto schools is designed to present information for not only special English teachers, but other school personnel as well. The bibliography consists of reports that aim to: 1)…

  13. Annotated Bibliography of Literature on Narcotic Addiction.

    ERIC Educational Resources Information Center

    Bowden, R. Renee

    Nearly 150 abstracts have been included in this annotated bibliography; its purpose has been to scan the voluminous number of documents on the problem of drug addiction in order to summarize the present state of knowledge on narcotic addiction and on methods for its treatment and control. The literature reviewed has been divided into the following…

  14. Ludwig von Mises: An Annotated Bibliography.

    ERIC Educational Resources Information Center

    Gordon, David

    A 117-item annotated bibliography of books, articles, essays, lectures, and reviews by economist Ludwig von Mises is presented. The bibliography is arranged chronologicaly, and is followed by an alphabetical listing of the citations, excluding books. An index and information on the Ludwig von Mises Institute at Auburn University (Alabama) are…

  15. Greeks in Canada (an Annotated Bibliography).

    ERIC Educational Resources Information Center

    Bombas, Leonidas C.

    This bibliography on Greeks in Canada includes annotated references to both published and (mostly) unpublished works. Among the 70 entries (arranged in alphabetical order by author) are articles, reports, papers, and theses that deal either exclusively with or include a separate section on Greeks in the various Canadian provinces. (GC)

  16. Educational Quality Indicators: Annotated Bibliography. Second Edition.

    ERIC Educational Resources Information Center

    Alberta Dept. of Education, Edmonton.

    This annotated bibliography of journal articles and documents on educational quality indicators contains approximately 230 entries arranged by the following topics: (1) indicator systems, including international, local/provincial/state, models, and national/federal systems; (2) interpretive framework (context, inputs, processes), including…

  17. Visitor Reports about Chinese Schools: Annotated Bibliography.

    ERIC Educational Resources Information Center

    Parker, Franklin

    An annotated bibliography of 77 books, journal articles, congressional reports, and conference papers all based on visits to Chinese schools by U.S. and British visitors including professional educators, teachers, government officials, historians, and lay citizens is presented. A wide range of entries includes specialized, scholarly journals and…

  18. Health Economics Research: An Annotated Bibliography.

    ERIC Educational Resources Information Center

    Dillard, Carole D.; And Others

    This annotated bibliography lists books and journal articles published since 1976 which deal with health economics and which are based on health services research supported by the National Center for Health Services Research (NCHSR). Articles prepared by NCHSR staff are listed as intramural. All other articles cite the NCHSR grant or contract…

  19. Human object annotation for surveillance video forensics

    NASA Astrophysics Data System (ADS)

    Fraz, Muhammad; Zafar, Iffat; Tzanidou, Giounona; Edirisinghe, Eran A.; Sarfraz, Muhammad Saquib

    2013-10-01

    A system that can automatically annotate surveillance video in a manner useful for locating a person with a given description of clothing is presented. Each human is annotated based on two appearance features: primary colors of clothes and the presence of text/logos on clothes. The annotation occurs after a robust foreground extraction stage employing a modified Gaussian mixture model-based approach. The proposed pipeline consists of a preprocessing stage where color appearance of an image is improved using a color constancy algorithm. In order to annotate color information for human clothes, we use the color histogram feature in HSV space and find local maxima to extract dominant colors for different parts of a segmented human object. To detect text/logos on clothes, we begin with the extraction of connected components of enhanced horizontal, vertical, and diagonal edges in the frames. These candidate regions are classified as text or nontext on the basis of their local energy-based shape histogram features. Further, to detect humans, a novel technique has been proposed that uses contourlet transform-based local binary pattern (CLBP) features. In the proposed method, we extract the uniform direction invariant LBP feature descriptor for contourlet transformed high-pass subimages from vertical and diagonal directional bands. In the final stage, extracted CLBP descriptors are classified by a trained support vector machine. Experimental results illustrate the superiority of our method on large-scale surveillance video data.

  20. Women and World Development: An Annotated Bibliography.

    ERIC Educational Resources Information Center

    Buvinic, Mayra; And Others

    This annotated bibliography focuses on the effects of socioeconomic development and cultural change on women and on women's reactions to these changes. It is an expanded version of one which was prepared for the American Association of Science Seminar on Women in Development held in Mexico City in June 1975. The objectives were to disseminate this…

  1. Food for Thought: An Annotated Bibliography.

    ERIC Educational Resources Information Center

    Bennett, Susan G., Ed.

    Most of the 24 books reviewed in this annotated bibliography concern writing and are recent publications (1980-1985). Titles and authors are as follows: "Teacher" (Sylvia Ashton-Warner); "What Did I Write? Beginning Writing Behavior" (Marie M. Clay); "Composing: Writing as a Self-Creating Process" (William E. Coles); "Right Brain...Write On!…

  2. People: Annotated Multiethnic Bibliography K-12.

    ERIC Educational Resources Information Center

    Gilmore, Dolores D., Comp.; Petrie, Kenneth, Comp.

    This annotated bibliography has been compiled to assist personnel in the selection of multiethnic media for schools. The bibliography includes sections entitled "Asian Americans,""Jewish Americans,""Mexican Americans,""Native Americans,""Puerto Rican Americans,""Other Hyphenated Americans," and "All Americans (Multiethnic)." The entries for the…

  3. Statistical mechanics of ontology based annotations

    NASA Astrophysics Data System (ADS)

    Hoyle, David C.; Brass, Andrew

    2016-01-01

    We present a statistical mechanical theory of the process of annotating an object with terms selected from an ontology. The term selection process is formulated as an ideal lattice gas model, but in a highly structured inhomogeneous field. The model enables us to explain patterns recently observed in real-world annotation data sets, in terms of the underlying graph structure of the ontology. By relating the external field strengths to the information content of each node in the ontology graph, the statistical mechanical model also allows us to propose a number of practical metrics for assessing the quality of both the ontology, and the annotations that arise from its use. Using the statistical mechanical formalism we also study an ensemble of ontologies of differing size and complexity; an analysis not readily performed using real data alone. Focusing on regular tree ontology graphs we uncover a rich set of scaling laws describing the growth in the optimal ontology size as the number of objects being annotated increases. In doing so we provide a further possible measure for assessment of ontologies.

  4. Annotated Bibliography of Products/Materials.

    ERIC Educational Resources Information Center

    Lee, Carolyn S., Comp.; Jennings, Mark B., Comp.; Mayo, Linda P., Comp.; Young, Debra A., Comp.

    This document, which is intended for teachers, program directors, researchers, businesspeople, and students, is an annotated bibliography of more than 600 programs and resources that were developed with funds from the Office of Vocational and Adult Education in fiscal years 1987-1998. The document is divided into two parts. Part 1 is a summary of…

  5. Anthropology and Education: An Annotated Bibliographic Guide.

    ERIC Educational Resources Information Center

    Burnett, Jaquetta H.; And Others

    References in this annotated bibliography concentrate on anthropological research concerning formal and informal education. The bibliography is selective, and the criteria are guided primarily by four questions: What basic concepts oriented the writer? What was done? How was it done? What was the disciplinary, or cultural, identity of the person…

  6. La Mujer Chicana: An Annotated Bibliography, 1976.

    ERIC Educational Resources Information Center

    Chapa, Evey, Ed.; And Others

    Intended to provide interested persons, researchers, and educators with information about "la mujer Chicana", this annotated bibliography cites 320 materials published between 1916 and 1975, with the majority being between 1960 and 1975. The 12 sections cover the following subject areas: Chicana publications; Chicana feminism and "el movimiento";…

  7. An Annotated Bibliography of Small Town Research.

    ERIC Educational Resources Information Center

    Smith, Suzanne M.

    The purpose of this annotated bibliography is to list books, articles, and bulletins (written from 1900 to 1968) related to small towns in the United States. The work contributes to the project "Population Changes in Small Towns," sponsored by the Division of Social Sciences of the National Science Foundation and by the University of Wisconsin…

  8. Annotated Bibliography of Special Education Instructional Materials.

    ERIC Educational Resources Information Center

    Cook, Iva Dean, Comp.

    The annotated bibliography lists approximately 900 commercially prepared materials available for statewide distribution from the West Virginia College of Graduate Studies Special Education Instructional Materials Center (WEIMC) for use in teaching educable (EMR) and trainable mentally retarded (TMR) students. Materials are grouped under subject…

  9. Project for Global Education: Annotated Bibliography.

    ERIC Educational Resources Information Center

    Institute for World Order, New York, NY.

    Over 260 books, textbooks, articles, pamphlets, periodicals, films, and multi-media packages appropriate for the analysis of global issues at the college level are briefly annotated. Entries include classic books and articles as well as a number of recent (1976-1981) publications. The purpose is to assist students and educators in developing a…

  10. Children and Poetry: A Selective, Annotated Bibliography.

    ERIC Educational Resources Information Center

    Haviland, Virginia; Smith, William Jay

    This annotated bibliography of over 120 books was compiled to call attention to poetry for children that is both pleasing and rewarding. Omitted are traditional materials such as Mother Goose rhymes, textbooks, and collections designed especially for the classroom. Sample illustrations from the books noted and lines from poems are reproduced…

  11. Bibliografia de Aztlan: An Annotated Chicano Bibliography.

    ERIC Educational Resources Information Center

    Barrios, Ernie, Ed.

    More than 300 books and articles published from 1920 to 1971 are reviewed in this annotated bibliography of literature on the Chicano. The citations and reviews are categorized by subject area and deal with contemporary Chicano history, education, health, history of Mexico, literature, native Americans, philosophy, political science, pre-Columbian…

  12. Sexually Transmitted Diseases: A Selective, Annotated Bibliography.

    ERIC Educational Resources Information Center

    Planned Parenthood Federation of America, Inc., New York, NY. Education Dept.

    This document contains a reference sheet and an annotated bibliography concerned with sexually transmitted diseases (STD). The reference sheet provides a brief, accurate overview of STDs which includes both statistical and background information. The bibliography contains 83 entries, listed alphabetically, that deal with STDs. Books and articles…

  13. Postsecondary Peer Cooperative Learning Programs: Annotated Bibliography

    ERIC Educational Resources Information Center

    Arendale, David R., Comp.

    2005-01-01

    Purpose: This annotated bibliography is focused intentionally on postsecondary peer cooperative learning programs that increasing student achievement. Peer learning has been popular in education for decades. As both a pedagogy and learning strategy, it has been frequently adapted for a wide range of academic content areas at the elementary,…

  14. An Annotated Bibliography of Latino Educational Research

    ERIC Educational Resources Information Center

    Baumann, Paul; Cabrera, Alberto; Swail, Watson Scott

    2007-01-01

    This bibliography lists and provides annotations for 59 recent research studies on a variety of Latino educational issues. Descriptions of the focus of each item, as well as implications for policy and practice are provided. Items range in publication date from 1993 to 2007. [This document was compiled by the Educational Policy Institute in…

  15. MEETING: Chlamydomonas Annotation Jamboree - October 2003

    SciTech Connect

    Grossman, Arthur R

    2007-04-13

    Shotgun sequencing of the nuclear genome of Chlamydomonas reinhardtii (Chlamydomonas throughout) was performed at an approximate 10X coverage by JGI. Roughly half of the genome is now contained on 26 scaffolds, all of which are at least 1.6 Mb, and the coverage of the genome is ~95%. There are now over 200,000 cDNA sequence reads that we have generated as part of the Chlamydomonas genome project (Grossman, 2003; Shrager et al., 2003; Grossman et al. 2007; Merchant et al., 2007); other sequences have also been generated by the Kasuza sequence group (Asamizu et al., 1999; Asamizu et al., 2000) or individual laboratories that have focused on specific genes. Shrager et al. (2003) placed the reads into distinct contigs (an assemblage of reads with overlapping nucleotide sequences), and contigs that group together as part of the same genes have been designated ACEs (assembly of contigs generated from EST information). All of the reads have also been mapped to the Chlamydomonas nuclear genome and the cDNAs and their corresponding genomic sequences have been reassembled, and the resulting assemblage is called an ACEG (an Assembly of contiguous EST sequences supported by genomic sequence) (Jain et al., 2007). Most of the unique genes or ACEGs are also represented by gene models that have been generated by the Joint Genome Institute (JGI, Walnut Creek, CA). These gene models have been placed onto the DNA scaffolds and are presented as a track on the Chlamydomonas genome browser associated with the genome portal (http://genome.jgi-psf.org/Chlre3/Chlre3.home.html). Ultimately, the meeting grant awarded by DOE has helped enormously in the development of an annotation pipeline (a set of guidelines used in the annotation of genes) and resulted in high quality annotation of over 4,000 genes; the annotators were from both Europe and the USA. Some of the people who led the annotation initiative were Arthur Grossman, Olivier Vallon, and Sabeeha Merchant (with many individual

  16. Data annotation of aerial reconnaissance imagery and exploitation

    NASA Astrophysics Data System (ADS)

    Wareberg, P. Gunnar; Prunes, V.; Scholes, Richard W.

    1995-09-01

    This paper reviews the use of LED recording head assemblies (RHAs) for film annotation in aerial reconnaissance cameras and discusses code matrix block readers (CMBRs). Annotation of video imagery is also covered.

  17. Advanced Biomedical Computing Center (ABCC) | DSITP

    Cancer.gov

    The Advanced Biomedical Computing Center (ABCC), located in Frederick Maryland (MD), provides HPC resources for both NIH/NCI intramural scientists and the extramural biomedical research community. Its mission is to provide HPC support, to provide collaborative research, and to conduct in-house research in various areas of computational biology and biomedical research.

  18. Functional Annotation Analytics of Rhodopseudomonas palustris Genomes

    PubMed Central

    Simmons, Shaneka S.; Isokpehi, Raphael D.; Brown, Shyretha D.; McAllister, Donee L.; Hall, Charnia C.; McDuffy, Wanaki M.; Medley, Tamara L.; Udensi, Udensi K.; Rajnarayanan, Rajendram V.; Ayensu, Wellington K.; Cohly, Hari H.P.

    2011-01-01

    Rhodopseudomonas palustris, a nonsulphur purple photosynthetic bacteria, has been extensively investigated for its metabolic versatility including ability to produce hydrogen gas from sunlight and biomass. The availability of the finished genome sequences of six R. palustris strains (BisA53, BisB18, BisB5, CGA009, HaA2 and TIE-1) combined with online bioinformatics software for integrated analysis presents new opportunities to determine the genomic basis of metabolic versatility and ecological lifestyles of the bacteria species. The purpose of this investigation was to compare the functional annotations available for multiple R. palustris genomes to identify annotations that can be further investigated for strain-specific or uniquely shared phenotypic characteristics. A total of 2,355 protein family Pfam domain annotations were clustered based on presence or absence in the six genomes. The clustering process identified groups of functional annotations including those that could be verified as strain-specific or uniquely shared phenotypes. For example, genes encoding water/glycerol transport were present in the genome sequences of strains CGA009 and BisB5, but absent in strains BisA53, BisB18, HaA2 and TIE-1. Protein structural homology modeling predicted that the two orthologous 240 aa R. palustris aquaporins have water-specific transport function. Based on observations in other microbes, the presence of aquaporin in R. palustris strains may improve freeze tolerance in natural conditions of rapid freezing such as nitrogen fixation at low temperatures where access to liquid water is a limiting factor for nitrogenase activation. In the case of adaptive loss of aquaporin genes, strains may be better adapted to survive in conditions of high-sugar content such as fermentation of biomass for biohydrogen production. Finally, web-based resources were developed to allow for interactive, user-defined selection of the relationship between protein family annotations and the R

  19. Representing annotation compositionality and provenance for the Semantic Web

    PubMed Central

    2013-01-01

    Background Though the annotation of digital artifacts with metadata has a long history, the bulk of that work focuses on the association of single terms or concepts to single targets. As annotation efforts expand to capture more complex information, annotations will need to be able to refer to knowledge structures formally defined in terms of more atomic knowledge structures. Existing provenance efforts in the Semantic Web domain primarily focus on tracking provenance at the level of whole triples and do not provide enough detail to track how individual triple elements of annotations were derived from triple elements of other annotations. Results We present a task- and domain-independent ontological model for capturing annotations and their linkage to their denoted knowledge representations, which can be singular concepts or more complex sets of assertions. We have implemented this model as an extension of the Information Artifact Ontology in OWL and made it freely available, and we show how it can be integrated with several prominent annotation and provenance models. We present several application areas for the model, ranging from linguistic annotation of text to the annotation of disease-associations in genome sequences. Conclusions With this model, progressively more complex annotations can be composed from other annotations, and the provenance of compositional annotations can be represented at the annotation level or at the level of individual elements of the RDF triples composing the annotations. This in turn allows for progressively richer annotations to be constructed from previous annotation efforts, the precise provenance recording of which facilitates evidence-based inference and error tracking. PMID:24268021

  20. PhysiomeSpace: digital library service for biomedical data.

    PubMed

    Testi, Debora; Quadrani, Paolo; Viceconti, Marco

    2010-06-28

    Every research laboratory has a wealth of biomedical data locked up, which, if shared with other experts, could dramatically improve biomedical and healthcare research. With the PhysiomeSpace service, it is now possible with a few clicks to share with selected users biomedical data in an easy, controlled and safe way. The digital library service is managed using a client-server approach. The client application is used to import, fuse and enrich the data information according to the PhysiomeSpace resource ontology and upload/download the data to the library. The server services are hosted on the Biomed Town community portal, where through a web interface, the user can complete the metadata curation and share and/or publish the data resources. A search service capitalizes on the domain ontology and on the enrichment of metadata for each resource, providing a powerful discovery environment. Once the users have found the data resources they are interested in, they can add them to their basket, following a metaphor popular in e-commerce web sites. When all the necessary resources have been selected, the user can download the basket contents into the client application. The digital library service is now in beta and open to the biomedical research community. PMID:20478910

  1. PhysiomeSpace: digital library service for biomedical data.

    PubMed

    Testi, Debora; Quadrani, Paolo; Viceconti, Marco

    2010-06-28

    Every research laboratory has a wealth of biomedical data locked up, which, if shared with other experts, could dramatically improve biomedical and healthcare research. With the PhysiomeSpace service, it is now possible with a few clicks to share with selected users biomedical data in an easy, controlled and safe way. The digital library service is managed using a client-server approach. The client application is used to import, fuse and enrich the data information according to the PhysiomeSpace resource ontology and upload/download the data to the library. The server services are hosted on the Biomed Town community portal, where through a web interface, the user can complete the metadata curation and share and/or publish the data resources. A search service capitalizes on the domain ontology and on the enrichment of metadata for each resource, providing a powerful discovery environment. Once the users have found the data resources they are interested in, they can add them to their basket, following a metaphor popular in e-commerce web sites. When all the necessary resources have been selected, the user can download the basket contents into the client application. The digital library service is now in beta and open to the biomedical research community.

  2. PhysiomeSpace: digital library service for biomedical data

    PubMed Central

    Testi, Debora; Quadrani, Paolo; Viceconti, Marco

    2010-01-01

    Every research laboratory has a wealth of biomedical data locked up, which, if shared with other experts, could dramatically improve biomedical and healthcare research. With the PhysiomeSpace service, it is now possible with a few clicks to share with selected users biomedical data in an easy, controlled and safe way. The digital library service is managed using a client–server approach. The client application is used to import, fuse and enrich the data information according to the PhysiomeSpace resource ontology and upload/download the data to the library. The server services are hosted on the Biomed Town community portal, where through a web interface, the user can complete the metadata curation and share and/or publish the data resources. A search service capitalizes on the domain ontology and on the enrichment of metadata for each resource, providing a powerful discovery environment. Once the users have found the data resources they are interested in, they can add them to their basket, following a metaphor popular in e-commerce web sites. When all the necessary resources have been selected, the user can download the basket contents into the client application. The digital library service is now in beta and open to the biomedical research community. PMID:20478910

  3. Biomedical ethics and the biomedical engineer: a review.

    PubMed

    Saha, S; Saha, P S

    1997-01-01

    Biomedical engineering is responsible for many of the dramatic advances in modern medicine. This has resulted in improved medical care and better quality of life for patients. However, biomedical technology has also contributed to new ethical dilemmas and has challenged some of our moral values. Bioengineers often lack adequate training in facing these moral and ethical problems. These include conflicts of interest, allocation of scarce resources, research misconduct, animal experimentation, and clinical trials for new medical devices. This paper is a compilation of our previous published papers on these topics, and it summarizes many complex ethical issues that a bioengineer may face during his or her research career or professional practice. The need for ethics training in the education of a bioengineering student is emphasized. We also advocate the adoption of a code of ethics for bioengineers.

  4. VideoANT: Extending Online Video Annotation beyond Content Delivery

    ERIC Educational Resources Information Center

    Hosack, Bradford

    2010-01-01

    This paper expands the boundaries of video annotation in education by outlining the need for extended interaction in online video use, identifying the challenges faced by existing video annotation tools, and introducing Video-ANT, a tool designed to create text-based annotations integrated within the time line of a video hosted online. Several…

  5. [Biomedical waste management in five hospitals in Dakar, Senegal].

    PubMed

    Ndiaye, M; El Metghari, L; Soumah, M M; Sow, M L

    2012-10-01

    Biomedical waste is currently a real health and environmental concern. In this regard, a study was conducted in 5 hospitals in Dakar to review their management of biomedical waste and to formulate recommendations. This is a descriptive cross-sectional study conducted from 1 April to 31 July 2010 in five major hospitals of Dakar. A questionnaire administered to hospital managers, heads of departments, residents and heads of hospital hygiene departments as well as interviews conducted with healthcare personnel and operators of waste incinerators made it possible to assess mechanisms and knowledge on biomedical waste management. Content analysis of interviews, observations and a data sheet allowed processing the data thus gathered. Of the 150 questionnaires distributed, 98 responses were obtained representing a response rate of 65.3%. An interview was conducted with 75 employees directly involved in the management of biomedical waste and observations were made on biomedical waste management in 86 hospital services. Sharps as well as blood and liquid waste were found in all services except in pharmacies, pharmaceutical waste in 66 services, infectious waste in 49 services and anatomical waste in 11 services. Sorting of biomedical waste was ill-adapted in 53.5% (N = 46) of services and the use of the colour-coding system effective in 31.4% (N = 27) of services. Containers for the safe disposal of sharps were available in 82.5% (N = 71) of services and were effectively utilized in 51.1% (N = 44) of these services. In most services, an illadapted packaging was observed with the use of plastic bottles and bins for waste collection and overfilled containers. With the exception of Hôpital Principal, the main storage area was in open air, unsecured, with biomedical waste littered on the floor and often mixed with waste similar to household refuse. The transfer of biomedical waste to the main storage area was done using trolleys or carts in 67.4% (N = 58) of services and

  6. RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes

    PubMed Central

    Brettin, Thomas; Davis, James J.; Disz, Terry; Edwards, Robert A.; Gerdes, Svetlana; Olsen, Gary J.; Olson, Robert; Overbeek, Ross; Parrello, Bruce; Pusch, Gordon D.; Shukla, Maulik; Thomason, James A.; Stevens, Rick; Vonstein, Veronika; Wattam, Alice R.; Xia, Fangfang

    2015-01-01

    The RAST (Rapid Annotation using Subsystem Technology) annotation engine was built in 2008 to annotate bacterial and archaeal genomes. It works by offering a standard software pipeline for identifying genomic features (i.e., protein-encoding genes and RNA) and annotating their functions. Recently, in order to make RAST a more useful research tool and to keep pace with advancements in bioinformatics, it has become desirable to build a version of RAST that is both customizable and extensible. In this paper, we describe the RAST tool kit (RASTtk), a modular version of RAST that enables researchers to build custom annotation pipelines. RASTtk offers a choice of software for identifying and annotating genomic features as well as the ability to add custom features to an annotation job. RASTtk also accommodates the batch submission of genomes and the ability to customize annotation protocols for batch submissions. This is the first major software restructuring of RAST since its inception. PMID:25666585

  7. RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes

    SciTech Connect

    Brettin, Thomas; Davis, James J.; Disz, Terry; Edwards, Robert A.; Gerdes, Svetlana; Olsen, Gary J.; Olson, Robert; Overbeek, Ross; Parrello, Bruce; Pusch, Gordon D.; Shukla, Maulik; Thomason, III, James A.; Stevens, Rick; Vonstein, Veronika; Wattam, Alice R.; Xia, Fangfang

    2015-02-10

    The RAST (Rapid Annotation using Subsystem Technology) annotation engine was built in 2008 to annotate bacterial and archaeal genomes. It works by offering a standard software pipeline for identifying genomic features (i.e., protein-encoding genes and RNA) and annotating their functions. Recently, in order to make RAST a more useful research tool and to keep pace with advancements in bioinformatics, it has become desirable to build a version of RAST that is both customizable and extensible. In this paper, we describe the RAST tool kit (RASTtk), a modular version of RAST that enables researchers to build custom annotation pipelines. RASTtk offers a choice of software for identifying and annotating genomic features as well as the ability to add custom features to an annotation job. RASTtk also accommodates the batch submission of genomes and the ability to customize annotation protocols for batch submissions. This is the first major software restructuring of RAST since its inception.

  8. TissueWikiMobile: an Integrative Protein Expression Image Browser for Pathological Knowledge Sharing and Annotation on a Mobile Device

    PubMed Central

    Cheng, Chihwen; Stokes, Todd H.; Hang, Sovandy; Wang, May D.

    2016-01-01

    Doctors need fast and convenient access to medical data. This motivates the use of mobile devices for knowledge retrieval and sharing. We have developed TissueWikiMobile on the Apple iPhone and iPad to seamlessly access TissueWiki, an enormous repository of medical histology images. TissueWiki is a three terabyte database of antibody information and histology images from the Human Protein Atlas (HPA). Using TissueWikiMobile, users are capable of extracting knowledge from protein expression, adding annotations to highlight regions of interest on images, and sharing their professional insight. By providing an intuitive human computer interface, users can efficiently operate TissueWikiMobile to access important biomedical data without losing mobility. TissueWikiMobile furnishes the health community a ubiquitous way to collaborate and share their expert opinions not only on the performance of various antibodies stains but also on histology image annotation. PMID:27532057

  9. Model and Interoperability using Meta Data Annotations

    NASA Astrophysics Data System (ADS)

    David, O.

    2011-12-01

    Software frameworks and architectures are in need for meta data to efficiently support model integration. Modelers have to know the context of a model, often stepping into modeling semantics and auxiliary information usually not provided in a concise structure and universal format, consumable by a range of (modeling) tools. XML often seems the obvious solution for capturing meta data, but its wide adoption to facilitate model interoperability is limited by XML schema fragmentation, complexity, and verbosity outside of a data-automation process. Ontologies seem to overcome those shortcomings, however the practical significance of their use remains to be demonstrated. OMS version 3 took a different approach for meta data representation. The fundamental building block of a modular model in OMS is a software component representing a single physical process, calibration method, or data access approach. Here, programing language features known as Annotations or Attributes were adopted. Within other (non-modeling) frameworks it has been observed that annotations lead to cleaner and leaner application code. Framework-supported model integration, traditionally accomplished using Application Programming Interfaces (API) calls is now achieved using descriptive code annotations. Fully annotated components for various hydrological and Ag-system models now provide information directly for (i) model assembly and building, (ii) data flow analysis for implicit multi-threading or visualization, (iii) automated and comprehensive model documentation of component dependencies, physical data properties, (iv) automated model and component testing, calibration, and optimization, and (v) automated audit-traceability to account for all model resources leading to a particular simulation result. Such a non-invasive methodology leads to models and modeling components with only minimal dependencies on the modeling framework but a strong reference to its originating code. Since models and

  10. Branding the bio/biomedical engineering degree.

    PubMed

    Voigt, Herbert F

    2011-01-01

    The future challenges to medical and biological engineering, sometimes referred to as biomedical engineering or simply bioengineering, are many. Some of these are identifiable now and others will emerge from time to time as new technologies are introduced and harnessed. There is a fundamental issue regarding "Branding the bio/biomedical engineering degree" that requires a common understanding of what is meant by a B.S. degree in Biomedical Engineering, Bioengineering, or Biological Engineering. In this paper we address some of the issues involved in branding the Bio/Biomedical Engineering degree, with the aim of clarifying the Bio/Biomedical Engineering brand.

  11. ArrayPlex: distributed, interactive and programmatic access to genome sequence, annotation, ontology, and analytical toolsets

    PubMed Central

    Killion, Patrick J; Iyer, Vishwanath R

    2008-01-01

    ArrayPlex is a software package that centrally provides a large number of flexible toolsets useful for functional genomics, including microarray data storage, quality assessments, data visualization, gene annotation retrieval, statistical tests, genomic sequence retrieval and motif analysis. It uses a client-server architecture based on open source components, provides graphical, command-line, and programmatic access to all needed resources, and is extensible by virtue of a documented application programming interface. ArrayPlex is available at . PMID:19014503

  12. Annotations and the Collaborative Digital Library: Effects of an Aligned Annotation Interface on Student Argumentation and Reading Strategies

    ERIC Educational Resources Information Center

    Wolfe, Joanna

    2008-01-01

    Recent research on annotation interfaces provides provocative evidence that anchored, annotation-based discussion environments may lead to better conversations about a text. However, annotation interfaces raise complicated tradeoffs regarding screen real estate and positioning. It is argued that solving this screen real estate problem requires…

  13. Biomedical Experiments Scientific Satellite /BESS/

    NASA Technical Reports Server (NTRS)

    Berry, W. E.; Tremor, J. W.; Aepli, T. C.

    1976-01-01

    The Biomedical Experiments Scientific Satellite (BESS) program is proposed to provide a long-duration, earth-orbiting facility to expose selected specimens in a series of biomedical experiments through the 1980's. Launched and retrieved by the Space Transportation System, the fully reusable, free-flying BESS will contain all systems necessary to conduct a six-month to one-year spaceflight mission. The spacecraft system will consist of a large pressurized experiment module and a standard NASA service module currently conceived as the Goddard Multi-Mission Spacecraft (MMS). The experiment module will contain the life-support systems, waste management system, specimen-holding facilities, and monitoring, evaluating, and data-handling equipment. Although a variety of specimens will be flown in basic biological and medical studies, the primate was taken as the principal design driver since it has a maximal life-support demand.

  14. On-Chip Biomedical Imaging

    PubMed Central

    Göröcs, Zoltán; Ozcan, Aydogan

    2012-01-01

    Lab-on-a-chip systems have been rapidly emerging to pave the way toward ultra-compact, efficient, mass producible and cost-effective biomedical research and diagnostic tools. Although such microfluidic and micro electromechanical systems achieved high levels of integration, and are capable of performing various important tasks on the same chip, such as cell culturing, sorting and staining, they still rely on conventional microscopes for their imaging needs. Recently several alternative on-chip optical imaging techniques have been introduced, which have the potential to substitute conventional microscopes for various lab-on-a-chip applications. Here we present a critical review of these recently emerging on-chip biomedical imaging modalities, including contact shadow imaging, lensfree holographic microscopy, fluorescent on-chip microscopy and lensfree optical tomography. PMID:23558399

  15. Nanocomposite hydrogels for biomedical applications

    PubMed Central

    Gaharwar, Akhilesh K.

    2014-01-01

    Hydrogels mimic native tissue microenvironment due to their porous and hydrated molecular structure. An emerging approach to reinforce polymeric hydrogels and to include multiple functionalities focuses on incorporating nanoparticles within the hydrogel network. A wide range of nanoparticles, such as carbon-based, polymeric, ceramic, and metallic nanomaterials can be integrated within the hydrogel networks to obtain nanocomposites with superior properties and tailored functionality. Nanocomposite hydrogels can be engineered to possess superior physical, chemical, electrical, and biological properties. This review focuses on the most recent developments in the field of nanocomposite hydrogels with emphasis on biomedical and pharmaceutical applications. In particular, we discuss synthesis and fabrication of nanocomposite hydrogels, examine their current limitations and conclude with future directions in designing more advanced nanocomposite hydrogels for biomedical and biotechnological applications. PMID:24264728

  16. Multiple Whole Genome Alignments and Novel Biomedical Applicationsat the VISTA Portal

    SciTech Connect

    Brudno, Michael; Poliakov, Alexander; Minovitsky, Simon; Ratnere,Igor; Dubchak, Inna

    2007-02-01

    The VISTA portal for comparative genomics is designed togive biomedical scientists a unified set of tools to lead them from theraw DNA sequences through the alignment and annotation to thevisualization of the results. The VISTA portal also hosts alignments of anumber of genomes computed by our group, allowing users to study regionsof their interest without having to manually download the individualsequences. Here we describe various algorithmic and functionalimprovements implemented in the VISTA portal over the last two years. TheVISTA Portal is accessible at http://genome.lbl.gov/vista.

  17. New biomedical applications of radiocarbon

    SciTech Connect

    Davis, J.C.

    1990-12-01

    The potential of accelerator mass spectrometry (AMS) and radiocarbon in biomedical applications is being investigated by Lawrence Livermore National Laboratory (LLNL). A measurement of the dose-response curve for DNA damage caused by a carcinogen in mouse liver cells was an initial experiment. This demonstrated the sensitivity and utility of AMS for detecting radiocarbon tags and led to numerous follow-on experiments. The initial experiment and follow-on experiments are discussed in this report. 12 refs., 4 figs. (SM)

  18. [Cluster analysis in biomedical researches].

    PubMed

    Akopov, A S; Moskovtsev, A A; Dolenko, S A; Savina, G D

    2013-01-01

    Cluster analysis is one of the most popular methods for the analysis of multi-parameter data. The cluster analysis reveals the internal structure of the data, group the separate observations on the degree of their similarity. The review provides a definition of the basic concepts of cluster analysis, and discusses the most popular clustering algorithms: k-means, hierarchical algorithms, Kohonen networks algorithms. Examples are the use of these algorithms in biomedical research. PMID:24640781

  19. How well are protein structures annotated in secondary databases?

    PubMed

    Rother, Kristian; Michalsky, Elke; Leser, Ulf

    2005-09-01

    We investigated to what extent Protein Data Bank (PDB) entries are annotated with second-party information based on existing cross-references between PDB and 15 other databases. We report 2 interesting findings. First, there is a clear "annotation gap" for structures less than 7 years old for secondary databases that are manually curated. Second, the examined databases overlap with each other quite well, dividing the PDB into 2 well-annotated thirds and one poorly annotated third. Both observations should be taken into account in any study depending on the selection of protein structures by their annotation.

  20. Automatic identification and classification of noun argument structures in biomedical literature.

    PubMed

    Ozyurt, Ibrahim Burak

    2012-01-01

    The accelerating increase in the biomedical literature makes keeping up with recent advances challenging for researchers thus making automatic extraction and discovery of knowledge from this vast literature a necessity. Building such systems requires automatic detection of lexico-semantic event structures governed by the syntactic and semantic constraints of human languages in sentences of biomedical texts. The lexico-semantic event structures in sentences are centered around the predicates and most semantic role labeling (SRL) approaches focus only on the arguments of verb predicates and neglect argument taking nouns which also convey information in a sentence. In this article, a noun argument structure (NAS) annotated corpus named BioNom and a SRL system to identify and classify these structures is introduced. Also, a genetic algorithm-based feature selection (GAFS) method is introduced and global inference is applied to significantly improve the performance of the NAS Bio SRL system. PMID:22868678

  1. Analysis and Annotation of Nucleic Acid Sequence

    SciTech Connect

    States, David J.

    2004-07-28

    The aims of this project were to develop improved methods for computational genome annotation and to apply these methods to improve the annotation of genomic sequence data with a specific focus on human genome sequencing. The project resulted in a substantial body of published work. Notable contributions of this project were the identification of basecalling and lane tracking as error processes in genome sequencing and contributions to improved methods for these steps in genome sequencing. This technology improved the accuracy and throughput of genome sequence analysis. Probabilistic methods for physical map construction were developed. Improved methods for sequence alignment, alternative splicing analysis, promoter identification and NF kappa B response gene prediction were also developed.

  2. Cognition inspired framework for indoor scene annotation

    NASA Astrophysics Data System (ADS)

    Ye, Zhipeng; Liu, Peng; Zhao, Wei; Tang, Xianglong

    2015-09-01

    We present a simple yet effective scene annotation framework based on a combination of bag-of-visual words (BoVW), three-dimensional scene structure estimation, scene context, and cognitive theory. From a macroperspective, the proposed cognition-based hybrid motivation framework divides the annotation problem into empirical inference and real-time classification. Inspired by the inference ability of human beings, common objects of indoor scenes are defined for experience-based inference, while in the real-time classification stage, an improved BoVW-based multilayer abstract semantics labeling method is proposed by introducing abstract semantic hierarchies to narrow the semantic gap and improve the performance of object categorization. The proposed framework was evaluated on a variety of common data sets and experimental results proved its effectiveness.

  3. GoMapMan: integration, consolidation and visualization of plant gene annotations within the MapMan ontology.

    PubMed

    Ramsak, Živa; Baebler, Špela; Rotter, Ana; Korbar, Matej; Mozetic, Igor; Usadel, Björn; Gruden, Kristina

    2014-01-01

    GoMapMan (http://www.gomapman.org) is an open web-accessible resource for gene functional annotations in the plant sciences. It was developed to facilitate improvement, consolidation and visualization of gene annotations across several plant species. GoMapMan is based on the MapMan ontology, organized in the form of a hierarchical tree of biological concepts, which describe gene functions. Currently, genes of the model species Arabidopsis and three crop species (potato, tomato and rice) are included. The main features of GoMapMan are (i) dynamic and interactive gene product annotation through various curation options; (ii) consolidation of gene annotations for different plant species through the integration of orthologue group information; (iii) traceability of gene ontology changes and annotations; (iv) integration of external knowledge about genes from different public resources; and (v) providing gathered information to high-throughput analysis tools via dynamically generated export files. All of the GoMapMan functionalities are openly available, with the restriction on the curation functions, which require prior registration to ensure traceability of the implemented changes.

  4. GoMapMan: integration, consolidation and visualization of plant gene annotations within the MapMan ontology

    PubMed Central

    Ramšak, Živa; Baebler, Špela; Rotter, Ana; Korbar, Matej; Mozetič, Igor; Usadel, Björn; Gruden, Kristina

    2014-01-01

    GoMapMan (http://www.gomapman.org) is an open web-accessible resource for gene functional annotations in the plant sciences. It was developed to facilitate improvement, consolidation and visualization of gene annotations across several plant species. GoMapMan is based on the MapMan ontology, organized in the form of a hierarchical tree of biological concepts, which describe gene functions. Currently, genes of the model species Arabidopsis and three crop species (potato, tomato and rice) are included. The main features of GoMapMan are (i) dynamic and interactive gene product annotation through various curation options; (ii) consolidation of gene annotations for different plant species through the integration of orthologue group information; (iii) traceability of gene ontology changes and annotations; (iv) integration of external knowledge about genes from different public resources; and (v) providing gathered information to high-throughput analysis tools via dynamically generated export files. All of the GoMapMan functionalities are openly available, with the restriction on the curation functions, which require prior registration to ensure traceability of the implemented changes. PMID:24194592

  5. Deburring: an annotated bibliography. Volume VI

    SciTech Connect

    Gillespie, L.K.

    1980-07-01

    An annotated summary of 138 articles and publications on burrs, burr prevention and deburring is presented. Thirty-seven deburring processes are listed. Entries cited include English, Russian, French, Japanese, and German language articles. Entries are indexed by deburring processes, author, and language. Indexes also indicate which references discuss equipment and tooling, how to use a proces economics, burr properties, and how to design to minimize burr problems. Research studies are identified as are the materials deburred.

  6. CART—a chemical annotation retrieval toolkit

    PubMed Central

    Deghou, Samy; Zeller, Georg; Iskar, Murat; Driessen, Marja; Castillo, Mercedes; van Noort, Vera; Bork, Peer

    2016-01-01

    Motivation: Data on bioactivities of drug-like chemicals are rapidly accumulating in public repositories, creating new opportunities for research in computational systems pharmacology. However, integrative analysis of these data sets is difficult due to prevailing ambiguity between chemical names and identifiers and a lack of cross-references between databases. Results: To address this challenge, we have developed CART, a Chemical Annotation Retrieval Toolkit. As a key functionality, it matches an input list of chemical names into a comprehensive reference space to assign unambiguous chemical identifiers. In this unified space, bioactivity annotations can be easily retrieved from databases covering a wide variety of chemical effects on biological systems. Subsequently, CART can determine annotations enriched in the input set of chemicals and display these in tabular format and interactive network visualizations, thereby facilitating integrative analysis of chemical bioactivity data. Availability and Implementation: CART is available as a Galaxy web service (cart.embl.de). Source code and an easy-to-install command line tool can also be obtained from the web site. Contact: bork@embl.de Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27256313

  7. Enzyme reaction annotation using cloud techniques.

    PubMed

    Huang, Chuan-Ching; Lin, Chun-Yuan; Chang, Cheng-Wen; Tang, Chuan Yi

    2013-01-01

    An understanding of the activities of enzymes could help to elucidate the metabolic pathways of thousands of chemical reactions that are catalyzed by enzymes in living systems. Sophisticated applications such as drug design and metabolic reconstruction could be developed using accurate enzyme reaction annotation. Because accurate enzyme reaction annotation methods create potential for enhanced production capacity in these applications, they have received greater attention in the global market. We propose the enzyme reaction prediction (ERP) method as a novel tool to deduce enzyme reactions from domain architecture. We used several frequency relationships between architectures and reactions to enhance the annotation rates for single and multiple catalyzed reactions. The deluge of information which arose from high-throughput techniques in the postgenomic era has improved our understanding of biological data, although it presents obstacles in the data-processing stage. The high computational capacity provided by cloud computing has resulted in an exponential growth in the volume of incoming data. Cloud services also relieve the requirement for large-scale memory space required by this approach to analyze enzyme kinetic data. Our tool is designed as a single execution file; thus, it could be applied to any cloud platform in which multiple queries are supported.

  8. UCSC Data Integrator and Variant Annotation Integrator

    PubMed Central

    Hinrichs, Angie S.; Raney, Brian J.; Speir, Matthew L.; Rhead, Brooke; Casper, Jonathan; Karolchik, Donna; Kuhn, Robert M.; Rosenbloom, Kate R.; Zweig, Ann S.; Haussler, David; Kent, W. James

    2016-01-01

    Summary: Two new tools on the UCSC Genome Browser web site provide improved ways of combining information from multiple datasets, optionally including the user's own custom track data and/or data from track hubs. The Data Integrator combines columns from multiple data tracks, showing all items from the first track along with overlapping items from the other tracks. The Variant Annotation Integrator is tailored to adding functional annotations to variant calls; it offers a more restricted set of underlying data tracks but adds predictions of each variant's consequences for any overlapping or nearby gene transcript. When available, it optionally adds additional annotations including effect prediction scores from dbNSFP for missense mutations, ENCODE regulatory summary tracks and conservation scores. Availability and implementation: The web tools are freely available at http://genome.ucsc.edu/ and the underlying database is available for download at http://hgdownload.cse.ucsc.edu/. The software (written in C and Javascript) is available from https://genome-store.ucsc.edu/ and is freely available for academic and non-profit usage; commercial users must obtain a license. Contact: angie@soe.ucsc.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26740527

  9. Jannovar: a java library for exome annotation.

    PubMed

    Jäger, Marten; Wang, Kai; Bauer, Sebastian; Smedley, Damian; Krawitz, Peter; Robinson, Peter N

    2014-05-01

    Transcript-based annotation and pedigree analysis are two basic steps in the computational analysis of whole-exome sequencing experiments in genetic diagnostics and disease-gene discovery projects. Here, we present Jannovar, a stand-alone Java application as well as a Java library designed to be used in larger software frameworks for exome and genome analysis. Jannovar uses an interval tree to identify all transcripts affected by a given variant, and provides Human Genome Variation Society-compliant annotations both for variants affecting coding sequences and splice junctions as well as untranslated regions and noncoding RNA transcripts. Jannovar can also perform family-based pedigree analysis with Variant Call Format (VCF) files with data from members of a family segregating a Mendelian disorder. Using a desktop computer, Jannovar requires a few seconds to annotate a typical VCF file with exome data. Jannovar is freely available under the BSD2 license. Source code as well as the Java application and library file can be downloaded from http://compbio.charite.de (with tutorial) and https://github.com/charite/jannovar. PMID:24677618

  10. GAMOLA: a new local solution for sequence annotation and analyzing draft and finished prokaryotic genomes.

    PubMed

    Altermann, Eric; Klaenhammer, Todd R

    2003-01-01

    Laboratories working with draft phase genomes have specific software needs, such as the unattended processing of hundreds of single scaffolds and subsequent sequence annotation. In addition, it is critical to follow the "movement" and the manual annotation of single open reading frames (ORFs) within the successive sequence updates. Even with finished genomes, regular database updates can lead to significant changes in the annotation of single ORFs. In functional genomics it is important to mine data and identify new genetic targets rapidly and easily. Often there is no need for sophisticated relational databases (RDB) that greatly reduce the system-independent access of the results. Another aspect is the internet dependency of most software packages. If users are working with confidential data, this dependency poses a security issue. GAMOLA was designed to handle the numerous scaffolds and changing contents of draft phase genomes in an automated process and stores the results for each predicted ORF in flatfile databases. In addition, annotation transfers, ORF designation tracking, Blast comparisons, and primer design for whole genome microarrays have been implemented. The software is available under the license of North Carolina State University. A website and a downloadable example are accessible under (http://fsweb2.schaub. ncsu.edu/TRKwebsite/index.htm). PMID:14506845

  11. BRONCO: Biomedical entity Relation ONcology COrpus for extracting gene-variant-disease-drug relations.

    PubMed

    Lee, Kyubum; Lee, Sunwon; Park, Sungjoon; Kim, Sunkyu; Kim, Suhkyung; Choi, Kwanghun; Tan, Aik Choon; Kang, Jaewoo

    2016-01-01

    Comprehensive knowledge of genomic variants in a biological context is key for precision medicine. As next-generation sequencing technologies improve, the amount of literature containing genomic variant data, such as new functions or related phenotypes, rapidly increases. Because numerous articles are published every day, it is almost impossible to manually curate all the variant information from the literature. Many researchers focus on creating an improved automated biomedical natural language processing (BioNLP) method that extracts useful variants and their functional information from the literature. However, there is no gold-standard data set that contains texts annotated with variants and their related functions. To overcome these limitations, we introduce a Biomedical entity Relation ONcology COrpus (BRONCO) that contains more than 400 variants and their relations with genes, diseases, drugs and cell lines in the context of cancer and anti-tumor drug screening research. The variants and their relations were manually extracted from 108 full-text articles. BRONCO can be utilized to evaluate and train new methods used for extracting biomedical entity relations from full-text publications, and thus be a valuable resource to the biomedical text mining research community. Using BRONCO, we quantitatively and qualitatively evaluated the performance of three state-of-the-art BioNLP methods. We also identified their shortcomings, and suggested remedies for each method. We implemented post-processing modules for the three BioNLP methods, which improved their performance.Database URL:http://infos.korea.ac.kr/bronco. PMID:27074804

  12. BRONCO: Biomedical entity Relation ONcology COrpus for extracting gene-variant-disease-drug relations

    PubMed Central

    Lee, Kyubum; Lee, Sunwon; Park, Sungjoon; Kim, Sunkyu; Kim, Suhkyung; Choi, Kwanghun; Tan, Aik Choon; Kang, Jaewoo

    2016-01-01

    Comprehensive knowledge of genomic variants in a biological context is key for precision medicine. As next-generation sequencing technologies improve, the amount of literature containing genomic variant data, such as new functions or related phenotypes, rapidly increases. Because numerous articles are published every day, it is almost impossible to manually curate all the variant information from the literature. Many researchers focus on creating an improved automated biomedical natural language processing (BioNLP) method that extracts useful variants and their functional information from the literature. However, there is no gold-standard data set that contains texts annotated with variants and their related functions. To overcome these limitations, we introduce a Biomedical entity Relation ONcology COrpus (BRONCO) that contains more than 400 variants and their relations with genes, diseases, drugs and cell lines in the context of cancer and anti-tumor drug screening research. The variants and their relations were manually extracted from 108 full-text articles. BRONCO can be utilized to evaluate and train new methods used for extracting biomedical entity relations from full-text publications, and thus be a valuable resource to the biomedical text mining research community. Using BRONCO, we quantitatively and qualitatively evaluated the performance of three state-of-the-art BioNLP methods. We also identified their shortcomings, and suggested remedies for each method. We implemented post-processing modules for the three BioNLP methods, which improved their performance. Database URL: http://infos.korea.ac.kr/bronco PMID:27074804

  13. Text mining patents for biomedical knowledge.

    PubMed

    Rodriguez-Esteban, Raul; Bundschus, Markus

    2016-06-01

    Biomedical text mining of scientific knowledge bases, such as Medline, has received much attention in recent years. Given that text mining is able to automatically extract biomedical facts that revolve around entities such as genes, proteins, and drugs, from unstructured text sources, it is seen as a major enabler to foster biomedical research and drug discovery. In contrast to the biomedical literature, research into the mining of biomedical patents has not reached the same level of maturity. Here, we review existing work and highlight the associated technical challenges that emerge from automatically extracting facts from patents. We conclude by outlining potential future directions in this domain that could help drive biomedical research and drug discovery.

  14. Text mining patents for biomedical knowledge.

    PubMed

    Rodriguez-Esteban, Raul; Bundschus, Markus

    2016-06-01

    Biomedical text mining of scientific knowledge bases, such as Medline, has received much attention in recent years. Given that text mining is able to automatically extract biomedical facts that revolve around entities such as genes, proteins, and drugs, from unstructured text sources, it is seen as a major enabler to foster biomedical research and drug discovery. In contrast to the biomedical literature, research into the mining of biomedical patents has not reached the same level of maturity. Here, we review existing work and highlight the associated technical challenges that emerge from automatically extracting facts from patents. We conclude by outlining potential future directions in this domain that could help drive biomedical research and drug discovery. PMID:27179985

  15. Developing a new perspective for biomedical Communications.

    PubMed

    Rupnow, D E

    1979-07-01

    A three-dimensional model is utilized in an attempt to develop a complete picture of the many facets of biomedical communications. This model provides a suitable visual structure from which to explore the complex interactions of individuals, institutions, and activities in defining the field of biomedical communications. The first dimension of the model was developed through a historical overview of the environment of the biomedical communicator and suggests that changing organization goals, client needs, technology, and resources have influenced the evolution of different types of biomedical communicators. The second dimension of the model identifies five major work roles that may be performed by the biomedical communicator of today. The final dimension of the model is developed by a consideration of the major communication methods (illustration, photography, cinematography, television, audiovisual, and computer) of the biomedical communicator. PMID:88444

  16. CMAS: a rich media annotation system for medical imaging

    NASA Astrophysics Data System (ADS)

    Lin, I.-Jong; Chao, Hui

    2006-03-01

    We have developed the CMAS system (Collaborative Medical Annotation System) so that medical professionals will be able to easily annotate digital medical records that contain medical imaging or procedure videos. The CMAS system enables a non-technical person to annotate a medical image or video with their recorded presence. The CMAS system displays medical images via a projector onto a screen; when a doctor (or patient) physically walks in front of this screen with the medical image and gives his/her opinion while gesturing at the image, the CMAS system intuitively captures this interaction by creating a video annotation with HP's Active Shadows technology. The CMAS system automatically transforms physical interactions, ranging from a laser pointer spot to a doctor's physical presence, into video annotation that then can be overlaid on top of the medical image or seamlessly inserted into the procedure video. Annotated in such a manner, the medical record retains the historical development of the diagnostic medical opinion, explained through presence of doctors and their respective annotations. The CMAS system structures the annotation of digital medical records such that image/video annotations from multiple sources, at different times, and from different locations can be maintained within a historical context and be consistently referenced among multiple annotations.

  17. Chapter 1: Biomedical knowledge integration.

    PubMed

    Payne, Philip R O

    2012-01-01

    The modern biomedical research and healthcare delivery domains have seen an unparalleled increase in the rate of innovation and novel technologies over the past several decades. Catalyzed by paradigm-shifting public and private programs focusing upon the formation and delivery of genomic and personalized medicine, the need for high-throughput and integrative approaches to the collection, management, and analysis of heterogeneous data sets has become imperative. This need is particularly pressing in the translational bioinformatics domain, where many fundamental research questions require the integration of large scale, multi-dimensional clinical phenotype and bio-molecular data sets. Modern biomedical informatics theory and practice has demonstrated the distinct benefits associated with the use of knowledge-based systems in such contexts. A knowledge-based system can be defined as an intelligent agent that employs a computationally tractable knowledge base or repository in order to reason upon data in a targeted domain and reproduce expert performance relative to such reasoning operations. The ultimate goal of the design and use of such agents is to increase the reproducibility, scalability, and accessibility of complex reasoning tasks. Examples of the application of knowledge-based systems in biomedicine span a broad spectrum, from the execution of clinical decision support, to epidemiologic surveillance of public data sets for the purposes of detecting emerging infectious diseases, to the discovery of novel hypotheses in large-scale research data sets. In this chapter, we will review the basic theoretical frameworks that define core knowledge types and reasoning operations with particular emphasis on the applicability of such conceptual models within the biomedical domain, and then go on to introduce a number of prototypical data integration requirements and patterns relevant to the conduct of translational bioinformatics that can be addressed via the design and

  18. Chapter 1: Biomedical knowledge integration.

    PubMed

    Payne, Philip R O

    2012-01-01

    The modern biomedical research and healthcare delivery domains have seen an unparalleled increase in the rate of innovation and novel technologies over the past several decades. Catalyzed by paradigm-shifting public and private programs focusing upon the formation and delivery of genomic and personalized medicine, the need for high-throughput and integrative approaches to the collection, management, and analysis of heterogeneous data sets has become imperative. This need is particularly pressing in the translational bioinformatics domain, where many fundamental research questions require the integration of large scale, multi-dimensional clinical phenotype and bio-molecular data sets. Modern biomedical informatics theory and practice has demonstrated the distinct benefits associated with the use of knowledge-based systems in such contexts. A knowledge-based system can be defined as an intelligent agent that employs a computationally tractable knowledge base or repository in order to reason upon data in a targeted domain and reproduce expert performance relative to such reasoning operations. The ultimate goal of the design and use of such agents is to increase the reproducibility, scalability, and accessibility of complex reasoning tasks. Examples of the application of knowledge-based systems in biomedicine span a broad spectrum, from the execution of clinical decision support, to epidemiologic surveillance of public data sets for the purposes of detecting emerging infectious diseases, to the discovery of novel hypotheses in large-scale research data sets. In this chapter, we will review the basic theoretical frameworks that define core knowledge types and reasoning operations with particular emphasis on the applicability of such conceptual models within the biomedical domain, and then go on to introduce a number of prototypical data integration requirements and patterns relevant to the conduct of translational bioinformatics that can be addressed via the design and

  19. Chapter 1: Biomedical Knowledge Integration

    PubMed Central

    Payne, Philip R. O.

    2012-01-01

    The modern biomedical research and healthcare delivery domains have seen an unparalleled increase in the rate of innovation and novel technologies over the past several decades. Catalyzed by paradigm-shifting public and private programs focusing upon the formation and delivery of genomic and personalized medicine, the need for high-throughput and integrative approaches to the collection, management, and analysis of heterogeneous data sets has become imperative. This need is particularly pressing in the translational bioinformatics domain, where many fundamental research questions require the integration of large scale, multi-dimensional clinical phenotype and bio-molecular data sets. Modern biomedical informatics theory and practice has demonstrated the distinct benefits associated with the use of knowledge-based systems in such contexts. A knowledge-based system can be defined as an intelligent agent that employs a computationally tractable knowledge base or repository in order to reason upon data in a targeted domain and reproduce expert performance relative to such reasoning operations. The ultimate goal of the design and use of such agents is to increase the reproducibility, scalability, and accessibility of complex reasoning tasks. Examples of the application of knowledge-based systems in biomedicine span a broad spectrum, from the execution of clinical decision support, to epidemiologic surveillance of public data sets for the purposes of detecting emerging infectious diseases, to the discovery of novel hypotheses in large-scale research data sets. In this chapter, we will review the basic theoretical frameworks that define core knowledge types and reasoning operations with particular emphasis on the applicability of such conceptual models within the biomedical domain, and then go on to introduce a number of prototypical data integration requirements and patterns relevant to the conduct of translational bioinformatics that can be addressed via the design and

  20. National Space Biomedical Research Institute

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This report summarizes the activities of the National Space Biomedical Research Institute (NSBRI) during FY 1999, the second full year of existence of the NSBRI's research program, and is prepared in accordance with Cooperative Agreement NCC9-58 between NASA's Lyndon B. Johnson Space Center and Baylor College of Medicine (NSBRI). The report consists of progress reports on projects related to the effects of microgravity and space on physiology. The research is broken up in nine areas: (1) Bone loss, (2) Cardiovascular alterations, (3) human performance, (3) immunology, infection and hematology, (4) muscle alterations and atrophy,(5) Neurovestibular adaptation, radiation effects, (6) technology development, and (7) synergy projects.