Science.gov

Sample records for open charm muoproduction

  1. Virtual photoproduction of hidden and open charm

    SciTech Connect

    Clark, A.R.; Johnson, K.J.; Kerth, L.T.

    1980-11-01

    The Berkeley-Fermilab-Princeton multimuon spectrometer and the techniques used to analyze the data which it has collected are described first. Limits on the cross section with which possible heavy neutral or doubly charged muons are produced via right-handed charged currents are presented. Turning to heavy-quark muoproduction, the author then outlines the relevant phenomenology, emphasizing the predictions of the vector dominance (VMD) and photon-gluon-fusion models. The first heavy-quark data discussed are the dimuon-mass spectrum observed in trimuon final states, which provides a limit on muoproduction of the UPSILON family. The bulk of the quarkonium results are devoted to J/psi(3100) muoproduction. After briefly reviewing the original psi results, the author focuses on a combined analysis of the polarization and Q/sup 2/ dependence of elastically produced psi's. The remainder of the paper is devoted to the muoproduction of open charm, observed in events with two muons in the final state. 57 references, 11 figures, 3 tables. (RWR)

  2. Leading and next-to-leading order gluon polarization in the nucleon and longitudinal double spin asymmetries from open charm muoproduction

    NASA Astrophysics Data System (ADS)

    Adolph, C.; Alekseev, M. G.; Alexakhin, V. Yu.; Alexandrov, Yu.; Alexeev, G. D.; Amoroso, A.; Antonov, A. A.; Austregesilo, A.; Badełek, B.; Balestra, F.; Barth, J.; Baum, G.; Bedfer, Y.; Berlin, A.; Bernhard, J.; Bertini, R.; Bettinelli, M.; Bicker, K.; Bieling, J.; Birsa, R.; Bisplinghoff, J.; Bordalo, P.; Bradamante, F.; Braun, C.; Bravar, A.; Bressan, A.; Büchele, M.; Burtin, E.; Capozza, L.; Chiosso, M.; Chung, S. U.; Cicuttin, A.; Crespo, M. L.; Dalla Torre, S.; Das, S.; Dasgupta, S. S.; Dasgupta, S.; Denisov, O. Yu.; Dhara, L.; Donskov, S. V.; Doshita, N.; Duic, V.; Dünnweber, W.; Dziewiecki, M.; Efremov, A.; Elia, C.; Eversheim, P. D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Filin, A.; Finger, M.; Finger, M., Jr.; Fischer, H.; Franco, C.; du Fresne von Hohenesche, N.; Friedrich, J. M.; Frolov, V.; Garfagnini, R.; Gautheron, F.; Gavrichtchouk, O. P.; Gerassimov, S.; Geyer, R.; Giorgi, M.; Gnesi, I.; Gobbo, B.; Goertz, S.; Grabmüller, S.; Grasso, A.; Grube, B.; Gushterski, R.; Guskov, A.; Guthörl, T.; Haas, F.; von Harrach, D.; Heinsius, F. H.; Herrmann, F.; Heß, C.; Hinterberger, F.; Horikawa, N.; Höppner, Ch.; d'Hose, N.; Huber, S.; Ishimoto, S.; Ivanov, O.; Ivanshin, Yu.; Iwata, T.; Jahn, R.; Jary, V.; Jasinski, P.; Joosten, R.; Kabuß, E.; Kang, D.; Ketzer, B.; Khaustov, G. V.; Khokhlov, Yu. A.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koblitz, S.; Koivuniemi, J. H.; Kolosov, V. N.; Kondo, K.; Königsmann, K.; Konorov, I.; Konstantinov, V. F.; Korzenev, A.; Kotzinian, A. M.; Kouznetsov, O.; Krämer, M.; Kroumchtein, Z. V.; Kunne, F.; Kurek, K.; Lauser, L.; Lednev, A. A.; Lehmann, A.; Levorato, S.; Lichtenstadt, J.; Liska, T.; Maggiora, A.; Magnon, A.; Makke, N.; Mallot, G. K.; Mann, A.; Marchand, C.; Martin, A.; Marzec, J.; Matsuda, T.; Meshcheryakov, G.; Meyer, W.; Michigami, T.; Mikhailov, Yu. V.; Morreale, A.; Mutter, A.; Nagaytsev, A.; Nagel, T.; Nerling, F.; Neubert, S.; Neyret, D.; Nikolaenko, V. I.; Nowak, W.-D.; Nunes, A. S.; Olshevsky, A. G.; Ostrick, M.; Padee, A.; Panknin, R.; Panzieri, D.; Parsamyan, B.; Paul, S.; Perevalova, E.; Pesaro, G.; Peshekhonov, D. V.; Piragino, G.; Platchkov, S.; Pochodzalla, J.; Polak, J.; Polyakov, V. A.; Pretz, J.; Quaresma, M.; Quintans, C.; Rajotte, J.-F.; Ramos, S.; Rapatsky, V.; Reicherz, G.; Rocco, E.; Rondio, E.; Rossiyskaya, N. S.; Ryabchikov, D. I.; Samoylenko, V. D.; Sandacz, A.; Sapozhnikov, M. G.; Sarkar, S.; Savin, I. A.; Sbrizzai, G.; Schiavon, P.; Schill, C.; Schlüter, T.; Schmidt, A.; Schmidt, K.; Schmitt, L.; Schmïden, H.; Schönning, K.; Schopferer, S.; Schott, M.; Shevchenko, O. Yu.; Silva, L.; Sinha, L.; Sissakian, A. N.; Slunecka, M.; Smirnov, G. I.; Sosio, S.; Sozzi, F.; Srnka, A.; Steiger, L.; Stolarski, M.; Sulc, M.; Sulej, R.; Suzuki, H.; Sznajder, P.; Takekawa, S.; Ter Wolbeek, J.; Tessaro, S.; Tessarotto, F.; Tkatchev, L. G.; Uhl, S.; Uman, I.; Vandenbroucke, M.; Virius, M.; Vlassov, N. V.; Wang, L.; Weisrock, T.; Wilfert, M.; Windmolders, R.; Wiślicki, W.; Wollny, H.; Zaremba, K.; Zavertyaev, M.; Zemlyanichkina, E.; Ziembicki, M.; Zhuravlev, N.; Zvyagin, A.

    2013-03-01

    The gluon polarization in the nucleon was measured using open charm production by scattering 160GeV/c polarized muons off longitudinally polarized protons or deuterons. The data were taken by the COMPASS Collaboration between 2002 and 2007. A detailed account is given of the analysis method that includes the application of neural networks. Several decay channels of D0 mesons are investigated. Longitudinal spin asymmetries of the D meson production cross sections are extracted in bins of D0 transverse momentum and energy. At leading order QCD accuracy, the average gluon polarization is determined as ⟨Δg/g⟩LO=-0.06±0.21(stat.)±0.08(syst.) at the scale ⟨μ2⟩≈13(GeV/c)2 and an average gluon momentum fraction ⟨x⟩≈0.11. The average gluon polarization is also obtained at next-to-leading order QCD accuracy as ⟨Δg/g⟩ NLO=-0.13±0.15(stat.)±0.15(syst.) at the scale ⟨μ2⟩≈13(GeV/c)2 and ⟨x⟩≈0.20.

  3. Open charm production at HERA-B

    NASA Astrophysics Data System (ADS)

    Dujmic, Denis

    A proton beam with a momentum of 920 GeV/c is collided with a carbon wire target ( s = 42 GeV) at a rate of 2--5 MHz during the commissioning of the HERA-B experiment. Events that had a lepton candidate with a transverse momentum greater than 1 GeV/c (1.5 GeV/c) are reconstructed and written to tape. The analysis uses 2.6 million events triggered in the muon channel. Performance of the Ring Imaging Cerenkov detector is described in detail, as well as the algorithm for positive particle identification, its efficiency, and pion-kaon separation. Detection of charm decays is carried out in two decay channels: D0 → piK and D + → pipiK. Signals obtained in the measurement are statistically significant with cross sections for all xF of sD0+D¯ 0 = 80 +/- 27(stat) +/- 61(syst) mub/nucleon for D0 + D¯0, and sD++D- = 52 +/- 20(stat) +/- 39(syst) mub/nucleon for D+ + D-. For comparison with other experiments, these measurements are converted into the total forward cross section for cc¯ production scc¯ = 39 +/- 10(stat) +/- 21(syst) mub/nucleon for xF > 0. This value is consistent with an estimate based on QCD calculations and other measurements. The production cross sections for two control channels J/psi → mumu and KS → pipi are also measured. The reconstructed J/psi signal leads to a cross section of (420 +/- 80) nb/nucleon, with nuclear dependence taken as A0.92. KS signal has cross section of 19.1 +/- 1.8 mb/nucleon, with A 0.718. Both measurements are in a good agreement with expectations. A set of detected D mesons was used to search for additional vertices that belong to B meson decays. It allows setting a limit for bb¯ production at <150 nb. This work presents a contribution to the commissioning of the HERA-B experiment, and an extension of its research program to the physics of open charm decays.

  4. Open and hidden charm production at RHIC and LHC

    SciTech Connect

    Vogt, R.

    2005-10-12

    We discuss aspects of open and hidden charm production in hadron-nucleus collisions at RHIC and LHC energies. We first discuss the extraction of the total charm cross section in lower energy collisions and how it compares to next-to-leading order quantum chromodynamics calculations. We then describe calculations of the transverse momentum distributions and their agreement with the shape of the measured STAR transverse momentum distributions. We next explain how shadowing and moderate nuclear absorption can explain the PHENIX J/{psi} dAu/pp ratios.

  5. Charm physics

    NASA Astrophysics Data System (ADS)

    van Tilburg, J.

    2013-11-01

    Charm physics is an active and productive field at hadron colliders. In these proceedings an overview of recent results in charm physics from the Tevatron and LHC experiments is given. Highlighted are the measurements of open charm production and production asymmetries, the recent precision measurements of the D masses, the confirmation of mixing in the D0 system, the searches for CP violation in the charm system and the searches for rare charm decays.

  6. Perspectives of open charm physics at P¯ANDA

    NASA Astrophysics Data System (ADS)

    Prencipe, Elisabetta

    2015-05-01

    The P¯ANDA experiment at FAIR (Facility for Antiproton and Ion Research) in Darmstadt (Germany) is designed for p¯p annihilation studies and it will investigate fundamental questions of hadron and nuclear physics in interactions of antiprotons with nucleons and nuclei. Gluonic excitations and the physics of hadrons with strange and charm quarks will be accessible with unprecedented accuracy, thereby allowing high precision tests of the strong interactions. In particular, the Ds0*(2317)+ and Ds1(2460)+ are still of high interest 11 years after their discovery, because they can not be simply understood in term of potential models. The available statistics and resolution of the past experiments did not allow to clarify their nature. Recently LHCb at CERN has made progresses in this respect, but still not at the level of precision required in order to clarify the puzzle of the cs-spectrum. P¯ANDA will be able to achieve a factor 20 higher mass resolution than attained at the B-factories, which is expected to be decisive on these and second-order open questions. The technique to evaluate the width from the excitation function of the cross section of the Ds mesons will be presented, and ongoing simulations performed with PandaRoot will be shown.

  7. Charming quasi-exotic open-flavor mesons

    NASA Astrophysics Data System (ADS)

    Hilger, Thomas; Krassnigg, Andreas

    2017-03-01

    We discuss charmed mesons in the covariant Dyson-Schwinger-Bethe-Salpeter-equation approach. In particular we computed masses, leptonic decay constants, and an orbital-angular-momentum decomposition for a basic set of states. We also report an efficient way to treat the two coupled quark propagator dressing functions via a single function.

  8. Open charm meson analysis in proton-proton collisions at the LHC with ALICE

    NASA Astrophysics Data System (ADS)

    Ortona, G.

    2010-06-01

    The extremely high energies that will be reached with the Large Hadron Collider (LHC) at CERN will allow studying the production of open charm with high statistics in both proton-proton and Pb-Pb collisions. The study of open charm (D) mesons in Pb-Pb collisions will be a powerful tool to investigate the production of heavy flavours and their interaction with the medium produced in such collisions (QGP). Heavy flavour yields will provide also a normalization for quarkonia production. We will present a general overview of the ALICE collaboration heavy flavour program, then we will focus on the analysis and reconstruction strategies developed for the study of the charmed (D) mesons by the ALICE collaboration for proton-proton collisions, with special emphasis on the charged D mesons. Finally, some expected results obtained with MonteCarlo production will be shown.

  9. Open-charm production measurements with ALICE at the LHC

    NASA Astrophysics Data System (ADS)

    Pagano, P.

    2016-11-01

    The LHC heavy-ion physics program aims at investigating the properties of strongly-interacting matter under extreme conditions of temperature and energy density where the formation of the Quark-Gluon Plasma (QGP) is expected. Heavy-flavour hadrons, containing charm and beauty quarks, are considered efficient probes to investigate the properties of the QGP produced in heavy-ion collisions. Heavy quarks are produced in hard partonic scattering processes in the initial stage of hadronic collisions and propagate through the hot and dense medium created in the collision losing energy interacting with the medium via radiative and collisional processes. The high precision tracking, good vertexing capabilities and excellent particle identification offered by the ALICE experiment allow us to measure particles containing heavy quarks in a wide transversemomentum range in pp, p-Pb and Pb-Pb collisions. A review of the main results on prompt D-mesons production, reconstructed via their hadronic decays at mid-rapidity, in pp collisions at √s = 7 TeV, p-Pb collisions at √sNN = 5.02 TeV and Pb-Pb collisions at √sNN = 2.76 TeV will be shown.

  10. Study of B Decays to Open Charm Final States With the BaBar Experiment

    SciTech Connect

    Calderini, Giovanni; /INFN, Pisa /Pisa U.

    2011-09-14

    Recent results from the BaBar Collaboration in the sector of B decays to open Charm are presented. Some of the results represent new precision measurements and QCD tests, some other analysis is aimed to the study of rare decays and search for new physics. Branching fractions for the modes observed for the first time are highlighted. A few results are presented also in the baryon sector.

  11. Insight from elliptic flow of open charm mesons using quark coalescence model at RHIC and LHC energies

    NASA Astrophysics Data System (ADS)

    Esha, Roli; Nasim, Md.; Huang, Huan Zhong

    2017-01-01

    A study of elliptic flow of open charm mesons, D 0 and using quark coalescence as the mechanism of hadronization of heavy quarks will be presented. The coalescing partons are taken from a multi-phase transport model. The transverse momentum dependence of the elliptic flow parameter at mid-rapidity (|y| < 1.0) for minimum bias Au+Au collisions at > = 200 GeV (RHIC) and Pb+Pb collisions = 2.76 TeV (LHC) for different values of partonic interaction cross-section and QCD coupling constant will be discussed. We have compared our calculations with the experimentally measured data at the LHC energy. We will also present the effect of specific viscosity on elliptic flow of open charm mesons within the transport model approach. Our study indicates that the elliptic flow of open charmed mesons is more sensitive to viscous properties of QGP medium compared to light hadrons.

  12. Production of exotic and conventional quarkonia and open beauty/open charm at ATLAS

    NASA Astrophysics Data System (ADS)

    Bini, C.; ATLAS Collaboration

    2016-11-01

    The ATLAS experiment at LHC is carrying on a wide programme to study the production properties of conventional and exotic quarkonium, beauty, and charm bound states. The latest results on J/ψ, ψ(2s) and X(3872) production at 7, 8, and 13 TeV, together with D meson production with Run-1 are presented. Studies of associated production of charmonium with vector bosons, searches for exotic states in the bottomonium sector and a new measurement of the ratio of b-quark fragmentation functions are also briefly presented.

  13. Study of open charm production in proton+proton collisions at center of mass energies = 200 GeV

    NASA Astrophysics Data System (ADS)

    Butsyk, Sergey

    2005-11-01

    The PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) with its unique electron identification system enables us to perform high precision measurements of electron yields. By measuring electron production at high transverse momentum, we can disentangle the contribution of electrons originating from semi-leptonic decays of heavy quarks (charm or bottom) from the less interesting "photonic" decay modes of light mesons. D/B mesons carry single heavy valence quarks and are usually referred to as "Open Charm" and "Open Bottom" particles, differentiating them from Closed Flavor particles such as J/psi, and Y mesons. Due to the large mass of the heavy quarks, their production mechanisms can be adequately explained by perturbative QCD (pQCD) theory. This dissertation presents the measurement of electrons from heavy flavor decays in proton + proton collisions at RHIC at collision energy s = 200 GeV over a wide range of transverse moment (0.4 < pT < 5 GeV/c). Two independent analysis techniques of signal extraction were performed. The "Cocktail" subtraction is based on the calculation and subtraction of the expected "photon-related" electron background based upon measured yields of light mesons. The "Converter" subtraction is based upon a direct measurement of photon yields achieved introducing additional material in the PHENIX acceptance and deducing the photon abundance by measuring the increase in electron yield. This is the first measurement of the Open Charm crossection at this collision energy and it is an important baseline measurement for comparison with nucleus + nucleus collisions. The modification of Open Charm production in heavy ion collisions compared to the presented p + p result can be used to study the final state interaction of the heavy quarks with hot dense matter inside the collisions. The results of the Open Charm measurements are compared to current pQCD predictions both in Leading Order (LO) O a2s and Next-to-Leading Order (NLO) O a3s

  14. Insight from elliptic flow of open charm mesons using quark coalescence model at RHIC and LHC energies

    NASA Astrophysics Data System (ADS)

    Esha, Roli; Nasim, Md; Huang, Huan Zhong

    2017-04-01

    A study of elliptic flow of open charm mesons, D 0 and {D}S+/- , using quark coalescence as a mechanism of hadronization of heavy quarks implemented in conjunction with A Multi-Phase Transport model has been presented. We have studied the transverse momentum dependence of the elliptic flow parameter at mid-rapidity (| y| < 1.0) for Au+Au collisions at \\sqrt{{s}{{NN}}}=200 {GeV} (RHIC) and Pb+Pb collisions at \\sqrt{{s}{{NN}}}=2.76 TeV (LHC) for different values of partonic interaction cross-section and QCD coupling constant. We have compared our calculations with the experimentally measured data at the LHC energy. We have also studied the effect of shear viscosity on elliptic flow of open charm mesons within the transport model approach. Our study indicates that the elliptic flow of open charmed mesons is more sensitive to the viscous properties of the quark–gluon plasma medium as compared to light charged hadrons.

  15. Open charm meson production at BNL RHIC within kt-factorization approach and revision of their semileptonic decays

    NASA Astrophysics Data System (ADS)

    Maciuła, Rafał; Szczurek, Antoni; Łuszczak, Marta

    2015-09-01

    We discuss inclusive production of open charm mesons in proton-proton scattering at the BNL RHIC. The calculation is performed in the framework of kt-factorization approach which effectively includes higher-order pQCD corrections. Different models of unintegrated gluon distributions (UGDF) from the literature are used. We focus on UGDF models favored by the LHC data and on a new up-to-date parametrizations based on the HERA collider deep-inelastic scattering high-precision data. Results of the kt-factorization approach are compared to next-to-leading order collinear predictions. The hadronization of heavy quarks is done by means of fragmentation function technique. The theoretical transverse momentum distributions of charmed mesons are compared with recent experimental data of the STAR collaboration at √{s }=200 and 500 GeV. Theoretical uncertainties related to the choice of renormalization and factorization scales as well as due to the quark mass are discussed. A very good description of the measured integrated cross sections and differential distributions is obtained for the Jung setB0 CCFM UGDF. Revised charm and bottom theoretical cross sections corresponding to those measured recently by the STAR and PHENIX collaborations for semileptonic decays of D and B mesons are presented. Significant improvement in theoretical description of the nonphotonic electrons measurements is clearly obtained with respect to the previous studies within the kt-factorization.

  16. Open charm production in deep inelastic scattering at next-to-leading order at HERA.

    SciTech Connect

    Harris, B. W.

    1999-09-20

    An introduction and overview of charm production in deep inelastic scattering at HERA is given. The existing next-to-leading order perturbative QCD calculations are then reviewed, and key results are summarized. Finally, comparisons are made with the most recent HERA data, and unresolved issues are highlighted.

  17. The Renaissance of Charm Physics

    SciTech Connect

    Briere, Roy A.

    2006-11-17

    A review of charm physics is presented, with an emphasis on decays of open-charm particles. An ongoing renaissance is in progress, with charm playing an important role in weak flavor physics. It is the unique venue among up-like quarks to perform precision tests to complement K and B physics. Charm also proves to be a useful test-bed for verifying theoretical methods, such as Lattice QCD, which are required to interpret precision B physics data.

  18. Charm physics at BESIII

    NASA Astrophysics Data System (ADS)

    Weidenkaff, P.; BESIII Collaboration

    2016-11-01

    The study of mesons and baryons which contain at least one charm quark is referred to as open charm physics. It offers the possibility to study up-type quark transitions. Since the c quark can not be treated in any mass limit, theoretical predictions are difficult and experimental input is crucial. BESIII collected large data samples of e+e- collisions at several charm thresholds. The at-threshold decay topology offers special opportunities to study open charm decays. We present a selection of recent BESIII results. The D + s decay constant is measured using the leptonic decays to μ+ν and τ+ ν. Using the semi-leptonic decays of D 0 and D± to Ke+νe and πe+νe, a measurement of the form factors f + K (q 2) and f + π (q 2) is performed and furthermore, we show preliminary results of a model independent measurement of the strong phase difference between D 0 and D 0 in the channel D 0 → K s 0π+π- which is an experimental input to the measurement of the CKM angle γ/ϕ3.

  19. Charm production by muons and its role in scale-noninvariance

    SciTech Connect

    Gollin, G D

    1981-01-01

    Interactions of 209 GeV muons in the Multimuon Spectrometer at Fermilab have yielded more than 8 x 10/sup 4/ events with two muons in the final state. After reconstruction and cuts, the data contain 20,072 events with (81 +- 10)% attributed to the diffractive production of charmed states decaying to muons. The cross section for diffractive charm muoproduction is 6.9(+1.9,-1.4) nb where the error includes systematic uncertainties. Extrapolated to Q/sup 2/ = 0 with sigma(Q/sup 2/) = sigma(0)(1 + Q/sup 2//..lambda../sup 2/)/sup -2/, the effective cross section for 178 (100) GeV photons is 750(+180,-130) (560(+200,-120)) nb and the parameter ..lambda.. is 3.3 +- 0.2 (2.9 +- 0.2) GeV/c. The ..nu.. dependence of the cross section is similar to that of the photon-gluon-fusion model. A first determination of the structure function for diffractive charm production indicates that charm accounts for approximately 1/3 of the scale-noninvariance observed in inclusive muon-nucleon scattering at low Bjorken x. Okubo-Zweig-Iizuka selection rules and unitarity allow the muon data to set a 90%-confidence lower limit on the psi N total cross section of 0.9 mb.

  20. Open-charm production measurements in pp, 1 p-Pb and Pb-Pb collisions with ALICE at the LHC

    NASA Astrophysics Data System (ADS)

    Meninno, Elisa

    2017-03-01

    ALICE (A Large Ion Collider Experiment) is designed to study the strongly in teracting matter, the Quark-Gluon Plasma (QGP), created in heavy-ion collisions at LHC energies. Charm and beauty quarks are powerful probes to study the QGP. Produced in hard partonic scattering processes on a short time scale, they are expected to traverse the QCD medium, interacting with its constituents and losing energy through radiative and collisional processes. In ALICE, open-charm production is studied through the reconstruction of the hadronic decays of D0, D+, D*+ and Ds+ mesons at mid-rapidity. High precision tracking, good vertexing capabilities and excellent particle identification offered by ALICE allow for the measurement of particles containing heavy quarks (particularly D mesons) in a wide transverse momentum range in pp, p-Pb and Pb-Pb collisions. A review of the main results on D-meson production in pp collisions at √s = 7 TeV, p-Pb collisions at √sNN = 5.02 TeV and Pb-Pb collisions at √sNN = 2.76 TeV will be presented.

  1. Production of associated Y and open charm hadrons in pp collisions at √{s}=7 and 8 TeV via double parton scattering

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Abellán Beteta, C.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Anderson, J.; Andreassi, G.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; d'Argent, P.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Bel, L. J.; Bellee, V.; Belloli, N.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bertolin, A.; Bettler, M.-O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Billoir, P.; Bird, T.; Birnkraut, A.; Bizzeti, A.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borisyak, M.; Borsato, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Britsch, M.; Britton, T.; Brodzicka, J.; Brook, N. H.; Buchanan, E.; Burr, C.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Campana, P.; Campora Perez, D.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cauet, Ch.; Cavallero, G.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chefdeville, M.; Chen, S.; Cheung, S.-F.; Chiapolini, N.; Chrzaszcz, M.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collazuol, G.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dall'Occo, E.; Dalseno, J.; David, P. N. Y.; Davis, A.; De Aguiar Francisco, O.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Simone, P.; Dean, C.-T.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Déléage, N.; Demmer, M.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Di Ruscio, F.; Dijkstra, H.; Donleavy, S.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Dossett, D.; Dovbnya, A.; Dreimanis, K.; Dufour, L.; Dujany, G.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Färber, C.; Farley, N.; Farry, S.; Fay, R.; Ferguson, D.; Fernandez Albor, V.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fohl, K.; Fol, P.; Fontana, M.; Fontanelli, F.; Forshaw, D. C.; Forty, R.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; García Pardiñas, J.; Garra Tico, J.; Garrido, L.; Gascon, D.; Gaspar, C.; Gauld, R.; Gavardi, L.; Gazzoni, G.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianì, S.; Gibson, V.; Girard, O. G.; Giubega, L.; Gligorov, V. V.; Göbel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gotti, C.; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Grünberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadavizadeh, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Henry, L.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Humair, T.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jawahery, A.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Karodia, S.; Kecke, M.; Kelsey, M.; Kenyon, I. R.; Kenzie, M.; Ketel, T.; Khairullin, E.; Khanji, B.; Khurewathanakul, C.; Klaver, S.; Klimaszewski, K.; Kochebina, O.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Kozeiha, M.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Krzemien, W.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kuonen, A. K.; Kurek, K.; Kvaratskheliya, T.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.-P.; Lefèvre, R.; Leflat, A.; Lefrançois, J.; Lemos Cid, E.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Likhomanenko, T.; Liles, M.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, B.; Liu, X.; Loh, D.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Lucio Martinez, M.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Lusiani, A.; Machefert, F.; Maciuc, F.; Maev, O.; Maguire, K.; Malde, S.; Malinin, A.; Manca, G.; Mancinelli, G.; Manning, P.; Mapelli, A.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marino, P.; Marks, J.; Martellotti, G.; Martin, M.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurin, B.; Mazurov, A.; McCann, M.; McCarthy, J.; McNab, A.; McNulty, R.; Meadows, B.; Meier, F.; Meissner, M.; Melnychuk, D.; Merk, M.; Michielin, E.; Milanes, D. A.; Minard, M.-N.; Mitzel, D. S.; Molina Rodriguez, J.; Monroy, I. A.; Monteil, S.; Morandin, M.; Morawski, P.; Mordà, A.; Morello, M. J.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Müller, D.; Müller, J.; Müller, K.; Müller, V.; Mussini, M.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nandi, A.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen, T. D.; Nguyen-Mau, C.; Niess, V.; Niet, R.; Nikitin, N.; Nikodem, T.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Onderwater, C. J. G.; Osorio Rodrigues, B.; Otalora Goicochea, J. M.; Otto, A.; Owen, P.; Oyanguren, A.; Palano, A.; Palombo, F.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Pappenheimer, C.; Parker, W.; Parkes, C.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petruzzo, M.; Picatoste Olloqui, E.; Pietrzyk, B.; Pilař, T.; Pinci, D.; Pistone, A.; Piucci, A.; Playfer, S.; Plo Casasus, M.; Poikela, T.; Polci, F.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Price, E.; Price, J. D.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, W.; Quagliani, R.; Rachwal, B.; Rademacker, J. H.; Rama, M.; Ramos Pernas, M.; Rangel, M. S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Redi, F.; Reichert, S.; Reid, M. M.; dos Reis, A. C.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Lopez, J. A.; Rodriguez Perez, P.; Roiser, S.; Romanovsky, V.; Romero Vidal, A.; Ronayne, J. W.; Rotondo, M.; Ruf, T.; Ruiz Valls, P.; Saborido Silva, J. J.; Sagidova, N.; Sail, P.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santimaria, M.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schubiger, M.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Siddi, B. G.; Silva Coutinho, R.; Silva de Oliveira, L.; Simi, G.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, E.; Smith, E.; Smith, I. T.; Smith, J.; Smith, M.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; Souza, D.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Stefkova, S.; Steinkamp, O.; Stenyakin, O.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Sun, L.; Sutcliffe, W.; Swientek, K.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szumlak, T.; T'Jampens, S.; Tayduganov, A.; Tekampe, T.; Teklishyn, M.; Tellarini, G.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Todd, J.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Trabelsi, K.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagnoni, V.; Valenti, G.; Vallier, A.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vázquez Sierra, C.; Vecchi, S.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Vilasis-Cardona, X.; Volkov, V.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voß, C.; de Vries, J. A.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wandernoth, S.; Wang, J.; Ward, D. R.; Watson, N. K.; Websdale, D.; Weiden, A.; Whitehead, M.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M. P.; Williams, M.; Williams, T.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wright, S.; Wyllie, K.; Xie, Y.; Xu, Z.; Yang, Z.; Yu, J.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhelezov, A.; Zhokhov, A.; Zhong, L.; Zucchelli, S.

    2016-07-01

    Associated production of bottomonia and open charm hadrons in pp collisions at √{s}=7 and 8 TeV is observed using data corresponding to an integrated luminosity of 3 fb-1 accumulated with the LHCb detector. The observation of five combinations, Y(1S)D0, Y(2S)D0, Y(1S)D+, Y(2S)D+ and Y(1S)D s + , is reported. Production crosssections are measured for Y(1S)D0 and Y(1S)D+ pairs in the forward region. The measured cross-sections and the differential distributions indicate the dominance of double parton scattering as the main production mechanism. [Figure not available: see fulltext.

  2. Nuclear Filtering of Intrinsic Charm

    SciTech Connect

    Kopeliovich, B. Z.; Potashnikova, I. K.; Schmidt, Ivan

    2010-11-12

    Nuclei are transparent for a heavy intrinsic charm (IC) component of the beam hadrons, what leads to an enhanced nuclear dependence of open charm production at large Feynman x{sub F}. Indeed, such an effect is supported by data from the SELEX experiment published recently [1]. Our calculations reproduce well the data, providing strong support for the presence of IC in hadrons in amount less than 1%. Moreover, we performed an analysis of nuclear effects in J/{Psi} production and found at large x{sub F} a similar, albeit weaker effect, which does not contradict data.

  3. Excited charmed mesons

    SciTech Connect

    Butler, J.N.; Shukla, S.

    1995-05-01

    The experimental status of excited charmed mesons is reviewed and is compared to theoretical expectations. Six states have been observed and their properties are consistent with those predicted for excited charmed states with orbital angular momentum equal to one.

  4. Spectroscopy of charmed baryons

    SciTech Connect

    Solovieva, E. I.

    2015-12-15

    Apresent-day classification of charmed baryons is presented, a quark model for ground states is briefly described, and the energy levels of excited states are analyzed. In addition, a survey of experimentally observed states of charmed baryons is given.

  5. Charm, beauty and top at HERA

    NASA Astrophysics Data System (ADS)

    Behnke, O.; Geiser, A.; Lisovyi, M.

    2015-09-01

    Results on open charm and beauty production and on the search for top production in high-energy electron-proton collisions at HERA are reviewed. This includes a discussion of relevant theoretical aspects, a summary of the available measurements and measurement techniques, and their impact on improved understanding of QCD and its parameters, such as parton density functions and charm- and beauty-quark masses. The impact of these results on measurements at the LHC and elsewhere is also addressed.

  6. Charm Baryon Spectroscopy

    NASA Astrophysics Data System (ADS)

    Chistov, R.

    2016-02-01

    B-factories Belle and BaBar during its operation made not only measurements connected with B-meson decays but also numerous observation and measurements in charm physics. In particular, their results on charm baryon decays and spectroscopy have enlarged and enriched the current picture of heavy flavour hadrons. In this talk we overview current status of charm baryons and their excited states.

  7. Charm degrees of freedom in the quark gluon plasma

    DOE PAGES

    Mukherjee, Swagato; Petreczky, Peter; Sharma, Sayantan

    2016-01-11

    The lattice QCD studies on fluctuations and correlations of charm quantum number have established that deconfinement of charm degrees of freedom sets in around the chiral crossover temperature, Tc; i.e., charm degrees of freedom carrying fractional baryonic charge start to appear. When we reexamine those same lattice QCD data we show that, in addition to the contributions from quarklike excitations, the partial pressure of charm degrees of freedom may still contain significant contributions from open-charm-meson- and baryonlike excitations associated with integral baryonic charges for temperatures up to 1.2Tc. Finally, charm-quark quasiparticles become the dominant degrees of freedom for temperatures T>1.2Tc.

  8. Charm degrees of freedom in the quark gluon plasma

    SciTech Connect

    Mukherjee, Swagato; Petreczky, Peter; Sharma, Sayantan

    2016-01-11

    The lattice QCD studies on fluctuations and correlations of charm quantum number have established that deconfinement of charm degrees of freedom sets in around the chiral crossover temperature, Tc; i.e., charm degrees of freedom carrying fractional baryonic charge start to appear. When we reexamine those same lattice QCD data we show that, in addition to the contributions from quarklike excitations, the partial pressure of charm degrees of freedom may still contain significant contributions from open-charm-meson- and baryonlike excitations associated with integral baryonic charges for temperatures up to 1.2Tc. Finally, charm-quark quasiparticles become the dominant degrees of freedom for temperatures T>1.2Tc.

  9. Discovery of Charm

    DOE R&D Accomplishments Database

    Goldhaber, G.

    1984-11-01

    In my talk I will cover the period 1973 to 1976 which saw the discoveries of the J/psi and psi' resonances and most of the Psion spectroscopy, the tau lepton and the D0030099,D0015599 charmed meson doublet. Occasionally I will refer briefly to more recent results. Since this conference is on the history of the weak-interactions I will deal primarily with the properties of naked charm and in particular the weakly decaying doublet of charmed mesons. Most of the discoveries I will mention were made with the SLAC-LBL Magnetic Detector or MARK I which we operated at SPEAR from 1973 to 1976.

  10. Charms of radiation research.

    SciTech Connect

    Inokuti, M.; Physics

    2005-01-01

    Most of my professional efforts over nearly five decades have been devoted to radiation research, that is, studies of the physical, chemical, and biological actions of high-energy radiation on matter. (By the term 'high-energy radiation' I mean here x rays, .GAMMA. rays, neutrons, and charged particles of high enough energies to produce ionization in matter. I exclude visible light, infrared waves, microwaves, and sound waves.) Charms of radiation research lie in its interdisciplinary character; although my training was in basic physics, the scope of my interest has gradually increased to cover many other areas, to my deep satisfaction. High-energy radiation is an important component of the universe, and of our environment. It often provides an effective avenue for characterizing matter and understanding its behavior. Near Earth's surface this radiation is normally present in exceptionally low quantity, and yet it plays a significant role in some atmospheric phenomena such as auroras, and also in the evolution of life. The recent advent of various devices for producing high-energy radiation has opened up the possibility of many applications, including medical and industrial uses. I have worked on some aspects of those uses. At every opportunity to address a broad audience I try to convey a sense of intellectual fun, together with some of the elements of the basic science involved. A goal of radiation education might be to make the word 'radiation' as common and familiar as words such as 'fire' and 'electricity' through increased usage.

  11. Charm (and Beauty) Production at the Tevatron

    SciTech Connect

    Rademacker, Jonas; /Bristol U.

    2007-11-01

    The authors present recent results on heavy flavor production at Tevatron Run II for typically {approx} 1 fb{sup -1} of analyzed p{bar p} data at {radical}s = 1.96 TeV. This includes results on single and correlated open charm and bottom cross sections, charm pair production kinematics, J/{psi}, {psi}(2S) and {chi}{sub cJ} cross sections and polarization measurements in J/{psi}, {psi}(2S), {Upsilon}(1S), and {Upsilon}(2S).

  12. Charmed Bottom Baryon Spectroscopy

    SciTech Connect

    Brown, Zachary S; Detmold, William; Meinel, Stefan; Orginos, Kostas

    2014-11-01

    The spectrum of doubly and triply heavy baryons remains experimentally unexplored to a large extent. Although the detection of such heavy particle states may lie beyond the reach of exper- iments for some time, it is interesting compute this spectrum from QCD and compare results between lattice calculations and continuum theoretical models. Several lattice calculations ex- ist for both doubly and triply charmed as well as doubly and triply bottom baryons. Here, we present preliminary results from the first lattice calculation of doubly and triply heavy baryons including both charm and bottom quarks. We use domain wall fermions for 2+1 flavors (up down and strange) of sea and valence quarks, a relativistic heavy quark action for the charm quarks, and non-relativistic QCD for the heavier bottom quarks. We present preliminary results for the ground state spectrum.

  13. CHARMS Combined Data Set

    SciTech Connect

    Ferrare, Richard; Thorsen, Tyler

    2016-12-01

    These multi-wavelength lidar data were collected during the Combined HSRL and Raman lidar Measurement Study (CHARMS) IOP that occurred during July through September 2015 at SGP. During CHARMS the University of Wisconsin HSRL was located at SGP and acquired aerosol backscatter profiles at 532 nm and 1064 nm and aerosol backscatter, extinction, and depolarization profiles at 532 nm. The HSRL aerosol profiles, when combined with the aerosol backscatter and extinction profiles (355 nm) collected by the SGP Raman lidar, provide a suite of three aerosol backscatter (355, 532, 1064 nm) and two aerosol extinction (355, 532 nm) profiles for use in advanced aerosol microphysical retrievals. The data files in this PI product contain this suite of aerosol backscatter (355, 532, 1064), extinction (355, 532 nm), and depolarization (532 nm) profiles.

  14. Charm Physics at Besiii

    NASA Astrophysics Data System (ADS)

    Zhao, Guang

    2014-12-01

    We present a selection of recent charm results from the BESIII Collaboration. The topics include measurements of strong phase in D0 → Kπ decay and yCP, decay constant fD+ measurement from D+ → μ+ν, form-factors measurement in D0 → K-e+ν, π-e+ν, Dalitz plot analysis of D+ -> KS0π ^+π ^0, search for D0 → γγ rare decay and Ds decays.

  15. Spectroscopy of doubly charmed baryons

    SciTech Connect

    Vijande, J.; Valcarce, A.; Fernandez, F.; Garcilazo, H.

    2006-02-11

    We study the mass spectrum of baryons with two and three charmed quarks. For double charm baryons the spin splitting is found to be smaller than standard quark-model potential predictions. This splitting is not influenced either by the particular form of the confining potential or by the regularization taken for the contact term of the spin-spin potential. We consistently predict the spectra for triply charmed baryons.

  16. Charming VPythong Simulations

    NASA Astrophysics Data System (ADS)

    Pepin, Eric W.; Olenick, R. P.

    2006-12-01

    The University of Dallas Department of Physics requires a sophomore-year computational course for all physics majors. The course introduces students to modeling classical and quantum systems with appropriate numerical methods. Students, as part of a course project, have developed charming visual simulations that have then been refined and used to educate subsequent undergraduates. In this poster session we will present several VPython simulations ranging from baseball pitches as viewed from around the field to quantum scattering and from galaxy formation to dielectric breakdown. We will discuss how they are used to make underlying concepts in physics more understandable.

  17. Recent progress on intrinsic charm

    NASA Astrophysics Data System (ADS)

    Hobbs, T. J.

    2017-03-01

    Over the past ˜10 years, the topic of the nucleon's nonperturbative or intrinsic charm (IC) content has enjoyed something of a renaissance, largely motivated by theoretical developments involving quark modelers and PDF-fitters. In this talk I will briefly describe the importance of intrinsic charm to various issues in high-energy phenomenology, and survey recent progress in constraining its overall normalization and contribution to the momentum sum rule of the nucleon. I end with the conclusion that progress on the side of calculation has now placed the onus on experiment to unambiguously resolve the proton's intrinsic charm component.

  18. Charm production in flux tubes

    NASA Astrophysics Data System (ADS)

    Aguiar, C. E.; Kodama, T.; Nazareth, R. A. M. S.; Pech, G.

    1996-01-01

    We argue that the nonperturbative Schwinger mechanism may play an important role in the hadronic production of charm. We present a flux tube model which assumes that the colliding hadrons become color charged because of gluon exchange, and that a single nonelementary flux tube is built up as they recede. The strong chromoelectric field inside this tube creates quark pairs (including charmed ones) and the ensuing color screening breaks the tube into excited hadronic clusters. In their turn these clusters, or ``fireballs,'' decay statistically into the final hadrons. The model is able to account for the soft production of charmed, strange, and lighter hadrons within a unified framework.

  19. Parton distributions with the combined HERA charm production cross sections

    SciTech Connect

    Bertone, Valerio; Rojo, Juan

    2013-04-15

    Heavy quark structure functions from HERA provide a direct handle on the medium and small-x gluon PDF. In this contribution, we discuss ongoing progress on the implementation of the FONLL General-Mass scheme with running heavy quark masses, and of its benchmarking with the HOPPET and OpenQCDrad codes, and then present the impact of the recently released combined HERA charm production cross sections in the NNPDF 2.3 analysis. We find that the combined charm data contribute to constraining the gluon and quarks at small values of Bjorken-x.

  20. Penta-Quark States with Strangeness, Hidden Charm and Beauty

    NASA Astrophysics Data System (ADS)

    Wu, Jia-Jun; Zou, Bing-Song

    The classical quenched quark models with three constituent quarks provide a good description for the baryon spatial ground states, but fail to reproduce the spectrum of baryon excited states. More and more evidences suggest that unquenched effects with multi-quark dynamics are necessary ingredients to solve the problem. Several new hyperon resonances reported recently could fit in the picture of penta-quark states. Based on this picture, some new hyperon excited states were predicted to exist; meanwhile with extension from strangeness to charm and beauty, super-heavy narrow N* and Λ* resonances with hidden charm or beauty were predicted to be around 4.3 and 11 GeV, respectively. Recently, two of such N* with hidden charm might have been observed by the LHCb experiment. More of those states are expected to be observed in near future. This opens a new window in order to study hadronic dynamics for the multi-quark states.

  1. Recent results on charm physics from Fermilab

    NASA Astrophysics Data System (ADS)

    Anjos, J. C.; Cuautle, E.

    2000-08-01

    New high statistics, high resolution fixed target experiments producing 105-106 fully reconstructed charm particles are allowing a detailed study of the charm sector. Recent results on charm quark production from Fermilab fixed target experiments E-791, SELEX and FOCUS are presented. .

  2. A Tau-Charm Factory at CEBAF

    SciTech Connect

    Seth, K.K.

    1994-04-01

    It is proposed that a Tau Charm Factory represents a natural extension of CEBAF into higher energy domains. The exciting nature of the physics of charm quarks and tau leptons is briefly reviewed and it is suggested that the concept of a linac-ring collider as a Tau Charm Factory at CEBAF should be seriously studied.

  3. Strong Couplings of Three Mesons with Charm(ing) Involvement

    NASA Astrophysics Data System (ADS)

    Lucha, Wolfgang; Melikhov, Dmitri; Sazdjian, Hagop; Simula, Silvano

    2017-03-01

    We determine the strong couplings of three mesons that involve, at least, one ηc or J/ψ meson, within the framework of a constituent-quark model by means of relativistic dispersion formulations. For strong couplings of J/ψ mesons to two charmed mesons, our approach leads to predictions roughly twice as large as those arising from QCD sum rules.

  4. Nuclear Dependence of Charm Production

    SciTech Connect

    Blanco-Covarrubias, A.; Engelfried, J.; Akgun, U.; Alkhazov, G.; Amaro-Reyes, J.; Atamantchouk, A.G.; Ayan, A.S.; Balatz, M.Y.; Bondar, N.F.; Cooper, P.S.; Dauwe, Loretta J.; /Michigan U., Flint /Moscow, ITEP

    2009-02-01

    With data taken by SELEX, which accumulated data during the 1996-1997 fixed target run at Fermilab, we study the production of charmed hadrons on copper and carbon targets with {Sigma}{sup -}, p, {pi}{sup -}, and {pi}{sup +} beams. Parameterizing the production cross section {infinity} A{sup {alpha}}, A being the atomic number, we determine {alpha} for D{sup +}, D{sup 0}, D{sub s}{sup +}, D{sup +}(2010), {Lambda}{sub c}{sup +}, and their respective anti-particles, as a function of their transverse momentum p{sub t} and scaled longitudinal momentum x{sub F}. Within our statistics there is no dependence of {alpha} on x{sub F} for any charm species for the interval 0.1 < x{sub F} < 1.0. The average value of {alpha} for charm production by pion beams is {alpha}{sub meson} = 0.850 {+-} 0.028. This is somewhat larger than the corresponding average {alpha}{sub baryon} = 0.755 {+-} 0.016 for charm production by baryon beams ({Sigma}{sup -}, p).

  5. Theoretical understanding of charm decays

    SciTech Connect

    Bigi, I.I.

    1986-08-01

    A detailed description of charm decays has emerged. The various concepts involved are sketched. Although this description is quite successful in reproducing the data the chapter on heavy flavour decays is far from closed. Relevant questions like on th real strength of weak annihilation, Penguin operators, etc. are still unanswered. Important directions in future work, both on the experimental and theoretical side are identified.

  6. Suppressed Charmed B Decay

    SciTech Connect

    Snoek, Hella Leonie

    2009-06-02

    This thesis describes the measurement of the branching fractions of the suppressed charmed B0 → D*- a0+ decays and the non-resonant B0 → D*- ηπ+ decays in approximately 230 million Υ(4S) → B$\\bar{B}$ events. The data have been collected with the BABAR detector at the PEP-II B factory at the Stanford Linear Accelerator Center in California. Theoretical predictions of the branching fraction of the B0 → D*- a{sub 0}+ decays show large QCD model dependent uncertainties. Non-factorizing terms, in the naive factorization model, that can be calculated by QCD factorizing models have a large impact on the branching fraction of these decay modes. The predictions of the branching fractions are of the order of 10-6. The measurement of the branching fraction gives more insight into the theoretical models. In general a better understanding of QCD models will be necessary to conduct weak interaction physics at the next level. The presence of CP violation in electroweak interactions allows the differentiation between matter and antimatter in the laws of physics. In the Standard Model, CP violation is incorporated in the CKM matrix that describes the weak interaction between quarks. Relations amongst the CKM matrix elements are used to present the two relevant parameters as the apex of a triangle (Unitarity Triangle) in a complex plane. The over-constraining of the CKM triangle by experimental measurements is an important test of the Standard Model. At this moment no stringent direct measurements of the CKM angle γ, one of the interior angles of the Unitarity Triangle, are available. The measurement of the angle γ can be performed using the decays of neutral B mesons. The B0 → D*- a0+ decay is sensitive to the angle γ and, in comparison to the current decays that are being employed, could significantly

  7. Identifying Exotic Hidden-Charm Pentaquarks.

    PubMed

    Chen, Rui; Liu, Xiang; Li, Xue-Qian; Zhu, Shi-Lin

    2015-09-25

    The LHCb Collaboration at the Large Hadron Collider at CERN discovered two pentaquark states P_{c}(4380) and P_{c}(4450). These two hidden-charm states are interpreted as the loosely bound Σ_{c}(2455)D^{*} and Σ_{c}^{*}(2520)D^{*} molecular states in the boson exchange interaction model, which provides an explanation for why the experimental width of P_{c}(4450) is much narrower than that of P_{c}(4380). The discovery of the new resonances P_{c}(4380) and P_{c}(4450), indeed, opens a new page for hadron physics. The partners of P_{c}(4380) and P_{c}(4450) should be pursued in future experiments.

  8. QCD Predictions for Charm and Bottom Production at RHIC

    SciTech Connect

    Cacciari, Matteo; Nason, Paolo; Vogt, Ramona

    2005-09-01

    We make up-to-date QCD predictions for open charm and bottom production at RHIC in nucleon-nucleon collisions at {radical}S = 200 GeV. We also calculate the electron spectrum resulting from heavy flavor decays to allow direct comparison to the data. A rigorous benchmark, including the theoretical uncertainties, is established against which nuclear collision data can be compared to obtain evidence for nuclear effects.

  9. Reanalysis of the EMC charm production data with extrinsic and intrinsic charm at NLO

    NASA Astrophysics Data System (ADS)

    Harris, B. W.; Smith, J.; Vogt, R.

    1996-02-01

    A calculation of the next-to-leading order exclusive extrinsic charm quark differential distributions in deeply inelastic electroproduction has recently been completed. Using these results we compare the NLO extrinsic contributions to the charm structure function F2( x, Q2, m2c) with the corresponding NLO intrinsic contributions. The results of this analysis are compared with the EMC DIS charm quark data and evidence for an intrinsic charm component in the proton is found.

  10. Hadronic Charm Decays From B Factories

    SciTech Connect

    Band, H.R.; /Wisconsin U., Madison

    2007-11-09

    The B factories, KEKB and PEPII, provide enormous samples of charmed mesons and baryons as well as B{bar B} events. The BELLE and BaBar collaborations have discovered many new particles containing charm quarks in the last few years and have measured their properties with increasing precision. The current status and most recent studies of these charm particle properties is briefly reviewed.

  11. VIII International Workshop On Charm Physics

    NASA Astrophysics Data System (ADS)

    2016-09-01

    Charm physics covers the studies of a range of composite particles containing charm quarks which provide unique opportunities for probing the strong and weak interactions in the standard model and beyond. Recently, a large variety of new results have been published, from the observation of new states to mixing and searches for CP violation. The purpose of CHARM 2016 is to review results in the field of charm physics, including the impact on and from theory, as well as projections for results to be expected from upcoming facilities.

  12. Charm Hadronic Decays from Focus: Lessons Learnt

    NASA Astrophysics Data System (ADS)

    Bianco, Stefano; Pedrini, Daniele; Reis, Alberto

    The FOCUS photoproduction experiment took data in the ninenties and produced a wealth of results in charm physics. Some of the studies were seminal for contemporary experiments, and even paved the way for the technology of many charm and beauty analysis tools.

  13. Strong decays of 2+ charm and charm-strange mesons

    NASA Astrophysics Data System (ADS)

    Zhang, Si-Cheng; Wang, Tianhong; Jiang, Yue; Li, Qiang; Wang, Guo-Li

    2017-02-01

    In this paper, we calculate the strong decays of 2+ heavy-light states, namely, the charmed D2∗(2460)0 meson and the charm-strange Ds2∗(2573)+ meson. The method we adopt is the reduction formula, PCAC relation and low energy theorem, following which, the transition amplitudes are calculated. The wave functions of the heavy mesons involved are achieved by solving the instantaneous Bethe-Salpeter equation. As the OZI-allowed two-body strong decays give the dominant contribution, they can be used to estimate the total widths of mesons. Our results are: Γ[D2∗(2460)0] = 51.3MeV and Γ[Ds2∗(2573)+] = 19.6MeV. The ratios of branching ratios of two main channels are Br[D2∗(2460)0 → D+π‑]/Br[D 2∗(2460)0 → D∗+π‑] = 2.13 and Br[Ds2∗(2573)+ → D∗0K+]/Br[D s2∗(2573)+ → D0K+] = 0.08, respectively.

  14. A pseudoscalar glueball and charmed mesons in the extended linear sigma model

    NASA Astrophysics Data System (ADS)

    Eshraim, Walaa I.

    2015-05-01

    In the framework of the so-called extended linear sigma model (eLSM), we include a pseudoscalar glueball with a mass of 2.6 GeV (as predicted by Lattice-QCD simulations) and we compute the two- and three-body decays into scalar and pseudoscalar mesons. This study is relevant for the future PANDA experiment at the FAIR facility. As a second step, we extend the eLSM by including the charm quark according to the global U(4)R × U(4)L chiral symmetry. We compute the masses, weak decay constants and strong decay widths of open charmed mesons. The precise description of the decays of open charmed states is important for the CBM experiment at FAIR.

  15. CHARM 2010: Experiment summary and future charm facilities

    SciTech Connect

    Appel, Jeffrey A.; /Fermilab

    2010-12-01

    The CHARM 2010 meeting had over 30 presentations of experimental results, plus additional future facilities talks just before this summary talk. Since there is not enough time to even summarize all that has been shown from experiments and to recognize all the memorable plots and results - tempting as it is to reproduce the many clean signals and data vs theory figures, the quantum correlations plots, and the D-mixing plots before and after the latest CLEO-c data is added. So, this review will give only my personal observations, exposing my prejudices and my areas of ignorance, no doubt. This overview will be at a fairly high level of abstraction - no re-showing individual plots or results. I ask the forgiveness of those who will have been slighted in this way - meaning all the presents.

  16. From the {psi} to charmed mesons

    SciTech Connect

    Goldhaber, G. |

    1994-11-01

    This talk deals with the author`s recollections about the discoveries of the J/{psi} the {psi}{prime} as well as psion spectroscopy and charmed mesons. He gives a chronology for the {psi} and {psi}{prime} discoveries. He also discusses the events which led to the charmed meson discovery as well as detailed discussions on the proof that the resonance observed in the K{sup {minus}} {pi}{sup +} system, at 1,865 MeV, was indeed the predicted charmed meson.

  17. and : candidates for charmed-strange mesons

    NASA Astrophysics Data System (ADS)

    Song, Qin-Tao; Chen, Dian-Yong; Liu, Xiang; Matsuki, Takayuki

    2015-01-01

    Newly observed two charmed-strange resonances, and , are investigated by calculating their Okubo-Zweig-Iizuka-allowed strong decays, which shows that they are suitable candidates for the and states in the charmed-strange meson family. Our study also predicts other main decay modes of and , which can be accessible at the future experiment. In addition, the decay behaviors of the spin partners of and , i.e., and , are predicted in this work, which are still missing at present. The experimental search for the missing and charmed-strange mesons is an intriguing and challenging task for further experiments.

  18. Terraforming and the coming charm industries

    NASA Astrophysics Data System (ADS)

    Turner, Frederick

    We will only begin to develop a truly spacefaring civilization when it is in our interest to do so. One key issue is what constitutes a human ``interest'' and even more important, how will human interests change during the coming era in which planetary engineering will become feasible. The European exploration of the Americas is a valuable analogy; the true beneficiaries of the Columbian discovery were not the aristocrats, sailors and warriors but the farmers and planters that followed them. If we are to get an accurate picture of the potential wealth to be gained from the solar system, we must recognize the successive waves of economic energy through which our civilization is passing. It is already clear that the shrinkage of employment and investment that occurred in farming is already happening to the extractive and manufacturing sectors and will happen to the information industries and the biotech/nanotech industries that will succeed them. Finally, we will be left with the irreducibly labor- and capital-intensive human industries of what we might call ``charm''. The chief natural resources required for these industries are empty space and empty time, which would be plentiful in the new planetary habitats opened up by terraforming. The paper will explore a few of the practical and visionary possibilities of such a perspective.

  19. Charm and bottom semileptonic decays

    NASA Astrophysics Data System (ADS)

    O'donnell, Patrick J.; Turan, Gürsevil

    1997-07-01

    We review the present status of theoretical attempts to calculate the semileptonic charm and bottom decays and then present a calculation of these decays in the light-front frame at the kinematic point q2=0. This allows us to evaluate the form factors at the same value of q2, even though the allowed kinematic ranges for charm and bottom decays are very different. Also, at this kinematic point the decay is given in terms of only one form factor A0(0). For the ratio of the decay rates given by the E653 collaboration we show that the determination of the ratio of the Cabibbo-Kobayashi-Maskawa matrix elements is consistent with that obtained from the unitarity constraint, though a new measurement by the E687 Collaboration is about two standard deviations too high. At present, though, the unitarity method still has greater accuracy. Since comparisons of the semileptonic decays into ρ and either electrons or muons will be available soon from the E791 Fermilab experiment, we also look at the massive muon case. We show that for a range of q2 the SU(3)F symmetry breaking is small even though the contributions of the various helicity amplitudes becomes more complicated. For B decays, the decay B-->K*ll¯ at q2=0 involves an extra form factor coming from the photon contribution and so is not amenable to the same kind of analysis, leaving only the decay B-->K*νν¯ as a possibility. As the mass of the decaying particle increases we note that the SU(3) symmetry becomes badly broken at q2=0.

  20. Masses of doubly and triply charmed baryons

    NASA Astrophysics Data System (ADS)

    Wei, Ke-Wei; Chen, Bing; Guo, Xin-Heng

    2015-10-01

    Until now, the first reported doubly charmed baryon Ξcc +(3520 ) is still a puzzle. It was discovered and confirmed by SELEX collaboration, but not confirmed by LHCb, BABAR, BELLE, FOCUS, or any other collaboration. In the present paper, by employing Regge phenomenology, we first express the mass of the ground state (L =0 ) doubly charmed baryon Ωcc *+ as a function of masses of the well established light baryons and singly charmed baryons. Inserting the recent experimental data, the mass of Ωcc *+ is given to be 3809 ±36 MeV , which is independent of any unobservable parameters. Then, with the quadratic mass relations, we calculate the masses of the ground state triply charmed baryon Ωcc c ++ and doubly charmed baryons Ξcc (*)++, Ξcc (*)+ , and Ωcc + [the mass of Ξcc + is determined as 3520-40+41 MeV , which agrees with the mass of Ξcc +(3520 ) ]. The isospin splitting MΞcc ++-MΞcc +=0.4 ±0.3 MeV . After that, masses of the orbitally excited (L =1 , 2, 3) doubly and triply charmed baryons are estimated. The results are reasonable comparing with those extracted in many other approaches. We suggest more efforts to study doubly and triply charmed baryons both theoretically and experimentally, not only for the abundance of baryon spectra, but also for numerically examining whether the linear mass relations or the quadratic mass relations are realized in nature. Our predictions are useful for the discovery of unobserved doubly and triply charmed baryon states and the JP assignment of these states.

  1. A Study of Double-Charm and Charm-Strange Baryons inElectron-Positron Annihilations

    SciTech Connect

    Edwards, Adam J.; /SLAC

    2007-10-15

    In this dissertation I describe a study of double-charm and charm-strange baryons based on data collected with the BABAR Detector at the Stanford Linear Accelerator Center. In this study I search for new baryons and make precise measurements of their properties and decay modes. I seek to verify and expand upon double-charm and charm-strange baryon observations made by other experiments. The BABAR Detector is used to measure subatomic particles that are produced at the PEP-II storage rings. I analyze approximately 300 million e+e- {yields} c{bar c} events in a search for the production of double-charm baryons. I search for the double-charm baryons {Xi}{sup +}{sub cc} (containing the quarks ccd) and {Xi}{sup ++}{sub cc} (ccu) in decays to {Lambda}{sup +}{sub c}K{sup -}{pi}{sup +} and {Lambda}{sup +}{sub c}K{sup -}{pi}{sup +}{pi}{sup +}, respectively. No statistically significant signals for their production are found, and upper limits on their production are determined. Statistically significant signals for excited charm-strange baryons are observed with my analysis of approximately 500 million e+e- {yields} c{bar c} events. The charged charm-strange baryons {Xi}{sub c}(2970){sup +}, {Xi}{sub c}(3055){sup +}, {Xi}{sub c}(3123){sup +} are found in decays to {Lambda}{sup +}{sub c}K{sup -}{pi}{sup +}, the same decay mode used in the {Xi}{sup +}{sub cc} search. The neutral charm-strange baryon {Xi}{sub c}(3077){sup 0} is observed in decays to {Lambda}{sup +}{sub c}K{sub 8}{pi}{sup -}. I also search for excited charm-strange baryon decays to {Lambda}{sup +}{sub c}K{sub 8}, {Lambda}{sup +}{sub c}K{sup -}, {Lambda}{sup +}{sub c}K{sub 8}{pi}{sup -}{pi}{sup +}, and {Lambda}{sup +}{sub c}K{sup -}{pi}{sup -}{pi}{sup +}. No significant charm-strange baryon signals a f h these decay modes. For each excited charm-strange baryon state that I observe, I measure its mass, natural width (lifetime), and production rate. The properties of these excited charm-strange baryons and their

  2. New results on CLEO`s heavy quarks - bottom and charm

    SciTech Connect

    Menary, S.

    1997-01-01

    While the top quark is confined to virtual reality for CLEO, the increased luminosity of the Cornell Electron Storage Ring (CESR) and the improved photon detection capabilities of the CLEO`s {open_quotes}heavy{close_quotes} quarks - bottom and charm. I will describe new results in the B meson sector including the first observation of exclusive b {yields} ulv decays, upper limits on gluonic penguin decay rates, and precise measurements of semileptonic and hadronic b {yields} c branching fractions. The charmed hadron results that are discussed include the observation of isospin violation in D{sub s}*{sup +} decays, an update on measurements of the D{sub s}{sup +} decay constant, and the observation of a new excited {Xi}{sub c} charmed baryon. These measurements have had a large impact on our understanding of heavy quark physics.

  3. Search for doubly charmed baryons and study of charmed strange baryons at Belle

    SciTech Connect

    Kato, Y.; Iijima, T.; Adachi, I.; Aihara, H.; Asner, D. M.; Aushev, T.; Bakich, A. M.; Bala, A.; Ban, Y.; Bhardwaj, V.; Bhuyan, B.; Bobrov, A.; Bonvicini, G.; Bozek, A.; Bračko, M.; Browder, T. E.; Červenkov, D.; Chekelian, V.; Chen, A.; Cheon, B. G.; Chilikin, K.; Chistov, R.; Cho, K.; Chobanova, V.; Choi, Y.; Cinabro, D.; Dalseno, J.; Danilov, M.; Doležal, Z.; Drásal, Z.; Drutskoy, A.; Dutta, D.; Dutta, K.; Eidelman, S.; Farhat, H.; Fast, J. E.; Ferber, T.; Gaur, V.; Gabyshev, N.; Ganguly, S.; Garmash, A.; Gillard, R.; Goh, Y. M.; Golob, B.; Haba, J.; Hayasaka, K.; Hayashii, H.; He, X. H.; Horii, Y.; Hoshi, Y.; Hou, W. -S.; Hsiung, Y. B.; Inami, K.; Ishikawa, A.; Iwasaki, Y.; Iwashita, T.; Jaegle, I.; Julius, T.; Kang, J. H.; Kato, E.; Kawasaki, T.; Kiesling, C.; Kim, D. Y.; Kim, H. J.; Kim, J. B.; Kim, J. H.; Kim, M. J.; Kim, Y. J.; Klucar, J.; Ko, B. R.; Kodyš, P.; Korpar, S.; Krokovny, P.; Kuhr, T.; Kuzmin, A.; Kwon, Y. -J.; Lee, S. -H.; Li, J.; Li, Y.; Li Gioi, L.; Libby, J.; Liu, Y.; Liventsev, D.; Matvienko, D.; Miyabayashi, K.; Miyata, H.; Mizuk, R.; Moll, A.; Muramatsu, N.; Mussa, R.; Nagasaka, Y.; Nakano, E.; Nakao, M.; Nakazawa, H.; Nayak, M.; Nedelkovska, E.; Ng, C.; Niiyama, M.; Nisar, N. K.; Nishida, S.; Nitoh, O.; Ogawa, S.; Okuno, S.; Pakhlov, P.; Pakhlova, G.; Park, C. W.; Park, H.; Park, H. K.; Pedlar, T. K.; Peng, T.; Pestotnik, R.; Petrič, M.; Piilonen, L. E.; Ritter, M.; Röhrken, M.; Rostomyan, A.; Sahoo, H.; Saito, T.; Sakai, Y.; Sandilya, S.; Santelj, L.; Sanuki, T.; Savinov, V.; Schneider, O.; Schnell, G.; Schwanda, C.; Semmler, D.; Senyo, K.; Seon, O.; Shapkin, M.; Shen, C. P.; Shibata, T. -A.; Shiu, J. -G.; Shwartz, B.; Sibidanov, A.; Sohn, Y. -S.; Sokolov, A.; Solovieva, E.; Stanič, S.; Starič, M.; Steder, M.; Sumihama, M.; Sumiyoshi, T.; Tamponi, U.; Tanida, K.; Tatishvili, G.; Teramoto, Y.; Uchida, M.; Uehara, S.; Uglov, T.; Unno, Y.; Uno, S.; Van Hulse, C.; Vanhoefer, P.; Varner, G.; Vinokurova, A.; Vorobyev, V.; Wagner, M. N.; Wang, C. H.; Wang, M. -Z.; Wang, P.; Watanabe, M.; Watanabe, Y.; Williams, K. M.; Won, E.; Yamashita, Y.; Yashchenko, S.; Zhang, Z. P.; Zhilich, V.; Zhulanov, V.; Zupanc, A.

    2014-03-17

    We report results of a study of doubly charmed baryons and charmed strange baryons. The analysis is performed using a 980 fb-1 data sample collected with the Belle detector at the KEKB asymmetric-energy e+e- collider.

  4. Finding the charm in 800 GeV/c proton-copper and proton-beryllium single muon spectra

    NASA Astrophysics Data System (ADS)

    Klinksiek, Stephen A.

    Fermilab Experiment 866 took single muon data from 800 GeV/c ( s = 38.8 GeV) p-Cu and p-Be interactions in an attempt to extract the inclusive nuclear open charm/anti-charm ( D/D¯) differential cross sections as a function of pT. The muons were decay products from semi-leptonic decays of open charm mesons as well as decays from lighter non-charmed mesons (pi's and K's). Data were taken simultaneously from two interaction regions; one of two thin nuclear targets and a copper beam dump 92 inches downstream. The open decay length for hadrons produced in the targets increased the contribution to the muon spectrum from light hadron decays, relative to those from the dump. Production cross sections for light hadrons from previous experiments were used in conjunction with parameterized open charm cross sections to produce total Monte Carlo single muon spectra that were subsequently fit to the data. The sensitivity of this measurement covered an open charm hadron pT range of approximately 2 to 7 GeV/c, center-of-mass rapidity, ycm, between 0 and 2, and x F between 0.2 and 0.8. Previous experimental results for p-p or p-A open charm production at comparable energy was limited to 5 GeV/c. Three functions describing the shape of the open charm/anti-charm cross sections were fit to the data; an exponential, A 1 exp (-B pT), and two polynomials, A2p2 T+am2c n and A2 1-pT/pbeam mp2T+a m2c . The first polynomial was fit with the parameter n as a free parameter, and constant with three integer values, 4, 5 and 6. The second was fit with n held fixed at the constant integer values only. The best results were with the first polynomial with n around 6. All three parameterizations resulted in good fits. Extrapolation of the cross sections to small pT shows good agreement with previous experiments. The power alpha of the nuclear dependency Aalpha(pT ) was calculated as a function of pT. The result indicates that alpha is transverse-momentum dependent, albeit within large errors.

  5. CHARM-F: the Airborne MERLIN Demonstrator

    NASA Astrophysics Data System (ADS)

    Ehret, G.; Amediek, A.; Büdenbender, C.; Fix, A.; Quatrevalet, M.; Wirth, M.

    2013-12-01

    A common and efficient method for demonstration of the usefulness of new remote sensing instruments in space science is to test them on airborne platforms prior to fly them on space-borne platform. CHARM-F comprises a new IPDA lidar sensor for the simultaneous measurement of the greenhouse gases carbon dioxide (CO2) and methane (CH4). This instrument is regarded to serve as an MERLIN demonstrator when operated on an airborne platform measuring the differential atmospheric optical depth (DAOD) of CH4 beneath the aircraft. The data products of the French-German climate mission MERLIN are DAOD and XCH4 that will be measured by a small OPO-based IPDA lidar at 1.64 μm. Similar to the MERLIN transmitter, the transmitter of CHARM-F emits two frequency-controlled, spectrally narrow-band OPO pulses into the atmosphere serving for the on- and off-line measurements. The ground echoes are measured by means of fast IR sensors in the direct detection mode. A special feature of CHARM-F comprises its weighting function which is quite similar to the one considered for MERLIN since the on- and off-line frequencies can be selected to be identically. Moreover, CHARM-F is designed for operation on the German HALO aircraft that can cruise at an altitude as high as 15 km. Thus a large portion of the MERLIN DAOD will be measured by CHARM-F offering the unique possibility to validate DAOD of MERLIN which is not possible by any other means. In our presentation we will introduce the CHARM-F instrument as a demonstrator for MERLIN. Further we report on results of the qualification tests of the subsystems which are required prior to fly the instrument on the HALO aircraft. Finally, we present first results from ground-based long-path absorption measurements of CH4 employing topographic targets.

  6. Update on hadroproduced charm at TPL

    SciTech Connect

    Thorne, Keith

    1992-06-01

    Two experiments have now been run at Fermilab using the Tagged Photon Laboratory (TPL) spectrometer with an incident hadron beam to study heavy quark physics. Results (preliminary) from the first experiment, E-769, on charm hadroproduction dependence on the target atomic number, x{sub F} and p{sub t} are presented. The next experiment, E-791, just completed data-taking with an upgraded spectrometer and data-acquisition system to collect a high-statistics sample of charm decays. Preliminary plots and estimates of final sample size are presented.

  7. Charm and beauty production at CDF

    SciTech Connect

    Bishai, M.; /Brookhaven

    2005-01-01

    Using the data samples collected with the CDF Run II detector during 2002 and early 2003, new measurements of the production cross sections of charm and beauty hadrons at {radical}s = 1960 GeV are presented. New measurements of the cross sections of centrally produced b-hadrons and J/{psi} mesons down to zero transverse momenta have been carried out. The large charm signals made available by the silicon vertex track trigger have enabled the measurement of the cross sections of D{sup 0}, D*, D{sup {+-}}, and D{sub s} mesons.

  8. Production of the doubly charmed baryons at the SELEX experiment - The double intrinsic charm approach

    NASA Astrophysics Data System (ADS)

    Koshkarev, Sergey; Anikeev, Vladimir

    2017-02-01

    The high production rate and > 0.33 of the doubly charmed baryons measured by the SELEX experiment is not amenable to perturbative QCD analysis. In this paper we calculate the production of the doubly heavy baryons with the double intrinsic charm Fock states whose existence is rigorously predicted by QCD. The production rate and the longitudinal momentum distribution are both reproduced. We also show that the production rates of the doubly charmed baryons and double J / ψ production observed by NA3 collaboration are comparable. Recent experimental results are reviewed. The production cross section of the doubly charmed baryons at a fixed-target experiment at the LHC is presented.

  9. Spectroscopy and decays of charm and bottom

    SciTech Connect

    Butler, J.N.

    1997-10-01

    After a brief review of the quark model, we discuss our present knowledge of the spectroscopy of charm and bottom mesons and baryons. We go on to review the lifetimes, semileptonic, and purely leptonic decays of these particles. We conclude with a brief discussion B and D mixing and rare decays.

  10. Photoproduction of charm particles at Fermilab

    SciTech Connect

    Cumalat, John P.

    1997-03-15

    A brief description of the Fermilab Photoproduction Experiment E831 or FOCUS is presented. The experiment concentrates on the reconstruction of charm particles. The FOCUS collaboration has participants from several Central American and Latin American institutions; CINVESTAV and Universidad Autonoma de Puebla from Mexico, University of Puerto Rico from the United States, and Centro Brasileiro de Pesquisas Fisicas in Rio de Janeiro from Brasil.

  11. Neutrinos from charm production in the atmosphere

    SciTech Connect

    Enberg, Rikard

    2014-11-18

    Atmospheric neutrinos are produced in interactions of cosmic rays with Earth's atmosphere. At very high energy, the contribution from semi-leptonic decays of charmed hadrons, known as the prompt neutrino flux, dominates over the conventional flux from pion and kaon decays. This is due to the very short lifetime of the charmed hadrons, which therefore do not lose energy before they decay. The calculation of this process is difficult because the Bjorken-x at which the parton distribution functions are evaluated is very small. This is a region where QCD is not well understood, and large logarithms must be resummed. Available parton distribution functions are not known at such small x and extrapolations must be made. Theoretically, the fast rise of the structure functions for small x ultimately leads to parton saturation. This contribution describes the 'ERS' [1] calculation of the prompt neutrino flux, which includes parton saturation effects in the QCD production cross section of charm quarks. The ERS flux calculation is used by e.g. the IceCube collaboration as a standard benchmark background. We are now updating this calculation to take into account the recent LHC data on the charm cross section, as well as recent theoretical developments in QCD. Some of the issues involved in this calculation are described.

  12. New charm (onium) results from CDF

    SciTech Connect

    A. Meyer

    2003-10-01

    After many upgrades to the CDF detector and to the accelerator complex, Run II began in April 2001. The new detector has improved capabilities for charm physics, and first results from the analysis of early Tevatron Run II data are reported here.

  13. Leading Charm in Hadron-Nucleus Interaction in the Intrinsic Charm Model

    SciTech Connect

    Gutierrez, T.; Vogt, R.

    1998-08-03

    Leading charm hadrons produced in hadron-nucleus interactions cannot be adequately described within the parton fusion model. Recent results on charm baryon production in Sigma{sup -} A interactions at 330 GeV with the WA89 detector disagree with fusion predictions. Intrinsic heavy quark pairs in the Sigma{sup -}(dds) wave function provide a simple mechanism for producing fast charm hadrons. We calculate leading charm baryon production from Sigma{sup -}, pi{sup -} and p projectiles in a two component model combining partonfusion with intrinsic charm. Final state D{sup -}, Sigma{sub c}{sup 0}, Xi{sub c}{sup +}, and Lambda{sub c}{sup +} d sigma/dx{sub F} distributions and D{sup -}/D{sup +}, D{sub s}{sup -}/D{sub s}{sup +} and Lambda{sub c}{sup +}/overline Lambda{sub c}{sup +} asymmetries are compared to WA89 data. Predictions are made for 650 GeV Sigma{sup -} A and pi{sup -} A interactions in the SELEX detector at Fermilab and for 800 GeV pA interactions.

  14. Combination and QCD analysis of charm production cross section measurements in deep-inelastic ep scattering at HERA

    NASA Astrophysics Data System (ADS)

    Abramowicz, H.; Abt, I.; Adamczyk, L.; Adamus, M.; Aggarwal, R.; Alexa, C.; Andreev, V.; Antonelli, S.; Antonioli, P.; Antonov, A.; Arneodo, M.; Arslan, O.; Aushev, V.; Aushev, Y.; Bachynska, O.; Baghdasaryan, A.; Baghdasaryan, S.; Bamberger, A.; Barakbaev, A. N.; Barbagli, G.; Bari, G.; Barreiro, F.; Bartel, W.; Bartosik, N.; Bartsch, D.; Basile, M.; Begzsuren, K.; Behnke, O.; Behr, J.; Behrens, U.; Bellagamba, L.; Belousov, A.; Belov, P.; Bertolin, A.; Bhadra, S.; Bindi, M.; Blohm, C.; Bokhonov, V.; Bondarenko, K.; Boos, E. G.; Borras, K.; Boscherini, D.; Bot, D.; Boudry, V.; Bozovic-Jelisavcic, I.; Bołd, T.; Brümmer, N.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Britzger, D.; Brock, I.; Brownson, E.; Brugnera, R.; Bruni, A.; Bruni, G.; Brzozowska, B.; Bunyatyan, A.; Bussey, P. J.; Bylinkin, A.; Bylsma, B.; Bystritskaya, L.; Caldwell, A.; Campbell, A. J.; Cantun Avila, K. B.; Capua, M.; Carlin, R.; Catterall, C. D.; Ceccopieri, F.; Cerny, K.; Chekanov, S.; Chekelian, V.; Chwastowski, J.; Ciborowski, J.; Ciesielski, R.; Cifarelli, L.; Cindolo, F.; Contin, A.; Contreras, J. G.; Cooper-Sarkar, A. M.; Coppola, N.; Corradi, M.; Corriveau, F.; Costa, M.; Cvach, J.; D'Agostini, G.; Dainton, J. B.; Dal Corso, F.; Daum, K.; Delvax, J.; Dementiev, R. K.; Derrick, M.; Devenish, R. C. E.; De Pasquale, S.; De Wolf, E. A.; del Peso, J.; Diaconu, C.; Dobre, M.; Dobur, D.; Dodonov, V.; Dolgoshein, B. A.; Dolinska, G.; Dossanov, A.; Doyle, A. T.; Drugakov, V.; Durkin, L. S.; Dusini, S.; Eckerlin, G.; Egli, S.; Eisenberg, Y.; Elsen, E.; Ermolov, P. F.; Eskreys, A.; Fang, S.; Favart, L.; Fazio, S.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Ferrando, J.; Ferrero, M. I.; Figiel, J.; Fischer, D.-J.; Fleischer, M.; Fomenko, A.; Foster, B.; Gabathuler, E.; Gach, G.; Galas, A.; Gallo, E.; Garfagnini, A.; Gayler, J.; Geiser, A.; Ghazaryan, S.; Gialas, I.; Gizhko, A.; Gladilin, L. K.; Gladkov, D.; Glasman, C.; Glazov, A.; Goerlich, L.; Gogitidze, N.; Gogota, O.; Golubkov, Y. A.; Göttlicher, P.; Gouzevitch, M.; Grab, C.; Grabowska-Bołd, I.; Grebenyuk, A.; Grebenyuk, J.; Greenshaw, T.; Gregor, I.; Grigorescu, G.; Grindhammer, G.; Grzelak, G.; Gueta, O.; Guzik, M.; Gwenlan, C.; Hüttmann, A.; Haas, T.; Habib, S.; Haidt, D.; Hain, W.; Hamatsu, R.; Hart, J. C.; Hartmann, H.; Hartner, G.; Henderson, R. C. W.; Hennekemper, E.; Henschel, H.; Herbst, M.; Herrera, G.; Hildebrandt, M.; Hilger, E.; Hiller, K. H.; Hladký, J.; Hochman, D.; Hoffmann, D.; Hori, R.; Horisberger, R.; Hreus, T.; Huber, F.; Ibrahim, Z. A.; Iga, Y.; Ingbir, R.; Ishitsuka, M.; Jacquet, M.; Jakob, H.-P.; Janssen, X.; Januschek, F.; Jones, T. W.; Jönsson, L.; Jüngst, M.; Jung, A. W.; Jung, H.; Kadenko, I.; Kahle, B.; Kananov, S.; Kanno, T.; Kapichine, M.; Karshon, U.; Karstens, F.; Katkov, I. I.; Kaur, P.; Kaur, M.; Kenyon, I. R.; Keramidas, A.; Khein, L. A.; Kiesling, C.; Kim, J. Y.; Kisielewska, D.; Kitamura, S.; Klanner, R.; Klein, M.; Klein, U.; Kleinwort, C.; Kötz, U.; Koffeman, E.; Kogler, R.; Kondrashova, N.; Kononenko, O.; Kooijman, P.; Korol, I.; Korzhavina, I. A.; Kostka, P.; Kotański, A.; Kowalski, H.; Krämer, M.; Kretzschmar, J.; Krüger, K.; Kuprash, O.; Kuze, M.; Landon, M. P. J.; Lange, W.; Laštovička-Medin, G.; Laycock, P.; Lebedev, A.; Lee, A.; Lendermann, V.; Levchenko, B. B.; Levonian, S.; Levy, A.; Libov, V.; Limentani, S.; Ling, T. Y.; Lipka, K.; Lisovyi, M.; List, B.; List, J.; Lobodzinska, E.; Lobodzinski, B.; Löhr, B.; Lohmann, W.; Lohrmann, E.; Long, K. R.; Longhin, A.; Lontkovskyi, D.; Lopez-Fernandez, R.; Lubimov, V.; Lukina, O. Y.; Maeda, J.; Magill, S.; Makarenko, I.; Malinovski, E.; Malka, J.; Mankel, R.; Margotti, A.; Marini, G.; Martin, J. F.; Martyn, H.-U.; Mastroberardino, A.; Mattingly, M. C. K.; Maxfield, S. J.; Mehta, A.; Melzer-Pellmann, I.-A.; Mergelmeyer, S.; Meyer, A. B.; Meyer, H.; Meyer, J.; Miglioranzi, S.; Mikocki, S.; Milcewicz-Mika, I.; Mohamad Idris, F.; Monaco, V.; Montanari, A.; Moreau, F.; Morozov, A.; Morris, J. V.; Morris, J. D.; Mujkic, K.; Müller, K.; Musgrave, B.; Nagano, K.; Namsoo, T.; Nania, R.; Naumann, T.; Newman, P. R.; Niebuhr, C.; Nigro, A.; Nikitin, D.; Ning, Y.; Nobe, T.; Notz, D.; Nowak, G.; Nowak, K.; Nowak, R. J.; Nuncio-Quiroz, A. E.; Oh, B. Y.; Okazaki, N.; Olkiewicz, K.; Olsson, J. E.; Onishchuk, Y.; Ozerov, D.; Pahl, P.; Palichik, V.; Pandurovic, M.; Papageorgiu, K.; Parenti, A.; Pascaud, C.; Patel, G. D.; Paul, E.; Pawlak, J. M.; Pawlik, B.; Pelfer, P. G.; Pellegrino, A.; Perez, E.; Perlański, W.; Perrey, H.; Petrukhin, A.; Picuric, I.; Piotrzkowski, K.; Pirumov, H.; Pitzl, D.; Plačakytė, R.; Pluciński, P.; Pokorny, B.; Pokrovskiy, N. S.; Polifka, R.; Polini, A.; Povh, B.; Proskuryakov, A. S.; Przybycień, M.; Radescu, V.; Raicevic, N.; Raval, A.; Ravdandorj, T.; Reeder, D. D.; Reimer, P.; Reisert, B.; Ren, Z.; Repond, J.; Ri, Y. D.; Rizvi, E.; Robertson, A.; Robmann, P.; Roloff, P.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Rubinsky, I.; Ruiz Tabasco, J. E.; Rusakov, S.; Ruspa, M.; Sacchi, R.; Šálek, D.; Samson, U.; Sankey, D. P. C.; Sartorelli, G.; Sauter, M.; Sauvan, E.; Savin, A. A.; Saxon, D. H.; Schioppa, M.; Schlenstedt, S.; Schleper, P.; Schmidke, W. B.; Schmitt, S.; Schneekloth, U.; Schoeffel, L.; Schönberg, V.; Schöning, A.; Schörner-Sadenius, T.; Schultz-Coulon, H.-C.; Schwartz, J.; Sciulli, F.; Sefkow, F.; Shcheglova, L. M.; Shehzadi, R.; Shimizu, S.; Shushkevich, S.; Singh, I.; Skillicorn, I. O.; Słomiński, W.; Smith, W. H.; Sola, V.; Solano, A.; Soloviev, Y.; Son, D.; Sopicki, P.; Sosnovtsev, V.; South, D.; Spaskov, V.; Specka, A.; Spiridonov, A.; Stadie, H.; Stanco, L.; Staykova, Z.; Steder, M.; Stefaniuk, N.; Stella, B.; Stern, A.; Stewart, T. P.; Stifutkin, A.; Stoicea, G.; Stopa, P.; Straumann, U.; Suchkov, S.; Susinno, G.; Suszycki, L.; Sykora, T.; Sztuk-Dambietz, J.; Szuba, J.; Szuba, D.; Tapper, A. D.; Tassi, E.; Terrón, J.; Theedt, T.; Thompson, P. D.; Tiecke, H.; Tokushuku, K.; Tomaszewska, J.; Tran, T. H.; Traynor, D.; Truöl, P.; Trusov, V.; Tsakov, I.; Tseepeldorj, B.; Tsurugai, T.; Turcato, M.; Turkot, O.; Turnau, J.; Tymieniecka, T.; Vázquez, M.; Valkárová, A.; Vallée, C.; Van Mechelen, P.; Vazdik, Y.; Verbytskyi, A.; Viazlo, O.; Vlasov, N. N.; Walczak, R.; Wan Abdullah, W. A. T.; Wegener, D.; Whitmore, J. J.; Wichmann, K.; Wiggers, L.; Wing, M.; Wlasenko, M.; Wolf, G.; Wolfe, H.; Wrona, K.; Wünsch, E.; Yagües-Molina, A. G.; Yamada, S.; Yamazaki, Y.; Yoshida, R.; Youngman, C.; Zabiegalov, O.; Žáček, J.; Zálešák, J.; Zenaiev, O.; Zeuner, W.; Zhang, Z.; Zhautykov, B. O.; Zhmak, N.; Zichichi, A.; Žlebčík, R.; Zohrabyan, H.; Zolkapli, Z.; Zomer, F.; Zotkin, D. S.; Żarnecki, A. F.

    2013-02-01

    Measurements of open charm production cross sections in deep-inelastic ep scattering at HERA from the H1 and ZEUS Collaborations are combined. Reduced cross sections σ_red^{cbar{c}} for charm production are obtained in the kinematic range of photon virtuality 2.5≤ Q 2≤2000 GeV2 and Bjorken scaling variable 3ṡ10-5≤ x≤5ṡ10-2. The combination method accounts for the correlations of the systematic uncertainties among the different data sets. The combined charm data together with the combined inclusive deep-inelastic scattering cross sections from HERA are used as input for a detailed NLO QCD analysis to study the influence of different heavy flavour schemes on the parton distribution functions. The optimal values of the charm mass as a parameter in these different schemes are obtained. The implications on the NLO predictions for W ± and Z production cross sections at the LHC are investigated. Using the fixed flavour number scheme, the running mass of the charm quark is determined.

  15. Charmed-strange mesons revisited: Mass spectra and strong decays

    NASA Astrophysics Data System (ADS)

    Song, Qin-Tao; Chen, Dian-Yong; Liu, Xiang; Matsuki, Takayuki

    2015-03-01

    Inspired by the present experimental status of charmed-strange mesons, we perform a systematic study of the charmed-strange meson family in which we calculate the mass spectra of the charmed-strange meson family by taking a screening effect into account in the Godfrey-Isgur model and investigate the corresponding strong decays via the quark pair creation model. These phenomenological analyses of charmed-strange mesons not only shed light on the features of the observed charmed-strange states, but also provide important information on future experimental search for the missing higher radial and orbital excitations in the charmed-strange meson family, which will be a valuable task in LHCb, the forthcoming Belle II, and PANDA.

  16. Production and decay of charmed baryons

    NASA Astrophysics Data System (ADS)

    Hosaka, Atsushi; Hiyama, Emiko; Kim, SangHo; Kim, Hyun-Chul; Nagahiro, Hideko; Noumi, Hiroyuki; Oka, Makoto; Shirotori, Kotaro; Yoshida, Tetsuya; Yasui, Shigehiro

    2016-10-01

    In this paper, we discuss reactions involving charmed baryons to explore their unique features. A well known phenomenon, the separation of the two internal motions of the ρ and λ types of a three-quark system is revisited. First we discuss the mass spectrum of low lying excitations as function of the heavy quark mass, smoothly connecting the SU (3) and heavy quark limits. The properties of these modes can be tested in the production and decay reactions of the baryons. For production, we consider a one step process which excites dominantly λ modes. We find abundant production rates for some of the excited states. For decay, we study a pion emission process which provides a clean tool to test the structure of heavy quark systems due to the well controlled low energy dynamics of pions and quarks. Both production and decay of charmed baryons are issues for future experiments at J-PARC.

  17. Charm quark mass with calibrated uncertainty

    NASA Astrophysics Data System (ADS)

    Erler, Jens; Masjuan, Pere; Spiesberger, Hubert

    2017-02-01

    We determine the charm quark mass hat{m}_c from QCD sum rules of the moments of the vector current correlator calculated in perturbative QCD at O (hat{α }_s^3). Only experimental data for the charm resonances below the continuum threshold are needed in our approach, while the continuum contribution is determined by requiring self-consistency between various sum rules, including the one for the zeroth moment. Existing data from the continuum region can then be used to bound the theoretic uncertainty. Our result is hat{m}_c(hat{m}_c) = 1272 ± 8 MeV for hat{α }_s(M_Z) = 0.1182, where the central value is in very good agreement with other recent determinations based on the relativistic sum rule approach. On the other hand, there is considerably less agreement regarding the theory dominated uncertainty and we pay special attention to the question how to quantify and justify it.

  18. Charm Spectroscopy at BaBar

    SciTech Connect

    Poireau, Vincent; /Annecy, LAPP

    2007-12-21

    We present a mini-review on charm spectroscopy at the BABAR experiment. We first report on the c{bar s} meson spectrum, and present precise measurements of the D{sub s1}(2536) meson as well as the properties of the many new states discovered since 2003 (D*{sub s0}(2317), D{sub s1}(2460), D*{sub sJ}(2860), and D{sub sJ}(2700) mesons). We then discuss about charmed baryons observed recently in the BABAR experiment: {Omega}{sub c}{sup 0} and {Omega}*{sub c}{sup 0} css baryons, {Lambda}{sub c}(2940){sup +} udc baryon and the {Xi}{sub c} usc/dsc baryons.

  19. Babar: Sin(2beta) With Charm

    SciTech Connect

    Grenier, P.; /Ecole Polytechnique /Clermont-Ferrand U.

    2006-04-12

    We present measurements of time-dependent CP asymmetries of neutral B decays to several charm and charmonium final states. Data have been collected with the BABAR detector at the PEP-II storage ring at the Stanford Linear Accelerator Center. In the absence of penguin contribution, the Standard Model predicts the time-dependent CP asymmetry parameters S and C are to be {eta}{sub CP} sin(2{beta}) and 0, respectively.

  20. Charming penguin contributions to B{r_arrow}K{pi}

    SciTech Connect

    Isola, C.; Ladisa, M.; Nardulli, G.; Pham, T. N.; Santorelli, P.

    2001-07-01

    We present calculations of the charming-penguin long-distance contributions to B{r_arrow}K{pi} decays due to intermediate charmed meson states. Our calculation is based on the chiral effective Lagrangian for light and heavy mesons, corrected for the hard pion and kaon momenta. We find that the charming-penguin contributions increase significantly the B{r_arrow}K{pi} decay rates in comparison with the short-distance contributions, giving results in better agreement with experimental data.

  1. A determination of the charm content of the proton

    NASA Astrophysics Data System (ADS)

    Ball, Richard D.; Bertone, Valerio; Bonvini, Marco; Carrazza, Stefano; Forte, Stefano; Guffanti, Alberto; Hartland, Nathan P.; Rojo, Juan; Rottoli, Luca

    2016-11-01

    We present an unbiased determination of the charm content of the proton, in which the charm parton distribution function (PDF) is parametrized on the same footing as the light quarks and the gluon in a global PDF analysis. This determination relies on the NLO calculation of deep-inelastic structure functions in the FONLL scheme, generalized to account for massive charm-initiated contributions. When the EMC charm structure function dataset is included, it is well described by the fit, and PDF uncertainties in the fitted charm PDF are significantly reduced. We then find that the fitted charm PDF vanishes within uncertainties at a scale Q˜ 1.6 GeV for all x≲ 0.1, independent of the value of m_c used in the coefficient functions. We also find some evidence that the charm PDF at large x≳ 0.1 and low scales does not vanish, but rather has an "intrinsic" component, very weakly scale dependent and almost independent of the value of m_c, carrying less than 1% of the total momentum of the proton. The uncertainties in all other PDFs are only slightly increased by the inclusion of fitted charm, while the dependence of these PDFs on m_c is reduced. The increased stability with respect to m_c persists at high scales and is the main implication of our results for LHC phenomenology. Our results show that if the EMC data are correct, then the usual approach in which charm is perturbatively generated leads to biased results for the charm PDF, though at small x this bias could be reabsorbed if the uncertainty due to the charm mass and missing higher orders were included. We show that LHC data for processes, such as high p_T and large rapidity charm pair production and Z+c production, have the potential to confirm or disprove the implications of the EMC data.

  2. Chinese charms in the light of cosmogony.

    PubMed

    Mahdihassan, S

    1990-01-01

    The two greatest powers are Heaven/Earth. As opposites, on union they generate Creative Energy. Such power is transferred to their symbols as Yang/Yin. Conceived as concrete entities, Heaven/Earth appear as Air/Earth. These possess specific qualities. Air is Moist and Hot, Earth, Cold and Dry. Thus arose four cosmic qualities. Moreover, the union between Heaven and Earth resulted in creation, first being Water. Thus arose San-Pao, the three Primordial powers, Heaven, Earth and Water. Water produced its opposite, Fire, so that there resulted four cosmic elements. Air, Earth, Water and Fire. With Yin-Yang, Heaven/Earth, in the center surrounded by eight creations as cosmic elements and cosmic qualities, there arose the symbol of cosmogony. Since water was the first creation, its symbol is best placed between Heaven and Earth. Then the symbol of cosmogony with its units representing power becomes a charm. The best charm shows water next to Heaven and then items representing qualities of Air, Earth and Water. Those that usually form a continuous series would be Earth, Water, Air, Moisture, a quality of both, Water and Air. These items are an essential feature in the makeup of a Chinese charm.

  3. Higher radial and orbital excitations in the charmed meson family

    NASA Astrophysics Data System (ADS)

    Song, Qin-Tao; Chen, Dian-Yong; Liu, Xiang; Matsuki, Takayuki

    2015-10-01

    Using abundant experimental information about charmed mesons together with recent research, we systematically study higher radial and orbital excitations in the charmed meson family by analyzing the mass spectrum and by calculating their Okubo-Zweig-Iizuka-allowed two-body decay behaviors. This phenomenological analysis reveals underlying properties of the newly observed charmed states D (2550 ), D*(2600 ) , D*(2760 ) , D (2750 ), DJ(2580 ), DJ*(2650 ), DJ*(2760 ), DJ(2740 ), DJ(3000 ), and DJ*(3000 ) to provide valuable information about the charmed mesons still missing in experiments.

  4. Open charm-bottom scalar tetraquarks and their strong decays

    NASA Astrophysics Data System (ADS)

    Agaev, S. S.; Azizi, K.; Sundu, H.

    2017-02-01

    The mass and meson-current coupling of the diquark-antidiquark states with the quantum numbers JP=0+ and quark contents Zq=[c q ][b ¯ q ¯ ] and Zs=[c s ][b ¯ s ¯ ] are calculated using the two-point QCD sum rule approach. In calculations the quark, gluon, and mixing condensates up to eight dimensions are taken into account. The parameters of the scalar tetraquarks extracted from this analysis are employed to explore the strong vertices ZqBcπ , ZqBcη , and ZsBcη and compute the couplings gZqBcπ , gZqBcη , and gZsBcη. The strong couplings are obtained within the soft-meson approximation of the QCD light-cone sum rule method: they form, alongside with other parameters, the basis for evaluating the widths of Zq→Bcπ , Zq→Bcη , and Zs→Bcη decays. Results obtained in this work for the mass of the tetraquarks Zq and Zs are compared with available predictions presented in the literature.

  5. Chiral symmetry aspects in the open charm sector

    NASA Astrophysics Data System (ADS)

    Buchheim, T.; Hilger, T.; Kämpfer, B.

    2016-01-01

    QCD sum rules serve as tools to investigate changing hadronic properties in a hot and/or dense nuclear medium. The role of chiral symmetry breaking and restoration effects in a medium can be addressed also in the heavy-light meson sector. Thus, we consider Weinberg sum rules which refer to chiral partner mesons composed of a light and a heavy quark.

  6. Strangeness and charm production in high energy heavy ion collisions

    SciTech Connect

    Xu, Nu

    2001-01-01

    We discuss the dynamical effects of strangeness and charm production in high energy nuclear collisions. In order to understand the early stage dynamical evolution, it is necessary to study the transverse momentum distributions of multi-strange hadrons like {Xi} and {Omega} and charm mesons like J/{Psi} as a function of collision centrality.

  7. Semileptonic and Rare D and Ds Charm Decays at Focus

    NASA Astrophysics Data System (ADS)

    Johns, Will E.

    Over 1 million charm decays were collected by the E831 photoproduction experiment (FOCUS) during the 1996-1997 Fermilab fixed target run. Analysis techniques and results particular to semileptonic and rare D and Ds charm decays from the FOCUS experiment are reviewed.

  8. Measurement of charm fragmentation fractions in photoproduction at HERA

    NASA Astrophysics Data System (ADS)

    Abramowicz, H.; Abt, I.; Adamczyk, L.; Adamus, M.; Aggarwal, R.; Antonelli, S.; Antonioli, P.; Antonov, A.; Arneodo, M.; Arslan, O.; Aushev, V.; Aushev, Y.; Bachynska, O.; Bamberger, A.; Barakbaev, A. N.; Barbagli, G.; Bari, G.; Barreiro, F.; Bartosik, N.; Bartsch, D.; Basile, M.; Behnke, O.; Behr, J.; Behrens, U.; Bellagamba, L.; Bertolin, A.; Bhadra, S.; Bindi, M.; Blohm, C.; Bokhonov, V.; Bold, T.; Boos, E. G.; Borras, K.; Boscherini, D.; Bot, D.; Brock, I.; Brownson, E.; Brugnera, R.; Brümmer, N.; Bruni, A.; Bruni, G.; Brzozowska, B.; Bussey, P. J.; Bylsma, B.; Caldwell, A.; Capua, M.; Carlin, R.; Catterall, C. D.; Chekanov, S.; Chwastowski, J.; Ciborowski, J.; Ciesielski, R.; Cifarelli, L.; Cindolo, F.; Contin, A.; Cooper-Sarkar, A. M.; Coppola, N.; Corradi, M.; Corriveau, F.; Costa, M.; D'Agostini, G.; Corso, F. Dal; del Peso, J.; Dementiev, R. K.; De Pasquale, S.; Derrick, M.; Devenish, R. C. E.; Dobur, D.; Dolgoshein, B. A.; Dolinska, G.; Doyle, A. T.; Drugakov, V.; Durkin, L. S.; Dusini, S.; Eisenberg, Y.; Ermolov, P. F.; Eskreys, A.; Fang, S.; Fazio, S.; Ferrando, J.; Ferrero, M. I.; Figiel, J.; Foster, B.; Gach, G.; Galas, A.; Gallo, E.; Garfagnini, A.; Geiser, A.; Gialas, I.; Gizhko, A.; Gladilin, L. K.; Gladkov, D.; Glasman, C.; Gogota, O.; Golubkov, Yu. A.; Göttlicher, P.; Grabowska-Bold, I.; Grebenyuk, J.; Gregor, I.; Grigorescu, G.; Grzelak, G.; Gueta, O.; Guzik, M.; Gwenlan, C.; Haas, T.; Hain, W.; Hamatsu, R.; Hart, J. C.; Hartmann, H.; Hartner, G.; Hilger, E.; Hochman, D.; Hori, R.; Hüttmann, A.; Ibrahim, Z. A.; Iga, Y.; Ingbir, R.; Ishitsuka, M.; Iudin, A.; Jakob, H.-P.; Januschek, F.; Jones, T. W.; Jüngst, M.; Kadenko, I.; Kahle, B.; Kananov, S.; Kanno, T.; Karshon, U.; Karstens, F.; Katkov, I. I.; Kaur, M.; Kaur, P.; Keramidas, A.; Khein, L. A.; Kim, J. Y.; Kisielewska, D.; Kitamura, S.; Klanner, R.; Klein, U.; Koffeman, E.; Kondrashova, N.; Kononenko, O.; Kooijman, P.; Korol, Ie.; Korzhavina, I. A.; Kotanski, A.; Kötz, U.; Kovalchuk, N.; Kowalski, H.; Kuprash, O.; Kuze, M.; Lee, A.; Levchenko, B. B.; Levy, A.; Libov, V.; Limentani, S.; Ling, T. Y.; Lisovyi, M.; Lobodzinska, E.; Lohmann, W.; Löhr, B.; Lohrmann, E.; Long, K. R.; Longhin, A.; Lontkovskyi, D.; Lukina, O. Yu.; Maeda, J.; Magill, S.; Makarenko, I.; Malka, J.; Mankel, R.; Margotti, A.; Marini, G.; Martin, J. F.; Mastroberardino, A.; Mattingly, M. C. K.; Melzer-Pellmann, I.-A.; Mergelmeyer, S.; Miglioranzi, S.; Mohamad Idris, F.; Monaco, V.; Montanari, A.; Morris, J. D.; Mujkic, K.; Musgrave, B.; Myronenko, V.; Nagano, K.; Namsoo, T.; Nania, R.; Nigro, A.; Ning, Y.; Nobe, T.; Notz, D.; Nowak, R. J.; Nuncio-Quiroz, A. E.; Oh, B. Y.; Okazaki, N.; Olkiewicz, K.; Onishchuk, Yu.; Papageorgiu, K.; Parenti, A.; Paul, E.; Pawlak, J. M.; Pawlik, B.; Pelfer, P. G.; Pellegrino, A.; Perlanski, W.; Perrey, H.; Piotrzkowski, K.; Plucinski, P.; Pokrovskiy, N. S.; Polini, A.; Proskuryakov, A. S.; Przybycien, M.; Raval, A.; Reeder, D. D.; Reisert, B.; Ren, Z.; Repond, J.; Ri, Y. D.; Robertson, A.; Roloff, P.; Rubinsky, I.; Ruspa, M.; Sacchi, R.; Samson, U.; Sartorelli, G.; Savin, A. A.; Saxon, D. H.; Schioppa, M.; Schlenstedt, S.; Schleper, P.; Schmidke, W. B.; Schneekloth, U.; Schönberg, V.; Schörner-Sadenius, T.; Schwartz, J.; Sciulli, F.; Shcheglova, L. M.; Shehzadi, R.; Shevchenko, R.; Shimizu, S.; Shkola, O.; Singh, I.; Skillicorn, I. O.; Slominski, W.; Smith, W. H.; Sola, V.; Solano, A.; Son, D.; Sosnovtsev, V.; Spiridonov, A.; Stadie, H.; Stanco, L.; Stefaniuk, N.; Stern, A.; Stewart, T. P.; Stifutkin, A.; Stopa, P.; Suchkov, S.; Susinno, G.; Suszycki, L.; Sztuk-Dambietz, J.; Szuba, D.; Szuba, J.; Tapper, A. D.; Tassi, E.; Terrón, J.; Theedt, T.; Tiecke, H.; Tokushuku, K.; Tomaszewska, J.; Trofymov, A.; Trusov, V.; Tsurugai, T.; Turcato, M.; Turkot, O.; Tymieniecka, T.; Vázquez, M.; Verbytskyi, A.; Viazlo, O.; Vlasov, N. N.; Walczak, R.; Wan Abdullah, W. A. T.; Whitmore, J. J.; Wichmann, K.; Wiggers, L.; Wing, M.; Wlasenko, M.; Wolf, G.; Wolfe, H.; Wrona, K.; Yagües-Molina, A. G.; Yamada, S.; Yamazaki, Y.; Yoshida, R.; Youngman, C.; Zakharchuk, N.; Żarnecki, A. F.; Zawiejski, L.; Zenaiev, O.; Zeuner, W.; Zhautykov, B. O.; Zhmak, N.; Zichichi, A.; Zolkapli, Z.; Zotkin, D. S.

    2013-09-01

    The production of D 0, D *+, D +, and charm hadrons and their antiparticles in ep scattering at HERA has been studied with the ZEUS detector, using a total integrated luminosity of 372 pb-1. The fractions of charm quarks hadronising into a particular charm hadron were derived. In addition, the ratio of neutral to charged D-meson production rates, the fraction of charged D mesons produced in a vector state, and the stangeness-suppression factor have been determined. The measurements have been performed in the photoproduction regime. The charm hadrons were reconstructed in the range of transverse momentum p T > 3 .8 GeV and pseudorapidity | η| < 1 .6. The charm fragmentation fractions are compared to previous results from HERA and from e + e - experiments. The data support the hypothesis that fragmentation is independent of the production process.

  9. Hidden-charm pentaquarks and their hidden-bottom and Bc-like partner states

    NASA Astrophysics Data System (ADS)

    Wu, Jing; Liu, Yan-Rui; Chen, Kan; Liu, Xiang; Zhu, Shi-Lin

    2017-02-01

    In the framework of the color-magnetic interaction, we have systematically studied the mass splittings of the possible hidden-charm pentaquarks q q q c c ¯ (q =u , d , s ) where the three light quarks are in a color-octet state. We find that (i) the LHCb Pc states fall in the mass region of the studied system, (ii) most pentaquarks should be broad states since their S -wave open-charm decays are allowed while the lowest state is the JP=1/2- Λ -like pentaquark with probably the suppressed ηcΛ decay mode only, and (iii) the JP=5/2- states do not decay through the S wave and their widths are not so broad. The masses and widths of the two LHCb Pc baryons are compatible with such pentaquark states. We also explore the hidden-bottom and Bc-like partners of the hidden-charm states and find the possible existence of the pentaquarks which are lower than the relevant hadronic molecules.

  10. Finding The Charm In 800 GeV/c p-Cu and p-Be Single Muon Spectra

    SciTech Connect

    Klinksiek, Stephen A.

    2005-12-01

    Fermilab Experiment 866 took single muon data from 800 GeV/c (√s = 38.8 GeV) p-Cu and p-Be interactions in an attempt to extract the inclusive nuclear open charm/anti-charm (D/¯D) differential cross sections as a function of pT . The muons were decay products from semi-leptonic decays of open charm mesons as well as decays from lighter non-charmed mesons (π’s and K’s). Data were taken simultaneously from two interaction regions; one of two thin nuclear targets and a copper beam dump 92 inches downstream. The open decay length for hadrons produced in the targets increased the contribution to the muon spectrum from light hadron decays, relative to those from the dump. Production cross sections for light hadrons from previous experiments were used in conjunction with parameterized open charm cross sections to produce total Monte Carlo single muon spectra that were subsequently fit to the data. The sensitivity of this measurement covered an open charm hadron pT range of approximately 2 to 7 GeV/c, center-of-mass rapidity, ycm, between 0 and 2, and xF between 0.2 and 0.8. Previous experimental results for p-p or p-A open charm production at comparable energy was limited to √5 GeV/c. Three functions describing the shape of the open charm/anti-charm cross sections were fit to the data; an exponential, A1 exp (–B pT), and two polynomials, A2/(p2T + αm2c)n and A2 (1-pT/Pbeam)m/p2T + αm2c)n. The first polynomial was fit with the parameter n as a free parameter, and constant with three integer values, 4, 5 and 6. The second was fit with n held fixed at the constant integer values only. The best results were with the first polynomial with n around 6. All three parameterizations resulted in good fits. Extrapolation of the cross sections to small p

  11. Lattice calculation of nonleptonic charm decays

    SciTech Connect

    Simone, J.N.

    1991-11-01

    The decays of charmed mesons into two body nonleptonic final states are investigated. Weak interaction amplitudes of interest in these decays are extracted from lattice four-point correlation functions using a effective weak Hamiltonian including effects to order G{sub f} in the weak interactions yet containing effects to all orders in the strong interactions. The lattice calculation allows a quantitative examination of non-spectator processes in charm decays helping to elucidate the role of effects such as color coherence, final state interactions and the importance of the so called weak annihilation process. For D {yields} K{pi}, we find that the non-spectator weak annihilation diagram is not small, and we interpret this as evidence for large final state interactions. Moreover, there is indications of a resonance in the isospin {1/2} channel to which the weak annihilation process contributes exclusively. Findings from the lattice calculation are compared to results from the continuum vacuum saturation approximation and amplitudes are examined within the framework of the 1/N expansion. Factorization and the vacuum saturation approximation are tested for lattice amplitudes by comparing amplitudes extracted from lattice four-point functions with the same amplitude extracted from products of two-point and three-point lattice correlation functions arising out of factorization and vacuum saturation.

  12. The Italian Tau/charm project

    NASA Astrophysics Data System (ADS)

    Enrica Biagini, Maria

    2014-06-01

    A τ/charm Factory, an e + e- collider with very high luminosity at the 2-4.6 GeV center of mass energy, to be built on the Rome University at Tor Vergata campus, was studied by the Consortium Nicola Cabibbo Laboratory and the INFN Frascati Laboratories. This project is the natural evolution of the flagship Italian project SuperB Factory, funded by the Italian Government in 2010 with a budget that turned out to be insufficient to cover the total costs of the project. The study of rare events at the τ/charm energy was already planned as a Phase-II of SuperB [1]. This design keeps all the unique features of SuperB, including the polarization of the electron beam, with the possibility to take data in a larger energy range, with reduced accelerator dimensions and construction and operation costs. A Report on the accelerator design has been published in September 2013 [2].

  13. Charmed bottom baryon spectroscopy from lattice QCD

    DOE PAGES

    Brown, Zachary S.; Detmold, William; Meinel, Stefan; ...

    2014-11-19

    In this study, we calculate the masses of baryons containing one, two, or three heavy quarks using lattice QCD. We consider all possible combinations of charm and bottom quarks, and compute a total of 36 different states with JP = 1/2+ and JP = 3/2+. We use domain-wall fermions for the up, down, and strange quarks, a relativistic heavy-quark action for the charm quarks, and nonrelativistic QCD for the bottom quarks. Our analysis includes results from two different lattice spacings and seven different pion masses. We perform extrapolations of the baryon masses to the continuum limit and to the physicalmore » pion mass using SU(4|2) heavy-hadron chiral perturbation theory including 1/mQ and finite-volume effects. For the 14 singly heavy baryons that have already been observed, our results agree with the experimental values within the uncertainties. We compare our predictions for the hitherto unobserved states with other lattice calculations and quark-model studies.« less

  14. Charmed bottom baryon spectroscopy from lattice QCD

    SciTech Connect

    Brown, Zachary S.; Detmold, William; Meinel, Stefan; Orginos, Kostas

    2014-11-19

    In this study, we calculate the masses of baryons containing one, two, or three heavy quarks using lattice QCD. We consider all possible combinations of charm and bottom quarks, and compute a total of 36 different states with JP = 1/2+ and JP = 3/2+. We use domain-wall fermions for the up, down, and strange quarks, a relativistic heavy-quark action for the charm quarks, and nonrelativistic QCD for the bottom quarks. Our analysis includes results from two different lattice spacings and seven different pion masses. We perform extrapolations of the baryon masses to the continuum limit and to the physical pion mass using SU(4|2) heavy-hadron chiral perturbation theory including 1/mQ and finite-volume effects. For the 14 singly heavy baryons that have already been observed, our results agree with the experimental values within the uncertainties. We compare our predictions for the hitherto unobserved states with other lattice calculations and quark-model studies.

  15. Convex Hull Aided Registration Method (CHARM).

    PubMed

    Fan, Jingfan; Yang, Jian; Zhao, Yitian; Ai, Danni; Liu, Yonghuai; Wang, Ge; Wang, Yongtian

    2016-08-31

    Non-rigid registration finds many applications such as photogrammetry, motion tracking, model retrieval, and object recognition. In this paper we propose a novel convex hull aided registration method (CHARM) to match two point sets subject to a non-rigid transformation. Firstly, two convex hulls are extracted from the source and target respectively. Then, all points of the point sets are projected onto the reference plane through each triangular facet of the hulls. From these projections, invariant features are extracted and matched optimally. The matched feature point pairs are mapped back onto the triangular facets of the convex hulls to remove outliers that are outside any relevant triangular facet. The rigid transformation from the source to the target is robustly estimated by the random sample consensus (RANSAC) scheme through minimizing the distance between the matched feature point pairs. Finally, these feature points are utilized as the control points to achieve nonrigid deformation in the form of thin-plate spline of the entire source point set towards the target one. The experimental results based on both synthetic and real data show that the proposed algorithm outperforms several state-of-the-art ones with respect to sampling, rotational angle, and data noise. In addition, the proposed CHARM algorithm also shows higher computational efficiency compared to these methods.

  16. Heavy exotic molecules with charm and bottom

    NASA Astrophysics Data System (ADS)

    Liu, Yizhuang; Zahed, Ismail

    2016-11-01

    We revisit the formation of pion-mediated heavy-light exotic molecules with both charm and bottom and their chiral partners under the general strictures of both heavy-quark and chiral symmetry. The chiral exotic partners with good parity formed using the (0+ ,1+) multiplet are about twice more bound than their primary exotic partners formed using the (0- ,1-) multiplet. The chiral couplings across the multiplets (0± ,1±) cause the chiral exotic partners to unbind, and the primary exotic molecules to be about twice more bound, for J ≤ 1. Our multi-channel coupling results show that only the charm isosinglet exotic molecules with JPC =1++ bind, which we identify as the reported neutral X (3872). Also, the bottom isotriplet exotic with JPC =1+- binds, which we identify as a mixture of the reported charged exotics Zb+ (10610) and Zb+ (10650). The bound isosinglet with JPC =1++ is suggested as a possible neutral Xb (10532) not yet reported.

  17. Improving data discovery and usability through commentary and user feedback: the CHARMe project

    NASA Astrophysics Data System (ADS)

    Alegre, R.; Blower, J. D.

    2014-12-01

    CHARMe project has implemented a set of open-source tools to create, store and explore commentary information, using open Web standards. In this presentation we will describe the application of the CHARMe system to the particular case of the climate data community; however the techniques and technologies are generic and can be applied in many fields.

  18. How Charm can still be charming: some recent results from FOCUS

    SciTech Connect

    Malvezzi, Sandra

    2006-01-12

    Charm physics is a paradigm of the way in which precise measurements have led to a revival of the sector, allowing for New Physics searches through mixing, CP violation, and measurements of rare and forbidden decays. New vigorous spectroscopy studies of high-mass states (the so-called 'Renaissance of spectroscopy') complement the scenario. These promising investigations, which are typical of a mature field under study for several decades, require knowledge and control of QCD effects. Recent studies of charm weak decays in hadronic and semileptonic processes through Dalitz-plot analyses and form-factor measurements respectively, have revealed limits in the generally adopted approaches for treating strong dynamics effects. FOCUS has performed pioneering analyses, suggesting new directions for strong decay dynamics investigation; a few examples will be discussed in this paper.

  19. Opportunities for high-sensitivity charm physics at Fermilab

    SciTech Connect

    Kaplan, D.M.; Burnstein, R.A.; Lederman, L.M.; Rubin, H.A.; Brown, C.N.; Christian, D.C.; Gelfand, N.M.; Kwan, S.W.; Chen, T.Y.; He, M.; Koetke, D.D.; Napier, A.; Papavassiliou, V.; Yu, X.Q.

    1996-07-01

    The CO initiative under consideration at Fermilab makes feasible a charm experiment reconstructing >10{sup 9} charm decays, four orders - of magnitude beyond the largest extant sample. The experiment might commence data-taking as early as 1999. In addition to programmatic charm physics such as spectroscopy, lifetimes, and QCD tests, it will have significant new-physics reach in the areas of CP violation, flavor-changing neutral-current and lepton-number-violating decays, and D{sup o} {bar D} {bar {sup o}} mixing, and should observe direct CP violation in Cabibbo-suppressed D decays if it occurs at the level predicted by the Standard Model.

  20. DO -- antiMixing and Rare Charm Decays

    SciTech Connect

    Miller, Jeanne M; Burdman, Gustavo

    2003-10-06

    We review the current status of flavor-changing neutral currents in the charm sector. We focus on the standard-model predictions and identify the main sources of theoretical uncertainties in both charm mixing and rare charm decays. The potential of these observables for constraining short-distance physics in the standard model and its extensions is compromised by the presence of large nonperturbative effects. We examine the possible discovery windows in which short-distance physics can be tested and study the effects of various extensions of the standard model. The current experimental situation and future prospects are reviewed.

  1. Discovery of naked charm particles and lifetime differences among charm species using nuclear emulsion techniques innovated in Japan

    PubMed Central

    NIU, Kiyoshi

    2008-01-01

    This is a historical review of the discovery of naked charm particles and lifetime differences among charm species. These discoveries in the field of cosmic-ray physics were made by the innovation of nuclear emulsion techniques in Japan. A pair of naked charm particles was discovered in 1971 in a cosmic-ray interaction, three years prior to the discovery of the hidden charm particle, J/Ψ, in western countries. Lifetime differences between charged and neutral charm particles were pointed out in 1975, which were later re-confirmed by the collaborative Experiment E531 at Fermilab. Japanese physicists led by K.Niu made essential contributions to it with improved emulsion techniques, complemented by electronic detectors. This review also discusses the discovery of artificially produced naked charm particles by us in an accelerator experiment at Fermilab in 1975 and of multiple-pair productions of charm particles in a single interaction in 1987 by the collaborative Experiment WA75 at CERN. PMID:18941283

  2. Spectroscopy of charmed baryons from lattice QCD

    SciTech Connect

    Padmanath, M.; Edwards, Robert G.; Mathur, Nilmani; Peardon, Michael

    2015-01-01

    We present the ground and excited state spectra of singly, doubly and triply charmed baryons by using dynamical lattice QCD. A large set of baryonic operators that respect the symmetries of the lattice and are obtained after subduction from their continuum analogues are utilized. Using novel computational techniques correlation functions of these operators are generated and the variational method is exploited to extract excited states. The lattice spectra that we obtain have baryonic states with well-defined total spins up to 7/2 and the low lying states remarkably resemble the expectations of quantum numbers from SU(6) x O(3) symmetry. Various energy splittings between the extracted states, including splittings due to hyperfine as well as spin-orbit coupling, are considered and those are also compared against similar energy splittings at other quark masses.

  3. Rare charm and B decays at CDF

    SciTech Connect

    Julia Thom

    2003-12-15

    We present results on rare charm and B decays using 65pb{sup -1} of data taken with the CDF detector in Run II. Three results are discussed, a measurement of the relative branching ratios {Lambda}(D{sup 0} {yields} K{sup +}K{sup -})/{Lambda}(D{sup 0} {yields} K{pi}) and {Lambda}(D{sup 0} {yields} {pi}{sup +}{pi}{sup -})/{Lambda}(D{sup 0} {yields} K{pi}) and the direct CP-violating decay rate asymmetry, and a limit on the branching ratio of the FCNC decay D{sup 0} {yields} {mu}{sup +}{mu}{sup -}. We also discuss the prospects for the search for B{sub s}{sup 0} {yields} {mu}{sup +}{mu}{sup -} decays.

  4. Charm Baryon Studies at BaBar

    SciTech Connect

    Ziegler, V.; /Iowa U.

    2006-04-21

    The authors present a precision measurement of the mass of the {Lambda}{sub c}{sup +} and studies of the production and decay of the {Omega}{sub c}{sup 0} and {Xi}{sub c}{sup 0} charm baryons using data collected by the BABAR experiment. To keep the systematic uncertainty as low as possible, the {Lambda}{sub c}{sup +} mass measurement is performed using the low Q-value decays, {Lambda}{sub c}{sup +} {yields} {Lambda}{sup 0} K{sub S}{sup 0}K{sup +} and {Lambda}{sub c}{sup +} {yields} {Sigma}{sup 0} K{sub S}{sup 0}K{sup +}. Several hadronic final states involving an {Omega}{sup -} and a {Xi}{sup -} hyperon are analyzed to reconstruct the {Xi}{sub c}{sup 0} and the {Omega}{sub c}{sup 0}.

  5. Charm form factors in hadronic interactions

    SciTech Connect

    Bracco, M. E.; Navarra, F. S.; Nielsen, M.; Chiapparini, M.

    2010-12-28

    We calculate the form factors and the coupling constants in vertices with charm mesons, such as {rho}D*D*, in the framework of QCD sum rules. We first discuss the applications of these form factors in heavy ion collisions and in B decays. We then present an introduction to the method of QCD sum rules and describe how to work with the three-point function. We give special attention to the procedure employed to extrapolate results obtained in the deep euclidean region to the poles of the particles, located in the time-like region. Finally we present a table of ready-to-use parametrizations of all the form factors, which are relevant for the processes mentioned in the introduction. We also give the coupling constants.

  6. Argonne Tau-charm factory collider design study

    SciTech Connect

    Teng, L.C.; Crosbie, E.A.; Norem, J.

    1995-12-01

    The design approach and design principles for a Tau-charm Factory at Argonne were studied. These studies led to a set of preliminary parameters and tentative component features as presented in this paper.

  7. Beauty and charm production at fixed-target experiments

    SciTech Connect

    Erik E. Gottschalk

    2003-12-10

    Fixed-target experiments continue to provide insights into the physics of particle production in strong interactions. The experiments are performed with different types of beam particles of varying energies, and many different target materials. Studies of beauty and charm production are of particular interest, since experimental results can be compared to perturbative QCD calculations. It is in this context that recent results from fixed-target experiments on beauty and charm production will be reviewed.

  8. Charm and bottom hadronic form factors with QCD sum rules

    SciTech Connect

    Bracco, M. E.; Rodrigues, B. O.; Cerqueira, A. Jr.

    2013-03-25

    We present a brief review of some calculations of form factors and coupling constants in vertices with charm and bottom mesons in the framework of QCD sum rules. We first discuss the motivation for this work, describing possible applications of these form factors to charm and bottom decays processes. We first make a summarize of the QCD sum rules method. We give special attention to the uncertainties of the method introducing by the intrinsic variation of the parameters. Finally we conclude.

  9. Physics of a high-luminosity Tau-Charm Factory

    SciTech Connect

    King, M.E.

    1992-10-01

    This paper highlights the physics capabilities of a Tau-Charm Factory; i.e., high luminosity ({approximately}10{sup 33}cm{sup {minus}2}s{sup {minus}1}) e{sup +}e{sup {minus}} collider operating in the center-of-mass energy range of 3-5 GeV, with a high-precision, general-purpose detector. Recent developments in {tau} and charm physics are emphasized.

  10. CHARMMing: a new, flexible web portal for CHARMM.

    PubMed

    Miller, Benjamin T; Singh, Rishi P; Klauda, Jeffery B; Hodoscek, Milan; Brooks, Bernard R; Woodcock, H Lee

    2008-09-01

    A new web portal for the CHARMM macromolecular modeling package, CHARMMing (CHARMM interface and graphics, http://www.charmming.org), is presented. This tool provides a user-friendly interface for the preparation, submission, monitoring, and visualization of molecular simulations (i.e., energy minimization, solvation, and dynamics). The infrastructure used to implement the web application is described. Two additional programs have been developed and integrated with CHARMMing: GENRTF, which is employed to define structural features not supported by the standard CHARMM force field, and a job broker, which is used to provide a portable method for using grid and cluster computing with CHARMMing. The use of the program is described with three proteins: 1YJP , 1O1O , and 1UFY . Source code is provided allowing CHARMMing to be downloaded, installed, and used by supercomputing centers and research groups that have a CHARMM license. Although no software can replace a scientist's own judgment and experience, CHARMMing eases the introduction of newcomers to the molecular modeling discipline by providing a graphical method for running simulations.

  11. Charm CP violation and mixing at Belle

    NASA Astrophysics Data System (ADS)

    Rok Ko, Byeong; Belle Collaboration

    2014-11-01

    We present charm CP violation and mixing measurements at Belle. They are the first observation of D0 - bar D0 mixing in e+e- collisions from D0 → K+π- decays, the most precise mixing and indirect CP violation parameters from D0 → K0Sπ+π- decays, and the timeintegrated CP asymmetries in D0 → π0π0 and D0 → K0Sπ0 decays. Our mixing measurement in D0 → K+π- decays excludes the no-mixing hypothesis at the 5.1 standard deviation level. The mixing parameters x = (0.56 ± 0.19+0.03+0.06-0.09-0.09)%, y = (0.30 ± 0.15+0.04+0.03-0.05-0.06)% and indirect CP violation parameters |q/p| = (0.90+0.16+0.05+0.06-0.15-0.04-0.05)%, arg(q/p) = (-6 ± 11 ± 3+3-4)° measured from D0 → K0Sπ+π- decays, and the time-integrated CP asymmetries AD0→π0π0CP = (-0.03 ± 0.64 ± 0.10)% and AD0→K0Sπ0CP = (-0.21 ± 0.16 ± 0.07)% are the most precisemeasurements to date. Our measurements here are consistent with predictions of the standard model.

  12. Coulomb gauge model for hidden charm tetraquarks

    NASA Astrophysics Data System (ADS)

    Xie, W.; Mo, L. Q.; Wang, Ping; Cotanch, Stephen R.

    2013-08-01

    The spectrum of tetraquark states with hidden charm is studied within an effective Coulomb gauge Hamiltonian approach. Of the four independent color schemes, two are investigated, the (qcbar)1(cqbar)1 singlet-singlet (molecule) and the (qc)3(qbarcbar)3 triplet-triplet (diquark), for selected JPC states using a variational method. The predicted masses of triplet-triplet tetraquarks are roughly a GeV heavier than the singlet-singlet states. There is also an interesting flavor dependence with (qqbar)1 (ccbar1) states about half a GeV lighter than (qcbar)1(qbarc)1. The lightest 1++ and 1-- predictions are in agreement with the observed X (3872) and Y (4008) masses suggesting they are molecules with ωJ / ψ and ηhc, rather than D*Dbar* and DDbar, type structure, respectively. Similarly, the lightest isovector 1++ molecule, having a ρJ / ψ flavor composition, has mass near the recently observed charged Zc (3900) value. These flavor configurations are consistent with observed X, Y and Zc decays to ππJ / ψ.

  13. 75 FR 76036 - Charming Shoppes of Delaware, Inc. Accounts Payable, Rent, Merchandise Disbursement Divisions...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-07

    ... Employment and Training Administration Charming Shoppes of Delaware, Inc. Accounts Payable, Rent, Merchandise... of Charming Shoppes of Delaware, Inc., including the Accounts Payable, Rent, and Merchandise... the same division, are engaged in activities related to the supply of accounts payable,...

  14. Penguins with charm and quark-hadron duality

    NASA Astrophysics Data System (ADS)

    Beneke, M.; Buchalla, G.; Neubert, M.; Sachrajda, C. T.

    2009-06-01

    The integrated branching fraction of the process B→ X s l + l - is dominated by resonance background from narrow charmonium states, such as B→ X s ψ→ X s l + l -, which exceeds the non-resonant charm-loop contribution by two orders of magnitude. The origin of this fact is discussed in view of the general expectation of quark-hadron duality. The situation in B→ X s l + l - is contrasted with charm-penguin amplitudes in two-body hadronic B decays of the type B→ π π, for which it is demonstrated that resonance effects and the potentially non-perturbative cbar{c} threshold region do not invalidate the standard picture of QCD factorization. This holds irrespective of whether the charm quark is treated as a light or a heavy quark.

  15. Towards Exotic Hidden-Charm Pentaquarks in QCD.

    PubMed

    Chen, Hua-Xing; Chen, Wei; Liu, Xiang; Steele, T G; Zhu, Shi-Lin

    2015-10-23

    Inspired by P(c)(4380) and P(c)(4450) recently observed by LHCb, a QCD sum rule investigation is performed, by which they can be identified as exotic hidden-charm pentaquarks composed of an anticharmed meson and a charmed baryon. Our results suggest that P(c)(4380) and P(c)(4450) have quantum numbers J(P)=3/2(-) and 5/2(+), respectively. Furthermore, two extra hidden-charm pentaqurks with configurations D̅Σ(c)(*) and D̅(*)Σ(c)(*) are predicted, which have spin-parity quantum numbers J(P)=3/2(-) and J(P)=5/2(+), respectively. As an important extension, the mass predictions of hidden-bottom pentaquarks are also given. Searches for these partners of P(c)(4380) and P(c)(4450) are especially accessible at future experiments like LHCb and BelleII.

  16. D0-D bar 0 mixing and rare charm decays

    SciTech Connect

    Burdman, Gustavo; Shipsey, Ian

    2003-10-08

    We review the current status of flavor-changing neutral currents in the charm sector. We focus on the standard-model predictions and identify the main sources of theoretical uncertainties in both D{sup 0} - {bar D}{sup 0} mixing and rare charm decays. The potential of these observables for constraining short-distance physics in the standard model and its extensions is compromised by the presence of large nonperturbative effects. We examine the possible discovery windows in which short-distance physics can be tested and study the effects of various extensions of the standard model. The current experimental situation and future prospects are reviewed.

  17. Charmonium physics at a tau-charm factory

    SciTech Connect

    Barnes, T. |

    1993-11-01

    Since its discovery in 1974 the charmonium system has served hadron physics as an important arena for the investigation of many aspects of QCD and hadron spectroscopy. In this summary the author briefly reviews some of these and discusses several of the important outstanding issues in hadron spectroscopy and their relation to the spectrum and couplings of resonances in the charmonium system. The topics discussed are charmonium spectroscopy, electromagnetic couplings ({gamma}, {gamma}{gamma} and e{sup +}e{sup {minus}}), strong decays and unusual states (charm molecules and charmonium hybrids), and in each case the author notes areas in which experiments at a tau-charm factory could make valuable contributions.

  18. Charm quark mass determined from a pair of sum rules

    NASA Astrophysics Data System (ADS)

    Erler, Jens; Masjuan, Pere; Spiesberger, Hubert

    2016-11-01

    In this paper, we present preliminary results of the determination of the charm quark mass m̂c from QCD sum rules of moments of the vector current correlator calculated in perturbative QCD at 𝒪(α̂s3). Self-consistency between two different sum rules allow to determine the continuum contribution to the moments without requiring experimental input, except for the charm resonances below the continuum threshold. The existing experimental data from the continuum region is used, then, to confront the theoretical determination and reassess the theoretic uncertainty.

  19. Beauty, charm and hyperon production at fixed-target experiments

    SciTech Connect

    Erik Gottschalk

    2002-12-11

    Over the years fixed-target experiments have performed numerous studies of particle production in strong interactions. The experiments have been performed with different types of beam particles of varying energies, and many different target materials. Since the physics of particle production is still not understood, ongoing research of phenomena that we observe as beauty, charm and strange-particle production is crucial if we are to gain an understanding of these fundamental processes. It is in this context that recent results from fixed-target experiments on beauty, charm, and hyperon production will be reviewed.

  20. Towards an understanding of the new charm and charm-strange mesons

    NASA Astrophysics Data System (ADS)

    Godfrey, Stephen

    2005-01-01

    The observation of the DsJ*(2317), DsJ(2460), and SELEX DsJ*(2632) states with properties differing considerably from what was expected has led to a renewed interest in hadron spectroscopy. In addition to these states, non-strange partners of the DsJ states have also been observed. Understanding the D0* and D1' states can provide important insights into the DsJ states. In this contribution I examine quark model predictions for the D0* and D1' states and discuss experimental measurements that can shed light on them. I find that these states are well described as the broad, j = 1/2 non-strange charmed P-wave mesons. In the latter part of this writeup I discuss the cbar s possibilities for the SELEX DsJ*(2632) and measurements that can shed light on it.

  1. Photoproduction of hidden-charm states in the reaction near threshold

    NASA Astrophysics Data System (ADS)

    Huang, Yin; Xie, Ju-Jun; He, Jun; Chen, Xurong; Zhang, Hong-Fei

    2016-12-01

    We report on a theoretical study of the hidden charm states in the reaction near threshold within an effective Lagrangian approach. In addition to the contributions from the s-channel nucleon pole, the t-channel D0 exchange, the u-channel exchange and the contact term, we study the contributions from the states with spin-parity JP = 1/2- and 3/2-. The total and differential cross sections of the reaction are predicted. It is found that the contributions of these states give clear peak structures in the total cross sections. Thus, this reaction is another new platform to study the hidden-charm states. It is expected that our model calculation may be tested by future experiments. Supported by Major State Basic Research Development Program in China (2014CB845400), National Natural Science Foundation of China (11475227, 11275235, 11035006) and Chinese Academy of Sciences (Knowledge Innovation Project (KJCX2-EW-N01), Youth Innovation Promotion Association CAS (2016367), Open Project Program of State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, China (Y5KF151CJ1)

  2. Proposed Standards for Variable Harmonization Documentation and Referencing: A Case Study Using QuickCharmStats 1.1.

    PubMed

    Winters, Kristi; Netscher, Sebastian

    2016-01-01

    Comparative statistical analyses often require data harmonization, yet the social sciences do not have clear operationalization frameworks that guide and homogenize variable coding decisions across disciplines. When faced with a need to harmonize variables researchers often look for guidance from various international studies that employ output harmonization, such as the Comparative Survey of Election Studies, which offer recoding structures for the same variable (e.g. marital status). More problematically there are no agreed documentation standards or journal requirements for reporting variable harmonization to facilitate a transparent replication process. We propose a conceptual and data-driven digital solution that creates harmonization documentation standards for publication and scholarly citation: QuickCharmStats 1.1. It is free and open-source software that allows for the organizing, documenting and publishing of data harmonization projects. QuickCharmStats starts at the conceptual level and its workflow ends with a variable recording syntax. It is therefore flexible enough to reflect a variety of theoretical justifications for variable harmonization. Using the socio-demographic variable 'marital status', we demonstrate how the CharmStats workflow collates metadata while being guided by the scientific standards of transparency and replication. It encourages researchers to publish their harmonization work by providing researchers who complete the peer review process a permanent identifier. Those who contribute original data harmonization work to their discipline can now be credited through citations. Finally, we propose peer-review standards for harmonization documentation, describe a route to online publishing, and provide a referencing format to cite harmonization projects. Although CharmStats products are designed for social scientists our adherence to the scientific method ensures our products can be used by researchers across the sciences.

  3. Proposed Standards for Variable Harmonization Documentation and Referencing: A Case Study Using QuickCharmStats 1.1

    PubMed Central

    Winters, Kristi; Netscher, Sebastian

    2016-01-01

    Comparative statistical analyses often require data harmonization, yet the social sciences do not have clear operationalization frameworks that guide and homogenize variable coding decisions across disciplines. When faced with a need to harmonize variables researchers often look for guidance from various international studies that employ output harmonization, such as the Comparative Survey of Election Studies, which offer recoding structures for the same variable (e.g. marital status). More problematically there are no agreed documentation standards or journal requirements for reporting variable harmonization to facilitate a transparent replication process. We propose a conceptual and data-driven digital solution that creates harmonization documentation standards for publication and scholarly citation: QuickCharmStats 1.1. It is free and open-source software that allows for the organizing, documenting and publishing of data harmonization projects. QuickCharmStats starts at the conceptual level and its workflow ends with a variable recording syntax. It is therefore flexible enough to reflect a variety of theoretical justifications for variable harmonization. Using the socio-demographic variable ‘marital status’, we demonstrate how the CharmStats workflow collates metadata while being guided by the scientific standards of transparency and replication. It encourages researchers to publish their harmonization work by providing researchers who complete the peer review process a permanent identifier. Those who contribute original data harmonization work to their discipline can now be credited through citations. Finally, we propose peer-review standards for harmonization documentation, describe a route to online publishing, and provide a referencing format to cite harmonization projects. Although CharmStats products are designed for social scientists our adherence to the scientific method ensures our products can be used by researchers across the sciences. PMID

  4. Enhancement of new physics signal sensitivity with mistagged charm quarks

    NASA Astrophysics Data System (ADS)

    Kim, Doojin; Park, Myeonghun

    2016-07-01

    We investigate the potential for enhancing search sensitivity for signals having charm quarks in the final state, using the sizable bottom-mistagging rate for charm quarks at the LHC. Provided that the relevant background processes contain light quarks instead of charm quarks, the application of b-tagging on charm quark-initiated jets enables us to reject more background events than signal ones due to the relatively small mistagging rate for light quarks. The basic idea is tested with two rare top decay processes: i) t → ch → cb b bar and ii) t → bH+ → b b bar c where h and H+ denote the Standard Model-like higgs boson and a charged higgs boson, respectively. The major background source is a hadronic top quark decay such as t → bW+ → b s bar c. We test our method with Monte Carlo simulation at the LHC 14 TeV, and find that the signal-over-background ratio can be increased by a factor of O (6- 7) with a suitably designed (heavy) flavor tagging algorithm and scheme.

  5. e+e- → charm cross sections via ISR

    NASA Astrophysics Data System (ADS)

    Pakhlova, Galina

    2010-06-01

    We discuss recent measurements of exclusive e+e- cross sections for charmed hadron final states near threshold performed by Belle and BABAR. The results are based on a study of events with initial-state-radiation photons in a large data sample collected with the Belle and BABAR detectors at the γ(4S) resonance and nearby continuum.

  6. Charm and beauty measurements at Fermilab fixed target

    SciTech Connect

    Mishra, C.S.

    1993-10-01

    Eighteen months after a successful run of the Fermilab fixed target program, interesting results from several experiments are available. This is the first time that more than one Fermilab fixed target experiment has reported the observation of beauty mesons. In this paper we review recent results from charm and beauty fixed target experiments at Fermilab.

  7. Inclusive /b decays to wrong sign charmed mesons

    NASA Astrophysics Data System (ADS)

    DELPHI Collaboration; Abdallah, J.; Abreu, P.; Adam, W.; Adzic, P.; Albrecht, T.; Alderweireld, T.; Alemany-Fernandez, R.; Allmendinger, T.; Allport, P. P.; Amaldi, U.; Amapane, N.; Amato, S.; Anashkin, E.; Andreazza, A.; Andringa, S.; Anjos, N.; Antilogus, P.; Apel, W.-D.; Arnoud, Y.; Ask, S.; Asman, B.; Augustin, J. E.; Augustinus, A.; Baillon, P.; Ballestrero, A.; Bambade, P.; Barbier, R.; Bardin, D.; Barker, G.; Baroncelli, A.; Battaglia, M.; Baubillier, M.; Becks, K.-H.; Begalli, M.; Behrmann, A.; Ben-Haim, E.; Benekos, N.; Benvenuti, A.; Berat, C.; Berggren, M.; Berntzon, L.; Bertrand, D.; Besancon, M.; Besson, N.; Bloch, D.; Blom, M.; Bluj, M.; Bonesini, M.; Boonekamp, M.; Booth, P. S. L.; Borisov, G.; Botner, O.; Bouquet, B.; Bowcock, T. J. V.; Boyko, I.; Bracko, M.; Brenner, R.; Brodet, E.; Bruckman, P.; Brunet, J. M.; Bugge, L.; Buschmann, P.; Calvi, M.; Camporesi, T.; Canale, V.; Carena, F.; Castro, N.; Cavallo, F.; Chapkin, M.; Charpentier, Ph.; Checchia, P.; Chierici, R.; Chliapnikov, P.; Chudoba, J.; Chung, S. U.; Cieslik, K.; Collins, P.; Contri, R.; Cosme, G.; Cossutti, F.; Costa, M. J.; Crawley, B.; Crennell, D.; Cuevas, J.; D'Hondt, J.; Dalmau, J.; da Silva, T.; da Silva, W.; della Ricca, G.; de Angelis, A.; de Boer, W.; de Clercq, C.; de Lotto, B.; de Maria, N.; de Min, A.; de Paula, L.; di Ciaccio, L.; di Simone, A.; Doroba, K.; Drees, J.; Dris, M.; Eigen, G.; Ekelof, T.; Ellert, M.; Elsing, M.; Espirito Santo, M. C.; Fanourakis, G.; Fassouliotis, D.; Feindt, M.; Fernandez, J.; Ferrer, A.; Ferro, F.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fulda-Quenzer, F.; Fuster, J.; Gandelman, M.; Garcia, C.; Gavillet, Ph.; Gazis, E.; Geralis, T.; Gokieli, R.; Golob, B.; Gomez-Ceballos, G.; Goncalves, P.; Graziani, E.; Grosdidier, G.; Grzelak, K.; Guy, J.; Haag, C.; Hallgren, A.; Hamacher, K.; Hamilton, K.; Hansen, J.; Haug, S.; Hauler, F.; Hedberg, V.; Hennecke, M.; Herr, H.; Hoffman, J.; Holmgren, S.-O.; Holt, P. J.; Houlden, M. A.; Hultqvist, K.; Jackson, J. N.; Jarlskog, G.; Jarry, P.; Jeans, D.; Johansson, E. K.; Johansson, P. D.; Jonsson, P.; Joram, C.; Jungermann, L.; Kapusta, F.; Katsanevas, S.; Katsoufis, E.; Kernel, G.; Kersevan, B. P.; Kiiskinen, A.; King, B. T.; Kjaer, N. J.; Kluit, P.; Kokkinias, P.; Kourkoumelis, C.; Kouznetsov, O.; Krumstein, Z.; Kucharczyk, M.; Lamsa, J.; Leder, G.; Ledroit, F.; Leinonen, L.; Leitner, R.; Lemonne, J.; Lepeltier, V.; Lesiak, T.; Liebig, W.; Liko, D.; Lipniacka, A.; Lopes, J. H.; Lopez, J. M.; Loukas, D.; Lutz, P.; Lyons, L.; MacNaughton, J.; Malek, A.; Maltezos, S.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J.-C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Masik, J.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Mazzucato, F.; Mazzucato, M.; Mc Nulty, R.; Meroni, C.; Meyer, W. T.; Migliore, E.; Mitaroff, W.; Mjoernmark, U.; Moa, T.; Moch, M.; Moenig, K.; Monge, R.; Montenegro, J.; Moraes, D.; Moreno, S.; Morettini, P.; Mueller, U.; Muenich, K.; Mulders, M.; Mundim, L.; Murray, W.; Muryn, B.; Myatt, G.; Myklebust, T.; Nassiakou, M.; Navarria, F.; Nawrocki, K.; Nicolaidou, R.; Nikolenko, M.; Oblakowska-Mucha, A.; Obraztsov, V.; Olshevski, A.; Onofre, A.; Orava, R.; Osterberg, K.; Ouraou, A.; Oyanguren, A.; Paganoni, M.; Paiano, S.; Palacios, J. P.; Palka, H.; Papadopoulou, Th. D.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passeri, A.; Passon, O.; Peralta, L.; Perepelitsa, V.; Perrotta, A.; Petrolini, A.; Piedra, J.; Pieri, L.; Pierre, F.; Pimenta, M.; Piotto, E.; Podobnik, T.; Poireau, V.; Pol, M. E.; Polok, G.; Poropat, P.; Pozdniakov, V.; Pukhaeva, N.; Pullia, A.; Rames, J.; Ramler, L.; Read, A.; Rebecchi, P.; Rehn, J.; Reid, D.; Reinhardt, R.; Renton, P.; Richard, F.; Ridky, J.; Rivero, M.; Rodriguez, D.; Romero, A.; Ronchese, P.; Rosenberg, E.; Roudeau, P.; Rovelli, T.; Ruhlmann-Kleider, V.; Ryabtchikov, D.; Sadovsky, A.; Salmi, L.; Salt, J.; Savoy-Navarro, A.; Schwickerath, U.; Schwanda, C.; Segar, A.; Sekulin, R.; Siebel, M.; Sisakian, A.; Smadja, G.; Smirnova, O.; Sokolov, A.; Sopczak, A.; Sosnowski, R.; Spassov, T.; Stanitzki, M.; Stocchi, A.; Strauss, J.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Szumlak, T.; Tabarelli, T.; Taffard, A. C.; Tegenfeldt, F.; Timmermans, J.; Tkatchev, L.; Tobin, M.; Todorovova, S.; Tomaradze, A.; Tome, B.; Tonazzo, A.; Tortosa, P.; Travnicek, P.; Treille, D.; Tristram, G.; Trochimczuk, M.; Troncon, C.; Turluer, M.-L.; Tyapkin, I. A.; Tyapkin, P.; Tzamarias, S.; Uvarov, V.; Valenti, G.; van Dam, P.; van Eldik, J.; van Lysebetten, A.; van Remortel, N.; van Vulpen, I.; Vegni, G.; Veloso, F.; Venus, W.; Verbeure, F.; Verdier, P.; Verzi, V.; Vilanova, D.; Vitale, L.; Vrba, V.; Wahlen, H.; Washbrook, A. J.; Weiser, C.; Wicke, D.; Wickens, J.; Wilkinson, G.; Winter, M.; Witek, M.; Yushchenko, O.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zimin, N. I.; Zintchenko, A.; Zupan, M.

    2003-05-01

    The production of wrong sign charmed mesons b-->D(s)X, D(s)=(D0,D+,Ds), is studied using the data collected by the DELPHI experiment in the years 1994 and 1995. Charmed mesons in /Z-->bb¯ events are exclusively reconstructed by searching for the decays D0-->K-π+, D+-->K-π+π+ and Ds+-->φπ+-->K+K-π+. The wrong sign contribution is extracted by using two discriminant variables: the charge of the /b-quark at decay time, estimated from the charges of identified particles, and the momentum of the charmed meson in the rest frame of the /b-hadron. The inclusive branching fractions of /b-hadrons into wrong sign charm mesons are measured to be: B(b-->D0X)+B(b-->D-X)=(9.3+/-1.7(stat)+/-1.3(syst)+/-0.4(B))%, B(b-->Ds-X)=(10.1+/-1.0(stat)+/-0.6(syst)+/-2.8(B))% where the first error is statistical, the second and third errors are systematic.

  8. Inclusive b decays to wrong sign charmed mesons

    NASA Astrophysics Data System (ADS)

    Abdallah, J.; Abreu, P.; Adam, W.; Adzic, P.; Albrecht, T.; Alderweireld, T.; Alemany-Fernandez, R.; Allmendinger, T.; Allport, P. P.; Amaldi, U.; Amapane, N.; Amato, S.; Anashkin, E.; Andreazza, A.; Andringa, S.; Anjos, N.; Antilogus, P.; Apel, W.-D.; Arnoud, Y.; Ask, S.; Asman, B.; Augustin, J. E.; Augustinus, A.; Baillon, P.; Ballestrero, A.; Bambade, P.; Barbier, R.; Bardin, D.; Barker, G.; Baroncelli, A.; Battaglia, M.; Baubillier, M.; Becks, K.-H.; Begalli, M.; Behrmann, A.; Ben-Haim, E.; Benekos, N.; Benvenuti, A.; Berat, C.; Berggren, M.; Berntzon, L.; Bertrand, D.; Besancon, M.; Besson, N.; Bloch, D.; Blom, M.; Bluj, M.; Bonesini, M.; Boonekamp, M.; Booth, P. S. L.; Borisov, G.; Botner, O.; Bouquet, B.; Bowcock, T. J. V.; Boyko, I.; Bracko, M.; Brenner, R.; Brodet, E.; Bruckman, P.; Brunet, J. M.; Bugge, L.; Buschmann, P.; Calvi, M.; Camporesi, T.; Canale, V.; Carena, F.; Castro, N.; Cavallo, F.; Chapkin, M.; Charpentier, Ph.; Checchia, P.; Chierici, R.; Chliapnikov, P.; Chudoba, J.; Chung, S. U.; Cieslik, K.; Collins, P.; Contri, R.; Cosme, G.; Cossutti, F.; Costa, M. J.; Crawley, B.; Crennell, D.; Cuevas, J.; D'Hondt, J.; Dalmau, J.; da Silva, T.; da Silva, W.; Della Ricca, G.; de Angelis, A.; de Boer, W.; de Clercq, C.; de Lotto, B.; de Maria, N.; de Min, A.; de Paula, L.; di Ciaccio, L.; di Simone, A.; Doroba, K.; Drees, J.; Dris, M.; Eigen, G.; Ekelof, T.; Ellert, M.; Elsing, M.; Espirito Santo, M. C.; Fanourakis, G.; Fassouliotis, D.; Feindt, M.; Fernandez, J.; Ferrer, A.; Ferro, F.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fulda-Quenzer, F.; Fuster, J.; Gandelman, M.; Garcia, C.; Gavillet, Ph.; Gazis, E.; Geralis, T.; Gokieli, R.; Golob, B.; Gomez-Ceballos, G.; Goncalves, P.; Graziani, E.; Grosdidier, G.; Grzelak, K.; Guy, J.; Haag, C.; Hallgren, A.; Hamacher, K.; Hamilton, K.; Hansen, J.; Haug, S.; Hauler, F.; Hedberg, V.; Hennecke, M.; Herr, H.; Hoffman, J.; Holmgren, S.-O.; Holt, P. J.; Houlden, M. A.; Hultqvist, K.; Jackson, J. N.; Jarlskog, G.; Jarry, P.; Jeans, D.; Johansson, E. K.; Johansson, P. D.; Jonsson, P.; Joram, C.; Jungermann, L.; Kapusta, F.; Katsanevas, S.; Katsoufis, E.; Kernel, G.; Kersevan, B. P.; Kiiskinen, A.; King, B. T.; Kjaer, N. J.; Kluit, P.; Kokkinias, P.; Kourkoumelis, C.; Kouznetsov, O.; Krumstein, Z.; Kucharczyk, M.; Lamsa, J.; Leder, G.; Ledroit, F.; Leinonen, L.; Leitner, R.; Lemonne, J.; Lepeltier, V.; Lesiak, T.; Liebig, W.; Liko, D.; Lipniacka, A.; Lopes, J. H.; Lopez, J. M.; Loukas, D.; Lutz, P.; Lyons, L.; MacNaughton, J.; Malek, A.; Maltezos, S.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J.-C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Masik, J.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Mazzucato, F.; Mazzucato, M.; Mc Nulty, R.; Meroni, C.; Meyer, W. T.; Migliore, E.; Mitaroff, W.; Mjoernmark, U.; Moa, T.; Moch, M.; Moenig, K.; Monge, R.; Montenegro, J.; Moraes, D.; Moreno, S.; Morettini, P.; Mueller, U.; Muenich, K.; Mulders, M.; Mundim, L.; Murray, W.; Muryn, B.; Myatt, G.; Myklebust, T.; Nassiakou, M.; Navarria, F.; Nawrocki, K.; Nicolaidou, R.; Nikolenko, M.; Oblakowska-Mucha, A.; Obraztsov, V.; Olshevski, A.; Onofre, A.; Orava, R.; Osterberg, K.; Ouraou, A.; Oyanguren, A.; Paganoni, M.; Paiano, S.; Palacios, J. P.; Palka, H.; Papadopoulou, Th. D.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passeri, A.; Passon, O.; Peralta, L.; Perepelitsa, V.; Perrotta, A.; Petrolini, A.; Piedra, J.; Pieri, L.; Pierre, F.; Pimenta, M.; Piotto, E.; Podobnik, T.; Poireau, V.; Pol, M. E.; Polok, G.; Poropat, P.; Pozdniakov, V.; Pukhaeva, N.; Pullia, A.; Rames, J.; Ramler, L.; Read, A.; Rebecchi, P.; Rehn, J.; Reid, D.; Reinhardt, R.; Renton, P.; Richard, F.; Ridky, J.; Rivero, M.; Rodriguez, D.; Romero, A.; Ronchese, P.; Rosenberg, E.; Roudeau, P.; Rovelli, T.; Ruhlmann-Kleider, V.; Ryabtchikov, D.; Sadovsky, A.; Salmi, L.; Salt, J.; Savoy-Navarro, A.; Schwickerath, U.; Schwanda, C.; Segar, A.; Sekulin, R.; Siebel, M.; Sisakian, A.; Smadja, G.; Smirnova, O.; Sokolov, A.; Sopczak, A.; Sosnowski, R.; Spassov, T.; Stanitzki, M.; Stocchi, A.; Strauss, J.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Szumlak, T.; Tabarelli, T.; Taffard, A. C.; Tegenfeldt, F.; Timmermans, J.; Tkatchev, L.; Tobin, M.; Todorovova, S.; Tomaradze, A.; Tome, B.; Tonazzo, A.; Tortosa, P.; Travnicek, P.; Treille, D.; Tristram, G.; Trochimczuk, M.; Troncon, C.; Turluer, M.-L.; Tyapkin, I. A.; Tyapkin, P.; Tzamarias, S.; Uvarov, V.; Valenti, G.; van Dam, P.; van Eldik, J.; van Lysebetten, A.; van Remortel, N.; van Vulpen, I.; Vegni, G.; Veloso, F.; Venus, W.; Verbeure, F.; Verdier, P.; Verzi, V.; Vilanova, D.; Vitale, L.; Vrba, V.; Wahlen, H.; Washbrook, A. J.; Weiser, C.; Wicke, D.; Wickens, J.; Wilkinson, G.; Winter, M.; Witek, M.; Yushchenko, O.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zimin, N. I.; Zintchenko, A.; Zupan, M.; Delphi Collaboration

    2003-05-01

    The production of wrong sign charmed mesons b→overlineD(s)X, D(s)=(D0,D+,Ds), is studied using the data collected by the DELPHI experiment in the years 1994 and 1995. Charmed mesons in Z→bb¯ events are exclusively reconstructed by searching for the decays D0→K-π+, D+→K-π+π+ and Ds+→φπ+→K+K-π+. The wrong sign contribution is extracted by using two discriminant variables: the charge of the b-quark at decay time, estimated from the charges of identified particles, and the momentum of the charmed meson in the rest frame of the b-hadron. The inclusive branching fractions of b-hadrons into wrong sign charm mesons are measured to be: B(b→overlineD0X)+B(b→D-X)=(9.3±1.7(stat)±1.3(syst)±0.4(B))%, B(b→Ds-X)=(10.1±1.0(stat)±0.6(syst)±2.8(B))% where the first error is statistical, the second and third errors are systematic.

  9. Overview of LHCb results on beauty and charm spectroscopy

    NASA Astrophysics Data System (ADS)

    Palano, Antimo

    2016-11-01

    We present a summary of new experimental results from LHCb experiment on the status of the charm spectroscopy using inclusive approaches and Dalitz plot analyses of B and Bs decays. We also summarize latest results on the spectroscopy of heavy baryons.

  10. Medical Treatment and Medicinal Charms Mentioned in the Atharvanic Literature

    PubMed Central

    Bhide, V.V.

    1981-01-01

    The ancient Vedic texts Provides us with valuable information and guide lines on various multi-faced aspects of human life. The present discussion is limited to the medical treatment and medicinal charms mentioned in the Atharvanic literature with specific consideration to Kausikasutra for better understanding of the rites and actions mentioned in Atharvanaveda. PMID:22556455

  11. Search for a strongly decaying neutral charmed pentaquark

    SciTech Connect

    Link, J.M.; Yager, P.M.; Anjos, J.C.; Bediaga, I.; Castromonte, C.; Machado, A.A.; Magnin, J.; Massafferri, A.; de Miranda, J.M.; Pepe, I.M.; Polycarpo, E.; dos Reis, A.C.; Carrillo, S.; Casimiro, E.; Cuautle, E.; Sanchez-Hernandez, A.; Uribe, C.; Vazquez, F.; Agostino, L.; Cinquini, L.; Cumalat, J.P.; /Colorado U. /Fermilab /Frascati /Guanajuato U. /Illinois U., Urbana /Indiana U. /Korea U. /Kyungpook Natl. U. /INFN, Milan /Milan U. /North Carolina U. /Pavia U. /INFN, Pavia /Rio de Janeiro, Pont. U. Catol. /Puerto Rico U., Mayaguez /South Carolina U. /Tennessee U. /Vanderbilt U. /Wisconsin U., Madison

    2005-06-01

    We present a search for a charmed pentaquark decaying strongly to D{sup (*)}-p. Finding no evidence for such a state, we set limits on the cross section times branching ratio relative to D*{sup -} and D{sup -} under particular assumptions about the production mechanism.

  12. Charm and Charmonium Spectroscopy in BaBar

    SciTech Connect

    Negrini, M.; /Ferrara U.

    2008-02-06

    The BABAR experiment at the PEP-II B-factory offers excellent opportunities in charm and charmonium spectroscopy. The recent observation of new states in the D{sub s} and in the charmonium mass regions revived the interest in this field. Recent BABAR results are presented.

  13. Single electron yields from semileptonic charm and bottom hadron decays in Au+Au collisions at sNN=200 GeV

    DOE PAGES

    Adare, A.; Aidala, C.; Ajitanand, N. N.; ...

    2016-03-07

    We measured open heavy flavor production in minimum bias Au + Au collisions at √s(NN) = 200 GeV via the yields of electrons from semileptonic decays of charm and bottom hadrons, using the PHENIX Collaboration at the Relativistic Heavy Ion Collider. In the past, heavy flavor electron measurements indicated substantial modification in the momentum distribution of the parent heavy quarks owing to the quark-gluon plasma created in these collisions. For the first time, using the PHENIX silicon vertex detector to measure precision displaced tracking, the relative contributions from charm and bottom hadrons to these electrons as a function of transversemore » momentum are measured in Au + Au collisions. Here, we compare the fraction of electrons from bottom hadrons to previously published results extracted from electron-hadron correlations in p + p collisions at √s(NN) = 200 GeV and find the fractions to be similar within the large uncertainties on both measurements for p(T) > 4 GeV/c. We use the bottom electron fractions in Au + Au and p + p along with the previously measured heavy flavor electron R(AA) to calculate the R(AA) for electrons from charm and bottom hadron decays separately. Finally, we find that electrons from bottom hadron decays are less suppressed than those from charm for the region 3 < p(T) < 4 GeV/c.« less

  14. Single electron yields from semileptonic charm and bottom hadron decays in Au +Au collisions at √{sN N}=200 GeV

    NASA Astrophysics Data System (ADS)

    Adare, A.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Alexander, J.; Alfred, M.; Aoki, K.; Apadula, N.; Aramaki, Y.; Asano, H.; Aschenauer, E. C.; Atomssa, E. T.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Bandara, N. S.; Bannier, B.; Barish, K. N.; Bassalleck, B.; Bathe, S.; Baublis, V.; Baumgart, S.; Bazilevsky, A.; Beaumier, M.; Beckman, S.; Belmont, R.; Berdnikov, A.; Berdnikov, Y.; Black, D.; Blau, D. S.; Bok, J. S.; Boyle, K.; Brooks, M. L.; Bryslawskyj, J.; Buesching, H.; Bumazhnov, V.; Butsyk, S.; Campbell, S.; Chen, C.-H.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choi, S.; Choudhury, R. K.; Christiansen, P.; Chujo, T.; Chvala, O.; Cianciolo, V.; Citron, Z.; Cole, B. A.; Connors, M.; Cronin, N.; Crossette, N.; Csanád, M.; Csörgő, T.; Dairaku, S.; Danley, T. W.; Datta, A.; Daugherity, M. S.; David, G.; Deblasio, K.; Dehmelt, K.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Dietzsch, O.; Ding, L.; Dion, A.; Diss, P. B.; Do, J. H.; Donadelli, M.; D'Orazio, L.; Drapier, O.; Drees, A.; Drees, K. A.; Durham, J. M.; Durum, A.; Edwards, S.; Efremenko, Y. V.; Engelmore, T.; Enokizono, A.; Esumi, S.; Eyser, K. O.; Fadem, B.; Feege, N.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fukao, Y.; Fusayasu, T.; Gainey, K.; Gal, C.; Gallus, P.; Garg, P.; Garishvili, A.; Garishvili, I.; Ge, H.; Giordano, F.; Glenn, A.; Gong, X.; Gonin, M.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Gu, Y.; Gunji, T.; Hachiya, T.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamilton, H. F.; Han, S. Y.; Hanks, J.; Hasegawa, S.; Haseler, T. O. S.; Hashimoto, K.; Hayano, R.; Hayashi, S.; He, X.; Hemmick, T. K.; Hester, T.; Hill, J. C.; Hollis, R. S.; Homma, K.; Hong, B.; Horaguchi, T.; Hoshino, T.; Hotvedt, N.; Huang, J.; Huang, S.; Ichihara, T.; Iinuma, H.; Ikeda, Y.; Imai, K.; Imazu, Y.; Imrek, J.; Inaba, M.; Iordanova, A.; Isenhower, D.; Isinhue, A.; Ivanishchev, D.; Jacak, B. V.; Javani, M.; Jezghani, M.; Jia, J.; Jiang, X.; Johnson, B. M.; Joo, K. S.; Jouan, D.; Jumper, D. S.; Kamin, J.; Kanda, S.; Kang, B. H.; Kang, J. H.; Kang, J. S.; Kapustinsky, J.; Karatsu, K.; Kawall, D.; Kazantsev, A. V.; Kempel, T.; Key, J. A.; Khachatryan, V.; Khandai, P. K.; Khanzadeev, A.; Kijima, K. M.; Kim, B. I.; Kim, C.; Kim, D. J.; Kim, E.-J.; Kim, G. W.; Kim, M.; Kim, Y.-J.; Kim, Y. K.; Kimelman, B.; Kinney, E.; Kistenev, E.; Kitamura, R.; Klatsky, J.; Kleinjan, D.; Kline, P.; Koblesky, T.; Komkov, B.; Koster, J.; Kotchetkov, D.; Kotov, D.; Krizek, F.; Kurita, K.; Kurosawa, M.; Kwon, Y.; Kyle, G. S.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Lebedev, A.; Lee, D. M.; Lee, J.; Lee, K. B.; Lee, K. S.; Lee, S.; Lee, S. H.; Lee, S. R.; Leitch, M. J.; Leite, M. A. L.; Leitgab, M.; Lewis, B.; Li, X.; Lim, S. H.; Linden Levy, L. A.; Liu, M. X.; Lynch, D.; Maguire, C. F.; Makdisi, Y. I.; Makek, M.; Manion, A.; Manko, V. I.; Mannel, E.; Maruyama, T.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Meles, A.; Mendoza, M.; Meredith, B.; Miake, Y.; Mibe, T.; Midori, J.; Mignerey, A. C.; Milov, A.; Mishra, D. K.; Mitchell, J. T.; Miyasaka, S.; Mizuno, S.; Mohanty, A. K.; Mohapatra, S.; Montuenga, P.; Moon, H. J.; Moon, T.; Morrison, D. P.; Moskowitz, M.; Moukhanova, T. V.; Murakami, T.; Murata, J.; Mwai, A.; Nagae, T.; Nagamiya, S.; Nagashima, K.; Nagle, J. L.; Nagy, M. I.; Nakagawa, I.; Nakagomi, H.; Nakamiya, Y.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Nattrass, C.; Netrakanti, P. K.; Nihashi, M.; Niida, T.; Nishimura, S.; Nouicer, R.; Novák, T.; Novitzky, N.; Nukariya, A.; Nyanin, A. S.; Obayashi, H.; O'Brien, E.; Ogilvie, C. A.; Okada, K.; Orjuela Koop, J. D.; Osborn, J. D.; Oskarsson, A.; Ozawa, K.; Pak, R.; Pantuev, V.; Papavassiliou, V.; Park, I. H.; Park, J. S.; Park, S.; Park, S. K.; Pate, S. F.; Patel, L.; Patel, M.; Pei, H.; Peng, J.-C.; Perepelitsa, D. V.; Perera, G. D. N.; Peressounko, D. Yu.; Perry, J.; Petti, R.; Pinkenburg, C.; Pinson, R.; Pisani, R. P.; Purschke, M. L.; Qu, H.; Rak, J.; Ramson, B. J.; Ravinovich, I.; Read, K. F.; Reynolds, D.; Riabov, V.; Riabov, Y.; Richardson, E.; Rinn, T.; Riveli, N.; Roach, D.; Roche, G.; Rolnick, S. D.; Rosati, M.; Rowan, Z.; Rubin, J. G.; Ryu, M. S.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sako, H.; Samsonov, V.; Sarsour, M.; Sato, S.; Sawada, S.; Schaefer, B.; Schmoll, B. K.; Sedgwick, K.; Seidl, R.; Sen, A.; Seto, R.; Sett, P.; Sexton, A.; Sharma, D.; Shein, I.; Shibata, T.-A.; Shigaki, K.; Shimomura, M.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Sim, K. S.; Singh, B. K.; Singh, C. P.; Singh, V.; Skolnik, M.; Slunečka, M.; Snowball, M.; Solano, S.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Stankus, P. W.; Steinberg, P.; Stenlund, E.

    2016-03-01

    The PHENIX Collaboration at the Relativistic Heavy Ion Collider has measured open heavy flavor production in minimum bias Au +Au collisions at √{sN N}=200 GeV via the yields of electrons from semileptonic decays of charm and bottom hadrons. Previous heavy flavor electron measurements indicated substantial modification in the momentum distribution of the parent heavy quarks owing to the quark-gluon plasma created in these collisions. For the first time, using the PHENIX silicon vertex detector to measure precision displaced tracking, the relative contributions from charm and bottom hadrons to these electrons as a function of transverse momentum are measured in Au +Au collisions. We compare the fraction of electrons from bottom hadrons to previously published results extracted from electron-hadron correlations in p +p collisions at √{sN N}=200 GeV and find the fractions to be similar within the large uncertainties on both measurements for pT>4 GeV/c . We use the bottom electron fractions in Au +Au and p +p along with the previously measured heavy flavor electron RA A to calculate the RA A for electrons from charm and bottom hadron decays separately. We find that electrons from bottom hadron decays are less suppressed than those from charm for the region 3

  15. Control Spin with Candor and Charm.

    ERIC Educational Resources Information Center

    Rist, Marilee C.

    1991-01-01

    On a systemwide level, spin control means defining the issues and formulating an agenda for addressing them. On a personal level, school executives should develop a communications style that stresses honesty, updated information for everyone, wise choice of issues, appropriate responses to criticism, openness to expert advice, willingness to share…

  16. Charmed meson lifetimes from 20 GeV photoproduction

    SciTech Connect

    Brau, J.E.

    1985-01-01

    A sample of 134 events containing 159 visible multiprong charm decays has been obtained from the 20 GeV charm photoproduction experiment at the SLAC Hybrid Facility. Following a selection procedure which ensures high and uniform detection efficiency for selected events, 47 charged, 46 neutral and five topologically ambiguous decays remain. These decays yield preliminary lifetimes of ..pi../sub D/sup +-// = (9.2 +- 1.5 +- 0.5) x 10/sup -13/ secs ..pi../sub D//sup 0/ approx. = (6.1 +- 1.1 +- 0.4) x 10/sup -13/ secs and a ratio (phi/sub D/sup +-//)/(tau/sub D/sup 0//) = 1.5/sub -0.3//sup +0.6/ +- 0.1. One fully reconstructed four-body D/sup 0/ decay has a proper flight time of 55 x 10/sup -13/ seconds. 5 refs., 4 figs.

  17. Search for charmed hadrons in the OPERA experiment

    NASA Astrophysics Data System (ADS)

    Pastore, A.

    2015-05-01

    The OPERA experiment was designed to study muon neutrino to tau neutrino oscillations in appearance mode, using the CERN to Gran Sasso (CNGS) high energy neutrino beam 730 km far from the source. From 2008 to 2012, CNGS neutrinos interactions were recorded in the OPERA detector, which includes target units made of lead plates alternated with emulsion films and electronic tracker planes. The on-going analysis is aimed at the detection of short-lived particle decays occurring over distances of the order of 1 mm from the neutrino interaction point. It has allowed identifying charmed hadrons together with the tau lepton decay candidates that have established vμ → vτ oscillations with a significance of 4.2 σ. The procedure applied in OPERA to detect short-lived particle decays and its application to the search for charmed hadrons will be discussed here in detail.

  18. On charm decays: Present status and future goals

    SciTech Connect

    Bigi, I.I.

    1987-06-01

    After a qualitative introduction into the dynamics underlying charm decays the author describes in some detail three different theoretical treatments: the Stech et al. description based on factorization, the 1/N approach and an ansatz employing QCD sum rules. The overall agreement of the emerging theoretical picture with the data is rather encouraging and indicates that the effects of hadronization on these decays are under reasonable control. Yet more and more detailed data are needed to confirm (hopefully) this simple picture. The author lists the processes most relevant in this respect and emphasizes the need for increasing our theoretical sophistication. Once this is achieved we have on one hand acquired the theoretical tools to deal with B physics; on the other hand we will then be ready to exploit charm physics to the fullest in searching for exotic D decays, D/sup 0/ - anti D/sup 0/ mixing and CP violation.

  19. CHARMS: The Cryogenic, High-Accuracy Refraction Measuring System

    NASA Technical Reports Server (NTRS)

    Frey, Bradley; Leviton, Douglas

    2004-01-01

    The success of numerous upcoming NASA infrared (IR) missions will rely critically on accurate knowledge of the IR refractive indices of their constituent optical components at design operating temperatures. To satisfy the demand for such data, we have built a Cryogenic, High-Accuracy Refraction Measuring System (CHARMS), which, for typical 1R materials. can measure the index of refraction accurate to (+ or -) 5 x 10sup -3 . This versatile, one-of-a-kind facility can also measure refractive index over a wide range of wavelengths, from 0.105 um in the far-ultraviolet to 6 um in the IR, and over a wide range of temperatures, from 10 K to 100 degrees C, all with comparable accuracies. We first summarize the technical challenges we faced and engineering solutions we developed during the construction of CHARMS. Next we present our "first light," index of refraction data for fused silica and compare our data to previously published results.

  20. Prediction of narrow N* and {Lambda}* with hidden charm

    SciTech Connect

    Wu Jiajun; Molina, R.; Oset, E.; Zou, B. S.

    2011-10-24

    The interaction between various charmed mesons and charmed baryons, such as D-bar{Sigma}{sub c}-D-bar{Lambda}{sub c}, D-bar*{Sigma}{sub c}-D-bar*{Lambda}{sub c}, and related strangeness channels, are studied within the framework of the coupled channel unitary approach with the local hidden gauge formalism. Six narrow N* and {Lambda}* resonances are dynamically generated with mass above 4 GeV and width smaller than 100 MeV. These predicted new resonances definitely cannot be accommodated by quark models with three constituent quarks. We make estimates of production cross sections of these predicted resonances in p-barp collisions for PANDA at the forthcoming FAIR facility.

  1. Anomalies in cosmic rays: New particles versus charm?

    NASA Technical Reports Server (NTRS)

    Balayan, G. L.; Khodjamirian, A. Y.; Oganessian, A. G.

    1985-01-01

    For a long time two anomalies are observed in cosmic rays at energies E approx. = 100 TeV: (1) the generation of long-flying cascades in the hadron calorimeter (the so-called Tien-Shan effect) and; (2) the enhancement of direct muon yield as compared with the accelerator energy region. The aim is to discuss the possibility that both anomalies have common origins arising from production and decays of the same particles. the main conclusions are the following: (1) direct muons cannot be generated by any new particles with mass exceeding 10+20 GeV; and (2) if both effects are originated from the charmed hadrons, then the needed charm hadroproduction cross section is unexpectedly large as compared with the quark-gluon model predictions.

  2. Semileptonic B and Bs decays into orbitally excited charmed mesons

    NASA Astrophysics Data System (ADS)

    Segovia, J.; Albertus, C.; Entem, D. R.; Fernández, F.; Hernández, E.; Pérez-García, M. A.

    2011-11-01

    The BABAR Collaboration has recently reported products of branching fractions that include B meson semileptonic decays into final states with charged and neutral D1(2420) and D2*(2460), two narrow orbitally excited charmed mesons. We evaluate these branching fractions, together with those concerning D0*(2400) and D1'(2430) mesons, within the framework of a constituent quark model. The calculation is performed in two steps, one of which involves a semileptonic decay and the other is mediated by a strong process. Our results are in agreement with the experimental data. We also extend the study to semileptonic decays of Bs into orbitally excited charmed-strange mesons, providing predictions to the possible measurements to be carried out at LHC.

  3. Charm spectroscopy at the P¯ANDA experiment

    NASA Astrophysics Data System (ADS)

    Würschig, Thomas; Panda Collaboration

    2012-09-01

    Based on a short review of the current experimental status, future perspectives for the spectroscopy of charmed hadrons at P¯ANDA will be discussed. The main emphasis is on the sector of D mesons and charmonium systems. In contrast to other experiments, P¯ANDA will render possible high-precision spectroscopy for bound states of any quantum number. The expected detector performance is highlighted by simulation results of selected physics benchmark channels.

  4. On charm and beauty decays: A theorist's perspective

    SciTech Connect

    Bigi, I.I.

    1987-10-01

    The present understanding of charm and bottom decays is reviewed. Special emphasis is placed on discussing the theoretical uncertainties in view of the particularly rich harvest of new data from the last year. A semi-quantitative description of D decays has emerged enabling us to address rather detailed and relatively subtle questions there, like on once and twice Cabibbo suppressed decays. Beauty physics having left its infancy is now in its adolescence; its future development towards maturity is analyzed.

  5. Charm dimuon production in neutrino-nucleon interactions in the NOMAD experiment

    NASA Astrophysics Data System (ADS)

    Petti, Roberto; Samoylov, Oleg

    2012-09-01

    We present our new measurement of charm dimuon production in neutrino-iron interactions based upon the full statistics collected by the NOMAD experiment. After background subtraction we observe 15,340 charm dimuon events, providing the largest sample currently available. The analysis exploits the large inclusive charged current sample (about 9 million events after all analysis cuts) to constrain the total systematic uncertainty to about 2%. The extraction of strange sea and charm production parameters is also discussed.

  6. Charm dimuon production in neutrino-nucleon interactions in the NOMAD experiment

    NASA Astrophysics Data System (ADS)

    Petti, R.; Samoylov, O. B.

    2011-12-01

    We present our new measurement of charm dimuon production in neutrino-iron interactions based upon the full statistics collected by the NOMAD experiment. After background subtraction we observe 15,340 charm dimuon events, providing the largest sample currently available. The analysis exploits the large inclusive charged current sample (about 9 million events after all analysis cuts) to constrain the total systematic uncertainty to ˜2%. The extraction of strange sea and charm production parameters is also discussed.

  7. Thermal production of charm quarks in heavy ion collisions at the Future Circular Collider

    NASA Astrophysics Data System (ADS)

    Liu, Yunpeng; Ko, Che Ming

    2016-12-01

    By solving the rate equation in an expanding quark-gluon plasma (QGP), we study thermal production of charm quarks in central Pb + Pb collisions at the Future Circular Collider. With the charm quark production cross section taken from the perturbative QCD at the next-to-leading order, we find that charm quark production from the QGP can be appreciable compared to that due to initial hard scattering between colliding nucleons.

  8. Hadronic decays of beauty and charm from CLEO

    NASA Astrophysics Data System (ADS)

    Rodriguez, Jorge L.

    1999-02-01

    A selection of recent results on hadronic charm and beauty decays from the CLEO experiment are presented. We report preliminary evidence for the existence of final state interactions in B decays and the first observation of the decay B0→D*+D*- with a branching fraction of (7.8-3.8+5.4±1.5)×10-4. We also present preliminary results on the first observation of the broad, JP=1+, charmed meson resonance with a mass of mD1(j=1/2)0=2.461-0.34+0.41±0.010±0.032 GeV and a width of Γ=290-79+101±26±36 MeV and branching fraction measurements of the B-→DJ0π-1 decay. Finally, we report on our search for the radial excitation of a spin 1 charmed meson, the D*'1, and on an improved measurement of the ratio of decay rates Γ(D0→K+π-)/Γ(D0→K-π+).

  9. Recent Charm Production and Neutrino Oscillation Results From the CHORUS Experiment

    SciTech Connect

    Kayis-Topaksu, A.

    2006-07-11

    CHORUS Experiment was taking data during the years of 1994-1997. In total about 100 000 charged-current(CC) neutrino interactions were located in the nuclear emulsion target and fully reconstructed. In addition to the oscillation search, measurements of charm production have been also performed. From the sample of 100 000 events based on the data acquired by new automatic scanning system, 2013 charm-decay events were selected by a pattern recognition program. A comprehensive study of charm production by neutrinos being made. We report here some of the recent results on charm production and neutrino oscillation results.

  10. B, Lambda{sub b} and charm results from the Tevatron

    SciTech Connect

    F. Azfar

    2003-09-18

    Recent results on B{sub d}, B{sub u}{sup {+-}}, B{sub s}, {Lambda}{sub b} and Charm hadrons are reported from {approx} 75 pb{sup -1} and {approx} 40 pb{sup -1} of data accumulated at the upgraded CDF and D0 experiments at the Fermilab Tevatron {bar p}-p collider, during Run-II. These include lifetime and mass measurements of B and Charm hadrons, searches for rare decays in charm and B hadrons and CP-violation in Charm decays. Results relevant to CP-violation in B-decays are also reported.

  11. The QCD equation of state with charm quarks from lattice QCD

    NASA Astrophysics Data System (ADS)

    Cheng, Michael

    Recently, there have been several calculations of the QCD equation of state (EoS) on the lattice. These calculations take into account the two light quarks and the strange quark, but have ignored the effects of the charm quark, assuming that the charm mass (mc ≈ 1300 MeV) is exponentially suppressed at the temperatures which are explored. However, future heavy ion collisions, such as those planned at the LHC, may well probe temperature regimes where the charm quarks play an important role in the dynamics of the QGP. We present a calculation of the charm quark contribution to the QCD EoS using p4-improved staggered fermions at Nt = 4, 6, 8. This calculation is done with a quenched charm quark, i.e. the relevant operators are measured using a valence charm quark mass on a 2+1 flavor gauge field background. The charm quark masses are determined by calculating charmonium masses (metac and mJ/Psi) and fixing these mesons to their physical masses. The interaction measure, pressure, energy density, and entropy density are calculated. We find that the charm contribution makes a significant contribution, even down to temperatures as low as the pseudo-critical temperature, Tc. However, there are significant scaling corrections at the lattice spacings that we use, preventing a reliable continuum extrapolation.

  12. Adapting Eclat algorithm to parallel environments with Charm++ library

    NASA Astrophysics Data System (ADS)

    Puścian, Marek; Grabski, Waldemar

    2016-09-01

    In this paper we describe Eclat algorithm that is adapted to deal with growing data repositories. The presented solution utilizes Master-Slave scheme to distribute data mining tasks among available computation nodes. Several improvements have been proposed and successfully implemented using Charm++ library. This paper introduces optimization techniques to reduce communication cost and synchronization overhead. It also discusses results of the performance of parallel Eclat algorithm against different databases and compares it with parallel Apriori algorithm. The proposed approach has been illustrated with many experiments and measurements performed using multiprocessor and multithreaded computer platform.

  13. Spectroscopy of triply charmed baryons from lattice QCD

    DOE PAGES

    Padmanath, M.; Edwards, Robert G.; Mathur, Nilmani; ...

    2014-10-14

    The spectrum of excitations of triply-charmed baryons is computed using lattice QCD including dynamical light quark fields. The spectrum obtained has baryonic states with well-defined total spin up to 7/2 and the low-lying states closely resemble the expectation from models with an SU(6) x O(3) symmetry. As a result, energy splittings between extracted states, including those due to spin-orbit coupling in the heavy quark limit are computed and compared against data at other quark masses.

  14. Muoproduction of J/psi(3100)

    SciTech Connect

    Markiewicz, T.W.

    1981-10-01

    Interactions of 209-GeV muons within an instrumented magnetized-steel calorimeter have produced 4374 +- 87 ..mu../sup +/..mu../sup -/ pairs from J/psi decay, corresponding to the cross section sigma(..mu..N ..-->.. ..mu.. psi X) = 0.64 +- 0.10 nb. These interactions are classified as either elastic (sigma = 0.36 +- 0.07 nb) or inelastic (sigma = 0.28 +- 0.06 nb) based primarily on the calorimetric determination of E/sub X/. The cross section for elastic psi production by virtual photons, sigma/sub eff/(..gamma../sub V/N), rises with energy nu as log nu. Its dependence on Q/sup 2/ fits the vector-meson dominance form P(..lambda..) = (1 + Q/sup 2//..lambda../sup 2/)/sup -2/, with ..lambda.. = (2.0 - 2.4) +- 0.15 GeV, where the spread in values arises from considering the possibility of a Q/sup 2/ dependence in the decay angular distribution W (theta,phi) and in the nuclear shadowing factor. We find that W(theta,phi) is consistent with the form expected if the reaction ..gamma../sub V/N ..-->.. psiN conserves helicity in the s channel through natural-parity exchange in the t channel. After correction for nuclear effects, d sigma/sub eff//dt is described by the sum of two exponential terms in t, with average t slope b = 2.56 (+0.35 or - 0.32). The photon-gluon fusion (..gamma..g ..-->.. psi) perturbative quantum chromodynamic model for psi production provides an excellent description of the nu dependence of sigma/sub eff/, but cannot simultaneously explain the observed cross section and value of ..lambda... The differential cross section d/sup 2/sigma/sub eff//dzdp/sub perpindicular//sup 2/ for inelastically produced psi's rises approximately linearly with elasticity z identical with E/sub psi//nu. The p/sub perpendicular//sup 2/ dependence is flatter than that of d sigma/dt for elastic events, with average p/sub perpendicular//sup 2/ slope b = 1.46 +- 0.10. The Q/sup 2/ dependence of sigma/sub eff/ is that of P(..lambda..) with ..lambda.. = 3.0 +- 0.2 GeV, and the nu dependence is similar to that observed for elastic production. 101 references, 33 figures, 20 tables.

  15. Structure of charmed baryons studied by pionic decays

    NASA Astrophysics Data System (ADS)

    Nagahiro, Hideko; Yasui, Shigehiro; Hosaka, Atsushi; Oka, Makoto; Noumi, Hiroyuki

    2017-01-01

    We investigate the decays of the charmed baryons aiming at the systematic understanding of hadron internal structures based on the quark model by paying attention to heavy quark symmetry. We evaluate the decay widths from the one-pion emission for the known excited states, Λc*(2595 ), Λc*(2625 ), Λc*(2765 ), Λc*(2880 ), and Λc*(2940 ), as well as for the ground states Σc(2455 ) and Σc*(2520 ). The decay properties of the lower excited charmed baryons are well explained, and several important predictions for higher excited baryons are given. We find that the axial-vector-type coupling of the pion to the light quarks is essential, which is expected from chiral symmetry, to reproduce the decay widths especially of the low-lying Λc* baryons. We emphasize the importance of the branching ratios of Γ (Σc*π )/Γ (Σcπ ) for the study of the nature of higher excited Λc* baryons.

  16. D -wave charmed and bottomed baryons from QCD sum rules

    NASA Astrophysics Data System (ADS)

    Chen, Hua-Xing; Mao, Qiang; Hosaka, Atsushi; Liu, Xiang; Zhu, Shi-Lin

    2016-12-01

    We study the D -wave charmed baryons of S U (3 ) flavor 3¯ F using the method of QCD sum rules in the framework of heavy quark effective theory. We find that the Λc(2880 ), Ξc(3055 ), and Ξc(3080 ) can be well described by the D -wave S U (3 ) 3¯F charmed baryon multiplets of JP=3 /2+ and 5 /2+, which contain two λ -mode orbital excitations; i.e., the Λc(2880 ) has JP=5 /2+, and the Ξc(3055 ) and Ξc(3080 ) have JP=3 /2+ and 5 /2+, respectively. Our results also suggest that the Λc(2880 ) has a partner state, the Λc(3 /2+) of JP=3 /2+. Its mass is around 2.8 1-0.18+0.33 GeV , and the mass difference between it and the Λc(2880 ) is 2 8-24+45 MeV . We also evaluate the masses of their bottom partners.

  17. Spectroscopy of doubly charmed baryons from lattice QCD

    SciTech Connect

    Padmanath, M.; Edwards, Robert G.; Mathur, Nilmani; Peardon, Michael

    2015-05-06

    This study presents the ground and excited state spectra of doubly charmed baryons from lattice QCD with dynamical quark fields. Calculations are performed on anisotropic lattices of size 16³ × 128, with inverse spacing in temporal direction at⁻¹=5.67(4) GeV and with a pion mass of about 390 MeV. A large set of baryonic operators that respect the symmetries of the lattice yet which retain a memory of their continuum analogues are used. These operators transform as irreducible representations of SU(3)F symmetry for flavor, SU(4) symmetry for Dirac spins of quarks and O(3) for spatial symmetry. The distillation method is utilized to generate baryon correlation functions which are analyzed using the variational fitting method to extract excited states. The lattice spectra obtained have baryonic states with well-defined total spins up to 7/2 and the pattern of low-lying states does not support the diquark picture for doubly charmed baryons. On the contrary the calculated spectra are remarkably similar to the expectations from models with an SU(6)×O(3) symmetry. Various spin-dependent energy splittings between the extracted states are also evaluated.

  18. Production of charmed tetraquarks from B c and B decays

    NASA Astrophysics Data System (ADS)

    He, Xiao-Gang; Wang, Wei; Zhu, Rui-Lin

    2017-01-01

    Hadronic states composed of multi-quark flavors may exist in reality since they are not prohibited by quantum chromodynamics (QCD). Compact four-quark systems of a color singlet are classified as tetraquarks. To understand the properties of these states, more theoretical and experimental efforts are needed. In this work, we study charmed tetraquarks with three light flavors using flavor SU(3) symmetry. States with three different light quarks must be in a \\bar{{6}} or a {{15}} multiplet. We investigate the production of charmed tetraquarks X c in B\\to {X}c({\\overline{X}}c)P and {B}c\\to {X}cP decays. Whether the states with three light quarks belong to \\bar{{6}} or {{15}} can be determined by studying various tetraquark B and B c decays. We demonstrate that the decay amplitudes for these decays can be parametrized by a few irreducible SU(3) invariant amplitudes. We then derive relations for decay widths and charge-parity-violating rate difference, which can be examined experimentally. Although no experimental measurements are available yet, they might be accessed at the ongoing and forthcoming experiments such as LHCb and Belle-II. Measurements of these observables can not only provide useful information for the study of exotics spectroscopy but also provide valuable information towards a better understanding of some non-perturbative aspects of QCD.

  19. The Experimental Discovery of Double-Charm Baryons

    NASA Astrophysics Data System (ADS)

    Engelfried, Jürgen; Selex Collaboration

    2005-04-01

    In 2002, the SELEX [The SELEX (Fermilab E781) Collaboration: Ball State University, Bogazici University, Carnegie-Mellon University, Centro Brasileiro de Pesquisas Fisicas, Fermilab, Institute For High Energy Physics (Protvino), Institute of High Energy Physics (Beijing), Institute of Theoretical and Experimental Physics (Moscow), Max-Planck-Institute for Nuclear Physics, Moscow State University, Petersburg Nuclear Physics Institute, Tel Aviv University, Universidad Autónoma de San Luis Potosí, Universidade Federal da Paraíba, H. H. Wills Physics Laboratory, University of Bristol, University of Iowa, University of Michigan-Flint, University of Rochester, University of Rome La Sapienza and INFN, University of São Paulo, University of Trieste and INFN. http://www-selex.fnal.gov] Experiment (Fermilab E781) reported the first observation of a member of the family of doubly charmed baryons [SELEX Collaboration, M. Mattson et al.: First observation of the doubly charmed baryonΞcc+. Phys. Rev. Letters 89 (2002) 112001, [ arXiv:hep-ex/0208014

  20. Spectroscopy of doubly charmed baryons from lattice QCD

    NASA Astrophysics Data System (ADS)

    Padmanath, M.; Edwards, Robert G.; Mathur, Nilmani; Peardon, Michael; Hadron Spectrum Collaboration

    2015-05-01

    We present the ground and excited state spectra of doubly charmed baryons from lattice QCD with dynamical quark fields. Calculations are performed on anisotropic lattices of size 1 63×128 , with inverse spacing in temporal direction at-1=5.67 (4 ) GeV and with a pion mass of about 390 MeV. A large set of baryonic operators that respect the symmetries of the lattice yet which retain a memory of their continuum analogues are used. These operators transform as irreducible representations of SU(3 ) F symmetry for flavor, SU(4) symmetry for Dirac spins of quarks and O(3) for spatial symmetry. The distillation method is utilized to generate baryon correlation functions which are analyzed using the variational fitting method to extract excited states. The lattice spectra obtained have baryonic states with well-defined total spins up to 7 /2 and the pattern of low-lying states does not support the diquark picture for doubly charmed baryons. On the contrary the calculated spectra are remarkably similar to the expectations from models with an SU (6 )×O (3 ) symmetry. Various spin-dependent energy splittings between the extracted states are also evaluated.

  1. Prediction of Narrow N* and {Lambda}* Resonances with Hidden Charm above 4 GeV

    SciTech Connect

    Wu Jiajun; Molina, R.; Oset, E.; Zou, B. S.

    2010-12-03

    The interaction between various charmed mesons and charmed baryons is studied within the framework of the coupled-channel unitary approach with the local hidden gauge formalism. Several meson-baryon dynamically generated narrow N{sup *} and {Lambda}{sup *} resonances with hidden charm are predicted with mass above 4 GeV and width smaller than 100 MeV. The predicted new resonances definitely cannot be accommodated by quark models with three constituent quarks and can be looked for in the forthcoming PANDA/FAIR experiments.

  2. Strong decay widths and coupling constants of recent charm meson states

    NASA Astrophysics Data System (ADS)

    Batra, Meenakshi; Upadhayay, Alka

    2015-07-01

    Open charm hadrons with strange and non-strange mesons have been discovered in recent years. We study the spectra of several newly observed resonances by different collaborations like BaBar (del Amo Sanchez et al., Phys Rev D 82:111101, 2010) and LHCb (Aaij et al. [LHCb Collaboration], J High Energy Phys 1309:145, 2013) etc. Using an effective Lagrangian approach based on heavy quark symmetry and chiral dynamics, we explore the strong decay widths and branching ratios of various resonances and suggest their values. We try to fit the experimental data to find the coupling constants involved in the strong decays through pseudo-scalar mesons. The present work also discusses the possible spin-parity assignments of recently observed states by the LHCb Collaboration. The tentative assignment of the newly discovered state can be by natural parity states , while can be identified with unnatural parity states like . Therefore, the missing doublets 2 S, 2 D, 1 F, 2 P, and 3 S can be thought of as filled up with these states. We study the two-body strong decay widths and branching ratios of missing doublets and plot the branching ratios vs. the mass of the decaying particle. These plots are used to thoroughly analyze all assignments to and various possibilities for the values.

  3. Amplitude analysis of the charmed decay D0 to KKpipi

    NASA Astrophysics Data System (ADS)

    Skidmore, Nicola

    2017-01-01

    An amplitude analysis of the 4-body charmed decay D0 -> KKππ is presented using data collected from electron-positron collisions at the CLEO experiment. Both flavour tagged and CP tagged data are utilized in the analysis making it unique from amplitude analyses performed at other colliders and providing extra sensitivity to the phases of the amplitude components. The amplitude model is used to search for CP violation in the D0 decay by analysing D0 and D0 decays separately. The model is also crucial input for a model-dependent measurement of the CP-violating phase γ using B+/- ->D0(-> KKππ) K+/- decays, which remains one of the least constrained parameters of the Standard Model. Forum on International Physics Distinguished Student Seminar Program, and European Research Council

  4. Charmed baryon isodoublet mass splitting in quantum chromodynamics revitalized

    NASA Astrophysics Data System (ADS)

    Sinha, S. N.; Sinha, S. M.; Rahman, M.; Kim, D. Y.

    1989-02-01

    We calculate the isodoublet mass splitting of charmed baryons in the quark model in QCD, which includes the relativistic correction and the explicit use of running QCD coupling constants with flavors. The model was applied and tested in the past for the calculations of isodoublet mass splittings of several hadrons. Our theoretical result ( Δmth( Σc++- Σc0)≅1.5±0.2 MeV) is in agteement with the recent experimental result ( Δmex( Σc++- Σc0)=1.2±0.7±0.3 MeV) by the ARGUS Collaboration at the DORIS II storage ring.

  5. Recent ARGUS results on τ/charm physics

    NASA Astrophysics Data System (ADS)

    Hölscher, Andreas

    1992-06-01

    The recent experimental results on τ and charm decays obtained by the ARGUS collaboration are presented in this talk. The results include new measurements of many exclusive decay modes of the τ lepton and of the inclusive three prong decay mode. They confirm the current world averages and stress the τ decay problem. A study of the hadronic τ decays into π-π0ντ and π-π-π+ντ performed. We searched in 29 different channels for neutrinoless τ d ecays. No evidence was found for these decays. The decay D+ → K∗+overlineK*0, which is observed for the first time, is shown together with th e decay of the D s+ meson into the same final state. These decays represent one of the few known decays of D mesons into two vector mesons. Furthermore a measurement of the semileptonic Λc+ decay is shown.

  6. Search for Hidden-Charm Pentaquark with CLAS12

    NASA Astrophysics Data System (ADS)

    Kubarovsky, Valery; Voloshin, Mikhail

    2017-01-01

    LHCb recently announced the discovery of two exotic structures in the J / ψ + p decay channel, which have been referred to as charmonium-pentaquark states. Resolving differences between models for these states, clarifying the nature of the discovered hidden-charm pentaquark peaks, and discovery of any similar states with other quantum numbers, will require further experimental studies. The states reported in the LHCb work were observed in the decay mode J / ψ + p . Thus, it is natural to expect that such pentaquark states should be produced in the photoproduction process γ + p ->Pc -> J / ψ + p where these states will appear as s-channel resonances at photon energy around 10 GeV. The energy and luminosity of the CLAS12 photon beam will permit detailed studies of the production and decay properties of pentaquark resonances. Motivated by these features, this presentation will discuss possibilities for a pentaquark search with CLAS 12 at Jefferson Lab.

  7. Identification of beauty and charm quark jets at LHCb

    NASA Astrophysics Data System (ADS)

    The LHCb Collaboration

    2015-06-01

    Identification of jets originating from beauty and charm quarks is important for measuring Standard Model processes and for searching for new physics. The performance of algorithms developed to select b- and c-quark jets is measured using data recorded by LHCb from proton-proton collisions at √s = 7 TeV in 2011 and at √s = 8 TeV in 2012. The efficiency for identifying a b(c) jet is about 65%(25%) with a probability for misidentifying a light-parton jet of 0.3% for jets with transverse momentum pT > 20GeV and pseudorapidity 2.2 < η < 4.2. The dependence of the performance on the pT and η of the jet is also measured.

  8. Conference summary: 6th International conference on hyperons, charm, and beauty hadrons (BEACH04)

    SciTech Connect

    Butler, Joel N.; /Fermilab

    2004-12-01

    The 6th International Conference on Hyperons, Charm, and Beauty Hadrons (BEACH04) treated us to a wonderful array of new results. Here the author attempts to summarize the talks and discuss the conference highlights.

  9. Status of the Tau-Charm Factory Project and aspects of the detector design

    SciTech Connect

    Schindler, R.H.

    1992-10-01

    This paper reviews the status of the Tau-Charm Factory Project being proposed for construction in Spain. The paper also reviews characteristics of the detector design, and the issues surrounding the present choices of technologies.

  10. CHARM: A CubeSat Water Vapor Radiometer for Earth Science

    NASA Technical Reports Server (NTRS)

    Lim, Boon; Mauro, David; DeRosee, Rodolphe; Sorgenfrei, Matthew; Vance, Steve

    2012-01-01

    The Jet Propulsion Laboratory (JPL) and Ames Research Center (ARC) are partnering in the CubeSat Hydrometric Atmospheric Radiometer Mission (CHARM), a water vapor radiometer integrated on a 3U CubeSat platform, selected for implementation under NASA Hands-On Project Experience (HOPE-3). CHARM will measure 4 channels at 183 GHz water vapor line, subsets of measurements currently performed by larger and more costly spacecraft (e.g. ATMS, AMSU-B and SSMI/S). While flying a payload that supports SMD science objectives, CHARM provides a hands-on opportunity to develop technical, leadership, and project skills. CHARM will furthermore advance the technology readiness level (TRL) of the 183 GHz receiver subsystem from TRL 4 to TRL 6 and the CubeSat 183 GHz radiometer system from TRL 4 to TRL 7.

  11. Phenomenological implications of the intrinsic charm in the Z boson production at the LHC

    NASA Astrophysics Data System (ADS)

    Bailas, G.; Gonçalves, V. P.

    2016-03-01

    In this paper we study the Z, Z+ jet, Z+c, and Z+c+ jet production in pp collisions at the LHC considering different models for the intrinsic charm content of the proton. We analyze the impact of the intrinsic charm in the rapidity and transverse momentum distributions for these different processes. Our results indicated that differently from the other processes, the Z+c cross section is strongly affected by the presence of the intrinsic charm. Moreover, we propose the analysis of the ratios R(Z+c/Z) ≡ σ (Z+c)/σ (Z) and R(Z+c/Z+{ jet }) ≡ σ (Z+c)/σ (Z+{ jet }) and we demonstrate that these observables can be used as a probe of the intrinsic charm.

  12. Regarding the charmed-strange member of the 2³S₁ meson state.

    PubMed

    Feng, Xue-Chao; Chen, Jing

    2013-01-01

    By employing the mass relations derived from the mass matrix and Regge trajectory, we investigate the masses of charmed and charmed-strange members of the 2³S₁ meson. The masses are compared with the values predicted by other theoretical approaches and experimental data. The results may be useful for the discovery of the unobserved meson and the determination of the quantum number of the newly discovered states.

  13. Regarding the Charmed-Strange Member of the 23S1 Meson State

    PubMed Central

    Feng, Xue-Chao; Chen, Jing

    2013-01-01

    By employing the mass relations derived from the mass matrix and Regge trajectory, we investigate the masses of charmed and charmed-strange members of the 23S1 meson. The masses are compared with the values predicted by other theoretical approaches and experimental data. The results may be useful for the discovery of the unobserved meson and the determination of the quantum number of the newly discovered states. PMID:24250272

  14. IC at IC: IceCube can constrain the intrinsic charm of the proton

    SciTech Connect

    Laha, Ranjan; Brodsky, Stanley J.

    2016-08-09

    The discovery of extraterrestrial neutrinos in the 30 TeV { PeV energy range by IceCube provides new constraints on high energy astrophysics. An important background to the signal are the prompt neutrinos which originate from the decay of charm hadrons produced by high energy cosmic- ray particles interacting in the Earth's atmosphere. It is conventional to use pQCD calculations of charm hadroproduction based on gluon splitting g ! c c alone. However, QCD predicts an additional \\intrinsic" component of the heavy quark distribution which arises from diagrams where heavy quarks are multiply connected to the proton's valence quarks. We estimate the prompt neutrino spectrum due to intrinsic charm. We nd that the atmospheric prompt neutrino ux from intrinsic charm is comparable to the pQCD contribution once we normalize the intrinsic charm di erential cross sections to the ISR and the LEBC-MPS collaboration data. In future, IceCube will constrain the intrinsic charm content of the proton and will contribute to one of the major uncertainties in high energy physics phenomenology.

  15. In Medium Properties of Charmed Strange Mesons in Dense Hadron ic Matter

    NASA Astrophysics Data System (ADS)

    Kumar, Sushil

    2015-05-01

    The medium modifications of the charmed strange mesons in the dense hadronic matter are investigated within chiral S U(4) model. The charmed strange meson properties modifies due to their interactions with the nucleons, hyperons and the scalar mesons (scalar-isoscalar mesons ( σ, ζ), scalar isovector meson ( δ)) in the dense hadronic medium. The various parameters used in the chiral model are obtained by fitting the vacuum baryon masses and saturation properties of nuclear matter. The non-linear coupled equations of the scalar fields are solved to obtain their baryon density, isospin and strangeness dependent values. Furthermore, the dispersion relations are derived for charmed strange mesons. Effects of isospin asymmetry and strangeness on the energies of charmed strange mesons are investigated. The in medium properties of charmed strange mesons can be particularly relevant to the experiments with neutron rich beams at the Facility for Antiproton and Ion Research (FAIR) at GSI, Germany, as well as to experiments at the Rare Isotope Accelerator (RIA) laboratory, USA. The present study of the in medium properties of charmed strange mesons will be of direct relevance for the observables from the compressed baryonic matter, resulting from the heavy ion collision experiments.

  16. Inter-Comparison of CHARM Data and WSR-88D Storm Integrated Rainfall

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.; Meyer, Paul J.; Guillory, Anthony R.; Stellman, Keith; Limaye, Ashutosh; Arnold, James E. (Technical Monitor)

    2002-01-01

    A localized precipitation network has been established over a 4000 sq km region of northern Alabama in support of local weather and climate research at the Global Hydrology and Climate Center (GHCC) in Huntsville. This Cooperative Huntsville-Area Rainfall Measurement (CHARM) network is comprised of over 80 volunteers who manually take daily rainfall measurements from 85 sites. The network also incorporates 20 automated gauges that report data at 1-5 minute intervals on a 24 h a day basis. The average spacing of the gauges in the network is about 6 kin, however coverage in some regions benefit from gauges every 1-2 km. The 24 h rainfall totals from the CHARM network have been used to validate Stage III rainfall estimates of daily and storm totals derived from the WSR-88D radars that cover northern Alabama. The Stage III rainfall product is produced by the Lower Mississippi River Forecast Center (LMRFC) in support of their daily forecast operations. The intercomparisons between the local rain gauge and the radar estimates have been useful to understand the accuracy and utility of the Stage III data. Recently, the Stage III and CHARM rainfall measurements have been combined to produce an hourly rainfall dataset at each CHARM observation site. The procedure matches each CHARM site with a time sequence of Stage III radar estimates of precipitation. Hourly stage III rainfall estimates were used to partition the rain gauge values to the time interval over which they occurred. The new hourly rain gauge dataset is validated at selected points where 1-5 minute rainfall measurements have been made. This procedure greatly enhances the utility of the CHARM data for local weather and hydrologic modeling studies. The conference paper will present highlights of the Stage III intercomparison and some examples of the combined radar / rain gauge product demonstrating its accuracy and utility in deriving an hourly rainfall product from the 24 h CHARM totals.

  17. To Charm, to Strengthen, and to Teach: A Consideration of Implications for Teacher Education in The De Charms' Model of Origins and Pawns.

    ERIC Educational Resources Information Center

    Brennan, Mary Berry

    1982-01-01

    According to De Charms' model of Origins and Pawns, some people feel they direct their own lives, while other people feel their fates are controlled externally. Administrators can encourage teachers to accept responsibility and feel greater self-confidence by planning inservice activities that treat teachers as self-directed persons. (PGD)

  18. Results on charmed meson decays from Mark III

    SciTech Connect

    Wasserbaech, S.R.

    1987-04-01

    We report recent results on charmed meson decays, obtained using the Mark III detector at SPEAR. The first topic discussed is the observation of e/sup +/e/sup -/ ..-->.. D/sub s/D/sub s/* at ..sqrt..s = 4.14 GeV. The D/sub s/* is detected as a peak in the mass distribution recoiling from D/sub s//sup + -/ ..-->.. phi..pi../sup + -/. The mass of the D/sub s/* is found to be (2109.3 +- 2.1 +- 3.1)MeV/c/sup 2/, yielding a D/sub s/*-D/sub s/ mass difference of (137.9 +- 2.1 +- 4.3) MeV/c/sup 2/. The production cross section times branching ratio is also measured. Next, a search for the decay D/sup +/ ..-->.. ..mu../sup +/nu/sub ..mu../ is described. A preliminary upper limit (90% CL) on B(D/sup +/ ..-->.. ..mu../sup +/nu/sub ..mu../) of 8.4 x 10/sup -4/ is obtained, corresponding to an upper limit on the decay constant f/sub D/ of 340 MeV/c/sup 2/. Finally, we present results of a search for the lepton family number violating decay D/sup 0/ ..-->.. ..mu..e. We find B(D/sup 0/ ..-->.. ..mu..e) < 1.5 x 10/sup -4/ at 90% CL.

  19. CONSTRAINED-TRANSPORT MAGNETOHYDRODYNAMICS WITH ADAPTIVE MESH REFINEMENT IN CHARM

    SciTech Connect

    Miniati, Francesco; Martin, Daniel F. E-mail: DFMartin@lbl.gov

    2011-07-01

    We present the implementation of a three-dimensional, second-order accurate Godunov-type algorithm for magnetohydrodynamics (MHD) in the adaptive-mesh-refinement (AMR) cosmological code CHARM. The algorithm is based on the full 12-solve spatially unsplit corner-transport-upwind (CTU) scheme. The fluid quantities are cell-centered and are updated using the piecewise-parabolic method (PPM), while the magnetic field variables are face-centered and are evolved through application of the Stokes theorem on cell edges via a constrained-transport (CT) method. The so-called multidimensional MHD source terms required in the predictor step for high-order accuracy are applied in a simplified form which reduces their complexity in three dimensions without loss of accuracy or robustness. The algorithm is implemented on an AMR framework which requires specific synchronization steps across refinement levels. These include face-centered restriction and prolongation operations and a reflux-curl operation, which maintains a solenoidal magnetic field across refinement boundaries. The code is tested against a large suite of test problems, including convergence tests in smooth flows, shock-tube tests, classical two- and three-dimensional MHD tests, a three-dimensional shock-cloud interaction problem, and the formation of a cluster of galaxies in a fully cosmological context. The magnetic field divergence is shown to remain negligible throughout.

  20. Search for T violation in charm meson decays

    SciTech Connect

    Link, J.M.; Yager, P.M.; Anjos, J.C.; Bediaga, I.; Castromonte, C.; Machado, A.A.; Magnin, J.; Massafferri, A.; de Miranda, J.M.; Pepe, I.M.; Polycarpo, E.; dos Reis, A.C.; Carrillo, S.; Casimiro, E.; Cuautle, E.; Sanchez-Hernandez, A.; Uribe, C.; Vazquez, F.; Agostino, L.; Cinquini, L.; Cumalat, J.P.; /Colorado U. /Fermilab /Frascati /Guanajuato U. /Illinois U., Urbana /Indiana U. /Korea U. /Kyungpook Natl. U. /INFN, Milan /Milan U. /North Carolina U. /Pavia U. /INFN, Pavia /Rio de Janeiro, Pont. U. Catol. /Puerto Rico U., Mayaguez /South Carolina U. /Tennessee U. /Vanderbilt U. /Wisconsin U., Madison

    2005-06-01

    Using data from the FOCUS (E831) experiment, they have searched for T violation in charm meson decays using the four-body decay channels D{sup 0} {yields} K{sup -}K{sup +} {pi}{sup -}{pi}{sup +}, D{sup +} {yields} K{sub S}{sup 0}K{sup +}{pi}{sup -}{pi}{sup +}, and D{sub s}{sup +} {yields} K{sub S}{sup 0}K{sup +}{pi}{sup -}{pi}{sup +}. The T violation asymmetry is obtained using triple-product correlations and assuming the validity of the CPT theorem. They find the asymmetry values to be A{sub T{sub viol}}(D{sup 0}) = 0.010 {+-} 0.057(stat.) {+-} 0.037(syst.), A{sub T{sub viol}}(D{sup +}) = 0.023 {+-} 0.062(stat.) {+-} 0.022(syst.), and A{sub T{sub viol}}(D{sub s}{sup +}) = -0.036 {+-} 0.067(stat.) {+-} 0.023(syst.). Each measurement is consistent with no T violation. New measurements of the CP asymmetries for some of these decay modes are also presented.

  1. First Airborne Lidar Measurements of Methane and Carbon Dioxide Applying the MERLIN Demonstrator CHARM-F

    NASA Astrophysics Data System (ADS)

    Amediek, Axel; Büdenbender, Christian; Ehret, Gerhard; Fix, Andreas; Gerbig, Christoph; Kiemle, Chritstoph; Quatrevalet, Mathieu; Wirth, Martin

    2016-04-01

    CHARM-F is the new airborne four-wavelengths lidar for simultaneous soundings of atmospheric CO2 and CH4. Due to its high technological conformity it is also a demonstrator for MERLIN, the French-German satellite mission providing a methane lidar. MERLIN's Preliminary Design Review was successfully passed recently. The launch is planned for 2020. First CHARM-F measurements were performed in Spring 2015 onboard the German research aircraft HALO. The aircraft's maximum flight altitude of 15 km and special features of the lidar, such as a relatively large laser ground spot, result in data similar to those obtained by a spaceborne system. The CHARM-F and MERLIN lidars are designed in the IPDA (integrated path differential absorption) configuration using short double pulses, which gives column averaged gas mixing ratios between the system and ground. The successfully completed CHARM-F flight measurements provide a valuable dataset, which supports the retrieval algorithm development for MERLIN notably. Furthermore, the dataset allows detailed analyses of measurement sensitivities, general studies on the IPDA principle and on system design questions. These activities are supported by another instrument onboard the aircraft during the flight campaign: a cavity ring down spectrometer, providing in-situ data of carbon dioxide, methane and water vapor with high accuracy and precision, which is ideal for validation purposes of the aircraft lidar. For the near future, detailed characterizations of CHARM-F are planned, further support of the MERLIN design, as well as the scientific aircraft campaign CoMet.

  2. A precision measurement of charm dimuon production in neutrino interactions from the NOMAD experiment

    NASA Astrophysics Data System (ADS)

    Samoylov, O.; Petti, R.; Alekhin, S.; Astier, P.; Autiero, D.; Baldisseri, A.; Baldo-Ceolin, M.; Banner, M.; Bassompierre, G.; Benslama, K.; Besson, N.; Bird, I.; Blumenfeld, B.; Bobisut, F.; Bouchez, J.; Boyd, S.; Bueno, A.; Bunyatov, S.; Camilleri, L.; Cardini, A.; Cattaneo, P. W.; Cavasinni, V.; Cervera-Villanueva, A.; Challis, R.; Chukanov, A.; Collazuol, G.; Conforto, G.; Conta, C.; Contalbrigo, M.; Cousins, R.; Degaudenzi, H.; De Santo, A.; Del Prete, T.; Di Lella, L.; do Couto e Silva, E.; Dumarchez, J.; Duyang, H.; Ellis, M.; Feldman, G. J.; Ferrari, R.; Ferrère, D.; Flaminio, V.; Fraternali, M.; Gaillard, J.-M.; Gangler, E.; Geiser, A.; Geppert, D.; Gibin, D.; Gninenko, S.; Godley, A.; Gomez-Cadenas, J.-J.; Gosset, J.; Gößling, C.; Gouanère, M.; Grant, A.; Graziani, G.; Guglielmi, A.; Hagner, C.; Hernando, J.; Hurst, P.; Hyett, N.; Iacopini, E.; Joseph, C.; Juget, F.; Kent, N.; Klimov, O.; Kokkonen, J.; Kovzelev, A.; Krasnoperov, A.; Kim, J. J.; Kirsanov, M.; Kulagin, S.; Kullenberg, C. T.; Lacaprara, S.; Lachaud, C.; Lakić, B.; Lanza, A.; La Rotonda, L.; Laveder, M.; Letessier-Selvon, A.; Levy, J.-M.; Libo, J.; Linssen, L.; Ljubičić, A.; Long, J.; Lupi, A.; Lyubushkin, V.; Marchionni, A.; Martelli, F.; Méchain, X.; Mendiburu, J.-P.; Meyer, J.-P.; Mezzetto, M.; Mishra, S. R.; Moorhead, G. F.; Naumov, D.; Nédélec, P.; Nefedov, Yu.; Nguyen-Mau, C.; Orestano, D.; Pastore, F.; Peak, L. S.; Pennacchio, E.; Pessard, H.; Placci, A.; Polesello, G.; Pollmann, D.; Polyarush, A.; Poulsen, C.; Popov, B.; Rebuffi, L.; Rico, J.; Riemann, P.; Roda, C.; Rubbia, A.; Salvatore, F.; Schahmaneche, K.; Schmidt, B.; Schmidt, T.; Sconza, A.; Scott, A. M.; Sevior, M.; Sillou, D.; Soler, F. J. P.; Sozzi, G.; Steele, D.; Stiegler, U.; Stipčević, M.; Stolarczyk, Th.; Tareb-Reyes, M.; Taylor, G. N.; Tereshchenko, V.; Tian, X. C.; Toropin, A.; Touchard, A.-M.; Tovey, S. N.; Tran, M.-T.; Tsesmelis, E.; Ulrichs, J.; Vacavant, L.; Valdata-Nappi, M.; Valuev, V.; Vannucci, F.; Varvell, K. E.; Veltri, M.; Vercesi, V.; Vidal-Sitjes, G.; Vieira, J.-M.; Vinogradova, T.; Weber, F. V.; Weisse, T.; Wilson, F. F.; Winton, L. J.; Wu, Q.; Yabsley, B. D.; Zaccone, H.; Zuber, K.; Zuccon, P.

    2013-11-01

    We present our new measurement of the cross-section for charm dimuon production in neutrino-iron interactions based upon the full statistics collected by the NOMAD experiment. After background subtraction we observe 15 344 charm dimuon events, providing the largest sample currently available. The analysis exploits the large inclusive charged current sample - about 9×106 events after all analysis cuts - and the high resolution NOMAD detector to constrain the total systematic uncertainty on the ratio of charm dimuon to inclusive Charged Current (CC) cross-sections to ˜2%. We also perform a fit to the NOMAD data to extract the charm production parameters and the strange quark sea content of the nucleon within the NLO QCD approximation. We obtain a value of mc(mc)=1.159±0.075 GeV/c2 for the running mass of the charm quark in the MS¯ scheme and a strange quark sea suppression factor of κs=0.591±0.019 at Q2=20 GeV/c2.

  3. Constraining charming penguins in charmless B → ππ, πK and KK decays

    NASA Astrophysics Data System (ADS)

    Wu, Yue-Liang; Zhou, Yu-Feng; Zhuang, Ci

    2010-02-01

    We discuss the correlations induced by the charming penguin contributions to B → ππ, πK and KK modes in the flavor SU(3) diagrammatic approach. Strong constraints are found from the measurements of the direct CP asymmetries, especially that of πK modes. We make global fits to the latest data, and show that only a relatively small charming penguin is allowed. In the presence of the charming penguin, the size of color-suppressed tree amplitude (C) relative to that of tree amplitude (T) still remains large C/T ~= 0.6, which disfavors the possibility of a large charming penguin alone as an explanation for the ππ puzzle. We find that this conclusion remains unchanged for various SU(3) breaking schemes. Nevertheless, together with an enhanced annihilation-type W-exchange diagram (E) which is allowed by the current data, the ratio C/T can be reduced to ~0.4. We show that a small charming penguin amplitude can still have significant contribution to the time-dependent CP asymmetry in the KSKS mode.

  4. A model of charmed baryon-nucleon potential and two- and three-body bound states with charmed baryon

    NASA Astrophysics Data System (ADS)

    Maeda, Saori; Oka, Makoto; Yokota, Akira; Hiyama, Emiko; Liu, Yan-Rui

    2016-02-01

    A potential model for the interaction between a charmed baryon (Λ _c, Σ _c, and Σ _c^*) and the nucleon (N) is constructed. The model contains a long-range meson (π and σ ) exchange part and a short-distance quark exchange part. The quark cluster model is used to evaluate the short-range repulsion and a monopole type form factor is introduced to the long-range potential to reflect the extended structure of hadrons. We determine the cutoff parameters in the form factors by fitting the NN scattering data with the same approach and we obtain four sets of parameters (a)-(d). The most attractive potential (d) leads to bound Λ _c N states with J^π = 0^+ and 1^+ once the channel couplings among Λ _c, Σ _c, and Σ _c^* are taken into account. One can also investigate many-body problems with the model. Here, we construct an effective Λ _c N one-channel potential with the parameter set (d) and apply it to the three-body Λ _c NN system. The bound states with J=1/2 and 3/2 are predicted.

  5. Search for rare and forbidden decays of charm and charmed-strange mesons to final states h{sup {+-}}e{sup {-+}}e{sup +}

    SciTech Connect

    Rubin, P.; Lowrey, N.; Mehrabyan, S.; Selen, M.; Wiss, J.; Libby, J.; Kornicer, M.; Mitchell, R. E.; Shepherd, M. R.; Tarbert, C. M.; Besson, D.; Pedlar, T. K.; Xavier, J.; Cronin-Hennessy, D.; Hietala, J.; Zweber, P.; Dobbs, S.; Metreveli, Z.; Seth, K. K.; Tomaradze, A.

    2010-11-01

    We have searched for flavor-changing neutral current decays and lepton-number-violating decays of D{sup +} and D{sub s}{sup +} mesons to final states of the form h{sup {+-}}e{sup {-+}}e{sup +}, where h is either {pi} or K. We use the complete samples of CLEO-c open-charm data, corresponding to integrated luminosities of 818 pb{sup -1} at the center-of-mass energy E{sub CM}=3.774 GeV containing 2.4x10{sup 6} D{sup +}D{sup -} pairs and 602 pb{sup -1} at E{sub CM}=4.170 GeV containing 0.6x10{sup 6} D{sub s}{sup *{+-}}D{sub s}{sup {-+}} pairs. No signal is observed in any channel, and we obtain 90% confidence level upper limits on branching fractions B(D{sup +}{yields}{pi}{sup +}e{sup +}e{sup -})<5.9x10{sup -6}, B(D{sup +}{yields}{pi}{sup -}e{sup +}e{sup +})<1.1x10{sup -6}, B(D{sup +}{yields}K{sup +}e{sup +}e{sup -})<3.0x10{sup -6}, B(D{sup +}{yields}K{sup -}e{sup +}e{sup +})<3.5x10{sup -6}, B(D{sub s}{sup +}{yields}{pi}{sup +}e{sup +}e{sup -})<2.2x10{sup -5}, B(D{sub s}{sup +}{yields}{pi}{sup -}e{sup +}e{sup +})<1.8x10{sup -5}, B(D{sub s}{sup +}{yields}K{sup +}e{sup +}e{sup -})<5.2x10{sup -5}, and B(D{sub s}{sup +}{yields}K{sup -}e{sup +}e{sup +})<1.7x10{sup -5}.

  6. Search for Popcorn Mesons in Events with Two Charmed Baryons

    SciTech Connect

    Hartfiel, Brandon; /SLAC

    2006-07-07

    The physics of this note is divided into two parts. The first part measures the {Lambda}{sub c} {yields} {pi}kp continuum momentum spectrum at a center of mass energy of 10.54 GeV/c. The data sample consists of 15,400 {Lambda}{sub c} baryons from 9.46 fb{sup -1} of integrated luminosity. With more than 13 times more data than the best previous measurement, we are able to exclude some of the simpler, one parameter fragmentation functions. In the second part, we add the {Lambda}{sub c} {yields} K{sup 0}p mode, and look for events with a {Lambda}{sub c}{sup +} and a {bar {Lambda}}{sub c}{sup -} in order to look for ''popcorn'' mesons formed between the baryon and antibaryon. We add on-resonance data, with a kinematic cut to eliminate background from B decays, as well as BaBar run 3 and 4 data to increase the total data size to 219.70 fb{sup -1}. We find 619 events after background subtraction. After a subtraction of 1.06 {+-} .09 charged pions coming from decays of known resonances to {Lambda}{sub c} + {eta}{pi}, we are left with 2.63 {+-} .21 additional charged pions in each of these events. This is significantly higher than the .5 popcorn mesons per baryon pair used in the current tuning of Pythia 6.2, the most widely used Monte Carlo generator. The extra mesons we find appear to be the first direct evidence of popcorn mesons, although some of them could be arising from hypothetical unresolved, unobserved charmed baryon resonances contributing decay mesons to our data. To contribute a significant fraction, this hypothesis requires a large number of such broad unresolved states and seems unlikely, but can not be completely excluded.

  7. Object-Oriented Implementation of the NAS Parallel Benchmarks using Charm++

    NASA Technical Reports Server (NTRS)

    Krishnan, Sanjeev; Bhandarkar, Milind; Kale, Laxmikant V.

    1996-01-01

    This report describes experiences with implementing the NAS Computational Fluid Dynamics benchmarks using a parallel object-oriented language, Charm++. Our main objective in implementing the NAS CFD kernel benchmarks was to develop a code that could be used to easily experiment with different domain decomposition strategies and dynamic load balancing. We also wished to leverage the object-orientation provided by the Charm++ parallel object-oriented language, to develop reusable abstractions that would simplify the process of developing parallel applications. We first describe the Charm++ parallel programming model and the parallel object array abstraction, then go into detail about each of the Scalar Pentadiagonal (SP) and Lower/Upper Triangular (LU) benchmarks, along with performance results. Finally we conclude with an evaluation of the methodology used.

  8. Recent Results on Charm and Tau Physics from BaBar And Belle

    SciTech Connect

    Salvatore, Fabrizio F.; /Royal Holloway, U. of London

    2007-10-15

    Recent results on charm and tau physics obtained at the BABAR and Belle experiments are presented in this article. The charm section will be focused on the most recent results on D{sup 0}{bar D}{sup 0} mixing at Belle and on the measurement of the pseudoscalar decay constant f{sub Ds} using charm tagged e+e- events at BABAR. In the tau section the recent results on Lepton Flavor Violation from tau decays will be discussed, as well as the recent result on the rare decay {tau}{sup -} {yields} 3{pi}{sup -}2{pi}{sup +}2{pi}{sup 0}{nu}{sub {tau}} at BABAR and the measurement of the {tau} lepton mass at Belle.

  9. Model-independent analysis of CP violation in charmed meson decays

    NASA Astrophysics Data System (ADS)

    2015-06-01

    We present a model-independent analysis of CP violation, inspired by recent experimental observations, in charmed meson decays. The topological diagram approach is used to study direct CP asymmetries for singly Cabibbo-suppressed two-body hadronic decays of charmed mesons. We extract the magnitudes and relative phases of the corresponding topological amplitudes from available experimental information. In order to get more precise and reliable estimates of direct CP asymmetries, we take into account contributions from all possible strong penguin amplitudes, including the internal b-quark penguin contributions. We also study flavor SU(3) symmetry breaking effects in these decay modes and consequently predict direct CP asymmetries of unmeasured modes.

  10. Measurement of charm meson production in Au+Au collisions at √S NN =200 GEV

    NASA Astrophysics Data System (ADS)

    Quintero, Amilkar

    The study and characterization of nuclear matter under extreme conditions of temperature and pressure, and a full understanding of deconfined partonic matter, the Quark Gluon Plasma (QGP), are major goals of modern high-energy nuclear physics. Heavy quarks (charm and bottom) are formed mainly in the early stages of the collision. Open heavy flavor measurements, e.g. D0, D+/-, DS, are excellent tools to probe and study the hot and dense medium formed in heavy ion collisions. Details of their interaction with the surrounding medium can be studied through energy loss and elliptic flow measurements thus providing valuable information about the nature of the medium and its degree of thermalization. Initial indirect reconstruction studies of heavy quark particles using the electrons from heavy flavor decays, showed a large magnitude of energy loss that was inconsistent with model predictions and assumptions, at the time. Precise measurements of fully reconstructed heavy mesons would provide better understanding of the energy loss mechanisms and the properties of the formed medium. In relativistic heavy ion collisions, the relatively low abundance of heavy quarks and their short lifetimes makes them difficult to distinguish from the event vertex and the combinatorial background; therefore the need for a high precision vertex detector to reconstruct their decay particles. In 2014 a new micro vertex detector was installed in the STAR experiment at Brookhaven National Lab. The Heavy Flavor Tracker (HFT) was designed to perform direct topological reconstruction of the weak decays of heavy flavor particles. The HFT improves STAR track pointing resolution from a few millimeters to ˜30 microns for 1 GeV/c pions, allowing direct reconstruction of short lifetime particles. Although the results of the open charm meson reconstruction using the HFT improved dramatically there is still a lot of room for optimization, especially for reconstructed particles with low transverse momentum

  11. Production of doubly charmed baryons at energy {radical}s=10.58 GeV

    SciTech Connect

    Kiselev, V.V.; Likhoded, A.K.; Shevlyagin, M.V.

    1995-06-01

    The cross section for the production of doubly charmed baryons at a B-factory is estimated on the basis of perturbative QCD calculations of the cross sections for cc-diquark production and of the quark-hadron duality. 14 refs., 2 figs.

  12. Charm photoproduction at 20 GeV including preliminary lifetime results with improved optical resolution

    SciTech Connect

    Colley, D.C.; Brick, D.; Bacon, T.C.; Cohn, H.O.; Franek, B.; Armenteros, R.; Abe, K.; Kafka, T.; Bingham, H.H.; Brau, J.E.

    1984-07-01

    Sixty five charm events have been observed in an exposure, during 1983, of the SLAC Hybrid Facility (SHF) to a backward scattered laser beam. Preliminary results for the charmed meson lifetimes have been obtained based on 19 neutral and 22 charged decays thereby doubling our earlier data. These lifetimes are consistent with our published results and the two data samples have been combined. From the resulting 42 neutral, 45 charged and 13 topologically ambiguous decays the charmed meson lifetimes are measured to be tau/sub D/sup 0// = (6.4/sub -0.9//sup +1.1/ +- 0.5) x 10/sup -13/s and tau/sub D/sup + -// = (8.2/sub -1.1//sup +1.3/ +- 0.6) x 10/sup -13/s and their ratio tau/sub D//sup + -///tau/sub D/sup 0// = 1.3/sub -0.3/sup +0.5/. The inclusive charm cross-section at a photon energy of 20 GeV has been measured to be 60 +- 8 +- 21) nb.

  13. Status of the Tau-Charm Facility and highlights of its physics program

    SciTech Connect

    Schindler, R.H.

    1990-02-01

    In this paper I will first discuss the history and current status of the Tau-Charm Facility. I will then focus on the unique aspects of the heavy meson and tau physics program of such a facility, which motivates its construction and operation in the mid-1090's.

  14. Web-Based Computational Chemistry Education with CHARMMing I: Lessons and Tutorial

    PubMed Central

    Miller, Benjamin T.; Singh, Rishi P.; Schalk, Vinushka; Pevzner, Yuri; Sun, Jingjun; Miller, Carrie S.; Boresch, Stefan; Ichiye, Toshiko; Brooks, Bernard R.; Woodcock, H. Lee

    2014-01-01

    This article describes the development, implementation, and use of web-based “lessons” to introduce students and other newcomers to computer simulations of biological macromolecules. These lessons, i.e., interactive step-by-step instructions for performing common molecular simulation tasks, are integrated into the collaboratively developed CHARMM INterface and Graphics (CHARMMing) web user interface (http://www.charmming.org). Several lessons have already been developed with new ones easily added via a provided Python script. In addition to CHARMMing's new lessons functionality, web-based graphical capabilities have been overhauled and are fully compatible with modern mobile web browsers (e.g., phones and tablets), allowing easy integration of these advanced simulation techniques into coursework. Finally, one of the primary objections to web-based systems like CHARMMing has been that “point and click” simulation set-up does little to teach the user about the underlying physics, biology, and computational methods being applied. In response to this criticism, we have developed a freely available tutorial to bridge the gap between graphical simulation setup and the technical knowledge necessary to perform simulations without user interface assistance. PMID:25057988

  15. CP Violation in B0 decays to Charmonium and Charm Final States

    SciTech Connect

    Chen, Chunhui

    2008-09-24

    We report on measurements of time-dependent CP-violation asymmetries in neutral B meson decays to charmonium and charm final states. The results are obtained from a data sample of (467 {+-} 5) x 10{sup 6} {Upsilon}(4S) {yields} B{bar B} decays collected with the BABAR detector at the PEP-II B factory.

  16. Charm quark and meson production in association with single-jet at the LHC

    NASA Astrophysics Data System (ADS)

    Maciuła, Rafał; Szczurek, Antoni

    2016-12-01

    We discuss charm quark/antiquark and charmed meson production in association with one extra jet (gluon, quark, antiquark) at the LHC. The calculations are performed both in collinear and kT -factorization approaches. Different unintegrated gluon distribution functions are used in the kT-factorization approach. Several predictions for the LHC are presented. We show distributions in rapidity and transverse momenta of c /c ¯ (or charmed mesons) and the associated jet as well as some two-dimensional observables. Interesting correlation effects are predicted, e.g., in azimuthal angles φc c ¯ and φc -jet . We have also discussed a relation of the 2 →2 and 2 →3 partonic calculations in the region of large transverse momenta of charm quarks/antiquarks as well as the similarity of the next-to-leading order collinear approach and the kT-factorization approach with the Kimber-Martin-Ryskin unintegrated parton distribution functions. Integrated cross sections for D0+jet production for ATLAS detector acceptance and for different cuts on jet transverse momenta are also presented.

  17. A Photographic Essay of Apache Clothing, War Charms, and Weapons, Volume 2-Part D.

    ERIC Educational Resources Information Center

    Thompson, Doris; Jacobs, Ben

    As part of a series of guides designed for instruction of American Indian children and youth, this resource guide constitutes a pictorial essay on Apache clothing, war charms, and weaponry. A brief historical introduction is followed by 21 question suggestions for classroom use. Each of the 12 photographic topics is accompanied by a descriptive…

  18. Measurement of the cross section of charmed hadrons and the nuclear dependence alpha

    SciTech Connect

    Blanco-Covarrubias, Ernesto Alejandro

    2009-12-03

    With data from the SELEX experiment we study charm hadro-production. We report the differential production cross sections as function of the longitudinal and transverse momentum, as well as for two different target materials, of 14 charmed hadron and/or their decay modes. This is the most extensive study to date. SELEX is a fixed target experiment at Fermilab with high forward acceptance; it took data during 1996-1997 with 600 GeV/c Σ- and π-, and 540 GeV/c proton and π+ beams. It used 5 target foils (two copper and three diamond). We use the results to determine α, used in parametrizing the production cross section as ∞ Aα, where A is the mass number of the target nuclei. We found within our statistics that α is independent of the longitudinal momentum fraction xF in the interval 0.1 < xF < 1.0, with α = 0.778 ± 0.014. The average value of α} for charm production by pion beams is α meson = 0.850 ± 0.028. This is somewhat larger than the corresponding average αbaryon = 0.755 ± 0.016 for charm production by baryon beams (Σ- and protons).

  19. Study of correlations between photoproduced pairs of charmed particles at Experiment E831/FOCUS

    SciTech Connect

    Castromonte Flores, Cesar Manuel

    2008-08-01

    The authors present the study of the charm-pair correlations produced in photon-nucleon interactions at $\\langle$Eγ$\\rangle$ = 175 GeV/c, by the Fermilab fixed target experiment E831/FOCUS. The E831/FOCUS experiment produced and reconstructed over one million charm particles. This high statistics allows the reconstruction of more than 7000 charm-pair mesons D$\\bar{D}$, 10 times the statistic of former experiments, and also allows to get, for the first time, about 600 totally reconstructed charm-pairs in the DDs and DΛc channels. They were able to study, with some detail, the kinematical correlations between the charm and anticharm particle forming a pair, in the square transverse momentum (pT2), azimuthal angle difference (ΔΦ), rapidity difference (Δy) and the charm-pair mass variables. They observe some correlation for the longitudinal momenta, and a significant correlation for the transverse momenta of the charm and anticharm particles. They compare the experimental distributions with theoretical predictions based on the photon-gluon fusion model (PGF), for the production of c$\\bar{c}$ quarks, and the standard Lund hadronization model. These models are implemented by the PYTHIA Monte Carlo event generator. The PYTHIA program allows the inclusion, in the simulation, of non-perturbative effects that have been shown to be important for charm production. In order to compare data and simulation, they have generated two Monte Carlo samples, the first one set to favor the production of D$\\bar{D}$ pairs (MCDD2), and the second one set to favor the production of DDsand DΛc pairs, where each one uses different functions and parameters values for the theoretical models in the simulation. They observe, for the correlation distributions, that the set of parameters used by the MCDD2 model together with the intrinsic transverse momentum (k$\\perp$) of the partons inside the

  20. The Open University Opens.

    ERIC Educational Resources Information Center

    Tunstall, Jeremy, Ed.

    Conceived by the British Labor Government in the 1960's the Open University was viewed as a way to extend higher education to Britain's working class, but enrollment figures in classes that represent traditional academic disciplines show that the student population is predominantly middle class. Bringing education into the home presents numerous…

  1. Single electron yields from semileptonic charm and bottom hadron decays in Au+Au collisions at sNN=200 GeV

    SciTech Connect

    Adare, A.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Alexander, J.; Alfred, M.; Aoki, K.; Apadula, N.; Aramaki, Y.; Asano, H.; Aschenauer, E. C.; Atomssa, E. T.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Bandara, N. S.; Bannier, B.; Barish, K. N.; Bassalleck, B.; Bathe, S.; Baublis, V.; Baumgart, S.; Bazilevsky, A.; Beaumier, M.; Beckman, S.; Belmont, R.; Berdnikov, A.; Berdnikov, Y.; Black, D.; Blau, D. S.; Bok, J. S.; Boyle, K.; Brooks, M. L.; Bryslawskyj, J.; Buesching, H.; Bumazhnov, V.; Butsyk, S.; Campbell, S.; Chen, C. -H.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choi, S.; Choudhury, R. K.; Christiansen, P.; Chujo, T.; Chvala, O.; Cianciolo, V.; Citron, Z.; Cole, B. A.; Connors, M.; Cronin, N.; Crossette, N.; Csanád, M.; Csörgő, T.; Dairaku, S.; Danley, T. W.; Datta, A.; Daugherity, M. S.; David, G.; DeBlasio, K.; Dehmelt, K.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Dietzsch, O.; Ding, L.; Dion, A.; Diss, P. B.; Do, J. H.; Donadelli, M.; D'Orazio, L.; Drapier, O.; Drees, A.; Drees, K. A.; Durham, J. M.; Durum, A.; Edwards, S.; Efremenko, Y. V.; Engelmore, T.; Enokizono, A.; Esumi, S.; Eyser, K. O.; Fadem, B.; Feege, N.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fukao, Y.; Fusayasu, T.; Gainey, K.; Gal, C.; Gallus, P.; Garg, P.; Garishvili, A.; Garishvili, I.; Ge, H.; Giordano, F.; Glenn, A.; Gong, X.; Gonin, M.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Gu, Y.; Gunji, T.; Hachiya, T.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamilton, H. F.; Han, S. Y.; Hanks, J.; Hasegawa, S.; Haseler, T. O. S.; Hashimoto, K.; Hayano, R.; Hayashi, S.; He, X.; Hemmick, T. K.; Hester, T.; Hill, J. C.; Hollis, R. S.; Homma, K.; Hong, B.; Horaguchi, T.; Hoshino, T.; Hotvedt, N.; Huang, J.; Huang, S.; Ichihara, T.; Iinuma, H.; Ikeda, Y.; Imai, K.; Imazu, Y.; Imrek, J.; Inaba, M.; Iordanova, A.; Isenhower, D.; Isinhue, A.; Ivanishchev, D.; Jacak, B. V.; Javani, M.; Jezghani, M.; Jia, J.; Jiang, X.; Johnson, B. M.; Joo, K. S.; Jouan, D.; Jumper, D. S.; Kamin, J.; Kanda, S.; Kang, B. H.; Kang, J. H.; Kang, J. S.; Kapustinsky, J.; Karatsu, K.; Kawall, D.; Kazantsev, A. V.; Kempel, T.; Key, J. A.; Khachatryan, V.; Khandai, P. K.; Khanzadeev, A.; Kijima, K. M.; Kim, B. I.; Kim, C.; Kim, D. J.; Kim, E. -J.; Kim, G. W.; Kim, M.; Kim, Y. -J.; Kim, Y. K.; Kimelman, B.; Kinney, E.; Kistenev, E.; Kitamura, R.; Klatsky, J.; Kleinjan, D.; Kline, P.; Koblesky, T.; Komkov, B.; Koster, J.; Kotchetkov, D.; Kotov, D.; Krizek, F.; Kurita, K.; Kurosawa, M.; Kwon, Y.; Kyle, G. S.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Lebedev, A.; Lee, D. M.; Lee, J.; Lee, K. B.; Lee, K. S.; Lee, S.; Lee, S. H.; Lee, S. R.; Leitch, M. J.; Leite, M. A. L.; Leitgab, M.; Lewis, B.; Li, X.; Lim, S. H.; Linden Levy, L. A.; Liu, M. X.; Lynch, D.; Maguire, C. F.; Makdisi, Y. I.; Makek, M.; Manion, A.; Manko, V. I.; Mannel, E.; Maruyama, T.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Meles, A.; Mendoza, M.; Meredith, B.; Miake, Y.; Mibe, T.; Midori, J.; Mignerey, A. C.; Milov, A.; Mishra, D. K.; Mitchell, J. T.; Miyasaka, S.; Mizuno, S.; Mohanty, A. K.; Mohapatra, S.; Montuenga, P.; Moon, H. J.; Moon, T.; Morrison, D. P.; Moskowitz, M.; Moukhanova, T. V.; Murakami, T.; Murata, J.; Mwai, A.; Nagae, T.; Nagamiya, S.; Nagashima, K.; Nagle, J. L.; Nagy, M. I.; Nakagawa, I.; Nakagomi, H.; Nakamiya, Y.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Nattrass, C.; Netrakanti, P. K.; Nihashi, M.; Niida, T.; Nishimura, S.; Nouicer, R.; Novák, T.; Novitzky, N.; Nukariya, A.; Nyanin, A. S.; Obayashi, H.; O'Brien, E.; Ogilvie, C. A.; Okada, K.; Orjuela Koop, J. D.; Osborn, J. D.; Oskarsson, A.; Ozawa, K.; Pak, R.; Pantuev, V.; Papavassiliou, V.; Park, I. H.; Park, J. S.; Park, S.; Park, S. K.; Pate, S. F.; Patel, L.; Patel, M.; Pei, H.; Peng, J. -C.; Perepelitsa, D. V.; Perera, G. D. N.; Peressounko, D. Yu.; Perry, J.; Petti, R.; Pinkenburg, C.; Pinson, R.; Pisani, R. P.; Purschke, M. L.; Qu, H.; Rak, J.; Ramson, B. J.; Ravinovich, I.; Read, K. F.; Reynolds, D.; Riabov, V.; Riabov, Y.; Richardson, E.; Rinn, T.; Riveli, N.; Roach, D.; Roche, G.; Rolnick, S. D.; Rosati, M.; Rowan, Z.; Rubin, J. G.; Ryu, M. S.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sako, H.; Samsonov, V.; Sarsour, M.; Sato, S.; Sawada, S.; Schaefer, B.; Schmoll, B. K.; Sedgwick, K.; Seidl, R.; Sen, A.; Seto, R.; Sett, P.; Sexton, A.; Sharma, D.; Shein, I.; Shibata, T. -A.; Shigaki, K.; Shimomura, M.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Sim, K. S.; Singh, B. K.; Singh, C. P.; Singh, V.; Skolnik, M.; Slunečka, M.; Snowball, M.; Solano, S.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Stankus, P. W.; Steinberg, P.; Stenlund, E.; Stepanov, M.; Ster, A.; Stoll, S. P.; Sugitate, T.; Sukhanov, A.; Sumita, T.; Sun, J.; Sziklai, J.; Takagui, E. M.; Takahara, A.; Taketani, A.; Tanaka, Y.; Taneja, S.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tennant, E.; Tieulent, R.; Timilsina, A.; Todoroki, T.; Tomášek, M.; Torii, H.; Towell, C. L.; Towell, R.; Towell, R. S.; Tserruya, I.; Tsuchimoto, Y.; Vale, C.; van Hecke, H. W.; Vargyas, M.; Vazquez-Zambrano, E.; Veicht, A.; Velkovska, J.; Vértesi, R.; Virius, M.; Voas, B.; Vrba, V.; Vznuzdaev, E.; Wang, X. R.; Watanabe, D.; Watanabe, K.; Watanabe, Y.; Watanabe, Y. S.; Wei, F.; Whitaker, S.; White, A. S.; White, S. N.; Winter, D.; Wolin, S.; Woody, C. L.; Wysocki, M.; Xia, B.; Xue, L.; Yalcin, S.; Yamaguchi, Y. L.; Yanovich, A.; Ying, J.; Yokkaichi, S.; Yoo, J. H.; Yoon, I.; You, Z.; Younus, I.; Yu, H.; Yushmanov, I. E.; Zajc, W. A.; Zelenski, A.; Zhou, S.; Zou, L.

    2016-03-07

    We measured open heavy flavor production in minimum bias Au + Au collisions at √s(NN) = 200 GeV via the yields of electrons from semileptonic decays of charm and bottom hadrons, using the PHENIX Collaboration at the Relativistic Heavy Ion Collider. In the past, heavy flavor electron measurements indicated substantial modification in the momentum distribution of the parent heavy quarks owing to the quark-gluon plasma created in these collisions. For the first time, using the PHENIX silicon vertex detector to measure precision displaced tracking, the relative contributions from charm and bottom hadrons to these electrons as a function of transverse momentum are measured in Au + Au collisions. Here, we compare the fraction of electrons from bottom hadrons to previously published results extracted from electron-hadron correlations in p + p collisions at √s(NN) = 200 GeV and find the fractions to be similar within the large uncertainties on both measurements for p(T) > 4 GeV/c. We use the bottom electron fractions in Au + Au and p + p along with the previously measured heavy flavor electron R(AA) to calculate the R(AA) for electrons from charm and bottom hadron decays separately. Finally, we find that electrons from bottom hadron decays are less suppressed than those from charm for the region 3 < p(T) < 4 GeV/c.

  2. CHARMe Commentary metadata for Climate Science: collecting, linking and sharing user feedback on climate datasets

    NASA Astrophysics Data System (ADS)

    Blower, Jon; Lawrence, Bryan; Kershaw, Philip; Nagni, Maurizio

    2014-05-01

    The research process can be thought of as an iterative activity, initiated based on prior domain knowledge, as well on a number of external inputs, and producing a range of outputs including datasets, studies and peer reviewed publications. These outputs may describe the problem under study, the methodology used, the results obtained, etc. In any new publication, the author may cite or comment other papers or datasets in order to support their research hypothesis. However, as their work progresses, the researcher may draw from many other latent channels of information. These could include for example, a private conversation following a lecture or during a social dinner; an opinion expressed concerning some significant event such as an earthquake or for example a satellite failure. In addition, other sources of information of grey literature are important public such as informal papers such as the arxiv deposit, reports and studies. The climate science community is not an exception to this pattern; the CHARMe project, funded under the European FP7 framework, is developing an online system for collecting and sharing user feedback on climate datasets. This is to help users judge how suitable such climate data are for an intended application. The user feedback could be comments about assessments, citations, or provenance of the dataset, or other information such as descriptions of uncertainty or data quality. We define this as a distinct category of metadata called Commentary or C-metadata. We link C-metadata with target climate datasets using a Linked Data approach via the Open Annotation data model. In the context of Linked Data, C-metadata plays the role of a resource which, depending on its nature, may be accessed as simple text or as more structured content. The project is implementing a range of software tools to create, search or visualize C-metadata including a JavaScript plugin enabling this functionality to be integrated in situ with data provider portals

  3. [Ingestion of an open safety pin--challenging treatment].

    PubMed

    DeRowe, Ari; Fishman, Gadi; Avni, Hadas; Reider, Ivgeny; Ogorek, Daniel

    2003-11-01

    A 9 month old girl at the emergency room appeared with an acute onset of restlessness, drooling and suspected foreign body ingestion. An X-Ray revealed an open safety pin in the child's upper aero-digestive tract. The source of the safety pin was a "Hamsah" good luck charm that was attached to her bed. Open safety pins in the aero-digestive tract are difficult to manage and great care must be taken during removal to prevent further injury. Parents should be counseled regarding the presence of safety pins in the child's surroundings in order to prevent such hazards.

  4. Charm quark system at the physical point of 2+1 flavor lattice QCD

    SciTech Connect

    Namekawa, Y.; Ukita, N.; Aoki, S.; Ishizuka, N.; Taniguchi, Y.; Ukawa, A.; Yoshie, T.; Ishikawa, K.-I.; Okawa, M.; Izubuchi, T.; Kanaya, K.; Kuramashi, Y.

    2011-10-01

    We investigate the charm quark system using the relativistic heavy quark action on 2+1 flavor PACS-CS configurations previously generated on 32{sup 3}x64 lattice. The dynamical up, down, and strange quark masses are set to the physical values by using the technique of reweighting to shift the quark-hopping parameters from the values employed in the configuration generation. At the physical point, the lattice spacing equals a{sup -1}=2.194(10) GeV and the spatial extent L=2.88(1) fm. The charm quark mass is determined by the spin-averaged mass of the 1S charmonium state, from which we obtain m{sub charm}{sup MS}({mu}=m{sub charm}{sup MS})=1.260(1)(6)(35) GeV, where the errors are due to our statistics, scale determination and renormalization factor. An additional systematic error from the heavy quark is of order {alpha}{sub s}{sup 2}f(m{sub Q}a)(a{Lambda}{sub QCD}), f(m{sub Q}a)(a{Lambda}{sub QCD}){sup 2}, which are estimated to be a percent level if the factor f(m{sub Q}a) analytic in m{sub Q}a is of order unity. Our results for the charmed and charmed-strange meson decay constants are f{sub D}=226(6)(1)(5) MeV, f{sub D{sub s}}=257(2)(1)(5) MeV, again up to the heavy quark errors of order {alpha}{sub s}{sup 2}f(m{sub Q}a)(a{Lambda}{sub QCD}), f(m{sub Q}a)(a{Lambda}{sub QCD}){sup 2}. Combined with the CLEO values for the leptonic decay widths, these values yield |V{sub cd}|=0.205(6)(1)(5)(9), |V{sub cs}|=1.00(1)(1)(3)(3), where the last error is because of the experimental uncertainty of the decay widths.

  5. Charm quark system at the physical point of 2+1 flavor lattice QCD

    SciTech Connect

    Izubuchi T.; Namekawa, Y.; Aoki, S.; Ishikawa, K.; Ishizuka, N.; Kanaya, K.; Kuramashi, Y.; Okawa, M.; Taniguchi, Y.; Ukawa, A.; Ukita, N.: Yoshie, T.

    2011-04-24

    We investigate the charm quark system using the relativistic heavy quark action on 2+1 flavor PACS-CS configurations previously generated on 32{sup 3} x 64 lattice. The dynamical up, down, and strange quark masses are set to the physical values by using the technique of reweighting to shift the quark-hopping parameters from the values employed in the configuration generation. At the physical point, the lattice spacing equals a{sup -1} = 2.194(10) GeV and the spatial extent L = 2.88(1) fm. The charm quark mass is determined by the spin-averaged mass of the 1S charmonium state, from which we obtain m{sub charm}{sup M{bar S}} ({mu} = m{sub charm}{sup M{bar S}}) = 1.260(1)(6)(35) GeV, where the errors are due to our statistics, scale determination and renormalization factor. An additional systematic error from the heavy quark is of order {alpha}{sub s}{sup 2}f(m{sub Q}a)(a{Lambda}{sub QCD}), f(m{sub Q}a)(a{Lambda}{sub QCD}){sup 2}, which are estimated to be a percent level if the factor f(m{sub Q}a) analytic in m{sub Q}a is of order unity. Our results for the charmed and charmed-strange meson decay constants are f{sub D} = 226(6)(1)(5) MeV, f{sub D}{sub s} = 257(2)(1)(5) MeV, again up to the heavy quark errors of order {alpha}{sub s}{sup 2}f(m{sub Q}a)(a{Lambda}{sub QCD}), f(m{sub Q}a)(a{Lambda}{sub QCD}){sup 2}. Combined with the CLEO values for the leptonic decay widths, these values yield |V{sub cd}| = 0.205(6)(1)(5)(9), |V{sub cs}| = 1.00(1)(1)(3)(3), where the last error is because of the experimental uncertainty of the decay widths.

  6. Reply to comment on ''New limits on intrinsic charm in the nucleon from global analysis of parton distribution''

    SciTech Connect

    Jimenez-Delgado, Pedro; Hobbs, Timothy J.; Londergan, J. T.; Melnitchouk, Wally

    2016-01-05

    We reply to the Comment of Brodsky and Gardner on our paper "New limits on intrinsic charm in the nucleon from global analysis of parton distributions" [Phys. Rev. Lett. 114, 082002 (2015)]. We address a number of incorrect claims made about our fitting methodology, and elaborate how global QCD analysis of all available high-energy data provides no evidence for a large intrinsic charm component of the nucleon.

  7. Masses of doubly charmed baryons in the extended on-mass-shell renormalization scheme

    NASA Astrophysics Data System (ADS)

    Sun, Zhi-Feng; Vacas, M. J. Vicente

    2016-05-01

    In this work, we investigate the mass corrections of the doubly charmed baryons up to N2L O in the extended-on-mass-shell (EOMS) renormalization scheme, comparing with the results of heavy baryon chiral perturbation theory. We find that the terms from the heavy baryon approach are a subset of those obtained in the EOMS scheme. By fitting the lattice data, we can determine the parameters m ˜, α , c1 and c7 from the Lagrangian, while in the heavy baryon approach no information on c1 can be obtained from the baryons mass. Correspondingly, the masses of mΞcc and mΩcc are predicted, in the EOMS scheme, extrapolating the results from different values of the charm quark and the pion masses of the lattice QCD calculations.

  8. Looking for intrinsic charm in the forward region at BNL RHIC and CERN LHC

    SciTech Connect

    Goncalves, V.; Ullrich, T.; Navarra, F.S.

    2010-04-21

    The complete understanding of the basic constituents of hadrons and the hadronic dynamics at high energies are two of the main challenges for the theory of strong interactions. In particular, the existence of intrinsic heavy quark components in the hadron wave function must be confirmed (or disproved). In this paper we propose a new mechanism for the production of D-mesons at forward rapidities based on the Color Glass Condensate (CGC) formalism and demonstrate that the resulting transverse momentum spectra are strongly dependent on the behavior of the charm distribution at large Bjorken x. Our results show clearly that the hypothesis of intrinsic charm can be tested in pp and p(d)A collisions at RHIC and LHC.

  9. Charm production in association with an electroweak gauge boson at the LHC.

    PubMed

    Stirling, W J; Vryonidou, E

    2012-08-24

    The production of charm quark jets in association with electroweak gauge bosons at the LHC can be used as a tool to constrain quark parton distribution functions (PDFs). Motivated by recent measurements at the Tevatron and LHC, we calculate cross sections for W/Z+c, comparing these to W/Z+jet, for various PDF sets. The cross-section differences can be understood in terms of the different underlying PDFs, with the strange quark distribution being particularly important for W+c production. We suggest measurements of appropriately defined ratios and comment on how these measurements at the LHC can be used to extract information on the strange and charm content of the proton at high Q(2) scales.

  10. Production of the X( 3872) in B-meson decay by the coalescence of charm mesons.

    PubMed

    Braaten, Eric; Kusunoki, Masaoki; Nussinov, Shmuel

    2004-10-15

    If the recently discovered charmonium state X( 3872) is a loosely bound S-wave molecule of the charm mesons D0 D(*0) or D(*0) D0, it can be produced in B-meson decay by the coalescence of charm mesons. If this coalescence mechanism dominates, the ratio of the differential rate for B+ -->D(0) D(* 0)K+ near the D0 D(*0) threshold and the rate for B+ -->XK+ is a function of the D0 D(*0) invariant mass and hadron masses only. The identification of the X( 3872) as a D0 D(*0)/D(*0)D0 molecule can be confirmed by observing an enhancement in the D0 D(*0) invariant mass distribution near the threshold. An estimate of the branching fraction for B+ -->XK+ is consistent with observations if X has quantum numbers J(PC)=1(++ ) and if J/psi pi(+) pi(-) is one of its major decay modes.

  11. Beauty-quark and charm-quark pair production asymmetries at LHCb

    NASA Astrophysics Data System (ADS)

    Gauld, Rhorry; Haisch, Ulrich; Pecjak, Ben D.; Re, Emanuele

    2015-08-01

    The LHCb Collaboration has recently performed a first measurement of the angular production asymmetry in the distribution of beauty quarks and antiquarks at a hadron collider. We calculate the corresponding standard model prediction for this asymmetry at fixed order in perturbation theory. Our results show good agreement with the data, which are provided differentially for three bins in the invariant mass of the b b ¯ system. We also present similar predictions for both beauty-quark and charm-quark final states within the LHCb acceptance for a collision energy of √{s }=13 TeV . We finally point out that a measurement of the ratio of the b b ¯ and c c ¯ cross sections may be useful for experimentally validating charm-tagging efficiencies.

  12. Precision Determination of the Small-x Gluon from Charm Production at LHCb

    NASA Astrophysics Data System (ADS)

    Gauld, Rhorry; Rojo, Juan

    2017-02-01

    The small-x gluon in global fits of parton distributions is affected by large uncertainties from the lack of direct experimental constraints. In this Letter, we provide a precision determination of the small-x gluon from the exploitation of forward charm production data provided by LHCb for three different center-of-mass (c.m.) energies: 5 TeV, 7 TeV, and 13 TeV. The LHCb measurements are included in the parton distribution function (PDF) fit by means of normalized distributions and cross-section ratios between data taken at different c.m. values, R13 /7 and R13 /5. We demonstrate that forward charm production leads to a reduction of the PDF uncertainties of the gluon down to x ≃10-6 by up to an order of magnitude, with implications for high-energy colliders, cosmic ray physics, and neutrino astronomy.

  13. Precision Determination of the Small-x Gluon from Charm Production at LHCb.

    PubMed

    Gauld, Rhorry; Rojo, Juan

    2017-02-17

    The small-x gluon in global fits of parton distributions is affected by large uncertainties from the lack of direct experimental constraints. In this Letter, we provide a precision determination of the small-x gluon from the exploitation of forward charm production data provided by LHCb for three different center-of-mass (c.m.) energies: 5 TeV, 7 TeV, and 13 TeV. The LHCb measurements are included in the parton distribution function (PDF) fit by means of normalized distributions and cross-section ratios between data taken at different c.m. values, R_{13/7} and R_{13/5}. We demonstrate that forward charm production leads to a reduction of the PDF uncertainties of the gluon down to x≃10^{-6} by up to an order of magnitude, with implications for high-energy colliders, cosmic ray physics, and neutrino astronomy.

  14. Development and implementation of (Q)SAR modeling within the CHARMMing Web-user interface

    PubMed Central

    Weidlich, Iwona E.; Pevzner, Yuri; Miller, Benjamin T.; Filippov, Igor V.; Woodcock, H. Lee; Brooks, Bernard R.

    2014-01-01

    Recent availability of large publicly accessible databases of chemical compounds and their biological activities (PubChem, ChEMBL) has inspired us to develop a Web-based tool for SAR and QSAR modeling to add to the services provided by CHARMMing (www.charmming.org). This new module implements some of the most recent advances in modern machine learning algorithms – Random Forest, Support Vector Machine (SVM), Stochastic Gradient Descent, Gradient Tree Boosting etc. A user can import training data from Pubchem Bioassay data collections directly from our interface or upload his or her own SD files which contain structures and activity information to create new models (either categorical or numerical). A user can then track the model generation process and run models on new data to predict activity. PMID:25362883

  15. Production of the excited charm mesons D1 and D2* at HERA

    NASA Astrophysics Data System (ADS)

    Abramowicz, H.; Abt, I.; Adamczyk, L.; Adamus, M.; Aggarwal, R.; Antonelli, S.; Antonioli, P.; Antonov, A.; Arneodo, M.; Arslan, O.; Aushev, V.; Aushev, Y.; Bachynska, O.; Bamberger, A.; Barakbaev, A. N.; Barbagli, G.; Bari, G.; Barreiro, F.; Bartosik, N.; Bartsch, D.; Basile, M.; Behnke, O.; Behr, J.; Behrens, U.; Bellagamba, L.; Bertolin, A.; Bhadra, S.; Bindi, M.; Blohm, C.; Bokhonov, V.; Bołd, T.; Bondarenko, K.; Boos, E. G.; Borras, K.; Boscherini, D.; Bot, D.; Brock, I.; Brownson, E.; Brugnera, R.; Brümmer, N.; Bruni, A.; Bruni, G.; Brzozowska, B.; Bussey, P. J.; Bylsma, B.; Caldwell, A.; Capua, M.; Carlin, R.; Catterall, C. D.; Chekanov, S.; Chwastowski, J.; Ciborowski, J.; Ciesielski, R.; Cifarelli, L.; Cindolo, F.; Contin, A.; Cooper-Sarkar, A. M.; Coppola, N.; Corradi, M.; Corriveau, F.; Costa, M.; D'Agostini, G.; Dal Corso, F.; del Peso, J.; Dementiev, R. K.; De Pasquale, S.; Derrick, M.; Devenish, R. C. E.; Dobur, D.; Dolgoshein, B. A.; Dolinska, G.; Doyle, A. T.; Drugakov, V.; Durkin, L. S.; Dusini, S.; Eisenberg, Y.; Ermolov, P. F.; Eskreys, A.; Fang, S.; Fazio, S.; Ferrando, J.; Ferrero, M. I.; Figiel, J.; Foster, B.; Gach, G.; Galas, A.; Gallo, E.; Garfagnini, A.; Geiser, A.; Gialas, I.; Gizhko, A.; Gladilin, L. K.; Gladkov, D.; Glasman, C.; Gogota, O.; Golubkov, Yu. A.; Göttlicher, P.; Grabowska-Bołd, I.; Grebenyuk, J.; Gregor, I.; Grigorescu, G.; Grzelak, G.; Gueta, O.; Guzik, M.; Gwenlan, C.; Haas, T.; Hain, W.; Hamatsu, R.; Hart, J. C.; Hartmann, H.; Hartner, G.; Hilger, E.; Hochman, D.; Hori, R.; Hüttmann, A.; Ibrahim, Z. A.; Iga, Y.; Ingbir, R.; Ishitsuka, M.; Jakob, H.-P.; Januschek, F.; Jones, T. W.; Jüngst, M.; Kadenko, I.; Kahle, B.; Kananov, S.; Kanno, T.; Karshon, U.; Karstens, F.; Katkov, I. I.; Kaur, M.; Kaur, P.; Keramidas, A.; Khein, L. A.; Kim, J. Y.; Kisielewska, D.; Kitamura, S.; Klanner, R.; Klein, U.; Koffeman, E.; Kondrashova, N.; Kononenko, O.; Kooijman, P.; Korol, Ie.; Korzhavina, I. A.; Kotański, A.; Kötz, U.; Kowalski, H.; Kuprash, O.; Kuze, M.; Lee, A.; Levchenko, B. B.; Levy, A.; Libov, V.; Limentani, S.; Ling, T. Y.; Lobodzinska, E.; Lohmann, W.; Löhr, B.; Lohrmann, E.; Long, K. R.; Longhin, A.; Lontkovskyi, D.; Lukina, O. Yu.; Maeda, J.; Magill, S.; Makarenko, I.; Malka, J.; Mankel, R.; Margotti, A.; Marini, G.; Martin, J. F.; Mastroberardino, A.; Mattingly, M. C. K.; Melzer-Pellmann, I.-A.; Mergelmeyer, S.; Miglioranzi, S.; Mohamad Idris, F.; Monaco, V.; Montanari, A.; Morris, J. D.; Mujkic, K.; Musgrave, B.; Nagano, K.; Namsoo, T.; Nania, R.; Nigro, A.; Ning, Y.; Nobe, T.; Notz, D.; Nowak, R. J.; Nuncio-Quiroz, A. E.; Oh, B. Y.; Okazaki, N.; Olkiewicz, K.; Onishchuk, Yu.; Papageorgiu, K.; Parenti, A.; Paul, E.; Pawlak, J. M.; Pawlik, B.; Pelfer, P. G.; Pellegrino, A.; Perlański, W.; Perrey, H.; Piotrzkowski, K.; Pluciński, P.; Pokrovskiy, N. S.; Polini, A.; Proskuryakov, A. S.; Przybycień, M.; Raval, A.; Reeder, D. D.; Reisert, B.; Ren, Z.; Repond, J.; Ri, Y. D.; Robertson, A.; Roloff, P.; Rubinsky, I.; Ruspa, M.; Sacchi, R.; Samson, U.; Sartorelli, G.; Savin, A. A.; Saxon, D. H.; Schioppa, M.; Schlenstedt, S.; Schleper, P.; Schmidke, W. B.; Schneekloth, U.; Schönberg, V.; Schörner-Sadenius, T.; Schwartz, J.; Sciulli, F.; Shcheglova, L. M.; Shehzadi, R.; Shimizu, S.; Singh, I.; Skillicorn, I. O.; Słomiński, W.; Smith, W. H.; Sola, V.; Solano, A.; Son, D.; Sosnovtsev, V.; Spiridonov, A.; Stadie, H.; Stanco, L.; Stefaniuk, N.; Stern, A.; Stewart, T. P.; Stifutkin, A.; Stopa, P.; Suchkov, S.; Susinno, G.; Suszycki, L.; Sztuk-Dambietz, J.; Szuba, D.; Szuba, J.; Tapper, A. D.; Tassi, E.; Terrón, J.; Theedt, T.; Tiecke, H.; Tokushuku, K.; Tomaszewska, J.; Trusov, V.; Tsurugai, T.; Turcato, M.; Turkot, O.; Tymieniecka, T.; Vázquez, M.; Verbytskyi, A.; Viazlo, O.; Vlasov, N. N.; Walczak, R.; Wan Abdullah, W. A. T.; Whitmore, J. J.; Wichmann, K.; Wiggers, L.; Wing, M.; Wlasenko, M.; Wolf, G.; Wolfe, H.; Wrona, K.; Yagües-Molina, A. G.; Yamada, S.; Yamazaki, Y.; Yoshida, R.; Youngman, C.; Zabiegalov, O.; Żarnecki, A. F.; Zawiejski, L.; Zenaiev, O.; Zeuner, W.; Zhautykov, B. O.; Zhmak, N.; Zichichi, A.; Zolkapli, Z.; Zotkin, D. S.; ZEUS Collaboration

    2013-01-01

    The production of the excited charm mesons D1(2420) and D2*(2460) in ep collisions has been measured with the ZEUS detector at HERA using an integrated luminosity of 373 pb. The masses of the neutral and charged states, the widths of the neutral states, and the helicity parameter of D1(2420 were determined and compared with other measurements and with theoretical expectations. The measured helicity parameter of the D10 allows for some mixing of S- and D-waves in its decay to Dπ∓. The result is also consistent with a pure D-wave decay. Ratios of branching fractions of the two decay modes of the D2*(2460 and D2*(2460 states were measured and compared with previous measurements. The fractions of charm quarks hadronising into D1 and D2* were measured and are consistent with those obtained in e+e- annihilations.

  16. [Post-traumatic brain injury behavioural sequelae: the man who lost his charm].

    PubMed

    Mattos, Paulo; Saboya, Eloisa; Araujo, Cátia

    2002-06-01

    We portray a case of traumatic brain injury followed by symptoms of disexecutive or frontal lobe syndrome: apathy, lack of pragmatism and loss of previous abilities, specially those concerning social interaction - in particular with opposite sex - resulting in impairment of his characteristic charm. The results of the neuropsychological examination included retrieval anemic deficits with normal recognition, impaired motor dexterity and cognitive flexibility in the presence of normal intelligence. The cognitive-behavioural symptomatology contrasted with a normal neurologic examination.

  17. Measurements of charm meson production in 10.5 GeV electron-positron annihilations

    NASA Astrophysics Data System (ADS)

    Johnson, Edward Eric

    A study of charm meson production in e+ e- γ* --> cc¯ events at s = 10.5 GeV is presented. Included are measurements of the fragmentation distributions of D+s and D*+s , the vector to pseudoscalar production ratio for Ds, and the D*+ spin alignment. A description of the new trigger designed for the CLEO III detector is also provided.

  18. Charmed spectroscopy from a nonperturbatively determined relativistic heavy quark action in full QCD

    SciTech Connect

    Huey-Wen Lin

    2006-07-28

    We present a preliminary calculation of the charmed meson spectrum using the 2+1 flavor domain wall fermion lattice configurations currently being generated by the RBC and UKQCD collaborations. The calculation is performed using the 3-parameter, relativistic heavy quark action with nonperturbatively determined coefficients. We will also demonstrate a step-scaling procedure for determining these coefficients nonperturbatively using a series of quenched, gauge field ensembles generated for three different lattice spacings.

  19. Web-Based Computational Chemistry Education with CHARMMing II: Coarse-Grained Protein Folding

    PubMed Central

    Schalk, Vinushka; Lerner, Michael G.; Woodcock, H. Lee; Brooks, Bernard R.

    2014-01-01

    A lesson utilizing a coarse-grained (CG) G-like model has been implemented into the CHARMM INterface and Graphics (CHARMMing) web portal (www.charmming.org) to the Chemistry at HARvard Macromolecular Mechanics (CHARMM) molecular simulation package. While widely used to model various biophysical processes, such as protein folding and aggregation, CG models can also serve as an educational tool because they can provide qualitative descriptions of complex biophysical phenomena for a relatively cheap computational cost. As a proof of concept, this lesson demonstrates the construction of a CG model of a small globular protein, its simulation via Langevin dynamics, and the analysis of the resulting data. This lesson makes connections between modern molecular simulation techniques and topics commonly presented in an advanced undergraduate lecture on physical chemistry. It culminates in a straightforward analysis of a short dynamics trajectory of a small fast folding globular protein; we briefly describe the thermodynamic properties that can be calculated from this analysis. The assumptions inherent in the model and the data analysis are laid out in a clear, concise manner, and the techniques used are consistent with those employed by specialists in the field of CG modeling. One of the major tasks in building the G-like model is determining the relative strength of the nonbonded interactions between coarse-grained sites. New functionality has been added to CHARMMing to facilitate this process. The implementation of these features into CHARMMing helps automate many of the tedious aspects of constructing a CG G model. The CG model builder and its accompanying lesson should be a valuable tool to chemistry students, teachers, and modelers in the field. PMID:25058338

  20. Neutrino Production of a Charmed Meson and the Transverse Spin Structure of the Nucleon.

    PubMed

    Pire, B; Szymanowski, L

    2015-08-28

    We calculate the amplitude for exclusive neutrino production of a charmed meson on an unpolarized target in the collinear QCD approach, where generalized parton distributions (GPDs) factorize from perturbatively calculable coefficient functions. We demonstrate that the transversity chiral odd GPDs contribute to the transverse cross section if the hard amplitude is calculated up to order m_{c}/Q. We show how to access these GPDs through the azimuthal dependence of the νN→μ^{-}D^{+}N differential cross section.

  1. Web-based computational chemistry education with CHARMMing II: Coarse-grained protein folding.

    PubMed

    Pickard, Frank C; Miller, Benjamin T; Schalk, Vinushka; Lerner, Michael G; Woodcock, H Lee; Brooks, Bernard R

    2014-07-01

    A lesson utilizing a coarse-grained (CG) Gō-like model has been implemented into the CHARMM INterface and Graphics (CHARMMing) web portal (www.charmming.org) to the Chemistry at HARvard Macromolecular Mechanics (CHARMM) molecular simulation package. While widely used to model various biophysical processes, such as protein folding and aggregation, CG models can also serve as an educational tool because they can provide qualitative descriptions of complex biophysical phenomena for a relatively cheap computational cost. As a proof of concept, this lesson demonstrates the construction of a CG model of a small globular protein, its simulation via Langevin dynamics, and the analysis of the resulting data. This lesson makes connections between modern molecular simulation techniques and topics commonly presented in an advanced undergraduate lecture on physical chemistry. It culminates in a straightforward analysis of a short dynamics trajectory of a small fast folding globular protein; we briefly describe the thermodynamic properties that can be calculated from this analysis. The assumptions inherent in the model and the data analysis are laid out in a clear, concise manner, and the techniques used are consistent with those employed by specialists in the field of CG modeling. One of the major tasks in building the Gō-like model is determining the relative strength of the nonbonded interactions between coarse-grained sites. New functionality has been added to CHARMMing to facilitate this process. The implementation of these features into CHARMMing helps automate many of the tedious aspects of constructing a CG Gō model. The CG model builder and its accompanying lesson should be a valuable tool to chemistry students, teachers, and modelers in the field.

  2. Rates for inclusive deep-inelastic electroproduction of charm quarks at HERA

    NASA Astrophysics Data System (ADS)

    Riemersma, S.; Smith, J.; van Neerven, W. L.

    1995-02-01

    The coefficient functions for heavy flavour production in deeply inelastic electron hadron scattering have been calculated previously. These functions are so long that no analytic expressions could be published. Therefore we have tabulated them as two-dimensional arrays as is often done for the scale dependent parton densities. Using this computer program we present event rates for charm production at HERA in bins of x and Q2. These rates are insensitive to variations in the factorization and renormalization scale μ.

  3. Resonant scattering and charm showers in ultrahigh-energy neutrino interactions

    NASA Technical Reports Server (NTRS)

    Wilczek, F.

    1985-01-01

    Electron antineutrinos with energy of about 7 x 10 to the 6th GeV have much-enhanced cross sections due to W-boson production off electrons. Possible signals due to cosmic-ray sources are estimated. Higher-energy antineutrinos can efficiently produce a W accompanied by radiation. Another possibility, which could lead to shadowing at modest depths, is resonant production of a charged Higgs particle. The importance of muon production by charm showers in rock is pointed out.

  4. Line shapes of the exotic charm-anticharm mesons X(3872) and Z(4430)

    NASA Astrophysics Data System (ADS)

    Lu, Meng

    The B-factory experiments have recently discovered a series of new cc mesons, including the X(3872) and the first manifestly exotic meson Z +/-(4430). The proximity of the mass of the X to the D*0D 0 threshold has motivated its identification as a loosely-bound hadronic molecule whose constituents are a superposition of the charm mesons pairs D*0D 0 and D0D* 0. Factorization formulas for its line shapes are derived by taking advantage of the universality of S-wave resonances near a 2-particle threshold and by including the effects from the nonzero width of D* meson and the inelastic scattering channels of the charm mesons. The best fit to the line shapes of X in the J/psipi +pi- and D0 D0pi0 channels measured by the Belle Collaboration corresponds to the X being a bound state whose mass is just below the D*0 D0 threshold. The differences between the line shapes of X produced in B+ decays and B0 decays as well as in decay channels J/psipi+pi-, J /psipi+pi-pi0 , and D0D 0pi0 are further derived by taking into account the effects from the closeby channel composed of charged charm mesons. A more speculative application of the universality of S-wave resonances near a 2-particle threshold is to the Z+/-(4430), which is interpreted as a charm meson molecule composed of a superposition of D+1D*0 and D*+D01 . The small ratio of the binding energy of the Z + to the width of its constituent D1 is exploited to obtained simple predictions for its line shapes in the channels psi(2S)pi + and D*D*pi.

  5. Measurement of charmed meson azimuthal anisotropy in Au+Au collisions at √SNN = 200 GeV at RHIC

    NASA Astrophysics Data System (ADS)

    Lomnitz, Michael R.

    Previous measurements of collective motion (flow) in light quarks (u,d,s) at RHIC suggest that partonic collectivity has been achieved in the collisions. These results also seem to suggest that the dense matter produced during collisions thermalizes at very high temperatures and form a strongly coupled Quark Gluon Plasma (QGP) whose behavior is compatible with viscous hydrodynamic models with a low shear-viscosity-to-entropy-density (eta/s) ratio. The question remains as to whether or not this collective behavior applies to heavy flavor and a detailed description of the behavior of heavy flavor is essential to understand the underlying dynamics, distinguish between different energy loss mechanisms, and constrain theoretical models. In particular, if the elliptic flow of charm quarks is found to be comparable to that of lighter matter this would be indicative of frequent interactions between all quarks and would strongly support the discovery of QGP at RHIC. Understanding how this collective behavior emerges from the individual interactions between partonic matter as well as the differences between quarks species will need to be investigated further to understand this new state of matter and is at the center of the RHIC scientific program. However, precise measurements of open heavy flavor are difficult to obtain due to the low yields and short lifespan of heavy hadrons. One approach to reduce this combinatorial background and reconstruct open heavy flavor in heavy ion collisions involves distinguishing between an event's primary vertex and a hadron's decay vertex through direct topological reconstruction from the decay products. The Heavy Flavor Tracker (HFT) silicon vertex upgrade for the STAR experiment, which made its debut during the 2014 year's run together with the Muon Telescope Detector (MTD), has vastly improved the experiment's heavy flavor capabilities making STAR an ideal detector to study the hot and dense matter created in heavy ion collisions. Taking

  6. Observation of the production of a W boson in association with a single charm quark.

    PubMed

    Aaltonen, T; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Appel, J A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Auerbach, B; Aurisano, A; Azfar, F; Badgett, W; Bae, T; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartos, P; Bauce, M; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A; Bland, K R; Blumenfeld, B; Bocci, A; Bodek, A; Bortoletto, D; Boudreau, J; Boveia, A; Brigliadori, L; Bromberg, C; Brucken, E; Budagov, J; Burkett, K; Busetto, G; Bussey, P; Butti, P; Buzatu, A; Calamba, A; Camarda, S; Campanelli, M; Canelli, F; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Cho, K; Chou, J P; Chokheli, D; Clark, A; Clarke, C; Convery, M E; Conway, J; Corbo, M; Cordelli, M; Cox, C A; Cox, D J; Cremonesi, M; Cuevas, J; Culbertson, R; d'Ascenzo, N; Datta, M; Demortier, L; Deninno, M; Devoto, F; d'Errico, M; Di Canto, A; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dorigo, M; Driutti, A; Ebina, K; Edgar, R; Elagin, A; Erbacher, R; Errede, S; Esham, B; Eusebi, R; Farrington, S; Fernández Ramos, J P; Field, R; Flanagan, G; Forrest, R; Franklin, M; Freeman, J C; Funakoshi, Y; Garfinkel, A F; Garosi, P; Gerberich, H; Gerchtein, E; Giagu, S; Giakoumopoulou, V; Gibson, K; Ginsburg, C M; Giokaris, N; Giromini, P; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldin, D; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González López, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gramellini, E; Grinstein, S; Grosso-Pilcher, C; Group, R C; Guimaraes da Costa, J; Hahn, S R; Han, J Y; Happacher, F; Hara, K; Hare, M; Harr, R F; Harrington-Taber, T; Hatakeyama, K; Hays, C; Heinrich, J; Herndon, M; Hocker, A; Hopkins, W; Hou, S; Hughes, R E; Hurwitz, M; Husemann, U; Huston, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jindariani, S; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kambeitz, M; Kamon, T; Karchin, P E; Kasmi, A; Kato, Y; Ketchum, W; Keung, J; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kim, Y J; Kimura, N; Kirby, M; Klimenko, S; Knoepfel, K; Kondo, K; Kong, D J; Konigsberg, J; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Kruse, M; Kuhr, T; Kurata, M; Kwang, S; Laasanen, A T; Lammel, S; Lancaster, M; Lannon, K; Latino, G; Lee, H S; Lee, J S; Leone, S; Lewis, J D; Limosani, A; Lipeles, E; Liu, H; Liu, Q; Liu, T; Lockwitz, S; Loginov, A; Lucchesi, D; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lys, J; Lysak, R; Madrak, R; Maestro, P; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Martínez, M; Matera, K; Mattson, M E; Mazzacane, A; Mazzanti, P; McNulty, R; Mehta, A; Mehtala, P; Mesropian, C; Miao, T; Mietlicki, D; Mitra, A; Miyake, H; Moed, S; Moggi, N; Moon, C S; Moore, R; Morello, M J; Mukherjee, A; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nakano, I; Napier, A; Nett, J; Neu, C; Nigmanov, T; Nodulman, L; Noh, S Y; Norniella, O; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Ortolan, L; Pagliarone, C; Palencia, E; Palni, P; Papadimitriou, V; Parker, W; Pauletta, G; Paulini, M; Paus, C; Phillips, T J; Piacentino, G; Pianori, E; Pilot, J; Pitts, K; Plager, C; Pondrom, L; Poprocki, S; Potamianos, K; Prokoshin, F; Pranko, A; Ptohos, F; Punzi, G; Ranjan, N; Redondo Fernández, I; Renton, P; Rescigno, M; Riddick, T; Rimondi, F; Ristori, L; Robson, A; Rodriguez, T; Rolli, S; Ronzani, M; Roser, R; Rosner, J L; Ruffini, F; Ruiz, A; Russ, J; Rusu, V; Safonov, A; Sakumoto, W K; Sakurai, Y; Santi, L; Sato, K; Saveliev, V; Savoy-Navarro, A; Schlabach, P; Schmidt, E E; Schwarz, T; Scodellaro, L; Seidel, S; Seiya, Y; Semenov, A; Sforza, F; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shochet, M; Shreyber-Tecker, I; Simonenko, A; Sinervo, P; Sliwa, K; Smith, J R; Snider, F D; Sorin, V; Song, H; Stancari, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Sudo, Y; Sukhanov, A; Suslov, I; Takemasa, K; Takeuchi, Y; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thomson, E; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Trovato, M; Ukegawa, F; Uozumi, S; Vázquez, F; Velev, G; Vellidis, C; Vernieri, C; Vidal, M; Vilar, R; Vizán, J; Vogel, M; Volpi, G; Wagner, P; Wallny, R; Wang, S M; Warburton, A; Waters, D; Wester, W C; Whiteson, D; Wicklund, A B; Wilbur, S; Williams, H H; Wilson, J S; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, H; Wright, T; Wu, X; Wu, Z; Yamamoto, K; Yamato, D; Yang, T; Yang, U K; Yang, Y C; Yao, W-M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Zanetti, A M; Zeng, Y; Zhou, C; Zucchelli, S

    2013-02-15

    The first observation of the production of a W boson with a single charm quark (c) jet in pp[over ¯] collisions at √s=1.96  TeV is reported. The analysis uses data corresponding to 4.3  fb(-1), recorded with the CDF II detector at the Fermilab Tevatron. Charm quark candidates are selected through the identification of an electron or muon from charm-hadron semileptonic decay within a hadronic jet, and a Wc signal is observed with a significance of 5.7 standard deviations. The production cross section σ(Wc)(p(Tc)>20  GeV/c,|η(c)|<1.5)×B(W→ℓν) is measured to be 13.6(-3.1)(+3.4)  pb and is in agreement with theoretical expectations. From this result the magnitude of the quark-mixing matrix element V(cs) is derived, |V(cs)|=1.08±0.16 along with a lower limit of |V(cs)|>0.71 at the 95% confidence level, assuming that the Wc production through c to s quark coupling is dominant.

  7. Strong decays of excited 1D charmed(-strange) mesons in the covariant oscillator quark model

    NASA Astrophysics Data System (ADS)

    Maeda, Tomohito; Yoshida, Kento; Yamada, Kenji; Ishida, Shin; Oda, Masuho

    2016-05-01

    Recently observed charmed mesons, D1* (2760), D3* (2760) and charmed-strange mesons, Ds1 * (2860), Ds3 * (2860), by BaBar and LHCb collaborations are considered to be plausible candidates for c q ¯ 13 DJ (q = u, d, s) states. We calculate the strong decays with one pion (kaon) emission of these states including well-established 1S and 1P charmed(-strange) mesons within the framework of the covariant oscillator quark model. The results obtained are compared with the experimental data and the typical nonrelativistic quark-model calculations. Concerning the results for 1S and 1P states, we find that, thanks to the relativistic effects of decay form factors, our model parameters take reasonable values, though our relativistic approach and the nonrelativistic quark model give similar decay widths in agreement with experiment. While the results obtained for 13 DJ=1,3 states are roughly consistent with the present data, they should be checked by the future precise measurement.

  8. Exploring the role of the charm quark in the Δ I =1 /2 rule

    NASA Astrophysics Data System (ADS)

    Endress, E.; Pena, C.

    2014-11-01

    We study the dependence on the charm quark mass of the leading-order low-energy constants of the Δ S =1 effective Hamiltonian, with the aim of elucidating the role of the charm mass scale in the Δ I =1 /2 rule for K →π π decay. To that purpose, finite-volume chiral perturbation theory predictions are matched to QCD simulations, performed in the quenched approximation with overlap fermions and mu=md=ms . Light quark masses range between a few MeV up to around one third of the physical strange mass, while charm masses range between mu and a few hundred MeV. Novel variance reduction techniques are used to obtain a signal for penguin contractions in correlation functions involving four-fermion operators. The important role played by the subtractions required to construct renormalized amplitudes for mc≠mu is discussed in detail. We find evidence that the moderate enhancement of the Δ I =1 /2 amplitude previously found in the GIM limit mc=mu increases only slightly as mc abandons the light quark regime. Hints of a stronger enhancement for even higher values of mc are also found, but their confirmation requires a better understanding of the subtraction terms.

  9. Formation spectra of charmed meson-nucleus systems using an antiproton beam

    NASA Astrophysics Data System (ADS)

    Yamagata-Sekihara, J.; Garcia-Recio, C.; Nieves, J.; Salcedo, L. L.; Tolos, L.

    2016-03-01

    We investigate the structure and formation of charmed meson-nucleus systems, with the aim of understanding the charmed meson-nucleon interactions and the properties of the charmed mesons in the nuclear medium. The D bar mesic nuclei are of special interest, since they have tiny decay widths due to the absence of strong decays for the D bar N pair. Employing an effective model for the D bar N and DN interactions and solving the Klein-Gordon equation for D bar and D in finite nuclei, we find that the D--11B system has 1s and 2p mesic nuclear states and that the D0-11B system binds in a 1s state. In view of the forthcoming experiments by the PANDA and CBM Collaborations at the future FAIR facility and the J-PARC upgrade, we calculate the formation spectra of the [D--11B] and [D0-11B] mesic nuclei for an antiproton beam on a 12C target. Our results suggest that it is possible to observe the 2pD- mesic nuclear state with an appropriate experimental setup.

  10. Cosmic expansion history from SNe Ia data via information field theory: the charm code

    NASA Astrophysics Data System (ADS)

    Porqueres, Natàlia; Enßlin, Torsten A.; Greiner, Maksim; Böhm, Vanessa; Dorn, Sebastian; Ruiz-Lapuente, Pilar; Manrique, Alberto

    2017-03-01

    We present charm (cosmic history agnostic reconstruction method), a novel inference algorithm that reconstructs the cosmic expansion history as encoded in the Hubble parameter H(z) from SNe Ia data. The novelty of the approach lies in the usage of information field theory, a statistical field theory that is very well suited for the construction of optimal signal recovery algorithms. The charm algorithm infers non-parametrically s(a) = ln(ρ(a) /ρcrit0), the density evolution which determines H(z), without assuming an analytical form of ρ(a) but only its smoothness with the scale factor a = (1 + z)-1. The inference problem of recovering the signal s(a) from the data is formulated in a fully Bayesian way. In detail, we have rewritten the signal as the sum of a background cosmology and a perturbation. This allows us to determine the maximum a posteriory estimate of the signal by an iterative Wiener filter method. Applying charm to the Union2.1 supernova compilation, we have recovered a cosmic expansion history that is fully compatible with the standard ΛCDM cosmological expansion history with parameter values consistent with the results of the Planck mission.

  11. Production of charmed baryons in p ¯p collisions close to their thresholds

    NASA Astrophysics Data System (ADS)

    Haidenbauer, J.; Krein, G.

    2017-01-01

    Cross sections for the charm-production reactions p ¯p →Λ¯c-Σc+, Σ¯cΣc, Ξ¯cΞc, and Ξ¯c 'Ξc' are presented, for energies near their respective thresholds. The results are based on a calculation performed in the meson-exchange framework in close analogy to earlier studies of the Jülich group on the strangeness-production reactions p ¯p →Λ ¯Σ , Σ ¯Σ , Ξ ¯Ξ by connecting the two sectors via SU(4) flavor symmetry. The cross sections are found to be in the order of 0.1 - 1 μ b at energies of 100 MeV above the respective thresholds, for all considered channels. Complementary to meson exchange, where the charmed baryons are produced by the exchange of D and D* mesons, a charm-production potential derived in a quark model is employed for assessing uncertainties. The cross sections predicted within that picture turn out to be significantly smaller.

  12. Fragment-based docking: development of the CHARMMing Web user interface as a platform for computer-aided drug design.

    PubMed

    Pevzner, Yuri; Frugier, Emilie; Schalk, Vinushka; Caflisch, Amedeo; Woodcock, H Lee

    2014-09-22

    Web-based user interfaces to scientific applications are important tools that allow researchers to utilize a broad range of software packages with just an Internet connection and a browser. One such interface, CHARMMing (CHARMM interface and graphics), facilitates access to the powerful and widely used molecular software package CHARMM. CHARMMing incorporates tasks such as molecular structure analysis, dynamics, multiscale modeling, and other techniques commonly used by computational life scientists. We have extended CHARMMing's capabilities to include a fragment-based docking protocol that allows users to perform molecular docking and virtual screening calculations either directly via the CHARMMing Web server or on computing resources using the self-contained job scripts generated via the Web interface. The docking protocol was evaluated by performing a series of "re-dockings" with direct comparison to top commercial docking software. Results of this evaluation showed that CHARMMing's docking implementation is comparable to many widely used software packages and validates the use of the new CHARMM generalized force field for docking and virtual screening.

  13. Open Content in Open Context

    ERIC Educational Resources Information Center

    Kansa, Sarah Whitcher; Kansa, Eric C.

    2007-01-01

    This article presents the challenges and rewards of sharing research content through a discussion of Open Context, a new open access data publication system for field sciences and museum collections. Open Context is the first data repository of its kind, allowing self-publication of research data, community commentary through tagging, and clear…

  14. Analysis of strong decays of the charmed mesons DJ(2580), DJ*(2650), DJ(2740), DJ*(2760), DJ(3000), DJ*(3000)

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-Gang

    2013-12-01

    In this article, we tentatively identify the charmed mesons DJ(2580), DJ*(2650), DJ(2740), DJ*(2760), DJ(3000), and DJ*(3000) observed by the LHCb Collaboration according to their spin, parity, and masses. Then we study their strong decays to the ground state charmed mesons plus light pseudoscalar mesons with the heavy meson effective theory in the leading order approximation, and we obtain explicit expressions of the decay widths. The ratios among the decay widths can be used to confirm or reject the assignments of the newly observed charmed mesons. The strong coupling constants in the decay widths can be fitted to the experimental data in the future at the LHCb, BESIII, KEK-B, and P¯ANDA.

  15. Strong Decays of Charm Mesons D*1(2680), D*3(2760), D*2(3000)

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-Gang

    2016-12-01

    In this article, we assign the higher charm mesons D*1(2680), D*3(2760) and D*2(3000) to be the 2S 1-, 1D 3- and 1F 2+ states, respectively, and study the two-body strong decays to the ground state charm mesons and light pseudoscalar mesons with the heavy meson effective theory. We obtain the ratios among the strong decays, which can be confronted to the experimental data in the future and shed light on the nature of those higher charm mesons. Supported by National Natural Science Foundation of China under Grant No. 11375063, and Natural Science Foundation of Hebei Province under Grant No. A2014502017

  16. {upsilon} decay to two charm-quark jets as a probe of the color-octet mechanism

    SciTech Connect

    Zhang Yujie; Chao Kuangta

    2008-11-01

    We calculate the decay rate of bottomonium to two charm-quark jets {upsilon}{yields}cc at the tree level and one-loop level including color-singlet and color-octet bb annihilations. We find that the short-distance coefficient of the color-octet piece is much larger than the color-singlet piece, and that the QCD correction will change the end point behavior of the charm quark jet. The color-singlet piece is strongly affected by the one-loop QCD correction. In contrast, the QCD correction to the color-octet piece is weak. Once the experiment can measure the branching ratio and energy distribution of the two charm-quark jets in the {upsilon} decay, the result can be used to test the color-octet mechanism or give a strong constraint on the color-octet matrix elements.

  17. Modeling of "Stripe" Wave Phenomena Seen by the CHARM II and ACES Sounding Rockets

    NASA Astrophysics Data System (ADS)

    Dombrowski, M. P.; Labelle, J. W.

    2010-12-01

    Two recent sounding-rocket missions—CHARM II and ACES—have been launched from Poker Flat Research Range, carrying the Dartmouth High-Frequency Experiment (HFE) among their primary instruments. The HFE is a receiver system which effectively yields continuous (100% duty cycle) E-field waveform measurements up to 5 MHz. The CHARM II sounding rocket was launched 9:49 UT on 15 February 2010 into a substorm, while the ACES mission consisted of two rockets, launched into quiet aurora at 9:49 and 9:50 UT on 29 January 2009. At approximately 350 km on CHARM II and the ACES High-Flyer, the HFE detected short (~2s) bursts of broadband (200-500 kHz) noise with a 'stripe' pattern of nulls imposed on it. These nulls have 10 to 20 kHz width and spacing, and many show a regular, non-linear frequency-time relation. These events are different from the 'stripes' discussed by Samara and LaBelle [2006] and Colpitts et al. [2010], because of the density of the stripes, the non-linearity, and the appearance of being an absorptive rather than emissive phenomenon. These events are similar to 'stripe' features reported by Brittain et al. [1983] in the VLF range, explained as an interference pattern between a downward-traveling whistler-mode wave and its reflection off the bottom of the ionosphere. Following their analysis method, we modeled our stripes as higher-frequency interfering whistlers reflecting off of a density gradient. This model predicts the near-hyperbolic frequency-time curves and high density of the nulls, and therefore shows promise at explaining the new observations.

  18. Gluon and charm content of the {eta}{sup {prime}} meson and instantons

    SciTech Connect

    Shuryak, E.V. |; Zhitnitsky, A.R. |

    1998-02-01

    Motivated by recent CLEO measurements of the B{r_arrow}{eta}{sup {prime}}K decay, we evaluate the gluon and charm content of the {eta}{sup {prime}} meson using the interacting instanton liquid model of the QCD vacuum. Our main result is {l_angle}0{vert_bar}g{sup 3}f{sup abc}G{sub {mu}{nu}}{sup a}{tilde G}{sub {nu}{alpha}}{sup b}G{sub {alpha}{mu}}{sup c}{vert_bar}{eta}{sup {prime}}{r_angle}={minus}(2.3{endash}3.3) GeV{sup 2}{times}{l_angle}0{vert_bar}g{sup 2}G{sub {mu}{nu}}{sup a}{tilde G}{sub {mu}{nu}}{sup a}{vert_bar}{eta}{sup {prime}}{r_angle}. It is very large due to the strong field of small-size instantons. We show that it provides quantitative explanations of the CLEO data on the B{r_arrow}{eta}{sup {prime}}K decay rate (as well as the inclusive process B{r_arrow}{eta}{sup {prime}}+X), via a virtual Cabibbo-unsuppressed decay into a {bar c}c pair which then becomes {eta}{sup {prime}}. If so, a significant charm component may be present in other hadrons also: We briefly discuss the contribution of the charmed quark to the {ital polarized} deep-inelastic scattering on a proton. {copyright} {ital 1998} {ital The American Physical Society}

  19. Even- and Odd-Parity Charmed Meson Masses in Heavy Hadron Chiral Perturbation Theory

    SciTech Connect

    Thomas Mehen; Roxanne Springer

    2005-03-01

    We derive mass formulae for the ground state, J{sup P} = 0{sup -} and 1{sup -}, and first excited even-parity, J{sup P} = 0{sup +} and 1{sup +}, charmed mesons including one loop chiral corrections and {Omicron}(1/m{sub c}) counterterms in heavy hadron chiral perturbation theory. We show a variety of fits to the current data. We find that certain parameter relations in the parity doubling model are not renormalized at one loop, providing a natural explanation for the equality of the hyperfine splittings of ground state and excited doublets.

  20. Search for rare and forbidden Charm Meson decays D0 --> Vl+l- and hhll.

    PubMed

    Aitala, E M; Amato, S; Anjos, J C; Appel, J A; Ashery, D; Banerjee, S; Bediaga, I; Blaylock, G; Bracker, S B; Burchat, P R; Burnstein, R A; Carter, T; Carvalho, H S; Copty, N K; Cremaldi, L M; Darling, C; Denisenko, K; Devmal, S; Fernandez, A; Fox, G F; Gagnon, P; Gobel, C; Gounder, K; Halling, A M; Herrera, G; Hurvits, G; James, C; Kasper, P A; Kwan, S; Langs, D C; Leslie, J; Lundberg, B; Magnin, J; MayTal-Beck, S; Meadows, B; de Mello Neto, J R; Mihalcea, D; Milburn, R H; de Miranda, J M; Napier, A; Nguyen, A; d'Oliveira, A B; O'Shaughnessy, K; Peng, K C; Perera, L P; Purohit, M V; Quinn, B; Radeztsky, S; Rafatian, A; Reay, N W; Reidy, J J; dos Reis, A C; Rubin, H A; Sanders, D A; Santha, A K; Santoro, A F; Schwartz, A J; Sheaff, M; Sidwell, R A; Slaughter, A J; Sokoloff, M D; Solano, J; Stanton, N R; Stefanski, R J; Stenson, K; Summers, D J; Takach, S; Thorne, K; Tripathi, A K; Watanabe, S; Weiss-Babai, R; Wiener, J; Witchey, N; Wolin, E; Yang, S M; Yi, D; Yoshida, S; Zaliznyak, R; Zhang, C

    2001-04-30

    We report results of a search for flavor-changing neutral current (FCNC), lepton flavor, and lepton-number violating decays of the D0 (and its antiparticle) into three and four bodies. Using data from Fermilab charm hadroproduction experiment E791, we examine modes with two leptons (muons or electrons) and a rho(0), K( *0), or straight phi vector meson or a nonresonant pi(pi), Kpi, or KK pair of pseudoscalar mesons. No evidence for any of these decays is found. Therefore, we present branching-fraction upper limits at 90% confidence level for the 27 decay modes examined (18 new).

  1. Automation, Operation, and Data Analysis in the Cryogenic, High Accuracy, Refraction Measuring System (CHARMS)

    NASA Technical Reports Server (NTRS)

    Frey, Bradley; Leviton, Duoglas

    2005-01-01

    The Cryogenic High Accuracy Refraction Measuring System (CHARMS) at NASA s Goddard Space Flight Center has been enhanced in a number of ways in the last year to allow the system to accurately collect refracted beam deviation readings automatically over a range of temperatures from 15 K to well beyond room temperature with high sampling density in both wavelength and temperature. The engineering details which make this possible are presented. The methods by which the most accurate angular measurements are made and the corresponding data reduction methods used to reduce thousands of observed angles to a handful of refractive index values are also discussed.

  2. Automation, Operation, and Data Analysis in the Cryogenic, High Accuracy, Refraction Measuring System (CHARMS)

    NASA Technical Reports Server (NTRS)

    Frey, Bradley J.; Leviton, Douglas B.

    2005-01-01

    The Cryogenic High Accuracy Refraction Measuring System (CHARMS) at NASA's Goddard Space Flight Center has been enhanced in a number of ways in the last year to allow the system to accurately collect refracted beam deviation readings automatically over a range of temperatures from 15 K to well beyond room temperature with high sampling density in both wavelength and temperature. The engineering details which make this possible are presented. The methods by which the most accurate angular measurements are made and the corresponding data reduction methods used to reduce thousands of observed angles to a handful of refractive index values are also discussed.

  3. Radiative transitions in charm-strange meson from Nf = 2 twisted mass lattice QCD

    NASA Astrophysics Data System (ADS)

    Li, Ning; Wu, Ya-Jie

    2016-07-01

    We present an exploratory study on the radiative transition for the charm-strange meson: Ds∗→ D sγ using Nf = 2 twisted mass lattice quantum chromodynamics gauge configurations. The form factor for Ds meson is also determined. The simulation is performed on lattices with lattice spacings a = 0.067 fm and lattice size 323 × 64, and a = 0.085 fm and lattice size 243 × 48, respectively. Our numerical results for radiative decay width and the experimental data overlap within the margin of error.

  4. Searches for Rare Leptonic and Semileptonic Charm Decays at BaBar

    SciTech Connect

    Jackson, Paul D.; /Ohio State U.

    2007-01-17

    Recent results from leptonic and semi-leptonic charm decays at the BABAR B-factory are presented. The measurement of f{sub D{sub s}} from the D{sub s}{sup +} {yields} {mu}{sup +}{nu} channel is presented. Form-factor studies from the D{sup 0} {yields} K{sup +}e{sup -}{bar {nu}}{sub e} channel are described along with a search for flavor-changing neutral-current X{sub c}{sup +} {yields} h{sup +}{ell}{sup +}{ell}{prime}{sup -} decays.

  5. Hadron Physics at the Charm and Bottom Thresholds and Other Novel QCD Physics Topics at the NICA Accelerator Facility

    SciTech Connect

    Brodsky, Stanley J.; /SLAC

    2012-06-20

    The NICA collider project at the Joint Institute for Nuclear Research in Dubna will have the capability of colliding protons, polarized deuterons, and nuclei at an effective nucleon-nucleon center-of mass energy in the range {radical}s{sub NN} = 4 to 11 GeV. I briefly survey a number of novel hadron physics processes which can be investigated at the NICA collider. The topics include the formation of exotic heavy quark resonances near the charm and bottom thresholds, intrinsic strangeness, charm, and bottom phenomena, hidden-color degrees of freedom in nuclei, color transparency, single-spin asymmetries, the RHIC baryon anomaly, and non-universal antishadowing.

  6. Charm-Quark Production in Deep-Inelastic Neutrino Scattering at Next-to-Next-to-Leading Order in QCD.

    PubMed

    Berger, Edmond L; Gao, Jun; Li, Chong Sheng; Liu, Ze Long; Zhu, Hua Xing

    2016-05-27

    We present a fully differential next-to-next-to-leading order calculation of charm-quark production in charged-current deep-inelastic scattering, with full charm-quark mass dependence. The next-to-next-to-leading order corrections in perturbative quantum chromodynamics are found to be comparable in size to the next-to-leading order corrections in certain kinematic regions. We compare our predictions with data on dimuon production in (anti)neutrino scattering from a heavy nucleus. Our results can be used to improve the extraction of the parton distribution function of a strange quark in the nucleon.

  7. Comment on “New Limits on Intrinsic Charm in the Nucleon from Global Analysis of Parton Distributions”

    SciTech Connect

    Brodsky, Stanley J.; Gardner, Susan

    2016-01-05

    Intrinsic heavy quarks in hadrons emerge from the non-perturbative structure of a hadron bound state and are a rigorous prediction of QCD. Lattice QCD calculations indicate significant intrinsic charm and strangeness probabilities. Since the light-front momentum distribution of the Fock states is maximal at equal rapidity, intrinsic heavy quarks carry significant fractions of the hadron momentum. The presence of Fock states with intrinsic strange, charm, or bottom quarks in hadrons lead to an array of novel physics phenomena. Accurate determinations of the heavy-quark distributions in the proton are needed to interpret Tevatron and LHC measurements as probed of physics beyond the Standard Model.

  8. [Hadroproduction of charmed and bottom mesons (Fermilab experiment E-653): Progress report, June 13, 1983--June 14, 1984

    SciTech Connect

    1984-12-31

    (I)Results are given for photoproduction of the D{sup *} at 103 GeV. Clean signals are seen for the decay D{sup *{+-}} {yields} {pi}{sup {+-}}D{sup 0} with the D{sup 0} decaying into both K{sup {-+}}{pi}{sup {+-}} and K{sup {-+}}{pi}{sup {+-}}{pi}{sup 0}. Analysis of the Dalitz plot for the K{pi}{pi} mode gives branching fractions (BFs) for K{sup {minus}}{rho}{sup +}, K{sup *{minus}}{pi}{sup +}, and {anti K}{sup *0}{pi}{sup 0} final states. The BF for D{sup 0} {yields} K{sup {minus}}{rho}{sup +}, much lower than a previous result, is in approximate agreement with the value expected for an l=1/2 final state. (II)Inelastic and elastic J/{psi} photoproduction on H is investigated at 103 GeV. The inelastic cross section with E{sub {psi}}/E{sub {gamma}} {lt} 0.9 is significantly lower than the corresponding result for muoproduction on Fe targets, but consistent with second-order perturbative QCD calculation. The mean p{sub +} of inelastic events is larger than that of elastic events. (III)Analysis of data from the CLEO experiment has yielded evidence for B{bar B} production from the 4S upsilon state. A preliminary cross section is shown. (IV)The SSD prototyping and testing program is described. The detectors performed as expected. (V)Three 24 x 36 mm{sup 2} Centronic detectors 300 microns thick were tested in 650-MeV/c proton and 600-MeV/c pion beams. Charge sharing was found to occur. (VI)Tests of attenuation lengths and light output were made on three types of scintillator: NE102A, PS12, and PS10. PS10 appears the most suitable. (VII)Charge-sharing SSDs of (V) were subject to analysis: checking of pulse heights of single stripes, hit pairs, and hit quads vs theoretical values; resolution of three-point proton/pion tracks, and characterization of devices by charge sum/difference plots of hit pairs. (VIII) Board fabrication and tests of a hadron calorimeter intended to be 91 x 91 sq.in. are discussed. (IX)Testing of an amplifier with LRS hybrid preamp is related.

  9. Open Access

    ERIC Educational Resources Information Center

    Suber, Peter

    2012-01-01

    The Internet lets us share perfect copies of our work with a worldwide audience at virtually no cost. We take advantage of this revolutionary opportunity when we make our work "open access": digital, online, free of charge, and free of most copyright and licensing restrictions. Open access is made possible by the Internet and copyright-holder…

  10. Exclusive ω meson muoproduction on transversely polarised protons

    NASA Astrophysics Data System (ADS)

    Adolph, C.; Aghasyan, M.; Akhunzyanov, R.; Alexeev, M. G.; Alexeev, G. D.; Amoroso, A.; Andrieux, V.; Anfimov, N. V.; Anosov, V.; Augustyniak, W.; Austregesilo, A.; Azevedo, C. D. R.; Badełek, B.; Balestra, F.; Barth, J.; Beck, R.; Bedfer, Y.; Bernhard, J.; Bicker, K.; Bielert, E. R.; Birsa, R.; Bisplinghoff, J.; Bodlak, M.; Boer, M.; Bordalo, P.; Bradamante, F.; Braun, C.; Bressan, A.; Büchele, M.; Chang, W.-C.; Chatterjee, C.; Chiosso, M.; Choi, I.; Chung, S.-U.; Cicuttin, A.; Crespo, M. L.; Curiel, Q.; Dalla Torre, S.; Dasgupta, S. S.; Dasgupta, S.; Denisov, O. Yu.; Dhara, L.; Donskov, S. V.; Doshita, N.; Duic, V.; Dünnweber, W.; Dziewiecki, M.; Efremov, A.; Eversheim, P. D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Finger, M.; Finger, M.; Fischer, H.; Franco, C.; du Fresne von Hohenesche, N.; Friedrich, J. M.; Frolov, V.; Fuchey, E.; Gautheron, F.; Gavrichtchouk, O. P.; Gerassimov, S.; Giordano, F.; Gnesi, I.; Gorzellik, M.; Grabmüller, S.; Grasso, A.; Grosse Perdekamp, M.; Grube, B.; Grussenmeyer, T.; Guskov, A.; Haas, F.; Hahne, D.; von Harrach, D.; Hashimoto, R.; Heinsius, F. H.; Heitz, R.; Herrmann, F.; Hinterberger, F.; Horikawa, N.; d'Hose, N.; Hsieh, C.-Y.; Huber, S.; Ishimoto, S.; Ivanov, A.; Ivanshin, Yu.; Iwata, T.; Jahn, R.; Jary, V.; Joosten, R.; Jörg, P.; Kabuß, E.; Ketzer, B.; Khaustov, G. V.; Khokhlov, Yu. A.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koivuniemi, J. H.; Kolosov, V. N.; Kondo, K.; Königsmann, K.; Konorov, I.; Konstantinov, V. F.; Kotzinian, A. M.; Kouznetsov, O. M.; Krämer, M.; Kremser, P.; Krinner, F.; Kroumchtein, Z. V.; Kulinich, Y.; Kunne, F.; Kurek, K.; Kurjata, R. P.; Lednev, A. A.; Lehmann, A.; Levillain, M.; Levorato, S.; Lian, Y.-S.; Lichtenstadt, J.; Longo, R.; Maggiora, A.; Magnon, A.; Makins, N.; Makke, N.; Mallot, G. K.; Marchand, C.; Marianski, B.; Martin, A.; Marzec, J.; Matoušek, J.; Matsuda, H.; Matsuda, T.; Meshcheryakov, G. V.; Meyer, M.; Meyer, W.; Michigami, T.; Mikhailov, Yu. V.; Mikhasenko, M.; Mitrofanov, E.; Mitrofanov, N.; Miyachi, Y.; Montuenga, P.; Nagaytsev, A.; Nerling, F.; Neyret, D.; Nikolaenko, V. I.; Nový, J.; Nowak, W.-D.; Nukazuka, G.; Nunes, A. S.; Olshevsky, A. G.; Orlov, I.; Ostrick, M.; Panzieri, D.; Parsamyan, B.; Paul, S.; Peng, J.-C.; Pereira, F.; Pešek, M.; Peshekhonov, D. V.; Pierre, N.; Platchkov, S.; Pochodzalla, J.; Polyakov, V. A.; Pretz, J.; Quaresma, M.; Quintans, C.; Ramos, S.; Regali, C.; Reicherz, G.; Riedl, C.; Roskot, M.; Ryabchikov, D. I.; Rybnikov, A.; Rychter, A.; Salac, R.; Samoylenko, V. D.; Sandacz, A.; Santos, C.; Sarkar, S.; Savin, I. A.; Sawada, T.; Sbrizzai, G.; Schiavon, P.; Schmidt, K.; Schmieden, H.; Schönning, K.; Schopferer, S.; Seder, E.; Selyunin, A.; Shevchenko, O. Yu.; Silva, L.; Sinha, L.; Sirtl, S.; Slunecka, M.; Smolik, J.; Sozzi, F.; Srnka, A.; Steffen, D.; Stolarski, M.; Sulc, M.; Suzuki, H.; Szabelski, A.; Szameitat, T.; Sznajder, P.; Takekawa, S.; Tasevsky, M.; Tessaro, S.; Tessarotto, F.; Thibaud, F.; Tosello, F.; Tskhay, V.; Uhl, S.; Veloso, J.; Virius, M.; Vondra, J.; Wallner, S.; Weisrock, T.; Wilfert, M.; ter Wolbeek, J.; Zaremba, K.; Zavada, P.; Zavertyaev, M.; Zemlyanichkina, E.; Ziembicki, M.; Zink, A.

    2017-02-01

    Exclusive production of ω mesons was studied at the COMPASS experiment by scattering 160 GeV / c muons off transversely polarised protons. Five single-spin and three double-spin azimuthal asymmetries were measured in the range of photon virtuality 1 (GeV / c) 2

  11. Transverse target spin asymmetries in exclusive ρ0 muoproduction

    NASA Astrophysics Data System (ADS)

    Adolph, C.; Akhunzyanov, R.; Alekseev, M. G.; Alexakhin, V. Yu.; Alexandrov, Yu.; Alexeev, G. D.; Amoroso, A.; Andrieux, V.; Anosov, V.; Austregesilo, A.; Badełek, B.; Balestra, F.; Barth, J.; Baum, G.; Beck, R.; Bedfer, Y.; Berlin, A.; Bernhard, J.; Bertini, R.; Bicker, K.; Bieling, J.; Birsa, R.; Bisplinghoff, J.; Bodlak, M.; Boer, M.; Bordalo, P.; Bradamante, F.; Braun, C.; Bravar, A.; Bressan, A.; Büchele, M.; Burtin, E.; Capozza, L.; Chiosso, M.; Chung, S. U.; Cicuttin, A.; Crespo, M. L.; Curiel, Q.; Dalla Torre, S.; Dasgupta, S. S.; Dasgupta, S.; Denisov, O. Yu.; Donskov, S. V.; Doshita, N.; Duic, V.; Dünnweber, W.; Dziewiecki, M.; Efremov, A.; Elia, C.; Eversheim, P. D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Filin, A.; Finger, M.; Finger, M.; Fischer, H.; Franco, C.; du Fresne von Hohenesche, N.; Friedrich, J. M.; Frolov, V.; Garfagnini, R.; Gautheron, F.; Gavrichtchouk, O. P.; Gerassimov, S.; Geyer, R.; Giorgi, M.; Gnesi, I.; Gobbo, B.; Goertz, S.; Gorzellik, M.; Grabmüller, S.; Grasso, A.; Grube, B.; Gushterski, R.; Guskov, A.; Guthörl, T.; Haas, F.; von Harrach, D.; Hahne, D.; Hashimoto, R.; Heinsius, F. H.; Herrmann, F.; Heß, C.; Hinterberger, F.; Höppner, Ch.; Horikawa, N.; d'Hose, N.; Huber, S.; Ishimoto, S.; Ivanov, A.; Ivanshin, Yu.; Iwata, T.; Jahn, R.; Jary, V.; Jasinski, P.; Joerg, P.; Joosten, R.; Kabuß, E.; Kang, D.; Ketzer, B.; Khaustov, G. V.; Khokhlov, Yu. A.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koivuniemi, J. H.; Kolosov, V. N.; Kondo, K.; Königsmann, K.; Konorov, I.; Konstantinov, V. F.; Kotzinian, A. M.; Kouznetsov, O.; Kral, Z.; Krämer, M.; Kroumchtein, Z. V.; Kuchinski, N.; Kunne, F.; Kurek, K.; Kurjata, R. P.; Lednev, A. A.; Lehmann, A.; Levorato, S.; Lichtenstadt, J.; Maggiora, A.; Magnon, A.; Makke, N.; Mallot, G. K.; Marchand, C.; Martin, A.; Marzec, J.; Matousek, J.; Matsuda, H.; Matsuda, T.; Meshcheryakov, G.; Meyer, W.; Michigami, T.; Mikhailov, Yu. V.; Miyachi, Y.; Nagaytsev, A.; Nagel, T.; Nerling, F.; Neubert, S.; Neyret, D.; Nikolaenko, V. I.; Novy, J.; Nowak, W.-D.; Nunes, A. S.; Orlov, I.; Olshevsky, A. G.; Ostrick, M.; Panknin, R.; Panzieri, D.; Parsamyan, B.; Paul, S.; Pesek, M.; Peshekhonov, D.; Piragino, G.; Platchkov, S.; Pochodzalla, J.; Polak, J.; Polyakov, V. A.; Pretz, J.; Quaresma, M.; Quintans, C.; Ramos, S.; Reicherz, G.; Rocco, E.; Rodionov, V.; Rondio, E.; Rossiyskaya, N. S.; Ryabchikov, D. I.; Samoylenko, V. D.; Sandacz, A.; Sapozhnikov, M. G.; Sarkar, S.; Savin, I. A.; Sbrizzai, G.; Schiavon, P.; Schill, C.; Schlüter, T.; Schmidt, A.; Schmidt, K.; Schmitt, L.; Schmïden, H.; Schönning, K.; Schopferer, S.; Schott, M.; Shevchenko, O. Yu.; Silva, L.; Sinha, L.; Sirtl, S.; Slunecka, M.; Sosio, S.; Sozzi, F.; Srnka, A.; Steiger, L.; Stolarski, M.; Sulc, M.; Sulej, R.; Suzuki, H.; Szabelski, A.; Szameitat, T.; Sznajder, P.; Takekawa, S.; Ter Wolbeek, J.; Tessaro, S.; Tessarotto, F.; Thibaud, F.; Uhl, S.; Uman, I.; Vandenbroucke, M.; Virius, M.; Vondra, J.; Wang, L.; Weisrock, T.; Wilfert, M.; Windmolders, R.; Wiślicki, W.; Wollny, H.; Zaremba, K.; Zavertyaev, M.; Zemlyanichkina, E.; Zhuravlev, N.; Ziembicki, M.

    2014-04-01

    Exclusive production of ρ0 mesons was studied at the COMPASS experiment by scattering 160 GeV/c muons off transversely polarised protons. Five single-spin and three double-spin azimuthal asymmetries were measured as a function of Q2, x, or pT2. The sin ϕS asymmetry is found to be -0.019±0.008(stat.)±0.003(syst.). All other asymmetries are also found to be of small magnitude and consistent with zero within experimental uncertainties. Very recent calculations using a GPD-based model agree well with the present results. The data is interpreted as evidence for the existence of chiral-odd, transverse generalized parton distributions.

  12. Singly and Doubly Charmed $J=1/2$ Baryon Spectrum from Lattice QCD

    SciTech Connect

    Liuming Liu; Lin, Huey-Wen; Orginos, Kostas; Walker-Loud, Andre

    2010-05-01

    We compute the masses of the singly and doubly charmed baryons in full QCD using the relativistic Fermilab action for the charm quark. For the light quarks we use domain-wall fermions in the valence sector and improved Kogut-Susskind sea quarks. We use the low-lying charmonium spectrum to tune our heavy-quark action and as a guide to understanding the discretization errors associated with the heavy quark. Our results are in good agreement with experiment within our systematicss, except for the spin-1/2 $\\Xi_{cc}$, for which we predict the isospin averaged mass to be $M_{\\Xi_{cc}} = 3665 \\pm17 \\pm14\\, {}^{+0}_{-35}$~{MeV} (here the first uncertainty is statistical, the second systematic and the third an estimate of lattice discretization errors). In addition, we predict the splitting of the (isospin averaged) spin-1/2 $\\O_{cc}$ with the $\\Xi_{cc}$ to be $M_{\\O_{cc}} - M_{\\Xi_{cc}} = 98 \\pm9 \\pm22$~{MeV} (in this mass splitting, the leading discretization errors cancel). This corresponds to a prediction of $M_{\\O_{cc}} = 3763\\pm9\\pm44\\, {}^{+0}_{-35}$~{MeV}.

  13. Single-diffractive production of charmed mesons at the LHC within the k t -factorization approach

    NASA Astrophysics Data System (ADS)

    Luszczak, Marta; Maciula, Rafal; Szczurek, Antoni; Trzebinski, Maciej

    2017-02-01

    We discuss the single-diffractive production of cc pairs and charmed mesons at the LHC. For a first time we propose a k t -factorization approach to the diffractive processes. The transverse momentum dependent diffractive parton distributions are obtained from standard (collinear) diffractive parton distributions used in the literature. In this calculation the transverse momentum of the pomeron is neglected with respect to transverse momentum of partons entering the hard process. We also perform a first evaluation of the cross sections at the LHC using the diffractive transverse momentum dependent parton distributions. The results of the new approach are compared with those of the standard collinear one. Significantly larger cross sections are obtained in the k t -factorization approach in which some parts of higher-order effects is effectively included. The differences between corresponding differential distributions are discussed. Finally, we present a feasibility study of the process at the LHC using proton tagging technique. The analysis suggests that the measurement of single-diffractive charm production is possible using ATLAS and CMS/TOTEM detectors.

  14. K-->pipi amplitudes from lattice QCD with a light charm quark.

    PubMed

    Giusti, L; Hernández, P; Laine, M; Pena, C; Wennekers, J; Wittig, H

    2007-02-23

    We compute the leading-order low-energy constants of the DeltaS=1 effective weak Hamiltonian in the quenched approximation of QCD with up, down, strange, and charm quarks degenerate and light. They are extracted by comparing the predictions of finite-volume chiral perturbation theory with lattice QCD computations of suitable correlation functions carried out with quark masses ranging from a few MeV up to half of the physical strange mass. We observe a DeltaI=1/2 enhancement in this corner of the parameter space of the theory. Although matching with the experimental result is not observed for the DeltaI=1/2 amplitude, our computation suggests large QCD contributions to the physical DeltaI=1/2 rule in the GIM limit, and represents the first step to quantify the role of the charm-quark mass in K-->pipi amplitudes. The use of fermions with an exact chiral symmetry is an essential ingredient in our computation.

  15. Spectroscopy of doubly and triply-charmed baryons from lattice QCD

    SciTech Connect

    Padmanath, M.; Edwards, Robert G.; Mathur, Nilmani; Peardon, Michael

    2013-11-01

    We present the ground and excited state spectra of doubly and triply-charmed baryons by using lattice QCD with dynamical clover fermions. A large set of baryonic operators that respect the symmetries of the lattice and are obtained after subduction from their continuum analogues are utilized. Using novel computational techniques correlation functions of these operators are generated and the variational method is exploited to extract excited states. The lattice spectra that we obtain have baryonic states with well-defined total spins up to 7/2 and the low lying states remarkably resemble the expectations of quantum numbers from SU(6) Ⓧ O(3) symmetry. Various energy splittings between the extracted states, including splittings due to hyperfine as well as spin-orbit coupling, are considered and those are also compared against similar energy splittings at other quark masses. Using those splittings for doubly-charmed baryons, and taking input of experimental Bc meson mass, we predict the mass splittings of B*c-Bc to be about 80 ± 8 MeV and mΩccb=8050±10 MeV.

  16. Direct CP violation in two-body hadronic charmed meson decays

    NASA Astrophysics Data System (ADS)

    Cheng, Hai-Yang; Chiang, Cheng-Wei

    2012-02-01

    Motivated by the recent observation of CP violation in the charm sector by LHCb, we study direct CP asymmetries in the standard model (SM) for the singly Cabibbo-suppressed two-body hadronic decays of charmed mesons using the topological-diagram approach. In this approach, the magnitude and the phase of topological weak annihilation amplitudes, which arise mainly from final-state rescattering, can be extracted from the data. Consequently, direct CP asymmetry adir(tree) at tree level can be reliably estimated. In general, it lies in the range 10-4

  17. Web-based computational chemistry education with CHARMMing III: Reduction potentials of electron transfer proteins.

    PubMed

    Perrin, B Scott; Miller, Benjamin T; Schalk, Vinushka; Woodcock, H Lee; Brooks, Bernard R; Ichiye, Toshiko

    2014-07-01

    A module for fast determination of reduction potentials, E°, of redox-active proteins has been implemented in the CHARMM INterface and Graphics (CHARMMing) web portal (www.charmming.org). The free energy of reduction, which is proportional to E°, is composed of an intrinsic contribution due to the redox site and an environmental contribution due to the protein and solvent. Here, the intrinsic contribution is selected from a library of pre-calculated density functional theory values for each type of redox site and redox couple, while the environmental contribution is calculated from a crystal structure of the protein using Poisson-Boltzmann continuum electrostatics. An accompanying lesson demonstrates a calculation of E°. In this lesson, an ionizable residue in a [4Fe-4S]-protein that causes a pH-dependent E° is identified, and the E° of a mutant that would test the identification is predicted. This demonstration is valuable to both computational chemistry students and researchers interested in predicting sequence determinants of E° for mutagenesis.

  18. Compositeness of the strange, charm, and beauty odd parity Λ states

    NASA Astrophysics Data System (ADS)

    Garcia-Recio, C.; Hidalgo-Duque, C.; Nieves, J.; Salcedo, L. L.; Tolos, L.

    2015-08-01

    We study the dependence on the quark mass of the compositeness of the lowest-lying odd parity hyperon states. Thus, we pay attention to Λ -like states in the strange, charm, and beauty sectors which are dynamically generated using a unitarized meson-baryon model. In the strange sector we use a SU(6) extension of the Weinberg-Tomozawa meson-baryon interaction, and we further implement the heavy-quark spin symmetry to construct the meson-baryon interaction when charmed or beauty hadrons are involved. In the three examined flavor sectors, we obtain two JP=1 /2- and one JP=3 /2- Λ states. We find that the Λ states which are bound states (the three Λb) or narrow resonances [one Λ (1405 ) and one Λc(2595 )] are well described as molecular states composed of s -wave meson-baryon pairs. The 1/2- wide Λ (1405 ) and Λc(2595 ) as well as the 3/2- Λ (1520 ) and Λc(2625 ) states display smaller compositeness so they would require new mechanisms, such as d -wave interactions.

  19. Voodoo Dolls, Charms, and Spells in the Classroom: Teaching, Screening, and Deconstructing the Misrepresentation of the African Religion

    ERIC Educational Resources Information Center

    Reuber, Alexandra

    2011-01-01

    "New Orleans voodoo," also called "créole voodoo," is an amalgamation of an honoring of the spirits of the dead, a respect for the elderly and the spiritual life, African knowledge of herbs and charms, and European elements of Catholicism. It is a religion of ancestor worship that is unknown to us, and that we are not…

  20. Nature of charmed strange baryons Ξc(3055 ) and Ξc(3080 )

    NASA Astrophysics Data System (ADS)

    Zhao, Ze; Ye, Dan-Dan; Zhang, Ailin

    2016-12-01

    The hadronic decay widths and some ratios of branching fractions of the newly observed charmed strange baryons, Ξc(3055 )0 , Ξc(3055 )+, and Ξc(3080 )+ are calculated in a 3P0 model. In the calculation, they are considered as 34 kinds of D-wave charmed strange baryons. Among these assignments, Ξc(3055 )+ is very possibly a JP=5/2+ Ξ^c3' (5/2+) or Ξˇc32(5/2+). In these two assignments, Ξc(3055 )+ has the total decay width Γ =10.1 MeV and Γ =7.6 MeV , respectively. The predicted ratios Γ (Ξc(3055)+→Λ D+)/Γ(Ξc(3055)+→ Σc++K-)=3.39. Ξc(3055)+ is also very possibly a JP=7/2+ Ξ^c3 '(7/2+) or Ξˇc3 2(7/2+). In these two assignments, Ξc(3055 )+ has the total decay width Γ =9.7 MeV and Γ =6.3 MeV , respectively. The predicted ratios Γ (Ξc(3055 )+→Λ D+)/Γ (Ξc(3055 )+→Σc++K-)=5.91 or 6.04. As an isospin partner of Ξc(3055 )+, Ξc(3055 )0is also very possibly a JP=5/2+ Ξ^c3 '(5/2+) or Ξˇc3 2(5/2+). In these assignments, Ξc(3055 )0 has the total decay width Γ =10.9 MeV and Γ =7.0 MeV . The predicted ratios Γ (Ξc(3055 )0→Λ D0)/Γ (Ξc(3055 )0→Σc+K-)=4.24 or 4.20. Ξc(3055 )0 is also very possibly a JP=7/2+ Ξ^c3 '(7/2+) or Ξˇc3 2(7/2+). In these assignments, Ξc(3055 )0 has the total decay width Γ =10.3 MeV and Γ =7.1 MeV . The predicted ratios Γ (Ξc(3055 )0→Λ D0)/Γ (Ξc(3055 )0→Σc+K-)=7.47 or 7.56. The results agree well with recent experimental data from Belle. Ξc(3080)+ seems impossible to identify with a D-wave charmed strange baryon.

  1. Measurement of associated W + charm production in pp collisions at = 7 TeV

    NASA Astrophysics Data System (ADS)

    Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, C.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Taurok, A.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Luyckx, S.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Staykova, Z.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Kalogeropoulos, A.; Keaveney, J.; Maes, M.; Olbrechts, A.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Favart, L.; Gay, A. P. R.; Hreus, T.; Léonard, A.; Marage, P. E.; Mohammadi, A.; Perniè, L.; Reis, T.; Seva, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Adler, V.; Beernaert, K.; Benucci, L.; Cimmino, A.; Costantini, S.; Dildick, S.; Garcia, G.; Klein, B.; Lellouch, J.; Marinov, A.; Mccartin, J.; Ocampo Rios, A. A.; Ryckbosch, D.; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Walsh, S.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jez, P.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Popov, A.; Selvaggi, M.; Vidal Marono, M.; Vizan Garcia, J. M.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Alves, G. A.; Correa Martins, M.; Martins, T.; Pol, M. E.; Souza, M. H. G.; Aldá, W. L.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Malbouisson, H.; Malek, M.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Bernardes, C. A.; Dias, F. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Lagana, C.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, X.; Wang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Guo, Y.; Li, Q.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Zhang, L.; Zou, W.; Avila, C.; Carrillo Montoya, C. A.; Chaparro Sierra, L. F.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Plestina, R.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Mekterovic, D.; Morovic, S.; Tikvica, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Finger, M.; Finger, M.; Abdelalim, A. A.; Assran, Y.; Elgammal, S.; Ellithi Kamel, A.; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Müntel, M.; Murumaa, M.; Raidal, M.; Rebane, L.; Tiko, A.; Eerola, P.; Fedi, G.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Millischer, L.; Nayak, A.; Rander, J.; Rosowsky, A.; Titov, M.; Baffioni, S.; Beaudette, F.; Benhabib, L.; Bluj, M.; Busson, P.; Charlot, C.; Daci, N.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Florent, A.; Granier de Cassagnac, R.; Haguenauer, M.; Miné, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Veelken, C.; Zabi, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Brom, J.-M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Juillot, P.; Le Bihan, A.-C.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Beaupere, N.; Boudoul, G.; Brochet, S.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sgandurra, L.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Xiao, H.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Bontenackels, M.; Calpas, B.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Klein, K.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Caudron, J.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Olschewski, M.; Padeken, K.; Papacz, P.; Pieta, H.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Steggemann, J.; Teyssier, D.; Thüer, S.; Weber, M.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Haj Ahmad, W.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Lingemann, J.; Nowack, A.; Nugent, I. M.; Perchalla, L.; Pooth, O.; Stahl, A.; Asin, I.; Bartosik, N.; Behr, J.; Behrenhoff, W.; Behrens, U.; Bell, A. J.; Bergholz, M.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Choudhury, S.; Costanza, F.; Diez Pardos, C.; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Flucke, G.; Geiser, A.; Glushkov, I.; Grebenyuk, A.; Gunnellini, P.; Habib, S.; Hauk, J.; Hellwig, G.; Horton, D.; Jung, H.; Kasemann, M.; Katsas, P.; Kleinwort, C.; Kluge, H.; Krämer, M.; Krücker, D.; Kuznetsova, E.; Lange, W.; Leonard, J.; Lipka, K.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Novgorodova, O.; Nowak, F.; Olzem, J.; Perrey, H.; Petrukhin, A.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Ribeiro Cipriano, P. M.; Riedl, C.; Ron, E.; Sahin, M. Ö.; Salfeld-Nebgen, J.; Schmidt, R.; Schoerner-Sadenius, T.; Sen, N.; Stein, M.; Walsh, R.; Wissing, C.; Aldaya Martin, M.; Blobel, V.; Enderle, H.; Erfle, J.; Garutti, E.; Gebbert, U.; Görner, M.; Gosselink, M.; Haller, J.; Heine, K.; Höing, R. S.; Kaussen, G.; Kirschenmann, H.; Klanner, R.; Kogler, R.; Lange, J.; Marchesini, I.; Peiffer, T.; Pietsch, N.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schröder, M.; Schum, T.; Seidel, M.; Sibille, J.; Sola, V.; Stadie, H.; Steinbrück, G.; Thomsen, J.; Troendle, D.; Usai, E.; Vanelderen, L.; Barth, C.; Baus, C.; Berger, J.; Böser, C.; Butz, E.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Guthoff, M.; Hartmann, F.; Hauth, T.; Held, H.; Hoffmann, K. H.; Husemann, U.; Katkov, I.; Komaragiri, J. R.; Kornmayer, A.; Lobelle Pardo, P.; Martschei, D.; Müller, Th.; Niegel, M.; Nürnberg, A.; Oberst, O.; Ott, J.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Röcker, S.; Schilling, F.-P.; Schott, G.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Zeise, M.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Kesisoglou, S.; Kyriakis, A.; Loukas, D.; Markou, A.; Markou, C.; Ntomari, E.; Topsis-giotis, I.; Gouskos, L.; Panagiotou, A.; Saoulidou, N.; Stiliaris, E.; Aslanoglou, X.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Molnar, J.; Palinkas, J.; Szillasi, Z.; Karancsi, J.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Swain, S. K.; Beri, S. B.; Bhatnagar, V.; Dhingra, N.; Gupta, R.; Kaur, M.; Mehta, M. Z.; Mittal, M.; Nishu, N.; Sharma, A.; Singh, J. B.; Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Saxena, P.; Sharma, V.; Shivpuri, R. K.; Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Modak, A.; Mukherjee, S.; Roy, D.; Sarkar, S.; Sharan, M.; Singh, A. P.; Abdulsalam, A.; Dutta, D.; Kailas, S.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Chatterjee, R. M.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.; Banerjee, S.; Dugad, S.; Arfaei, H.; Bakhshiansohi, H.; Etesami, S. M.; Fahim, A.; Jafari, A.; Khakzad, M.; Mohammadi Najafabadi, M.; Paktinat Mehdiabadi, S.; Safarzadeh, B.; Zeinali, M.; Grunewald, M.; Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Marangelli, B.; My, S.; Nuzzo, S.; Pacifico, N.; Pompili, A.; Pugliese, G.; Selvaggi, G.; Silvestris, L.; Singh, G.; Venditti, R.; Verwilligen, P.; Zito, G.; Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Meneghelli, M.; Montanari, A.; Navarria, F. L.; Odorici, F.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.; Albergo, S.; Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gallo, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Fabbricatore, P.; Ferretti, R.; Ferro, F.; Vetere, M. Lo; Musenich, R.; Robutti, E.; Tosi, S.; Benaglia, A.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; De Cosa, A.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Azzi, P.; Bacchetta, N.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Dorigo, T.; Dosselli, U.; Galanti, M.; Gasparini, F.; Gasparini, U.; Giubilato, P.; Gonella, F.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Lazzizzera, I.; Margoni, M.; Meneguzzo, A. T.; Montecassiano, F.; Pazzini, J.; Pegoraro, M.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Vanini, S.; Zotto, P.; Zucchetta, A.; Zumerle, G.; Gabusi, M.; Ratti, S. P.; Riccardi, C.; Vitulo, P.; Biasini, M.; Bilei, G. M.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Nappi, A.; Romeo, F.; Saha, A.; Santocchia, A.; Spiezia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; Ciocci, M. A.; D'Agnolo, R. T.; Dell'Orso, R.; Fiori, F.; Foà, L.; Giassi, A.; Grippo, M. T.; Kraan, A.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Moon, C. S.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Vernieri, C.; Barone, L.; Cavallari, F.; Del Re, D.; Diemoz, M.; Grassi, M.; Longo, E.; Margaroli, F.; Meridiani, P.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Rovelli, C.; Soffi, L.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Casasso, S.; Costa, M.; Degano, A.; Demaria, N.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Pastrone, N.; Pelliccioni, M.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Montanino, D.; Penzo, A.; Schizzi, A.; Zanetti, A.; Chang, S.; Kim, T. Y.; Nam, S. K.; Kim, D. H.; Kim, G. N.; Kim, J. E.; Kong, D. J.; Lee, S.; Oh, Y. D.; Park, H.; Son, D. C.; Kim, J. Y.; Kim, Zero J.; Song, S.; Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, T. J.; Lee, K. S.; Park, S. K.; Roh, Y.; Choi, M.; Kim, J. H.; Park, C.; Park, I. C.; Park, S.; Ryu, G.; Choi, Y.; Choi, Y. K.; Goh, J.; Kim, M. S.; Kwon, E.; Lee, B.; Lee, J.; Lee, S.; Seo, H.; Yu, I.; Grigelionis, I.; Juodagalvis, A.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Lopez-Fernandez, R.; Martínez-Ortega, J.; Sanchez-Hernandez, A.; Villasenor-Cendejas, L. M.; Carrillo Moreno, S.; Vazquez Valencia, F.; Salazar Ibarguen, H. A.; Casimiro Linares, E.; Morelos Pineda, A.; Reyes-Santos, M. A.; Krofcheck, D.; Butler, P. H.; Doesburg, R.; Reucroft, S.; Silverwood, H.; Ahmad, M.; Asghar, M. I.; Butt, J.; Hoorani, H. R.; Khalid, S.; Khan, W. A.; Khurshid, T.; Qazi, S.; Shah, M. A.; Shoaib, M.; Bialkowska, H.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Wrochna, G.; Zalewski, P.; Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Wolszczak, W.; Almeida, N.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Varela, J.; Vischia, P.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.; Evstyukhin, S.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Erofeeva, M.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Spiridonov, A.; Stolin, V.; Vlasov, E.; Zhokin, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Markina, A.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Djordjevic, M.; Ekmedzic, M.; Krpic, D.; Milosevic, J.; Aguilar-Benitez, M.; Alcaraz Maestre, J.; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Domínguez Vázquez, D.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Ferrando, A.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Merino, G.; Navarro De Martino, E.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Santaolalla, J.; Soares, M. S.; Willmott, C.; Albajar, C.; de Trocóniz, J. F.; Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Lloret Iglesias, L.; Piedra Gomez, J.; Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Chuang, S. H.; Duarte Campderros, J.; Fernandez, M.; Gomez, G.; Gonzalez Sanchez, J.; Graziano, A.; Jorda, C.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Bendavid, J.; Benitez, J. F.; Bernet, C.; Bianchi, G.; Bloch, P.; Bocci, A.; Bonato, A.; Bondu, O.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Christiansen, T.; Coarasa Perez, J. A.; Colafranceschi, S.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; David, A.; De Guio, F.; De Roeck, A.; De Visscher, S.; Di Guida, S.; Dobson, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Eugster, J.; Funk, W.; Georgiou, G.; Giffels, M.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Giunta, M.; Glege, F.; Gomez-Reino Garrido, R.; Gowdy, S.; Guida, R.; Hammer, J.; Hansen, M.; Harris, P.; Hartl, C.; Hinzmann, A.; Innocente, V.; Janot, P.; Karavakis, E.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lee, Y.-J.; Lourenço, C.; Magini, N.; Malgeri, L.; Mannelli, M.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moser, R.; Mulders, M.; Musella, P.; Nesvold, E.; Orsini, L.; Palencia Cortezon, E.; Perez, E.; Perrozzi, L.; Petrilli, A.; Pfeiffer, A.; Pierini, M.; Pimiä, M.; Piparo, D.; Plagge, M.; Quertenmont, L.; Racz, A.; Reece, W.; Rojo, J.; Rolandi, G.; Rovere, M.; Sakulin, H.; Santanastasio, F.; Schäfer, C.; Schwick, C.; Segoni, I.; Sekmen, S.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Stoye, M.; Tsirou, A.; Veres, G. I.; Vlimant, J. R.; Wöhri, H. K.; Worm, S. D.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Gabathuler, K.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; König, S.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Bortignon, P.; Buchmann, M. A.; Casal, B.; Chanon, N.; Deisher, A.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dünser, M.; Eller, P.; Freudenreich, K.; Grab, C.; Hits, D.; Lecomte, P.; Lustermann, W.; Mangano, B.; Marini, A. C.; Martinez Ruiz del Arbol, P.; Meister, D.; Mohr, N.; Moortgat, F.; Nägeli, C.; Nef, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pape, L.; Pauss, F.; Peruzzi, M.; Ronga, F. J.; Rossini, M.; Sala, L.; Sanchez, A. K.; Starodumov, A.; Stieger, B.; Takahashi, M.; Tauscher, L.; Thea, A.; Theofilatos, K.; Treille, D.; Urscheler, C.; Wallny, R.; Weber, H. A.; Amsler, C.; Chiochia, V.; Favaro, C.; Ivova Rikova, M.; Kilminster, B.; Millan Mejias, B.; Robmann, P.; Snoek, H.; Taroni, S.; Verzetti, M.; Yang, Y.; Cardaci, M.; Chen, K. H.; Ferro, C.; Kuo, C. M.; Li, S. W.; Lin, W.; Lu, Y. J.; Volpe, R.; Yu, S. S.; Bartalini, P.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Dietz, C.; Grundler, U.; Hou, W.-S.; Hsiung, Y.; Kao, K. Y.; Lei, Y. J.; Lu, R.-S.; Majumder, D.; Petrakou, E.; Shi, X.; Shiu, J. G.; Tzeng, Y. M.; Wang, M.; Asavapibhop, B.; Suwonjandee, N.; Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Kayis Topaksu, A.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sogut, K.; Sunar Cerci, D.; Tali, B.; Topakli, H.; Vergili, M.; Akin, I. V.; Aliev, T.; Bilin, B.; Bilmis, S.; Deniz, M.; Gamsizkan, H.; Guler, A. M.; Karapinar, G.; Ocalan, K.; Ozpineci, A.; Serin, M.; Sever, R.; Surat, U. E.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Isildak, B.; Kaya, M.; Kaya, O.; Ozkorucuklu, S.; Sonmez, N.; Bahtiyar, H.; Barlas, E.; Cankocak, K.; Günaydin, Y. O.; Vardarlı, F. I.; Yücel, M.; Levchuk, L.; Sorokin, P.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Frazier, R.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Kreczko, L.; Lucas, C.; Meng, Z.; Metson, S.; Newbold, D. M.; Nirunpong, K.; Paramesvaran, S.; Poll, A.; Senkin, S.; Smith, V. J.; Williams, T.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Ilic, J.; Olaiya, E.; Petyt, D.; Radburn-Smith, B. C.; ShepherdThemistocleous, C. H.; Tomalin, I. R.; Womersley, W. J.; Bainbridge, R.; Buchmuller, O.; Burton, D.; Colling, D.; Cripps, N.; Cutajar, M.; Dauncey, P.; Davies, G.; Della Negra, M.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Guneratne Bryer, A.; Hall, G.; Hatherell, Z.; Hays, J.; Iles, G.; Jarvis, M.; Karapostoli, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Marrouche, J.; Mathias, B.; Nandi, R.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Pioppi, M.; Raymond, D. M.; Rogerson, S.; Rose, A.; Seez, C.; Sharp, P.; Sparrow, A.; Tapper, A.; Vazquez Acosta, M.; Virdee, T.; Wakefield, S.; Wardle, N.; Chadwick, M.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Martin, W.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Scarborough, T.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Avetisyan, A.; Bose, T.; Fantasia, C.; Heister, A.; Lawson, P.; Lazic, D.; Rohlf, J.; Sperka, D.; John, J. St.; Sulak, L.; Alimena, J.; Bhattacharya, S.; Christopher, G.; Cutts, D.; Demiragli, Z.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Jabeen, S.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Segala, M.; Sinthuprasith, T.; Speer, T.; Breedon, R.; Breto, G.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Houtz, R.; Ko, W.; Kopecky, A.; Lander, R.; Miceli, T.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Rutherford, B.; Searle, M.; Smith, J.; Squires, M.; Tripathi, M.; Wilbur, S.; Yohay, R.; Andreev, V.; Cline, D.; Cousins, R.; Erhan, S.; Everaerts, P.; Farrell, C.; Felcini, M.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Rakness, G.; Schlein, P.; Takasugi, E.; Traczyk, P.; Valuev, V.; Weber, M.; Babb, J.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Jandir, P.; Liu, H.; Long, O. R.; Luthra, A.; Malberti, M.; Nguyen, H.; Shrinivas, A.; Sturdy, J.; Sumowidagdo, S.; Wilken, R.; Wimpenny, S.; Andrews, W.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Evans, D.; Holzner, A.; Kelley, R.; Lebourgeois, M.; Letts, J.; Macneill, I.; Padhi, S.; Palmer, C.; Petrucciani, G.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Wasserbaech, S.; Würthwein, F.; Yagil, A.; Yoo, J.; Barge, D.; Campagnari, C.; Danielson, T.; Flowers, K.; Geffert, P.; George, C.; Golf, F.; Incandela, J.; Justus, C.; Kovalskyi, D.; Krutelyov, V.; Lowette, S.; Magaña Villalba, R.; Mccoll, N.; Pavlunin, V.; Richman, J.; Rossin, R.; Stuart, D.; To, W.; West, C.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Di Marco, E.; Duarte, J.; Kcira, D.; Ma, Y.; Mott, A.; Newman, H. B.; Pena, C.; Rogan, C.; Spiropulu, M.; Timciuc, V.; Veverka, J.; Wilkinson, R.; Xie, S.; Zhu, R. Y.; Azzolini, V.; Calamba, A.; Carroll, R.; Ferguson, T.; Iiyama, Y.; Jang, D. W.; Liu, Y. F.; Paulini, M.; Russ, J.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Drell, B. R.; Ford, W. T.; Gaz, A.; Luiggi Lopez, E.; Nauenberg, U.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Eggert, N.; Gibbons, L. K.; Hopkins, W.; Khukhunaishvili, A.; Kreis, B.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Ryd, A.; Salvati, E.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Winstrom, L.; Wittich, P.; Winn, D.; Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Burkett, K.; Butler, J. N.; Chetluru, V.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Gottschalk, E.; Gray, L.; Green, D.; Gutsche, O.; Hare, D.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Kaadze, K.; Klima, B.; Kunori, S.; Kwan, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Martinez Outschoorn, V. I.; Maruyama, S.; Mason, D.; McBride, P.; Mishra, K.; Mrenna, S.; Musienko, Y.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Ratnikova, N.; Sexton-Kennedy, E.; Sharma, S.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitmore, J.; Wu, W.; Yang, F.; Yun, J. C.; Acosta, D.; Avery, P.; Bourilkov, D.; Chen, M.; Cheng, T.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Dobur, D.; Drozdetskiy, A.; Field, R. D.; Fisher, M.; Fu, Y.; Furic, I. K.; Hugon, J.; Kim, B.; Konigsberg, J.; Korytov, A.; Kropivnitskaya, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Remington, R.; Rinkevicius, A.; Skhirtladze, N.; Snowball, M.; Yelton, J.; Zakaria, M.; Gaultney, V.; Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Adams, T.; Askew, A.; Bochenek, J.; Chen, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.; Baarmand, M. M.; Dorney, B.; Hohlmann, M.; Kalakhety, H.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Bazterra, V. E.; Betts, R. R.; Bucinskaite, I.; Callner, J.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Kurt, P.; Lacroix, F.; Moon, D. H.; O'Brien, C.; Silkworth, C.; Strom, D.; Turner, P.; Varelas, N.; Akgun, U.; Albayrak, E. A.; Bilki, B.; Clarida, W.; Dilsiz, K.; Duru, F.; Griffiths, S.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Newsom, C. R.; Ogul, H.; Onel, Y.; Ozok, F.; Sen, S.; Tan, P.; Tiras, E.; Wetzel, J.; Yetkin, T.; Yi, K.; Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Giurgiu, G.; Gritsan, A. V.; Hu, G.; Maksimovic, P.; Martin, C.; Swartz, M.; Whitbeck, A.; Baringer, P.; Bean, A.; Benelli, G.; Kenny, R. P.; Murray, M.; Noonan, D.; Sanders, S.; Stringer, R.; Wood, J. S.; Barfuss, A. F.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Saini, L. K.; Shrestha, S.; Svintradze, I.; Gronberg, J.; Lange, D.; Rebassoo, F.; Wright, D.; Baden, A.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kolberg, T.; Lu, Y.; Marionneau, M.; Mignerey, A. C.; Pedro, K.; Peterman, A.; Skuja, A.; Temple, J.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Bauer, G.; Busza, W.; Cali, I. A.; Chan, M.; Di Matteo, L.; Dutta, V.; Gomez Ceballos, G.; Goncharov, M.; Gulhan, D.; Kim, Y.; Klute, M.; Lai, Y. S.; Levin, A.; Luckey, P. D.; Ma, T.; Nahn, S.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Stephans, G. S. F.; Stöckli, F.; Sumorok, K.; Velicanu, D.; Wolf, R.; Wyslouch, B.; Yang, M.; Yilmaz, Y.; Yoon, A. S.; Zanetti, M.; Zhukova, V.; Dahmes, B.; De Benedetti, A.; Franzoni, G.; Gude, A.; Haupt, J.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Sasseville, M.; Singovsky, A.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Cremaldi, L. M.; Kroeger, R.; Oliveros, S.; Perera, L.; Rahmat, R.; Sanders, D. A.; Summers, D.; Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Eads, M.; Gonzalez Suarez, R.; Keller, J.; Kravchenko, I.; Lazo-Flores, J.; Malik, S.; Meier, F.; Snow, G. R.; Dolen, J.; Godshalk, A.; Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Wan, Z.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Haley, J.; Massironi, A.; Nash, D.; Orimoto, T.; Trocino, D.; Wood, D.; Zhang, J.; Anastassov, A.; Hahn, K. A.; Kubik, A.; Lusito, L.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Velasco, M.; Won, S.; Berry, D.; Brinkerhoff, A.; Chan, K. M.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kolb, J.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Morse, D. M.; Pearson, T.; Planer, M.; Ruchti, R.; Slaunwhite, J.; Valls, N.; Wayne, M.; Wolf, M.; Antonelli, L.; Bylsma, B.; Durkin, L. S.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Puigh, D.; Rodenburg, M.; Smith, G.; Vuosalo, C.; Winer, B. L.; Wolfe, H.; Berry, E.; Elmer, P.; Halyo, V.; Hebda, P.; Hegeman, J.; Hunt, A.; Jindal, P.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroué, P.; Quan, X.; Raval, A.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zenz, S. C.; Zuranski, A.; Brownson, E.; Lopez, A.; Mendez, H.; Ramirez Vargas, J. E.; Alagoz, E.; Benedetti, D.; Bolla, G.; Bortoletto, D.; De Mattia, M.; Everett, A.; Hu, Z.; Jones, M.; Jung, K.; Koybasi, O.; Kress, M.; Leonardo, N.; Lopes Pegna, D.; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Yoo, H. D.; Zablocki, J.; Zheng, Y.; Parashar, N.; Adair, A.; Akgun, B.; Ecklund, K. M.; Geurts, F. J. M.; Li, W.; Michlin, B.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.; Betchart, B.; Bodek, A.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Miner, D. C.; Petrillo, G.; Vishnevskiy, D.; Zielinski, M.; Bhatti, A.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Malik, S.; Mesropian, C.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Rekovic, V.; Robles, J.; Salur, S.; Schnetzer, S.; Seitz, C.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Cerizza, G.; Hollingsworth, M.; Rose, K.; Spanier, S.; Yang, Z. C.; York, A.; Bouhali, O.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Safonov, A.; Sakuma, T.; Suarez, I.; Tatarinov, A.; Toback, D.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Kovitanggoon, K.; Lee, S. W.; Libeiro, T.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Arenton, M. W.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Lin, C.; Neu, C.; Wood, J.; Gollapinni, S.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sakharov, A.; Belknap, D. A.; Borrello, L.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Duric, S.; Friis, E.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Klukas, J.; Lanaro, A.; Loveless, R.; Mohapatra, A.; Mozer, M. U.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ross, I.; Sarangi, T.; Savin, A.; Smith, W. H.; Swanson, J.

    2014-02-01

    Measurements are presented of the associated production of a W boson and a charm-quark jet (W + c) in pp collisions at a center-of-mass energy of 7 TeV. The analysis is conducted with a data sample corresponding to a total integrated luminosity of 5 fb-1, collected by the CMS detector at the LHC. W boson candidates are identified by their decay into a charged lepton (muon or electron) and a neutrino. The W + c measurements are performed for charm-quark jets in the kinematic region > 25 GeV, |ηjet| < 2 .5, for two different thresholds for the transverse momentum of the lepton from the W-boson decay, and in the pseudorapidity range |ηℓ| < 2 .1. Hadronic and inclusive semileptonic decays of charm hadrons are used to measure the following total cross sections: σ(pp → W + c + X) × (W → ℓν) = 107 .7 ± 3 .3 (stat .) ± 6 .9 (syst .) pb ( > 25 GeV) and σ(pp → W + c + X)×(W → ℓν) = 84 .1 ± 2 .0 (stat .) ± 4 .9 (syst .) pb ( > 35 GeV), and the cross section ratios σ(pp → W+ + + X) /σ(pp → W- + c + X) = 0 .954 ± 0 .025 (stat .) ± 0 .004 (syst .) ( > 25 GeV) and σ(pp → W+ + + X) /σ(pp → W- + c + X) = 0 .938 ± 0 .019 (stat .) ± 0 .006 (syst .) ( > 35 GeV). Cross sections and cross section ratios are also measured differentially with respect to the absolute value of the pseudorapidity of the lepton from the W-boson decay. These are the first measurements from the LHC directly sensitive to the strange quark and antiquark content of the proton. Results are compared with theoretical predictions and are consistent with the predictions based on global fits of parton distribution functions. [Figure not available: see fulltext.

  2. 'Charm' Strawberry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘Charm’ is a new June-bearing (short-day) strawberry (Fragaria ×ananassa Duchesne ex Rozier) cultivar from the U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS) breeding program in Corvallis, OR, released in cooperation with the Oregon Agricultural Experiment Station and the Wa...

  3. New limits on intrinsic charm in the nucleon from global analysis of parton distributions

    DOE PAGES

    Jimenez-Delgado, P.; Hobbs, T. J.; Londergan, J. T.; ...

    2015-02-27

    We present a new global QCD analysis of parton distribution functions, allowing for possible intrinsic charm (IC) contributions in the nucleon inspired by light-front models. The analysis makes use of the full range of available high-energy scattering data for Q2 ≥ 1 GeV2 and W2 ≥ 3.5 GeV2, including fixed-target proton and deuteron deep cross sections at lower energies that were excluded in previously global analyses. The expanded data set places more stringent constraints on the momentum carried by IC, with (x)IC at most 0.5% (corresponding to an IC normalization of ~1%) at the 4σ level for ΔX2 = 1.more » We also assess the impact of older EMC measurements of Fc2c at large x, which favor a nonzero IC, but with very large X2 values.« less

  4. Charm and beauty quark masses in the MMHT2014 global PDF analysis.

    PubMed

    Harland-Lang, L A; Martin, A D; Motylinski, P; Thorne, R S

    We investigate the variation in the MMHT2014 PDFs when we allow the heavy-quark masses [Formula: see text] and [Formula: see text] to vary away from their default values. We make PDF sets available in steps of [Formula: see text] and [Formula: see text], and present the variation in the PDFs and in the predictions. We examine the comparison to the HERA data on charm and beauty structure functions and note that in each case the heavy-quark data, and the inclusive data, have a slight preference for lower masses than our default values. We provide PDF sets with three and four active quark flavours, as well as the standard value of five flavours. We use the pole mass definition of the quark masses, as in the default MMHT2014 analysis, but briefly comment on the [Formula: see text] definition.

  5. Contribution of the MVD to the charm spectroscopy at P¯ANDA

    NASA Astrophysics Data System (ADS)

    Würschig, Th.; Bianco, S.; Jäkel, R.; Kliemt, R.; Mertens, M. C.; Stockmanns, T.; Zaunick, H.-G.; Brinkmann, K.-Th.

    2011-01-01

    P¯ANDA is a dedicated antiproton experiment at the future FAIR facility at GSI benefiting from antiproton beams with unprecedented intensity and quality. High-precision spectroscopy in the charm quark sector is part of the core physics program. The micro-vertex-detector (MVD) is the innermost part of the tracking system. It plays a key role for the vertex reconstruction and momentum resolution of charged particles. This article contains a short description of the P¯ANDA experiment and the MVD design. Detector simulations for the MVD are based on a detailed model allowing a realistic description. Presented results of physics simulations refer to selected reaction channels with charged particles in the final state. Besides the reconstruction of D-mesons a study of the X(3872) is included.

  6. Evidence for B Semileptonic Decays into the Lambda_c Charm Baryon

    SciTech Connect

    Aubert, Bernard; Bona, M.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Lopez, L.; Palano, Antimo; Pappagallo, M.; Eigen, G.; Stugu, Bjarne; Sun, L.; Abrams, G.S.; Battaglia, M.; Brown, D.N.; Cahn, Robert N.; Jacobsen, R.G.; /LBL, Berkeley /Birmingham U. /Ruhr U., Bochum /Bristol U. /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UCLA /UC, Riverside /UC, San Diego /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /Ferrara U. /INFN, Ferrara /Frascati /Genoa U. /INFN, Genoa /Harvard U. /Heidelberg U. /Humboldt U., Berlin /Imperial Coll., London /Iowa U. /Iowa State U. /Johns Hopkins U. /Orsay, LAL /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Louisville U. /Mainz U., Inst. Kernphys. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT /McGill U. /Consorzio Milano Ricerche /INFN, Milan /Mississippi U. /Montreal U. /Mt. Holyoke Coll. /Napoli Seconda U. /INFN, Naples /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /Padua U. /INFN, Padua /Paris U., VI-VII /Pennsylvania U. /Perugia U. /INFN, Perugia /INFN, Pisa /Princeton U. /Banca di Roma /Frascati /Rostock U. /Rutherford /DAPNIA, Saclay /South Carolina U. /SLAC /Stanford U., Phys. Dept. /SUNY, Albany /Tennessee U. /Texas U. /Texas U., Dallas /Turin U. /INFN, Turin /Trieste U. /INFN, Trieste /Valencia U., IFIC /Victoria U. /Warwick U. /Wisconsin U., Madison

    2008-11-05

    We present the first evidence for B semileptonic decays into the charmed baryon {Lambda}{sub c}{sup +} based on 420 fb{sup -1} of data collected at the {Upsilon}(4S) resonance with the BABAR detector at the PEP-II e{sup +}e{sup -} storage rings. Events are tagged by fully reconstructing one of the B mesons in a hadronic decay mode. We measure the relative branching fraction {Beta}({bar B} {yields} {Lambda}{sub c}{sup +} X{ell}{sup -}{bar {nu}}{sub {ell}})/{Beta}({bar B} {yields} {Lambda}{sub c}{sup +}/{bar {Lambda}}{sub c}{sup -}X) = (3.2 {+-} 0.9{sub stat.} {+-} 0.9{sub syst.})%. The significance of the signal including the systematic uncertainty is 4.9 standard deviations.

  7. Formation of hidden-charm pentaquarks in photon-nucleon collisions

    SciTech Connect

    Kubarovsky, Valery P.; Voloshin, M. B.

    2015-08-01

    The cross section for formation in γ + ρ collisions of the recently found hidden-charm pentaquark states Ρc(4380) and Ρc(4450) is discussed and estimated. The studies of these resonances in photon beam experiments can be complementary to those in the LHCb experiment setting, and may be more advantageous for measurement of their additional decay channels. It is pointed out that both the relative importance of such decays and the yield of the resonances in the γ + ρ collisions are sensitive to the internal dynamics of the pentaquarks and can resolve between theoretical models. Specific numerical estimates are discussed within a simple ‘baryocharmonium’ model, where the the observed Ρc resonances are composites of J/ψ and excited nucleon states with the quantum numbers of Ν(1440) and Ν(1520).

  8. Formation of hidden-charm pentaquarks in photon-nucleon collisions

    DOE PAGES

    Kubarovsky, Valery P.; Voloshin, M. B.

    2015-08-01

    The cross section for formation in γ + ρ collisions of the recently found hidden-charm pentaquark states Ρc(4380) and Ρc(4450) is discussed and estimated. The studies of these resonances in photon beam experiments can be complementary to those in the LHCb experiment setting, and may be more advantageous for measurement of their additional decay channels. It is pointed out that both the relative importance of such decays and the yield of the resonances in the γ + ρ collisions are sensitive to the internal dynamics of the pentaquarks and can resolve between theoretical models. Specific numerical estimates are discussed withinmore » a simple ‘baryocharmonium’ model, where the the observed Ρc resonances are composites of J/ψ and excited nucleon states with the quantum numbers of Ν(1440) and Ν(1520).« less

  9. Proposal for the geometrical distribution of the air cherenkov detectors for CHARM

    NASA Astrophysics Data System (ADS)

    Morales Reyes, A. R.; Martínez Bravo, O. M.

    2011-04-01

    In this work we propose the geometrical distribution of the air Cherenkov detectors array (ACD), who will be part of the Cosmic High Altitude Radiation Monitor Observatory (CHARM) located at Pico de Orizaba Volcano at 4300 m.a.s.l.. The proposal is based on a library of events built with photons, protons and iron nuclei as primary particles by montecarlo simulations with energies from 1014 eV to 1017 eV. The goal of this detectors will be to determinate the nature of primary cosmic radiation, through measuring the height at which the secondary particles generated reach his maximum number or Xmax, this quantity is related with the effective cross section and finally with the atomic number A of the primary particles. In addition to this we proposed an energy estimator based on the study of the lateral distribution function of the generated events.

  10. Nonperturbative charming penguin contributions to isospin asymmetries in radiative B decays

    SciTech Connect

    Kim, Chul; Mehen, Thomas; Leibovich, Adam K.

    2008-09-01

    Recent experimental data on the radiative decays B{yields}V{gamma}, where V is a light vector meson, find small isospin violation in B{yields}K*{gamma} while isospin asymmetries in B{yields}{rho}{gamma} are of order 20%, with large uncertainties. Using soft-collinear effective theory, we calculate isospin asymmetries in these radiative B decays up to O(1/m{sub b}), also including O(v{alpha}{sub s}) contributions from nonperturbative charming penguins (NPCP). In the absence of NPCP contributions, the theoretical predictions for the asymmetries are a few percent or less. Including the NPCP can significantly increase the isospin asymmetries for both B{yields}V{gamma} modes. We also consider the effect of the NPCP on the branching ratio and CP asymmetries in B{sup {+-}}{yields}V{sup {+-}}{gamma}.

  11. Charm and beauty quark masses in the MMHT2014 global PDF analysis

    NASA Astrophysics Data System (ADS)

    Harland-Lang, L. A.; Martin, A. D.; Motylinski, P.; Thorne, R. S.

    2016-01-01

    We investigate the variation in the MMHT2014 PDFs when we allow the heavy-quark masses m_c and m_b to vary away from their default values. We make PDF sets available in steps of Δ m_c =0.05 GeV and Δ m_b =0.25 GeV, and present the variation in the PDFs and in the predictions. We examine the comparison to the HERA data on charm and beauty structure functions and note that in each case the heavy-quark data, and the inclusive data, have a slight preference for lower masses than our default values. We provide PDF sets with three and four active quark flavours, as well as the standard value of five flavours. We use the pole mass definition of the quark masses, as in the default MMHT2014 analysis, but briefly comment on the overline{MS} definition.

  12. One loop corrections on fragmentation function of 1S wave charmed mesons

    NASA Astrophysics Data System (ADS)

    Sepahvand, Reza; Dadfar, Sareh

    2017-04-01

    We present the contribution of the next to leading order (NLO) corrections in fragmentation a c-quark to 1S wave charmed mesons. These corrections are calculated by using the dimensional regularization method. We use two slicing methods that allow the phase space integrals to be evaluated in 4 dimensions. Technical details are discussed about virtual and real corrections in this scheme. Our numerical calculations show the NLO corrections to D mesons fragmentation function (FF) enhance the fragmentation probability (FP). The production ratio of vector mesons D* and D+* to all states is estimated. At NLO, it is obtained a bit smaller than the one at LO. Finally our analytic results are compared with available experimental data for D0 and D+* mesons.

  13. PHENIX Measurements of Single Electrons from Charm and Bottom Decays at Midrapidity in Au + Au Collisions

    NASA Astrophysics Data System (ADS)

    McGlinchey, D.

    2016-12-01

    Heavy quarks are an ideal probe of the quark gluon plasma created in heavy ion collisions. They are produced in the initial hard scattering and therefore experience the full evolution of the medium. PHENIX has previously measured the modification of heavy quark production in Au+Au collisions at √{sNN} = 200 GeV via electrons from semileptonic decays, which indicated substantial modifications of the parent hadron momentum distribution. The PHENIX barrel silicon vertex detector (VTX), installed in 2011, allows for the separation of electrons from charm and bottom hadron decays through the use of displaced vertex measurements. These proceedings present the results of the completed analysis of the 2011 data set using the VTX.

  14. Excited-state spectroscopy of singly, doubly and triply-charmed baryons from lattice QCD

    SciTech Connect

    Padmanath, M.; Edwards, Robert G.; Mathur, Nilmani; Peardon, Michael

    2014-07-01

    We present the ground and excited state spectra of singly, doubly and triply-charmed baryons by using dynamical lattice QCD. A large set of baryonic operators that respect the symmetries of the lattice and are obtained after subduction from their continuum analogues are utilized. These operators transform as irreducible representations of SU(3)F symmetry for flavour, SU(4) symmetry for Dirac spins of quarks and O(3) symmetry for orbital angular momenta. Using novel computational techniques correlation functions of these operators are generated and the variational method is exploited to extract excited states. The lattice spectra that we obtain have baryonic states with well-defined total spins up to 7/2 and the low lying states remarkably resemble the expectations of quantum numbers from SU(6)ⓍO(3) symmetry.

  15. High Accuracy, Absolute, Cryogenic Refractive Index Measurements of Infrared Lens Materials for JWST NIRCam using CHARMS

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas; Frey, Bradley

    2005-01-01

    The current refractive optical design of the James Webb Space Telescope (JWST) Near Infrared Camera (NIRCam) uses three infrared materials in its lenses: LiF, BaF2, and ZnSe. In order to provide the instrument s optical designers with accurate, heretofore unavailable data for absolute refractive index based on actual cryogenic measurements, two prismatic samples of each material were measured using the cryogenic, high accuracy, refraction measuring system (CHARMS) at NASA GSFC, densely covering the temperature range from 15 to 320 K and wavelength range from 0.4 to 5.6 microns. Measurement methods are discussed and graphical and tabulated data for absolute refractive index, dispersion, and thermo-optic coefficient for these three materials are presented along with estimates of uncertainty. Coefficients for second order polynomial fits of measured index to temperature are provided for many wavelengths to allow accurate interpolation of index to other wavelengths and temperatures.

  16. Raman distributed temperature measurement at CERN high energy accelerator mixed field radiation test facility (CHARM)

    NASA Astrophysics Data System (ADS)

    Toccafondo, Iacopo; Nannipieri, Tiziano; Signorini, Alessandro; Guillermain, Elisa; Kuhnhenn, Jochen; Brugger, Markus; Di Pasquale, Fabrizio

    2015-09-01

    In this paper we present a validation of distributed Raman temperature sensing (RDTS) at the CERN high energy accelerator mixed field radiation test facility (CHARM), newly developed in order to qualify electronics for the challenging radiation environment of accelerators and connected high energy physics experiments. By investigating the effect of wavelength dependent radiation induced absorption (RIA) on the Raman Stokes and anti-Stokes light components in radiation tolerant Ge-doped multi-mode (MM) graded-index optical fibers, we demonstrate that Raman DTS used in loop configuration is robust to harsh environments in which the fiber is exposed to a mixed radiation field. The temperature profiles measured on commercial Ge-doped optical fibers is fully reliable and therefore, can be used to correct the RIA temperature dependence in distributed radiation sensing systems based on P-doped optical fibers.

  17. Bottom and charm masses and lifetimes at the Tevatron; and a pentaquark search

    SciTech Connect

    B. Todd Huffman

    2003-06-09

    The Fermilab Tevatron, operating at {radical}s = 1.96 TeV, provides a rich environment for the study of the bottom and charmed hadrons and for searches of other bound states. Presented here are recent measurements of the masses of the following states using fully reconstructed events: B{sup +}, B{sup 0}, B{sub s}, {Lambda}{sub b}, and the neutral B**. Lifetimes from both CDF and D0 in exclusive decays for all of these modes are also presented (sans the B**). A search was conducted at CDF for the {Xi}{sup 2} and {Xi}{sup 0} pentaquark states in the decay {Xi}(1860) {yields} {Xi}{sup -} {pi}{sup {+-}} setting a limit on their production in p-{bar p} collisions relative to the number of {Xi}(1530) baryons seen.

  18. Flavor structure of Λ baryons from lattice QCD: From strange to charm quarks

    NASA Astrophysics Data System (ADS)

    Gubler, Philipp; Takahashi, Toru T.; Oka, Makoto

    2016-12-01

    We study Λ baryons of spin-parity 1/2± with either a strange or charm valence quark in full 2 +1 flavor lattice QCD. Multiple S U (3 ) singlet and octet operators are employed to generate the desired single baryon states on the lattice. Via the variational method, the couplings of these states to the different operators provide information about the flavor structure of the Λ baryons. We make use of the gauge configurations of the PACS-CS Collaboration and chirally extrapolate the results for the masses and S U (3 ) flavor components to the physical point. We furthermore gradually change the hopping parameter of the heaviest quark from strange to charm to study how the properties of the Λ baryons evolve as a function of the heavy quark mass. It is found that the baryon energy levels increase almost linearly with the quark mass. Meanwhile, the flavor structure of most of the states remains stable, with the exception of the lowest 1/2- state, which changes from a flavor singlet Λ to a Λc state with singlet and octet components of comparable size. Finally, we discuss whether our findings can be interpreted with the help of a simple quark model and find that the negative-parity Λc states can be naturally explained as diquark excitations of the light u and d quarks. On the other hand, the quark-model picture does not appear to be adequate for the negative-parity Λ states, suggesting the importance of other degrees of freedom to describe them.

  19. Open Education and the Open Science Economy

    ERIC Educational Resources Information Center

    Peters, Michael A.

    2009-01-01

    Openness as a complex code word for a variety of digital trends and movements has emerged as an alternative mode of "social production" based on the growing and overlapping complexities of open source, open access, open archiving, open publishing, and open science. This paper argues that the openness movement with its reinforcing structure of…

  20. Opening remarks

    SciTech Connect

    Hildebrand, S.G.

    1994-09-01

    Included in this paper are the opening remarks of S.G. Hildebrand, from Environmental Science Division, ORNL, to a conference on water resources and water resource issues. Wetlands are the focus of this talk, with an emphasis on conservation and land use to conserve wetland functions and values.

  1. Open Adoption

    ERIC Educational Resources Information Center

    Baran, Annette; And Others

    1976-01-01

    Adult adoptees are increasingly challenging the practice of sealing their birth records. The authors examine the historical roots of adoptive practices in this country and suggest that the time has come for open adoption to gain acceptance as an alternative. (Author)

  2. Measurement of the production rate of the charm jet recoiling against the W boson using the D0 detector at the Fermilab Tevatron Collider

    SciTech Connect

    Ahsan, Mahsana

    2008-01-01

    This dissertation describes a measurement of the rate of associated production of the W boson with the charm jet in the proton and anti-proton collisions at the center-of-mass energy of 1.96 TeV at the Fermilab Tevatron Collider. The measurement has direct sensitivity to the strange quark content inside the proton. A direct measurement of the momentum distribution of the strange quark inside the proton is essential for a reliable calculation of new physics signal as well as the background processes at the collider experiments. The identification of events containing a W boson and a charm jet is based on the leptonic decays of the W boson together with a tagging technique for the charm jet identification based on the semileptonic decay of the charm quark into the muon. The charm jet recoiling against the W boson must have a minimum transverse momentum of 20 GeV and an absolute value of pseudorapidity less than 2.5. This measurement utilizes the data collected by the D0 detector at the Fermilab Collider. The measured rate of the charm jet production in association with the W boson in the inclusive jet production with the W boson is 0.074 ± 0.023, which is in agreement with the theoretical predictions at the leading order in Quantum Chromodynamics.

  3. Opening education.

    PubMed

    Smith, Marshall S

    2009-01-02

    Spurred by the publication of Massachusetts Institute of Technology OpenCourseWare in 2002, the open educational resources (OER) movement, which has rapidly expanded and captured the imagination and energy of millions of creators and users throughout the world, now faces many opportunities and substantial challenges as it moves to become an integral part of the world's educational environment. The confluence of the Web and a spirit of sharing intellectual property have fueled a worldwide movement to make knowledge and education materials open to all for use. OER are content (courses, books, lesson plans, articles, etc.), tools (virtual laboratories, simulations, and games), and software that support learning and educational practice. OER are free on the Web, and most have licenses that allow copyright holders to retain ownership while providing specified rights for use in original and modified forms. At the least, OER have helped to level the distribution of knowledge across the world. A second promise of OER is to help transform educational practices. This article explores the history of and promises and challenges for OER.

  4. Traces of the hidden-charm S=-1 pentaquark in the Λb→J/ΨηΛ decay

    NASA Astrophysics Data System (ADS)

    Magas, V. K.; Feijoo, A.; Oset, E.; Ramos, A.

    2017-03-01

    The hidden charm pentaquark state Pc(4450), observed recently by the LHCb collaboration in the Λb→J/ψK- p decay, may be of molecular nature, as advocated by some unitary approaches that also predict pentaquark partners in the strangeness S=-1 sector. In this work we argue that a hidden-charm strange pentaquark could also be seen in the decay of theΛb, but through the J/ψηΛ decay mode, by studying the invariant mass spectrum of J/ψΛ pairs. In our model we assume a standard weak decay topology, then incorporate the hadronization process and final state interaction effects, and we find that the J/ψηΛ final state is populated with the strength similar to that of the J/ψK- p. We have studied the dependence of our results on reasonable changes in the parameters of the models as well as on the unknown properties of the speculated hidden charm strange pentaquark. We have observed that, while there appear changes in the position of the peak and in the shapes of the distributions, a resonance signal in the J/ψΛ invariant mass spectrum is clearly seen in all the cases. This gives us confidence that such an experimental study could result into a successful proof of the existence of this new state.

  5. Measurement of associated W + charm production in pp collisions at $$\\sqrt{s}$$ = 7 TeV

    DOE PAGES

    Chatrchyan, Serguei

    2014-02-04

    Measurements are presented of the associated production of a W boson and a charm-quark jet (W + c) in pp collisions at a center-of-mass energy of 7 TeV. The analysis is conducted with a data sample corresponding to a total integrated luminosity of 5 inverse femtobarns, collected by the CMS detector at the LHC. W boson candidates are identified by their decay into a charged lepton (muon or electron) and a neutrino. The W + c measurements are performed for charm-quark jets in the kinematic regionmore » $$p_T^{jet} \\gt$$ 25 GeV, $$|\\eta^{jet}| \\lt$$ 2.5, for two different thresholds for the transverse momentum of the lepton from the W-boson decay, and in the pseudorapidity range $$|\\eta^{\\ell}| \\lt$$ 2.1. Hadronic and inclusive semileptonic decays of charm hadrons are used to measure the following total cross sections: $$\\sigma(pp \\to W + c + X) \\times B(W \\to \\ell \

  6. Measurement of beauty and charm production in deep inelastic scattering at HERA and measurement of the beauty-quark mass

    NASA Astrophysics Data System (ADS)

    Abramowicz, H.; Abt, I.; Adamczyk, L.; Adamus, M.; Aggarwal, R.; Antonelli, S.; Arslan, O.; Aushev, V.; Aushev, Y.; Bachynska, O.; Barakbaev, A. N.; Bartosik, N.; Behnke, O.; Behr, J.; Behrens, U.; Bertolin, A.; Bhadra, S.; Bloch, I.; Bokhonov, V.; Boos, E. G.; Borras, K.; Brock, I.; Brugnera, R.; Bruni, A.; Brzozowska, B.; Bussey, P. J.; Caldwell, A.; Capua, M.; Catterall, C. D.; Chwastowski, J.; Ciborowski, J.; Ciesielski, R.; Cooper-Sarkar, A. M.; Corradi, M.; Corriveau, F.; D'Agostini, G.; Dementiev, R. K.; Devenish, R. C. E.; Dolinska, G.; Drugakov, V.; Dusini, S.; Ferrando, J.; Figiel, J.; Foster, B.; Gach, G.; Garfagnini, A.; Geiser, A.; Gizhko, A.; Gladilin, L. K.; Gogota, O.; Golubkov, Yu. A.; Grebenyuk, J.; Gregor, I.; Grzelak, G.; Gueta, O.; Guzik, M.; Hain, W.; Hartner, G.; Hochman, D.; Hori, R.; Ibrahim, Z. A.; Iga, Y.; Ishitsuka, M.; Iudin, A.; Januschek, F.; Kadenko, I.; Kananov, S.; Kanno, T.; Karshon, U.; Kaur, M.; Kaur, P.; Khein, L. A.; Kisielewska, D.; Klanner, R.; Klein, U.; Kondrashova, N.; Kononenko, O.; Korol, Ie.; Korzhavina, I. A.; Kotanski, A.; Kötz, U.; Kovalchuk, N.; Kowalski, H.; Kuprash, O.; Kuze, M.; Levchenko, B. B.; Levy, A.; Libov, V.; Limentani, S.; Lisovyi, M.; Lobodzinska, E.; Lohmann, W.; Löhr, B.; Lohrmann, E.; Longhin, A.; Lontkovskyi, D.; Lukina, O. Yu.; Maeda, J.; Makarenko, I.; Malka, J.; Martin, J. F.; Mergelmeyer, S.; Mohamad Idris, F.; Mujkic, K.; Myronenko, V.; Nagano, K.; Nigro, A.; Nobe, T.; Notz, D.; Nowak, R. J.; Olkiewicz, K.; Onishchuk, Yu.; Paul, E.; Perlanski, W.; Perrey, H.; Pokrovskiy, N. S.; Proskuryakov, A. S.; Przybycien, M.; Raval, A.; Roloff, P.; Rubinsky, I.; Ruspa, M.; Samojlov, V.; Saxon, D. H.; Schioppa, M.; Schmidke, W. B.; Schneekloth, U.; Schörner-Sadenius, T.; Schwartz, J.; Shcheglova, L. M.; Shehzadi, R.; Shevchenko, R.; Shkola, O.; Singh, I.; Skillicorn, I. O.; Slominski, W.; Sola, V.; Solano, A.; Spiridonov, A.; Stanco, L.; Stefaniuk, N.; Stern, A.; Stewart, T. P.; Stopa, P.; Sztuk-Dambietz, J.; Szuba, D.; Szuba, J.; Tassi, E.; Temiraliev, T.; Tokushuku, K.; Tomaszewska, J.; Trofymov, A.; Trusov, V.; Tsurugai, T.; Turcato, M.; Turkot, O.; Tymieniecka, T.; Verbytskyi, A.; Viazlo, O.; Walczak, R.; Wan Abdullah, W. A. T.; Wichmann, K.; Wing, M.; Wolf, G.; Yamada, S.; Yamazaki, Y.; Zakharchuk, N.; Żarnecki, A. F.; Zawiejski, L.; Zenaiev, O.; Zhautykov, B. O.; Zhmak, N.; Zotkin, D. S.

    2014-09-01

    The production of beauty and charm quarks in ep interactions has been studied with the ZEUS detector at HERA for exchanged four-momentum squared 5 < Q 2 < 1000 GeV2 using an integrated luminosity of 354 pb-1. The beauty and charm content in events with at least one jet have been extracted using the invariant mass of charged tracks associated with secondary vertices and the decay-length significance of these vertices. Differential cross sections as a function of Q 2, Bjorken x, jet trans- verse energy and pseudorapidity were measured and compared with next-to-leading-order QCD calculations. The beauty and charm contributions to the proton structure functions were extracted from the double-differential cross section as a function of x and Q 2. The running beauty-quark mass, m b at the scale m b , was determined from a QCD fit at next-to-leading order to HERA data for the first time and found to be m b ( m b ) = 4.07 ± 0.14 (fit){-/0.07 + 0.01}(mod.){-/0.00 + 0.05}(param.){-/0.05 + 0.08}(theo.) GeV.

  7. Measurement of beauty and charm production in deep inelastic scattering at HERA and measurement of the beauty-quark mass

    NASA Astrophysics Data System (ADS)

    Abramowicz, H.; Abt, I.; Adamczyk, L.; Adamus, M.; Aggarwal, R.; Antonelli, S.; Arslan, O.; Aushev, V.; Aushev, Y.; Bachynska, O.; Barakbaev, A. N.; Bartosik, N.; Behnke, O.; Behr, J.; Behrens, U.; Bertolin, A.; Bhadra, S.; Bloch, I.; Bokhonov, V.; Boos, E. G.; Borras, K.; Brock, I.; Brugnera, R.; Bruni, A.; Brzozowska, B.; Bussey, P. J.; Caldwell, A.; Capua, M.; Catterall, C. D.; Chwastowski, J.; Ciborowski, J.; Ciesielski, R.; Cooper-Sarkar, A. M.; Corradi, M.; Corriveau, F.; D'Agostini, G.; Dementiev, R. K.; Devenish, R. C. E.; Dolinska, G.; Drugakov, V.; Dusini, S.; Ferrando, J.; Figiel, J.; Foster, B.; Gach, G.; Garfagnini, A.; Geiser, A.; Gizhko, A.; Gladilin, L. K.; Gogota, O.; Golubkov, Yu. A.; Grebenyuk, J.; Gregor, I.; Grzelak, G.; Gueta, O.; Guzik, M.; Hain, W.; Hartner, G.; Hochman, D.; Hori, R.; Ibrahim, Z. A.; Iga, Y.; Ishitsuka, M.; Iudin, A.; Januschek, F.; Kadenko, I.; Kananov, S.; Kanno, T.; Karshon, U.; Kaur, M.; Kaur, P.; Khein, L. A.; Kisielewska, D.; Klanner, R.; Klein, U.; Kondrashova, N.; Kononenko, O.; Korol, Ie.; Korzhavina, I. A.; Kotanski, A.; Kötz, U.; Kovalchuk, N.; Kowalski, H.; Kuprash, O.; Kuze, M.; Levchenko, B. B.; Levy, A.; Libov, V.; Limentani, S.; Lisovyi, M.; Lobodzinska, E.; Lohmann, W.; Löhr, B.; Lohrmann, E.; Longhin, A.; Lontkovskyi, D.; Lukina, O. Yu.; Maeda, J.; Makarenko, I.; Malka, J.; Martin, J. F.; Mergelmeyer, S.; Mohamad Idris, F.; Mujkic, K.; Myronenko, V.; Nagano, K.; Nigro, A.; Nobe, T.; Notz, D.; Nowak, R. J.; Olkiewicz, K.; Onishchuk, Yu.; Paul, E.; Perlanski, W.; Perrey, H.; Pokrovskiy, N. S.; Proskuryakov, A. S.; Przybycien, M.; Raval, A.; Roloff, P.; Rubinsky, I.; Ruspa, M.; Samojlov, V.; Saxon, D. H.; Schioppa, M.; Schmidke, W. B.; Schneekloth, U.; Schörner-Sadenius, T.; Schwartz, J.; Shcheglova, L. M.; Shehzadi, R.; Shevchenko, R.; Shkola, O.; Singh, I.; Skillicorn, I. O.; Slominski, W.; Sola, V.; Solano, A.; Spiridonov, A.; Stanco, L.; Stefaniuk, N.; Stern, A.; Stewart, T. P.; Stopa, P.; Sztuk-Dambietz, J.; Szuba, D.; Szuba, J.; Tassi, E.; Temiraliev, T.; Tokushuku, K.; Tomaszewska, J.; Trofymov, A.; Trusov, V.; Tsurugai, T.; Turcato, M.; Turkot, O.; Tymieniecka, T.; Verbytskyi, A.; Viazlo, O.; Walczak, R.; Wan Abdullah, W. A. T.; Wichmann, K.; Wing, M.; Wolf, G.; Yamada, S.; Yamazaki, Y.; Zakharchuk, N.; Żarnecki, A. F.; Zawiejski, L.; Zenaiev, O.; Zhautykov, B. O.; Zhmak, N.; Zotkin, D. S.

    2014-10-01

    The production of beauty and charm quarks in ep interactions has been studied with the ZEUS detector at HERA for exchanged four-momentum squared 5 < Q 2 < 1000 GeV2 using an integrated luminosity of 354 pb-1. The beauty and charm content in events with at least one jet have been extracted using the invariant mass of charged tracks associated with secondary vertices and the decay-length significance of these vertices. Differential cross sections as a function of Q 2, Bjorken x, jet trans- verse energy and pseudorapidity were measured and compared with next-to-leading-order QCD calculations. The beauty and charm contributions to the proton structure functions were extracted from the double-differential cross section as a function of x and Q 2. The running beauty-quark mass, m b at the scale m b , was determined from a QCD fit at next-to-leading order to HERA data for the first time and found to be m b ( m b ) = 4.07 ± 0.14 (fit){-/0.07 + 0.01}(mod.){-/0.00 + 0.05}(param.){-/0.05 + 0.08}(theo.) GeV.

  8. "Could charm (& τ) transitions be the `poor princess' providing a deeper understanding of fundamental dynamics ?" or: "Finding novel forces"

    NASA Astrophysics Data System (ADS)

    Bigi, Ikaros I.

    2015-06-01

    We know that our Universe is composed of only ˜ 4.5% "known" matter; therefore, our understanding is incomplete. This can be seen directly in the case of neutrino oscillations (without even considering potential other universes). Charm quarks have had considerable impact on our understanding of known matter, and quantum chromodynamics (QCD) is the only local quantum field theory to describe strong forces. It is possible to learn novel lessons concerning strong dynamics by measuring rates around the thresholds of [ Q¯ Q] states with Q = b, c. Furthermore, these states provide us with gateways towards new dynamics (ND), where we must transition from "accuracy" to "precision" eras. Finally, we can make connections with τ transitions and, perhaps, with dark matter. Charm dynamics acts as a bridge between the worlds of light- and heavy-flavor hadrons (namely, beauty hadrons), and finding regional asymmetries in many-body final states may prove to be a "game changer". There are several different approaches to achieving these goals: for example, experiments such as the Super Tau-Charm Factory, Super Beauty Factory, and the Super Z 0 Factory act as gatekeepers - and deeper thinking regarding symmetries.

  9. Measurement of associated W + charm production in pp collisions at $\\sqrt{s}$ = 7 TeV

    SciTech Connect

    Chatrchyan, Serguei

    2014-02-04

    Measurements are presented of the associated production of a W boson and a charm-quark jet (W + c) in pp collisions at a center-of-mass energy of 7 TeV. The analysis is conducted with a data sample corresponding to a total integrated luminosity of 5 inverse femtobarns, collected by the CMS detector at the LHC. W boson candidates are identified by their decay into a charged lepton (muon or electron) and a neutrino. The W + c measurements are performed for charm-quark jets in the kinematic region $p_T^{jet} \\gt$ 25 GeV, $|\\eta^{jet}| \\lt$ 2.5, for two different thresholds for the transverse momentum of the lepton from the W-boson decay, and in the pseudorapidity range $|\\eta^{\\ell}| \\lt$ 2.1. Hadronic and inclusive semileptonic decays of charm hadrons are used to measure the following total cross sections: $\\sigma(pp \\to W + c + X) \\times B(W \\to \\ell \

  10. Opening the Dutch Open Telescope

    NASA Astrophysics Data System (ADS)

    Rutten, R. J.; de Wijn, A. G.; Sütterlin, P.; Bettonvil, F. C. M.; Hammerschlag, R. H.

    2002-10-01

    We hope to "open the DOT" to the international solar physics community as a facility for high-resolution tomography of the solar atmosphere. Our aim is to do so combining peer-review time allocation with service-mode operation in a "hands-on-telescope" education program bringing students to La Palma to assist in the observing and processing. The largest step needed is considerable speedup of the DOT speckle processing.

  11. Open University

    ScienceCinema

    None

    2016-07-12

    Michel Pentz est née en Afrique du Sud et venu au Cern en 1957 comme physicien et président de l'associaion du personnel. Il est également fondateur du mouvement Antiapartheid de Genève et a participé à la fondation de l'Open University en Grande-Bretagne. Il nous parle des contextes pédagogiques, culturels et nationaux dans lesquels la méthode peut s'appliquer.

  12. Production of P-wave charmed mesons in hadronic B decays

    NASA Astrophysics Data System (ADS)

    Cheng, Hai-Yang; Chua, Chun-Khiang

    2006-08-01

    Production of even-parity charmed mesons in hadronic B decays is studied. Specifically, we focus on the Cabibbo-allowed decays B¯→D**π and D¯s**D(*), where D** denotes generically a P-wave charmed meson. While the measured color-allowed decays B¯0→D**+π- are consistent with the theoretical expectation, the experimental observation of B-→D**0π- for the broad D** states is astonishing as it requires that the color-suppressed contribution dominates over the color-allowed one, even though the former is 1/mb suppressed in the heavy quark limit. In order to accommodate the data of B¯→D**π-, it is found that the real part of a2/a1 has a sign opposite to that in B¯→Dπ decays, where a1 and a2 are the effective parameters for color-allowed and color-suppressed decay amplitudes, respectively. The decay constants and form factors for D** and the Isgur-Wise functions τ1/2(ω) and τ3/2(ω) are extracted from the data of B→D**π decays. The Isgur-Wise functions calculated in the covariant light-front quark model are in good agreement with experiment. The neutral modes B¯0→D**0π0 for D**=D0*(2400), D1'(2430), and B¯0→D1'0(2430)ω are predicted to have branching ratios of order 10-4 which are also supported by the isospin argument. The decay constants of Ds0*(2317) and Ds1'(2460) are inferred from the measurements of B¯→Ds**-D to be 58 86 MeV and 130 200 MeV, respectively. Contrary to the decay constants fD0* and fD1' which are similar in size, the large disparity between fDs0* and fDs1' is surprising and unexpected.

  13. Measurement of the form factor ratios in semileptonic decays of charm mesons

    SciTech Connect

    Zaliznyak, Renata

    1998-05-01

    I have measured the form factor ratios r2 = A2 (0)/A1 (0) and rV = V (0)/A1 (0) in the semileptonic charm meson decay D+ → $\\bar{K}$*0 e+ve from data collected by the Fermilab E791 collaboration. Form factors are introduced in the calculation of the hadronic current in semileptonic decays of strange, charm, or bottom mesons, such as D+ → $\\bar{K}$*0 e+ ve . Semileptonic decays provide insight into quark coupling to the W boson since the leptonic and hadronic amplitudes in the Feynman diagram for the decay are completely separate. There are no strong interactions between the final state leptons and quarks. A number of theoretical models predict the values of the form factors for D+ → $\\bar{K}$*0 e+ ve , though there is a large range of predictions. E791 is a hadroproduction experiment that recorded over 20 billion interactions with a 500 GeV π- beam incident on five thin targets during the 1991-92 Fermilab fixed-target run. Approximately 3000 D+ → $\\bar{K}$*0 e+ ve decays are fully reconstructed. In order to extract the form factor ratios from the data, I implement a multidimensional unbinned maximum likelihood fit with a large sample of simulated (Monte Carlo) D+ → $\\bar{K}$*0 e+ve events. The large E791 data sample provides the most precise measurement of the form factor ratios to date. The measured values for the form factor ratios are r2 = 0.71 ± 0.08 ± 0.09 and rV = 1.84 ± 0.11 ±} 0.08. These results are in good agreement with some Lattice Gauge calculations. However the agreement with quark model predictions is not as good.

  14. Strong decays of charmed baryons in heavy hadron chiral perturbation theory: An update

    NASA Astrophysics Data System (ADS)

    Cheng, Hai-Yang; Chua, Chun-Khiang

    2015-10-01

    We first give a brief overview of the charmed baryon spectroscopy and discuss their possible structure and spin-parity assignments in the quark model. With the new Belle measurement of the widths of Σc(2455 ) and Σc(2520 ) and the recent CDF measurement of the strong decays of Λc(2595 ) and Λc(2625 ), we give updated coupling constants in heavy hadron chiral perturbation theory. We find g2=0.56 5-0.024+0.011 for P -wave transitions between s -wave and s -wave baryons, and h2, one of the couplings responsible for S -wave transitions between s -wave and p -wave baryons, is extracted from Λc(2595 )+→Λc+π π to be 0.63 ±0.07 . It is substantially enhanced compared to the old value of order 0.437. With the help from the quark model, two of the couplings h10 and h11 responsible for D -wave transitions between s -wave and p -wave baryons are determined from Σc(2880 ) decays. There is a tension for the coupling h2 as its value extracted from Λc(2595 )+→Λc+ππ will imply Ξc(2790 )0→Ξc'π and Ξc(2815 )+→Ξc*π rates slightly above the current limits. It is conceivable that SU(3) flavor symmetry breaking can help account for the discrepancy.

  15. Dynamical Analysis of the Heliotropic "Charming" Ringlet in Saturn's Cassini Division

    NASA Astrophysics Data System (ADS)

    Burt, Jennifer; Hedman, M. M.; Burns, J. A.; Tiscareno, M. S.

    2010-05-01

    The "charming" ringlet is a low-optical depth, dusty ringlet located in the Laplace gap in the Cassini Division, roughly 119,940 km from Saturn's center.This ringlet is particularly interesting because it appears to be "heliotropic"; that is its center of light occurs further from Saturn's center at longitudes near local noon than it does at longitudes near local midnight. This behavior indicates that the dynamics of the particles in this ring are being influenced by solar radiation pressure. To explore this phenomenon in detail, we analyze multiple image sequences of this ringlet obtained by Cassini in order to constrain its shape and orientation. These data can be fit reasonably well with a model in which both the eccentricity and the inclination of the ringlet have "forced" components (that maintain a fixed orientation relative to the Sun) as well as "free" components (that drift around the planet at a steady rate determined by Saturn's oblateness). While our observationally derived magnitude for the forced eccentricity is roughly consistent with theoretical expectations, the existence of significant free eccentricities and inclinations poses a significant challenge for models of low-optical-depth dusty rings.

  16. Study of W boson production in association with beauty and charm

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Anderson, J.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; d'Argent, P.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Bel, L. J.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bertolin, A.; Bettler, M.-O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Bird, T.; Birnkraut, A.; Bizzeti, A.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borsato, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Brett, D.; Britsch, M.; Britton, T.; Brodzicka, J.; Brook, N. H.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Campana, P.; Campora Perez, D.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cauet, Ch.; Cavallero, G.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chefdeville, M.; Chen, S.; Cheung, S.-F.; Chiapolini, N.; Chrzaszcz, M.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collazuol, G.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dalseno, J.; David, P. N. Y.; Davis, A.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Silva, W.; De Simone, P.; Dean, C.-T.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Déléage, N.; Demmer, M.; Derkach, D.; Deschamps, O.; Dettori, F.; Di Canto, A.; Di Ruscio, F.; Dijkstra, H.; Donleavy, S.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Dossett, D.; Dovbnya, A.; Dreimanis, K.; Dufour, L.; Dujany, G.; Dupertuis, F.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Färber, C.; Farinelli, C.; Farley, N.; Farry, S.; Fay, R.; Ferguson, D.; Fernandez Albor, V.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fohl, K.; Fol, P.; Fontana, M.; Fontanelli, F.; Forty, R.; Francisco, O.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; García Pardiñas, J.; Garofoli, J.; Garra Tico, J.; Garrido, L.; Gascon, D.; Gaspar, C.; Gastaldi, U.; Gauld, R.; Gavardi, L.; Gazzoni, G.; Geraci, A.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianelle, A.; Gianı, S.; Gibson, V.; Girard, O. G.; Giubega, L.; Gligorov, V. V.; Göbel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gotti, C.; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Grünberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadavizadeh, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Hampson, T.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Henry, L.; Hernando Morata, J. A.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Humair, T.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jawahery, A.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Karodia, S.; Kelsey, M.; Kenyon, I. R.; Kenzie, M.; Ketel, T.; Khanji, B.; Khurewathanakul, C.; Klaver, S.; Klimaszewski, K.; Kochebina, O.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Korolev, M.; Kozeiha, M.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kuonen, A. K.; Kurek, K.; Kvaratskheliya, T.; La Thi, V. N.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lambert, R. W.; Lanfranchi, G.; Langenbruch, C.

    2015-09-01

    The associated production of a W boson with a jet originating from either a light parton or heavy-flavor quark is studied in the forward region using proton-proton collisions. The analysis uses data corresponding to integrated luminosities of 1.0 and 2.0 fb-1 collected with the LHCb detector at center-of-mass energies of 7 and 8 TeV, respectively. The W bosons are reconstructed using the W →μ ν decay and muons with a transverse momentum, pT, larger than 20 GeV in the pseudorapidity range 2.0 <η <4.5 . The partons are reconstructed as jets with pT>20 GeV and 2.2 <η <4.2 . The sum of the muon and jet momenta must satisfy pT>20 GeV . The fraction of W +jet events that originate from beauty and charm quarks is measured, along with the charge asymmetries of the W +b and W +c production cross sections. The ratio of the W +jet to Z +jet production cross sections is also measured using the Z →μ μ decay. All results are in agreement with Standard Model predictions.

  17. Observation of an Excited Charm Baryon Omega^*_C Decaying to Omega^0_C Gamma

    SciTech Connect

    Aubert, B

    2006-11-15

    The authors report the first observation of an excited singly-charmed baryon {Omega}*{sub c} (css) in the radiative decay {Omega}{sub c}{sup 0}{gamma}, where the {Omega}{sub c}{sup 0} baryon is reconstructed in the decays to the final states {Omega}{sup -}{pi}{sup +}, {Omega}{sup -} {pi}{sup +}{pi}{sup 0}, {Omega}{sup -}{pi}{sup +}{pi}{sup -}{pi}{sup +}, and {Xi}{sup -} K{sup -} {pi}{sup +}{pi}{sup +}. This analysis is performed using a dataset of 230.7 fb{sup -1} collected by the BABAR detector at the PEP-II asymmetric-energy B Factory at the Stanford Linear Accelerator Center. The mass difference between the {Omega}*{sub c} and the {Omega}{sub c}{sup 0} baryons is measured to be 70.8 {+-} 1.0(stat) {+-} 1.1(syst) MeV/c{sup 2}. They also measure the ratio of inclusive production cross sections of {Omega}*{sub c} and {Omega}{sub c}{sup 0} in e{sup +}e{sup -} annihilation.

  18. J/ψω decay channel of the X(3872) charm meson molecule

    NASA Astrophysics Data System (ADS)

    Braaten, Eric; Kang, Daekyoung

    2013-07-01

    Analyses of the J/ψπ+π- decay channel of the X(3872) resonance by the CDF, Belle, and LHCb Collaborations have established its JPC quantum numbers as 1++. An analysis of the π+π-π0 invariant mass distribution in the J/ψπ+π-π0 decay channel by the BABAR Collaboration indicated a preference for 2-+ over 1++. We point out that a proper evaluation of the χ2 in that analysis increases the probability for 1++ from 7.1% to about 18.7%. In the case of quantum numbers 1++, where the X has an S-wave coupling to J/ψω, the proximity of the J/ψω threshold to D*D¯ thresholds and the narrow width of the ω suggest that the effects of scattering between J/ψω and charm meson pairs could be significant. We derive invariant mass distributions for J/ψπ+π-π0 and π+π-π0 that take into account S-wave scattering between the D*0D¯0, D*+D-, and J/ψω channels. We also analyze the effects of scattering through the χc1(2P) charmonium resonance. We find that scattering effects are unable to produce significant changes in the shape of the π+π-π0 invariant mass distribution.

  19. Mass spectra of four-quark states in the hidden charm sector

    NASA Astrophysics Data System (ADS)

    Patel, Smruti; Shah, Manan; Vinodkumar, P. C.

    2014-08-01

    Masses of the low-lying four-quark states in the hidden charm sector ( are calculated within the framework of a non-relativistic quark model. The four-body system is considered as two two-body systems such as diquark-antidiquark ( - and quark-antiquark-quark-antiquark ( - q molecular-like four-quark states. Here, the Cornell-type potential has been used for describing the two-body interactions among Q - q , - , Q - , Qq - and Q - q , with appropriate string tensions. Our present analysis suggests the following exotic states: X(3823) , Z c(3900) , X(3915) , Z c(4025) , (4040) , Z 1(4050) and X(4160) as Q - q molecular-like four-quark states, while Z c(3885) , X(3940) and Y(4140) as the diquark-antidiquark four-quark states. We have been able to assign the JPC values for many of the recently observed exotic states according to their structure. Apart from this, we have identified the charged state Z(4430) recently confirmed by LHCb as the first radial excitation of Zc(3885) with G = + 1 and Y(4360) state as the first radial excitation of Y(4008) with G = - 1 and the state as the first radial excitation of the state.

  20. Constrained-Transport Magnetohydrodynamics with Adaptive-Mesh-Refinement in CHARM

    SciTech Connect

    Miniatii, Francesco; Martin, Daniel

    2011-05-24

    We present the implementation of a three-dimensional, second order accurate Godunov-type algorithm for magneto-hydrodynamic (MHD), in the adaptivemesh-refinement (AMR) cosmological code CHARM. The algorithm is based on the full 12-solve spatially unsplit Corner-Transport-Upwind (CTU) scheme. Thefluid quantities are cell-centered and are updated using the Piecewise-Parabolic- Method (PPM), while the magnetic field variables are face-centered and areevolved through application of the Stokes theorem on cell edges via a Constrained- Transport (CT) method. The so-called ?multidimensional MHD source terms?required in the predictor step for high-order accuracy are applied in a simplified form which reduces their complexity in three dimensions without loss of accuracyor robustness. The algorithm is implemented on an AMR framework which requires specific synchronization steps across refinement levels. These includeface-centered restriction and prolongation operations and a reflux-curl operation, which maintains a solenoidal magnetic field across refinement boundaries. Thecode is tested against a large suite of test problems, including convergence tests in smooth flows, shock-tube tests, classical two- and three-dimensional MHD tests,a three-dimensional shock-cloud interaction problem and the formation of a cluster of galaxies in a fully cosmological context. The magnetic field divergence isshown to remain negligible throughout. Subject headings: cosmology: theory - methods: numerical

  1. Two-body charmed B(s ) decays involving a light scalar meson

    NASA Astrophysics Data System (ADS)

    Zou, Zhi-Tian; Li, Ying; Liu, Xin

    2017-01-01

    Based on the assumption of two-quark structure for the light scalar mesons, within the perturbative QCD approach, we investigate the B →D(*)S (q =u ,d ,s ) decays induced by the b →u transition, with S denoting a light scalar meson. Under two different scenarios, the branching ratios of 96 decay modes have been calculated, most of which are in the range 10-5 to 10-8. These results can be tested in the ongoing LHCb experiment and the forthcoming Belle-II experiment. The comparison between our predictions and the experimental data allows us to probe the inner structure of the scalar mesons. In the standard model, since all decays can only occur through tree operators, there are no C P asymmetries. We note that, due to the mass difference between charm quark and light quarks, the contribution from annihilation diagrams will be enhanced sizably, especially for these color-suppressed or pure-annihilation-type decay modes. We also find that the branching ratios of color-favored decays are sensitive to the different scenarios, so their measurement will help us differentiate the different scenarios. It is also found that the ratios between Br (B →D(*)σ ) and Br (B →D(*)f0(980 )) can be used to determine the mixing angle of σ and f0(980 ).

  2. OpenER, a Dutch Initiative in Open Educational Resources

    ERIC Educational Resources Information Center

    Schuwer, Robert; Mulder, Fred

    2009-01-01

    Over the period 2006-2008, the Dutch Open Universiteit Nederland conducted an experiment in which Open Educational Resources (OER) were offered in an effort to bridge the gap between informal and formal learning and to establish a new style of entry portal to higher education with no barriers at all. OpenER received considerable attention both in…

  3. Search for Scalar Charm Quark Pair Production in pp Collisions at sqrt[s]=8  TeV with the ATLAS Detector.

    PubMed

    Aad, G; Abbott, B; Abdallah, J; Abdel Khalek, S; Abdinov, O; Aben, R; Abi, B; Abolins, M; AbouZeid, O S; Abramowicz, H; Abreu, H; Abreu, R; Abulaiti, Y; Acharya, B S; Adamczyk, L; Adams, D L; Adelman, J; Adomeit, S; Adye, T; Agatonovic-Jovin, T; Aguilar-Saavedra, J A; Agustoni, M; Ahlen, S P; Ahmadov, F; Aielli, G; Akerstedt, H; Åkesson, T P A; Akimoto, G; Akimov, A V; Alberghi, G L; Albert, J; Albrand, S; Alconada Verzini, M J; Aleksa, M; Aleksandrov, I N; Alexa, C; Alexander, G; Alexandre, G; Alexopoulos, T; Alhroob, M; Alimonti, G; Alio, L; Alison, J; Allbrooke, B M M; Allison, L J; Allport, P P; Aloisio, A; Alonso, A; Alonso, F; Alpigiani, C; Altheimer, A; Alvarez Gonzalez, B; Alviggi, M G; Amako, K; Amaral Coutinho, Y; Amelung, C; Amidei, D; Amor Dos Santos, S P; Amorim, A; Amoroso, S; Amram, N; Amundsen, G; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, G; Anderson, K J; Andreazza, A; Andrei, V; Anduaga, X S; Angelidakis, S; Angelozzi, I; Anger, P; Angerami, A; Anghinolfi, F; Anisenkov, A V; Anjos, N; Annovi, A; Antonelli, M; Antonov, A; Antos, J; Anulli, F; Aoki, M; Aperio Bella, L; Arabidze, G; Arai, Y; Araque, J P; Arce, A T H; Arduh, F A; Arguin, J-F; Argyropoulos, S; Arik, M; Armbruster, A J; Arnaez, O; Arnal, V; Arnold, H; Arratia, M; Arslan, O; Artamonov, A; Artoni, G; Asai, S; Asbah, N; Ashkenazi, A; Åsman, B; Asquith, L; Assamagan, K; Astalos, R; Atkinson, M; Atlay, N B; Auerbach, B; Augsten, K; Aurousseau, M; Avolio, G; Axen, B; Ayoub, M K; Azuelos, G; Baak, M A; Baas, A E; Bacci, C; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Bagiacchi, P; Bagnaia, P; Bai, Y; Bain, T; Baines, J T; Baker, O K; Balek, P; Balestri, T; Balli, F; Banas, E; Banerjee, Sw; Bannoura, A A E; Bansil, H S; Barak, L; Baranov, S P; Barberio, E L; Barberis, D; Barbero, M; Barillari, T; Barisonzi, M; Barklow, T; Barlow, N; Barnes, S L; Barnett, B M; Barnett, R M; Barnovska, Z; Baroncelli, A; Barone, G; Barr, A J; Barreiro, F; Barreiro Guimarães da Costa, J; Bartoldus, R; Barton, A E; Bartos, P; Bassalat, A; Basye, A; Bates, R L; Batista, S J; Batley, J R; Battaglia, M; Bauce, M; Bauer, F; Bawa, H S; Beacham, J B; Beattie, M D; Beau, T; Beauchemin, P H; Beccherle, R; Bechtle, P; Beck, H P; Becker, K; Becker, S; Beckingham, M; Becot, C; Beddall, A J; Beddall, A; Bednyakov, V A; Bee, C P; Beemster, L J; Beermann, T A; Begel, M; Behr, K; Belanger-Champagne, C; Bell, P J; Bell, W H; Bella, G; Bellagamba, L; Bellerive, A; Bellomo, M; Belotskiy, K; Beltramello, O; Benary, O; Benchekroun, D; Bender, M; Bendtz, K; Benekos, N; Benhammou, Y; Benhar Noccioli, E; Benitez Garcia, J A; Benjamin, D P; Bensinger, J R; Bentvelsen, S; Beresford, L; Beretta, M; Berge, D; Bergeaas Kuutmann, E; Berger, N; Berghaus, F; Beringer, J; Bernard, C; Bernard, N R; Bernius, C; Bernlochner, F U; Berry, T; Berta, P; Bertella, C; Bertoli, G; Bertolucci, F; Bertsche, C; Bertsche, D; Besana, M I; Besjes, G J; Bessidskaia Bylund, O; Bessner, M; Besson, N; Betancourt, C; Bethke, S; Bevan, A J; Bhimji, W; Bianchi, R M; Bianchini, L; Bianco, M; Biebel, O; Bieniek, S P; Biglietti, M; Bilbao De Mendizabal, J; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Black, C W; Black, J E; Black, K M; Blackburn, D; Blair, R E; Blanchard, J-B; Blanco, J E; Blazek, T; Bloch, I; Blocker, C; Blum, W; Blumenschein, U; Bobbink, G J; Bobrovnikov, V S; Bocchetta, S S; Bocci, A; Bock, C; Boddy, C R; Boehler, M; Bogaerts, J A; Bogdanchikov, A G; Bohm, C; Boisvert, V; Bold, T; Boldea, V; Boldyrev, A S; Bomben, M; Bona, M; Boonekamp, M; Borisov, A; Borissov, G; Borroni, S; Bortfeldt, J; Bortolotto, V; Bos, K; Boscherini, D; Bosman, M; Boudreau, J; Bouffard, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Bousson, N; Boutouil, S; Boveia, A; Boyd, J; Boyko, I R; Bozic, I; Bracinik, J; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Brazzale, S F; Brendlinger, K; Brennan, A J; Brenner, L; Brenner, R; Bressler, S; Bristow, K; Bristow, T M; Britton, D; Brochu, F M; Brock, I; Brock, R; Bronner, J; Brooijmans, G; Brooks, T; Brooks, W K; Brosamer, J; Brost, E; Brown, J; Bruckman de Renstrom, P A; Bruncko, D; Bruneliere, R; Bruni, A; Bruni, G; Bruschi, M; Bryngemark, L; Buanes, T; Buat, Q; Bucci, F; Buchholz, P; Buckley, A G; Buda, S I; Budagov, I A; Buehrer, F; Bugge, L; Bugge, M K; Bulekov, O; Burckhart, H; Burdin, S; Burghgrave, B; Burke, S; Burmeister, I; Busato, E; Büscher, D; Büscher, V; Bussey, P; Buszello, C P; Butler, J M; Butt, A I; Buttar, C M; Butterworth, J M; Butti, P; Buttinger, W; Buzatu, A; Cabrera Urbán, S; Caforio, D; Cakir, O; Calafiura, P; Calandri, A; Calderini, G; Calfayan, P; Caloba, L P; Calvet, D; Calvet, S; Camacho Toro, R; Camarda, S; Cameron, D; Caminada, L M; Caminal Armadans, R; Campana, S; Campanelli, M; Campoverde, A; Canale, V; Canepa, A; Cano Bret, M; Cantero, J; Cantrill, R; Cao, T; Capeans Garrido, M D M; Caprini, I; Caprini, M; Capua, M; Caputo, R; Cardarelli, R; Carli, T; Carlino, G; Carminati, L; Caron, S; Carquin, E; Carrillo-Montoya, G D; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Casolino, M; Castaneda-Miranda, E; Castelli, A; Castillo Gimenez, V; Castro, N F; Catastini, P; Catinaccio, A; Catmore, J R; Cattai, A; Cattani, G; Caudron, J; Cavaliere, V; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Cerio, B C; Cerny, K; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cerv, M; Cervelli, A; Cetin, S A; Chafaq, A; Chakraborty, D; Chalupkova, I; Chang, P; Chapleau, B; Chapman, J D; Charfeddine, D; Charlton, D G; Chau, C C; Chavez Barajas, C A; Cheatham, S; Chegwidden, A; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, H; Chen, K; Chen, L; Chen, S; Chen, X; Chen, Y; Cheng, H C; Cheng, Y; Cheplakov, A; Cheremushkina, E; Cherkaoui El Moursli, R; Chernyatin, V; Cheu, E; Chevalier, L; Chiarella, V; Childers, J T; Chilingarov, A; Chiodini, G; Chisholm, A S; Chislett, R T; Chitan, A; Chizhov, M V; Chouridou, S; Chow, B K B; Chromek-Burckhart, D; Chu, M L; Chudoba, J; Chwastowski, J J; Chytka, L; Ciapetti, G; Ciftci, A K; Cinca, D; Cindro, V; Ciocio, A; Citron, Z H; Citterio, M; Ciubancan, M; Clark, A; Clark, P J; Clarke, R N; Cleland, W; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Coffey, L; Cogan, J G; Cole, B; Cole, S; Colijn, A P; Collot, J; Colombo, T; Compostella, G; Conde Muiño, P; Coniavitis, E; Connell, S H; Connelly, I A; Consonni, S M; Consorti, V; Constantinescu, S; Conta, C; Conti, G; Conventi, F; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Copic, K; Cornelissen, T; Corradi, M; Corriveau, F; Corso-Radu, A; Cortes-Gonzalez, A; Cortiana, G; Costa, M J; Costanzo, D; Côté, D; Cottin, G; Cowan, G; Cox, B E; Cranmer, K; Cree, G; Crépé-Renaudin, S; Crescioli, F; Cribbs, W A; Crispin Ortuzar, M; Cristinziani, M; Croft, V; Crosetti, G; Cuhadar Donszelmann, T; Cummings, J; Curatolo, M; Cuthbert, C; Czirr, H; Czodrowski, P; D'Auria, S; D'Onofrio, M; Da Cunha Sargedas De Sousa, M J; Da Via, C; Dabrowski, W; Dafinca, A; Dai, T; Dale, O; Dallaire, F; Dallapiccola, C; Dam, M; Dandoy, J R; Daniells, A C; Danninger, M; Dano Hoffmann, M; Dao, V; Darbo, G; Darmora, S; Dassoulas, J; Dattagupta, A; Davey, W; David, C; Davidek, T; Davies, E; Davies, M; Davignon, O; Davison, P; Davygora, Y; Dawe, E; Dawson, I; Daya-Ishmukhametova, R K; De, K; de Asmundis, R; De Castro, S; De Cecco, S; De Groot, N; de Jong, P; De la Torre, H; De Lorenzi, F; De Nooij, L; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Vivie De Regie, J B; Dearnaley, W J; Debbe, R; Debenedetti, C; Dedovich, D V; Deigaard, I; Del Peso, J; Del Prete, T; Delgove, D; Deliot, F; Delitzsch, C M; Deliyergiyev, M; Dell'Acqua, A; Dell'Asta, L; Dell'Orso, M; Della Pietra, M; Della Volpe, D; Delmastro, M; Delsart, P A; Deluca, C; DeMarco, D A; Demers, S; Demichev, M; Demilly, A; Denisov, S P; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deterre, C; Deviveiros, P O; Dewhurst, A; Dhaliwal, S; Di Ciaccio, A; Di Ciaccio, L; Di Domenico, A; Di Donato, C; Di Girolamo, A; Di Girolamo, B; Di Mattia, A; Di Micco, B; Di Nardo, R; Di Simone, A; Di Sipio, R; Di Valentino, D; Diaconu, C; Diamond, M; Dias, F A; Diaz, M A; Diehl, E B; Dietrich, J; Dietzsch, T A; Diglio, S; Dimitrievska, A; Dingfelder, J; Dittus, F; Djama, F; Djobava, T; Djuvsland, J I; do Vale, M A B; Dobos, D; Dobre, M; Doglioni, C; Doherty, T; Dohmae, T; Dolejsi, J; Dolezal, Z; Dolgoshein, B A; Donadelli, M; Donati, S; Dondero, P; Donini, J; Dopke, J; Doria, A; Dova, M T; Doyle, A T; Dris, M; Dubreuil, E; Duchovni, E; Duckeck, G; Ducu, O A; Duda, D; Dudarev, A; Duflot, L; Duguid, L; Dührssen, M; Dunford, M; Duran Yildiz, H; Düren, M; Durglishvili, A; Duschinger, D; Dwuznik, M; Dyndal, M; Edson, W; Edwards, N C; Ehrenfeld, W; Eifert, T; Eigen, G; Einsweiler, K; Ekelof, T; El Kacimi, M; Ellert, M; Elles, S; Ellinghaus, F; Elliot, A A; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Enari, Y; Endner, O C; Endo, M; Engelmann, R; Erdmann, J; Ereditato, A; Eriksson, D; Ernis, G; Ernst, J; Ernst, M; Errede, S; Ertel, E; Escalier, M; Esch, H; Escobar, C; Esposito, B; Etienvre, A I; Etzion, E; Evans, H; Ezhilov, A; Fabbri, L; Facini, G; Fakhrutdinov, R M; Falciano, S; Falla, R J; Faltova, J; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farooque, T; Farrell, S; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Favareto, A; Fayard, L; Federic, P; Fedin, O L; Fedorko, W; Feigl, S; Feligioni, L; Feng, C; Feng, E J; Feng, H; Fenyuk, A B; Fernandez Martinez, P; Fernandez Perez, S; Ferrag, S; Ferrando, J; Ferrari, A; Ferrari, P; Ferrari, R; Ferreira de Lima, D E; Ferrer, A; Ferrere, D; Ferretti, C; Ferretto Parodi, A; Fiascaris, M; Fiedler, F; Filipčič, A; Filipuzzi, M; Filthaut, F; Fincke-Keeler, M; Finelli, K D; Fiolhais, M C N; Fiorini, L; Firan, A; Fischer, A; Fischer, C; Fischer, J; Fisher, W C; Fitzgerald, E A; Flechl, M; Fleck, I; Fleischmann, P; Fleischmann, S; Fletcher, G T; Fletcher, G; Flick, T; Floderus, A; Flores Castillo, L R; Flowerdew, M J; Formica, A; Forti, A; Fournier, D; Fox, H; Fracchia, S; Francavilla, P; Franchini, M; Francis, D; Franconi, L; Franklin, M; Fraternali, M; Freeborn, D; French, S T; Friedrich, F; Froidevaux, D; Frost, J A; Fukunaga, C; Fullana Torregrosa, E; Fulsom, B G; Fuster, J; Gabaldon, C; Gabizon, O; Gabrielli, A; Gabrielli, A; Gadatsch, S; Gadomski, S; Gagliardi, G; Gagnon, P; Galea, C; Galhardo, B; Gallas, E J; Gallop, B J; Gallus, P; Galster, G; Gan, K K; Gao, J; Gao, Y S; Garay Walls, F M; Garberson, F; García, C; García Navarro, J E; Garcia-Sciveres, M; Gardner, R W; Garelli, N; Garonne, V; Gatti, C; Gaudio, G; Gaur, B; Gauthier, L; Gauzzi, P; Gavrilenko, I L; Gay, C; Gaycken, G; Gazis, E N; Ge, P; Gecse, Z; Gee, C N P; Geerts, D A A; Geich-Gimbel, Ch; Gemme, C; Genest, M H; Gentile, S; George, M; George, S; Gerbaudo, D; Gershon, A; Ghazlane, H; Ghodbane, N; Giacobbe, B; Giagu, S; Giangiobbe, V; Giannetti, P; Gianotti, F; Gibbard, B; Gibson, S M; Gilchriese, M; Gillam, T P S; Gillberg, D; Gilles, G; Gingrich, D M; Giokaris, N; Giordani, M P; Giorgi, F M; Giorgi, F M; Giraud, P F; Giugni, D; Giuliani, C; Giulini, M; Gjelsten, B K; Gkaitatzis, S; Gkialas, I; Gkougkousis, E L; Gladilin, L K; Glasman, C; Glatzer, J; Glaysher, P C F; Glazov, A; Goblirsch-Kolb, M; Goddard, J R; Godlewski, J; Goldfarb, S; Golling, T; Golubkov, D; Gomes, A; Gonçalo, R; Goncalves Pinto Firmino Da Costa, J; Gonella, L; González de la Hoz, S; Gonzalez Parra, G; Gonzalez-Sevilla, S; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorini, B; Gorini, E; Gorišek, A; Gornicki, E; Goshaw, A T; Gössling, C; Gostkin, M I; Gouighri, M; Goujdami, D; Goussiou, A G; Grabas, H M X; Graber, L; Grabowska-Bold, I; Grafström, P; Grahn, K-J; Gramling, J; Gramstad, E; Grancagnolo, S; Grassi, V; Gratchev, V; Gray, H M; Graziani, E; Greenwood, Z D; Gregersen, K; Gregor, I M; Grenier, P; Griffiths, J; Grillo, A A; Grimm, K; Grinstein, S; Gris, Ph; Grishkevich, Y V; Grivaz, J-F; Grohs, J P; Grohsjean, A; Gross, E; Grosse-Knetter, J; Grossi, G C; Grout, Z J; Guan, L; Guenther, J; Guescini, F; Guest, D; Gueta, O; Guido, E; Guillemin, T; Guindon, S; Gul, U; Gumpert, C; Guo, J; Gupta, S; Gutierrez, P; Gutierrez Ortiz, N G; Gutschow, C; Guttman, N; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haber, C; Hadavand, H K; Haddad, N; Haefner, P; Hageböck, S; Hajduk, Z; Hakobyan, H; Haleem, M; Haley, J; Hall, D; Halladjian, G; Hallewell, G D; Hamacher, K; Hamal, P; Hamano, K; Hamer, M; Hamilton, A; Hamilton, S; Hamity, G N; Hamnett, P G; Han, L; Hanagaki, K; Hanawa, K; Hance, M; Hanke, P; Hanna, R; Hansen, J B; Hansen, J D; Hansen, P H; Hara, K; Hard, A S; Harenberg, T; Hariri, F; Harkusha, S; Harrington, R D; Harrison, P F; Hartjes, F; Hasegawa, M; Hasegawa, S; Hasegawa, Y; Hasib, A; Hassani, S; Haug, S; Hauser, R; Hauswald, L; Havranek, M; Hawkes, C M; Hawkings, R J; Hawkins, A D; Hayashi, T; Hayden, D; Hays, C P; Hays, J M; Hayward, H S; Haywood, S J; Head, S J; Heck, T; Hedberg, V; Heelan, L; Heim, S; Heim, T; Heinemann, B; Heinrich, L; Hejbal, J; Helary, L; Heller, M; Hellman, S; Hellmich, D; Helsens, C; Henderson, J; Henderson, R C W; Heng, Y; Hengler, C; Henrichs, A; Henriques Correia, A M; Henrot-Versille, S; Herbert, G H; Hernández Jiménez, Y; Herrberg-Schubert, R; Herten, G; Hertenberger, R; Hervas, L; Hesketh, G G; Hessey, N P; Hickling, R; Higón-Rodriguez, E; Hill, E; Hill, J C; Hiller, K H; Hillier, S J; Hinchliffe, I; Hines, E; Hinman, R R; Hirose, M; Hirschbuehl, D; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoenig, F; Hohlfeld, M; Holmes, T R; Hong, T M; Hooft van Huysduynen, L; Hopkins, W H; Horii, Y; Horton, A J; Hostachy, J-Y; Hou, S; Hoummada, A; Howard, J; Howarth, J; Hrabovsky, M; Hristova, I; Hrivnac, J; Hryn'ova, T; Hrynevich, A; Hsu, C; Hsu, P J; Hsu, S-C; Hu, D; Hu, Q; Hu, X; Huang, Y; Hubacek, Z; Hubaut, F; Huegging, F; Huffman, T B; Hughes, E W; Hughes, G; Huhtinen, M; Hülsing, T A; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibragimov, I; Iconomidou-Fayard, L; Ideal, E; Idrissi, Z; Iengo, P; Igonkina, O; Iizawa, T; Ikegami, Y; Ikematsu, K; Ikeno, M; Ilchenko, Y; Iliadis, D; Ilic, N; Inamaru, Y; Ince, T; Ioannou, P; Iodice, M; Iordanidou, K; Ippolito, V; Irles Quiles, A; Isaksson, C; Ishino, M; Ishitsuka, M; Ishmukhametov, R; Issever, C; Istin, S; Iturbe Ponce, J M; Iuppa, R; Ivarsson, J; Iwanski, W; Iwasaki, H; Izen, J M; Izzo, V; Jackson, B; Jackson, M; Jackson, P; Jaekel, M R; Jain, V; Jakobs, K; Jakobsen, S; Jakoubek, T; Jakubek, J; Jamin, D O; Jana, D K; Jansen, E; Jansky, R W; Janssen, J; Janus, M; Jarlskog, G; Javadov, N; Javůrek, T; Jeanty, L; Jejelava, J; Jeng, G-Y; Jennens, D; Jenni, P; Jentzsch, J; Jeske, C; Jézéquel, S; Ji, H; Jia, J; Jiang, Y; Jimenez Pena, J; Jin, S; Jinaru, A; Jinnouchi, O; Joergensen, M D; Johansson, P; Johns, K A; Jon-And, K; Jones, G; Jones, R W L; Jones, T J; Jongmanns, J; Jorge, P M; Joshi, K D; Jovicevic, J; Ju, X; Jung, C A; Jussel, P; Juste Rozas, A; Kaci, M; Kaczmarska, A; Kado, M; Kagan, H; Kagan, M; Kahn, S J; Kajomovitz, E; Kalderon, C W; Kama, S; Kamenshchikov, A; Kanaya, N; Kaneda, M; Kaneti, S; Kantserov, V A; Kanzaki, J; Kaplan, B; Kapliy, A; Kar, D; Karakostas, K; Karamaoun, A; Karastathis, N; Kareem, M J; Karnevskiy, M; Karpov, S N; Karpova, Z M; Karthik, K; Kartvelishvili, V; Karyukhin, A N; Kashif, L; Kass, R D; Kastanas, A; Kataoka, Y; Katre, A; Katzy, J; Kawagoe, K; Kawamoto, T; Kawamura, G; Kazama, S; Kazanin, V F; Kazarinov, M Y; Keeler, R; Kehoe, R; Keil, M; Keller, J S; Kempster, J J; Keoshkerian, H; Kepka, O; Kerševan, B P; Kersten, S; Keyes, R A; Khalil-Zada, F; Khandanyan, H; Khanov, A; Kharlamov, A; Khodinov, A; Khomich, A; Khoo, T J; Khoriauli, G; Khovanskiy, V; Khramov, E; Khubua, J; Kim, H Y; Kim, H; Kim, S H; Kimura, N; Kind, O; King, B T; King, M; King, R S B; King, S B; Kirk, J; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kiss, F; Kiuchi, K; Kladiva, E; Klein, M H; Klein, M; Klein, U; Kleinknecht, K; Klimek, P; Klimentov, A; Klingenberg, R; Klinger, J A; Klioutchnikova, T; Klok, P F; Kluge, E-E; Kluit, P; Kluth, S; Kneringer, E; Knoops, E B F G; Knue, A; Kobayashi, D; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Koffas, T; Koffeman, E; Kogan, L A; Kohlmann, S; Kohout, Z; Kohriki, T; Koi, T; Kolanoski, H; Koletsou, I; Komar, A A; Komori, Y; Kondo, T; Kondrashova, N; Köneke, K; König, A C; König, S; Kono, T; Konoplich, R; Konstantinidis, N; Kopeliansky, R; Koperny, S; Köpke, L; Kopp, A K; Korcyl, K; Kordas, K; Korn, A; Korol, A A; Korolkov, I; Korolkova, E V; Kortner, O; Kortner, S; Kosek, T; Kostyukhin, V V; Kotov, V M; Kotwal, A; Kourkoumeli-Charalampidi, A; Kourkoumelis, C; Kouskoura, V; Koutsman, A; Kowalewski, R; Kowalski, T Z; Kozanecki, W; Kozhin, A S; Kramarenko, V A; Kramberger, G; Krasnopevtsev, D; Krasny, M W; Krasznahorkay, A; Kraus, J K; Kravchenko, A; Kreiss, S; Kretz, M; Kretzschmar, J; Kreutzfeldt, K; Krieger, P; Krizka, K; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Krumnack, N; Krumshteyn, Z V; Kruse, A; Kruse, M C; Kruskal, M; Kubota, T; Kucuk, H; Kuday, S; Kuehn, S; Kugel, A; Kuger, F; Kuhl, A; Kuhl, T; Kukhtin, V; Kulchitsky, Y; Kuleshov, S; Kuna, M; Kunigo, T; Kupco, A; Kurashige, H; Kurochkin, Y A; Kurumida, R; Kus, V; Kuwertz, E S; Kuze, M; Kvita, J; Kwan, T; Kyriazopoulos, D; La Rosa, A; La Rosa Navarro, J L; La Rotonda, L; Lacasta, C; Lacava, F; Lacey, J; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Lambourne, L; Lammers, S; Lampen, C L; Lampl, W; Lançon, E; Landgraf, U; Landon, M P J; Lang, V S; Lankford, A J; Lanni, F; Lantzsch, K; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Lasagni Manghi, F; Lassnig, M; Laurelli, P; Lavrijsen, W; Law, A T; Laycock, P; Le Dortz, O; Le Guirriec, E; Le Menedeu, E; LeCompte, T; Ledroit-Guillon, F; Lee, C A; Lee, S C; Lee, L; Lefebvre, G; Lefebvre, M; Legger, F; Leggett, C; Lehan, A; Lehmann Miotto, G; Lei, X; Leight, W A; Leisos, A; Leister, A G; Leite, M A L; Leitner, R; Lellouch, D; Lemmer, B; Leney, K J C; Lenz, T; Lenzen, G; Lenzi, B; Leone, R; Leone, S; Leonidopoulos, C; Leontsinis, S; Leroy, C; Lester, C G; Levchenko, M; Levêque, J; Levin, D; Levinson, L J; Levy, M; Lewis, A; Leyko, A M; Leyton, M; Li, B; Li, B; Li, H; Li, H L; Li, L; Li, L; Li, S; Li, Y; Liang, Z; Liao, H; Liberti, B; Lichard, P; Lie, K; Liebal, J; Liebig, W; Limbach, C; Limosani, A; Lin, S C; Lin, T H; Linde, F; Lindquist, B E; Linnemann, J T; Lipeles, E; Lipniacka, A; Lisovyi, M; Liss, T M; Lissauer, D; Lister, A; Litke, A M; Liu, B; Liu, D; Liu, J; Liu, J B; Liu, K; Liu, L; Liu, M; Liu, M; Liu, Y; Livan, M; Lleres, A; Llorente Merino, J; Lloyd, S L; Lo Sterzo, F; Lobodzinska, E; Loch, P; Lockman, W S; Loebinger, F K; Loevschall-Jensen, A E; Loginov, A; Lohse, T; Lohwasser, K; Lokajicek, M; Long, B A; Long, J D; Long, R E; Looper, K A; Lopes, L; Lopez Mateos, D; Lopez Paredes, B; Lopez Paz, I; Lorenz, J; Lorenzo Martinez, N; Losada, M; Loscutoff, P; Lösel, P J; Lou, X; Lounis, A; Love, J; Love, P A; Lu, F; Lu, N; Lubatti, H J; Luci, C; Lucotte, A; Luehring, F; Lukas, W; Luminari, L; Lundberg, O; Lund-Jensen, B; Lungwitz, M; Lynn, D; Lysak, R; Lytken, E; Ma, H; Ma, L L; Maccarrone, G; Macchiolo, A; Machado Miguens, J; Macina, D; Madaffari, D; Madar, R; Maddocks, H J; Mader, W F; Madsen, A; Maeno, T; Maevskiy, A; Magradze, E; Mahboubi, K; Mahlstedt, J; Mahmoud, S; Maiani, C; Maidantchik, C; Maier, A A; Maio, A; Majewski, S; Makida, Y; Makovec, N; Malaescu, B; Malecki, Pa; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Maltezos, S; Malyshev, V M; Malyukov, S; Mamuzic, J; Mandelli, B; Mandelli, L; Mandić, I; Mandrysch, R; Maneira, J; Manfredini, A; Manhaes de Andrade Filho, L; Manjarres Ramos, J; Mann, A; Manning, P M; Manousakis-Katsikakis, A; Mansoulie, B; Mantifel, R; Mantoani, M; Mapelli, L; March, L; Marchiori, G; Marcisovsky, M; Marino, C P; Marjanovic, M; Marroquim, F; Marsden, S P; Marshall, Z; Marti, L F; Marti-Garcia, S; Martin, B; Martin, T A; Martin, V J; Martin Dit Latour, B; Martinez, H; Martinez, M; Martin-Haugh, S; Martyniuk, A C; Marx, M; Marzano, F; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massa, I; Massa, L; Massol, N; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Mättig, P; Mattmann, J; Maurer, J; Maxfield, S J; Maximov, D A; Mazini, R; Mazza, S M; Mazzaferro, L; Mc Goldrick, G; Mc Kee, S P; McCarn, A; McCarthy, R L; McCarthy, T G; McCubbin, N A; McFarlane, K W; Mcfayden, J A; Mchedlidze, G; McMahon, S J; McPherson, R A; Mechnich, J; Medinnis, M; Meehan, S; Mehlhase, S; Mehta, A; Meier, K; Meineck, C; Meirose, B; Melachrinos, C; Mellado Garcia, B R; Meloni, F; Mengarelli, A; Menke, S; Meoni, E; Mercurio, K M; Mergelmeyer, S; Meric, N; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Merritt, H; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, C; Meyer, J-P; Meyer, J; Middleton, R P; Migas, S; Miglioranzi, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Milic, A; Miller, D W; Mills, C; Milov, A; Milstead, D A; Minaenko, A A; Minami, Y; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Ming, Y; Mir, L M; Mirabelli, G; Mitani, T; Mitrevski, J; Mitsou, V A; Miucci, A; Miyagawa, P S; Mjörnmark, J U; Moa, T; Mochizuki, K; Mohapatra, S; Mohr, W; Molander, S; Moles-Valls, R; Mönig, K; Monini, C; Monk, J; Monnier, E; Montejo Berlingen, J; Monticelli, F; Monzani, S; Moore, R W; Morange, N; Moreno, D; Moreno Llácer, M; Morettini, P; Morgenstern, M; Morii, M; Morisbak, V; Moritz, S; Morley, A K; Mornacchi, G; Morris, J D; Morton, A; Morvaj, L; Moser, H G; Mosidze, M; Moss, J; Motohashi, K; Mount, R; Mountricha, E; Mouraviev, S V; Moyse, E J W; Muanza, S; Mudd, R D; Mueller, F; Mueller, J; Mueller, K; Mueller, R S P; Mueller, T; Muenstermann, D; Mullen, P; Munwes, Y; Murillo Quijada, J A; Murray, W J; Musheghyan, H; Musto, E; Myagkov, A G; Myska, M; Nackenhorst, O; Nadal, J; Nagai, K; Nagai, R; Nagai, Y; Nagano, K; Nagarkar, A; Nagasaka, Y; Nagata, K; Nagel, M; Nagy, E; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Namasivayam, H; Nanava, G; Naranjo Garcia, R F; Narayan, R; Nattermann, T; Naumann, T; Navarro, G; Nayyar, R; Neal, H A; Nechaeva, P Yu; Neep, T J; Nef, P D; Negri, A; Negrini, M; Nektarijevic, S; Nellist, C; Nelson, A; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neumann, M; Neves, R M; Nevski, P; Newman, P R; Nguyen, D H; Nickerson, R B; Nicolaidou, R; Nicquevert, B; Nielsen, J; Nikiforou, N; Nikiforov, A; Nikolaenko, V; Nikolic-Audit, I; Nikolopoulos, K; Nilsson, P; Ninomiya, Y; Nisati, A; Nisius, R; Nobe, T; Nomachi, M; Nomidis, I; Norberg, S; Nordberg, M; Novgorodova, O; Nowak, S; Nozaki, M; Nozka, L; Ntekas, K; Nunes Hanninger, G; Nunnemann, T; Nurse, E; Nuti, F; O'Brien, B J; O'grady, F; O'Neil, D C; O'Shea, V; Oakham, F G; Oberlack, H; Obermann, T; Ocariz, J; Ochi, A; Ochoa, I; Oda, S; Odaka, S; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohman, H; Oide, H; Okamura, W; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Olchevski, A G; Olivares Pino, S A; Oliveira Damazio, D; Oliver Garcia, E; Olszewski, A; Olszowska, J; Onofre, A; Onyisi, P U E; Oram, C J; Oreglia, M J; Oren, Y; Orestano, D; Orlando, N; Oropeza Barrera, C; Orr, R S; Osculati, B; Ospanov, R; Otero Y Garzon, G; Otono, H; Ouchrif, M; Ouellette, E A; Ould-Saada, F; Ouraou, A; Oussoren, K P; Ouyang, Q; Ovcharova, A; Owen, M; Ozcan, V E; Ozturk, N; Pachal, K; Pacheco Pages, A; Padilla Aranda, C; Pagáčová, M; Pagan Griso, S; Paganis, E; Pahl, C; Paige, F; Pais, P; Pajchel, K; Palacino, G; Palestini, S; Palka, M; Pallin, D; Palma, A; Pan, Y B; Panagiotopoulou, E; Pandini, C E; Panduro Vazquez, J G; Pani, P; Panikashvili, N; Panitkin, S; Paolozzi, L; Papadopoulou, Th D; Papageorgiou, K; Paramonov, A; Paredes Hernandez, D; Parker, M A; Parker, K A; Parodi, F; Parsons, J A; Parzefall, U; Pasqualucci, E; Passaggio, S; Pastore, F; Pastore, Fr; Pásztor, G; Pataraia, S; Patel, N D; Pater, J R; Pauly, T; Pearce, J; Pedersen, L E; Pedersen, M; Pedraza Lopez, S; Pedro, R; Peleganchuk, S V; Pelikan, D; Peng, H; Penning, B; Penwell, J; Perepelitsa, D V; Perez Codina, E; Pérez García-Estañ, M T; Perini, L; Pernegger, H; Perrella, S; Peschke, R; Peshekhonov, V D; Peters, K; Peters, R F Y; Petersen, B A; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petrolo, E; Petrucci, F; Pettersson, N E; Pezoa, R; Phillips, P W; Piacquadio, G; Pianori, E; Picazio, A; Piccaro, E; Piccinini, M; Pickering, M A; Piegaia, R; Pignotti, D T; Pilcher, J E; Pilkington, A D; Pina, J; Pinamonti, M; Pinfold, J L; Pingel, A; Pinto, B; Pires, S; Pitt, M; Pizio, C; Plazak, L; Pleier, M-A; Pleskot, V; Plotnikova, E; Plucinski, P; Pluth, D; Poettgen, R; Poggioli, L; Pohl, D; Polesello, G; Policicchio, A; Polifka, R; Polini, A; Pollard, C S; Polychronakos, V; Pommès, K; Pontecorvo, L; Pope, B G; Popeneciu, G A; Popovic, D S; Poppleton, A; Pospisil, S; Potamianos, K; Potrap, I N; Potter, C J; Potter, C T; Poulard, G; Poveda, J; Pozdnyakov, V; Pralavorio, P; Pranko, A; Prasad, S; Prell, S; Price, D; Price, J; Price, L E; Primavera, M; Prince, S; Proissl, M; Prokofiev, K; Prokoshin, F; Protopapadaki, E; Protopopescu, S; Proudfoot, J; Przybycien, M; Ptacek, E; Puddu, D; Pueschel, E; Puldon, D; Purohit, M; Puzo, P; Qian, J; Qin, G; Qin, Y; Quadt, A; Quarrie, D R; Quayle, W B; Queitsch-Maitland, M; Quilty, D; Qureshi, A; Radeka, V; Radescu, V; Radhakrishnan, S K; Radloff, P; Rados, P; Ragusa, F; Rahal, G; Rajagopalan, S; Rammensee, M; Rangel-Smith, C; Rauscher, F; Rave, S; Rave, T C; Ravenscroft, T; Raymond, M; Read, A L; Readioff, N P; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reeves, K; Rehnisch, L; Reisin, H; Relich, M; Rembser, C; Ren, H; Renaud, A; Rescigno, M; Resconi, S; Rezanova, O L; Reznicek, P; Rezvani, R; Richter, R; Richter-Was, E; Ridel, M; Rieck, P; Riegel, C J; Rieger, J; Rijssenbeek, M; Rimoldi, A; Rinaldi, L; Ritsch, E; Riu, I; Rizatdinova, F; Rizvi, E; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robson, A; Roda, C; Rodrigues, L; Roe, S; Røhne, O; Rolli, S; Romaniouk, A; Romano, M; Romano Saez, S M; Romero Adam, E; Rompotis, N; Ronzani, M; Roos, L; Ros, E; Rosati, S; Rosbach, K; Rose, P; Rosendahl, P L; Rosenthal, O; Rossetti, V; Rossi, E; Rossi, L P; Rosten, R; Rotaru, M; Roth, I; Rothberg, J; Rousseau, D; Royon, C R; Rozanov, A; Rozen, Y; Ruan, X; Rubbo, F; Rubinskiy, I; Rud, V I; Rudolph, C; Rudolph, M S; Rühr, F; Ruiz-Martinez, A; Rurikova, Z; Rusakovich, N A; Ruschke, A; Russell, H L; Rutherfoord, J P; Ruthmann, N; Ryabov, Y F; Rybar, M; Rybkin, G; Ryder, N C; Saavedra, A F; Sabato, G; Sacerdoti, S; Saddique, A; Sadrozinski, H F-W; Sadykov, R; Safai Tehrani, F; Saimpert, M; Sakamoto, H; Sakurai, Y; Salamanna, G; Salamon, A; Saleem, M; Salek, D; Sales De Bruin, P H; Salihagic, D; Salnikov, A; Salt, J; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sampsonidis, D; Sanchez, A; Sánchez, J; Sanchez Martinez, V; Sandaker, H; Sandbach, R L; Sander, H G; Sanders, M P; Sandhoff, M; Sandoval, C; Sandstroem, R; Sankey, D P C; Sansoni, A; Santoni, C; Santonico, R; Santos, H; Santoyo Castillo, I; Sapp, K; Sapronov, A; Saraiva, J G; Sarrazin, B; Sasaki, O; Sasaki, Y; Sato, K; Sauvage, G; Sauvan, E; Savage, G; Savard, P; Sawyer, C; Sawyer, L; Saxon, D H; Saxon, J; Sbarra, C; Sbrizzi, A; Scanlon, T; Scannicchio, D A; Scarcella, M; Scarfone, V; Schaarschmidt, J; Schacht, P; Schaefer, D; Schaefer, R; Schaeffer, J; Schaepe, S; Schaetzel, S; Schäfer, U; Schaffer, A C; Schaile, D; Schamberger, R D; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Schiavi, C; Schieck, J; Schillo, C; Schioppa, M; Schlenker, S; Schmidt, E; Schmieden, K; Schmitt, C; Schmitt, S; Schneider, B; Schnellbach, Y J; Schnoor, U; Schoeffel, L; Schoening, A; Schoenrock, B D; Schorlemmer, A L S; Schott, M; Schouten, D; Schovancova, J; Schramm, S; Schreyer, M; Schroeder, C; Schuh, N; Schultens, M J; Schultz-Coulon, H-C; Schulz, H; Schumacher, M; Schumm, B A; Schune, Ph; Schwanenberger, C; Schwartzman, A; Schwarz, T A; Schwegler, Ph; Schwemling, Ph; Schwienhorst, R; Schwindling, J; Schwindt, T; Schwoerer, M; Sciacca, F G; Scifo, E; Sciolla, G; Scuri, F; Scutti, F; Searcy, J; Sedov, G; Sedykh, E; Seema, P; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Sekula, S J; Selbach, K E; Seliverstov, D M; Semprini-Cesari, N; Serfon, C; Serin, L; Serkin, L; Serre, T; Seuster, R; Severini, H; Sfiligoj, T; Sforza, F; Sfyrla, A; Shabalina, E; Shamim, M; Shan, L Y; Shang, R; Shank, J T; Shapiro, M; Shatalov, P B; Shaw, K; Shcherbakova, A; Shehu, C Y; Sherwood, P; Shi, L; Shimizu, S; Shimmin, C O; Shimojima, M; Shiyakova, M; Shmeleva, A; Shoaleh Saadi, D; Shochet, M J; Shojaii, S; Shrestha, S; Shulga, E; Shupe, M A; Shushkevich, S; Sicho, P; Sidiropoulou, O; Sidorov, D; Sidoti, A; Siegert, F; Sijacki, Dj; Silva, J; Silver, Y; Silverstein, D; Silverstein, S B; Simak, V; Simard, O; Simic, Lj; Simion, S; Simioni, E; Simmons, B; Simon, D; Simoniello, R; Sinervo, P; Sinev, N B; Siragusa, G; Sircar, A; Sisakyan, A N; Sivoklokov, S Yu; Sjölin, J; Sjursen, T B; Skinner, M B; Skottowe, H P; Skubic, P; Slater, M; Slavicek, T; Slawinska, M; Sliwa, K; Smakhtin, V; Smart, B H; Smestad, L; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, K M; Smith, M; Smizanska, M; Smolek, K; Snesarev, A A; Snidero, G; Snyder, S; Sobie, R; Socher, F; Soffer, A; Soh, D A; Solans, C A; Solar, M; Solc, J; Soldatov, E Yu; Soldevila, U; Solodkov, A A; Soloshenko, A; Solovyanov, O V; Solovyev, V; Sommer, P; Song, H Y; Soni, N; Sood, A; Sopczak, A; Sopko, B; Sopko, V; Sorin, V; Sosa, D; Sosebee, M; Sotiropoulou, C L; Soualah, R; Soueid, P; Soukharev, A M; South, D; Spagnolo, S; Spanò, F; Spearman, W R; Spettel, F; Spighi, R; Spigo, G; Spiller, L A; Spousta, M; Spreitzer, T; St Denis, R D; Staerz, S; Stahlman, J; Stamen, R; Stamm, S; Stanecka, E; Stanescu, C; Stanescu-Bellu, M; Stanitzki, M M; Stapnes, S; Starchenko, E A; Stark, J; Staroba, P; Starovoitov, P; Staszewski, R; Stavina, P; Steinberg, P; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stern, S; Stewart, G A; Stillings, J A; Stockton, M C; Stoebe, M; Stoicea, G; Stolte, P; Stonjek, S; Stradling, A R; Straessner, A; Stramaglia, M E; Strandberg, J; Strandberg, S; Strandlie, A; Strauss, E; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Stroynowski, R; Strubig, A; Stucci, S A; Stugu, B; Styles, N A; Su, D; Su, J; Subramaniam, R; Succurro, A; Sugaya, Y; Suhr, C; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, S; Sun, X; Sundermann, J E; Suruliz, K; Susinno, G; Sutton, M R; Suzuki, Y; Svatos, M; Swedish, S; Swiatlowski, M; Sykora, I; Sykora, T; Ta, D; Taccini, C; Tackmann, K; Taenzer, J; Taffard, A; Tafirout, R; Taiblum, N; Takai, H; Takashima, R; Takeda, H; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A A; Tam, J Y C; Tan, K G; Tanaka, J; Tanaka, R; Tanaka, S; Tanaka, S; Tanasijczuk, A J; Tannenwald, B B; Tannoury, N; Tapprogge, S; Tarem, S; Tarrade, F; Tartarelli, G F; Tas, P; Tasevsky, M; Tashiro, T; Tassi, E; Tavares Delgado, A; Tayalati, Y; Taylor, F E; Taylor, G N; Taylor, W; Teischinger, F A; Teixeira Dias Castanheira, M; Teixeira-Dias, P; Temming, K K; Ten Kate, H; Teng, P K; Teoh, J J; Tepel, F; Terada, S; Terashi, K; Terron, J; Terzo, S; Testa, M; Teuscher, R J; Therhaag, J; Theveneaux-Pelzer, T; Thomas, J P; Thomas-Wilsker, J; Thompson, E N; Thompson, P D; Thompson, R J; Thompson, A S; Thomsen, L A; Thomson, E; Thomson, M; Thong, W M; Thun, R P; Tian, F; Tibbetts, M J; Ticse Torres, R E; Tikhomirov, V O; Tikhonov, Yu A; Timoshenko, S; Tiouchichine, E; Tipton, P; Tisserant, S; Todorov, T; Todorova-Nova, S; Tojo, J; Tokár, S; Tokushuku, K; Tollefson, K; Tolley, E; Tomlinson, L; Tomoto, M; Tompkins, L; Toms, K; Topilin, N D; Torrence, E; Torres, H; Torró Pastor, E; Toth, J; Touchard, F; Tovey, D R; Tran, H L; Trefzger, T; Tremblet, L; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Tripiana, M F; Trischuk, W; Trocmé, B; Troncon, C; Trottier-McDonald, M; Trovatelli, M; True, P; Trzebinski, M; Trzupek, A; Tsarouchas, C; Tseng, J C-L; Tsiareshka, P V; Tsionou, D; Tsipolitis, G; Tsirintanis, N; Tsiskaridze, S; Tsiskaridze, V; Tskhadadze, E G; Tsukerman, I I; Tsulaia, V; Tsuno, S; Tsybychev, D; Tudorache, A; Tudorache, V; Tuna, A N; Tupputi, S A; Turchikhin, S; Turecek, D; Turk Cakir, I; Turra, R; Turvey, A J; Tuts, P M; Tykhonov, A; Tylmad, M; Tyndel, M; Ueda, I; Ueno, R; Ughetto, M; Ugland, M; Uhlenbrock, M; Ukegawa, F; Unal, G; Undrus, A; Unel, G; Ungaro, F C; Unno, Y; Unverdorben, C; Urban, J; Urquijo, P; Urrejola, P; Usai, G; Usanova, A; Vacavant, L; Vacek, V; Vachon, B; Valencic, N; Valentinetti, S; Valero, A; Valery, L; Valkar, S; Valladolid Gallego, E; Vallecorsa, S; Valls Ferrer, J A; Van Den Wollenberg, W; Van Der Deijl, P C; van der Geer, R; van der Graaf, H; Van Der Leeuw, R; van Eldik, N; van Gemmeren, P; Van Nieuwkoop, J; van Vulpen, I; van Woerden, M C; Vanadia, M; Vandelli, W; Vanguri, R; Vaniachine, A; Vannucci, F; Vardanyan, G; Vari, R; Varnes, E W; Varol, T; Varouchas, D; Vartapetian, A; Varvell, K E; Vazeille, F; Vazquez Schroeder, T; Veatch, J; Veloso, F; Velz, T; Veneziano, S; Ventura, A; Ventura, D; Venturi, M; Venturi, N; Venturini, A; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vest, A; Vetterli, M C; Viazlo, O; Vichou, I; Vickey, T; Vickey Boeriu, O E; Viehhauser, G H A; Viel, S; Vigne, R; Villa, M; Villaplana Perez, M; Vilucchi, E; Vincter, M G; Vinogradov, V B; Virzi, J; Vivarelli, I; Vives Vaque, F; Vlachos, S; Vladoiu, D; Vlasak, M; Vogel, M; Vokac, P; Volpi, G; Volpi, M; von der Schmitt, H; von Radziewski, H; von Toerne, E; Vorobel, V; Vorobev, K; Vos, M; Voss, R; Vossebeld, J H; Vranjes, N; Vranjes Milosavljevic, M; Vrba, V; Vreeswijk, M; Vuillermet, R; Vukotic, I; Vykydal, Z; Wagner, P; Wagner, W; Wahlberg, H; Wahrmund, S; Wakabayashi, J; Walder, J; Walker, R; Walkowiak, W; Wang, C; Wang, F; Wang, H; Wang, H; Wang, J; Wang, J; Wang, K; Wang, R; Wang, S M; Wang, T; Wang, X; Wanotayaroj, C; Warburton, A; Ward, C P; Wardrope, D R; Warsinsky, M; Washbrook, A; Wasicki, C; Watkins, P M; Watson, A T; Watson, I J; Watson, M F; Watts, G; Watts, S; Waugh, B M; Webb, S; Weber, M S; Weber, S W; Webster, J S; Weidberg, A R; Weinert, B; Weingarten, J; Weiser, C; Weits, H; Wells, P S; Wenaus, T; Wendland, D; Wengler, T; Wenig, S; Wermes, N; Werner, M; Werner, P; Wessels, M; Wetter, J; Whalen, K; Wharton, A M; White, A; White, M J; White, R; White, S; Whiteson, D; Wicke, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wienemann, P; Wiglesworth, C; Wiik-Fuchs, L A M; Wildauer, A; Wilkens, H G; Williams, H H; Williams, S; Willis, C; Willocq, S; Wilson, A; Wilson, J A; Wingerter-Seez, I; Winklmeier, F; Winter, B T; Wittgen, M; Wittkowski, J; Wollstadt, S J; Wolter, M W; Wolters, H; Wosiek, B K; Wotschack, J; Woudstra, M J; Wozniak, K W; Wu, M; Wu, S L; Wu, X; Wu, Y; Wyatt, T R; Wynne, B M; Xella, S; Xu, D; Xu, L; Yabsley, B; Yacoob, S; Yakabe, R; Yamada, M; Yamaguchi, Y; Yamamoto, A; Yamamoto, S; Yamanaka, T; Yamauchi, K; Yamazaki, Y; Yan, Z; Yang, H; Yang, H; Yang, Y; Yanush, S; Yao, L; Yao, W-M; Yasu, Y; Yatsenko, E; Yau Wong, K H; Ye, J; Ye, S; Yeletskikh, I; Yen, A L; Yildirim, E; Yorita, K; Yoshida, R; Yoshihara, K; Young, C; Young, C J S; Youssef, S; Yu, D R; Yu, J; Yu, J M; Yu, J; Yuan, L; Yurkewicz, A; Yusuff, I; Zabinski, B; Zaidan, R; Zaitsev, A M; Zaman, A; Zambito, S; Zanello, L; Zanzi, D; Zeitnitz, C; Zeman, M; Zemla, A; Zengel, K; Zenin, O; Ženiš, T; Zerwas, D; Zhang, D; Zhang, F; Zhang, J; Zhang, L; Zhang, R; Zhang, X; Zhang, Z; Zhao, X; Zhao, Y; Zhao, Z; Zhemchugov, A; Zhong, J; Zhou, B; Zhou, C; Zhou, L; Zhou, L; Zhou, N; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zhukov, K; Zibell, A; Zieminska, D; Zimine, N I; Zimmermann, C; Zimmermann, R; Zimmermann, S; Zinonos, Z; Ziolkowski, M; Živković, L; Zobernig, G; Zoccoli, A; Zur Nedden, M; Zurzolo, G; Zwalinski, L

    2015-04-24

    The results of a dedicated search for pair production of scalar partners of charm quarks are reported. The search is based on an integrated luminosity of 20.3  fb^{-1} of pp collisions at sqrt[s]=8  TeV recorded with the ATLAS detector at the LHC. The search is performed using events with large missing transverse momentum and at least two jets, where the two leading jets are each tagged as originating from c quarks. Events containing isolated electrons or muons are vetoed. In an R-parity-conserving minimal supersymmetric scenario in which a single scalar-charm state is kinematically accessible, and where it decays exclusively into a charm quark and a neutralino, 95% confidence-level upper limits are obtained in the scalar-charm-neutralino mass plane such that, for neutralino masses below 200 GeV, scalar-charm masses up to 490 GeV are excluded.

  4. Measurements of the charm jet cross section and nuclear modification factor in pPb collisions at sqrt(s[NN]) = 5.02 TeV

    SciTech Connect

    Sirunyan, Albert M; et al.

    2016-12-28

    The CMS Collaboration presents the first measurement of the differential cross section of jets from charm quarks produced in proton-lead (pPb) collisions at a nucleon-nucleon center-of-mass energy of sqrt(s[NN]) = 5.02 TeV, as well as results from charm quark jets in proton-proton (pp) collisions at sqrt(s)= 2.76 and 5.02 TeV. By comparing the yields of the pPb and pp collision systems at the same energy, a nuclear modification factor for charm jets in pPb collisions at sqrt(s[NN]) = 5.02 TeV of R[pA] = 0.92 +/- 0.07 (stat) +/- 0.11 (syst) is obtained. This is consistent with an absence of final-state energy loss for charm quarks in pPb collisions. In addition, the fraction of jets coming from charm quarks is found to be consistent with that predicted by PYTHIA 6 for pp collisions at sqrt(s)= 2.76 and 5.02 TeV, and is independent of the jet transverse momentum from 55 to 400 GeV.

  5. Openness initiative

    SciTech Connect

    Duncan, S.S.

    1995-12-31

    Although antinuclear campaigns seem to be effective, public communication and education efforts on low-level radioactive waste have mixed results. Attempts at public information programs on low-level radioactive waste still focus on influencing public opinion. A question then is: {open_quotes}Is it preferable to have a program focus on public education that will empower individuals to make informed decisions rather than trying to influence them in their decisions?{close_quotes} To address this question, a case study with both quantitative and qualitative data will be used. The Ohio Low-Level Radioactive Waste Education Program has a goal to provide people with information they want/need to make their own decisions. The program initiated its efforts by conducting a statewide survey to determine information needed by people and where they turned for that information. This presentation reports data from the survey and then explores the program development process in which programs were designed and presented using the information. Pre and post data from the programs reveal attitude and knowledge shifts.

  6. Opening Address

    NASA Astrophysics Data System (ADS)

    Crovini, L.

    1994-01-01

    Ladies and Gentlemen To quote Mr Jean Terrien: "Physics must be one step ahead of metrology". A long-serving Director of the BIPM, he said these words when visiting the IMGC in 1970 as a member of the scientific board of our Institute. At that time it was still an open question whether the IMGC should start research work on the absolute measurement of silicon lattice spacing. Mr Terrien underlined the revolutionary character of x-ray interferometry and, eventually, he caused the balance needle to lean towards the ... right direction. Mr Terrien correctly foresaw that, like Michelson's interferometer of 1880, x-ray interferometry could have a prominent place in today's science and technology. And while, in the first case, after more than a century we can see instruments based on electromagnetic wave interaction within every one's reach in laboratories and, sometimes, in workshops, in the second case, twenty-five years since the first development of an x-ray interferometer we can witness its role in nanometrology. Today and tomorrow we meet to discuss how to go beyond the sixth decimal place in the value of the Avogadro constant. We are aware that the quest for this achievement requires the cooperation of scientists with complementary capabilities. I am sure that the present workshop is a very good opportunity to present and discuss results and to improve and extend existing cooperation. The new adjustment of fundamental constants envisaged by the CODATA Task Group is redoubling scientists' efforts to produce competitive values of NA. The results of the measurements of the silicon lattice spacing in terms of an optical wavelength, which were available for the 1986 adjustment, combined with the determination of silicon molar volume, demonstrate how such an NA determination produces a consistent set of other constants and opens the way to a possible redefinition of the kilogram. We shall see in these two days how far we have progressed along this road. For us at the

  7. A Search for Charm and Beauty in a Very Strange World

    NASA Astrophysics Data System (ADS)

    Kamin, Jason Adrian

    The Relativistic Heavy Ion Collider (RHIC) was built to produce and study the extremely hot and dense phase of matter called Quark Gluon Plasma (QGP) in which the degrees of freedom are individual partons rather than composite hadrons. Since 2000, RHIC has collided various species of particles in order to disentangle and isolate the properties of the strongly interacting QGP: p+p to set a baseline, d+Au to establish a control experiment, Au+Au to definitively create the QGP, and Cu+Cu to bridge the gap between d+Au and Au+Au. Electron-positron pairs are a particularly effective probe of the QGP because they carry no color charge. Therefore, once created, these leptons do not interact strongly with the medium. As a result, they retain characteristics of the full time evolution and dynamics of the system. There are many features of interest in the dielectron invariant mass spectrum. The low mass region (< 1 GeV/c2) consists primarily of pairs from Dalitz decays of light hadrons and direct decays of vector mesons that can be modified by the medium, while the intermediate (1 < m < 3 GeV/c2) and high (4 < m < 8 GeV/c2) mass regions are dominated by pairs from mesons containing charm and beauty respectively. Of the multitude of measurements that PHENIX has produced over the last decade, one of the more mysterious and intriguing is a large enhancement of pairs in the low mass region in central Au+Au collisions compared to the p+p reference. Current theories are unable to explain the origin of this excess and a lingering question within the field is whether the presence of "cold" nuclear matter in the initial state of the collision, independent of the formation of a QGP, could possibly account for this increased yield. To answer this question, this thesis explores the dielectron spectra in

  8. Dynamics of strange, charm and high momentum hadrons in relativistic nucleus-nucleus collisions

    NASA Astrophysics Data System (ADS)

    Cassing, W.; Gallmeister, K.; Bratkovskaya, E. L.; Greiner, C.; Stöcker, H.

    2004-07-01

    We investigate hadron production and attenuation of hadrons with strange and charm quarks (or antiquarks) as well as high transverse momentum hadrons in relativistic nucleus-nucleus collisions from 2 A GeV to 21.3 A TeV within two independent transport approaches (UrQMD and HSD). Both transport models are based on quark, diquark, string and hadronic degrees of freedom, but do not include any explicit phase transition to a quark-gluon plasma. From our dynamical calculations we find that both models do not describe the maximum in the K+/ π+ ratio at 20-30 A GeV in central Au+Au collisions found experimentally, though the excitation functions of strange mesons are reproduced well in HSD and UrQMD. Furthermore, the transport calculations show that the charmonium recreation by D+ D¯→J/Ψ+ meson reactions is comparable to the dissociation by ‘comoving’ mesons at RHIC energies contrary to SPS energies. This leads to the final result that the total J/ Ψ suppression as a function of centrality at RHIC should be less than the suppression seen at SPS energies where the ‘comover’ dissociation is substantial and the backward channels play no role. Furthermore, our transport calculations-in comparison to experimental data on transverse momentum spectra from pp, d+Au and Au+Au reactions-show that pre-hadronic effects are responsible for both the hardening of the hadron spectra for low transverse momenta (Cronin effect) as well as the suppression of high pT hadrons. The mutual interactions of formed hadrons are found to be negligible in central Au+Au collisions at s=200 GeV for p T≥6 GeV/c and the sizeable suppression seen experimentally is attributed to a large extent to the interactions of ‘leading’ pre-hadrons with the dense environment.

  9. Hyperon AND Hyperon Resonance Properties From Charm Baryon Decays At BaBar

    SciTech Connect

    Ziegler, Veronique; /Iowa U.

    2007-07-03

    This report describes studies of hyperons and hyperon resonances produced in charm baryon decays at BABAR. Using two-body decays of the {Xi}{sub c}{sup 0} and {Omega}{sub c}{sup 0}, it is shown, for the first time, that the spin of the {omega}{sup -} is 3/2. The {Omega}{sup -} analysis procedures are extended to three-body final states and properties of the {Xi}(1690){sup 0} are extracted from a detailed isobar model analysis of the {Lambda}{sub c}{sup +} {yields} {Lambda}{bar K}{sup 0}K{sup +} Dalitz plot. The mass and width values of the {Xi}(1690){sup 0} are measured with much greater precision than attained previously. The hypothesis that the spin of the {Xi}(1690) resonance is 1/2 yields an excellent description of the data, while spin values 3/2 and 5/2 are disfavored. The {Lambda}a{sub 0}(980){sup +} decay mode of the {Lambda}{sub c}{sup +} is observed for the first time. Similar techniques are then used to study {Xi}(1530){sup 0} production in {Lambda}{sub c}{sup +} decay. The spin of the {Xi}(1530) is established for the first time to be 3/2. The existence of an S-wave amplitude in the {Xi}{sup -}{pi}{sup +} system is shown, and its interference with the {Xi}(1530){sup 0} amplitude provides the first clear demonstration of the Breit-Wigner phase motion expected for the {Xi}(1530). The {Xi}{sup -}{pi}{sup +} mass distribution in the vicinity of the {Xi}(1690){sup 0} exhibits interesting structure which may be interpreted as indicating that the {Xi}(1690) has negative parity.

  10. Charm and strange quark masses and fD s from overlap fermions

    NASA Astrophysics Data System (ADS)

    Yang, Yi-Bo; Chen, Ying; Alexandru, Andrei; Dong, Shao-Jing; Draper, Terrence; Gong, Ming; Lee, Frank X.; Li, Anyi; Liu, Keh-Fei; Liu, Zhaofeng; Lujan, Michael

    2015-08-01

    We use overlap fermions as valence quarks to calculate meson masses in a wide quark mass range on the 2 +1 -flavor domain-wall fermion gauge configurations generated by the RBC and UKQCD Collaborations. The well-defined quark masses in the overlap fermion formalism and the clear valence quark mass dependence of meson masses observed from the calculation facilitate a direct derivation of physical current quark masses through a global fit to the lattice data, which incorporates O (a2) and O (mc4a4) corrections, chiral extrapolation, and quark mass interpolation. Using the physical masses of Ds, Ds* and J /ψ as inputs, Sommer's scale parameter r0 and the masses of charm quark and strange quark in the MS ¯ scheme are determined to be r0=0.465 (4 )(9 ) fm , mcMS ¯(2 GeV )=1.118 (6 )(24 ) GeV (or mcMS ¯(mc)=1.304 (5 )(20 ) GeV ), and msMS ¯(2 GeV )=0.101 (3 )(6 ) GeV , respectively. Furthermore, we observe that the mass difference of the vector meson and the pseudoscalar meson with the same valence quark content is proportional to the reciprocal of the square root of the valence quark masses. The hyperfine splitting of charmonium, MJ /ψ-Mηc , is determined to be 119(2)(7) MeV, which is in good agreement with the experimental value. We also predict the decay constant of Ds to be fDs=254 (2 )(4 ) MeV . The masses of charmonium P -wave states χc 0 , χc 1 and hc are also in good agreement with experiments.

  11. Centrality dependence of charm production from a measurement of single electrons in Au+Au collisions at sqrt[s(NN)]=200 GeV.

    PubMed

    Adler, S S; Afanasiev, S; Aidala, C; Ajitanand, N N; Akiba, Y; Alexander, J; Amirikas, R; Aphecetche, L; Aronson, S H; Averbeck, R; Awes, T C; Azmoun, R; Babintsev, V; Baldisseri, A; Barish, K N; Barnes, P D; Bassalleck, B; Bathe, S; Batsouli, S; Baublis, V; Bazilevsky, A; Belikov, S; Berdnikov, Y; Bhagavatula, S; Boissevain, J G; Borel, H; Borenstein, S; Brooks, M L; Brown, D S; Bruner, N; Bucher, D; Buesching, H; Bumazhnov, V; Bunce, G; Burward-Hoy, J M; Butsyk, S; Camard, X; Chai, J-S; Chand, P; Chang, W C; Chernichenko, S; Chi, C Y; Chiba, J; Chiu, M; Choi, I J; Choi, J; Choudhury, R K; Chujo, T; Cianciolo, V; Cobigo, Y; Cole, B A; Constantin, P; d'Enterria, D G; David, G; Delagrange, H; Denisov, A; Deshpande, A; Desmond, E J; Devismes, A; Dietzsch, O; Drapier, O; Drees, A; du Rietz, R; Durum, A; Dutta, D; Efremenko, Y V; El Chenawi, K; Enokizono, A; En'yo, H; Esumi, S; Ewell, L; Fields, D E; Fleuret, F; Fokin, S L; Fox, B D; Fraenkel, Z; Frantz, J E; Franz, A; Frawley, A D; Fung, S-Y; Garpman, S; Ghosh, T K; Glenn, A; Gogiberidze, G; Gonin, M; Gosset, J; Goto, Y; Granier de Cassagnac, R; Grau, N; Greene, S V; Grosse Perdekamp, M; Guryn, W; Gustafsson, H-A; Hachiya, T; Haggerty, J S; Hamagaki, H; Hansen, A G; Hartouni, E P; Harvey, M; Hayano, R; Hayashi, N; He, X; Heffner, M; Hemmick, T K; Heuser, J M; Hibino, M; Hill, J C; Holzmann, W; Homma, K; Hong, B; Hoover, A; Ichihara, T; Ikonnikov, V V; Imai, K; Isenhower, D; Ishihara, M; Issah, M; Isupov, A; Jacak, B V; Jang, W Y; Jeong, Y; Jia, J; Jinnouchi, O; Johnson, B M; Johnson, S C; Joo, K S; Jouan, D; Kametani, S; Kamihara, N; Kang, J H; Kapoor, S S; Katou, K; Kelly, S; Khachaturov, B; Khanzadeev, A; Kikuchi, J; Kim, D H; Kim, D J; Kim, D W; Kim, E; Kim, G-B; Kim, H J; Kistenev, E; Kiyomichi, A; Kiyoyama, K; Klein-Boesing, C; Kobayashi, H; Kochenda, L; Kochetkov, V; Koehler, D; Kohama, T; Kopytine, M; Kotchetkov, D; Kozlov, A; Kroon, P J; Kuberg, C H; Kurita, K; Kuroki, Y; Kweon, M J; Kwon, Y; Kyle, G S; Lacey, R; Ladygin, V; Lajoie, J G; Lebedev, A; Leckey, S; Lee, D M; Lee, S; Leitch, M J; Li, X H; Lim, H; Litvinenko, A; Liu, M X; Liu, Y; Maguire, C F; Makdisi, Y I; Malakhov, A; Manko, V I; Mao, Y; Martinez, G; Marx, M D; Masui, H; Matathias, F; Matsumoto, T; McGaughey, P L; Melnikov, E; Messer, F; Miake, Y; Milan, J; Miller, T E; Milov, A; Mioduszewski, S; Mischke, R E; Mishra, G C; Mitchell, J T; Mohanty, A K; Morrison, D P; Moss, J M; Mühlbacher, F; Mukhopadhyay, D; Muniruzzaman, M; Murata, J; Nagamiya, S; Nagle, J L; Nakamura, T; Nandi, B K; Nara, M; Newby, J; Nilsson, P; Nyanin, A S; Nystrand, J; O'Brien, E; Ogilvie, C A; Ohnishi, H; Ojha, I D; Okada, K; Ono, M; Onuchin, V; Oskarsson, A; Otterlund, I; Oyama, K; Ozawa, K; Pal, D; Palounek, A P T; Pantuev, V S; Papavassiliou, V; Park, J; Parmar, A; Pate, S F; Peitzmann, T; Peng, J-C; Peresedov, V; Pinkenburg, C; Pisani, R P; Plasil, F; Purschke, M L; Purwar, A K; Rak, J; Ravinovich, I; Read, K F; Reuter, M; Reygers, K; Riabov, V; Riabov, Y; Roche, G; Romana, A; Rosati, M; Rosnet, P; Ryu, S S; Sadler, M E; Saito, N; Sakaguchi, T; Sakai, M; Sakai, S; Samsonov, V; Sanfratello, L; Santo, R; Sato, H D; Sato, S; Sawada, S; Schutz, Y; Semenov, V; Seto, R; Shaw, M R; Shea, T K; Shibata, T-A; Shigaki, K; Shiina, T; Silva, C L; Silvermyr, D; Sim, K S; Singh, C P; Singh, V; Sivertz, M; Soldatov, A; Soltz, R A; Sondheim, W E; Sorensen, S P; Sourikova, I V; Staley, F; Stankus, P W; Stenlund, E; Stepanov, M; Ster, A; Stoll, S P; Sugitate, T; Sullivan, J P; Takagui, E M; Taketani, A; Tamai, M; Tanaka, K H; Tanaka, Y; Tanida, K; Tannenbaum, M J; Tarján, P; Tepe, J D; Thomas, T L; Tojo, J; Torii, H; Towell, R S; Tserruya, I; Tsuruoka, H; Tuli, S K; Tydesjö, H; Tyurin, N; van Hecke, H W; Velkovska, J; Velkovsky, M; Veszprémi, V; Villatte, L; Vinogradov, A A; Volkov, M A; Vznuzdaev, E; Wang, X R; Watanabe, Y; White, S N; Wohn, F K; Woody, C L; Xie, W; Yang, Y; Yanovich, A; Yokkaichi, S; Young, G R; Yushmanov, I E; Zajc, W A; Zhang, C; Zhou, S; Zhou, S J; Zolin, L

    2005-03-04

    The PHENIX experiment has measured midrapidity transverse momentum spectra (0.4charm at lower p(T). For all centralities, the charm production cross section is found to scale with the nuclear overlap function, T(AA). For minimum-bias collisions the charm cross section per binary collision is N(cc )/T(AA)=622+/-57(stat)+/-160(syst) microb.

  12. A Statistical Analysis of Langmuir Wave-Electron Correlations Observed by the CHARM II Auroral Sounding Rocket

    NASA Astrophysics Data System (ADS)

    Dombrowski, M. P.; Labelle, J. W.; Kletzing, C.; Bounds, S. R.; Kaeppler, S. R.

    2014-12-01

    Langmuir-mode electron plasma waves are frequently observed by spacecraft in active plasma environments such as the ionosphere. Ionospheric Langmuir waves may be excited by the bump-on-tail instability generated by impinging beams of electrons traveling parallel to the background magnetic field (B). The Correlation of High-frequencies and Auroral Roar Measurement (CHARM II) sounding rocket was launched into a substorm at 9:49 UT on 17 February 2010, from the Poker Flat Research Range in Alaska. The primary instruments included the University of Iowa Wave-Particle Correlator (WPC), the Dartmouth High-Frequency Experiment (HFE), several charged particle detectors, low-frequency wave instruments, and a magnetometer. The HFE is a receiver system which effectively yields continuous (100% duty cycle) electric-field waveform measurements from 100 kHz to 5 MHz, and which had its detection axis aligned nominally parallel to B. The HFE output was fed on-payload to the WPC, which uses a phase-locked loop to track the incoming wave frequency with the most power, then sorting incoming electrons at eight energy levels into sixteen wave-phase bins. CHARM II encountered several regions of strong Langmuir wave activity throughout its 15-minute flight, and the WPC showed wave-lock and statistically significant particle correlation distributions during several time periods. We show results of an in-depth analysis of the CHARM II WPC data for the entire flight, including statistical analysis of correlations which show evidence of direct interaction with the Langmuir waves, indicating (at various times) trapping of particles and both driving and damping of Langmuir waves by particles. In particular, the sign of the gradient in particle flux appears to correlate with the phase relation between the electrons and the wave field, with possible implications for the wave physics.

  13. First Airborne IPDA Lidar Measurements of Methane and Carbon Dioxide Applying the DLR Greenhouse Gas Sounder CHARM-F

    NASA Astrophysics Data System (ADS)

    Amediek, A.; Ehret, G.; Fix, A.; Wirth, M.; Quatrevalet, M.; Büdenbender, C.; Kiemle, C.; Loehring, J.; Gerbig, C.

    2015-12-01

    First airborne measurement using CHARM-F, the four-wavelengths lidar for simultaneous soundings of atmospheric CO2 and CH4, were performed in Spring 2015 onboard the German research aircraft HALO. The lidar is designed in the IPDA (integrated path differential absorption) configuration using short double pulses, which gives column averaged gas mixing ratios between aircraft and ground. HALO's maximum flight altitude of 15 km and special features of the lidar, such as a relatively large laser ground spot, enable the CHARM-F system to be an airborne demonstrator for future spaceborne greenhouse gas lidars. Due to a high technological conformity this applies in particular to the French-German satellite mission MERLIN, the spaceborne methane IPDA lidar. The successfully completed flight measurements provide a valuable dataset, which supports the retrieval algorithm development for MERLIN notably. The flights covered different ground cover types, different orography types as well as the sea. Additionally, we captured different cloud conditions, at which the broken cloud case is a matter of particular interest. This dataset allows detailed analyses of measurement sensitivities, general studies on the IPDA principle and on technical details of the system. These activities are supported by another instrument onboard: a cavity ring down spectrometer, providing in-situ data of carbon dioxide, methane and water vapor with high accuracy and precision, which is ideal for validation purposes of the lidar. Additionally the onboard instrumentation of HALO gives information about pressure and temperature for cross-checking the ECMWF data, which are intended to be used for calculating the weighting function, the key quantity for the retrieval of gas column mixing ratios from the measured gas optical depths. In combination with dedicated descents into the boundary layer and subsequent ascents, a self-contained dataset for characterizations of CHARM-F is available.

  14. First Observation of the Doubly Cabibbo-Suppressed Decay of a Charmed Baryon: Λ_{c}^{+}→pK^{+}π^{-}.

    PubMed

    Yang, S B; Tanida, K; Kim, B H; Adachi, I; Aihara, H; Asner, D M; Aulchenko, V; Aushev, T; Babu, V; Badhrees, I; Bakich, A M; Barberio, E; Bhardwaj, V; Bhuyan, B; Biswal, J; Bonvicini, G; Bozek, A; Bračko, M; Browder, T E; Červenkov, D; Chekelian, V; Chen, A; Cheon, B G; Chilikin, K; Chistov, R; Cho, K; Chobanova, V; Choi, Y; Cinabro, D; Dalseno, J; Danilov, M; Dash, N; Doležal, Z; Drásal, Z; Dutta, D; Eidelman, S; Farhat, H; Fast, J E; Ferber, T; Fulsom, B G; Gabyshev, N; Garmash, A; Gaur, V; Gillard, R; Goh, Y M; Goldenzweig, P; Greenwald, D; Grygier, J; Haba, J; Hamer, P; Hara, T; Hayasaka, K; Hayashii, H; Hou, W-S; Iijima, T; Inami, K; Inguglia, G; Ishikawa, A; Itoh, R; Iwasaki, Y; Jacobs, W W; Jaegle, I; Jeon, H B; Joo, K K; Julius, T; Kang, K H; Kato, E; Katrenko, P; Kiesling, C; Kim, D Y; Kim, H J; Kim, J B; Kim, K T; Kim, M J; Kim, S H; Kim, S K; Kim, Y J; Kinoshita, K; Kobayashi, N; Kodyš, P; Korpar, S; Križan, P; Krokovny, P; Kuhr, T; Kuzmin, A; Kwon, Y-J; Lange, J S; Lee, I S; Li, C H; Li, H; Li, L; Li, Y; Li Gioi, L; Libby, J; Liventsev, D; Lubej, M; Masuda, M; Matvienko, D; Miyabayashi, K; Miyata, H; Mizuk, R; Mohanty, G B; Moll, A; Moon, H K; Mussa, R; Nakano, E; Nakao, M; Nanut, T; Nath, K J; Nayak, M; Negishi, K; Niiyama, M; Nisar, N K; Nishida, S; Ogawa, S; Okuno, S; Olsen, S L; Pakhlova, G; Pal, B; Park, C W; Park, H; Pedlar, T K; Pestotnik, R; Petrič, M; Piilonen, L E; Pulvermacher, C; Rauch, J; Ritter, M; Rostomyan, A; Ryu, S; Sahoo, H; Sakai, Y; Sandilya, S; Santelj, L; Sanuki, T; Sato, Y; Savinov, V; Schlüter, T; Schneider, O; Schnell, G; Schwanda, C; Schwartz, A J; Seino, Y; Senyo, K; Seon, O; Seong, I S; Sevior, M E; Shebalin, V; Shibata, T-A; Shiu, J-G; Shwartz, B; Simon, F; Sohn, Y-S; Sokolov, A; Stanič, S; Starič, M; Stypula, J; Sumihama, M; Sumiyoshi, T; Takizawa, M; Tamponi, U; Teramoto, Y; Trabelsi, K; Trusov, V; Uchida, M; Uglov, T; Unno, Y; Uno, S; Urquijo, P; Usov, Y; Vanhoefer, P; Varner, G; Varvell, K E; Vinokurova, A; Vossen, A; Wagner, M N; Wang, C H; Wang, M-Z; Wang, P; Wang, X L; Watanabe, Y; Williams, K M; Won, E; Yamaoka, J; Yashchenko, S; Ye, H; Yelton, J; Yuan, C Z; Yusa, Y; Zhang, Z P; Zhilich, V; Zhulanov, V; Zupanc, A

    2016-07-01

    We report the first observation of the decay Λ_{c}^{+}→pK^{+}π^{-} using a 980  fb^{-1} data sample collected by the Belle detector at the KEKB asymmetric-energy e^{+}e^{-} collider. This is the first observation of a doubly Cabibbo-suppressed decay of a charmed baryon. We measure the branching ratio of this decay with respect to its Cabibbo-favored counterpart to be B(Λ_{c}^{+}→pK^{+}π^{-})/B(Λ_{c}^{+}→pK^{-}π^{+})=(2.35±0.27±0.21)×10^{-3}, where the uncertainties are statistical and systematic, respectively.

  15. New results on charmed D, F/sup + -/ and F* production and decay from the Mark III

    SciTech Connect

    Schindler, R.H.

    1986-09-01

    Results on charmed meson production and decay are presented from the Mark III at SPEAR. F anti F* associated production is observed allowing a direct measurement of the F* mass. A search for the decay D/sup +/ ..-->.. ..mu../sup +/nu/sub ..mu../ in the recoil of hadronically tagged D/sup + -/ decays provides a stringent limit on the pseudoscalar decay constant f/sub D/. New results on D/sup 0/ anti D/sup 0/ mixing from semileptonic D/sup 0/ decays and evidence for a nonresonant component in D/sub e4/ decays are also presented.

  16. Open Education Revisited.

    ERIC Educational Resources Information Center

    Bough, Max, Ed.

    1979-01-01

    This journal provides 12 brief articles focused on open education. Topics explored include (1) open education and reading, (2) mainstreaming, (3) characteristics of an open teacher, (4) administration of an open concept school, (5) an existential methodology in the language arts, (6) social studies in open education, (7) open education in early…

  17. Open Standards, Open Source, and Open Innovation: Harnessing the Benefits of Openness

    ERIC Educational Resources Information Center

    Committee for Economic Development, 2006

    2006-01-01

    Digitization of information and the Internet have profoundly expanded the capacity for openness. This report details the benefits of openness in three areas--open standards, open-source software, and open innovation--and examines the major issues in the debate over whether openness should be encouraged or not. The report explains each of these…

  18. Opening Address

    NASA Astrophysics Data System (ADS)

    Yamada, T.

    2014-12-01

    Ladies and Gentlemen, it is my great honor and pleasure to present an opening address of the 3rd International Workshop on "State of the Art in Nuclear Cluster Physics"(SOTANCP3). On the behalf of the organizing committee, I certainly welcome all your visits to KGU Kannai Media Center belonging to Kanto Gakuin University, and stay in Yokohama. In particular, to whom come from abroad more than 17 countries, I would appreciate your participations after long long trips from your homeland to Yokohama. The first international workshop on "State of the Art in Nuclear Cluster Physics", called SOTANCP, was held in Strasbourg, France, in 2008, and the second one was held in Brussels, Belgium, in 2010. Then the third workshop is now held in Yokohama. In this period, we had the traditional 10th cluster conference in Debrecen, Hungary, in 2012. Thus we have the traditional cluster conference and SOTANCP, one after another, every two years. This obviously shows our field of nuclear cluster physics is very active and flourishing. It is for the first time in about 10 years to hold the international workshop on nuclear cluster physics in Japan, because the last cluster conference held in Japan was in Nara in 2003, about 10 years ago. The president in Nara conference was Prof. K. Ikeda, and the chairpersons were Prof. H. Horiuchi and Prof. I. Tanihata. I think, quite a lot of persons in this room had participated at the Nara conference. Since then, about ten years passed. So, this workshop has profound significance for our Japanese colleagues. The subjects of this workshop are to discuss "the state of the art in nuclear cluster physics" and also discuss the prospect of this field. In a couple of years, we saw significant progresses of this field both in theory and in experiment, which have brought better and new understandings on the clustering aspects in stable and unstable nuclei. I think, the concept of clustering has been more important than ever. This is true also in the

  19. Strangeness and charmness content of the nucleon from overlap fermions on 2+1-flavor domain-wall fermion configurations

    NASA Astrophysics Data System (ADS)

    Gong, M.; Alexandru, A.; Chen, Y.; Doi, T.; Dong, S. J.; Draper, T.; Freeman, W.; Glatzmaier, M.; Li, A.; Liu, K. F.; Liu, Z.

    2013-07-01

    We present a calculation of the strangeness and charmness contents ⟨N|s¯s|N⟩ and ⟨N|c¯c|N⟩ of the nucleon from dynamical lattice QCD with 2+1 flavors. The calculation is performed with overlap valence quarks on 2+1-flavor domain-wall fermion gauge configurations. The configurations are generated by the RBC collaboration on a 243×64 lattice with sea-quark mass aml=0.005, ams=0.04, and inverse lattice spacing a-1=1.73GeV. Both actions have chiral symmetry which is essential in avoiding contamination due to the operator mixing with other flavors. The nucleon propagator and the quark loops are both computed with stochastic grid sources, while low-mode substitution and low-mode averaging methods are used respectively which substantially improve the signal-to-noise ratio. We obtain the strangeness matrix element fTs=ms⟨N|s¯s|N⟩/MN=0.0334(62), and the charmness content fTc=mc⟨N|c¯c|N⟩/MN=0.094(31) which is resolved from zero by 3σ precision for the first time.

  20. Multiple-neutral-meson decays of the /tau/ lepton and electromagnetic calorimeter requirements at Tau-Charm Factory

    SciTech Connect

    Gan, K.K.

    1989-08-01

    This is a study of the physics sensitivity to the multiple-neutral-meson decays of the /tau/ lepton at the Tau-Charm Factory. The sensitivity is compared for a moderate and an ultimate electromagnetic calorimeter. With the high luminosity of the Tau- Charm Factory, a very large sample of the decays /tau//sup /minus// /yields/ /pi//sup /minus//2/pi//sup 0//nu//sub /tau// and /tau//sup /minus// /yields/ /pi//sup /minus//3/pi//sup 0//nu//sub /tau// can be collected with both detectors. However, with the ultimate detector, 2/pi//sup 0/ and 3/pi//sup 0/ can be unambiguously reconstructed with very little background. For the suppressed decay /tau//sup /minus// /yields/ /pi//sup /minus///eta//pi//sup 0//nu//sub /tau//, only the ultimate detector has the sensitivity. The ultimate detector is also sensitive to the more suppressed decay /tau//sup /minus// /yields/ K/sup /minus///eta//nu//sub /tau// and the moderate detector may have the sensitivity if the hadronic background is not significantly larger than that predicted by Lund. In the case of the highly suppressed second-class-current decay /tau//sup /minus// /yields/ /pi//sup /minus///eta//nu//sub /tau//, only the ultimate detector has sensitivity. The sensitivity can be greatly enhanced with a small-angle photon veto. 16 refs., 9 figs., 2 tabs.

  1. Measurements of prompt charm production cross-sections in pp collisions at sqrt{s}=13 TeV

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Abellán Beteta, C.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Anderson, J.; Andreassi, G.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; d'Argent, P.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Bel, L. J.; Bellee, V.; Belloli, N.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bertolin, A.; Bettler, M.-O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Billoir, P.; Bird, T.; Birnkraut, A.; Bizzeti, A.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borsato, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Britsch, M.; Britton, T.; Brodzicka, J.; Brook, N. H.; Buchanan, E.; Burr, C.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Campana, P.; Campora Perez, D.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cauet, Ch.; Cavallero, G.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chefdeville, M.; Chen, S.; Cheung, S.-F.; Chiapolini, N.; Chrzaszcz, M.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collazuol, G.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dall'Occo, E.; Dalseno, J.; David, P. N. Y.; Davis, A.; De Aguiar Francisco, O.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Simone, P.; Dean, C.-T.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Déléage, N.; Demmer, M.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Di Ruscio, F.; Dijkstra, H.; Donleavy, S.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Dossett, D.; Dovbnya, A.; Dreimanis, K.; Dufour, L.; Dujany, G.; Dupertuis, F.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Färber, C.; Farley, N.; Farry, S.; Fay, R.; Ferguson, D.; Fernandez Albor, V.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fohl, K.; Fol, P.; Fontana, M.; Fontanelli, F.; Forshaw, D. C.; Forty, R.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; García Pardiñas, J.; Garra Tico, J.; Garrido, L.; Gascon, D.; Gaspar, C.; Gauld, R.; Gavardi, L.; Gazzoni, G.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianì, S.; Gibson, V.; Girard, O. G.; Giubega, L.; Gligorov, V. V.; Göbel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gotti, C.; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Grünberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadavizadeh, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Henry, L.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Humair, T.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jawahery, A.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Karodia, S.; Kecke, M.; Kelsey, M.; Kenyon, I. R.; Kenzie, M.; Ketel, T.; Khairullin, E.; Khanji, B.; Khurewathanakul, C.; Klaver, S.; Klimaszewski, K.; Kochebina, O.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Kozeiha, M.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Krzemien, W.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kuonen, A. K.; Kurek, K.; Kvaratskheliya, T.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.-P.; Lefèvre, R.; Leflat, A.; Lefrançois, J.; Lemos Cid, E.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Likhomanenko, T.; Liles, M.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, B.; Liu, X.; Loh, D.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Lucio Martinez, M.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Lusiani, A.; Machefert, F.; Maciuc, F.; Maev, O.; Maguire, K.; Malde, S.; Malinin, A.; Manca, G.; Mancinelli, G.; Manning, P.; Mapelli, A.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marino, P.; Marks, J.; Martellotti, G.; Martin, M.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurin, B.; Mazurov, A.; McCann, M.; McCarthy, J.; McNab, A.; McNulty, R.; Meadows, B.; Meier, F.; Meissner, M.; Melnychuk, D.; Merk, M.; Michielin, E.; Milanes, D. A.; Minard, M.-N.; Mitzel, D. S.; Molina Rodriguez, J.; Monroy, I. A.; Monteil, S.; Morandin, M.; Morawski, P.; Mordà, A.; Morello, M. J.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Müller, D.; Müller, J.; Müller, K.; Müller, V.; Mussini, M.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nandi, A.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen, T. D.; Nguyen-Mau, C.; Niess, V.; Niet, R.; Nikitin, N.; Nikodem, T.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Onderwater, C. J. G.; Osorio Rodrigues, B.; Otalora Goicochea, J. M.; Otto, A.; Owen, P.; Oyanguren, A.; Palano, A.; Palombo, F.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Pappenheimer, C.; Parker, W.; Parkes, C.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petruzzo, M.; Picatoste Olloqui, E.; Pietrzyk, B.; Pilař, T.; Pinci, D.; Pistone, A.; Piucci, A.; Playfer, S.; Plo Casasus, M.; Poikela, T.; Polci, F.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Price, E.; Price, J. D.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, W.; Quagliani, R.; Rachwal, B.; Rademacker, J. H.; Rama, M.; Rangel, M. S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Redi, F.; Reichert, S.; Reid, M. M.; dos Reis, A. C.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Lopez, J. A.; Rodriguez Perez, P.; Roiser, S.; Romanovsky, V.; Romero Vidal, A.; Ronayne, J. W.; Rotondo, M.; Rouvinet, J.; Ruf, T.; Ruiz Valls, P.; Saborido Silva, J. J.; Sagidova, N.; Sail, P.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santimaria, M.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schubiger, M.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Siddi, B. G.; Silva Coutinho, R.; Silva de Oliveira, L.; Simi, G.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, E.; Smith, E.; Smith, I. T.; Smith, J.; Smith, M.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; Souza, D.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Stefkova, S.; Steinkamp, O.; Stenyakin, O.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Sun, L.; Sutcliffe, W.; Swientek, K.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szumlak, T.; T'Jampens, S.; Tayduganov, A.; Tekampe, T.; Teklishyn, M.; Tellarini, G.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Todd, J.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Trabelsi, K.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagnoni, V.; Valenti, G.; Vallier, A.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vázquez Sierra, C.; Vecchi, S.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Vilasis-Cardona, X.; Volkov, V.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voß, C.; de Vries, J. A.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wandernoth, S.; Wang, J.; Ward, D. R.; Watson, N. K.; Websdale, D.; Weiden, A.; Whitehead, M.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M. P.; Williams, M.; Williams, T.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wyllie, K.; Xie, Y.; Xu, Z.; Yang, Z.; Yu, J.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhelezov, A.; Zhokhov, A.; Zhong, L.; Zucchelli, S.

    2016-03-01

    Production cross-sections of prompt charm mesons are measured with the first data from pp collisions at the LHC at a centre-of-mass energy of 13 TeV. The data sample corresponds to an integrated luminosity of 4.98 ± 0.19 pb-1 collected by the LHCb experiment. The production cross-sections of D 0, D +, D s + , and D *+ mesons are measured in bins of charm meson transverse momentum, p T, and rapidity, y, and cover the range 0 < p T < 15GeV/c and 2.0 < y < 4.5. The inclusive cross-sections for the four mesons, including charge conjugation, within the range of 1 < p T < 8 GeV/c are found to be begin{array}{l}σ left(ppto {D}^0Xright)=2460± 3± 130\\upmu b \\ {}σ left(ppto {D}+Xright)=1000± 3± 110\\upmu b \\ {}σ left(ppto {D}_s+Xright)=460± 13± 100\\upmu b \\ {}σ left(ppto {D}^{ast +}Xright)=880± 5± 140\\upmu b where the uncertainties are due to statistical and systematic uncertainties, respectively. [Figure not available: see fulltext.

  2. OPE, charm-quark mass, and decay constants of D and Ds mesons from QCD sum rules.

    PubMed

    Lucha, Wolfgang; Melikhov, Dmitri; Simula, Silvano

    2011-06-27

    We present a sum-rule extraction of the decay constants of the charmed mesons D and Ds from the two-point correlator of pseudoscalar currents. First, we compare the perturbative expansion for the correlator and the decay constant performed in terms of the pole and the running MS¯ masses of the charm quark. The perturbative expansion in terms of the pole mass shows no signs of convergence whereas reorganizing this very expansion in terms of the MS¯ mass leads to a distinct hierarchy of the perturbative expansion. Furthermore, the decay constants extracted from the pole-mass correlator turn out to be considerably smaller than those obtained by means of the MS¯-mass correlator. Second, making use of the OPE in terms of the MS¯ mass, we determine the decay constants of both D and Ds mesons with an emphasis on the uncertainties in these quantities related both to the input QCD parameters and to the limited accuracy of the method of sum rules.

  3. {epsilon}{sub K} at next-to-next-to-leading order: The charm-top-quark contribution

    SciTech Connect

    Brod, Joachim; Gorbahn, Martin

    2010-11-01

    We perform a next-to-next-to-leading order QCD analysis of the charm-top-quark contribution {eta}{sub ct} to the effective |{Delta}S|=2 Hamiltonian in the standard model. {eta}{sub ct} represents an important part of the short distance contribution to the parameter {epsilon}{sub K}. We calculate the three-loop anomalous dimension of the leading operator Q-tilde{sub S2}, the three-loop mixing of the current-current and penguin operators into Q-tilde{sub S2}, and the corresponding two-loop matching conditions at the electroweak, the bottom-quark, and the charm-quark scale. As our final numerical result we obtain {eta}{sub ct}=0.496{+-}0.047, which is roughly 7% larger than the next-to-leading-order (NLO) value {eta}{sub ct}{sup NLO}=0.457{+-}0.073. This results in a prediction for |{epsilon}{sub K}|=(1.90{+-}0.26)x10{sup -3}, which corresponds to an enhancement of approximately 3% with respect to the value obtained using {eta}{sub ct}{sup NLO}.

  4. OPE, charm-quark mass, and decay constants of D and Ds mesons from QCD sum rules

    PubMed Central

    Lucha, Wolfgang; Melikhov, Dmitri; Simula, Silvano

    2011-01-01

    We present a sum-rule extraction of the decay constants of the charmed mesons D and Ds from the two-point correlator of pseudoscalar currents. First, we compare the perturbative expansion for the correlator and the decay constant performed in terms of the pole and the running MS¯ masses of the charm quark. The perturbative expansion in terms of the pole mass shows no signs of convergence whereas reorganizing this very expansion in terms of the MS¯ mass leads to a distinct hierarchy of the perturbative expansion. Furthermore, the decay constants extracted from the pole-mass correlator turn out to be considerably smaller than those obtained by means of the MS¯-mass correlator. Second, making use of the OPE in terms of the MS¯ mass, we determine the decay constants of both D and Ds mesons with an emphasis on the uncertainties in these quantities related both to the input QCD parameters and to the limited accuracy of the method of sum rules. PMID:21949465

  5. Measurement of the forward-backward asymmetry of charm and bottom quarks at the Z pole using D *± mesons

    NASA Astrophysics Data System (ADS)

    Abreu, P.; Adam, W.; Agasi, E.; Ajinenko, I.; Aleksan, R.; Alekseev, G. D.; Allport, P. P.; Almehed, S.; Almeida, F. M. L.; Alvsvaag, S. J.; Amaldi, U.; Andreazza, A.; Andrieux, M. L.; Antilogus, P.; Apel, W.-D.; Arnoud, Y.; Åsman, B.; Augustin, J.-E.; Augustinus, A.; Baillon, P.; Bambade, P.; Barao, F.; Barate, R.; Bardin, D. Y.; Barker, G. J.; Baroncelli, A.; Barring, O.; Barrio, J. A.; Bartl, W.; Bates, M. J.; Battaglia, M.; Baubillier, M.; Baudot, J.; Becks, K.-H.; Begalli, M.; Beilliere, P.; Belokopytov, Yu.; Beltran, P.; Benvenuti, A. C.; Berggren, M.; Bertrand, D.; Bianchi, F.; Bigi, M.; Bilenky, M. S.; Billoir, P.; Bjarne, J.; Bloch, D.; Blume, M.; Blyth, S.; Bocci, V.; Bolognese, T.; Bonesini, M.; Bonivento, W.; Booth, P. S. L.; Borisov, G.; Bosio, C.; Bostjancic, B.; Bosworth, S.; Botner, O.; Bouquet, B.; Bourdarios, C.; Bowcock, T. J. V.; Bozzo, M.; Branchini, P.; Brand, K. D.; Brenner, R. A.; Briand, H.; Bricman, C.; Brillault, L.; Brown, R. C. A.; Bruckman, P.; Brunet, J.-M.; Bugge, L.; Buran, T.; Buys, A.; Caccia, M.; Calvi, M.; Camacho Rozas, A. J.; Camporesi, T.; Canale, V.; Canepa, M.; Cankocak, K.; Cao, F.; Carena, F.; Carrilho, P.; Carroll, L.; Caso, C.; Cassio, V.; Castillo Gimenez, M. V.; Cattai, A.; Cavallo, F. R.; Cerrito, L.; Chabaud, V.; Chan, A.; Charpentier, Ph.; Chaussard, L.; Chauveau, J.; Checchia, P.; Chelkov, G. A.; Chliapnikov, P.; Chochula, P.; Chorowicz, V.; Chrin, J. T. M.; Cindro, V.; Collins, P.; Contreras, J. L.; Contri, R.; Cortina, E.; Cosme, G.; Cossutti, F.; Couchot, F.; Crawley, H. B.; Crennell, D.; Crosetti, G.; Cuevas Maestro, J.; Czellar, S.; Dahl-Jensen, E.; Dahm, J.; Dalmagne, B.; Dam, M.; Damgaard, G.; Daum, A.; Dauncey, P. D.; Davenport, M.; da Silva, W.; Defoix, C.; Dellaricca, G.; Della Ricca, G.; Delpierre, P.; Demaria, N.; de Angelis, A.; de Boeck, H.; de Boer, W.; de Brabandere, S.; de Clereq, C.; de Fez Laso, M. D. M.; de La Vaissiere, C.; de Lotto, B.; de Min, A.; de Paula, A.; de Saint-Jean, C.; Dijkstra, H.; di Ciaccio, L.; Djama, F.; Dolbeau, J.; Donszelmann, M.; Doroba, K.; Dracos, M.; Drees, J.; Drees, K.-A.; Dris, M.; Dufour, Y.; Dupont, F.; Edsall, D.; Ehret, R.; Ekelof, T.; Ekspong, G.; Elsing, M.; Engel, J.-P.; Ershaidat, N.; Santo, M. Espirito; Fassouliotis, D.; Feindt, M.; Fenyuk, A.; Ferrer, A.; Filippas, T. A.; Firestone, A.; Foeth, H.; Fokitis, E.; Fontanelli, F.; Formenti, F.; Fousset, J.-L.; Franek, B.; Frenkiel, P.; Fries, D. C.; Frodesen, A. G.; Fruhwirth, R.; Fulda-Quenzer, F.; Furstenau, H.; Fuster, J.; Gamba, D.; Gandelman, M.; Garcia, C.; Garcia, J.; Gaspar, C.; Gasparini, U.; Gavillet, Ph.; Gazis, E. N.; Gele, D.; Gerber, J.-P.; Gillespie, D.; Gokieli, R.; Golob, B.; Gomez Y Cadenas, J. J.; Gopal, G.; Gorn, L.; Gorski, M.; Gracco, V.; Grard, F.; Graziani, E.; Grosdidier, G.; Gunnarsson, P.; Guy, J.; Haedinger, U.; Hahn, F.; Hahn, M.; Hahn, S.; Haider, S.; Hajduk, Z.; Hakansson, A.; Hallgren, A.; Hamacher, K.; Hao, W.; Harris, F. J.; Hedberg, V.; Henriques, R.; Hernandez, J. J.; Hernando, J. A.; Herquet, P.; Herr, H.; Hessing, T. L.; Higon, E.; Hilke, H. J.; Hill, T. S.; Holmgren, S.-O.; Holt, P. J.; Holthuizen, D.; Honore, P. F.; Houlden, M.; Hrubec, J.; Huet, K.; Hultqvist, K.; Ioannou, P.; Iversen, P.-S.; Jackson, J. N.; Jacobsson, R.; Jalocha, P.; Janik, R.; Jarlskog, G.; Jarry, P.; Jean-Marie, B.; Johansson, E. K.; Jonsson, L.; Juillot, P.; Kaiser, M.; Kalmus, G.; Kapusta, F.; Karlsson, M.; Karvelas, E.; Katargin, A.; Katsanevas, S.; Katsoufis, E. C.; Keranen, R.; Khomenko, B. A.; Khovanski, N. M.; King, B.; Kjaer, N. J.; Klein, H.; Klovning, A.; Kluit, P.; Koehne, J. H.; Koene, B.; Kokkinias, P.; Koratzinos, M.; Kostioukhine, V.; Kourkoumelis, C.; Kouznetsov, O.; Kramer, P.-H.; Krammer, M.; Kreuter, C.; Krolikowski, J.; Kronkvist, I.; Krumstein, Z.; Krupinski, W.; Kubinec, P.; Kucewicz, W.; Kulka, K.; Kurvinen, K.; Lacasta, C.; Laktineh, I.; Lambropoulos, C.; Lamsa, J. W.; Lanccri, L.; Langefeld, P.; Lapin, V.; Last, I.; Laugier, J.-P.; Lauhakangas, R.; Leder, G.; Ledroit, F.; Lefebure, V.; Lemoigne, R. Leitnernc Y.; Lemonne, J.; Lenzen, G.; Lepeltier, V.; Lesiak, T.; Levy, J. M.; Liko, D.; Lindner, R.; Lipniacka, A.; Lippi, I.; Loerstad, B.; Lokajicek, M.; Loken, J. G.; Lopez-Fernandez, A.; Lopez Aguera, M. A.; Loukas, D.; Lozano, J. J.; Lutz, P.; Lyons, L.; Maehlum, G.; Maillard, J.; Maio, A.; Maltezos, A.; Malychev, V.; Mandl, F.; Marco, J.; Marechal, B.; Margoni, M.; Marin, J.-C.; Mariotti, C.; Markou, A.; Maron, T.; Martinez-Rivero, C.; Martinez-Vidal, F.; Marti I Garcia, S.; Matorras, F.; Matteuzzi, C.; Matthiae, G.; Mazzucato, M.; Kay, M. Mc; Kay, R. Mc; Nulty, R. Mc; Medbo, J.; Meroni, C.; Meyer, W. T.; Michelotto, M.; Migliore, E.; Mikulec, I.; Mirabito, L.; Mitaroff, W. A.; Mjoernmark, U.; Moa, T.; Moeller, R.; Moenig, K.; Monge, M. R.; Morettini, P.; Mueller, H.; Murray, W. J.; Muryn, B.; Myatt, G.; Naraghi, F.; Navarria, F. L.; Navas, S.; Negri, P.; Nemecek, S.; Neumann, W.; Neumeister, N.; Nicolaidou, R.; Nielsen, B. S.; Nikolaenko, V.; Niss, P.; Nomerotski, A.; Normand, A.; Oberschulte-Beckmann, W.; Obraztsov, V.; Olshevski, A. G.; Orava, R.; Osterberg, K.; Ouraou, A.; Paganini, P.; Paganoni, M.; Pain, R.; Palka, H.; Papadopoulou, Th. D.; Pape, L.; Parodi, F.; Passeri, A.; Pegoraro, M.; Pennanen, J.; Peralta, L.; Perevozchikov, V.; Pernegger, H.; Perrotta, A.; Petridou, C.; Petrolini, A.; Phillips, H. T.; Piana, G.; Pierre, F.; Pimenta, M.; Plaszczynski, S.; Podobrin, O.; Pol, M. E.; Polok, G.; Poropat, P.; Pozdniakov, V.; Prest, M.; Privitera, P.; Pullia, A.; Radojicic, D.; Ragazzi, S.; Rahmani, H.; Rames, J.; Ratoff, P. N.; Read, A. L.; Reale, M.; Rebecchi, P.; Redaelli, N. G.; Regler, M.; Reid, D.; Renton, P. B.; Resvanis, L. K.; Richard, F.; Richardson, J.; Ridky, J.; Rinaudo, G.; Ripp, I.; Romero, A.; Roncagliolo, I.; Ronchese, P.; Ronjin, V.; Roos, L.; Rosenberg, E. I.; Rosso, E.; Roudeau, P.; Rovelli, T.; Ruckstuhl, W.; Ruhlmann-Kleider, V.; Ruiz, A.; Saarikko, H.; Sacquin, Y.; Sadovsky, A.; Sajot, G.; Salt, J.; Sanchez, J.; Sannino, M.; Schneider, H.; Schyns, M. A. E.; Sciolla, G.; Scuri, F.; Sedykh, Y.; Segar, A. M.; Seitz, A.; Sekulin, R.; Shellard, R. C.; Siccama, I.; Siegrist, P.; Simonetti, S.; Simonetto, F.; Sisakian, A. N.; Sitar, B.; Skaali, T. B.; Smadja, G.; Smirnov, N.; Smirnova, O.; Smith, G. R.; Sosnowski, R.; Souza-Santos, D.; Spassov, T.; Spiriti, E.; Squarcia, S.; Staeck, H.; Stanescu, C.; Stapnes, S.; Stavitski, I.; Stavropoulos, G.; Stepaniak, K.; Stichelbaut, F.; Stocchi, A.; Strauss, J.; Strub, R.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Tabarelli, T.; Tchikilev, O.; Theodosiou, G. E.; Thome, Z.; Tilquin, A.; Timmermans, J.; Tkatchev, L. G.; Todorov, T.; Toet, D. Z.; Tomaradze, A.; Tome, B.; Torassa, E.; Tortora, L.; Transtromer, G.; Treille, D.; Trischuk, W.; Tristram, G.; Troncon, C.; Tsirou, A.; Turleur, M.-L.; Tuuva, T.; Tyapkin, I. A.; Tyndel, M.; Tzamarias, S.; Ueberschaer, B.; Ueberschaer, S.; Ullaland, O.; Valenti, G.; Vallazza, E.; Valls Ferrer, J. A.; Vander Velde, C.; van Apeldoorn, G. W.; van Dam, P.; van Doninck, W. K.; van Eldik, J.; Vegni, G.; Ventura, L.; Venus, W.; Verbeure, F.; Verlato, M.; Vertogradov, L. S.; Vilanova, D.; Vincent, P.; Vitale, L.; Vlasov, E.; Vodopyanov, A. S.; Voutilainen, M.; Vrba, V.; Wahlen, H.; Walck, C.; Waldner, F.; Wehr, A.; Weierstall, M.; Weilhammer, P.; Wetherell, A. M.; Wicke, D.; Wickens, J. H.; Wielers, M.; Wilkinson, G. R.; Williams, W. S. C.; Winter, M.; Witek, M.; Wormser, G.; Woschnagg, K.; Yip, K.; Yushchenko, O.; Zach, F.; Zaitsev, A.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zevgolatakos, E.; Zimin, N. I.; Zito, M.; Zontar, D.; Zuberi, R.; Zucchelli, G. C.; Zumerle, G.

    1995-09-01

    The forward-backward asymmetries for the processese^ + e^ - to cbar c ande^ + e^ - to bbar b at the Z resonance are measured using identified D *± mesons. In 905,000 selected hadronic events, taken in 1991 and 1992 with the DEL-PHI detector at LEP, 4757 D *+→ D 0π+ decays are reconstructed. The c and b quark forward-backward asymmetries are determined to be: 10052_2005_Article_BF01556359_TeX2GIFE1.gif begin{gathered} A_{FB}^{cbar c} = 0.077 ± 0.029(stat) ± 0.012(sys), \\ A_{FB}^{bbar b} = 0.059 ± 0.062(stat) ± 0.024(sys). \\ Constraining the b asymmetry to the value measured by DELPHI using independent analyses, the charm asymmetry is determined to be: 10052_2005_Article_BF01556359_TeX2GIFE2.gif A_{FB}^{c,const} = 0.068 ± 0.027(stat) ± 0.011(sys). . This result corresponds to an effective electroweak mixing angle measured using charm quark events of: 10052_2005_Article_BF01556359_TeX2GIFE3.gif sin ^2 θ _{eff}^{lept} = 0.2307 ± 0.0062(stat) ± 0.0026(sys).

  6. Observed Ds(2317) and Tentative D(2100 2300) as the Charmed Cousins of the Light Scalar Nonet

    NASA Astrophysics Data System (ADS)

    van Beveren, Eef; Rupp, George

    2003-07-01

    The very recently observed D*sJ(2317)+ meson is described as a quasibound scalar cs¯ state in a unitarized meson model, owing its existence to the strong 3P0 Okubo-Zweig-Iizuka allowed coupling to the nearby S-wave DK threshold. By the same mechanism, a scalar D*0(2100 2300) resonance is predicted above the Dπ threshold. These scalars are the charmed cousins of the light scalar nonet f0(600), f0(980), K*0(800), and a0(980), reproduced by the same model. The standard cn¯ and cs¯ charmed scalars D0 and Ds0, cousins of the scalar nonet f0(1370), f0(1500), K*0(1430), and a0(1450), are predicted to lie at about 2.64 and 2.79GeV, respectively, both with a width of some 200MeV.

  7. The three-dimensional global numerical model CHARM-I: The incorporation of processes in the ionospheric D-region

    NASA Astrophysics Data System (ADS)

    Krivolutsky, A. A.; Cherepanova, L. A.; V'yushkova, T. Yu.; Repnev, A. I.

    2015-07-01

    We describe the three-dimensional numerical global photochemical model CHARM-I (CHemical Atmospheric Research Model with Ions) and the results of numerical calculations of global distributions of neutral and charged atmospheric trace gases (in the height range of up to 90 km), such as ozone, nitrogen oxides, electrons, and positive and negative ions. This model is an improved version of the CHARM three-dimensional photochemical model of neutral components with additional reactions with the involvement of ions (a total of 200 photochemical reactions). The model incorporates UV-radiation fluxes on the Lyman-α line and galactic cosmic rays as ionizing factors. The neutral components are calculated with the method of "chemical families" and the concentrations of charged components are calculated by the electroneutrality condition at each time step. The spatial transport of chemically active species is described in the model by the Prather scheme. The developed model makes it also possible to take into account solar flares and particle precipitations in the ionospheric D-region.

  8. PREFACE: XI Conference on Beauty, Charm, Hyperons in Hadronic Interactions BEACH

    NASA Astrophysics Data System (ADS)

    Bozzo, Marco

    2014-11-01

    This volume contains the invited and contributed papers presented at the 11th International Conference on Hyperons, Charm and Beauty Hadrons, currently known as the BEACH Conferences. The BEACH conferences cover a broad range of physics topics in the field of Hyperon and heavy-flavor physics. This conference continues the BEACH series, which began with a meeting in Strasbourg in 1995 and since then offers a biennial opportunity for both theorists and experimentalists from the high-energy physics community to discuss all aspects of flavour physics. The 11th Conference took place in the Lecture Theatre of the Physics West Building of the University of Birmingham (United Kingdom) from July 22nd to July 26th and was attended by 107 participants. All of the sessions were plenary sessions accommodating review talks and shorter contributions discussing both theory and recent experiments. At the end of the conference Valerie Gibson (Cavendish Laboratory, University of Cambridge, UK) and Sebastian Jaeger (School of Physics and Astronomy, University of Sussex, UK) summarized and put in context all the presentations of the conference giving two very interesting Summary talks. These Conference Proceedings are particularly interesting since, due to the long shutdown of the LHC in Geneva (CH), most of the data presented were from the entire data set available. This volume in fact offers an interesting panorama of the present situation and allows a comparison of the experimental data and the theory in a field that is always in continuous evolution. The conference was impeccably organized by the Local Organizing Committee chaired by Cristina Lazzeroni (Birmingham Univeristy, Birmingham, UK) that I want to thank particularly here. Many from the University Staff have contributed to the smooth running of the conference. We would like to thank the Local Scientific Secretariat for their invaluable help in making the conference a truly enjoyable and unforgettable event; a special thanks

  9. Study of B-Meson Decays to Final States with a Single Charm Baryon

    SciTech Connect

    Majewski, Stephanie A.

    2007-08-01

    A study of B-meson decays to final states with a single charm baryon is presented based on data recorded by the BABAR detector at the Stanford Linear Accelerator Center. Although the B meson is the lightest bottom-flavored meson, it is heavy enough to decay to a baryon made of three quarks and an antibaryon made of three antiquarks. By studying the baryonic weak decays of the B meson, we can investigate baryon production mechanisms in heavy meson decays. In particular, we measure the rates of the decays B- → Λ+c$\\bar{p}$π- and $\\bar{B}$0 → Λ+c$\\bar{p}$. Comparing these rates, we confirm an observed trend in baryonic B decays that the decay with the lower energy release, B- → Λ+c$\\bar{p}$π-, is favored over $\\bar{B}$0 → Λ+c$\\bar{p}$. The dynamics of the baryon-antibaryon (Λ+c$\\bar{p}$) system in the three-body decay also provide insight into baryon-antibaryon production mechanisms. The B- → Λ+c$\\bar{p}$π- system is a laboratory for searches for excited #c baryon states; we observe the resonant decays B- → Σc(2455) 0$\\bar{p}$ and B- → Σc(2800) 0$\\bar{p}$. This is the first observation of the decay B- → Σc(2800) 0$\\bar{p}$; however, the mass of the observed #c(2800)0 state is inconsistent with previous measurements. Finally, we examine the angular distribution of the B- → Σc(2455) 0$\\bar{p}$ decays and measure the spin of the B- → Σc(2455) 0$\\bar{p}$ baryon to be J = 1/2, as predicted by the quark model.

  10. Open Source, Openness, and Higher Education

    ERIC Educational Resources Information Center

    Wiley, David

    2006-01-01

    In this article David Wiley provides an overview of how the general expansion of open source software has affected the world of education in particular. In doing so, Wiley not only addresses the development of open source software applications for teachers and administrators, he also discusses how the fundamental philosophy of the open source…

  11. Open access, open education resources and open data in Uganda.

    PubMed

    Salvo, Ivana Di; Mwoka, Meggie; Kwaga, Teddy; Rukundo, Priscilla Aceng; Ernest, Dennis Ssesanga; Osaheni, Louis Aikoriogie; John, Kasibante; Shafik, Kasirye; de Sousa, Agostinho Moreira

    2015-01-01

    As a follow up to OpenCon 2014, International Federation of Medical Students' Associations (IFMSA) students organized a 3 day workshop Open Access, Open Education Resources and Open Data in Kampala from 15-18 December 2014. One of the aims of the workshop was to engage the Open Access movement in Uganda which encompasses the scientific community, librarians, academia, researchers and students. The IFMSA students held the workshop with the support of: Consortium for Uganda University Libraries (CUUL), The Right to Research Coalition, Electronic Information for Libraries (EIFL), Makerere University, International Health Sciences University (IHSU), Pan African Medical Journal (PAMJ) and the Centre for Health Human Rights and Development (CEHURD). All these organizations are based or have offices in Kampala. The event culminated in a meeting with the Science and Technology Committee of Parliament of Uganda in order to receive the support of the Ugandan Members of Parliament and to make a concrete change for Open Access in the country.

  12. ADHydro: A Parallel Implementation of a Large-scale High-Resolution Multi-Physics Distributed Water Resources Model Using the Charm++ Run Time System

    NASA Astrophysics Data System (ADS)

    Steinke, R. C.; Ogden, F. L.; Lai, W.; Moreno, H. A.; Pureza, L. G.

    2014-12-01

    Physics-based watershed models are useful tools for hydrologic studies, water resources management and economic analyses in the contexts of climate, land-use, and water-use changes. This poster presents a parallel implementation of a quasi 3-dimensional, physics-based, high-resolution, distributed water resources model suitable for simulating large watersheds in a massively parallel computing environment. Developing this model is one of the objectives of the NSF EPSCoR RII Track II CI-WATER project, which is joint between Wyoming and Utah EPSCoR jurisdictions. The model, which we call ADHydro, is aimed at simulating important processes in the Rocky Mountain west, including: rainfall and infiltration, snowfall and snowmelt in complex terrain, vegetation and evapotranspiration, soil heat flux and freezing, overland flow, channel flow, groundwater flow, water management and irrigation. Model forcing is provided by the Weather Research and Forecasting (WRF) model, and ADHydro is coupled with the NOAH-MP land-surface scheme for calculating fluxes between the land and atmosphere. The ADHydro implementation uses the Charm++ parallel run time system. Charm++ is based on location transparent message passing between migrateable C++ objects. Each object represents an entity in the model such as a mesh element. These objects can be migrated between processors or serialized to disk allowing the Charm++ system to automatically provide capabilities such as load balancing and checkpointing. Objects interact with each other by passing messages that the Charm++ system routes to the correct destination object regardless of its current location. This poster discusses the algorithms, communication patterns, and caching strategies used to implement ADHydro with Charm++. The ADHydro model code will be released to the hydrologic community in late 2014.

  13. Spin (1/2){sup +}, spin (3/2){sup +}, and transition magnetic moments of low lying and charmed baryons

    SciTech Connect

    Sharma, Neetika; Dahiya, Harleen; Chatley, P. K.; Gupta, Manmohan

    2010-04-01

    Magnetic moments of the low lying and charmed spin (1/2){sup +} and spin (3/2){sup +} baryons have been calculated in the SU(4) chiral constituent quark model ({chi}CQM) by including the contribution from cc fluctuations. Explicit calculations have been carried out for the contribution coming from the valence quarks, ''quark sea'' polarizations and their orbital angular momentum. The implications of such a model have also been studied for magnetic moments of the low lying spin (3/2){sup +{yields}}(1/2){sup +} and (1/2){sup +{yields}}(1/2){sup +} transitions as well as the transitions involving charmed baryons. The predictions of {chi}CQM not only give a satisfactory fit for the baryons where experimental data is available but also show improvement over the other models. In particular, for the case of {mu}(p), {mu}({Sigma}{sup +}), {mu}({Xi}{sup 0}), {mu}({Lambda}), Coleman-Glashow sum rule for the low lying spin (1/2){sup +} baryons and {mu}({Delta}{sup +}), {mu}({Omega}{sup -}) for the low lying spin (3/2){sup +} baryons, we are able to achieve an excellent agreement with data. For the spin (1/2){sup +} and spin (3/2){sup +} charmed baryon magnetic moments, our results are consistent with the predictions of the QCD sum rules, light cone sum rules and spectral sum rules. For the cases where light quarks dominate in the valence structure, the sea and orbital contributions are found to be fairly significant however, they cancel in the right direction to give the correct magnitude of the total magnetic moment. On the other hand, when there is an excess of heavy quarks, the contribution of the quark sea is almost negligible, for example, {mu}({Omega}{sub c}{sup 0}), {mu}({Lambda}{sub c}{sup +}), {mu}({Xi}{sub c}{sup +}), {mu}({Xi}{sub c}{sup 0}), {mu}({Omega}{sub cc}{sup +}), {mu}({Omega}{sup -}), {mu}({Omega}{sub c}*{sup 0}), {mu}({Omega}{sub cc}*{sup +}), and {mu}({Omega}{sub ccc}*{sup ++}). The effects of configuration mixing and quark masses have also been

  14. Observation and study of bottom-meson decays to a charm meson, a proton-antiproton pair, and pions

    SciTech Connect

    Hong, Tae Min

    2010-04-27

    Bottom-meson decays with baryons show two unusual features—the branching fractions are enhanced for multibody decays and the baryon-antibaryon subsystem recoils against the other decay products—and their reasons are not yet well understood. Moreover, measurements using explicit reconstruction techniques constitute only about 1% out of about 8% of such decays. This Dissertation reports the study of ten bottom-meson decays (labeled 0– 9) to a proton-antiproton pair, a charm meson, and a system of up to two pions, using the BABAR Experiment’s 455×106 BB pairs produced with the PEP-II asymmetric-energy e+e- collider at the Stanford Linear Accelerator Center.

  15. Dynamically generated N* and {Lambda}* resonances in the hidden charm sector around 4.3 GeV

    SciTech Connect

    Wu Jiajun; Molina, R.; Oset, E.; Zou, B. S.

    2011-07-15

    The interactions of D-bar{Sigma}{sub c}-D-bar{Lambda}{sub c}, D-bar*{Sigma}{sub c}-D-bar*{Lambda}{sub c}, and related strangeness channels, are studied within the framework of the coupled-channel unitary approach with the local hidden gauge formalism. A series of meson-baryon dynamically generated relatively narrow N* and {Lambda}* resonances are predicted around 4.3 GeV in the hidden charm sector. We make estimates of production cross sections of these predicted resonances in p-barp collisions for the experiment of antiproton annihilation at Darmstadt (PANDA) at the forthcoming GSI Facility for Antiproton and Ion Research (FAIR) facility.

  16. Exclusive decays of {chi}{sub bJ} and {eta}{sub b} into two charmed mesons

    SciTech Connect

    Azevedo, Regina S.; Mereghetti, Emanuele; Long Bingwei

    2009-10-01

    We develop a framework to study the exclusive two-body decays of bottomonium into two charmed mesons and apply it to study the decays of the C-even bottomonia. Using a sequence of effective field theories, we take advantage of the separation between the scales contributing to the decay processes, 2m{sub b}>>m{sub c}>>{lambda}{sub QCD}. We prove that, at leading order in the EFT power counting, the decay rate factorizes into the convolution of two perturbative matching coefficients and three nonperturbative matrix elements, one for each hadron. We calculate the relations between the decay rate and nonperturbative bottomonium and D-meson matrix elements at leading order, with next-to-leading log resummation. The phenomenological implications of these relations are discussed.

  17. Measurement of the doubly Cabibbo suppressed decay D0 ---> K+ pi- and a search for charm mixing

    SciTech Connect

    Link, J.M.; Yager, P.M.; Anjos, J.C.; Bediaga, I.; Gobel, C.; Machado, A.A.; Magnin, J.; Massafferri, A.; de Miranda, J.M.; Pepe, I.M.; Polycarpo, E.; dos Reis, A.C.; Carrillo, S.; Casimiro, E.; Cuautle, E.; Sanchez-Hernandez, A.; Uribe, C.; Vazquez, F.; Agostino, L.; Cinquini, L.; Cumalat, J.P. /Colorado U. /Fermilab /Frascati /Guanajuato U. /Illinois U., Urbana /Indiana U. /Korea U. /Kyungpook Natl. U. /INFN, Milan /Milan U. /North Carolina U. /Pavia U. /INFN, Pavia /Puerto Rico U., Mayaguez /South Carolina U. /Tennessee U. /Vanderbilt U. /Wisconsin U., Madison

    2004-12-01

    The authors present an analysis of the decay D{sup 0} {yields} K{sup +}{pi}{sup -} based on FOCUS data. From a sample of 234 signal events, they find a branching ratio of {Lambda}(D{sup 0} {yields} K{sup +}{pi}{sup -})/{Lambda}(D{sup 0} {yields} K{sup -}{pi}{sup +}) = (0.429{sub -0.061}{sup +0-.063} {+-} 0.027)% under the assumptions of no mixing and no CP violation. Allowing for CP violation, the find a branching ratio of (0.435{sub -0.061}{sup +0.063} {+-} 0.028)% and a CP asymmetry of 0.178{sub -0.141}{sup +0.144} {+-} 0.041. The branching ratio for the case of mixing with no CP violation is (0.381{sub -0.163}{sup +0.167} {+-} 0.092)%. They also present limits on charm mixing.

  18. Adalimumab maintains remission of Crohn's disease after up to 4 years of treatment: data from CHARM and ADHERE

    PubMed Central

    Panaccione, R; Colombel, J-F; Sandborn, W J; D'Haens, G; Zhou, Q; Pollack, P F; Thakkar, R B; Robinson, A M

    2013-01-01

    Background Therapies that maintain remission for patients with Crohn's disease are essential. Stable remission rates have been demonstrated for up to 2 years in adalimumab-treated patients with moderately to severely active Crohn's disease enrolled in the CHARM and ADHERE clinical trials. Aim To present the long-term efficacy and safety of adalimumab therapy through 4 years of treatment. Methods Remission (CDAI <150), response (CR-100) and corticosteroid-free remission over 4 years, and maintenance of these endpoints beyond 1 year were assessed in CHARM early responders randomised to adalimumab. Corticosteroid-free remission was also assessed in all adalimumab-randomised patients using corticosteroids at baseline. Fistula healing was assessed in adalimumab-randomised patients with fistula at baseline. As observed, last observation carried forward and a hybrid nonresponder imputation analysis for year 4 (hNRI) were used to report efficacy. Adverse events were reported for any patient receiving at least one dose of adalimumab. Results Of 329 early responders randomised to adalimumab induction therapy, at least 30% achieved remission (99/329) or CR-100 (116/329) at year 4 of treatment (hNRI). The majority of patients (54%) with remission at year 1 maintained this endpoint at year 4 (hNRI). At year 4, 16% of patients taking corticosteroids at baseline were in corticosteroid-free remission and 24% of patients with fistulae at baseline had healed fistulae. The incidence rates of adverse events remained stable over time. Conclusions Prolonged adalimumab therapy maintained clinical remission and response in patients with moderately to severely active Crohn's disease for up to 4 years. No increased risk of adverse events or new safety signals were identified with long-term maintenance therapy. (http://clinicaltrials.gov number: NCT00077779). PMID:24134498

  19. Open for Business

    ERIC Educational Resources Information Center

    Voyles, Bennett

    2007-01-01

    People know about the Sakai Project (open source course management system); they may even know about Kuali (open source financials). So, what is the next wave in open source software? This article discusses business intelligence (BI) systems. Though open source BI may still be only a rumor in most campus IT departments, some brave early adopters…

  20. Open Smart Energy Gateway (OpenSEG)

    SciTech Connect

    2014-09-01

    The Open Smart Energy Gateway (OpenSEG) aims to provide near-real time smart meter data to consumers without the delays or latencies associated with it being transported to the utility data center and then back to the consumer's application. To do this, the gateway queries the local Smart Meter to which it is bound to get energy consumption information at pre-defined intervals (minimum interval is 4 seconds). OpenSEG then stores the resulting data internally for retrieval by an external application.

  1. Measurement of single electrons and implications for charm production in Au+Au collisions at square root[s(NN)] = 130 GeV.

    PubMed

    Adcox, K; Adler, S S; Ajitanand, N N; Akiba, Y; Alexander, J; Aphecetche, L; Arai, Y; Aronson, S H; Averbeck, R; Awes, T C; Barish, K N; Barnes, P D; Barrette, J; Bassalleck, B; Bathe, S; Baublis, V; Bazilevsky, A; Belikov, S; Bellaiche, F G; Belyaev, S T; Bennett, M J; Berdnikov, Y; Botelho, S; Brooks, M L; Brown, D S; Bruner, N; Bucher, D; Buesching, H; Bumazhnov, V; Bunce, G; Burward-Hoy, J; Butsyk, S; Carey, T A; Chand, P; Chang, J; Chang, W C; Chavez, L L; Chernichenko, S; Chi, C Y; Chiba, J; Chiu, M; Choudhury, R K; Christ, T; Chujo, T; Chung, M S; Chung, P; Cianciolo, V; Cole, B A; D'Enterria, D G; David, G; Delagrange, H; Denisov, A; Deshpande, A; Desmond, E J; Dietzsch, O; Dinesh, B V; Drees, A; Durum, A; Dutta, D; Ebisu, K; Efremenko, Y V; El Chenawi, K; En'yo, H; Esumi, S; Ewell, L; Ferdousi, T; Fields, D E; Fokin, S L; Fraenkel, Z; Franz, A; Frawley, A D; Fung, S-Y; Garpman, S; Ghosh, T K; Glenn, A; Godoi, A L; Goto, Y; Greene, S V; Grosse Perdekamp, M; Gupta, S K; Guryn, W; Gustafsson, H-A; Hachiya, T; Haggerty, J S; Hamagaki, H; Hansen, A G; Hara, H; Hartouni, E P; Hayano, R; Hayashi, N; He, X; Hemmick, T K; Heuser, J M; Hibino, M; Hill, J C; Ho, D S; Homma, K; Hong, B; Hoover, A; Ichihara, T; Imai, K; Ippolitov, M S; Ishihara, M; Jacak, B V; Jang, W Y; Jia, J; Johnson, B M; Johnson, S C; Joo, K S; Kametani, S; Kang, J H; Kann, M; Kapoor, S S; Kelly, S; Khachaturov, B; Khanzadeev, A; Kikuchi, J; Kim, D J; Kim, H J; Kim, S Y; Kim, Y G; Kinnison, W W; Kistenev, E; Kiyomichi, A; Klein-Boesing, C; Klinksiek, S; Kochenda, L; Kochetkov, V; Koehler, D; Kohama, T; Kotchetkov, D; Kozlov, A; Kroon, P J; Kurita, K; Kweon, M J; Kwon, Y; Kyle, G S; Lacey, R; Lajoie, J G; Lauret, J; Lebedev, A; Lee, D M; Leitch, M J; Li, X H; Li, Z; Lim, D J; Liu, M X; Liu, X; Liu, Z; Maguire, C F; Mahon, J; Makdisi, Y I; Manko, V I; Mao, Y; Mark, S K; Markacs, S; Martinez, G; Marx, M D; Masaike, A; Matathias, F; Matsumoto, T; McGaughey, P L; Melnikov, E; Merschmeyer, M; Messer, F; Messer, M; Miake, Y; Miller, T E; Milov, A; Mioduszewski, S; Mischke, R E; Mishra, G C; Mitchell, J T; Mohanty, A K; Morrison, D P; Moss, J M; Mühlbacher, F; Muniruzzaman, M; Murata, J; Nagamiya, S; Nagasaka, Y; Nagle, J L; Nakada, Y; Nandi, B K; Newby, J; Nikkinen, L; Nilsson, P; Nishimura, S; Nyanin, A S; Nystrand, J; O'Brien, E; Ogilvie, C A; Ohnishi, H; Ojha, I D; Ono, M; Onuchin, V; Oskarsson, A; Osterman, L; Otterlund, I; Oyama, K; Paffrath, L; Palounek, A P T; Pantuev, V S; Papavassiliou, V; Pate, S F; Peitzmann, T; Petridis, A N; Pinkenburg, C; Pisani, R P; Pitukhin, P; Plasil, F; Pollack, M; Pope, K; Purschke, M L; Ravinovich, I; Read, K F; Reygers, K; Riabov, V; Riabov, Y; Rosati, M; Rose, A A; Ryu, S S; Saito, N; Sakaguchi, A; Sakaguchi, T; Sako, H; Sakuma, T; Samsonov, V; Sangster, T C; Santo, R; Sato, H D; Sato, S; Sawada, S; Schlei, B R; Schutz, Y; Semenov, V; Seto, R; Shea, T K; Shein, I; Shibata, T-A; Shigaki, K; Shiina, T; Shin, Y H; Sibiriak, I G; Silvermyr, D; Sim, K S; Simon-Gillo, J; Singh, C P; Singh, V; Sivertz, M; Soldatov, A; Soltz, R A; Sorensen, S; Stankus, P W; Starinsky, N; Steinberg, P; Stenlund, E; Ster, A; Stoll, S P; Sugioka, M; Sugitate, T; Sullivan, J P; Sumi, Y; Sun, Z; Suzuki, M; Takagui, E M; Taketani, A; Tamai, M; Tanaka, K H; Tanaka, Y; Taniguchi, E; Tannenbaum, M J; Thomas, J; Thomas, J H; Thomas, T L; Tian, W; Tojo, J; Torii, H; Towell, R S; Tserruya, I; Tsuruoka, H; Tsvetkov, A A; Tuli, S K; Tydesjö, H; Tyurin, N; Ushiroda, T; Van Hecke, H W; Velissaris, C; Velkovska, J; Velkovsky, M; Vinogradov, A A; Volkov, M A; Vorobyov, A; Vznuzdaev, E; Wang, H; Watanabe, Y; White, S N; Witzig, C; Wohn, F K; Woody, C L; Xie, W; Yagi, K; Yokkaichi, S; Young, G R; Yushmanov, I E; Zajc, W A; Zhang, Z; Zhou, S

    2002-05-13

    Transverse momentum spectra of electrons from Au+Au collisions at square root[s(NN)] = 130 GeV have been measured at midrapidity by the PHENIX experiment at the Relativistic Heavy Ion Collider. The spectra show an excess above the background from photon conversions and light hadron decays. The electron signal is consistent with that expected from semileptonic decays of charm. The yield of the electron signal dN(e)/dy for p(T) > 0.8 GeV/c is 0.025+/-0.004(stat)+/-0.010(syst) in central collisions, and the corresponding charm cross section is 380+/-60(stat)+/-200(syst) microb per binary nucleon-nucleon collision.

  2. First measurement of W boson production in association with a single Charm quark in pp collisions at sqrt(s)=1.96 TeV.

    PubMed

    Aaltonen, T; Adelman, J; Akimoto, T; Albrow, M G; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Bednar, P; Behari, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; De Lorenzo, G; Dell'Orso, M; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Forrester, S; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Genser, K; Gerberich, H; Gerdes, D; Giagu, S; Giakoumopolou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; Iyutin, B; James, E; Jayatilaka, B; Jeans, D; Jeon, E J; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Koay, S A; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kraus, J; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kulkarni, N P; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Linacre, J; Lindgren, M; Lipeles, E; Liss, T M; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lu, R-S; Lucchesi, D; Lueck, J; Luci, C; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Mangano, M L; Manousakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moed, S; Moggi, N; Moon, C S; Moore, R; Morello, M; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyria, A; Shalhout, S Z; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; Denis, R St; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner-Kuhr, J; Wagner, W; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zheng, Y; Zucchelli, S

    2008-03-07

    We present the first measurement of the production cross section of a W boson with a single charm quark (c) in pp collisions at sqrt(s)=1.96 TeV, using soft muon tagging of c jets. In a data sample of approximately 1.8 fb(-1), recorded with the Collider Detector at Fermilab II detector at the Fermilab Tevatron, we select events with W+1 or 2 jets. We use the charge correlation between the W and the muon from the semileptonic decay of a charm hadron to extract the Wc signal. We measure sigma Wc(PTc >20 GeV/c,|eta c|<1.5) x BR(W-->l nu)=9.8+/-3.2 pb, in agreement with theoretical expectations.

  3. The Cryogenic, High-Accuracy, Refraction Measuring System (CHARMS): A New Facility for Cryogenic Infrared through Vacuum Far-Ultraviolet Refractive Index Measurements

    NASA Technical Reports Server (NTRS)

    Frey, Bradley J.; Leviton, Douglas B.

    2004-01-01

    The optical designs of future NASA infrared (IR) missions and instruments, such as the James Webb Space Telescope's (JWST) Near-Mixed Camera (NIRCam), will rely on accurate knowledge of the index of refraction of various IR optical materials at cryogenic temperatures. To meet this need, we have developed a Cryogenic, High-Accuracy Refraction Measuring System (CHARMS). In this paper we discuss the completion of the design and construction of CHARMS as well as the engineering details that constrained the final design and hardware implementation. In addition, we will present our first light, cryogenic, IR index of refraction data for LiF, BaF2, and CaF2, and compare our results to previously published data for these materials.

  4. First Measurement of W Boson Production in Association with a Single Charm Quark in pp¯ Collisions at s=1.96TeV

    NASA Astrophysics Data System (ADS)

    Aaltonen, T.; Adelman, J.; Akimoto, T.; Albrow, M. G.; Álvarez González, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Aoki, M.; Apollinari, G.; Apresyan, A.; Arisawa, T.; Artikov, A.; Ashmanskas, W.; Attal, A.; Aurisano, A.; Azfar, F.; Azzi-Bacchetta, P.; Azzurri, P.; Bacchetta, N.; Badgett, W.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Baroiant, S.; Bartsch, V.; Bauer, G.; Beauchemin, P.-H.; Bedeschi, F.; Bednar, P.; Behari, S.; Bellettini, G.; Bellinger, J.; Belloni, A.; Benjamin, D.; Beretvas, A.; Beringer, J.; Berry, T.; Bhatti, A.; Binkley, M.; Bisello, D.; Bizjak, I.; Blair, R. E.; Blocker, C.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Boisvert, V.; Bolla, G.; Bolshov, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brau, B.; Bridgeman, A.; Brigliadori, L.; Bromberg, C.; Brubaker, E.; Budagov, J.; Budd, H. S.; Budd, S.; Burkett, K.; Busetto, G.; Bussey, P.; Buzatu, A.; Byrum, K. L.; Cabrera, S.; Campanelli, M.; Campbell, M.; Canelli, F.; Canepa, A.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Carron, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chang, S. H.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Chlebana, F.; Cho, K.; Chokheli, D.; Chou, J. P.; Choudalakis, G.; Chuang, S. H.; Chung, K.; Chung, W. H.; Chung, Y. S.; Ciobanu, C. I.; Ciocci, M. A.; Clark, A.; Clark, D.; Compostella, G.; Convery, M. E.; Conway, J.; Cooper, B.; Copic, K.; Cordelli, M.; Cortiana, G.; Crescioli, F.; Cuenca Almenar, C.; Cuevas, J.; Culbertson, R.; Cully, J. C.; Dagenhart, D.; Datta, M.; Davies, T.; de Barbaro, P.; de Cecco, S.; Deisher, A.; de Lentdecker, G.; de Lorenzo, G.; Dell'Orso, M.; Demortier, L.; Deng, J.; Deninno, M.; de Pedis, D.; Derwent, P. F.; di Giovanni, G. P.; Dionisi, C.; di Ruzza, B.; Dittmann, J. R.; D'Onofrio, M.; Donati, S.; Dong, P.; Donini, J.; Dorigo, T.; Dube, S.; Efron, J.; Erbacher, R.; Errede, D.; Errede, S.; Eusebi, R.; Fang, H. C.; Farrington, S.; Fedorko, W. T.; Feild, R. G.; Feindt, M.; Fernandez, J. P.; Ferrazza, C.; Field, R.; Flanagan, G.; Forrest, R.; Forrester, S.; Franklin, M.; Freeman, J. C.; Furic, I.; Gallinaro, M.; Galyardt, J.; Garberson, F.; Garcia, J. E.; Garfinkel, A. F.; Genser, K.; Gerberich, H.; Gerdes, D.; Giagu, S.; Giakoumopolou, V.; Giannetti, P.; Gibson, K.; Gimmell, J. L.; Ginsburg, C. M.; Giokaris, N.; Giordani, M.; Giromini, P.; Giunta, M.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldschmidt, N.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gresele, A.; Grinstein, S.; Grosso-Pilcher, C.; Group, R. C.; Grundler, U.; Guimaraes da Costa, J.; Gunay-Unalan, Z.; Haber, C.; Hahn, K.; Hahn, S. R.; Halkiadakis, E.; Hamilton, A.; Han, B.-Y.; Han, J. Y.; Handler, R.; Happacher, F.; Hara, K.; Hare, D.; Hare, M.; Harper, S.; Harr, R. F.; Harris, R. M.; Hartz, M.; Hatakeyama, K.; Hauser, J.; Hays, C.; Heck, M.; Heijboer, A.; Heinemann, B.; Heinrich, J.; Henderson, C.; Herndon, M.; Heuser, J.; Hewamanage, S.; Hidas, D.; Hill, C. S.; Hirschbuehl, D.; Hocker, A.; Hou, S.; Houlden, M.; Hsu, S.-C.; Huffman, B. T.; Hughes, R. E.; Husemann, U.; Huston, J.; Incandela, J.; Introzzi, G.; Iori, M.; Ivanov, A.; Iyutin, B.; James, E.; Jayatilaka, B.; Jeans, D.; Jeon, E. J.; Jindariani, S.; Johnson, W.; Jones, M.; Joo, K. K.; Jun, S. Y.; Jung, J. E.; Junk, T. R.; Kamon, T.; Kar, D.; Karchin, P. E.; Kato, Y.; Kephart, R.; Kerzel, U.; Khotilovich, V.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. B.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kirsch, L.; Klimenko, S.; Klute, M.; Knuteson, B.; Ko, B. R.; Koay, S. A.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Korytov, A.; Kotwal, A. V.; Kraus, J.; Kreps, M.; Kroll, J.; Krumnack, N.; Kruse, M.; Krutelyov, V.; Kubo, T.; Kuhlmann, S. E.; Kuhr, T.; Kulkarni, N. P.; Kusakabe, Y.; Kwang, S.; Laasanen, A. T.; Lai, S.; Lami, S.; Lammel, S.; Lancaster, M.; Lander, R. L.; Lannon, K.; Lath, A.; Latino, G.; Lazzizzera, I.; Lecompte, T.; Lee, J.; Lee, J.; Lee, Y. J.; Lee, S. W.; Lefèvre, R.; Leonardo, N.; Leone, S.; Levy, S.; Lewis, J. D.; Lin, C.; Lin, C. S.; Linacre, J.; Lindgren, M.; Lipeles, E.; Liss, T. M.; Lister, A.; Litvintsev, D. O.; Liu, T.; Lockyer, N. S.; Loginov, A.; Loreti, M.; Lovas, L.; Lu, R.-S.; Lucchesi, D.; Lueck, J.; Luci, C.; Lujan, P.; Lukens, P.; Lungu, G.; Lyons, L.; Lys, J.; Lysak, R.; Lytken, E.; Mack, P.; MacQueen, D.; Madrak, R.; Maeshima, K.; Makhoul, K.; Maki, T.; Maksimovic, P.; Malde, S.; Malik, S.; Manca, G.; Mangano, M. L.; Manousakis, A.; Margaroli, F.; Marino, C.; Marino, C. P.; Martin, A.; Martin, M.; Martin, V.; Martínez, M.; Martínez-Ballarín, R.; Maruyama, T.; Mastrandrea, P.; Masubuchi, T.; Mattson, M. E.; Mazzanti, P.; McFarland, K. S.; McIntyre, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Menzemer, S.; Menzione, A.; Merkel, P.; Mesropian, C.; Messina, A.; Miao, T.; Miladinovic, N.; Miles, J.; Miller, R.; Mills, C.; Milnik, M.; Mitra, A.; Mitselmakher, G.; Miyake, H.; Moed, S.; Moggi, N.; Moon, C. S.; Moore, R.; Morello, M.; Movilla Fernandez, P.; Mülmenstädt, J.; Mukherjee, A.; Muller, Th.; Mumford, R.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Nagano, A.; Naganoma, J.; Nakamura, K.; Nakano, I.; Napier, A.; Necula, V.; Neu, C.; Neubauer, M. S.; Nielsen, J.; Nodulman, L.; Norman, M.; Norniella, O.; Nurse, E.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Oldeman, R.; Orava, R.; Osterberg, K.; Pagan Griso, S.; Pagliarone, C.; Palencia, E.; Papadimitriou, V.; Papaikonomou, A.; Paramonov, A. A.; Parks, B.; Pashapour, S.; Patrick, J.; Pauletta, G.; Paulini, M.; Paus, C.; Pellett, D. E.; Penzo, A.; Phillips, T. J.; Piacentino, G.; Piedra, J.; Pinera, L.; Pitts, K.; Plager, C.; Pondrom, L.; Portell, X.; Poukhov, O.; Pounder, N.; Prakoshyn, F.; Pronko, A.; Proudfoot, J.; Ptohos, F.; Punzi, G.; Pursley, J.; Rademacker, J.; Rahaman, A.; Ramakrishnan, V.; Ranjan, N.; Redondo, I.; Reisert, B.; Rekovic, V.; Renton, P.; Rescigno, M.; Richter, S.; Rimondi, F.; Ristori, L.; Robson, A.; Rodrigo, T.; Rogers, E.; Rolli, S.; Roser, R.; Rossi, M.; Rossin, R.; Roy, P.; Ruiz, A.; Russ, J.; Rusu, V.; Saarikko, H.; Safonov, A.; Sakumoto, W. K.; Salamanna, G.; Saltó, O.; Santi, L.; Sarkar, S.; Sartori, L.; Sato, K.; Savoy-Navarro, A.; Scheidle, T.; Schlabach, P.; Schmidt, E. E.; Schmidt, M. A.; Schmidt, M. P.; Schmitt, M.; Schwarz, T.; Scodellaro, L.; Scott, A. L.; Scribano, A.; Scuri, F.; Sedov, A.; Seidel, S.; Seiya, Y.; Semenov, A.; Sexton-Kennedy, L.; Sfyria, A.; Shalhout, S. Z.; Shapiro, M. D.; Shears, T.; Shepard, P. F.; Sherman, D.; Shimojima, M.; Shochet, M.; Shon, Y.; Shreyber, I.; Sidoti, A.; Sinervo, P.; Sisakyan, A.; Slaughter, A. J.; Slaunwhite, J.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Snihur, R.; Soderberg, M.; Soha, A.; Somalwar, S.; Sorin, V.; Spalding, J.; Spinella, F.; Spreitzer, T.; Squillacioti, P.; Stanitzki, M.; Denis, R. St.; Stelzer, B.; Stelzer-Chilton, O.; Stentz, D.; Strologas, J.; Stuart, D.; Suh, J. S.; Sukhanov, A.; Sun, H.; Suslov, I.; Suzuki, T.; Taffard, A.; Takashima, R.; Takeuchi, Y.; Tanaka, R.; Tecchio, M.; Teng, P. K.; Terashi, K.; Thom, J.; Thompson, A. S.; Thompson, G. A.; Thomson, E.; Tipton, P.; Tiwari, V.; Tkaczyk, S.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Tourneur, S.; Trischuk, W.; Tu, Y.; Turini, N.; Ukegawa, F.; Uozumi, S.; Vallecorsa, S.; van Remortel, N.; Varganov, A.; Vataga, E.; Vázquez, F.; Velev, G.; Vellidis, C.; Veszpremi, V.; Vidal, M.; Vidal, R.; Vila, I.; Vilar, R.; Vine, T.; Vogel, M.; Volobouev, I.; Volpi, G.; Würthwein, F.; Wagner, P.; Wagner, R. G.; Wagner, R. L.; Wagner-Kuhr, J.; Wagner, W.; Wakisaka, T.; Wallny, R.; Wang, S. M.; Warburton, A.; Waters, D.; Weinberger, M.; Wester, W. C., III; Whitehouse, B.; Whiteson, D.; Wicklund, A. B.; Wicklund, E.; Williams, G.; Williams, H. H.; Wilson, P.; Winer, B. L.; Wittich, P.; Wolbers, S.; Wolfe, C.; Wright, T.; Wu, X.; Wynne, S. M.; Yagil, A.; Yamamoto, K.; Yamaoka, J.; Yamashita, T.; Yang, C.; Yang, U. K.; Yang, Y. C.; Yao, W. M.; Yeh, G. P.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G. B.; Yu, I.; Yu, S. S.; Yun, J. C.; Zanello, L.; Zanetti, A.; Zaw, I.; Zhang, X.; Zheng, Y.; Zucchelli, S.

    2008-03-01

    We present the first measurement of the production cross section of a W boson with a single charm quark (c) in pp¯ collisions at s=1.96TeV, using soft muon tagging of c jets. In a data sample of ˜1.8fb-1, recorded with the Collider Detector at Fermilab II detector at the Fermilab Tevatron, we select events with W+1 or 2 jets. We use the charge correlation between the W and the muon from the semileptonic decay of a charm hadron to extract the Wc signal. We measure σWc(pTc>20GeV/c,|ηc|<1.5)×BR(W→ℓν)=9.8±3.2pb, in agreement with theoretical expectations.

  5. Measurement of prompt charm meson production cross sections in pp collisions at square root s = 1.96 TeV.

    PubMed

    Acosta, D; Affolder, T; Ahn, M H; Akimoto, T; Albrow, M G; Ambrose, D; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arguin, J-F; Arisawa, T; Artikov, A; Asakawa, T; Ashmanskas, W; Attal, A; Azfar, F; Azzi-Bacchetta, P; Bacchetta, N; Bachacou, H; Badgett, W; Bailey, S; Barbaro-Galtieri, A; Barker, G; Barnes, V E; Barnett, B A; Baroiant, S; Barone, M; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bell, W H; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A; Binkley, M; Bisello, D; Bishai, M; Blair, R E; Blocker, C; Bloom, K; Blumenfeld, B; Bocci, A; Bodek, A; Bolla, G; Bolshov, A; Booth, P S L; Bortoletto, D; Boudreau, J; Bourov, S; Bromberg, C; Brozovic, M; Brubaker, E; Budagov, J; Budd, H S; Burkett, K; Busetto, G; Bussey, P; Byrum, K L; Cabrera, S; Calafiura, P; Campanelli, M; Campbell, M; Canepa, A; Carlsmith, D; Carron, S; Carosi, R; Casarsa, M; Caskey, W; Castro, A; Catastini, P; Cauz, D; Cerri, A; Cerri, C; Cerrito, L; Chapman, J; Chen, C; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chu, M L; Chung, J Y; Chung, W-H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A G; Coca, M N; Connolly, A; Convery, M E; Conway, J; Cordelli, M; Cortiana, G; Cranshaw, J; Culbertson, R; Currat, C; Cyr, D; Dagenhart, D; DaRonco, S; D'Auria, S; De Barbaro, P; De Cecco, S; Dell'Agnello, S; Dell'Orso, M; Demers, S; Demortier, L; Deninno, M; De Pedis, D; Derwent, P F; Dionisi, C; Dittmann, J R; Doksus, P; Dominguez, A; Donati, S; D'Onofrio, M; Dorigo, T; Drollinger, V; Ebina, K; Eddy, N; Ely, R; Erbacher, R; Erdmann, M; Errede, D; Errede, S; Eusebi, R; Fang, H-C; Farrington, S; Fedorko, I; Feild, R G; Feindt, M; Fernandez, J P; Ferretti, C; Field, R D; Fiori, I; Flanagan, G; Flaugher, B; Flores-Castillo, L R; Foland, A; Forrester, S; Foster, G W; Franklin, M; Frisch, H; Fujii, Y; Furic, I; Gallas, A; Gallinaro, M; Galyardt, J; Garcia-Sciveres, M; Garfinkel, A F; Gay, C; Gerberich, H; Gerchtein, E; Gerdes, D W; Giagu, S; Giannetti, P; Gibson, A; Gibson, K; Ginsburg, C; Giolo, K; Giordani, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, D; Goldstein, J; Gomez, G; Gomez-Ceballos, G; Goncharov, M; Gorelov, I; Goshaw, A T; Gotra, Y; Goulianos, K; Gresele, A; Grim, G; Grosso-Pilcher, C; Guenther, M; Guimaraes Da Costa, J; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hall, C; Handler, R; Happacher, F; Hara, K; Hare, M; Harr, R F; Harris, R M; Hartmann, F; Hatakeyama, K; Hauser, J; Hays, C; Heider, E; Heinemann, B; Heinrich, J; Hennecke, M; Herndon, M; Hill, C; Hirschbuehl, D; Hocker, A; Hoffman, K D; Holloway, A; Hou, S; Houlden, M A; Huffman, B T; Hughes, R E; Huston, J; Ikado, K; Incandela, J; Introzzi, G; Iori, M; Ishizawa, Y; Issever, C; Ivanov, A; Iwata, Y; Iyutin, B; James, E; Jang, D; Jarrell, J; Jeans, D; Jensen, H; Jones, M; Jun, S Y; Junk, T; Kamon, T; Kang, J; Karagoz Unel, M; Karchin, P E; Kartal, S; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khazins, D; Khotilovich, V; Kilminster, B; Kim, B J; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, M S; Kim, S B; Kim, S H; Kim, T H; Kim, Y K; King, B T; Kirby, M; Kirk, M; Kirsch, L; Klimenko, S; Knuteson, B; Kobayashi, H; Koehn, P; Kondo, K; Konigsberg, J; Kordas, K; Korn, A; Korytov, A; Kotelnikov, K; Kotwal, A V; Kovalev, A; Kraus, J; Kravchenko, I; Kreymer, A; Kroll, J; Kruse, M; Krutelyov, V; Kuhlmann, S E; Kuznetsova, N; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, J; Lancaster, M; Lander, R; Lannon, K; Lath, A; Latino, G; Lauhakangas, R; Lazzizzera, I; Le, Y; Lecci, C; LeCompte, T; Lee, J; Lee, J; Lee, S W; Leonardo, N; Leone, S; Lewis, J D; Li, K; Lin, C S; Lindgren, M; Liss, T M; Litvintsev, D O; Liu, T; Liu, Y; Lockyer, N S; Loginov, A; Loken, J; Loreti, M; Loverre, P; Lucchesi, D; Lukens, P; Lyons, L; Lys, J; MacQueen, D; Madrak, R; Maeshima, K; Maksimovic, P; Malferrari, L; Manca, G; Marginean, R; Martin, A; Martin, M; Martin, V; Martinez, M; Maruyama, T; Matsunaga, H; Mattson, M; Mazzanti, P; McFarland, K S; McGivern, D; McIntyre, P M; McNamara, P; McNulty, R; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Meyer, A; Miao, T; Miller, L; Miller, R; Miller, J S; Miquel, R; Miscetti, S; Mishina, M; Mitselmakher, G; Miyamoto, A; Miyazaki, Y; Moggi, N; Moore, R; Morello, M; Moulik, T; Mukherjee, A; Mulhearn, M; Muller, T; Mumford, R; Munar, A; Murat, P; Murgia, S; Nachtman, J; Nahn, S; Nakamura, I; Nakano, I; Napier, A; Napora, R; Necula, V; Niell, F; Nielsen, J; Nelson, C; Nelson, T; Neu, C; Neubauer, M S; Newman-Holmes, C; Nicollerat, A-S; Nigmanov, T; Niu, H; Nodulman, L; Oesterberg, K; Ogawa, T; Oh, S; Oh, Y D; Ohsugi, T; Oishi, R; Okusawa, T; Oldeman, R; Orava, R; Orejudos, W; Pagliarone, C; Palmonari, F; Paoletti, R; Papadimitriou, V; Partos, D; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Pauly, T; Paus, C; Pellett, D; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pitts, K T; Pompos, A; Pondrom, L; Pope, G; Poukhov, O; Prakoshyn, F; Pratt, T; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Rademacker, J; Rakitine, A; Rappoccio, S; Ratnikov, F; Ray, H; Reichold, A; Rekovic, V; Renton, P; Rescigno, M; Rimondi, F; Rinnert, K; Ristori, L; Riveline, M; Robertson, W J; Robson, A; Rodrigo, T; Rolli, S; Rosenson, L; Roser, R; Rossin, R; Rott, C; Russ, J; Ruiz, A; Ryan, D; Saarikko, H; Safonov, A; St Denis, R; Sakumoto, W K; Saltzberg, D; Sanchez, C; Sansoni, A; Santi, L; Sarkar, S; Sato, K; Savard, P; Savoy-Navarro, A; Schemitz, P; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schofield, G; Scodellaro, L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semeria, F; Sexton-Kennedy, L; Sfiligoi, I; Shapiro, M D; Shears, T; Shepard, P F; Shimojima, M; Shochet, M; Shon, Y; Sidoti, A; Siket, M; Sill, A; Sinervo, P; Sisakyan, A; Skiba, A; Slaughter, A J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Somalwar, S V; Spalding, J; Spezziga, M; Spiegel, L; Spinella, F; Spiropulu, M; Stadie, H; Stelzer, B; Stelzer-Chilton, O; Strologas, J; Stuart, D; Sukhanov, A; Sumorok, K; Sun, H; Suzuki, T; Taffard, A; Takach, S F; Takano, H; Takashima, R; Takeuchi, Y; Takikawa, K; Tamburello, P; Tanaka, M; Tanaka, R; Tannenbaum, B; Tanimoto, N; Tapprogge, S; Tecchio, M; Teng, P K; Terashi, K; Tesarek, R J; Tether, S; Thom, J; Thompson, A S; Thomson, E; Thurman-Keup, R; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tollefson, K; Tonelli, D; Tönnesmann, M; Torre, S; Torretta, D; Trischuk, W; Tseng, J; Tsuchiya, R; Tsuno, S; Tsybychev, D; Turini, N; Turner, M; Ukegawa, F; Unverhau, T; Uozumi, S; Usynin, D; Vacavant, L; Vaiciulis, T; Varganov, A; Vataga, E; Vejcik, S; Velev, G; Veramendi, G; Vickey, T; Vidal, R; Vila, I; Vilar, R; Volobouev, I; Von Der Mey, M; Wagner, R G; Wagner, R L; Wagner, W; Wallace, N; Walter, T; Wan, Z; Wang, M J; Wang, S M; Ward, B; Waschke, S; Waters, D; Watts, T; Weber, M; Wester, W; Whitehouse, B; Wicklund, A B; Wicklund, E; Wilkes, T; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolter, M; Worcester, M; Worm, S; Wright, T; Wu, X; Würthwein, F; Wyatt, A; Yagil, A; Yamashita, T; Yamamoto, K; Yang, U K; Yao, W; Yeh, G P; Yi, K; Yoh, J; Yoon, P; Yorita, K; Yoshida, T; Yu, I; Yu, S; Yu, Z; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zetti, F; Zhou, J; Zsenei, A; Zucchelli, S

    2003-12-12

    We report on measurements of differential cross sections dsigma/dp(T) for prompt charm meson production in ppmacr; collisions at sqrt[s]=1.96 TeV using 5.8+/-0.3 pb(-1) of data from the CDF II detector at the Fermilab Tevatron. The data are collected with a new trigger that is sensitive to the long lifetime of hadrons containing heavy flavor. The charm meson cross sections are measured in the central rapidity region |y|K-pi(+), D(*+)-->D0pi(+), D+-->K-pi(+)pi(+), D(+)(s)-->phipi(+), and their charge conjugates. The measured cross sections are compared to theoretical calculations.

  6. Gallbladder removal - open

    MedlinePlus

    ... the surgeon needs to switch to an open surgery if laparoscopic surgery cannot be successfully continued. Other reasons for removing the gallbladder by open surgery: Unexpected bleeding during the laparoscopic operation Obesity Pancreatitis (inflammation in the pancreas) Pregnancy ( ...

  7. Statistical Analysis of Bursty Langmuir Waves, Alfvén and Whistler Waves, and Precipitating Electrons Seen by the CHARM II Nightside Sounding Rocket

    NASA Astrophysics Data System (ADS)

    Dombrowski, M. P.; Labelle, J. W.; Kletzing, C.; Bounds, S. R.; Kaeppler, S. R.

    2013-12-01

    Bursty Langmuir waves have been interpreted as the result of the superposition of multiple Langmuir normal-mode waves, with the resultant modulation being the beat pattern between waves with e.g. 10 kHz frequency differences. The normal-mode waves could be generated either through wave-wave interactions with VLF waves, or through independent linear processes. The CHARM II sounding rocket was launched into a substorm at 9:49 UT on 15 February 2010, from the Poker Flat Research Range in Alaska. The primary instruments included the Dartmouth High-Frequency Experiment (HFE), a receiver system which effectively yields continuous (100% duty cycle) E-field waveform measurements up to 5 MHz, as well as a number of charged particle detectors, including a wave-particle correlator. The payload also included a magnetometer and several low-frequency wave instruments. CHARM II encountered several regions of strong Langmuir wave activity throughout its 15-minute flight, including several hundred discrete Langmuir-wave bursts. We show results of a statistical analysis of CHARM II data for the entire flight, comparing HFE data with the other payload instruments, specifically looking at timings and correlations between bursty Langmuir waves, Alfvén and whistler-mode waves, and electrons precipitating parallel to the magnetic field. Following a similar analysis on TRICE dayside sounding rocket data, we also calculate the fraction of correlated waves with VLF waves at appropriate frequencies to support the wave-wave interaction bursty Langmuir wave generation mechanism, and compare to results from CHARM II nightside data.

  8. Limit on the yield of single direct muons and the cross section for charmed-particle production in proton-nucleus interactions at 70 GeV

    SciTech Connect

    Bugorskii, A.P.; Volkov, A.A.; Kochetkov, V.I.; Kurbakov, V.I.; Mukhin, A.I.; Sviridov, Y.M.

    1984-09-01

    We compare the yields of direct muons in pFe interactions at 70 GeV with the expected contribution of muons from muon-pair production. We show that the contribution of these processes is (82 +- 4 +- 12)% on the average in the region 0.09< or approx. =x/sub F/< or approx. =0.6. Model-dependent restrictions on the cross section for production of charmed particles are obtained.

  9. Open Access Alternatives

    ERIC Educational Resources Information Center

    Tenopir, Carol

    2004-01-01

    Open access publishing is a hot topic today. But open access publishing can have many different definitions, and pros and cons vary with the definitions. Open access publishing is especially attractive to companies and small colleges or universities that are likely to have many more readers than authors. A downside is that a membership fee sounds…

  10. Openness as infrastructure

    PubMed Central

    2011-01-01

    The advent of open access to peer reviewed scholarly literature in the biomedical sciences creates the opening to examine scholarship in general, and chemistry in particular, to see where and how novel forms of network technology can accelerate the scientific method. This paper examines broad trends in information access and openness with an eye towards their applications in chemistry. PMID:21999327

  11. In Brief: Open government

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2010-03-01

    U.S. President Barack Obama's Memorandum on Transparency and Open Government requires federal agencies to take steps toward increased transparency, public participation, and collaboration. Agencies are accepting suggestions until 19 March 2010. For more information, visit http://www.whitehouse.gov/open and http://www.usa.gov/webcontent/open/tool_poc.shtml.

  12. Open Rotor Development

    NASA Technical Reports Server (NTRS)

    Van Zante, Dale E.; Rizzi, Stephen A.

    2016-01-01

    The ERA project executed a comprehensive test program for Open Rotor aerodynamic and acoustic performance. System studies used the data to estimate the fuel burn savings and acoustic margin for an aircraft system with open rotor propulsion. The acoustic measurements were used to produce an auralization that compares the legacy blades to the current generation of open rotor designs.

  13. First analysis of 10-year trends in national factor concentrates usage in haemophilia: data from CHARMS, the Canadian Hemophilia Assessment and Resource Management System.

    PubMed

    Traore, A N; Chan, A K C; Webert, K E; Heddle, N; Ritchie, B; St-Louis, J; Teitel, J; Lillicrap, D; Iorio, A; Walker, I

    2014-07-01

    The Canadian Hemophilia Assessment and Resource Management System (CHARMS) tracks factor concentrates (FC) from the sole suppliers, Canadian Blood Services (CBS) and Hema-Quebec (HQ), to hospitals and to patients' homes. Patients FC infusion data are entered into CHARMS at Canadian Hemophilia Treatment Centres (HTCs) then exported to the national database (CentrePoint). From 2000 to 2009, 2260 registered haemophilia A or B patients received FVIII (1,009,097,765 IU) and FIX (272,406,859 IU). Over 91% of FVIII and over 84% of FIX was infused at home. Utilization of FVIII progressively increased; this was accounted for by an increase in the number of patients treated (r = 0.97; P < 0.001), there being a linear relationship between the increase in utilization and the increase in number of patients treated (P < 0.001). There was also a correlation with the annual amount used per patient (r = 0.95; P < 0.001). Utilization of FIX did not increase over time. The highest proportional utilization of both FVIII and FIX was for prophylaxis, and this proportion progressively increased being, in year 10 (2009), 77% and 66% for FVIII and FIX respectively. The proportion used for bleeding remained steady; in year 10 that proportion was 14% for FVIII and 26% for FIX, the use per patient for bleeding decreasing. The HTC-based CHARMS tracking system is essential, in Canada, for analysing indications for infusion, for predicting utilization and planning for future needs.

  14. Charm decay in slow-jet supernovae as the origin of the IceCube ultra-high energy neutrino events

    SciTech Connect

    Bhattacharya, Atri; Sarcevic, Ina; Enberg, Rikard; Reno, Mary Hall E-mail: rikard.enberg@physics.uu.se E-mail: ina@physics.arizona.edu

    2015-06-01

    We investigate whether the recent ultra-high energy neutrino events detected at the IceCube neutrino observatory could come from the decay of charmed mesons produced within the mildly relativistic jets of supernova-like astrophysical sources. We demonstrate that the allowed region in the astrophysical and QCD parameter spaces permit an explanation of the 5.7σ excess of neutrinos observed by IceCube in the energy range 30 TeV–2 PeV as a diffuse flux of neutrinos produced in such slow-jet supernovae. We discuss the theoretical uncertainties inherent in the evaluation of charm production in high energy hadronic collisions, as well as some of the astrophysical uncertainties associated with slow-jet supernova sources. These sources result in a diffuse neutrino spectrum that exhibits a sharp drop at energies above a few PeV. We incorporate the effect of energy dependence in the spectrum-weighted charm production and decay cross sections and show that this has a very significant effect on the shape, magnitude and cutoff energies for the diffuse neutrino flux.

  15. A Measurement of the Pseudoscalar DecayConstant fDs using Charm-Tagged Events in e+e- Collisions at the Y(4S)

    SciTech Connect

    Stelzer, Jorg; /Stanford U., Phys. Dept. /SLAC

    2006-10-10

    The decay constant f{sub D{sub s}} of the pseudoscalar strange charm meson D{sub s}{sup +} is an important benchmark test of the theoretical methods that quantitatively describe the nonperturbative low-energy regime of QCD, the theory of the strong interaction. A confirmation of the validity of these predictive methods, foremost lattice QCD, in the sector of heavy-light meson decay constants increases trust in the calculation of f{sub B}, which is an important number for the measurement of the CKM matrix element V{sub td} in B{sup 0}{bar B}{sup 0}-mixing events. From October 1999 through July 2004, the BABAR experiment, located at the PEP-II storage ring at the Stanford Linear Accelerator Center, collected 230.2 fb{sup -1} of data in e{sup +}e{sup -} collision at {radical}s = 10.58 GeV. In this thesis, these data are searched for e{sup +}e{sup -} {yields} c{bar c} events by identifying sets of charged and neutral pions and charged kaons, consistent with the decay of a charm meson, D{sup 0}, D{sup +}, D{sub s}{sup +}, or D*{sup +}. A sample of 510,000 charmed mesons with a momentum consistent with e{sup +}e{sup -} {yields} c{bar c} events is identified.

  16. New Results from Frequency and Energy Reference Measurements during the first Test Flight with the Airborne Integrated Path Differential Absorption Lidar System CHARM-F

    NASA Astrophysics Data System (ADS)

    Ehret, G.; Fix, A.; Amediek, A.; Quatrevalet, M.

    2015-12-01

    The Integrated Path Differential Absorption Lidar (IPDA) technique is regarded as a suitable means for the measurement of methane and carbon dioxide columns from satellite or aircraft platforms with unprecedented accuracy. Currently, the German-French methane mission MERLIN (Methan Remote Lidar Mission) is prepared. At the same time CHARM-F, an aircraft installed system has been developed at DLR as an airborne demonstrator for a spaceborne greenhouse gas mission. Both use e.g. optical parametric oscillators (OPOs) in a double-pulse mode as the transmitter. Of particular importance for both instruments are the sub-modules required for the frequency stabilization of the transmitter wavelength and, since the IPDA technique, in contrast to DIAL, requires the exact knowledge of the energy ratio of outgoing on-line. The coherence of the lidar transmitter gives rise to speckle effects which have to be considered for the monitoring of the energy ratio of outgoing on- and off-line pulses. For the frequency reference of CHARM-F, a very successful stabilization scheme has been developed which will also serve as the reference for MERLIN. In Spring 2015, CHARM-F was flown aboard the German HALO aircraft for the first time which enables a detailed view on the performance of both the energy calibration and frequency reference subsystems under real flight conditions. As an initial quality check we will compared the airborne results to previous lab measurements which have been performed under stable environmental conditions.

  17. Sexual counselling for patients with cardiovascular disease: protocol for a pilot study of the CHARMS sexual counselling intervention

    PubMed Central

    Mc Sharry, Jenny; Casey, Dympna; Doherty, Sally; Gillespie, Paddy; Jaarsma, Tiny; Murphy, Andrew W; Newell, John; O'Donnell, Martin; Steinke, Elaine E; Toomey, Elaine; Byrne, Molly

    2016-01-01

    Introduction Sexual problems are common with cardiovascular disease, and can negatively impact quality of life. To address sexual problems, guidelines have identified the importance of sexual counselling during cardiac rehabilitation, yet this is rarely provided. The Cardiac Health and Relationship Management and Sexuality (CHARMS) intervention aims to improve the provision of sexual counselling in cardiac rehabilitation in Ireland. Methods and analysis This is a multicentre pilot study for the CHARMS intervention, a complex, multilevel intervention delivered within hospital-based cardiac rehabilitation programmes. The intervention includes (1) training in sexual counselling for staff, (2) a staff-led patient education and support intervention embedded within the cardiac rehabilitation programme, (3) a patient information booklet and (4) an awareness raising poster. The intervention will be delivered in two randomly selected cardiac rehabilitation centres. In each centre 30 patients will be recruited, and partners will also be invited to participate. Data will be collected from staff and patients/partners at T1 (study entry), T2 (3-month follow-up) and T3 (6-month follow-up). The primary outcome for patients/partners will be scores on the Sexual Self-Perception and Adjustment Questionnaire. Secondary outcomes for patients/partners will include relationship satisfaction; satisfaction with and barriers to sexual counselling in services; sexual activity, functioning and knowledge; physical and psychological well-being. Secondary outcomes for staff will include sexuality-related practice; barriers to sexual counselling; self-ratings of capability, opportunity and motivation; sexual attitudes and beliefs; knowledge of cardiovascular disease and sex. Fidelity of intervention delivery will be assessed using trainer self-reports, researcher-coded audio recordings and exit interviews. Longitudinal feasibility data will be gathered from patients/partners and staff via

  18. Openness, Web 2.0 Technology, and Open Science

    ERIC Educational Resources Information Center

    Peters, Michael A.

    2010-01-01

    Open science is a term that is being used in the literature to designate a form of science based on open source models or that utilizes principles of open access, open archiving and open publishing to promote scientific communication. Open science increasingly also refers to open governance and more democratized engagement and control of science…

  19. Open Babel: An open chemical toolbox

    PubMed Central

    2011-01-01

    Background A frequent problem in computational modeling is the interconversion of chemical structures between different formats. While standard interchange formats exist (for example, Chemical Markup Language) and de facto standards have arisen (for example, SMILES format), the need to interconvert formats is a continuing problem due to the multitude of different application areas for chemistry data, differences in the data stored by different formats (0D versus 3D, for example), and competition between software along with a lack of vendor-neutral formats. Results We discuss, for the first time, Open Babel, an open-source chemical toolbox that speaks the many languages of chemical data. Open Babel version 2.3 interconverts over 110 formats. The need to represent such a wide variety of chemical and molecular data requires a library that implements a wide range of cheminformatics algorithms, from partial charge assignment and aromaticity detection, to bond order perception and canonicalization. We detail the implementation of Open Babel, describe key advances in the 2.3 release, and outline a variety of uses both in terms of software products and scientific research, including applications far beyond simple format interconversion. Conclusions Open Babel presents a solution to the proliferation of multiple chemical file formats. In addition, it provides a variety of useful utilities from conformer searching and 2D depiction, to filtering, batch conversion, and substructure and similarity searching. For developers, it can be used as a programming library to handle chemical data in areas such as organic chemistry, drug design, materials science, and computational chemistry. It is freely available under an open-source license from http://openbabel.org. PMID:21982300

  20. Evaluation of the Charm maximum residue limit β-lactam and tetracycline test for the detection of antibiotics in ewe and goat milk.

    PubMed

    Beltrán, M C; Romero, T; Althaus, R L; Molina, M P

    2013-05-01

    The Charm maximum residue limit β-lactam and tetracycline test (Charm MRL BLTET; Charm Sciences Inc., Lawrence, MA) is an immunoreceptor assay utilizing Rapid One-Step Assay lateral flow technology that detects β-lactam or tetracycline drugs in raw commingled cow milk at or below European Union maximum residue levels (EU-MRL). The Charm MRL BLTET test procedure was recently modified (dilution in buffer and longer incubation) by the manufacturers to be used with raw ewe and goat milk. To assess the Charm MRL BLTET test for the detection of β-lactams and tetracyclines in milk of small ruminants, an evaluation study was performed at Instituto de Ciencia y Tecnologia Animal of Universitat Politècnica de València (Spain). The test specificity and detection capability (CCβ) were studied following Commission Decision 2002/657/EC. Specificity results obtained in this study were optimal for individual milk free of antimicrobials from ewes (99.2% for β-lactams and 100% for tetracyclines) and goats (97.9% for β-lactams and 100% for tetracyclines) along the entire lactation period regardless of whether the results were visually or instrumentally interpreted. Moreover, no positive results were obtained when a relatively high concentration of different substances belonging to antimicrobial families other than β-lactams and tetracyclines were present in ewe and goat milk. For both types of milk, the CCβ calculated was lower or equal to EU-MRL for amoxicillin (4 µg/kg), ampicillin (4 µg/kg), benzylpenicillin (≤ 2 µg/kg), dicloxacillin (30 µg/kg), oxacillin (30 µg/kg), cefacetrile (≤ 63 µg/kg), cefalonium (≤ 10 µg/kg), cefapirin (≤ 30 µg/kg), desacetylcefapirin (≤ 30 µg/kg), cefazolin (≤ 25 µg/kg), cefoperazone (≤ 25 µg/kg), cefquinome (20 µg/kg), ceftiofur (≤ 50 µg/kg), desfuroylceftiofur (≤ 50µg/kg), and cephalexin (≤ 50 µg/kg). However, this test could neither detect cloxacillin nor nafcillin at or below EU-MRL (CCβ >30 µg/kg). The

  1. Measurements of charm mixing and C P violation using D0→K±π∓ decays

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Andreassi, G.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Archilli, F.; d'Argent, P.; Arnau Romeu, J.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Babuschkin, I.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baker, S.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Baszczyk, M.; Batozskaya, V.; Batsukh, B.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Bel, L. J.; Bellee, V.; Belloli, N.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bertolin, A.; Betti, F.; Bettler, M.-O.; van Beuzekom, M.; Bezshyiko, Ia.; Bifani, S.; Billoir, P.; Bird, T.; Birnkraut, A.; Bitadze, A.; Bizzeti, A.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Boettcher, T.; Bondar, A.; Bondar, N.; Bonivento, W.; Borgheresi, A.; Borghi, S.; Borisyak, M.; Borsato, M.; Bossu, F.; Boubdir, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Britsch, M.; Britton, T.; Brodzicka, J.; Buchanan, E.; Burr, C.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Camboni, A.; Campana, P.; Campora Perez, D.; Campora Perez, D. H.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cauet, Ch.; Cavallero, G.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chatzikonstantinidis, G.; Chefdeville, M.; Chen, S.; Cheung, S.-F.; Chobanova, V.; Chrzaszcz, M.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collazuol, G.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombs, G.; Coquereau, S.; Corti, G.; Corvo, M.; Costa Sobral, C. M.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Da Cunha Marinho, F.; Dall'Occo, E.; Dalseno, J.; David, P. N. Y.; Davis, A.; De Aguiar Francisco, O.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Serio, M.; De Simone, P.; Dean, C.-T.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Demmer, M.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Dijkstra, H.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Dovbnya, A.; Dreimanis, K.; Dufour, L.; Dujany, G.; Dungs, K.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Déléage, N.; Easo, S.; Ebert, M.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Farley, N.; Farry, S.; Fay, R.; Fazzini, D.; Ferguson, D.; Fernandez Albor, V.; Fernandez Prieto, A.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fini, R. A.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fleuret, F.; Fohl, K.; Fontana, M.; Fontanelli, F.; Forshaw, D. C.; Forty, R.; Franco Lima, V.; Frank, M.; Frei, C.; Fu, J.; Furfaro, E.; Färber, C.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; Garcia Martin, L. M.; García Pardiñas, J.; Garra Tico, J.; Garrido, L.; Garsed, P. J.; Gascon, D.; Gaspar, C.; Gavardi, L.; Gazzoni, G.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianı, S.; Gibson, V.; Girard, O. G.; Giubega, L.; Gizdov, K.; Gligorov, V. V.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gorelov, I. V.; Gotti, C.; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Griffith, P.; Grillo, L.; Gruberg Cazon, B. R.; Grünberg, O.; Gushchin, E.; Guz, Yu.; Gys, T.; Göbel, C.; Hadavizadeh, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; Hatch, M.; He, J.; Head, T.; Heister, A.; Hennessy, K.; Henrard, P.; Henry, L.; Hernando Morata, J. A.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hombach, C.; Hopchev, H.; Hulsbergen, W.; Humair, T.; Hushchyn, M.; Hussain, N.; Hutchcroft, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jawahery, A.; Jiang, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Kanso, W.; Karacson, M.; Kariuki, J. M.; Karodia, S.; Kecke, M.; Kelsey, M.; Kenyon, I. R.; Kenzie, M.; Ketel, T.; Khairullin, E.; Khanji, B.; Khurewathanakul, C.; Kirn, T.; Klaver, S.; Klimaszewski, K.; Koliiev, S.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Kosmyntseva, A.; Kozachuk, A.; Kozeiha, M.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krokovny, P.; Kruse, F.; Krzemien, W.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kuonen, A. K.; Kurek, K.; Kvaratskheliya, T.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lanfranchi, G.; Langenbruch, C.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.-P.; Leflat, A.; Lefrançois, J.; Lefèvre, R.; Lemaitre, F.; Lemos Cid, E.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Likhomanenko, T.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, B.; Liu, X.; Loh, D.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Lucio Martinez, M.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Lusiani, A.; Lyu, X.; Machefert, F.; Maciuc, F.; Maev, O.; Maguire, K.; Malde, S.; Malinin, A.; Maltsev, T.; Manca, G.; Mancinelli, G.; Manning, P.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marino, P.; Marks, J.; Martellotti, G.; Martin, M.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massacrier, L. M.; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurin, B.; Mazurov, A.; McCann, M.; McCarthy, J.; McNab, A.; McNulty, R.; Meadows, B.; Meier, F.; Meissner, M.; Melnychuk, D.; Merk, M.; Merli, A.; Michielin, E.; Milanes, D. A.; Minard, M.-N.; Mitzel, D. S.; Mogini, A.; Molina Rodriguez, J.; Monroy, I. A.; Monteil, S.; Morandin, M.; Morawski, P.; Mordà, A.; Morello, M. J.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Mulder, M.; Mussini, M.; Müller, D.; Müller, J.; Müller, K.; Müller, V.; Naik, P.; Nakada, T.; Nandakumar, R.; Nandi, A.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen-Mau, C.; Nieswand, S.; Niet, R.; Nikitin, N.; Nikodem, T.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Oldeman, R.; Onderwater, C. J. G.; Otalora Goicochea, J. M.; Otto, A.; Owen, P.; Oyanguren, A.; Pais, P. R.; Palano, A.; Palombo, F.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Parker, W.; Parkes, C.; Passaleva, G.; Pastore, A.; Patel, G. D.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petrov, A.; Petruzzo, M.; Picatoste Olloqui, E.; Pietrzyk, B.; Pikies, M.; Pinci, D.; Pistone, A.; Piucci, A.; Playfer, S.; Plo Casasus, M.; Poikela, T.; Polci, F.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Pomery, G. J.; Popov, A.; Popov, D.; Popovici, B.; Poslavskii, S.; Potterat, C.; Price, E.; Price, J. D.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, W.; Quagliani, R.; Rachwal, B.; Rademacker, J. H.; Rama, M.; Ramos Pernas, M.; Rangel, M. S.; Raniuk, I.; Raven, G.; Redi, F.; Reichert, S.; dos Reis, A. C.; Remon Alepuz, C.; Renaudin, V.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Lopez, J. A.; Rodriguez Perez, P.; Rogozhnikov, A.; Roiser, S.; Rollings, A.; Romanovskiy, V.; Romero Vidal, A.; Ronayne, J. W.; Rotondo, M.; Rudolph, M. S.; Ruf, T.; Ruiz Valls, P.; Saborido Silva, J. J.; Sadykhov, E.; Sagidova, N.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santimaria, M.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schael, S.; Schellenberg, M.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schubert, K.; Schubiger, M.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sergi, A.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Siddi, B. G.; Silva Coutinho, R.; Silva de Oliveira, L.; Simi, G.; Simone, S.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, E.; Smith, I. T.; Smith, J.; Smith, M.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Stefko, P.; Stefkova, S.; Steinkamp, O.; Stemmle, S.; Stenyakin, O.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Sun, L.; Sutcliffe, W.; Swientek, K.; Syropoulos, V.; Szczekowski, M.; Szumlak, T.; T'Jampens, S.; Tayduganov, A.; Tekampe, T.; Teklishyn, M.; Tellarini, G.; Teubert, F.; Thomas, E.; van Tilburg, J.; Tilley, M. J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Toriello, F.; Tournefier, E.; Tourneur, S.; Trabelsi, K.; Traill, M.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tully, A.; Tuning, N.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagnoni, V.; Valassi, A.; Valat, S.; Valenti, G.; Vallier, A.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vecchi, S.; van Veghel, M.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Venkateswaran, A.; Vernet, M.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Vilasis-Cardona, X.; Volkov, V.; Vollhardt, A.; Voneki, B.; Vorobyev, A.; Vorobyev, V.; Voß, C.; de Vries, J. A.; Vázquez Sierra, C.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wang, J.; Ward, D. R.; Wark, H. M.; Watson, N. K.; Websdale, D.; Weiden, A.; Whitehead, M.; Wicht, J.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M. P.; Williams, M.; Williams, T.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wraight, K.; Wright, S.; Wyllie, K.; Xie, Y.; Xing, Z.; Xu, Z.; Yang, Z.; Yin, H.; Yu, J.; Yuan, X.; Yushchenko, O.; Zarebski, K. A.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhang, Y.; Zhelezov, A.; Zheng, Y.; Zhokhov, A.; Zhu, X.; Zhukov, V.; Zucchelli, S.; LHCb Collaboration

    2017-03-01

    Measurements of charm mixing and C P violation parameters from the decay-time-dependent ratio of D0→K+π- to D0→K-π+ decay rates and the charge-conjugate ratio are reported. The analysis uses B ¯ →D*+μ-X , and charge-conjugate decays, where D*+→D0π+ , and D0→K∓π± . The p p collision data are recorded by the LHCb experiment at center-of-mass energies √{s }=7 and 8 TeV, corresponding to an integrated luminosity of 3 fb-1 . The data are analyzed under three hypotheses: (i) mixing assuming C P symmetry, (ii) mixing assuming no direct C P violation in the Cabibbo-favored or doubly Cabibbo-suppressed decay amplitudes, and (iii) mixing allowing either direct C P violation and/or C P violation in the superpositions of flavor eigenstates defining the mass eigenstates. The data are also combined with those from a previous LHCb study of D0→K π decays from a disjoint set of D*+ candidates produced directly in p p collisions. In all cases, the data are consistent with the hypothesis of C P symmetry.

  2. VizieR Online Data Catalog: SDSS-DR8 galaxies classified by WND-CHARM (Kuminski+, 2016)

    NASA Astrophysics Data System (ADS)

    Kuminski, E.; Shamir, L.

    2016-06-01

    The image analysis method used to classify the images is WND-CHARM (wndchrm; Shamir et al. 2008, BMC Source Code for Biology and Medicine, 3: 13; 2010PLSCB...6E0974S; 2013ascl.soft12002S), which first computes 2885 numerical descriptors from each SDSS image such as textures, edges, shapes), the statistical distribution of the pixel intensities, the polynomial decomposition of the image, and fractal features. These features are extracted from the raw pixels, as well as the image transforms and multi-order image transforms. See section 2 for further explanations. In a similar way than the catalog we also compiled a catalog of all objects with spectra in DR8. For each object, that catalog contains the spec ObjID, the R.A., the decl., the z, z error, the certainty of classification as elliptical, the certainty of classification as spiral, and the certainty of classification as a star. See section 3.1 for further explanations. (2 data files).

  3. Observation of D0→ρ0γ and Search for C P Violation in Radiative Charm Decays

    NASA Astrophysics Data System (ADS)

    Nanut, T.; Zupanc, A.; Adachi, I.; Aihara, H.; Al Said, S.; Asner, D. M.; Aulchenko, V.; Aushev, T.; Ayad, R.; Babu, V.; Badhrees, I.; Bakich, A. M.; Bansal, V.; Behera, P.; Bhardwaj, V.; Biswal, J.; Bondar, A.; Bozek, A.; Bračko, M.; Browder, T. E.; Červenkov, D.; Chekelian, V.; Chen, A.; Cheon, B. G.; Chistov, R.; Cho, K.; Choi, S.-K.; Choi, Y.; Cinabro, D.; Dash, N.; Di Carlo, S.; Doležal, Z.; Dutta, D.; Eidelman, S.; Farhat, H.; Fast, J. E.; Ferber, T.; Fulsom, B. G.; Gaur, V.; Gabyshev, N.; Garmash, A.; Gillard, R.; Goldenzweig, P.; Golob, B.; Hayasaka, K.; Hayashii, H.; Hou, W.-S.; Iijima, T.; Inami, K.; Inguglia, G.; Ishikawa, A.; Iwasaki, Y.; Jacobs, W. W.; Jaegle, I.; Joffe, D.; Joo, K. K.; Julius, T.; Kaliyar, A. B.; Kang, K. H.; Kawasaki, T.; Kim, D. Y.; Kim, J. B.; Kim, K. T.; Kim, M. J.; Kim, S. H.; Kinoshita, K.; Kodyš, P.; Korpar, S.; Krokovny, P.; Kuhr, T.; Kulasiri, R.; Kuzmin, A.; Kwon, Y.-J.; Lange, J. S.; Lee, I. S.; Li, C. H.; Li, L.; Li, Y.; Li Gioi, L.; Libby, J.; Liventsev, D.; Lubej, M.; Masuda, M.; Matsuda, T.; Matvienko, D.; Miyabayashi, K.; Miyata, H.; Mizuk, R.; Mohanty, G. B.; Moon, H. K.; Nakao, M.; Nath, K. J.; Nayak, M.; Nisar, N. K.; Nishida, S.; Ogawa, S.; Okuno, S.; Pakhlov, P.; Pakhlova, G.; Pal, B.; Park, C.-S.; Park, C. W.; Park, H.; Paul, S.; Pedlar, T. K.; Pesántez, L.; Pestotnik, R.; Petrič, M.; Piilonen, L. E.; Prasanth, K.; Pulvermacher, C.; Rauch, J.; Ritter, M.; Rostomyan, A.; Sakai, Y.; Sandilya, S.; Santelj, L.; Sanuki, T.; Sato, Y.; Savinov, V.; Schlüter, T.; Schneider, O.; Schnell, G.; Schwanda, C.; Schwartz, A. J.; Seino, Y.; Senyo, K.; Seon, O.; Sevior, M. E.; Shebalin, V.; Shen, C. P.; Shibata, T.-A.; Shiu, J.-G.; Shwartz, B.; Solovieva, E.; Stanič, S.; Starič, M.; Strube, J. F.; Stypula, J.; Sumiyoshi, T.; Takizawa, M.; Tamponi, U.; Tenchini, F.; Trabelsi, K.; Uchida, M.; Uno, S.; Ushiroda, Y.; Varner, G.; Vinokurova, A.; Vorobyev, V.; Vossen, A.; Wang, C. H.; Wang, M.-Z.; Wang, P.; Watanabe, Y.; Widmann, E.; Won, E.; Yamaoka, J.; Yamashita, Y.; Yelton, J.; Zhang, Z. P.; Zhilich, V.; Zhukova, V.; Zhulanov, V.; Belle Collaboration

    2017-02-01

    We report the first observation of the radiative charm decay D0→ρ0γ and the first search for C P violation in decays D0→ρ0γ , ϕ γ , and K¯ *0 (892 )γ , using a data sample of 943 fb-1 collected with the Belle detector at the KEKB asymmetric-energy e+e- collider. The branching fraction is measured to be B (D0→ρ0γ ) =(1.77 ±0.30 ±0.07 )×10-5 , where the first uncertainty is statistical and the second is systematic. The obtained C P asymmetries AC P(D0→ρ0γ ) =+0.056 ±0.152 ±0.006 , AC P(D0→ϕ γ ) =-0.094 ±0.066 ±0.001 , and AC P(D0→K¯ *0γ ) =-0.003 ±0.020 ±0.000 are consistent with no C P violation. We also present an improved measurement of the branching fractions B (D0→ϕ γ ) =(2.76 ±0.19 ±0.10 )×10-5 and B (D0→K¯ *0γ ) =(4.66 ±0.21 ±0.21 )×10-4 .

  4. Observation of D^{0}→ρ^{0}γ and Search for CP Violation in Radiative Charm Decays.

    PubMed

    Nanut, T; Zupanc, A; Adachi, I; Aihara, H; Al Said, S; Asner, D M; Aulchenko, V; Aushev, T; Ayad, R; Babu, V; Badhrees, I; Bakich, A M; Bansal, V; Behera, P; Bhardwaj, V; Biswal, J; Bondar, A; Bozek, A; Bračko, M; Browder, T E; Červenkov, D; Chekelian, V; Chen, A; Cheon, B G; Chistov, R; Cho, K; Choi, S-K; Choi, Y; Cinabro, D; Dash, N; Di Carlo, S; Doležal, Z; Dutta, D; Eidelman, S; Farhat, H; Fast, J E; Ferber, T; Fulsom, B G; Gaur, V; Gabyshev, N; Garmash, A; Gillard, R; Goldenzweig, P; Golob, B; Hayasaka, K; Hayashii, H; Hou, W-S; Iijima, T; Inami, K; Inguglia, G; Ishikawa, A; Iwasaki, Y; Jacobs, W W; Jaegle, I; Joffe, D; Joo, K K; Julius, T; Kaliyar, A B; Kang, K H; Kawasaki, T; Kim, D Y; Kim, J B; Kim, K T; Kim, M J; Kim, S H; Kinoshita, K; Kodyš, P; Korpar, S; Krokovny, P; Kuhr, T; Kulasiri, R; Kuzmin, A; Kwon, Y-J; Lange, J S; Lee, I S; Li, C H; Li, L; Li, Y; Li Gioi, L; Libby, J; Liventsev, D; Lubej, M; Masuda, M; Matsuda, T; Matvienko, D; Miyabayashi, K; Miyata, H; Mizuk, R; Mohanty, G B; Moon, H K; Nakao, M; Nath, K J; Nayak, M; Nisar, N K; Nishida, S; Ogawa, S; Okuno, S; Pakhlov, P; Pakhlova, G; Pal, B; Park, C-S; Park, C W; Park, H; Paul, S; Pedlar, T K; Pesántez, L; Pestotnik, R; Petrič, M; Piilonen, L E; Prasanth, K; Pulvermacher, C; Rauch, J; Ritter, M; Rostomyan, A; Sakai, Y; Sandilya, S; Santelj, L; Sanuki, T; Sato, Y; Savinov, V; Schlüter, T; Schneider, O; Schnell, G; Schwanda, C; Schwartz, A J; Seino, Y; Senyo, K; Seon, O; Sevior, M E; Shebalin, V; Shen, C P; Shibata, T-A; Shiu, J-G; Shwartz, B; Solovieva, E; Stanič, S; Starič, M; Strube, J F; Stypula, J; Sumiyoshi, T; Takizawa, M; Tamponi, U; Tenchini, F; Trabelsi, K; Uchida, M; Uno, S; Ushiroda, Y; Varner, G; Vinokurova, A; Vorobyev, V; Vossen, A; Wang, C H; Wang, M-Z; Wang, P; Watanabe, Y; Widmann, E; Won, E; Yamaoka, J; Yamashita, Y; Yelton, J; Zhang, Z P; Zhilich, V; Zhukova, V; Zhulanov, V

    2017-02-03

    We report the first observation of the radiative charm decay D^{0}→ρ^{0}γ and the first search for CP violation in decays D^{0}→ρ^{0}γ, ϕγ, and K[over ¯]^{*0}(892)γ, using a data sample of 943  fb^{-1} collected with the Belle detector at the KEKB asymmetric-energy e^{+}e^{-} collider. The branching fraction is measured to be B(D^{0}→ρ^{0}γ)=(1.77±0.30±0.07)×10^{-5}, where the first uncertainty is statistical and the second is systematic. The obtained CP asymmetries A_{CP}(D^{0}→ρ^{0}γ)=+0.056±0.152±0.006, A_{CP}(D^{0}→ϕγ)=-0.094±0.066±0.001, and A_{CP}(D^{0}→K[over ¯]^{*0}γ)=-0.003±0.020±0.000 are consistent with no CP violation. We also present an improved measurement of the branching fractions B(D^{0}→ϕγ)=(2.76±0.19±0.10)×10^{-5} and B(D^{0}→K[over ¯]^{*0}γ)=(4.66±0.21±0.21)×10^{-4}.

  5. Analysis of two-body charmed B meson decays in factorization-assisted topological-amplitude approach

    NASA Astrophysics Data System (ADS)

    Zhou, Si-Hong; Wei, Yan-Bing; Qin, Qin; Li, Ying; Yu, Fu-Sheng; Lü, Cai-Dian

    2015-11-01

    Within the factorization-assisted topological-amplitude approach, we study the two-body charmed B meson decays Bu ,d ,s→D(*)M , with M denoting a light pseudoscalar (or vector) meson. The meson decay constants and transition form factors are factorized out from the hadronic matrix element of topological diagrams. Therefore, the effect of SU(3) symmetry breaking is retained, which is different from the conventional topological diagram approach. The number of free nonperturbative parameters to be fitted from experimental data is also much less. Only four universal nonperturbative parameters χC, ϕC, χE and ϕE are introduced to describe the contribution of the color-suppressed tree and W -exchanged diagrams for all the decay channels. With the fitted parameters from 31 decay modes induced by b →c transition, we then predict the branching fractions of 120 decay modes induced by both b →c and b →u transitions. Our results are well consistent with the measured data or to be tested in the LHCb and Belle-II experiments in the future. Besides, the SU(3) symmetry breaking, isospin violation and C P asymmetry are also investigated.

  6. Opening and Closing in Open Systems.

    ERIC Educational Resources Information Center

    Klapp, Orrin E.

    In open information systems, such as in the case of human interchange with the self and the environment, input quantities have no upper limits. The human information utilization system, however, is psychologically and behaviorally unable to accept ever increasing loads of information. Because of this apparent fact, human information systems should…

  7. Opening Up Access to Open Access

    ERIC Educational Resources Information Center

    Singer, Ross

    2008-01-01

    As the corpus of gray literature grows and the price of serials rises, it becomes increasingly important to explore ways to integrate the free and open Web seamlessly into one's collections. Users, after all, are discovering these materials all the time via sites such as Google Scholar and Scirus or by searching arXiv.org or CiteSeer directly.…

  8. Egress door opening assister

    DOEpatents

    Allison, Thomas L.

    2015-10-06

    A door opening spring assistance apparatus is set forth that will automatically apply a door opening assistance force using a combination of rods and coil springs. The release of the rods by the coil springs reduces the force required to set the door in motion.

  9. Open Rotor Aeroacoustic Modelling

    NASA Technical Reports Server (NTRS)

    Envia, Edmane

    2012-01-01

    Owing to their inherent fuel efficiency, there is renewed interest in developing open rotor propulsion systems that are both efficient and quiet. The major contributor to the overall noise of an open rotor system is the propulsor noise, which is produced as a result of the interaction of the airstream with the counter-rotating blades. As such, robust aeroacoustic prediction methods are an essential ingredient in any approach to designing low-noise open rotor systems. To that end, an effort has been underway at NASA to assess current open rotor noise prediction tools and develop new capabilities. Under this effort, high-fidelity aerodynamic simulations of a benchmark open rotor blade set were carried out and used to make noise predictions via existing NASA open rotor noise prediction codes. The results have been compared with the aerodynamic and acoustic data that were acquired for this benchmark open rotor blade set. The emphasis of this paper is on providing a summary of recent results from a NASA Glenn effort to validate an in-house open noise prediction code called LINPROP which is based on a high-blade-count asymptotic approximation to the Ffowcs-Williams Hawkings Equation. The results suggest that while predicting the absolute levels may be difficult, the noise trends are reasonably well predicted by this approach.

  10. Open Source Molecular Modeling

    PubMed Central

    Pirhadi, Somayeh; Sunseri, Jocelyn; Koes, David Ryan

    2016-01-01

    The success of molecular modeling and computational chemistry efforts are, by definition, dependent on quality software applications. Open source software development provides many advantages to users of modeling applications, not the least of which is that the software is free and completely extendable. In this review we categorize, enumerate, and describe available open source software packages for molecular modeling and computational chemistry. PMID:27631126

  11. Opening up Education: The Collective Advancement of Education through Open Technology, Open Content, and Open Knowledge

    ERIC Educational Resources Information Center

    Iiyoshi, Toru, Ed.; Kumar, M. S. Vijay, Ed.

    2008-01-01

    Given the abundance of open education initiatives that aim to make educational assets freely available online, the time seems ripe to explore the potential of open education to transform the economics and ecology of education. Despite the diversity of tools and resources already available--from well-packaged course materials to simple games, for…

  12. Guidelines on Open Expression.

    ERIC Educational Resources Information Center

    Pennsylvania Univ., Philadelphia.

    These Guidelines on open expression at the University of Pennsylvania include: (1) a statement of principles, expressing support for freedom of thought, inquiry, speech and lawful assembly, and for the need to ensure continuing openness and effectiveness of channels of communication; (2) a description of the newly created Committee on Open…

  13. Open Source Vision

    ERIC Educational Resources Information Center

    Villano, Matt

    2006-01-01

    Increasingly, colleges and universities are turning to open source as a way to meet their technology infrastructure and application needs. Open source has changed life for visionary CIOs and their campus communities nationwide. The author discusses what these technologists see as the benefits--and the considerations.

  14. Creating Open Source Conversation

    ERIC Educational Resources Information Center

    Sheehan, Kate

    2009-01-01

    Darien Library, where the author serves as head of knowledge and learning services, launched a new website on September 1, 2008. The website is built with Drupal, an open source content management system (CMS). In this article, the author describes how she and her colleagues overhauled the library's website to provide an open source content…

  15. The Argument for Open

    ERIC Educational Resources Information Center

    Byrd, Rob

    2008-01-01

    Is open source business intelligence (OS BI) software ready for prime time? The author thoroughly investigated each of three OS BI toolsets--Pentaho BI Suite, Jaspersoft BI Suite, and Talend Open Studio--by installing the OS BI tools himself, by interviewing technologists at academic institutions who had implemented these OS BI solutions, and by…

  16. Open Rotor Aeroacoustic Modeling

    NASA Technical Reports Server (NTRS)

    Envia, Edmane

    2012-01-01

    Owing to their inherent fuel efficiency, there is renewed interest in developing open rotor propulsion systems that are both efficient and quiet. The major contributor to the overall noise of an open rotor system is the propulsor noise, which is produced as a result of the interaction of the airstream with the counter-rotating blades. As such, robust aeroacoustic prediction methods are an essential ingredient in any approach to designing low-noise open rotor systems. To that end, an effort has been underway at NASA to assess current open rotor noise prediction tools and develop new capabilities. Under this effort, high-fidelity aerodynamic simulations of a benchmark open rotor blade set were carried out and used to make noise predictions via existing NASA open rotor noise prediction codes. The results have been compared with the aerodynamic and acoustic data that were acquired for this benchmark open rotor blade set. The emphasis of this paper is on providing a summary of recent results from a NASA Glenn effort to validate an in-house open noise prediction code called LINPROP which is based on a high-blade-count asymptotic approximation to the Ffowcs-Williams Hawkings Equation. The results suggest that while predicting the absolute levels may be difficult, the noise trends are reasonably well predicted by this approach.

  17. Opening a New Door

    ERIC Educational Resources Information Center

    Waters, John K.

    2007-01-01

    A growing number of K-12 districts are taking the open source plunge, both to cope with tight budgets and to escape proprietary vendor lock-in and expensive upgrade cycles. With the potential for cost savings and a growing number of educational applications, open source software is proving to be an effective alternative for schools willing to make…

  18. OpenSearch Status

    NASA Technical Reports Server (NTRS)

    Newman, Doug; Silva, Sam; Mitchell, Andrew

    2016-01-01

    We will present an overview of our OpenSearch efforts over the past 6 months. We will discuss our Best Practices and those of CEOS concentrating on the compatibility issues between the two. We will also discuss the state of earth data OpenSearch implementations and their adherence to the standards, extensions and best practices available.

  19. Triggered plasma opening switch

    DOEpatents

    Mendel, Clifford W.

    1988-01-01

    A triggerable opening switch for a very high voltage and current pulse includes a transmission line extending from a source to a load and having an intermediate switch section including a plasma for conducting electrons between transmission line conductors and a magnetic field for breaking the plasma conduction path and magnetically insulating the electrons when it is desired to open the switch.

  20. Stability of open pathways

    PubMed Central

    Flach, Edward H.; Schnell, Santiago

    2010-01-01

    We consider the steady state of an open biochemical pathway, with controlled flow. Previously we have shown that the steady state of open enzyme catalysed reactions may be unstable, which discourages the application of the quasi-steady-state approximation (QSSA) (IEE Proc. Syst. Biol. 153 (2006) 187). Here we examine basic open biochemical pathway structures, to see the stability of their steady states. Following De Leenheer et al. (J. Math. Chem. 41 (2007) 295), we employ the Gershgorin circle theorem, which elegantly assesses stability. This is the key tool for our analysis. Once we have the linear stability matrix laid out in a suitable form, the application of the method is straightforward. We find that in open biochemical pathways, simple chains, branches and loops always have stable steady states. We conclude that simple open pathways are stable. PMID:20875827

  1. Charm quark contribution to K+ ---> pi+ nu anti-nu at next-to-next-to-leading order

    SciTech Connect

    Buras, Andrzej J.; Gorbahn, Martin; Haisch, Ulrich; Nierste, Ulrich; /Karlsruhe U., TTP /Fermilab

    2006-03-01

    The authors calculate the complete next-to-next-to-leading order QCD corrections to the charm contribution of the rare decay K{sup +} {yields} {pi}{sup +}{nu}{bar {nu}}. They encounter several new features, which were absent in lower orders. They discuss them in detail and present the results for the two-loop matching conditions of the Wilson coefficients, the three-loop anomalous dimensions, and the two-loop matrix elements of the relevant operators that enter the next-to-next-to-leading order renormalization group analysis of the Z-penguin and the electroweak box contribution. The inclusion of the next-to-next-to-leading order QCD corrections leads to a significant reduction of the theoretical uncertainty from {+-} 9.8% down to {+-} 2.4% in the relevant parameter P{sub c}(X), implying the leftover scale uncertainties in {Beta}(K{sup +} {yields} {pi}{sup +}{nu}{bar {nu}}) and in the determination of |V{sub td}|, sin 2{beta}, and {gamma} from the K {yields} {pi}{nu}{bar {nu}} system to be {+-} 1.3%, {+-} 1.0%, {+-} 0.006, and {+-} 1.2{sup o}, respectively. For the charm quark {ovr MS} mass m{sub c}(m{sub c}) = (1.30 {+-} 0.05) GeV and |V{sub us}| = 0.2248 the next-to-leading order value P{sub c}(X) = 0.37 {+-} 0.06 is modified to P{sub c}(X) = 0.38 {+-} 0.04 at the next-to-next-to-leading order level with the latter error fully dominated by the uncertainty in m{sub c}(m{sub c}). They present tables for P{sub c}(X) as a function of m{sub c}(m{sub c}) and {alpha}{sub s}(M{sub z}) and a very accurate analytic formula that summarizes these two dependences as well as the dominant theoretical uncertainties. Adding the recently calculated long-distance contributions they find {Beta}(K{sup +} {yields} {pi}{sup +}{nu}{bar {nu}}) = (8.0 {+-} 1.1) x 10{sup -11} with the present uncertainties in m{sub c}(m{sub c}) and the Cabibbo-Kobayashi-Maskawa elements being the dominant individual sources in the quoted error. They also emphasize that improved calculations of the long

  2. [Hadroproduction of charmed and bottom mesons (Fermilab experiment E-653): Progress report, April 1, 1982--March 31, 1983

    SciTech Connect

    1983-12-31

    This progress report describes several projects that U of Oklahoma has participated in. The first is a muon background calculation from decay of charged pions and kaons, using ISR data at center of mass energies of 31 and 53 GeV. These calculations were compared with a number of different events. A copy of an agreement between Fermi National Accelerator Laboratory and participants in experiment E-653 is enclosed. This experiment tags charm and beauty particles by observing their decay lengths. The agreement sets out the items which need to be done in order to properly execute this experiment. A program to construct and test prototype silicon stripe detectors is also described. Preliminary detectors are in hand for testing, some are installed for actual beams for testing, and on the basis of these results the group expects to specify the design for a new system. The goals at present are to check charge collection, to check track point resolution, and to check vertex reconstruction resolution. A copy of a letter of intent to submit a proposal to LEP is included. The group proposes to submit a proposal to build an experiment with approximately 1% momentum resolution at 50 GeV/c for identifying photons, electrons, and muons. This proposal would aim at scalar particles, where accurate measures of small branching ratio decays are important. Some preliminary results from Monte Carlo simulation and data analysis of experiment E-516 are presented. In addition one group participant was involved in a CLEO experiment, which is an ongoing extension of work on a shower detector system. At present OU has the offline CLEO analysis software running and is supporting an effort with Rutgers to completer the inclusive electron measurements in the {gamma}(4S) resonance region. This involves proper operation of the shower detector, and development of analysis software.

  3. A Study of Excited Charm-Strange Baryons withEvidence for new Baryons Xi_c(3055)+ and Xi_c(3123)+

    SciTech Connect

    Collaboration, The BABAR; Aubert, B.

    2007-10-30

    We present a study of excited charm-strange baryon states produced in e{sup +}e{sup -} annihilations at or near a center-of-mass energy of 10.58 GeV, in a data sample with an integrated luminosity of 384 fb{sup -1} recorded with the BABAR detector at the PEP-II e+e storage rings at the Stanford Linear Accelerator Center. We study strong decays of charm-strange baryons to {Lambda}{sub c}{sup +}K{sub S}{sup 0}, {Lambda}{sub c}{sup +}K{sup -}, {Lambda}{sub c}{sup +}K{sup -}{pi}{sup +}, {Lambda}{sub c}{sup +}K{sub S}{sup 0}{pi}{sup -}, {Lambda}{sub c}{sup +}K{sub S}{sup 0}{pi}{sup -}{pi}{sup +}, {Lambda}{sub c}{sup +}K{sup -}{pi}{sup -}{pi}{sup +}. This study confirms the existence of the states {Xi}{sub c}(2980){sup +}, {Xi}{sub c}(3077){sup +}, and {Xi}{sub c}(3077){sup -}, with a more accurate determination of the {Xi}{sub c}(2980){sup +} mass and width. We also present evidence for two new states, {Xi}{sub c}(3055){sup +} and {Xi}{sub c}(3123){sup +}, decaying through the intermediate resonant modes {Sigma}{sub c}(2455){sup ++}K{sup -} and {Sigma}{sub c}(2520){sup ++}K{sup -}, respectively. For each of these baryons, we measure the yield in each final state, determine the statistical significance, and calculate the product of the production cross-section and branching fractions. We also measure the masses and widths of these excited charm-strange baryons.

  4. First Observation of the Doubly Cabibbo-Suppressed Decay of a Charmed Baryon: Λc+→p K+π-

    NASA Astrophysics Data System (ADS)

    Yang, S. B.; Tanida, K.; Kim, B. H.; Adachi, I.; Aihara, H.; Asner, D. M.; Aulchenko, V.; Aushev, T.; Babu, V.; Badhrees, I.; Bakich, A. M.; Barberio, E.; Bhardwaj, V.; Bhuyan, B.; Biswal, J.; Bonvicini, G.; Bozek, A.; Bračko, M.; Browder, T. E.; Červenkov, D.; Chekelian, V.; Chen, A.; Cheon, B. G.; Chilikin, K.; Chistov, R.; Cho, K.; Chobanova, V.; Choi, Y.; Cinabro, D.; Dalseno, J.; Danilov, M.; Dash, N.; Doležal, Z.; Drásal, Z.; Dutta, D.; Eidelman, S.; Farhat, H.; Fast, J. E.; Ferber, T.; Fulsom, B. G.; Gabyshev, N.; Garmash, A.; Gaur, V.; Gillard, R.; Goh, Y. M.; Goldenzweig, P.; Greenwald, D.; Grygier, J.; Haba, J.; Hamer, P.; Hara, T.; Hayasaka, K.; Hayashii, H.; Hou, W.-S.; Iijima, T.; Inami, K.; Inguglia, G.; Ishikawa, A.; Itoh, R.; Iwasaki, Y.; Jacobs, W. W.; Jaegle, I.; Jeon, H. B.; Joo, K. K.; Julius, T.; Kang, K. H.; Kato, E.; Katrenko, P.; Kiesling, C.; Kim, D. Y.; Kim, H. J.; Kim, J. B.; Kim, K. T.; Kim, M. J.; Kim, S. H.; Kim, S. K.; Kim, Y. J.; Kinoshita, K.; Kobayashi, N.; Kodyš, P.; Korpar, S.; Križan, P.; Krokovny, P.; Kuhr, T.; Kuzmin, A.; Kwon, Y.-J.; Lange, J. S.; Lee, I. S.; Li, C. H.; Li, H.; Li, L.; Li, Y.; Li Gioi, L.; Libby, J.; Liventsev, D.; Lubej, M.; Masuda, M.; Matvienko, D.; Miyabayashi, K.; Miyata, H.; Mizuk, R.; Mohanty, G. B.; Moll, A.; Moon, H. K.; Mussa, R.; Nakano, E.; Nakao, M.; Nanut, T.; Nath, K. J.; Nayak, M.; Negishi, K.; Niiyama, M.; Nisar, N. K.; Nishida, S.; Ogawa, S.; Okuno, S.; Olsen, S. L.; Pakhlova, G.; Pal, B.; Park, C. W.; Park, H.; Pedlar, T. K.; Pestotnik, R.; Petrič, M.; Piilonen, L. E.; Pulvermacher, C.; Rauch, J.; Ritter, M.; Rostomyan, A.; Ryu, S.; Sahoo, H.; Sakai, Y.; Sandilya, S.; Santelj, L.; Sanuki, T.; Sato, Y.; Savinov, V.; Schlüter, T.; Schneider, O.; Schnell, G.; Schwanda, C.; Schwartz, A. J.; Seino, Y.; Senyo, K.; Seon, O.; Seong, I. S.; Sevior, M. E.; Shebalin, V.; Shibata, T.-A.; Shiu, J.-G.; Shwartz, B.; Simon, F.; Sohn, Y.-S.; Sokolov, A.; Stanič, S.; Starič, M.; Stypula, J.; Sumihama, M.; Sumiyoshi, T.; Takizawa, M.; Tamponi, U.; Teramoto, Y.; Trabelsi, K.; Trusov, V.; Uchida, M.; Uglov, T.; Unno, Y.; Uno, S.; Urquijo, P.; Usov, Y.; Vanhoefer, P.; Varner, G.; Varvell, K. E.; Vinokurova, A.; Vossen, A.; Wagner, M. N.; Wang, C. H.; Wang, M.-Z.; Wang, P.; Wang, X. L.; Watanabe, Y.; Williams, K. M.; Won, E.; Yamaoka, J.; Yashchenko, S.; Ye, H.; Yelton, J.; Yuan, C. Z.; Yusa, Y.; Zhang, Z. P.; Zhilich, V.; Zhulanov, V.; Zupanc, A.; Belle Collaboration

    2016-07-01

    We report the first observation of the decay Λc+→p K+π- using a 980 fb-1 data sample collected by the Belle detector at the KEKB asymmetric-energy e+e- collider. This is the first observation of a doubly Cabibbo-suppressed decay of a charmed baryon. We measure the branching ratio of this decay with respect to its Cabibbo-favored counterpart to be B (Λc+→p K+π-)/B (Λc+→p K-π+)=(2.35 ±0.27 ±0.21 )×10-3 , where the uncertainties are statistical and systematic, respectively.

  5. In Praise of Openness

    NASA Astrophysics Data System (ADS)

    Arunachalam, S.

    2010-10-01

    Open access brings greater visibility and impact to the work of scientists as is evidenced in the examples discussed in this paper. Researchers are often reluctant and afraid to deposit their works in Institutional Repositories. However, as is shown here, once they do so, they do not regret it. Open access will shortly become the norm and will be accepted by the vast majority of scientists. Seen through the lens of the philosophy of Bertrand Russell, the moral, economic and philosophical imperatives for open access are indeed strong.

  6. Commentary: open access, open business, closed fairness!

    PubMed

    Moustafa, Khaled

    2015-01-01

    A strong trend to move from print to online publication is largely perceived in scientific and nonscientific fields. A growing number of publishers increasingly opt for online publication as an option or a compulsory alternative. From readers' perspective, this is a highly appreciated facility, but from the author's, things are different mainly because of excessive article processing charges (APC) that make the open access system sometimes as a hindrance for many authors but a lucrative enterprise for many shareholders, enticing the most traditional and conservative publishers.

  7. Defining Open Education

    ERIC Educational Resources Information Center

    Walberg, Herbert J.; Thomas, Susan Christie

    1974-01-01

    Authors believed that sharper definitions of open education can keep the current movement authentic to its early consensus ideals while avoiding dogma, orthodoxy, discipleships: charisma, and latter-day carpetbagging. (Author/RK)

  8. Open Rotor Spin Test

    NASA Video Gallery

    An open rotor, also known as a high-speed propeller, is tested in a wind tunnel. The propeller moves much more quickly than a standard propeller, and the blades of the propeller are shaped differen...

  9. Open cycle thermoacoustics

    SciTech Connect

    Reid, Robert Stowers

    2000-01-01

    A new type of thermodynamic device combining a thermodynamic cycle with the externally applied steady flow of an open thermodynamic process is discussed and experimentally demonstrated. The gas flowing through this device can be heated or cooled in a series of semi-open cyclic steps. The combination of open and cyclic flows makes possible the elimination of some or all of the heat exchangers (with their associated irreversibility). Heat is directly exchanged with the process fluid as it flows through the device when operating as a refrigerator, producing a staging effect that tends to increase First Law thermodynamic efficiency. An open-flow thermoacoustic refrigerator was built to demonstrate this concept. Several approaches are presented that describe the physical characteristics of this device. Tests have been conducted on this refrigerator with good agreement with a proposed theory.

  10. PWC Opens up

    ERIC Educational Resources Information Center

    Weinstein, Margery

    2011-01-01

    Coming up with the latest and greatest learning curriculum for employees year after year can be overwhelming--especially if one works for a small or mid-size company with minimal resources. Fortunately, there is a burgeoning trend that three-time No. 1 Top 125er PwC is helping to "open" up. In creating PwC Open University, the professional…

  11. Open source molecular modeling.

    PubMed

    Pirhadi, Somayeh; Sunseri, Jocelyn; Koes, David Ryan

    2016-09-01

    The success of molecular modeling and computational chemistry efforts are, by definition, dependent on quality software applications. Open source software development provides many advantages to users of modeling applications, not the least of which is that the software is free and completely extendable. In this review we categorize, enumerate, and describe available open source software packages for molecular modeling and computational chemistry. An updated online version of this catalog can be found at https://opensourcemolecularmodeling.github.io.

  12. OpenTopography

    NASA Astrophysics Data System (ADS)

    Baru, C.; Arrowsmith, R.; Crosby, C.; Nandigam, V.; Phan, M.; Cowart, C.

    2012-04-01

    OpenTopography is a cyberinfrastructure-based facility for online access to high-resolution topography and tools. The project is an outcome of the Geosciences Network (GEON) project, which was a research project funded several years ago in the US to investigate the use of cyberinfrastructure to support research and education in the geosciences. OpenTopography provides online access to large LiDAR point cloud datasets along with services for processing these data. Users are able to generate custom DEMs by invoking DEM services provided by OpenTopography with custom parameter values. Users can track the progress of their jobs, and a private myOpenTopo area retains job information and job outputs. Data available at OpenTopography are provided by a variety of data acquisition groups under joint agreements and memoranda of understanding (MoU). These include national facilities such as the National Center for Airborne Lidar Mapping, as well as local, state, and federal agencies. OpenTopography is also being designed as a hub for high-resolution topography resources. Datasets and services available at other locations can also be registered here, providing a "one-stop shop" for such information. We will describe the OpenTopography system architecture and its current set of features, including the service-oriented architecture, a job-tracking database, and social networking features. We will also describe several design and development activities underway to archive and publish datasets using digital object identifiers (DOIs); create a more flexible and scalable high-performance environment for processing of large datasets; extend support for satellite-based and terrestrial lidar as well as synthetic aperture radar (SAR) data; and create a "pluggable" infrastructure for third-party services. OpenTopography has successfully created a facility for sharing lidar data. In the next phase, we are developing a facility that will also enable equally easy and successful sharing of

  13. The Open AUC Project.

    PubMed

    Cölfen, Helmut; Laue, Thomas M; Wohlleben, Wendel; Schilling, Kristian; Karabudak, Engin; Langhorst, Bradley W; Brookes, Emre; Dubbs, Bruce; Zollars, Dan; Rocco, Mattia; Demeler, Borries

    2010-02-01

    Progress in analytical ultracentrifugation (AUC) has been hindered by obstructions to hardware innovation and by software incompatibility. In this paper, we announce and outline the Open AUC Project. The goals of the Open AUC Project are to stimulate AUC innovation by improving instrumentation, detectors, acquisition and analysis software, and collaborative tools. These improvements are needed for the next generation of AUC-based research. The Open AUC Project combines on-going work from several different groups. A new base instrument is described, one that is designed from the ground up to be an analytical ultracentrifuge. This machine offers an open architecture, hardware standards, and application programming interfaces for detector developers. All software will use the GNU Public License to assure that intellectual property is available in open source format. The Open AUC strategy facilitates collaborations, encourages sharing, and eliminates the chronic impediments that have plagued AUC innovation for the last 20 years. This ultracentrifuge will be equipped with multiple and interchangeable optical tracks so that state-of-the-art electronics and improved detectors will be available for a variety of optical systems. The instrument will be complemented by a new rotor, enhanced data acquisition and analysis software, as well as collaboration software. Described here are the instrument, the modular software components, and a standardized database that will encourage and ease integration of data analysis and interpretation software.

  14. Tetraquark states with open flavors

    NASA Astrophysics Data System (ADS)

    Tang, Liang; Qiao, Cong-Feng

    2016-10-01

    In this work, we estimate the masses of tetraquark states with four different flavors by virtue of QCD sum rules, in both b and c sectors. We construct four [8_c]_{bar{b} s} ⊗ [8_c]_{bar{d} u} tetraquark currents with J^P = 0^+, and then we perform an analytic calculation up to dimension eight in the operator product expansion. We keep terms which are linear in the strange quark mass m_s, and in the end we find two possible tetraquark states with masses (5.57 ± 0.15) and (5.58 ± 0.15) GeV. We find that their charmed-partner masses lie in (2.54 ± 0.13) and (2.55 ± 0.13) GeV, respectively, and are hence accessible in experiments like BESIII and Belle.

  15. rOpenSci - open tools for open science

    NASA Astrophysics Data System (ADS)

    Ram, K.

    2013-12-01

    Solving many of the basic and applied challenges in ecology and evolution requires access to large amounts of data, often spanning long spatial and temporal scales. The long-established model where researchers collect and analyze their own data will soon be replaced by one where disparate datasets are brought to bear on both basic and applied problems. As science becomes more data-driven, it faces a whole new set of challenges. Researchers will not only have to maintain expertise in their domains but also learn new skills to curate, retrieve, and analyze these newly available data. In order to fully realize the potential of data-driven science and allow researchers to draw insights from these vast data stores, we need to address challenges associated with all aspects of the research life cycle. To foster and support a new generation of data-driven science, my colleagues and I founded a project called rOpenSci (http://ropensci.org). The project is an integrated effort to build tools and training using Ecology and Evolution as a model community. In this talk I will outline several of the barriers that need to be overcome including better incentive mechanisms for data, training gaps, and lowering technical barriers.

  16. openPMD-viewer

    SciTech Connect

    Lehe, Remi

    2015-10-01

    Many simulation software produce data in the form of a set of field values or of a set of particle positions. (one such example is that of particle-in-cell codes, which produce data on the electromagnetic fields that they simulate.) However, each particular software uses its own particular format and layout, for the output data. This makes it difficult to compare the results of different simulation software, or to have a common visualization tool for these results. However, a standardized layout for fields and particles has recently been developed: the openPMD format ( HYPERLINK "http://www.openpmd.org/"www.openpmd.org) This format is open- source, and specifies a standard way in which field data and particle data should be written. The openPMD format is already implemented in the particle-in-cell code Warp (developed at LBL) and in PIConGPU (developed at HZDR, Germany). In this context, the proposed software (openPMD-viewer) is a Python package, which allows to access and visualize any data which has been formatted according to the openPMD standard. This package contains two main components: - a Python API, which allows to read and extract the data from a openPMD file, so as to be able to work with it within the Python environment. (e.g. plot the data and reprocess it with particular Python functions) - a graphical interface, which works with the ipython notebook, and allows to quickly visualize the data and browse through a set of openPMD files. The proposed software will be typically used when analyzing the results of numerical simulations. It will be useful to quickly extract scientific meaning from a set of numerical data.

  17. Short-distance charmonium correlator on the lattice with Möbius domain-wall fermion and a determination of charm quark mass

    NASA Astrophysics Data System (ADS)

    Nakayama, Katsumasa; Fahy, Brendan; Hashimoto, Shoji; Jlqcd Collaboration

    2016-09-01

    We calculate charmonium correlators on the lattice with 2 +1 flavors of sea quarks and charm valence quarks, both described by the Möbius domain-wall fermion. Temporal moments of the correlators are calculated and matched to perturbative QCD formulas to extract the charm quark mass mc(μ ) and strong coupling constant αs(μ ). Lattice data at three lattice spacings, 0.044, 0.055, and 0.080 fm, are extrapolated to the continuum limit. The correlators in the vector channel are confirmed to be consistent with the experimental data for e+e-→c c ¯, while the pseudoscalar channel is used to extract mc(μ ) and αs(μ ). We obtain mc(3 GeV )=1.003 (10 ) GeV and αsMS ¯ (4 )(3 GeV )=0.253 (13 ) . The dominant source of the error is the truncation of perturbative expansion at αs3.

  18. Interactions of Charmed Mesons with Light Pseudoscalar Mesons from Lattice QCD and Implications on the Nature of the D*s0(2317)

    SciTech Connect

    Liuming, Liu; Orginos, Kostas; Guo, Feng-Kun; Hanhart, Christoph; Meissner, Ulf-G

    2014-11-01

    We study the scattering of light pseudoscalar mesons ( p , K ) off charmed mesons ( D , D s ) in full lattice QCD. The S -wave scattering lengths are calculated using Luscher’s finite volume technique. We use a relativistic formulation for the charm quark. For the light quark, we use domain- wall fermions in the valence sector and improved Kogut-Susskind sea quarks. We calculate the scattering lengths of isospin-3/2 Dπ , D sπ , D s K , isospin-0 DK and isospin-1 DK channels on the lattice. For the chiral extrapolation, we use a chiral unitary approach to next-to-leading order, which at the same time allows us to give predictions for other channels. It turns out that our results support the interpretation of the D*s0( 2317 ) as a DK molecule. At the same time, we also update a prediction for the isospin breaking hadronic decay width G ( D*s0( 2317 )→ D sπ ) to ( 133± 22 ) keV.

  19. Global OpenSearch

    NASA Astrophysics Data System (ADS)

    Newman, D. J.; Mitchell, A. E.

    2015-12-01

    At AGU 2014, NASA EOSDIS demonstrated a case-study of an OpenSearch framework for Earth science data discovery. That framework leverages the IDN and CWIC OpenSearch API implementations to provide seamless discovery of data through the 'two-step' discovery process as outlined by the Federation for Earth Sciences (ESIP) OpenSearch Best Practices. But how would an Earth Scientist leverage this framework and what are the benefits? Using a client that understands the OpenSearch specification and, for further clarity, the various best practices and extensions, a scientist can discovery a plethora of data not normally accessible either by traditional methods (NASA Earth Data Search, Reverb, etc) or direct methods (going to the source of the data) We will demonstrate, via the CWICSmart web client, how an earth scientist can access regional data on a regional phenomena in a uniform and aggregated manner. We will demonstrate how an earth scientist can 'globalize' their discovery. You want to find local data on 'sea surface temperature of the Indian Ocean'? We can help you with that. 'European meteorological data'? Yes. 'Brazilian rainforest satellite imagery'? That too. CWIC allows you to get earth science data in a uniform fashion from a large number of disparate, world-wide agencies. This is what we mean by Global OpenSearch.

  20. Open system environment procurement

    NASA Technical Reports Server (NTRS)

    Fisher, Gary

    1994-01-01

    Relationships between the request for procurement (RFP) process and open system environment (OSE) standards are described. A guide was prepared to help Federal agency personnel overcome problems in writing an adequate statement of work and developing realistic evaluation criteria when transitioning to an OSE. The guide contains appropriate decision points and transition strategies for developing applications that are affordable, scalable and interoperable across a broad range of computing environments. While useful, the guide does not eliminate the requirement that agencies posses in-depth expertise in software development, communications, and database technology in order to evaluate open systems.

  1. Bargaining for Open Skies

    NASA Technical Reports Server (NTRS)

    Wojahn, Oliver W.

    2001-01-01

    In this paper we analyze the bargaining problem between countries when negotiating bilateral air service agreements. To do so, we use the methods of bargaining and game theory. We give special attention to the case where a liberal minded country is trying to convince a less liberal country to agree to bilateral open skies, and the liberal country might also unilaterally open up its market. The following analysis is positive in the sense that the results help explain and predict the outcome of negotiations under different payoffs and structures of the bargaining process. They are normative in the sense that adequate manipulation of the bargaining conditions can ensure a desired outcome.

  2. Open Entry/Open Exit Study. Final Report.

    ERIC Educational Resources Information Center

    Berg, Marvin

    Open entry/open exit refers to formats and procedures which allow learners to enter a program whenever they are ready and available, and allows them to leave or complete programs when competencies for job entry are attained. This study sought to provide base data on the concept of open entry/open exit by surveying involved individuals and to…

  3. Open-Source Colorimeter

    PubMed Central

    Anzalone, Gerald C.; Glover, Alexandra G.; Pearce, Joshua M.

    2013-01-01

    The high cost of what have historically been sophisticated research-related sensors and tools has limited their adoption to a relatively small group of well-funded researchers. This paper provides a methodology for applying an open-source approach to design and development of a colorimeter. A 3-D printable, open-source colorimeter utilizing only open-source hardware and software solutions and readily available discrete components is discussed and its performance compared to a commercial portable colorimeter. Performance is evaluated with commercial vials prepared for the closed reflux chemical oxygen demand (COD) method. This approach reduced the cost of reliable closed reflux COD by two orders of magnitude making it an economic alternative for the vast majority of potential users. The open-source colorimeter demonstrated good reproducibility and serves as a platform for further development and derivation of the design for other, similar purposes such as nephelometry. This approach promises unprecedented access to sophisticated instrumentation based on low-cost sensors by those most in need of it, under-developed and developing world laboratories. PMID:23604032

  4. Information of Open Systems

    NASA Astrophysics Data System (ADS)

    Klimontovich, Yuri L.

    In the theory of communication two definitions of the concept "information" are known. One of them coincides according to its form with the Boltzmann entropy. The second definition of information is the difference between unconditional and conditional entropies. In the present work this latter is used for the definition of the information about states of open systems with various meanings of the control parameter. Two kinds of open systems are considered. The first class of systems concerns those which with zero value of the control parameter are in an equilibrium state. The information on an equilibrium state is equal to zero. During self- organizing in the process of departing from an equilibrium state the information increases. For open systems of this class the conservation law for the sum of the information and entropy with all values of control parameter is proved. In open systems of the second class the equilibrium condition is impossible. For them the concept "norm of a chaoticity" is introduced. It allows to consider two kinds of processes of self-organization and to give the corresponding definitions of information. The statement is carried out on a number of (classical and quantum) examples of physical systems. The example of a medico-biological system also is considered.

  5. Open Source in Education

    ERIC Educational Resources Information Center

    Lakhan, Shaheen E.; Jhunjhunwala, Kavita

    2008-01-01

    Educational institutions have rushed to put their academic resources and services online, beginning the global community onto a common platform and awakening the interest of investors. Despite continuing technical challenges, online education shows great promise. Open source software offers one approach to addressing the technical problems in…

  6. Presto: Open Inquiry!

    ERIC Educational Resources Information Center

    Hermann, Ronald S.; Miranda, Rommel J.

    2010-01-01

    Although inquiry-based science teaching has been around since the 1960s, many teachers are slow to incorporate inquiry principles into their science lessons. The authors address this issue by using an analogy between a magician's card trick and open inquiry. This analogy was chosen to portray a difference of perspective and demonstrate how the…

  7. The Open Storage Dilemma

    ERIC Educational Resources Information Center

    Orcutt, Kimberly

    2011-01-01

    Over the past three decades, open storage facilities have been established at four major museums in order to address the long-standing problem of lack of gallery space for putting collections on view. While making tens of thousands of objects available to visitors represents a great leap forward in accessibility, it raises inherent questions about…

  8. Massive and Open

    ERIC Educational Resources Information Center

    Fasimpaur, Karen

    2013-01-01

    MOOCs--massive open online courses--are all the rage these days, with hundreds of thousands of participants signing up and investors plunking down millions to get a piece of the pie. Why is there so much excitement about this new disruptive form of online learning, and how does this model apply to professional learning for teachers? Traditional…

  9. Openers for Biology Classes.

    ERIC Educational Resources Information Center

    Gridley, C. Robert R.

    This teaching guide contains 200 activities that are suitable for openers and demonstrations in biology classes. Details are provided regarding the use of these activities. Some of the broad topics under which the activities are organized include algae, amphibians, bacteria, biologists, crustaceans, dinosaurs, ecology, evolution, flowering plants,…

  10. Open Systems Interconnection.

    ERIC Educational Resources Information Center

    Denenberg, Ray

    1985-01-01

    Discusses the need for standards allowing computer-to-computer communication and gives examples of technical issues. The seven-layer framework of the Open Systems Interconnection (OSI) Reference Model is explained and illustrated. Sidebars feature public data networks and Recommendation X.25, OSI standards, OSI layer functions, and a glossary.…

  11. Evaluating Open Source Portals

    ERIC Educational Resources Information Center

    Goh, Dion; Luyt, Brendan; Chua, Alton; Yee, See-Yong; Poh, Kia-Ngoh; Ng, How-Yeu

    2008-01-01

    Portals have become indispensable for organizations of all types trying to establish themselves on the Web. Unfortunately, there have only been a few evaluative studies of portal software and even fewer of open source portal software. This study aims to add to the available literature in this important area by proposing and testing a checklist for…

  12. TIRES, OPEN BURNING

    EPA Science Inventory

    The chapter describes available information on the health effects from open burning of rubber tires. It concentrates on the three known sources of detailed measurements: (1) a small-scale emissions characterization study performed by the U.S. EPA in a facility designed to simulat...

  13. Van: An Open Letter

    ERIC Educational Resources Information Center

    Tieman, John Samuel

    2011-01-01

    This essay is an open letter from a classroom teacher to a concerned citizen. The letter lists a variety of problems caused largely by standardization and the more corrosive effects of positivism. Many of these problems are unknown to those outside the immediate school setting. While the letter focuses on a specific setting, an inner city school…

  14. Surgical wound care - open

    MedlinePlus

    Surgical incision care; Open wound care ... your wound again with sutures, you need to care for it at home, since it may take ... Your health care provider will tell you how often to change your dressing . To prepare for the dressing change: Clean your ...

  15. An Open Forum Article.

    ERIC Educational Resources Information Center

    Thieblot, Bernice A.

    1990-01-01

    Presents an open letter addressed to Morton B. Zuckerman of "U.S. News & World Report" concerning the magazine's survey/article "America's Best Colleges" which received a great deal of public attention. Criticizes the survey for failing to help families make better choices among institutions and failing to encourage colleges to do a better job for…

  16. Open G2 strings

    NASA Astrophysics Data System (ADS)

    de Boer, Jan; de Medeiros, Paul; El-Showk, Sheer; Sinkovics, Annamaria

    2008-02-01

    We consider an open string version of the topological twist previously proposed for sigma-models with G2 target spaces. We determine the cohomology of open strings states and relate these to geometric deformations of calibrated submanifolds and to flat or anti-self-dual connections on such submanifolds. On associative three-cycles we show that the worldvolume theory is a gauge-fixed Chern-Simons theory coupled to normal deformations of the cycle. For coassociative four-cycles we find a functional that extremizes on anti-self-dual gauge fields. A brane wrapping the whole G2 induces a seven-dimensional associative Chern-Simons theory on the manifold. This theory has already been proposed by Donaldson and Thomas as the higher-dimensional generalization of real Chern-Simons theory. When the G2 manifold has the structure of a Calabi-Yau times a circle, these theories reduce to a combination of the open A-model on special Lagrangians and the open B + B-bar-model on holomorphic submanifolds. We also comment on possible applications of our results.

  17. Open Mind Conference

    NASA Technical Reports Server (NTRS)

    King, Alexander H.

    1995-01-01

    Open Mind, The Association for the achievement of diversity in higher education, met in conference in Albuquerque, New Mexico, between October 16 and 18, 1992. A number of workgroups met to discuss the goals, structure, and generally evaluate the Association and its achievements. A summary of the workgroup sessions and their minutes are included.

  18. Apraxia of lid opening.

    PubMed

    Ugarte, Marta; Teimory, Masoud

    2007-07-01

    We describe eyelid movement abnormalities in an 80-year-old man with apraxia of lid opening (ALO), resulting from involuntary levator palpebrae inhibition (ILPI) and pretarsal orbicularis oculi (OO) contraction. He was unable to open his lids at will following closure. Attempted eye opening resulted in forceful contraction of the frontalis muscle, backward thrusting of the head and lengthened lid closure. The inability to reopen the lids was not evident during spontaneous reflex blinking and he had no difficulty in keeping the lids open once they had been manually lifted up. There were no episodes of involuntary drooping of the eyelids or spasmodic contraction of the OO causing involuntary eyelid closure. Pursuit eye movements were not restricted, the vestibulo-ocular reflex was preserved and both horizontal and vertical saccades were normal. Despite the clinically visible persistence of pretarsal OO activity, treatment with botulinum toxin injections in the pretarsal and preseptal portions of the muscle did not reduce his difficulty in initiating lid elevation but he found some benefit using lid crutches. ALO is thought to be due to an abnormality in the supranuclear control of eyelid movement. ILPI can present either isolated or combined with blepharospasm. The excitatory levator palpebrae response necessary to lift the lids up is likely to be in very close connection with the OO antagonistic inhibitory response. Alterations in one or another pre-motor structure may result in inability to raise the lids due to inhibition of the levator palpebrae as well as persistence of the pretarsal OO.

  19. APS and Open Access

    NASA Astrophysics Data System (ADS)

    2011-03-01

    The movement toward Open Access continues to gain momentum. A brief review of APS efforts in this area will be presented by APS Editor in Chief, Gene Sprouse. Editors from Physical Review A, B, E, Focus, Letters, and X, Reviews of Modern Physics, and Physics will address your questions about publishing in this evolving environment.

  20. Open Educational Resources

    ERIC Educational Resources Information Center

    McShane, Michael Q.

    2017-01-01

    While digital products have made significant inroads into the educational resources market, textbooks and other print materials still command about 60 percent of sales. But whether print or digital, all of these commercial offerings now face threats from a burgeoning effort to promote "open" resources for education--that is, materials…

  1. Opening Reproducible Research

    NASA Astrophysics Data System (ADS)

    Nüst, Daniel; Konkol, Markus; Pebesma, Edzer; Kray, Christian; Klötgen, Stephanie; Schutzeichel, Marc; Lorenz, Jörg; Przibytzin, Holger; Kussmann, Dirk

    2016-04-01

    Open access is not only a form of publishing such that research papers become available to the large public free of charge, it also refers to a trend in science that the act of doing research becomes more open and transparent. When science transforms to open access we not only mean access to papers, research data being collected, or data being generated, but also access to the data used and the procedures carried out in the research paper. Increasingly, scientific results are generated by numerical manipulation of data that were already collected, and may involve simulation experiments that are completely carried out computationally. Reproducibility of research findings, the ability to repeat experimental procedures and confirm previously found results, is at the heart of the scientific method (Pebesma, Nüst and Bivand, 2012). As opposed to the collection of experimental data in labs or nature, computational experiments lend themselves very well for reproduction. Some of the reasons why scientists do not publish data and computational procedures that allow reproduction will be hard to change, e.g. privacy concerns in the data, fear for embarrassment or of losing a competitive advantage. Others reasons however involve technical aspects, and include the lack of standard procedures to publish such information and the lack of benefits after publishing them. We aim to resolve these two technical aspects. We propose a system that supports the evolution of scientific publications from static papers into dynamic, executable research documents. The DFG-funded experimental project Opening Reproducible Research (ORR) aims for the main aspects of open access, by improving the exchange of, by facilitating productive access to, and by simplifying reuse of research results that are published over the Internet. Central to the project is a new form for creating and providing research results, the executable research compendium (ERC), which not only enables third parties to

  2. FAST OPENING SWITCH

    DOEpatents

    Bender, M.; Bennett, F.K.; Kuckes, A.F.

    1963-09-17

    A fast-acting electric switch is described for rapidly opening a circuit carrying large amounts of electrical power. A thin, conducting foil bridges a gap in this circuit and means are provided for producing a magnetic field and eddy currents in the foil, whereby the foil is rapidly broken to open the circuit across the gap. Advantageously the foil has a hole forming two narrow portions in the foil and the means producing the magnetic field and eddy currents comprises an annular coil having its annulus coaxial with the hole in the foil and turns adjacent the narrow portions of the foil. An electrical current flows through the coil to produce the magnetic field and eddy currents in the foil. (AEC)

  3. Naval open systems architecture

    NASA Astrophysics Data System (ADS)

    Guertin, Nick; Womble, Brian; Haskell, Virginia

    2013-05-01

    For the past 8 years, the Navy has been working on transforming the acquisition practices of the Navy and Marine Corps toward Open Systems Architectures to open up our business, gain competitive advantage, improve warfighter performance, speed innovation to the fleet and deliver superior capability to the warfighter within a shrinking budget1. Why should Industry care? They should care because we in Government want the best Industry has to offer. Industry is in the business of pushing technology to greater and greater capabilities through innovation. Examples of innovations are on full display at this conference, such as exploring the impact of difficult environmental conditions on technical performance. Industry is creating the tools which will continue to give the Navy and Marine Corps important tactical advantages over our adversaries.

  4. Plasma opening switch

    DOEpatents

    Savage, Mark E.; Mendel, Jr., Clifford W.

    2001-01-01

    A command triggered plasma opening switch assembly using an amplification stage. The assembly surrounds a coaxial transmission line and has a main plasma opening switch (POS) close to the load and a trigger POS upstream from the main POS. The trigger POS establishes two different current pathways through the assembly depended on whether it has received a trigger current pulse. The initial pathway has both POS's with plasma between their anodes and cathodes to form a short across the transmission line and isolating the load. The final current pathway is formed when the trigger POS receives a trigger current pulse which energizes its fast coil to push the conductive plasma out from between its anode and cathode, allowing the main transmission line current to pass to the fast coil of the main POS, thus pushing its plasma out the way so as to establish a direct current pathway to the load.

  5. OpenGL VGIS

    NASA Astrophysics Data System (ADS)

    Faust, Nickolas L.; Bhaumik, Dharmajyoti; Hodges, Larry F.; Ribarsky, William; Koller, David; Lindstrom, Peter

    1996-06-01

    Georgia Tech has developed the Virtual GIS (VGIS) system, a real time visualization system for terrain, image, and geographic information systems (GIS) data sets. The initial systems developed at Georgia Tech were non- realtime, but had fast generation of perspective scenes from multisources data sets and the ability to query for GIS attributes associated with terrain of 3D structures inserted within the terrain. The basic concept of a virtual GIS was implemented in realtime using the Silicon Graphics International graphics language. This system has been extended in capability to allow realtime traversal within a very large geographic database and to show the finest detail information available when it is near to the view point. Extensive work has been done in the management of large arrays of information and the efficient paging of that information into the rendering system. An effective level of detail management system is implemented to dynamically allocate the appropriate amount of detail relative to the viewer location. A major use of this system has been in the area of battlefield visualization. The advent of OpenGL as a defacto standard has now made it possible to provide the VGIS capacity on a number of other platforms, thereby extending its usefulness to other applications and users. OpenGL has been developed as a general purpose Graphics rendering toolkit that will be supported on various computers and special purpose rendering systems. There are hardware and software implementations of OpenGL. This should allow VGIS to operate on many systems, taking advantage of specialized graphics hardware when it is present. This paper addresses the implementation of the VGIS system in OpenGL and the use of the system in driving the Evans and Sutherland Freedom series graphics rendering hardware.

  6. OpenEIS Algorithms

    SciTech Connect

    2013-07-29

    The OpenEIS Algorithm package seeks to provide a low-risk path for building owners, service providers and managers to explore analytical methods for improving building control and operational efficiency. Users of this software can analyze building data, and learn how commercial implementations would provide long-term value. The code also serves as a reference implementation for developers who wish to adapt the algorithms for use in commercial tools or service offerings.

  7. Open Source Software Development

    DTIC Science & Technology

    2011-01-01

    Agency’s XMM-Newton Observatory, the Sloan Digital Sky Survey, and others. These are three highly visible astrophysics research projects whose...In scientific fields like astrophysics that critically depend on software, open source is considered an essential precondition for research to...space are made, this in turn often leads to modification, extension, and new versions of the astronomical software in use that enable astrophysical

  8. Open SHMEM Reference Implementation

    SciTech Connect

    Pritchard, Howard; Curtis, Anthony; Welch, Aaron; Fridley, Andrew

    2016-05-12

    OpenSHMEM is an effort to create a specification for a standardized API for parallel programming in the Partitioned Global Address Space. Along with the specification the project is also creating a reference implementation of the API. This implementation attempts to be portable, to allow it to be deployed in multiple environments, and to be a starting point for implementations targeted to particular hardware platforms. It will also serve as a springboard for future development of the API.

  9. OMG: Open Molecule Generator.

    PubMed

    Peironcely, Julio E; Rojas-Chertó, Miguel; Fichera, Davide; Reijmers, Theo; Coulier, Leon; Faulon, Jean-Loup; Hankemeier, Thomas

    2012-09-17

    Computer Assisted Structure Elucidation has been used for decades to discover the chemical structure of unknown compounds. In this work we introduce the first open source structure generator, Open Molecule Generator (OMG), which for a given elemental composition produces all non-isomorphic chemical structures that match that elemental composition. Furthermore, this structure generator can accept as additional input one or multiple non-overlapping prescribed substructures to drastically reduce the number of possible chemical structures. Being open source allows for customization and future extension of its functionality. OMG relies on a modified version of the Canonical Augmentation Path, which grows intermediate chemical structures by adding bonds and checks that at each step only unique molecules are produced. In order to benchmark the tool, we generated chemical structures for the elemental formulas and substructures of different metabolites and compared the results with a commercially available structure generator. The results obtained, i.e. the number of molecules generated, were identical for elemental compositions having only C, O and H. For elemental compositions containing C, O, H, N, P and S, OMG produces all the chemically valid molecules while the other generator produces more, yet chemically impossible, molecules. The chemical completeness of the OMG results comes at the expense of being slower than the commercial generator. In addition to being open source, OMG clearly showed the added value of constraining the solution space by using multiple prescribed substructures as input. We expect this structure generator to be useful in many fields, but to be especially of great importance for metabolomics, where identifying unknown metabolites is still a major bottleneck.

  10. Open-Source GIS

    SciTech Connect

    Vatsavai, Raju; Burk, Thomas E; Lime, Steve

    2012-01-01

    The components making up an Open Source GIS are explained in this chapter. A map server (Sect. 30.1) can broadly be defined as a software platform for dynamically generating spatially referenced digital map products. The University of Minnesota MapServer (UMN Map Server) is one such system. Its basic features are visualization, overlay, and query. Section 30.2 names and explains many of the geospatial open source libraries, such as GDAL and OGR. The other libraries are FDO, JTS, GEOS, JCS, MetaCRS, and GPSBabel. The application examples include derived GIS-software and data format conversions. Quantum GIS, its origin and its applications explained in detail in Sect. 30.3. The features include a rich GUI, attribute tables, vector symbols, labeling, editing functions, projections, georeferencing, GPS support, analysis, and Web Map Server functionality. Future developments will address mobile applications, 3-D, and multithreading. The origins of PostgreSQL are outlined and PostGIS discussed in detail in Sect. 30.4. It extends PostgreSQL by implementing the Simple Feature standard. Section 30.5 details the most important open source licenses such as the GPL, the LGPL, the MIT License, and the BSD License, as well as the role of the Creative Commons.

  11. Open systems storage platforms

    NASA Technical Reports Server (NTRS)

    Collins, Kirby

    1992-01-01

    The building blocks for an open storage system includes a system platform, a selection of storage devices and interfaces, system software, and storage applications CONVEX storage systems are based on the DS Series Data Server systems. These systems are a variant of the C3200 supercomputer with expanded I/O capabilities. These systems support a variety of medium and high speed interfaces to networks and peripherals. System software is provided in the form of ConvexOS, a POSIX compliant derivative of 4.3BSD UNIX. Storage applications include products such as UNITREE and EMASS. With the DS Series of storage systems, Convex has developed a set of products which provide open system solutions for storage management applications. The systems are highly modular, assembled from off the shelf components with industry standard interfaces. The C Series system architecture provides a stable base, with the performance and reliability of a general purpose platform. This combination of a proven system architecture with a variety of choices in peripherals and application software allows wide flexibility in configurations, and delivers the benefits of open systems to the mass storage world.

  12. Primary Open Rhinoplasty.

    PubMed

    Momeni, Arash; Gruber, Ronald P

    2016-10-01

    Rhinoplasty is perhaps the most complex cosmetic surgery procedure performed today. It is characterized by an intricate interplay between form and function, with patient satisfaction being dependent not only on improvement of nasal appearance but also resolution of preexisting airway symptoms. The prerequisite for successful execution of this challenging procedure is a thorough understanding of nasal anatomy and physiology. Hence, a thorough preoperative evaluation is at least as important and the surgical skill in performing the operation. Establishing an accurate diagnosis through a comprehensive nasal analysis is obligatory. As to the surgical approach, much has been written about the advantages and disadvantages of closed vs open rhinoplasty. The more commonly chosen open approach has numerous advantages, including improved visualization without distortion, thus, enabling precise diagnosis and correction of deformities. While the surgical treatment of existing nasal deformities is tailored to the needs of the individual patient, the authors have noted a total of 10 essential components to form the foundation for successful technical execution of rhinoplasty. These include: (1) septoturbinotomy; (2) opening the nose; (3) humpectomy/spreader flaps; (4) tip-plasty; (5) supratip-plasty; (6) columellar strut; (7) dorsal augmentation; (8) nasal base reduction; (9) osteotomies; and (10) rim grafts. Postoperative, a variety of problems, such as edema, may be successfully addressed without surgical intervention. Diligent postoperative management is critical in ensuring a positive patient experience. Finally, a comprehensive understanding of possible postoperative complications, such as bleeding, ecchymosis, edema, and persistent or new iatrogenic deformity is mandatory prior to offering rhinoplasty to patients.

  13. Observation of a Charmed Baryon Decaying to D;{0}p at a Mass Near 2.94 GeV/c;{2}.

    PubMed

    Aubert, B; Barate, R; Bona, M; Boutigny, D; Couderc, F; Karyotakis, Y; Lees, J P; Poireau, V; Tisserand, V; Zghiche, A; Grauges, E; Palano, A; Pappagallo, M; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Battaglia, M; Brown, D N; Button-Schafer, J; Cahn, R N; Charles, E; Day, C T; Gill, M S; Groysman, Y; Jacobsen, R G; Kadyk, J A; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Lynch, G; Mir, L M; Oddone, P J; Orimoto, T J; Pripstein, M; Roe, N A; Ronan, M T; Wenzel, W A; Barrett, M; Ford, K E; Harrison, T J; Hart, A J; Hawkes, C M; Morgan, S E; Watson, A T; Goetzen, K; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Peters, K; Schroeder, T; Steinke, M; Boyd, J T; Burke, J P; Cottingham, W N; Walker, D; Cuhadar-Donszelmann, T; Fulsom, B G; Hearty, C; Knecht, N S; Mattison, T S; McKenna, J A; Khan, A; Kyberd, P; Saleem, M; Teodorescu, L; Blinov, V E; Bukin, A D; Druzhinin, V P; Golubev, V B; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Yu Todyshev, K; Best, D S; Bondioli, M; Bruinsma, M; Chao, M; Curry, S; Eschrich, I; Kirkby, D; Lankford, A J; Lund, P; Mandelkern, M; Mommsen, R K; Roethel, W; Stoker, D P; Abachi, S; Buchanan, C; Foulkes, S D; Gary, J W; Long, O; Shen, B C; Wang, K; Zhang, L; Hadavand, H K; Hill, E J; Paar, H P; Rahatlou, S; Sharma, V; Berryhill, J W; Campagnari, C; Cunha, A; Dahmes, B; Hong, T M; Kovalskyi, D; Richman, J D; Beck, T W; Eisner, A M; Flacco, C J; Heusch, C A; Kroseberg, J; Lockman, W S; Nesom, G; Schalk, T; Schumm, B A; Seiden, A; Spradlin, P; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dvoretskii, A; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Ryd, A; Samuel, A; Andreassen, R; Mancinelli, G; Meadows, B T; Sokoloff, M D; Blanc, F; Bloom, P C; Chen, S; Ford, W T; Hirschauer, J F; Kreisel, A; Nauenberg, U; Olivas, A; Ruddick, W O; Smith, J G; Ulmer, K A; Wagner, S R; Zhang, J; Chen, A; Eckhart, E A; Soffer, A; Toki, W H; Wilson, R J; Winklmeier, F; Zeng, Q; Altenburg, D D; Feltresi, E; Hauke, A; Jasper, H; Spaan, B; Brandt, T; Klose, V; Lacker, H M; Mader, W F; Nogowski, R; Petzold, A; Schubert, J; Schubert, K R; Schwierz, R; Sundermann, J E; Volk, A; Bernard, D; Bonneaud, G R; Grenier, P; Latour, E; Thiebaux, Ch; Verderi, M; Bard, D J; Clark, P J; Gradl, W; Muheim, F; Playfer, S; Robertson, A I; Xie, Y; Andreotti, M; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Petrella, A; Piemontese, L; Prencipe, E; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Finocchiaro, G; Pacetti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rama, M; Zallo, A; Buzzo, A; Capra, R; Contri, R; Lo Vetere, M; Macri, M M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Brandenburg, G; Chaisanguanthum, K S; Morii, M; Wu, J; Dubitzky, R S; Marks, J; Schenk, S; Uwer, U; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Flack, R L; Gaillard, J R; Nash, J A; Nikolich, M B; Panduro Vazquez, W; Chai, X; Charles, M J; Mallik, U; Meyer, N T; Ziegler, V; Cochran, J; Crawley, H B; Dong, L; Eyges, V; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Gristan, A V; Fritsch, M; Schott, G; Arnaud, N; Davier, M; Grosdidier, G; Höcker, A; Le Diberder, F; Lepeltier, V; Lutz, A M; Oyanguren, A; Pruvot, S; Rodier, S; Roudeau, P; Schune, M H; Stocchi, A; Wang, W F; Wormser, G; Cheng, C H; Lange, D J; Wright, D M; Chavez, C A; Forster, I J; Fry, J R; Gabathuler, E; Gamet, R; George, K A; Hutchcroft, D E; Payne, D J; Schofield, K C; Touramanis, C; Bevan, A J; Di Lodovico, F; Menges, W; Sacco, R; Brown, C L; Cowan, G; Flaecher, H U; Hopkins, D A; Jackson, P S; McMahon, T R; Ricciardi, S; Salvatore, F; Brown, D N; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Chia, Y M; Edgar, C L; Kelly, M P; Lafferty, G D; Naisbit, M T; Williams, J C; Yi, J I; Chen, C; Hulsbergen, W D; Jawahery, A; Lae, C K; Roberts, D A; Simi, G; Blaylock, G; Dallapiccola, C; Hertzbach, S S; Li, X; Moore, T B; Saremi, S; Staengle, H; Willocq, S Y; Cowan, R; Koeneke, K; Sciolla, G; Sekula, S J; Spitznagel, M; Taylor, F; Yamamoto, R K; Kim, H; Patel, P M; Potter, C T; Robertson, S H; Lazzaro, A; Lombardo, V; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Reidy, J; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Simard, M; Taras, P; Viaud, F B; Nicholson, H; Cavallo, N; De Nardo, G; Del Re, D; Fabozzi, F; Gatto, C; Lista, L; Monorchio, D; Paolucci, P; Piccolo, D; Sciacca, C; Baak, M; Bulten, H; Raven, G; Snoek, H L; Jessop, C P; Losecco, J M; Allmendinger, T; Benelli, G; Gan, K K; Honscheid, K; Hufnagel, D; Jackson, P D; Kagan, H; Kass, R; Pulliam, T; Rahimi, A M; Ter-Antonyan, R; Wong, Q K; Blout, N L; Brau, J; Frey, R; Igonkina, O; Lu, M; Rahmat, R; Sinev, N B; Strom, D; Strube, J; Torrence, E; Galeazzi, F; Gaz, A; Margoni, M; Morandin, M; Pompili, A; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; Benayoun, M; Chauveau, J; David, P; Del Buono, L; de la Vaissière, Ch; Hamon, O; Hartfiel, B L; John, M J J; Leruste, Ph; Malclès, J; Ocariz, J; Roos, L; Therin, G; Behera, P K; Gladney, L; Panetta, J; Biasini, M; Covarelli, R; Pioppi, M; Angelini, C; Batignani, G; Bettarini, S; Bucci, F; Calderini, G; Carpinelli, M; Cenci, R; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Mazur, M A; Morganti, M; Neri, N; Paoloni, E; Rizzo, G; Walsh, J; Haire, M; Judd, D; Wagoner, D E; Biesiada, J; Danielson, N; Elmer, P; Lau, Y P; Lu, C; Olsen, J; Smith, A J S; Telnov, A V; Bellini, F; Cavoto, G; D'Orazio, A; Di Marco, E; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Li Gioi, L; Mazzoni, M A; Morganti, S; Piredda, G; Polci, F; Safai Tehrani, F; Voena, C; Ebert, M; Schröder, H; Waldi, R; Adye, T; De Groot, N; Franek, B; Olaiya, E O; Wilson, F F; Emery, S; Gaidot, A; Ganzhur, S F; Hamel de Monchenault, G; Kozanecki, W; Legendre, M; Mayer, B; Vasseur, G; Yèche, Ch; Zito, M; Park, W; Purohit, M V; Weidemann, A W; Wilson, J R; Allen, M T; Aston, D; Bartoldus, R; Bechtle, P; Berger, N; Boyarski, A M; Claus, R; Coleman, J P; Convery, M R; Cristinziani, M; Dingfelder, J C; Dong, D; Dorfan, J; Dubois-Felsmann, G P; Dujmic, D; Dunwoodie, W; Field, R C; Glanzman, T; Gowdy, S J; Graham, M T; Halyo, V; Hast, C; Hyrn'ova, T; Innes, W R; Kelsey, M H; Kim, P; Kocian, M L; Leith, D W G S; Li, S; Libby, J; Luitz, S; Luth, V; Lynch, H L; Macfarlane, D B; Marsiske, H; Messner, R; Muller, D R; O'grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Stelzer, J; Su, D; Sullivan, M K; Suzuki, K; Swain, S K; Thompson, J M; Va'vra, J; van Bakel, N; Weaver, M; Weinstein, A J R; Wisniewski, W J; Wittgen, M; Wright, D H; Yarritu, A K; Yi, K; Young, C C; Burchat, P R; Edwards, A J; Majewski, S A; Petersen, B A; Roat, C; Wilden, L; Ahmed, S; Alam, M S; Bula, R; Ernst, J A; Jain, V; Pan, B; Saeed, M A; Wappler, F R; Zain, S B; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Ritchie, J L; Satpathy, A; Schilling, C J; Schwitters, R F; Izen, J M; Kitayama, I; Lou, X C; Ye, S; Bianchi, F; Gallo, F; Gamba, D; Bomben, M; Bosisio, L; Cartaro, C; Cossutti, F; Della Ricca, G; Dittongo, S; Grancagnolo, S; Lanceri, L; Vitale, L; Azzolini, V; Martinez-Vidal, F; Banerjee, Sw; Bhuyan, B; Brown, C M; Fortin, D; Hamano, K; Kowalewski, R; Nugent, I M; Roney, J M; Sobie, R J; Back, J J; Harrison, P F; Latham, T E; Mohanty, G B; Band, H R; Chen, X; Cheng, B; Dasu, S; Datta, M; Eichenbaum, A M; Flood, K T; Hollar, J J; Johnson, J R; Kutter, P E; Li, H; Liu, R; Mellado, B; Mihalyi, A; Mohapatra, A K; Pan, Y; Pierini, M; Prepost, R; Tan, P; Wu, S L; Yu, Z; Neal, H

    2007-01-05

    A search for charmed baryons decaying to D(0)p reveals two states: the Lambdac(2880)+ baryon and a previously unobserved state at a mass of [2939.8+/-1.3(stat)+/-1.0(syst)] MeV/c2 and with an intrinsic width of [17.5+/-5.2(stat)+/-5.9(syst)] MeV. Consistent and significant signals are observed for the K(-)pi(+) and K(-)pi(+)pi(-)pi(+) decay modes of the D0 in 287 fb(-1) annihilation data recorded by the BABAR detector at a center-of-mass energy of 10.58 GeV. There is no evidence in the D+p spectrum of doubly charged partners. The mass and intrinsic width of the Lambdac(2880)+ baryon and relative yield of the two baryons are also measured.

  14. A cross section measurement of charm hyperons Ξ$+\\atop{c}$ and Ξ$0\\atop{c}$ in 250 GeV p/K/π-nucleon interactions

    SciTech Connect

    Vergara, Juan Francisco Astorga

    1995-05-02

    Fermilab Experiment 769 used a charge-selected, hadron beam of mean energy 250 GeV/c, composed of pions, kaons, and protons, impinging on beryllium, aluminum, copper and tungsten targets. Using a sample of approximately 4000 Ξ$-\\atop{s}$ → Λ0π- decays, measurements of the charm baryon forward cross sections times branching ratio π±N → Ξ$+\\atop{c}$X and π±N → Ξ$0\\atop{c}$X are presented. Upper limits on α x BR are also determined for the states Ξ$+\\atop{c}$ → Ξ$-\\atop{s}$π+π+ and Ξ$0\\atop{c}$ → Ξ$-\\atop{s}$π+ produced in (p, π+, π-, K+, K-)-nucleon interactions.

  15. Searching for a hidden charm h1 state in the X(4660)→ηh1 and X(4660)→ηD*D¯* decays

    NASA Astrophysics Data System (ADS)

    Liang, Weihong; Albaladejo, M.; Oset, E.

    2013-10-01

    We explore the possibility of experimentally detecting a predicted h1[IG(JPC)=0-(1+-)] state of hidden charm made out from the D*D¯* interaction. The method consists in measuring the decay of X(4660) into ηD*D¯* and determining the binding energy with respect to the D*D¯* threshold from the shape of the D*D¯* invariant mass distribution. A complementary method consists in looking at the inclusive X(4660)→ηX decay and searching for a peak in the X invariant mass distribution. We make calculations to determine the partial decay width of X(4660)→ηh1 from the measured X(4660)→ηD*D¯* distribution. This estimation should serve in an experiment to foresee the possibility of detecting the h1 state on top of the background of inclusive events.

  16. Semileptonic B(s ) decays to excited charmed mesons with e , μ , τ and searching for new physics with R (D ** )

    NASA Astrophysics Data System (ADS)

    Bernlochner, Florian U.; Ligeti, Zoltan

    2017-01-01

    Semileptonic B meson decays into the four lightest excited charmed meson states (D0*, D1*, D1, and D2*) and their counterparts with s quarks are investigated, including the full lepton mass dependence. We derive the standard model predictions for the differential branching fractions, as well as predictions for the ratios of the semitauonic and light-lepton semileptonic branching fractions. These can be systematically improved using future measurements of the total or differential semileptonic rates to e and μ , as well as the two-body hadronic branching fractions with a pion, related by factorization to the semileptonic rate at maximal recoil. To illustrate the different sensitivities to new physics, we explore the dependence of the ratio of semitauonic and light-lepton branching fractions to possible four-fermion scalar interactions.

  17. Bispectrum from open inflation

    NASA Astrophysics Data System (ADS)

    Sugimura, Kazuyuki; Komatsu, Eiichiro

    2013-11-01

    We calculate the bispectrum of primordial curvature perturbations, ζ, generated during ``open inflation.'' Inflation occurs inside a bubble nucleated via quantum tunneling from the background false vacuum state. Our universe lives inside the bubble, which can be described as a Friedmann-Lemaȋtre-Robertson-Walker (FLRW) universe with negative spatial curvature, undergoing slow-roll inflation. We pay special attention to the issue of an initial state for quantum fluctuations. A ``vacuum state'' defined by a positive-frequency mode in de Sitter space charted by open coordinates is different from the Euclidean vacuum (which is equivalent to the so-called ``Bunch-Davies vacuum'' defined by a positive-frequency mode in de Sitter space charted by flat coordinates). Quantum tunneling (bubble nucleation) then modifies the initial state away from the original Euclidean vacuum. While most of the previous study on modifications of the initial quantum state introduces, by hand, an initial time at which the quantum state is modified as well as the form of the modification, an effective initial time naturally emerges and the form is fixed by quantum tunneling in open inflation models. Therefore, open inflation enables a self-consistent computation of the effect of a modified initial state on the bispectrum. We find a term which goes as langleζk1ζk2ζk3ranglepropto1/k12k34 in the so-called squeezed configurations, k3 << k1 ≈ k2, in agreement with the previous study on modifications of the initial state. The bispectrum in the exact folded limit, e.g., k1 = k2+k3, is also enhanced and remains finite. However, these terms are exponentially suppressed when the wavelength of ζ is smaller than the curvature radius of the universe. The leading-order bispectrum is equal to the usual one from single-field slow-roll inflation; the terms specific for open inflation arise only in the sub-leading order when the wavelength of ζ is smaller than the curvature radius.

  18. Bispectrum from open inflation

    SciTech Connect

    Sugimura, Kazuyuki; Komatsu, Eiichiro E-mail: komatsu@mpa-garching.mpg.de

    2013-11-01

    We calculate the bispectrum of primordial curvature perturbations, ζ, generated during ''open inflation.'' Inflation occurs inside a bubble nucleated via quantum tunneling from the background false vacuum state. Our universe lives inside the bubble, which can be described as a Friedmann-Lemaȋtre-Robertson-Walker (FLRW) universe with negative spatial curvature, undergoing slow-roll inflation. We pay special attention to the issue of an initial state for quantum fluctuations. A ''vacuum state'' defined by a positive-frequency mode in de Sitter space charted by open coordinates is different from the Euclidean vacuum (which is equivalent to the so-called ''Bunch-Davies vacuum'' defined by a positive-frequency mode in de Sitter space charted by flat coordinates). Quantum tunneling (bubble nucleation) then modifies the initial state away from the original Euclidean vacuum. While most of the previous study on modifications of the initial quantum state introduces, by hand, an initial time at which the quantum state is modified as well as the form of the modification, an effective initial time naturally emerges and the form is fixed by quantum tunneling in open inflation models. Therefore, open inflation enables a self-consistent computation of the effect of a modified initial state on the bispectrum. We find a term which goes as (ζ{sub k{sub 1}}ζ{sub k{sub 2}}ζ{sub k{sub 3}})∝1/k{sub 1}{sup 2}k{sub 3}{sup 4} in the so-called squeezed configurations, k{sub 3} << k{sub 1} ≈ k{sub 2}, in agreement with the previous study on modifications of the initial state. The bispectrum in the exact folded limit, e.g., k{sub 1} = k{sub 2}+k{sub 3}, is also enhanced and remains finite. However, these terms are exponentially suppressed when the wavelength of ζ is smaller than the curvature radius of the universe. The leading-order bispectrum is equal to the usual one from single-field slow-roll inflation; the terms specific for open inflation arise only in the sub-leading order

  19. Measurements of Open Heavy Flavor Production in Semi-leptonic Channels at STAR

    NASA Astrophysics Data System (ADS)

    Bai, Xiaozhi

    2016-12-01

    In these proceedings, we present the most recent results on Non-Photonic Electron (NPE) production from semi-leptonic decays of open heavy flavor hadrons with the STAR experiment at the Relativistic Heavy Ion Collider. We first report the updated results on NPE production in p+p collsions at √{sNN} = 200 GeV with much improved precision and wider kinematic coverage than previous ones. The nuclear modification factor RAA obtained with this new p+p reference in most central Au+Au collisions at √{sNN} = 200 GeV shows significant suppression at high pT, while the suppression reduces gradually towards more peripheral collisions. We also report new RAA results for NPE production in the 0-5% most central U+U collisions at √{sNN} = 193 GeV and compare with those in Au+Au collisions at √{sNN} = 200 GeV Calculations suggest that a 20% higher Bjorken energy density may be reached in U+U collisions, which can lead to a stronger suppression of NPE production. We find that the RAA in U+U collisions is systematically lower than that in 0-5% centrality Au+Au collisions, but still consistent within uncertainty. Finally we report the most recent development in measurements of NPE from open bottom and charm hadron decays separately, utilizing the new Heavy Flavor Tracker of the STAR experiment.

  20. The OpenSHMEM Analyzer

    SciTech Connect

    Hernandez, Oscar

    2014-07-30

    The OpenSHMEM Analyzer is a compiler-based tool that can help users detect errors and provide useful analyses about their OpenSHMEM applications. The tool is built on top of the OpenUH compiler (a branch of Open64 compiler) and presents OpenSHMEM information as feedback to the user. Some of the analyses it provides include checks for correct usage of symmetric variables in OpenSHMEM calls, out-of-bounds checks for symmetric data, checks for the correct initialization of pointers to symmetric data, and symmetric data alias information.

  1. The open science grid

    SciTech Connect

    Pordes, R.; /Fermilab

    2004-12-01

    The U.S. LHC Tier-1 and Tier-2 laboratories and universities are developing production Grids to support LHC applications running across a worldwide Grid computing system. Together with partners in computer science, physics grid projects and active experiments, we will build a common national production grid infrastructure which is open in its architecture, implementation and use. The Open Science Grid (OSG) model builds upon the successful approach of last year's joint Grid2003 project. The Grid3 shared infrastructure has for over eight months provided significant computational resources and throughput to a range of applications, including ATLAS and CMS data challenges, SDSS, LIGO, and biology analyses, and computer science demonstrators and experiments. To move towards LHC-scale data management, access and analysis capabilities, we must increase the scale, services, and sustainability of the current infrastructure by an order of magnitude or more. Thus, we must achieve a significant upgrade in its functionalities and technologies. The initial OSG partners will build upon a fully usable, sustainable and robust grid. Initial partners include the US LHC collaborations, DOE & NSF Laboratories and Universities & Trillium Grid projects. The approach is to federate with other application communities in the U.S. to build a shared infrastructure open to other sciences and capable of being modified and improved to respond to needs of other applications, including CDF, D0, BaBar, and RHIC experiments. We describe the application-driven, engineered services of the OSG, short term plans and status, and the roadmap for a consortium, its partnerships and national focus.

  2. Open-market innovation.

    PubMed

    Rigby, Darrell; Zook, Chris

    2002-10-01

    Companies in many industries are feeling immense pressure to improve their ability to innovate. Even in these tough economic times, executives have pushed innovation initiatives to the top of their priority lists, but they know that the best ideas aren't always coming out of their own R&D labs. That's why a growing number of companies are exploring the idea of open-market innovation--an approach that uses tools such as licensing, joint ventures, and strategic alliances to bring the benefits of free trade to the flow of new ideas. For instance, when faced with the unanticipated anthrax scare last fall, Pitney Bowes had nothing in its R&D pipeline to help its customers combat the deadly spores. So it sought help from outside innovators to come up with scanning and imaging technologies that could alert its customers to tainted letters and packages. And Dow Chemical and Cargill jointly produced a new form of plastic derived from plant starches--a breakthrough product that neither company could have created on its own. In this article, Bain consultants Darrell Rigby and Chris Zook describe the advantages and disadvantages of open-market innovation and the ways some companies are using it to gain competitive advantage. By importing ideas from the outside, the authors say, companies can collect more and better ideas from different kinds of experts. Creative types within a company will stick around longer if they know their ideas will eventually find a home--as internal R&D projects or as concepts licensed to outside buyers. Exporting ideas also gives companies a way to measure an innovation's real value. However, the authors warn against entering into open-market innovation without properly structuring deals: Xerox and TRW virtually gave away their innovations and had to stand by while other companies capitalized on them.

  3. Reusable fast opening switch

    DOEpatents

    Van Devender, J.P.; Emin, D.

    1983-12-21

    A reusable fast opening switch for transferring energy, in the form of a high power pulse, from an electromagnetic storage device such as an inductor into a load. The switch is efficient, compact, fast and reusable. The switch comprises a ferromagnetic semiconductor which undergoes a fast transition between conductive and metallic states at a critical temperature and which undergoes the transition without a phase change in its crystal structure. A semiconductor such as europium rich europhous oxide, which undergoes a conductor to insulator transition when it is joule heated from its conductor state, can be used to form the switch.

  4. Reusable fast opening switch

    DOEpatents

    Van Devender, John P.; Emin, David

    1986-01-01

    A reusable fast opening switch for transferring energy, in the form of a high power pulse, from an electromagnetic storage device such as an inductor into a load. The switch is efficient, compact, fast and reusable. The switch comprises a ferromagnetic semiconductor which undergoes a fast transition between conductive and insulating states at a critical temperature and which undergoes the transition without a phase change in its crystal structure. A semiconductor such as europium rich europhous oxide, which undergoes a conductor to insulator transition when it is joule heated from its conductor state, can be used to form the switch.

  5. Open airscrew VTOL concepts

    NASA Technical Reports Server (NTRS)

    Stepniewski, W. Z.; Tarczynski, T.

    1992-01-01

    The following concepts, based on using open airscrew(s) for VTOL maneuvers, are re-examined in light of current technology: (1) tip-driven helicopters, (2) compound helicopters; and (3) high-speed VTOL aircraft, represented by tiltrotors, tiltwings, retractoplanes and stoppable rotors. Criteria, permitting one to compare performance of aircraft using diverse lifting and propelling methods are established. Determination of currently possible performance, indication of near-future potentials, and comparison of those items with the baseline levels (as represented by contemporary shaft-driven helicopters, first generation tiltrotors, and commercial turboprop fixed-wind aircraft) constitutes bulk of this report.

  6. LISA: Opening New Horizons

    NASA Technical Reports Server (NTRS)

    Centrella, Joan M.

    2011-01-01

    The Laser Interferometer Space Antenna (LISA) is a space-borne observatory that will open the low frequency (approx.0.1-100 mHz) gravitational wave window on the universe. LISA will observe a rich variety of gravitational wave sources, including mergers of massive black holes, captures of stellar black holes by massive black holes in the centers of galaxies, and compact Galactic binaries. These sources are generally long-lived, providing unprecedented opportunities for multi-messenger astronomy in the transient sky. This talk will present an overview of these scientific arenas, highlighting how LISA will enable stunning discoveries in origins, understanding the cosmic order, and the frontiers of knowledge.

  7. Open scientific communication urged

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    In a report released last week the National Academy of Sciences' Panel on Scientific Communication and National Security concluded that the ‘limited and uncertain benefits’ of controls on the dissemination of scientific and technological research are ‘outweighed by the importance of scientific progress, which open communication accelerates, to the overall welfare of the nation.’ The 18-member panel, chaired by Dale R. Corson, president emeritus of Cornell University, was created last spring (Eos, April 20, 1982, p. 241) to examine the delicate balance between open dissemination of scientific and technical information and the U.S. government's desire to protect scientific and technological achievements from being translated into military advantages for our political adversaries.The panel dealt almost exclusively with the relationship between the United States and the Soviet Union but noted that there are ‘clear problems in scientific communication and national security involving Third World countries.’ Further study of this matter is necessary.

  8. Infant open heart surgery (image)

    MedlinePlus

    During open-heart surgery an incision is made through the breastbone (sternum) while the child is under general anesthesia. ... During open-heart surgery an incision is made through the breastbone (sternum) while the child is under general anesthesia.

  9. Limits to Open Class Performance?

    NASA Technical Reports Server (NTRS)

    Bowers, Albion H.

    2007-01-01

    This viewgraph presentation describes the limits to open class performance. The contents include: 1) Standard Class; 2) 15m/Racing Class; 3) Open Class; and 4) Design Solutions associated with assumptions, limiting parameters, airfoil performance, current trends, and analysis.

  10. Rating Openness: A Training Manual.

    ERIC Educational Resources Information Center

    Strachan, Angus; And Others

    This training manual explains the process of rating client openness from a short sample of dyadic help-intended interactions. The overview of client openness includes a discussion of the 10-week undergraduate program which teaches students to assess client openness based on behavioral ratings from the Group Assessment of Interpersonal Traits…

  11. OpenStudio - Fault Modeling

    SciTech Connect

    Frank, Stephen; Robertson, Joseph; Cheung, Howard; Horsey, Henry

    2014-09-19

    This software record documents the OpenStudio fault model development portion of the Fault Detection and Diagnostics LDRD project.The software provides a suite of OpenStudio measures (scripts) for modeling typical HVAC system faults in commercial buildings and also included supporting materials: example projects and OpenStudio measures for reporting fault costs and energy impacts.

  12. Open Education: A Learning Conversation

    ERIC Educational Resources Information Center

    Grush, Mary

    2010-01-01

    The term "open education" has been in use at least since the 1920s, when it emerged as an educational experiment in the Soviet Union. But since the spread of the internet in the late 20th century, open education has come to be inextricably associated with information technology. The William and Flora Hewlett Foundation Open Educational Resources…

  13. Educators Assess "Open Content" Movement

    ERIC Educational Resources Information Center

    Trotter, Andrew

    2009-01-01

    This article discusses the open-content movement in education. A small but growing movement of K-12 educators is latching on to educational resources that are "open," or free for others to use, change, and republish on web sites that promote sharing. The open-content movement is fueled partly by digital creation tools that make it easy…

  14. Open Educational Resources and Practices

    ERIC Educational Resources Information Center

    Blackall, Leigh

    2008-01-01

    This article looks at what constitutes an open educational resource and considers the issues and benefits to an educational institution that is moving to participate in open educational resource development and to adopt more open educational practices. It describes the initial steps in these directions being made by the Educational Development…

  15. Charmed and light pseudoscalar meson decay constants from four-flavor lattice QCD with physical light quarks

    SciTech Connect

    Bazavov, A.; Bernard, C.; Komijani, J.; Bouchard, C. M.; DeTar, C.; Foley, J.; Levkova, L.; Du, D.; Laiho, J.; El-Khadra, A. X.; Freeland, E. D.; Gámiz, E.; Gottlieb, Steven; Heller, U. M.; Kim, J.; Toussaint, D.; Kronfeld, A. S.; Mackenzie, P. B.; Simone, J. N.; Van de Water, R. S.; Zhou, R.; Neil, E. T.; Sugar, R.

    2014-10-30

    ="false">(10)(+29-32), where the errors are statistical and total systematic, respectively. The errors on our results for the charm decay constants and their ratio are approximately 2–4 times smaller than those of the most precise previous lattice calculations. We also obtain fK+/fπ

  16. Open Data, Open Source and Open Standards in chemistry: The Blue Obelisk five years on

    PubMed Central

    2011-01-01

    Background The Blue Obelisk movement was established in 2005 as a response to the lack of Open Data, Open Standards and Open Source (ODOSOS) in chemistry. It aims to make it easier to carry out chemistry research by promoting interoperability between chemistry software, encouraging cooperation between Open Source developers, and developing community resources and Open Standards. Results This contribution looks back on the work carried out by the Blue Obelisk in the past 5 years and surveys progress and remaining challenges in the areas of Open Data, Open Standards, and Open Source in chemistry. Conclusions We show that the Blue Obelisk has been very successful in bringing together researchers and developers with common interests in ODOSOS, leading to development of many useful resources freely available to the chemistry community. PMID:21999342

  17. The Open Science Grid

    SciTech Connect

    Pordes, Ruth; Kramer, Bill; Olson, Doug; Livny, Miron; Roy, Alain; Avery, Paul; Blackburn, Kent; Wenaus, Torre; Wurthwein, Frank; Gardner, Rob; Wilde, Mike; /Chicago U. /Indiana U.

    2007-06-01

    The Open Science Grid (OSG) provides a distributed facility where the Consortium members provide guaranteed and opportunistic access to shared computing and storage resources. OSG provides support for and evolution of the infrastructure through activities that cover operations, security, software, troubleshooting, addition of new capabilities, and support for existing and engagement with new communities. The OSG SciDAC-2 project provides specific activities to manage and evolve the distributed infrastructure and support its use. The innovative aspects of the project are the maintenance and performance of a collaborative (shared & common) petascale national facility over tens of autonomous computing sites, for many hundreds of users, transferring terabytes of data a day, executing tens of thousands of jobs a day, and providing robust and usable resources for scientific groups of all types and sizes. More information can be found at the OSG web site: www.opensciencegrid.org.

  18. An opening electromagnetic transducer

    NASA Astrophysics Data System (ADS)

    Sun, Yanhua; Kang, Yihua

    2013-12-01

    Tubular solenoids have been widely used without any change since an electrical wire was discovered to create magnetic fields by Hans Christian Oersted in 1820 and thereby the wire was first coiled as a helix into a solenoid coil by William Sturgeon in 1823 and was improved by Joseph Henry in 1829 [see http://www.myetymology.com/encyclopedia/History_of_the_electricity.html; J. M. D. Coey, Magnetism and Magnetic Materials (Cambridge University Press, New York, 2010); and F. Winterberg, Plasma Phys. 8, 541553 (1996)]. A magnetic control method of C-shaped carrying-current wire is proposed, and thereby a new opening electromagnetic transducer evidently differing from the traditional tubular solenoid is created, capable of directly encircling and centering the acted objects in it, bringing about convenient and innovative electromagnetic energy conversion for electromagnetic heating, electromagnetic excitation, physical information capture, and electro-mechanical motion used in science research, industry, and even biomedical activities.

  19. CCI Open Data Portal

    NASA Astrophysics Data System (ADS)

    Clarke, H.; Pechorro, E.; Bennett, V.; Farquhar, C.; Blower, J.

    2016-08-01

    The European Space Agency's (ESA's) Climate Change Initiative (CCI) Programme, producing harmonised datasets from long term Earth Observation satellite data records for a number of Essential Climate Variables (ECV's), provides a solid basis for climate science and modelling, for specialist application development and ultimately for European and global policy making.The resulting Climate Data Records (CDRs) represent a major investment of science, funding and personal effort, therefore extended access to those products is a key element of programme success.ECV datasets are currently being distributed through individual ECV teams, and access procedures and interfaces vary. To compliment and unify the work of the individual teams and to maximise the visibility and uptake of ECV data in the climate data user community within and beyond the CCI, a new ESA CCI project has started, to create a central open data portal and metadata catalogue for the ESA CCI project.This paper highlights key features of the Portal to date.

  20. Open water bells

    NASA Astrophysics Data System (ADS)

    Paramati, Manjula; Tirumkudulu, Mahesh S.

    2016-03-01

    A smooth circular moving liquid sheet is formed by the head-on impingement of two equal laminar water jets. We subject such a liquid sheet to uniform laminar air flow from one side such that the direction of air velocity is perpendicular to the liquid sheet. The pressure of the moving air deforms the liquid sheet giving rise to an open water bell. The water bell is symmetric suggesting that the gas flow around the bell is also symmetric and that the gravitational force is negligible. We have captured the shape of the water bells for varying air flow rates and for varying Weber numbers, and compared the measurements with theoretical predictions obtained from a force balance involving liquid inertia, surface tension, and pressure difference across the sheet. The pressure exerted by the gas phase on the front and the rear surface of the deformed liquid sheet is obtained from known results of flow past flat circular discs. The predicted steady state shapes match well with the measurements at low Weber numbers but differences are observed at high Weber numbers, where the sheet flaps and is no longer smooth. Interestingly, the shape predicted by assuming a constant pressure difference equal to the stagnation pressure over the whole of the front face of the sheet and free stream value over the whole of the rear face yields nearly identical results suggesting that an open water bell is similar to a closed water bell in that, to a good approximation, the pressure on either sides of the water bell is homogeneous.

  1. First measurement of the production of a W boson in association with a single charm quark in p anti-p collisions at s**(1/2) = 1.96-TeV

    SciTech Connect

    Aaltonen, T.; Adelman, J.; Akimoto, T.; Albrow, M.G.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Aoki, M.; /Illinois U., Urbana /Fermilab

    2007-11-01

    The authors present the first measurement of the production cross section of a W boson with a single charm quark (c) in p{bar p} collisions at {radical}s = 1.96 TeV, using soft muon tagging of c jets. In a data sample of {approx} 1.8 fb{sup -1}, recorded with the CDF II detector at the Fermilab Tevatron, they select events with W + 1 or 2 jets. They use the charge correlation between the W and the muon from the semileptonic decay of a charm hadron to extract the We signal. They measure {sigma}{sub Wc} (p{sub Tc} > 20 GeV/c, |{eta}{sub c}| < 1.5) x BR(W {yields} {ell}{nu}) = 9.8 {+-} 3.2 pb, in agreement with theoretical expectations.

  2. "The Open Library at AU" (Athabasca University): Supporting Open Access and Open Educational Resources

    ERIC Educational Resources Information Center

    Elliott, Colin; Fabbro, Elaine

    2015-01-01

    To address challenges that learners, course creators, librarians and academics involved with OER and MOOCs are facing when looking for scholarly materials, Athabasca University Library has initiated the development of "the Open Library at AU." This open library is a full library website that provides easy access to open and free…

  3. An open question.

    PubMed

    Ayling, John

    2004-01-01

    The lungs are surrounded by the pleural membranes. The visceral pleura directly covers the lung and is separated from the parietal pleura by a layer of surfactant, which reduces friction during respiratory movement. A potential space exists between these two layers, and they may become separated by fluid or air. A lung can collapse to the size of a fist under pressure from either. Standard treatment in the field for an open chest wound is an occlusive dressing. The first thing that can be used to occlude the wound is a gloved hand. After placing the dressing, evaluate the breath sounds and determine if they have improved. The dressing should be taped down on three sides, leaving one side open to relieve the pressure during exhalation (one-way valve). "Burping" the dressing involves lifting one side to make sure any pressure buildup is relieved, as occasionally the dressing can become adhered to the skin, which may lead to a tension pneumothorax. If, after ensuring the occlusive dressing is properly in place, the respiratory rate increases, distress level worsens, oxygen saturations fall and breath sounds decrease, then needle decompression is required. A neurovascular bundle is located underneath each rib, and it is important to avoid damage to that bundle by performing a decompression over the top of a rib. If the patient is intubated before the development of a tension pneumothorax, carefully evaluate the breath sounds (especially if the left-side sounds are diminished) to determine if the ET tube needs to be withdrawn a centimeter. The rescuer performing ventilation will usually recognize a tension pneumothorax by the difficulty in bagging the patient. Remember, when you perform a needle thoracentesis, you are creating an open chest wound. Early signs and symptoms of a tension pneumothorax include diminished or absent breath sounds, severe dyspnea, narrowing pulse pressure, tachycardia and restlessness. Neck veins may be distended, but this can be a normal

  4. Open Universities in India 2000: Brief Information.

    ERIC Educational Resources Information Center

    Bhushan, Bharat, Comp.; Lele, Nalini A., Comp.; Rausaria, R. R., Comp.

    This report contains information on the following open universities in India: (1) Indira Gandhi National Open University; (2) Dr. B.R. Ambedkar Open University; (3) Kota Open University; (4) Nalanda Open University; (5) Yashwantrao Chavan Maharashtra Open University; (6) Madhya Pradesh Bhoj (Open) University; (7) Dr. Babasaheb Ambedkar Open…

  5. Magnetically insulated opening switch research

    NASA Astrophysics Data System (ADS)

    McGeoch, M. W.; Kraft, R.

    1987-01-01

    We examine the feasibility of an opening switch concept based on magnetic insulation in a coaxial thermionic diode. It is found that the impedance ratio between closed and open states of the diode is marginal for efficient energy transfer via this type of switch. The open, or insulated state of the diode is characterized by current leakage across the magnetic field which is associated with the presence of plasma waves.

  6. OpenSSO Project Patches

    SciTech Connect

    NEBERGALL, CHRISTOPHER

    2009-06-08

    These are patches to Sun Microsystems open source OpenSSO project to fix various bugs and incorporate changes for Sandia and NNSA to use the product including fixes to improve OpenSSO's authentication and authorization abilities. These fixes will then by incorporated by Sun into their Sun Access Manager product, which is used by various DOE/NNSA plants and labs. Having Sun maintain these changes will relieve SNL and DOE from the cost of maintaining the changes themselves.

  7. Active Control of Open Cavities

    NASA Technical Reports Server (NTRS)

    UKeiley, Lawrence

    2010-01-01

    Open loop edge blowing was demonstrated as an effective method for reducing the broad band and tonal components of the fluctuating surface pressure in open cavities. Closed loop has been successfully applied to low Mach number open cavities. Need to push actuators that are viable for closed loop control in bandwidth and output. Need a better understanding of the effects of control on the flow through detailed measurements so better actuation strategies can be developed.

  8. Opening the cusp

    SciTech Connect

    Crooker, N.U. ); Toffoletto, F.R. ); Gussenhoven, M.S. )

    1991-03-01

    Defining the equatorward boundary of the cusp region in the ionosphere as the projection of the merging line from the magnetopause, the authors use a quantitative, geometrically realistic model to show how the local time span of the cusp increases with increasing merging rate for southward interplanetary magnetic field. Since the merging rate is fixed by the magnitude of the magnetic field component normal to the model magnetopause and then normalized to the cross-polar-cap potential, the result gives the variation of cusp local time span as a function of potential. From 0 kV up to 60 kV, the cusp expands from a point at noon to 2 hours on either side. Nearly tripling the voltage to 170 kV adds one more hour to each side, yielding a span from 0900 to 1500 LT. As an example of broad local time span during magnetically active periods, they present spacecraft observations of cusp particles during the grat storm of March 1989 that cover more than 8 hours of local time. An important aspect of the result is the demonstration that a merging line of fixed length on the magnetopause, as assumed in the model, maps to a projected length in the ionosphere that increases as the funnel-shaped cusp opens. This behavior contrasts with earlier models that have cleft rather than cusp geometry, where the projected merging line length is proportional only to its length on the magnetopause. The model results are used to construct the footprint of a flux transfer event by time variations of the merging rate, uniform along the length of the merging line. The cusp geometry distorts the field lines mapped from the magnetopause to yield footprints with dawn and dusk protrusions into the region of closed magnetic flux.

  9. OpenMDAO Framework Status

    NASA Technical Reports Server (NTRS)

    Naiman, Cynthia Gutierrez

    2010-01-01

    Advancing and exploring the science of Multidisciplinary Analysis & Optimization (MDAO) capabilities are high-level goals in the Fundamental Aeronautics Program s Subsonic Fixed Wing (SFW) project. The OpenMDAO team has made significant progress toward completing the Alpha OpenMDAO deliverable due in September 2010. Included in the presentation are: details of progress on developing the OpenMDAO framework, example usage of OpenMDAO, technology transfer plans, near term plans, progress toward establishing partnerships with external parties, and discussion of additional potential collaborations.

  10. Open Geoscience Database

    NASA Astrophysics Data System (ADS)

    Bashev, A.

    2012-04-01

    Currently there is an enormous amount of various geoscience databases. Unfortunately the only users of the majority of the databases are their elaborators. There are several reasons for that: incompaitability, specificity of tasks and objects and so on. However the main obstacles for wide usage of geoscience databases are complexity for elaborators and complication for users. The complexity of architecture leads to high costs that block the public access. The complication prevents users from understanding when and how to use the database. Only databases, associated with GoogleMaps don't have these drawbacks, but they could be hardly named "geoscience" Nevertheless, open and simple geoscience database is necessary at least for educational purposes (see our abstract for ESSI20/EOS12). We developed a database and web interface to work with them and now it is accessible at maps.sch192.ru. In this database a result is a value of a parameter (no matter which) in a station with a certain position, associated with metadata: the date when the result was obtained; the type of a station (lake, soil etc); the contributor that sent the result. Each contributor has its own profile, that allows to estimate the reliability of the data. The results can be represented on GoogleMaps space image as a point in a certain position, coloured according to the value of the parameter. There are default colour scales and each registered user can create the own scale. The results can be also extracted in *.csv file. For both types of representation one could select the data by date, object type, parameter type, area and contributor. The data are uploaded in *.csv format: Name of the station; Lattitude(dd.dddddd); Longitude(ddd.dddddd); Station type; Parameter type; Parameter value; Date(yyyy-mm-dd). The contributor is recognised while entering. This is the minimal set of features that is required to connect a value of a parameter with a position and see the results. All the complicated data

  11. Open University Staff Development Materials for Tutors of Open Learning.

    ERIC Educational Resources Information Center

    Langley, Anne; Perkins, Isabel

    1999-01-01

    Discusses the evolution of staff development and the new Supporting Open Learners' (SOL) materials at the United Kingdom Open University. Outlines objectives of the SOL program. Discusses issues arising from use of SOL materials, including instructional attitudes; modelling good practice; developing the reflective practitioner; perceived value;…

  12. 35. James River Visitor Center. Opened as an open air ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. James River Visitor Center. Opened as an open air visitor center in 1962, it was enclosed and a heating system installed in 1984 to allow use through the cooler months and help reduce vandalism. Looking northeast. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC

  13. Introduction: The Open Education Movement. Prespectives on Open Education

    ERIC Educational Resources Information Center

    Manolakes, Theodore

    1972-01-01

    Argues that we cannot transplant'' the open classroom from its English culture base and expect it to work in our society. Suggests that we be wary of cheap'' innovations and that open classrooms should be viewed as an alternative to our formal programs rather than as a panacea for all our ecucational problems. Recommends the evolution of a small…

  14. Equipping the Open-Plan School, Equipping for Open Education.

    ERIC Educational Resources Information Center

    Lassiter, Frank

    The performance specifications of furniture and equipment for open education and open-plan schools differ from conventional classroom furniture in that it must be easily moved, have a range of dimensions, contain multipurpose interchangeable components, and be designed to accommodate a variety of student/teacher uses. The author suggests some…

  15. The Open Learning Object Model to Promote Open Educational Resources

    ERIC Educational Resources Information Center

    Fulantelli, Giovanni; Gentile, Manuel; Taibi, Davide; Allegra, Mario

    2008-01-01

    In this paper we present the results of research work, that forms part of the activities of the EU-funded project SLOOP: Sharing Learning Objects in an Open Perspective, aimed at encouraging the definition, development and management of Open Educational Resources based on the Learning Object paradigm (Wiley, 2000). We present a model of Open…

  16. Charmed Baryon Spectroscopy and Search for $CP$ Violation in $D^0 \\to K_S^0\\,\\pi^+\\,\\pi^-$ at CDF

    SciTech Connect

    Wick, Felix

    2011-10-28

    In this thesis two different analyses are presented, namely the measurements of the properties of $\\Lambda_c(2595)^+$, $\\Lambda_c(2625)^+$, $\\Sigma_c(2455)^{++,0}$, and $\\Sigma_c(2520)^{++,0}$ baryons as well as the search for $CP$ violation in the Dalitz plot of the decay $D^0 \\to K_S^0\\,\\pi^+\\,\\pi^-$. Both studies are performed using data corresponding to 5.2\\,\\invfb respective 6.0\\,\\invfb of integrated luminosity from $p\\bar{p}$ collisions at a center-of-mass energy of 1.96\\,TeV, collected with the CDF~II detector at the Fermilab Tevatron. The masses and decay widths of the mentioned charmed baryon resonances are measured with uncertainties comparable to the world averages for $\\Sigma_c$ states, and significantly smaller uncertainties than the world averages for excited $\\Lambda_c^+$ states. No hints for any $CP$ violating effects in the resonant substructure of $D^0 \\to K_S^0\\,\\pi^+\\,\\pi^-$ are found.

  17. Observation of a Charmed Baryon Decaying to D0 p at a Mass Near 2.94 GeV/c2

    SciTech Connect

    Aubert, B.

    2006-03-29

    A search for charmed baryons decaying to D{sup 0}p reveals two states: the {Lambda}{sub c}(2880){sup +} baryon and a previously unobserved state at a mass of [2939.8 {+-} 1.3 (stat.) {+-} 1.0 (syst.)] MeV/c{sup 2} and with an intrinsic width of [17.5 {+-} 5.2 (stat.) {+-} 5.9 (syst.)] MeV. Consistent and significant signals are observed for the K{sup -}{pi}{sup +} and K{sup -}{pi}{sup +}{pi}{sup -}{pi}{sup +} decay modes of the D{sup 0} in 287 fb{sup -1} annihilation data recorded by the BABAR detector at a center-of-mass energy of 10.58 GeV. There is no evidence in the D{sup +}p spectrum of doubly-charged partners. The mass and intrinsic width of the {Lambda}{sub c}(2880){sup +} baryon and relative yield of the two baryons are also measured.

  18. Open Science: A Zealot's View

    EPA Science Inventory

    Open science encompasses many concepts, but most agree that for science to be truly open four things must be true. First, all components of the scientific project must be freely available including manuscripts, code, and data. Second, others must be able to repeat your work and ...

  19. Expansive Openness in Teacher Practice

    ERIC Educational Resources Information Center

    Kimmons, Royce

    2016-01-01

    Background/Context: Previous work on the use of open educational resources in K-12 classrooms has generally focused on issues related to cost. The current study takes a more expansive view of openness that also accounts for adaptation and sharing in authentic classroom contexts. Purpose/Objective/Research Question/Focus of Study The study seeks to…

  20. OpenSM Monitoring System

    SciTech Connect

    Meier, T. A.

    2015-04-17

    The OpenSM Monitoring System includes a collection of diagnostic and monitoring tools for use on Infiniband networks. The information this system gathers is obtained from a service, which in turn is obtained directly from the OpenSM subnet manager.

  1. Teacher Beliefs and Open Education.

    ERIC Educational Resources Information Center

    Wlodarczyk, Steven

    The beliefs of teachers with respect to open education are discussed. The point is made that a teacher who expresses a desire to move toward an open classroom environment must first come to trust beliefs and values that may be alien to her own beliefs and must learn to value the following ideas: (1) The life of a child in school is not a…

  2. OPEN DATA FOR DISCOVERY SCIENCE.

    PubMed

    Payne, Philip R O; Huang, Kun; Shah, Nigam H; Tenenbaum, Jessica

    2016-01-01

    The modern healthcare and life sciences ecosystem is moving towards an increasingly open and data-centric approach to discovery science. This evolving paradigm is predicated on a complex set of information needs related to our collective ability to share, discover, reuse, integrate, and analyze open biological, clinical, and population level data resources of varying composition, granularity, and syntactic or semantic consistency. Such an evolution is further impacted by a concomitant growth in the size of data sets that can and should be employed for both hypothesis discovery and testing. When such open data can be accessed and employed for discovery purposes, a broad spectrum of high impact end-points is made possible. These span the spectrum from identification of de novo biomarker complexes that can inform precision medicine, to the repositioning or repurposing of extant agents for new and cost-effective therapies, to the assessment of population level influences on disease and wellness. Of note, these types of uses of open data can be either primary, wherein open data is the substantive basis for inquiry, or secondary, wherein open data is used to augment or enrich project-specific or proprietary data that is not open in and of itself. This workshop is concerned with the key challenges, opportunities, and methodological best practices whereby open data can be used to drive the advancement of discovery science in all of the aforementioned capacities.

  3. Opening the door to innovation.

    PubMed

    Schuurman, Janine; Graus, Yvo F; Labrijn, Aran F; Ruuls, Sigrid; Parren, Paul W H I

    2014-01-01

    Open innovation is the new buzz, with initiatives popping up left and right. Here, we give a personal perspective on a very successful, knowledge-driven innovation initiated in an academia- industry alliance, which culminated in technology platforms that enable the generation of therapeutic antibodies with novel properties. To start, we provide a general background on open innovation in the drug development field.

  4. An open architecture motion controller

    NASA Technical Reports Server (NTRS)

    Rossol, Lothar

    1994-01-01

    Nomad, an open architecture motion controller, is described. It is formed by a combination of TMOS, C-WORKS, and other utilities. Nomad software runs in a UNIX environment and provides for sensor-controlled robotic motions, with user replaceable kinematics. It can also be tailored for highly specialized applications. Open controllers such as Nomad should have a major impact on the robotics industry.

  5. Open Archives: A Key Convergence.

    ERIC Educational Resources Information Center

    Tennant, Roy

    2000-01-01

    Discusses interoperability as a key challenge to digital libraries and describes efforts of the Open Archives initiative (formerly Universal Preprint Service initiative) to develop an open architecture that supports simultaneous searching and retrieval of papers from disparate archives. Highlights include scientific information and journal…

  6. Digital Scholarship and Open Access

    ERIC Educational Resources Information Center

    Losoff, Barbara; Pence, Harry E.

    2010-01-01

    Open access publications provide scholars with unrestricted access to the "conversation" that is the basis for the advancement of knowledge. The large number of open access journals, archives, and depositories already in existence demonstrates the technical and economic viability of providing unrestricted access to the literature that is the…

  7. Open Universities: A British Tradition?

    ERIC Educational Resources Information Center

    Bell, Robert; Tight, Malcolm

    This book challenges the notion that the open university is a recent invention and argues that in Britain there is a long and varied tradition of similar developments, and that there has been a significant 20th century reduction in the openness of universities, particularly in the period from the 1950s to the 1970s. Selected examples of open…

  8. Open Genetic Code: on open source in the life sciences.

    PubMed

    Deibel, Eric

    2014-01-01

    The introduction of open source in the life sciences is increasingly being suggested as an alternative to patenting. This is an alternative, however, that takes its shape at the intersection of the life sciences and informatics. Numerous examples can be identified wherein open source in the life sciences refers to access, sharing and collaboration as informatic practices. This includes open source as an experimental model and as a more sophisticated approach of genetic engineering. The first section discusses the greater flexibly in regard of patenting and the relationship to the introduction of open source in the life sciences. The main argument is that the ownership of knowledge in the life sciences should be reconsidered in the context of the centrality of DNA in informatic formats. This is illustrated by discussing a range of examples of open source models. The second part focuses on open source in synthetic biology as exemplary for the re-materialization of information into food, energy, medicine and so forth. The paper ends by raising the question whether another kind of alternative might be possible: one that looks at open source as a model for an alternative to the commodification of life that is understood as an attempt to comprehensively remove the restrictions from the usage of DNA in any of its formats.

  9. [Severe limitation of mouth opening].

    PubMed

    Reiter, S; Winocur, E; Gavish, A; Eli, I

    2004-10-01

    Limitation of mouth opening is a common source of referral to an orofacial pain clinic with a proposed diagnosis of Temporomandibular Joint Dysfunction (TMD). The word "trismus" is defined by the American academy of orofacial pain as: "Myospasm of masticatory muscles specifically causing limited jaw opening; early symptom of tetanus". Therefore, once trismus is suspected, TMD should be ruled out. However, it is not uncommon to find the usage of this term to describe severe limitation of opening by causes other than myospasm, therefore posing the risk of misdiagnosis. The purpose of this article is to describe the differential diagnosis of hard end limitation of opening with emphasis on the clinical tools used to differentiate between muscle source of hard end limitation and other sources of hard end limitation. Several cases of hard end limitation of mouth opening are presented and through them major principles of orofacial diagnosis are discussed.

  10. OpenStudio: An Open Source Integrated Analysis Platform; Preprint

    SciTech Connect

    Guglielmetti, R.; Macumber, D.; Long, N.

    2011-12-01

    High-performance buildings require an integrated design approach for all systems to work together optimally; systems integration needs to be incorporated in the earliest stages of design for efforts to be cost and energy-use effective. Building designers need a full-featured software framework to support rigorous, multidisciplinary building simulation. An open source framework - the OpenStudio Software Development Kit (SDK) - is being developed to address this need. In this paper, we discuss the needs that drive OpenStudio's system architecture and goals, provide a development status report (the SDK is currently in alpha release), and present a brief case study that illustrates its utility and flexibility.

  11. NASA Open Rotor Noise Research

    NASA Technical Reports Server (NTRS)

    Envia, Ed

    2010-01-01

    Owing to their inherent fuel burn efficiency advantage compared with the current generation high bypass ratio turbofan engines, there is resurgent interest in developing open rotor propulsion systems for powering the next generation commercial aircraft. However, to make open rotor systems truly competitive, they must be made to be acoustically acceptable too. To address this challenge, NASA in collaboration with industry is exploring the design space for low-noise open rotor propulsion systems. The focus is on the system level assessment of the open rotors compared with other candidate concepts like the ultra high bypass ratio cycle engines. To that end there is an extensive research effort at NASA focused on component testing and diagnostics of the open rotor acoustic performance as well as assessment and improvement of open rotor noise prediction tools. In this presentation and overview of the current NASA research on open rotor noise will be provided. Two NASA projects, the Environmentally Responsible Aviation Project and the Subsonic Fixed Wing Project, have been funding this research effort.

  12. Success factors for open access.

    PubMed

    Till, James E

    2003-01-01

    Open access to the peer-reviewed primary research literature would greatly facilitate knowledge transfer between the creators and the users of the results of research and scholarship. Criteria are needed to assess the impact of recent initiatives, such as the Budapest Open Access Initiative. For example, how many open-access research journals exist within a given field, and what is the reputation of each one? And, how many openly-accessible institutional e-print archives have been created and how many are actually are being used by researchers and scholars? A simple approach to an assessment of the open-access portion of the medical literature is described, and some preliminary results are summarized. These preliminary results point to the need for incentives to foster the implementation of initiatives such as the Budapest Open Access Initiative. An example of an incentive model is proposed, where an agency or foundation that provides peer-reviewed grants-in-aid to researchers establishes an e-print archive. Only current grantees of the agency would be eligible to post reports about the results of research projects or programs that have been supported by the agency. Some advantages and implications of this particular model are outlined. It is suggested that incentive models of this kind are needed to increase the likelihood that open access to the primary medical research literature will soon reach a "tipping point" and move quickly toward wide acceptance.

  13. An open source model for open access journal publication.

    PubMed

    Blesius, Carl R; Williams, Michael A; Holzbach, Ana; Huntley, Arthur C; Chueh, Henry

    2005-01-01

    We describe an electronic journal publication infrastructure that allows a flexible publication workflow, academic exchange around different forms of user submissions, and the exchange of articles between publishers and archives using a common XML based standard. This web-based application is implemented on a freely available open source software stack. This publication demonstrates the Dermatology Online Journal's use of the platform for non-biased independent open access publication.

  14. The VLT Opening Symposium

    NASA Astrophysics Data System (ADS)

    1999-02-01

    Scientists Meet in Antofagasta to Discuss Front-Line Astrophysics To mark the beginning of the VLT era, the European Southern Observatory is organizing a VLT Opening Symposium which will take place in Antofagasta (Chile) on 1-4 March 1999, just before the start of regular observations with the ESO Very Large Telescope on April 1, 1999. The Symposium occupies four full days and is held on the campus of the Universidad Catolica del Norte. It consists of plenary sessions on "Science in the VLT Era and Beyond" and three parallel Workshops on "Clusters of Galaxies at High Redshift" , "Star-way to the Universe" and "From Extrasolar Planets to Brown Dwarfs" . There will be many presentations of recent work at the major astronomical facilities in the world. The meeting provides a very useful forum to discuss the latest developments and, in this sense, contributes to the planning of future research with the VLT and other large telescopes. The symposium will be opened with a talk by the ESO Director General, Prof. Riccardo Giacconi , on "Paranal - an observatory for the 21st century". It will be followed by reports about the first scientific results from the main astronomical instruments on VLT UT1, FORS1 and ISAAC. The Symposium participants will see the VLT in operation during special visits to the Paranal Observatory. Press conferences are being arranged each afternoon to inform about the highlights of the conference. After the Symposium, there will be an Official Inauguration Ceremony at Paranal on 5 March Contributions from ESO ESO scientists will make several presentations at the Symposium. They include general reviews of various research fields as well as important new data and results from the VLT that show the great potential of this new astronomical facility. Some of the recent work is described in this Press Release, together with images and spectra of a large variety of objects. Note that all of these data will soon become publicly available via the VLT Archive

  15. Skinner and the Open Classroom

    ERIC Educational Resources Information Center

    Madden, Peter C.

    1972-01-01

    Author examines the implications of a major scientific work of behavioral ressearch and concludes that positive reinforcement techniques will make possible the creation of an open classroom, that, in itself, will minimize the negative effects of control. (Author/RK)

  16. OpenEIS. Users Guide

    SciTech Connect

    Kim, Woohyun; Lutes, Robert G.; Katipamula, Srinivas; Haack, Jereme N.; Carpenter, Brandon J.; Akyol, Bora A.; Monson, Kyle E.; Allwardt, Craig H.; Kang, Timothy; Sharma, Poorva

    2015-02-28

    This document is a users guide for OpenEIS, a software code designed to provide standard methods for authoring, sharing, testing, using and improving algorithms for operational building energy efficiency.

  17. Open Research Networking Gadgets (ORNG).

    PubMed

    Meeks, Eric; Turner, Brian; Chatterjee, Anirvan; Yuan, Leslie

    2013-01-01

    In 2009, UCSF embarked on a journey to utilize industry-backed application standards to extend our research networking tool of choice, Profiles, into a software platform. The goal of this work was to bring extended data and functionality to our researchers' online environment and make it easier to share independently-developed software innovations with others. We used the OpenSocial standard to achieve these ends. In 2012 we extended the OpenSocial standard to support RDF and the VIVO Ontology in an effort titled "Open Research Network Gadgets" or ORNG. Our work has been adopted by two major academic open source research networking tools - Harvard Catalyst Profiles and VIVO, and the ORNG standard is now available for use by the 50+ institutions that use recent versions of the two software products.

  18. UK to support open access

    NASA Astrophysics Data System (ADS)

    Banks, Michael

    2012-08-01

    The UK government has "widely accepted" the recommendations of a major report into open-access publishing that was released in June by a 15-strong working group led by the British sociologist Janet Finch.

  19. LAVA Applications to Open Rotors

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin C.; Housman, Jeff; Barad, Mike; Brehm, Christoph

    2015-01-01

    Outline: LAVA (Launch Ascent Vehicle Aerodynamics); Introduction; Acoustics Related Applications; LAVA Applications to Open Rotor; Structured Overset Grids; Cartesian Grid with Immersed Boundary; High Speed Case; High Speed Case with Plate Low Speed Case.

  20. Spleen removal - open - adults - discharge

    MedlinePlus

    ... sneeze to ease discomfort and protect your incision. Wound Care Care for your incision as instructed . If ... Instructions Getting out of bed after surgery Surgical wound care - open Wet to dry dressing changes Review ...