Science.gov

Sample records for open charm muoproduction

  1. Open charm measurements in p + p collisions at STAR

    NASA Astrophysics Data System (ADS)

    Tlustý, David; Star Collaboration

    2014-05-01

    In this article, we will present the STAR results of open charm hadron and non-photonic productions at mid-rapidity in p+p collisions at = 200 and 500 GeV. Open charm mesons are reconstructed directly via hadronic decay channels with daughter particles identified by STAR Time Projection Chamber (TPC) and Time Of Flight (TOF) detectors. Non-photonic electron yields are calculated by subtracting photonic electrons from inclusive electrons identified using TPC and Electromagnetic Calorimeter. These measurements are compared to theoretical model calculations and physics implications will be discussed.

  2. Decay properties of charm and beauty open flavour mesons

    SciTech Connect

    Kumar Rai, Ajay; Vinodkumar, P. C.

    2007-10-03

    The masses of S and P states, pseudoscalar and vector decay constants, leptonic, semileptonic decay widths of charm (D) and beauty (B) open flavour mesons have been computed in the framework of Coulomb and power potential of the form V(r) = -({alpha}{sub c}/r)+Ar{sup v}. The results are compared with other theoretical as well as experimental results.

  3. Open charm and beauty at ultrarelativistic heavy ion colliders.

    PubMed

    Djordjevic, Magdalena; Gyulassy, Miklos; Wicks, Simon

    2005-03-25

    Important goals of BNL RHIC and CERN LHC experiments with ion beams include the creation and study of new forms of matter, such as the quark gluon plasma. Heavy quark production and attenuation provide unique tomographic probes of that matter. We predict the suppression pattern of open charm and beauty in Au+Au collisions at RHIC and LHC energies based on the DGLV formalism of radiative energy loss. A cancellation between effects due to the sqrt[s] energy dependence of the high p(T) slope and heavy quark energy loss is predicted to lead to surprising similarity of heavy quark suppression at RHIC and LHC. PMID:15903848

  4. Combined study of 2 S and 1 D open-charm mesons with natural spin-parity

    NASA Astrophysics Data System (ADS)

    Chen, Bing; Liu, Xiang; Zhang, Ailin

    2015-08-01

    In this paper, we perform a combined study of 2 S and 1 D open-charm mesons with natural spin-parity. Our results indicate that D1*(2600 )/Ds1 *(2700 ) and D1*(2760 )/Ds1 *(2860 ) are predominantly the 2 3S1 3 and 1 3D1 charmed/charmed-strange mesons, respectively, while D3*(2760 )/Ds3 *(2860 ) can be regarded as the 1 3<.SUP>D3 3 charmed/charmed-strange mesons. In addition, some typical ratios of partial widths of the discussed natural states are predicted, by which future experiments can test these assignments, especially for the 2 S -1 D mixing scheme existing in D1*(2600 )/D1*(2760 ) and Ds1 *(2700 )/Ds1 *(2860 ).

  5. Trigluon correlations and single transverse spin asymmetry in open charm production

    SciTech Connect

    Kang Zhongbo; Qiu Jianwei

    2009-08-04

    We study the single transverse-spin asymmetry for open charm production in the semiinclusive lepton-hadron deep inelastic scattering (SIDIS) and pp collision. Within collinear factorization approach, we find that the asymmetry is sensitive to the twist-3 trigluon correlation functions in the proton. With a simple model for the trigluon correlation functions, we estimate the asymmetry in SIDIS for both COMPASS and eRHIC kinematics, as well as in pp collision at RHIC energy. We discuss the possibilities of extracting the trigluon correlation functions in these experiments.

  6. B Decays to Open And Hidden Charm at BaBar

    SciTech Connect

    Ricciardi, S.; /Royal Holloway, U. of London

    2005-10-12

    A wealth of new measurements of hadronic B decays to open charm and charmonium have been performed on the data sample collected by the BaBar experiment at the PEP-II e{sup +}e{sup -} B-factory. We report the first measurement of the rates for inclusive charm production separately for charged and neutral B mesons. Combining measurements of the decay rate of B{sup 0} {yields} D*{sub s}{sup +}D*{sup -} obtained with a partial reconstruction technique and the complete reconstruction of B{sup 0} {yields} D*{sub s}{sup +}D*{sup -} with D{sub s}{sup +} {yields} {phi}{pi}{sup +}, we obtain the most precise measurement of {Beta}(D{sub s}{sup +} {yields} {phi}{pi}{sup +}). We present an update of the measurements of the branching fractions of exclusive B decays to J/{psi}, {psi}(2S), {chi}{sub c1}, {chi}{sub c2} and a kaon or a K*. In addition, we show preliminary results on exclusive decay rates to final states with baryons, or newly-discovered particles, such as D*{sub sJ}(2317), D{sub sJ}(2460){sup +}, and the X(3872).

  7. Study of open charm production in proton+proton collisions at center of mass energies = 200 GeV

    NASA Astrophysics Data System (ADS)

    Butsyk, Sergey

    2005-11-01

    The PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) with its unique electron identification system enables us to perform high precision measurements of electron yields. By measuring electron production at high transverse momentum, we can disentangle the contribution of electrons originating from semi-leptonic decays of heavy quarks (charm or bottom) from the less interesting "photonic" decay modes of light mesons. D/B mesons carry single heavy valence quarks and are usually referred to as "Open Charm" and "Open Bottom" particles, differentiating them from Closed Flavor particles such as J/psi, and Y mesons. Due to the large mass of the heavy quarks, their production mechanisms can be adequately explained by perturbative QCD (pQCD) theory. This dissertation presents the measurement of electrons from heavy flavor decays in proton + proton collisions at RHIC at collision energy s = 200 GeV over a wide range of transverse moment (0.4 < pT < 5 GeV/c). Two independent analysis techniques of signal extraction were performed. The "Cocktail" subtraction is based on the calculation and subtraction of the expected "photon-related" electron background based upon measured yields of light mesons. The "Converter" subtraction is based upon a direct measurement of photon yields achieved introducing additional material in the PHENIX acceptance and deducing the photon abundance by measuring the increase in electron yield. This is the first measurement of the Open Charm crossection at this collision energy and it is an important baseline measurement for comparison with nucleus + nucleus collisions. The modification of Open Charm production in heavy ion collisions compared to the presented p + p result can be used to study the final state interaction of the heavy quarks with hot dense matter inside the collisions. The results of the Open Charm measurements are compared to current pQCD predictions both in Leading Order (LO) O a2s and Next-to-Leading Order (NLO) O a3s

  8. The Renaissance of Charm Physics

    SciTech Connect

    Briere, Roy A.

    2006-11-17

    A review of charm physics is presented, with an emphasis on decays of open-charm particles. An ongoing renaissance is in progress, with charm playing an important role in weak flavor physics. It is the unique venue among up-like quarks to perform precision tests to complement K and B physics. Charm also proves to be a useful test-bed for verifying theoretical methods, such as Lattice QCD, which are required to interpret precision B physics data.

  9. Measurement of the Gluon Polarization {delta}g/g from Open Charm at COMPASS

    SciTech Connect

    Kunne, Fabienne

    2009-08-04

    We have measured the gluon polarization in the nucleon by detecting charm production via D{sup 0} meson decay to charged K and {pi} in polarized muon scattering off a longitudinally polarized deuteron target. The dominant process for charm production is the photon gluon fusion into a charm anti-charm quark pair. By using all deuteron statistics from COMPASS accumulated between 2002 and 2006, we extract double spin asymmetries in bins of the transverse momentum and the energy of the D{sup 0} meson and we perform a leading order analysis of the data to extract the gluon polarization <{delta}g/g> = -0.49{+-}0.27(stat){+-}0.11(syst) at a Quantum Chromodynamics (QCD) scale {mu}{sup 2} = 13 GeV{sup 2} and at a gluon momentum fraction = 0.11.

  10. Open charm yields in d+Au collisions at squareroot[sNN]=200 GeV.

    PubMed

    Adams, J; Aggarwal, M M; Ahammed, Z; Amonett, J; Anderson, B D; Arkhipkin, D; Averichev, G S; Badyal, S K; Bai, Y; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellwied, R; Berger, J; Bezverkhny, B I; Bharadwaj, S; Bhasin, A; Bhati, A K; Bhatia, V S; Bichsel, H; Billmeier, A; Bland, L C; Blyth, C O; Bonner, B E; Botje, M; Boucham, A; Brandin, A V; Bravar, A; Bystersky, M; Cadman, R V; Cai, X Z; Caines, H; Calderón de la Barca Sánchez, M; Castillo, J; Cebra, D; Chajecki, Z; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, Y; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Coffin, J P; Cormier, T M; Cramer, J G; Crawford, H J; Das, D; Das, S; de Moura, M M; Derevschikov, A A; Didenko, L; Dietel, T; Dogra, S M; Dong, W J; Dong, X; Draper, J E; Du, F; Dubey, A K; Dunin, V B; Dunlop, J C; Dutta Mazumdar, M R; Eckardt, V; Edwards, W R; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Fachini, P; Faivre, J; Fatemi, R; Fedorisin, J; Filimonov, K; Filip, P; Finch, E; Fine, V; Fisyak, Y; Fomenko, K; Fu, J; Gagliardi, C A; Gaillard, L; Gans, J; Ganti, M S; Gaudichet, L; Geurts, F; Ghazikhanian, V; Ghosh, P; Gonzalez, J E; Grachov, O; Grebenyuk, O; Grosnick, D; Guertin, S M; Guo, Y; Gupta, A; Gutierrez, T D; Hallman, T J; Hamed, A; Hardtke, D; Harris, J W; Heinz, M; Henry, T W; Hepplemann, S; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Huang, H Z; Huang, S L; Hughes, E W; Humanic, T J; Igo, G; Ishihara, A; Jacobs, P; Jacobs, W W; Janik, M; Jiang, H; Jones, P G; Judd, E G; Kabana, S; Kang, K; Kaplan, M; Keane, D; Khodyrev, V Yu; Kiryluk, J; Kisiel, A; Kislov, E M; Klay, J; Klein, S R; Koetke, D D; Kollegger, T; Kopytine, M; Kotchenda, L; Kramer, M; Kravtsov, P; Kravtsov, V I; Krueger, K; Kuhn, C; Kulikov, A I; Kumar, A; Kutuev, R Kh; Kuznetsov, A A; Lamont, M A C; Landgraf, J M; Lange, S; Laue, F; Lauret, J; Lebedev, A; Lednicky, R; Lehocka, S; LeVine, M J; Li, C; Li, Q; Li, Y; Lin, G; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, L; Liu, Q J; Liu, Z; Ljubicic, T; Llope, W J; Long, H; Longacre, R S; Lopez-Noriega, M; Love, W A; Lu, Y; Ludlam, T; Lynn, D; Ma, G L; Ma, J G; Ma, Y G; Magestro, D; Mahajan, S; Mahapatra, D P; Majka, R; Mangotra, L K; Manweiler, R; Margetis, S; Markert, C; Martin, L; Marx, J N; Matis, H S; Matulenko, Yu A; McClain, C J; McShane, T S; Meissner, F; Melnick, Yu; Meschanin, A; Miller, M L; Minaev, N G; Mironov, C; Mischke, A; Mishra, D K; Mitchell, J; Mohanty, B; Molnar, L; Moore, C F; Morozov, D A; Munhoz, M G; Nandi, B K; Nayak, S K; Nayak, T K; Nelson, J M; Netrakanti, P K; Nikitin, V A; Nogach, L V; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Pal, S K; Panebratsev, Y; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Peitzmann, T; Perevoztchikov, V; Perkins, C; Peryt, W; Petrov, V A; Phatak, S C; Picha, R; Planinic, M; Pluta, J; Porile, N; Porter, J; Poskanzer, A M; Potekhin, M; Potrebenikova, E; Potukuchi, B V K S; Prindle, D; Pruneau, C; Putschke, J; Rakness, G; Raniwala, R; Raniwala, S; Ravel, O; Ray, R L; Razin, S V; Reichhold, D; Reid, J G; Renault, G; Retiere, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Rose, A; Roy, C; Ruan, L; Sahoo, R; Sakrejda, I; Salur, S; Sandweiss, J; Sarsour, M; Savin, I; Sazhin, P S; Schambach, J; Scharenberg, R P; Schmitz, N; Schweda, K; Seger, J; Seyboth, P; Shahaliev, E; Shao, M; Shao, W; Sharma, M; Shen, W Q; Shestermanov, K E; Shimanskiy, S S; Sichtermann, E; Simon, F; Singaraju, R N; Skoro, G; Smirnov, N; Snellings, R; Sood, G; Sorensen, P; Sowinski, J; Speltz, J; Spinka, H M; Srivastava, B; Stadnik, A; Stanislaus, T D S; Stock, R; Stolpovsky, A; Strikhanov, M; Stringfellow, B; Suaide, A A P; Sugarbaker, E; Suire, C; Sumbera, M; Surrow, B; Symons, T J M; Szanto de Toledo, A; Szarwas, P; Tai, A; Takahashi, J; Tang, A H; Tarnowsky, T; Thein, D; Thomas, J H; Timoshenko, S; Tokarev, M; Trainor, T A; Trentalange, S; Tribble, R E; Tsai, O D; Ulery, J; Ullrich, T; Underwood, D G; Urkinbaev, A; Van Buren, G; van Leeuwen, M; Vander Molen, A M; Varma, R; Vasilevski, I M; Vasiliev, A N; Vernet, R; Vigdor, S E; Viyogi, Y P; Vokal, S; Voloshin, S A; Vznuzdaev, M; Waggoner, W T; Wang, F; Wang, G; Wang, G; Wang, X L; Wang, Y; Wang, Y; Wang, Z M; Ward, H; Watson, J W; Webb, J C; Wells, R; Westfall, G D; Wetzler, A; Whitten, C; Wieman, H; Wissink, S W; Witt, R; Wood, J; Wu, J; Xu, N; Xu, Z; Xu, Z Z; Yamamoto, E; Yepes, P; Yurevich, V I; Zanevsky, Y V; Zhang, H; Zhang, W M; Zhang, Z P; Zoulkarneev, R; Zoulkarneeva, Y; Zubarev, A N

    2005-02-18

    Midrapidity open charm spectra from direct reconstruction of D0(D0)-->K-/+pi+/- in d+Au collisions and indirect electron-positron measurements via charm semileptonic decays in p+p and d+Au collisions at squareroot[sNN]=200 GeV are reported. The D0(D0) spectrum covers a transverse momentum (pT) range of 0.1open charm production from d+Au collisions at BNL RHIC is dsigma(NN)cc/dy=0.30+/-0.04(stat)+/-0.09(syst) mb. The results are compared to theoretical calculations. Implications for charmonium results in A+A collisions are discussed. PMID:15783724

  11. Open Charm Yields in d+Au Collisions at sqrt(sNN) = 200 GeV

    SciTech Connect

    Adams, J.; Aggarwal, M.M.; Ahammed, Z.; Amonett, J.; Anderson, B.D.; Arkhipkin, D.; Averichev, G.S.; Badyal, S.K.; Bai, Y.; Balewski, J.; Barannikova, O.; Barnby, L.S.; Baudot, J.; Bekele, S.; Belaga, V.V.; Bellwied, R.; Berger, J.; Bezverkhny, B.I.; Bharadwaj, S.; Bhasin, A.; Bhati, A.K.; Bhatia, V.S.; Bichsel, H.; Billmeier, A.; Bland, L.C.; Blyth, C.O.; Bonner, B.E.; Botje, M.; Boucham, A.; Brandin, A.; Bravar, A.; Bystersky, M.; Cadman, R.V.; Cai, X.Z.; Caines, H.; Calderon de la Barca Sanchez, M.; Castillo, J.; Cebra, D.; Chajecki, Z.; Chaloupka, P.; Chattopadhyay, S.; Chen, H.F.; Chen, Y.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Coffin, J.P.; Cormier, T.M.; Cramer, J.G.; Crawford, H.J.; Das, D.; Das, S.; De Moura, M.M.; Derevschikov, A.A.; Didenko, L.; Dietel, T.; Dogra, S.M.; Dong, W.J.; Dong, X.; Draper, J.E.; Du, F.; Dubey, A.K.; Dunin, V.B.; Dunlop, J.C.; Dutta Mazumda, M.R.; Eckardt, V.; Edwards, W.R.; Efimov, L.G.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Fachini, P.; Faivre, J.; Fatemi, R.; Fedorisin, J.; Filimonov, K.; Filip, P.; Finch, E.; Fine, V.; Fisyak, Y.; Fomenko, K.; Fu, J.; Gagliardi, C.A.; Gaillard, L.; Gans, J.; Ganti, M.S.; Gaudichet, L.; Geurts, F.; Ghazikhanian, V.; Ghosh, P.; Gonzalez, J.F.; Grachov, O.; Grebenyuk, O.; Grosnick, D.; Guertin, S.M.; Guo, Y.; Gupta, A.; Gutierrez, T.D.; Hallman, T.J.; Hamed, A.; Hardtke, D.; Harris, J.W.; Heinz, M.; Henry, T.W.; Heppelmann, S.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffmann, G.W.; Huang, H.Z.; Huang, S.L.; Hughes, E.W.; Humanic, T.J.; Igo, G.; Ishihara, A.; Ivanshin, Yu.I.; Jacobs, P.; Jacobs, W.W.; Janik, M.; Jiang, H.; Jones, P.G.; Judd, E.G.; Kabana, S.; Kang, K.; Kaplan, M.; Keane, D.; Khodyrev, V.Yu.; Kiryluk, J.; Kisiel, A.; Kislov, E.M.; Klay, J.; Klein, S.R.; Koetke, D.D.; Kollegger, T.; Kopytine, S.M.; Kotchenda, L.; Kramer, M.; Kravtsov, P.; Kravtsov, V.I.; Krueger, K.; Kuhn, C.; Kulikov, A.I.; Kumar, A.; et al.

    2005-01-07

    Mid-rapidity open charm spectra from direct reconstruction of D{sup 0}({bar D}{sup 0}) {yields} K{sup {-+}} {pi}{sup {+-}} in d+Au collisions and indirect electron/positron measurements via charm semileptonic decays in p+p and d+Au collisions at {radical}s{sub NN} = 200 GeV are reported. The D{sup 0}({bar D}{sup 0}) spectrum covers a transverse momentum (p{sub T}) range of 0.1 < p{sub T} < 3 GeV/c whereas the electron spectra cover a range of 1 < p{sub T} < 4 GeV/c. The electron spectra show approximate binary collision scaling between p+p and d+Au collisions. From these two independent analyses, the differential cross section per nucleon-nucleon binary interaction at mid-rapidity for open charm production from d+Au collisions at RHIC is d{sigma}{sub c{bar c}}{sup NN}/dy = 0.30 {+-} 0.04 (stat.) {+-} 0.09(syst.) mb. The results are compared to theoretical calculations. Implications for charmonium results in A+A collisions are discussed.

  12. Open charm meson production at BNL RHIC within kt-factorization approach and revision of their semileptonic decays

    NASA Astrophysics Data System (ADS)

    Maciuła, Rafał; Szczurek, Antoni; Łuszczak, Marta

    2015-09-01

    We discuss inclusive production of open charm mesons in proton-proton scattering at the BNL RHIC. The calculation is performed in the framework of kt-factorization approach which effectively includes higher-order pQCD corrections. Different models of unintegrated gluon distributions (UGDF) from the literature are used. We focus on UGDF models favored by the LHC data and on a new up-to-date parametrizations based on the HERA collider deep-inelastic scattering high-precision data. Results of the kt-factorization approach are compared to next-to-leading order collinear predictions. The hadronization of heavy quarks is done by means of fragmentation function technique. The theoretical transverse momentum distributions of charmed mesons are compared with recent experimental data of the STAR collaboration at √{s }=200 and 500 GeV. Theoretical uncertainties related to the choice of renormalization and factorization scales as well as due to the quark mass are discussed. A very good description of the measured integrated cross sections and differential distributions is obtained for the Jung setB0 CCFM UGDF. Revised charm and bottom theoretical cross sections corresponding to those measured recently by the STAR and PHENIX collaborations for semileptonic decays of D and B mesons are presented. Significant improvement in theoretical description of the nonphotonic electrons measurements is clearly obtained with respect to the previous studies within the kt-factorization.

  13. Charm and Charm Spectroscopy

    SciTech Connect

    Santoro, Valentina; /Ferrara U.

    2011-11-23

    Recent developements in D mixing physics and charm spectroscopy will be discussed. Focus will be on the BaBar experimental results for the D mixing: first evidence of the D{sup 0}-mixing (hadronic D{sup 0} decays), lifetime difference and time-dependent Dalitz plot analysis of D{sup 0} {yields} K{sup +}{pi}{sup -}{pi}{sup 0}. Then, recent results on charm spectroscopy will be presented with particular focus on the new Ds states that have been discovered in the last few years. Some of these states were not expected theoretically: their masses, widths, quantum numbers, and decay modes do not fit the existing spectroscopic classication, which is based mostly on potential model calculations.

  14. Study of charm photoproduction mechanisms

    NASA Astrophysics Data System (ADS)

    Alvarez, M. P.; Barate, R.; Bloch, D.; Bonamy, P.; Borgeaud, P.; Burchell, M.; Burmeister, H.; Brunet, J. M.; Calvino, F.; Cattaneo, M.; Crespo, J. M.; D'Almagne, B.; David, M.; di Ciaccio, L.; Druet, P.; Duane, A.; Engel, J. P.; Ferrer, A.; Filippas, T. A.; Fokitis, E.; Forty, R. W.; Foucault, P.; Gazis, E. N.; Gerber, J. P.; Giomataris, Y.; Hall, G.; Hofmokl, T.; Katsoufis, E. C.; Koratzinos, M.; Krafft, C.; Lefievre, B.; Lemoigne, Y.; Lopez, A.; Lui, W. K.; Magneville, C.; Maltezos, A.; McEwen, J. G.; Papadopoulou, Th.; Pattison, B.; Poutot, D.; Primout, M.; Rahmani, H.; Roudeau, P.; Seez, C.; Six, J.; Strub, R.; Treille, D.; Triscos, P.; Tristram, G.; Villet, G.; Volte, A.; Wayne, M.; Websdale, D. M.; Wormser, G.; Zolnierowski, Y.

    1993-03-01

    This paper presents results on charm photoproduction in the energy interval 40 to 160 GeV, obtained from the high-statistics charm samples of the NA 14/2 experiment at CERN. We measure the charm cross-section, the distributions in x F and p {2/ T } and various production ratios and charge asymmetries. The total non-diffractive open-charm cross-section per nucleon is measured to beσ _{(γ N to cbar cX)} at < E γ> =100 GeV. We discuss the photoproduction of charm in terms of theoretical and phenomenological models. We compare the measured p {2/ T } and x F distributions with first-order QCD calculations of photon-gluon fusion and obtain a value for the charm-quark mass of m c =1.5{+0.2/-0.1}GeV/c2.

  15. Exploring open-charm decay mode Λ _cbar{Λ }_c of charmonium-like state Y(4630)

    NASA Astrophysics Data System (ADS)

    Liu, Xuewen; Ke, Hong-Wei; Liu, Xiang; Li, Xue-Qian

    2016-10-01

    The newly observed X, Y, Z exotic states are definitely not in the standard Qbar{Q}' structures, thus their existence composes a challenge to our understanding on the fundamental principles of hadron physics. Therefore the studies on their decay patterns which are determined by the non-perturbative QCD will definitely shed light on the concerned physics. Generally the four-quark states might be in a molecular state or tetraquark or their mixture. In this work, we adopt the suggestion that Y(4630) is a charmonium-like tetraquark made of a diquark and an anti-diquark. If it is true, its favorable decay mode should be Y(4630) decaying into an open-charm baryon pair, since such a transition occurs via strong interaction and is super-OZI-allowed. In this work, we calculate the decay width of Y(4630)→ Λ _cbar{Λ }_c in the framework of the quark pair creation model. Our numerical results on the partial width computed in the tetraquark configuration coincide with the Belle data within a certain error tolerance.

  16. Charm production by muons and its role in scale-noninvariance

    SciTech Connect

    Gollin, G D

    1981-01-01

    Interactions of 209 GeV muons in the Multimuon Spectrometer at Fermilab have yielded more than 8 x 10/sup 4/ events with two muons in the final state. After reconstruction and cuts, the data contain 20,072 events with (81 +- 10)% attributed to the diffractive production of charmed states decaying to muons. The cross section for diffractive charm muoproduction is 6.9(+1.9,-1.4) nb where the error includes systematic uncertainties. Extrapolated to Q/sup 2/ = 0 with sigma(Q/sup 2/) = sigma(0)(1 + Q/sup 2//..lambda../sup 2/)/sup -2/, the effective cross section for 178 (100) GeV photons is 750(+180,-130) (560(+200,-120)) nb and the parameter ..lambda.. is 3.3 +- 0.2 (2.9 +- 0.2) GeV/c. The ..nu.. dependence of the cross section is similar to that of the photon-gluon-fusion model. A first determination of the structure function for diffractive charm production indicates that charm accounts for approximately 1/3 of the scale-noninvariance observed in inclusive muon-nucleon scattering at low Bjorken x. Okubo-Zweig-Iizuka selection rules and unitarity allow the muon data to set a 90%-confidence lower limit on the psi N total cross section of 0.9 mb.

  17. Nuclear Filtering of Intrinsic Charm

    SciTech Connect

    Kopeliovich, B. Z.; Potashnikova, I. K.; Schmidt, Ivan

    2010-11-12

    Nuclei are transparent for a heavy intrinsic charm (IC) component of the beam hadrons, what leads to an enhanced nuclear dependence of open charm production at large Feynman x{sub F}. Indeed, such an effect is supported by data from the SELEX experiment published recently [1]. Our calculations reproduce well the data, providing strong support for the presence of IC in hadrons in amount less than 1%. Moreover, we performed an analysis of nuclear effects in J/{Psi} production and found at large x{sub F} a similar, albeit weaker effect, which does not contradict data.

  18. Spectroscopy of charmed baryons

    SciTech Connect

    Solovieva, E. I.

    2015-12-15

    Apresent-day classification of charmed baryons is presented, a quark model for ground states is briefly described, and the energy levels of excited states are analyzed. In addition, a survey of experimentally observed states of charmed baryons is given.

  19. Production of associated Y and open charm hadrons in pp collisions at √{s}=7 and 8 TeV via double parton scattering

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Abellán Beteta, C.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Anderson, J.; Andreassi, G.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; d'Argent, P.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Bel, L. J.; Bellee, V.; Belloli, N.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bertolin, A.; Bettler, M.-O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Billoir, P.; Bird, T.; Birnkraut, A.; Bizzeti, A.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borisyak, M.; Borsato, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Britsch, M.; Britton, T.; Brodzicka, J.; Brook, N. H.; Buchanan, E.; Burr, C.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Campana, P.; Campora Perez, D.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cauet, Ch.; Cavallero, G.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chefdeville, M.; Chen, S.; Cheung, S.-F.; Chiapolini, N.; Chrzaszcz, M.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collazuol, G.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dall'Occo, E.; Dalseno, J.; David, P. N. Y.; Davis, A.; De Aguiar Francisco, O.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Simone, P.; Dean, C.-T.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Déléage, N.; Demmer, M.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Di Ruscio, F.; Dijkstra, H.; Donleavy, S.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Dossett, D.; Dovbnya, A.; Dreimanis, K.; Dufour, L.; Dujany, G.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Färber, C.; Farley, N.; Farry, S.; Fay, R.; Ferguson, D.; Fernandez Albor, V.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fohl, K.; Fol, P.; Fontana, M.; Fontanelli, F.; Forshaw, D. C.; Forty, R.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; García Pardiñas, J.; Garra Tico, J.; Garrido, L.; Gascon, D.; Gaspar, C.; Gauld, R.; Gavardi, L.; Gazzoni, G.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianì, S.; Gibson, V.; Girard, O. G.; Giubega, L.; Gligorov, V. V.; Göbel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gotti, C.; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Grünberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadavizadeh, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Henry, L.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Humair, T.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jawahery, A.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Karodia, S.; Kecke, M.; Kelsey, M.; Kenyon, I. R.; Kenzie, M.; Ketel, T.; Khairullin, E.; Khanji, B.; Khurewathanakul, C.; Klaver, S.; Klimaszewski, K.; Kochebina, O.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Kozeiha, M.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Krzemien, W.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kuonen, A. K.; Kurek, K.; Kvaratskheliya, T.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.-P.; Lefèvre, R.; Leflat, A.; Lefrançois, J.; Lemos Cid, E.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Likhomanenko, T.; Liles, M.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, B.; Liu, X.; Loh, D.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Lucio Martinez, M.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Lusiani, A.; Machefert, F.; Maciuc, F.; Maev, O.; Maguire, K.; Malde, S.; Malinin, A.; Manca, G.; Mancinelli, G.; Manning, P.; Mapelli, A.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marino, P.; Marks, J.; Martellotti, G.; Martin, M.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurin, B.; Mazurov, A.; McCann, M.; McCarthy, J.; McNab, A.; McNulty, R.; Meadows, B.; Meier, F.; Meissner, M.; Melnychuk, D.; Merk, M.; Michielin, E.; Milanes, D. A.; Minard, M.-N.; Mitzel, D. S.; Molina Rodriguez, J.; Monroy, I. A.; Monteil, S.; Morandin, M.; Morawski, P.; Mordà, A.; Morello, M. J.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Müller, D.; Müller, J.; Müller, K.; Müller, V.; Mussini, M.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nandi, A.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen, T. D.; Nguyen-Mau, C.; Niess, V.; Niet, R.; Nikitin, N.; Nikodem, T.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Onderwater, C. J. G.; Osorio Rodrigues, B.; Otalora Goicochea, J. M.; Otto, A.; Owen, P.; Oyanguren, A.; Palano, A.; Palombo, F.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Pappenheimer, C.; Parker, W.; Parkes, C.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petruzzo, M.; Picatoste Olloqui, E.; Pietrzyk, B.; Pilař, T.; Pinci, D.; Pistone, A.; Piucci, A.; Playfer, S.; Plo Casasus, M.; Poikela, T.; Polci, F.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Price, E.; Price, J. D.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, W.; Quagliani, R.; Rachwal, B.; Rademacker, J. H.; Rama, M.; Ramos Pernas, M.; Rangel, M. S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Redi, F.; Reichert, S.; Reid, M. M.; dos Reis, A. C.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Lopez, J. A.; Rodriguez Perez, P.; Roiser, S.; Romanovsky, V.; Romero Vidal, A.; Ronayne, J. W.; Rotondo, M.; Ruf, T.; Ruiz Valls, P.; Saborido Silva, J. J.; Sagidova, N.; Sail, P.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santimaria, M.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schubiger, M.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Siddi, B. G.; Silva Coutinho, R.; Silva de Oliveira, L.; Simi, G.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, E.; Smith, E.; Smith, I. T.; Smith, J.; Smith, M.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; Souza, D.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Stefkova, S.; Steinkamp, O.; Stenyakin, O.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Sun, L.; Sutcliffe, W.; Swientek, K.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szumlak, T.; T'Jampens, S.; Tayduganov, A.; Tekampe, T.; Teklishyn, M.; Tellarini, G.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Todd, J.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Trabelsi, K.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagnoni, V.; Valenti, G.; Vallier, A.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vázquez Sierra, C.; Vecchi, S.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Vilasis-Cardona, X.; Volkov, V.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voß, C.; de Vries, J. A.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wandernoth, S.; Wang, J.; Ward, D. R.; Watson, N. K.; Websdale, D.; Weiden, A.; Whitehead, M.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M. P.; Williams, M.; Williams, T.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wright, S.; Wyllie, K.; Xie, Y.; Xu, Z.; Yang, Z.; Yu, J.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhelezov, A.; Zhokhov, A.; Zhong, L.; Zucchelli, S.

    2016-07-01

    Associated production of bottomonia and open charm hadrons in pp collisions at √{s}=7 and 8 TeV is observed using data corresponding to an integrated luminosity of 3 fb-1 accumulated with the LHCb detector. The observation of five combinations, Y(1S)D0, Y(2S)D0, Y(1S)D+, Y(2S)D+ and Y(1S)D s + , is reported. Production crosssections are measured for Y(1S)D0 and Y(1S)D+ pairs in the forward region. The measured cross-sections and the differential distributions indicate the dominance of double parton scattering as the main production mechanism. [Figure not available: see fulltext.

  20. Charmed Baryonium

    SciTech Connect

    Cotugno, G.; Faccini, R.; Sabelli, C.; Polosa, A. D.

    2010-04-02

    We reanalyze the published data on the Y(4630){yields}{Lambda}{sub c{Lambda}c} and the Y(4660){yields}{psi}(2S){pi}{pi} with a consistent ansatz and we find that the two observations are likely to be due to the same state Y{sub B}, produced via initial state radiation (ISR), with M{sub Y{sub B}}=4660.7{+-}8.7 MeV and {Gamma}{sub Y{sub B}}=61{+-}23 MeV. Under this hypothesis and reanalyzing the e{sup +}e{sup -{yields}}J/{psi}{pi}{pi}{gamma}{sub ISR} spectrum we find B(Y{sub B{yields}{Lambda}c{Lambda}c})/B(Y{sub B{yields}{psi}}(2S){pi}{pi})=117{+-}44, B(Y{sub B{yields}}J/{psi}{pi}{pi})/B(Y{sub B{yields}{psi}}(2S){pi}{pi})<0.46-90% C.L., B(Y(4350){yields}J/ {psi}{pi}{pi})/B(Y(4350){yields}{psi}(2S){pi}{pi})<3.4x10{sup -3}-90% C.L., and B(Y{sub B{yields}{psi}}(2S){sigma})/B(Y{sub B{yields}{psi}}(2S)f{sub 0})=2.0{+-}0.3. These conclusions strongly support the hypothesis of Y{sub B} being the first observation of a charmed baryonium constituted by four quarks. Analyzing the mass spectrum we show that Y(4350) and Y{sub B} are, respectively, consistent with the ground state and first radial excitation of the l=1 state.

  1. Charm, beauty and top at HERA

    NASA Astrophysics Data System (ADS)

    Behnke, O.; Geiser, A.; Lisovyi, M.

    2015-09-01

    Results on open charm and beauty production and on the search for top production in high-energy electron-proton collisions at HERA are reviewed. This includes a discussion of relevant theoretical aspects, a summary of the available measurements and measurement techniques, and their impact on improved understanding of QCD and its parameters, such as parton density functions and charm- and beauty-quark masses. The impact of these results on measurements at the LHC and elsewhere is also addressed.

  2. Multiple charm production at the LHC energy

    SciTech Connect

    Berezhnoy, A. V.; Likhoded, A. K. Luchinsky, A. V. Novoselov, A. A.

    2013-01-15

    Cross sections for J/{psi} mesons produced in association with open charm and two charmed hadrons from different cc-bar pairs under LHC conditions are predicted theoretically. The respective processes are considered both in single and in double parton interactions. Particular attention is given to kinematical limits of the LHCb detector, and a comparison with the most recent experimental data is performed for them.

  3. Results on open-charm production in pp, p-Pb and Pb-Pb collisions with ALICE at the LHC

    NASA Astrophysics Data System (ADS)

    Meninno, E.; ALICE Collaboration

    2015-08-01

    ALICE (A Large Ion Collider Experiment) is designed to study the strongly-interacting medium created in heavy-ion collisions at LHC energies, the Quark-Gluon Plasma (QGP). Charm and beauty quarks are powerful probes to study the QGP in heavy-ion collisions: produced in hard partonic scattering processes on a short time scale, they are expected to traverse the QCD medium, interacting with its constituents and losing energy through radiative and collisional processes. In ALICE, open-charm production is studied through the reconstruction of the hadronic decays of D0, D+, D*+ and Ds+ mesons at mid-rapidity. The high precision tracking, good vertexing capabilities and excellent particle identification offered by ALICE allow for the measurement of particles containing heavy quarks (particularly D mesons) in a wide transverse-momentum range in pp, p-Pb and Pb-Pb collisions. A review of the main results on D-meson production in pp collisions at = 7 TeV, Pb-Pb collisions at = 2.76 TeV and the most recent results in p-Pb collisions at = 5.02 TeV will be presented. In particular, the pT-differential yields and cross sections in the three collision systems, the nuclear modification factors RAA and RpPb in Pb-Pb and p-Pb collisions, and the elliptic flow in Pb-Pb collisions will be discussed. The D-meson yield in pp and p-Pb collisions will also be shown as a function of charged-particle multiplicity.

  4. Charm degrees of freedom in the quark gluon plasma

    DOE PAGES

    Mukherjee, Swagato; Petreczky, Peter; Sharma, Sayantan

    2016-01-11

    The lattice QCD studies on fluctuations and correlations of charm quantum number have established that deconfinement of charm degrees of freedom sets in around the chiral crossover temperature, Tc; i.e., charm degrees of freedom carrying fractional baryonic charge start to appear. When we reexamine those same lattice QCD data we show that, in addition to the contributions from quarklike excitations, the partial pressure of charm degrees of freedom may still contain significant contributions from open-charm-meson- and baryonlike excitations associated with integral baryonic charges for temperatures up to 1.2Tc. Finally, charm-quark quasiparticles become the dominant degrees of freedom for temperatures T>1.2Tc.

  5. Discovery of Charm

    DOE R&D Accomplishments Database

    Goldhaber, G.

    1984-11-01

    In my talk I will cover the period 1973 to 1976 which saw the discoveries of the J/psi and psi' resonances and most of the Psion spectroscopy, the tau lepton and the D0030099,D0015599 charmed meson doublet. Occasionally I will refer briefly to more recent results. Since this conference is on the history of the weak-interactions I will deal primarily with the properties of naked charm and in particular the weakly decaying doublet of charmed mesons. Most of the discoveries I will mention were made with the SLAC-LBL Magnetic Detector or MARK I which we operated at SPEAR from 1973 to 1976.

  6. Charms of radiation research.

    SciTech Connect

    Inokuti, M.; Physics

    2005-01-01

    Most of my professional efforts over nearly five decades have been devoted to radiation research, that is, studies of the physical, chemical, and biological actions of high-energy radiation on matter. (By the term 'high-energy radiation' I mean here x rays, .GAMMA. rays, neutrons, and charged particles of high enough energies to produce ionization in matter. I exclude visible light, infrared waves, microwaves, and sound waves.) Charms of radiation research lie in its interdisciplinary character; although my training was in basic physics, the scope of my interest has gradually increased to cover many other areas, to my deep satisfaction. High-energy radiation is an important component of the universe, and of our environment. It often provides an effective avenue for characterizing matter and understanding its behavior. Near Earth's surface this radiation is normally present in exceptionally low quantity, and yet it plays a significant role in some atmospheric phenomena such as auroras, and also in the evolution of life. The recent advent of various devices for producing high-energy radiation has opened up the possibility of many applications, including medical and industrial uses. I have worked on some aspects of those uses. At every opportunity to address a broad audience I try to convey a sense of intellectual fun, together with some of the elements of the basic science involved. A goal of radiation education might be to make the word 'radiation' as common and familiar as words such as 'fire' and 'electricity' through increased usage.

  7. Charm (and Beauty) Production at the Tevatron

    SciTech Connect

    Rademacker, Jonas; /Bristol U.

    2007-11-01

    The authors present recent results on heavy flavor production at Tevatron Run II for typically {approx} 1 fb{sup -1} of analyzed p{bar p} data at {radical}s = 1.96 TeV. This includes results on single and correlated open charm and bottom cross sections, charm pair production kinematics, J/{psi}, {psi}(2S) and {chi}{sub cJ} cross sections and polarization measurements in J/{psi}, {psi}(2S), {Upsilon}(1S), and {Upsilon}(2S).

  8. Charmed Hadron Interactions

    SciTech Connect

    Liu, Liuming

    2009-07-01

    We calculate the scattering lengths of the scattering processes where one or both hadrons contain charm quarks in full lattice QCD. We use relativistic Fermilab formulation for the charm quark. For the light quark, we use domain-wall fermions in the valence sector and improved Kogut- Susskind sea quarks. In J = Psi - N and D - K channels, we observe attractive interactions. In D - D* channel, the sign of the scattering length changes, which suggests a bound state.

  9. Charm Factories: Present and Future

    NASA Astrophysics Data System (ADS)

    Zweber, Peter

    2009-12-01

    The next generation tau-charm factory, the third Beijing Electron Spectrometer (BESIII) at the new Beijing Electron Positron Collider (BEPCII), has begun data collection. I discuss the flavor physics reach of the BESIII charm program and conclude with a discussion on future proposed tau-charm facilities.

  10. Charm production in DPMJET

    SciTech Connect

    Berghaus, P; Montaruli, T; Ranft, J E-mail: montaruli@ba.infn.it

    2008-06-15

    In this work, charm production in the DPMJET hadronic jet simulation is compared to experimental data. Since the major application of DPMJET is the simulation of cosmic-ray-induced air showers, the version of the code integrated in the CORSIKA simulation package has been used for the comparison. Wherever necessary, adjustments have been made to improve agreement between simulation and data. With the availability of new muon/neutrino detectors that combine a large fiducial volume with large amounts of shielding, investigation of prompt muons and neutrinos from cosmic ray interactions will be feasible for the first time. Furthermore, above {approx}>100 TeV charmed particle decay becomes the dominant background for diffuse extraterrestrial neutrino flux searches. A reliable method to simulate charm production in high-energy proton-nucleon interactions is therefore required.

  11. Charmed Bottom Baryon Spectroscopy

    SciTech Connect

    Brown, Zachary S; Detmold, William; Meinel, Stefan; Orginos, Kostas

    2014-11-01

    The spectrum of doubly and triply heavy baryons remains experimentally unexplored to a large extent. Although the detection of such heavy particle states may lie beyond the reach of exper- iments for some time, it is interesting compute this spectrum from QCD and compare results between lattice calculations and continuum theoretical models. Several lattice calculations ex- ist for both doubly and triply charmed as well as doubly and triply bottom baryons. Here, we present preliminary results from the first lattice calculation of doubly and triply heavy baryons including both charm and bottom quarks. We use domain wall fermions for 2+1 flavors (up down and strange) of sea and valence quarks, a relativistic heavy quark action for the charm quarks, and non-relativistic QCD for the heavier bottom quarks. We present preliminary results for the ground state spectrum.

  12. Charmed Bottom Baryon Spectroscopy

    SciTech Connect

    Zachary Brown, William Detmold, Stefan Meinel, Konstantinos Orginos

    2012-09-01

    The arena of doubly and triply heavy baryons remains experimentally unexplored to a large extent. This has led to a great deal of theoretical effort being put forth in the calculation of mass spectra in this sector. Although the detection of such heavy particle states may lie beyond the reach of experiments for some time, it is interesting to compare results between lattice QCD computations and continuum theoretical models. Several recent lattice QCD calculations exist for both doubly and triply charmed as well as doubly and triply bottom baryons. In this work we present preliminary results from the first lattice calculation of the mass spectrum of doubly and triply heavy baryons including both charm and bottom quarks. The wide range of quark masses in these systems require that the various flavors of quarks be treated with different lattice actions. We use domain wall fermions for 2+1 flavors (up down and strange) of sea and valence quarks, a relativistic heavy quark action for the charm quarks, and non-relativistic QCD for the heavier bottom quarks. The calculation of the ground state spectrum is presented and compared to recent models.

  13. Charm lifetime measurements from TASSO

    SciTech Connect

    Forden, G.E.

    1987-10-09

    Recent measurements by TASSO of the lifetimes of charmed mesons is reviewed. The lifetime reported for the D/sub s/ meson utilizes the entire data sample collected. The lifetime of the neutral charmed meson, D/sup o/, is from a subsample of the total data set. Special emphases is given to the experimental procedures used.

  14. A Phase 1 Randomized, Open Label, Rectal Safety, Acceptability, Pharmacokinetic, and Pharmacodynamic Study of Three Formulations of Tenofovir 1% Gel (the CHARM-01 Study)

    PubMed Central

    Mcgowan, Ian; Cranston, Ross D.; Duffill, Kathryn; Siegel, Aaron; Engstrom, Jarret C.; Nikiforov, Alexyi; Jacobson, Cindy; Rehman, Khaja K.; Elliott, Julie; Khanukhova, Elena; Abebe, Kaleab; Mauck, Christine; Spiegel, Hans M. L.; Dezzutti, Charlene S.; Rohan, Lisa C.; Marzinke, Mark A.; Hiruy, Hiwot; Hendrix, Craig W.; Richardson-Harman, Nicola; Anton, Peter A.

    2015-01-01

    Objectives The CHARM-01 study characterized the safety, acceptability, pharmacokinetics (PK), and pharmacodynamics (PD) of three tenofovir (TFV) gels for rectal application. The vaginal formulation (VF) gel was previously used in the CAPRISA 004 and VOICE vaginal microbicide Phase 2B trials and the RMP-02/MTN-006 Phase 1 rectal safety study. The reduced glycerin VF (RGVF) gel was used in the MTN-007 Phase 1 rectal microbicide trial and is currently being evaluated in the MTN-017 Phase 2 rectal microbicide trial. A third rectal specific formulation (RF) gel was also evaluated in the CHARM-01 study. Methods Participants received 4 mL of the three TFV gels in a blinded, crossover design: seven daily doses of RGVF, seven daily doses of RF, and six daily doses of placebo followed by one dose of VF, in a randomized sequence. Safety, acceptability, compartmental PK, and explant PD were monitored throughout the trial. Results All three gels were found to be safe and acceptable. RF and RGVF PK were not significantly different. Median mucosal mononuclear cell (MMC) TFV-DP trended toward higher values for RF compared to RGVF (1136 and 320 fmol/106 cells respectively). Use of each gel in vivo was associated with significant inhibition of ex vivo colorectal tissue HIV infection. There was also a significant negative correlation between the tissue levels of TFV, tissue TFV-DP, MMC TFV-DP, rectal fluid TFV, and explant HIV-1 infection. Conclusions All three formulations were found to be safe and acceptable. However, the safety profile of the VF gel was only based on exposure to one dose whereas participants received seven doses of the RGVF and RF gels. There was a trend towards higher tissue MMC levels of TFV-DP associated with use of the RF gel. Use of all gels was associated with significant inhibition of ex vivo tissue HIV infection. Trial Registration ClinicalTrials.gov NCT01575405 PMID:25942472

  15. Charmed baryon spectroscopy from CLEO at CESR

    SciTech Connect

    Alam, M. Sajjad

    1999-02-17

    Charmed baryon spectroscopy has been unfolding since the discovery of the first charmed baryon in 1975. The Cornell Electron Storage Ring (CESR) has now established itself as a charmed particle factory. In this report, we present results on charmed baryon production at CESR using the CLEO detector.

  16. Nuclear dependence of charm production

    NASA Astrophysics Data System (ADS)

    Blanco-Covarrubias, A.; Engelfried, J.; Akgun, U.; Alkhazov, G.; Amaro-Reyes, J.; Atamantchouk, A. G.; Ayan, A. S.; Balatz, M. Y.; Bondar, N. F.; Cooper, P. S.; Dauwe, L. J.; Davidenko, G. V.; Dersch, U.; Dolgolenko, A. G.; Dzyubenko, G. B.; Edelstein, R.; Emediato, L.; Endler, A. M. F.; Eschrich, I.; Escobar, C. O.; Estrada, N.; Evdokimov, A. V.; Filimonov, I. S.; Flores-Castillo, A.; Garcia, F. G.; Golovtsov, V. L.; Gouffon, P.; Gülmez, E.; Iori, M.; Jun, S. Y.; Kaya, M.; Kilmer, J.; Kim, V. T.; Kochenda, L. M.; Konorov, I.; Kozhevnikov, A. P.; Krivshich, A. G.; Krüger, H.; Kubantsev, M. A.; Kubarovsky, V. P.; Kulyavtsev, A. I.; Kuropatkin, N. P.; Kurshetsov, V. F.; Kushnirenko, A.; Lach, J.; Landsberg, L. G.; Larin, I.; Leikin, E. M.; López-Hinojosa, G.; Lungov, T.; Maleev, V. P.; Mao, D.; Mathew, P.; Mattson, M.; Matveev, V.; McCliment, E.; Moinester, M. A.; Molchanov, V. V.; Morelos, A.; Nemitkin, A. V.; Neoustroev, P. V.; Newsom, C.; Nilov, A. P.; Nurushev, S. B.; Ocherashvili, A.; Onel, Y.; Ozkorucuklu, S.; Penzo, A.; Petrenko, S. V.; Procario, M.; Prutskoi, V. A.; Razmyslovich, B. V.; Rud, V. I.; Russ, J.; Sánchez-López, J. L.; Simon, J.; Sitnikov, A. I.; Smith, V. J.; Srivastava, M.; Steiner, V.; Stepanov, V.; Stutte, L.; Svoiski, M.; Terentyev, N. K.; Torres, I.; Uvarov, L. N.; Vasiliev, A. N.; Vavilov, D. V.; Vázquez-Jáuregui, E.; Verebryusov, V. S.; Victorov, V. A.; Vishnyakov, V. E.; Vorobyov, A. A.; Vorwalter, K.; You, J.; Zukanovich-Funchal, R.

    2009-12-01

    Using data taken by SELEX during the 1996-1997 fixed target run at Fermilab, we study the production of charmed hadrons on copper and carbon targets with Σ -, p, π -, and π + beams. Parametrizing the dependence of the inclusive production cross section on the atomic number A as A α , we determine α for D +, D 0, D {/s +}, D +(2010), Λ {/c +}, and their respective anti-particles, as a function of their transverse momentum p t and scaled longitudinal momentum x F . Within our statistics there is no dependence of α on x F for any charm species for the interval 0.1< x F <1.0. The average value of α for charm production by pion beams is α meson=0.850±0.028. This is somewhat larger than the corresponding average α baryon=0.755±0.016 for charm production by baryon beams ( Σ -, p).

  17. Penta-Quark States with Strangeness, Hidden Charm and Beauty

    NASA Astrophysics Data System (ADS)

    Wu, Jia-Jun; Zou, Bing-Song

    The classical quenched quark models with three constituent quarks provide a good description for the baryon spatial ground states, but fail to reproduce the spectrum of baryon excited states. More and more evidences suggest that unquenched effects with multi-quark dynamics are necessary ingredients to solve the problem. Several new hyperon resonances reported recently could fit in the picture of penta-quark states. Based on this picture, some new hyperon excited states were predicted to exist; meanwhile with extension from strangeness to charm and beauty, super-heavy narrow N* and Λ* resonances with hidden charm or beauty were predicted to be around 4.3 and 11 GeV, respectively. Recently, two of such N* with hidden charm might have been observed by the LHCb experiment. More of those states are expected to be observed in near future. This opens a new window in order to study hadronic dynamics for the multi-quark states.

  18. A Tau-Charm Factory at CEBAF

    SciTech Connect

    Seth, K.K.

    1994-04-01

    It is proposed that a Tau Charm Factory represents a natural extension of CEBAF into higher energy domains. The exciting nature of the physics of charm quarks and tau leptons is briefly reviewed and it is suggested that the concept of a linac-ring collider as a Tau Charm Factory at CEBAF should be seriously studied.

  19. New states above charm threshold

    SciTech Connect

    Eichten, Estia J.; Lane, Kenneth; Quigg, Chris; /Fermilab

    2005-11-01

    We revise and extend expectations for the properties of charmonium states that lie above charm threshold, in light of new experimental information. We refine the Cornell coupled-channel model for the coupling of c{bar c} levels to two-meson states, defining resonance masses and widths by pole positions in the complex energy plane, and suggest new targets for experiment.

  20. Nuclear Dependence of Charm Production

    SciTech Connect

    Blanco-Covarrubias, A.; Engelfried, J.; Akgun, U.; Alkhazov, G.; Amaro-Reyes, J.; Atamantchouk, A.G.; Ayan, A.S.; Balatz, M.Y.; Bondar, N.F.; Cooper, P.S.; Dauwe, Loretta J.; /Michigan U., Flint /Moscow, ITEP

    2009-02-01

    With data taken by SELEX, which accumulated data during the 1996-1997 fixed target run at Fermilab, we study the production of charmed hadrons on copper and carbon targets with {Sigma}{sup -}, p, {pi}{sup -}, and {pi}{sup +} beams. Parameterizing the production cross section {infinity} A{sup {alpha}}, A being the atomic number, we determine {alpha} for D{sup +}, D{sup 0}, D{sub s}{sup +}, D{sup +}(2010), {Lambda}{sub c}{sup +}, and their respective anti-particles, as a function of their transverse momentum p{sub t} and scaled longitudinal momentum x{sub F}. Within our statistics there is no dependence of {alpha} on x{sub F} for any charm species for the interval 0.1 < x{sub F} < 1.0. The average value of {alpha} for charm production by pion beams is {alpha}{sub meson} = 0.850 {+-} 0.028. This is somewhat larger than the corresponding average {alpha}{sub baryon} = 0.755 {+-} 0.016 for charm production by baryon beams ({Sigma}{sup -}, p).

  1. Suppressed Charmed B Decay

    SciTech Connect

    Snoek, Hella Leonie

    2009-06-02

    This thesis describes the measurement of the branching fractions of the suppressed charmed B0 → D*- a0+ decays and the non-resonant B0 → D*- ηπ+ decays in approximately 230 million Υ(4S) → B$\\bar{B}$ events. The data have been collected with the BABAR detector at the PEP-II B factory at the Stanford Linear Accelerator Center in California. Theoretical predictions of the branching fraction of the B0 → D*- a{sub 0}+ decays show large QCD model dependent uncertainties. Non-factorizing terms, in the naive factorization model, that can be calculated by QCD factorizing models have a large impact on the branching fraction of these decay modes. The predictions of the branching fractions are of the order of 10-6. The measurement of the branching fraction gives more insight into the theoretical models. In general a better understanding of QCD models will be necessary to conduct weak interaction physics at the next level. The presence of CP violation in electroweak interactions allows the differentiation between matter and antimatter in the laws of physics. In the Standard Model, CP violation is incorporated in the CKM matrix that describes the weak interaction between quarks. Relations amongst the CKM matrix elements are used to present the two relevant parameters as the apex of a triangle (Unitarity Triangle) in a complex plane. The over-constraining of the CKM triangle by experimental measurements is an important test of the Standard Model. At this moment no stringent direct measurements of the CKM angle γ, one of the interior angles of the Unitarity Triangle, are available. The measurement of the angle γ can be performed using the decays of neutral B mesons. The B0 → D*- a0+ decay is sensitive to the angle γ and, in comparison to the current decays that are being employed, could significantly

  2. Identifying Exotic Hidden-Charm Pentaquarks.

    PubMed

    Chen, Rui; Liu, Xiang; Li, Xue-Qian; Zhu, Shi-Lin

    2015-09-25

    The LHCb Collaboration at the Large Hadron Collider at CERN discovered two pentaquark states P_{c}(4380) and P_{c}(4450). These two hidden-charm states are interpreted as the loosely bound Σ_{c}(2455)D^{*} and Σ_{c}^{*}(2520)D^{*} molecular states in the boson exchange interaction model, which provides an explanation for why the experimental width of P_{c}(4450) is much narrower than that of P_{c}(4380). The discovery of the new resonances P_{c}(4380) and P_{c}(4450), indeed, opens a new page for hadron physics. The partners of P_{c}(4380) and P_{c}(4450) should be pursued in future experiments. PMID:26451546

  3. Identifying Exotic Hidden-Charm Pentaquarks.

    PubMed

    Chen, Rui; Liu, Xiang; Li, Xue-Qian; Zhu, Shi-Lin

    2015-09-25

    The LHCb Collaboration at the Large Hadron Collider at CERN discovered two pentaquark states P_{c}(4380) and P_{c}(4450). These two hidden-charm states are interpreted as the loosely bound Σ_{c}(2455)D^{*} and Σ_{c}^{*}(2520)D^{*} molecular states in the boson exchange interaction model, which provides an explanation for why the experimental width of P_{c}(4450) is much narrower than that of P_{c}(4380). The discovery of the new resonances P_{c}(4380) and P_{c}(4450), indeed, opens a new page for hadron physics. The partners of P_{c}(4380) and P_{c}(4450) should be pursued in future experiments.

  4. Phenomenology of nonperturbative charm in the nucleon

    DOE PAGES

    Hobbs, T. J.; Londergan, J. T.; Melnitchouk, W.

    2014-04-02

    We perform a comprehensive analysis of the role of nonperturbative (or intrinsic) charm in the nucleon, generated through Fock state expansions of the nucleon wave function involving five-quark virtual states represented by charmed mesons and baryons. We consider contributions from a variety of charmed meson-baryon states and find surprisingly dominant effects from the D¯*0 Λc+ configuration. We pay particular attention to the existence and persistence of high-x structure for intrinsic charm, and the x dependence of the c-c¯ asymmetry predicted in meson-baryon models. We discuss how studies of charmed baryons and mesons in hadronic reactions can be used to constrainmore » models, and outline future measurements that could further illuminate the intrinsic charm component of the nucleon.« less

  5. Charmed hadron photoproduction at COMPASS

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Yun; Guskov, Alexey

    2016-06-01

    Photoproduction of the charmonium-like state Zc(4200) and the charmed baryon Λ_c^* (2940) is investigated with an effective Lagrangian approach and the Regge trajectories applying to the COMPASS experiment. Combining the experimental data from COMPASS and our theoretical model we estimate the upper limit of ΓZc(4200)→J/ψπ to be of about 37 MeV. Moreover, the possibility to produce Λ_c^* (2940) at COMPASS is discussed. It seems one can try to search for this hadron in the missing mass spectrum since the t-channel is dominating for the Λ_c^* (2940) photoproduction.

  6. A pseudoscalar glueball and charmed mesons in the extended linear sigma model

    NASA Astrophysics Data System (ADS)

    Eshraim, Walaa I.

    2015-05-01

    In the framework of the so-called extended linear sigma model (eLSM), we include a pseudoscalar glueball with a mass of 2.6 GeV (as predicted by Lattice-QCD simulations) and we compute the two- and three-body decays into scalar and pseudoscalar mesons. This study is relevant for the future PANDA experiment at the FAIR facility. As a second step, we extend the eLSM by including the charm quark according to the global U(4)R × U(4)L chiral symmetry. We compute the masses, weak decay constants and strong decay widths of open charmed mesons. The precise description of the decays of open charmed states is important for the CBM experiment at FAIR.

  7. Fragmentation fractions of and quarks into charmed hadrons at LEP

    NASA Astrophysics Data System (ADS)

    Gladilin, L.

    2015-01-01

    The fragmentation fractions of and quarks into the weakly decaying charmed hadrons , , and , and into the charmed vector meson have been derived from the LEP measurements and averaged. The quark fragmentation fractions represent probabilities to hadronise as a given charmed hadron, while the quark fragmentation fractions are defined as sums of probabilities to produce a particular charmed hadron or its antiparticle.

  8. CHARM 2010: Experiment summary and future charm facilities

    SciTech Connect

    Appel, Jeffrey A.; /Fermilab

    2010-12-01

    The CHARM 2010 meeting had over 30 presentations of experimental results, plus additional future facilities talks just before this summary talk. Since there is not enough time to even summarize all that has been shown from experiments and to recognize all the memorable plots and results - tempting as it is to reproduce the many clean signals and data vs theory figures, the quantum correlations plots, and the D-mixing plots before and after the latest CLEO-c data is added. So, this review will give only my personal observations, exposing my prejudices and my areas of ignorance, no doubt. This overview will be at a fairly high level of abstraction - no re-showing individual plots or results. I ask the forgiveness of those who will have been slighted in this way - meaning all the presents.

  9. From the {psi} to charmed mesons

    SciTech Connect

    Goldhaber, G. |

    1994-11-01

    This talk deals with the author`s recollections about the discoveries of the J/{psi} the {psi}{prime} as well as psion spectroscopy and charmed mesons. He gives a chronology for the {psi} and {psi}{prime} discoveries. He also discusses the events which led to the charmed meson discovery as well as detailed discussions on the proof that the resonance observed in the K{sup {minus}} {pi}{sup +} system, at 1,865 MeV, was indeed the predicted charmed meson.

  10. Unique surgical tool as an iatromagic charm.

    PubMed

    Somma, Alfredo Musajo; Somma, Laura Musajo

    2010-12-01

    Papyri are writings made on special sheets made out of reeds grown on the banks of the river Nile. The Authors comment on the relationship between a ritual text and surgical therapy with an exploration of an ancient charm as recorded in a Greek written papyrus stored in the Medicea Laurenziana Library papyri collection. This charm was presumably intended to act apotropaically, rendering harmless the aggressive surgical tool by means of still keeping its therapeutic value and thereby affording healing protection. This ritual charm acts as a "therapeutic medium" to help the surgical procedure useful to cut or to excise the uvula. The surgical power of stafillotomos is linked to the protective power of the iatromagic charm, giving the chance to analyze ancient data and to suggest a possible shape of the original scalpel. PMID:21657101

  11. Nonstrange and strange pentaquarks with hidden charm

    NASA Astrophysics Data System (ADS)

    Anisovich, V. V.; Matveev, M. A.; Nyiri, J.; Sarantsev, A. V.; Semenova, A. N.

    2015-11-01

    Nonstrange and strange pentaquarks with hidden charm are considered as diquark-diquark-antiquark composite systems. Spin and isospin content of such exotic states is discussed and masses are evaluated.

  12. Diffractively Produced Charm Final States in 800-GeV / c pp Collisions

    SciTech Connect

    Wang, M. H. L. S.; Berisso, M. C.; Christian, D. C.; Felix, J.; Gara, A.; Gottschalk, E.; Gutierrez, G.; Hartouni, E. P.; Knapp, B. C.; Kreisler, M. N.

    2001-08-20

    We report the first observation of diffractively produced open charm in 800-GeV/c pp collisions of the type pp{yields}pD{sup *}X. We measure cross sections of {sigma}{sub diff}(D{sup *+})= (0.185{+-}0.044{+-}0.054) {mu}b and {sigma}{sub diff}(D{sup *-})= (0.174{+-}0.034{+-}0.029) {mu}b. Our measurements are based on 4.3 x 10{sup 9} events recorded by FNAL E690 in the fixed-target run of 1991. We compare our results with previous fixed-target charm experiments.

  13. New results on CLEO`s heavy quarks - bottom and charm

    SciTech Connect

    Menary, S.

    1997-01-01

    While the top quark is confined to virtual reality for CLEO, the increased luminosity of the Cornell Electron Storage Ring (CESR) and the improved photon detection capabilities of the CLEO`s {open_quotes}heavy{close_quotes} quarks - bottom and charm. I will describe new results in the B meson sector including the first observation of exclusive b {yields} ulv decays, upper limits on gluonic penguin decay rates, and precise measurements of semileptonic and hadronic b {yields} c branching fractions. The charmed hadron results that are discussed include the observation of isospin violation in D{sub s}*{sup +} decays, an update on measurements of the D{sub s}{sup +} decay constant, and the observation of a new excited {Xi}{sub c} charmed baryon. These measurements have had a large impact on our understanding of heavy quark physics.

  14. Finding the charm in 800 GeV/c p-Cu and p-Be single muon spectra

    SciTech Connect

    Klinksiek, Stephen A.; /New Mexico U.

    2005-01-01

    Fermilab Experiment 866 took single muon data from 800 GeV/c ({radical}s = 38.8 GeV) p-Cu and p-Be interactions in an attempt to extract the inclusive nuclear open charm/anti-charm (D/{bar D}) differential cross sections as a function of p{sub T}. The muons were decay products from semi-leptonic decays of open charm mesons as well as decays from lighter non-charmed mesons ({pi}'s and K's). Data were taken simultaneously from two interaction regions; one of two thin nuclear targets and a copper beam dump 92 inches downstream. The open decay length for hadrons produced in the targets increased the contribution to the muon spectrum from light hadron decays, relative to those from the dump. Production cross sections for light hadrons from previous experiments were used in conjunction with parameterized open charm cross sections to produce total Monte Carlo single muon spectra that were subsequently fit to the data. The sensitivity of this measurement covered an open charm hadron p{sub T} range of approximately 2 to 7 GeV/c, center-of-mass rapidity, y{sub cm}, between 0 and 2, and x{sub F} between 0.2 and 0.8. Previous experimental results for p-p or p-A open charm production at comparable energy was limited to {radical}5 GeV/ Three functions describing the shape of the open charm/anti-charm cross sections were fit to the data; an exponential, A{sub 1} exp (-B p{sub T}), and two polynomials, A{sub 2}/p{sub T}{sup 2} + {alpha}m{sub c}{sup 2}{sup n} and A{sub 2} (1-p{sub T}/p{sub beam}){sup m}/(p{sub T}{sup 2} + {alpha}m{sub c}{sup 2}){sup n}. The first polynomial was fit with the parameter n as a free parameter, and constant with three integer values, 4, 5 and 6. The second was fit with n held fixed at the constant integer values only. The best results were with the first polynomial with n around 6. All three parameterizations resulted in good fits. Extrapolation of the cross sections to small p{sub T} shows good agreement with previous experiments. The power {alpha} of

  15. Probing the Charm Quark Yukawa Coupling in Higgs+Charm Production.

    PubMed

    Brivio, Ilaria; Goertz, Florian; Isidori, Gino

    2015-11-20

    We propose a new method for determining the coupling of the Higgs boson to charm quarks, via Higgs production in association with a charm-tagged jet: pp→hc. As a first estimate, we find that at the LHC with 3000 fb^{-1}, it should be possible to derive a constraint of order one, relative to the standard model (SM) value of the charm Yukawa coupling. As a by-product of this analysis, we present an estimate of the exclusive pp→hD^{(*)} electroweak cross section. Within the SM, the latter turns out to be not accessible at the LHC even in the high-luminosity phase.

  16. Probing the Charm Quark Yukawa Coupling in Higgs+Charm Production.

    PubMed

    Brivio, Ilaria; Goertz, Florian; Isidori, Gino

    2015-11-20

    We propose a new method for determining the coupling of the Higgs boson to charm quarks, via Higgs production in association with a charm-tagged jet: pp→hc. As a first estimate, we find that at the LHC with 3000 fb^{-1}, it should be possible to derive a constraint of order one, relative to the standard model (SM) value of the charm Yukawa coupling. As a by-product of this analysis, we present an estimate of the exclusive pp→hD^{(*)} electroweak cross section. Within the SM, the latter turns out to be not accessible at the LHC even in the high-luminosity phase. PMID:26636844

  17. Charm and Beauty in Photoproduction at HERA

    NASA Astrophysics Data System (ADS)

    Dobre, Monica

    2014-04-01

    The photoproduction of beauty and charm quarks at the ep collider HERA are presented. The b-quarks production was investigated in the bb → eeX' channel and the differential production cross section was measured as a function of the average transverse momentum of the beauty quarks down to the threshold. The cross section of D* meson decaying in the golden channel was determined both inclusively and in D*-tagged dijet events. Exploiting the characteristics of the heavy-flavoured hadron decays, beauty and charm quark cross sections were also measured in dijet events using secondary vertices or semi-muonic decays.

  18. Charm and beauty production at CDF

    SciTech Connect

    Bishai, M.; /Brookhaven

    2005-01-01

    Using the data samples collected with the CDF Run II detector during 2002 and early 2003, new measurements of the production cross sections of charm and beauty hadrons at {radical}s = 1960 GeV are presented. New measurements of the cross sections of centrally produced b-hadrons and J/{psi} mesons down to zero transverse momenta have been carried out. The large charm signals made available by the silicon vertex track trigger have enabled the measurement of the cross sections of D{sup 0}, D*, D{sup {+-}}, and D{sub s} mesons.

  19. Thermal charm and charmonium production in quark gluon plasma

    NASA Astrophysics Data System (ADS)

    Zhou, Kai; Chen, Zhengyu; Greiner, Carsten; Zhuang, Pengfei

    2016-07-01

    We study the effect of thermal charm production on charmonium regeneration in high energy nuclear collisions. By solving the kinetic equations for charm quark and charmonium distributions in Pb+Pb collisions, we calculate the global and differential nuclear modification factors RAA (Npart) and RAA (pt) for J / ψ s. Due to the thermal charm production in hot medium, the charmonium production source changes from the initially created charm quarks at SPS, RHIC and LHC to the thermally produced charm quarks at Future Circular Collider (FCC), and the J / ψ suppression (RAA < 1) observed so far will be replaced by a strong enhancement (RAA > 1) at FCC at low transverse momentum.

  20. Photoproduction of charm particles at Fermilab

    SciTech Connect

    Cumalat, John P.

    1997-03-15

    A brief description of the Fermilab Photoproduction Experiment E831 or FOCUS is presented. The experiment concentrates on the reconstruction of charm particles. The FOCUS collaboration has participants from several Central American and Latin American institutions; CINVESTAV and Universidad Autonoma de Puebla from Mexico, University of Puerto Rico from the United States, and Centro Brasileiro de Pesquisas Fisicas in Rio de Janeiro from Brasil.

  1. Charm and beauty at the Tevatron

    SciTech Connect

    J. Cranshaw

    2003-10-13

    The large heavy quark production cross section in p{bar p} collisions makes the Tevatron an excellent place to study charm and bottom physics. This allows for a rich program of spectroscopy, CP parameter measurements, and searches for new physics.

  2. Charm contribution to the atmospheric neutrino flux

    NASA Astrophysics Data System (ADS)

    Halzen, Francis; Wille, Logan

    2016-07-01

    We revisit the estimate of the charm particle contribution to the atmospheric neutrino flux that is expected to dominate at high energies because long-lived high-energy pions and kaons interact in the atmosphere before decaying into neutrinos. We focus on the production of forward charm particles which carry a large fraction of the momentum of the incident proton. In the case of strange particles, such a component is familiar from the abundant production of K+Λ pairs. These forward charm particles can dominate the high-energy atmospheric neutrino flux in underground experiments. Modern collider experiments have no coverage in the very large rapidity region where charm forward pair production dominates. Using archival accelerator data as well as IceCube measurements of atmospheric electron and muon neutrino fluxes, we obtain an upper limit on forward D¯0Λc pair production and on the associated flux of high-energy atmospheric neutrinos. We conclude that the prompt flux may dominate the much-studied central component and represent a significant contribution to the TeV atmospheric neutrino flux. Importantly, it cannot accommodate the PeV flux of high-energy cosmic neutrinos, or the excess of events observed by IceCube in the 30-200 TeV energy range indicating either structure in the flux of cosmic accelerators, or a presence of more than one component in the cosmic flux observed.

  3. Spectroscopy and decays of charm and bottom

    SciTech Connect

    Butler, J.N.

    1997-10-01

    After a brief review of the quark model, we discuss our present knowledge of the spectroscopy of charm and bottom mesons and baryons. We go on to review the lifetimes, semileptonic, and purely leptonic decays of these particles. We conclude with a brief discussion B and D mixing and rare decays.

  4. Exclusive charm production in pp collisions at {radical}(s) < or approx. 15 GeV

    SciTech Connect

    Titov, A. I.; Kaempfer, B.

    2008-08-15

    We discuss the open charm production in the peripheral reactions pp{yields}Y{sub c}Y{sub c} and pp{yields}M{sub c}M{sub c}, where Y{sub c} and M{sub c} stand for {lambda}{sub c}{sup +},{sigma}{sub c}{sup +} and D,D*, respectively, at {radical}(s) < or approx. 15 GeV, which corresponds to the energy range of FAIR. Our consideration is based on the topological decomposition of the planar quark and diquark diagrams, which allows us to estimate consistently meson and baryon exchange trajectories and energy scale parameters as well. The spin dependance is determined by the effective interaction of the lowest exchanged resonance. Unknown parameters are fixed by an independent analysis of open strangeness production in pp{yields}YY and pp{yields}KK reactions and of SU(4) symmetry. We present the corresponding cross sections and longitudinal double-spin asymmetries for exclusive binary reactions with open charm mesons and baryons in the final state. The polarization observables have a nontrivial t and s dependence that is sensitive to details of the open charm production mechanism.

  5. REVIEW OF NEW RESULTS ON MULTILEPTON PRODUCTION BY MUONS

    SciTech Connect

    Strovink, Mark

    1980-05-01

    New multimuon data primarily from the Berkeley-Fermi lab-Princeton and European Muon Collaborations are reviewed. Relative to elastic muoproduction of J/{psi}(3100), {psi} events produced at finite but low inelasticity are distributed steeper in {nu} and Q{sup 2} and flatter in -t. The transverse polarization of elastically produced {psi} final states is oriented as expected from s-channel helicity conservation, but gives way to substantial longitudinal polarization at Q{sup 2}<2(GeV/c){sup 2}. At 209 GeV, the diffractive open-charm muoproduction cross section is 6.9{sup +1.9}{sub -1.4) nb, and the Q{sup 2}{rt_arrow}0 photon cross sections are 750{sup +180}{sub -130} (560{sup 200}{sub -120}) nb at 178(100) Gev: The {psi} data and open-charm data both with single and double charm decay to muons generally confirm the photon-gluon-fusion model predictions. Diffractive charm production accounts for ~1/3 of the scale-noninvariance observed in muon-nucleon scattering at low Bjorken x.

  6. Ten Charming Delusions About Population

    ERIC Educational Resources Information Center

    Hardin, Garrett

    1975-01-01

    Presents an open ended list of delusions about population which are based on expansionist economics and contends that dispelling these delusions, and others, will allow us to come to grip with the population problem. Some of the delusions presented concern birth control, sharing the wealth, and energy shortages. (BR)

  7. Charmed-strange mesons revisited: Mass spectra and strong decays

    NASA Astrophysics Data System (ADS)

    Song, Qin-Tao; Chen, Dian-Yong; Liu, Xiang; Matsuki, Takayuki

    2015-03-01

    Inspired by the present experimental status of charmed-strange mesons, we perform a systematic study of the charmed-strange meson family in which we calculate the mass spectra of the charmed-strange meson family by taking a screening effect into account in the Godfrey-Isgur model and investigate the corresponding strong decays via the quark pair creation model. These phenomenological analyses of charmed-strange mesons not only shed light on the features of the observed charmed-strange states, but also provide important information on future experimental search for the missing higher radial and orbital excitations in the charmed-strange meson family, which will be a valuable task in LHCb, the forthcoming Belle II, and PANDA.

  8. Charm Spectroscopy at BaBar

    SciTech Connect

    Poireau, Vincent; /Annecy, LAPP

    2007-12-21

    We present a mini-review on charm spectroscopy at the BABAR experiment. We first report on the c{bar s} meson spectrum, and present precise measurements of the D{sub s1}(2536) meson as well as the properties of the many new states discovered since 2003 (D*{sub s0}(2317), D{sub s1}(2460), D*{sub sJ}(2860), and D{sub sJ}(2700) mesons). We then discuss about charmed baryons observed recently in the BABAR experiment: {Omega}{sub c}{sup 0} and {Omega}*{sub c}{sup 0} css baryons, {Lambda}{sub c}(2940){sup +} udc baryon and the {Xi}{sub c} usc/dsc baryons.

  9. Production and decay of charmed baryons

    NASA Astrophysics Data System (ADS)

    Hosaka, Atsushi; Hiyama, Emiko; Kim, SangHo; Kim, Hyun-Chul; Nagahiro, Hideko; Noumi, Hiroyuki; Oka, Makoto; Shirotori, Kotaro; Yoshida, Tetsuya; Yasui, Shigehiro

    2016-10-01

    In this paper, we discuss reactions involving charmed baryons to explore their unique features. A well known phenomenon, the separation of the two internal motions of the ρ and λ types of a three-quark system is revisited. First we discuss the mass spectrum of low lying excitations as function of the heavy quark mass, smoothly connecting the SU (3) and heavy quark limits. The properties of these modes can be tested in the production and decay reactions of the baryons. For production, we consider a one step process which excites dominantly λ modes. We find abundant production rates for some of the excited states. For decay, we study a pion emission process which provides a clean tool to test the structure of heavy quark systems due to the well controlled low energy dynamics of pions and quarks. Both production and decay of charmed baryons are issues for future experiments at J-PARC.

  10. Observation of semileptonic decays of charmed baryons

    SciTech Connect

    Vella, E.; Trilling, G.H.; Abrams, G.S.; Alam, M.S.; Blocker, C.A.; Blondel, A.; Boyarski, A.M.; Breidenbach, M.; Burke, D.L.; Carithers, W.C.; Chinowsky, W.; Coles, M.W.; Cooper, S.; Dieterle, W.E.; Dillon, J.B.; Dorenbosch, J.; Dorfan, J.M.; Eaton, M.W.; Feldman, G.J.; Franklin, M.E.B.; Gidal, G.; Goldhaber, G.; Hanson, G.; Hayes, K.G.; Himel, T.; Hitlin, D.G.; Hollebeek, R.J.; Innes, W.R.; Jaros, J.A.; Jenni, P.; Johnson, A.D.; Kadyk, J.A.; Lankford, A.J.; Larsen, R.R.; Lueth, V.; Millikan, R.E.; Nelson, M.E.; Pang, C.Y.; Patrick, J.F.; Perl, M.L.; Richter, B.; Roussarie, A.; Scharre, D.L.; Schindler, R.H.; Schwitters, R.F.; Siegrist, J.L.; Strait, J.; Taureg, H.; Tonutti, M.; Vidal, R.A.; Videau, I.; Weiss, J.M.; Zaccone, H.

    1982-05-31

    Direct electrons are observed in baryon events produced in e/sup +/e/sup -/ annihilation at center-of-mass energies above the ..lambda../sub c/Lambda-bar/sub c/ threshold. These events are attributed to charmed baryon pair production and subsequent ..lambda../sub c/ semileptonic decay. Various semileptonic branching ratios of the ..lambda../sub c/ are determined, including BR(..lambda../sub c/..-->..e/sup +/X) = (4.5 +- 1.7)%.

  11. Babar: Sin(2beta) With Charm

    SciTech Connect

    Grenier, P.; /Ecole Polytechnique /Clermont-Ferrand U.

    2006-04-12

    We present measurements of time-dependent CP asymmetries of neutral B decays to several charm and charmonium final states. Data have been collected with the BABAR detector at the PEP-II storage ring at the Stanford Linear Accelerator Center. In the absence of penguin contribution, the Standard Model predicts the time-dependent CP asymmetry parameters S and C are to be {eta}{sub CP} sin(2{beta}) and 0, respectively.

  12. Unsolved problems in hadronic charm decay

    SciTech Connect

    Browder, T.E.

    1989-08-01

    This paper describes several outstanding problems in the study of hadronic decays of charmed mesons where further experimental work and theoretical understanding is needed. Four topics are stressed: double Cabibbo suppressed decays (DCSD) of D/sup +/ mesons, hadronic D/sub s/ decays, weak hadronic quasi-two-body decays to pairs of vector mesons, and penguin decays of D mesons. 24 refs., 10 figs., 5 tabs.

  13. Charming penguin contributions to B{r_arrow}K{pi}

    SciTech Connect

    Isola, C.; Ladisa, M.; Nardulli, G.; Pham, T. N.; Santorelli, P.

    2001-07-01

    We present calculations of the charming-penguin long-distance contributions to B{r_arrow}K{pi} decays due to intermediate charmed meson states. Our calculation is based on the chiral effective Lagrangian for light and heavy mesons, corrected for the hard pion and kaon momenta. We find that the charming-penguin contributions increase significantly the B{r_arrow}K{pi} decay rates in comparison with the short-distance contributions, giving results in better agreement with experimental data.

  14. Direct probe of the intrinsic charm content of the proton

    NASA Astrophysics Data System (ADS)

    Boettcher, Tom; Ilten, Philip; Williams, Mike

    2016-04-01

    Measurement of Z bosons produced in association with charm jets (Z c ) in proton-proton collisions in the forward region provides a direct probe of a potential nonperturbative (intrinsic) charm component in the proton wave function. We provide a detailed study of the potential to measure Z c production at the LHCb experiment in Runs 2 and 3 of the LHC. The sensitivity to valence-like (sea-like) intrinsic charm is predicted to be ⟨x ⟩IC≳0.3 %(1 %). The impact of intrinsic charm on Higgs production at the LHC, including H c , is also discussed in detail.

  15. SELEX: Recent Progress in the Analysis of Charm-Strange and Double-Charm Baryons

    SciTech Connect

    Engelfried, Jurgen

    2007-02-01

    SELEX (Fermilab Experiment 781) [1] employs beams of {Sigma}{sup -}, {pi}{sup -}, and protons at around 600 GeV/c to study production and decay properties of charmed baryons. It took data in the 1996/7 fixed target run and is currently analyzing those data. Here they focus on recently obtained results concerning the {Omega}{sub c}{sup 0} lifetime and the doubly-charmed baryons {Xi}{sub cc}{sup +} and {Xi}{sub cc}{sup ++}.

  16. Hidden-charm molecular pentaquarks and their charm-strange partners

    NASA Astrophysics Data System (ADS)

    Chen, Rui; Liu, Xiang; Zhu, Shi-Lin

    2016-10-01

    In the framework of one-pion-exchange (OPE) model, we study the hidden-charm and charm-strange molecular pentaquark systems composed of a heavy baryon (Σc , Σc*) and a vector meson (Kbar* ,Dbar*), where the S-D mixing effect is considered in our calculation. Our result shows that the ΣcDbar* molecular state with (I = 1 / 2 ,JP = 3 /2-) and the Σc* Dbar* molecular state with (I = 1 / 2 ,JP = 5 /2-) exist in the mass range of the observed Pc (4380) and Pc (4450), respectively. Moreover, we predict two other hidden-charm molecular pentaquarks with configurations ΣcDbar* (I = 3 / 2 ,JP = 1 /2-) and Σc* Dbar* (I = 3 / 2 ,JP = 1 /2-) and two charm-strange molecular pentaquarks Pcs (3340) and Pcs (3400) corresponding to the ΣcKbar* configuration with (I = 1 / 2 ,JP = 3 /2-) and the Σc* Kbar* configuration with (I = 1 / 2 ,JP = 5 /2-), respectively. Additionally, we also predict some hidden-bottom Σb(*)B* and Bc-like Σc(*)B* /Σb(*)Dbar* pentaquarks.

  17. Measurements of CP violation and mixing in charm decays

    NASA Astrophysics Data System (ADS)

    Contu, A.; LHCb Collaboration

    2016-07-01

    LHCb has collected the world's largest sample of charmed hadrons. This sample is used to search for direct and indirect CP violation in charm, and to measure D0 mixing parameters. New and updated measurements are presented, with complementary time-dependent and time-integrated analyses of D0 meson decays.

  18. Charmed-Particle Lifetimes from Neutrino Interactions Experiment #531

    SciTech Connect

    Reay, W. N.

    1980-01-01

    Detection of charm in several Fermilab experiments, among them E-531, was discussed by L. Hand, L. Voyvodic, and the author in Fermilab Report in March 1979. Since that time, there have been significant new results from E-531 on charmed particles and their lifetimes and a discussion of these results is useful at this time.

  19. Charge asymmetry in charmed-meson photoproduction

    SciTech Connect

    Berezhnoy, A. V. Likhoded, A. K.

    2006-01-15

    Within the perturbative-recombination model, the charge asymmetries in the D*{sup +}-D*{sup -}, D*{sup 0}-D*{sup 0}, and D{sup +}{sub s}-D{sup -}{sub s} yields are estimated under the kinematical conditions of the COMPASS experiment. Corrections that arise owing to the mass of a light quark in a charmed meson are taken into account. The yield of D{sup +}{sub s} mesons is predicted to be large in relation to the yield of D{sup -}{sub s} mesons.

  20. Charm hadroproduction results from Fermilab E-400

    SciTech Connect

    Coteus, P.; Binkley, M.; Bossi, F.; Butler, J.; Cumalat, J.P.; DiCorato, M.; Diesburg, M.; Enagonio, J.; Filaseta, J.; Frabetti, P.L.

    1987-09-01

    Results are presented from Fermilab E-400 on the production of charmed baryons and mesons at a mean energy of 640 GeV. We show evidence for the charm-strange baryon, ..xi../sub c//sup +/, and present our measurements of its mass, width, lifetime, cross section and relative branching fractions, and the A, x/sub f/, p/sub t/, and particle/antiparticle dependence of the state. We show evidence for both the ..sigma../sub c//sup 2 +/ and ..sigma../sub c//sup 0/, and present measurements of three mass differences, ..sigma../sub c//sup 2 +/ - ..sigma../sub c//sup 0/, ..sigma../sub c//sup 0/ - ..lambda../sub c//sup +/, and ..sigma../sub c//sup 2 +/ - ..lambda../sub c//sup +/. Measurements of the A dependence and particle/antiparticle ratios for ..sigma../sub c/ production are also presented. We show preliminary results on the ratio of two decay modes of the D/sup 0/, D/sup 0/ ..-->.. K/sup +/K/sup -/ and D/sup 0/ ..-->.. K/sub 0/anti K/sub 0/. The latter mode has not been previously observed. 8 refs., 10 figs.

  1. Lattice calculation of nonleptonic charm decays

    SciTech Connect

    Simone, J.N.

    1991-11-01

    The decays of charmed mesons into two body nonleptonic final states are investigated. Weak interaction amplitudes of interest in these decays are extracted from lattice four-point correlation functions using a effective weak Hamiltonian including effects to order G{sub f} in the weak interactions yet containing effects to all orders in the strong interactions. The lattice calculation allows a quantitative examination of non-spectator processes in charm decays helping to elucidate the role of effects such as color coherence, final state interactions and the importance of the so called weak annihilation process. For D {yields} K{pi}, we find that the non-spectator weak annihilation diagram is not small, and we interpret this as evidence for large final state interactions. Moreover, there is indications of a resonance in the isospin {1/2} channel to which the weak annihilation process contributes exclusively. Findings from the lattice calculation are compared to results from the continuum vacuum saturation approximation and amplitudes are examined within the framework of the 1/N expansion. Factorization and the vacuum saturation approximation are tested for lattice amplitudes by comparing amplitudes extracted from lattice four-point functions with the same amplitude extracted from products of two-point and three-point lattice correlation functions arising out of factorization and vacuum saturation.

  2. The Italian Tau/charm project

    NASA Astrophysics Data System (ADS)

    Enrica Biagini, Maria

    2014-06-01

    A τ/charm Factory, an e + e- collider with very high luminosity at the 2-4.6 GeV center of mass energy, to be built on the Rome University at Tor Vergata campus, was studied by the Consortium Nicola Cabibbo Laboratory and the INFN Frascati Laboratories. This project is the natural evolution of the flagship Italian project SuperB Factory, funded by the Italian Government in 2010 with a budget that turned out to be insufficient to cover the total costs of the project. The study of rare events at the τ/charm energy was already planned as a Phase-II of SuperB [1]. This design keeps all the unique features of SuperB, including the polarization of the electron beam, with the possibility to take data in a larger energy range, with reduced accelerator dimensions and construction and operation costs. A Report on the accelerator design has been published in September 2013 [2].

  3. Charmed bottom baryon spectroscopy from lattice QCD

    DOE PAGES

    Brown, Zachary S.; Detmold, William; Meinel, Stefan; Orginos, Kostas

    2014-11-19

    In this study, we calculate the masses of baryons containing one, two, or three heavy quarks using lattice QCD. We consider all possible combinations of charm and bottom quarks, and compute a total of 36 different states with JP = 1/2+ and JP = 3/2+. We use domain-wall fermions for the up, down, and strange quarks, a relativistic heavy-quark action for the charm quarks, and nonrelativistic QCD for the bottom quarks. Our analysis includes results from two different lattice spacings and seven different pion masses. We perform extrapolations of the baryon masses to the continuum limit and to the physicalmore » pion mass using SU(4|2) heavy-hadron chiral perturbation theory including 1/mQ and finite-volume effects. For the 14 singly heavy baryons that have already been observed, our results agree with the experimental values within the uncertainties. We compare our predictions for the hitherto unobserved states with other lattice calculations and quark-model studies.« less

  4. Charmed bottom baryon spectroscopy from lattice QCD

    SciTech Connect

    Brown, Zachary S.; Detmold, William; Meinel, Stefan; Orginos, Kostas

    2014-11-19

    In this study, we calculate the masses of baryons containing one, two, or three heavy quarks using lattice QCD. We consider all possible combinations of charm and bottom quarks, and compute a total of 36 different states with JP = 1/2+ and JP = 3/2+. We use domain-wall fermions for the up, down, and strange quarks, a relativistic heavy-quark action for the charm quarks, and nonrelativistic QCD for the bottom quarks. Our analysis includes results from two different lattice spacings and seven different pion masses. We perform extrapolations of the baryon masses to the continuum limit and to the physical pion mass using SU(4|2) heavy-hadron chiral perturbation theory including 1/mQ and finite-volume effects. For the 14 singly heavy baryons that have already been observed, our results agree with the experimental values within the uncertainties. We compare our predictions for the hitherto unobserved states with other lattice calculations and quark-model studies.

  5. Improving data discovery and usability through commentary and user feedback: the CHARMe project

    NASA Astrophysics Data System (ADS)

    Alegre, R.; Blower, J. D.

    2014-12-01

    CHARMe project has implemented a set of open-source tools to create, store and explore commentary information, using open Web standards. In this presentation we will describe the application of the CHARMe system to the particular case of the climate data community; however the techniques and technologies are generic and can be applied in many fields.

  6. How Charm can still be charming: some recent results from FOCUS

    SciTech Connect

    Malvezzi, Sandra

    2006-01-12

    Charm physics is a paradigm of the way in which precise measurements have led to a revival of the sector, allowing for New Physics searches through mixing, CP violation, and measurements of rare and forbidden decays. New vigorous spectroscopy studies of high-mass states (the so-called 'Renaissance of spectroscopy') complement the scenario. These promising investigations, which are typical of a mature field under study for several decades, require knowledge and control of QCD effects. Recent studies of charm weak decays in hadronic and semileptonic processes through Dalitz-plot analyses and form-factor measurements respectively, have revealed limits in the generally adopted approaches for treating strong dynamics effects. FOCUS has performed pioneering analyses, suggesting new directions for strong decay dynamics investigation; a few examples will be discussed in this paper.

  7. Opportunities for high-sensitivity charm physics at Fermilab

    SciTech Connect

    Kaplan, D.M.; Burnstein, R.A.; Lederman, L.M.; Rubin, H.A.; Brown, C.N.; Christian, D.C.; Gelfand, N.M.; Kwan, S.W.; Chen, T.Y.; He, M.; Koetke, D.D.; Napier, A.; Papavassiliou, V.; Yu, X.Q.

    1996-07-01

    The CO initiative under consideration at Fermilab makes feasible a charm experiment reconstructing >10{sup 9} charm decays, four orders - of magnitude beyond the largest extant sample. The experiment might commence data-taking as early as 1999. In addition to programmatic charm physics such as spectroscopy, lifetimes, and QCD tests, it will have significant new-physics reach in the areas of CP violation, flavor-changing neutral-current and lepton-number-violating decays, and D{sup o} {bar D} {bar {sup o}} mixing, and should observe direct CP violation in Cabibbo-suppressed D decays if it occurs at the level predicted by the Standard Model.

  8. DO -- antiMixing and Rare Charm Decays

    SciTech Connect

    Miller, Jeanne M; Burdman, Gustavo

    2003-10-06

    We review the current status of flavor-changing neutral currents in the charm sector. We focus on the standard-model predictions and identify the main sources of theoretical uncertainties in both charm mixing and rare charm decays. The potential of these observables for constraining short-distance physics in the standard model and its extensions is compromised by the presence of large nonperturbative effects. We examine the possible discovery windows in which short-distance physics can be tested and study the effects of various extensions of the standard model. The current experimental situation and future prospects are reviewed.

  9. Discovery of naked charm particles and lifetime differences among charm species using nuclear emulsion techniques innovated in Japan

    PubMed Central

    NIU, Kiyoshi

    2008-01-01

    This is a historical review of the discovery of naked charm particles and lifetime differences among charm species. These discoveries in the field of cosmic-ray physics were made by the innovation of nuclear emulsion techniques in Japan. A pair of naked charm particles was discovered in 1971 in a cosmic-ray interaction, three years prior to the discovery of the hidden charm particle, J/Ψ, in western countries. Lifetime differences between charged and neutral charm particles were pointed out in 1975, which were later re-confirmed by the collaborative Experiment E531 at Fermilab. Japanese physicists led by K.Niu made essential contributions to it with improved emulsion techniques, complemented by electronic detectors. This review also discusses the discovery of artificially produced naked charm particles by us in an accelerator experiment at Fermilab in 1975 and of multiple-pair productions of charm particles in a single interaction in 1987 by the collaborative Experiment WA75 at CERN. PMID:18941283

  10. Rare charm and B decays at CDF

    SciTech Connect

    Julia Thom

    2003-12-15

    We present results on rare charm and B decays using 65pb{sup -1} of data taken with the CDF detector in Run II. Three results are discussed, a measurement of the relative branching ratios {Lambda}(D{sup 0} {yields} K{sup +}K{sup -})/{Lambda}(D{sup 0} {yields} K{pi}) and {Lambda}(D{sup 0} {yields} {pi}{sup +}{pi}{sup -})/{Lambda}(D{sup 0} {yields} K{pi}) and the direct CP-violating decay rate asymmetry, and a limit on the branching ratio of the FCNC decay D{sup 0} {yields} {mu}{sup +}{mu}{sup -}. We also discuss the prospects for the search for B{sub s}{sup 0} {yields} {mu}{sup +}{mu}{sup -} decays.

  11. Photoproduction of the Λ c charmed baryon

    NASA Astrophysics Data System (ADS)

    Alvarez, M. P.; Barate, R.; Bloch, D.; Bonamy, P.; Borgeaud, P.; Burchell, M.; Burmeister, H.; Brunet, J. M.; Calvino, F.; Cattaneo, M.; Crespo, J. M.; d'Almagne, B.; David, M.; DiCiaccio, L.; Dixon, J.; Druet, P.; Duane, A.; Engel, J. P.; Ferrer, A.; Filippas, T. A.; Fokitis, E.; Forty, R. W.; Foucault, P.; Gazis, E. N.; Gerber, J. P.; Giomataris, Y.; Hofmokl, T.; Katsoufis, E. C.; Koratzinos, M.; Krafft, C.; Lefievre, B.; Lemoigne, Y.; Lopez, A.; Lui, W. K.; Magneville, C.; Maltezos, A.; McEwen, J. G.; Papadopoulou, Th.; Pattison, B.; Poutot, D.; Primout, M.; Rahmani, H.; Roudeau, P.; Seez, C.; Six, J.; Strub, R.; Treille, D.; Triscos, P.; Tristram, G.; Villet, G.; Volte, A.; Wayne, M.; Websdale, D. M.; Wormser, G.; Zolnierowski, Y.; NA14/2 Collaboration

    1990-08-01

    In a photoproduction experiment using a mean photon energy of 100 GeV we have observed 29±8 Λ c( overlineΛ c) charmed-baryon and antibaryon decays in the pK-π + ( overlinepK +π -) final state. Quasi two-body final states do not contribite significantly to this channel. The mass of the Λ c was measured to be 2281.7±2.7±2.6 MeV/ c2 and its lifetime 0.18±0.03±0.03 ps. The ratio of {Λ c}/{D} production, measured in this experiment, is significantly greater than that predicted by photon-gluon fusion and using a Lund model to describe the hadronization. This excess cannot be completely accounted for in this model, even using a Λ c branching fraction in pK π as high as 5%.

  12. Spectroscopy of charmed baryons from lattice QCD

    SciTech Connect

    Padmanath, M.; Edwards, Robert G.; Mathur, Nilmani; Peardon, Michael

    2015-01-01

    We present the ground and excited state spectra of singly, doubly and triply charmed baryons by using dynamical lattice QCD. A large set of baryonic operators that respect the symmetries of the lattice and are obtained after subduction from their continuum analogues are utilized. Using novel computational techniques correlation functions of these operators are generated and the variational method is exploited to extract excited states. The lattice spectra that we obtain have baryonic states with well-defined total spins up to 7/2 and the low lying states remarkably resemble the expectations of quantum numbers from SU(6) x O(3) symmetry. Various energy splittings between the extracted states, including splittings due to hyperfine as well as spin-orbit coupling, are considered and those are also compared against similar energy splittings at other quark masses.

  13. Search for the doubly charmed baryon

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Adrover, C.; Affolder, A.; Ajaltouni, Z.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; Anderlini, L.; Anderson, J.; Andreassen, R.; Andrews, J. E.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Balagura, V.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Bauer, Th.; Bay, A.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Belogurov, S.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bettler, M.-O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Bird, T.; Bizzeti, A.; Bjørnstad, P. M.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borgia, A.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Brambach, T.; van den Brand, J.; Bressieux, J.; Brett, D.; Britsch, M.; Britton, T.; Brook, N. H.; Brown, H.; Bursche, A.; Busetto, G.; Buytaert, J.; Cadeddu, S.; Callot, O.; Calvi, M.; Calvo Gomez, M.; Camboni, A.; Campana, P.; Campora Perez, D.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carranza-Mejia, H.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Castillo Garcia, L.; Cattaneo, M.; Cauet, Ch.; Cenci, R.; Charles, M.; Charpentier, Ph.; Cheung, S.-F.; Chiapolini, N.; Chrzaszcz, M.; Ciba, K.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coca, C.; Coco, V.; Cogan, J.; Cogneras, E.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; David, P.; David, P. N. Y.; Davis, A.; De Bonis, I.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Silva, W.; De Simone, P.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Déléage, N.; Derkach, D.; Deschamps, O.; Dettori, F.; Di Canto, A.; Dijkstra, H.; Dogaru, M.; Donleavy, S.; Dordei, F.; Dosil Suárez, A.; Dossett, D.; Dovbnya, A.; Dupertuis, F.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; van Eijk, D.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Falabella, A.; Färber, C.; Farinelli, C.; Farry, S.; Ferguson, D.; Fernandez Albor, V.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fitzpatrick, C.; Fontana, M.; Fontanelli, F.; Forty, R.; Francisco, O.; Frank, M.; Frei, C.; Frosini, M.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gandelman, M.; Gandini, P.; Gao, Y.; Garofoli, J.; Garosi, P.; Garra Tico, J.; Garrido, L.; Gaspar, C.; Gauld, R.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gibson, V.; Giubega, L.; Gligorov, V. V.; Göbel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gorbounov, P.; Gordon, H.; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Grünberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Hampson, T.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; Hartmann, T.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Hernando Morata, J. A.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hicks, E.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Hunt, P.; Huse, T.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Iakovenko, V.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jans, E.; Jaton, P.; Jawahery, A.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Kaballo, M.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Kenyon, I. R.; Ketel, T.; Khanji, B.; Kochebina, O.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Korolev, M.; Kozlinskiy, A.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kucharczyk, M.; Kudryavtsev, V.; Kurek, K.; Kvaratskheliya, T.; La Thi, V. N.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lambert, R. W.; Lanciotti, E.; Lanfranchi, G.; Langenbruch, C.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.-P.; Lefèvre, R.; Leflat, A.; Lefrançois, J.; Leo, S.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Li Gioi, L.; Liles, M.; Lindner, R.; Linn, C.; Liu, B.; Liu, G.; Lohn, S.; Longstaff, I.; Lopes, J. H.; Lopez-March, N.; Lu, H.; Lucchesi, D.; Luisier, J.; Luo, H.; Lupton, O.; Machefert, F.; Machikhiliyan, I. V.; Maciuc, F.; Maev, O.; Malde, S.; Manca, G.; Mancinelli, G.; Maratas, J.; Marconi, U.; Marino, P.; Märki, R.; Marks, J.; Martellotti, G.; Martens, A.; Martín Sánchez, A.; Martinelli, M.; Martinez Santos, D.; Martins Tostes, D.; Martynov, A.; Massafferri, A.; Matev, R.; Mathe, Z.; Matteuzzi, C.; Maurice, E.; Mazurov, A.; McCarthy, J.; McNab, A.; McNulty, R.; McSkelly, B.; Meadows, B.; Meier, F.; Meissner, M.; Merk, M.; Milanes, D. A.; Minard, M.-N.; Molina Rodriguez, J.; Monteil, S.; Moran, D.; Morawski, P.; Mordà, A.; Morello, M. J.; Mountain, R.; Mous, I.; Muheim, F.; Müller, K.; Muresan, R.; Muryn, B.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nasteva, I.; Needham, M.; Neubert, S.; Neufeld, N.; Nguyen, A. D.; Nguyen, T. D.; Nguyen-Mau, C.; Nicol, M.; Niess, V.; Niet, R.; Nikitin, N.; Nikodem, T.; Nomerotski, A.; Novoselov, A.; Oblakowska-Mucha, A.; Obraztsov, V.; Oggero, S.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Orlandea, M.; Otalora Goicochea, J. M.; Owen, P.; Oyanguren, A.; Pal, B. K.; Palano, A.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Parkes, C.; Parkinson, C. J.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrick, G. N.; Patrignani, C.; Pavel-Nicorescu, C.; Pazos Alvarez, A.; Pearce, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perez Trigo, E.; Pérez-Calero Yzquierdo, A.; Perret, P.; Perrin-Terrin, M.; Pescatore, L.; Pesen, E.; Pessina, G.; Petridis, K.; Petrolini, A.; Phan, A.; Picatoste Olloqui, E.; Pietrzyk, B.; Pilař, T.; Pinci, D.; Playfer, S.; Plo Casasus, M.; Polci, F.; Polok, G.; Poluektov, A.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Powell, A.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, W.; Rachwal, B.; Rademacker, J. H.; Rakotomiaramanana, B.; Rangel, M. S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Redford, S.; Reichert, S.; Reid, M. M.; dos Reis, A. C.; Ricciardi, S.; Richards, A.; Rinnert, K.; Rives Molina, V.; Roa Romero, D. A.; Robbe, P.; Roberts, D. A.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Perez, P.; Roiser, S.; Romanovsky, V.; Romero Vidal, A.; Rotondo, M.; Rouvinet, J.; Ruf, T.; Ruffini, F.; Ruiz, H.; Ruiz Valls, P.; Sabatino, G.; Saborido Silva, J. J.; Sagidova, N.; Sail, P.; Saitta, B.; Salustino Guimaraes, V.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santovetti, E.; Sapunov, M.; Sarti, A.; Satriano, C.; Satta, A.; Savrie, M.; Savrina, D.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmidt, B.; Schneider, O.; Schopper, A.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Seco, M.; Semennikov, A.; Senderowska, K.; Sepp, I.; Serra, N.; Serrano, J.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, O.; Shevchenko, V.; Shires, A.; Silva Coutinho, R.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, N. A.; Smith, E.; Smith, E.; Smith, J.; Smith, M.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; Souza, D.; Souza De Paula, B.; Spaan, B.; Sparkes, A.; Spradlin, P.; Stagni, F.; Stahl, S.; Steinkamp, O.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Straticiuc, M.; Straumann, U.; Subbiah, V. K.; Sun, L.; Sutcliffe, W.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szczypka, P.; Szilard, D.; Szumlak, T.; T'Jampens, S.; Teklishyn, M.; Teodorescu, E.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tonelli, D.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Tran, M. T.; Tresch, M.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Ubeda Garcia, M.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vagnoni, V.; Valenti, G.; Vallier, A.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vázquez Sierra, C.; Vecchi, S.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vilasis-Cardona, X.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voß, C.; Voss, H.; Waldi, R.; Wallace, C.; Wallace, R.; Wandernoth, S.; Wang, J.; Ward, D. R.; Watson, N. K.; Webber, A. D.; Websdale, D.; Whitehead, M.; Wicht, J.; Wiechczynski, J.; Wiedner, D.; Wiggers, L.; Wilkinson, G.; Williams, M. P.; Williams, M.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wright, S.; Wu, S.; Wyllie, K.; Xie, Y.; Xing, Z.; Yang, Z.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, F.; Zhang, L.; Zhang, W. C.; Zhang, Y.; Zhelezov, A.; Zhokhov, A.; Zhong, L.; Zvyagin, A.

    2013-12-01

    A search for the doubly charmed baryon in the decay mode is performed with a data sample, corresponding to an integrated luminosity of 0.65 fb-1, of pp collisions recorded at a centre-of-mass energy of 7 TeV. No significant signal is found in the mass range 3300-3800 MeV /c 2. Upper limits at the 95% confidence level on the ratio of the production cross-section times branching fraction to that of the , R, are given as a function of the mass and lifetime. The largest upper limits range from R < 1.5 × 10-2 for a lifetime of 100 fs to R < 3 .9 × 10-4 for a lifetime of 400 fs. [Figure not available: see fulltext.

  14. Susuks: charm needles in facial soft tissues.

    PubMed

    Shanmuhasuntharam, P; Ghani, S H

    1991-04-20

    Susuks or charm needles are a form of talisman inserted and worn subcutaneously, in the face and other parts of the body, in the belief that they will enhance or preserve the wearer's beauty, youth, charisma, strength or health, or bring success in business. This mystic practice is found among some south-east Asian people, especially Malayan and Muslim females. Most susuk wearers are secretive about their hidden talismans, but these gold or silver needles are being discovered with increasing frequency now that radiographs are used more widely. An understanding of this practice and an awareness of its existence is important to avoid misdiagnosis and mismanagement of these patients. The practice of susuk wearing and its relevance to dentistry is discussed. Nine cases of facial susuk wearers are presented and previous reports are reviewed.

  15. Charm form factors in hadronic interactions

    SciTech Connect

    Bracco, M. E.; Navarra, F. S.; Nielsen, M.; Chiapparini, M.

    2010-12-28

    We calculate the form factors and the coupling constants in vertices with charm mesons, such as {rho}D*D*, in the framework of QCD sum rules. We first discuss the applications of these form factors in heavy ion collisions and in B decays. We then present an introduction to the method of QCD sum rules and describe how to work with the three-point function. We give special attention to the procedure employed to extrapolate results obtained in the deep euclidean region to the poles of the particles, located in the time-like region. Finally we present a table of ready-to-use parametrizations of all the form factors, which are relevant for the processes mentioned in the introduction. We also give the coupling constants.

  16. Mesonic Decay of Charm Hypernuclei Λc+

    NASA Astrophysics Data System (ADS)

    Ghosh, Sabyasachi; Fontoura, Carlos E.; Krein, Gastão

    2016-03-01

    Λc+ hypernuclei are expected to have binding energies and other properties similar to those of strange hypernuclei in view of the similarity between the quark structures of the strange and charmed hyperons, namely Λ(uds) and Λc+(udc). One striking difference however occurs in their mesonic decays, as there is almost no Pauli blocking in the nucleonic decay of a charm hypernucleus because the final-state nucleons leave the nucleus at high energies. The nuclear medium nevertheless affects the mesonic decays of charm hypernucleus because the nuclear mean fields modify the masses of the charm hyperon. In the present communication we present results of a first investigation of the effects of finite baryon density on different weak mesonic decay channels of the Λc+ baryon. We found a non-negligible reduction of the decay widths as compared to their vacuum values.

  17. The hidden-charm pentaquark and tetraquark states

    NASA Astrophysics Data System (ADS)

    Chen, Hua-Xing; Chen, Wei; Liu, Xiang; Zhu, Shi-Lin

    2016-06-01

    In the past decade many charmonium-like states were observed experimentally. Especially those charged charmonium-like Zc states and bottomonium-like Zb states cannot be accommodated within the naive quark model. These charged Zc states are good candidates of either the hidden-charm tetraquark states or molecules composed of a pair of charmed mesons. Recently, the LHCb Collaboration discovered two hidden-charm pentaquark states, which are also beyond the quark model. In this work, we review the current experimental progress and investigate various theoretical interpretations of these candidates of the multiquark states. We list the puzzles and theoretical challenges of these models when confronted with the experimental data. We also discuss possible future measurements which may distinguish the theoretical schemes on the underlying structures of the hidden-charm multiquark states.

  18. Physics of a high-luminosity Tau-Charm Factory

    SciTech Connect

    King, M.E.

    1992-10-01

    This paper highlights the physics capabilities of a Tau-Charm Factory; i.e., high luminosity ({approximately}10{sup 33}cm{sup {minus}2}s{sup {minus}1}) e{sup +}e{sup {minus}} collider operating in the center-of-mass energy range of 3-5 GeV, with a high-precision, general-purpose detector. Recent developments in {tau} and charm physics are emphasized.

  19. Charm and bottom hadronic form factors with QCD sum rules

    SciTech Connect

    Bracco, M. E.; Rodrigues, B. O.; Cerqueira, A. Jr.

    2013-03-25

    We present a brief review of some calculations of form factors and coupling constants in vertices with charm and bottom mesons in the framework of QCD sum rules. We first discuss the motivation for this work, describing possible applications of these form factors to charm and bottom decays processes. We first make a summarize of the QCD sum rules method. We give special attention to the uncertainties of the method introducing by the intrinsic variation of the parameters. Finally we conclude.

  20. CHARMMing: a new, flexible web portal for CHARMM.

    PubMed

    Miller, Benjamin T; Singh, Rishi P; Klauda, Jeffery B; Hodoscek, Milan; Brooks, Bernard R; Woodcock, H Lee

    2008-09-01

    A new web portal for the CHARMM macromolecular modeling package, CHARMMing (CHARMM interface and graphics, http://www.charmming.org), is presented. This tool provides a user-friendly interface for the preparation, submission, monitoring, and visualization of molecular simulations (i.e., energy minimization, solvation, and dynamics). The infrastructure used to implement the web application is described. Two additional programs have been developed and integrated with CHARMMing: GENRTF, which is employed to define structural features not supported by the standard CHARMM force field, and a job broker, which is used to provide a portable method for using grid and cluster computing with CHARMMing. The use of the program is described with three proteins: 1YJP , 1O1O , and 1UFY . Source code is provided allowing CHARMMing to be downloaded, installed, and used by supercomputing centers and research groups that have a CHARMM license. Although no software can replace a scientist's own judgment and experience, CHARMMing eases the introduction of newcomers to the molecular modeling discipline by providing a graphical method for running simulations.

  1. Chiral symmetry aspects in the open charm sector

    NASA Astrophysics Data System (ADS)

    Buchheim, T.; Hilger, T.; Kämpfer, B.

    2016-01-01

    QCD sum rules serve as tools to investigate changing hadronic properties in a hot and/or dense nuclear medium. The role of chiral symmetry breaking and restoration effects in a medium can be addressed also in the heavy-light meson sector. Thus, we consider Weinberg sum rules which refer to chiral partner mesons composed of a light and a heavy quark.

  2. Dark photons from charm mesons at LHCb

    NASA Astrophysics Data System (ADS)

    Ilten, Philip; Thaler, Jesse; Williams, Mike; Xue, Wei

    2015-12-01

    We propose a search for dark photons A' at the LHCb experiment using the charm meson decay D*(2007 )0→D0A'. At nominal luminosity, D*0→D0γ decays will be produced at about 700 kHz within the LHCb acceptance, yielding over 5 trillion such decays during Run 3 of the LHC. Replacing the photon with a kinetically mixed dark photon, LHCb is then sensitive to dark photons that decay as A'→e+e-. We pursue two search strategies in this paper. The displaced strategy takes advantage of the large Lorentz boost of the dark photon and the excellent vertex resolution of LHCb, yielding a nearly background-free search when the A' decay vertex is significantly displaced from the proton-proton primary vertex. The resonant strategy takes advantage of the large event rate for D*0→D0A' and the excellent invariant-mass resolution of LHCb, yielding a background-limited search that nevertheless covers a significant portion of the A' parameter space. Both search strategies rely on the planned upgrade to a triggerless-readout system at LHCb in Run 3, which will permit the identification of low-momentum electron-positron pairs online during data taking. For dark photon masses below about 100 MeV, LHCb can explore nearly all of the dark photon parameter space between existing prompt-A' and beam-dump limits.

  3. E789 and P865: High-rate fixed-target studies of charm and beauty

    SciTech Connect

    Kaplan, D.M.

    1993-06-01

    Experiment 789 at Fermilab used the high-rate E605/E772 spectrometer to study low-multiplicity charm and beauty decays. Preliminary results on charm and beauty production are presented based on analysis of [approx] 100% of the charm data and [approx] 50% of the beauty data. A new experiment is proposed to improve charm and beauty sensitivity by several orders of magnitude.

  4. Charm Meson Spectroscopy at BaBar and CLEO-C

    SciTech Connect

    Zghiche, A.; /Annecy, LAPP

    2007-10-16

    In this mini-review we report on the most recent progress in charm meson spectroscopy. We discuss the precision measurements performed by the BABAR and CLEO-c experiments in the non strange charm meson part and we present the newly discovered strange charmed meson excited states.

  5. Penguins with charm and quark-hadron duality

    NASA Astrophysics Data System (ADS)

    Beneke, M.; Buchalla, G.; Neubert, M.; Sachrajda, C. T.

    2009-06-01

    The integrated branching fraction of the process B→ X s l + l - is dominated by resonance background from narrow charmonium states, such as B→ X s ψ→ X s l + l -, which exceeds the non-resonant charm-loop contribution by two orders of magnitude. The origin of this fact is discussed in view of the general expectation of quark-hadron duality. The situation in B→ X s l + l - is contrasted with charm-penguin amplitudes in two-body hadronic B decays of the type B→ π π, for which it is demonstrated that resonance effects and the potentially non-perturbative cbar{c} threshold region do not invalidate the standard picture of QCD factorization. This holds irrespective of whether the charm quark is treated as a light or a heavy quark.

  6. Towards Exotic Hidden-Charm Pentaquarks in QCD.

    PubMed

    Chen, Hua-Xing; Chen, Wei; Liu, Xiang; Steele, T G; Zhu, Shi-Lin

    2015-10-23

    Inspired by P(c)(4380) and P(c)(4450) recently observed by LHCb, a QCD sum rule investigation is performed, by which they can be identified as exotic hidden-charm pentaquarks composed of an anticharmed meson and a charmed baryon. Our results suggest that P(c)(4380) and P(c)(4450) have quantum numbers J(P)=3/2(-) and 5/2(+), respectively. Furthermore, two extra hidden-charm pentaqurks with configurations D̅Σ(c)(*) and D̅(*)Σ(c)(*) are predicted, which have spin-parity quantum numbers J(P)=3/2(-) and J(P)=5/2(+), respectively. As an important extension, the mass predictions of hidden-bottom pentaquarks are also given. Searches for these partners of P(c)(4380) and P(c)(4450) are especially accessible at future experiments like LHCb and BelleII. PMID:26551105

  7. Beauty and charm physics at CDF Run II

    SciTech Connect

    M. Bishai

    2003-10-16

    Using the data samples collected with the CDF Run II detector during the year 2002 and early 2003, new measurements of the production cross-sections and the masses, lifetimes and branching fractions of beauty and charm hadrons are presented. New measurements of the {Lambda}{sub b} mass, lifetime, and branching fractions have greatly improved the current knowledge of bottom baryon properties and decay dynamics. the large charm signals made available by the silicon vertex track trigger have enabled the establishment of key measurements using rare charm decays that are sensitive to new physics beyond the Standard Model. The decay signals B{sub s} {yields} D{sub s}{pi} and the two body charmless decays of B{sup 0} and B{sub s} have been established. These decay channels are important milestones towards the measurement of B{sub s} mixing and direct CP violation in the B system.

  8. D0-D bar 0 mixing and rare charm decays

    SciTech Connect

    Burdman, Gustavo; Shipsey, Ian

    2003-10-08

    We review the current status of flavor-changing neutral currents in the charm sector. We focus on the standard-model predictions and identify the main sources of theoretical uncertainties in both D{sup 0} - {bar D}{sup 0} mixing and rare charm decays. The potential of these observables for constraining short-distance physics in the standard model and its extensions is compromised by the presence of large nonperturbative effects. We examine the possible discovery windows in which short-distance physics can be tested and study the effects of various extensions of the standard model. The current experimental situation and future prospects are reviewed.

  9. Charm and Charmonium Spectroscopy at BaBar

    SciTech Connect

    Palano, Antimo; /Bari U. /INFN, Bari

    2011-11-22

    In the last few years many new unexpected new particles have been discovered in the analysis of B-factories data. In the charm sector, the newly discovered D{sub s} mesons are difficult to explain within potential models. In the charmonium sector, the large variety of new states are difficult to accommodate in the quark model and some of them are candidates for being hybrids or 4-quark states. Results will be presented on charm and charmonium spectroscopy from BaBar experiment using inclusive e{sup +}e{sup -} interactions, B decays and exclusive ISR reactions.

  10. CP violation in charm and beauty decays at LHCb

    NASA Astrophysics Data System (ADS)

    Pepe Altarelli, M.

    2013-08-01

    LHCb is a dedicated heavy flavour physics precision experiment at the LHC searching for New Physics (NP) beyond the Standard Model (SM) through the study of very rare decays of beauty and charm-flavoured hadrons and precision measurements of CP-violating observables. In this review I will present a selection of recent precision measurements of CP-violating observables in the decays of beauty and charm-flavoured hadrons. These measurements are based on an integrated luminosity of up to 1.0 fb collected by LHCb in 2011.

  11. Beauty and charm production in fixed target experiments

    SciTech Connect

    Kidonakis, Nikolaos; Vogt, Ramona

    2004-05-01

    We present calculations of NNLO threshold corrections for beauty and charm production in {pi}{sup -} p and pp interactions at fixed-target experiments. Recent calculations for heavy quark hadroproduction have included next-to-next-to-leading-order (NNLO) soft-gluon corrections [1] to the double differential cross section from threshold resummation techniques [2]. These corrections are important for near-threshold beauty and charm production at fixed-target experiments, including HERA-B and some of the current and future heavy ion experiments.

  12. Charmonium physics at a tau-charm factory

    SciTech Connect

    Barnes, T. |

    1993-11-01

    Since its discovery in 1974 the charmonium system has served hadron physics as an important arena for the investigation of many aspects of QCD and hadron spectroscopy. In this summary the author briefly reviews some of these and discusses several of the important outstanding issues in hadron spectroscopy and their relation to the spectrum and couplings of resonances in the charmonium system. The topics discussed are charmonium spectroscopy, electromagnetic couplings ({gamma}, {gamma}{gamma} and e{sup +}e{sup {minus}}), strong decays and unusual states (charm molecules and charmonium hybrids), and in each case the author notes areas in which experiments at a tau-charm factory could make valuable contributions.

  13. Towards an understanding of the new charm and charm-strange mesons

    NASA Astrophysics Data System (ADS)

    Godfrey, Stephen

    2005-01-01

    The observation of the DsJ*(2317), DsJ(2460), and SELEX DsJ*(2632) states with properties differing considerably from what was expected has led to a renewed interest in hadron spectroscopy. In addition to these states, non-strange partners of the DsJ states have also been observed. Understanding the D0* and D1' states can provide important insights into the DsJ states. In this contribution I examine quark model predictions for the D0* and D1' states and discuss experimental measurements that can shed light on them. I find that these states are well described as the broad, j = 1/2 non-strange charmed P-wave mesons. In the latter part of this writeup I discuss the cbar s possibilities for the SELEX DsJ*(2632) and measurements that can shed light on it.

  14. Proposed Standards for Variable Harmonization Documentation and Referencing: A Case Study Using QuickCharmStats 1.1.

    PubMed

    Winters, Kristi; Netscher, Sebastian

    2016-01-01

    Comparative statistical analyses often require data harmonization, yet the social sciences do not have clear operationalization frameworks that guide and homogenize variable coding decisions across disciplines. When faced with a need to harmonize variables researchers often look for guidance from various international studies that employ output harmonization, such as the Comparative Survey of Election Studies, which offer recoding structures for the same variable (e.g. marital status). More problematically there are no agreed documentation standards or journal requirements for reporting variable harmonization to facilitate a transparent replication process. We propose a conceptual and data-driven digital solution that creates harmonization documentation standards for publication and scholarly citation: QuickCharmStats 1.1. It is free and open-source software that allows for the organizing, documenting and publishing of data harmonization projects. QuickCharmStats starts at the conceptual level and its workflow ends with a variable recording syntax. It is therefore flexible enough to reflect a variety of theoretical justifications for variable harmonization. Using the socio-demographic variable 'marital status', we demonstrate how the CharmStats workflow collates metadata while being guided by the scientific standards of transparency and replication. It encourages researchers to publish their harmonization work by providing researchers who complete the peer review process a permanent identifier. Those who contribute original data harmonization work to their discipline can now be credited through citations. Finally, we propose peer-review standards for harmonization documentation, describe a route to online publishing, and provide a referencing format to cite harmonization projects. Although CharmStats products are designed for social scientists our adherence to the scientific method ensures our products can be used by researchers across the sciences.

  15. Proposed Standards for Variable Harmonization Documentation and Referencing: A Case Study Using QuickCharmStats 1.1

    PubMed Central

    Winters, Kristi; Netscher, Sebastian

    2016-01-01

    Comparative statistical analyses often require data harmonization, yet the social sciences do not have clear operationalization frameworks that guide and homogenize variable coding decisions across disciplines. When faced with a need to harmonize variables researchers often look for guidance from various international studies that employ output harmonization, such as the Comparative Survey of Election Studies, which offer recoding structures for the same variable (e.g. marital status). More problematically there are no agreed documentation standards or journal requirements for reporting variable harmonization to facilitate a transparent replication process. We propose a conceptual and data-driven digital solution that creates harmonization documentation standards for publication and scholarly citation: QuickCharmStats 1.1. It is free and open-source software that allows for the organizing, documenting and publishing of data harmonization projects. QuickCharmStats starts at the conceptual level and its workflow ends with a variable recording syntax. It is therefore flexible enough to reflect a variety of theoretical justifications for variable harmonization. Using the socio-demographic variable ‘marital status’, we demonstrate how the CharmStats workflow collates metadata while being guided by the scientific standards of transparency and replication. It encourages researchers to publish their harmonization work by providing researchers who complete the peer review process a permanent identifier. Those who contribute original data harmonization work to their discipline can now be credited through citations. Finally, we propose peer-review standards for harmonization documentation, describe a route to online publishing, and provide a referencing format to cite harmonization projects. Although CharmStats products are designed for social scientists our adherence to the scientific method ensures our products can be used by researchers across the sciences. PMID

  16. Two-body hadronic charmed meson decays

    NASA Astrophysics Data System (ADS)

    Cheng, Hai-Yang; Chiang, Cheng-Wei

    2010-04-01

    In this work we study the two-body hadronic charmed meson decays, including both the PP and VP modes. The latest experimental data are first analyzed in the diagrammatic approach. The magnitudes and strong phases of the flavor amplitudes are extracted from the Cabibbo-favored decay modes using χ2 minimization. The best-fitted values are then used to predict the branching fractions of the singly Cabibbo-suppressed and doubly Cabibbo-suppressed decay modes in the flavor SU(3) symmetry limit. We observe significant SU(3) breaking effects in some of the singly Cabibbo-suppressed channels. In the case of VP modes, we point out that the AP and AV amplitudes cannot be completely determined based on currently available data. We conjecture that the quoted experimental results for both Ds+→K¯0K*+ and Ds+→ρ+η' are overestimated. We compare the sizes of color-allowed and color-suppressed tree amplitudes extracted from the diagrammatical approach with the effective parameters a1 and a2 defined in the factorization approach. The ratio |a2/a1| is more or less universal among the D→K¯π, K¯*π, and K¯ρ modes. This feature allows us to discriminate between different solutions of topological amplitudes. For the long-standing puzzle about the ratio Γ(D0→K+K-)/Γ(D0→π+π-), we argue that, in addition to the SU(3) breaking effect in the spectator amplitudes, the long-distance resonant contribution through the nearby resonance f0(1710) can naturally explain why D0 decays more copiously to K+K- than π+π- through the W-exchange topology. This has to do with the dominance of the scalar glueball content of f0(1710) and the chiral-suppression effect in the decay of a scalar glueball into two pseudoscalar mesons. The same final-state interaction also explains the occurrence of D0→K0K¯0 and its vanishing amplitude when SU(3) flavor symmetry is exact. Owing to the G-parity selection rule, Ds+→π+ω does not receive contributions from the short-distance W

  17. Search for a strongly decaying neutral charmed pentaquark

    SciTech Connect

    Link, J.M.; Yager, P.M.; Anjos, J.C.; Bediaga, I.; Castromonte, C.; Machado, A.A.; Magnin, J.; Massafferri, A.; de Miranda, J.M.; Pepe, I.M.; Polycarpo, E.; dos Reis, A.C.; Carrillo, S.; Casimiro, E.; Cuautle, E.; Sanchez-Hernandez, A.; Uribe, C.; Vazquez, F.; Agostino, L.; Cinquini, L.; Cumalat, J.P.; /Colorado U. /Fermilab /Frascati /Guanajuato U. /Illinois U., Urbana /Indiana U. /Korea U. /Kyungpook Natl. U. /INFN, Milan /Milan U. /North Carolina U. /Pavia U. /INFN, Pavia /Rio de Janeiro, Pont. U. Catol. /Puerto Rico U., Mayaguez /South Carolina U. /Tennessee U. /Vanderbilt U. /Wisconsin U., Madison

    2005-06-01

    We present a search for a charmed pentaquark decaying strongly to D{sup (*)}-p. Finding no evidence for such a state, we set limits on the cross section times branching ratio relative to D*{sup -} and D{sup -} under particular assumptions about the production mechanism.

  18. Role of 'intrinsic charm' in semileptonic B-meson decays

    SciTech Connect

    Breidenbach, C.; Feldmann, T.; Turczyk, S.; Mannel, T.

    2008-07-01

    We discuss the role of so-called 'intrinsic-charm' operators in semileptonic B-meson decays, which appear first at order 1/m{sub b}{sup 3} in the heavy quark expansion. We show by explicit calculation that - at scales {mu}{<=}m{sub c} - the contributions from 'intrinsic-charm' effects can be absorbed into short-distance coefficient functions multiplying, for instance, the Darwin term. Then, the only remnant of 'intrinsic charm' are logarithms of the form ln(m{sub c}{sup 2}/m{sub b}{sup 2}), which can be resummed by using renormalization-group techniques. As long as the dynamics at the charm-quark scale is perturbative, {alpha}{sub s}(m{sub c})<<1, this implies that no additional nonperturbative matrix elements aside from the Darwin and the spin-orbit term have to be introduced at order 1/m{sub b}{sup 3}. Hence, no sources for additional hadronic uncertainties have to be taken into account. Similar arguments may be made for higher orders in the 1/m{sub b} expansion.

  19. Enhancement of new physics signal sensitivity with mistagged charm quarks

    NASA Astrophysics Data System (ADS)

    Kim, Doojin; Park, Myeonghun

    2016-07-01

    We investigate the potential for enhancing search sensitivity for signals having charm quarks in the final state, using the sizable bottom-mistagging rate for charm quarks at the LHC. Provided that the relevant background processes contain light quarks instead of charm quarks, the application of b-tagging on charm quark-initiated jets enables us to reject more background events than signal ones due to the relatively small mistagging rate for light quarks. The basic idea is tested with two rare top decay processes: i) t → ch → cb b bar and ii) t → bH+ → b b bar c where h and H+ denote the Standard Model-like higgs boson and a charged higgs boson, respectively. The major background source is a hadronic top quark decay such as t → bW+ → b s bar c. We test our method with Monte Carlo simulation at the LHC 14 TeV, and find that the signal-over-background ratio can be increased by a factor of O (6- 7) with a suitably designed (heavy) flavor tagging algorithm and scheme.

  20. Inclusive /b decays to wrong sign charmed mesons

    NASA Astrophysics Data System (ADS)

    DELPHI Collaboration; Abdallah, J.; Abreu, P.; Adam, W.; Adzic, P.; Albrecht, T.; Alderweireld, T.; Alemany-Fernandez, R.; Allmendinger, T.; Allport, P. P.; Amaldi, U.; Amapane, N.; Amato, S.; Anashkin, E.; Andreazza, A.; Andringa, S.; Anjos, N.; Antilogus, P.; Apel, W.-D.; Arnoud, Y.; Ask, S.; Asman, B.; Augustin, J. E.; Augustinus, A.; Baillon, P.; Ballestrero, A.; Bambade, P.; Barbier, R.; Bardin, D.; Barker, G.; Baroncelli, A.; Battaglia, M.; Baubillier, M.; Becks, K.-H.; Begalli, M.; Behrmann, A.; Ben-Haim, E.; Benekos, N.; Benvenuti, A.; Berat, C.; Berggren, M.; Berntzon, L.; Bertrand, D.; Besancon, M.; Besson, N.; Bloch, D.; Blom, M.; Bluj, M.; Bonesini, M.; Boonekamp, M.; Booth, P. S. L.; Borisov, G.; Botner, O.; Bouquet, B.; Bowcock, T. J. V.; Boyko, I.; Bracko, M.; Brenner, R.; Brodet, E.; Bruckman, P.; Brunet, J. M.; Bugge, L.; Buschmann, P.; Calvi, M.; Camporesi, T.; Canale, V.; Carena, F.; Castro, N.; Cavallo, F.; Chapkin, M.; Charpentier, Ph.; Checchia, P.; Chierici, R.; Chliapnikov, P.; Chudoba, J.; Chung, S. U.; Cieslik, K.; Collins, P.; Contri, R.; Cosme, G.; Cossutti, F.; Costa, M. J.; Crawley, B.; Crennell, D.; Cuevas, J.; D'Hondt, J.; Dalmau, J.; da Silva, T.; da Silva, W.; della Ricca, G.; de Angelis, A.; de Boer, W.; de Clercq, C.; de Lotto, B.; de Maria, N.; de Min, A.; de Paula, L.; di Ciaccio, L.; di Simone, A.; Doroba, K.; Drees, J.; Dris, M.; Eigen, G.; Ekelof, T.; Ellert, M.; Elsing, M.; Espirito Santo, M. C.; Fanourakis, G.; Fassouliotis, D.; Feindt, M.; Fernandez, J.; Ferrer, A.; Ferro, F.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fulda-Quenzer, F.; Fuster, J.; Gandelman, M.; Garcia, C.; Gavillet, Ph.; Gazis, E.; Geralis, T.; Gokieli, R.; Golob, B.; Gomez-Ceballos, G.; Goncalves, P.; Graziani, E.; Grosdidier, G.; Grzelak, K.; Guy, J.; Haag, C.; Hallgren, A.; Hamacher, K.; Hamilton, K.; Hansen, J.; Haug, S.; Hauler, F.; Hedberg, V.; Hennecke, M.; Herr, H.; Hoffman, J.; Holmgren, S.-O.; Holt, P. J.; Houlden, M. A.; Hultqvist, K.; Jackson, J. N.; Jarlskog, G.; Jarry, P.; Jeans, D.; Johansson, E. K.; Johansson, P. D.; Jonsson, P.; Joram, C.; Jungermann, L.; Kapusta, F.; Katsanevas, S.; Katsoufis, E.; Kernel, G.; Kersevan, B. P.; Kiiskinen, A.; King, B. T.; Kjaer, N. J.; Kluit, P.; Kokkinias, P.; Kourkoumelis, C.; Kouznetsov, O.; Krumstein, Z.; Kucharczyk, M.; Lamsa, J.; Leder, G.; Ledroit, F.; Leinonen, L.; Leitner, R.; Lemonne, J.; Lepeltier, V.; Lesiak, T.; Liebig, W.; Liko, D.; Lipniacka, A.; Lopes, J. H.; Lopez, J. M.; Loukas, D.; Lutz, P.; Lyons, L.; MacNaughton, J.; Malek, A.; Maltezos, S.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J.-C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Masik, J.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Mazzucato, F.; Mazzucato, M.; Mc Nulty, R.; Meroni, C.; Meyer, W. T.; Migliore, E.; Mitaroff, W.; Mjoernmark, U.; Moa, T.; Moch, M.; Moenig, K.; Monge, R.; Montenegro, J.; Moraes, D.; Moreno, S.; Morettini, P.; Mueller, U.; Muenich, K.; Mulders, M.; Mundim, L.; Murray, W.; Muryn, B.; Myatt, G.; Myklebust, T.; Nassiakou, M.; Navarria, F.; Nawrocki, K.; Nicolaidou, R.; Nikolenko, M.; Oblakowska-Mucha, A.; Obraztsov, V.; Olshevski, A.; Onofre, A.; Orava, R.; Osterberg, K.; Ouraou, A.; Oyanguren, A.; Paganoni, M.; Paiano, S.; Palacios, J. P.; Palka, H.; Papadopoulou, Th. D.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passeri, A.; Passon, O.; Peralta, L.; Perepelitsa, V.; Perrotta, A.; Petrolini, A.; Piedra, J.; Pieri, L.; Pierre, F.; Pimenta, M.; Piotto, E.; Podobnik, T.; Poireau, V.; Pol, M. E.; Polok, G.; Poropat, P.; Pozdniakov, V.; Pukhaeva, N.; Pullia, A.; Rames, J.; Ramler, L.; Read, A.; Rebecchi, P.; Rehn, J.; Reid, D.; Reinhardt, R.; Renton, P.; Richard, F.; Ridky, J.; Rivero, M.; Rodriguez, D.; Romero, A.; Ronchese, P.; Rosenberg, E.; Roudeau, P.; Rovelli, T.; Ruhlmann-Kleider, V.; Ryabtchikov, D.; Sadovsky, A.; Salmi, L.; Salt, J.; Savoy-Navarro, A.; Schwickerath, U.; Schwanda, C.; Segar, A.; Sekulin, R.; Siebel, M.; Sisakian, A.; Smadja, G.; Smirnova, O.; Sokolov, A.; Sopczak, A.; Sosnowski, R.; Spassov, T.; Stanitzki, M.; Stocchi, A.; Strauss, J.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Szumlak, T.; Tabarelli, T.; Taffard, A. C.; Tegenfeldt, F.; Timmermans, J.; Tkatchev, L.; Tobin, M.; Todorovova, S.; Tomaradze, A.; Tome, B.; Tonazzo, A.; Tortosa, P.; Travnicek, P.; Treille, D.; Tristram, G.; Trochimczuk, M.; Troncon, C.; Turluer, M.-L.; Tyapkin, I. A.; Tyapkin, P.; Tzamarias, S.; Uvarov, V.; Valenti, G.; van Dam, P.; van Eldik, J.; van Lysebetten, A.; van Remortel, N.; van Vulpen, I.; Vegni, G.; Veloso, F.; Venus, W.; Verbeure, F.; Verdier, P.; Verzi, V.; Vilanova, D.; Vitale, L.; Vrba, V.; Wahlen, H.; Washbrook, A. J.; Weiser, C.; Wicke, D.; Wickens, J.; Wilkinson, G.; Winter, M.; Witek, M.; Yushchenko, O.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zimin, N. I.; Zintchenko, A.; Zupan, M.

    2003-05-01

    The production of wrong sign charmed mesons b-->D(s)X, D(s)=(D0,D+,Ds), is studied using the data collected by the DELPHI experiment in the years 1994 and 1995. Charmed mesons in /Z-->bb¯ events are exclusively reconstructed by searching for the decays D0-->K-π+, D+-->K-π+π+ and Ds+-->φπ+-->K+K-π+. The wrong sign contribution is extracted by using two discriminant variables: the charge of the /b-quark at decay time, estimated from the charges of identified particles, and the momentum of the charmed meson in the rest frame of the /b-hadron. The inclusive branching fractions of /b-hadrons into wrong sign charm mesons are measured to be: B(b-->D0X)+B(b-->D-X)=(9.3+/-1.7(stat)+/-1.3(syst)+/-0.4(B))%, B(b-->Ds-X)=(10.1+/-1.0(stat)+/-0.6(syst)+/-2.8(B))% where the first error is statistical, the second and third errors are systematic.

  1. Inclusive b decays to wrong sign charmed mesons

    NASA Astrophysics Data System (ADS)

    Abdallah, J.; Abreu, P.; Adam, W.; Adzic, P.; Albrecht, T.; Alderweireld, T.; Alemany-Fernandez, R.; Allmendinger, T.; Allport, P. P.; Amaldi, U.; Amapane, N.; Amato, S.; Anashkin, E.; Andreazza, A.; Andringa, S.; Anjos, N.; Antilogus, P.; Apel, W.-D.; Arnoud, Y.; Ask, S.; Asman, B.; Augustin, J. E.; Augustinus, A.; Baillon, P.; Ballestrero, A.; Bambade, P.; Barbier, R.; Bardin, D.; Barker, G.; Baroncelli, A.; Battaglia, M.; Baubillier, M.; Becks, K.-H.; Begalli, M.; Behrmann, A.; Ben-Haim, E.; Benekos, N.; Benvenuti, A.; Berat, C.; Berggren, M.; Berntzon, L.; Bertrand, D.; Besancon, M.; Besson, N.; Bloch, D.; Blom, M.; Bluj, M.; Bonesini, M.; Boonekamp, M.; Booth, P. S. L.; Borisov, G.; Botner, O.; Bouquet, B.; Bowcock, T. J. V.; Boyko, I.; Bracko, M.; Brenner, R.; Brodet, E.; Bruckman, P.; Brunet, J. M.; Bugge, L.; Buschmann, P.; Calvi, M.; Camporesi, T.; Canale, V.; Carena, F.; Castro, N.; Cavallo, F.; Chapkin, M.; Charpentier, Ph.; Checchia, P.; Chierici, R.; Chliapnikov, P.; Chudoba, J.; Chung, S. U.; Cieslik, K.; Collins, P.; Contri, R.; Cosme, G.; Cossutti, F.; Costa, M. J.; Crawley, B.; Crennell, D.; Cuevas, J.; D'Hondt, J.; Dalmau, J.; da Silva, T.; da Silva, W.; Della Ricca, G.; de Angelis, A.; de Boer, W.; de Clercq, C.; de Lotto, B.; de Maria, N.; de Min, A.; de Paula, L.; di Ciaccio, L.; di Simone, A.; Doroba, K.; Drees, J.; Dris, M.; Eigen, G.; Ekelof, T.; Ellert, M.; Elsing, M.; Espirito Santo, M. C.; Fanourakis, G.; Fassouliotis, D.; Feindt, M.; Fernandez, J.; Ferrer, A.; Ferro, F.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fulda-Quenzer, F.; Fuster, J.; Gandelman, M.; Garcia, C.; Gavillet, Ph.; Gazis, E.; Geralis, T.; Gokieli, R.; Golob, B.; Gomez-Ceballos, G.; Goncalves, P.; Graziani, E.; Grosdidier, G.; Grzelak, K.; Guy, J.; Haag, C.; Hallgren, A.; Hamacher, K.; Hamilton, K.; Hansen, J.; Haug, S.; Hauler, F.; Hedberg, V.; Hennecke, M.; Herr, H.; Hoffman, J.; Holmgren, S.-O.; Holt, P. J.; Houlden, M. A.; Hultqvist, K.; Jackson, J. N.; Jarlskog, G.; Jarry, P.; Jeans, D.; Johansson, E. K.; Johansson, P. D.; Jonsson, P.; Joram, C.; Jungermann, L.; Kapusta, F.; Katsanevas, S.; Katsoufis, E.; Kernel, G.; Kersevan, B. P.; Kiiskinen, A.; King, B. T.; Kjaer, N. J.; Kluit, P.; Kokkinias, P.; Kourkoumelis, C.; Kouznetsov, O.; Krumstein, Z.; Kucharczyk, M.; Lamsa, J.; Leder, G.; Ledroit, F.; Leinonen, L.; Leitner, R.; Lemonne, J.; Lepeltier, V.; Lesiak, T.; Liebig, W.; Liko, D.; Lipniacka, A.; Lopes, J. H.; Lopez, J. M.; Loukas, D.; Lutz, P.; Lyons, L.; MacNaughton, J.; Malek, A.; Maltezos, S.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J.-C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Masik, J.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Mazzucato, F.; Mazzucato, M.; Mc Nulty, R.; Meroni, C.; Meyer, W. T.; Migliore, E.; Mitaroff, W.; Mjoernmark, U.; Moa, T.; Moch, M.; Moenig, K.; Monge, R.; Montenegro, J.; Moraes, D.; Moreno, S.; Morettini, P.; Mueller, U.; Muenich, K.; Mulders, M.; Mundim, L.; Murray, W.; Muryn, B.; Myatt, G.; Myklebust, T.; Nassiakou, M.; Navarria, F.; Nawrocki, K.; Nicolaidou, R.; Nikolenko, M.; Oblakowska-Mucha, A.; Obraztsov, V.; Olshevski, A.; Onofre, A.; Orava, R.; Osterberg, K.; Ouraou, A.; Oyanguren, A.; Paganoni, M.; Paiano, S.; Palacios, J. P.; Palka, H.; Papadopoulou, Th. D.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passeri, A.; Passon, O.; Peralta, L.; Perepelitsa, V.; Perrotta, A.; Petrolini, A.; Piedra, J.; Pieri, L.; Pierre, F.; Pimenta, M.; Piotto, E.; Podobnik, T.; Poireau, V.; Pol, M. E.; Polok, G.; Poropat, P.; Pozdniakov, V.; Pukhaeva, N.; Pullia, A.; Rames, J.; Ramler, L.; Read, A.; Rebecchi, P.; Rehn, J.; Reid, D.; Reinhardt, R.; Renton, P.; Richard, F.; Ridky, J.; Rivero, M.; Rodriguez, D.; Romero, A.; Ronchese, P.; Rosenberg, E.; Roudeau, P.; Rovelli, T.; Ruhlmann-Kleider, V.; Ryabtchikov, D.; Sadovsky, A.; Salmi, L.; Salt, J.; Savoy-Navarro, A.; Schwickerath, U.; Schwanda, C.; Segar, A.; Sekulin, R.; Siebel, M.; Sisakian, A.; Smadja, G.; Smirnova, O.; Sokolov, A.; Sopczak, A.; Sosnowski, R.; Spassov, T.; Stanitzki, M.; Stocchi, A.; Strauss, J.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Szumlak, T.; Tabarelli, T.; Taffard, A. C.; Tegenfeldt, F.; Timmermans, J.; Tkatchev, L.; Tobin, M.; Todorovova, S.; Tomaradze, A.; Tome, B.; Tonazzo, A.; Tortosa, P.; Travnicek, P.; Treille, D.; Tristram, G.; Trochimczuk, M.; Troncon, C.; Turluer, M.-L.; Tyapkin, I. A.; Tyapkin, P.; Tzamarias, S.; Uvarov, V.; Valenti, G.; van Dam, P.; van Eldik, J.; van Lysebetten, A.; van Remortel, N.; van Vulpen, I.; Vegni, G.; Veloso, F.; Venus, W.; Verbeure, F.; Verdier, P.; Verzi, V.; Vilanova, D.; Vitale, L.; Vrba, V.; Wahlen, H.; Washbrook, A. J.; Weiser, C.; Wicke, D.; Wickens, J.; Wilkinson, G.; Winter, M.; Witek, M.; Yushchenko, O.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zimin, N. I.; Zintchenko, A.; Zupan, M.; Delphi Collaboration

    2003-05-01

    The production of wrong sign charmed mesons b→overlineD(s)X, D(s)=(D0,D+,Ds), is studied using the data collected by the DELPHI experiment in the years 1994 and 1995. Charmed mesons in Z→bb¯ events are exclusively reconstructed by searching for the decays D0→K-π+, D+→K-π+π+ and Ds+→φπ+→K+K-π+. The wrong sign contribution is extracted by using two discriminant variables: the charge of the b-quark at decay time, estimated from the charges of identified particles, and the momentum of the charmed meson in the rest frame of the b-hadron. The inclusive branching fractions of b-hadrons into wrong sign charm mesons are measured to be: B(b→overlineD0X)+B(b→D-X)=(9.3±1.7(stat)±1.3(syst)±0.4(B))%, B(b→Ds-X)=(10.1±1.0(stat)±0.6(syst)±2.8(B))% where the first error is statistical, the second and third errors are systematic.

  2. Charm and beauty production and polarization at CDF

    SciTech Connect

    Vaia Papadimitriou

    2000-10-10

    In this paper the authors present results on Charm and Beauty production as well as on production and polarization of Quarkonia at {radical}s = 1.8 TeV. These results were obtained from data taken with the CDF detector at Fermilab. They cover recently completed analyses of the 1992--96 collider run.

  3. Charm and beauty measurements at Fermilab fixed target

    SciTech Connect

    Mishra, C.S.

    1993-10-01

    Eighteen months after a successful run of the Fermilab fixed target program, interesting results from several experiments are available. This is the first time that more than one Fermilab fixed target experiment has reported the observation of beauty mesons. In this paper we review recent results from charm and beauty fixed target experiments at Fermilab.

  4. Charm and Charmonium Spectroscopy in BaBar

    SciTech Connect

    Negrini, M.; /Ferrara U.

    2008-02-06

    The BABAR experiment at the PEP-II B-factory offers excellent opportunities in charm and charmonium spectroscopy. The recent observation of new states in the D{sub s} and in the charmonium mass regions revived the interest in this field. Recent BABAR results are presented.

  5. Single electron yields from semileptonic charm and bottom hadron decays in Au+Au collisions at sNN=200 GeV

    DOE PAGES

    Adare, A.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Alexander, J.; Alfred, M.; Aoki, K.; Apadula, N.; Aramaki, Y.; et al

    2016-03-07

    We measured open heavy flavor production in minimum bias Au + Au collisions at √s(NN) = 200 GeV via the yields of electrons from semileptonic decays of charm and bottom hadrons, using the PHENIX Collaboration at the Relativistic Heavy Ion Collider. In the past, heavy flavor electron measurements indicated substantial modification in the momentum distribution of the parent heavy quarks owing to the quark-gluon plasma created in these collisions. For the first time, using the PHENIX silicon vertex detector to measure precision displaced tracking, the relative contributions from charm and bottom hadrons to these electrons as a function of transversemore » momentum are measured in Au + Au collisions. Here, we compare the fraction of electrons from bottom hadrons to previously published results extracted from electron-hadron correlations in p + p collisions at √s(NN) = 200 GeV and find the fractions to be similar within the large uncertainties on both measurements for p(T) > 4 GeV/c. We use the bottom electron fractions in Au + Au and p + p along with the previously measured heavy flavor electron R(AA) to calculate the R(AA) for electrons from charm and bottom hadron decays separately. Finally, we find that electrons from bottom hadron decays are less suppressed than those from charm for the region 3 < p(T) < 4 GeV/c.« less

  6. Single electron yields from semileptonic charm and bottom hadron decays in Au +Au collisions at √{sN N}=200 GeV

    NASA Astrophysics Data System (ADS)

    Adare, A.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Alexander, J.; Alfred, M.; Aoki, K.; Apadula, N.; Aramaki, Y.; Asano, H.; Aschenauer, E. C.; Atomssa, E. T.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Bandara, N. S.; Bannier, B.; Barish, K. N.; Bassalleck, B.; Bathe, S.; Baublis, V.; Baumgart, S.; Bazilevsky, A.; Beaumier, M.; Beckman, S.; Belmont, R.; Berdnikov, A.; Berdnikov, Y.; Black, D.; Blau, D. S.; Bok, J. S.; Boyle, K.; Brooks, M. L.; Bryslawskyj, J.; Buesching, H.; Bumazhnov, V.; Butsyk, S.; Campbell, S.; Chen, C.-H.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choi, S.; Choudhury, R. K.; Christiansen, P.; Chujo, T.; Chvala, O.; Cianciolo, V.; Citron, Z.; Cole, B. A.; Connors, M.; Cronin, N.; Crossette, N.; Csanád, M.; Csörgő, T.; Dairaku, S.; Danley, T. W.; Datta, A.; Daugherity, M. S.; David, G.; Deblasio, K.; Dehmelt, K.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Dietzsch, O.; Ding, L.; Dion, A.; Diss, P. B.; Do, J. H.; Donadelli, M.; D'Orazio, L.; Drapier, O.; Drees, A.; Drees, K. A.; Durham, J. M.; Durum, A.; Edwards, S.; Efremenko, Y. V.; Engelmore, T.; Enokizono, A.; Esumi, S.; Eyser, K. O.; Fadem, B.; Feege, N.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fukao, Y.; Fusayasu, T.; Gainey, K.; Gal, C.; Gallus, P.; Garg, P.; Garishvili, A.; Garishvili, I.; Ge, H.; Giordano, F.; Glenn, A.; Gong, X.; Gonin, M.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Gu, Y.; Gunji, T.; Hachiya, T.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamilton, H. F.; Han, S. Y.; Hanks, J.; Hasegawa, S.; Haseler, T. O. S.; Hashimoto, K.; Hayano, R.; Hayashi, S.; He, X.; Hemmick, T. K.; Hester, T.; Hill, J. C.; Hollis, R. S.; Homma, K.; Hong, B.; Horaguchi, T.; Hoshino, T.; Hotvedt, N.; Huang, J.; Huang, S.; Ichihara, T.; Iinuma, H.; Ikeda, Y.; Imai, K.; Imazu, Y.; Imrek, J.; Inaba, M.; Iordanova, A.; Isenhower, D.; Isinhue, A.; Ivanishchev, D.; Jacak, B. V.; Javani, M.; Jezghani, M.; Jia, J.; Jiang, X.; Johnson, B. M.; Joo, K. S.; Jouan, D.; Jumper, D. S.; Kamin, J.; Kanda, S.; Kang, B. H.; Kang, J. H.; Kang, J. S.; Kapustinsky, J.; Karatsu, K.; Kawall, D.; Kazantsev, A. V.; Kempel, T.; Key, J. A.; Khachatryan, V.; Khandai, P. K.; Khanzadeev, A.; Kijima, K. M.; Kim, B. I.; Kim, C.; Kim, D. J.; Kim, E.-J.; Kim, G. W.; Kim, M.; Kim, Y.-J.; Kim, Y. K.; Kimelman, B.; Kinney, E.; Kistenev, E.; Kitamura, R.; Klatsky, J.; Kleinjan, D.; Kline, P.; Koblesky, T.; Komkov, B.; Koster, J.; Kotchetkov, D.; Kotov, D.; Krizek, F.; Kurita, K.; Kurosawa, M.; Kwon, Y.; Kyle, G. S.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Lebedev, A.; Lee, D. M.; Lee, J.; Lee, K. B.; Lee, K. S.; Lee, S.; Lee, S. H.; Lee, S. R.; Leitch, M. J.; Leite, M. A. L.; Leitgab, M.; Lewis, B.; Li, X.; Lim, S. H.; Linden Levy, L. A.; Liu, M. X.; Lynch, D.; Maguire, C. F.; Makdisi, Y. I.; Makek, M.; Manion, A.; Manko, V. I.; Mannel, E.; Maruyama, T.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Meles, A.; Mendoza, M.; Meredith, B.; Miake, Y.; Mibe, T.; Midori, J.; Mignerey, A. C.; Milov, A.; Mishra, D. K.; Mitchell, J. T.; Miyasaka, S.; Mizuno, S.; Mohanty, A. K.; Mohapatra, S.; Montuenga, P.; Moon, H. J.; Moon, T.; Morrison, D. P.; Moskowitz, M.; Moukhanova, T. V.; Murakami, T.; Murata, J.; Mwai, A.; Nagae, T.; Nagamiya, S.; Nagashima, K.; Nagle, J. L.; Nagy, M. I.; Nakagawa, I.; Nakagomi, H.; Nakamiya, Y.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Nattrass, C.; Netrakanti, P. K.; Nihashi, M.; Niida, T.; Nishimura, S.; Nouicer, R.; Novák, T.; Novitzky, N.; Nukariya, A.; Nyanin, A. S.; Obayashi, H.; O'Brien, E.; Ogilvie, C. A.; Okada, K.; Orjuela Koop, J. D.; Osborn, J. D.; Oskarsson, A.; Ozawa, K.; Pak, R.; Pantuev, V.; Papavassiliou, V.; Park, I. H.; Park, J. S.; Park, S.; Park, S. K.; Pate, S. F.; Patel, L.; Patel, M.; Pei, H.; Peng, J.-C.; Perepelitsa, D. V.; Perera, G. D. N.; Peressounko, D. Yu.; Perry, J.; Petti, R.; Pinkenburg, C.; Pinson, R.; Pisani, R. P.; Purschke, M. L.; Qu, H.; Rak, J.; Ramson, B. J.; Ravinovich, I.; Read, K. F.; Reynolds, D.; Riabov, V.; Riabov, Y.; Richardson, E.; Rinn, T.; Riveli, N.; Roach, D.; Roche, G.; Rolnick, S. D.; Rosati, M.; Rowan, Z.; Rubin, J. G.; Ryu, M. S.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sako, H.; Samsonov, V.; Sarsour, M.; Sato, S.; Sawada, S.; Schaefer, B.; Schmoll, B. K.; Sedgwick, K.; Seidl, R.; Sen, A.; Seto, R.; Sett, P.; Sexton, A.; Sharma, D.; Shein, I.; Shibata, T.-A.; Shigaki, K.; Shimomura, M.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Sim, K. S.; Singh, B. K.; Singh, C. P.; Singh, V.; Skolnik, M.; Slunečka, M.; Snowball, M.; Solano, S.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Stankus, P. W.; Steinberg, P.; Stenlund, E.; Stepanov, M.; Ster, A.; Stoll, S. P.; Sugitate, T.; Sukhanov, A.; Sumita, T.; Sun, J.; Sziklai, J.; Takagui, E. M.; Takahara, A.; Taketani, A.; Tanaka, Y.; Taneja, S.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tennant, E.; Tieulent, R.; Timilsina, A.; Todoroki, T.; Tomášek, M.; Torii, H.; Towell, C. L.; Towell, R.; Towell, R. S.; Tserruya, I.; Tsuchimoto, Y.; Vale, C.; van Hecke, H. W.; Vargyas, M.; Vazquez-Zambrano, E.; Veicht, A.; Velkovska, J.; Vértesi, R.; Virius, M.; Voas, B.; Vrba, V.; Vznuzdaev, E.; Wang, X. R.; Watanabe, D.; Watanabe, K.; Watanabe, Y.; Watanabe, Y. S.; Wei, F.; Whitaker, S.; White, A. S.; White, S. N.; Winter, D.; Wolin, S.; Woody, C. L.; Wysocki, M.; Xia, B.; Xue, L.; Yalcin, S.; Yamaguchi, Y. L.; Yanovich, A.; Ying, J.; Yokkaichi, S.; Yoo, J. H.; Yoon, I.; You, Z.; Younus, I.; Yu, H.; Yushmanov, I. E.; Zajc, W. A.; Zelenski, A.; Zhou, S.; Zou, L.; Phenix Collaboration

    2016-03-01

    The PHENIX Collaboration at the Relativistic Heavy Ion Collider has measured open heavy flavor production in minimum bias Au +Au collisions at √{sN N}=200 GeV via the yields of electrons from semileptonic decays of charm and bottom hadrons. Previous heavy flavor electron measurements indicated substantial modification in the momentum distribution of the parent heavy quarks owing to the quark-gluon plasma created in these collisions. For the first time, using the PHENIX silicon vertex detector to measure precision displaced tracking, the relative contributions from charm and bottom hadrons to these electrons as a function of transverse momentum are measured in Au +Au collisions. We compare the fraction of electrons from bottom hadrons to previously published results extracted from electron-hadron correlations in p +p collisions at √{sN N}=200 GeV and find the fractions to be similar within the large uncertainties on both measurements for pT>4 GeV/c . We use the bottom electron fractions in Au +Au and p +p along with the previously measured heavy flavor electron RA A to calculate the RA A for electrons from charm and bottom hadron decays separately. We find that electrons from bottom hadron decays are less suppressed than those from charm for the region 3

  7. Openings

    PubMed Central

    Selwyn, Peter A.

    2015-01-01

    Reviewing his clinic patient schedule for the day, a physician reflects on the history of a young woman he has been caring for over the past 9 years. What starts out as a routine visit then turns into a unique opening for communication and connection. A chance glimpse out the window of the exam room leads to a deeper meditation on parenthood, survival, and healing, not only for the patient but also for the physician. How many missed opportunities have we all had, without even realizing it, to allow this kind of fleeting but profound opening? PMID:26195687

  8. Anomalies in cosmic rays: New particles versus charm?

    NASA Technical Reports Server (NTRS)

    Balayan, G. L.; Khodjamirian, A. Y.; Oganessian, A. G.

    1985-01-01

    For a long time two anomalies are observed in cosmic rays at energies E approx. = 100 TeV: (1) the generation of long-flying cascades in the hadron calorimeter (the so-called Tien-Shan effect) and; (2) the enhancement of direct muon yield as compared with the accelerator energy region. The aim is to discuss the possibility that both anomalies have common origins arising from production and decays of the same particles. the main conclusions are the following: (1) direct muons cannot be generated by any new particles with mass exceeding 10+20 GeV; and (2) if both effects are originated from the charmed hadrons, then the needed charm hadroproduction cross section is unexpectedly large as compared with the quark-gluon model predictions.

  9. Prediction of narrow N* and {Lambda}* with hidden charm

    SciTech Connect

    Wu Jiajun; Molina, R.; Oset, E.; Zou, B. S.

    2011-10-24

    The interaction between various charmed mesons and charmed baryons, such as D-bar{Sigma}{sub c}-D-bar{Lambda}{sub c}, D-bar*{Sigma}{sub c}-D-bar*{Lambda}{sub c}, and related strangeness channels, are studied within the framework of the coupled channel unitary approach with the local hidden gauge formalism. Six narrow N* and {Lambda}* resonances are dynamically generated with mass above 4 GeV and width smaller than 100 MeV. These predicted new resonances definitely cannot be accommodated by quark models with three constituent quarks. We make estimates of production cross sections of these predicted resonances in p-barp collisions for PANDA at the forthcoming FAIR facility.

  10. Search for charmed hadrons in the OPERA experiment

    NASA Astrophysics Data System (ADS)

    Pastore, A.

    2015-05-01

    The OPERA experiment was designed to study muon neutrino to tau neutrino oscillations in appearance mode, using the CERN to Gran Sasso (CNGS) high energy neutrino beam 730 km far from the source. From 2008 to 2012, CNGS neutrinos interactions were recorded in the OPERA detector, which includes target units made of lead plates alternated with emulsion films and electronic tracker planes. The on-going analysis is aimed at the detection of short-lived particle decays occurring over distances of the order of 1 mm from the neutrino interaction point. It has allowed identifying charmed hadrons together with the tau lepton decay candidates that have established vμ → vτ oscillations with a significance of 4.2 σ. The procedure applied in OPERA to detect short-lived particle decays and its application to the search for charmed hadrons will be discussed here in detail.

  11. CHARMS: The Cryogenic, High-Accuracy Refraction Measuring System

    NASA Technical Reports Server (NTRS)

    Frey, Bradley; Leviton, Douglas

    2004-01-01

    The success of numerous upcoming NASA infrared (IR) missions will rely critically on accurate knowledge of the IR refractive indices of their constituent optical components at design operating temperatures. To satisfy the demand for such data, we have built a Cryogenic, High-Accuracy Refraction Measuring System (CHARMS), which, for typical 1R materials. can measure the index of refraction accurate to (+ or -) 5 x 10sup -3 . This versatile, one-of-a-kind facility can also measure refractive index over a wide range of wavelengths, from 0.105 um in the far-ultraviolet to 6 um in the IR, and over a wide range of temperatures, from 10 K to 100 degrees C, all with comparable accuracies. We first summarize the technical challenges we faced and engineering solutions we developed during the construction of CHARMS. Next we present our "first light," index of refraction data for fused silica and compare our data to previously published results.

  12. Semileptonic B and Bs decays into orbitally excited charmed mesons

    NASA Astrophysics Data System (ADS)

    Segovia, J.; Albertus, C.; Entem, D. R.; Fernández, F.; Hernández, E.; Pérez-García, M. A.

    2011-11-01

    The BABAR Collaboration has recently reported products of branching fractions that include B meson semileptonic decays into final states with charged and neutral D1(2420) and D2*(2460), two narrow orbitally excited charmed mesons. We evaluate these branching fractions, together with those concerning D0*(2400) and D1'(2430) mesons, within the framework of a constituent quark model. The calculation is performed in two steps, one of which involves a semileptonic decay and the other is mediated by a strong process. Our results are in agreement with the experimental data. We also extend the study to semileptonic decays of Bs into orbitally excited charmed-strange mesons, providing predictions to the possible measurements to be carried out at LHC.

  13. Fragmentation production of charmed hadrons in electron-positron annihilation

    SciTech Connect

    Novoselov, A. A.

    2010-10-15

    Processes involving the production of D* mesons and {Lambda}{sub c} baryons in electron-positron annihilation at the energies of 10.58 and 91.18 GeV are considered. At the energy of 10.58 GeV, the production of pairs of B mesons that is followed by their decay to charmed particles is analyzed along with direct charm production. The violation of scaling in the respective fragmentation functions is taken into account in the next-to-leading-logarithmic approximation of perturbative QCD. The required nonperturbative fragmentation functions are extracted numerically from experimental data obtained at B factories and are approximated by simple analytic expressions. It is shown that the difference in the nonperturbative fragmentation functions for transitions to mesons and baryons can readily be explained on the basis of the quark-counting rules.

  14. Study of Charm Baryons with the BaBar Experiment

    SciTech Connect

    Petersen, Brian Aa.

    2006-10-24

    The authors report on several studies of charm baryon production and decays by the BABAR collaboration. They confirm previous observations of the {Xi}'{sub c}{sup 0/+}, {Xi}{sub c}(2980){sup +} and {Xi}{sub c}(3077){sup +} baryons, measure branching ratios for Cabibbo-suppressed {Lambda}{sub c}{sup +} decays and use baryon decays to study the properties of the light-quark baryons, {Omega}{sup -} and {Xi}(1690){sup 0}.

  15. Charmed Meson Production in 800 GEV Proton-Proton Interactions.

    NASA Astrophysics Data System (ADS)

    Senko, Mark Frederick

    The purpose of this dissertation is to present the results of a study concerning the energy dependence of charmed meson production properties as a test of Quantum Chromodynamics (QCD). This experiment was performed at Fermi National Accelerator Laboratory, using a rapid cycling bubble chamber (LEBC) as a hydrogen target and high resolution vertex detector, in combination with the Fermilab Multiparticle Spectrometer (FMPS). The multiplicity trigger was unbiased, and spectrometer acceptance was good at x_ {F} >=q 0. A comparison of the results from previous experiments at center of mass energies sqrt{s} <=q 27 GeV and sqrt {s} >=q 53 GeV implies a total charm particle production cross section which rises rapidly as a function of sqrt{s} . The result of our experiment, sigma (D/| D) = 42.7 +/- 7.8 mub at sqrt{s} = 38 GeV, indicates a slower rise, in agreement with QCD predictions. A maximum likelihood fit to the parameterization of the differential cross section as d^2sigma/dx_{F}dp _sp{|}{2} ~ (1 - | x_{F }|)^{n}e^{-bp _sp{|}{2}} gives the results n = 8.4_sp {-1.9}{+2.2}, b = 0.78_sp{-0.16}{+0.19} (GeV/c)^{-2}, and < pbot > = 1.1_sp{-0.1}{+0.2} GeV/c. When compared with results from the lower energy experiments, these values indicate charm production becoming more central and < pbot > being consistent with the charmed quark mass. These results are once again consistent with QCD predictions. Lastly, analysis has shown that sigma(D ^*^+/-)/sigma(D^0) is governed primarily by spin statistics, displaying no energy dependence. The resulting cross section for D^*^+/- production is sigma(D^*^+/-) = 13.31 +/- 5.74 mub.

  16. Recent results from Fermilab E687 on charm spectroscopy

    SciTech Connect

    Lebrun, P.

    1997-07-01

    Recent analyses of charm spectroscopy from Fermilab fixed target experiment 687 are summarized. Emphasis is placed on the phenomenology of Cabibbo suppression in the meson sector. Such transitions have been observed in the semileptonic modes and hadronic modes. While the former transitions give us an opportunity to observe the weak current and the CKM matrix, a systematic comparison of the latter transitions allow us to study strong interaction effects, and possibly, light quark spectroscopy.

  17. Light Higgs boson decaying to four charm quarks

    SciTech Connect

    Bellazzini, Brando; Csaki, Csaba; Falkowski, Adam; Weiler, Andreas

    2010-04-01

    We present a simple supersymmetric model where the dominant decay mode of the lightest Higgs boson is h{yields}2{eta}{yields}4c, where {eta} is a light pseudoscalar and c is the charm quark. For such decays the Higgs mass can be smaller than 100 GeV without conflict with experiment. Together with the fact that both the Higgs and the pseudoscalar {eta} are pseudo-Goldstone bosons, this resolves the little hierarchy problem.

  18. Recent charm mixing results from BABAR, Belle, and CDF

    SciTech Connect

    Charles, M.J.; /Iowa U. /SLAC

    2009-02-02

    A summary of the results of several recent studies of charm mixing is presented. A number of different methods were used, including the measurement of lifetime ratios for final states of different CP, time dependence of wrong-sign hadronic decays, fits to time-dependent Dalitz plots, and searches for wrong-sign semi-leptonic decays. Taken together, they suggest mixing is of order 1%. The status of searches for indirect CP violation is also reported.

  19. On charm and beauty decays: A theorist's perspective

    SciTech Connect

    Bigi, I.I.

    1987-10-01

    The present understanding of charm and bottom decays is reviewed. Special emphasis is placed on discussing the theoretical uncertainties in view of the particularly rich harvest of new data from the last year. A semi-quantitative description of D decays has emerged enabling us to address rather detailed and relatively subtle questions there, like on once and twice Cabibbo suppressed decays. Beauty physics having left its infancy is now in its adolescence; its future development towards maturity is analyzed.

  20. Penguin diagrams, charmless B decays, and the ``missing charm puzzle''

    NASA Astrophysics Data System (ADS)

    Lenz, Alexander; Nierste, Ulrich; Ostermaier, Gaby

    1997-12-01

    We calculate the contributions of penguin diagrams with internal u or c quarks to various inclusive charmless B-decay rates. Further we analyze the influence of the chromomagnetic dipole operator Q8 on these rates. We find that the rates corresponding to B¯-->Xuūs, B¯-->Xdd¯s, B¯-->Xss¯s, B¯-->Xss¯d, and B¯-->Xdd¯d are dominated by the new penguin contributions. The contributions of Q8 sizably diminish these rates. Despite an increase of the total charmless decay rate by 36%, the new contributions are not large enough to explain the charm deficit observed by ARGUS and CLEO. We predict nc=1.33+/-0.06 for the average number of charmed particles per B decay in the standard model. Then the hypothesis of an enhancement of the chromomagnetic dipole coefficient C8 by new physics contributions is analyzed. We perform a model-independent fit of C8 to the experimental data. If the CKM structure of the new physics contribution is the same as in the standard model, \\|C8(MW)\\| must be enhanced by a factor of 9 to 16 in order to explain the observed charm deficit.

  1. Hadronic decays of beauty and charm from CLEO

    NASA Astrophysics Data System (ADS)

    Rodriguez, Jorge L.

    1999-02-01

    A selection of recent results on hadronic charm and beauty decays from the CLEO experiment are presented. We report preliminary evidence for the existence of final state interactions in B decays and the first observation of the decay B0→D*+D*- with a branching fraction of (7.8-3.8+5.4±1.5)×10-4. We also present preliminary results on the first observation of the broad, JP=1+, charmed meson resonance with a mass of mD1(j=1/2)0=2.461-0.34+0.41±0.010±0.032 GeV and a width of Γ=290-79+101±26±36 MeV and branching fraction measurements of the B-→DJ0π-1 decay. Finally, we report on our search for the radial excitation of a spin 1 charmed meson, the D*'1, and on an improved measurement of the ratio of decay rates Γ(D0→K+π-)/Γ(D0→K-π+).

  2. B, Lambda{sub b} and charm results from the Tevatron

    SciTech Connect

    F. Azfar

    2003-09-18

    Recent results on B{sub d}, B{sub u}{sup {+-}}, B{sub s}, {Lambda}{sub b} and Charm hadrons are reported from {approx} 75 pb{sup -1} and {approx} 40 pb{sup -1} of data accumulated at the upgraded CDF and D0 experiments at the Fermilab Tevatron {bar p}-p collider, during Run-II. These include lifetime and mass measurements of B and Charm hadrons, searches for rare decays in charm and B hadrons and CP-violation in Charm decays. Results relevant to CP-violation in B-decays are also reported.

  3. Muoproduction of J/psi(3100)

    SciTech Connect

    Markiewicz, T.W.

    1981-10-01

    Interactions of 209-GeV muons within an instrumented magnetized-steel calorimeter have produced 4374 +- 87 ..mu../sup +/..mu../sup -/ pairs from J/psi decay, corresponding to the cross section sigma(..mu..N ..-->.. ..mu.. psi X) = 0.64 +- 0.10 nb. These interactions are classified as either elastic (sigma = 0.36 +- 0.07 nb) or inelastic (sigma = 0.28 +- 0.06 nb) based primarily on the calorimetric determination of E/sub X/. The cross section for elastic psi production by virtual photons, sigma/sub eff/(..gamma../sub V/N), rises with energy nu as log nu. Its dependence on Q/sup 2/ fits the vector-meson dominance form P(..lambda..) = (1 + Q/sup 2//..lambda../sup 2/)/sup -2/, with ..lambda.. = (2.0 - 2.4) +- 0.15 GeV, where the spread in values arises from considering the possibility of a Q/sup 2/ dependence in the decay angular distribution W (theta,phi) and in the nuclear shadowing factor. We find that W(theta,phi) is consistent with the form expected if the reaction ..gamma../sub V/N ..-->.. psiN conserves helicity in the s channel through natural-parity exchange in the t channel. After correction for nuclear effects, d sigma/sub eff//dt is described by the sum of two exponential terms in t, with average t slope b = 2.56 (+0.35 or - 0.32). The photon-gluon fusion (..gamma..g ..-->.. psi) perturbative quantum chromodynamic model for psi production provides an excellent description of the nu dependence of sigma/sub eff/, but cannot simultaneously explain the observed cross section and value of ..lambda... The differential cross section d/sup 2/sigma/sub eff//dzdp/sub perpindicular//sup 2/ for inelastically produced psi's rises approximately linearly with elasticity z identical with E/sub psi//nu. The p/sub perpendicular//sup 2/ dependence is flatter than that of d sigma/dt for elastic events, with average p/sub perpendicular//sup 2/ slope b = 1.46 +- 0.10. The Q/sup 2/ dependence of sigma/sub eff/ is that of P(..lambda..) with ..lambda.. = 3.0 +- 0.2 GeV, and the nu dependence is similar to that observed for elastic production. 101 references, 33 figures, 20 tables.

  4. Recent results from COMPASS on exclusive muoproduction

    NASA Astrophysics Data System (ADS)

    Sandacz, Andrzej

    2016-02-01

    The 160 GeV polarised muon beam available at CERN, with positive or negative charge, makes COMPASS a unique place for GPD studies. The first GPD related COMPASS results come from exclusive vector meson production on transversely polarised protons and deuterons. The data were taken in 2003-2010 with large solid-state polarised targets, although without detection of recoil particles. Results on various transverse target spin dependent azimuthal asymmetries are presented and their relations to GPDs are discussed. The dedicated COMPASS GPD program started in 2012 with commissioning of a new long liquid hydrogen target and new detectors such as the large recoil proton detector and the large-angle electromagnetic calorimeter. It was followed by a short pilot 'DVCS run'. The performance of the setup and first results on DVCS and exclusive π0 channels have been demonstrated. The full data taking for the GPD program approved within COMPASS-II proposal is planned for 2016 and 2017.

  5. A tau -- charm -- factory at Argonne. Preliminary assessment of the physics case and the Argonne Site

    SciTech Connect

    Berger, E.; Fields, T.; Grosnick, D.; Norem, J.; Repond, J.; Schoessow, P.

    1994-02-02

    Depending on the beam energy setting, the {tau} -- charm -- factory will be optimized to study physics with {tau} leptons, with charmed mesons, or with charmonium states. This report gives a short overview of the physics of these topics. Also discussed are the detectors and the costs associated with this project.

  6. Feminine charm: an experimental analysis of its costs and benefits in negotiations.

    PubMed

    Kray, Laura J; Locke, Connson C; Van Zant, Alex B

    2012-10-01

    The authors examined feminine charm, an impression management technique available to women that combines friendliness with flirtation. They asked whether feminine charm resolves the impression management dilemma facing women who simultaneously pursue task (i.e., economic) and social goals in negotiations. They compared women's social and economic consequences after using feminine charm versus a neutral interaction style. They hypothesized that feminine charm would create positive impressions of its users, thus partially mitigating the social penalties women negotiators often incur. They also expected that the degree to which females were perceived as flirtatious (signaling a concern for self), rather than merely friendly (signaling a concern for other), would predict better economic deals for females. Hypotheses were supported across a correlational study and three experiments. Feminine charm has costs and benefits spanning economic and social measures. Theoretical and practical implications are discussed. PMID:22821088

  7. Diffusion of hidden charm mesons in hadronic medium

    NASA Astrophysics Data System (ADS)

    Mitra, Sukanya; Ghosh, Sabyasachi; Das, Santosh K.; Sarkar, Sourav; Alam, Jan-e.

    2016-07-01

    The drag and diffusion coefficients of a hot hadronic medium have been evaluated by using hidden charm mesons as probes. The scattering amplitudes required for the evaluation of these coefficients are calculated using an effective theory and scattering lengths obtained from lattice QCD calculations. It is found that although the magnitude of the transport coefficients are small their temperature variation is strong. The insignificant momentum diffusion of J / ψ in the hadronic medium keeps their momentum distribution largely unaltered. Therefore, the task of characterization of quark gluon plasma by using the observed suppression of J / ψ at high momentum will be comparatively easier.

  8. Intrinsic charm in a matched general-mass scheme

    NASA Astrophysics Data System (ADS)

    Ball, Richard D.; Bertone, Valerio; Bonvini, Marco; Forte, Stefano; Groth Merrild, Patrick; Rojo, Juan; Rottoli, Luca

    2016-03-01

    The FONLL general-mass variable-flavour number scheme provides a framework for the matching of a calculation in which a heavy quark is treated as a massless parton to one in which the mass dependence is retained throughout. We describe how the usual formulation of FONLL can be extended in such a way that the heavy quark parton distribution functions are freely parameterized at some initial scale, rather than being generated entirely perturbatively. We specifically consider the case of deep-inelastic scattering, in view of applications to PDF determination, and the possible impact of a fitted charm quark distribution on F2c is assessed.

  9. Nonleptonic two-body decays of charmed mesons

    NASA Astrophysics Data System (ADS)

    Yu, Fu-Sheng; Wang, Xiao-Xia; Lü, Cai-Dian

    2011-10-01

    Nonleptonic decays of charmed mesons into two pseudoscalar mesons or one pseudoscalar meson and one vector meson are studied on the basis of a generalized factorization method considering the resonance effects in the pole model for the annihilation contributions. Large strong phases between different topological diagrams are considered in this work, simply taking the phase in the coefficients ai. We find that the annihilation-type contributions calculated in the pole model are large in both of the PP and PV modes, which make our numerical results agree with the experimental data better than those previous calculations.

  10. Spectroscopy of triply charmed baryons from lattice QCD

    SciTech Connect

    Padmanath, M.; Edwards, Robert G.; Mathur, Nilmani; Peardon, Michael

    2014-10-14

    The spectrum of excitations of triply-charmed baryons is computed using lattice QCD including dynamical light quark fields. The spectrum obtained has baryonic states with well-defined total spin up to 7/2 and the low-lying states closely resemble the expectation from models with an SU(6) x O(3) symmetry. As a result, energy splittings between extracted states, including those due to spin-orbit coupling in the heavy quark limit are computed and compared against data at other quark masses.

  11. Searches for Rare or Forbidden Semileptonic Charm Decays

    SciTech Connect

    Lees, J.P.

    2011-08-15

    We present searches for rare or forbidden charm decays of the form X{sub c}{sup +} {yields} h{sup {+-}}{ell}{sup {-+}}{ell}{sup ({prime})+}, where X{sub c}{sup +} is a charm hardron (D{sup +}, D{sub s}{sup +}, or {Lambda}{sub c}{sup +}), h{sup {+-}} is a pion, kaon, or proton, and {ell}{sup ({prime}){+-}} is an electron or muon. The analysis is based on 384 fb{sup -1} of e{sup +}e{sup -} annihilation data collected at or close to the {Upsilon}(4S) resonance with the BABAR detector at the SLAC National Accelerator Laboratory. No significant signal is observed for any of the 35 decay modes that are investigated. We establish 90% confidence-level upper limits on the branching fractions between 1 x 10{sup -6} and 44 x 10{sup -6} depending on the channel. In most cases, these results represent either the first limits or significant improvements on existing limits for the decay modes studied.

  12. Spectroscopy of doubly charmed baryons from lattice QCD

    SciTech Connect

    Padmanath, M.; Edwards, Robert G.; Mathur, Nilmani; Peardon, Michael

    2015-05-06

    This study presents the ground and excited state spectra of doubly charmed baryons from lattice QCD with dynamical quark fields. Calculations are performed on anisotropic lattices of size 16³ × 128, with inverse spacing in temporal direction at⁻¹=5.67(4) GeV and with a pion mass of about 390 MeV. A large set of baryonic operators that respect the symmetries of the lattice yet which retain a memory of their continuum analogues are used. These operators transform as irreducible representations of SU(3)F symmetry for flavor, SU(4) symmetry for Dirac spins of quarks and O(3) for spatial symmetry. The distillation method is utilized to generate baryon correlation functions which are analyzed using the variational fitting method to extract excited states. The lattice spectra obtained have baryonic states with well-defined total spins up to 7/2 and the pattern of low-lying states does not support the diquark picture for doubly charmed baryons. On the contrary the calculated spectra are remarkably similar to the expectations from models with an SU(6)×O(3) symmetry. Various spin-dependent energy splittings between the extracted states are also evaluated.

  13. Charmed tetraquarks Tcc and Tcs from dynamical lattice QCD simulations

    NASA Astrophysics Data System (ADS)

    Ikeda, Yoichi; Charron, Bruno; Aoki, Sinya; Doi, Takumi; Hatsuda, Tetsuo; Inoue, Takashi; Ishii, Noriyoshi; Murano, Keiko; Nemura, Hidekatsu; Sasaki, Kenji

    2014-02-01

    Charmed tetraquarks Tcc=(ccubardbar) and Tcs=(csubardbar) are studied through the S-wave meson-meson interactions, D-D, Kbar-D, D-D* and Kbar-D*, on the basis of the (2+1)-flavor lattice QCD simulations with the pion mass mπ≃410, 570 and 700 MeV. For the charm quark, the relativistic heavy quark action is employed to treat its dynamics on the lattice. Using the HAL QCD method, we extract the S-wave potentials in lattice QCD simulations, from which the meson-meson scattering phase shifts are calculated. The phase shifts in the isospin triplet (I=1) channels indicate repulsive interactions, while those in the I=0 channels suggest attraction, growing as mπ decreases. This is particularly prominent in the Tcc (JP=1+,I=0) channel, though neither bound state nor resonance are found in the range mπ=410-700 MeV. We make a qualitative comparison of our results with the phenomenological diquark picture.

  14. The Experimental Discovery of Double-Charm Baryons

    NASA Astrophysics Data System (ADS)

    Engelfried, Jürgen; Selex Collaboration

    2005-04-01

    In 2002, the SELEX [The SELEX (Fermilab E781) Collaboration: Ball State University, Bogazici University, Carnegie-Mellon University, Centro Brasileiro de Pesquisas Fisicas, Fermilab, Institute For High Energy Physics (Protvino), Institute of High Energy Physics (Beijing), Institute of Theoretical and Experimental Physics (Moscow), Max-Planck-Institute for Nuclear Physics, Moscow State University, Petersburg Nuclear Physics Institute, Tel Aviv University, Universidad Autónoma de San Luis Potosí, Universidade Federal da Paraíba, H. H. Wills Physics Laboratory, University of Bristol, University of Iowa, University of Michigan-Flint, University of Rochester, University of Rome La Sapienza and INFN, University of São Paulo, University of Trieste and INFN. http://www-selex.fnal.gov] Experiment (Fermilab E781) reported the first observation of a member of the family of doubly charmed baryons [SELEX Collaboration, M. Mattson et al.: First observation of the doubly charmed baryonΞcc+. Phys. Rev. Letters 89 (2002) 112001, [ arXiv:hep-ex/0208014

  15. Hints for Enhanced b -> sg From Charm and Kaon Counting

    SciTech Connect

    Rathsman, Johan

    2003-05-09

    Previously, motivation for enhanced b {yields} sg from new flavor physics has centered on discrepancies between theory and experiment. Here two experimental hints are considered: (1) updated measurements of the charm multiplicity and {Beta}({bar B} {yields} X{sub c{bar c}s}) at the {Upsilon}(4S) imply {Beta}(B {yields} X{sub no charm}) {approx} 12.4 {+-} 5.6%, (2) the {bar B} {yields} K{sup -}X and {bar B} {yields} K{sup +}/K{sup -}X branching fractions are in excess of conventional {bar B} {yields} X{sub c} {yields} KX yields by about 16.9 {+-} 5.6% and 18 {+-} 5.3%, respectively. JETSET 7.4 was used to estimate kaon yields from s{bar s} popping in {bar B} {yields} X{sub c{bar u}d} decays. JETSET 7.4 Monte Carlos for {Beta}({bar B} {yields} X{sub sg}) {approx} 15% imply that the additional kaon production would lead to 1{sigma} agreement with observed charged and neutral kaon yields. The K{sub s} momentum spectrum would be consistent with recent CLEO bounds in the end point region. Search strategies for enhanced b {yields} sg are discussed in light of large theoretical uncertainty in the standard model fast kaon background from b {yields} s penguin operators.

  16. Prediction of Narrow N* and {Lambda}* Resonances with Hidden Charm above 4 GeV

    SciTech Connect

    Wu Jiajun; Molina, R.; Oset, E.; Zou, B. S.

    2010-12-03

    The interaction between various charmed mesons and charmed baryons is studied within the framework of the coupled-channel unitary approach with the local hidden gauge formalism. Several meson-baryon dynamically generated narrow N{sup *} and {Lambda}{sup *} resonances with hidden charm are predicted with mass above 4 GeV and width smaller than 100 MeV. The predicted new resonances definitely cannot be accommodated by quark models with three constituent quarks and can be looked for in the forthcoming PANDA/FAIR experiments.

  17. Identification of beauty and charm quark jets at LHCb

    NASA Astrophysics Data System (ADS)

    The LHCb Collaboration

    2015-06-01

    Identification of jets originating from beauty and charm quarks is important for measuring Standard Model processes and for searching for new physics. The performance of algorithms developed to select b- and c-quark jets is measured using data recorded by LHCb from proton-proton collisions at √s = 7 TeV in 2011 and at √s = 8 TeV in 2012. The efficiency for identifying a b(c) jet is about 65%(25%) with a probability for misidentifying a light-parton jet of 0.3% for jets with transverse momentum pT > 20GeV and pseudorapidity 2.2 < η < 4.2. The dependence of the performance on the pT and η of the jet is also measured.

  18. Status of the Tau-Charm Factory Project and aspects of the detector design

    SciTech Connect

    Schindler, R.H.

    1992-10-01

    This paper reviews the status of the Tau-Charm Factory Project being proposed for construction in Spain. The paper also reviews characteristics of the detector design, and the issues surrounding the present choices of technologies.

  19. CHARM: A CubeSat Water Vapor Radiometer for Earth Science

    NASA Technical Reports Server (NTRS)

    Lim, Boon; Mauro, David; DeRosee, Rodolphe; Sorgenfrei, Matthew; Vance, Steve

    2012-01-01

    The Jet Propulsion Laboratory (JPL) and Ames Research Center (ARC) are partnering in the CubeSat Hydrometric Atmospheric Radiometer Mission (CHARM), a water vapor radiometer integrated on a 3U CubeSat platform, selected for implementation under NASA Hands-On Project Experience (HOPE-3). CHARM will measure 4 channels at 183 GHz water vapor line, subsets of measurements currently performed by larger and more costly spacecraft (e.g. ATMS, AMSU-B and SSMI/S). While flying a payload that supports SMD science objectives, CHARM provides a hands-on opportunity to develop technical, leadership, and project skills. CHARM will furthermore advance the technology readiness level (TRL) of the 183 GHz receiver subsystem from TRL 4 to TRL 6 and the CubeSat 183 GHz radiometer system from TRL 4 to TRL 7.

  20. Conference summary: 6th International conference on hyperons, charm, and beauty hadrons (BEACH04)

    SciTech Connect

    Butler, Joel N.; /Fermilab

    2004-12-01

    The 6th International Conference on Hyperons, Charm, and Beauty Hadrons (BEACH04) treated us to a wonderful array of new results. Here the author attempts to summarize the talks and discuss the conference highlights.

  1. Regarding the Charmed-Strange Member of the 23S1 Meson State

    PubMed Central

    Feng, Xue-Chao; Chen, Jing

    2013-01-01

    By employing the mass relations derived from the mass matrix and Regge trajectory, we investigate the masses of charmed and charmed-strange members of the 23S1 meson. The masses are compared with the values predicted by other theoretical approaches and experimental data. The results may be useful for the discovery of the unobserved meson and the determination of the quantum number of the newly discovered states. PMID:24250272

  2. Charm production in Pb + Pb collisions at energies available at the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Song, Taesoo; Berrehrah, Hamza; Cabrera, Daniel; Cassing, Wolfgang; Bratkovskaya, Elena

    2016-03-01

    We study charm production in Pb +Pb collisions at √{sN N}=2.76 TeV in the parton-hadron-string-dynamics (PHSD) transport approach and the charm dynamics in the partonic and hadronic medium. The charm quarks are produced through initial binary nucleon-nucleon collisions by using the pythia event generator, taking into account the (anti-)shadowing incorporated in the eps09 package. The produced charm quarks interact with off-shell massive partons in the quark-gluon plasma and are hadronized into D mesons through coalescence or fragmentation close to the critical energy density, and then interact with hadrons in the final hadronic stage with scattering cross sections calculated in an effective Lagrangian approach with heavy-quark spin symmetry. The PHSD results show a reasonable RAA and elliptic flow of D mesons in comparison to the experimental data for Pb +Pb collisions at √{sN N}=2.76 TeV from the ALICE Collaboration. We also study the effect of temperature-dependent off-shell charm quarks in relativistic heavy-ion collisions. We find that the scattering cross sections are only moderately affected by off-shell charm degrees of freedom. However, the position of the peak of RAA for D mesons depends on the strength of the scalar partonic forces which also have an impact on the D meson elliptic flow. The comparison with experimental data on the RAA suggests that the repulsive force is weaker for off-shell charm quarks as compared to that for light quarks. Furthermore, the effects from radiative charm energy loss appear to be low compared to the collisional energy loss up to transverse momenta of ˜15 GeV/c .

  3. Mixing and CP violation in the beauty and charm sectors at LHCb

    NASA Astrophysics Data System (ADS)

    López March, Neus

    2014-04-01

    The LHCb detector is a dedicated heavy flavour experiment operating at the Large Hadron Collider designed to pursue an extensive study of CP violation in the beauty and charm sectors. In the first part of this contribution, important milestones towards the measurement of CP violation in the beauty sector using B± and Bs0 decays are presented. In the second part, highlights of the searches of CP violation in the charm sector are reported.

  4. Charmed meson physics accessible to an L = 10/sup 33/ cm/sup /minus/2/ sec/sup /minus/1/ e/sup +/e/sup /minus// collider operating near charm threshold

    SciTech Connect

    Schindler, R.H.

    1989-06-01

    In this report, the potential for dedicated charmed D/sup 0/, D/sup +/ and D/sub s/ meson physics in a high-luminosity e/sup +/e/sup /minus// collider operated near charm threshold is explored. The construction of such a high-luminosity collider or Tau-Charm Factory in conjunction with a new detector whose design draws heavily on the extensive operational experience of previous detectors at SPEAR, could achieve three orders-of-magnitude improvement in sensitivity in most areas of charmed meson studies. 27 refs., 10 figs., 9 tabs.

  5. Inter-Comparison of CHARM Data and WSR-88D Storm Integrated Rainfall

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.; Meyer, Paul J.; Guillory, Anthony R.; Stellman, Keith; Limaye, Ashutosh; Arnold, James E. (Technical Monitor)

    2002-01-01

    A localized precipitation network has been established over a 4000 sq km region of northern Alabama in support of local weather and climate research at the Global Hydrology and Climate Center (GHCC) in Huntsville. This Cooperative Huntsville-Area Rainfall Measurement (CHARM) network is comprised of over 80 volunteers who manually take daily rainfall measurements from 85 sites. The network also incorporates 20 automated gauges that report data at 1-5 minute intervals on a 24 h a day basis. The average spacing of the gauges in the network is about 6 kin, however coverage in some regions benefit from gauges every 1-2 km. The 24 h rainfall totals from the CHARM network have been used to validate Stage III rainfall estimates of daily and storm totals derived from the WSR-88D radars that cover northern Alabama. The Stage III rainfall product is produced by the Lower Mississippi River Forecast Center (LMRFC) in support of their daily forecast operations. The intercomparisons between the local rain gauge and the radar estimates have been useful to understand the accuracy and utility of the Stage III data. Recently, the Stage III and CHARM rainfall measurements have been combined to produce an hourly rainfall dataset at each CHARM observation site. The procedure matches each CHARM site with a time sequence of Stage III radar estimates of precipitation. Hourly stage III rainfall estimates were used to partition the rain gauge values to the time interval over which they occurred. The new hourly rain gauge dataset is validated at selected points where 1-5 minute rainfall measurements have been made. This procedure greatly enhances the utility of the CHARM data for local weather and hydrologic modeling studies. The conference paper will present highlights of the Stage III intercomparison and some examples of the combined radar / rain gauge product demonstrating its accuracy and utility in deriving an hourly rainfall product from the 24 h CHARM totals.

  6. CONSTRAINED-TRANSPORT MAGNETOHYDRODYNAMICS WITH ADAPTIVE MESH REFINEMENT IN CHARM

    SciTech Connect

    Miniati, Francesco; Martin, Daniel F. E-mail: DFMartin@lbl.gov

    2011-07-01

    We present the implementation of a three-dimensional, second-order accurate Godunov-type algorithm for magnetohydrodynamics (MHD) in the adaptive-mesh-refinement (AMR) cosmological code CHARM. The algorithm is based on the full 12-solve spatially unsplit corner-transport-upwind (CTU) scheme. The fluid quantities are cell-centered and are updated using the piecewise-parabolic method (PPM), while the magnetic field variables are face-centered and are evolved through application of the Stokes theorem on cell edges via a constrained-transport (CT) method. The so-called multidimensional MHD source terms required in the predictor step for high-order accuracy are applied in a simplified form which reduces their complexity in three dimensions without loss of accuracy or robustness. The algorithm is implemented on an AMR framework which requires specific synchronization steps across refinement levels. These include face-centered restriction and prolongation operations and a reflux-curl operation, which maintains a solenoidal magnetic field across refinement boundaries. The code is tested against a large suite of test problems, including convergence tests in smooth flows, shock-tube tests, classical two- and three-dimensional MHD tests, a three-dimensional shock-cloud interaction problem, and the formation of a cluster of galaxies in a fully cosmological context. The magnetic field divergence is shown to remain negligible throughout.

  7. Rare beauty and charm decays with the CMS experiment

    NASA Astrophysics Data System (ADS)

    Chen, Kai-Feng

    2013-05-01

    Rare beauty meson decays Bs0 → µ+µ-, B0 → μ+μ-, and charm meson decays D0 → μ+μ- are searched in pp collisions at √s = 7 TeV. A data sample corresponding to an integrated luminosity of 5 fb-1 collected by the CMS experiment is used for the B → μ+μ- study, while the data sample used for D0 → μ+μ- search is 90 pb-1. The number of events observed after applying the full selection criteria is consistent with the expectations from the sum of background and standard model signal. The resulting upper limits on the branching fractions are ℬ(Bs0 → µ+µ-) < 7.7 × 10-9, ℬ(B0 µ+ µ-) < 1.8 × 10-9 at 95% confidence level, and ℬ(D0 → μ+μ-) < 5.4 × 10-7 at 90% confidence level.

  8. Search for T violation in charm meson decays

    SciTech Connect

    Link, J.M.; Yager, P.M.; Anjos, J.C.; Bediaga, I.; Castromonte, C.; Machado, A.A.; Magnin, J.; Massafferri, A.; de Miranda, J.M.; Pepe, I.M.; Polycarpo, E.; dos Reis, A.C.; Carrillo, S.; Casimiro, E.; Cuautle, E.; Sanchez-Hernandez, A.; Uribe, C.; Vazquez, F.; Agostino, L.; Cinquini, L.; Cumalat, J.P.; /Colorado U. /Fermilab /Frascati /Guanajuato U. /Illinois U., Urbana /Indiana U. /Korea U. /Kyungpook Natl. U. /INFN, Milan /Milan U. /North Carolina U. /Pavia U. /INFN, Pavia /Rio de Janeiro, Pont. U. Catol. /Puerto Rico U., Mayaguez /South Carolina U. /Tennessee U. /Vanderbilt U. /Wisconsin U., Madison

    2005-06-01

    Using data from the FOCUS (E831) experiment, they have searched for T violation in charm meson decays using the four-body decay channels D{sup 0} {yields} K{sup -}K{sup +} {pi}{sup -}{pi}{sup +}, D{sup +} {yields} K{sub S}{sup 0}K{sup +}{pi}{sup -}{pi}{sup +}, and D{sub s}{sup +} {yields} K{sub S}{sup 0}K{sup +}{pi}{sup -}{pi}{sup +}. The T violation asymmetry is obtained using triple-product correlations and assuming the validity of the CPT theorem. They find the asymmetry values to be A{sub T{sub viol}}(D{sup 0}) = 0.010 {+-} 0.057(stat.) {+-} 0.037(syst.), A{sub T{sub viol}}(D{sup +}) = 0.023 {+-} 0.062(stat.) {+-} 0.022(syst.), and A{sub T{sub viol}}(D{sub s}{sup +}) = -0.036 {+-} 0.067(stat.) {+-} 0.023(syst.). Each measurement is consistent with no T violation. New measurements of the CP asymmetries for some of these decay modes are also presented.

  9. First Airborne Lidar Measurements of Methane and Carbon Dioxide Applying the MERLIN Demonstrator CHARM-F

    NASA Astrophysics Data System (ADS)

    Amediek, Axel; Büdenbender, Christian; Ehret, Gerhard; Fix, Andreas; Gerbig, Christoph; Kiemle, Chritstoph; Quatrevalet, Mathieu; Wirth, Martin

    2016-04-01

    CHARM-F is the new airborne four-wavelengths lidar for simultaneous soundings of atmospheric CO2 and CH4. Due to its high technological conformity it is also a demonstrator for MERLIN, the French-German satellite mission providing a methane lidar. MERLIN's Preliminary Design Review was successfully passed recently. The launch is planned for 2020. First CHARM-F measurements were performed in Spring 2015 onboard the German research aircraft HALO. The aircraft's maximum flight altitude of 15 km and special features of the lidar, such as a relatively large laser ground spot, result in data similar to those obtained by a spaceborne system. The CHARM-F and MERLIN lidars are designed in the IPDA (integrated path differential absorption) configuration using short double pulses, which gives column averaged gas mixing ratios between the system and ground. The successfully completed CHARM-F flight measurements provide a valuable dataset, which supports the retrieval algorithm development for MERLIN notably. Furthermore, the dataset allows detailed analyses of measurement sensitivities, general studies on the IPDA principle and on system design questions. These activities are supported by another instrument onboard the aircraft during the flight campaign: a cavity ring down spectrometer, providing in-situ data of carbon dioxide, methane and water vapor with high accuracy and precision, which is ideal for validation purposes of the aircraft lidar. For the near future, detailed characterizations of CHARM-F are planned, further support of the MERLIN design, as well as the scientific aircraft campaign CoMet.

  10. Constraining charming penguins in charmless B → ππ, πK and KK decays

    NASA Astrophysics Data System (ADS)

    Wu, Yue-Liang; Zhou, Yu-Feng; Zhuang, Ci

    2010-02-01

    We discuss the correlations induced by the charming penguin contributions to B → ππ, πK and KK modes in the flavor SU(3) diagrammatic approach. Strong constraints are found from the measurements of the direct CP asymmetries, especially that of πK modes. We make global fits to the latest data, and show that only a relatively small charming penguin is allowed. In the presence of the charming penguin, the size of color-suppressed tree amplitude (C) relative to that of tree amplitude (T) still remains large C/T ~= 0.6, which disfavors the possibility of a large charming penguin alone as an explanation for the ππ puzzle. We find that this conclusion remains unchanged for various SU(3) breaking schemes. Nevertheless, together with an enhanced annihilation-type W-exchange diagram (E) which is allowed by the current data, the ratio C/T can be reduced to ~0.4. We show that a small charming penguin amplitude can still have significant contribution to the time-dependent CP asymmetry in the KSKS mode.

  11. A precision measurement of charm dimuon production in neutrino interactions from the NOMAD experiment

    NASA Astrophysics Data System (ADS)

    Samoylov, O.; Petti, R.; Alekhin, S.; Astier, P.; Autiero, D.; Baldisseri, A.; Baldo-Ceolin, M.; Banner, M.; Bassompierre, G.; Benslama, K.; Besson, N.; Bird, I.; Blumenfeld, B.; Bobisut, F.; Bouchez, J.; Boyd, S.; Bueno, A.; Bunyatov, S.; Camilleri, L.; Cardini, A.; Cattaneo, P. W.; Cavasinni, V.; Cervera-Villanueva, A.; Challis, R.; Chukanov, A.; Collazuol, G.; Conforto, G.; Conta, C.; Contalbrigo, M.; Cousins, R.; Degaudenzi, H.; De Santo, A.; Del Prete, T.; Di Lella, L.; do Couto e Silva, E.; Dumarchez, J.; Duyang, H.; Ellis, M.; Feldman, G. J.; Ferrari, R.; Ferrère, D.; Flaminio, V.; Fraternali, M.; Gaillard, J.-M.; Gangler, E.; Geiser, A.; Geppert, D.; Gibin, D.; Gninenko, S.; Godley, A.; Gomez-Cadenas, J.-J.; Gosset, J.; Gößling, C.; Gouanère, M.; Grant, A.; Graziani, G.; Guglielmi, A.; Hagner, C.; Hernando, J.; Hurst, P.; Hyett, N.; Iacopini, E.; Joseph, C.; Juget, F.; Kent, N.; Klimov, O.; Kokkonen, J.; Kovzelev, A.; Krasnoperov, A.; Kim, J. J.; Kirsanov, M.; Kulagin, S.; Kullenberg, C. T.; Lacaprara, S.; Lachaud, C.; Lakić, B.; Lanza, A.; La Rotonda, L.; Laveder, M.; Letessier-Selvon, A.; Levy, J.-M.; Libo, J.; Linssen, L.; Ljubičić, A.; Long, J.; Lupi, A.; Lyubushkin, V.; Marchionni, A.; Martelli, F.; Méchain, X.; Mendiburu, J.-P.; Meyer, J.-P.; Mezzetto, M.; Mishra, S. R.; Moorhead, G. F.; Naumov, D.; Nédélec, P.; Nefedov, Yu.; Nguyen-Mau, C.; Orestano, D.; Pastore, F.; Peak, L. S.; Pennacchio, E.; Pessard, H.; Placci, A.; Polesello, G.; Pollmann, D.; Polyarush, A.; Poulsen, C.; Popov, B.; Rebuffi, L.; Rico, J.; Riemann, P.; Roda, C.; Rubbia, A.; Salvatore, F.; Schahmaneche, K.; Schmidt, B.; Schmidt, T.; Sconza, A.; Scott, A. M.; Sevior, M.; Sillou, D.; Soler, F. J. P.; Sozzi, G.; Steele, D.; Stiegler, U.; Stipčević, M.; Stolarczyk, Th.; Tareb-Reyes, M.; Taylor, G. N.; Tereshchenko, V.; Tian, X. C.; Toropin, A.; Touchard, A.-M.; Tovey, S. N.; Tran, M.-T.; Tsesmelis, E.; Ulrichs, J.; Vacavant, L.; Valdata-Nappi, M.; Valuev, V.; Vannucci, F.; Varvell, K. E.; Veltri, M.; Vercesi, V.; Vidal-Sitjes, G.; Vieira, J.-M.; Vinogradova, T.; Weber, F. V.; Weisse, T.; Wilson, F. F.; Winton, L. J.; Wu, Q.; Yabsley, B. D.; Zaccone, H.; Zuber, K.; Zuccon, P.

    2013-11-01

    We present our new measurement of the cross-section for charm dimuon production in neutrino-iron interactions based upon the full statistics collected by the NOMAD experiment. After background subtraction we observe 15 344 charm dimuon events, providing the largest sample currently available. The analysis exploits the large inclusive charged current sample - about 9×106 events after all analysis cuts - and the high resolution NOMAD detector to constrain the total systematic uncertainty on the ratio of charm dimuon to inclusive Charged Current (CC) cross-sections to ˜2%. We also perform a fit to the NOMAD data to extract the charm production parameters and the strange quark sea content of the nucleon within the NLO QCD approximation. We obtain a value of mc(mc)=1.159±0.075 GeV/c2 for the running mass of the charm quark in the MS¯ scheme and a strange quark sea suppression factor of κs=0.591±0.019 at Q2=20 GeV/c2.

  12. Beauty, charm, and F{sub L} at HERA: New data vs. Early predictions

    SciTech Connect

    Nikolaev, N. N.; Zoller, V. R.

    2010-04-15

    One of the well-known effects of the asymptotic freedom is splitting of the leading-log BFKL pomeron into a series of isolated poles in complex angular momentum plane. Following our earlier works we explore the phenomenological consequences of the emerging BFKL-Regge factorized expansion for the small-x charm (F{sub 2}{sup c}) and beauty (F{sub 2}{sup b}) structure functions of the proton. As we found earlier, the colordipole approach to the BFKL dynamics predicts uniquely decoupling of subleading hard BFKL exchanges from F{sub 2}{sup c} at moderately large Q{sup 2}. We predicted precocious BFKL asymptotics of F{sub 2}{sup c} (x,Q{sup 2}) with intercept of the rightmost BFKL pole {alpha}{sub P}(0) - 1 = {Delta}{sub P} {approx} 0.4. High-energy open beauty photo- and electroproduction probes the vacuum exchange at much smaller distances and detects significant corrections to the BFKL asymptotics coming from the subleading vacuum poles. In view of the accumulation of the experimental data on small -xF{sub 2}{sup c} and F{sub 2}{sup b} we extended our early predictions to the kinematical domain covered by new HERA measurements. Our structure functions obtained in 1999 agree well with the determination of both F{sub 2}{sup c} and F{sub 2}{sup b} by the H1 published in 2006 but contradict very recent (2008, preliminary)H1 results on F{sub 2}{sup b}. We present also comparison of our early predictions for the longitudinal structure function F{sub L} with recent H1 data (2008) taken at very low Bjorken x. We comment on the electromagnetic corrections to the Okun-Pomeranchuk theorem.

  13. Recent Results on Charm and Tau Physics from BaBar And Belle

    SciTech Connect

    Salvatore, Fabrizio F.; /Royal Holloway, U. of London

    2007-10-15

    Recent results on charm and tau physics obtained at the BABAR and Belle experiments are presented in this article. The charm section will be focused on the most recent results on D{sup 0}{bar D}{sup 0} mixing at Belle and on the measurement of the pseudoscalar decay constant f{sub Ds} using charm tagged e+e- events at BABAR. In the tau section the recent results on Lepton Flavor Violation from tau decays will be discussed, as well as the recent result on the rare decay {tau}{sup -} {yields} 3{pi}{sup -}2{pi}{sup +}2{pi}{sup 0}{nu}{sub {tau}} at BABAR and the measurement of the {tau} lepton mass at Belle.

  14. Object-Oriented Implementation of the NAS Parallel Benchmarks using Charm++

    NASA Technical Reports Server (NTRS)

    Krishnan, Sanjeev; Bhandarkar, Milind; Kale, Laxmikant V.

    1996-01-01

    This report describes experiences with implementing the NAS Computational Fluid Dynamics benchmarks using a parallel object-oriented language, Charm++. Our main objective in implementing the NAS CFD kernel benchmarks was to develop a code that could be used to easily experiment with different domain decomposition strategies and dynamic load balancing. We also wished to leverage the object-orientation provided by the Charm++ parallel object-oriented language, to develop reusable abstractions that would simplify the process of developing parallel applications. We first describe the Charm++ parallel programming model and the parallel object array abstraction, then go into detail about each of the Scalar Pentadiagonal (SP) and Lower/Upper Triangular (LU) benchmarks, along with performance results. Finally we conclude with an evaluation of the methodology used.

  15. Search for Popcorn Mesons in Events with Two Charmed Baryons

    SciTech Connect

    Hartfiel, Brandon; /SLAC

    2006-07-07

    The physics of this note is divided into two parts. The first part measures the {Lambda}{sub c} {yields} {pi}kp continuum momentum spectrum at a center of mass energy of 10.54 GeV/c. The data sample consists of 15,400 {Lambda}{sub c} baryons from 9.46 fb{sup -1} of integrated luminosity. With more than 13 times more data than the best previous measurement, we are able to exclude some of the simpler, one parameter fragmentation functions. In the second part, we add the {Lambda}{sub c} {yields} K{sup 0}p mode, and look for events with a {Lambda}{sub c}{sup +} and a {bar {Lambda}}{sub c}{sup -} in order to look for ''popcorn'' mesons formed between the baryon and antibaryon. We add on-resonance data, with a kinematic cut to eliminate background from B decays, as well as BaBar run 3 and 4 data to increase the total data size to 219.70 fb{sup -1}. We find 619 events after background subtraction. After a subtraction of 1.06 {+-} .09 charged pions coming from decays of known resonances to {Lambda}{sub c} + {eta}{pi}, we are left with 2.63 {+-} .21 additional charged pions in each of these events. This is significantly higher than the .5 popcorn mesons per baryon pair used in the current tuning of Pythia 6.2, the most widely used Monte Carlo generator. The extra mesons we find appear to be the first direct evidence of popcorn mesons, although some of them could be arising from hypothetical unresolved, unobserved charmed baryon resonances contributing decay mesons to our data. To contribute a significant fraction, this hypothesis requires a large number of such broad unresolved states and seems unlikely, but can not be completely excluded.

  16. Search for popcorn mesons in events with two charmed baryons

    NASA Astrophysics Data System (ADS)

    Hartfiel, Brandon

    The physics of this dissertation is divided into two parts. The first part measures the Λc → pi kp continuum momentum spectrum at a center of mass energy of 10.54 GeV/c, which is just below the Υ(4s) resonance. The data sample consists of 15,400 Λc baryons from 9.46 fb-1 of integrated luminosity collected with the BaBar detector at the PEP-II asymmetric B factory at the Stanford Linear Accelerator Center. With more than 13 times more data than the best previous measurement, we are able to exclude some of the simpler, one parameter fragmentation functions. In the second part, we add the Λc → K0p mode, and look for events with a Λc+ and a Λ c- in order to look for "popcorn" mesons formed between the baryon and antibaryon. We add on-resonance data, with a kinematic cut to eliminate background from B decays, as well as BaBar run 3 and 4 data to increase the total data size to 219.70 fb-1. We find 619 events after background subtraction. After a subtraction of 1.06+/-.09 charged pions coming from decays of known resonances to Λc + npi, we are left with 2.63+/-.21 additional charged pious in each of these events. This is significantly higher than the .5 popcorn mesons per bayon pair used in the current tuning of Pythia 6.2, the most widely used Monte Carlo generator. The extra mesons we find appear to be the first direct evidence of popcorn mesons, although some of them could be arising from hypothetical unresolved, unobserved charmed baryon resonances contributing decay mesons to our data. To contribute a significant fraction, this hypothesis requires a large number of such broad unresolved states and seems unlikely, but can not be completely excluded.

  17. Lifetime measurements of the D +, D 0, D {/s +}, and Λ {/c +} charmed particles

    NASA Astrophysics Data System (ADS)

    Alvarez, M. P.; Barate, R.; Bloch, D.; Bonamy, P.; Borgeaud, P.; Burchell, M.; Burmeister, H.; Brunet, J. M.; Calvino, F.; Cattaneo, M.; Crespo, J. M.; D'Almagne, B.; David, M.; Diciaccio, L.; Dixon, J.; Druet, P.; Duane, A.; Engel, J. P.; Ferrer, A.; Filippas, T. A.; Fokitis, E.; Forty, R. W.; Foucault, P.; Gazis, E. N.; Gerber, J. P.; Giomataris, Y.; Hofmokl, T.; Katsoutis, E. C.; Koratzinos, M.; Krafft, C.; Lefievre, B.; Lemoigne, Y.; Lopez, A.; Lui, W. K.; Magneville, C.; Maltezos, A.; McEwen, J. G.; Papadopoulou, Th.; Pattison, B.; Poutot, D.; Primout, M.; Rahmani, H.; Roudeau, P.; Seez, C.; Six, J.; Strub, R.; Treille, D.; Triscos, P.; Tristram, G.; Villet, G.; Volte, A.; Wayne, M.; Websdale, D. M.; Wormser, G.; Zolnierowski, Y.

    1990-12-01

    Using a high-statistics sample of more than 1000 reconstructed charmed-particle decays, the lifetimes of the weakly decaying charmed mesons and of the Λ {/c +} baryon have been measured: 10052_2005_Article_BF01552318_TeX2GIFE1.gif begin{gathered} tau _{D^ + } = 1.03 ± 0.08 + 0.06 ps,tau _{D^0 } = 0.417 ± 0.018 ± 0.015 ps \\ tau _{D_s^ + } = 0.33_{ - 0.08}^{ + 0.12} ± 0.03 ps,tau _{Λ _c^ + } = 0.18 ± 0.03 ± 0.03 ps. \\

  18. Model-independent analysis of CP violation in charmed meson decays

    NASA Astrophysics Data System (ADS)

    2015-06-01

    We present a model-independent analysis of CP violation, inspired by recent experimental observations, in charmed meson decays. The topological diagram approach is used to study direct CP asymmetries for singly Cabibbo-suppressed two-body hadronic decays of charmed mesons. We extract the magnitudes and relative phases of the corresponding topological amplitudes from available experimental information. In order to get more precise and reliable estimates of direct CP asymmetries, we take into account contributions from all possible strong penguin amplitudes, including the internal b-quark penguin contributions. We also study flavor SU(3) symmetry breaking effects in these decay modes and consequently predict direct CP asymmetries of unmeasured modes.

  19. Charm mixing and CPV at B{sub A}B{sub AR} experiment

    SciTech Connect

    Milanes, Diego A.

    2008-11-23

    Searches of D{sup 0}-D-bar{sup 0} mixing and CP violation in the charm sector are strongly motivated by the possibility of observing a signal from new physics leading to bigger effects than those expected in Standard Model. Recent experimental results have shown strong evidence of D{sup 0}-D-bar{sup 0} mixing and many efforts are made within the BABAR collaboration to confirm and improve these results. We will discuss the main results in charm mixing and CP violation analyses with the BABAR detector at the PEP-II asymmetric B-factory.

  20. Measurement of Beauty and Charm Photoproduction at H1 using inclusive lifetime tagging

    SciTech Connect

    Finke, L.

    2005-10-06

    A measurement of the charm and beauty photoproduction cross sections at the ep collider HERA is presented. The lifetime signature of c and b-flavoured hadrons is exploited to determine the fractions of events in the sample containing charm or beauty. Differential cross sections as a function of the jet transverse momentum, the rapidity and x{sub {gamma}}{sup obs} are measured in the photoproduction region Q2 < 1 GeV2, with inelasticity 0.15 < y < 0.8. The results are compared with calculations in next-to-leading order perturbative QCD and Monte Carlo models as implemented in PYTHIA and CASCADE.

  1. Charm structure functions and gluon shadowing effects with the AdS/CFT model

    NASA Astrophysics Data System (ADS)

    Wang, Hong-Min; Hou, Zhao-Yu; Liu, Jia-Fu; Sun, Xian-Jing

    2012-08-01

    By means of the UGD function extracted from an AdS/CFT inspired saturation model, the charm and bottom structure functions are studied in fixed-order perturbation theory. It is shown that the theoretical results are in good agreement with the recent HERA data. Then, this UGD function is also used to investigate net-kaon rapidity distribution in Au+Au collisions at RHIC energies and the theoretical results fit well to the BRAHMS data. In the end of this paper, we give the predicted results for nuclear charm structure function at very small x where the popular shadowing parameterizations are invalid.

  2. Production of charm mesons by high-energy neutrons

    SciTech Connect

    Shipbaugh, C.L.

    1988-01-01

    The charmed mesons ED{sup *{plus minus}}, D{sup 0}, and D{sub s}{sup {plus minus}} have been observed in neutron-nucleus collisions at the FNAL Tevatron. A sample of 134 {plus minus} 19 events was investigated in the decay mode D{sup *{plus minus}} {yields} D{sup 0} {pi}{sup {plus minus}} with the subsequent decay mode D{sup 0} {yields} K{sup +}K{sup {minus}}. The cross section per nucleon for D{sup *}{plus minus}, at most probable energy {radical}s = 35 GeV, was measured to be: d{sigma}(xf)/dxf {center dot} BR = 2.11 {plus minus} .43({plus minus}63){mu}b/nucleon for 0.0 < x{sub f} < 0.14 (x{sub f} = .07). The branching ratio (BR) is defined as: BR {identical to} BR(D{sup *} {yields} D{sub {pi}}) {times} BR(D {yields} K{sup +}K{sup {minus}}). The dependence of the cross section per nucleus on number of nucleons in the target was fit to a form A{sup {alpha}} and it was found that {alpha} = .96 {plus minus} .17. A sample of 64 {plus minus} 16 D{sub s}{sup {plus minus}} events was investigated for the decay D{sub s}{sup {plus minus}} {yields} {phi}{pi}{sup {plus minus}}. The differential cross section for D{sub s}{sup {plus minus}} production averaged over the particle and antiparticle states is: BR {center dot} {1/2} d{sigma}D{sub s}{sup +}/dxf + d{sigma}(D{sub s}{sup {minus}}/dxf) = 2.8 {plus minus} 0.80 {plus minus} .86 {mu}b/nucleon at x{sub f} = 0.175 where the first error is statistical and the second error is systematic. The branching fraction is defined as BR {identical to} BR(D{sub s} {yields} {phi}{pi}), and a linear A dependence was assumed.

  3. Production of charm mesons by high energy neutrons

    SciTech Connect

    Shipbaugh, C.L.

    1988-01-01

    The charmed mesons D/sup /plus minus//, D/sup 0/, and D/sub s//sup /plus minus//, have been observed in neutron-nucleus collisions at the FNAL Tevatron. A sample of 134 /plus minus/ 19 events as investigated in the decay D/sup /plus minus// /yields/ D/sup 0//pi//sup /plus minus// with the subsequent decay mode D/sup 0/ /yields/ K/sup +/K/sup /minus//. The cross section per nucleon for D/sup /plus minus//, at most probable energy /radical/s = 35 GeV, was measured to be 2.11 /plus minus/ .43 (plusreverse arrowminus/.63)/mu/b/nucleon for 0.0 < x/sub f/ < 0.14 (/bar x//sub f/ = .07). The branching ratio (BR) is defined as: BR /identicalreverse arrowto/ Br(D /yields/ D/pi/) /times/ BR(D /yields/ K/sup +/K/sup /minus//). The dependence of the cross section per nucleus on number of nucleons in target was fit to a form A /sup /alpha// and it was found that /alpha/ = .96 /plusreverse arrowminus/ .17. A sample of 64 /plusreverse arrowminus/ 16 D/sub s//sup /plus minus// events was investigates for the decay D/sub s//sup /plus minus// /yields/ /phi//pi//sup /plus minus//. The differential cross section for D/sub s//sup /plus minus// production averaged over the particle and antiparticle states is: BR.(1/2)(d/sigma/(D/sub s//sup +/)/dx/sub f/ + d/sigma/(D/sub s//sup /minus//) = 2.85 /plusreverse arrowminus/ 0.80 /plusreverse arrowminus/ .86 /mu/b/nucleon at x/sub f/ = 0.175 where the first errors is statistical and the second error is systematic. The branching fraction is defined as BR /equivalentreverse arrowto/ BR(D/sub s/ /yields/ /phi//pi/), and a linear A dependence was assumed. An estimate of relative cross section is: 0.19 /plusreverse arrowminus/ 0.09 at x/sub f/ = 0. 36 refs., 43 figs., 5 tabs.

  4. Measurement of charm meson production in Au+Au collisions at √S NN =200 GEV

    NASA Astrophysics Data System (ADS)

    Quintero, Amilkar

    The study and characterization of nuclear matter under extreme conditions of temperature and pressure, and a full understanding of deconfined partonic matter, the Quark Gluon Plasma (QGP), are major goals of modern high-energy nuclear physics. Heavy quarks (charm and bottom) are formed mainly in the early stages of the collision. Open heavy flavor measurements, e.g. D0, D+/-, DS, are excellent tools to probe and study the hot and dense medium formed in heavy ion collisions. Details of their interaction with the surrounding medium can be studied through energy loss and elliptic flow measurements thus providing valuable information about the nature of the medium and its degree of thermalization. Initial indirect reconstruction studies of heavy quark particles using the electrons from heavy flavor decays, showed a large magnitude of energy loss that was inconsistent with model predictions and assumptions, at the time. Precise measurements of fully reconstructed heavy mesons would provide better understanding of the energy loss mechanisms and the properties of the formed medium. In relativistic heavy ion collisions, the relatively low abundance of heavy quarks and their short lifetimes makes them difficult to distinguish from the event vertex and the combinatorial background; therefore the need for a high precision vertex detector to reconstruct their decay particles. In 2014 a new micro vertex detector was installed in the STAR experiment at Brookhaven National Lab. The Heavy Flavor Tracker (HFT) was designed to perform direct topological reconstruction of the weak decays of heavy flavor particles. The HFT improves STAR track pointing resolution from a few millimeters to ˜30 microns for 1 GeV/c pions, allowing direct reconstruction of short lifetime particles. Although the results of the open charm meson reconstruction using the HFT improved dramatically there is still a lot of room for optimization, especially for reconstructed particles with low transverse momentum

  5. Web-based computational chemistry education with CHARMMing I: Lessons and tutorial.

    PubMed

    Miller, Benjamin T; Singh, Rishi P; Schalk, Vinushka; Pevzner, Yuri; Sun, Jingjun; Miller, Carrie S; Boresch, Stefan; Ichiye, Toshiko; Brooks, Bernard R; Woodcock, H Lee

    2014-07-01

    This article describes the development, implementation, and use of web-based "lessons" to introduce students and other newcomers to computer simulations of biological macromolecules. These lessons, i.e., interactive step-by-step instructions for performing common molecular simulation tasks, are integrated into the collaboratively developed CHARMM INterface and Graphics (CHARMMing) web user interface (http://www.charmming.org). Several lessons have already been developed with new ones easily added via a provided Python script. In addition to CHARMMing's new lessons functionality, web-based graphical capabilities have been overhauled and are fully compatible with modern mobile web browsers (e.g., phones and tablets), allowing easy integration of these advanced simulation techniques into coursework. Finally, one of the primary objections to web-based systems like CHARMMing has been that "point and click" simulation set-up does little to teach the user about the underlying physics, biology, and computational methods being applied. In response to this criticism, we have developed a freely available tutorial to bridge the gap between graphical simulation setup and the technical knowledge necessary to perform simulations without user interface assistance. PMID:25057988

  6. A Photographic Essay of Apache Clothing, War Charms, and Weapons, Volume 2-Part D.

    ERIC Educational Resources Information Center

    Thompson, Doris; Jacobs, Ben

    As part of a series of guides designed for instruction of American Indian children and youth, this resource guide constitutes a pictorial essay on Apache clothing, war charms, and weaponry. A brief historical introduction is followed by 21 question suggestions for classroom use. Each of the 12 photographic topics is accompanied by a descriptive…

  7. Web-Based Computational Chemistry Education with CHARMMing I: Lessons and Tutorial

    PubMed Central

    Miller, Benjamin T.; Singh, Rishi P.; Schalk, Vinushka; Pevzner, Yuri; Sun, Jingjun; Miller, Carrie S.; Boresch, Stefan; Ichiye, Toshiko; Brooks, Bernard R.; Woodcock, H. Lee

    2014-01-01

    This article describes the development, implementation, and use of web-based “lessons” to introduce students and other newcomers to computer simulations of biological macromolecules. These lessons, i.e., interactive step-by-step instructions for performing common molecular simulation tasks, are integrated into the collaboratively developed CHARMM INterface and Graphics (CHARMMing) web user interface (http://www.charmming.org). Several lessons have already been developed with new ones easily added via a provided Python script. In addition to CHARMMing's new lessons functionality, web-based graphical capabilities have been overhauled and are fully compatible with modern mobile web browsers (e.g., phones and tablets), allowing easy integration of these advanced simulation techniques into coursework. Finally, one of the primary objections to web-based systems like CHARMMing has been that “point and click” simulation set-up does little to teach the user about the underlying physics, biology, and computational methods being applied. In response to this criticism, we have developed a freely available tutorial to bridge the gap between graphical simulation setup and the technical knowledge necessary to perform simulations without user interface assistance. PMID:25057988

  8. Production of doubly charmed baryons at energy {radical}s=10.58 GeV

    SciTech Connect

    Kiselev, V.V.; Likhoded, A.K.; Shevlyagin, M.V.

    1995-06-01

    The cross section for the production of doubly charmed baryons at a B-factory is estimated on the basis of perturbative QCD calculations of the cross sections for cc-diquark production and of the quark-hadron duality. 14 refs., 2 figs.

  9. CP Violation in B0 decays to Charmonium and Charm Final States

    SciTech Connect

    Chen, Chunhui

    2008-09-24

    We report on measurements of time-dependent CP-violation asymmetries in neutral B meson decays to charmonium and charm final states. The results are obtained from a data sample of (467 {+-} 5) x 10{sup 6} {Upsilon}(4S) {yields} B{bar B} decays collected with the BABAR detector at the PEP-II B factory.

  10. The future of tau physics and tau-charm detector and factory design

    SciTech Connect

    Perl, M.L.

    1991-02-01

    Future research on the tau lepton requires large statistics, thorough investigation of systematic errors, and direct experimental knowledge of backgrounds. Only a tau-charm factory with a specially designed detector can provide all the experimental conditions to meet these requirements. This paper is a summary of three lectures delivered at the 1991 Lake Louise Winter Institute.

  11. Status of the Tau-Charm Facility and highlights of its physics program

    SciTech Connect

    Schindler, R.H.

    1990-02-01

    In this paper I will first discuss the history and current status of the Tau-Charm Facility. I will then focus on the unique aspects of the heavy meson and tau physics program of such a facility, which motivates its construction and operation in the mid-1090's.

  12. Measurement of the cross section of charmed hadrons and the nuclear dependence alpha

    SciTech Connect

    Blanco-Covarrubias, Ernesto Alejandro

    2009-12-03

    With data from the SELEX experiment we study charm hadro-production. We report the differential production cross sections as function of the longitudinal and transverse momentum, as well as for two different target materials, of 14 charmed hadron and/or their decay modes. This is the most extensive study to date. SELEX is a fixed target experiment at Fermilab with high forward acceptance; it took data during 1996-1997 with 600 GeV/c Σ- and π-, and 540 GeV/c proton and π+ beams. It used 5 target foils (two copper and three diamond). We use the results to determine α, used in parametrizing the production cross section as ∞ Aα, where A is the mass number of the target nuclei. We found within our statistics that α is independent of the longitudinal momentum fraction xF in the interval 0.1 < xF < 1.0, with α = 0.778 ± 0.014. The average value of α} for charm production by pion beams is α meson = 0.850 ± 0.028. This is somewhat larger than the corresponding average αbaryon = 0.755 ± 0.016 for charm production by baryon beams (Σ- and protons).

  13. Web-based computational chemistry education with CHARMMing I: Lessons and tutorial.

    PubMed

    Miller, Benjamin T; Singh, Rishi P; Schalk, Vinushka; Pevzner, Yuri; Sun, Jingjun; Miller, Carrie S; Boresch, Stefan; Ichiye, Toshiko; Brooks, Bernard R; Woodcock, H Lee

    2014-07-01

    This article describes the development, implementation, and use of web-based "lessons" to introduce students and other newcomers to computer simulations of biological macromolecules. These lessons, i.e., interactive step-by-step instructions for performing common molecular simulation tasks, are integrated into the collaboratively developed CHARMM INterface and Graphics (CHARMMing) web user interface (http://www.charmming.org). Several lessons have already been developed with new ones easily added via a provided Python script. In addition to CHARMMing's new lessons functionality, web-based graphical capabilities have been overhauled and are fully compatible with modern mobile web browsers (e.g., phones and tablets), allowing easy integration of these advanced simulation techniques into coursework. Finally, one of the primary objections to web-based systems like CHARMMing has been that "point and click" simulation set-up does little to teach the user about the underlying physics, biology, and computational methods being applied. In response to this criticism, we have developed a freely available tutorial to bridge the gap between graphical simulation setup and the technical knowledge necessary to perform simulations without user interface assistance.

  14. Study of correlations between photoproduced pairs of charmed particles at Experiment E831/FOCUS

    SciTech Connect

    Castromonte Flores, Cesar Manuel

    2008-08-01

    The authors present the study of the charm-pair correlations produced in photon-nucleon interactions at $\\langle$Eγ$\\rangle$ = 175 GeV/c, by the Fermilab fixed target experiment E831/FOCUS. The E831/FOCUS experiment produced and reconstructed over one million charm particles. This high statistics allows the reconstruction of more than 7000 charm-pair mesons D$\\bar{D}$, 10 times the statistic of former experiments, and also allows to get, for the first time, about 600 totally reconstructed charm-pairs in the DDs and DΛc channels. They were able to study, with some detail, the kinematical correlations between the charm and anticharm particle forming a pair, in the square transverse momentum (pT2), azimuthal angle difference (ΔΦ), rapidity difference (Δy) and the charm-pair mass variables. They observe some correlation for the longitudinal momenta, and a significant correlation for the transverse momenta of the charm and anticharm particles. They compare the experimental distributions with theoretical predictions based on the photon-gluon fusion model (PGF), for the production of c$\\bar{c}$ quarks, and the standard Lund hadronization model. These models are implemented by the PYTHIA Monte Carlo event generator. The PYTHIA program allows the inclusion, in the simulation, of non-perturbative effects that have been shown to be important for charm production. In order to compare data and simulation, they have generated two Monte Carlo samples, the first one set to favor the production of D$\\bar{D}$ pairs (MCDD2), and the second one set to favor the production of DDsand DΛc pairs, where each one uses different functions and parameters values for the theoretical models in the simulation. They observe, for the correlation distributions, that the set of parameters used by the MCDD2 model together with the intrinsic transverse momentum (k$\\perp$) of the partons inside the

  15. Charmed baryon decays observed in e/sup +/e/sup -/ annihilation at SPEAR

    SciTech Connect

    Vella, E.N.

    1981-12-01

    Various weak decays of the charmed baryon ..lambda../sub c/ are observed in the Mark II detector at the SLAC e/sup +/e/sup -/ storage ring SPEAR. Hadronic decays ..lambda../sub c//sup +/ ..-->.. pK/sup -/..pi../sup +/ and ..lambda../sub c//sup +/ ..-->.. pK/sub s//sup 0/ and their conjugates are observed as peaks in invariant mass spectra at m(..lambda../sub c/) = (2286 +- 6) MeV/c/sup 2/. An estimate of the charmed baryon production cross section, sigma(..lambda../sub c/) + sigma (anti ..lambda../sub c/) = (1.7 +- 0.4) nb, derived from Mark II measurements of the inclusive baryon cross sections R/sub p/ and R/sub ..lambda../ as functions of center-of-mass energy, is used to calculate branching ratios for these hadronic decays: BR (..lambda../sub c//sup +/ ..-->.. p K/sup -/ ..pi../sup +/) = (2.0 +- 0.8)%; BR (..lambda../sub c//sup +/ ..-->.. p k/sub s//sup 0/)/BR (..lambda../sub c//sup +/ ..-->.. p K/sup -/ ..pi../sup +/) = (36 +- 16)%. An attempt is also made to observe higher mass charmed baryons by reconstructing cascade decays ..sigma../sub c/ ..-->.. ..lambda../sub c/..pi... Evidence for the observation of semileptonic decays of the charmed baryon is presented. Direct electrons are observed in events containing antiprotons, lambdas and antilambdas. The number of electrons per baryon event, after background subtraction and efficiency correction, is used, together with an estimate of the charmed baryon content of proton and lambda events, to calculate inclusive and semi-inclusive semileptonic branching ratios of the ..lambda../sub c/.

  16. CHARMe Commentary metadata for Climate Science: collecting, linking and sharing user feedback on climate datasets

    NASA Astrophysics Data System (ADS)

    Blower, Jon; Lawrence, Bryan; Kershaw, Philip; Nagni, Maurizio

    2014-05-01

    The research process can be thought of as an iterative activity, initiated based on prior domain knowledge, as well on a number of external inputs, and producing a range of outputs including datasets, studies and peer reviewed publications. These outputs may describe the problem under study, the methodology used, the results obtained, etc. In any new publication, the author may cite or comment other papers or datasets in order to support their research hypothesis. However, as their work progresses, the researcher may draw from many other latent channels of information. These could include for example, a private conversation following a lecture or during a social dinner; an opinion expressed concerning some significant event such as an earthquake or for example a satellite failure. In addition, other sources of information of grey literature are important public such as informal papers such as the arxiv deposit, reports and studies. The climate science community is not an exception to this pattern; the CHARMe project, funded under the European FP7 framework, is developing an online system for collecting and sharing user feedback on climate datasets. This is to help users judge how suitable such climate data are for an intended application. The user feedback could be comments about assessments, citations, or provenance of the dataset, or other information such as descriptions of uncertainty or data quality. We define this as a distinct category of metadata called Commentary or C-metadata. We link C-metadata with target climate datasets using a Linked Data approach via the Open Annotation data model. In the context of Linked Data, C-metadata plays the role of a resource which, depending on its nature, may be accessed as simple text or as more structured content. The project is implementing a range of software tools to create, search or visualize C-metadata including a JavaScript plugin enabling this functionality to be integrated in situ with data provider portals

  17. Y (4260 ) as the first S -wave open charm vector molecular state?

    NASA Astrophysics Data System (ADS)

    Cleven, Martin; Wang, Qian; Guo, Feng-Kun; Hanhart, Christoph; Meißner, Ulf-G.; Zhao, Qiang

    2014-10-01

    Since its first observation in 2005, the vector charmonium Y (4260 ) has turned out to be one of the prime candidates for an exotic state in the charmonium spectrum. It was recently proposed that the Y (4260 ) should have a prominent D1D ¯ +c .c . molecular component that is strongly correlated with the production of the charged Zc(3900 ) . In this paper we demonstrate that the nontrivial cross section line shapes of e+e-→J /ψ π π and hcπ π can be naturally explained by the molecular scenario. As a consequence we find a significantly smaller mass for the Y (4260 ) than previously studied. In the e+e-→D ¯ D*π +c .c . process, with the inclusion of an additional S -wave D¯ *π contribution constrained from data on the D D¯ * invariant mass distribution, we obtain a good agreement with the data of the angular distributions. We also predict an unusual line shape of Y (4260 ) in this channel that may serve as a smoking gun for a predominantly molecular nature of Y (4260 ) . Improved measurements of these observables are therefore crucial for a better understanding of the structure of this famous resonance.

  18. Charm mixing in a model-independent analysis of correlated D{sup 0}D{sup 0} decays

    SciTech Connect

    Bondar, Alex; Vorobiev, Vitaly; Poluektov, Anton

    2010-08-01

    We investigate the impact of charm mixing on a model-independent {gamma} measurement using the Dalitz plot analysis of the three-body D decay from the B{sup +}{yields}DK{sup +} process, and show that ignoring the mixing at all stages of the analysis is safe up to a sub-degree level of precision. We also find that in the coherent production of the D{sup 0}D{sup *0} system in e{sup +}e{sup -} collisions, the effect of charm mixing is enhanced, and propose a model-independent method to measure charm mixing parameters in time-integrated Dalitz plot analysis at charm factories.

  19. Charm quark system at the physical point of 2+1 flavor lattice QCD

    SciTech Connect

    Namekawa, Y.; Ukita, N.; Aoki, S.; Ishizuka, N.; Taniguchi, Y.; Ukawa, A.; Yoshie, T.; Ishikawa, K.-I.; Okawa, M.; Izubuchi, T.; Kanaya, K.; Kuramashi, Y.

    2011-10-01

    We investigate the charm quark system using the relativistic heavy quark action on 2+1 flavor PACS-CS configurations previously generated on 32{sup 3}x64 lattice. The dynamical up, down, and strange quark masses are set to the physical values by using the technique of reweighting to shift the quark-hopping parameters from the values employed in the configuration generation. At the physical point, the lattice spacing equals a{sup -1}=2.194(10) GeV and the spatial extent L=2.88(1) fm. The charm quark mass is determined by the spin-averaged mass of the 1S charmonium state, from which we obtain m{sub charm}{sup MS}({mu}=m{sub charm}{sup MS})=1.260(1)(6)(35) GeV, where the errors are due to our statistics, scale determination and renormalization factor. An additional systematic error from the heavy quark is of order {alpha}{sub s}{sup 2}f(m{sub Q}a)(a{Lambda}{sub QCD}), f(m{sub Q}a)(a{Lambda}{sub QCD}){sup 2}, which are estimated to be a percent level if the factor f(m{sub Q}a) analytic in m{sub Q}a is of order unity. Our results for the charmed and charmed-strange meson decay constants are f{sub D}=226(6)(1)(5) MeV, f{sub D{sub s}}=257(2)(1)(5) MeV, again up to the heavy quark errors of order {alpha}{sub s}{sup 2}f(m{sub Q}a)(a{Lambda}{sub QCD}), f(m{sub Q}a)(a{Lambda}{sub QCD}){sup 2}. Combined with the CLEO values for the leptonic decay widths, these values yield |V{sub cd}|=0.205(6)(1)(5)(9), |V{sub cs}|=1.00(1)(1)(3)(3), where the last error is because of the experimental uncertainty of the decay widths.

  20. Charm quark system at the physical point of 2+1 flavor lattice QCD

    SciTech Connect

    Izubuchi T.; Namekawa, Y.; Aoki, S.; Ishikawa, K.; Ishizuka, N.; Kanaya, K.; Kuramashi, Y.; Okawa, M.; Taniguchi, Y.; Ukawa, A.; Ukita, N.: Yoshie, T.

    2011-04-24

    We investigate the charm quark system using the relativistic heavy quark action on 2+1 flavor PACS-CS configurations previously generated on 32{sup 3} x 64 lattice. The dynamical up, down, and strange quark masses are set to the physical values by using the technique of reweighting to shift the quark-hopping parameters from the values employed in the configuration generation. At the physical point, the lattice spacing equals a{sup -1} = 2.194(10) GeV and the spatial extent L = 2.88(1) fm. The charm quark mass is determined by the spin-averaged mass of the 1S charmonium state, from which we obtain m{sub charm}{sup M{bar S}} ({mu} = m{sub charm}{sup M{bar S}}) = 1.260(1)(6)(35) GeV, where the errors are due to our statistics, scale determination and renormalization factor. An additional systematic error from the heavy quark is of order {alpha}{sub s}{sup 2}f(m{sub Q}a)(a{Lambda}{sub QCD}), f(m{sub Q}a)(a{Lambda}{sub QCD}){sup 2}, which are estimated to be a percent level if the factor f(m{sub Q}a) analytic in m{sub Q}a is of order unity. Our results for the charmed and charmed-strange meson decay constants are f{sub D} = 226(6)(1)(5) MeV, f{sub D}{sub s} = 257(2)(1)(5) MeV, again up to the heavy quark errors of order {alpha}{sub s}{sup 2}f(m{sub Q}a)(a{Lambda}{sub QCD}), f(m{sub Q}a)(a{Lambda}{sub QCD}){sup 2}. Combined with the CLEO values for the leptonic decay widths, these values yield |V{sub cd}| = 0.205(6)(1)(5)(9), |V{sub cs}| = 1.00(1)(1)(3)(3), where the last error is because of the experimental uncertainty of the decay widths.

  1. Exotic Effects at the Charm Threshold and Other Novel Physics Topics at JLab-12 GeV

    SciTech Connect

    Brodsky, Stanley J.; /SLAC

    2012-05-03

    I briefly survey a number of novel hadron physics topics which can be investigated with the 12 GeV upgrade at J-Lab. The topics include new the formation of exotic heavy quark resonances accessible above the charm threshold, intrinsic charm and strangeness phenomena, the exclusive Sivers effect, hidden-color Fock states of nuclei, local two-photon interactions in deeply virtual Compton scattering, and non-universal antishadowing.

  2. Reply to comment on ''New limits on intrinsic charm in the nucleon from global analysis of parton distribution''

    DOE PAGES

    Jimenez-Delgado, Pedro; Hobbs, Timothy J.; Londergan, J. T.; Melnitchouk, Wally

    2016-01-05

    We reply to the Comment of Brodsky and Gardner on our paper "New limits on intrinsic charm in the nucleon from global analysis of parton distributions" [Phys. Rev. Lett. 114, 082002 (2015)]. We address a number of incorrect claims made about our fitting methodology, and elaborate how global QCD analysis of all available high-energy data provides no evidence for a large intrinsic charm component of the nucleon.

  3. Development and implementation of (Q)SAR modeling within the CHARMMing web-user interface.

    PubMed

    Weidlich, Iwona E; Pevzner, Yuri; Miller, Benjamin T; Filippov, Igor V; Woodcock, H Lee; Brooks, Bernard R

    2015-01-01

    Recent availability of large publicly accessible databases of chemical compounds and their biological activities (PubChem, ChEMBL) has inspired us to develop a web-based tool for structure activity relationship and quantitative structure activity relationship modeling to add to the services provided by CHARMMing (www.charmming.org). This new module implements some of the most recent advances in modern machine learning algorithms-Random Forest, Support Vector Machine, Stochastic Gradient Descent, Gradient Tree Boosting, so forth. A user can import training data from Pubchem Bioassay data collections directly from our interface or upload his or her own SD files which contain structures and activity information to create new models (either categorical or numerical). A user can then track the model generation process and run models on new data to predict activity.

  4. Charm production in association with an electroweak gauge boson at the LHC.

    PubMed

    Stirling, W J; Vryonidou, E

    2012-08-24

    The production of charm quark jets in association with electroweak gauge bosons at the LHC can be used as a tool to constrain quark parton distribution functions (PDFs). Motivated by recent measurements at the Tevatron and LHC, we calculate cross sections for W/Z+c, comparing these to W/Z+jet, for various PDF sets. The cross-section differences can be understood in terms of the different underlying PDFs, with the strange quark distribution being particularly important for W+c production. We suggest measurements of appropriately defined ratios and comment on how these measurements at the LHC can be used to extract information on the strange and charm content of the proton at high Q(2) scales.

  5. Modifications and adaptations of the Charm II rapid antibody assay for chloramphenicol in honey.

    PubMed

    McMullen, Sarah E; Lansden, John A; Schenck, Frank J

    2004-07-01

    The Charm II screening method for the presence of chloramphenicol in honey has a sensitivity of 0.3 ppb. This screening method is a simple, rapid antibody assay using [3H]chloramphenicol and a binding reagent. Analysis of different types of honey revealed considerable differences in results. Honey can be liquid, crystallized (creamed), or partially crystallized and is classified by the U.S. Department of Agriculture into seven color categories: water white, extra white, white, extra light amber, light amber, amber, and dark amber. Fortified and nonfortified liquid amber honey tested appropriately with the Charm II unit and the negative control provided with the unit after slight modifications were made. However, approximately 70% of creamed honey samples fortified at 0.6 ppb did not test positive for the presence of chloramphenicol using the provided negative control. Matrix quenching effects were evaluated, and these effects were accounted for by establishing different assay conditions for different honey types.

  6. Development and implementation of (Q)SAR modeling within the CHARMMing web-user interface.

    PubMed

    Weidlich, Iwona E; Pevzner, Yuri; Miller, Benjamin T; Filippov, Igor V; Woodcock, H Lee; Brooks, Bernard R

    2015-01-01

    Recent availability of large publicly accessible databases of chemical compounds and their biological activities (PubChem, ChEMBL) has inspired us to develop a web-based tool for structure activity relationship and quantitative structure activity relationship modeling to add to the services provided by CHARMMing (www.charmming.org). This new module implements some of the most recent advances in modern machine learning algorithms-Random Forest, Support Vector Machine, Stochastic Gradient Descent, Gradient Tree Boosting, so forth. A user can import training data from Pubchem Bioassay data collections directly from our interface or upload his or her own SD files which contain structures and activity information to create new models (either categorical or numerical). A user can then track the model generation process and run models on new data to predict activity. PMID:25362883

  7. Beauty-quark and charm-quark pair production asymmetries at LHCb

    NASA Astrophysics Data System (ADS)

    Gauld, Rhorry; Haisch, Ulrich; Pecjak, Ben D.; Re, Emanuele

    2015-08-01

    The LHCb Collaboration has recently performed a first measurement of the angular production asymmetry in the distribution of beauty quarks and antiquarks at a hadron collider. We calculate the corresponding standard model prediction for this asymmetry at fixed order in perturbation theory. Our results show good agreement with the data, which are provided differentially for three bins in the invariant mass of the b b ¯ system. We also present similar predictions for both beauty-quark and charm-quark final states within the LHCb acceptance for a collision energy of √{s }=13 TeV . We finally point out that a measurement of the ratio of the b b ¯ and c c ¯ cross sections may be useful for experimentally validating charm-tagging efficiencies.

  8. Semileptonic B and B{sub s} decays into orbitally excited charmed mesons

    SciTech Connect

    Segovia, J.; Albertus, C.; Entem, D. R.; Fernandez, F.; Hernandez, E.; Perez-Garcia, M. A.

    2011-11-01

    The BABAR Collaboration has recently reported products of branching fractions that include B meson semileptonic decays into final states with charged and neutral D{sub 1}(2420) and D{sub 2}*(2460), two narrow orbitally excited charmed mesons. We evaluate these branching fractions, together with those concerning D{sub 0}*(2400) and D{sub 1}{sup '}(2430) mesons, within the framework of a constituent quark model. The calculation is performed in two steps, one of which involves a semileptonic decay and the other is mediated by a strong process. Our results are in agreement with the experimental data. We also extend the study to semileptonic decays of B{sub s} into orbitally excited charmed-strange mesons, providing predictions to the possible measurements to be carried out at LHC.

  9. Development and implementation of (Q)SAR modeling within the CHARMMing Web-user interface

    PubMed Central

    Weidlich, Iwona E.; Pevzner, Yuri; Miller, Benjamin T.; Filippov, Igor V.; Woodcock, H. Lee; Brooks, Bernard R.

    2014-01-01

    Recent availability of large publicly accessible databases of chemical compounds and their biological activities (PubChem, ChEMBL) has inspired us to develop a Web-based tool for SAR and QSAR modeling to add to the services provided by CHARMMing (www.charmming.org). This new module implements some of the most recent advances in modern machine learning algorithms – Random Forest, Support Vector Machine (SVM), Stochastic Gradient Descent, Gradient Tree Boosting etc. A user can import training data from Pubchem Bioassay data collections directly from our interface or upload his or her own SD files which contain structures and activity information to create new models (either categorical or numerical). A user can then track the model generation process and run models on new data to predict activity. PMID:25362883

  10. Investigation of semileptonic B meson decays to P-wave charm mesons

    NASA Astrophysics Data System (ADS)

    Bellerive, Alain

    This thesis presents an investigation of semileptonic B meson decays with a narrow P-wave charm meson in the final state. The data sample consists of 3.29 × 106 BB¯ events collected with the CLEO II detector at the Cornell Electron-positron Storage Ring. The P-wave charm mesons are reconstructed in the chain of decays: D0J-->D*+p- ,D*+-->D0p+,D 0-->K-p+ or D0-->K- p+p 0 . Study of the decay B- -->D*+p0l -nl reveals useful information about the deficit observed in inclusive charm semileptonic B decays and the effective couplings of the W boson to heavy quark mesons. The results obtained for the exclusive semileptonic product branching fractions are B(B- --> D01l-nl ) B(D01-->D*+p -) = (0.373 +/- 0.085 +/- 0.052 +/- 0.024)% and B(B- -->D*0 2l- nl )B(D*0 2-->D*+p-) < 0.16% (90% C.L.). The assumption B(D01-->D* +p-) = 67% and B(D*02-->D *+p-) = 20% implies B(B- -->D01 l- nl) (0.56 0.13 +/- 0.08 +/- 0.04)% and B(B---> D*0 2lnl) < 0.8% (90% C.L.). These results indicate that at least 18% of the total B semileptonic rate is still unaccounted for by the observed exclusive decays, B-->D0l- nl, B-->D*ln l,B -->D1ln l, and B-->D*2 lnl . Furthermore, the first measurement of the q 2 spectrum for B- -->D01ln l is presented. The present analysis also suggests that the Λ QCD/mQ corrections beyond the HQS prescriptions might be significant in the theoretical treatment of the dynamics of B semileptonic decays to excited charm mesons.

  11. Charmed-meson production in 800-GeV P-P interactions

    SciTech Connect

    Senko, M.F.

    1989-01-01

    The purpose of this dissertation is to present the results of a study concerning the energy dependence of charmed meson production properties as a test of Quantum Chromodynamics (QCD). This experiment was performed at Fermi National Accelerator Laboratory, using a rapid cycling bubble chamber (LEBC) as a hydrogen target and high resolution vertex detector, in combination with the Fermilab Multiparticle Spectrometer (FMPS). The multiplicity trigger was unbiased, and spectrometer acceptance was good at x{sub F} {ge} 0. A comparison of the results from previous experiments at center of mass energies {radical}s {le} 27 GeV and {radical}s {ge} 53 GeV implies a total charm particle production cross section which rises rapidly as a function of {radical}s. The result of the experiment, {sigma}(D/{bar D}) = 42.7 {plus minus} 7.8 {mu}b at {radical}s = 38 GeV, indicates a slower rise, in agreement with QCD predictions. A maximum likelihood fit to the parameterization of the differential cross section as d{sup 2}{sigma}/dx{sub F}dp{sub {perpendicular}}{sup 2} {approximately} (1 {minus} {vert bar}x{sub F}{vert bar}){sup n}e{sup {minus}bp{sub {perpendicular}}{sup 2}} gives the results n = 8.4{sub {minus}1.9}{sup +2.2}, b= 0.78{sub {minus}0.16}{sup +0.19} (GeV/c){sup {minus}2}, and {l angle}p{perpendicular}{r angle} = 1.1{sub {minus} 0.1}{sup +0.2} GeV/c. When compared with results from the lower energy experiments, these values indicate charm production becoming more central and {l angle}p{perpendicular}{r angle} being consistent with the charmed quark mass. These results are once again consistent with QCD predictions.

  12. Resonant scattering and charm showers in ultrahigh-energy neutrino interactions

    NASA Technical Reports Server (NTRS)

    Wilczek, F.

    1985-01-01

    Electron antineutrinos with energy of about 7 x 10 to the 6th GeV have much-enhanced cross sections due to W-boson production off electrons. Possible signals due to cosmic-ray sources are estimated. Higher-energy antineutrinos can efficiently produce a W accompanied by radiation. Another possibility, which could lead to shadowing at modest depths, is resonant production of a charged Higgs particle. The importance of muon production by charm showers in rock is pointed out.

  13. Neutrino Production of a Charmed Meson and the Transverse Spin Structure of the Nucleon.

    PubMed

    Pire, B; Szymanowski, L

    2015-08-28

    We calculate the amplitude for exclusive neutrino production of a charmed meson on an unpolarized target in the collinear QCD approach, where generalized parton distributions (GPDs) factorize from perturbatively calculable coefficient functions. We demonstrate that the transversity chiral odd GPDs contribute to the transverse cross section if the hard amplitude is calculated up to order m_{c}/Q. We show how to access these GPDs through the azimuthal dependence of the νN→μ^{-}D^{+}N differential cross section. PMID:26371643

  14. Charmed spectroscopy from a nonperturbatively determined relativistic heavy quark action in full QCD

    SciTech Connect

    Huey-Wen Lin

    2006-07-28

    We present a preliminary calculation of the charmed meson spectrum using the 2+1 flavor domain wall fermion lattice configurations currently being generated by the RBC and UKQCD collaborations. The calculation is performed using the 3-parameter, relativistic heavy quark action with nonperturbatively determined coefficients. We will also demonstrate a step-scaling procedure for determining these coefficients nonperturbatively using a series of quenched, gauge field ensembles generated for three different lattice spacings.

  15. Line shapes of the exotic charm-anticharm mesons X(3872) and Z(4430)

    NASA Astrophysics Data System (ADS)

    Lu, Meng

    The B-factory experiments have recently discovered a series of new cc mesons, including the X(3872) and the first manifestly exotic meson Z +/-(4430). The proximity of the mass of the X to the D*0D 0 threshold has motivated its identification as a loosely-bound hadronic molecule whose constituents are a superposition of the charm mesons pairs D*0D 0 and D0D* 0. Factorization formulas for its line shapes are derived by taking advantage of the universality of S-wave resonances near a 2-particle threshold and by including the effects from the nonzero width of D* meson and the inelastic scattering channels of the charm mesons. The best fit to the line shapes of X in the J/psipi +pi- and D0 D0pi0 channels measured by the Belle Collaboration corresponds to the X being a bound state whose mass is just below the D*0 D0 threshold. The differences between the line shapes of X produced in B+ decays and B0 decays as well as in decay channels J/psipi+pi-, J /psipi+pi-pi0 , and D0D 0pi0 are further derived by taking into account the effects from the closeby channel composed of charged charm mesons. A more speculative application of the universality of S-wave resonances near a 2-particle threshold is to the Z+/-(4430), which is interpreted as a charm meson molecule composed of a superposition of D+1D*0 and D*+D01 . The small ratio of the binding energy of the Z + to the width of its constituent D1 is exploited to obtained simple predictions for its line shapes in the channels psi(2S)pi + and D*D*pi.

  16. Studies of charmed hadronic B decays with the early LHCb data and prospects for {gamma} measurements

    SciTech Connect

    Nardulli, J.

    2010-12-22

    We present the first studies of decays of the type B{yields}DX, where D represents a charmed meson (D{sup 0}, D{sup (*)+}, or D{sub s}) from the LHCb experiment at CERN. Our studies use data accumulated during the 2010 run of the LHC. This work represents the first steps on a programme towards a precision measurement of the angle {gamma} of the CKM Unitarity Triangle. The prospects for this {gamma} measurement will be reviewed.

  17. Rates for inclusive deep-inelastic electroproduction of charm quarks at HERA

    NASA Astrophysics Data System (ADS)

    Riemersma, S.; Smith, J.; van Neerven, W. L.

    1995-02-01

    The coefficient functions for heavy flavour production in deeply inelastic electron hadron scattering have been calculated previously. These functions are so long that no analytic expressions could be published. Therefore we have tabulated them as two-dimensional arrays as is often done for the scale dependent parton densities. Using this computer program we present event rates for charm production at HERA in bins of x and Q2. These rates are insensitive to variations in the factorization and renormalization scale μ.

  18. Observation of the production of a W boson in association with a single charm quark.

    PubMed

    Aaltonen, T; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Appel, J A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Auerbach, B; Aurisano, A; Azfar, F; Badgett, W; Bae, T; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartos, P; Bauce, M; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A; Bland, K R; Blumenfeld, B; Bocci, A; Bodek, A; Bortoletto, D; Boudreau, J; Boveia, A; Brigliadori, L; Bromberg, C; Brucken, E; Budagov, J; Burkett, K; Busetto, G; Bussey, P; Butti, P; Buzatu, A; Calamba, A; Camarda, S; Campanelli, M; Canelli, F; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Cho, K; Chou, J P; Chokheli, D; Clark, A; Clarke, C; Convery, M E; Conway, J; Corbo, M; Cordelli, M; Cox, C A; Cox, D J; Cremonesi, M; Cuevas, J; Culbertson, R; d'Ascenzo, N; Datta, M; Demortier, L; Deninno, M; Devoto, F; d'Errico, M; Di Canto, A; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dorigo, M; Driutti, A; Ebina, K; Edgar, R; Elagin, A; Erbacher, R; Errede, S; Esham, B; Eusebi, R; Farrington, S; Fernández Ramos, J P; Field, R; Flanagan, G; Forrest, R; Franklin, M; Freeman, J C; Funakoshi, Y; Garfinkel, A F; Garosi, P; Gerberich, H; Gerchtein, E; Giagu, S; Giakoumopoulou, V; Gibson, K; Ginsburg, C M; Giokaris, N; Giromini, P; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldin, D; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González López, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gramellini, E; Grinstein, S; Grosso-Pilcher, C; Group, R C; Guimaraes da Costa, J; Hahn, S R; Han, J Y; Happacher, F; Hara, K; Hare, M; Harr, R F; Harrington-Taber, T; Hatakeyama, K; Hays, C; Heinrich, J; Herndon, M; Hocker, A; Hopkins, W; Hou, S; Hughes, R E; Hurwitz, M; Husemann, U; Huston, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jindariani, S; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kambeitz, M; Kamon, T; Karchin, P E; Kasmi, A; Kato, Y; Ketchum, W; Keung, J; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kim, Y J; Kimura, N; Kirby, M; Klimenko, S; Knoepfel, K; Kondo, K; Kong, D J; Konigsberg, J; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Kruse, M; Kuhr, T; Kurata, M; Kwang, S; Laasanen, A T; Lammel, S; Lancaster, M; Lannon, K; Latino, G; Lee, H S; Lee, J S; Leone, S; Lewis, J D; Limosani, A; Lipeles, E; Liu, H; Liu, Q; Liu, T; Lockwitz, S; Loginov, A; Lucchesi, D; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lys, J; Lysak, R; Madrak, R; Maestro, P; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Martínez, M; Matera, K; Mattson, M E; Mazzacane, A; Mazzanti, P; McNulty, R; Mehta, A; Mehtala, P; Mesropian, C; Miao, T; Mietlicki, D; Mitra, A; Miyake, H; Moed, S; Moggi, N; Moon, C S; Moore, R; Morello, M J; Mukherjee, A; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nakano, I; Napier, A; Nett, J; Neu, C; Nigmanov, T; Nodulman, L; Noh, S Y; Norniella, O; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Ortolan, L; Pagliarone, C; Palencia, E; Palni, P; Papadimitriou, V; Parker, W; Pauletta, G; Paulini, M; Paus, C; Phillips, T J; Piacentino, G; Pianori, E; Pilot, J; Pitts, K; Plager, C; Pondrom, L; Poprocki, S; Potamianos, K; Prokoshin, F; Pranko, A; Ptohos, F; Punzi, G; Ranjan, N; Redondo Fernández, I; Renton, P; Rescigno, M; Riddick, T; Rimondi, F; Ristori, L; Robson, A; Rodriguez, T; Rolli, S; Ronzani, M; Roser, R; Rosner, J L; Ruffini, F; Ruiz, A; Russ, J; Rusu, V; Safonov, A; Sakumoto, W K; Sakurai, Y; Santi, L; Sato, K; Saveliev, V; Savoy-Navarro, A; Schlabach, P; Schmidt, E E; Schwarz, T; Scodellaro, L; Seidel, S; Seiya, Y; Semenov, A; Sforza, F; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shochet, M; Shreyber-Tecker, I; Simonenko, A; Sinervo, P; Sliwa, K; Smith, J R; Snider, F D; Sorin, V; Song, H; Stancari, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Sudo, Y; Sukhanov, A; Suslov, I; Takemasa, K; Takeuchi, Y; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thomson, E; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Trovato, M; Ukegawa, F; Uozumi, S; Vázquez, F; Velev, G; Vellidis, C; Vernieri, C; Vidal, M; Vilar, R; Vizán, J; Vogel, M; Volpi, G; Wagner, P; Wallny, R; Wang, S M; Warburton, A; Waters, D; Wester, W C; Whiteson, D; Wicklund, A B; Wilbur, S; Williams, H H; Wilson, J S; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, H; Wright, T; Wu, X; Wu, Z; Yamamoto, K; Yamato, D; Yang, T; Yang, U K; Yang, Y C; Yao, W-M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Zanetti, A M; Zeng, Y; Zhou, C; Zucchelli, S

    2013-02-15

    The first observation of the production of a W boson with a single charm quark (c) jet in pp[over ¯] collisions at √s=1.96  TeV is reported. The analysis uses data corresponding to 4.3  fb(-1), recorded with the CDF II detector at the Fermilab Tevatron. Charm quark candidates are selected through the identification of an electron or muon from charm-hadron semileptonic decay within a hadronic jet, and a Wc signal is observed with a significance of 5.7 standard deviations. The production cross section σ(Wc)(p(Tc)>20  GeV/c,|η(c)|<1.5)×B(W→ℓν) is measured to be 13.6(-3.1)(+3.4)  pb and is in agreement with theoretical expectations. From this result the magnitude of the quark-mixing matrix element V(cs) is derived, |V(cs)|=1.08±0.16 along with a lower limit of |V(cs)|>0.71 at the 95% confidence level, assuming that the Wc production through c to s quark coupling is dominant.

  19. Formation spectra of charmed meson-nucleus systems using an antiproton beam

    NASA Astrophysics Data System (ADS)

    Yamagata-Sekihara, J.; Garcia-Recio, C.; Nieves, J.; Salcedo, L. L.; Tolos, L.

    2016-03-01

    We investigate the structure and formation of charmed meson-nucleus systems, with the aim of understanding the charmed meson-nucleon interactions and the properties of the charmed mesons in the nuclear medium. The D bar mesic nuclei are of special interest, since they have tiny decay widths due to the absence of strong decays for the D bar N pair. Employing an effective model for the D bar N and DN interactions and solving the Klein-Gordon equation for D bar and D in finite nuclei, we find that the D--11B system has 1s and 2p mesic nuclear states and that the D0-11B system binds in a 1s state. In view of the forthcoming experiments by the PANDA and CBM Collaborations at the future FAIR facility and the J-PARC upgrade, we calculate the formation spectra of the [D--11B] and [D0-11B] mesic nuclei for an antiproton beam on a 12C target. Our results suggest that it is possible to observe the 2pD- mesic nuclear state with an appropriate experimental setup.

  20. Exploring the role of the charm quark in the Δ I =1 /2 rule

    NASA Astrophysics Data System (ADS)

    Endress, E.; Pena, C.

    2014-11-01

    We study the dependence on the charm quark mass of the leading-order low-energy constants of the Δ S =1 effective Hamiltonian, with the aim of elucidating the role of the charm mass scale in the Δ I =1 /2 rule for K →π π decay. To that purpose, finite-volume chiral perturbation theory predictions are matched to QCD simulations, performed in the quenched approximation with overlap fermions and mu=md=ms . Light quark masses range between a few MeV up to around one third of the physical strange mass, while charm masses range between mu and a few hundred MeV. Novel variance reduction techniques are used to obtain a signal for penguin contractions in correlation functions involving four-fermion operators. The important role played by the subtractions required to construct renormalized amplitudes for mc≠mu is discussed in detail. We find evidence that the moderate enhancement of the Δ I =1 /2 amplitude previously found in the GIM limit mc=mu increases only slightly as mc abandons the light quark regime. Hints of a stronger enhancement for even higher values of mc are also found, but their confirmation requires a better understanding of the subtraction terms.

  1. Observation of the Production of a W Boson in Association with a Single Charm Quark

    NASA Astrophysics Data System (ADS)

    Aaltonen, T.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Burkett, K.; Busetto, G.; Bussey, P.; Butti, P.; Buzatu, A.; Calamba, A.; Camarda, S.; Campanelli, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Cho, K.; Chou, J. P.; Chokheli, D.; Clark, A.; Clarke, C.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Cremonesi, M.; Cuevas, J.; Culbertson, R.; d'Ascenzo, N.; Datta, M.; Demortier, L.; Deninno, M.; Devoto, F.; d'Errico, M.; Di Canto, A.; Di Ruzza, B.; Dittmann, J. R.; D'Onofrio, M.; Donati, S.; Dorigo, M.; Driutti, A.; Ebina, K.; Edgar, R.; Elagin, A.; Erbacher, R.; Errede, S.; Esham, B.; Eusebi, R.; Farrington, S.; Fernández Ramos, J. P.; Field, R.; Flanagan, G.; Forrest, R.; Franklin, M.; Freeman, J. C.; Funakoshi, Y.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Goldschmidt, N.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González López, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gramellini, E.; Grinstein, S.; Grosso-Pilcher, C.; Group, R. C.; Guimaraes da Costa, J.; Hahn, S. R.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, M.; Harr, R. F.; Harrington-Taber, T.; Hatakeyama, K.; Hays, C.; Heinrich, J.; Herndon, M.; Hocker, A.; Hopkins, W.; Hou, S.; Hughes, R. E.; Hurwitz, M.; Husemann, U.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jindariani, S.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kambeitz, M.; Kamon, T.; Karchin, P. E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. B.; Kim, S. H.; Kim, Y. K.; Kim, Y. J.; Kimura, N.; Kirby, M.; Klimenko, S.; Knoepfel, K.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Krop, D.; Kruse, M.; Kuhr, T.; Kurata, M.; Kwang, S.; Laasanen, A. T.; Lammel, S.; Lancaster, M.; Lannon, K.; Latino, G.; Lee, H. S.; Lee, J. S.; Leone, S.; Lewis, J. D.; Limosani, A.; Lipeles, E.; Liu, H.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Margaroli, F.; Martínez, M.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Moon, C. S.; Moore, R.; Morello, M. J.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Nigmanov, T.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagliarone, C.; Palencia, E.; Palni, P.; Papadimitriou, V.; Parker, W.; Pauletta, G.; Paulini, M.; Paus, C.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Prokoshin, F.; Pranko, A.; Ptohos, F.; Punzi, G.; Ranjan, N.; Redondo Fernández, I.; Renton, P.; Rescigno, M.; Riddick, T.; Rimondi, F.; Ristori, L.; Robson, A.; Rodriguez, T.; Rolli, S.; Ronzani, M.; Roser, R.; Rosner, J. L.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Safonov, A.; Sakumoto, W. K.; Sakurai, Y.; Santi, L.; Sato, K.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, E. E.; Schwarz, T.; Scodellaro, L.; Seidel, S.; Seiya, Y.; Semenov, A.; Sforza, F.; Shalhout, S. Z.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shochet, M.; Shreyber-Tecker, I.; Simonenko, A.; Sinervo, P.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Sorin, V.; Song, H.; Stancari, M.; St. Denis, R.; Stelzer, B.; Stelzer-Chilton, O.; Stentz, D.; Strologas, J.; Sudo, Y.; Sukhanov, A.; Suslov, I.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng, P. K.; Thom, J.; Thomson, E.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Ukegawa, F.; Uozumi, S.; Vázquez, F.; Velev, G.; Vellidis, C.; Vernieri, C.; Vidal, M.; Vilar, R.; Vizán, J.; Vogel, M.; Volpi, G.; Wagner, P.; Wallny, R.; Wang, S. M.; Warburton, A.; Waters, D.; Wester, W. C., III; Whiteson, D.; Wicklund, A. B.; Wilbur, S.; Williams, H. H.; Wilson, J. S.; Wilson, P.; Winer, B. L.; Wittich, P.; Wolbers, S.; Wolfe, H.; Wright, T.; Wu, X.; Wu, Z.; Yamamoto, K.; Yamato, D.; Yang, T.; Yang, U. K.; Yang, Y. C.; Yao, W.-M.; Yeh, G. P.; Yi, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G. B.; Yu, I.; Zanetti, A. M.; Zeng, Y.; Zhou, C.; Zucchelli, S.

    2013-02-01

    The first observation of the production of a W boson with a single charm quark (c) jet in pp¯ collisions at s=1.96TeV is reported. The analysis uses data corresponding to 4.3fb-1, recorded with the CDF II detector at the Fermilab Tevatron. Charm quark candidates are selected through the identification of an electron or muon from charm-hadron semileptonic decay within a hadronic jet, and a Wc signal is observed with a significance of 5.7 standard deviations. The production cross section σWc(pTc>20GeV/c,|ηc|<1.5)×B(W→ℓν) is measured to be 13.6-3.1+3.4pb and is in agreement with theoretical expectations. From this result the magnitude of the quark-mixing matrix element Vcs is derived, |Vcs|=1.08±0.16 along with a lower limit of |Vcs|>0.71 at the 95% confidence level, assuming that the Wc production through c to s quark coupling is dominant.

  2. Charmed baryon decays observed in e/sup +/e/sup -/ annihilation at SPEAR

    SciTech Connect

    Vella, E.N.

    1982-01-01

    Various weak decays of the charmed baryon ..lambda../sub c/ are observed in the Mark II detector at the SLAC e/sup +/e/sup -/ storage ring SPEAR. Hadronic decays ..lambda../sub c//sup +/ ..-->.. pK/sup -/..pi../sup +/ and ..lambda../sub c//sup +/ ..-->.. pK/sub s//sup 0/ and their charge conjugates are observed as peaks in invariant mass spectra at m(..lambda../sub c/) = (2286 +/- 6) MeV/c/sup 2/. An estimate of the charmed baryon production cross section, sigma(..lambda../sub c/) + sigma(..lambda..'/sub c/ = (1.7 +/- 0.4)nb, derived from Mark II measurements of the inclusive baryon cross sections R/sub p/ and R/sub ..lambda../ as functions of center-of-mass energy, is used to calculate branching ratios for these hadronic decays: BR (..lambda../sub c//sup +/ ..-->.. pK/sup -/..pi../sup +/) = (2.0 +/- 0.8)%; BR (..lambda../sub c//sup +/ ..-->.. pK/sub s//sup 0/)/BR (..lambda../sub c//sup +/ ..-->.. pK/sup -/..pi../sup +/) = (36 +/- 16)%. An attempt is also made to observe higher mass charmed baryons by reconstructing cascade decays ..sigma../sub c/ ..-->.. ..lambda../sub c/..pi... Evidence for the observation of semileptonic decays of the charmed baryon is presented. Direct electrons are observed in events containing antiprotons, lambdas and antilambdas. The number of electrons per baryon event, after background subtraction and efficiency correction, is used, together with an estimate of the charmed baryon content of proton and lambda events, to calculate inclusive and semi-inclusive semileptonic branching ratios of the ..lambda../sub c/: BR (..lambda../sub c//sup +/ ..-->.. e/sup +/X) = (4.5 +/- 1.8)%; BR (..lambda../sub c//sup +/ ..-->.. pe/sup +/X) = (1.9 +/- 0.8)%; BR (..lambda../sub c//sup +/ ..-->.. ..lambda../sup 0/e/sup +/X) = (1.2 +/- 0.6)%. The inclusive semileptonic branching ratio, combined with a theoretical calculation of the total semileptonic width, implies a lifetime tau(..lambda../sub c/) = (2.4 +/- 1.1) 10/sup -13/ sec, in good agreement with

  3. Fragment-based docking: development of the CHARMMing Web user interface as a platform for computer-aided drug design.

    PubMed

    Pevzner, Yuri; Frugier, Emilie; Schalk, Vinushka; Caflisch, Amedeo; Woodcock, H Lee

    2014-09-22

    Web-based user interfaces to scientific applications are important tools that allow researchers to utilize a broad range of software packages with just an Internet connection and a browser. One such interface, CHARMMing (CHARMM interface and graphics), facilitates access to the powerful and widely used molecular software package CHARMM. CHARMMing incorporates tasks such as molecular structure analysis, dynamics, multiscale modeling, and other techniques commonly used by computational life scientists. We have extended CHARMMing's capabilities to include a fragment-based docking protocol that allows users to perform molecular docking and virtual screening calculations either directly via the CHARMMing Web server or on computing resources using the self-contained job scripts generated via the Web interface. The docking protocol was evaluated by performing a series of "re-dockings" with direct comparison to top commercial docking software. Results of this evaluation showed that CHARMMing's docking implementation is comparable to many widely used software packages and validates the use of the new CHARMM generalized force field for docking and virtual screening.

  4. Single electrons from semi-leptonic charm and bottom hadron decays in Au+Au collisions at PHENIX

    NASA Astrophysics Data System (ADS)

    Hachiya, Takashi

    2016-08-01

    Heavy quarks are clean probes to explore the nature of strongly coupled quark gluon plasma created in high energy heavy ion collisions. The strong suppression of single electrons from semi-leptonic decays of heavy flavor hadrons was observed. To further understand the heavy quark suppressions, PHENIX installed the silicon vertex detector (VTX) which allows us to measure the bottom and charm productions separately from measurement of displaced tracks. For the first time, we observed the electrons from bottom hadron decays are less suppressed than those from charms for 3 < pT < 4 GeV/c and are similarly strongly suppressed for higher pT in minimum bias Au+Au collisions at √sNN = 200 GeV. We present the results of separated bottom and charm productions using the 2011 dataset with the VTX.

  5. {upsilon} decay to two charm-quark jets as a probe of the color-octet mechanism

    SciTech Connect

    Zhang Yujie; Chao Kuangta

    2008-11-01

    We calculate the decay rate of bottomonium to two charm-quark jets {upsilon}{yields}cc at the tree level and one-loop level including color-singlet and color-octet bb annihilations. We find that the short-distance coefficient of the color-octet piece is much larger than the color-singlet piece, and that the QCD correction will change the end point behavior of the charm quark jet. The color-singlet piece is strongly affected by the one-loop QCD correction. In contrast, the QCD correction to the color-octet piece is weak. Once the experiment can measure the branching ratio and energy distribution of the two charm-quark jets in the {upsilon} decay, the result can be used to test the color-octet mechanism or give a strong constraint on the color-octet matrix elements.

  6. Gluon and charm content of the {eta}{sup {prime}} meson and instantons

    SciTech Connect

    Shuryak, E.V. |; Zhitnitsky, A.R. |

    1998-02-01

    Motivated by recent CLEO measurements of the B{r_arrow}{eta}{sup {prime}}K decay, we evaluate the gluon and charm content of the {eta}{sup {prime}} meson using the interacting instanton liquid model of the QCD vacuum. Our main result is {l_angle}0{vert_bar}g{sup 3}f{sup abc}G{sub {mu}{nu}}{sup a}{tilde G}{sub {nu}{alpha}}{sup b}G{sub {alpha}{mu}}{sup c}{vert_bar}{eta}{sup {prime}}{r_angle}={minus}(2.3{endash}3.3) GeV{sup 2}{times}{l_angle}0{vert_bar}g{sup 2}G{sub {mu}{nu}}{sup a}{tilde G}{sub {mu}{nu}}{sup a}{vert_bar}{eta}{sup {prime}}{r_angle}. It is very large due to the strong field of small-size instantons. We show that it provides quantitative explanations of the CLEO data on the B{r_arrow}{eta}{sup {prime}}K decay rate (as well as the inclusive process B{r_arrow}{eta}{sup {prime}}+X), via a virtual Cabibbo-unsuppressed decay into a {bar c}c pair which then becomes {eta}{sup {prime}}. If so, a significant charm component may be present in other hadrons also: We briefly discuss the contribution of the charmed quark to the {ital polarized} deep-inelastic scattering on a proton. {copyright} {ital 1998} {ital The American Physical Society}

  7. Applicability of the Charm II system for monitoring antibiotic residues in manure-based composts.

    PubMed

    Kwon, S I; Owens, G; Ok, Y S; Lee, D B; Jeon, W-T; Kim, J G; Kim, K-R

    2011-01-01

    The effluence of veterinary antibiotics (VAs) to aquatic and terrestrial environments is of concern due to the potential adverse effects on human health, such as the production of antibiotic resistant bacteria. One of the main pathways for antibiotics to enter the environment is via the application of manure and/or manure-based composts as an alternative organic fertilizer to agricultural lands. While a wide diversity of manure-based composts are produced in Korea, there is currently no regulatory guideline for VA residues. Hence, monitoring and limiting the concentration of VA residues in manure and/or manure-based composts prior to application to the lands is important to mitigate any environmental burden. The current study was conducted to examine the applicability of the Charm II antibiotic test system for monitoring tetracyclines, sulfonamides and macrolides in manure-based composts. The Charm II system was a highly reproducible method for determining whether VA residue concentrations in manure-based compost exceeded specific guideline values. A wide range of manure-based composts and liquid fertilizers commercially available in Korea were examined using the Charm II system to monitor the residues of the target VAs. For this, the guideline concentrations of VA residues (0.8 mg kg(-1) for tetracyclines, 0.2 mg kg(-1) for sulfonamides, and 0.1 mg kg(-1) for macrolides) stated in 'Official Standard of Feeds' under the 'Control of Livestock and Fish Feed Act' in Korea were adopted to establish control points. Of the 70 compost samples examined 12 exceeded 0.8 mg kg(-1) for tetracyclines and 21 exceeded 0.2 mg kg(-1) for sulfonamides. Of the 25 liquid fertilizer samples examined most samples exceeded these prospective guidelines.

  8. ProBiS-CHARMMing: Web Interface for Prediction and Optimization of Ligands in Protein Binding Sites.

    PubMed

    Konc, Janez; Miller, Benjamin T; Štular, Tanja; Lešnik, Samo; Woodcock, H Lee; Brooks, Bernard R; Janežič, Dušanka

    2015-11-23

    Proteins often exist only as apo structures (unligated) in the Protein Data Bank, with their corresponding holo structures (with ligands) unavailable. However, apoproteins may not represent the amino-acid residue arrangement upon ligand binding well, which is especially problematic for molecular docking. We developed the ProBiS-CHARMMing web interface by connecting the ProBiS ( http://probis.cmm.ki.si ) and CHARMMing ( http://www.charmming.org ) web servers into one functional unit that enables prediction of protein-ligand complexes and allows for their geometry optimization and interaction energy calculation. The ProBiS web server predicts ligands (small compounds, proteins, nucleic acids, and single-atom ligands) that may bind to a query protein. This is achieved by comparing its surface structure against a nonredundant database of protein structures and finding those that have binding sites similar to that of the query protein. Existing ligands found in the similar binding sites are then transposed to the query according to predictions from ProBiS. The CHARMMing web server enables, among other things, minimization and potential energy calculation for a wide variety of biomolecular systems, and it is used here to optimize the geometry of the predicted protein-ligand complex structures using the CHARMM force field and to calculate their interaction energies with the corresponding query proteins. We show how ProBiS-CHARMMing can be used to predict ligands and their poses for a particular binding site, and minimize the predicted protein-ligand complexes to obtain representations of holoproteins. The ProBiS-CHARMMing web interface is freely available for academic users at http://probis.nih.gov.

  9. Search for rare and forbidden Charm Meson decays D0 --> Vl+l- and hhll.

    PubMed

    Aitala, E M; Amato, S; Anjos, J C; Appel, J A; Ashery, D; Banerjee, S; Bediaga, I; Blaylock, G; Bracker, S B; Burchat, P R; Burnstein, R A; Carter, T; Carvalho, H S; Copty, N K; Cremaldi, L M; Darling, C; Denisenko, K; Devmal, S; Fernandez, A; Fox, G F; Gagnon, P; Gobel, C; Gounder, K; Halling, A M; Herrera, G; Hurvits, G; James, C; Kasper, P A; Kwan, S; Langs, D C; Leslie, J; Lundberg, B; Magnin, J; MayTal-Beck, S; Meadows, B; de Mello Neto, J R; Mihalcea, D; Milburn, R H; de Miranda, J M; Napier, A; Nguyen, A; d'Oliveira, A B; O'Shaughnessy, K; Peng, K C; Perera, L P; Purohit, M V; Quinn, B; Radeztsky, S; Rafatian, A; Reay, N W; Reidy, J J; dos Reis, A C; Rubin, H A; Sanders, D A; Santha, A K; Santoro, A F; Schwartz, A J; Sheaff, M; Sidwell, R A; Slaughter, A J; Sokoloff, M D; Solano, J; Stanton, N R; Stefanski, R J; Stenson, K; Summers, D J; Takach, S; Thorne, K; Tripathi, A K; Watanabe, S; Weiss-Babai, R; Wiener, J; Witchey, N; Wolin, E; Yang, S M; Yi, D; Yoshida, S; Zaliznyak, R; Zhang, C

    2001-04-30

    We report results of a search for flavor-changing neutral current (FCNC), lepton flavor, and lepton-number violating decays of the D0 (and its antiparticle) into three and four bodies. Using data from Fermilab charm hadroproduction experiment E791, we examine modes with two leptons (muons or electrons) and a rho(0), K( *0), or straight phi vector meson or a nonresonant pi(pi), Kpi, or KK pair of pseudoscalar mesons. No evidence for any of these decays is found. Therefore, we present branching-fraction upper limits at 90% confidence level for the 27 decay modes examined (18 new). PMID:11328072

  10. Production of the charmed strange baryon. xi. /sub c//sup +/ by neutrons

    SciTech Connect

    Not Available

    1986-12-01

    We report on the observation of a narrow resonance at a mass of 2450 MeV/c/sup 2/ in the final states ..lambda..K/sup -/..pi../sup +/..pi../sup +/ and ..sigma../sup 0/K/sup -/..pi../sup +/..pi../sup +/. The mass, width, lifetime, and decay modes support the interpretation of a hadronically produced charm-strange baryon, the ..xi../sub c//sup +/. We present our preliminary measurements of the lifetime, and the ..lambda.., x/sub feynman,/ and p/sub t/ dependence of the state.

  11. Searches for Rare Leptonic and Semileptonic Charm Decays at BaBar

    SciTech Connect

    Jackson, Paul D.; /Ohio State U.

    2007-01-17

    Recent results from leptonic and semi-leptonic charm decays at the BABAR B-factory are presented. The measurement of f{sub D{sub s}} from the D{sub s}{sup +} {yields} {mu}{sup +}{nu} channel is presented. Form-factor studies from the D{sup 0} {yields} K{sup +}e{sup -}{bar {nu}}{sub e} channel are described along with a search for flavor-changing neutral-current X{sub c}{sup +} {yields} h{sup +}{ell}{sup +}{ell}{prime}{sup -} decays.

  12. Search for Rare and Forbidden Charm Meson Decays D0 --> Vl+l- and hhll

    NASA Astrophysics Data System (ADS)

    Aitala, E. M.; Amato, S.; Anjos, J. C.; Appel, J. A.; Ashery, D.; Banerjee, S.; Bediaga, I.; Blaylock, G.; Bracker, S. B.; Burchat, P. R.; Burnstein, R. A.; Carter, T.; Carvalho, H. S.; Copty, N. K.; Cremaldi, L. M.; Darling, C.; Denisenko, K.; Devmal, S.; Fernandez, A.; Fox, G. F.; Gagnon, P.; Gobel, C.; Gounder, K.; Halling, A. M.; Herrera, G.; Hurvits, G.; James, C.; Kasper, P. A.; Kwan, S.; Langs, D. C.; Leslie, J.; Lundberg, B.; Magnin, J.; Maytal-Beck, S.; Meadows, B.; de Mello Neto, J. R.; Mihalcea, D.; Milburn, R. H.; de Miranda, J. M.; Napier, A.; Nguyen, A.; D'Oliveira, A. B.; O'Shaughnessy, K.; Peng, K. C.; Perera, L. P.; Purohit, M. V.; Quinn, B.; Radeztsky, S.; Rafatian, A.; Reay, N. W.; Reidy, J. J.; Dos Reis, A. C.; Rubin, H. A.; Sanders, D. A.; Santha, A. K.; Santoro, A. F.; Schwartz, A. J.; Sheaff, M.; Sidwell, R. A.; Slaughter, A. J.; Sokoloff, M. D.; Solano, J.; Stanton, N. R.; Stefanski, R. J.; Stenson, K.; Summers, D. J.; Takach, S.; Thorne, K.; Tripathi, A. K.; Watanabe, S.; Weiss-Babai, R.; Wiener, J.; Witchey, N.; Wolin, E.; Yang, S. M.; Yi, D.; Yoshida, S.; Zaliznyak, R.; Zhang, C.

    2001-04-01

    We report results of a search for flavor-changing neutral current (FCNC), lepton flavor, and lepton-number violating decays of the D0 (and its antiparticle) into three and four bodies. Using data from Fermilab charm hadroproduction experiment E791, we examine modes with two leptons (muons or electrons) and a ρ0, K¯ *0, or φ vector meson or a nonresonant ππ, Kπ, or KK pair of pseudoscalar mesons. No evidence for any of these decays is found. Therefore, we present branching-fraction upper limits at 90% confidence level for the 27 decay modes examined (18 new).

  13. Automation, Operation, and Data Analysis in the Cryogenic, High Accuracy, Refraction Measuring System (CHARMS)

    NASA Technical Reports Server (NTRS)

    Frey, Bradley J.; Leviton, Douglas B.

    2005-01-01

    The Cryogenic High Accuracy Refraction Measuring System (CHARMS) at NASA's Goddard Space Flight Center has been enhanced in a number of ways in the last year to allow the system to accurately collect refracted beam deviation readings automatically over a range of temperatures from 15 K to well beyond room temperature with high sampling density in both wavelength and temperature. The engineering details which make this possible are presented. The methods by which the most accurate angular measurements are made and the corresponding data reduction methods used to reduce thousands of observed angles to a handful of refractive index values are also discussed.

  14. Automation, Operation, and Data Analysis in the Cryogenic, High Accuracy, Refraction Measuring System (CHARMS)

    NASA Technical Reports Server (NTRS)

    Frey, Bradley; Leviton, Duoglas

    2005-01-01

    The Cryogenic High Accuracy Refraction Measuring System (CHARMS) at NASA s Goddard Space Flight Center has been enhanced in a number of ways in the last year to allow the system to accurately collect refracted beam deviation readings automatically over a range of temperatures from 15 K to well beyond room temperature with high sampling density in both wavelength and temperature. The engineering details which make this possible are presented. The methods by which the most accurate angular measurements are made and the corresponding data reduction methods used to reduce thousands of observed angles to a handful of refractive index values are also discussed.

  15. Observation of Hadronic Charm Production in a High Resolution Streamer Chamber Experiment

    SciTech Connect

    Sandweiss, J.; et al.

    1980-01-01

    Short-lived particles produced in association with muons have been observed in the interactions of 350-GeV/c protons with neon in a high-resolution streamer chamber. The characteristics of these events are consistent with the expected properties of charmed particles if the average lifetime lies between 10/sup -13/ and 2 x 10/sup -12/ sec. With the assumption that the observed events are mainly D/sup + -/ mesons with lieftimes of approximately 10/sup -12/ sec, the production cross section is estimated to lie between 20 and 50 ..mu..b per nucleon.

  16. Search for rare and forbidden Charm Meson decays D0 --> Vl+l- and hhll.

    PubMed

    Aitala, E M; Amato, S; Anjos, J C; Appel, J A; Ashery, D; Banerjee, S; Bediaga, I; Blaylock, G; Bracker, S B; Burchat, P R; Burnstein, R A; Carter, T; Carvalho, H S; Copty, N K; Cremaldi, L M; Darling, C; Denisenko, K; Devmal, S; Fernandez, A; Fox, G F; Gagnon, P; Gobel, C; Gounder, K; Halling, A M; Herrera, G; Hurvits, G; James, C; Kasper, P A; Kwan, S; Langs, D C; Leslie, J; Lundberg, B; Magnin, J; MayTal-Beck, S; Meadows, B; de Mello Neto, J R; Mihalcea, D; Milburn, R H; de Miranda, J M; Napier, A; Nguyen, A; d'Oliveira, A B; O'Shaughnessy, K; Peng, K C; Perera, L P; Purohit, M V; Quinn, B; Radeztsky, S; Rafatian, A; Reay, N W; Reidy, J J; dos Reis, A C; Rubin, H A; Sanders, D A; Santha, A K; Santoro, A F; Schwartz, A J; Sheaff, M; Sidwell, R A; Slaughter, A J; Sokoloff, M D; Solano, J; Stanton, N R; Stefanski, R J; Stenson, K; Summers, D J; Takach, S; Thorne, K; Tripathi, A K; Watanabe, S; Weiss-Babai, R; Wiener, J; Witchey, N; Wolin, E; Yang, S M; Yi, D; Yoshida, S; Zaliznyak, R; Zhang, C

    2001-04-30

    We report results of a search for flavor-changing neutral current (FCNC), lepton flavor, and lepton-number violating decays of the D0 (and its antiparticle) into three and four bodies. Using data from Fermilab charm hadroproduction experiment E791, we examine modes with two leptons (muons or electrons) and a rho(0), K( *0), or straight phi vector meson or a nonresonant pi(pi), Kpi, or KK pair of pseudoscalar mesons. No evidence for any of these decays is found. Therefore, we present branching-fraction upper limits at 90% confidence level for the 27 decay modes examined (18 new).

  17. Even- and Odd-Parity Charmed Meson Masses in Heavy Hadron Chiral Perturbation Theory

    SciTech Connect

    Thomas Mehen; Roxanne Springer

    2005-03-01

    We derive mass formulae for the ground state, J{sup P} = 0{sup -} and 1{sup -}, and first excited even-parity, J{sup P} = 0{sup +} and 1{sup +}, charmed mesons including one loop chiral corrections and {Omicron}(1/m{sub c}) counterterms in heavy hadron chiral perturbation theory. We show a variety of fits to the current data. We find that certain parameter relations in the parity doubling model are not renormalized at one loop, providing a natural explanation for the equality of the hyperfine splittings of ground state and excited doublets.

  18. Charm-Quark Production in Deep-Inelastic Neutrino Scattering at Next-to-Next-to-Leading Order in QCD.

    PubMed

    Berger, Edmond L; Gao, Jun; Li, Chong Sheng; Liu, Ze Long; Zhu, Hua Xing

    2016-05-27

    We present a fully differential next-to-next-to-leading order calculation of charm-quark production in charged-current deep-inelastic scattering, with full charm-quark mass dependence. The next-to-next-to-leading order corrections in perturbative quantum chromodynamics are found to be comparable in size to the next-to-leading order corrections in certain kinematic regions. We compare our predictions with data on dimuon production in (anti)neutrino scattering from a heavy nucleus. Our results can be used to improve the extraction of the parton distribution function of a strange quark in the nucleon.

  19. Hadron Physics at the Charm and Bottom Thresholds and Other Novel QCD Physics Topics at the NICA Accelerator Facility

    SciTech Connect

    Brodsky, Stanley J.; /SLAC

    2012-06-20

    The NICA collider project at the Joint Institute for Nuclear Research in Dubna will have the capability of colliding protons, polarized deuterons, and nuclei at an effective nucleon-nucleon center-of mass energy in the range {radical}s{sub NN} = 4 to 11 GeV. I briefly survey a number of novel hadron physics processes which can be investigated at the NICA collider. The topics include the formation of exotic heavy quark resonances near the charm and bottom thresholds, intrinsic strangeness, charm, and bottom phenomena, hidden-color degrees of freedom in nuclei, color transparency, single-spin asymmetries, the RHIC baryon anomaly, and non-universal antishadowing.

  20. Charm-Quark Production in Deep-Inelastic Neutrino Scattering at Next-to-Next-to-Leading Order in QCD.

    PubMed

    Berger, Edmond L; Gao, Jun; Li, Chong Sheng; Liu, Ze Long; Zhu, Hua Xing

    2016-05-27

    We present a fully differential next-to-next-to-leading order calculation of charm-quark production in charged-current deep-inelastic scattering, with full charm-quark mass dependence. The next-to-next-to-leading order corrections in perturbative quantum chromodynamics are found to be comparable in size to the next-to-leading order corrections in certain kinematic regions. We compare our predictions with data on dimuon production in (anti)neutrino scattering from a heavy nucleus. Our results can be used to improve the extraction of the parton distribution function of a strange quark in the nucleon. PMID:27284650

  1. Singly and Doubly Charmed $J=1/2$ Baryon Spectrum from Lattice QCD

    SciTech Connect

    Liuming Liu; Lin, Huey-Wen; Orginos, Kostas; Walker-Loud, Andre

    2010-05-01

    We compute the masses of the singly and doubly charmed baryons in full QCD using the relativistic Fermilab action for the charm quark. For the light quarks we use domain-wall fermions in the valence sector and improved Kogut-Susskind sea quarks. We use the low-lying charmonium spectrum to tune our heavy-quark action and as a guide to understanding the discretization errors associated with the heavy quark. Our results are in good agreement with experiment within our systematicss, except for the spin-1/2 $\\Xi_{cc}$, for which we predict the isospin averaged mass to be $M_{\\Xi_{cc}} = 3665 \\pm17 \\pm14\\, {}^{+0}_{-35}$~{MeV} (here the first uncertainty is statistical, the second systematic and the third an estimate of lattice discretization errors). In addition, we predict the splitting of the (isospin averaged) spin-1/2 $\\O_{cc}$ with the $\\Xi_{cc}$ to be $M_{\\O_{cc}} - M_{\\Xi_{cc}} = 98 \\pm9 \\pm22$~{MeV} (in this mass splitting, the leading discretization errors cancel). This corresponds to a prediction of $M_{\\O_{cc}} = 3763\\pm9\\pm44\\, {}^{+0}_{-35}$~{MeV}.

  2. Compositeness of the strange, charm, and beauty odd parity Λ states

    NASA Astrophysics Data System (ADS)

    Garcia-Recio, C.; Hidalgo-Duque, C.; Nieves, J.; Salcedo, L. L.; Tolos, L.

    2015-08-01

    We study the dependence on the quark mass of the compositeness of the lowest-lying odd parity hyperon states. Thus, we pay attention to Λ -like states in the strange, charm, and beauty sectors which are dynamically generated using a unitarized meson-baryon model. In the strange sector we use a SU(6) extension of the Weinberg-Tomozawa meson-baryon interaction, and we further implement the heavy-quark spin symmetry to construct the meson-baryon interaction when charmed or beauty hadrons are involved. In the three examined flavor sectors, we obtain two JP=1 /2- and one JP=3 /2- Λ states. We find that the Λ states which are bound states (the three Λb) or narrow resonances [one Λ (1405 ) and one Λc(2595 )] are well described as molecular states composed of s -wave meson-baryon pairs. The 1/2- wide Λ (1405 ) and Λc(2595 ) as well as the 3/2- Λ (1520 ) and Λc(2625 ) states display smaller compositeness so they would require new mechanisms, such as d -wave interactions.

  3. Direct CP violation in two-body hadronic charmed meson decays

    NASA Astrophysics Data System (ADS)

    Cheng, Hai-Yang; Chiang, Cheng-Wei

    2012-02-01

    Motivated by the recent observation of CP violation in the charm sector by LHCb, we study direct CP asymmetries in the standard model (SM) for the singly Cabibbo-suppressed two-body hadronic decays of charmed mesons using the topological-diagram approach. In this approach, the magnitude and the phase of topological weak annihilation amplitudes, which arise mainly from final-state rescattering, can be extracted from the data. Consequently, direct CP asymmetry adir(tree) at tree level can be reliably estimated. In general, it lies in the range 10-4

  4. Semileptonic decays of charmed and beauty baryons with heavy sterile neutrinos in the final state

    SciTech Connect

    Ramazanov, Sabir

    2009-04-01

    We obtain tree-level estimates of various differential branching ratios of heavy baryon decays with massive sterile neutrinos {nu}{sub x} in the final state. Generally, charmed baryons are found to be less promising than charmed mesons, in contrast to b hadrons. In the latter case, branching ratios of beauty mesons and baryons into sterile neutrinos are of the same order. As a consequence, at high energies beauty baryons give contribution to sterile neutrino production comparable to the contribution of beauty mesons (up to about 15%). Experimental limits on active-to-sterile mixing are quite strong for neutrinos lighter than D mesons but for heavier neutrinos they are weaker. As an example, for neutrino masses in the range 2 GeV < or approx. m{sub {nu}{sub x}} < or approx. 2.5 GeV, current data imply that the bounds on {lambda}{sub b}-hyperon branching ratios into sterile neutrinos are Br({lambda}{sub b}{yields}{lambda}{sub c}+e{sup -}+{nu}{sub x}) < or approx. 1.3x10{sup -5}-1.7x10{sup -6} and Br({lambda}{sub b}{yields}{lambda}{sub c}+{mu}{sup -}+{nu}{sub x}) < or approx. 3.9x10{sup -7}-1.4x10{sup -7}.

  5. Spectroscopy of doubly and triply-charmed baryons from lattice QCD

    SciTech Connect

    Padmanath, M.; Edwards, Robert G.; Mathur, Nilmani; Peardon, Michael

    2013-11-01

    We present the ground and excited state spectra of doubly and triply-charmed baryons by using lattice QCD with dynamical clover fermions. A large set of baryonic operators that respect the symmetries of the lattice and are obtained after subduction from their continuum analogues are utilized. Using novel computational techniques correlation functions of these operators are generated and the variational method is exploited to extract excited states. The lattice spectra that we obtain have baryonic states with well-defined total spins up to 7/2 and the low lying states remarkably resemble the expectations of quantum numbers from SU(6) Ⓧ O(3) symmetry. Various energy splittings between the extracted states, including splittings due to hyperfine as well as spin-orbit coupling, are considered and those are also compared against similar energy splittings at other quark masses. Using those splittings for doubly-charmed baryons, and taking input of experimental Bc meson mass, we predict the mass splittings of B*c-Bc to be about 80 ± 8 MeV and mΩccb=8050±10 MeV.

  6. Study of the Asymmetric Photoproduction of Charmed Mesons using Data from the FOCUS Experiment

    SciTech Connect

    Vazquez-Valencia, Elsa Fabiola; /CINVESTAV, IPN

    2005-05-01

    Using data from the fixed target charm-photoproduction experiment, Fermilab FOCUS/E831, they studied the asymmetric production of the mesons: D{sup 0}, D{sup +} y D{sub s}{sup +}. Even when the asymmetry in the production of charm particles, defined as the ratio between particles and antiparticles, at next leading order in quantum chromodynamics (QCD) is almost zero, in data we observe asymmetries probably associate dto the fragmentation processes. Since these are the less understood phenomena in QCD, the results in the present work could be of great importance to understand them. We found asymmetries in the production of the mesons D{sup +} and D{sup 0} (statistic significant), for the D{sub s}{sup +} we only observed an asymmetry not conclusive. We also report a study of the production asymmetries vs. the kinematic variables: p{sub T}{sup 2} (square transversal momentum of the particles), p{sub L} or p{sub Z} (longitudinal momentum), x{sub F} (Feynman x) and E{sub {gamma}} (photon beam energy).

  7. Project of a Super Charm-Tau factory at the Budker Institute of Nuclear Physics in Novosibirsk

    SciTech Connect

    Bondar, A. E.

    2013-09-15

    A project of a Super Charm-Tau factory is being developed at the Budker Institute of Nuclear Physics (Siberian Branch, Russian Academy of Sciences) in Novosibirsk. The electron-positron collider to be employed will operate at c.m. energies in the range between 2 and 5 GeV at an unprecedentedly high luminosity of 10{sup 35} cm{sup -2} s{sup -1} with a longitudinal electron polarization at the beam-interaction point. The main objective of experiments at the Super Charm-Tau factory is to study processes involving the production and properties of charmed quarks and tau leptons. A high luminosity of this setup will make it possible to obtain a statistical data sample that will be three to four orders of magnitude vaster than that from any other experiment performed thus far. Experiments at this setup are assumed to be sensitive to effects of new physics beyond the Standard Model. Investigations to be carried out at the Super-Charm-Tau factory will supplement future experiments at Super-B factories under construction in Italy and in Japan.

  8. Voodoo Dolls, Charms, and Spells in the Classroom: Teaching, Screening, and Deconstructing the Misrepresentation of the African Religion

    ERIC Educational Resources Information Center

    Reuber, Alexandra

    2011-01-01

    "New Orleans voodoo," also called "créole voodoo," is an amalgamation of an honoring of the spirits of the dead, a respect for the elderly and the spiritual life, African knowledge of herbs and charms, and European elements of Catholicism. It is a religion of ancestor worship that is unknown to us, and that we are not…

  9. Charm and beauty searches using electron -D{sup 0} azimuthal correlations and microvertexing techniques in STAR experiment at RHIC

    SciTech Connect

    Geromitsos, Artemios

    2010-12-22

    The energy loss of heavy quarks in the hot and dense matter created at RHIC, can be used to probe the properties of the medium. Both charm and beauty quarks contribute to the non-photonic electrons through their semi-leptonic decays. It is essential to determine experimentally the relative contribution of charm and beauty quarks to understand the suppression of heavy flavors at high p{sub T} in central Au+Au collisions. The azimuthal angular correlations of non-photonic electrons with the reconstructed D{sup 0} allow to disentangle the contribution of charm and beauty and to reduce the background below the D{sup 0} invariant mass as well. We discuss the STAR measurement of non-photonic electron and D{sup 0{yields}}K{sup -{pi}+} azimuthal correlations in p+p collisions at 200 GeV. Furthermore, we show results from the application of microvertexing techniques for charm and beauty searches in Cu+Cu and Au+Au collisions at 200 GeV using the information of the Silicon tracker of STAR.

  10. A simple model of two-body decays of charmed mesons into pseudoscalar mesons using the {1}/{N} expansion

    NASA Astrophysics Data System (ADS)

    Lee, Dean

    1992-01-01

    An attempt is made to understand charmed meson decays in a simple yet quantitative language. The {1}/{N} expansion of QCD is chosen for the analysis of these decays. With the {1}/{N} expansion, significant SU(3)-flavor breaking effects are isolated and evaluated.

  11. 'Charm' Strawberry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘Charm’ is a new June-bearing (short-day) strawberry (Fragaria ×ananassa Duchesne ex Rozier) cultivar from the U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS) breeding program in Corvallis, OR, released in cooperation with the Oregon Agricultural Experiment Station and the Wa...

  12. New limits on intrinsic charm in the nucleon from global analysis of parton distributions.

    PubMed

    Jimenez-Delgado, P; Hobbs, T J; Londergan, J T; Melnitchouk, W

    2015-02-27

    We present a new global QCD analysis of parton distribution functions, allowing for possible intrinsic charm (IC) contributions in the nucleon inspired by light-front models. The analysis makes use of the full range of available high-energy scattering data for Q^{2}≳1  GeV^{2} and W^{2}≳3.5  GeV^{2}, including fixed-target proton and deuteron cross sections at lower energies that were excluded in previous global analyses. The expanded data set places more stringent constraints on the momentum carried by IC, with ⟨x⟩_{IC} at most 0.5% (corresponding to an IC normalization of ∼1%) at the 4σ level for Δχ^{2}=1. We also critically assess the impact of older EMC measurements of F_{2}^{c} at large x, which favor a nonzero IC, but with very large χ^{2} values. PMID:25768757

  13. Observation of charmed-baryon production in e/sup +/e/sup -/ annihilation

    SciTech Connect

    Abrams, G.S.; Alam, M.S.; Blocker, C.A.; Boyarski, A.M.; Breidenbach, M.; Burke, D.L.; Carithers, W.C.; Chinowsky, W.; Coles, M.W.; Cooper, S.; Dieterle, W.E.; Dillon, J.B.; Dorenbosch, J.; Dorfan, J.M.; Eaton, M.W.; Feldman, G.J.; Franklin, M.E.B.; Gidal, G.; Goldhaber, G.; Hanson, G.; Hayes, K.G.; Himel, T.; Hitlin, D.G.; Hollebeek, R.J.; Innes, W.R.; Jaros, J.A.; Jenni, P.; Johnson, A.D.; Kadyk, J.A.; Lankford, A.J.; Larsen, R.R.; Longo, M.J.; Lueth, V.; Millikan, R.E.; Nelson, M.E.; Pang, C.Y.; Patrick, J.F.; Perl, M.L.; Richter, B.; Roussarie, A.; Russell, J.J.; Scharre, D.L.; Schindler, R.H.; Schwitters, R.F.; Siegrist, J.L.; Strait, J.; Taureg, H.; Tonutti, M.; Trilling, G.H.; Vella, E.N.; Vidal, R.A.; Videau, I.; Weiss, J.M.; Zaccone, H.

    1980-01-07

    A peak in the pK/sup -/..pi../sup +/ and p-barK/sup +/..pi../sup -/ invariant-mass spectra at 2.285 +- 0.006 GeV/c/sup 2/ is observed, which is associated with the lowest-lying charmed baryon (..lambda../sub c/). A cross section times branching ratio of 0.037 +- 0.012 nb at E/sub c.m./=5.2 GeV is measured with a substantial fraction of the events produced with an equal recoiling mass. New measurements of inclusive p and ..lambda.. cross sections are also presented, allowing an estimate of the branching ratio B (..lambda../sub c/ ..-->.. pK/sup -/..pi../sup +/) =0.022 +- 0.010.

  14. Search for rare and forbidden charm meson decays at Fermilab E791

    SciTech Connect

    Donald J. Summers et al.

    2000-09-29

    The authors report the results of a blind search for flavor-changing neutral current, lepton-flavor violating, and lepton-number violating decays of D{sup +}, D{sub s}{sup +}, and D{sup 0} mesons (and their antiparticles) into modes containing muons and electrons. Using data from Fermilab charm hadroproduction experiment E791, they examine the {pi}{ell}{ell} and K{ell}{ell} decay modes of D{sup +} and D{sub s}{sup +} and the {ell}{sup +}{ell}{sup {minus}} decay modes of D{sup 0}. No evidence for any of these decays is found. Therefore, they present branching-fraction upper limits at 90% confidence level for the 24 decay modes examined. Eight of these modes have no previously reported limits, and fourteen are reported with significant improvements over previously published results.

  15. Study of reactions disclosing hidden charm pentaquarks with or without strangeness

    NASA Astrophysics Data System (ADS)

    Oset, Eulogio; Chen, Hua-Xing; Feijoo, Albert; Geng, Li-Sheng; Liang, Wei-Hong; Li, De-Min; Lu, Jun-Xu; Magas, Vladymir K.; Nieves, Juan; Ramos, Angels; Roca, Luis; Wang, En; Xie, Ju-Jun

    2016-10-01

    We present results for five reactions, Λb → J / ψK- p, Λb → J / ψηΛ, Λb → J / ψπ- p, Λb → J / ψK0 Λ and Ξb- → J / ψK- Λ, where combining information from the meson baryon interaction, using the chiral unitary approach, and predictions made for molecular states of hidden charm, with or without strangeness, we can evaluate invariant mass distributions for the light meson baryon states, and for those of J / ψp or J / ψΛ. We show that with the present available information, in all of these reactions one finds peaks where the pentaquark states show up. In the Λb → J / ψK- p and Λb → J / ψπ- p reactions we show that the results obtained from our study are compatible with present experimental observations.

  16. Excited-state spectroscopy of singly, doubly and triply-charmed baryons from lattice QCD

    SciTech Connect

    Padmanath, M.; Edwards, Robert G.; Mathur, Nilmani; Peardon, Michael

    2014-07-01

    We present the ground and excited state spectra of singly, doubly and triply-charmed baryons by using dynamical lattice QCD. A large set of baryonic operators that respect the symmetries of the lattice and are obtained after subduction from their continuum analogues are utilized. These operators transform as irreducible representations of SU(3)F symmetry for flavour, SU(4) symmetry for Dirac spins of quarks and O(3) symmetry for orbital angular momenta. Using novel computational techniques correlation functions of these operators are generated and the variational method is exploited to extract excited states. The lattice spectra that we obtain have baryonic states with well-defined total spins up to 7/2 and the low lying states remarkably resemble the expectations of quantum numbers from SU(6)ⓍO(3) symmetry.

  17. Bottom and charm masses and lifetimes at the Tevatron; and a pentaquark search

    SciTech Connect

    B. Todd Huffman

    2003-06-09

    The Fermilab Tevatron, operating at {radical}s = 1.96 TeV, provides a rich environment for the study of the bottom and charmed hadrons and for searches of other bound states. Presented here are recent measurements of the masses of the following states using fully reconstructed events: B{sup +}, B{sup 0}, B{sub s}, {Lambda}{sub b}, and the neutral B**. Lifetimes from both CDF and D0 in exclusive decays for all of these modes are also presented (sans the B**). A search was conducted at CDF for the {Xi}{sup 2} and {Xi}{sup 0} pentaquark states in the decay {Xi}(1860) {yields} {Xi}{sup -} {pi}{sup {+-}} setting a limit on their production in p-{bar p} collisions relative to the number of {Xi}(1530) baryons seen.

  18. Charmed partner of the exotic X (5568 ) state and its properties

    NASA Astrophysics Data System (ADS)

    Agaev, S. S.; Azizi, K.; Sundu, H.

    2016-05-01

    The mass, decay constant, and width of a hypothetical charmed partner Xc of the newly observed exotic Xb(5568 ) state are calculated using the technique of the QCD sum rule method. The Xc=[s u ][c ¯ d ¯ ] state with JP=0+ is described, employing two types of the diquark-antidiquark interpolating currents. The evaluation of the mass mXc and decay constant fXc is carried out utilizing the two-point sum rule method by including vacuum condensates up to eight dimensions. The widths of the decay channels Xc→Ds-π+ and Xc→D0K0 are also found. To this end, the strong couplings gXcDsπ and gXcDK are computed by means of QCD sum rules on the light-cone and soft-meson approximation.

  19. New Limits on Intrinsic Charm in the Nucleon from Global Analysis of Parton Distributions

    NASA Astrophysics Data System (ADS)

    Jimenez-Delgado, P.; Hobbs, T. J.; Londergan, J. T.; Melnitchouk, W.

    2015-02-01

    We present a new global QCD analysis of parton distribution functions, allowing for possible intrinsic charm (IC) contributions in the nucleon inspired by light-front models. The analysis makes use of the full range of available high-energy scattering data for Q2≳1 GeV2 and W2≳3.5 GeV2 , including fixed-target proton and deuteron cross sections at lower energies that were excluded in previous global analyses. The expanded data set places more stringent constraints on the momentum carried by IC, with ⟨x ⟩IC at most 0.5% (corresponding to an IC normalization of ˜1 % ) at the 4 σ level for Δ χ2=1 . We also critically assess the impact of older EMC measurements of F2c at large x , which favor a nonzero IC, but with very large χ2 values.

  20. New limits on intrinsic charm in the nucleon from global analysis of parton distributions

    DOE PAGES

    Jimenez-Delgado, P.; Hobbs, T. J.; Londergan, J. T.; Melnitchouk, W.

    2015-02-27

    We present a new global QCD analysis of parton distribution functions, allowing for possible intrinsic charm (IC) contributions in the nucleon inspired by light-front models. The analysis makes use of the full range of available high-energy scattering data for Q2 ≥ 1 GeV2 and W2 ≥ 3.5 GeV2, including fixed-target proton and deuteron deep cross sections at lower energies that were excluded in previously global analyses. The expanded data set places more stringent constraints on the momentum carried by IC, with (x)IC at most 0.5% (corresponding to an IC normalization of ~1%) at the 4σ level for ΔX2 = 1.more » We also assess the impact of older EMC measurements of Fc2c at large x, which favor a nonzero IC, but with very large X2 values.« less

  1. Axial charges of hyperons and charmed baryons using Nf=2 +1 +1 twisted mass fermions

    NASA Astrophysics Data System (ADS)

    Alexandrou, C.; Hadjiyiannakou, K.; Kallidonis, C.

    2016-08-01

    The axial couplings of the low lying baryons are evaluated using a total of five ensembles of dynamical twisted mass fermion gauge configurations. The simulations are performed using the Iwasaki gauge action and two degenerate flavors of light quarks, and a strange and a charm quark fixed to approximately their physical values at two values of the coupling constant. The lattice spacings, determined using the nucleon mass, are a =0.082 fm and a =0.065 fm , and the simulations cover a pion mass in the range of about 210 MeV to 430 MeV. We study the dependence of the axial couplings on the pion mass in the range of about 210 MeV to 430 MeV as well as the SU(3) breaking effects as we decrease the light quark mass toward its physical value.

  2. Evidence for B Semileptonic Decays into the Lambda_c Charm Baryon

    SciTech Connect

    Aubert, Bernard; Bona, M.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Lopez, L.; Palano, Antimo; Pappagallo, M.; Eigen, G.; Stugu, Bjarne; Sun, L.; Abrams, G.S.; Battaglia, M.; Brown, D.N.; Cahn, Robert N.; Jacobsen, R.G.; /LBL, Berkeley /Birmingham U. /Ruhr U., Bochum /Bristol U. /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UCLA /UC, Riverside /UC, San Diego /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /Ferrara U. /INFN, Ferrara /Frascati /Genoa U. /INFN, Genoa /Harvard U. /Heidelberg U. /Humboldt U., Berlin /Imperial Coll., London /Iowa U. /Iowa State U. /Johns Hopkins U. /Orsay, LAL /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Louisville U. /Mainz U., Inst. Kernphys. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT /McGill U. /Consorzio Milano Ricerche /INFN, Milan /Mississippi U. /Montreal U. /Mt. Holyoke Coll. /Napoli Seconda U. /INFN, Naples /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /Padua U. /INFN, Padua /Paris U., VI-VII /Pennsylvania U. /Perugia U. /INFN, Perugia /INFN, Pisa /Princeton U. /Banca di Roma /Frascati /Rostock U. /Rutherford /DAPNIA, Saclay /South Carolina U. /SLAC /Stanford U., Phys. Dept. /SUNY, Albany /Tennessee U. /Texas U. /Texas U., Dallas /Turin U. /INFN, Turin /Trieste U. /INFN, Trieste /Valencia U., IFIC /Victoria U. /Warwick U. /Wisconsin U., Madison

    2008-11-05

    We present the first evidence for B semileptonic decays into the charmed baryon {Lambda}{sub c}{sup +} based on 420 fb{sup -1} of data collected at the {Upsilon}(4S) resonance with the BABAR detector at the PEP-II e{sup +}e{sup -} storage rings. Events are tagged by fully reconstructing one of the B mesons in a hadronic decay mode. We measure the relative branching fraction {Beta}({bar B} {yields} {Lambda}{sub c}{sup +} X{ell}{sup -}{bar {nu}}{sub {ell}})/{Beta}({bar B} {yields} {Lambda}{sub c}{sup +}/{bar {Lambda}}{sub c}{sup -}X) = (3.2 {+-} 0.9{sub stat.} {+-} 0.9{sub syst.})%. The significance of the signal including the systematic uncertainty is 4.9 standard deviations.

  3. Raman distributed temperature measurement at CERN high energy accelerator mixed field radiation test facility (CHARM)

    NASA Astrophysics Data System (ADS)

    Toccafondo, Iacopo; Nannipieri, Tiziano; Signorini, Alessandro; Guillermain, Elisa; Kuhnhenn, Jochen; Brugger, Markus; Di Pasquale, Fabrizio

    2015-09-01

    In this paper we present a validation of distributed Raman temperature sensing (RDTS) at the CERN high energy accelerator mixed field radiation test facility (CHARM), newly developed in order to qualify electronics for the challenging radiation environment of accelerators and connected high energy physics experiments. By investigating the effect of wavelength dependent radiation induced absorption (RIA) on the Raman Stokes and anti-Stokes light components in radiation tolerant Ge-doped multi-mode (MM) graded-index optical fibers, we demonstrate that Raman DTS used in loop configuration is robust to harsh environments in which the fiber is exposed to a mixed radiation field. The temperature profiles measured on commercial Ge-doped optical fibers is fully reliable and therefore, can be used to correct the RIA temperature dependence in distributed radiation sensing systems based on P-doped optical fibers.

  4. Charm and beauty quark masses in the MMHT2014 global PDF analysis

    NASA Astrophysics Data System (ADS)

    Harland-Lang, L. A.; Martin, A. D.; Motylinski, P.; Thorne, R. S.

    2016-01-01

    We investigate the variation in the MMHT2014 PDFs when we allow the heavy-quark masses m_c and m_b to vary away from their default values. We make PDF sets available in steps of Δ m_c =0.05 GeV and Δ m_b =0.25 GeV, and present the variation in the PDFs and in the predictions. We examine the comparison to the HERA data on charm and beauty structure functions and note that in each case the heavy-quark data, and the inclusive data, have a slight preference for lower masses than our default values. We provide PDF sets with three and four active quark flavours, as well as the standard value of five flavours. We use the pole mass definition of the quark masses, as in the default MMHT2014 analysis, but briefly comment on the overline{MS} definition.

  5. Nonperturbative charming penguin contributions to isospin asymmetries in radiative B decays

    SciTech Connect

    Kim, Chul; Mehen, Thomas; Leibovich, Adam K.

    2008-09-01

    Recent experimental data on the radiative decays B{yields}V{gamma}, where V is a light vector meson, find small isospin violation in B{yields}K*{gamma} while isospin asymmetries in B{yields}{rho}{gamma} are of order 20%, with large uncertainties. Using soft-collinear effective theory, we calculate isospin asymmetries in these radiative B decays up to O(1/m{sub b}), also including O(v{alpha}{sub s}) contributions from nonperturbative charming penguins (NPCP). In the absence of NPCP contributions, the theoretical predictions for the asymmetries are a few percent or less. Including the NPCP can significantly increase the isospin asymmetries for both B{yields}V{gamma} modes. We also consider the effect of the NPCP on the branching ratio and CP asymmetries in B{sup {+-}}{yields}V{sup {+-}}{gamma}.

  6. Production of doubly charmed tetraquarks with exotic color configurations in electron-positron collisions

    NASA Astrophysics Data System (ADS)

    Hyodo, Tetsuo; Liu, Yan-Rui; Oka, Makoto; Sudoh, Kazutaka; Yasui, Shigehiro

    2013-04-01

    Structure and production of doubly charmed tetraquarks Tcc (cc ubardbar) are studied from the viewpoint of color configurations. Based on the diquark correlation, the tetraquark Tcc with I (JP) = 0 (1+) is considered to be stable against strong decay. We discuss that the mixing probability of color antitriplet and sextet cc components in Tcc is suppressed by 1 / mc2, so the two configurations are separately realized in the heavy quark limit. Utilizing the nonrelativistic QCD framework, we evaluate the production cross sections of Tcc in electron-positron collisions. The momentum dependence of the cross section of color antitriplet is found to be different from that of sextet, which can be used to discriminate the color structure of the Tcc states in experimental measurements.

  7. Observation of an Excited Charm Baryon Ωc* Decaying to Ωc0γ

    NASA Astrophysics Data System (ADS)

    Aubert, B.; Bona, M.; Boutigny, D.; Couderc, F.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Tisserand, V.; Zghiche, A.; Grauges, E.; Palano, A.; Chen, J. C.; Qi, N. D.; Rong, G.; Wang, P.; Zhu, Y. S.; Eigen, G.; Ofte, I.; Stugu, B.; Abrams, G. S.; Battaglia, M.; Brown, D. N.; Button-Shafer, J.; Cahn, R. N.; Charles, E.; Gill, M. S.; Groysman, Y.; Jacobsen, R. G.; Kadyk, J. A.; Kerth, L. T.; Kolomensky, Yu. G.; Kukartsev, G.; Lynch, G.; Mir, L. M.; Orimoto, T. J.; Pripstein, M.; Roe, N. A.; Ronan, M. T.; Wenzel, W. A.; Del Amo Sanchez, P.; Barrett, M.; Ford, K. E.; Hart, A. J.; Harrison, T. J.; Hawkes, C. M.; Watson, A. T.; Held, T.; Koch, H.; Lewandowski, B.; Pelizaeus, M.; Peters, K.; Schroeder, T.; Steinke, M.; Boyd, J. T.; Burke, J. P.; Cottingham, W. N.; Walker, D.; Asgeirsson, D. J.; Cuhadar-Donszelmann, T.; Fulsom, B. G.; Hearty, C.; Knecht, N. S.; Mattison, T. S.; McKenna, J. A.; Khan, A.; Kyberd, P.; Saleem, M.; Sherwood, D. J.; Teodorescu, L.; Blinov, V. E.; Bukin, A. D.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Bondioli, M.; Bruinsma, M.; Chao, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Mommsen, R. K.; Roethel, W.; Stoker, D. P.; Abachi, S.; Buchanan, C.; Foulkes, S. D.; Gary, J. W.; Long, O.; Shen, B. C.; Wang, K.; Zhang, L.; Hadavand, H. K.; Hill, E. J.; Paar, H. P.; Rahatlou, S.; Sharma, V.; Berryhill, J. W.; Campagnari, C.; Cunha, A.; Dahmes, B.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.; Beck, T. W.; Eisner, A. M.; Flacco, C. J.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Nesom, G.; Schalk, T.; Schumm, B. A.; Seiden, A.; Spradlin, P.; Williams, D. C.; Wilson, M. G.; Albert, J.; Chen, E.; Dvoretskii, A.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.; Ryd, A.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.; Blanc, F.; Bloom, P. C.; Chen, S.; Ford, W. T.; Hirschauer, J. F.; Kreisel, A.; Nagel, M.; Nauenberg, U.; Olivas, A.; Ruddick, W. O.; Smith, J. G.; Ulmer, K. A.; Wagner, S. R.; Zhang, J.; Chen, A.; Eckhart, E. A.; Soffer, A.; Toki, W. H.; Wilson, R. J.; Winklmeier, F.; Zeng, Q.; Altenburg, D. D.; Feltresi, E.; Hauke, A.; Jasper, H.; Merkel, J.; Petzold, A.; Spaan, B.; Brandt, T.; Klose, V.; Lacker, H. M.; Mader, W. F.; Nogowski, R.; Schubert, J.; Schubert, K. R.; Schwierz, R.; Sundermann, J. E.; Volk, A.; Bernard, D.; Bonneaud, G. R.; Latour, E.; Thiebaux, Ch.; Verderi, M.; Clark, P. J.; Gradl, W.; Muheim, F.; Playfer, S.; Robertson, A. I.; Xie, Y.; Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cibinetto, G.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Prencipe, E.; Anulli, F.; Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.; Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.; Brandenburg, G.; Chaisanguanthum, K. S.; Morii, M.; Wu, J.; Dubitzky, R. S.; Marks, J.; Schenk, S.; Uwer, U.; Bhimji, W.; Bowerman, D. A.; Dauncey, P. D.; Egede, U.; Flack, R. L.; Nash, J. A.; Nikolich, M. B.; Vazquez, W. Panduro; Bard, D. J.; Behera, P. K.; Chai, X.; Charles, M. J.; Mallik, U.; Meyer, N. T.; Ziegler, V.; Cochran, J.; Crawley, H. B.; Dong, L.; Eyges, V.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.; Gritsan, A. V.; Denig, A. G.; Fritsch, M.; Schott, G.; Arnaud, N.; Davier, M.; Grosdidier, G.; Höcker, A.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Oyanguren, A.; Pruvot, S.; Rodier, S.; Roudeau, P.; Schune, M. H.; Stocchi, A.; Wang, W. F.; Wormser, G.; Cheng, C. H.; Lange, D. J.; Wright, D. M.; Chavez, C. A.; Forster, I. J.; Fry, J. R.; Gabathuler, E.; Gamet, R.; George, K. A.; Hutchcroft, D. E.; Payne, D. J.; Schofield, K. C.; Touramanis, C.; Bevan, A. J.; di Lodovico, F.; Menges, W.; Sacco, R.; Cowan, G.; Flaecher, H. U.; Hopkins, D. A.; Jackson, P. S.; McMahon, T. R.; Ricciardi, S.; Salvatore, F.; Wren, A. C.; Brown, D. N.; Davis, C. L.; Allison, J.; Barlow, N. R.; Barlow, R. J.; Chia, Y. M.; Edgar, C. L.; Lafferty, G. D.; Naisbit, M. T.; Williams, J. C.; Yi, J. I.; Chen, C.; Hulsbergen, W. D.; Jawahery, A.; Lae, C. K.; Roberts, D. A.; Simi, G.; Blaylock, G.; Dallapiccola, C.; Hertzbach, S. S.; Li, X.; Moore, T. B.; Saremi, S.; Staengle, H.; Cowan, R.; Sciolla, G.; Sekula, S. J.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.; Kim, H.; McLachlin, S. E.; Patel, P. M.; Robertson, S. H.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Bauer, J. M.; Cremaldi, L.; Eschenburg, V.; Godang, R.; Kroeger, R.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.; Brunet, S.; Côté, D.; Simard, M.; Taras, P.; Viaud, F. B.; Nicholson, H.; Cavallo, N.; de Nardo, G.; Fabozzi, F.; Gatto, C.; Lista, L.; Monorchio, D.; Paolucci, P.; Piccolo, D.; Sciacca, C.; Baak, M. A.; Raven, G.; Snoek, H. L.; Jessop, C. P.; Losecco, J. M.; Allmendinger, T.; Benelli, G.; Corwin, L. A.; Gan, K. K.; Honscheid, K.; Hufnagel, D.; Jackson, P. D.; Kagan, H.; Kass, R.; Rahimi, A. M.; Regensburger, J. J.; Ter-Antonyan, R.; Wong, Q. K.; Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.; Gaz, A.; Margoni, M.; Morandin, M.; Pompili, A.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.; Benayoun, M.; Briand, H.; Chauveau, J.; David, P.; Del Buono, L.; de La Vaissière, Ch.; Hamon, O.; Hartfiel, B. L.; Leruste, Ph.; Malclès, J.; Ocariz, J.; Roos, L.; Therin, G.; Gladney, L.; Biasini, M.; Covarelli, R.; Angelini, C.; Batignani, G.; Bettarini, S.; Bucci, F.; Calderini, G.; Carpinelli, M.; Cenci, R.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Mazur, M. A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.; Haire, M.; Judd, D.; Wagoner, D. E.; Biesiada, J.; Danielson, N.; Elmer, P.; Lau, Y. P.; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.; Bellini, F.; Cavoto, G.; D'Orazio, A.; Del Re, D.; di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Li Gioi, L.; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Tehrani, F. Safai; Voena, C.; Ebert, M.; Schröder, H.; Waldi, R.; Adye, T.; de Groot, N.; Franek, B.; Olaiya, E. O.; Wilson, F. F.; Aleksan, R.; Emery, S.; Gaidot, A.; Ganzhur, S. F.; de Monchenault, G. Hamel; Kozanecki, W.; Legendre, M.; Vasseur, G.; Yèche, Ch.; Zito, M.; Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; Wilson, J. R.; Allen, M. T.; Aston, D.; Bartoldus, R.; Bechtle, P.; Berger, N.; Claus, R.; Coleman, J. P.; Convery, M. R.; Cristinziani, M.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dujmic, D.; Dunwoodie, W.; Field, R. C.; Glanzman, T.; Gowdy, S. J.; Graham, M. T.; Grenier, P.; Halyo, V.; Hast, C.; Hryn'Ova, T.; Innes, W. R.; Kelsey, M. H.; Kim, P.; Leith, D. W. G. S.; Li, S.; Luitz, S.; Luth, V.; Lynch, H. L.; Macfarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; O'Grady, C. P.; Ozcan, V. E.; Perazzo, A.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Stelzer, J.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'Vra, J.; van Bakel, N.; Weaver, M.; Weinstein, A. J. R.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Yarritu, A. K.; Yi, K.; Young, C. C.; Burchat, P. R.; Edwards, A. J.; Majewski, S. A.; Petersen, B. A.; Roat, C.; Wilden, L.; Ahmed, S.; Alam, M. S.; Bula, R.; Ernst, J. A.; Jain, V.; Pan, B.; Saeed, M. A.; Wappler, F. R.; Zain, S. B.; Bugg, W.; Krishnamurthy, M.; Spanier, S. M.; Eckmann, R.; Ritchie, J. L.; Satpathy, A.; Schilling, C. J.; Schwitters, R. F.; Izen, J. M.; Lou, X. C.; Ye, S.; Bianchi, F.; Gallo, F.; Gamba, D.; Bomben, M.; Bosisio, L.; Cartaro, C.; Cossutti, F.; Ricca, G. Della; Dittongo, S.; Lanceri, L.; Vitale, L.; Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Banerjee, Sw.; Bhuyan, B.; Brown, C. M.; Fortin, D.; Hamano, K.; Kowalewski, R.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.; Back, J. J.; Harrison, P. F.; Latham, T. E.; Mohanty, G. B.; Pappagallo, M.; Band, H. R.; Chen, X.; Cheng, B.; Dasu, S.; Datta, M.; Flood, K. T.; Hollar, J. J.; Kutter, P. E.; Mellado, B.; Mihalyi, A.; Pan, Y.; Pierini, M.; Prepost, R.; Wu, S. L.; Yu, Z.; Neal, H.

    2006-12-01

    We report the first observation of an excited singly charmed baryon Ωc* (css) in the radiative decay Ωc0γ, where the Ωc0 baryon is reconstructed in the decays to the final states Ω-π+, Ω-π+π0, Ω-π+π-π+, and Ξ-K-π+π+. This analysis is performed using a data set of 230.7fb-1 collected by the BABAR detector at the PEP-II asymmetric-energy B factory at the Stanford Linear Accelerator Center. The mass difference between the Ωc* and the Ωc0 baryons is measured to be 70.8±1.0(stat)±1.1(syst)MeV/c2. We also measure the ratio of inclusive production cross sections of Ωc* and Ωc0 in e+e- annihilation.

  8. Observation of an excited charm baryon Omega c* decaying to Omega c0gamma.

    PubMed

    Aubert, B; Bona, M; Boutigny, D; Couderc, F; Karyotakis, Y; Lees, J P; Poireau, V; Tisserand, V; Zghiche, A; Grauges, E; Palano, A; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Battaglia, M; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Gill, M S; Groysman, Y; Jacobsen, R G; Kadyk, J A; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Lynch, G; Mir, L M; Orimoto, T J; Pripstein, M; Roe, N A; Ronan, M T; Wenzel, W A; del Amo Sanchez, P; Barrett, M; Ford, K E; Hart, A J; Harrison, T J; Hawkes, C M; Watson, A T; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Peters, K; Schroeder, T; Steinke, M; Boyd, J T; Burke, J P; Cottingham, W N; Walker, D; Asgeirsson, D J; Cuhadar-Donszelmann, T; Fulsom, B G; Hearty, C; Knecht, N S; Mattison, T S; McKenna, J A; Khan, A; Kyberd, P; Saleem, M; Sherwood, D J; Teodorescu, L; Blinov, V E; Bukin, A D; Druzhinin, V P; Golubev, V B; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Todyshev, K Yu; Bondioli, M; Bruinsma, M; Chao, M; Curry, S; Eschrich, I; Kirkby, D; Lankford, A J; Lund, P; Mandelkern, M; Mommsen, R K; Roethel, W; Stoker, D P; Abachi, S; Buchanan, C; Foulkes, S D; Gary, J W; Long, O; Shen, B C; Wang, K; Zhang, L; Hadavand, H K; Hill, E J; Paar, H P; Rahatlou, S; Sharma, V; Berryhill, J W; Campagnari, C; Cunha, A; Dahmes, B; Hong, T M; Kovalskyi, D; Richman, J D; Beck, T W; Eisner, A M; Flacco, C J; Heusch, C A; Kroseberg, J; Lockman, W S; Nesom, G; Schalk, T; Schumm, B A; Seiden, A; Spradlin, P; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dvoretskii, A; Fang, F; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Ryd, A; Mancinelli, G; Meadows, B T; Mishra, K; Sokoloff, M D; Blanc, F; Bloom, P C; Chen, S; Ford, W T; Hirschauer, J F; Kreisel, A; Nagel, M; Nauenberg, U; Olivas, A; Ruddick, W O; Smith, J G; Ulmer, K A; Wagner, S R; Zhang, J; Chen, A; Eckhart, E A; Soffer, A; Toki, W H; Wilson, R J; Winklmeier, F; Zeng, Q; Altenburg, D D; Feltresi, E; Hauke, A; Jasper, H; Merkel, J; Petzold, A; Spaan, B; Brandt, T; Klose, V; Lacker, H M; Mader, W F; Nogowski, R; Schubert, J; Schubert, K R; Schwierz, R; Sundermann, J E; Volk, A; Bernard, D; Bonneaud, G R; Latour, E; Thiebaux, Ch; Verderi, M; Clark, P J; Gradl, W; Muheim, F; Playfer, S; Robertson, A I; Xie, Y; Andreotti, M; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Petrella, A; Piemontese, L; Prencipe, E; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Finocchiaro, G; Pacetti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rama, M; Zallo, A; Buzzo, A; Contri, R; Lo Vetere, M; Macri, M M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Brandenburg, G; Chaisanguanthum, K S; Morii, M; Wu, J; Dubitzky, R S; Marks, J; Schenk, S; Uwer, U; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Flack, R L; Nash, J A; Nikolich, M B; Panduro Vazquez, W; Bard, D J; Behera, P K; Chai, X; Charles, M J; Mallik, U; Meyer, N T; Ziegler, V; Cochran, J; Crawley, H B; Dong, L; Eyges, V; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Gritsan, A V; Denig, A G; Fritsch, M; Schott, G; Arnaud, N; Davier, M; Grosdidier, G; Höcker, A; Le Diberder, F; Lepeltier, V; Lutz, A M; Oyanguren, A; Pruvot, S; Rodier, S; Roudeau, P; Schune, M H; Stocchi, A; Wang, W F; Wormser, G; Cheng, C H; Lange, D J; Wright, D M; Chavez, C A; Forster, I J; Fry, J R; Gabathuler, E; Gamet, R; George, K A; Hutchcroft, D E; Payne, D J; Schofield, K C; Touramanis, C; Bevan, A J; Di Lodovico, F; Menges, W; Sacco, R; Cowan, G; Flaecher, H U; Hopkins, D A; Jackson, P S; McMahon, T R; Ricciardi, S; Salvatore, F; Wren, A C; Brown, D N; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Chia, Y M; Edgar, C L; Lafferty, G D; Naisbit, M T; Williams, J C; Yi, J I; Chen, C; Hulsbergen, W D; Jawahery, A; Lae, C K; Roberts, D A; Simi, G; Blaylock, G; Dallapiccola, C; Hertzbach, S S; Li, X; Moore, T B; Saremi, S; Staengle, H; Cowan, R; Sciolla, G; Sekula, S J; Spitznagel, M; Taylor, F; Yamamoto, R K; Kim, H; Mclachlin, S E; Patel, P M; Robertson, S H; Lazzaro, A; Lombardo, V; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Simard, M; Taras, P; Viaud, F B; Nicholson, H; Cavallo, N; De Nardo, G; Fabozzi, F; Gatto, C; Lista, L; Monorchio, D; Paolucci, P; Piccolo, D; Sciacca, C; Baak, M A; Raven, G; Snoek, H L; Jessop, C P; LoSecco, J M; Allmendinger, T; Benelli, G; Corwin, L A; Gan, K K; Honscheid, K; Hufnagel, D; Jackson, P D; Kagan, H; Kass, R; Rahimi, A M; Regensburger, J J; Ter-Antonyan, R; Wong, Q K; Blount, N L; Brau, J; Frey, R; Igonkina, O; Kolb, J A; Lu, M; Rahmat, R; Sinev, N B; Strom, D; Strube, J; Torrence, E; Gaz, A; Margoni, M; Morandin, M; Pompili, A; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; Benayoun, M; Briand, H; Chauveau, J; David, P; Del Buono, L; de la Vaissière, Ch; Hamon, O; Hartfiel, B L; Leruste, Ph; Malclès, J; Ocariz, J; Roos, L; Therin, G; Gladney, L; Biasini, M; Covarelli, R; Angelini, C; Batignani, G; Bettarini, S; Bucci, F; Calderini, G; Carpinelli, M; Cenci, R; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Mazur, M A; Morganti, M; Neri, N; Paoloni, E; Rizzo, G; Walsh, J J; Haire, M; Judd, D; Wagoner, D E; Biesiada, J; Danielson, N; Elmer, P; Lau, Y P; Lu, C; Olsen, J; Smith, A J S; Telnov, A V; Bellini, F; Cavoto, G; D'Orazio, A; del Re, D; Di Marco, E; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Li Gioi, L; Mazzoni, M A; Morganti, S; Piredda, G; Polci, F; Tehrani, F Safai; Voena, C; Ebert, M; Schröder, H; Waldi, R; Adye, T; De Groot, N; Franek, B; Olaiya, E O; Wilson, F F; Aleksan, R; Emery, S; Gaidot, A; Ganzhur, S F; Hamel de Monchenault, G; Kozanecki, W; Legendre, M; Vasseur, G; Yèche, Ch; Zito, M; Chen, X R; Liu, H; Park, W; Purohit, M V; Wilson, J R; Allen, M T; Aston, D; Bartoldus, R; Bechtle, P; Berger, N; Claus, R; Coleman, J P; Convery, M R; Cristinziani, M; Dingfelder, J C; Dorfan, J; Dubois-Felsmann, G P; Dujmic, D; Dunwoodie, W; Field, R C; Glanzman, T; Gowdy, S J; Graham, M T; Grenier, P; Halyo, V; Hast, C; Hryn'ova, T; Innes, W R; Kelsey, M H; Kim, P; Leith, D W G S; Li, S; Luitz, S; Luth, V; Lynch, H L; MacFarlane, D B; Marsiske, H; Messner, R; Muller, D R; O'Grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Pulliam, T; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Stelzer, J; Su, D; Sullivan, M K; Suzuki, K; Swain, S K; Thompson, J M; Va'vra, J; van Bakel, N; Weaver, M; Weinstein, A J R; Wisniewski, W J; Wittgen, M; Wright, D H; Yarritu, A K; Yi, K; Young, C C; Burchat, P R; Edwards, A J; Majewski, S A; Petersen, B A; Roat, C; Wilden, L; Ahmed, S; Alam, M S; Bula, R; Ernst, J A; Jain, V; Pan, B; Saeed, M A; Wappler, F R; Zain, S B; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Ritchie, J L; Satpathy, A; Schilling, C J; Schwitters, R F; Izen, J M; Lou, X C; Ye, S; Bianchi, F; Gallo, F; Gamba, D; Bomben, M; Bosisio, L; Cartaro, C; Cossutti, F; Della Ricca, G; Dittongo, S; Lanceri, L; Vitale, L; Azzolini, V; Lopez-March, N; Martinez-Vidal, F; Banerjee, Sw; Bhuyan, B; Brown, C M; Fortin, D; Hamano, K; Kowalewski, R; Nugent, I M; Roney, J M; Sobie, R J; Back, J J; Harrison, P F; Latham, T E; Mohanty, G B; Pappagallo, M; Band, H R; Chen, X; Cheng, B; Dasu, S; Datta, M; Flood, K T; Hollar, J J; Kutter, P E; Mellado, B; Mihalyi, A; Pan, Y; Pierini, M; Prepost, R; Wu, S L; Yu, Z; Neal, H

    2006-12-01

    We report the first observation of an excited singly charmed baryon Omega c* (css) in the radiative decay Omega c0gamma, where the Omega c0 baryon is reconstructed in the decays to the final states Omega(-)pi+, Omega(-)pi+pi0, Omega(-)pi+pi(-)pi+, and Xi(-)K(-)pi+pi+. This analysis is performed using a data set of 230.7 fb(-1) collected by the BABAR detector at the PEP-II asymmetric-energy B factory at the Stanford Linear Accelerator Center. The mass difference between the Omega c* and the Omega c0 baryons is measured to be 70.8+/-1.0(stat)+/-1.1(syst) MeV/c2. We also measure the ratio of inclusive production cross sections of Omega c* and Omega c0 in e+e(-) annihilation. PMID:17280195

  9. Monte Carlo study of CP asymmetry measurement of a Tau-Charm Factory

    SciTech Connect

    Karshon, U.

    1989-07-01

    It is shown that, for D/sup 0//bar D//sup 0/ mixing of order /approximately/ 1%, it may be possible to observe in a Tau-Charm Factory a CP violation effect in the D/sup 0//bar D//sup 0/ system via a CP asymmetry. The method used is to tag one D by its semi-leptonic decay and to look for decays of the other D into CP eigenstates. It is estimated that within 1 year of running at the designed luminosity of L = 10/sup 33/ cm/sup /minus/2/sec/sup /minus/1/, /approximately/ 6600 such events can be collected. 8 refs., 8 figs., 1 tab.

  10. The three-dimensional photochemical model CHARM. Incorporation of solar activity

    NASA Astrophysics Data System (ADS)

    Krivolutsky, A. A.; V'yushkova, T. Yu.; Cherepanova, L. A.; Kukoleva, A. A.; Repnev, A. I.; Banin, M. V.

    2015-01-01

    We describe the numerical global photochemical model CHARM (CHemical Atmospheric Research Model) and the results of a numerical simulation of climatological distributions of ozone and other atmospheric trace gases in a height range of up to 90 km. We also present the results of numerical scenarios of an impact induced by a change in UV radiation fluxes in the solar activity cycle and conditioned by ozone depletion in polar regions by high-energy particles of cosmic origin. The spatial transport of chemically active species is described in the model (the Prather scheme) on the basis of global fields of wind components and temperature calculated by the ARM (Atmospheric Research Model) general circulation model.

  11. Formation of hidden-charm pentaquarks in photon-nucleon collisions

    SciTech Connect

    Kubarovsky, Valery P.; Voloshin, M. B.

    2015-08-01

    The cross section for formation in γ + ρ collisions of the recently found hidden-charm pentaquark states Ρc(4380) and Ρc(4450) is discussed and estimated. The studies of these resonances in photon beam experiments can be complementary to those in the LHCb experiment setting, and may be more advantageous for measurement of their additional decay channels. It is pointed out that both the relative importance of such decays and the yield of the resonances in the γ + ρ collisions are sensitive to the internal dynamics of the pentaquarks and can resolve between theoretical models. Specific numerical estimates are discussed within a simple ‘baryocharmonium’ model, where the the observed Ρc resonances are composites of J/ψ and excited nucleon states with the quantum numbers of Ν(1440) and Ν(1520).

  12. Formation of hidden-charm pentaquarks in photon-nucleon collisions

    DOE PAGES

    Kubarovsky, Valery P.; Voloshin, M. B.

    2015-08-01

    The cross section for formation in γ + ρ collisions of the recently found hidden-charm pentaquark states Ρc(4380) and Ρc(4450) is discussed and estimated. The studies of these resonances in photon beam experiments can be complementary to those in the LHCb experiment setting, and may be more advantageous for measurement of their additional decay channels. It is pointed out that both the relative importance of such decays and the yield of the resonances in the γ + ρ collisions are sensitive to the internal dynamics of the pentaquarks and can resolve between theoretical models. Specific numerical estimates are discussed withinmore » a simple ‘baryocharmonium’ model, where the the observed Ρc resonances are composites of J/ψ and excited nucleon states with the quantum numbers of Ν(1440) and Ν(1520).« less

  13. Wilson Prize Lecture: The Novosibirsk Tau/Charm Factory Project: prospect/status

    NASA Astrophysics Data System (ADS)

    Skrinsky, Alexander

    2002-04-01

    For a long time at the Budker Institute of Nuclear Physics, we develop step-by-step our electron-electron and electron-positron colliders. Now, the VEPP-4M collider (total energy up to 11 GeV), with a special emphasis on Two-Photon hadron physics, is in operation. The new VEPP-2000 collider, as direct extension of our VEPP-2M collider (which finished its very productive life in 2000) to the energy up to 2 GeV total, should start its commissioning phase in 2002. But our main goal in the field (for quite a few years already) is development and construction of Tau/Charm Factory (VEPP-5 collider). There are 3 main modes of operation foreseen: Maximal luminosity - up to 1 \\cdot 10^34 cm-2 sec-1. For reaching of this ambitious goal we intend to use ``round beam'' approach. The approach will be used and studied at VEPP-2000. Longitudinally polarized collisions (proposed and proved theoretically in Novosibirsk still in 1969) with luminosity 1 \\cdot 10^33 cm-2 sec-1. High monochromaticity option (down to few 10 of keV). Now the new injector complex, which would produce intense low emittance bunches of positrons and electrons (for VEPP-5, VEPP-4M and VEPP-2000 efficient operation) is nearing completion. Fraction of the VEPP-5 tunnel is constructed. We hope, when the VEPP-5 collider would become closer to completion, to attract international collaborators to use unique features of our Tau/Charm Factory.

  14. Production Behaviors of Open-Bottom Hadrons and Suppression of Λ b+-PRODUCTION

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, P.

    This paper investigates production behaviors of the 0- and (1)/(2)+ open-bottom hadrons predicted by the standard six-quark model. To be specific, it points out which ones of these hadrons are expected to be freely produced and which ones of them must undergo suppressed production. Also, it has been stressed that suppression must be witnessed in production Λ b0 of unlike its charm counterpart Λ c+ which seems to be freely produced.

  15. Measurement of Charm and Bottom Production in p+p Collisions at sqrtS = 200 GeV at RHIC-PHENIX

    SciTech Connect

    Morino, Yuhei; Awes, Terry C; Cianciolo, Vince; Efremenko, Yuri V; Enokizono, Akitomo; Read Jr, Kenneth F; Silvermyr, David O; Sorensen, Soren P; Stankus, Paul W; Young, Glenn R; PHENIX, Collaboration

    2008-01-01

    RHIC-PHENIX has observed a large suppression pattern and azimuthal anisotropy of non-photonic electron at mid-rapidity (|{eta}|< 0.35) in Au+Au collisions at {radical}s{sub NN} = 200 GeV. To understand these results and the interaction of heavy quarks in the hot and dense medium, experimental determination of production ratio of charm over bottom is one of the most important topics, since the behavior of bottom may differ from charm in the medium. We measured the ratio of charm over bottom and total cross section of bottom via partial reconstruction of D{sup 0} {yields} e{sup +} K{sup -} {nu}{sub e} decay in p+p collisions at {radical}s = 200 GeV. Total cross sections of charm and bottom were also measured via di-electron continuum in p+p collisions at {radical}s = 200 GeV.

  16. Measurement of the production rate of the charm jet recoiling against the W boson using the D0 detector at the Fermilab Tevatron Collider

    SciTech Connect

    Ahsan, Mahsana

    2008-01-01

    This dissertation describes a measurement of the rate of associated production of the W boson with the charm jet in the proton and anti-proton collisions at the center-of-mass energy of 1.96 TeV at the Fermilab Tevatron Collider. The measurement has direct sensitivity to the strange quark content inside the proton. A direct measurement of the momentum distribution of the strange quark inside the proton is essential for a reliable calculation of new physics signal as well as the background processes at the collider experiments. The identification of events containing a W boson and a charm jet is based on the leptonic decays of the W boson together with a tagging technique for the charm jet identification based on the semileptonic decay of the charm quark into the muon. The charm jet recoiling against the W boson must have a minimum transverse momentum of 20 GeV and an absolute value of pseudorapidity less than 2.5. This measurement utilizes the data collected by the D0 detector at the Fermilab Collider. The measured rate of the charm jet production in association with the W boson in the inclusive jet production with the W boson is 0.074 ± 0.023, which is in agreement with the theoretical predictions at the leading order in Quantum Chromodynamics.

  17. Procedure for short-lived particle detection in the OPERA experiment and its application to charm decays

    NASA Astrophysics Data System (ADS)

    Agafonova, N.; Aleksandrov, A.; Anokhina, A.; Aoki, S.; Ariga, A.; Ariga, T.; Bender, D.; Bertolin, A.; Bozza, C.; Brugnera, R.; Buonaura, A.; Buontempo, S.; Büttner, B.; Chernyavsky, M.; Chukanov, A.; Consiglio, L.; D'Ambrosio, N.; De Lellis, G.; De Serio, M.; Del Amo Sanchez, P.; Di Crescenzo, A.; Di Ferdinando, D.; Di Marco, N.; Dmitrievski, S.; Dracos, M.; Duchesneau, D.; Dusini, S.; Dzhatdoev, T.; Ebert, J.; Ereditato, A.; Fini, R. A.; Fukuda, T.; Galati, G.; Garfagnini, A.; Giacomelli, G.; Göllnitz, C.; Goldberg, J.; Gornushkin, Y.; Grella, G.; Guler, M.; Gustavino, C.; Hagner, C.; Hara, T.; Hollnagel, A.; Hosseini, B.; Ishida, H.; Ishiguro, K.; Jakovcic, K.; Jollet, C.; Kamiscioglu, C.; Kamiscioglu, M.; Kawada, J.; Kim, J. H.; Kim, S. H.; Kitagawa, N.; Klicek, B.; Kodama, K.; Komatsu, M.; Kose, U.; Kreslo, I.; Lauria, A.; Lenkeit, J.; Ljubicic, A.; Longhin, A.; Loverre, P.; Malgin, A.; Malenica, M.; Mandrioli, G.; Matsuo, T.; Matveev, V.; Mauri, N.; Medinaceli, E.; Meregaglia, A.; Mikado, S.; Monacelli, P.; Montesi, M. C.; Morishima, K.; Muciaccia, M. T.; Naganawa, N.; Naka, T.; Nakamura, M.; Nakano, T.; Nakatsuka, Y.; Niwa, K.; Ogawa, S.; Okateva, N.; Olshevsky, A.; Omura, T.; Ozaki, K.; Paoloni, A.; Park, B. D.; Park, I. G.; Pasqualini, L.; Pastore, A.; Patrizii, L.; Pessard, H.; Pistillo, C.; Podgrudkov, D.; Polukhina, N.; Pozzato, M.; Pupilli, F.; Roda, M.; Rokujo, H.; Roganova, T.; Rosa, G.; Ryazhskaya, O.; Sato, O.; Schembri, A.; Shakiryanova, I.; Shchedrina, T.; Sheshukov, A.; Shibuya, H.; Shiraishi, T.; Shoziyoev, G.; Simone, S.; Sioli, M.; Sirignano, C.; Sirri, G.; Spinetti, M.; Stanco, L.; Starkov, N.; Stellacci, S. M.; Stipcevic, M.; Strauss, T.; Strolin, P.; Takahashi, S.; Tenti, M.; Terranova, F.; Tioukov, V.; Tufanli, S.; Vilain, P.; Vladimirov, M.; Votano, L.; Vuilleumier, J. L.; Wilquet, G.; Wonsak, B.; Yoon, C. S.; Zemskova, S.; Zghiche, A.

    2014-08-01

    The OPERA experiment, designed to perform the first observation of oscillations in appearance mode through the detection of the leptons produced in charged current interactions, has collected data from 2008 to 2012. In the present paper, the procedure developed to detect particle decays, occurring over distances of the order of from the neutrino interaction point, is described in detail and applied to the search for charmed hadrons, showing similar decay topologies as the lepton. In the analysed sample, 50 charm decay candidate events are observed while are expected, proving that the detector performance and the analysis chain applied to neutrino events are well reproduced by the OPERA simulation and thus validating the methods for appearance detection.

  18. Studying the Fourth Generation Quark Contributions to the Double Charm Decays B_{(s)} to D_{(s)}^{(*)} Ds^{(*)}

    NASA Astrophysics Data System (ADS)

    Xu, Yuan-Guo; Wang, Ru-Min

    2016-09-01

    Almost all branching ratios and longitudinal polarization fractions of the double charm decays B_{(s)} to D_{(s)}^{(*)} Ds^{(*)} have been measured, and the experimental central value of fL({B0s}to D^{*+}sD^{*-}s) is quite small comparing to its Standard Model prediction. We study the fourth generation quark contributions to the double charm decays B_{(s)} to D_{(s)}^{(*)} Ds^{(*)}. We find that the loop diagrams involving the fourth generation quark t' have great effects on all branching ratios and CP asymmetries, which are very sensitive to the fourth generation parameter λ s_{t^' }} and φ _{t^' }}. Nevertheless, the experimental measurements of all branching ratios can not give effective constraints on relevant new physics parameters. In addition, they have no obvious effect on the relevant polarization fractions. These results could be used to search for the fourth heavy quark t' via its indirect manifestations in loop diagrams.

  19. Fragment-Based Docking: Development of the CHARMMing Web User Interface as a Platform for Computer-Aided Drug Design

    PubMed Central

    2015-01-01

    Web-based user interfaces to scientific applications are important tools that allow researchers to utilize a broad range of software packages with just an Internet connection and a browser.1 One such interface, CHARMMing (CHARMM interface and graphics), facilitates access to the powerful and widely used molecular software package CHARMM. CHARMMing incorporates tasks such as molecular structure analysis, dynamics, multiscale modeling, and other techniques commonly used by computational life scientists. We have extended CHARMMing’s capabilities to include a fragment-based docking protocol that allows users to perform molecular docking and virtual screening calculations either directly via the CHARMMing Web server or on computing resources using the self-contained job scripts generated via the Web interface. The docking protocol was evaluated by performing a series of “re-dockings” with direct comparison to top commercial docking software. Results of this evaluation showed that CHARMMing’s docking implementation is comparable to many widely used software packages and validates the use of the new CHARMM generalized force field for docking and virtual screening. PMID:25151852

  20. Measurement of associated W + charm production in pp collisions at $$\\sqrt{s}$$ = 7 TeV

    DOE PAGES

    Chatrchyan, Serguei

    2014-02-04

    Measurements are presented of the associated production of a W boson and a charm-quark jet (W + c) in pp collisions at a center-of-mass energy of 7 TeV. The analysis is conducted with a data sample corresponding to a total integrated luminosity of 5 inverse femtobarns, collected by the CMS detector at the LHC. W boson candidates are identified by their decay into a charged lepton (muon or electron) and a neutrino. The W + c measurements are performed for charm-quark jets in the kinematic regionmore » $$p_T^{jet} \\gt$$ 25 GeV, $$|\\eta^{jet}| \\lt$$ 2.5, for two different thresholds for the transverse momentum of the lepton from the W-boson decay, and in the pseudorapidity range $$|\\eta^{\\ell}| \\lt$$ 2.1. Hadronic and inclusive semileptonic decays of charm hadrons are used to measure the following total cross sections: $$\\sigma(pp \\to W + c + X) \\times B(W \\to \\ell \

  1. Measurement of associated W + charm production in pp collisions at $\\sqrt{s}$ = 7 TeV

    SciTech Connect

    Chatrchyan, Serguei

    2014-02-04

    Measurements are presented of the associated production of a W boson and a charm-quark jet (W + c) in pp collisions at a center-of-mass energy of 7 TeV. The analysis is conducted with a data sample corresponding to a total integrated luminosity of 5 inverse femtobarns, collected by the CMS detector at the LHC. W boson candidates are identified by their decay into a charged lepton (muon or electron) and a neutrino. The W + c measurements are performed for charm-quark jets in the kinematic region $p_T^{jet} \\gt$ 25 GeV, $|\\eta^{jet}| \\lt$ 2.5, for two different thresholds for the transverse momentum of the lepton from the W-boson decay, and in the pseudorapidity range $|\\eta^{\\ell}| \\lt$ 2.1. Hadronic and inclusive semileptonic decays of charm hadrons are used to measure the following total cross sections: $\\sigma(pp \\to W + c + X) \\times B(W \\to \\ell \

  2. Measurement of beauty and charm production in deep inelastic scattering at HERA and measurement of the beauty-quark mass

    NASA Astrophysics Data System (ADS)

    Abramowicz, H.; Abt, I.; Adamczyk, L.; Adamus, M.; Aggarwal, R.; Antonelli, S.; Arslan, O.; Aushev, V.; Aushev, Y.; Bachynska, O.; Barakbaev, A. N.; Bartosik, N.; Behnke, O.; Behr, J.; Behrens, U.; Bertolin, A.; Bhadra, S.; Bloch, I.; Bokhonov, V.; Boos, E. G.; Borras, K.; Brock, I.; Brugnera, R.; Bruni, A.; Brzozowska, B.; Bussey, P. J.; Caldwell, A.; Capua, M.; Catterall, C. D.; Chwastowski, J.; Ciborowski, J.; Ciesielski, R.; Cooper-Sarkar, A. M.; Corradi, M.; Corriveau, F.; D'Agostini, G.; Dementiev, R. K.; Devenish, R. C. E.; Dolinska, G.; Drugakov, V.; Dusini, S.; Ferrando, J.; Figiel, J.; Foster, B.; Gach, G.; Garfagnini, A.; Geiser, A.; Gizhko, A.; Gladilin, L. K.; Gogota, O.; Golubkov, Yu. A.; Grebenyuk, J.; Gregor, I.; Grzelak, G.; Gueta, O.; Guzik, M.; Hain, W.; Hartner, G.; Hochman, D.; Hori, R.; Ibrahim, Z. A.; Iga, Y.; Ishitsuka, M.; Iudin, A.; Januschek, F.; Kadenko, I.; Kananov, S.; Kanno, T.; Karshon, U.; Kaur, M.; Kaur, P.; Khein, L. A.; Kisielewska, D.; Klanner, R.; Klein, U.; Kondrashova, N.; Kononenko, O.; Korol, Ie.; Korzhavina, I. A.; Kotanski, A.; Kötz, U.; Kovalchuk, N.; Kowalski, H.; Kuprash, O.; Kuze, M.; Levchenko, B. B.; Levy, A.; Libov, V.; Limentani, S.; Lisovyi, M.; Lobodzinska, E.; Lohmann, W.; Löhr, B.; Lohrmann, E.; Longhin, A.; Lontkovskyi, D.; Lukina, O. Yu.; Maeda, J.; Makarenko, I.; Malka, J.; Martin, J. F.; Mergelmeyer, S.; Mohamad Idris, F.; Mujkic, K.; Myronenko, V.; Nagano, K.; Nigro, A.; Nobe, T.; Notz, D.; Nowak, R. J.; Olkiewicz, K.; Onishchuk, Yu.; Paul, E.; Perlanski, W.; Perrey, H.; Pokrovskiy, N. S.; Proskuryakov, A. S.; Przybycien, M.; Raval, A.; Roloff, P.; Rubinsky, I.; Ruspa, M.; Samojlov, V.; Saxon, D. H.; Schioppa, M.; Schmidke, W. B.; Schneekloth, U.; Schörner-Sadenius, T.; Schwartz, J.; Shcheglova, L. M.; Shehzadi, R.; Shevchenko, R.; Shkola, O.; Singh, I.; Skillicorn, I. O.; Slominski, W.; Sola, V.; Solano, A.; Spiridonov, A.; Stanco, L.; Stefaniuk, N.; Stern, A.; Stewart, T. P.; Stopa, P.; Sztuk-Dambietz, J.; Szuba, D.; Szuba, J.; Tassi, E.; Temiraliev, T.; Tokushuku, K.; Tomaszewska, J.; Trofymov, A.; Trusov, V.; Tsurugai, T.; Turcato, M.; Turkot, O.; Tymieniecka, T.; Verbytskyi, A.; Viazlo, O.; Walczak, R.; Wan Abdullah, W. A. T.; Wichmann, K.; Wing, M.; Wolf, G.; Yamada, S.; Yamazaki, Y.; Zakharchuk, N.; Żarnecki, A. F.; Zawiejski, L.; Zenaiev, O.; Zhautykov, B. O.; Zhmak, N.; Zotkin, D. S.

    2014-10-01

    The production of beauty and charm quarks in ep interactions has been studied with the ZEUS detector at HERA for exchanged four-momentum squared 5 < Q 2 < 1000 GeV2 using an integrated luminosity of 354 pb-1. The beauty and charm content in events with at least one jet have been extracted using the invariant mass of charged tracks associated with secondary vertices and the decay-length significance of these vertices. Differential cross sections as a function of Q 2, Bjorken x, jet trans- verse energy and pseudorapidity were measured and compared with next-to-leading-order QCD calculations. The beauty and charm contributions to the proton structure functions were extracted from the double-differential cross section as a function of x and Q 2. The running beauty-quark mass, m b at the scale m b , was determined from a QCD fit at next-to-leading order to HERA data for the first time and found to be m b ( m b ) = 4.07 ± 0.14 (fit){-/0.07 + 0.01}(mod.){-/0.00 + 0.05}(param.){-/0.05 + 0.08}(theo.) GeV.

  3. Measurement of beauty and charm production in deep inelastic scattering at HERA and measurement of the beauty-quark mass

    NASA Astrophysics Data System (ADS)

    Abramowicz, H.; Abt, I.; Adamczyk, L.; Adamus, M.; Aggarwal, R.; Antonelli, S.; Arslan, O.; Aushev, V.; Aushev, Y.; Bachynska, O.; Barakbaev, A. N.; Bartosik, N.; Behnke, O.; Behr, J.; Behrens, U.; Bertolin, A.; Bhadra, S.; Bloch, I.; Bokhonov, V.; Boos, E. G.; Borras, K.; Brock, I.; Brugnera, R.; Bruni, A.; Brzozowska, B.; Bussey, P. J.; Caldwell, A.; Capua, M.; Catterall, C. D.; Chwastowski, J.; Ciborowski, J.; Ciesielski, R.; Cooper-Sarkar, A. M.; Corradi, M.; Corriveau, F.; D'Agostini, G.; Dementiev, R. K.; Devenish, R. C. E.; Dolinska, G.; Drugakov, V.; Dusini, S.; Ferrando, J.; Figiel, J.; Foster, B.; Gach, G.; Garfagnini, A.; Geiser, A.; Gizhko, A.; Gladilin, L. K.; Gogota, O.; Golubkov, Yu. A.; Grebenyuk, J.; Gregor, I.; Grzelak, G.; Gueta, O.; Guzik, M.; Hain, W.; Hartner, G.; Hochman, D.; Hori, R.; Ibrahim, Z. A.; Iga, Y.; Ishitsuka, M.; Iudin, A.; Januschek, F.; Kadenko, I.; Kananov, S.; Kanno, T.; Karshon, U.; Kaur, M.; Kaur, P.; Khein, L. A.; Kisielewska, D.; Klanner, R.; Klein, U.; Kondrashova, N.; Kononenko, O.; Korol, Ie.; Korzhavina, I. A.; Kotanski, A.; Kötz, U.; Kovalchuk, N.; Kowalski, H.; Kuprash, O.; Kuze, M.; Levchenko, B. B.; Levy, A.; Libov, V.; Limentani, S.; Lisovyi, M.; Lobodzinska, E.; Lohmann, W.; Löhr, B.; Lohrmann, E.; Longhin, A.; Lontkovskyi, D.; Lukina, O. Yu.; Maeda, J.; Makarenko, I.; Malka, J.; Martin, J. F.; Mergelmeyer, S.; Mohamad Idris, F.; Mujkic, K.; Myronenko, V.; Nagano, K.; Nigro, A.; Nobe, T.; Notz, D.; Nowak, R. J.; Olkiewicz, K.; Onishchuk, Yu.; Paul, E.; Perlanski, W.; Perrey, H.; Pokrovskiy, N. S.; Proskuryakov, A. S.; Przybycien, M.; Raval, A.; Roloff, P.; Rubinsky, I.; Ruspa, M.; Samojlov, V.; Saxon, D. H.; Schioppa, M.; Schmidke, W. B.; Schneekloth, U.; Schörner-Sadenius, T.; Schwartz, J.; Shcheglova, L. M.; Shehzadi, R.; Shevchenko, R.; Shkola, O.; Singh, I.; Skillicorn, I. O.; Slominski, W.; Sola, V.; Solano, A.; Spiridonov, A.; Stanco, L.; Stefaniuk, N.; Stern, A.; Stewart, T. P.; Stopa, P.; Sztuk-Dambietz, J.; Szuba, D.; Szuba, J.; Tassi, E.; Temiraliev, T.; Tokushuku, K.; Tomaszewska, J.; Trofymov, A.; Trusov, V.; Tsurugai, T.; Turcato, M.; Turkot, O.; Tymieniecka, T.; Verbytskyi, A.; Viazlo, O.; Walczak, R.; Wan Abdullah, W. A. T.; Wichmann, K.; Wing, M.; Wolf, G.; Yamada, S.; Yamazaki, Y.; Zakharchuk, N.; Żarnecki, A. F.; Zawiejski, L.; Zenaiev, O.; Zhautykov, B. O.; Zhmak, N.; Zotkin, D. S.

    2014-09-01

    The production of beauty and charm quarks in ep interactions has been studied with the ZEUS detector at HERA for exchanged four-momentum squared 5 < Q 2 < 1000 GeV2 using an integrated luminosity of 354 pb-1. The beauty and charm content in events with at least one jet have been extracted using the invariant mass of charged tracks associated with secondary vertices and the decay-length significance of these vertices. Differential cross sections as a function of Q 2, Bjorken x, jet trans- verse energy and pseudorapidity were measured and compared with next-to-leading-order QCD calculations. The beauty and charm contributions to the proton structure functions were extracted from the double-differential cross section as a function of x and Q 2. The running beauty-quark mass, m b at the scale m b , was determined from a QCD fit at next-to-leading order to HERA data for the first time and found to be m b ( m b ) = 4.07 ± 0.14 (fit){-/0.07 + 0.01}(mod.){-/0.00 + 0.05}(param.){-/0.05 + 0.08}(theo.) GeV.

  4. Study of Charm and Beauty using electron-D{sup 0} azimuthal correlations in the STAR experiment at RHIC

    SciTech Connect

    Kabana, Sonia

    2011-05-23

    The energy loss of heavy quarks in the hot and dense matter created in high-energy nuclear collisions at RHIC, can be used to probe the properties of the medium. Both charm and beauty quarks contribute to the non-photonic electrons through their semi-leptonic decays. It is essential to determine experimentally the relative contributions of charm and beauty quarks to understand the observed suppression of non-photonic electrons at high p{sub T} in central Au+Au collisions. The azimuthal angular correlations of non-photonic electrons with hadrons as well as with the reconstructed D{sup 0} allow to disentangle the contributions of charm and beauty to the electron spectrum. We discuss the STAR measurement of non-photonic electron-D{sup 0} and non-photonic electron-hadron azimuthal correlations in p+p collisions at 200 GeV and explore the consequences for the heavy flavour suppression in heavy ion collisions at RHIC.

  5. Production of P-wave charmed mesons in hadronic B decays

    NASA Astrophysics Data System (ADS)

    Cheng, Hai-Yang; Chua, Chun-Khiang

    2006-08-01

    Production of even-parity charmed mesons in hadronic B decays is studied. Specifically, we focus on the Cabibbo-allowed decays B¯→D**π and D¯s**D(*), where D** denotes generically a P-wave charmed meson. While the measured color-allowed decays B¯0→D**+π- are consistent with the theoretical expectation, the experimental observation of B-→D**0π- for the broad D** states is astonishing as it requires that the color-suppressed contribution dominates over the color-allowed one, even though the former is 1/mb suppressed in the heavy quark limit. In order to accommodate the data of B¯→D**π-, it is found that the real part of a2/a1 has a sign opposite to that in B¯→Dπ decays, where a1 and a2 are the effective parameters for color-allowed and color-suppressed decay amplitudes, respectively. The decay constants and form factors for D** and the Isgur-Wise functions τ1/2(ω) and τ3/2(ω) are extracted from the data of B→D**π decays. The Isgur-Wise functions calculated in the covariant light-front quark model are in good agreement with experiment. The neutral modes B¯0→D**0π0 for D**=D0*(2400), D1'(2430), and B¯0→D1'0(2430)ω are predicted to have branching ratios of order 10-4 which are also supported by the isospin argument. The decay constants of Ds0*(2317) and Ds1'(2460) are inferred from the measurements of B¯→Ds**-D to be 58 86 MeV and 130 200 MeV, respectively. Contrary to the decay constants fD0* and fD1' which are similar in size, the large disparity between fDs0* and fDs1' is surprising and unexpected.

  6. Study of W boson production in association with beauty and charm

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Anderson, J.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; d'Argent, P.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Bel, L. J.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bertolin, A.; Bettler, M.-O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Bird, T.; Birnkraut, A.; Bizzeti, A.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borsato, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Brett, D.; Britsch, M.; Britton, T.; Brodzicka, J.; Brook, N. H.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Campana, P.; Campora Perez, D.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cauet, Ch.; Cavallero, G.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chefdeville, M.; Chen, S.; Cheung, S.-F.; Chiapolini, N.; Chrzaszcz, M.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collazuol, G.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dalseno, J.; David, P. N. Y.; Davis, A.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Silva, W.; De Simone, P.; Dean, C.-T.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Déléage, N.; Demmer, M.; Derkach, D.; Deschamps, O.; Dettori, F.; Di Canto, A.; Di Ruscio, F.; Dijkstra, H.; Donleavy, S.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Dossett, D.; Dovbnya, A.; Dreimanis, K.; Dufour, L.; Dujany, G.; Dupertuis, F.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Färber, C.; Farinelli, C.; Farley, N.; Farry, S.; Fay, R.; Ferguson, D.; Fernandez Albor, V.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fohl, K.; Fol, P.; Fontana, M.; Fontanelli, F.; Forty, R.; Francisco, O.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; García Pardiñas, J.; Garofoli, J.; Garra Tico, J.; Garrido, L.; Gascon, D.; Gaspar, C.; Gastaldi, U.; Gauld, R.; Gavardi, L.; Gazzoni, G.; Geraci, A.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianelle, A.; Gianı, S.; Gibson, V.; Girard, O. G.; Giubega, L.; Gligorov, V. V.; Göbel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gotti, C.; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Grünberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadavizadeh, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Hampson, T.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Henry, L.; Hernando Morata, J. A.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Humair, T.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jawahery, A.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Karodia, S.; Kelsey, M.; Kenyon, I. R.; Kenzie, M.; Ketel, T.; Khanji, B.; Khurewathanakul, C.; Klaver, S.; Klimaszewski, K.; Kochebina, O.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Korolev, M.; Kozeiha, M.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kuonen, A. K.; Kurek, K.; Kvaratskheliya, T.; La Thi, V. N.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lambert, R. W.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.-P.; Lefèvre, R.; Leflat, A.; Lefrançois, J.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Likhomanenko, T.; Liles, M.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, B.; Liu, X.; Loh, D.; Lohn, S.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Lucio Martinez, M.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Machefert, F.; Maciuc, F.; Maev, O.; Maguire, K.; Malde, S.; Malinin, A.; Manca, G.; Mancinelli, G.; Manning, P.; Mapelli, A.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marino, P.; Märki, R.; Marks, J.; Martellotti, G.; Martin, M.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Matthieu, K.; Mauri, A.; Maurin, B.; Mazurov, A.; McCann, M.; McCarthy, J.; McNab, A.; McNulty, R.; Meadows, B.; Meier, F.; Meissner, M.; Melnychuk, D.; Merk, M.; Milanes, D. A.; Minard, M.-N.; Mitzel, D. S.; Molina Rodriguez, J.; Monteil, S.; Morandin, M.; Morawski, P.; Mordà, A.; Morello, M. J.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Müller, J.; Müller, K.; Müller, V.; Mussini, M.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nandi, A.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen, T. D.; Nguyen-Mau, C.; Niess, V.; Niet, R.; Nikitin, N.; Nikodem, T.; Ninci, D.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Onderwater, C. J. G.; Osorio Rodrigues, B.; Otalora Goicochea, J. M.; Otto, A.; Owen, P.; Oyanguren, A.; Palano, A.; Palombo, F.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Pappenheimer, C.; Parkes, C.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petruzzo, M.; Picatoste Olloqui, E.; Pietrzyk, B.; Pilař, T.; Pinci, D.; Pistone, A.; Piucci, A.; Playfer, S.; Plo Casasus, M.; Poikela, T.; Polci, F.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Price, E.; Price, J. D.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, W.; Quagliani, R.; Rachwal, B.; Rademacker, J. H.; Rakotomiaramanana, B.; Rama, M.; Rangel, M. S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Redi, F.; Reichert, S.; Reid, M. M.; dos Reis, A. C.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Lopez, J. A.; Rodriguez Perez, P.; Roiser, S.; Romanovsky, V.; Romero Vidal, A.; Ronayne, J. W.; Rotondo, M.; Rouvinet, J.; Ruf, T.; Ruiz, H.; Ruiz Valls, P.; Saborido Silva, J. J.; Sagidova, N.; Sail, P.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santimaria, M.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schubiger, M.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sepp, I.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Silva Coutinho, R.; Simi, G.; Sirendi, M.; Skidmore, N.; Skillicorn, I.; Skwarnicki, T.; Smith, E.; Smith, E.; Smith, I. T.; Smith, J.; Smith, M.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; Souza, D.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Steinkamp, O.; Stenyakin, O.; Sterpka, F.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Sun, L.; Sutcliffe, W.; Swientek, K.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szczypka, P.; Szumlak, T.; T'Jampens, S.; Tekampe, T.; Teklishyn, M.; Tellarini, G.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Todd, J.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Trabelsi, K.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagnoni, V.; Valenti, G.; Vallier, A.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vázquez Sierra, C.; Vecchi, S.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Vilasis-Cardona, X.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voß, C.; de Vries, J. A.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wandernoth, S.; Wang, J.; Ward, D. R.; Watson, N. K.; Websdale, D.; Weiden, A.; Whitehead, M.; Wiedner, D.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M. P.; Williams, M.; Williams, T.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wright, S.; Wyllie, K.; Xie, Y.; Xu, Z.; Yang, Z.; Yu, J.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhelezov, A.; Zhokhov, A.; Zhong, L.; LHCb Collaboration

    2015-09-01

    The associated production of a W boson with a jet originating from either a light parton or heavy-flavor quark is studied in the forward region using proton-proton collisions. The analysis uses data corresponding to integrated luminosities of 1.0 and 2.0 fb-1 collected with the LHCb detector at center-of-mass energies of 7 and 8 TeV, respectively. The W bosons are reconstructed using the W →μ ν decay and muons with a transverse momentum, pT, larger than 20 GeV in the pseudorapidity range 2.0 <η <4.5 . The partons are reconstructed as jets with pT>20 GeV and 2.2 <η <4.2 . The sum of the muon and jet momenta must satisfy pT>20 GeV . The fraction of W +jet events that originate from beauty and charm quarks is measured, along with the charge asymmetries of the W +b and W +c production cross sections. The ratio of the W +jet to Z +jet production cross sections is also measured using the Z →μ μ decay. All results are in agreement with Standard Model predictions.

  7. New limits on intrinsic charm in the nucleon from global analysis of parton distributions

    SciTech Connect

    Jimenez-Delgado, P.; Hobbs, T. J.; Londergan, J. T.; Melnitchouk, W.

    2015-02-27

    We present a new global QCD analysis of parton distribution functions, allowing for possible intrinsic charm (IC) contributions in the nucleon inspired by light-front models. The analysis makes use of the full range of available high-energy scattering data for Q2 ≥ 1 GeV2 and W2 ≥ 3.5 GeV2, including fixed-target proton and deuteron deep cross sections at lower energies that were excluded in previously global analyses. The expanded data set places more stringent constraints on the momentum carried by IC, with (x)IC at most 0.5% (corresponding to an IC normalization of ~1%) at the 4σ level for ΔX2 = 1. We also assess the impact of older EMC measurements of Fc2c at large x, which favor a nonzero IC, but with very large X2 values.

  8. Constrained-Transport Magnetohydrodynamics with Adaptive-Mesh-Refinement in CHARM

    SciTech Connect

    Miniatii, Francesco; Martin, Daniel

    2011-05-24

    We present the implementation of a three-dimensional, second order accurate Godunov-type algorithm for magneto-hydrodynamic (MHD), in the adaptivemesh-refinement (AMR) cosmological code CHARM. The algorithm is based on the full 12-solve spatially unsplit Corner-Transport-Upwind (CTU) scheme. Thefluid quantities are cell-centered and are updated using the Piecewise-Parabolic- Method (PPM), while the magnetic field variables are face-centered and areevolved through application of the Stokes theorem on cell edges via a Constrained- Transport (CT) method. The so-called ?multidimensional MHD source terms?required in the predictor step for high-order accuracy are applied in a simplified form which reduces their complexity in three dimensions without loss of accuracyor robustness. The algorithm is implemented on an AMR framework which requires specific synchronization steps across refinement levels. These includeface-centered restriction and prolongation operations and a reflux-curl operation, which maintains a solenoidal magnetic field across refinement boundaries. Thecode is tested against a large suite of test problems, including convergence tests in smooth flows, shock-tube tests, classical two- and three-dimensional MHD tests,a three-dimensional shock-cloud interaction problem and the formation of a cluster of galaxies in a fully cosmological context. The magnetic field divergence isshown to remain negligible throughout. Subject headings: cosmology: theory - methods: numerical

  9. D-region response to solar cycle variations: 3D simulations with CHARM-I model

    NASA Astrophysics Data System (ADS)

    Krivolutsky, Alexei A.

    The response other ionized chemical species in the lower ionosphere (D-region) of the Earth’s atmosphere to solar cycle have been simulated with new three-dimentional photochemical global transport model CHARM-I (CHemical Atmospheric Research Model with Ions), developed at the Laboratory for Atmospheric Chemistry and Dynamics of Central Aerological Observatory. Model describes the interaction between 70 neutral and ionized chemical species involved in 200 photochemical reactions. “Family” technique is used for solving kinetic part of the model equations and Prather’s scheme used to describe advection. 3D global wind components and temperature field (daily averaged) calculated by GCM ARM (Atmospheric Research Model) were used in simulations. Solar cycle signal in UV solar irradiance variations measured from space (SIM and other instruments) has been introduced in the model. External forcing used in numerical scenario described unusual features of 23rd solar cycle: long and deep its minima. So that, the amplitude of external signal (max-min) was really more than in previous cycles. Ionization was induced by Lα and GCRs. The results for mean solar irradiance for electron concentration profiles and its global picture gave good correspondence with observations. Global fields of neutral species (O3, NOy etc.) obtained with interactions with ions also has such correspondence. This work was supported by Russian Science Foundation for Basic Research (grant N 13-05-0105213).

  10. From the {psi} to charmed mesons: Three years with the SLAC-LBL detector at SPEAR

    SciTech Connect

    Goldhaber, G.

    1992-06-01

    As I look back at the first three years or so at SPEAR, I consider this one of the most revolutionary or perhaps the most revolutionary, experiment in the 60 year history of particle physics. It certainly was the most exciting time, in a laboratory that is, that I have ever experienced. In my talk I will cover the period 1973--1976 which saw the discoveries of the {psi} and {psi}{prime} resonances the {chi} states and most of the Psion spectroscopy, the D{degree}, D{sup +}* charmed meson doublet as well as the D{degree}* and D{sup +}* doublet. I will also refer briefly to some more recent results. Most of the discoveries I will mention were made with the SLAC-LBL Magnetic Detector or ``MARK I`` which we operated at SPEAR from 1973 to 1976. In 1976 the MARK I was modified to include a ``Lead Glass Wall`` (LGW) for improved photon and electron detection. This involved a new physics group from LBL, who built the LGW, Lina Barbaro-Galtieri et al. as well as a continuing group from SLAC, Martin Perl and Gary Feldman et al. to provide continuity in the running of the MARK I and to continue the study of the anomalous e{mu}events which Martin found earlier and which eventually were identified as the signature of the {tau} lepton.

  11. Search for Scalar Charm Quark Pair Production in pp Collisions at sqrt[s]=8  TeV with the ATLAS Detector.

    PubMed

    Aad, G; Abbott, B; Abdallah, J; Abdel Khalek, S; Abdinov, O; Aben, R; Abi, B; Abolins, M; AbouZeid, O S; Abramowicz, H; Abreu, H; Abreu, R; Abulaiti, Y; Acharya, B S; Adamczyk, L; Adams, D L; Adelman, J; Adomeit, S; Adye, T; Agatonovic-Jovin, T; Aguilar-Saavedra, J A; Agustoni, M; Ahlen, S P; Ahmadov, F; Aielli, G; Akerstedt, H; Åkesson, T P A; Akimoto, G; Akimov, A V; Alberghi, G L; Albert, J; Albrand, S; Alconada Verzini, M J; Aleksa, M; Aleksandrov, I N; Alexa, C; Alexander, G; Alexandre, G; Alexopoulos, T; Alhroob, M; Alimonti, G; Alio, L; Alison, J; Allbrooke, B M M; Allison, L J; Allport, P P; Aloisio, A; Alonso, A; Alonso, F; Alpigiani, C; Altheimer, A; Alvarez Gonzalez, B; Alviggi, M G; Amako, K; Amaral Coutinho, Y; Amelung, C; Amidei, D; Amor Dos Santos, S P; Amorim, A; Amoroso, S; Amram, N; Amundsen, G; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, G; Anderson, K J; Andreazza, A; Andrei, V; Anduaga, X S; Angelidakis, S; Angelozzi, I; Anger, P; Angerami, A; Anghinolfi, F; Anisenkov, A V; Anjos, N; Annovi, A; Antonelli, M; Antonov, A; Antos, J; Anulli, F; Aoki, M; Aperio Bella, L; Arabidze, G; Arai, Y; Araque, J P; Arce, A T H; Arduh, F A; Arguin, J-F; Argyropoulos, S; Arik, M; Armbruster, A J; Arnaez, O; Arnal, V; Arnold, H; Arratia, M; Arslan, O; Artamonov, A; Artoni, G; Asai, S; Asbah, N; Ashkenazi, A; Åsman, B; Asquith, L; Assamagan, K; Astalos, R; Atkinson, M; Atlay, N B; Auerbach, B; Augsten, K; Aurousseau, M; Avolio, G; Axen, B; Ayoub, M K; Azuelos, G; Baak, M A; Baas, A E; Bacci, C; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Bagiacchi, P; Bagnaia, P; Bai, Y; Bain, T; Baines, J T; Baker, O K; Balek, P; Balestri, T; Balli, F; Banas, E; Banerjee, Sw; Bannoura, A A E; Bansil, H S; Barak, L; Baranov, S P; Barberio, E L; Barberis, D; Barbero, M; Barillari, T; Barisonzi, M; Barklow, T; Barlow, N; Barnes, S L; Barnett, B M; Barnett, R M; Barnovska, Z; Baroncelli, A; Barone, G; Barr, A J; Barreiro, F; Barreiro Guimarães da Costa, J; Bartoldus, R; Barton, A E; Bartos, P; Bassalat, A; Basye, A; Bates, R L; Batista, S J; Batley, J R; Battaglia, M; Bauce, M; Bauer, F; Bawa, H S; Beacham, J B; Beattie, M D; Beau, T; Beauchemin, P H; Beccherle, R; Bechtle, P; Beck, H P; Becker, K; Becker, S; Beckingham, M; Becot, C; Beddall, A J; Beddall, A; Bednyakov, V A; Bee, C P; Beemster, L J; Beermann, T A; Begel, M; Behr, K; Belanger-Champagne, C; Bell, P J; Bell, W H; Bella, G; Bellagamba, L; Bellerive, A; Bellomo, M; Belotskiy, K; Beltramello, O; Benary, O; Benchekroun, D; Bender, M; Bendtz, K; Benekos, N; Benhammou, Y; Benhar Noccioli, E; Benitez Garcia, J A; Benjamin, D P; Bensinger, J R; Bentvelsen, S; Beresford, L; Beretta, M; Berge, D; Bergeaas Kuutmann, E; Berger, N; Berghaus, F; Beringer, J; Bernard, C; Bernard, N R; Bernius, C; Bernlochner, F U; Berry, T; Berta, P; Bertella, C; Bertoli, G; Bertolucci, F; Bertsche, C; Bertsche, D; Besana, M I; Besjes, G J; Bessidskaia Bylund, O; Bessner, M; Besson, N; Betancourt, C; Bethke, S; Bevan, A J; Bhimji, W; Bianchi, R M; Bianchini, L; Bianco, M; Biebel, O; Bieniek, S P; Biglietti, M; Bilbao De Mendizabal, J; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Black, C W; Black, J E; Black, K M; Blackburn, D; Blair, R E; Blanchard, J-B; Blanco, J E; Blazek, T; Bloch, I; Blocker, C; Blum, W; Blumenschein, U; Bobbink, G J; Bobrovnikov, V S; Bocchetta, S S; Bocci, A; Bock, C; Boddy, C R; Boehler, M; Bogaerts, J A; Bogdanchikov, A G; Bohm, C; Boisvert, V; Bold, T; Boldea, V; Boldyrev, A S; Bomben, M; Bona, M; Boonekamp, M; Borisov, A; Borissov, G; Borroni, S; Bortfeldt, J; Bortolotto, V; Bos, K; Boscherini, D; Bosman, M; Boudreau, J; Bouffard, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Bousson, N; Boutouil, S; Boveia, A; Boyd, J; Boyko, I R; Bozic, I; Bracinik, J; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Brazzale, S F; Brendlinger, K; Brennan, A J; Brenner, L; Brenner, R; Bressler, S; Bristow, K; Bristow, T M; Britton, D; Brochu, F M; Brock, I; Brock, R; Bronner, J; Brooijmans, G; Brooks, T; Brooks, W K; Brosamer, J; Brost, E; Brown, J; Bruckman de Renstrom, P A; Bruncko, D; Bruneliere, R; Bruni, A; Bruni, G; Bruschi, M; Bryngemark, L; Buanes, T; Buat, Q; Bucci, F; Buchholz, P; Buckley, A G; Buda, S I; Budagov, I A; Buehrer, F; Bugge, L; Bugge, M K; Bulekov, O; Burckhart, H; Burdin, S; Burghgrave, B; Burke, S; Burmeister, I; Busato, E; Büscher, D; Büscher, V; Bussey, P; Buszello, C P; Butler, J M; Butt, A I; Buttar, C M; Butterworth, J M; Butti, P; Buttinger, W; Buzatu, A; Cabrera Urbán, S; Caforio, D; Cakir, O; Calafiura, P; Calandri, A; Calderini, G; Calfayan, P; Caloba, L P; Calvet, D; Calvet, S; Camacho Toro, R; Camarda, S; Cameron, D; Caminada, L M; Caminal Armadans, R; Campana, S; Campanelli, M; Campoverde, A; Canale, V; Canepa, A; Cano Bret, M; Cantero, J; Cantrill, R; Cao, T; Capeans Garrido, M D M; Caprini, I; Caprini, M; Capua, M; Caputo, R; Cardarelli, R; Carli, T; Carlino, G; Carminati, L; Caron, S; Carquin, E; Carrillo-Montoya, G D; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Casolino, M; Castaneda-Miranda, E; Castelli, A; Castillo Gimenez, V; Castro, N F; Catastini, P; Catinaccio, A; Catmore, J R; Cattai, A; Cattani, G; Caudron, J; Cavaliere, V; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Cerio, B C; Cerny, K; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cerv, M; Cervelli, A; Cetin, S A; Chafaq, A; Chakraborty, D; Chalupkova, I; Chang, P; Chapleau, B; Chapman, J D; Charfeddine, D; Charlton, D G; Chau, C C; Chavez Barajas, C A; Cheatham, S; Chegwidden, A; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, H; Chen, K; Chen, L; Chen, S; Chen, X; Chen, Y; Cheng, H C; Cheng, Y; Cheplakov, A; Cheremushkina, E; Cherkaoui El Moursli, R; Chernyatin, V; Cheu, E; Chevalier, L; Chiarella, V; Childers, J T; Chilingarov, A; Chiodini, G; Chisholm, A S; Chislett, R T; Chitan, A; Chizhov, M V; Chouridou, S; Chow, B K B; Chromek-Burckhart, D; Chu, M L; Chudoba, J; Chwastowski, J J; Chytka, L; Ciapetti, G; Ciftci, A K; Cinca, D; Cindro, V; Ciocio, A; Citron, Z H; Citterio, M; Ciubancan, M; Clark, A; Clark, P J; Clarke, R N; Cleland, W; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Coffey, L; Cogan, J G; Cole, B; Cole, S; Colijn, A P; Collot, J; Colombo, T; Compostella, G; Conde Muiño, P; Coniavitis, E; Connell, S H; Connelly, I A; Consonni, S M; Consorti, V; Constantinescu, S; Conta, C; Conti, G; Conventi, F; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Copic, K; Cornelissen, T; Corradi, M; Corriveau, F; Corso-Radu, A; Cortes-Gonzalez, A; Cortiana, G; Costa, M J; Costanzo, D; Côté, D; Cottin, G; Cowan, G; Cox, B E; Cranmer, K; Cree, G; Crépé-Renaudin, S; Crescioli, F; Cribbs, W A; Crispin Ortuzar, M; Cristinziani, M; Croft, V; Crosetti, G; Cuhadar Donszelmann, T; Cummings, J; Curatolo, M; Cuthbert, C; Czirr, H; Czodrowski, P; D'Auria, S; D'Onofrio, M; Da Cunha Sargedas De Sousa, M J; Da Via, C; Dabrowski, W; Dafinca, A; Dai, T; Dale, O; Dallaire, F; Dallapiccola, C; Dam, M; Dandoy, J R; Daniells, A C; Danninger, M; Dano Hoffmann, M; Dao, V; Darbo, G; Darmora, S; Dassoulas, J; Dattagupta, A; Davey, W; David, C; Davidek, T; Davies, E; Davies, M; Davignon, O; Davison, P; Davygora, Y; Dawe, E; Dawson, I; Daya-Ishmukhametova, R K; De, K; de Asmundis, R; De Castro, S; De Cecco, S; De Groot, N; de Jong, P; De la Torre, H; De Lorenzi, F; De Nooij, L; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Vivie De Regie, J B; Dearnaley, W J; Debbe, R; Debenedetti, C; Dedovich, D V; Deigaard, I; Del Peso, J; Del Prete, T; Delgove, D; Deliot, F; Delitzsch, C M; Deliyergiyev, M; Dell'Acqua, A; Dell'Asta, L; Dell'Orso, M; Della Pietra, M; Della Volpe, D; Delmastro, M; Delsart, P A; Deluca, C; DeMarco, D A; Demers, S; Demichev, M; Demilly, A; Denisov, S P; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deterre, C; Deviveiros, P O; Dewhurst, A; Dhaliwal, S; Di Ciaccio, A; Di Ciaccio, L; Di Domenico, A; Di Donato, C; Di Girolamo, A; Di Girolamo, B; Di Mattia, A; Di Micco, B; Di Nardo, R; Di Simone, A; Di Sipio, R; Di Valentino, D; Diaconu, C; Diamond, M; Dias, F A; Diaz, M A; Diehl, E B; Dietrich, J; Dietzsch, T A; Diglio, S; Dimitrievska, A; Dingfelder, J; Dittus, F; Djama, F; Djobava, T; Djuvsland, J I; do Vale, M A B; Dobos, D; Dobre, M; Doglioni, C; Doherty, T; Dohmae, T; Dolejsi, J; Dolezal, Z; Dolgoshein, B A; Donadelli, M; Donati, S; Dondero, P; Donini, J; Dopke, J; Doria, A; Dova, M T; Doyle, A T; Dris, M; Dubreuil, E; Duchovni, E; Duckeck, G; Ducu, O A; Duda, D; Dudarev, A; Duflot, L; Duguid, L; Dührssen, M; Dunford, M; Duran Yildiz, H; Düren, M; Durglishvili, A; Duschinger, D; Dwuznik, M; Dyndal, M; Edson, W; Edwards, N C; Ehrenfeld, W; Eifert, T; Eigen, G; Einsweiler, K; Ekelof, T; El Kacimi, M; Ellert, M; Elles, S; Ellinghaus, F; Elliot, A A; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Enari, Y; Endner, O C; Endo, M; Engelmann, R; Erdmann, J; Ereditato, A; Eriksson, D; Ernis, G; Ernst, J; Ernst, M; Errede, S; Ertel, E; Escalier, M; Esch, H; Escobar, C; Esposito, B; Etienvre, A I; Etzion, E; Evans, H; Ezhilov, A; Fabbri, L; Facini, G; Fakhrutdinov, R M; Falciano, S; Falla, R J; Faltova, J; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farooque, T; Farrell, S; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Favareto, A; Fayard, L; Federic, P; Fedin, O L; Fedorko, W; Feigl, S; Feligioni, L; Feng, C; Feng, E J; Feng, H; Fenyuk, A B; Fernandez Martinez, P; Fernandez Perez, S; Ferrag, S; Ferrando, J; Ferrari, A; Ferrari, P; Ferrari, R; Ferreira de Lima, D E; Ferrer, A; Ferrere, D; Ferretti, C; Ferretto Parodi, A; Fiascaris, M; Fiedler, F; Filipčič, A; Filipuzzi, M; Filthaut, F; Fincke-Keeler, M; Finelli, K D; Fiolhais, M C N; Fiorini, L; Firan, A; Fischer, A; Fischer, C; Fischer, J; Fisher, W C; Fitzgerald, E A; Flechl, M; Fleck, I; Fleischmann, P; Fleischmann, S; Fletcher, G T; Fletcher, G; Flick, T; Floderus, A; Flores Castillo, L R; Flowerdew, M J; Formica, A; Forti, A; Fournier, D; Fox, H; Fracchia, S; Francavilla, P; Franchini, M; Francis, D; Franconi, L; Franklin, M; Fraternali, M; Freeborn, D; French, S T; Friedrich, F; Froidevaux, D; Frost, J A; Fukunaga, C; Fullana Torregrosa, E; Fulsom, B G; Fuster, J; Gabaldon, C; Gabizon, O; Gabrielli, A; Gabrielli, A; Gadatsch, S; Gadomski, S; Gagliardi, G; Gagnon, P; Galea, C; Galhardo, B; Gallas, E J; Gallop, B J; Gallus, P; Galster, G; Gan, K K; Gao, J; Gao, Y S; Garay Walls, F M; Garberson, F; García, C; García Navarro, J E; Garcia-Sciveres, M; Gardner, R W; Garelli, N; Garonne, V; Gatti, C; Gaudio, G; Gaur, B; Gauthier, L; Gauzzi, P; Gavrilenko, I L; Gay, C; Gaycken, G; Gazis, E N; Ge, P; Gecse, Z; Gee, C N P; Geerts, D A A; Geich-Gimbel, Ch; Gemme, C; Genest, M H; Gentile, S; George, M; George, S; Gerbaudo, D; Gershon, A; Ghazlane, H; Ghodbane, N; Giacobbe, B; Giagu, S; Giangiobbe, V; Giannetti, P; Gianotti, F; Gibbard, B; Gibson, S M; Gilchriese, M; Gillam, T P S; Gillberg, D; Gilles, G; Gingrich, D M; Giokaris, N; Giordani, M P; Giorgi, F M; Giorgi, F M; Giraud, P F; Giugni, D; Giuliani, C; Giulini, M; Gjelsten, B K; Gkaitatzis, S; Gkialas, I; Gkougkousis, E L; Gladilin, L K; Glasman, C; Glatzer, J; Glaysher, P C F; Glazov, A; Goblirsch-Kolb, M; Goddard, J R; Godlewski, J; Goldfarb, S; Golling, T; Golubkov, D; Gomes, A; Gonçalo, R; Goncalves Pinto Firmino Da Costa, J; Gonella, L; González de la Hoz, S; Gonzalez Parra, G; Gonzalez-Sevilla, S; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorini, B; Gorini, E; Gorišek, A; Gornicki, E; Goshaw, A T; Gössling, C; Gostkin, M I; Gouighri, M; Goujdami, D; Goussiou, A G; Grabas, H M X; Graber, L; Grabowska-Bold, I; Grafström, P; Grahn, K-J; Gramling, J; Gramstad, E; Grancagnolo, S; Grassi, V; Gratchev, V; Gray, H M; Graziani, E; Greenwood, Z D; Gregersen, K; Gregor, I M; Grenier, P; Griffiths, J; Grillo, A A; Grimm, K; Grinstein, S; Gris, Ph; Grishkevich, Y V; Grivaz, J-F; Grohs, J P; Grohsjean, A; Gross, E; Grosse-Knetter, J; Grossi, G C; Grout, Z J; Guan, L; Guenther, J; Guescini, F; Guest, D; Gueta, O; Guido, E; Guillemin, T; Guindon, S; Gul, U; Gumpert, C; Guo, J; Gupta, S; Gutierrez, P; Gutierrez Ortiz, N G; Gutschow, C; Guttman, N; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haber, C; Hadavand, H K; Haddad, N; Haefner, P; Hageböck, S; Hajduk, Z; Hakobyan, H; Haleem, M; Haley, J; Hall, D; Halladjian, G; Hallewell, G D; Hamacher, K; Hamal, P; Hamano, K; Hamer, M; Hamilton, A; Hamilton, S; Hamity, G N; Hamnett, P G; Han, L; Hanagaki, K; Hanawa, K; Hance, M; Hanke, P; Hanna, R; Hansen, J B; Hansen, J D; Hansen, P H; Hara, K; Hard, A S; Harenberg, T; Hariri, F; Harkusha, S; Harrington, R D; Harrison, P F; Hartjes, F; Hasegawa, M; Hasegawa, S; Hasegawa, Y; Hasib, A; Hassani, S; Haug, S; Hauser, R; Hauswald, L; Havranek, M; Hawkes, C M; Hawkings, R J; Hawkins, A D; Hayashi, T; Hayden, D; Hays, C P; Hays, J M; Hayward, H S; Haywood, S J; Head, S J; Heck, T; Hedberg, V; Heelan, L; Heim, S; Heim, T; Heinemann, B; Heinrich, L; Hejbal, J; Helary, L; Heller, M; Hellman, S; Hellmich, D; Helsens, C; Henderson, J; Henderson, R C W; Heng, Y; Hengler, C; Henrichs, A; Henriques Correia, A M; Henrot-Versille, S; Herbert, G H; Hernández Jiménez, Y; Herrberg-Schubert, R; Herten, G; Hertenberger, R; Hervas, L; Hesketh, G G; Hessey, N P; Hickling, R; Higón-Rodriguez, E; Hill, E; Hill, J C; Hiller, K H; Hillier, S J; Hinchliffe, I; Hines, E; Hinman, R R; Hirose, M; Hirschbuehl, D; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoenig, F; Hohlfeld, M; Holmes, T R; Hong, T M; Hooft van Huysduynen, L; Hopkins, W H; Horii, Y; Horton, A J; Hostachy, J-Y; Hou, S; Hoummada, A; Howard, J; Howarth, J; Hrabovsky, M; Hristova, I; Hrivnac, J; Hryn'ova, T; Hrynevich, A; Hsu, C; Hsu, P J; Hsu, S-C; Hu, D; Hu, Q; Hu, X; Huang, Y; Hubacek, Z; Hubaut, F; Huegging, F; Huffman, T B; Hughes, E W; Hughes, G; Huhtinen, M; Hülsing, T A; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibragimov, I; Iconomidou-Fayard, L; Ideal, E; Idrissi, Z; Iengo, P; Igonkina, O; Iizawa, T; Ikegami, Y; Ikematsu, K; Ikeno, M; Ilchenko, Y; Iliadis, D; Ilic, N; Inamaru, Y; Ince, T; Ioannou, P; Iodice, M; Iordanidou, K; Ippolito, V; Irles Quiles, A; Isaksson, C; Ishino, M; Ishitsuka, M; Ishmukhametov, R; Issever, C; Istin, S; Iturbe Ponce, J M; Iuppa, R; Ivarsson, J; Iwanski, W; Iwasaki, H; Izen, J M; Izzo, V; Jackson, B; Jackson, M; Jackson, P; Jaekel, M R; Jain, V; Jakobs, K; Jakobsen, S; Jakoubek, T; Jakubek, J; Jamin, D O; Jana, D K; Jansen, E; Jansky, R W; Janssen, J; Janus, M; Jarlskog, G; Javadov, N; Javůrek, T; Jeanty, L; Jejelava, J; Jeng, G-Y; Jennens, D; Jenni, P; Jentzsch, J; Jeske, C; Jézéquel, S; Ji, H; Jia, J; Jiang, Y; Jimenez Pena, J; Jin, S; Jinaru, A; Jinnouchi, O; Joergensen, M D; Johansson, P; Johns, K A; Jon-And, K; Jones, G; Jones, R W L; Jones, T J; Jongmanns, J; Jorge, P M; Joshi, K D; Jovicevic, J; Ju, X; Jung, C A; Jussel, P; Juste Rozas, A; Kaci, M; Kaczmarska, A; Kado, M; Kagan, H; Kagan, M; Kahn, S J; Kajomovitz, E; Kalderon, C W; Kama, S; Kamenshchikov, A; Kanaya, N; Kaneda, M; Kaneti, S; Kantserov, V A; Kanzaki, J; Kaplan, B; Kapliy, A; Kar, D; Karakostas, K; Karamaoun, A; Karastathis, N; Kareem, M J; Karnevskiy, M; Karpov, S N; Karpova, Z M; Karthik, K; Kartvelishvili, V; Karyukhin, A N; Kashif, L; Kass, R D; Kastanas, A; Kataoka, Y; Katre, A; Katzy, J; Kawagoe, K; Kawamoto, T; Kawamura, G; Kazama, S; Kazanin, V F; Kazarinov, M Y; Keeler, R; Kehoe, R; Keil, M; Keller, J S; Kempster, J J; Keoshkerian, H; Kepka, O; Kerševan, B P; Kersten, S; Keyes, R A; Khalil-Zada, F; Khandanyan, H; Khanov, A; Kharlamov, A; Khodinov, A; Khomich, A; Khoo, T J; Khoriauli, G; Khovanskiy, V; Khramov, E; Khubua, J; Kim, H Y; Kim, H; Kim, S H; Kimura, N; Kind, O; King, B T; King, M; King, R S B; King, S B; Kirk, J; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kiss, F; Kiuchi, K; Kladiva, E; Klein, M H; Klein, M; Klein, U; Kleinknecht, K; Klimek, P; Klimentov, A; Klingenberg, R; Klinger, J A; Klioutchnikova, T; Klok, P F; Kluge, E-E; Kluit, P; Kluth, S; Kneringer, E; Knoops, E B F G; Knue, A; Kobayashi, D; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Koffas, T; Koffeman, E; Kogan, L A; Kohlmann, S; Kohout, Z; Kohriki, T; Koi, T; Kolanoski, H; Koletsou, I; Komar, A A; Komori, Y; Kondo, T; Kondrashova, N; Köneke, K; König, A C; König, S; Kono, T; Konoplich, R; Konstantinidis, N; Kopeliansky, R; Koperny, S; Köpke, L; Kopp, A K; Korcyl, K; Kordas, K; Korn, A; Korol, A A; Korolkov, I; Korolkova, E V; Kortner, O; Kortner, S; Kosek, T; Kostyukhin, V V; Kotov, V M; Kotwal, A; Kourkoumeli-Charalampidi, A; Kourkoumelis, C; Kouskoura, V; Koutsman, A; Kowalewski, R; Kowalski, T Z; Kozanecki, W; Kozhin, A S; Kramarenko, V A; Kramberger, G; Krasnopevtsev, D; Krasny, M W; Krasznahorkay, A; Kraus, J K; Kravchenko, A; Kreiss, S; Kretz, M; Kretzschmar, J; Kreutzfeldt, K; Krieger, P; Krizka, K; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Krumnack, N; Krumshteyn, Z V; Kruse, A; Kruse, M C; Kruskal, M; Kubota, T; Kucuk, H; Kuday, S; Kuehn, S; Kugel, A; Kuger, F; Kuhl, A; Kuhl, T; Kukhtin, V; Kulchitsky, Y; Kuleshov, S; Kuna, M; Kunigo, T; Kupco, A; Kurashige, H; Kurochkin, Y A; Kurumida, R; Kus, V; Kuwertz, E S; Kuze, M; Kvita, J; Kwan, T; Kyriazopoulos, D; La Rosa, A; La Rosa Navarro, J L; La Rotonda, L; Lacasta, C; Lacava, F; Lacey, J; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Lambourne, L; Lammers, S; Lampen, C L; Lampl, W; Lançon, E; Landgraf, U; Landon, M P J; Lang, V S; Lankford, A J; Lanni, F; Lantzsch, K; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Lasagni Manghi, F; Lassnig, M; Laurelli, P; Lavrijsen, W; Law, A T; Laycock, P; Le Dortz, O; Le Guirriec, E; Le Menedeu, E; LeCompte, T; Ledroit-Guillon, F; Lee, C A; Lee, S C; Lee, L; Lefebvre, G; Lefebvre, M; Legger, F; Leggett, C; Lehan, A; Lehmann Miotto, G; Lei, X; Leight, W A; Leisos, A; Leister, A G; Leite, M A L; Leitner, R; Lellouch, D; Lemmer, B; Leney, K J C; Lenz, T; Lenzen, G; Lenzi, B; Leone, R; Leone, S; Leonidopoulos, C; Leontsinis, S; Leroy, C; Lester, C G; Levchenko, M; Levêque, J; Levin, D; Levinson, L J; Levy, M; Lewis, A; Leyko, A M; Leyton, M; Li, B; Li, B; Li, H; Li, H L; Li, L; Li, L; Li, S; Li, Y; Liang, Z; Liao, H; Liberti, B; Lichard, P; Lie, K; Liebal, J; Liebig, W; Limbach, C; Limosani, A; Lin, S C; Lin, T H; Linde, F; Lindquist, B E; Linnemann, J T; Lipeles, E; Lipniacka, A; Lisovyi, M; Liss, T M; Lissauer, D; Lister, A; Litke, A M; Liu, B; Liu, D; Liu, J; Liu, J B; Liu, K; Liu, L; Liu, M; Liu, M; Liu, Y; Livan, M; Lleres, A; Llorente Merino, J; Lloyd, S L; Lo Sterzo, F; Lobodzinska, E; Loch, P; Lockman, W S; Loebinger, F K; Loevschall-Jensen, A E; Loginov, A; Lohse, T; Lohwasser, K; Lokajicek, M; Long, B A; Long, J D; Long, R E; Looper, K A; Lopes, L; Lopez Mateos, D; Lopez Paredes, B; Lopez Paz, I; Lorenz, J; Lorenzo Martinez, N; Losada, M; Loscutoff, P; Lösel, P J; Lou, X; Lounis, A; Love, J; Love, P A; Lu, F; Lu, N; Lubatti, H J; Luci, C; Lucotte, A; Luehring, F; Lukas, W; Luminari, L; Lundberg, O; Lund-Jensen, B; Lungwitz, M; Lynn, D; Lysak, R; Lytken, E; Ma, H; Ma, L L; Maccarrone, G; Macchiolo, A; Machado Miguens, J; Macina, D; Madaffari, D; Madar, R; Maddocks, H J; Mader, W F; Madsen, A; Maeno, T; Maevskiy, A; Magradze, E; Mahboubi, K; Mahlstedt, J; Mahmoud, S; Maiani, C; Maidantchik, C; Maier, A A; Maio, A; Majewski, S; Makida, Y; Makovec, N; Malaescu, B; Malecki, Pa; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Maltezos, S; Malyshev, V M; Malyukov, S; Mamuzic, J; Mandelli, B; Mandelli, L; Mandić, I; Mandrysch, R; Maneira, J; Manfredini, A; Manhaes de Andrade Filho, L; Manjarres Ramos, J; Mann, A; Manning, P M; Manousakis-Katsikakis, A; Mansoulie, B; Mantifel, R; Mantoani, M; Mapelli, L; March, L; Marchiori, G; Marcisovsky, M; Marino, C P; Marjanovic, M; Marroquim, F; Marsden, S P; Marshall, Z; Marti, L F; Marti-Garcia, S; Martin, B; Martin, T A; Martin, V J; Martin Dit Latour, B; Martinez, H; Martinez, M; Martin-Haugh, S; Martyniuk, A C; Marx, M; Marzano, F; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massa, I; Massa, L; Massol, N; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Mättig, P; Mattmann, J; Maurer, J; Maxfield, S J; Maximov, D A; Mazini, R; Mazza, S M; Mazzaferro, L; Mc Goldrick, G; Mc Kee, S P; McCarn, A; McCarthy, R L; McCarthy, T G; McCubbin, N A; McFarlane, K W; Mcfayden, J A; Mchedlidze, G; McMahon, S J; McPherson, R A; Mechnich, J; Medinnis, M; Meehan, S; Mehlhase, S; Mehta, A; Meier, K; Meineck, C; Meirose, B; Melachrinos, C; Mellado Garcia, B R; Meloni, F; Mengarelli, A; Menke, S; Meoni, E; Mercurio, K M; Mergelmeyer, S; Meric, N; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Merritt, H; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, C; Meyer, J-P; Meyer, J; Middleton, R P; Migas, S; Miglioranzi, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Milic, A; Miller, D W; Mills, C; Milov, A; Milstead, D A; Minaenko, A A; Minami, Y; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Ming, Y; Mir, L M; Mirabelli, G; Mitani, T; Mitrevski, J; Mitsou, V A; Miucci, A; Miyagawa, P S; Mjörnmark, J U; Moa, T; Mochizuki, K; Mohapatra, S; Mohr, W; Molander, S; Moles-Valls, R; Mönig, K; Monini, C; Monk, J; Monnier, E; Montejo Berlingen, J; Monticelli, F; Monzani, S; Moore, R W; Morange, N; Moreno, D; Moreno Llácer, M; Morettini, P; Morgenstern, M; Morii, M; Morisbak, V; Moritz, S; Morley, A K; Mornacchi, G; Morris, J D; Morton, A; Morvaj, L; Moser, H G; Mosidze, M; Moss, J; Motohashi, K; Mount, R; Mountricha, E; Mouraviev, S V; Moyse, E J W; Muanza, S; Mudd, R D; Mueller, F; Mueller, J; Mueller, K; Mueller, R S P; Mueller, T; Muenstermann, D; Mullen, P; Munwes, Y; Murillo Quijada, J A; Murray, W J; Musheghyan, H; Musto, E; Myagkov, A G; Myska, M; Nackenhorst, O; Nadal, J; Nagai, K; Nagai, R; Nagai, Y; Nagano, K; Nagarkar, A; Nagasaka, Y; Nagata, K; Nagel, M; Nagy, E; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Namasivayam, H; Nanava, G; Naranjo Garcia, R F; Narayan, R; Nattermann, T; Naumann, T; Navarro, G; Nayyar, R; Neal, H A; Nechaeva, P Yu; Neep, T J; Nef, P D; Negri, A; Negrini, M; Nektarijevic, S; Nellist, C; Nelson, A; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neumann, M; Neves, R M; Nevski, P; Newman, P R; Nguyen, D H; Nickerson, R B; Nicolaidou, R; Nicquevert, B; Nielsen, J; Nikiforou, N; Nikiforov, A; Nikolaenko, V; Nikolic-Audit, I; Nikolopoulos, K; Nilsson, P; Ninomiya, Y; Nisati, A; Nisius, R; Nobe, T; Nomachi, M; Nomidis, I; Norberg, S; Nordberg, M; Novgorodova, O; Nowak, S; Nozaki, M; Nozka, L; Ntekas, K; Nunes Hanninger, G; Nunnemann, T; Nurse, E; Nuti, F; O'Brien, B J; O'grady, F; O'Neil, D C; O'Shea, V; Oakham, F G; Oberlack, H; Obermann, T; Ocariz, J; Ochi, A; Ochoa, I; Oda, S; Odaka, S; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohman, H; Oide, H; Okamura, W; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Olchevski, A G; Olivares Pino, S A; Oliveira Damazio, D; Oliver Garcia, E; Olszewski, A; Olszowska, J; Onofre, A; Onyisi, P U E; Oram, C J; Oreglia, M J; Oren, Y; Orestano, D; Orlando, N; Oropeza Barrera, C; Orr, R S; Osculati, B; Ospanov, R; Otero Y Garzon, G; Otono, H; Ouchrif, M; Ouellette, E A; Ould-Saada, F; Ouraou, A; Oussoren, K P; Ouyang, Q; Ovcharova, A; Owen, M; Ozcan, V E; Ozturk, N; Pachal, K; Pacheco Pages, A; Padilla Aranda, C; Pagáčová, M; Pagan Griso, S; Paganis, E; Pahl, C; Paige, F; Pais, P; Pajchel, K; Palacino, G; Palestini, S; Palka, M; Pallin, D; Palma, A; Pan, Y B; Panagiotopoulou, E; Pandini, C E; Panduro Vazquez, J G; Pani, P; Panikashvili, N; Panitkin, S; Paolozzi, L; Papadopoulou, Th D; Papageorgiou, K; Paramonov, A; Paredes Hernandez, D; Parker, M A; Parker, K A; Parodi, F; Parsons, J A; Parzefall, U; Pasqualucci, E; Passaggio, S; Pastore, F; Pastore, Fr; Pásztor, G; Pataraia, S; Patel, N D; Pater, J R; Pauly, T; Pearce, J; Pedersen, L E; Pedersen, M; Pedraza Lopez, S; Pedro, R; Peleganchuk, S V; Pelikan, D; Peng, H; Penning, B; Penwell, J; Perepelitsa, D V; Perez Codina, E; Pérez García-Estañ, M T; Perini, L; Pernegger, H; Perrella, S; Peschke, R; Peshekhonov, V D; Peters, K; Peters, R F Y; Petersen, B A; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petrolo, E; Petrucci, F; Pettersson, N E; Pezoa, R; Phillips, P W; Piacquadio, G; Pianori, E; Picazio, A; Piccaro, E; Piccinini, M; Pickering, M A; Piegaia, R; Pignotti, D T; Pilcher, J E; Pilkington, A D; Pina, J; Pinamonti, M; Pinfold, J L; Pingel, A; Pinto, B; Pires, S; Pitt, M; Pizio, C; Plazak, L; Pleier, M-A; Pleskot, V; Plotnikova, E; Plucinski, P; Pluth, D; Poettgen, R; Poggioli, L; Pohl, D; Polesello, G; Policicchio, A; Polifka, R; Polini, A; Pollard, C S; Polychronakos, V; Pommès, K; Pontecorvo, L; Pope, B G; Popeneciu, G A; Popovic, D S; Poppleton, A; Pospisil, S; Potamianos, K; Potrap, I N; Potter, C J; Potter, C T; Poulard, G; Poveda, J; Pozdnyakov, V; Pralavorio, P; Pranko, A; Prasad, S; Prell, S; Price, D; Price, J; Price, L E; Primavera, M; Prince, S; Proissl, M; Prokofiev, K; Prokoshin, F; Protopapadaki, E; Protopopescu, S; Proudfoot, J; Przybycien, M; Ptacek, E; Puddu, D; Pueschel, E; Puldon, D; Purohit, M; Puzo, P; Qian, J; Qin, G; Qin, Y; Quadt, A; Quarrie, D R; Quayle, W B; Queitsch-Maitland, M; Quilty, D; Qureshi, A; Radeka, V; Radescu, V; Radhakrishnan, S K; Radloff, P; Rados, P; Ragusa, F; Rahal, G; Rajagopalan, S; Rammensee, M; Rangel-Smith, C; Rauscher, F; Rave, S; Rave, T C; Ravenscroft, T; Raymond, M; Read, A L; Readioff, N P; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reeves, K; Rehnisch, L; Reisin, H; Relich, M; Rembser, C; Ren, H; Renaud, A; Rescigno, M; Resconi, S; Rezanova, O L; Reznicek, P; Rezvani, R; Richter, R; Richter-Was, E; Ridel, M; Rieck, P; Riegel, C J; Rieger, J; Rijssenbeek, M; Rimoldi, A; Rinaldi, L; Ritsch, E; Riu, I; Rizatdinova, F; Rizvi, E; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robson, A; Roda, C; Rodrigues, L; Roe, S; Røhne, O; Rolli, S; Romaniouk, A; Romano, M; Romano Saez, S M; Romero Adam, E; Rompotis, N; Ronzani, M; Roos, L; Ros, E; Rosati, S; Rosbach, K; Rose, P; Rosendahl, P L; Rosenthal, O; Rossetti, V; Rossi, E; Rossi, L P; Rosten, R; Rotaru, M; Roth, I; Rothberg, J; Rousseau, D; Royon, C R; Rozanov, A; Rozen, Y; Ruan, X; Rubbo, F; Rubinskiy, I; Rud, V I; Rudolph, C; Rudolph, M S; Rühr, F; Ruiz-Martinez, A; Rurikova, Z; Rusakovich, N A; Ruschke, A; Russell, H L; Rutherfoord, J P; Ruthmann, N; Ryabov, Y F; Rybar, M; Rybkin, G; Ryder, N C; Saavedra, A F; Sabato, G; Sacerdoti, S; Saddique, A; Sadrozinski, H F-W; Sadykov, R; Safai Tehrani, F; Saimpert, M; Sakamoto, H; Sakurai, Y; Salamanna, G; Salamon, A; Saleem, M; Salek, D; Sales De Bruin, P H; Salihagic, D; Salnikov, A; Salt, J; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sampsonidis, D; Sanchez, A; Sánchez, J; Sanchez Martinez, V; Sandaker, H; Sandbach, R L; Sander, H G; Sanders, M P; Sandhoff, M; Sandoval, C; Sandstroem, R; Sankey, D P C; Sansoni, A; Santoni, C; Santonico, R; Santos, H; Santoyo Castillo, I; Sapp, K; Sapronov, A; Saraiva, J G; Sarrazin, B; Sasaki, O; Sasaki, Y; Sato, K; Sauvage, G; Sauvan, E; Savage, G; Savard, P; Sawyer, C; Sawyer, L; Saxon, D H; Saxon, J; Sbarra, C; Sbrizzi, A; Scanlon, T; Scannicchio, D A; Scarcella, M; Scarfone, V; Schaarschmidt, J; Schacht, P; Schaefer, D; Schaefer, R; Schaeffer, J; Schaepe, S; Schaetzel, S; Schäfer, U; Schaffer, A C; Schaile, D; Schamberger, R D; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Schiavi, C; Schieck, J; Schillo, C; Schioppa, M; Schlenker, S; Schmidt, E; Schmieden, K; Schmitt, C; Schmitt, S; Schneider, B; Schnellbach, Y J; Schnoor, U; Schoeffel, L; Schoening, A; Schoenrock, B D; Schorlemmer, A L S; Schott, M; Schouten, D; Schovancova, J; Schramm, S; Schreyer, M; Schroeder, C; Schuh, N; Schultens, M J; Schultz-Coulon, H-C; Schulz, H; Schumacher, M; Schumm, B A; Schune, Ph; Schwanenberger, C; Schwartzman, A; Schwarz, T A; Schwegler, Ph; Schwemling, Ph; Schwienhorst, R; Schwindling, J; Schwindt, T; Schwoerer, M; Sciacca, F G; Scifo, E; Sciolla, G; Scuri, F; Scutti, F; Searcy, J; Sedov, G; Sedykh, E; Seema, P; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Sekula, S J; Selbach, K E; Seliverstov, D M; Semprini-Cesari, N; Serfon, C; Serin, L; Serkin, L; Serre, T; Seuster, R; Severini, H; Sfiligoj, T; Sforza, F; Sfyrla, A; Shabalina, E; Shamim, M; Shan, L Y; Shang, R; Shank, J T; Shapiro, M; Shatalov, P B; Shaw, K; Shcherbakova, A; Shehu, C Y; Sherwood, P; Shi, L; Shimizu, S; Shimmin, C O; Shimojima, M; Shiyakova, M; Shmeleva, A; Shoaleh Saadi, D; Shochet, M J; Shojaii, S; Shrestha, S; Shulga, E; Shupe, M A; Shushkevich, S; Sicho, P; Sidiropoulou, O; Sidorov, D; Sidoti, A; Siegert, F; Sijacki, Dj; Silva, J; Silver, Y; Silverstein, D; Silverstein, S B; Simak, V; Simard, O; Simic, Lj; Simion, S; Simioni, E; Simmons, B; Simon, D; Simoniello, R; Sinervo, P; Sinev, N B; Siragusa, G; Sircar, A; Sisakyan, A N; Sivoklokov, S Yu; Sjölin, J; Sjursen, T B; Skinner, M B; Skottowe, H P; Skubic, P; Slater, M; Slavicek, T; Slawinska, M; Sliwa, K; Smakhtin, V; Smart, B H; Smestad, L; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, K M; Smith, M; Smizanska, M; Smolek, K; Snesarev, A A; Snidero, G; Snyder, S; Sobie, R; Socher, F; Soffer, A; Soh, D A; Solans, C A; Solar, M; Solc, J; Soldatov, E Yu; Soldevila, U; Solodkov, A A; Soloshenko, A; Solovyanov, O V; Solovyev, V; Sommer, P; Song, H Y; Soni, N; Sood, A; Sopczak, A; Sopko, B; Sopko, V; Sorin, V; Sosa, D; Sosebee, M; Sotiropoulou, C L; Soualah, R; Soueid, P; Soukharev, A M; South, D; Spagnolo, S; Spanò, F; Spearman, W R; Spettel, F; Spighi, R; Spigo, G; Spiller, L A; Spousta, M; Spreitzer, T; St Denis, R D; Staerz, S; Stahlman, J; Stamen, R; Stamm, S; Stanecka, E; Stanescu, C; Stanescu-Bellu, M; Stanitzki, M M; Stapnes, S; Starchenko, E A; Stark, J; Staroba, P; Starovoitov, P; Staszewski, R; Stavina, P; Steinberg, P; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stern, S; Stewart, G A; Stillings, J A; Stockton, M C; Stoebe, M; Stoicea, G; Stolte, P; Stonjek, S; Stradling, A R; Straessner, A; Stramaglia, M E; Strandberg, J; Strandberg, S; Strandlie, A; Strauss, E; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Stroynowski, R; Strubig, A; Stucci, S A; Stugu, B; Styles, N A; Su, D; Su, J; Subramaniam, R; Succurro, A; Sugaya, Y; Suhr, C; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, S; Sun, X; Sundermann, J E; Suruliz, K; Susinno, G; Sutton, M R; Suzuki, Y; Svatos, M; Swedish, S; Swiatlowski, M; Sykora, I; Sykora, T; Ta, D; Taccini, C; Tackmann, K; Taenzer, J; Taffard, A; Tafirout, R; Taiblum, N; Takai, H; Takashima, R; Takeda, H; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A A; Tam, J Y C; Tan, K G; Tanaka, J; Tanaka, R; Tanaka, S; Tanaka, S; Tanasijczuk, A J; Tannenwald, B B; Tannoury, N; Tapprogge, S; Tarem, S; Tarrade, F; Tartarelli, G F; Tas, P; Tasevsky, M; Tashiro, T; Tassi, E; Tavares Delgado, A; Tayalati, Y; Taylor, F E; Taylor, G N; Taylor, W; Teischinger, F A; Teixeira Dias Castanheira, M; Teixeira-Dias, P; Temming, K K; Ten Kate, H; Teng, P K; Teoh, J J; Tepel, F; Terada, S; Terashi, K; Terron, J; Terzo, S; Testa, M; Teuscher, R J; Therhaag, J; Theveneaux-Pelzer, T; Thomas, J P; Thomas-Wilsker, J; Thompson, E N; Thompson, P D; Thompson, R J; Thompson, A S; Thomsen, L A; Thomson, E; Thomson, M; Thong, W M; Thun, R P; Tian, F; Tibbetts, M J; Ticse Torres, R E; Tikhomirov, V O; Tikhonov, Yu A; Timoshenko, S; Tiouchichine, E; Tipton, P; Tisserant, S; Todorov, T; Todorova-Nova, S; Tojo, J; Tokár, S; Tokushuku, K; Tollefson, K; Tolley, E; Tomlinson, L; Tomoto, M; Tompkins, L; Toms, K; Topilin, N D; Torrence, E; Torres, H; Torró Pastor, E; Toth, J; Touchard, F; Tovey, D R; Tran, H L; Trefzger, T; Tremblet, L; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Tripiana, M F; Trischuk, W; Trocmé, B; Troncon, C; Trottier-McDonald, M; Trovatelli, M; True, P; Trzebinski, M; Trzupek, A; Tsarouchas, C; Tseng, J C-L; Tsiareshka, P V; Tsionou, D; Tsipolitis, G; Tsirintanis, N; Tsiskaridze, S; Tsiskaridze, V; Tskhadadze, E G; Tsukerman, I I; Tsulaia, V; Tsuno, S; Tsybychev, D; Tudorache, A; Tudorache, V; Tuna, A N; Tupputi, S A; Turchikhin, S; Turecek, D; Turk Cakir, I; Turra, R; Turvey, A J; Tuts, P M; Tykhonov, A; Tylmad, M; Tyndel, M; Ueda, I; Ueno, R; Ughetto, M; Ugland, M; Uhlenbrock, M; Ukegawa, F; Unal, G; Undrus, A; Unel, G; Ungaro, F C; Unno, Y; Unverdorben, C; Urban, J; Urquijo, P; Urrejola, P; Usai, G; Usanova, A; Vacavant, L; Vacek, V; Vachon, B; Valencic, N; Valentinetti, S; Valero, A; Valery, L; Valkar, S; Valladolid Gallego, E; Vallecorsa, S; Valls Ferrer, J A; Van Den Wollenberg, W; Van Der Deijl, P C; van der Geer, R; van der Graaf, H; Van Der Leeuw, R; van Eldik, N; van Gemmeren, P; Van Nieuwkoop, J; van Vulpen, I; van Woerden, M C; Vanadia, M; Vandelli, W; Vanguri, R; Vaniachine, A; Vannucci, F; Vardanyan, G; Vari, R; Varnes, E W; Varol, T; Varouchas, D; Vartapetian, A; Varvell, K E; Vazeille, F; Vazquez Schroeder, T; Veatch, J; Veloso, F; Velz, T; Veneziano, S; Ventura, A; Ventura, D; Venturi, M; Venturi, N; Venturini, A; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vest, A; Vetterli, M C; Viazlo, O; Vichou, I; Vickey, T; Vickey Boeriu, O E; Viehhauser, G H A; Viel, S; Vigne, R; Villa, M; Villaplana Perez, M; Vilucchi, E; Vincter, M G; Vinogradov, V B; Virzi, J; Vivarelli, I; Vives Vaque, F; Vlachos, S; Vladoiu, D; Vlasak, M; Vogel, M; Vokac, P; Volpi, G; Volpi, M; von der Schmitt, H; von Radziewski, H; von Toerne, E; Vorobel, V; Vorobev, K; Vos, M; Voss, R; Vossebeld, J H; Vranjes, N; Vranjes Milosavljevic, M; Vrba, V; Vreeswijk, M; Vuillermet, R; Vukotic, I; Vykydal, Z; Wagner, P; Wagner, W; Wahlberg, H; Wahrmund, S; Wakabayashi, J; Walder, J; Walker, R; Walkowiak, W; Wang, C; Wang, F; Wang, H; Wang, H; Wang, J; Wang, J; Wang, K; Wang, R; Wang, S M; Wang, T; Wang, X; Wanotayaroj, C; Warburton, A; Ward, C P; Wardrope, D R; Warsinsky, M; Washbrook, A; Wasicki, C; Watkins, P M; Watson, A T; Watson, I J; Watson, M F; Watts, G; Watts, S; Waugh, B M; Webb, S; Weber, M S; Weber, S W; Webster, J S; Weidberg, A R; Weinert, B; Weingarten, J; Weiser, C; Weits, H; Wells, P S; Wenaus, T; Wendland, D; Wengler, T; Wenig, S; Wermes, N; Werner, M; Werner, P; Wessels, M; Wetter, J; Whalen, K; Wharton, A M; White, A; White, M J; White, R; White, S; Whiteson, D; Wicke, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wienemann, P; Wiglesworth, C; Wiik-Fuchs, L A M; Wildauer, A; Wilkens, H G; Williams, H H; Williams, S; Willis, C; Willocq, S; Wilson, A; Wilson, J A; Wingerter-Seez, I; Winklmeier, F; Winter, B T; Wittgen, M; Wittkowski, J; Wollstadt, S J; Wolter, M W; Wolters, H; Wosiek, B K; Wotschack, J; Woudstra, M J; Wozniak, K W; Wu, M; Wu, S L; Wu, X; Wu, Y; Wyatt, T R; Wynne, B M; Xella, S; Xu, D; Xu, L; Yabsley, B; Yacoob, S; Yakabe, R; Yamada, M; Yamaguchi, Y; Yamamoto, A; Yamamoto, S; Yamanaka, T; Yamauchi, K; Yamazaki, Y; Yan, Z; Yang, H; Yang, H; Yang, Y; Yanush, S; Yao, L; Yao, W-M; Yasu, Y; Yatsenko, E; Yau Wong, K H; Ye, J; Ye, S; Yeletskikh, I; Yen, A L; Yildirim, E; Yorita, K; Yoshida, R; Yoshihara, K; Young, C; Young, C J S; Youssef, S; Yu, D R; Yu, J; Yu, J M; Yu, J; Yuan, L; Yurkewicz, A; Yusuff, I; Zabinski, B; Zaidan, R; Zaitsev, A M; Zaman, A; Zambito, S; Zanello, L; Zanzi, D; Zeitnitz, C; Zeman, M; Zemla, A; Zengel, K; Zenin, O; Ženiš, T; Zerwas, D; Zhang, D; Zhang, F; Zhang, J; Zhang, L; Zhang, R; Zhang, X; Zhang, Z; Zhao, X; Zhao, Y; Zhao, Z; Zhemchugov, A; Zhong, J; Zhou, B; Zhou, C; Zhou, L; Zhou, L; Zhou, N; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zhukov, K; Zibell, A; Zieminska, D; Zimine, N I; Zimmermann, C; Zimmermann, R; Zimmermann, S; Zinonos, Z; Ziolkowski, M; Živković, L; Zobernig, G; Zoccoli, A; Zur Nedden, M; Zurzolo, G; Zwalinski, L

    2015-04-24

    The results of a dedicated search for pair production of scalar partners of charm quarks are reported. The search is based on an integrated luminosity of 20.3  fb^{-1} of pp collisions at sqrt[s]=8  TeV recorded with the ATLAS detector at the LHC. The search is performed using events with large missing transverse momentum and at least two jets, where the two leading jets are each tagged as originating from c quarks. Events containing isolated electrons or muons are vetoed. In an R-parity-conserving minimal supersymmetric scenario in which a single scalar-charm state is kinematically accessible, and where it decays exclusively into a charm quark and a neutralino, 95% confidence-level upper limits are obtained in the scalar-charm-neutralino mass plane such that, for neutralino masses below 200 GeV, scalar-charm masses up to 490 GeV are excluded.

  12. A Search for Charm and Beauty in a Very Strange World

    NASA Astrophysics Data System (ADS)

    Kamin, Jason Adrian

    The Relativistic Heavy Ion Collider (RHIC) was built to produce and study the extremely hot and dense phase of matter called Quark Gluon Plasma (QGP) in which the degrees of freedom are individual partons rather than composite hadrons. Since 2000, RHIC has collided various species of particles in order to disentangle and isolate the properties of the strongly interacting QGP: p+p to set a baseline, d+Au to establish a control experiment, Au+Au to definitively create the QGP, and Cu+Cu to bridge the gap between d+Au and Au+Au. Electron-positron pairs are a particularly effective probe of the QGP because they carry no color charge. Therefore, once created, these leptons do not interact strongly with the medium. As a result, they retain characteristics of the full time evolution and dynamics of the system. There are many features of interest in the dielectron invariant mass spectrum. The low mass region (< 1 GeV/c2) consists primarily of pairs from Dalitz decays of light hadrons and direct decays of vector mesons that can be modified by the medium, while the intermediate (1 < m < 3 GeV/c2) and high (4 < m < 8 GeV/c2) mass regions are dominated by pairs from mesons containing charm and beauty respectively. Of the multitude of measurements that PHENIX has produced over the last decade, one of the more mysterious and intriguing is a large enhancement of pairs in the low mass region in central Au+Au collisions compared to the p+p reference. Current theories are unable to explain the origin of this excess and a lingering question within the field is whether the presence of "cold" nuclear matter in the initial state of the collision, independent of the formation of a QGP, could possibly account for this increased yield. To answer this question, this thesis explores the dielectron spectra in

  13. Centrality dependence of charm production from a measurement of single electrons in Au+Au collisions at sqrt[s(NN)]=200 GeV.

    PubMed

    Adler, S S; Afanasiev, S; Aidala, C; Ajitanand, N N; Akiba, Y; Alexander, J; Amirikas, R; Aphecetche, L; Aronson, S H; Averbeck, R; Awes, T C; Azmoun, R; Babintsev, V; Baldisseri, A; Barish, K N; Barnes, P D; Bassalleck, B; Bathe, S; Batsouli, S; Baublis, V; Bazilevsky, A; Belikov, S; Berdnikov, Y; Bhagavatula, S; Boissevain, J G; Borel, H; Borenstein, S; Brooks, M L; Brown, D S; Bruner, N; Bucher, D; Buesching, H; Bumazhnov, V; Bunce, G; Burward-Hoy, J M; Butsyk, S; Camard, X; Chai, J-S; Chand, P; Chang, W C; Chernichenko, S; Chi, C Y; Chiba, J; Chiu, M; Choi, I J; Choi, J; Choudhury, R K; Chujo, T; Cianciolo, V; Cobigo, Y; Cole, B A; Constantin, P; d'Enterria, D G; David, G; Delagrange, H; Denisov, A; Deshpande, A; Desmond, E J; Devismes, A; Dietzsch, O; Drapier, O; Drees, A; du Rietz, R; Durum, A; Dutta, D; Efremenko, Y V; El Chenawi, K; Enokizono, A; En'yo, H; Esumi, S; Ewell, L; Fields, D E; Fleuret, F; Fokin, S L; Fox, B D; Fraenkel, Z; Frantz, J E; Franz, A; Frawley, A D; Fung, S-Y; Garpman, S; Ghosh, T K; Glenn, A; Gogiberidze, G; Gonin, M; Gosset, J; Goto, Y; Granier de Cassagnac, R; Grau, N; Greene, S V; Grosse Perdekamp, M; Guryn, W; Gustafsson, H-A; Hachiya, T; Haggerty, J S; Hamagaki, H; Hansen, A G; Hartouni, E P; Harvey, M; Hayano, R; Hayashi, N; He, X; Heffner, M; Hemmick, T K; Heuser, J M; Hibino, M; Hill, J C; Holzmann, W; Homma, K; Hong, B; Hoover, A; Ichihara, T; Ikonnikov, V V; Imai, K; Isenhower, D; Ishihara, M; Issah, M; Isupov, A; Jacak, B V; Jang, W Y; Jeong, Y; Jia, J; Jinnouchi, O; Johnson, B M; Johnson, S C; Joo, K S; Jouan, D; Kametani, S; Kamihara, N; Kang, J H; Kapoor, S S; Katou, K; Kelly, S; Khachaturov, B; Khanzadeev, A; Kikuchi, J; Kim, D H; Kim, D J; Kim, D W; Kim, E; Kim, G-B; Kim, H J; Kistenev, E; Kiyomichi, A; Kiyoyama, K; Klein-Boesing, C; Kobayashi, H; Kochenda, L; Kochetkov, V; Koehler, D; Kohama, T; Kopytine, M; Kotchetkov, D; Kozlov, A; Kroon, P J; Kuberg, C H; Kurita, K; Kuroki, Y; Kweon, M J; Kwon, Y; Kyle, G S; Lacey, R; Ladygin, V; Lajoie, J G; Lebedev, A; Leckey, S; Lee, D M; Lee, S; Leitch, M J; Li, X H; Lim, H; Litvinenko, A; Liu, M X; Liu, Y; Maguire, C F; Makdisi, Y I; Malakhov, A; Manko, V I; Mao, Y; Martinez, G; Marx, M D; Masui, H; Matathias, F; Matsumoto, T; McGaughey, P L; Melnikov, E; Messer, F; Miake, Y; Milan, J; Miller, T E; Milov, A; Mioduszewski, S; Mischke, R E; Mishra, G C; Mitchell, J T; Mohanty, A K; Morrison, D P; Moss, J M; Mühlbacher, F; Mukhopadhyay, D; Muniruzzaman, M; Murata, J; Nagamiya, S; Nagle, J L; Nakamura, T; Nandi, B K; Nara, M; Newby, J; Nilsson, P; Nyanin, A S; Nystrand, J; O'Brien, E; Ogilvie, C A; Ohnishi, H; Ojha, I D; Okada, K; Ono, M; Onuchin, V; Oskarsson, A; Otterlund, I; Oyama, K; Ozawa, K; Pal, D; Palounek, A P T; Pantuev, V S; Papavassiliou, V; Park, J; Parmar, A; Pate, S F; Peitzmann, T; Peng, J-C; Peresedov, V; Pinkenburg, C; Pisani, R P; Plasil, F; Purschke, M L; Purwar, A K; Rak, J; Ravinovich, I; Read, K F; Reuter, M; Reygers, K; Riabov, V; Riabov, Y; Roche, G; Romana, A; Rosati, M; Rosnet, P; Ryu, S S; Sadler, M E; Saito, N; Sakaguchi, T; Sakai, M; Sakai, S; Samsonov, V; Sanfratello, L; Santo, R; Sato, H D; Sato, S; Sawada, S; Schutz, Y; Semenov, V; Seto, R; Shaw, M R; Shea, T K; Shibata, T-A; Shigaki, K; Shiina, T; Silva, C L; Silvermyr, D; Sim, K S; Singh, C P; Singh, V; Sivertz, M; Soldatov, A; Soltz, R A; Sondheim, W E; Sorensen, S P; Sourikova, I V; Staley, F; Stankus, P W; Stenlund, E; Stepanov, M; Ster, A; Stoll, S P; Sugitate, T; Sullivan, J P; Takagui, E M; Taketani, A; Tamai, M; Tanaka, K H; Tanaka, Y; Tanida, K; Tannenbaum, M J; Tarján, P; Tepe, J D; Thomas, T L; Tojo, J; Torii, H; Towell, R S; Tserruya, I; Tsuruoka, H; Tuli, S K; Tydesjö, H; Tyurin, N; van Hecke, H W; Velkovska, J; Velkovsky, M; Veszprémi, V; Villatte, L; Vinogradov, A A; Volkov, M A; Vznuzdaev, E; Wang, X R; Watanabe, Y; White, S N; Wohn, F K; Woody, C L; Xie, W; Yang, Y; Yanovich, A; Yokkaichi, S; Young, G R; Yushmanov, I E; Zajc, W A; Zhang, C; Zhou, S; Zhou, S J; Zolin, L

    2005-03-01

    The PHENIX experiment has measured midrapidity transverse momentum spectra (0.4charm at lower p(T). For all centralities, the charm production cross section is found to scale with the nuclear overlap function, T(AA). For minimum-bias collisions the charm cross section per binary collision is N(cc )/T(AA)=622+/-57(stat)+/-160(syst) microb.

  14. Hyperon AND Hyperon Resonance Properties From Charm Baryon Decays At BaBar

    SciTech Connect

    Ziegler, Veronique; /Iowa U.

    2007-07-03

    This report describes studies of hyperons and hyperon resonances produced in charm baryon decays at BABAR. Using two-body decays of the {Xi}{sub c}{sup 0} and {Omega}{sub c}{sup 0}, it is shown, for the first time, that the spin of the {omega}{sup -} is 3/2. The {Omega}{sup -} analysis procedures are extended to three-body final states and properties of the {Xi}(1690){sup 0} are extracted from a detailed isobar model analysis of the {Lambda}{sub c}{sup +} {yields} {Lambda}{bar K}{sup 0}K{sup +} Dalitz plot. The mass and width values of the {Xi}(1690){sup 0} are measured with much greater precision than attained previously. The hypothesis that the spin of the {Xi}(1690) resonance is 1/2 yields an excellent description of the data, while spin values 3/2 and 5/2 are disfavored. The {Lambda}a{sub 0}(980){sup +} decay mode of the {Lambda}{sub c}{sup +} is observed for the first time. Similar techniques are then used to study {Xi}(1530){sup 0} production in {Lambda}{sub c}{sup +} decay. The spin of the {Xi}(1530) is established for the first time to be 3/2. The existence of an S-wave amplitude in the {Xi}{sup -}{pi}{sup +} system is shown, and its interference with the {Xi}(1530){sup 0} amplitude provides the first clear demonstration of the Breit-Wigner phase motion expected for the {Xi}(1530). The {Xi}{sup -}{pi}{sup +} mass distribution in the vicinity of the {Xi}(1690){sup 0} exhibits interesting structure which may be interpreted as indicating that the {Xi}(1690) has negative parity.

  15. Charm and strange quark masses and fD s from overlap fermions

    NASA Astrophysics Data System (ADS)

    Yang, Yi-Bo; Chen, Ying; Alexandru, Andrei; Dong, Shao-Jing; Draper, Terrence; Gong, Ming; Lee, Frank X.; Li, Anyi; Liu, Keh-Fei; Liu, Zhaofeng; Lujan, Michael

    2015-08-01

    We use overlap fermions as valence quarks to calculate meson masses in a wide quark mass range on the 2 +1 -flavor domain-wall fermion gauge configurations generated by the RBC and UKQCD Collaborations. The well-defined quark masses in the overlap fermion formalism and the clear valence quark mass dependence of meson masses observed from the calculation facilitate a direct derivation of physical current quark masses through a global fit to the lattice data, which incorporates O (a2) and O (mc4a4) corrections, chiral extrapolation, and quark mass interpolation. Using the physical masses of Ds, Ds* and J /ψ as inputs, Sommer's scale parameter r0 and the masses of charm quark and strange quark in the MS ¯ scheme are determined to be r0=0.465 (4 )(9 ) fm , mcMS ¯(2 GeV )=1.118 (6 )(24 ) GeV (or mcMS ¯(mc)=1.304 (5 )(20 ) GeV ), and msMS ¯(2 GeV )=0.101 (3 )(6 ) GeV , respectively. Furthermore, we observe that the mass difference of the vector meson and the pseudoscalar meson with the same valence quark content is proportional to the reciprocal of the square root of the valence quark masses. The hyperfine splitting of charmonium, MJ /ψ-Mηc , is determined to be 119(2)(7) MeV, which is in good agreement with the experimental value. We also predict the decay constant of Ds to be fDs=254 (2 )(4 ) MeV . The masses of charmonium P -wave states χc 0 , χc 1 and hc are also in good agreement with experiments.

  16. A Statistical Analysis of Langmuir Wave-Electron Correlations Observed by the CHARM II Auroral Sounding Rocket

    NASA Astrophysics Data System (ADS)

    Dombrowski, M. P.; Labelle, J. W.; Kletzing, C.; Bounds, S. R.; Kaeppler, S. R.

    2014-12-01

    Langmuir-mode electron plasma waves are frequently observed by spacecraft in active plasma environments such as the ionosphere. Ionospheric Langmuir waves may be excited by the bump-on-tail instability generated by impinging beams of electrons traveling parallel to the background magnetic field (B). The Correlation of High-frequencies and Auroral Roar Measurement (CHARM II) sounding rocket was launched into a substorm at 9:49 UT on 17 February 2010, from the Poker Flat Research Range in Alaska. The primary instruments included the University of Iowa Wave-Particle Correlator (WPC), the Dartmouth High-Frequency Experiment (HFE), several charged particle detectors, low-frequency wave instruments, and a magnetometer. The HFE is a receiver system which effectively yields continuous (100% duty cycle) electric-field waveform measurements from 100 kHz to 5 MHz, and which had its detection axis aligned nominally parallel to B. The HFE output was fed on-payload to the WPC, which uses a phase-locked loop to track the incoming wave frequency with the most power, then sorting incoming electrons at eight energy levels into sixteen wave-phase bins. CHARM II encountered several regions of strong Langmuir wave activity throughout its 15-minute flight, and the WPC showed wave-lock and statistically significant particle correlation distributions during several time periods. We show results of an in-depth analysis of the CHARM II WPC data for the entire flight, including statistical analysis of correlations which show evidence of direct interaction with the Langmuir waves, indicating (at various times) trapping of particles and both driving and damping of Langmuir waves by particles. In particular, the sign of the gradient in particle flux appears to correlate with the phase relation between the electrons and the wave field, with possible implications for the wave physics.

  17. First Airborne IPDA Lidar Measurements of Methane and Carbon Dioxide Applying the DLR Greenhouse Gas Sounder CHARM-F

    NASA Astrophysics Data System (ADS)

    Amediek, A.; Ehret, G.; Fix, A.; Wirth, M.; Quatrevalet, M.; Büdenbender, C.; Kiemle, C.; Loehring, J.; Gerbig, C.

    2015-12-01

    First airborne measurement using CHARM-F, the four-wavelengths lidar for simultaneous soundings of atmospheric CO2 and CH4, were performed in Spring 2015 onboard the German research aircraft HALO. The lidar is designed in the IPDA (integrated path differential absorption) configuration using short double pulses, which gives column averaged gas mixing ratios between aircraft and ground. HALO's maximum flight altitude of 15 km and special features of the lidar, such as a relatively large laser ground spot, enable the CHARM-F system to be an airborne demonstrator for future spaceborne greenhouse gas lidars. Due to a high technological conformity this applies in particular to the French-German satellite mission MERLIN, the spaceborne methane IPDA lidar. The successfully completed flight measurements provide a valuable dataset, which supports the retrieval algorithm development for MERLIN notably. The flights covered different ground cover types, different orography types as well as the sea. Additionally, we captured different cloud conditions, at which the broken cloud case is a matter of particular interest. This dataset allows detailed analyses of measurement sensitivities, general studies on the IPDA principle and on technical details of the system. These activities are supported by another instrument onboard: a cavity ring down spectrometer, providing in-situ data of carbon dioxide, methane and water vapor with high accuracy and precision, which is ideal for validation purposes of the lidar. Additionally the onboard instrumentation of HALO gives information about pressure and temperature for cross-checking the ECMWF data, which are intended to be used for calculating the weighting function, the key quantity for the retrieval of gas column mixing ratios from the measured gas optical depths. In combination with dedicated descents into the boundary layer and subsequent ascents, a self-contained dataset for characterizations of CHARM-F is available.

  18. A search for flavor changing neutral currents and lepton family number violation in neutral two-body charm decays

    SciTech Connect

    Pripstein, D.A. |

    1997-06-01

    This work presents a search for three rare/forbidden neutral charm decays, D{sup 0} {yields} {mu}e, D{sup 0} {yields} {mu}{mu}, and D{sup 0} {yields} ee. This study was based on data collected in Experiment E789 at the Fermi National Accelerator Laboratory using 800 GeV/c proton-gold interactions. Two statistical analyses are presented, one with background subtraction and the other without background subtraction. No evidence is found for any of the decays and the following upper limits are presented at the 90% confidence level.

  19. Esophagectomy - open

    MedlinePlus

    Trans-hiatal esophagectomy; Trans-thoracic esophagectomy; En bloc esophagectomy; Removal of the esophagus - open; Ivor-Lewis esophagectomy, Blunt esophagectomy; Esophageal cancer - esophagectomy - open; Cancer of the esophagus - esophagectomy - open

  20. Measurements of prompt charm production cross-sections in pp collisions at sqrt{s}=13 TeV

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Abellán Beteta, C.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Anderson, J.; Andreassi, G.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; d'Argent, P.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Bel, L. J.; Bellee, V.; Belloli, N.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bertolin, A.; Bettler, M.-O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Billoir, P.; Bird, T.; Birnkraut, A.; Bizzeti, A.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borsato, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Britsch, M.; Britton, T.; Brodzicka, J.; Brook, N. H.; Buchanan, E.; Burr, C.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Campana, P.; Campora Perez, D.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cauet, Ch.; Cavallero, G.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chefdeville, M.; Chen, S.; Cheung, S.-F.; Chiapolini, N.; Chrzaszcz, M.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collazuol, G.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dall'Occo, E.; Dalseno, J.; David, P. N. Y.; Davis, A.; De Aguiar Francisco, O.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Simone, P.; Dean, C.-T.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Déléage, N.; Demmer, M.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Di Ruscio, F.; Dijkstra, H.; Donleavy, S.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Dossett, D.; Dovbnya, A.; Dreimanis, K.; Dufour, L.; Dujany, G.; Dupertuis, F.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Färber, C.; Farley, N.; Farry, S.; Fay, R.; Ferguson, D.; Fernandez Albor, V.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fohl, K.; Fol, P.; Fontana, M.; Fontanelli, F.; Forshaw, D. C.; Forty, R.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; García Pardiñas, J.; Garra Tico, J.; Garrido, L.; Gascon, D.; Gaspar, C.; Gauld, R.; Gavardi, L.; Gazzoni, G.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianì, S.; Gibson, V.; Girard, O. G.; Giubega, L.; Gligorov, V. V.; Göbel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gotti, C.; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Grünberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadavizadeh, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Henry, L.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Humair, T.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jawahery, A.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Karodia, S.; Kecke, M.; Kelsey, M.; Kenyon, I. R.; Kenzie, M.; Ketel, T.; Khairullin, E.; Khanji, B.; Khurewathanakul, C.; Klaver, S.; Klimaszewski, K.; Kochebina, O.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Kozeiha, M.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Krzemien, W.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kuonen, A. K.; Kurek, K.; Kvaratskheliya, T.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.-P.; Lefèvre, R.; Leflat, A.; Lefrançois, J.; Lemos Cid, E.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Likhomanenko, T.; Liles, M.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, B.; Liu, X.; Loh, D.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Lucio Martinez, M.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Lusiani, A.; Machefert, F.; Maciuc, F.; Maev, O.; Maguire, K.; Malde, S.; Malinin, A.; Manca, G.; Mancinelli, G.; Manning, P.; Mapelli, A.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marino, P.; Marks, J.; Martellotti, G.; Martin, M.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurin, B.; Mazurov, A.; McCann, M.; McCarthy, J.; McNab, A.; McNulty, R.; Meadows, B.; Meier, F.; Meissner, M.; Melnychuk, D.; Merk, M.; Michielin, E.; Milanes, D. A.; Minard, M.-N.; Mitzel, D. S.; Molina Rodriguez, J.; Monroy, I. A.; Monteil, S.; Morandin, M.; Morawski, P.; Mordà, A.; Morello, M. J.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Müller, D.; Müller, J.; Müller, K.; Müller, V.; Mussini, M.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nandi, A.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen, T. D.; Nguyen-Mau, C.; Niess, V.; Niet, R.; Nikitin, N.; Nikodem, T.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Onderwater, C. J. G.; Osorio Rodrigues, B.; Otalora Goicochea, J. M.; Otto, A.; Owen, P.; Oyanguren, A.; Palano, A.; Palombo, F.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Pappenheimer, C.; Parker, W.; Parkes, C.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petruzzo, M.; Picatoste Olloqui, E.; Pietrzyk, B.; Pilař, T.; Pinci, D.; Pistone, A.; Piucci, A.; Playfer, S.; Plo Casasus, M.; Poikela, T.; Polci, F.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Price, E.; Price, J. D.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, W.; Quagliani, R.; Rachwal, B.; Rademacker, J. H.; Rama, M.; Rangel, M. S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Redi, F.; Reichert, S.; Reid, M. M.; dos Reis, A. C.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Lopez, J. A.; Rodriguez Perez, P.; Roiser, S.; Romanovsky, V.; Romero Vidal, A.; Ronayne, J. W.; Rotondo, M.; Rouvinet, J.; Ruf, T.; Ruiz Valls, P.; Saborido Silva, J. J.; Sagidova, N.; Sail, P.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santimaria, M.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schubiger, M.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Siddi, B. G.; Silva Coutinho, R.; Silva de Oliveira, L.; Simi, G.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, E.; Smith, E.; Smith, I. T.; Smith, J.; Smith, M.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; Souza, D.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Stefkova, S.; Steinkamp, O.; Stenyakin, O.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Sun, L.; Sutcliffe, W.; Swientek, K.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szumlak, T.; T'Jampens, S.; Tayduganov, A.; Tekampe, T.; Teklishyn, M.; Tellarini, G.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Todd, J.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Trabelsi, K.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagnoni, V.; Valenti, G.; Vallier, A.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vázquez Sierra, C.; Vecchi, S.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Vilasis-Cardona, X.; Volkov, V.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voß, C.; de Vries, J. A.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wandernoth, S.; Wang, J.; Ward, D. R.; Watson, N. K.; Websdale, D.; Weiden, A.; Whitehead, M.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M. P.; Williams, M.; Williams, T.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wyllie, K.; Xie, Y.; Xu, Z.; Yang, Z.; Yu, J.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhelezov, A.; Zhokhov, A.; Zhong, L.; Zucchelli, S.

    2016-03-01

    Production cross-sections of prompt charm mesons are measured with the first data from pp collisions at the LHC at a centre-of-mass energy of 13 TeV. The data sample corresponds to an integrated luminosity of 4.98 ± 0.19 pb-1 collected by the LHCb experiment. The production cross-sections of D 0, D +, D s + , and D *+ mesons are measured in bins of charm meson transverse momentum, p T, and rapidity, y, and cover the range 0 < p T < 15GeV/c and 2.0 < y < 4.5. The inclusive cross-sections for the four mesons, including charge conjugation, within the range of 1 < p T < 8 GeV/c are found to be begin{array}{l}σ left(ppto {D}^0Xright)=2460± 3± 130\\upmu b \\ {}σ left(ppto {D}+Xright)=1000± 3± 110\\upmu b \\ {}σ left(ppto {D}_s+Xright)=460± 13± 100\\upmu b \\ {}σ left(ppto {D}^{ast +}Xright)=880± 5± 140\\upmu b where the uncertainties are due to statistical and systematic uncertainties, respectively. [Figure not available: see fulltext.

  1. Measurement of the forward-backward asymmetry of charm and bottom quarks at the Z pole using D *± mesons

    NASA Astrophysics Data System (ADS)

    Abreu, P.; Adam, W.; Agasi, E.; Ajinenko, I.; Aleksan, R.; Alekseev, G. D.; Allport, P. P.; Almehed, S.; Almeida, F. M. L.; Alvsvaag, S. J.; Amaldi, U.; Andreazza, A.; Andrieux, M. L.; Antilogus, P.; Apel, W.-D.; Arnoud, Y.; Åsman, B.; Augustin, J.-E.; Augustinus, A.; Baillon, P.; Bambade, P.; Barao, F.; Barate, R.; Bardin, D. Y.; Barker, G. J.; Baroncelli, A.; Barring, O.; Barrio, J. A.; Bartl, W.; Bates, M. J.; Battaglia, M.; Baubillier, M.; Baudot, J.; Becks, K.-H.; Begalli, M.; Beilliere, P.; Belokopytov, Yu.; Beltran, P.; Benvenuti, A. C.; Berggren, M.; Bertrand, D.; Bianchi, F.; Bigi, M.; Bilenky, M. S.; Billoir, P.; Bjarne, J.; Bloch, D.; Blume, M.; Blyth, S.; Bocci, V.; Bolognese, T.; Bonesini, M.; Bonivento, W.; Booth, P. S. L.; Borisov, G.; Bosio, C.; Bostjancic, B.; Bosworth, S.; Botner, O.; Bouquet, B.; Bourdarios, C.; Bowcock, T. J. V.; Bozzo, M.; Branchini, P.; Brand, K. D.; Brenner, R. A.; Briand, H.; Bricman, C.; Brillault, L.; Brown, R. C. A.; Bruckman, P.; Brunet, J.-M.; Bugge, L.; Buran, T.; Buys, A.; Caccia, M.; Calvi, M.; Camacho Rozas, A. J.; Camporesi, T.; Canale, V.; Canepa, M.; Cankocak, K.; Cao, F.; Carena, F.; Carrilho, P.; Carroll, L.; Caso, C.; Cassio, V.; Castillo Gimenez, M. V.; Cattai, A.; Cavallo, F. R.; Cerrito, L.; Chabaud, V.; Chan, A.; Charpentier, Ph.; Chaussard, L.; Chauveau, J.; Checchia, P.; Chelkov, G. A.; Chliapnikov, P.; Chochula, P.; Chorowicz, V.; Chrin, J. T. M.; Cindro, V.; Collins, P.; Contreras, J. L.; Contri, R.; Cortina, E.; Cosme, G.; Cossutti, F.; Couchot, F.; Crawley, H. B.; Crennell, D.; Crosetti, G.; Cuevas Maestro, J.; Czellar, S.; Dahl-Jensen, E.; Dahm, J.; Dalmagne, B.; Dam, M.; Damgaard, G.; Daum, A.; Dauncey, P. D.; Davenport, M.; da Silva, W.; Defoix, C.; Dellaricca, G.; Della Ricca, G.; Delpierre, P.; Demaria, N.; de Angelis, A.; de Boeck, H.; de Boer, W.; de Brabandere, S.; de Clereq, C.; de Fez Laso, M. D. M.; de La Vaissiere, C.; de Lotto, B.; de Min, A.; de Paula, A.; de Saint-Jean, C.; Dijkstra, H.; di Ciaccio, L.; Djama, F.; Dolbeau, J.; Donszelmann, M.; Doroba, K.; Dracos, M.; Drees, J.; Drees, K.-A.; Dris, M.; Dufour, Y.; Dupont, F.; Edsall, D.; Ehret, R.; Ekelof, T.; Ekspong, G.; Elsing, M.; Engel, J.-P.; Ershaidat, N.; Santo, M. Espirito; Fassouliotis, D.; Feindt, M.; Fenyuk, A.; Ferrer, A.; Filippas, T. A.; Firestone, A.; Foeth, H.; Fokitis, E.; Fontanelli, F.; Formenti, F.; Fousset, J.-L.; Franek, B.; Frenkiel, P.; Fries, D. C.; Frodesen, A. G.; Fruhwirth, R.; Fulda-Quenzer, F.; Furstenau, H.; Fuster, J.; Gamba, D.; Gandelman, M.; Garcia, C.; Garcia, J.; Gaspar, C.; Gasparini, U.; Gavillet, Ph.; Gazis, E. N.; Gele, D.; Gerber, J.-P.; Gillespie, D.; Gokieli, R.; Golob, B.; Gomez Y Cadenas, J. J.; Gopal, G.; Gorn, L.; Gorski, M.; Gracco, V.; Grard, F.; Graziani, E.; Grosdidier, G.; Gunnarsson, P.; Guy, J.; Haedinger, U.; Hahn, F.; Hahn, M.; Hahn, S.; Haider, S.; Hajduk, Z.; Hakansson, A.; Hallgren, A.; Hamacher, K.; Hao, W.; Harris, F. J.; Hedberg, V.; Henriques, R.; Hernandez, J. J.; Hernando, J. A.; Herquet, P.; Herr, H.; Hessing, T. L.; Higon, E.; Hilke, H. J.; Hill, T. S.; Holmgren, S.-O.; Holt, P. J.; Holthuizen, D.; Honore, P. F.; Houlden, M.; Hrubec, J.; Huet, K.; Hultqvist, K.; Ioannou, P.; Iversen, P.-S.; Jackson, J. N.; Jacobsson, R.; Jalocha, P.; Janik, R.; Jarlskog, G.; Jarry, P.; Jean-Marie, B.; Johansson, E. K.; Jonsson, L.; Juillot, P.; Kaiser, M.; Kalmus, G.; Kapusta, F.; Karlsson, M.; Karvelas, E.; Katargin, A.; Katsanevas, S.; Katsoufis, E. C.; Keranen, R.; Khomenko, B. A.; Khovanski, N. M.; King, B.; Kjaer, N. J.; Klein, H.; Klovning, A.; Kluit, P.; Koehne, J. H.; Koene, B.; Kokkinias, P.; Koratzinos, M.; Kostioukhine, V.; Kourkoumelis, C.; Kouznetsov, O.; Kramer, P.-H.; Krammer, M.; Kreuter, C.; Krolikowski, J.; Kronkvist, I.; Krumstein, Z.; Krupinski, W.; Kubinec, P.; Kucewicz, W.; Kulka, K.; Kurvinen, K.; Lacasta, C.; Laktineh, I.; Lambropoulos, C.; Lamsa, J. W.; Lanccri, L.; Langefeld, P.; Lapin, V.; Last, I.; Laugier, J.-P.; Lauhakangas, R.; Leder, G.; Ledroit, F.; Lefebure, V.; Lemoigne, R. Leitnernc Y.; Lemonne, J.; Lenzen, G.; Lepeltier, V.; Lesiak, T.; Levy, J. M.; Liko, D.; Lindner, R.; Lipniacka, A.; Lippi, I.; Loerstad, B.; Lokajicek, M.; Loken, J. G.; Lopez-Fernandez, A.; Lopez Aguera, M. A.; Loukas, D.; Lozano, J. J.; Lutz, P.; Lyons, L.; Maehlum, G.; Maillard, J.; Maio, A.; Maltezos, A.; Malychev, V.; Mandl, F.; Marco, J.; Marechal, B.; Margoni, M.; Marin, J.-C.; Mariotti, C.; Markou, A.; Maron, T.; Martinez-Rivero, C.; Martinez-Vidal, F.; Marti I Garcia, S.; Matorras, F.; Matteuzzi, C.; Matthiae, G.; Mazzucato, M.; Kay, M. Mc; Kay, R. Mc; Nulty, R. Mc; Medbo, J.; Meroni, C.; Meyer, W. T.; Michelotto, M.; Migliore, E.; Mikulec, I.; Mirabito, L.; Mitaroff, W. A.; Mjoernmark, U.; Moa, T.; Moeller, R.; Moenig, K.; Monge, M. R.; Morettini, P.; Mueller, H.; Murray, W. J.; Muryn, B.; Myatt, G.; Naraghi, F.; Navarria, F. L.; Navas, S.; Negri, P.; Nemecek, S.; Neumann, W.; Neumeister, N.; Nicolaidou, R.; Nielsen, B. S.; Nikolaenko, V.; Niss, P.; Nomerotski, A.; Normand, A.; Oberschulte-Beckmann, W.; Obraztsov, V.; Olshevski, A. G.; Orava, R.; Osterberg, K.; Ouraou, A.; Paganini, P.; Paganoni, M.; Pain, R.; Palka, H.; Papadopoulou, Th. D.; Pape, L.; Parodi, F.; Passeri, A.; Pegoraro, M.; Pennanen, J.; Peralta, L.; Perevozchikov, V.; Pernegger, H.; Perrotta, A.; Petridou, C.; Petrolini, A.; Phillips, H. T.; Piana, G.; Pierre, F.; Pimenta, M.; Plaszczynski, S.; Podobrin, O.; Pol, M. E.; Polok, G.; Poropat, P.; Pozdniakov, V.; Prest, M.; Privitera, P.; Pullia, A.; Radojicic, D.; Ragazzi, S.; Rahmani, H.; Rames, J.; Ratoff, P. N.; Read, A. L.; Reale, M.; Rebecchi, P.; Redaelli, N. G.; Regler, M.; Reid, D.; Renton, P. B.; Resvanis, L. K.; Richard, F.; Richardson, J.; Ridky, J.; Rinaudo, G.; Ripp, I.; Romero, A.; Roncagliolo, I.; Ronchese, P.; Ronjin, V.; Roos, L.; Rosenberg, E. I.; Rosso, E.; Roudeau, P.; Rovelli, T.; Ruckstuhl, W.; Ruhlmann-Kleider, V.; Ruiz, A.; Saarikko, H.; Sacquin, Y.; Sadovsky, A.; Sajot, G.; Salt, J.; Sanchez, J.; Sannino, M.; Schneider, H.; Schyns, M. A. E.; Sciolla, G.; Scuri, F.; Sedykh, Y.; Segar, A. M.; Seitz, A.; Sekulin, R.; Shellard, R. C.; Siccama, I.; Siegrist, P.; Simonetti, S.; Simonetto, F.; Sisakian, A. N.; Sitar, B.; Skaali, T. B.; Smadja, G.; Smirnov, N.; Smirnova, O.; Smith, G. R.; Sosnowski, R.; Souza-Santos, D.; Spassov, T.; Spiriti, E.; Squarcia, S.; Staeck, H.; Stanescu, C.; Stapnes, S.; Stavitski, I.; Stavropoulos, G.; Stepaniak, K.; Stichelbaut, F.; Stocchi, A.; Strauss, J.; Strub, R.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Tabarelli, T.; Tchikilev, O.; Theodosiou, G. E.; Thome, Z.; Tilquin, A.; Timmermans, J.; Tkatchev, L. G.; Todorov, T.; Toet, D. Z.; Tomaradze, A.; Tome, B.; Torassa, E.; Tortora, L.; Transtromer, G.; Treille, D.; Trischuk, W.; Tristram, G.; Troncon, C.; Tsirou, A.; Turleur, M.-L.; Tuuva, T.; Tyapkin, I. A.; Tyndel, M.; Tzamarias, S.; Ueberschaer, B.; Ueberschaer, S.; Ullaland, O.; Valenti, G.; Vallazza, E.; Valls Ferrer, J. A.; Vander Velde, C.; van Apeldoorn, G. W.; van Dam, P.; van Doninck, W. K.; van Eldik, J.; Vegni, G.; Ventura, L.; Venus, W.; Verbeure, F.; Verlato, M.; Vertogradov, L. S.; Vilanova, D.; Vincent, P.; Vitale, L.; Vlasov, E.; Vodopyanov, A. S.; Voutilainen, M.; Vrba, V.; Wahlen, H.; Walck, C.; Waldner, F.; Wehr, A.; Weierstall, M.; Weilhammer, P.; Wetherell, A. M.; Wicke, D.; Wickens, J. H.; Wielers, M.; Wilkinson, G. R.; Williams, W. S. C.; Winter, M.; Witek, M.; Wormser, G.; Woschnagg, K.; Yip, K.; Yushchenko, O.; Zach, F.; Zaitsev, A.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zevgolatakos, E.; Zimin, N. I.; Zito, M.; Zontar, D.; Zuberi, R.; Zucchelli, G. C.; Zumerle, G.

    1995-09-01

    The forward-backward asymmetries for the processese^ + e^ - to cbar c ande^ + e^ - to bbar b at the Z resonance are measured using identified D *± mesons. In 905,000 selected hadronic events, taken in 1991 and 1992 with the DEL-PHI detector at LEP, 4757 D *+→ D 0π+ decays are reconstructed. The c and b quark forward-backward asymmetries are determined to be: 10052_2005_Article_BF01556359_TeX2GIFE1.gif begin{gathered} A_{FB}^{cbar c} = 0.077 ± 0.029(stat) ± 0.012(sys), \\ A_{FB}^{bbar b} = 0.059 ± 0.062(stat) ± 0.024(sys). \\ Constraining the b asymmetry to the value measured by DELPHI using independent analyses, the charm asymmetry is determined to be: 10052_2005_Article_BF01556359_TeX2GIFE2.gif A_{FB}^{c,const} = 0.068 ± 0.027(stat) ± 0.011(sys). . This result corresponds to an effective electroweak mixing angle measured using charm quark events of: 10052_2005_Article_BF01556359_TeX2GIFE3.gif sin ^2 θ _{eff}^{lept} = 0.2307 ± 0.0062(stat) ± 0.0026(sys).

  2. Multiple-neutral-meson decays of the /tau/ lepton and electromagnetic calorimeter requirements at Tau-Charm Factory

    SciTech Connect

    Gan, K.K.

    1989-08-01

    This is a study of the physics sensitivity to the multiple-neutral-meson decays of the /tau/ lepton at the Tau-Charm Factory. The sensitivity is compared for a moderate and an ultimate electromagnetic calorimeter. With the high luminosity of the Tau- Charm Factory, a very large sample of the decays /tau//sup /minus// /yields/ /pi//sup /minus//2/pi//sup 0//nu//sub /tau// and /tau//sup /minus// /yields/ /pi//sup /minus//3/pi//sup 0//nu//sub /tau// can be collected with both detectors. However, with the ultimate detector, 2/pi//sup 0/ and 3/pi//sup 0/ can be unambiguously reconstructed with very little background. For the suppressed decay /tau//sup /minus// /yields/ /pi//sup /minus///eta//pi//sup 0//nu//sub /tau//, only the ultimate detector has the sensitivity. The ultimate detector is also sensitive to the more suppressed decay /tau//sup /minus// /yields/ K/sup /minus///eta//nu//sub /tau// and the moderate detector may have the sensitivity if the hadronic background is not significantly larger than that predicted by Lund. In the case of the highly suppressed second-class-current decay /tau//sup /minus// /yields/ /pi//sup /minus///eta//nu//sub /tau//, only the ultimate detector has sensitivity. The sensitivity can be greatly enhanced with a small-angle photon veto. 16 refs., 9 figs., 2 tabs.

  3. OPE, charm-quark mass, and decay constants of D and Ds mesons from QCD sum rules

    PubMed Central

    Lucha, Wolfgang; Melikhov, Dmitri; Simula, Silvano

    2011-01-01

    We present a sum-rule extraction of the decay constants of the charmed mesons D and Ds from the two-point correlator of pseudoscalar currents. First, we compare the perturbative expansion for the correlator and the decay constant performed in terms of the pole and the running MS¯ masses of the charm quark. The perturbative expansion in terms of the pole mass shows no signs of convergence whereas reorganizing this very expansion in terms of the MS¯ mass leads to a distinct hierarchy of the perturbative expansion. Furthermore, the decay constants extracted from the pole-mass correlator turn out to be considerably smaller than those obtained by means of the MS¯-mass correlator. Second, making use of the OPE in terms of the MS¯ mass, we determine the decay constants of both D and Ds mesons with an emphasis on the uncertainties in these quantities related both to the input QCD parameters and to the limited accuracy of the method of sum rules. PMID:21949465

  4. OPE, charm-quark mass, and decay constants of D and Ds mesons from QCD sum rules.

    PubMed

    Lucha, Wolfgang; Melikhov, Dmitri; Simula, Silvano

    2011-06-27

    We present a sum-rule extraction of the decay constants of the charmed mesons D and Ds from the two-point correlator of pseudoscalar currents. First, we compare the perturbative expansion for the correlator and the decay constant performed in terms of the pole and the running MS¯ masses of the charm quark. The perturbative expansion in terms of the pole mass shows no signs of convergence whereas reorganizing this very expansion in terms of the MS¯ mass leads to a distinct hierarchy of the perturbative expansion. Furthermore, the decay constants extracted from the pole-mass correlator turn out to be considerably smaller than those obtained by means of the MS¯-mass correlator. Second, making use of the OPE in terms of the MS¯ mass, we determine the decay constants of both D and Ds mesons with an emphasis on the uncertainties in these quantities related both to the input QCD parameters and to the limited accuracy of the method of sum rules.

  5. {epsilon}{sub K} at next-to-next-to-leading order: The charm-top-quark contribution

    SciTech Connect

    Brod, Joachim; Gorbahn, Martin

    2010-11-01

    We perform a next-to-next-to-leading order QCD analysis of the charm-top-quark contribution {eta}{sub ct} to the effective |{Delta}S|=2 Hamiltonian in the standard model. {eta}{sub ct} represents an important part of the short distance contribution to the parameter {epsilon}{sub K}. We calculate the three-loop anomalous dimension of the leading operator Q-tilde{sub S2}, the three-loop mixing of the current-current and penguin operators into Q-tilde{sub S2}, and the corresponding two-loop matching conditions at the electroweak, the bottom-quark, and the charm-quark scale. As our final numerical result we obtain {eta}{sub ct}=0.496{+-}0.047, which is roughly 7% larger than the next-to-leading-order (NLO) value {eta}{sub ct}{sup NLO}=0.457{+-}0.073. This results in a prediction for |{epsilon}{sub K}|=(1.90{+-}0.26)x10{sup -3}, which corresponds to an enhancement of approximately 3% with respect to the value obtained using {eta}{sub ct}{sup NLO}.

  6. The three-dimensional global numerical model CHARM-I: The incorporation of processes in the ionospheric D-region

    NASA Astrophysics Data System (ADS)

    Krivolutsky, A. A.; Cherepanova, L. A.; V'yushkova, T. Yu.; Repnev, A. I.

    2015-07-01

    We describe the three-dimensional numerical global photochemical model CHARM-I (CHemical Atmospheric Research Model with Ions) and the results of numerical calculations of global distributions of neutral and charged atmospheric trace gases (in the height range of up to 90 km), such as ozone, nitrogen oxides, electrons, and positive and negative ions. This model is an improved version of the CHARM three-dimensional photochemical model of neutral components with additional reactions with the involvement of ions (a total of 200 photochemical reactions). The model incorporates UV-radiation fluxes on the Lyman-α line and galactic cosmic rays as ionizing factors. The neutral components are calculated with the method of "chemical families" and the concentrations of charged components are calculated by the electroneutrality condition at each time step. The spatial transport of chemically active species is described in the model by the Prather scheme. The developed model makes it also possible to take into account solar flares and particle precipitations in the ionospheric D-region.

  7. Probing proton intrinsic charm in photon or Z boson production accompanied by heavy jets at the LHC

    NASA Astrophysics Data System (ADS)

    Lipatov, A. V.; Lykasov, G. I.; Stepanenko, Yu. Yu.; Bednyakov, V. A.

    2016-09-01

    We consider an observable very sensitive to the nonzero intrinsic charm (IC) contribution to the proton density. It is the ratio between the differential cross sections of the photon or Z -boson and c -jet production in the p p collision, γ (Z )+c , and the γ (Z ) and the b -jet production. It is shown that this ratio can be approximately flat or increasing at large γ (Z ) transverse momenta pT, and their pseudorapidities 1.5 <η <2.4 if the IC contribution is taken into account. On the contrary, in the absence of the IC, this ratio decreases as pT grows. We also present the ratios of the cross sections integrated over pT as a function of the IC probability w . It is shown that these ratios are mostly independent on the theoretical uncertainties, and such predictions could therefore be much more promising for the search for the intrinsic charm signal at the LHC compared to the predictions for pT spectra, which significantly depend on these uncertainties.

  8. Study of B-Meson Decays to Final States with a Single Charm Baryon

    SciTech Connect

    Majewski, Stephanie A.

    2007-08-01

    A study of B-meson decays to final states with a single charm baryon is presented based on data recorded by the BABAR detector at the Stanford Linear Accelerator Center. Although the B meson is the lightest bottom-flavored meson, it is heavy enough to decay to a baryon made of three quarks and an antibaryon made of three antiquarks. By studying the baryonic weak decays of the B meson, we can investigate baryon production mechanisms in heavy meson decays. In particular, we measure the rates of the decays B- → Λ+c$\\bar{p}$π- and $\\bar{B}$0 → Λ+c$\\bar{p}$. Comparing these rates, we confirm an observed trend in baryonic B decays that the decay with the lower energy release, B- → Λ+c$\\bar{p}$π-, is favored over $\\bar{B}$0 → Λ+c$\\bar{p}$. The dynamics of the baryon-antibaryon (Λ+c$\\bar{p}$) system in the three-body decay also provide insight into baryon-antibaryon production mechanisms. The B- → Λ+c$\\bar{p}$π- system is a laboratory for searches for excited #c baryon states; we observe the resonant decays B- → Σc(2455) 0$\\bar{p}$ and B- → Σc(2800) 0$\\bar{p}$. This is the first observation of the decay B- → Σc(2800) 0$\\bar{p}$; however, the mass of the observed #c(2800)0 state is inconsistent with previous measurements. Finally, we examine the angular distribution of the B- → Σc(2455) 0$\\bar{p}$ decays and measure the spin of the B- → Σc(2455) 0$\\bar{p}$ baryon to be J = 1/2, as predicted by the quark model.

  9. PREFACE: XI Conference on Beauty, Charm, Hyperons in Hadronic Interactions BEACH

    NASA Astrophysics Data System (ADS)

    Bozzo, Marco

    2014-11-01

    This volume contains the invited and contributed papers presented at the 11th International Conference on Hyperons, Charm and Beauty Hadrons, currently known as the BEACH Conferences. The BEACH conferences cover a broad range of physics topics in the field of Hyperon and heavy-flavor physics. This conference continues the BEACH series, which began with a meeting in Strasbourg in 1995 and since then offers a biennial opportunity for both theorists and experimentalists from the high-energy physics community to discuss all aspects of flavour physics. The 11th Conference took place in the Lecture Theatre of the Physics West Building of the University of Birmingham (United Kingdom) from July 22nd to July 26th and was attended by 107 participants. All of the sessions were plenary sessions accommodating review talks and shorter contributions discussing both theory and recent experiments. At the end of the conference Valerie Gibson (Cavendish Laboratory, University of Cambridge, UK) and Sebastian Jaeger (School of Physics and Astronomy, University of Sussex, UK) summarized and put in context all the presentations of the conference giving two very interesting Summary talks. These Conference Proceedings are particularly interesting since, due to the long shutdown of the LHC in Geneva (CH), most of the data presented were from the entire data set available. This volume in fact offers an interesting panorama of the present situation and allows a comparison of the experimental data and the theory in a field that is always in continuous evolution. The conference was impeccably organized by the Local Organizing Committee chaired by Cristina Lazzeroni (Birmingham Univeristy, Birmingham, UK) that I want to thank particularly here. Many from the University Staff have contributed to the smooth running of the conference. We would like to thank the Local Scientific Secretariat for their invaluable help in making the conference a truly enjoyable and unforgettable event; a special thanks

  10. ADHydro: A Parallel Implementation of a Large-scale High-Resolution Multi-Physics Distributed Water Resources Model Using the Charm++ Run Time System

    NASA Astrophysics Data System (ADS)

    Steinke, R. C.; Ogden, F. L.; Lai, W.; Moreno, H. A.; Pureza, L. G.

    2014-12-01

    Physics-based watershed models are useful tools for hydrologic studies, water resources management and economic analyses in the contexts of climate, land-use, and water-use changes. This poster presents a parallel implementation of a quasi 3-dimensional, physics-based, high-resolution, distributed water resources model suitable for simulating large watersheds in a massively parallel computing environment. Developing this model is one of the objectives of the NSF EPSCoR RII Track II CI-WATER project, which is joint between Wyoming and Utah EPSCoR jurisdictions. The model, which we call ADHydro, is aimed at simulating important processes in the Rocky Mountain west, including: rainfall and infiltration, snowfall and snowmelt in complex terrain, vegetation and evapotranspiration, soil heat flux and freezing, overland flow, channel flow, groundwater flow, water management and irrigation. Model forcing is provided by the Weather Research and Forecasting (WRF) model, and ADHydro is coupled with the NOAH-MP land-surface scheme for calculating fluxes between the land and atmosphere. The ADHydro implementation uses the Charm++ parallel run time system. Charm++ is based on location transparent message passing between migrateable C++ objects. Each object represents an entity in the model such as a mesh element. These objects can be migrated between processors or serialized to disk allowing the Charm++ system to automatically provide capabilities such as load balancing and checkpointing. Objects interact with each other by passing messages that the Charm++ system routes to the correct destination object regardless of its current location. This poster discusses the algorithms, communication patterns, and caching strategies used to implement ADHydro with Charm++. The ADHydro model code will be released to the hydrologic community in late 2014.

  11. Measurement of the doubly Cabibbo suppressed decay D0 ---> K+ pi- and a search for charm mixing

    SciTech Connect

    Link, J.M.; Yager, P.M.; Anjos, J.C.; Bediaga, I.; Gobel, C.; Machado, A.A.; Magnin, J.; Massafferri, A.; de Miranda, J.M.; Pepe, I.M.; Polycarpo, E.; dos Reis, A.C.; Carrillo, S.; Casimiro, E.; Cuautle, E.; Sanchez-Hernandez, A.; Uribe, C.; Vazquez, F.; Agostino, L.; Cinquini, L.; Cumalat, J.P. /Colorado U. /Fermilab /Frascati /Guanajuato U. /Illinois U., Urbana /Indiana U. /Korea U. /Kyungpook Natl. U. /INFN, Milan /Milan U. /North Carolina U. /Pavia U. /INFN, Pavia /Puerto Rico U., Mayaguez /South Carolina U. /Tennessee U. /Vanderbilt U. /Wisconsin U., Madison

    2004-12-01

    The authors present an analysis of the decay D{sup 0} {yields} K{sup +}{pi}{sup -} based on FOCUS data. From a sample of 234 signal events, they find a branching ratio of {Lambda}(D{sup 0} {yields} K{sup +}{pi}{sup -})/{Lambda}(D{sup 0} {yields} K{sup -}{pi}{sup +}) = (0.429{sub -0.061}{sup +0-.063} {+-} 0.027)% under the assumptions of no mixing and no CP violation. Allowing for CP violation, the find a branching ratio of (0.435{sub -0.061}{sup +0.063} {+-} 0.028)% and a CP asymmetry of 0.178{sub -0.141}{sup +0.144} {+-} 0.041. The branching ratio for the case of mixing with no CP violation is (0.381{sub -0.163}{sup +0.167} {+-} 0.092)%. They also present limits on charm mixing.

  12. CHARM-F: An airborne integral path differential absorption lidar for simultaneous measurements of carbon dioxide and methane columns

    NASA Astrophysics Data System (ADS)

    Amediek, A.; Büdenbender, H.-C.; Ehret, G.; Fix, A.; Kiemle, C.; Quatrevalet, M.; Wirth, M.; Hoffmann, D.; Löhring, J.; Klein, V.

    2012-04-01

    CHARM-F (CO2 and CH4 Atmospheric Remote Monitoring - Flugzeug) is DLR's airborne Integral Path Differential Absorption (IPDA) lidar for simultaneous measurements of the column-weighted average dry-air mixing ratios of atmospheric carbon dioxide and methane, designed to be flown on DLR's new High-Altitude, LOng-range research aircraft, HALO. It is meant to serve as a demonstrator of the use of spaceborne active optical instruments in inferring atmospheric CO2 and CH4 surface fluxes from total column measurements by inverse modeling. As it will be shown, this is enabled by HALO's high flight altitude and its range of 8000 km, which will make it possible to produce real-world data at truly regional scales with a viewing geometry and vertical weighting function similar to those enabled by a space platform. In addition, CHARM-F has the potential to be used as a validation tool not only for active but also passive spaceborne instruments utilizing scattered solar radiation for remote sensing of greenhouse gases. Building on the expertise from CHARM, a helicopter-borne methane IPDA lidar for pipeline monitoring developed in collaboration with E.ON, and WALES, DLR's water vapour differential absorption lidar, CHARM-F relies on a double-pulse transmitter architecture producing nanosecond pulses which allows for a precise ranging and a clean separation of atmospheric influences from the ground returns leading to an unambiguously defined column. One pulse is tuned to an absorption line of the trace gas under consideration, the other to a nearby wavelength with much less absorption. The close temporal separation of 250 μs within each pulse pair ensures that nearly the same spot on ground is illuminated. The ratio of both return signals is then a direct function of the column-weighted average dry-air mixing ratio. The two laser systems, one for each trace gas, use highly efficient and robust Nd:YAG lasers to pump an optical parametric oscillator (OPO) level which converts the

  13. Observation and study of bottom-meson decays to a charm meson, a proton-antiproton pair, and pions

    SciTech Connect

    Hong, Tae Min

    2010-04-27

    Bottom-meson decays with baryons show two unusual features—the branching fractions are enhanced for multibody decays and the baryon-antibaryon subsystem recoils against the other decay products—and their reasons are not yet well understood. Moreover, measurements using explicit reconstruction techniques constitute only about 1% out of about 8% of such decays. This Dissertation reports the study of ten bottom-meson decays (labeled 0– 9) to a proton-antiproton pair, a charm meson, and a system of up to two pions, using the BABAR Experiment’s 455×106 BB pairs produced with the PEP-II asymmetric-energy e+e- collider at the Stanford Linear Accelerator Center.

  14. Dynamically generated N* and {Lambda}* resonances in the hidden charm sector around 4.3 GeV

    SciTech Connect

    Wu Jiajun; Molina, R.; Oset, E.; Zou, B. S.

    2011-07-15

    The interactions of D-bar{Sigma}{sub c}-D-bar{Lambda}{sub c}, D-bar*{Sigma}{sub c}-D-bar*{Lambda}{sub c}, and related strangeness channels, are studied within the framework of the coupled-channel unitary approach with the local hidden gauge formalism. A series of meson-baryon dynamically generated relatively narrow N* and {Lambda}* resonances are predicted around 4.3 GeV in the hidden charm sector. We make estimates of production cross sections of these predicted resonances in p-barp collisions for the experiment of antiproton annihilation at Darmstadt (PANDA) at the forthcoming GSI Facility for Antiproton and Ion Research (FAIR) facility.

  15. First Observation of the Doubly Cabibbo-Suppressed Decay of a Charmed Baryon: Λ_{c}^{+}→pK^{+}π^{-}.

    PubMed

    Yang, S B; Tanida, K; Kim, B H; Adachi, I; Aihara, H; Asner, D M; Aulchenko, V; Aushev, T; Babu, V; Badhrees, I; Bakich, A M; Barberio, E; Bhardwaj, V; Bhuyan, B; Biswal, J; Bonvicini, G; Bozek, A; Bračko, M; Browder, T E; Červenkov, D; Chekelian, V; Chen, A; Cheon, B G; Chilikin, K; Chistov, R; Cho, K; Chobanova, V; Choi, Y; Cinabro, D; Dalseno, J; Danilov, M; Dash, N; Doležal, Z; Drásal, Z; Dutta, D; Eidelman, S; Farhat, H; Fast, J E; Ferber, T; Fulsom, B G; Gabyshev, N; Garmash, A; Gaur, V; Gillard, R; Goh, Y M; Goldenzweig, P; Greenwald, D; Grygier, J; Haba, J; Hamer, P; Hara, T; Hayasaka, K; Hayashii, H; Hou, W-S; Iijima, T; Inami, K; Inguglia, G; Ishikawa, A; Itoh, R; Iwasaki, Y; Jacobs, W W; Jaegle, I; Jeon, H B; Joo, K K; Julius, T; Kang, K H; Kato, E; Katrenko, P; Kiesling, C; Kim, D Y; Kim, H J; Kim, J B; Kim, K T; Kim, M J; Kim, S H; Kim, S K; Kim, Y J; Kinoshita, K; Kobayashi, N; Kodyš, P; Korpar, S; Križan, P; Krokovny, P; Kuhr, T; Kuzmin, A; Kwon, Y-J; Lange, J S; Lee, I S; Li, C H; Li, H; Li, L; Li, Y; Li Gioi, L; Libby, J; Liventsev, D; Lubej, M; Masuda, M; Matvienko, D; Miyabayashi, K; Miyata, H; Mizuk, R; Mohanty, G B; Moll, A; Moon, H K; Mussa, R; Nakano, E; Nakao, M; Nanut, T; Nath, K J; Nayak, M; Negishi, K; Niiyama, M; Nisar, N K; Nishida, S; Ogawa, S; Okuno, S; Olsen, S L; Pakhlova, G; Pal, B; Park, C W; Park, H; Pedlar, T K; Pestotnik, R; Petrič, M; Piilonen, L E; Pulvermacher, C; Rauch, J; Ritter, M; Rostomyan, A; Ryu, S; Sahoo, H; Sakai, Y; Sandilya, S; Santelj, L; Sanuki, T; Sato, Y; Savinov, V; Schlüter, T; Schneider, O; Schnell, G; Schwanda, C; Schwartz, A J; Seino, Y; Senyo, K; Seon, O; Seong, I S; Sevior, M E; Shebalin, V; Shibata, T-A; Shiu, J-G; Shwartz, B; Simon, F; Sohn, Y-S; Sokolov, A; Stanič, S; Starič, M; Stypula, J; Sumihama, M; Sumiyoshi, T; Takizawa, M; Tamponi, U; Teramoto, Y; Trabelsi, K; Trusov, V; Uchida, M; Uglov, T; Unno, Y; Uno, S; Urquijo, P; Usov, Y; Vanhoefer, P; Varner, G; Varvell, K E; Vinokurova, A; Vossen, A; Wagner, M N; Wang, C H; Wang, M-Z; Wang, P; Wang, X L; Watanabe, Y; Williams, K M; Won, E; Yamaoka, J; Yashchenko, S; Ye, H; Yelton, J; Yuan, C Z; Yusa, Y; Zhang, Z P; Zhilich, V; Zhulanov, V; Zupanc, A

    2016-07-01

    We report the first observation of the decay Λ_{c}^{+}→pK^{+}π^{-} using a 980  fb^{-1} data sample collected by the Belle detector at the KEKB asymmetric-energy e^{+}e^{-} collider. This is the first observation of a doubly Cabibbo-suppressed decay of a charmed baryon. We measure the branching ratio of this decay with respect to its Cabibbo-favored counterpart to be B(Λ_{c}^{+}→pK^{+}π^{-})/B(Λ_{c}^{+}→pK^{-}π^{+})=(2.35±0.27±0.21)×10^{-3}, where the uncertainties are statistical and systematic, respectively. PMID:27419562

  16. Flavor-changing top-charm associated productions at the ILC in the littlest Higgs model with T parity

    SciTech Connect

    Zhang Yanju; Lu Gongru; Wang Xuelei

    2011-04-01

    The littlest Higgs model with T parity has new flavor-changing couplings with the standard model quarks, which do not suffer strong constraints from electroweak precision data. So these flavor-changing interactions may enhance the cross sections of some flavor-changing neutral-current processes. In this work, we study the flavor-changing top-charm associated productions via the e{sup -}{gamma} collision at the ILC. We find that the cross sections are sensitive to the mirror quark masses. With reasonable values of the parameters, the cross sections may reach the detectable level and provide useful information about the relevant parameters in the littlest Higgs model with T parity, especially in setting an upper limit on the mirror quark masses.

  17. The impact of the intrinsic charm quark content of a proton on the differential \\gamma +c cross section

    NASA Astrophysics Data System (ADS)

    Rostami, S.; Khorramian, A.; Aleedaneshvar, A.

    2016-06-01

    We present a comparative analysis of the impact of the non-perturbative intrinsic charm quark content of a proton on the differential cross section of a γ + c-jet in pp and p\\bar{p} collisions, for the kinematic regions that are sensitive to this contribution. We discuss the Q 2 evolution of intrinsic quark distributions at the next-to-leading order (NLO) and present a code which provides these distributions as a function of x and Q 2 for any arbitrary Fock state probability. For the p\\bar{p} collisions at the Tevatron, the results are compared with recent experimental data at \\sqrt{s}=1.96 TeV and also predictions for pp collisions at \\sqrt{s}=8 TeV and \\sqrt{s}=13 TeV for the Large Hadron Collider.

  18. New flavor production in. gamma. ,. mu. ,. nu. , and hadron beams. [Review

    SciTech Connect

    Wojcicki, S.

    1980-01-01

    During the last few years the main emphasis in the study of heavy particle production (mainly charm) by means other than e/sup +/e/sup -/ annihilation has been on the production mechanisms. This review concentrates mainly on the production data in ..gamma.., ..mu.., ..nu.., and hadron beams. The heavy flavor searches divide themselves naturally into three categories, each one characterized by its own peculiar advantages and shortcomings; these are summarized briefly. Then the following topics are taken up: charm production by hadrons (central production, forward production - ..lambda../sub c/ and D production, anomalies and discrepancies), charm production by photons and muons, new flavor production by neutrinos, status of heavier flavors, and production bound flavors (eta/sub c/ search, UPSILON muoproduction, J/psi and UPSILON hadroproduction, J/psi muoproduction). In his outlook for the future, the author presents a few words concerning the status of detectors: emulsions, high-resolution streamer chambers, high-resolution bubble chambers, and solid-state detectors. 83 references, 36 figures, 4 tables. (RWR)

  19. Screening for chloramphenicol residues in the tissues and fluids of treated cattle by the four plate test, Charm II radioimmunoassay and Ridascreen CAP-Glucuronid enzyme immunoassay.

    PubMed

    Lynas, L; Currie, D; Elliott, C T; McEvoy, J D; Hewitt, S A

    1998-12-01

    The administration of chloramphenicol (CAP) is banned in food animals in the European Union (EU). It is, therefore, important to have adequate screening methods to determine if residues of CAP and its major metabolite, chloramphenicol-glucuronide (CAP-Gluc), are present in samples taken for monitoring purposes. Six castrated male cattle were treated with a single intramuscular injection of 10 mg kg-1 CAP. Animals were sampled once daily for urine and were slaughtered at 3 and 6 d post-injection. Samples of bile, kidney, liver and diaphragmatic muscle were removed at slaughter. All matrices were analysed using the four plate test (FPT) bioassay, the Charm II radioimmunoassay and a Ridascreen CAP-Glucuronid competitive enzyme immunoassay (EIA). The FPT detected CAP residues in urine samples taken up to 2 d post-treatment. The Charm assay detected CAP in the urine for up to 4 d post-treatment. The EIA detected CAP throughout the 6 d sampling period. Samples of bile were positive by both the EIA and the Charm assay at day 3 and day 6. No zones of inhibition were obtained using the FPT in bile or diaphragm either with or without sample pre-treatment with beta-glucuronidase. However, the kidney and the liver from one animal killed at day 6 gave larger zones of inhibition after treatment with beta-glucuronidase, indicating the presence of CAP. The kidneys of all treated animals slaughtered at day 3 were positive by both the EIA and the Charm assay but none of the kidneys at day 6 tested positive by either method. Owing to technical difficulties, the Charm assay was not suitable for the analysis of liver. The EIA failed to detect CAP in the liver of any treated animal. It is concluded that urine appears to be the best matrix for screening purposes. The sensitivity of the FPT is inadequate for the determination of CAP residues were minimal withdrawal periods have been observed. The Charm assay and the EIA were suitable for the detection of both CAP and CAP-Gluc in tissues

  20. Open Content in Open Context

    ERIC Educational Resources Information Center

    Kansa, Sarah Whitcher; Kansa, Eric C.

    2007-01-01

    This article presents the challenges and rewards of sharing research content through a discussion of Open Context, a new open access data publication system for field sciences and museum collections. Open Context is the first data repository of its kind, allowing self-publication of research data, community commentary through tagging, and clear…

  1. Measurement of single electrons and implications for charm production in Au+Au collisions at square root[s(NN)] = 130 GeV.

    PubMed

    Adcox, K; Adler, S S; Ajitanand, N N; Akiba, Y; Alexander, J; Aphecetche, L; Arai, Y; Aronson, S H; Averbeck, R; Awes, T C; Barish, K N; Barnes, P D; Barrette, J; Bassalleck, B; Bathe, S; Baublis, V; Bazilevsky, A; Belikov, S; Bellaiche, F G; Belyaev, S T; Bennett, M J; Berdnikov, Y; Botelho, S; Brooks, M L; Brown, D S; Bruner, N; Bucher, D; Buesching, H; Bumazhnov, V; Bunce, G; Burward-Hoy, J; Butsyk, S; Carey, T A; Chand, P; Chang, J; Chang, W C; Chavez, L L; Chernichenko, S; Chi, C Y; Chiba, J; Chiu, M; Choudhury, R K; Christ, T; Chujo, T; Chung, M S; Chung, P; Cianciolo, V; Cole, B A; D'Enterria, D G; David, G; Delagrange, H; Denisov, A; Deshpande, A; Desmond, E J; Dietzsch, O; Dinesh, B V; Drees, A; Durum, A; Dutta, D; Ebisu, K; Efremenko, Y V; El Chenawi, K; En'yo, H; Esumi, S; Ewell, L; Ferdousi, T; Fields, D E; Fokin, S L; Fraenkel, Z; Franz, A; Frawley, A D; Fung, S-Y; Garpman, S; Ghosh, T K; Glenn, A; Godoi, A L; Goto, Y; Greene, S V; Grosse Perdekamp, M; Gupta, S K; Guryn, W; Gustafsson, H-A; Hachiya, T; Haggerty, J S; Hamagaki, H; Hansen, A G; Hara, H; Hartouni, E P; Hayano, R; Hayashi, N; He, X; Hemmick, T K; Heuser, J M; Hibino, M; Hill, J C; Ho, D S; Homma, K; Hong, B; Hoover, A; Ichihara, T; Imai, K; Ippolitov, M S; Ishihara, M; Jacak, B V; Jang, W Y; Jia, J; Johnson, B M; Johnson, S C; Joo, K S; Kametani, S; Kang, J H; Kann, M; Kapoor, S S; Kelly, S; Khachaturov, B; Khanzadeev, A; Kikuchi, J; Kim, D J; Kim, H J; Kim, S Y; Kim, Y G; Kinnison, W W; Kistenev, E; Kiyomichi, A; Klein-Boesing, C; Klinksiek, S; Kochenda, L; Kochetkov, V; Koehler, D; Kohama, T; Kotchetkov, D; Kozlov, A; Kroon, P J; Kurita, K; Kweon, M J; Kwon, Y; Kyle, G S; Lacey, R; Lajoie, J G; Lauret, J; Lebedev, A; Lee, D M; Leitch, M J; Li, X H; Li, Z; Lim, D J; Liu, M X; Liu, X; Liu, Z; Maguire, C F; Mahon, J; Makdisi, Y I; Manko, V I; Mao, Y; Mark, S K; Markacs, S; Martinez, G; Marx, M D; Masaike, A; Matathias, F; Matsumoto, T; McGaughey, P L; Melnikov, E; Merschmeyer, M; Messer, F; Messer, M; Miake, Y; Miller, T E; Milov, A; Mioduszewski, S; Mischke, R E; Mishra, G C; Mitchell, J T; Mohanty, A K; Morrison, D P; Moss, J M; Mühlbacher, F; Muniruzzaman, M; Murata, J; Nagamiya, S; Nagasaka, Y; Nagle, J L; Nakada, Y; Nandi, B K; Newby, J; Nikkinen, L; Nilsson, P; Nishimura, S; Nyanin, A S; Nystrand, J; O'Brien, E; Ogilvie, C A; Ohnishi, H; Ojha, I D; Ono, M; Onuchin, V; Oskarsson, A; Osterman, L; Otterlund, I; Oyama, K; Paffrath, L; Palounek, A P T; Pantuev, V S; Papavassiliou, V; Pate, S F; Peitzmann, T; Petridis, A N; Pinkenburg, C; Pisani, R P; Pitukhin, P; Plasil, F; Pollack, M; Pope, K; Purschke, M L; Ravinovich, I; Read, K F; Reygers, K; Riabov, V; Riabov, Y; Rosati, M; Rose, A A; Ryu, S S; Saito, N; Sakaguchi, A; Sakaguchi, T; Sako, H; Sakuma, T; Samsonov, V; Sangster, T C; Santo, R; Sato, H D; Sato, S; Sawada, S; Schlei, B R; Schutz, Y; Semenov, V; Seto, R; Shea, T K; Shein, I; Shibata, T-A; Shigaki, K; Shiina, T; Shin, Y H; Sibiriak, I G; Silvermyr, D; Sim, K S; Simon-Gillo, J; Singh, C P; Singh, V; Sivertz, M; Soldatov, A; Soltz, R A; Sorensen, S; Stankus, P W; Starinsky, N; Steinberg, P; Stenlund, E; Ster, A; Stoll, S P; Sugioka, M; Sugitate, T; Sullivan, J P; Sumi, Y; Sun, Z; Suzuki, M; Takagui, E M; Taketani, A; Tamai, M; Tanaka, K H; Tanaka, Y; Taniguchi, E; Tannenbaum, M J; Thomas, J; Thomas, J H; Thomas, T L; Tian, W; Tojo, J; Torii, H; Towell, R S; Tserruya, I; Tsuruoka, H; Tsvetkov, A A; Tuli, S K; Tydesjö, H; Tyurin, N; Ushiroda, T; Van Hecke, H W; Velissaris, C; Velkovska, J; Velkovsky, M; Vinogradov, A A; Volkov, M A; Vorobyov, A; Vznuzdaev, E; Wang, H; Watanabe, Y; White, S N; Witzig, C; Wohn, F K; Woody, C L; Xie, W; Yagi, K; Yokkaichi, S; Young, G R; Yushmanov, I E; Zajc, W A; Zhang, Z; Zhou, S

    2002-05-13

    Transverse momentum spectra of electrons from Au+Au collisions at square root[s(NN)] = 130 GeV have been measured at midrapidity by the PHENIX experiment at the Relativistic Heavy Ion Collider. The spectra show an excess above the background from photon conversions and light hadron decays. The electron signal is consistent with that expected from semileptonic decays of charm. The yield of the electron signal dN(e)/dy for p(T) > 0.8 GeV/c is 0.025+/-0.004(stat)+/-0.010(syst) in central collisions, and the corresponding charm cross section is 380+/-60(stat)+/-200(syst) microb per binary nucleon-nucleon collision.

  2. Measurement of prompt charm meson production cross sections in pp collisions at square root s = 1.96 TeV.

    PubMed

    Acosta, D; Affolder, T; Ahn, M H; Akimoto, T; Albrow, M G; Ambrose, D; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arguin, J-F; Arisawa, T; Artikov, A; Asakawa, T; Ashmanskas, W; Attal, A; Azfar, F; Azzi-Bacchetta, P; Bacchetta, N; Bachacou, H; Badgett, W; Bailey, S; Barbaro-Galtieri, A; Barker, G; Barnes, V E; Barnett, B A; Baroiant, S; Barone, M; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bell, W H; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A; Binkley, M; Bisello, D; Bishai, M; Blair, R E; Blocker, C; Bloom, K; Blumenfeld, B; Bocci, A; Bodek, A; Bolla, G; Bolshov, A; Booth, P S L; Bortoletto, D; Boudreau, J; Bourov, S; Bromberg, C; Brozovic, M; Brubaker, E; Budagov, J; Budd, H S; Burkett, K; Busetto, G; Bussey, P; Byrum, K L; Cabrera, S; Calafiura, P; Campanelli, M; Campbell, M; Canepa, A; Carlsmith, D; Carron, S; Carosi, R; Casarsa, M; Caskey, W; Castro, A; Catastini, P; Cauz, D; Cerri, A; Cerri, C; Cerrito, L; Chapman, J; Chen, C; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chu, M L; Chung, J Y; Chung, W-H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A G; Coca, M N; Connolly, A; Convery, M E; Conway, J; Cordelli, M; Cortiana, G; Cranshaw, J; Culbertson, R; Currat, C; Cyr, D; Dagenhart, D; DaRonco, S; D'Auria, S; De Barbaro, P; De Cecco, S; Dell'Agnello, S; Dell'Orso, M; Demers, S; Demortier, L; Deninno, M; De Pedis, D; Derwent, P F; Dionisi, C; Dittmann, J R; Doksus, P; Dominguez, A; Donati, S; D'Onofrio, M; Dorigo, T; Drollinger, V; Ebina, K; Eddy, N; Ely, R; Erbacher, R; Erdmann, M; Errede, D; Errede, S; Eusebi, R; Fang, H-C; Farrington, S; Fedorko, I; Feild, R G; Feindt, M; Fernandez, J P; Ferretti, C; Field, R D; Fiori, I; Flanagan, G; Flaugher, B; Flores-Castillo, L R; Foland, A; Forrester, S; Foster, G W; Franklin, M; Frisch, H; Fujii, Y; Furic, I; Gallas, A; Gallinaro, M; Galyardt, J; Garcia-Sciveres, M; Garfinkel, A F; Gay, C; Gerberich, H; Gerchtein, E; Gerdes, D W; Giagu, S; Giannetti, P; Gibson, A; Gibson, K; Ginsburg, C; Giolo, K; Giordani, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, D; Goldstein, J; Gomez, G; Gomez-Ceballos, G; Goncharov, M; Gorelov, I; Goshaw, A T; Gotra, Y; Goulianos, K; Gresele, A; Grim, G; Grosso-Pilcher, C; Guenther, M; Guimaraes Da Costa, J; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hall, C; Handler, R; Happacher, F; Hara, K; Hare, M; Harr, R F; Harris, R M; Hartmann, F; Hatakeyama, K; Hauser, J; Hays, C; Heider, E; Heinemann, B; Heinrich, J; Hennecke, M; Herndon, M; Hill, C; Hirschbuehl, D; Hocker, A; Hoffman, K D; Holloway, A; Hou, S; Houlden, M A; Huffman, B T; Hughes, R E; Huston, J; Ikado, K; Incandela, J; Introzzi, G; Iori, M; Ishizawa, Y; Issever, C; Ivanov, A; Iwata, Y; Iyutin, B; James, E; Jang, D; Jarrell, J; Jeans, D; Jensen, H; Jones, M; Jun, S Y; Junk, T; Kamon, T; Kang, J; Karagoz Unel, M; Karchin, P E; Kartal, S; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khazins, D; Khotilovich, V; Kilminster, B; Kim, B J; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, M S; Kim, S B; Kim, S H; Kim, T H; Kim, Y K; King, B T; Kirby, M; Kirk, M; Kirsch, L; Klimenko, S; Knuteson, B; Kobayashi, H; Koehn, P; Kondo, K; Konigsberg, J; Kordas, K; Korn, A; Korytov, A; Kotelnikov, K; Kotwal, A V; Kovalev, A; Kraus, J; Kravchenko, I; Kreymer, A; Kroll, J; Kruse, M; Krutelyov, V; Kuhlmann, S E; Kuznetsova, N; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, J; Lancaster, M; Lander, R; Lannon, K; Lath, A; Latino, G; Lauhakangas, R; Lazzizzera, I; Le, Y; Lecci, C; LeCompte, T; Lee, J; Lee, J; Lee, S W; Leonardo, N; Leone, S; Lewis, J D; Li, K; Lin, C S; Lindgren, M; Liss, T M; Litvintsev, D O; Liu, T; Liu, Y; Lockyer, N S; Loginov, A; Loken, J; Loreti, M; Loverre, P; Lucchesi, D; Lukens, P; Lyons, L; Lys, J; MacQueen, D; Madrak, R; Maeshima, K; Maksimovic, P; Malferrari, L; Manca, G; Marginean, R; Martin, A; Martin, M; Martin, V; Martinez, M; Maruyama, T; Matsunaga, H; Mattson, M; Mazzanti, P; McFarland, K S; McGivern, D; McIntyre, P M; McNamara, P; McNulty, R; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Meyer, A; Miao, T; Miller, L; Miller, R; Miller, J S; Miquel, R; Miscetti, S; Mishina, M; Mitselmakher, G; Miyamoto, A; Miyazaki, Y; Moggi, N; Moore, R; Morello, M; Moulik, T; Mukherjee, A; Mulhearn, M; Muller, T; Mumford, R; Munar, A; Murat, P; Murgia, S; Nachtman, J; Nahn, S; Nakamura, I; Nakano, I; Napier, A; Napora, R; Necula, V; Niell, F; Nielsen, J; Nelson, C; Nelson, T; Neu, C; Neubauer, M S; Newman-Holmes, C; Nicollerat, A-S; Nigmanov, T; Niu, H; Nodulman, L; Oesterberg, K; Ogawa, T; Oh, S; Oh, Y D; Ohsugi, T; Oishi, R; Okusawa, T; Oldeman, R; Orava, R; Orejudos, W; Pagliarone, C; Palmonari, F; Paoletti, R; Papadimitriou, V; Partos, D; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Pauly, T; Paus, C; Pellett, D; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pitts, K T; Pompos, A; Pondrom, L; Pope, G; Poukhov, O; Prakoshyn, F; Pratt, T; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Rademacker, J; Rakitine, A; Rappoccio, S; Ratnikov, F; Ray, H; Reichold, A; Rekovic, V; Renton, P; Rescigno, M; Rimondi, F; Rinnert, K; Ristori, L; Riveline, M; Robertson, W J; Robson, A; Rodrigo, T; Rolli, S; Rosenson, L; Roser, R; Rossin, R; Rott, C; Russ, J; Ruiz, A; Ryan, D; Saarikko, H; Safonov, A; St Denis, R; Sakumoto, W K; Saltzberg, D; Sanchez, C; Sansoni, A; Santi, L; Sarkar, S; Sato, K; Savard, P; Savoy-Navarro, A; Schemitz, P; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schofield, G; Scodellaro, L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semeria, F; Sexton-Kennedy, L; Sfiligoi, I; Shapiro, M D; Shears, T; Shepard, P F; Shimojima, M; Shochet, M; Shon, Y; Sidoti, A; Siket, M; Sill, A; Sinervo, P; Sisakyan, A; Skiba, A; Slaughter, A J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Somalwar, S V; Spalding, J; Spezziga, M; Spiegel, L; Spinella, F; Spiropulu, M; Stadie, H; Stelzer, B; Stelzer-Chilton, O; Strologas, J; Stuart, D; Sukhanov, A; Sumorok, K; Sun, H; Suzuki, T; Taffard, A; Takach, S F; Takano, H; Takashima, R; Takeuchi, Y; Takikawa, K; Tamburello, P; Tanaka, M; Tanaka, R; Tannenbaum, B; Tanimoto, N; Tapprogge, S; Tecchio, M; Teng, P K; Terashi, K; Tesarek, R J; Tether, S; Thom, J; Thompson, A S; Thomson, E; Thurman-Keup, R; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tollefson, K; Tonelli, D; Tönnesmann, M; Torre, S; Torretta, D; Trischuk, W; Tseng, J; Tsuchiya, R; Tsuno, S; Tsybychev, D; Turini, N; Turner, M; Ukegawa, F; Unverhau, T; Uozumi, S; Usynin, D; Vacavant, L; Vaiciulis, T; Varganov, A; Vataga, E; Vejcik, S; Velev, G; Veramendi, G; Vickey, T; Vidal, R; Vila, I; Vilar, R; Volobouev, I; Von Der Mey, M; Wagner, R G; Wagner, R L; Wagner, W; Wallace, N; Walter, T; Wan, Z; Wang, M J; Wang, S M; Ward, B; Waschke, S; Waters, D; Watts, T; Weber, M; Wester, W; Whitehouse, B; Wicklund, A B; Wicklund, E; Wilkes, T; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolter, M; Worcester, M; Worm, S; Wright, T; Wu, X; Würthwein, F; Wyatt, A; Yagil, A; Yamashita, T; Yamamoto, K; Yang, U K; Yao, W; Yeh, G P; Yi, K; Yoh, J; Yoon, P; Yorita, K; Yoshida, T; Yu, I; Yu, S; Yu, Z; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zetti, F; Zhou, J; Zsenei, A; Zucchelli, S

    2003-12-12

    We report on measurements of differential cross sections dsigma/dp(T) for prompt charm meson production in ppmacr; collisions at sqrt[s]=1.96 TeV using 5.8+/-0.3 pb(-1) of data from the CDF II detector at the Fermilab Tevatron. The data are collected with a new trigger that is sensitive to the long lifetime of hadrons containing heavy flavor. The charm meson cross sections are measured in the central rapidity region |y|K-pi(+), D(*+)-->D0pi(+), D+-->K-pi(+)pi(+), D(+)(s)-->phipi(+), and their charge conjugates. The measured cross sections are compared to theoretical calculations.

  3. First measurement of W boson production in association with a single Charm quark in pp collisions at sqrt(s)=1.96 TeV.

    PubMed

    Aaltonen, T; Adelman, J; Akimoto, T; Albrow, M G; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Bednar, P; Behari, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; De Lorenzo, G; Dell'Orso, M; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Forrester, S; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Genser, K; Gerberich, H; Gerdes, D; Giagu, S; Giakoumopolou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; Iyutin, B; James, E; Jayatilaka, B; Jeans, D; Jeon, E J; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Koay, S A; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kraus, J; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kulkarni, N P; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Linacre, J; Lindgren, M; Lipeles, E; Liss, T M; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lu, R-S; Lucchesi, D; Lueck, J; Luci, C; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Mangano, M L; Manousakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moed, S; Moggi, N; Moon, C S; Moore, R; Morello, M; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyria, A; Shalhout, S Z; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; Denis, R St; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner-Kuhr, J; Wagner, W; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zheng, Y; Zucchelli, S

    2008-03-01

    We present the first measurement of the production cross section of a W boson with a single charm quark (c) in pp collisions at sqrt(s)=1.96 TeV, using soft muon tagging of c jets. In a data sample of approximately 1.8 fb(-1), recorded with the Collider Detector at Fermilab II detector at the Fermilab Tevatron, we select events with W+1 or 2 jets. We use the charge correlation between the W and the muon from the semileptonic decay of a charm hadron to extract the Wc signal. We measure sigma Wc(PTc >20 GeV/c,|eta c|<1.5) x BR(W-->l nu)=9.8+/-3.2 pb, in agreement with theoretical expectations.

  4. The Cryogenic, High-Accuracy, Refraction Measuring System (CHARMS): A New Facility for Cryogenic Infrared through Vacuum Far-Ultraviolet Refractive Index Measurements

    NASA Technical Reports Server (NTRS)

    Frey, Bradley J.; Leviton, Douglas B.

    2004-01-01

    The optical designs of future NASA infrared (IR) missions and instruments, such as the James Webb Space Telescope's (JWST) Near-Mixed Camera (NIRCam), will rely on accurate knowledge of the index of refraction of various IR optical materials at cryogenic temperatures. To meet this need, we have developed a Cryogenic, High-Accuracy Refraction Measuring System (CHARMS). In this paper we discuss the completion of the design and construction of CHARMS as well as the engineering details that constrained the final design and hardware implementation. In addition, we will present our first light, cryogenic, IR index of refraction data for LiF, BaF2, and CaF2, and compare our results to previously published data for these materials.

  5. First analysis of 10-year trends in national factor concentrates usage in haemophilia: data from CHARMS, the Canadian Hemophilia Assessment and Resource Management System.

    PubMed

    Traore, A N; Chan, A K C; Webert, K E; Heddle, N; Ritchie, B; St-Louis, J; Teitel, J; Lillicrap, D; Iorio, A; Walker, I

    2014-07-01

    The Canadian Hemophilia Assessment and Resource Management System (CHARMS) tracks factor concentrates (FC) from the sole suppliers, Canadian Blood Services (CBS) and Hema-Quebec (HQ), to hospitals and to patients' homes. Patients FC infusion data are entered into CHARMS at Canadian Hemophilia Treatment Centres (HTCs) then exported to the national database (CentrePoint). From 2000 to 2009, 2260 registered haemophilia A or B patients received FVIII (1,009,097,765 IU) and FIX (272,406,859 IU). Over 91% of FVIII and over 84% of FIX was infused at home. Utilization of FVIII progressively increased; this was accounted for by an increase in the number of patients treated (r = 0.97; P < 0.001), there being a linear relationship between the increase in utilization and the increase in number of patients treated (P < 0.001). There was also a correlation with the annual amount used per patient (r = 0.95; P < 0.001). Utilization of FIX did not increase over time. The highest proportional utilization of both FVIII and FIX was for prophylaxis, and this proportion progressively increased being, in year 10 (2009), 77% and 66% for FVIII and FIX respectively. The proportion used for bleeding remained steady; in year 10 that proportion was 14% for FVIII and 26% for FIX, the use per patient for bleeding decreasing. The HTC-based CHARMS tracking system is essential, in Canada, for analysing indications for infusion, for predicting utilization and planning for future needs.

  6. A Measurement of the Pseudoscalar DecayConstant fDs using Charm-Tagged Events in e+e- Collisions at the Y(4S)

    SciTech Connect

    Stelzer, Jorg; /Stanford U., Phys. Dept. /SLAC

    2006-10-10

    The decay constant f{sub D{sub s}} of the pseudoscalar strange charm meson D{sub s}{sup +} is an important benchmark test of the theoretical methods that quantitatively describe the nonperturbative low-energy regime of QCD, the theory of the strong interaction. A confirmation of the validity of these predictive methods, foremost lattice QCD, in the sector of heavy-light meson decay constants increases trust in the calculation of f{sub B}, which is an important number for the measurement of the CKM matrix element V{sub td} in B{sup 0}{bar B}{sup 0}-mixing events. From October 1999 through July 2004, the BABAR experiment, located at the PEP-II storage ring at the Stanford Linear Accelerator Center, collected 230.2 fb{sup -1} of data in e{sup +}e{sup -} collision at {radical}s = 10.58 GeV. In this thesis, these data are searched for e{sup +}e{sup -} {yields} c{bar c} events by identifying sets of charged and neutral pions and charged kaons, consistent with the decay of a charm meson, D{sup 0}, D{sup +}, D{sub s}{sup +}, or D*{sup +}. A sample of 510,000 charmed mesons with a momentum consistent with e{sup +}e{sup -} {yields} c{bar c} events is identified.

  7. New Results from Frequency and Energy Reference Measurements during the first Test Flight with the Airborne Integrated Path Differential Absorption Lidar System CHARM-F

    NASA Astrophysics Data System (ADS)

    Ehret, G.; Fix, A.; Amediek, A.; Quatrevalet, M.

    2015-12-01

    The Integrated Path Differential Absorption Lidar (IPDA) technique is regarded as a suitable means for the measurement of methane and carbon dioxide columns from satellite or aircraft platforms with unprecedented accuracy. Currently, the German-French methane mission MERLIN (Methan Remote Lidar Mission) is prepared. At the same time CHARM-F, an aircraft installed system has been developed at DLR as an airborne demonstrator for a spaceborne greenhouse gas mission. Both use e.g. optical parametric oscillators (OPOs) in a double-pulse mode as the transmitter. Of particular importance for both instruments are the sub-modules required for the frequency stabilization of the transmitter wavelength and, since the IPDA technique, in contrast to DIAL, requires the exact knowledge of the energy ratio of outgoing on-line. The coherence of the lidar transmitter gives rise to speckle effects which have to be considered for the monitoring of the energy ratio of outgoing on- and off-line pulses. For the frequency reference of CHARM-F, a very successful stabilization scheme has been developed which will also serve as the reference for MERLIN. In Spring 2015, CHARM-F was flown aboard the German HALO aircraft for the first time which enables a detailed view on the performance of both the energy calibration and frequency reference subsystems under real flight conditions. As an initial quality check we will compared the airborne results to previous lab measurements which have been performed under stable environmental conditions.

  8. Sexual counselling for patients with cardiovascular disease: protocol for a pilot study of the CHARMS sexual counselling intervention

    PubMed Central

    Mc Sharry, Jenny; Casey, Dympna; Doherty, Sally; Gillespie, Paddy; Jaarsma, Tiny; Murphy, Andrew W; Newell, John; O'Donnell, Martin; Steinke, Elaine E; Toomey, Elaine; Byrne, Molly

    2016-01-01

    Introduction Sexual problems are common with cardiovascular disease, and can negatively impact quality of life. To address sexual problems, guidelines have identified the importance of sexual counselling during cardiac rehabilitation, yet this is rarely provided. The Cardiac Health and Relationship Management and Sexuality (CHARMS) intervention aims to improve the provision of sexual counselling in cardiac rehabilitation in Ireland. Methods and analysis This is a multicentre pilot study for the CHARMS intervention, a complex, multilevel intervention delivered within hospital-based cardiac rehabilitation programmes. The intervention includes (1) training in sexual counselling for staff, (2) a staff-led patient education and support intervention embedded within the cardiac rehabilitation programme, (3) a patient information booklet and (4) an awareness raising poster. The intervention will be delivered in two randomly selected cardiac rehabilitation centres. In each centre 30 patients will be recruited, and partners will also be invited to participate. Data will be collected from staff and patients/partners at T1 (study entry), T2 (3-month follow-up) and T3 (6-month follow-up). The primary outcome for patients/partners will be scores on the Sexual Self-Perception and Adjustment Questionnaire. Secondary outcomes for patients/partners will include relationship satisfaction; satisfaction with and barriers to sexual counselling in services; sexual activity, functioning and knowledge; physical and psychological well-being. Secondary outcomes for staff will include sexuality-related practice; barriers to sexual counselling; self-ratings of capability, opportunity and motivation; sexual attitudes and beliefs; knowledge of cardiovascular disease and sex. Fidelity of intervention delivery will be assessed using trainer self-reports, researcher-coded audio recordings and exit interviews. Longitudinal feasibility data will be gathered from patients/partners and staff via

  9. Open Access

    ERIC Educational Resources Information Center

    Suber, Peter

    2012-01-01

    The Internet lets us share perfect copies of our work with a worldwide audience at virtually no cost. We take advantage of this revolutionary opportunity when we make our work "open access": digital, online, free of charge, and free of most copyright and licensing restrictions. Open access is made possible by the Internet and copyright-holder…

  10. Open Education and the Open Science Economy

    ERIC Educational Resources Information Center

    Peters, Michael A.

    2009-01-01

    Openness as a complex code word for a variety of digital trends and movements has emerged as an alternative mode of "social production" based on the growing and overlapping complexities of open source, open access, open archiving, open publishing, and open science. This paper argues that the openness movement with its reinforcing structure of…

  11. Evaluation of the Charm maximum residue limit β-lactam and tetracycline test for the detection of antibiotics in ewe and goat milk.

    PubMed

    Beltrán, M C; Romero, T; Althaus, R L; Molina, M P

    2013-05-01

    The Charm maximum residue limit β-lactam and tetracycline test (Charm MRL BLTET; Charm Sciences Inc., Lawrence, MA) is an immunoreceptor assay utilizing Rapid One-Step Assay lateral flow technology that detects β-lactam or tetracycline drugs in raw commingled cow milk at or below European Union maximum residue levels (EU-MRL). The Charm MRL BLTET test procedure was recently modified (dilution in buffer and longer incubation) by the manufacturers to be used with raw ewe and goat milk. To assess the Charm MRL BLTET test for the detection of β-lactams and tetracyclines in milk of small ruminants, an evaluation study was performed at Instituto de Ciencia y Tecnologia Animal of Universitat Politècnica de València (Spain). The test specificity and detection capability (CCβ) were studied following Commission Decision 2002/657/EC. Specificity results obtained in this study were optimal for individual milk free of antimicrobials from ewes (99.2% for β-lactams and 100% for tetracyclines) and goats (97.9% for β-lactams and 100% for tetracyclines) along the entire lactation period regardless of whether the results were visually or instrumentally interpreted. Moreover, no positive results were obtained when a relatively high concentration of different substances belonging to antimicrobial families other than β-lactams and tetracyclines were present in ewe and goat milk. For both types of milk, the CCβ calculated was lower or equal to EU-MRL for amoxicillin (4 µg/kg), ampicillin (4 µg/kg), benzylpenicillin (≤ 2 µg/kg), dicloxacillin (30 µg/kg), oxacillin (30 µg/kg), cefacetrile (≤ 63 µg/kg), cefalonium (≤ 10 µg/kg), cefapirin (≤ 30 µg/kg), desacetylcefapirin (≤ 30 µg/kg), cefazolin (≤ 25 µg/kg), cefoperazone (≤ 25 µg/kg), cefquinome (20 µg/kg), ceftiofur (≤ 50 µg/kg), desfuroylceftiofur (≤ 50µg/kg), and cephalexin (≤ 50 µg/kg). However, this test could neither detect cloxacillin nor nafcillin at or below EU-MRL (CCβ >30 µg/kg). The

  12. Multiwire proportional chambers in M1 and M3 spectrometers of charmed baryon experiment (E781) at Fermilab

    SciTech Connect

    Kaya, Mithat; /Iowa U.

    1997-08-01

    The status of the multiwire proportional chambers in the FERMILAB E781 experiment and a general description of the readout system are given. This essay will describe the system of multiwire proportional chambers (MWPC) that are part of the Fermilab experiment E781 setup. Multiwire proportional chambers are often used in particle physics experiments because they can determine the position of charged particles very accurately (less than a millimeter). The E781 experiment which is also called SELEX (SEgmented LargE-X) is a spectrometer designed to study the production and decay of charmed baryons. MWPCs are part of the 3-stage charged particle spectrometer (Figure 1). Each spectrometer stage includes a bending magnet and chambers. More information about E781 experiment is given in the Appendix. In the following, some basic concepts of MWPCs will be given briefly. After that the multiwire proportional chambers (M1PWC and M3PWC) that are used in the E781 fixed target experiment will be described. Then a general description of the readout system for both M1PWC and M3PWC setups will follow. Finally the tests done on both sets of chambers will be explained in detail.

  13. VizieR Online Data Catalog: SDSS-DR8 galaxies classified by WND-CHARM (Kuminski+, 2016)

    NASA Astrophysics Data System (ADS)

    Kuminski, E.; Shamir, L.

    2016-06-01

    The image analysis method used to classify the images is WND-CHARM (wndchrm; Shamir et al. 2008, BMC Source Code for Biology and Medicine, 3: 13; 2010PLSCB...6E0974S; 2013ascl.soft12002S), which first computes 2885 numerical descriptors from each SDSS image such as textures, edges, shapes), the statistical distribution of the pixel intensities, the polynomial decomposition of the image, and fractal features. These features are extracted from the raw pixels, as well as the image transforms and multi-order image transforms. See section 2 for further explanations. In a similar way than the catalog we also compiled a catalog of all objects with spectra in DR8. For each object, that catalog contains the spec ObjID, the R.A., the decl., the z, z error, the certainty of classification as elliptical, the certainty of classification as spiral, and the certainty of classification as a star. See section 3.1 for further explanations. (2 data files).

  14. Prediction of isoscalar charmoniumlike structures in the hidden-charm di-eta decays of higher charmonia

    NASA Astrophysics Data System (ADS)

    Chen, Dian-Yong; Liu, Xiang; Matsuki, Takayuki

    2015-01-01

    Considering the situation that a single chiral particle, η is initially emitted, we study the hidden-charm di-eta decays of the charmoniumlike state Y(4660) and the predicted charmonium \\psi (4790), i.e., Y(4660)/\\psi (4790)\\to J/\\psi η η through the inetermediates η [{{D}(*)}{{\\bar{D}}(*)}] and/or η [Ds+(*)Ds-(*)], and answer the important question of whether there exist isoscalar charmoniumlike structures in the {{D}(*)}{{\\bar{D}}(*)} and/or Ds+(*)Ds-(*) channels. Our results predict that there will be enhancement structures near D{{\\bar{D}}*}, {{D}*}{{\\bar{D}}*} and {{D}s}\\bar{D}s* thresholds for Y(4660) and near {{D}*}{{\\bar{D}}*}, {{D}s}\\bar{D}s* and Ds*\\bar{D}s* thresholds for \\psi (4790) in the {{M}max }(J/\\psi η ) distributions of Y(4660)/\\psi (4790)\\to η η J/\\psi , respectively. These peaks are accessible in future experiments, especially BESIII, Belle, BaBar, and the forthcoming BelleII.

  15. Analysis of two-body charmed B meson decays in factorization-assisted topological-amplitude approach

    NASA Astrophysics Data System (ADS)

    Zhou, Si-Hong; Wei, Yan-Bing; Qin, Qin; Li, Ying; Yu, Fu-Sheng; Lü, Cai-Dian

    2015-11-01

    Within the factorization-assisted topological-amplitude approach, we study the two-body charmed B meson decays Bu ,d ,s→D(*)M , with M denoting a light pseudoscalar (or vector) meson. The meson decay constants and transition form factors are factorized out from the hadronic matrix element of topological diagrams. Therefore, the effect of SU(3) symmetry breaking is retained, which is different from the conventional topological diagram approach. The number of free nonperturbative parameters to be fitted from experimental data is also much less. Only four universal nonperturbative parameters χC, ϕC, χE and ϕE are introduced to describe the contribution of the color-suppressed tree and W -exchanged diagrams for all the decay channels. With the fitted parameters from 31 decay modes induced by b →c transition, we then predict the branching fractions of 120 decay modes induced by both b →c and b →u transitions. Our results are well consistent with the measured data or to be tested in the LHCb and Belle-II experiments in the future. Besides, the SU(3) symmetry breaking, isospin violation and C P asymmetry are also investigated.

  16. Searching for τ → μ γ lepton-flavor-violating decay at super Charm-Tau factory

    NASA Astrophysics Data System (ADS)

    Zhou, Hao; Zhang, Ren-You; Han, Liang; Ma, Wen-Gan; Guo, Lei; Chen, Chong

    2016-08-01

    We investigate the possibility of searching the lepton-flavor-violating (LFV) τ → μ γ rare decay at the Super Charm-Tau Factory (CTF). By comparing the kinematic distributions of the LFV signal and the standard model background, we develop an optimized event selection criterion which can significantly reduce the background events. It is concluded that the new 2 σ upper limit of about 1.9 × 10^{-9} on Br(τ → μ γ ) can be obtained at the CTF, which is beyond the capability of Super-B factory in searching τ lepton rare decay. Within the framework of the scalar leptoquark model, a joint constraint on λ _1 λ _2 and M_{LQ} can be derived from the upper bound on Br(τ → μ γ ). With 1000 fb^{-1} data expected at the CTF, we get λ _1λ _2 < 7.2 × 10^{-2} (M_{LQ} = 800 GeV) and M_{LQ} > 900 GeV (λ _1 λ _2 = 9 × 10^{-2}) at 95 % confidence level.

  17. Heavy quark fragmentation functions for D-wave quarkonium and charmed beauty mesons

    SciTech Connect

    Cheung, K.; Yuan, T.C.

    1995-09-01

    At the large transverse momentum region, the production of heavy-heavy bound-states such as charmonium, bottomonium, and {anti b}c mesons in high energy e{sup +}e{sup {minus}} and hadronic collisions is dominated by parton fragmentation. The authors calculate the heavy quark fragmentation functions into the D-wave quarkonium and {anti b}c mesons to leading order in the strong coupling constant and in the non-relativistic expansion. In the {anti b}c meson case, one set of its D-wave states is expected to lie below the open flavor threshold. The total fragmentation probability for a {anti b} antiquark to split into the D-wave {anti b}c mesons is about 2 {times} 10{sup {minus}5}, which implies that only 2% of the total pseudo-scalar ground state B{sub c} comes from the cascades of these orbitally excited states.

  18. Charm quark contribution to K+ ---> pi+ nu anti-nu at next-to-next-to-leading order

    SciTech Connect

    Buras, Andrzej J.; Gorbahn, Martin; Haisch, Ulrich; Nierste, Ulrich; /Karlsruhe U., TTP /Fermilab

    2006-03-01

    The authors calculate the complete next-to-next-to-leading order QCD corrections to the charm contribution of the rare decay K{sup +} {yields} {pi}{sup +}{nu}{bar {nu}}. They encounter several new features, which were absent in lower orders. They discuss them in detail and present the results for the two-loop matching conditions of the Wilson coefficients, the three-loop anomalous dimensions, and the two-loop matrix elements of the relevant operators that enter the next-to-next-to-leading order renormalization group analysis of the Z-penguin and the electroweak box contribution. The inclusion of the next-to-next-to-leading order QCD corrections leads to a significant reduction of the theoretical uncertainty from {+-} 9.8% down to {+-} 2.4% in the relevant parameter P{sub c}(X), implying the leftover scale uncertainties in {Beta}(K{sup +} {yields} {pi}{sup +}{nu}{bar {nu}}) and in the determination of |V{sub td}|, sin 2{beta}, and {gamma} from the K {yields} {pi}{nu}{bar {nu}} system to be {+-} 1.3%, {+-} 1.0%, {+-} 0.006, and {+-} 1.2{sup o}, respectively. For the charm quark {ovr MS} mass m{sub c}(m{sub c}) = (1.30 {+-} 0.05) GeV and |V{sub us}| = 0.2248 the next-to-leading order value P{sub c}(X) = 0.37 {+-} 0.06 is modified to P{sub c}(X) = 0.38 {+-} 0.04 at the next-to-next-to-leading order level with the latter error fully dominated by the uncertainty in m{sub c}(m{sub c}). They present tables for P{sub c}(X) as a function of m{sub c}(m{sub c}) and {alpha}{sub s}(M{sub z}) and a very accurate analytic formula that summarizes these two dependences as well as the dominant theoretical uncertainties. Adding the recently calculated long-distance contributions they find {Beta}(K{sup +} {yields} {pi}{sup +}{nu}{bar {nu}}) = (8.0 {+-} 1.1) x 10{sup -11} with the present uncertainties in m{sub c}(m{sub c}) and the Cabibbo-Kobayashi-Maskawa elements being the dominant individual sources in the quoted error. They also emphasize that improved calculations of the long

  19. [Hadroproduction of charmed and bottom mesons (Fermilab experiment E-653): Progress report, April 1, 1982--March 31, 1983

    SciTech Connect

    1983-12-31

    This progress report describes several projects that U of Oklahoma has participated in. The first is a muon background calculation from decay of charged pions and kaons, using ISR data at center of mass energies of 31 and 53 GeV. These calculations were compared with a number of different events. A copy of an agreement between Fermi National Accelerator Laboratory and participants in experiment E-653 is enclosed. This experiment tags charm and beauty particles by observing their decay lengths. The agreement sets out the items which need to be done in order to properly execute this experiment. A program to construct and test prototype silicon stripe detectors is also described. Preliminary detectors are in hand for testing, some are installed for actual beams for testing, and on the basis of these results the group expects to specify the design for a new system. The goals at present are to check charge collection, to check track point resolution, and to check vertex reconstruction resolution. A copy of a letter of intent to submit a proposal to LEP is included. The group proposes to submit a proposal to build an experiment with approximately 1% momentum resolution at 50 GeV/c for identifying photons, electrons, and muons. This proposal would aim at scalar particles, where accurate measures of small branching ratio decays are important. Some preliminary results from Monte Carlo simulation and data analysis of experiment E-516 are presented. In addition one group participant was involved in a CLEO experiment, which is an ongoing extension of work on a shower detector system. At present OU has the offline CLEO analysis software running and is supporting an effort with Rutgers to completer the inclusive electron measurements in the {gamma}(4S) resonance region. This involves proper operation of the shower detector, and development of analysis software.

  20. Search for charmed F mesons in e/sup +/e/sup -/ collisions with the crystal ball

    SciTech Connect

    Horisberger, R.P.

    1984-01-01

    In this work an experimental search for the production of the charmed F and F* mesons in e/sup +/e/sup -/ collisions is presented. The data for this analysis were obtained over a center of mass energy region from 3.86 GeV to 4.5 GeV with the Crystal Ball detector at SPEAR. The inclusive eta production cross section has been measured as a function of the center of mass energy. It was found to be almost constant with no indication for an significant increase which was cited as evidence for F production by a previous experiment. A search for F anti F, F* anti F and F* anti F* production with the decay F/sup + -/ ..-->.. eta..pi../sup + -/ has also been made, but no signal was observed. Upper limits for sigma/sub F(*) anti F(*)/ BR(F/sup + -/ ..-->.. eta..pi../sup + -/) are given for various F and F* masses. The measurements presented here are inconsistent with results from earlier experiments which had been used to establish the existence of the F mesons. The inclusive ..gamma.. spectrum at E/sub cm/ = 4.33 GeV has also been used to obtain upper limits on F* production. These results disagree with theoretical expectations for the F* anti F* production cross section for the F and F* masses quoted by other experiments. In connection with this analysis the cross section for D* production was also measured at E/sub cm/ = 4.33 GeV and was found to be 7.4nb +- 1.3nb.

  1. Interlaboratory study of the Charm ROSA Safe Level Aflatoxin M1 Quantitative lateral flow test for raw bovine milk.

    PubMed

    Salter, Robert; Douglas, David; Tess, Mark; Markovsky, Bob; Saul, Steven J

    2006-01-01

    An interlaboratory study of 21 public health, state agriculture, and industry laboratories in the United States tested raw commingled bovine milk containing aflatoxin M1 using the Charm Rapid One Step Assay (ROSA) Safe Level Aflatoxin M1 Quantitative lateral flow method. Blind coded sample pairs were fortified with 0, 300, 350, 400, 450, 500, and 550 parts per trillion (ppt) aflatoxin M1. A ROSA reader quantitatively interpreted test strips with ppt readings. Readings < or = 400 ppt were interpreted as negative, and readings >400 ppt were interpreted as positive. Initial positive samples were subsequently assayed 2 additional times. If both retest results were >400 ppt, the sample was called positive/ actionable relative to U.S. and Codex levels, 500 ppt. The concentration of 400 ppt was chosen for the positive/negative interpretation to provide 90% sensitivity with 95% confidence at the 500 ppt legislative level. The combined false negative rate was <5% (4 of 83) for samples at 500 and 550 ppt. The false violatives at 0, 300, 350, 400, and 450 ppt (n = 42 at each level) were 0, 0, 21, 14, and 93%, respectively. The 90% positive concentration with 95% confidence was 503 ppt by probit analysis. The average intralaboratory repeatability was 11% and average interlaboratory reproducibility was 13% for the fortified sample pairs. High-performance liquid chromatography analysis of the study samples by 5 laboratories showed 38% false negatives with the 500 and 550 ppt samples, and a 0% false-violative rate with samples less than the 500 ppt action level.

  2. Charm Safe-Level beta-Lactam Test for amoxicillin, ampicillin, ceftiofur, cephapirin, and penicillin G in raw commingled milk.

    PubMed

    Salter, R S; Legg, D; Ossanna, N; Boyer, C; Scheemaker, J; Markovsky, R; Saul, S J

    2001-01-01

    The Charm Safe-Level beta-Lactam Test was evaluated by a U.S. Food and Drug Administration (FDA) test protocol administered by the AOAC-Research Institute. The sensitivity and selectivity of the test were evaluated with >800 negative raw commingled and drug-fortified milk samples by the manufacturer and an independent laboratory. Probit analysis by the independent laboratory determined the following 90% positive levels with 95% confidence: amoxicillin, 5.6 ppb; ampicillin, 8.5 ppb; cephapirin, 13.7 ppb; ceftiofur, 46.2 ppb; and penicillin G, 3.6 ppb. These values were within a range of +/- 20% of the manufacturer's data. Selection of negative samples met confidence specifications. Ruggedness parameters were studied and defined, and the stability of frozen milk was verified. There were no interferences from somatic cells (1,000,000 somatic cell count/mL) or bacteria (300,000 colony-forming units/mL), or from 27 other non-beta-lactam animal drugs. Test performance with raw milk samples containing incurred penicillin, ampicillin, and amoxicillin was consistent with the dose responses determined with fortified milk samples. Incurred cephalosporin in raw milk samples was detected at lower levels than was cephalosporin in fortified milk samples, presumably because of the presence of metabolite, as verified by other test methods. Quality control data support consistency in manufacture between batches and the stability of refrigerated test reagents for up to 1 year. Successful fulfillment of these criteria led to FDA certification of the test when used with a reader in U.S. milk testing programs.

  3. First Observation of the Doubly Cabibbo-Suppressed Decay of a Charmed Baryon: Λc+→p K+π-

    NASA Astrophysics Data System (ADS)

    Yang, S. B.; Tanida, K.; Kim, B. H.; Adachi, I.; Aihara, H.; Asner, D. M.; Aulchenko, V.; Aushev, T.; Babu, V.; Badhrees, I.; Bakich, A. M.; Barberio, E.; Bhardwaj, V.; Bhuyan, B.; Biswal, J.; Bonvicini, G.; Bozek, A.; Bračko, M.; Browder, T. E.; Červenkov, D.; Chekelian, V.; Chen, A.; Cheon, B. G.; Chilikin, K.; Chistov, R.; Cho, K.; Chobanova, V.; Choi, Y.; Cinabro, D.; Dalseno, J.; Danilov, M.; Dash, N.; Doležal, Z.; Drásal, Z.; Dutta, D.; Eidelman, S.; Farhat, H.; Fast, J. E.; Ferber, T.; Fulsom, B. G.; Gabyshev, N.; Garmash, A.; Gaur, V.; Gillard, R.; Goh, Y. M.; Goldenzweig, P.; Greenwald, D.; Grygier, J.; Haba, J.; Hamer, P.; Hara, T.; Hayasaka, K.; Hayashii, H.; Hou, W.-S.; Iijima, T.; Inami, K.; Inguglia, G.; Ishikawa, A.; Itoh, R.; Iwasaki, Y.; Jacobs, W. W.; Jaegle, I.; Jeon, H. B.; Joo, K. K.; Julius, T.; Kang, K. H.; Kato, E.; Katrenko, P.; Kiesling, C.; Kim, D. Y.; Kim, H. J.; Kim, J. B.; Kim, K. T.; Kim, M. J.; Kim, S. H.; Kim, S. K.; Kim, Y. J.; Kinoshita, K.; Kobayashi, N.; Kodyš, P.; Korpar, S.; Križan, P.; Krokovny, P.; Kuhr, T.; Kuzmin, A.; Kwon, Y.-J.; Lange, J. S.; Lee, I. S.; Li, C. H.; Li, H.; Li, L.; Li, Y.; Li Gioi, L.; Libby, J.; Liventsev, D.; Lubej, M.; Masuda, M.; Matvienko, D.; Miyabayashi, K.; Miyata, H.; Mizuk, R.; Mohanty, G. B.; Moll, A.; Moon, H. K.; Mussa, R.; Nakano, E.; Nakao, M.; Nanut, T.; Nath, K. J.; Nayak, M.; Negishi, K.; Niiyama, M.; Nisar, N. K.; Nishida, S.; Ogawa, S.; Okuno, S.; Olsen, S. L.; Pakhlova, G.; Pal, B.; Park, C. W.; Park, H.; Pedlar, T. K.; Pestotnik, R.; Petrič, M.; Piilonen, L. E.; Pulvermacher, C.; Rauch, J.; Ritter, M.; Rostomyan, A.; Ryu, S.; Sahoo, H.; Sakai, Y.; Sandilya, S.; Santelj, L.; Sanuki, T.; Sato, Y.; Savinov, V.; Schlüter, T.; Schneider, O.; Schnell, G.; Schwanda, C.; Schwartz, A. J.; Seino, Y.; Senyo, K.; Seon, O.; Seong, I. S.; Sevior, M. E.; Shebalin, V.; Shibata, T.-A.; Shiu, J.-G.; Shwartz, B.; Simon, F.; Sohn, Y.-S.; Sokolov, A.; Stanič, S.; Starič, M.; Stypula, J.; Sumihama, M.; Sumiyoshi, T.; Takizawa, M.; Tamponi, U.; Teramoto, Y.; Trabelsi, K.; Trusov, V.; Uchida, M.; Uglov, T.; Unno, Y.; Uno, S.; Urquijo, P.; Usov, Y.; Vanhoefer, P.; Varner, G.; Varvell, K. E.; Vinokurova, A.; Vossen, A.; Wagner, M. N.; Wang, C. H.; Wang, M.-Z.; Wang, P.; Wang, X. L.; Watanabe, Y.; Williams, K. M.; Won, E.; Yamaoka, J.; Yashchenko, S.; Ye, H.; Yelton, J.; Yuan, C. Z.; Yusa, Y.; Zhang, Z. P.; Zhilich, V.; Zhulanov, V.; Zupanc, A.; Belle Collaboration

    2016-07-01

    We report the first observation of the decay Λc+→p K+π- using a 980 fb-1 data sample collected by the Belle detector at the KEKB asymmetric-energy e+e- collider. This is the first observation of a doubly Cabibbo-suppressed decay of a charmed baryon. We measure the branching ratio of this decay with respect to its Cabibbo-favored counterpart to be B (Λc+→p K+π-)/B (Λc+→p K-π+)=(2.35 ±0.27 ±0.21 )×10-3 , where the uncertainties are statistical and systematic, respectively.

  4. Hadronic Matrix Elements with Heavy Quarks: The Charm-Loop Effect in B{yields}K{sup (*)}l{sup +}l{sup -}

    SciTech Connect

    Khodjamirian, Alexander

    2010-12-22

    I present the summary of our recent work on the long-distance effect in B{yields}K{sup (*)}l{sup +}l{sup -}, generated by the four-quark operators with charmed quarks. In addition to the factorized c-barc loop, the soft-gluon emission from the loop is calculated in the framework of light-cone OPE, applying light-cone QCD sum rules. The resulting contribution of this effect to the B{yields}K{sup (*)}l{sup +}l{sup -}, decay amplitude is cast in a form of the correction to the leading Wilson coefficient C{sub 9}.

  5. Opening remarks

    SciTech Connect

    Hildebrand, S.G.

    1994-09-01

    Included in this paper are the opening remarks of S.G. Hildebrand, from Environmental Science Division, ORNL, to a conference on water resources and water resource issues. Wetlands are the focus of this talk, with an emphasis on conservation and land use to conserve wetland functions and values.

  6. Opening Remarks

    NASA Technical Reports Server (NTRS)

    Goldin, Daniel S.

    2005-01-01

    In these opening remarks to a symposium reflecting on forty years of U.S. Human Spaceflight, NASA Administrator Daniel Goldin, reviews the impact that Alan Shepard had on him personally, to NASA, and to the whole idea of manned spaceflight. Mr Goldin cites Shepard as an example of the past and future of manned spaceflight.

  7. A hidden-charm \\varvec{S=-1} pentaquark from the decay of \\varvec{Λ_b} into \\varvec{J/ψ η Λ} states

    NASA Astrophysics Data System (ADS)

    Feijoo, A.; Magas, V. K.; Ramos, A.; Oset, E.

    2016-08-01

    The hidden-charm pentaquark P_c(4450) observed recently by the LHCb collaboration may be of molecular nature, as advocated by some unitary approaches that also predict pentaquark partners in the strangeness S=-1 sector. In this work we argue that a hidden-charm strange pentaquark could be seen from the decay of the Λ_b, just as in the case of the non-strange P_c(4450), but looking into the J/ψ η Λ decay mode and forming the invariant mass spectrum of J/ψ Λ pairs. In the model presented here, which assumes a standard weak decay topology and incorporates the hadronization process and final-state interaction effects, we find the J/ψ η Λ final states to be populated with similar strength as the J/ψ K^- p states employed for the observation of the non-strange pentaquark. This makes the Λ_ b → J/ψ η Λ decay to be an interesting process to observe a possible strange partner of the P_c(4450). We study the dependence of the J/ψ Λ mass spectra on various model ingredients and on the unknown properties of the strange pentaquark.

  8. Interactions of Charmed Mesons with Light Pseudoscalar Mesons from Lattice QCD and Implications on the Nature of the D*s0(2317)

    SciTech Connect

    Liuming, Liu; Orginos, Kostas; Guo, Feng-Kun; Hanhart, Christoph; Meissner, Ulf-G

    2014-11-01

    We study the scattering of light pseudoscalar mesons ( p , K ) off charmed mesons ( D , D s ) in full lattice QCD. The S -wave scattering lengths are calculated using Luscher’s finite volume technique. We use a relativistic formulation for the charm quark. For the light quark, we use domain- wall fermions in the valence sector and improved Kogut-Susskind sea quarks. We calculate the scattering lengths of isospin-3/2 Dπ , D sπ , D s K , isospin-0 DK and isospin-1 DK channels on the lattice. For the chiral extrapolation, we use a chiral unitary approach to next-to-leading order, which at the same time allows us to give predictions for other channels. It turns out that our results support the interpretation of the D*s0( 2317 ) as a DK molecule. At the same time, we also update a prediction for the isospin breaking hadronic decay width G ( D*s0( 2317 )→ D sπ ) to ( 133± 22 ) keV.

  9. Search for the Charmed Pentaquark Candidate Theta_c(3100)^0 in e^+e^- Annihilations at \\sqrt{s}=10.58 GeV

    SciTech Connect

    Aubert, B.

    2006-04-07

    We search for the charmed pentaquark candidate reported by the H1 collaboration, the {Theta}{sub c}(3100){sup o}, in e{sup +}e{sup -} interactions at a center-of-mass (c.m.) energy of 10.58 GeV, using 124 fb{sup -1} of data recorded with the BABAR detector at the PEP-II e{sup +}e{sup -} facility at SLAC. We find no evidence for such a state in the same pD*{sup -} decay mode reported by H1, and we set limits on its production cross section times branching fraction into pD*{sup -} as a function of c.m. momentum. The corresponding limit on its total rate per e{sup +}e{sup -} {yields} q{bar q} event, times branching fraction, is about three orders of magnitude lower than rates measured for the charmed {Lambda}{sub c} and {Sigma}{sub c} baryons in such events.

  10. Opening education.

    PubMed

    Smith, Marshall S

    2009-01-01

    Spurred by the publication of Massachusetts Institute of Technology OpenCourseWare in 2002, the open educational resources (OER) movement, which has rapidly expanded and captured the imagination and energy of millions of creators and users throughout the world, now faces many opportunities and substantial challenges as it moves to become an integral part of the world's educational environment. The confluence of the Web and a spirit of sharing intellectual property have fueled a worldwide movement to make knowledge and education materials open to all for use. OER are content (courses, books, lesson plans, articles, etc.), tools (virtual laboratories, simulations, and games), and software that support learning and educational practice. OER are free on the Web, and most have licenses that allow copyright holders to retain ownership while providing specified rights for use in original and modified forms. At the least, OER have helped to level the distribution of knowledge across the world. A second promise of OER is to help transform educational practices. This article explores the history of and promises and challenges for OER.

  11. Opening education.

    PubMed

    Smith, Marshall S

    2009-01-01

    Spurred by the publication of Massachusetts Institute of Technology OpenCourseWare in 2002, the open educational resources (OER) movement, which has rapidly expanded and captured the imagination and energy of millions of creators and users throughout the world, now faces many opportunities and substantial challenges as it moves to become an integral part of the world's educational environment. The confluence of the Web and a spirit of sharing intellectual property have fueled a worldwide movement to make knowledge and education materials open to all for use. OER are content (courses, books, lesson plans, articles, etc.), tools (virtual laboratories, simulations, and games), and software that support learning and educational practice. OER are free on the Web, and most have licenses that allow copyright holders to retain ownership while providing specified rights for use in original and modified forms. At the least, OER have helped to level the distribution of knowledge across the world. A second promise of OER is to help transform educational practices. This article explores the history of and promises and challenges for OER. PMID:19119226

  12. Gallbladder removal - open

    MedlinePlus

    Cholecystectomy - open; Surgery - gallbladder - open ... a medical instrument called a laparoscope ( laparoscopic cholecystectomy ). Open gallbladder surgery is used when laparoscopic surgery cannot ...

  13. OpenER, a Dutch Initiative in Open Educational Resources

    ERIC Educational Resources Information Center

    Schuwer, Robert; Mulder, Fred

    2009-01-01

    Over the period 2006-2008, the Dutch Open Universiteit Nederland conducted an experiment in which Open Educational Resources (OER) were offered in an effort to bridge the gap between informal and formal learning and to establish a new style of entry portal to higher education with no barriers at all. OpenER received considerable attention both in…

  14. Open University

    SciTech Connect

    2006-01-18

    Michel Pentz est née en Afrique du Sud et venu au Cern en 1957 comme physicien et président de l'associaion du personnel. Il est également fondateur du mouvement Antiapartheid de Genève et a participé à la fondation de l'Open University en Grande-Bretagne. Il nous parle des contextes pédagogiques, culturels et nationaux dans lesquels la méthode peut s'appliquer.

  15. Open University

    ScienceCinema

    None

    2016-07-12

    Michel Pentz est née en Afrique du Sud et venu au Cern en 1957 comme physicien et président de l'associaion du personnel. Il est également fondateur du mouvement Antiapartheid de Genève et a participé à la fondation de l'Open University en Grande-Bretagne. Il nous parle des contextes pédagogiques, culturels et nationaux dans lesquels la méthode peut s'appliquer.

  16. Open Standards, Open Source, and Open Innovation: Harnessing the Benefits of Openness

    ERIC Educational Resources Information Center

    Committee for Economic Development, 2006

    2006-01-01

    Digitization of information and the Internet have profoundly expanded the capacity for openness. This report details the benefits of openness in three areas--open standards, open-source software, and open innovation--and examines the major issues in the debate over whether openness should be encouraged or not. The report explains each of these…

  17. CHARM-F: An airborne Integrated Path Differential Absorption (IPDA) LIDAR for the simultaneous measurement of CO2 and CH4 Columns

    NASA Astrophysics Data System (ADS)

    Wirth, M.; Amediek, A.; Büdenbender, C.; Ehret, G.; Fix, A.; Kiemle, C.; Quatrevalet, M.; Hoffmann, D.; Löhring, J.; Klein, V.; Schöggl, R.

    2011-12-01

    Currently, Deutsches Zentrum für Luft- und Raumfahrt (DLR) - in collaboration with Fraunhofer-Institut für Lasertechnik (ILT) and Kayser-Threde GmbH (KT) - is developing CHARM-F, an Integrated Path Differential Absorption (IPDA) LIDAR for simultaneous measurement of CO2 and CH4 columns. Design goal is a compact and rugged instrument optimized for airborne use on board of DLR's long range research aircraft HALO. The main scientific goal of the instrument is to provide precise column measurements of CO2 and CH4 to infer fluxes of these important greenhouse gases by means of inverse modeling. For this purpose, very stringent requirements concerning accuracy and precision have to be met since typical surface sources and sinks alter the total column only by a few percent. To achieve this, CHARM-F uses laser sources emitting pulse-pairs with nanosecond duration which allows for a precise ranging and a proper separation of atmospheric influences (i.e. aerosol and clouds) from the ground return leading to an unambiguously defined column (no airmass factors involved). Two laser systems - one for each trace gas - are employed using highly efficient and robust Nd:YAG lasers to pump optical parametric oscillators (OPO) which convert the pump radiation to the desired measurement wavelengths in the near infrared. Each laser system emits a pulse pair having different wavelengths. One is tuned to an absorption line of the trace gas under consideration and the other one to a nearby wavelength with much less absorption. The close temporal pulse separation of 250 μs together with a relatively large spot size of 30 m on ground ensures that nearly the same area is illuminated by both pulses. To achieve single-mode operation, both the pump and the OPO are injection seeded. The seed lasers are locked to a gas cell filled with a mixture of CO2 and CH4 to ensure an absolute wavelength calibration. Furthermore, deviations of the wavelength between outgoing laser pulse and the seed lasers

  18. Music Hath Charms.

    ERIC Educational Resources Information Center

    Clarke, Dana

    1988-01-01

    The article describes a program which introduced classical music to 18 students in a residential treatment program for adolescents with a history of substance abuse. Use as background music progressed to students requesting tape copies for personal use and group attendance at a symphony rehearsal and concert. (DB)

  19. Measurement of associated production of z bosons with charm quark jets in pp collisions at √s=1.96  TeV.

    PubMed

    Abazov, V M; Abbott, B; Acharya, B S; Adams, M; Adams, T; Agnew, J P; Alexeev, G D; Alkhazov, G; Alton, A; Askew, A; Atkins, S; Augsten, K; Avila, C; Badaud, F; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, S; Barberis, E; Baringer, P; Bartlett, J F; Bassler, U; Bazterra, V; Bean, A; Begalli, M; Bellantoni, L; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Beuselinck, R; Bhat, P C; Bhatia, S; Bhatnagar, V; Blazey, G; Blessing, S; Bloom, K; Boehnlein, A; Boline, D; Boos, E E; Borissov, G; Brandt, A; Brandt, O; Brock, R; Bross, A; Brown, D; Bu, X B; Buehler, M; Buescher, V; Bunichev, V; Burdin, S; Buszello, C P; Camacho-Pérez, E; Casey, B C K; Castilla-Valdez, H; Caughron, S; Chakrabarti, S; Chan, K M; Chandra, A; Chapon, E; Chen, G; Cho, S W; Choi, S; Choudhary, B; Cihangir, S; Claes, D; Clutter, J; Cooke, M; Cooper, W E; Corcoran, M; Couderc, F; Cousinou, M-C; Cutts, D; Das, A; Davies, G; de Jong, S J; De La Cruz-Burelo, E; Déliot, F; Demina, R; Denisov, D; Denisov, S P; Desai, S; Deterre, C; DeVaughan, K; Diehl, H T; Diesburg, M; Ding, P F; Dominguez, A; Dubey, A; Dudko, L V; Duperrin, A; Dutt, S; Eads, M; Edmunds, D; Ellison, J; Elvira, V D; Enari, Y; Evans, H; Evdokimov, V N; Feng, L; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Fortner, M; Fox, H; Fuess, S; Garcia-Bellido, A; García-González, J A; Gavrilov, V; Geng, W; Gerber, C E; Gershtein, Y; Ginther, G; Golovanov, G; Grannis, P D; Greder, S; Greenlee, H; Grenier, G; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grünendahl, S; Grünewald, M W; Guillemin, T; Gutierrez, G; Gutierrez, P; Haley, J; Han, L; Harder, K; Harel, A; Hauptman, J M; Hays, J; Head, T; Hebbeker, T; Hedin, D; Hegab, H; Heinson, A P; Heintz, U; Hensel, C; Heredia-De La Cruz, I; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hoang, T; Hobbs, J D; Hoeneisen, B; Hogan, J; Hohlfeld, M; Holzbauer, J L; Howley, I; Hubacek, Z; Hynek, V; Iashvili, I; Ilchenko, Y; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jayasinghe, A; Jeong, M S; Jesik, R; Jiang, P; Johns, K; Johnson, E; Johnson, M; Jonckheere, A; Jonsson, P; Joshi, J; Jung, A W; Juste, A; Kajfasz, E; Karmanov, D; Katsanos, I; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y N; Kiselevich, I; Kohli, J M; Kozelov, A V; Kraus, J; Kumar, A; Kupco, A; Kurča, T; Kuzmin, V A; Lammers, S; Lebrun, P; Lee, H S; Lee, S W; Lee, W M; Lei, X; Lellouch, J; Li, D; Li, H; Li, L; Li, Q Z; Lim, J K; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, H; Liu, Y; Lobodenko, A; Lokajicek, M; Lopes de Sa, R; Luna-Garcia, R; Lyon, A L; Maciel, A K A; Madar, R; Magaña-Villalba, R; Malik, S; Malyshev, V L; Mansour, J; Martínez-Ortega, J; McCarthy, R; McGivern, C L; Meijer, M M; Melnitchouk, A; Menezes, D; Mercadante, P G; Merkin, M; Meyer, A; Meyer, J; Miconi, F; Mondal, N K; Mulhearn, M; Nagy, E; Narain, M; Nayyar, R; Neal, H A; Negret, J P; Neustroev, P; Nguyen, H T; Nunnemann, T; Orduna, J; Osman, N; Osta, J; Pal, A; Parashar, N; Parihar, V; Park, S K; Partridge, R; Parua, N; Patwa, A; Penning, B; Perfilov, M; Peters, Y; Petridis, K; Petrillo, G; Pétroff, P; Pleier, M-A; Podstavkov, V M; Popov, A V; Prewitt, M; Price, D; Prokopenko, N; Qian, J; Quadt, A; Quinn, B; Ratoff, P N; Razumov, I; Ripp-Baudot, I; Rizatdinova, F; Rominsky, M; Ross, A; Royon, C; Rubinov, P; Ruchti, R; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Santos, A S; Savage, G; Sawyer, L; Scanlon, T; Schamberger, R D; Scheglov, Y; Schellman, H; Schwanenberger, C; Schwienhorst, R; Sekaric, J; Severini, H; Shabalina, E; Shary, V; Shaw, S; Shchukin, A A; Simak, V; Skubic, P; Slattery, P; Smirnov, D; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Sonnenschein, L; Soustruznik, K; Stark, J; Stoyanova, D A; Strauss, M; Suter, L; Svoisky, P; Titov, M; Tokmenin, V V; Tsai, Y-T; Tsybychev, D; Tuchming, B; Tully, C; Uvarov, L; Uvarov, S; Uzunyan, S; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vasilyev, I A; Verkheev, A Y; Vertogradov, L S; Verzocchi, M; Vesterinen, M; Vilanova, D; Vokac, P; Wahl, H D; Wang, M H L S; Warchol, J; Watts, G; Wayne, M; Weichert, J; Welty-Rieger, L; Williams, M R J; Wilson, G W; Wobisch, M; Wood, D R; Wyatt, T R; Xie, Y; Yamada, R; Yang, S; Yasuda, T; Yatsunenko, Y A; Ye, W; Ye, Z; Yin, H; Yip, K; Youn, S W; Yu, J M; Zennamo, J; Zhao, T G; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zivkovic, L

    2014-01-31

    We present the first measurements of the ratios of cross sections σ(pp → Z+c jet)/σ(pp → Z+jet) and σ(pp → Z+c jet)/σ(pp → Z+b jet) for the associated production of a Z boson with at least one charm or bottom quark jet. Jets have transverse momentum ​pT(jet)​>20  GeV and pseudorapidity |​η(jet)​|<2.5. These cross section ratios are measured differentially as a function of jet and Z boson transverse momenta, based on 9.7  fb(-1) of pp collisions collected with the D0 detector at the Fermilab Tevatron Collider at √s=1.96  TeV. The measurements show significant deviations from perturbative QCD calculations and predictions from various event generators.

  20. Observation of a Charmed Baryon Decaying to D;{0}p at a Mass Near 2.94 GeV/c;{2}.

    PubMed

    Aubert, B; Barate, R; Bona, M; Boutigny, D; Couderc, F; Karyotakis, Y; Lees, J P; Poireau, V; Tisserand, V; Zghiche, A; Grauges, E; Palano, A; Pappagallo, M; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Battaglia, M; Brown, D N; Button-Schafer, J; Cahn, R N; Charles, E; Day, C T; Gill, M S; Groysman, Y; Jacobsen, R G; Kadyk, J A; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Lynch, G; Mir, L M; Oddone, P J; Orimoto, T J; Pripstein, M; Roe, N A; Ronan, M T; Wenzel, W A; Barrett, M; Ford, K E; Harrison, T J; Hart, A J; Hawkes, C M; Morgan, S E; Watson, A T; Goetzen, K; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Peters, K; Schroeder, T; Steinke, M; Boyd, J T; Burke, J P; Cottingham, W N; Walker, D; Cuhadar-Donszelmann, T; Fulsom, B G; Hearty, C; Knecht, N S; Mattison, T S; McKenna, J A; Khan, A; Kyberd, P; Saleem, M; Teodorescu, L; Blinov, V E; Bukin, A D; Druzhinin, V P; Golubev, V B; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Yu Todyshev, K; Best, D S; Bondioli, M; Bruinsma, M; Chao, M; Curry, S; Eschrich, I; Kirkby, D; Lankford, A J; Lund, P; Mandelkern, M; Mommsen, R K; Roethel, W; Stoker, D P; Abachi, S; Buchanan, C; Foulkes, S D; Gary, J W; Long, O; Shen, B C; Wang, K; Zhang, L; Hadavand, H K; Hill, E J; Paar, H P; Rahatlou, S; Sharma, V; Berryhill, J W; Campagnari, C; Cunha, A; Dahmes, B; Hong, T M; Kovalskyi, D; Richman, J D; Beck, T W; Eisner, A M; Flacco, C J; Heusch, C A; Kroseberg, J; Lockman, W S; Nesom, G; Schalk, T; Schumm, B A; Seiden, A; Spradlin, P; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dvoretskii, A; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Ryd, A; Samuel, A; Andreassen, R; Mancinelli, G; Meadows, B T; Sokoloff, M D; Blanc, F; Bloom, P C; Chen, S; Ford, W T; Hirschauer, J F; Kreisel, A; Nauenberg, U; Olivas, A; Ruddick, W O; Smith, J G; Ulmer, K A; Wagner, S R; Zhang, J; Chen, A; Eckhart, E A; Soffer, A; Toki, W H; Wilson, R J; Winklmeier, F; Zeng, Q; Altenburg, D D; Feltresi, E; Hauke, A; Jasper, H; Spaan, B; Brandt, T; Klose, V; Lacker, H M; Mader, W F; Nogowski, R; Petzold, A; Schubert, J; Schubert, K R; Schwierz, R; Sundermann, J E; Volk, A; Bernard, D; Bonneaud, G R; Grenier, P; Latour, E; Thiebaux, Ch; Verderi, M; Bard, D J; Clark, P J; Gradl, W; Muheim, F; Playfer, S; Robertson, A I; Xie, Y; Andreotti, M; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Petrella, A; Piemontese, L; Prencipe, E; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Finocchiaro, G; Pacetti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rama, M; Zallo, A; Buzzo, A; Capra, R; Contri, R; Lo Vetere, M; Macri, M M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Brandenburg, G; Chaisanguanthum, K S; Morii, M; Wu, J; Dubitzky, R S; Marks, J; Schenk, S; Uwer, U; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Flack, R L; Gaillard, J R; Nash, J A; Nikolich, M B; Panduro Vazquez, W; Chai, X; Charles, M J; Mallik, U; Meyer, N T; Ziegler, V; Cochran, J; Crawley, H B; Dong, L; Eyges, V; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Gristan, A V; Fritsch, M; Schott, G; Arnaud, N; Davier, M; Grosdidier, G; Höcker, A; Le Diberder, F; Lepeltier, V; Lutz, A M; Oyanguren, A; Pruvot, S; Rodier, S; Roudeau, P; Schune, M H; Stocchi, A; Wang, W F; Wormser, G; Cheng, C H; Lange, D J; Wright, D M; Chavez, C A; Forster, I J; Fry, J R; Gabathuler, E; Gamet, R; George, K A; Hutchcroft, D E; Payne, D J; Schofield, K C; Touramanis, C; Bevan, A J; Di Lodovico, F; Menges, W; Sacco, R; Brown, C L; Cowan, G; Flaecher, H U; Hopkins, D A; Jackson, P S; McMahon, T R; Ricciardi, S; Salvatore, F; Brown, D N; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Chia, Y M; Edgar, C L; Kelly, M P; Lafferty, G D; Naisbit, M T; Williams, J C; Yi, J I; Chen, C; Hulsbergen, W D; Jawahery, A; Lae, C K; Roberts, D A; Simi, G; Blaylock, G; Dallapiccola, C; Hertzbach, S S; Li, X; Moore, T B; Saremi, S; Staengle, H; Willocq, S Y; Cowan, R; Koeneke, K; Sciolla, G; Sekula, S J; Spitznagel, M; Taylor, F; Yamamoto, R K; Kim, H; Patel, P M; Potter, C T; Robertson, S H; Lazzaro, A; Lombardo, V; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Reidy, J; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Simard, M; Taras, P; Viaud, F B; Nicholson, H; Cavallo, N; De Nardo, G; Del Re, D; Fabozzi, F; Gatto, C; Lista, L; Monorchio, D; Paolucci, P; Piccolo, D; Sciacca, C; Baak, M; Bulten, H; Raven, G; Snoek, H L; Jessop, C P; Losecco, J M; Allmendinger, T; Benelli, G; Gan, K K; Honscheid, K; Hufnagel, D; Jackson, P D; Kagan, H; Kass, R; Pulliam, T; Rahimi, A M; Ter-Antonyan, R; Wong, Q K; Blout, N L; Brau, J; Frey, R; Igonkina, O; Lu, M; Rahmat, R; Sinev, N B; Strom, D; Strube, J; Torrence, E; Galeazzi, F; Gaz, A; Margoni, M; Morandin, M; Pompili, A; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; Benayoun, M; Chauveau, J; David, P; Del Buono, L; de la Vaissière, Ch; Hamon, O; Hartfiel, B L; John, M J J; Leruste, Ph; Malclès, J; Ocariz, J; Roos, L; Therin, G; Behera, P K; Gladney, L; Panetta, J; Biasini, M; Covarelli, R; Pioppi, M; Angelini, C; Batignani, G; Bettarini, S; Bucci, F; Calderini, G; Carpinelli, M; Cenci, R; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Mazur, M A; Morganti, M; Neri, N; Paoloni, E; Rizzo, G; Walsh, J; Haire, M; Judd, D; Wagoner, D E; Biesiada, J; Danielson, N; Elmer, P; Lau, Y P; Lu, C; Olsen, J; Smith, A J S; Telnov, A V; Bellini, F; Cavoto, G; D'Orazio, A; Di Marco, E; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Li Gioi, L; Mazzoni, M A; Morganti, S; Piredda, G; Polci, F; Safai Tehrani, F; Voena, C; Ebert, M; Schröder, H; Waldi, R; Adye, T; De Groot, N; Franek, B; Olaiya, E O; Wilson, F F; Emery, S; Gaidot, A; Ganzhur, S F; Hamel de Monchenault, G; Kozanecki, W; Legendre, M; Mayer, B; Vasseur, G; Yèche, Ch; Zito, M; Park, W; Purohit, M V; Weidemann, A W; Wilson, J R; Allen, M T; Aston, D; Bartoldus, R; Bechtle, P; Berger, N; Boyarski, A M; Claus, R; Coleman, J P; Convery, M R; Cristinziani, M; Dingfelder, J C; Dong, D; Dorfan, J; Dubois-Felsmann, G P; Dujmic, D; Dunwoodie, W; Field, R C; Glanzman, T; Gowdy, S J; Graham, M T; Halyo, V; Hast, C; Hyrn'ova, T; Innes, W R; Kelsey, M H; Kim, P; Kocian, M L; Leith, D W G S; Li, S; Libby, J; Luitz, S; Luth, V; Lynch, H L; Macfarlane, D B; Marsiske, H; Messner, R; Muller, D R; O'grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Stelzer, J; Su, D; Sullivan, M K; Suzuki, K; Swain, S K; Thompson, J M; Va'vra, J; van Bakel, N; Weaver, M; Weinstein, A J R; Wisniewski, W J; Wittgen, M; Wright, D H; Yarritu, A K; Yi, K; Young, C C; Burchat, P R; Edwards, A J; Majewski, S A; Petersen, B A; Roat, C; Wilden, L; Ahmed, S; Alam, M S; Bula, R; Ernst, J A; Jain, V; Pan, B; Saeed, M A; Wappler, F R; Zain, S B; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Ritchie, J L; Satpathy, A; Schilling, C J; Schwitters, R F; Izen, J M; Kitayama, I; Lou, X C; Ye, S; Bianchi, F; Gallo, F; Gamba, D; Bomben, M; Bosisio, L; Cartaro, C; Cossutti, F; Della Ricca, G; Dittongo, S; Grancagnolo, S; Lanceri, L; Vitale, L; Azzolini, V; Martinez-Vidal, F; Banerjee, Sw; Bhuyan, B; Brown, C M; Fortin, D; Hamano, K; Kowalewski, R; Nugent, I M; Roney, J M; Sobie, R J; Back, J J; Harrison, P F; Latham, T E; Mohanty, G B; Band, H R; Chen, X; Cheng, B; Dasu, S; Datta, M; Eichenbaum, A M; Flood, K T; Hollar, J J; Johnson, J R; Kutter, P E; Li, H; Liu, R; Mellado, B; Mihalyi, A; Mohapatra, A K; Pan, Y; Pierini, M; Prepost, R; Tan, P; Wu, S L; Yu, Z; Neal, H

    2007-01-01

    A search for charmed baryons decaying to D(0)p reveals two states: the Lambdac(2880)+ baryon and a previously unobserved state at a mass of [2939.8+/-1.3(stat)+/-1.0(syst)] MeV/c2 and with an intrinsic width of [17.5+/-5.2(stat)+/-5.9(syst)] MeV. Consistent and significant signals are observed for the K(-)pi(+) and K(-)pi(+)pi(-)pi(+) decay modes of the D0 in 287 fb(-1) annihilation data recorded by the BABAR detector at a center-of-mass energy of 10.58 GeV. There is no evidence in the D+p spectrum of doubly charged partners. The mass and intrinsic width of the Lambdac(2880)+ baryon and relative yield of the two baryons are also measured.

  1. Production and fragmentation of the D sup *0 charm meson in e sup + e sup minus annihilations at radical s = 29 GeV

    SciTech Connect

    Low, H.L.

    1987-01-01

    In this thesis, the neutral vector charm meson D{sup *0} has been studied. The data, corresponding to an integrated luminosity of 300 pb{sup {minus}1}, were collected using the High Resolution Spectrometer (HRS). The HRS is located at the PEP e{sup +}e{sup {minus}} storage ring at the Stanford Linear Accelerator Center. The detector subsystems relevant to the analysis are the seventeen layer drift chamber system and the barrel calorimeter system. Both of these devices are located within a solenoidal magnetic field of 1.62 Tesla. The charged particle momentum resolution is {sigma}{sub p}/p {approx} 6 {times} 10{sup {minus}3}p (p in GeV) for the momentum range used in this analysis. The electromagnetic energy resolution of the barrel shower counter system is {sigma}{sub E}/E {approx} 0.16/{radical}E (E in GeV). The radiative decay of the D{sup {asterisk}0} into a scalar charm meson, D{sup 0}, and a photon, {gamma}, where the D{sup 0} decays into a kaon and a pion (K{sup {minus}} {pi}{sup +}) has been observed. The production cross section in units of the point cross section is 0.63 {plus minus} 0.22 for fractional energy Z {ge} 0.5. This results is compared with the result form the JADE collaboration. The fragmentation function is compared with that of the D{sup *+} meson, also measured with the HRS.

  2. Openness initiative

    SciTech Connect

    Duncan, S.S.

    1995-12-31

    Although antinuclear campaigns seem to be effective, public communication and education efforts on low-level radioactive waste have mixed results. Attempts at public information programs on low-level radioactive waste still focus on influencing public opinion. A question then is: {open_quotes}Is it preferable to have a program focus on public education that will empower individuals to make informed decisions rather than trying to influence them in their decisions?{close_quotes} To address this question, a case study with both quantitative and qualitative data will be used. The Ohio Low-Level Radioactive Waste Education Program has a goal to provide people with information they want/need to make their own decisions. The program initiated its efforts by conducting a statewide survey to determine information needed by people and where they turned for that information. This presentation reports data from the survey and then explores the program development process in which programs were designed and presented using the information. Pre and post data from the programs reveal attitude and knowledge shifts.

  3. How To Dance through Time. Volume VI: A 19th Century Ball--The Charm of Group Dances. [Videotape].

    ERIC Educational Resources Information Center

    Teten, Carol

    This 48-minute VHS videotape is the sixth in a series of "How To Dance Through Time" videos. It shows the festivity of the 19th century group dances, enabling the viewer to plan and participate in the elegant opening to the ball, a refined square dance, and flirtatious Cotillion dancing games. Professional dancers demonstrate the patterns with…

  4. Opening Address

    NASA Astrophysics Data System (ADS)

    Crovini, L.

    1994-01-01

    Ladies and Gentlemen To quote Mr Jean Terrien: "Physics must be one step ahead of metrology". A long-serving Director of the BIPM, he said these words when visiting the IMGC in 1970 as a member of the scientific board of our Institute. At that time it was still an open question whether the IMGC should start research work on the absolute measurement of silicon lattice spacing. Mr Terrien underlined the revolutionary character of x-ray interferometry and, eventually, he caused the balance needle to lean towards the ... right direction. Mr Terrien correctly foresaw that, like Michelson's interferometer of 1880, x-ray interferometry could have a prominent place in today's science and technology. And while, in the first case, after more than a century we can see instruments based on electromagnetic wave interaction within every one's reach in laboratories and, sometimes, in workshops, in the second case, twenty-five years since the first development of an x-ray interferometer we can witness its role in nanometrology. Today and tomorrow we meet to discuss how to go beyond the sixth decimal place in the value of the Avogadro constant. We are aware that the quest for this achievement requires the cooperation of scientists with complementary capabilities. I am sure that the present workshop is a very good opportunity to present and discuss results and to improve and extend existing cooperation. The new adjustment of fundamental constants envisaged by the CODATA Task Group is redoubling scientists' efforts to produce competitive values of NA. The results of the measurements of the silicon lattice spacing in terms of an optical wavelength, which were available for the 1986 adjustment, combined with the determination of silicon molar volume, demonstrate how such an NA determination produces a consistent set of other constants and opens the way to a possible redefinition of the kilogram. We shall see in these two days how far we have progressed along this road. For us at the

  5. Open heart surgery

    MedlinePlus

    Heart surgery - open ... lung machine is used in most cases during open heart surgery. While the surgeon works on the ... with these procedures, the surgeon may have to open the chest to do the surgery.

  6. Open lung biopsy

    MedlinePlus

    Biopsy - open lung ... An open lung biopsy is done in the hospital using general anesthesia , which means you are asleep and pain- ... The open lung biopsy is done to evaluate lung problems seen on x-ray or CT scan .

  7. Charmed and light pseudoscalar meson decay constants from four-flavor lattice QCD with physical light quarks

    SciTech Connect

    Bazavov, A.; Bernard, C.; Komijani, J.; Bouchard, C. M.; DeTar, C.; Foley, J.; Levkova, L.; Du, D.; Laiho, J.; El-Khadra, A. X.; Freeland, E. D.; Gámiz, E.; Gottlieb, Steven; Heller, U. M.; Kim, J.; Toussaint, D.; Kronfeld, A. S.; Mackenzie, P. B.; Simone, J. N.; Van de Water, R. S.; Zhou, R.; Neil, E. T.; Sugar, R.

    2014-10-30

    ="false">(10)(+29-32), where the errors are statistical and total systematic, respectively. The errors on our results for the charm decay constants and their ratio are approximately 2–4 times smaller than those of the most precise previous lattice calculations. We also obtain fK+/fπ

  8. First measurement of the production of a W boson in association with a single charm quark in p anti-p collisions at s**(1/2) = 1.96-TeV

    SciTech Connect

    Aaltonen, T.; Adelman, J.; Akimoto, T.; Albrow, M.G.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Aoki, M.; /Illinois U., Urbana /Fermilab

    2007-11-01

    The authors present the first measurement of the production cross section of a W boson with a single charm quark (c) in p{bar p} collisions at {radical}s = 1.96 TeV, using soft muon tagging of c jets. In a data sample of {approx} 1.8 fb{sup -1}, recorded with the CDF II detector at the Fermilab Tevatron, they select events with W + 1 or 2 jets. They use the charge correlation between the W and the muon from the semileptonic decay of a charm hadron to extract the We signal. They measure {sigma}{sub Wc} (p{sub Tc} > 20 GeV/c, |{eta}{sub c}| < 1.5) x BR(W {yields} {ell}{nu}) = 9.8 {+-} 3.2 pb, in agreement with theoretical expectations.

  9. Opening Address

    NASA Astrophysics Data System (ADS)

    Yamada, T.

    2014-12-01

    Ladies and Gentlemen, it is my great honor and pleasure to present an opening address of the 3rd International Workshop on "State of the Art in Nuclear Cluster Physics"(SOTANCP3). On the behalf of the organizing committee, I certainly welcome all your visits to KGU Kannai Media Center belonging to Kanto Gakuin University, and stay in Yokohama. In particular, to whom come from abroad more than 17 countries, I would appreciate your participations after long long trips from your homeland to Yokohama. The first international workshop on "State of the Art in Nuclear Cluster Physics", called SOTANCP, was held in Strasbourg, France, in 2008, and the second one was held in Brussels, Belgium, in 2010. Then the third workshop is now held in Yokohama. In this period, we had the traditional 10th cluster conference in Debrecen, Hungary, in 2012. Thus we have the traditional cluster conference and SOTANCP, one after another, every two years. This obviously shows our field of nuclear cluster physics is very active and flourishing. It is for the first time in about 10 years to hold the international workshop on nuclear cluster physics in Japan, because the last cluster conference held in Japan was in Nara in 2003, about 10 years ago. The president in Nara conference was Prof. K. Ikeda, and the chairpersons were Prof. H. Horiuchi and Prof. I. Tanihata. I think, quite a lot of persons in this room had participated at the Nara conference. Since then, about ten years passed. So, this workshop has profound significance for our Japanese colleagues. The subjects of this workshop are to discuss "the state of the art in nuclear cluster physics" and also discuss the prospect of this field. In a couple of years, we saw significant progresses of this field both in theory and in experiment, which have brought better and new understandings on the clustering aspects in stable and unstable nuclei. I think, the concept of clustering has been more important than ever. This is true also in the

  10. Open for Business

    ERIC Educational Resources Information Center

    Voyles, Bennett

    2007-01-01

    People know about the Sakai Project (open source course management system); they may even know about Kuali (open source financials). So, what is the next wave in open source software? This article discusses business intelligence (BI) systems. Though open source BI may still be only a rumor in most campus IT departments, some brave early adopters…

  11. Charmed Baryon Spectroscopy and Search for $CP$ Violation in $D^0 \\to K_S^0\\,\\pi^+\\,\\pi^-$ at CDF

    SciTech Connect

    Wick, Felix

    2011-10-28

    In this thesis two different analyses are presented, namely the measurements of the properties of $\\Lambda_c(2595)^+$, $\\Lambda_c(2625)^+$, $\\Sigma_c(2455)^{++,0}$, and $\\Sigma_c(2520)^{++,0}$ baryons as well as the search for $CP$ violation in the Dalitz plot of the decay $D^0 \\to K_S^0\\,\\pi^+\\,\\pi^-$. Both studies are performed using data corresponding to 5.2\\,\\invfb respective 6.0\\,\\invfb of integrated luminosity from $p\\bar{p}$ collisions at a center-of-mass energy of 1.96\\,TeV, collected with the CDF~II detector at the Fermilab Tevatron. The masses and decay widths of the mentioned charmed baryon resonances are measured with uncertainties comparable to the world averages for $\\Sigma_c$ states, and significantly smaller uncertainties than the world averages for excited $\\Lambda_c^+$ states. No hints for any $CP$ violating effects in the resonant substructure of $D^0 \\to K_S^0\\,\\pi^+\\,\\pi^-$ are found.

  12. Observation of a Charmed Baryon Decaying to D0 p at a Mass Near 2.94 GeV/c2

    SciTech Connect

    Aubert, B.

    2006-03-29

    A search for charmed baryons decaying to D{sup 0}p reveals two states: the {Lambda}{sub c}(2880){sup +} baryon and a previously unobserved state at a mass of [2939.8 {+-} 1.3 (stat.) {+-} 1.0 (syst.)] MeV/c{sup 2} and with an intrinsic width of [17.5 {+-} 5.2 (stat.) {+-} 5.9 (syst.)] MeV. Consistent and significant signals are observed for the K{sup -}{pi}{sup +} and K{sup -}{pi}{sup +}{pi}{sup -}{pi}{sup +} decay modes of the D{sup 0} in 287 fb{sup -1} annihilation data recorded by the BABAR detector at a center-of-mass energy of 10.58 GeV. There is no evidence in the D{sup +}p spectrum of doubly-charged partners. The mass and intrinsic width of the {Lambda}{sub c}(2880){sup +} baryon and relative yield of the two baryons are also measured.

  13. LHCb pentaquarks as a baryon-ψ (2 S ) bound state: Prediction of isospin-3/2 pentaquarks with hidden charm

    NASA Astrophysics Data System (ADS)

    Perevalova, Irina A.; Polyakov, Maxim V.; Schweitzer, Peter

    2016-09-01

    The pentaquark Pc+(4450 ) recently discovered by the LHCb has been interpreted as a bound state of Ψ (2 S ) and a nucleon. The charmonium-nucleon interaction which provides the binding mechanism is given, in the heavy-quark limit, in terms of charmonium chromoelectric polarizabilities and densities of the nucleon energy-momentum tensor. In this work, we show in a model-independent way, by exploring general properties of the effective interaction, that Ψ (2 S ) can form bound states with a nucleon and Δ . Using the Skyrme model to evaluate the effective interaction in the large-Nc limit and estimate 1 /Nc corrections, we confirm the results from prior work which were based on a different effective model (chiral quark soliton model). This shows that the interpretation of Pc+(4450 ) is remarkably robust and weakly dependent on the details of the effective theories for the nucleon energy-momentum tensor. We explore the formalism further and present robust predictions of isospin-3/2 bound states of Ψ (2 S ) and Δ with masses around 4.5 GeV and widths around 70 MeV. The approach also predicts broader resonances in the Ψ (2 S )-Δ channel at 4.9 GeV with widths of the order of 150 MeV. We discuss in which reactions these new isospin-3/2 pentaquarks with hidden charm can be observed.

  14. 23rd Solar Cycle in global response in composition of the atmosphere between the ground and 90 km : 3D simulations with CHARM model

    NASA Astrophysics Data System (ADS)

    Krivolutsky, Alexei A.

    The response in ozone and other chemical species of the Earth’s atmosphere have been simulated with new version of three-dimentional photochemical global transport model CHARM (CHemical Atmospheric Research Model), developed at the Laboratory for Atmospheric Chemistry and Dynamics of Central Aerological Observatory. Model describes the interaction between 40 chemical species involved in 140 photochemical reactions. “Family” technique is used for solving kinetic part of the model equations and Prather’s scheme used to describe advection. 3D global wind components and temperature field (daily averaged) calculated by GCM ARM (Atmospheric Research Model) were used in simulations. Solar cycle signal in UV solar irradiance variations measured from space (SIM and other instruments) has been introduced in the model. External forcing used in numerical scenario described unusual features of 23rd solar cycle: long and deep its minima. So that, the amplitude of external signal (max-min) was really more than in previous cycles. The results of simulations showed global structure of ozone response, which is mostly positive. At the same time the regions of negative ozone changes at high latitudes exist. The response of tropospheric ozone was also found around the equator. NOy global changes responsible for negative ozone response is also presented. This work was supported by Russian Science Foundation for Basic Research (grant N 13-05-0105213).

  15. Openness, Web 2.0 Technology, and Open Science

    ERIC Educational Resources Information Center

    Peters, Michael A.

    2010-01-01

    Open science is a term that is being used in the literature to designate a form of science based on open source models or that utilizes principles of open access, open archiving and open publishing to promote scientific communication. Open science increasingly also refers to open governance and more democratized engagement and control of science…

  16. Open access, open education resources and open data in Uganda

    PubMed Central

    Salvo, Ivana Di; Mwoka, Meggie; Kwaga, Teddy; Rukundo, Priscilla Aceng; Ernest, Dennis Ssesanga; Osaheni, Louis Aikoriogie; John, Kasibante; Shafik, Kasirye; de Sousa, Agostinho Moreira

    2015-01-01

    As a follow up to OpenCon 2014, International Federation of Medical Students’ Associations (IFMSA) students organized a 3 day workshop Open Access, Open Education Resources and Open Data in Kampala from 15-18 December 2014. One of the aims of the workshop was to engage the Open Access movement in Uganda which encompasses the scientific community, librarians, academia, researchers and students. The IFMSA students held the workshop with the support of: Consortium for Uganda University Libraries (CUUL), The Right to Research Coalition, Electronic Information for Libraries (EIFL), Makerere University, International Health Sciences University (IHSU), Pan African Medical Journal (PAMJ) and the Centre for Health Human Rights and Development (CEHURD). All these organizations are based or have offices in Kampala. The event culminated in a meeting with the Science and Technology Committee of Parliament of Uganda in order to receive the support of the Ugandan Members of Parliament and to make a concrete change for Open Access in the country. PMID:26327966

  17. Open access, open education resources and open data in Uganda.

    PubMed

    Salvo, Ivana Di; Mwoka, Meggie; Kwaga, Teddy; Rukundo, Priscilla Aceng; Ernest, Dennis Ssesanga; Osaheni, Louis Aikoriogie; John, Kasibante; Shafik, Kasirye; de Sousa, Agostinho Moreira

    2015-01-01

    As a follow up to OpenCon 2014, International Federation of Medical Students' Associations (IFMSA) students organized a 3 day workshop Open Access, Open Education Resources and Open Data in Kampala from 15-18 December 2014. One of the aims of the workshop was to engage the Open Access movement in Uganda which encompasses the scientific community, librarians, academia, researchers and students. The IFMSA students held the workshop with the support of: Consortium for Uganda University Libraries (CUUL), The Right to Research Coalition, Electronic Information for Libraries (EIFL), Makerere University, International Health Sciences University (IHSU), Pan African Medical Journal (PAMJ) and the Centre for Health Human Rights and Development (CEHURD). All these organizations are based or have offices in Kampala. The event culminated in a meeting with the Science and Technology Committee of Parliament of Uganda in order to receive the support of the Ugandan Members of Parliament and to make a concrete change for Open Access in the country. PMID:26327966

  18. Open Access Alternatives

    ERIC Educational Resources Information Center

    Tenopir, Carol

    2004-01-01

    Open access publishing is a hot topic today. But open access publishing can have many different definitions, and pros and cons vary with the definitions. Open access publishing is especially attractive to companies and small colleges or universities that are likely to have many more readers than authors. A downside is that a membership fee sounds…

  19. In Brief: Open government

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2010-03-01

    U.S. President Barack Obama's Memorandum on Transparency and Open Government requires federal agencies to take steps toward increased transparency, public participation, and collaboration. Agencies are accepting suggestions until 19 March 2010. For more information, visit http://www.whitehouse.gov/open and http://www.usa.gov/webcontent/open/tool_poc.shtml.

  20. Openness as infrastructure

    PubMed Central

    2011-01-01

    The advent of open access to peer reviewed scholarly literature in the biomedical sciences creates the opening to examine scholarship in general, and chemistry in particular, to see where and how novel forms of network technology can accelerate the scientific method. This paper examines broad trends in information access and openness with an eye towards their applications in chemistry. PMID:21999327

  1. Asian Open Universities.

    ERIC Educational Resources Information Center

    Hill, John

    1983-01-01

    The appearance of open universities in Asia is of interest to Australian educators, particularly since the Asian institutions differ in some respects from the British model which combined open entry to all and extensively employed the electronic media. The Asian Open Universities have provided access to higher education for many. (SSH)

  2. Looking south at the open hearth steelmaking plant; open hearth ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking south at the open hearth steelmaking plant; open hearth stockhouse in foreground and open hearth furnace building in background - U.S. Steel Edgar Thomson Works, Open Hearth Steelmaking Plant, Along Monongahela River, Braddock, Allegheny County, PA

  3. Measurement of charm and beauty production at central rapidity versus charged-particle multiplicity in proton-proton collisions at √{s}=7 TeV

    NASA Astrophysics Data System (ADS)

    Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmed, I.; Ahn, S. U.; Aimo, I.; Aiola, S.; Ajaz, M.; Akindinov, A.; Alam, S. N.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I. C.; Arslandok, M.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Bach, M.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Ball, M.; Baltasar Dos Santos Pedrosa, F.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Belmont, R.; Belmont-Moreno, E.; Belyaev, V.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biswas, S.; Bjelogrlic, S.; Blanco, F.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Bøggild, H.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Bossú, F.; Botje, M.; Botta, E.; Böttger, S.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Buxton, J. T.; Caffarri, D.; Cai, X.; Caines, H.; Calero Diaz, L.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Cavicchioli, C.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; De, S.; De Caro, A.; de Cataldo, G.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; Deloff, A.; Dénes, E.; D'Erasmo, G.; Di Bari, D.; Di Mauro, A.; Di Nezza, P.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Dobrowolski, T.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Engel, H.; Erazmus, B.; Eschweiler, D.; Espagnon, B.; Estienne, M.; Esumi, S.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabbietti, L.; Fabris, D.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Felea, D.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Fleck, M. G.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Gasik, P.; Germain, M.; Gheata, A.; Gheata, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Gomez Ramirez, A.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gulkanyan, H.; Gunji, T.; Gupta, A.; Gupta, R.; Haake, R.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hanratty, L. D.; Hansen, A.; Harris, J. W.; Hartmann, H.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Heide, M.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Hess, B. A.; Hetland, K. F.; Hilden, T. E.; Hillemanns, H.; Hippolyte, B.; Hristov, P.; Huang, M.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Ilkiv, I.; Inaba, M.; Ionita, C.; Ippolitov, M.; Irfan, M.; Ivanov, M.; Ivanov, V.; Jacobs, P. M.; Jahnke, C.; Jang, H. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jimenez Bustamante, R. T.; Jones, P. G.; Jung, H.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kamin, J.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Khan, K. H.; Khan, M. M.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, B.; Kim, D. W.; Kim, D. J.; Kim, H.; Kim, J. S.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobayashi, T.; Kobdaj, C.; Kofarago, M.; Köhler, M. K.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kour, M.; Kouzinopoulos, C.; Kovalenko, V.; Kowalski, M.; Kox, S.; Koyithatta Meethaleveedu, G.; Kral, J.; Králik, I.; Kravčáková, A.; Krelina, M.; Kretz, M.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kucheriaev, Y.; Kugathasan, T.; Kuhn, C.; Kuijer, P. G.; Kulakov, I.; Kumar, A.; Kumar, J.; Kumar, L.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lea, R.; Leardini, L.; Lee, G. R.; Lee, S.; Legrand, I.; Lehnert, J.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; Leoncino, M.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Ljunggren, H. M.; Lodato, D. F.; Loenne, P. I.; Loggins, V. R.; Loginov, V.; Loizides, C.; Lopez, X.; López Torres, E.; Lowe, A.; Lu, X.-G.; Luettig, P.; Lunardon, M.; Luparello, G.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manceau, L.; Manko, V.; Manso, F.; Manzari, V.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martashvili, I.; Martin, N. A.; Martin Blanco, J.; Martinengo, P.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Martynov, Y.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Massacrier, L.; Mastroserio, A.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzoni, M. A.; Mcdonald, D.; Meddi, F.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Mieskolainen, M. M.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Minervini, L. M.; Mischke, A.; Mishra, A. N.; Miskowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Molnar, L.; Montaño Zetina, L.; Montes, E.; Morando, M.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Müller, H.; Mulligan, J. D.; Munhoz, M. G.; Murray, S.; Musa, L.; Musinsky, J.; Nandi, B. K.; Nania, R.; Nappi, E.; Naru, M. U.; Nattrass, C.; Nayak, K.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nellen, L.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Ohlson, A.; Okatan, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira Da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Ozdemir, M.; Pachmayer, Y.; Pagano, P.; Paić, G.; Pajares, C.; Pal, S. K.; Pan, J.; Pandey, A. K.; Pant, D.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, W. J.; Parmar, S.; Passfeld, A.; Paticchio, V.; Paul, B.; Pawlak, T.; Peitzmann, T.; Pereira Da Costa, H.; Pereira De Oliveira Filho, E.; Peresunko, D.; Pérez Lara, C. E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Ploskon, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Razazi, V.; Read, K. F.; Real, J. S.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reicher, M.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Rettig, F.; Revol, J.-P.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rivetti, A.; Rocco, E.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Romita, R.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salgado, C. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sanchez Castro, X.; Šándor, L.; Sandoval, A.; Sano, M.; Santagati, G.; Sarkar, D.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schuchmann, S.; Schukraft, J.; Schulc, M.; Schuster, T.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Seeder, K. S.; Seger, J. E.; Sekiguchi, Y.; Selyuzhenkov, I.; Senosi, K.; Seo, J.; Serradilla, E.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shangaraev, A.; Sharma, A.; Sharma, M.; Sharma, N.; Shigaki, K.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Søgaard, C.; Soltz, R.; Song, J.; Song, M.; Song, Z.; Soramel, F.; Sorensen, S.; Spacek, M.; Spiriti, E.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stefanek, G.; Steinpreis, M.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Sultanov, R.; Šumbera, M.; Symons, T. J. M.; Szabo, A.; Szanto de Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Takahashi, J.; Tanaka, N.; Tangaro, M. A.; Tapia Takaki, J. D.; Tarantola Peloni, A.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thäder, J.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Toia, A.; Trogolo, S.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vajzer, M.; Vala, M.; Valencia Palomo, L.; Vallero, S.; Van Der Maarel, J.; Van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vechernin, V.; Veen, A. M.; Veldhoen, M.; Velure, A.; Venaruzzo, M.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Vislavicius, V.; Viyogi, Y. P.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Vyushin, A.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Wang, Y.; Watanabe, D.; Weber, M.; Weber, S. G.; Wessels, J. P.; Westerhoff, U.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, G.; Wilkinson, J.; Williams, M. C. S.; Windelband, B.; Winn, M.; Yaldo, C. G.; Yamaguchi, Y.; Yang, H.; Yang, P.; Yano, S.; Yasnopolskiy, S.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yurchenko, V.; Yushmanov, I.; Zaborowska, A.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zaporozhets, S.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zyzak, M.

    2015-09-01

    Prompt D meson and non-prompt J/ ψ yields are studied as a function of the multiplicity of charged particles produced in inelastic proton-proton collisions at a centre-of-mass energy of √{s}=7 TeV. The results are reported as a ratio between yields in a given multiplicity interval normalised to the multiplicity-integrated ones (relative yields). They are shown as a function of the multiplicity of charged particles normalised to the average value for inelastic collisions (relative charged-particle multiplicity). D0, D+ and D*+ mesons are measured in five p T intervals from 1 GeV/ c to 20 GeV/ c and for | y| < 0.5 via their hadronic decays. The D-meson relative yield is found to increase with increasing charged-particle multiplicity. For events with multiplicity six times higher than the average multiplicity of inelastic collisions, a yield enhancement of a factor about 15 relative to the multiplicity-integrated yield in inelastic collisions is observed. The yield enhancement is independent of transverse momentum within the uncertainties of the measurement. The D0-meson relative yield is also measured as a function of the relative multiplicity at forward pseudo-rapidity. The non-prompt J/ ψ, i.e. the B hadron, contribution to the inclusive J/ ψ production is measured in the di-electron decay channel at central rapidity. It is evaluated for p T > 1.3 GeV/c and | y| < 0.9, and extrapolated to p T > 0. The fraction of non-prompt J/ ψ in the inclusive J/ ψ yields shows no dependence on the charged-particle multiplicity at central rapidity. Charm and beauty hadron relative yields exhibit a similar increase with increasing charged-particle multiplicity. The measurements are compared to PYTHIA 8, EPOS 3 and percolation calculations. [Figure not available: see fulltext.

  4. The Open Future: Openness as Catalyst for an Educational Reformation

    ERIC Educational Resources Information Center

    Wiley, David

    2010-01-01

    The word "open" is receiving a lot of attention in education circles. For over a decade, "open" has been used as an adjective to modify a variety of nouns that describe teaching and learning materials. For example, open content, open educational resources, open courseware, and open textbooks are all part of the current higher education discourse.…

  5. Measurement of the pseudoscalar decay constant fDs using charm-tagged events in e+e- collisions at square root s=10.58 GeV.

    PubMed

    Aubert, B; Barate, R; Bona, M; Boutigny, D; Couderc, F; Karyotakis, Y; Lees, J P; Poireau, V; Tisserand, V; Zghiche, A; Grauges, E; Palano, A; Pappagallo, M; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Battaglia, M; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Day, C T; Gill, M S; Groysman, Y; Jacobsen, R G; Kadyk, J A; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Lynch, G; Mir, L M; Oddone, P J; Orimoto, T J; Pripstein, M; Roe, N A; Ronan, M T; Wenzel, W A; Barrett, M; Ford, K E; Harrison, T J; Hart, A J; Hawkes, C M; Morgan, S E; Watson, A T; Goetzen, K; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Peters, K; Schroeder, T; Steinke, M; Boyd, J T; Burke, J P; Cottingham, W N; Walker, D; Cuhadar-Donszelmann, T; Fulsom, B G; Hearty, C; Knecht, N S; Mattison, T S; McKenna, J A; Khan, A; Kyberd, P; Saleem, M; Teodorescu, L; Blinov, V E; Bukin, A D; Druzhinin, V P; Golubev, V B; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Todyshev, K Yu; Best, D S; Bondioli, M; Bruinsma, M; Chao, M; Curry, S; Eschrich, I; Kirkby, D; Lankford, A J; Lund, P; Mandelkern, M; Mommsen, R K; Roethel, W; Stoker, D P; Abachi, S; Buchanan, C; Foulkes, S D; Gary, J W; Long, O; Shen, B C; Wang, K; Zhang, L; Hadavand, H K; Hill, E J; Paar, H P; Rahatlou, S; Sharma, V; Berryhill, J W; Campagnari, C; Cunha, A; Dahmes, B; Hong, T M; Kovalskyi, D; Richman, J D; Beck, T W; Eisner, A M; Flacco, C J; Heusch, C A; Kroseberg, J; Lockman, W S; Nesom, G; Schalk, T; Schumm, B A; Seiden, A; Spradlin, P; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dvoretskii, A; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Ryd, A; Samuel, A; Andreassen, R; Mancinelli, G; Meadows, B T; Sokoloff, M D; Blanc, F; Bloom, P C; Chen, S; Ford, W T; Hirschauer, J F; Kreisel, A; Nauenberg, U; Olivas, A; Ruddick, W O; Smith, J G; Ulmer, K A; Wagner, S R; Zhang, J; Chen, A; Eckhart, E A; Soffer, A; Toki, W H; Wilson, R J; Winklmeier, F; Zeng, Q; Altenburg, D D; Feltresi, E; Hauke, A; Jasper, H; Spaan, B; Brandt, T; Klose, V; Lacker, H M; Mader, W F; Nogowski, R; Petzold, A; Schubert, J; Schubert, K R; Schwierz, R; Sundermann, J E; Volk, A; Bernard, D; Bonneaud, G R; Grenier, P; Latour, E; Thiebaux, Ch; Verderi, M; Bard, D J; Clark, P J; Gradl, W; Muheim, F; Playfer, S; Robertson, A I; Xie, Y; Andreotti, M; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Petrella, A; Piemontese, L; Prencipe, E; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Finocchiaro, G; Pacetti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rama, M; Zallo, A; Buzzo, A; Capra, R; Contri, R; Vetere, M Lo; Macri, M M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Brandenburg, G; Chaisanguanthum, K S; Morii, M; Wu, J; Dubitzky, R S; Marks, J; Schenk, S; Uwer, U; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Flack, R L; Gaillard, J R; Nash, J A; Nikolich, M B; Vazquez, W Panduro; Chai, X; Charles, M J; Mallik, U; Meyer, N T; Ziegler, V; Cochran, J; Crawley, H B; Dong, L; Eyges, V; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Gritsan, A V; Fritsch, M; Schott, G; Arnaud, N; Davier, M; Grosdidier, G; Höcker, A; Le Diberder, F; Lepeltier, V; Lutz, A M; Oyanguren, A; Pruvot, S; Rodier, S; Roudeau, P; Schune, M H; Stocchi, A; Wang, W F; Wormser, G; Cheng, C H; Lange, D J; Wright, D M; Chavez, C A; Forster, I J; Fry, J R; Gabathuler, E; Gamet, R; George, K A; Hutchcroft, D E; Payne, D J; Schofield, K C; Touramanis, C; Bevan, A J; Di Lodovico, F; Menges, W; Sacco, R; Brown, C L; Cowan, G; Flaecher, H U; Hopkins, D A; Jackson, P S; McMahon, T R; Ricciardi, S; Salvatore, F; Brown, D N; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Chia, Y M; Edgar, C L; Kelly, M P; Lafferty, G D; Naisbit, M T; Williams, J C; Yi, J I; Chen, C; Hulsbergen, W D; Jawahery, A; Lae, C K; Roberts, D A; Simi, G; Blaylock, G; Dallapiccola, C; Hertzbach, S S; Li, X; Moore, T B; Saremi, S; Staengle, H; Willocq, S Y; Cowan, R; Koeneke, K; Sciolla, G; Sekula, S J; Spitznagel, M; Taylor, F; Yamamoto, R K; Kim, H; Patel, P M; Potter, C T; Robertson, S H; Lazzaro, A; Lombardo, V; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Reidy, J; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Simard, M; Taras, P; Viaud, F B; Nicholson, H; Cavallo, N; De Nardo, G; Del Re, D; Fabozzi, F; Gatto, C; Lista, L; Monorchio, D; Paolucci, P; Piccolo, D; Sciacca, C; Baak, M; Bulten, H; Raven, G; Snoek, H L; Jessop, C P; LoSecco, J M; Allmendinger, T; Benelli, G; Gan, K K; Honscheid, K; Hufnagel, D; Jackson, P D; Kagan, H; Kass, R; Pulliam, T; Rahimi, A M; Ter-Antonyan, R; Wong, Q K; Blount, N L; Brau, J; Frey, R; Igonkina, O; Lu, M; Rahmat, R; Sinev, N B; Strom, D; Strube, J; Torrence, E; Galeazzi, F; Gaz, A; Margoni, M; Morandin, M; Pompili, A; Posocco, M; Rotondo, M

    2007-04-01

    Using 230.2 fb-1 of e+e- annihilation data collected with the BABAR detector at and near the peak of the Upsilon(4S) resonance, 489+/-55 events containing the pure leptonic decay Ds+-->micro;+numicro have been isolated in charm-tagged events. The ratio of partial widths Gamma(D+-->micro+numicro)/Gamma(Ds+-->phipi+) is measured to be 0.143+/-0.018+/-0.006 allowing a determination of the pseudoscalar decay constant fDs=(283+/-17+/-7+/-14) MeV. The errors are statistical, systematic, and from the Ds+-->phipi+ branching ratio, respectively. PMID:17501265

  6. Measurement of the pseudoscalar decay constant fDs using charm-tagged events in e+e- collisions at square root s=10.58 GeV.

    PubMed

    Aubert, B; Barate, R; Bona, M; Boutigny, D; Couderc, F; Karyotakis, Y; Lees, J P; Poireau, V; Tisserand, V; Zghiche, A; Grauges, E; Palano, A; Pappagallo, M; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Battaglia, M; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Day, C T; Gill, M S; Groysman, Y; Jacobsen, R G; Kadyk, J A; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Lynch, G; Mir, L M; Oddone, P J; Orimoto, T J; Pripstein, M; Roe, N A; Ronan, M T; Wenzel, W A; Barrett, M; Ford, K E; Harrison, T J; Hart, A J; Hawkes, C M; Morgan, S E; Watson, A T; Goetzen, K; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Peters, K; Schroeder, T; Steinke, M; Boyd, J T; Burke, J P; Cottingham, W N; Walker, D; Cuhadar-Donszelmann, T; Fulsom, B G; Hearty, C; Knecht, N S; Mattison, T S; McKenna, J A; Khan, A; Kyberd, P; Saleem, M; Teodorescu, L; Blinov, V E; Bukin, A D; Druzhinin, V P; Golubev, V B; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Todyshev, K Yu; Best, D S; Bondioli, M; Bruinsma, M; Chao, M; Curry, S; Eschrich, I; Kirkby, D; Lankford, A J; Lund, P; Mandelkern, M; Mommsen, R K; Roethel, W; Stoker, D P; Abachi, S; Buchanan, C; Foulkes, S D; Gary, J W; Long, O; Shen, B C; Wang, K; Zhang, L; Hadavand, H K; Hill, E J; Paar, H P; Rahatlou, S; Sharma, V; Berryhill, J W; Campagnari, C; Cunha, A; Dahmes, B; Hong, T M; Kovalskyi, D; Richman, J D; Beck, T W; Eisner, A M; Flacco, C J; Heusch, C A; Kroseberg, J; Lockman, W S; Nesom, G; Schalk, T; Schumm, B A; Seiden, A; Spradlin, P; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dvoretskii, A; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Ryd, A; Samuel, A; Andreassen, R; Mancinelli, G; Meadows, B T; Sokoloff, M D; Blanc, F; Bloom, P C; Chen, S; Ford, W T; Hirschauer, J F; Kreisel, A; Nauenberg, U; Olivas, A; Ruddick, W O; Smith, J G; Ulmer, K A; Wagner, S R; Zhang, J; Chen, A; Eckhart, E A; Soffer, A; Toki, W H; Wilson, R J; Winklmeier, F; Zeng, Q; Altenburg, D D; Feltresi, E; Hauke, A; Jasper, H; Spaan, B; Brandt, T; Klose, V; Lacker, H M; Mader, W F; Nogowski, R; Petzold, A; Schubert, J; Schubert, K R; Schwierz, R; Sundermann, J E; Volk, A; Bernard, D; Bonneaud, G R; Grenier, P; Latour, E; Thiebaux, Ch; Verderi, M; Bard, D J; Clark, P J; Gradl, W; Muheim, F; Playfer, S; Robertson, A I; Xie, Y; Andreotti, M; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Petrella, A; Piemontese, L; Prencipe, E; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Finocchiaro, G; Pacetti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rama, M; Zallo, A; Buzzo, A; Capra, R; Contri, R; Vetere, M Lo; Macri, M M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Brandenburg, G; Chaisanguanthum, K S; Morii, M; Wu, J; Dubitzky, R S; Marks, J; Schenk, S; Uwer, U; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Flack, R L; Gaillard, J R; Nash, J A; Nikolich, M B; Vazquez, W Panduro; Chai, X; Charles, M J; Mallik, U; Meyer, N T; Ziegler, V; Cochran, J; Crawley, H B; Dong, L; Eyges, V; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Gritsan, A V; Fritsch, M; Schott, G; Arnaud, N; Davier, M; Grosdidier, G; Höcker, A; Le Diberder, F; Lepeltier, V; Lutz, A M; Oyanguren, A; Pruvot, S; Rodier, S; Roudeau, P; Schune, M H; Stocchi, A; Wang, W F; Wormser, G; Cheng, C H; Lange, D J; Wright, D M; Chavez, C A; Forster, I J; Fry, J R; Gabathuler, E; Gamet, R; George, K A; Hutchcroft, D E; Payne, D J; Schofield, K C; Touramanis, C; Bevan, A J; Di Lodovico, F; Menges, W; Sacco, R; Brown, C L; Cowan, G; Flaecher, H U; Hopkins, D A; Jackson, P S; McMahon, T R; Ricciardi, S; Salvatore, F; Brown, D N; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Chia, Y M; Edgar, C L; Kelly, M P; Lafferty, G D; Naisbit, M T; Williams, J C; Yi, J I; Chen, C; Hulsbergen, W D; Jawahery, A; Lae, C K; Roberts, D A; Simi, G; Blaylock, G; Dallapiccola, C; Hertzbach, S S; Li, X; Moore, T B; Saremi, S; Staengle, H; Willocq, S Y; Cowan, R; Koeneke, K; Sciolla, G; Sekula, S J; Spitznagel, M; Taylor, F; Yamamoto, R K; Kim, H; Patel, P M; Potter, C T; Robertson, S H; Lazzaro, A; Lombardo, V; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Reidy, J; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Simard, M; Taras, P; Viaud, F B; Nicholson, H; Cavallo, N; De Nardo, G; Del Re, D; Fabozzi, F; Gatto, C; Lista, L; Monorchio, D; Paolucci, P; Piccolo, D; Sciacca, C; Baak, M; Bulten, H; Raven, G; Snoek, H L; Jessop, C P; LoSecco, J M; Allmendinger, T; Benelli, G; Gan, K K; Honscheid, K; Hufnagel, D; Jackson, P D; Kagan, H; Kass, R; Pulliam, T; Rahimi, A M; Ter-Antonyan, R; Wong, Q K; Blount, N L; Brau, J; Frey, R; Igonkina, O; Lu, M; Rahmat, R; Sinev, N B; Strom, D; Strube, J; Torrence, E; Galeazzi, F; Gaz, A; Margoni, M; Morandin, M; Pompili, A; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; Benayoun, M; Chauveau, J; David, P; Del Buono, L; de la Vaissière, Ch; Hamon, O; Hartfiel, B L; John, M J J; Leruste, Ph; Malclès, J; Ocariz, J; Roos, L; Therin, G; Behera, P K; Gladney, L; Panetta, J; Biasini, M; Covarelli, R; Pioppi, M; Angelini, C; Batignani, G; Bettarini, S; Bucci, F; Calderini, G; Carpinelli, M; Cenci, R; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Mazur, M A; Morganti, M; Neri, N; Paoloni, E; Rizzo, G; Walsh, J; Haire, M; Judd, D; Wagoner, D E; Biesiada, J; Danielson, N; Elmer, P; Lau, Y P; Lu, C; Olsen, J; Smith, A J S; Telnov, A V; Bellini, F; Cavoto, G; D'Orazio, A; Di Marco, E; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Gioi, L Li; Mazzoni, M A; Morganti, S; Piredda, G; Polci, F; Tehrani, F Safai; Voena, C; Ebert, M; Schröder, H; Waldi, R; Adye, T; De Groot, N; Franek, B; Olaiya, E O; Wilson, F F; Aleksan, R; Emery, S; Gaidot, A; Ganzhur, S F; de Monchenault, G Hamel; Kozanecki, W; Legendre, M; Mayer, B; Vasseur, G; Yèche, Ch; Zito, M; Park, W; Purohit, M V; Weidemann, A W; Wilson, J R; Allen, M T; Aston, D; Bartoldus, R; Bechtle, P; Berger, N; Boyarski, A M; Claus, R; Coleman, J P; Convery, M R; Cristinziani, M; Dingfelder, J C; Dong, D; Dorfan, J; Dubois-Felsmann, G P; Dujmic, D; Dunwoodie, W; Field, R C; Glanzman, T; Gowdy, S J; Graham, M T; Halyo, V; Hast, C; Hryn'ova, T; Innes, W R; Kelsey, M H; Kim, P; Kocian, M L; Leith, D W G S; Li, S; Libby, J; Luitz, S; Luth, V; Lynch, H L; Macfarlane, D B; Marsiske, H; Messner, R; Muller, D R; O'Grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Stelzer, J; Su, D; Sullivan, M K; Suzuki, K; Swain, S K; Thompson, J M; Va'vra, J; van Bakel, N; Weaver, M; Weinstein, A J R; Wisniewski, W J; Wittgen, M; Wright, D H; Yarritu, A K; Yi, K; Young, C C; Burchat, P R; Edwards, A J; Majewski, S A; Petersen, B A; Roat, C; Wilden, L; Ahmed, S; Alam, M S; Bula, R; Ernst, J A; Jain, V; Pan, B; Saeed, M A; Wappler, F R; Zain, S B; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Ritchie, J L; Satpathy, A; Schilling, C J; Schwitters, R F; Izen, J M; Kitayama, I; Lou, X C; Ye, S; Bianchi, F; Gallo, F; Gamba, D; Bomben, M; Bosisio, L; Cartaro, C; Cossutti, F; Della Ricca, G; Dittongo, S; Grancagnolo, S; Lanceri, L; Vitale, L; Azzolini, V; Martinez-Vidal, F; Banerjee, Sw; Bhuyan, B; Brown, C M; Fortin, D; Hamano, K; Kowalewski, R; Nugent, I M; Roney, J M; Sobie, R J; Back, J J; Harrison, P F; Latham, T E; Mohanty, G B; Band, H R; Chen, X; Cheng, B; Dasu, S; Datta, M; Eichenbaum, A M; Flood, K T; Hollar, J J; Johnson, J R; Kutter, P E; Li, H; Liu, R; Mellado, B; Mihalyi, A; Mohapatra, A K; Pan, Y; Pierini, M; Prepost, R; Tan, P; Wu, S L; Yu, Z; Neal, H

    2007-04-01

    Using 230.2 fb-1 of e+e- annihilation data collected with the BABAR detector at and near the peak of the Upsilon(4S) resonance, 489+/-55 events containing the pure leptonic decay Ds+-->micro;+numicro have been isolated in charm-tagged events. The ratio of partial widths Gamma(D+-->micro+numicro)/Gamma(Ds+-->phipi+) is measured to be 0.143+/-0.018+/-0.006 allowing a determination of the pseudoscalar decay constant fDs=(283+/-17+/-7+/-14) MeV. The errors are statistical, systematic, and from the Ds+-->phipi+ branching ratio, respectively.

  7. Open Babel: An open chemical toolbox

    PubMed Central

    2011-01-01

    Background A frequent problem in computational modeling is the interconversion of chemical structures between different formats. While standard interchange formats exist (for example, Chemical Markup Language) and de facto standards have arisen (for example, SMILES format), the need to interconvert formats is a continuing problem due to the multitude of different application areas for chemistry data, differences in the data stored by different formats (0D versus 3D, for example), and competition between software along with a lack of vendor-neutral formats. Results We discuss, for the first time, Open Babel, an open-source chemical toolbox that speaks the many languages of chemical data. Open Babel version 2.3 interconverts over 110 formats. The need to represent such a wide variety of chemical and molecular data requires a library that implements a wide range of cheminformatics algorithms, from partial charge assignment and aromaticity detection, to bond order perception and canonicalization. We detail the implementation of Open Babel, describe key advances in the 2.3 release, and outline a variety of uses both in terms of software products and scientific research, including applications far beyond simple format interconversion. Conclusions Open Babel presents a solution to the proliferation of multiple chemical file formats. In addition, it provides a variety of useful utilities from conformer searching and 2D depiction, to filtering, batch conversion, and substructure and similarity searching. For developers, it can be used as a programming library to handle chemical data in areas such as organic chemistry, drug design, materials science, and computational chemistry. It is freely available under an open-source license from http://openbabel.org. PMID:21982300

  8. Measurement of bottom versus charm as a function of transverse momentum with electron-hadron correlations in p + p collisions at square root of s = 200 GeV.

    PubMed

    Adare, A; Afanasiev, S; Aidala, C; Ajitanand, N N; Akiba, Y; Al-Bataineh, H; Alexander, J; Aoki, K; Aphecetche, L; Armendariz, R; Aronson, S H; Asai, J; Atomssa, E T; Averbeck, R; Awes, T C; Azmoun, B; Babintsev, V; Bai, M; Baksay, G; Baksay, L; Baldisseri, A; Barish, K N; Barnes, P D; Bassalleck, B; Basye, A T; Bathe, S; Batsouli, S; Baublis, V; Baumann, C; Bazilevsky, A; Belikov, S; Bennett, R; Berdnikov, A; Berdnikov, Y; Bickley, A A; Boissevain, J G; Borel, H; Boyle, K; Brooks, M L; Buesching, H; Bumazhnov, V; Bunce, G; Butsyk, S; Camacho, C M; Campbell, S; Chang, B S; Chang, W C; Charvet, J-L; Chernichenko, S; Chiba, J; Chi, C Y; Chiu, M; Choi, I J; Choudhury, R K; Chujo, T; Chung, P; Churyn, A; Cianciolo, V; Citron, Z; Cleven, C R; Cole, B A; Comets, M P; Constantin, P; Csanád, M; Csörgo, T; Dahms, T; Dairaku, S; Das, K; David, G; Deaton, M B; Dehmelt, K; Delagrange, H; Denisov, A; d'Enterria, D; Deshpande, A; Desmond, E J; Dietzsch, O; Dion, A; Donadelli, M; Drapier, O; Drees, A; Drees, K A; Dubey, A K; Durum, A; Dutta, D; Dzhordzhadze, V; Efremenko, Y V; Egdemir, J; Ellinghaus, F; Emam, W S; Engelmore, T; Enokizono, A; En'yo, H; Esumi, S; Eyser, K O; Fadem, B; Fields, D E; Finger, M; Finger, M; Fleuret, F; Fokin, S L; Fraenkel, Z; Frantz, J E; Franz, A; Frawley, A D; Fujiwara, K; Fukao, Y; Fusayasu, T; Gadrat, S; Garishvili, I; Glenn, A; Gong, H; Gonin, M; Gosset, J; Goto, Y; Granier de Cassagnac, R; Grau, N; Greene, S V; Perdekamp, M Grosse; Gunji, T; Gustafsson, H-A; Hachiya, T; Henni, A Hadj; Haegemann, C; Haggerty, J S; Hamagaki, H; Han, R; Harada, H; Hartouni, E P; Haruna, K; Haslum, E; Hayano, R; Heffner, M; Hemmick, T K; Hester, T; He, X; Hiejima, H; Hill, J C; Hobbs, R; Hohlmann, M; Holzmann, W; Homma, K; Hong, B; Horaguchi, T; Hornback, D; Huang, S; Ichihara, T; Ichimiya, R; Ikeda, Y; Imai, K; Imrek, J; Inaba, M; Inoue, Y; Isenhower, D; Isenhower, L; Ishihara, M; Isobe, T; Issah, M; Isupov, A; Ivanischev, D; Jacak, B V; Jia, J; Jin, J; Jinnouchi, O; Johnson, B M; Joo, K S; Jouan, D; Kajihara, F; Kametani, S; Kamihara, N; Kamin, J; Kaneta, M; Kang, J H; Kanou, H; Kapustinsky, J; Kawall, D; Kazantsev, A V; Kempel, T; Khanzadeev, A; Kijima, K M; Kikuchi, J; Kim, B I; Kim, D H; Kim, D J; Kim, E; Kim, S H; Kinney, E; Kiriluk, K; Kiss, A; Kistenev, E; Kiyomichi, A; Klay, J; Klein-Boesing, C; Kochenda, L; Kochetkov, V; Komkov, B; Konno, M; Koster, J; Kotchetkov, D; Kozlov, A; Král, A; Kravitz, A; Kubart, J; Kunde, G J; Kurihara, N; Kurita, K; Kurosawa, M; Kweon, M J; Kwon, Y; Kyle, G S; Lacey, R; Lai, Y-S; Lai, Y S; Lajoie, J G; Layton, D; Lebedev, A; Lee, D M; Lee, K B; Lee, M K; Lee, T; Leitch, M J; Leite, M A L; Lenzi, B; Liebing, P; Liska, T; Litvinenko, A; Liu, H; Liu, M X; Li, X; Love, B; Lynch, D; Maguire, C F; Makdisi, Y I; Malakhov, A; Malik, M D; Manko, V I; Mannel, E; Mao, Y; Masek, L; Masui, H; Matathias, F; McCumber, M; McGaughey, P L; Means, N; Meredith, B; Miake, Y; Mikes, P; Miki, K; Miller, T E; Milov, A; Mioduszewski, S; Mishra, M; Mitchell, J T; Mitrovski, M; Mohanty, A K; Morino, Y; Morreale, A; Morrison, D P; Moukhanova, T V; Mukhopadhyay, D; Murata, J; Nagamiya, S; Nagata, Y; Nagle, J L; Naglis, M; Nagy, M I; Nakagawa, I; Nakamiya, Y; Nakamura, T; Nakano, K; Newby, J; Nguyen, M; Niita, T; Norman, B E; Nouicer, R; Nyanin, A S; O'Brien, E; Oda, S X; Ogilvie, C A; Ohnishi, H; Okada, H; Okada, K; Oka, M; Omiwade, O O; Onuki, Y; Oskarsson, A; Ouchida, M; Ozawa, K; Pak, R; Pal, D; Palounek, A P T; Pantuev, V; Papavassiliou, V; Park, J; Park, W J; Pate, S F; Pei, H; Peng, J-C; Pereira, H; Peresedov, V; Peressounko, D Yu; Pinkenburg, C; Purschke, M L; Purwar, A K; Qu, H; Rak, J; Rakotozafindrabe, A; Ravinovich, I; Read, K F; Rembeczki, S; Reuter, M; Reygers, K; Riabov, V; Riabov, Y; Roach, D; Roche, G; Rolnick, S D; Romana, A; Rosati, M; Rosendahl, S S E; Rosnet, P; Rukoyatkin, P; Ruzicka, P; Rykov, V L; Sahlmueller, B; Saito, N; Sakaguchi, T; Sakai, S; Sakashita, K; Sakata, H; Samsonov, V; Sato, S; Sato, T; Sawada, S; Sedgwick, K; Seele, J; Seidl, R; Semenov, A Yu; Semenov, V; Seto, R; Sharma, D; Shein, I; Shevel, A; Shibata, T-A; Shigaki, K; Shimomura, M; Shoji, K; Shukla, P; Sickles, A; Silva, C L; Silvermyr, D; Silvestre, C; Sim, K S; Singh, B K; Singh, C P; Singh, V; Skutnik, S; Slunecka, M; Soldatov, A; Soltz, R A; Sondheim, W E; Sorensen, S P; Sourikova, I V; Staley, F; Stankus, P W; Stenlund, E; Stepanov, M; Ster, A; Stoll, S P; Sugitate, T; Suire, C; Sukhanov, A; Sziklai, J; Tabaru, T; Takagi, S; Takagui, E M; Taketani, A; Tanabe, R; Tanaka, Y; Tanida, K; Tannenbaum, M J; Taranenko, A; Tarján, P; Themann, H; Thomas, T L; Togawa, M; Toia, A; Tojo, J; Tomásek, L; Tomita, Y; Torii, H; Towell, R S; Tram, V-N; Tserruya, I; Tsuchimoto, Y; Vale, C; Valle, H; van Hecke, H W; Veicht, A; Velkovska, J; Vertesi, R; Vinogradov, A A; Virius, M; Vrba, V; Vznuzdaev, E; Wagner, M; Walker, D; Wang, X R; Watanabe, Y; Wei, F; Wessels, J; White, S N; Winter, D; Woody, C L; Wysocki, M; Xie, W; Yamaguchi, Y L; Yamaura, K; Yang, R; Yanovich, A; Yasin, Z; Ying, J; Yokkaichi, S; Young, G R; Younus, I; Yushmanov, I E; Zajc, W A; Zaudtke, O; Zhang, C; Zhou, S; Zimányi, J; Zolin, L

    2009-08-21

    The momentum distribution of electrons from semileptonic decays of charm and bottom quarks for midrapidity |y|<0.35 in p+p collisions at square root of s=200 GeV is measured by the PHENIX experiment at the Relativistic Heavy Ion Collider over the transverse momentum range 2charm is presented. The ratio is determined using partial D/D-->e(+/-)K(-/+)X (K unidentified) reconstruction. It is found that the yield of electrons from bottom becomes significant above 4 GeV/c in pT. A fixed-order-plus-next-to-leading-log perturbative quantum chromodynamics calculation agrees with the data within the theoretical and experimental uncertainties. The extracted total bottom production cross section at this energy is sigma(bb)=3.2(-1.1)(+1.2)(stat)(-1.3)(+1.4)(syst)mub.

  9. Study of charm production in the forward cone at energy ELab ˜ 75 TeV with a two-storey X-ray emulsion chamber exposed at, mountain altitudes

    NASA Astrophysics Data System (ADS)

    Borisov, A. S.; Chubenko, A. P.; Denisova, V. G.; Galkin, V. I.; Guseva, Z. M.; Kanevskaya, E. A.; Kogan, M. G.; Kulikov, V. N.; Morozov, A. E.; Mukhamedshin, R. A.; Puchkov, V. S.; Nazarov, S. I.; Pyatovsky, S. E.; Shoziyoev, G. P.; Smirnova, M. D.; Vargasov, A. V.

    2015-08-01

    The origin of the cosmic ray hadron excess observed in a deep uniform lead X-ray emulsion chamber (XREC) at depths larger than 70 radiation lengths is analyzed. We present preliminary experimental data on the absorption of cosmic ray hadrons in the two-storey XREC with a large air gap exposed at the Tien Shan mountains. The design of the chamber was especially invented to prove the hypothesis on a substantial increase of the charm particle production cross section with energy at ELab ˜ 75 TeV as the main source of the darkness spot excess observed on X-ray films. Experimental data obtained with both a 2-storey XREC and a deep uniform XREC are compared with simulation results calculated with the FANSY 1.0 model. The comparison reveals a qualitative agreement between experimental and simulated data under the assumption of high values of charm particle production cross section at ELab ˜ 75 TeV in the forward kinematic region at xLab > 0.1.

  10. Opening Up Access to Open Access

    ERIC Educational Resources Information Center

    Singer, Ross

    2008-01-01

    As the corpus of gray literature grows and the price of serials rises, it becomes increasingly important to explore ways to integrate the free and open Web seamlessly into one's collections. Users, after all, are discovering these materials all the time via sites such as Google Scholar and Scirus or by searching arXiv.org or CiteSeer directly.…

  11. Seismic hazard models for the central Apennines constrained by GPS and InSAR: mid-term review results of the ESA Pathfinder project CHARMING

    NASA Astrophysics Data System (ADS)

    Merryman Boncori, John Peter; Pezzo, Giuseppe; Visini, Francesco; Carafa, Michele; Devoti, Roberto; Atzori, Simone; Kastelic, Vanja; Berardino, Paolo; Fornaro, Gianfranco; Riguzzi, Federica; Pietrantonio, Grazia; d'Amico, Vera; Meletti, Carlo; Salvi, Stefano

    2015-04-01

    The contribution of space geodetic techniques to earthquake rate estimation, and thus seismic hazard modelling, has been recognized since two decades and made possible in more recent years by the increased availability and accuracy of geodetic measurements. We present the mid-term review results of a feasibility study named "Constraining Seismic Hazard Models with InSAR and GPS (CHARMING)", funded by the European Space Agency's (ESA) Support to Science Element (STSE) Pathfinders 2013 project. The area of interest considered at this stage of the project comprises a 200 km x 200 km area, covering the Abruzzi region (central Italy). In a later stage this area shall be extended to comprise a large portion of central and southern Italy, including most of the highest strain regions identified by recent studies. We present the interseismic velocities derived by ~60 permanent GPS stations and measurements derived from coast-to-coast strips of Synthetic Aperture Radar imagery from the ERS-1/2 AMI, ENVISAT ASAR and ALOS PALSAR sensors. The latter are processed with the Intermittent Small Baseline Subset (ISBAS) techniques, which greatly improves the measurement coverage compared to previous studies. Corrections are applied concerning tropospheric propagation errors, using ENVISAT MERIS precipitable water vapour maps and ERA-Interim numerical weather model parameters, as well as for the recently discovered oscillator drift of the ENVISAT ASAR sensor. Finally, measurements from individual SAR tracks are calibrated using GPS to ensure a common reference frame. For a set of composite seismogenic sources extracted from the DISS v.3.1.1 catalogue (Database of Italian Seismogenic Sources), we use the kinematic finite element NeoKinema model to derive long term average velocity fields and slip rates. We then derive earthquake rates, i.e. the number of earthquakes in a given time period above an established magnitude threshold, following the Seismic Hazard Inferred From Tectonics

  12. Mass and lifetime measurements of bottom and charm baryons in pp ¯ collisions at √s =1.96 TeV

    NASA Astrophysics Data System (ADS)

    Aaltonen, T.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H. S.; Burkett, K.; Busetto, G.; Bussey, P.; Butti, P.; Buzatu, A.; Calamba, A.; Camarda, S.; Campanelli, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Cho, K.; Chokheli, D.; Clark, A.; Clarke, C.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Cremonesi, M.; Cruz, D.; Cuevas, J.; Culbertson, R.; d'Ascenzo, N.; Datta, M.; de Barbaro, P.; Demortier, L.; Deninno, M.; D'Errico, M.; Devoto, F.; Di Canto, A.; Di Ruzza, B.; Dittmann, J. R.; Donati, S.; D'Onofrio, M.; Dorigo, M.; Driutti, A.; Ebina, K.; Edgar, R.; Elagin, A.; Erbacher, R.; Errede, S.; Esham, B.; Farrington, S.; Fernández Ramos, J. P.; Field, R.; Flanagan, G.; Forrest, R.; Franklin, M.; Freeman, J. C.; Frisch, H.; Funakoshi, Y.; Galloni, C.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González López, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gramellini, E.; Grinstein, S.; Grosso-Pilcher, C.; Group, R. C.; Guimaraes da Costa, J.; Hahn, S. R.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, M.; Harr, R. F.; Harrington-Taber, T.; Hatakeyama, K.; Hays, C.; Heinrich, J.; Herndon, M.; Hocker, A.; Hong, Z.; Hopkins, W.; Hou, S.; Hughes, R. E.; Husemann, U.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jindariani, S.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kambeitz, M.; Kamon, T.; Karchin, P. E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. H.; Kim, S. B.; Kim, Y. J.; Kim, Y. K.; Kimura, N.; Kirby, M.; Knoepfel, K.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Kruse, M.; Kuhr, T.; Kurata, M.; Laasanen, A. T.; Lammel, S.; Lancaster, M.; Lannon, K.; Latino, G.; Lee, H. S.; Lee, J. S.; Leo, S.; Leone, S.; Lewis, J. D.; Limosani, A.; Lipeles, E.; Lister, A.; Liu, H.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Lucà, A.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Marchese, L.; Margaroli, F.; Marino, P.; Martínez, M.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Moon, C. S.; Moore, R.; Morello, M. J.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Nigmanov, T.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagliarone, C.; Palencia, E.; Palni, P.; Papadimitriou, V.; Parker, W.; Pauletta, G.; Paulini, M.; Paus, C.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Pranko, A.; Prokoshin, F.; Ptohos, F.; Punzi, G.; Ranjan, N.; Redondo Fernández, I.; Renton, P.; Rescigno, M.; Rimondi, F.; Ristori, L.; Robson, A.; Rodriguez, T.; Rolli, S.; Ronzani, M.; Roser, R.; Rosner, J. L.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Sakumoto, W. K.; Sakurai, Y.; Santi, L.; Sato, K.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, E. E.; Schwarz, T.; Scodellaro, L.; Scuri, F.; Seidel, S.; Seiya, Y.; Semenov, A.; Sforza, F.; Shalhout, S. Z.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shochet, M.; Shreyber-Tecker, I.; Simonenko, A.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Song, H.; Sorin, V.; St. Denis, R.; Stancari, M.; Stentz, D.; Strologas, J.; Sudo, Y.; Sukhanov, A.; Suslov, I.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng, P. K.; Thom, J.; Thomson, E.; Thukral, V.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Ukegawa, F.; Uozumi, S.; Velev, G.; Vellidis, C.; Vernieri, C.; Vidal, M.; Vilar, R.; Vizán, J.; Vogel, M.; Volpi, G.; Vázquez, F.; Wagner, P.; Wallny, R.; Wang, S. M.; Waters, D.; Wester, W. C.; Whiteson, D.; Wicklund, A. B.; Wilbur, S.; Williams, H. H.; Wilson, J. S.; Wilson, P.; Winer, B. L.; Wittich, P.; Wolbers, S.; Wolfe, H.; Wright, T.; Wu, X.; Wu, Z.; Yamamoto, K.; Yamato, D.; Yang, T.; Yang, U. K.; Yang, Y. C.; Yao, W.-M.; Yeh, G. P.; Yi, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G. B.; Yu, I.; Zanetti, A. M.; Zeng, Y.; Zhou, C.; Zucchelli, S.; CDF Collaboration

    2014-04-01

    We report on mass and lifetime measurements of several ground state charmed and bottom baryons, using a data sample corresponding to 9.6 fb-1 from pp ¯ collisions at √s =1.96 TeV and recorded with the Collider Detector at Fermilab. Baryon candidates are reconstructed from data collected with an online event selection designed for the collection of long-lifetime heavy-flavor decay products and a second event selection designed to collect J/ψ→ μ+μ- candidates. First evidence for the process Ωb-→Ωc0π- is presented with a significance of 3.3σ. We measure the following baryon masses: M(Ξc0) =2470.85±0.24(stat)±0.55(syst) MeV/c2,M(Ξc+)=2468.00±0.18(stat)±0.51(syst) MeV/c2,M(Λb)=5620.15±0.31(stat)±0.47(syst) MeV/c2,M(Ξb-)=5793.4±1.8(stat)±0.7(syst) MeV/c2,M(Ξb0)=5788.7±4.3(stat)±1.4(syst) MeV/c2,andM(Ωb-)=6047.5±3.8(stat)±0.6(syst) MeV/c2. The isospin splitting of the Ξb-,0 states is found to be M(Ξb-)-M(Ξb0)=4.7±4.7(stat)±0.7(syst) MeV /c2. The isospin splitting of the Ξc0,+ states is found to be M(Ξc0)-M(Ξc+)=2.85±0.30(stat)±0.04(syst) MeV /c2. The following lifetime measurements are made: τ(Λb)=1.565±0.035(stat)±0.020(syst) ps ,τ(Ξb-)=1.32±0.14(stat)±0.02(syst) ps ,τ(Ωb-)=1.66-0.40+0.53(stat)±0.02(syst) ps

  13. Automated detection of open magnetic field regions in EUV images

    NASA Astrophysics Data System (ADS)

    Krista, Larisza Diana; Reinard, Alysha

    2016-05-01

    Open magnetic regions on the Sun are either long-lived (coronal holes) or transient (dimmings) in nature, but both appear as dark regions in EUV images. For this reason their detection can be done in a similar way. As coronal holes are often large and long-lived in comparison to dimmings, their detection is more straightforward. The Coronal Hole Automated Recognition and Monitoring (CHARM) algorithm detects coronal holes using EUV images and a magnetogram. The EUV images are used to identify dark regions, and the magnetogam allows us to determine if the dark region is unipolar - a characteristic of coronal holes. There is no temporal sensitivity in this process, since coronal hole lifetimes span days to months. Dimming regions, however, emerge and disappear within hours. Hence, the time and location of a dimming emergence need to be known to successfully identify them and distinguish them from regular coronal holes. Currently, the Coronal Dimming Tracker (CoDiT) algorithm is semi-automated - it requires the dimming emergence time and location as an input. With those inputs we can identify the dimming and track it through its lifetime. CoDIT has also been developed to allow the tracking of dimmings that split or merge - a typical feature of dimmings.The advantage of these particular algorithms is their ability to adapt to detecting different types of open field regions. For coronal hole detection, each full-disk solar image is processed individually to determine a threshold for the image, hence, we are not limited to a single pre-determined threshold. For dimming regions we also allow individual thresholds for each dimming, as they can differ substantially. This flexibility is necessary for a subjective analysis of the studied regions. These algorithms were developed with the goal to allow us better understand the processes that give rise to eruptive and non-eruptive open field regions. We aim to study how these regions evolve over time and what environmental

  14. Triggered plasma opening switch

    DOEpatents

    Mendel, Clifford W.

    1988-01-01

    A triggerable opening switch for a very high voltage and current pulse includes a transmission line extending from a source to a load and having an intermediate switch section including a plasma for conducting electrons between transmission line conductors and a magnetic field for breaking the plasma conduction path and magnetically insulating the electrons when it is desired to open the switch.

  15. Open Rotor Aeroacoustic Modelling

    NASA Technical Reports Server (NTRS)

    Envia, Edmane

    2012-01-01

    Owing to their inherent fuel efficiency, there is renewed interest in developing open rotor propulsion systems that are both efficient and quiet. The major contributor to the overall noise of an open rotor system is the propulsor noise, which is produced as a result of the interaction of the airstream with the counter-rotating blades. As such, robust aeroacoustic prediction methods are an essential ingredient in any approach to designing low-noise open rotor systems. To that end, an effort has been underway at NASA to assess current open rotor noise prediction tools and develop new capabilities. Under this effort, high-fidelity aerodynamic simulations of a benchmark open rotor blade set were carried out and used to make noise predictions via existing NASA open rotor noise prediction codes. The results have been compared with the aerodynamic and acoustic data that were acquired for this benchmark open rotor blade set. The emphasis of this paper is on providing a summary of recent results from a NASA Glenn effort to validate an in-house open noise prediction code called LINPROP which is based on a high-blade-count asymptotic approximation to the Ffowcs-Williams Hawkings Equation. The results suggest that while predicting the absolute levels may be difficult, the noise trends are reasonably well predicted by this approach.

  16. Open Rotor Aeroacoustic Modeling

    NASA Technical Reports Server (NTRS)

    Envia, Edmane

    2012-01-01

    Owing to their inherent fuel efficiency, there is renewed interest in developing open rotor propulsion systems that are both efficient and quiet. The major contributor to the overall noise of an open rotor system is the propulsor noise, which is produced as a result of the interaction of the airstream with the counter-rotating blades. As such, robust aeroacoustic prediction methods are an essential ingredient in any approach to designing low-noise open rotor systems. To that end, an effort has been underway at NASA to assess current open rotor noise prediction tools and develop new capabilities. Under this effort, high-fidelity aerodynamic simulations of a benchmark open rotor blade set were carried out and used to make noise predictions via existing NASA open rotor noise prediction codes. The results have been compared with the aerodynamic and acoustic data that were acquired for this benchmark open rotor blade set. The emphasis of this paper is on providing a summary of recent results from a NASA Glenn effort to validate an in-house open noise prediction code called LINPROP which is based on a high-blade-count asymptotic approximation to the Ffowcs-Williams Hawkings Equation. The results suggest that while predicting the absolute levels may be difficult, the noise trends are reasonably well predicted by this approach.

  17. Open Source Molecular Modeling

    PubMed Central

    Pirhadi, Somayeh; Sunseri, Jocelyn; Koes, David Ryan

    2016-01-01

    The success of molecular modeling and computational chemistry efforts are, by definition, dependent on quality software applications. Open source software development provides many advantages to users of modeling applications, not the least of which is that the software is free and completely extendable. In this review we categorize, enumerate, and describe available open source software packages for molecular modeling and computational chemistry. PMID:27631126

  18. Egress door opening assister

    SciTech Connect

    Allison, Thomas L.

    2015-10-06

    A door opening spring assistance apparatus is set forth that will automatically apply a door opening assistance force using a combination of rods and coil springs. The release of the rods by the coil springs reduces the force required to set the door in motion.

  19. OpenSearch Status

    NASA Technical Reports Server (NTRS)

    Newman, Doug; Silva, Sam; Mitchell, Andrew

    2016-01-01

    We will present an overview of our OpenSearch efforts over the past 6 months. We will discuss our Best Practices and those of CEOS concentrating on the compatibility issues between the two. We will also discuss the state of earth data OpenSearch implementations and their adherence to the standards, extensions and best practices available.

  20. Opening a New Door

    ERIC Educational Resources Information Center

    Waters, John K.

    2007-01-01

    A growing number of K-12 districts are taking the open source plunge, both to cope with tight budgets and to escape proprietary vendor lock-in and expensive upgrade cycles. With the potential for cost savings and a growing number of educational applications, open source software is proving to be an effective alternative for schools willing to make…

  1. The Argument for Open

    ERIC Educational Resources Information Center

    Byrd, Rob

    2008-01-01

    Is open source business intelligence (OS BI) software ready for prime time? The author thoroughly investigated each of three OS BI toolsets--Pentaho BI Suite, Jaspersoft BI Suite, and Talend Open Studio--by installing the OS BI tools himself, by interviewing technologists at academic institutions who had implemented these OS BI solutions, and by…

  2. Opening up Education: The Collective Advancement of Education through Open Technology, Open Content, and Open Knowledge

    ERIC Educational Resources Information Center

    Iiyoshi, Toru, Ed.; Kumar, M. S. Vijay, Ed.

    2008-01-01

    Given the abundance of open education initiatives that aim to make educational assets freely available online, the time seems ripe to explore the potential of open education to transform the economics and ecology of education. Despite the diversity of tools and resources already available--from well-packaged course materials to simple games, for…

  3. Creating Open Source Conversation

    ERIC Educational Resources Information Center

    Sheehan, Kate

    2009-01-01

    Darien Library, where the author serves as head of knowledge and learning services, launched a new website on September 1, 2008. The website is built with Drupal, an open source content management system (CMS). In this article, the author describes how she and her colleagues overhauled the library's website to provide an open source content…

  4. Opting for Openness.

    ERIC Educational Resources Information Center

    Anderson, Robert H.

    Public receptivity to open education as a specific example of school reform has sometimes been less than enthusiastic. For this reason, the would-be progressive school principal faces a challenging task of inquiry, information, persuasion, and affirmative action. It is explicit in the story of British open education that the head teacher plays a…

  5. Triggered plasma opening switch

    SciTech Connect

    Mendel, C W

    1988-02-23

    A triggerable opening switch for a very high voltage and current pulse includes a transmission line extending from a source to a load and having an intermediate switch section including a plasma for conducting electrons between transmission line conductors and a magnetic field for breaking the plasma conduction path and magnetically insulating the electrons when it is desired to open the switch.

  6. Open-Minded Cognition.

    PubMed

    Price, Erika; Ottati, Victor; Wilson, Chase; Kim, Soyeon

    2015-11-01

    The present research conceptualizes open-minded cognition as a cognitive style that influences how individuals select and process information. An open-minded cognitive style is marked by willingness to consider a variety of intellectual perspectives, values, opinions, or beliefs-even those that contradict the individual's opinion. An individual's level of cognitive openness is expected to vary across domains (such as politics and religion). Four studies develop and validate a novel measure of open-minded cognition, as well as two domain-specific measures of religious and political open-minded cognition. Exploratory and confirmatory factor analysis (controlling for acquiescence bias) are used to develop the scales in Studies 1 to 3. Study 4 demonstrates that these scales possess convergent and discriminant validity. Study 5 demonstrates the scale's unique predictive validity using the outcome of Empathic Concern (Davis, 1980). Study 6 demonstrates the scale's unique predictive validity using the outcomes of warmth toward racial, religious, and sexual minorities. PMID:26315581

  7. Open-Minded Cognition.

    PubMed

    Price, Erika; Ottati, Victor; Wilson, Chase; Kim, Soyeon

    2015-11-01

    The present research conceptualizes open-minded cognition as a cognitive style that influences how individuals select and process information. An open-minded cognitive style is marked by willingness to consider a variety of intellectual perspectives, values, opinions, or beliefs-even those that contradict the individual's opinion. An individual's level of cognitive openness is expected to vary across domains (such as politics and religion). Four studies develop and validate a novel measure of open-minded cognition, as well as two domain-specific measures of religious and political open-minded cognition. Exploratory and confirmatory factor analysis (controlling for acquiescence bias) are used to develop the scales in Studies 1 to 3. Study 4 demonstrates that these scales possess convergent and discriminant validity. Study 5 demonstrates the scale's unique predictive validity using the outcome of Empathic Concern (Davis, 1980). Study 6 demonstrates the scale's unique predictive validity using the outcomes of warmth toward racial, religious, and sexual minorities.

  8. Open rhinoplasty in children.

    PubMed

    Dennis, Simon C R; den Herder, Cindy; Shandilya, Munish; Nolst Trenité, Gilbert J

    2007-11-01

    Septorhinoplasty in children carries the risk of growth disturbance of the nose and premaxilla. The open or external approach has the advantage that the cartilaginous nasal skeleton remains intact. This open approach enables the surgeon to excise dermoid cysts and to realign lower lateral cartilages (unilateral cleft) without disturbing the integrity of the cartilaginous skeleton. In our experience, absolute indications for open rhinoplasty in children include dermoid cyst, cleft lip nose, and septal abscess. Relative indications include septal deviations causing severe nasal airway obstruction and or progressive distortion of the nose. In this article, we discuss the indications, advantages, disadvantages, and operative technique of open rhinoplasty in children. Our indications for open rhinoplasty in children and some selected cases are illustrated. PMID:18085500

  9. Analysis of the charmed semileptonic decay D+→ ρ0 μ+ v

    SciTech Connect

    Luiggi, Eduardo E.

    2008-12-01

    The search for the fundamental constituents of matter has been pursued and studied since the dawn of civilization. As early as the fourth century BCE, Democritus, expanding the teachings of Leucippus, proposed small, indivisible entities called atoms, interacting with each other to form the Universe. Democritus was convinced of this by observing the environment around him. He observed, for example, how a collection of tiny grains of sand can make out smooth beaches. Today, following the lead set by Democritus more than 2500 years ago, at the heart of particle physics is the hypothesis that everything we can observe in the Universe is made of a small number of fundamental particles interacting with each other. In contrast to Democritus, for the last hundred years we have been able to perform experiments that probe deeper and deeper into matter in the search for the fundamental particles of nature. Today's knowledge is encapsulated in the Standard Model of particle physics, a model describing the fundamental particles and their interactions. It is within this model that the work in this thesis is presented. This work attempts to add to the understanding of the Standard Model by measuring the relative branching fraction of the charmed semileptonic decay D+ → ρ0μ+v with respect to D+ → $\\bar{K}$*0μ+v. Many theoretical models that describe hadronic interactions predict the value of this relative branching fraction, but only a handful of experiments have been able to measure it with any precision. By making a precise measurement of this relative branching fraction theorists can distinguish between viable models as well as refine existing ones. In this thesis we presented the measurement of the branching fraction ratio of the Cabibbo suppressed semileptonic decay mode D+ → ρ0μ+v with respect to the Cabibbo favored mode D+ → $\\bar{K}$*0

  10. In Praise of Openness

    NASA Astrophysics Data System (ADS)

    Arunachalam, S.

    2010-10-01

    Open access brings greater visibility and impact to the work of scientists as is evidenced in the examples discussed in this paper. Researchers are often reluctant and afraid to deposit their works in Institutional Repositories. However, as is shown here, once they do so, they do not regret it. Open access will shortly become the norm and will be accepted by the vast majority of scientists. Seen through the lens of the philosophy of Bertrand Russell, the moral, economic and philosophical imperatives for open access are indeed strong.

  11. Open cycle thermoacoustics

    SciTech Connect

    Reid, Robert Stowers

    2000-01-01

    A new type of thermodynamic device combining a thermodynamic cycle with the externally applied steady flow of an open thermodynamic process is discussed and experimentally demonstrated. The gas flowing through this device can be heated or cooled in a series of semi-open cyclic steps. The combination of open and cyclic flows makes possible the elimination of some or all of the heat exchangers (with their associated irreversibility). Heat is directly exchanged with the process fluid as it flows through the device when operating as a refrigerator, producing a staging effect that tends to increase First Law thermodynamic efficiency. An open-flow thermoacoustic refrigerator was built to demonstrate this concept. Several approaches are presented that describe the physical characteristics of this device. Tests have been conducted on this refrigerator with good agreement with a proposed theory.

  12. Defining Open Education

    ERIC Educational Resources Information Center

    Walberg, Herbert J.; Thomas, Susan Christie

    1974-01-01

    Authors believed that sharper definitions of open education can keep the current movement authentic to its early consensus ideals while avoiding dogma, orthodoxy, discipleships: charisma, and latter-day carpetbagging. (Author/RK)

  13. Open Rotor Spin Test

    NASA Video Gallery

    An open rotor, also known as a high-speed propeller, is tested in a wind tunnel. The propeller moves much more quickly than a standard propeller, and the blades of the propeller are shaped differen...

  14. Open source molecular modeling.

    PubMed

    Pirhadi, Somayeh; Sunseri, Jocelyn; Koes, David Ryan

    2016-09-01

    The success of molecular modeling and computational chemistry efforts are, by definition, dependent on quality software applications. Open source software development provides many advantages to users of modeling applications, not the least of which is that the software is free and completely extendable. In this review we categorize, enumerate, and describe available open source software packages for molecular modeling and computational chemistry. An updated online version of this catalog can be found at https://opensourcemolecularmodeling.github.io.

  15. OpenTopography

    NASA Astrophysics Data System (ADS)

    Baru, C.; Arrowsmith, R.; Crosby, C.; Nandigam, V.; Phan, M.; Cowart, C.

    2012-04-01

    OpenTopography is a cyberinfrastructure-based facility for online access to high-resolution topography and tools. The project is an outcome of the Geosciences Network (GEON) project, which was a research project funded several years ago in the US to investigate the use of cyberinfrastructure to support research and education in the geosciences. OpenTopography provides online access to large LiDAR point cloud datasets along with services for processing these data. Users are able to generate custom DEMs by invoking DEM services provided by OpenTopography with custom parameter values. Users can track the progress of their jobs, and a private myOpenTopo area retains job information and job outputs. Data available at OpenTopography are provided by a variety of data acquisition groups under joint agreements and memoranda of understanding (MoU). These include national facilities such as the National Center for Airborne Lidar Mapping, as well as local, state, and federal agencies. OpenTopography is also being designed as a hub for high-resolution topography resources. Datasets and services available at other locations can also be registered here, providing a "one-stop shop" for such information. We will describe the OpenTopography system architecture and its current set of features, including the service-oriented architecture, a job-tracking database, and social networking features. We will also describe several design and development activities underway to archive and publish datasets using digital object identifiers (DOIs); create a more flexible and scalable high-performance environment for processing of large datasets; extend support for satellite-based and terrestrial lidar as well as synthetic aperture radar (SAR) data; and create a "pluggable" infrastructure for third-party services. OpenTopography has successfully created a facility for sharing lidar data. In the next phase, we are developing a facility that will also enable equally easy and successful sharing of

  16. Open source molecular modeling.

    PubMed

    Pirhadi, Somayeh; Sunseri, Jocelyn; Koes, David Ryan

    2016-09-01

    The success of molecular modeling and computational chemistry efforts are, by definition, dependent on quality software applications. Open source software development provides many advantages to users of modeling applications, not the least of which is that the software is free and completely extendable. In this review we categorize, enumerate, and describe available open source software packages for molecular modeling and computational chemistry. An updated online version of this catalog can be found at https://opensourcemolecularmodeling.github.io. PMID:27631126

  17. PWC Opens up

    ERIC Educational Resources Information Center

    Weinstein, Margery

    2011-01-01

    Coming up with the latest and greatest learning curriculum for employees year after year can be overwhelming--especially if one works for a small or mid-size company with minimal resources. Fortunately, there is a burgeoning trend that three-time No. 1 Top 125er PwC is helping to "open" up. In creating PwC Open University, the professional…

  18. Charm physics at CDF II

    SciTech Connect

    I. Furic

    2003-10-28

    The CDF II detector has the capability of triggering on displaced tracks. Because of this ability, CDF II has accrued large samples of charged meson decays to fully hadronic final states in 64 pb{sup -1} of p{bar p} collision data gathered at {radical}s = 1.96 TeV. Using initial Run II data samples, the production cross sections for J/{psi}, D{sup 0}, D{sup +}, D*{sup +} and D{sub s}{sup +} mesons have been measured. Ratios of branching ratios for Cabibbo suppressed final states and CP asymmetries in D{sup 0} meson decays have been studied. A measurement of the mass difference m(D{sub s}{sup +}) -m(D{sup +}) has been done, and a limit for the branching fraction of the FCNC D{sup 0} {yields} {mu}{sup +}{mu}{sup -} decays has been set.

  19. The new hidden charm states

    SciTech Connect

    Navarra, Fernando S.; Nielsen, Marina

    2010-08-04

    Many new states in the charmonium mass region were recently discovered by the BaBar, Belle and CDF Collaborations. We use the QCD Sum Rule approach to study the possible structure of some of these states.

  20. Molecular aspects of charm physics

    SciTech Connect

    Fernandez, F.; Ortega, P. G.; Entem, D. R.

    2013-03-25

    We study the influence of possible molecular structures in the charmonium spectrum. We focus on the 0{sup ++}, 1{sup ++} and 1{sup --} sectors. In the first one we coupled the 2{sup 3}P{sub 0}cc pair with DD, J/{psi}{omega}, D{sub s}D{sub s} and J/{psi}{phi} channels and we obtain two states compatibles with the X(3945) and the Y(3940). In the second one we couple the 2{sup 3}P{sub 1}cc state with the DD{sup *} channel and we obtain a dressed state compatible with the X(3940) and a new state that we assign to the X(3872). In the third one we include the 3{sup 3}S{sub 1} and 2{sup 3}D{sub 1} charmonium states coupled to DD, DD{sup *}, D{sup *}D{sup *}, D{sub s}D{sub s}, D{sub s}D{sup *}s and D{sup *}{sub s}D{sup *}{sub s}. In this calculation we obtain a new molecular state that could be the G(3900) or the controversial Y(4008) and two cc states dressed by the molecular components assigned to the {psi}(4040) and the {psi}(4160). Finally we perform a calculation in the five quark sector where we can describe the {Lambda}{sub c}(2940){sup +} as a ND{sup *} molecular state and predict a {Lambda}{sub b}(6248){sup +} state.

  1. The Charm of Community Music

    ERIC Educational Resources Information Center

    Ruisen, Xu

    2011-01-01

    Music education in communities is a newly sprouted thing and is gradually catching people's attention. Music education seeks to promote community members' aesthetic senses. Music and the arts, the best tools for moving people's souls, link different hearts across various boundaries, affecting all aspects of social life. Music education can serve…

  2. Review of semileptonic charm decays

    SciTech Connect

    Potter, D.M.

    1991-01-01

    The experimental status of D{sup 0} and D{sup +} semileptonic decays is reviewed and compared to model predictions. Topics covered are the form factor pole mass and decay rate for D {yields} Klv, the decay rate and form factor ratios for D {yields} K*lv, and, finally, the issue of modes other than Klv and K*lv. 4 refs., 5 tabs.

  3. Open Energy Info (OpenEI) (Fact Sheet)

    SciTech Connect

    Not Available

    2010-12-01

    The Open Energy Information (OpenEI.org) initiative is a free, open-source, knowledge-sharing platform. OpenEI was created to provide access to data, models, tools, and information that accelerate the transition to clean energy systems through informed decisions.

  4. Commentary: open access, open business, closed fairness!

    PubMed

    Moustafa, Khaled

    2015-01-01

    A strong trend to move from print to online publication is largely perceived in scientific and nonscientific fields. A growing number of publishers increasingly opt for online publication as an option or a compulsory alternative. From readers' perspective, this is a highly appreciated facility, but from the author's, things are different mainly because of excessive article processing charges (APC) that make the open access system sometimes as a hindrance for many authors but a lucrative enterprise for many shareholders, enticing the most traditional and conservative publishers.

  5. openPMD-viewer

    2015-10-01

    Many simulation software produce data in the form of a set of field values or of a set of particle positions. (one such example is that of particle-in-cell codes, which produce data on the electromagnetic fields that they simulate.) However, each particular software uses its own particular format and layout, for the output data. This makes it difficult to compare the results of different simulation software, or to have a common visualization tool for thesemore » results. However, a standardized layout for fields and particles has recently been developed: the openPMD format ( HYPERLINK "http://www.openpmd.org/"www.openpmd.org) This format is open- source, and specifies a standard way in which field data and particle data should be written. The openPMD format is already implemented in the particle-in-cell code Warp (developed at LBL) and in PIConGPU (developed at HZDR, Germany). In this context, the proposed software (openPMD-viewer) is a Python package, which allows to access and visualize any data which has been formatted according to the openPMD standard. This package contains two main components: - a Python API, which allows to read and extract the data from a openPMD file, so as to be able to work with it within the Python environment. (e.g. plot the data and reprocess it with particular Python functions) - a graphical interface, which works with the ipython notebook, and allows to quickly visualize the data and browse through a set of openPMD files. The proposed software will be typically used when analyzing the results of numerical simulations. It will be useful to quickly extract scientific meaning from a set of numerical data.« less

  6. openPMD-viewer

    SciTech Connect

    Lehe, Remi

    2015-10-01

    Many simulation software produce data in the form of a set of field values or of a set of particle positions. (one such example is that of particle-in-cell codes, which produce data on the electromagnetic fields that they simulate.) However, each particular software uses its own particular format and layout, for the output data. This makes it difficult to compare the results of different simulation software, or to have a common visualization tool for these results. However, a standardized layout for fields and particles has recently been developed: the openPMD format ( HYPERLINK "http://www.openpmd.org/"www.openpmd.org) This format is open- source, and specifies a standard way in which field data and particle data should be written. The openPMD format is already implemented in the particle-in-cell code Warp (developed at LBL) and in PIConGPU (developed at HZDR, Germany). In this context, the proposed software (openPMD-viewer) is a Python package, which allows to access and visualize any data which has been formatted according to the openPMD standard. This package contains two main components: - a Python API, which allows to read and extract the data from a openPMD file, so as to be able to work with it within the Python environment. (e.g. plot the data and reprocess it with particular Python functions) - a graphical interface, which works with the ipython notebook, and allows to quickly visualize the data and browse through a set of openPMD files. The proposed software will be typically used when analyzing the results of numerical simulations. It will be useful to quickly extract scientific meaning from a set of numerical data.

  7. Validation of the charm 3 SL3 beta-lactam test for screening raw milk in compliance with the U.S. pasteurized milk ordinance. Performance Tested Method 071002.

    PubMed

    Salter, Robert S; Douglas, David; McRobbie, Lindsey; Quintana, Julio; Legg, David; Schwartz, Janine; Conaway, David; McPhee, Carla; Saul, Steven; Markovsky, Robert

    2011-01-01

    The Charm 3 SL3 beta-Lactam Test is a 3 min receptor-based lateral-flow Rapid One-Step Assay (ROSA) that detects the six beta-lactam drugs of concern approved for dairy cattle in the United States. The method is a biochemical formulation change of the SL3 beta-Lactam Test evaluated and approved in 2007. The Charm 3 SL3 was evaluated under the AOAC Research Institute Performance Tested Method (PTM) program following the protocol of the U.S. Food and Drug Administration, Center for Veterinary Medicine. The method was approved as PTM 071002 on May 8, 2009. The following drugs were detected in three combined lots: penicillin G at 3.8 ppb, ampicillin at 8.0 ppb, amoxicillin at 8.4 ppb, cephapirin at 20.0 ppb, ceftiofur (total metabolites) at 79 ppb, and cloxacillin at 8.6 ppb > or = 90% of the time with 95% confidence. These detection levels are lower than, but within 75% of, the U.S. Safe Level/Tolerances. Lot-to-lot repeatability was typically within 20% of these determined levels. The test kit was found to be suitable for testing thawed frozen samples. It was also found to respond with equal or better sensitivity to samples that contained incurred analytes, i.e., both the microbiologically active parent drug and its active metabolites. There were no interferences from somatic cells at 1.1 million/mL, bacterial cells at 300 000 CFU/mL, or 32 other non-beta-lactam drugs at 100 ppb. Ruggedness experiments indicated that the test procedure is robust. These results meet the fit-for-purpose approval criteria for inclusion in the National Conference for Interstate Milk Shipments milk testing program.

  8. Global OpenSearch

    NASA Astrophysics Data System (ADS)

    Newman, D. J.; Mitchell, A. E.

    2015-12-01

    At AGU 2014, NASA EOSDIS demonstrated a case-study of an OpenSearch framework for Earth science data discovery. That framework leverages the IDN and CWIC OpenSearch API implementations to provide seamless discovery of data through the 'two-step' discovery process as outlined by the Federation for Earth Sciences (ESIP) OpenSearch Best Practices. But how would an Earth Scientist leverage this framework and what are the benefits? Using a client that understands the OpenSearch specification and, for further clarity, the various best practices and extensions, a scientist can discovery a plethora of data not normally accessible either by traditional methods (NASA Earth Data Search, Reverb, etc) or direct methods (going to the source of the data) We will demonstrate, via the CWICSmart web client, how an earth scientist can access regional data on a regional phenomena in a uniform and aggregated manner. We will demonstrate how an earth scientist can 'globalize' their discovery. You want to find local data on 'sea surface temperature of the Indian Ocean'? We can help you with that. 'European meteorological data'? Yes. 'Brazilian rainforest satellite imagery'? That too. CWIC allows you to get earth science data in a uniform fashion from a large number of disparate, world-wide agencies. This is what we mean by Global OpenSearch.

  9. The open society.

    PubMed

    Opel, J R

    1984-07-27

    The open society, unlike the closed society, requires constant citizen thought and action to ensure that it will continue to survive and prosper. Today in the United States we should give particular attention to three immediate problems. We should reinvigorate our national economic health and international competitiveness, particularly by reducing our unprecedented budget deficits and reforming our tax system. We must strengthen our scientific and engineering vitality, particularly in graduate engineering education and in secondary school instruction in science and mathematics. And we should work with our allies in the free industrialized world to keep our international open society as open as possible, encouraging a flow of people and information and ideas across national boundaries while instituting sensible and efficient safeguards against leakage of critical military technology to the Soviet Union. PMID:17813240

  10. Laparoscopic Versus Open Appendectomy

    PubMed Central

    Guller, Ulrich; Hervey, Sheleika; Purves, Harriett; Muhlbaier, Lawrence H.; Peterson, Eric D.; Eubanks, Steve; Pietrobon, Ricardo

    2004-01-01

    Objective: To compare length of hospital stay, in-hospital complications, in-hospital mortality, and rate of routine discharge between laparoscopic and open appendectomy based on a representative, nationwide database. Summary Background Data: Numerous single-institutional randomized clinical trials have assessed the efficacy of laparoscopic and open appendectomy. The results, however, are conflicting, and a consensus concerning the relative advantages of each procedure has not yet been reached. Methods: Patients with primary ICD-9 procedure codes for laparoscopic and open appendectomy were selected from the 1997 Nationwide Inpatient Sample, a database that approximates 20% of all US community hospital discharges. Multiple linear and logistic regression analyses were used to assess the risk-adjusted endpoints. Results: Discharge abstracts of 43,757 patients were used for our analyses. 7618 patients (17.4%) underwent laparoscopic and 36,139 patients (82.6%) open appendectomy. Patients had an average age of 30.7 years and were predominantly white (58.1%) and male (58.6%). After adjusting for other covariates, laparoscopic appendectomy was associated with shorter median hospital stay (laparoscopic appendectomy: 2.06 days, open appendectomy: 2.88 days, P < 0.0001), lower rate of infections (odds ratio [OR] = 0.5 [0.38, 0.66], P < 0.0001), decreased gastrointestinal complications (OR = 0.8 [0.68, 0.96], P = 0.02), lower overall complications (OR = 0.84 [0.75, 0.94], P = 0.002), and higher rate of routine discharge (OR = 3.22 [2.47, 4.46], P < 0.0001). Conclusions: Laparoscopic appendectomy has significant advantages over open appendectomy with respect to length of hospital stay, rate of routine discharge, and postoperative in-hospital morbidity. PMID:14685099

  11. Mainstreaming Open Textbooks: Educator Perspectives on the Impact of OpenStax College Open Textbooks

    ERIC Educational Resources Information Center

    Pitt, Rebecca

    2015-01-01

    This paper presents the results of collaborative research between open textbook provider OpenStax College (OSC) and the OER Research Hub (OERRH), a Hewlett funded mixed methods open research project examining the impact of open educational resources (OER) on learning and teaching. The paper focuses primarily on the results of two surveys that were…

  12. Re-Invigorating Openness at The Open University: The Role of Open Educational Resources

    ERIC Educational Resources Information Center

    Gourley, Brenda; Lane, Andy

    2009-01-01

    This paper describes the internal motivations and external drivers that led The Open University UK to enter the field of Open Educational Resources through its institution-wide OpenLearn initiative (www.open.ac.uk/openlearn). It also describes some of the emerging evidence of the impacts inside and outside the university. Through the rapid…

  13. Open Day at SHMI.

    NASA Astrophysics Data System (ADS)

    Jarosova, M.

    2010-09-01

    During the World Meteorological Day there has been preparing "Open Day" at Slovak Hydrometeorological Institute. This event has more than 10 years traditions. "Open Day" is one of a lot of possibilities to give more information about meteorology, climatology, hydrology too to public. This "Day" is executed in whole Slovakia. People can visit the laboratories, the forecasting room....and meteo and clima measuring points. The most popular is visiting forecasting room. Visitors are interested in e.g. climatologic change in Slovakia territory, preparing weather forecasting, dangerous phenomena.... Every year we have more than 500 visitors.

  14. Open system environment procurement

    NASA Technical Reports Server (NTRS)

    Fisher, Gary

    1994-01-01

    Relationships between the request for procurement (RFP) process and open system environment (OSE) standards are described. A guide was prepared to help Federal agency personnel overcome problems in writing an adequate statement of work and developing realistic evaluation criteria when transitioning to an OSE. The guide contains appropriate decision points and transition strategies for developing applications that are affordable, scalable and interoperable across a broad range of computing environments. While useful, the guide does not eliminate the requirement that agencies posses in-depth expertise in software development, communications, and database technology in order to evaluate open systems.

  15. Bargaining for Open Skies

    NASA Technical Reports Server (NTRS)

    Wojahn, Oliver W.

    2001-01-01

    In this paper we analyze the bargaining problem between countries when negotiating bilateral air service agreements. To do so, we use the methods of bargaining and game theory. We give special attention to the case where a liberal minded country is trying to convince a less liberal country to agree to bilateral open skies, and the liberal country might also unilaterally open up its market. The following analysis is positive in the sense that the results help explain and predict the outcome of negotiations under different payoffs and structures of the bargaining process. They are normative in the sense that adequate manipulation of the bargaining conditions can ensure a desired outcome.

  16. Probabilistic Open Set Recognition

    NASA Astrophysics Data System (ADS)

    Jain, Lalit Prithviraj

    Real-world tasks in computer vision, pattern recognition and machine learning often touch upon the open set recognition problem: multi-class recognition with incomplete knowledge of the world and many unknown inputs. An obvious way to approach such problems is to develop a recognition system that thresholds probabilities to reject unknown classes. Traditional rejection techniques are not about the unknown; they are about the uncertain boundary and rejection around that boundary. Thus traditional techniques only represent the "known unknowns". However, a proper open set recognition algorithm is needed to reduce the risk from the "unknown unknowns". This dissertation examines this concept and finds existing probabilistic multi-class recognition approaches are ineffective for true open set recognition. We hypothesize the cause is due to weak adhoc assumptions combined with closed-world assumptions made by existing calibration techniques. Intuitively, if we could accurately model just the positive data for any known class without overfitting, we could reject the large set of unknown classes even under this assumption of incomplete class knowledge. For this, we formulate the problem as one of modeling positive training data by invoking statistical extreme value theory (EVT) near the decision boundary of positive data with respect to negative data. We provide a new algorithm called the PI-SVM for estimating the unnormalized posterior probability of class inclusion. This dissertation also introduces a new open set recognition model called Compact Abating Probability (CAP), where the probability of class membership decreases in value (abates) as points move from known data toward open space. We show that CAP models improve open set recognition for multiple algorithms. Leveraging the CAP formulation, we go on to describe the novel Weibull-calibrated SVM (W-SVM) algorithm, which combines the useful properties of statistical EVT for score calibration with one-class and binary

  17. The Open Storage Dilemma

    ERIC Educational Resources Information Center

    Orcutt, Kimberly

    2011-01-01

    Over the past three decades, open storage facilities have been established at four major museums in order to address the long-standing problem of lack of gallery space for putting collections on view. While making tens of thousands of objects available to visitors represents a great leap forward in accessibility, it raises inherent questions about…

  18. Clouds over Open Ocean

    NASA Technical Reports Server (NTRS)

    1981-01-01

    These cirrocumulus clouds photographed over open ocean - location unknown, seem to be in a state of agitation as in the early stages of storm development. The window frame at the top of this scene obscures almost half of the image and the panel seen in the middle of the scene is a corner of one of the payload bay closure doors.

  19. Clouds over Open Ocean

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The heavy concentration of these cirrocumulus and nimbostratus clouds over open ocean - location unknown, indicate that a heavy downpouring of rain is occuring on the Earth's surface below. Towering anvils, seen rising high above the base cloud cover and casting long shadows, also indicate high winds and possible tornado activity.

  20. Clouds over Open Ocean

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The heavy concentration of these cirrocumulus and nimbostratus clouds over open ocean - location unknown, indicate that a heavy downpouring of rain is occuring on the Earth's surface below. Towering anvils, rising above the base cloud cover, also indicate high winds and possible tornado activity.

  1. Massive and Open

    ERIC Educational Resources Information Center

    Fasimpaur, Karen

    2013-01-01

    MOOCs--massive open online courses--are all the rage these days, with hundreds of thousands of participants signing up and investors plunking down millions to get a piece of the pie. Why is there so much excitement about this new disruptive form of online learning, and how does this model apply to professional learning for teachers? Traditional…

  2. Presto: Open Inquiry!

    ERIC Educational Resources Information Center

    Hermann, Ronald S.; Miranda, Rommel J.

    2010-01-01

    Although inquiry-based science teaching has been around since the 1960s, many teachers are slow to incorporate inquiry principles into their science lessons. The authors address this issue by using an analogy between a magician's card trick and open inquiry. This analogy was chosen to portray a difference of perspective and demonstrate how the…

  3. Openers for Biology Classes.

    ERIC Educational Resources Information Center

    Gridley, C. Robert R.

    This teaching guide contains 200 activities that are suitable for openers and demonstrations in biology classes. Details are provided regarding the use of these activities. Some of the broad topics under which the activities are organized include algae, amphibians, bacteria, biologists, crustaceans, dinosaurs, ecology, evolution, flowering plants,…

  4. Surgical wound care - open

    MedlinePlus

    Surgical incision care; Open wound care ... your wound again with sutures, you need to care for it at home, since it may take ... Your health care provider will tell you how often to change your dressing . To prepare for the dressing change: Clean your ...

  5. The Costs of "Openness"

    ERIC Educational Resources Information Center

    Cleveland, Harlan

    1975-01-01

    The author argues that very wide consultation tends to discourage innovation and favor stand-pattism and that the very great benefits of openness and wide participation are flawed by apathy and non-participation, by muscle-binding legalisms, by processes which polarize two adversary sides, and by the encouragement of mediocrity. (JT)

  6. Open Systems Interconnection.

    ERIC Educational Resources Information Center

    Denenberg, Ray

    1985-01-01

    Discusses the need for standards allowing computer-to-computer communication and gives examples of technical issues. The seven-layer framework of the Open Systems Interconnection (OSI) Reference Model is explained and illustrated. Sidebars feature public data networks and Recommendation X.25, OSI standards, OSI layer functions, and a glossary.…

  7. Videoconferencing in Open Learning

    ERIC Educational Resources Information Center

    Tomadaki, Eleftheria; Quick, Kevin A.; Scott, Peter J.

    2008-01-01

    This paper discusses the use of videoconferencing as a tool to enhance collaboration amongst online learners in an open learning context. We present quantitative data from a longitudinal study of naturalistic videoconferencing interactions held via the FM videoconference tool, indicating its global use. The case study presented is analysed…

  8. Open Mind Conference

    NASA Technical Reports Server (NTRS)

    King, Alexander H.

    1995-01-01

    Open Mind, The Association for the achievement of diversity in higher education, met in conference in Albuquerque, New Mexico, between October 16 and 18, 1992. A number of workgroups met to discuss the goals, structure, and generally evaluate the Association and its achievements. A summary of the workgroup sessions and their minutes are included.

  9. Open-Source Colorimeter

    PubMed Central

    Anzalone, Gerald C.; Glover, Alexandra G.; Pearce, Joshua M.

    2013-01-01

    The high cost of what have historically been sophisticated research-related sensors and tools has limited their adoption to a relatively small group of well-funded researchers. This paper provides a methodology for applying an open-source approach to design and development of a colorimeter. A 3-D printable, open-source colorimeter utilizing only open-source hardware and software solutions and readily available discrete components is discussed and its performance compared to a commercial portable colorimeter. Performance is evaluated with commercial vials prepared for the closed reflux chemical oxygen demand (COD) method. This approach reduced the cost of reliable closed reflux COD by two orders of magnitude making it an economic alternative for the vast majority of potential users. The open-source colorimeter demonstrated good reproducibility and serves as a platform for further development and derivation of the design for other, similar purposes such as nephelometry. This approach promises unprecedented access to sophisticated instrumentation based on low-cost sensors by those most in need of it, under-developed and developing world laboratories. PMID:23604032

  10. Open systems and databases

    SciTech Connect

    Martire, G.S. ); Nuttall, D.J.H. )

    1993-05-01

    This paper is part of a series of papers invited by the IEEE POWER CONTROL CENTER WORKING GROUP concerning the changing designs of modern control centers. Papers invited by the Working Group discuss the following issues: Benefits of Openness, Criteria for Evaluating Open EMS Systems, Hardware Design, Configuration Management, Security, Project Management, Databases, SCADA, Inter- and Intra-System Communications and Man-Machine Interfaces,'' The goal of this paper is to provide an introduction to the issues pertaining to Open Systems and Databases.'' The intent is to assist understanding of some of the underlying factors that effect choices that must be made when selecting a database system for use in a control room environment. This paper describes and compares the major database information models which are in common use for database systems and provides an overview of SQL. A case for the control center community to follow the workings of the non-formal standards bodies is presented along with possible uses and the benefits of commercially available databases within the control center. The reasons behind the emergence of industry supported standards organizations such as the Open Software Foundation (OSF) and SQL Access are presented.

  11. Open-Door Policy

    ERIC Educational Resources Information Center

    Sack, Joetta L.

    2004-01-01

    This article discusses an open-door policy and innovative program of Thorncliffe Park Public School, located in the heart of the diverse immigrant community in Toronto, that greatly expands community use of public schools. Community use of schools is hardly a new concept in Canada or in the United States, where schools have traditionally been the…

  12. Open Access and beyond.

    PubMed

    Mathur, Shawn; Schmidt, Christian; Das, Chhaya; Tucker, Philip W

    2006-01-01

    Uncensored exchange of scientific results hastens progress. Open Access does not stop at the removal of price and permission barriers; still, censorship and reading disabilities, to name a few, hamper access to information. Here, we invite the scientific community and the public to discuss new methods to distribute, store and manage literature in order to achieve unfettered access to literature. PMID:16956402

  13. TIRES, OPEN BURNING

    EPA Science Inventory

    The chapter describes available information on the health effects from open burning of rubber tires. It concentrates on the three known sources of detailed measurements: (1) a small-scale emissions characterization study performed by the U.S. EPA in a facility designed to simulat...

  14. Open Source in Education

    ERIC Educational Resources Information Center

    Lakhan, Shaheen E.; Jhunjhunwala, Kavita

    2008-01-01

    Educational institutions have rushed to put their academic resources and services online, beginning the global community onto a common platform and awakening the interest of investors. Despite continuing technical challenges, online education shows great promise. Open source software offers one approach to addressing the technical problems in…

  15. Evaluating Open Source Portals

    ERIC Educational Resources Information Center

    Goh, Dion; Luyt, Brendan; Chua, Alton; Yee, See-Yong; Poh, Kia-Ngoh; Ng, How-Yeu

    2008-01-01

    Portals have become indispensable for organizations of all types trying to establish themselves on the Web. Unfortunately, there have only been a few evaluative studies of portal software and even fewer of open source portal software. This study aims to add to the available literature in this important area by proposing and testing a checklist for…

  16. Open-source colorimeter.

    PubMed

    Anzalone, Gerald C; Glover, Alexandra G; Pearce, Joshua M

    2013-01-01

    The high cost of what have historically been sophisticated research-related sensors and tools has limited their adoption to a relatively small group of well-funded researchers. This paper provides a methodology for applying an open-source approach to design and development of a colorimeter. A 3-D printable, open-source colorimeter utilizing only open-source hardware and software solutions and readily available discrete components is discussed and its performance compared to a commercial portable colorimeter. Performance is evaluated with commercial vials prepared for the closed reflux chemical oxygen demand (COD) method. This approach reduced the cost of reliable closed reflux COD by two orders of magnitude making it an economic alternative for the vast majority of potential users. The open-source colorimeter demonstrated good reproducibility and serves as a platform for further development and derivation of the design for other, similar purposes such as nephelometry. This approach promises unprecedented access to sophisticated instrumentation based on low-cost sensors by those most in need of it, under-developed and developing world laboratories.

  17. The OpenSHMEM Analyzer

    2014-07-30

    The OpenSHMEM Analyzer is a compiler-based tool that can help users detect errors and provide useful analyses about their OpenSHMEM applications. The tool is built on top of the OpenUH compiler (a branch of Open64 compiler) and presents OpenSHMEM information as feedback to the user. Some of the analyses it provides include checks for correct usage of symmetric variables in OpenSHMEM calls, out-of-bounds checks for symmetric data, checks for the correct initialization of pointers tomore » symmetric data, and symmetric data alias information.« less

  18. The OpenSHMEM Analyzer

    SciTech Connect

    Hernandez, Oscar

    2014-07-30

    The OpenSHMEM Analyzer is a compiler-based tool that can help users detect errors and provide useful analyses about their OpenSHMEM applications. The tool is built on top of the OpenUH compiler (a branch of Open64 compiler) and presents OpenSHMEM information as feedback to the user. Some of the analyses it provides include checks for correct usage of symmetric variables in OpenSHMEM calls, out-of-bounds checks for symmetric data, checks for the correct initialization of pointers to symmetric data, and symmetric data alias information.

  19. Opening Reproducible Research

    NASA Astrophysics Data System (ADS)

    Nüst, Daniel; Konkol, Markus; Pebesma, Edzer; Kray, Christian; Klötgen, Stephanie; Schutzeichel, Marc; Lorenz, Jörg; Przibytzin, Holger; Kussmann, Dirk

    2016-04-01

    Open access is not only a form of publishing such that research papers become available to the large public free of charge, it also refers to a trend in science that the act of doing research becomes more open and transparent. When science transforms to open access we not only mean access to papers, research data being collected, or data being generated, but also access to the data used and the procedures carried out in the research paper. Increasingly, scientific results are generated by numerical manipulation of data that were already collected, and may involve simulation experiments that are completely carried out computationally. Reproducibility of research findings, the ability to repeat experimental procedures and confirm previously found results, is at the heart of the scientific method (Pebesma, Nüst and Bivand, 2012). As opposed to the collection of experimental data in labs or nature, computational experiments lend themselves very well for reproduction. Some of the reasons why scientists do not publish data and computational procedures that allow reproduction will be hard to change, e.g. privacy concerns in the data, fear for embarrassment or of losing a competitive advantage. Others reasons however involve technical aspects, and include the lack of standard procedures to publish such information and the lack of benefits after publishing them. We aim to resolve these two technical aspects. We propose a system that supports the evolution of scientific publications from static papers into dynamic, executable research documents. The DFG-funded experimental project Opening Reproducible Research (ORR) aims for the main aspects of open access, by improving the exchange of, by facilitating productive access to, and by simplifying reuse of research results that are published over the Internet. Central to the project is a new form for creating and providing research results, the executable research compendium (ERC), which not only enables third parties to

  20. The Open Tech Programme: New Developments in Open Learning.

    ERIC Educational Resources Information Center

    Freshwater, Mike; Crawley, Rick

    1985-01-01

    Describes Manpower Services Commissions Open Tech Programme, a developmental, project-based program begun in 1982 to open adult access to updating and upgrading training at technical and supervisory skill levels. Discussion includes issues arising in the program's management, administration, and the design and process of open learning and impact…

  1. Open Achilles tendon lacerations.

    PubMed

    Said, M Nader; Al Ateeq Al Dosari, Mohamed; Al Subaii, Nasser; Kawas, Alaa; Al Mas, Ali; Al Ser, Yaser; Abuodeh, Yousef; Shakil, Malik; Habash, Ali; Mukhter, Khalid

    2015-04-01

    In contrast to closed Achilles tendon ruptures, open injuries are rarely reported in the literature. This paper provides information about open Achilles tendon wounds that are eventually seen in the Middle East. The reporting unit, Hamad Medical Corporation, is one of the biggest trauma centers in the Gulf area and the major health provider in Qatar. This is a retrospective study including patients admitted and operated for open Achilles tendon injuries between January 2011 and December 2013. Two hundred and five cases of open Achilles tendon lacerations were operated in Hamad General Hospital in this period. Forty-eight cases showed partial injuries, and the remaining are complete tendons cut. In the same period, fifty-one closed ruptured Achilles tendons were operated in the same trauma unit. In the majority of cases, the open injury resulted from a slip in the floor-leveled traditional toilette seats. Local damage to the toilette seats resulted in sharp edges causing the laceration of the heel if the patient was slipping over the wet floor. This occurrence is the cause in the vast majority of the cases. Wounds were located 1-5 cm proximal to tendon insertion. Standard treatment principles were applied. This included thorough irrigation in the emergency room, intravenous antibiotics, surgical debridement and primary repair within 24 h. Patients were kept in the hospital 1-7 days for intravenous antibiotics and possible dressing changes. Postoperatively below knee slabs were applied in the majority of patients and were kept for about 4 weeks followed by gradual weight bearing and range of motion exercises. Outpatients follow up in 1-2 weeks. Further follow-up visits at around 2-, 4-, 8- and 12-week intervals until complete wound healing and satisfactory rehabilitation outcome. Sixteen cases needed a second procedure. A high incidence of Achilles tendon open injuries is reported. This seems to be related to partially damaged floor-level toilettes in the

  2. Limits to Open Class Performance?

    NASA Technical Reports Server (NTRS)

    Bowers, Albion H.

    2007-01-01

    This viewgraph presentation describes the limits to open class performance. The contents include: 1) Standard Class; 2) 15m/Racing Class; 3) Open Class; and 4) Design Solutions associated with assumptions, limiting parameters, airfoil performance, current trends, and analysis.

  3. Infant open heart surgery (image)

    MedlinePlus

    During open-heart surgery an incision is made through the breastbone (sternum) while the child is under general anesthesia. ... During open-heart surgery an incision is made through the breastbone (sternum) while the child is under general anesthesia.

  4. FAST OPENING SWITCH

    DOEpatents

    Bender, M.; Bennett, F.K.; Kuckes, A.F.

    1963-09-17

    A fast-acting electric switch is described for rapidly opening a circuit carrying large amounts of electrical power. A thin, conducting foil bridges a gap in this circuit and means are provided for producing a magnetic field and eddy currents in the foil, whereby the foil is rapidly broken to open the circuit across the gap. Advantageously the foil has a hole forming two narrow portions in the foil and the means producing the magnetic field and eddy currents comprises an annular coil having its annulus coaxial with the hole in the foil and turns adjacent the narrow portions of the foil. An electrical current flows through the coil to produce the magnetic field and eddy currents in the foil. (AEC)

  5. Plasma opening switch

    DOEpatents

    Savage, Mark E.; Mendel, Jr., Clifford W.

    2001-01-01

    A command triggered plasma opening switch assembly using an amplification stage. The assembly surrounds a coaxial transmission line and has a main plasma opening switch (POS) close to the load and a trigger POS upstream from the main POS. The trigger POS establishes two different current pathways through the assembly depended on whether it has received a trigger current pulse. The initial pathway has both POS's with plasma between their anodes and cathodes to form a short across the transmission line and isolating the load. The final current pathway is formed when the trigger POS receives a trigger current pulse which energizes its fast coil to push the conductive plasma out from between its anode and cathode, allowing the main transmission line current to pass to the fast coil of the main POS, thus pushing its plasma out the way so as to establish a direct current pathway to the load.

  6. OpenEIS Algorithms

    2013-07-29

    The OpenEIS Algorithm package seeks to provide a low-risk path for building owners, service providers and managers to explore analytical methods for improving building control and operational efficiency. Users of this software can analyze building data, and learn how commercial implementations would provide long-term value. The code also serves as a reference implementation for developers who wish to adapt the algorithms for use in commercial tools or service offerings.

  7. OMG: Open Molecule Generator

    PubMed Central

    2012-01-01

    Computer Assisted Structure Elucidation has been used for decades to discover the chemical structure of unknown compounds. In this work we introduce the first open source structure generator, Open Molecule Generator (OMG), which for a given elemental composition produces all non-isomorphic chemical structures that match that elemental composition. Furthermore, this structure generator can accept as additional input one or multiple non-overlapping prescribed substructures to drastically reduce the number of possible chemical structures. Being open source allows for customization and future extension of its functionality. OMG relies on a modified version of the Canonical Augmentation Path, which grows intermediate chemical structures by adding bonds and checks that at each step only unique molecules are produced. In order to benchmark the tool, we generated chemical structures for the elemental formulas and substructures of different metabolites and compared the results with a commercially available structure generator. The results obtained, i.e. the number of molecules generated, were identical for elemental compositions having only C, O and H. For elemental compositions containing C, O, H, N, P and S, OMG produces all the chemically valid molecules while the other generator produces more, yet chemically impossible, molecules. The chemical completeness of the OMG results comes at the expense of being slower than the commercial generator. In addition to being open source, OMG clearly showed the added value of constraining the solution space by using multiple prescribed substructures as input. We expect this structure generator to be useful in many fields, but to be especially of great importance for metabolomics, where identifying unknown metabolites is still a major bottleneck. PMID:22985496

  8. Open boundary molecular dynamics

    NASA Astrophysics Data System (ADS)

    Delgado-Buscalioni, R.; Sablić, J.; Praprotnik, M.

    2015-09-01

    This contribution analyzes several strategies and combination of methodologies to perform molecular dynamic simulations in open systems. Here, the term open indicates that the total system has boundaries where transfer of mass, momentum and energy can take place. This formalism, which we call Open Boundary Molecular Dynamics (OBMD), can act as interface of different schemes, such as Adaptive Resolution Scheme (AdResS) and Hybrid continuum-particle dynamics to link atomistic, coarse-grained (CG) and continuum (Eulerian) fluid dynamics in the general framework of fluctuating Navier-Stokes equations. The core domain of the simulation box is solved using all-atom descriptions. The CG layer introduced using AdResS is located at the outer part of the open box to make feasible the insertion of large molecules into the system. Communications between the molecular system and the outer world are carried out in the outer layers, called buffers. These coupling preserve momentum and mass conservation laws and can thus be linked with Eulerian hydro- dynamic solvers. In its simpler form, OBMD allows, however, to impose a local pressure tensor and a heat flux across the system's boundaries. For a one component molecular system, the external normal pressure and temperature determine the external chemical potential and thus the independent parameters of a grand-canonical ensemble simulation. Extended ensembles under non-equilibrium stationary states can also be simulated as well as time dependent forcings (e.g. oscillatory rheology). To illustrate the robustness of the combined OBMD-AdResS method, we present simulations of star-polymer melts at equilibrium and in sheared flow.

  9. OMG: Open Molecule Generator.

    PubMed

    Peironcely, Julio E; Rojas-Chertó, Miguel; Fichera, Davide; Reijmers, Theo; Coulier, Leon; Faulon, Jean-Loup; Hankemeier, Thomas

    2012-01-01

    Computer Assisted Structure Elucidation has been used for decades to discover the chemical structure of unknown compounds. In this work we introduce the first open source structure generator, Open Molecule Generator (OMG), which for a given elemental composition produces all non-isomorphic chemical structures that match that elemental composition. Furthermore, this structure generator can accept as additional input one or multiple non-overlapping prescribed substructures to drastically reduce the number of possible chemical structures. Being open source allows for customization and future extension of its functionality. OMG relies on a modified version of the Canonical Augmentation Path, which grows intermediate chemical structures by adding bonds and checks that at each step only unique molecules are produced. In order to benchmark the tool, we generated chemical structures for the elemental formulas and substructures of different metabolites and compared the results with a commercially available structure generator. The results obtained, i.e. the number of molecules generated, were identical for elemental compositions having only C, O and H. For elemental compositions containing C, O, H, N, P and S, OMG produces all the chemically valid molecules while the other generator produces more, yet chemically impossible, molecules. The chemical completeness of the OMG results comes at the expense of being slower than the commercial generator. In addition to being open source, OMG clearly showed the added value of constraining the solution space by using multiple prescribed substructures as input. We expect this structure generator to be useful in many fields, but to be especially of great importance for metabolomics, where identifying unknown metabolites is still a major bottleneck. PMID:22985496

  10. Open Flavor Strong Decays

    NASA Astrophysics Data System (ADS)

    García-Tecocoatzi, H.; Bijker, R.; Ferretti, J.; Galatà, G.; Santopinto, E.

    2016-10-01

    In this contribution, we discuss the results of a QM calculation of the open-flavor strong decays of **** light nucleon resonances. These are the results of a recent calculation, where we used a modified ^3P_0 model for the amplitudes and the U(7) algebraic model and the hypercentral quark model to predict the baryon spectrum. The decay amplitudes are compared with the existing experimental data.

  11. OMG: Open Molecule Generator.

    PubMed

    Peironcely, Julio E; Rojas-Chertó, Miguel; Fichera, Davide; Reijmers, Theo; Coulier, Leon; Faulon, Jean-Loup; Hankemeier, Thomas

    2012-09-17

    Computer Assisted Structure Elucidation has been used for decades to discover the chemical structure of unknown compounds. In this work we introduce the first open source structure generator, Open Molecule Generator (OMG), which for a given elemental composition produces all non-isomorphic chemical structures that match that elemental composition. Furthermore, this structure generator can accept as additional input one or multiple non-overlapping prescribed substructures to drastically reduce the number of possible chemical structures. Being open source allows for customization and future extension of its functionality. OMG relies on a modified version of the Canonical Augmentation Path, which grows intermediate chemical structures by adding bonds and checks that at each step only unique molecules are produced. In order to benchmark the tool, we generated chemical structures for the elemental formulas and substructures of different metabolites and compared the results with a commercially available structure generator. The results obtained, i.e. the number of molecules generated, were identical for elemental compositions having only C, O and H. For elemental compositions containing C, O, H, N, P and S, OMG produces all the chemically valid molecules while the other generator produces more, yet chemically impossible, molecules. The chemical completeness of the OMG results comes at the expense of being slower than the commercial generator. In addition to being open source, OMG clearly showed the added value of constraining the solution space by using multiple prescribed substructures as input. We expect this structure generator to be useful in many fields, but to be especially of great importance for metabolomics, where identifying unknown metabolites is still a major bottleneck.

  12. Open-Source GIS

    SciTech Connect

    Vatsavai, Raju; Burk, Thomas E; Lime, Steve

    2012-01-01

    The components making up an Open Source GIS are explained in this chapter. A map server (Sect. 30.1) can broadly be defined as a software platform for dynamically generating spatially referenced digital map products. The University of Minnesota MapServer (UMN Map Server) is one such system. Its basic features are visualization, overlay, and query. Section 30.2 names and explains many of the geospatial open source libraries, such as GDAL and OGR. The other libraries are FDO, JTS, GEOS, JCS, MetaCRS, and GPSBabel. The application examples include derived GIS-software and data format conversions. Quantum GIS, its origin and its applications explained in detail in Sect. 30.3. The features include a rich GUI, attribute tables, vector symbols, labeling, editing functions, projections, georeferencing, GPS support, analysis, and Web Map Server functionality. Future developments will address mobile applications, 3-D, and multithreading. The origins of PostgreSQL are outlined and PostGIS discussed in detail in Sect. 30.4. It extends PostgreSQL by implementing the Simple Feature standard. Section 30.5 details the most important open source licenses such as the GPL, the LGPL, the MIT License, and the BSD License, as well as the role of the Creative Commons.

  13. Open-hole fishing

    SciTech Connect

    Pietrobono, J.T.

    1988-01-01

    This paper reports on losing equipment in the hole that is one of the most expensive and potentially dangerous things that can go wrong in drilling a well. Drilling must come to a halt until the equipment is recovered, or the hole must be sidetracked. The well also can become hard to control with essential tools out of reach, increasing the risk of a blowout. Fishing, or recovering lost or stuck equipment in the hole, is therefore a critical procedure at any drilling operation. Fishing can be divided into two broad categories: open hole and cased hole. a major difference between the two is timing: open-hole fishing is done as the well is being drilled, whereas cased-hole fishing is performed during production or well workover. Fishing techniques and types of equipment used also vary between the tow. This lesson describes some of the basic techniques and tools used in open-hole fishing-that is, retrieving fish from a hole that is being drilled but is not yet cased.

  14. Open office landscape system

    SciTech Connect

    Spencer, R.O.

    1987-07-28

    This patent describes an open office partition system comprising: a panel receiving base having means for leveling a panel receiving channel of the receiving base and having projecting pins formed in the panel receiving channel; a partition wall received upon the projecting pins formed in the panel receiving channel attaching the partition wall to the receiving base. The partition wall consists of modular panels, each of which comprises: a lower panel retention channel having a first and a second end; a first vertical panel wall support channel attached to and extending from the first end of the lower panel retention channel; a second vertical panel wall support channel attached to and extending from the second end of the lower panel retention channel, the first and the second vertical support channel each having a laterally open vertical chase formed; a top raceway channel attached to and connecting the first and the second vertical support channels at the extending end; the raceway channel having an open top electrical raceway; at least one intermediate brace attached to and extending from the vertical support channel to the second vertical support channel, and an outer panel covering attached to the channel members forming an outer skin for the modular panel; connection clips for connecting vertical support channels of adjacent modular panels at preselected angles an electrical network received within at least a portion of the top electrical raceway and the vertical chase.

  15. Open systems storage platforms

    NASA Technical Reports Server (NTRS)

    Collins, Kirby

    1992-01-01

    The building blocks for an open storage system includes a system platform, a selection of storage devices and interfaces, system software, and storage applications CONVEX storage systems are based on the DS Series Data Server systems. These systems are a variant of the C3200 supercomputer with expanded I/O capabilities. These systems support a variety of medium and high speed interfaces to networks and peripherals. System software is provided in the form of ConvexOS, a POSIX compliant derivative of 4.3BSD UNIX. Storage applications include products such as UNITREE and EMASS. With the DS Series of storage systems, Convex has developed a set of products which provide open system solutions for storage management applications. The systems are highly modular, assembled from off the shelf components with industry standard interfaces. The C Series system architecture provides a stable base, with the performance and reliability of a general purpose platform. This combination of a proven system architecture with a variety of choices in peripherals and application software allows wide flexibility in configurations, and delivers the benefits of open systems to the mass storage world.

  16. Educators Assess "Open Content" Movement

    ERIC Educational Resources Information Center

    Trotter, Andrew

    2009-01-01

    This article discusses the open-content movement in education. A small but growing movement of K-12 educators is latching on to educational resources that are "open," or free for others to use, change, and republish on web sites that promote sharing. The open-content movement is fueled partly by digital creation tools that make it easy to create…

  17. Open Educational Resources and Practices

    ERIC Educational Resources Information Center

    Blackall, Leigh

    2008-01-01

    This article looks at what constitutes an open educational resource and considers the issues and benefits to an educational institution that is moving to participate in open educational resource development and to adopt more open educational practices. It describes the initial steps in these directions being made by the Educational Development…

  18. How Is Open Source Special?

    ERIC Educational Resources Information Center

    Kapor, Mitchell

    2005-01-01

    Open source software projects involve the production of goods, but in software projects, the "goods" consist of information. The open source model is an alternative to the conventional centralized, command-and-control way in which things are usually made. In contrast, open source projects are genuinely decentralized and transparent. Transparent…

  19. Open Education: A Learning Conversation

    ERIC Educational Resources Information Center

    Grush, Mary

    2010-01-01

    The term "open education" has been in use at least since the 1920s, when it emerged as an educational experiment in the Soviet Union. But since the spread of the internet in the late 20th century, open education has come to be inextricably associated with information technology. The William and Flora Hewlett Foundation Open Educational Resources…

  20. OpenStudio - Fault Modeling

    SciTech Connect

    Frank, Stephen; Robertson, Joseph; Cheung, Howard; Horsey, Henry

    2014-09-19

    This software record documents the OpenStudio fault model development portion of the Fault Detection and Diagnostics LDRD project.The software provides a suite of OpenStudio measures (scripts) for modeling typical HVAC system faults in commercial buildings and also included supporting materials: example projects and OpenStudio measures for reporting fault costs and energy impacts.

  1. Suppression of open bottom at high pT via non-prompt J/ψ decays in PbPb collisions at 2.76 TeV with CMS

    NASA Astrophysics Data System (ADS)

    Jo, Mihee

    2013-05-01

    Measurements of the nuclear modification factor of mesons with open heavy flavor content in PbPb collisions at s=2.76 TeV from the CMS experiment will be presented. These modification factors provide stringent constraints on the theoretical models of heavy quark energy loss. Until recently only indirect measurements of this effect existed, through single electrons from semileptonic open heavy-flavor decays. The importance of an unambiguous measurement of open bottom flavor is driven by the lack of knowledge regarding key features of the dynamics of parton energy loss in the QGP, such as its color-charge and parton-mass dependencies and the relative role of radiative and collisional energy loss. CMS measures the nuclear modification factor of b hadrons, identified via their decays into J/ψ displaced from the primary collision vertex. First results have shown that b hadrons are strongly suppressed in PbPb collisions at a level comparable to open charm. New results on the centrality dependence of non-prompt J/ψR are presented, based on the full 2011 PbPb data sample corresponding to an integrated luminosity of 150μb.

  2. Bispectrum from open inflation

    SciTech Connect

    Sugimura, Kazuyuki; Komatsu, Eiichiro E-mail: komatsu@mpa-garching.mpg.de

    2013-11-01

    We calculate the bispectrum of primordial curvature perturbations, ζ, generated during ''open inflation.'' Inflation occurs inside a bubble nucleated via quantum tunneling from the background false vacuum state. Our universe lives inside the bubble, which can be described as a Friedmann-Lemaȋtre-Robertson-Walker (FLRW) universe with negative spatial curvature, undergoing slow-roll inflation. We pay special attention to the issue of an initial state for quantum fluctuations. A ''vacuum state'' defined by a positive-frequency mode in de Sitter space charted by open coordinates is different from the Euclidean vacuum (which is equivalent to the so-called ''Bunch-Davies vacuum'' defined by a positive-frequency mode in de Sitter space charted by flat coordinates). Quantum tunneling (bubble nucleation) then modifies the initial state away from the original Euclidean vacuum. While most of the previous study on modifications of the initial quantum state introduces, by hand, an initial time at which the quantum state is modified as well as the form of the modification, an effective initial time naturally emerges and the form is fixed by quantum tunneling in open inflation models. Therefore, open inflation enables a self-consistent computation of the effect of a modified initial state on the bispectrum. We find a term which goes as (ζ{sub k{sub 1}}ζ{sub k{sub 2}}ζ{sub k{sub 3}})∝1/k{sub 1}{sup 2}k{sub 3}{sup 4} in the so-called squeezed configurations, k{sub 3} << k{sub 1} ≈ k{sub 2}, in agreement with the previous study on modifications of the initial state. The bispectrum in the exact folded limit, e.g., k{sub 1} = k{sub 2}+k{sub 3}, is also enhanced and remains finite. However, these terms are exponentially suppressed when the wavelength of ζ is smaller than the curvature radius of the universe. The leading-order bispectrum is equal to the usual one from single-field slow-roll inflation; the terms specific for open inflation arise only in the sub-leading order

  3. Open Data, Open Source and Open Standards in chemistry: The Blue Obelisk five years on

    PubMed Central

    2011-01-01

    Background The Blue Obelisk movement was established in 2005 as a response to the lack of Open Data, Open Standards and Open Source (ODOSOS) in chemistry. It aims to make it easier to carry out chemistry research by promoting interoperability between chemistry software, encouraging cooperation between Open Source developers, and developing community resources and Open Standards. Results This contribution looks back on the work carried out by the Blue Obelisk in the past 5 years and surveys progress and remaining challenges in the areas of Open Data, Open Standards, and Open Source in chemistry. Conclusions We show that the Blue Obelisk has been very successful in bringing together researchers and developers with common interests in ODOSOS, leading to development of many useful resources freely available to the chemistry community. PMID:21999342

  4. "The Open Library at AU" (Athabasca University): Supporting Open Access and Open Educational Resources

    ERIC Educational Resources Information Center

    Elliott, Colin; Fabbro, Elaine

    2015-01-01

    To address challenges that learners, course creators, librarians and academics involved with OER and MOOCs are facing when looking for scholarly materials, Athabasca University Library has initiated the development of "the Open Library at AU." This open library is a full library website that provides easy access to open and free…

  5. The open science grid

    SciTech Connect

    Pordes, R.; /Fermilab

    2004-12-01

    The U.S. LHC Tier-1 and Tier-2 laboratories and universities are developing production Grids to support LHC applications running across a worldwide Grid computing system. Together with partners in computer science, physics grid projects and active experiments, we will build a common national production grid infrastructure which is open in its architecture, implementation and use. The Open Science Grid (OSG) model builds upon the successful approach of last year's joint Grid2003 project. The Grid3 shared infrastructure has for over eight months provided significant computational resources and throughput to a range of applications, including ATLAS and CMS data challenges, SDSS, LIGO, and biology analyses, and computer science demonstrators and experiments. To move towards LHC-scale data management, access and analysis capabilities, we must increase the scale, services, and sustainability of the current infrastructure by an order of magnitude or more. Thus, we must achieve a significant upgrade in its functionalities and technologies. The initial OSG partners will build upon a fully usable, sustainable and robust grid. Initial partners include the US LHC collaborations, DOE & NSF Laboratories and Universities & Trillium Grid projects. The approach is to federate with other application communities in the U.S. to build a shared infrastructure open to other sciences and capable of being modified and improved to respond to needs of other applications, including CDF, D0, BaBar, and RHIC experiments. We describe the application-driven, engineered services of the OSG, short term plans and status, and the roadmap for a consortium, its partnerships and national focus.

  6. Primary Open Rhinoplasty.

    PubMed

    Momeni, Arash; Gruber, Ronald P

    2016-10-01

    Rhinoplasty is perhaps the most complex cosmetic surgery procedure performed today. It is characterized by an intricate interplay between form and function, with patient satisfaction being dependent not only on improvement of nasal appearance but also resolution of preexisting airway symptoms. The prerequisite for successful execution of this challenging procedure is a thorough understanding of nasal anatomy and physiology. Hence, a thorough preoperative evaluation is at least as important and the surgical skill in performing the operation. Establishing an accurate diagnosis through a comprehensive nasal analysis is obligatory. As to the surgical approach, much has been written about the advantages and disadvantages of closed vs open rhinoplasty. The more commonly chosen open approach has numerous advantages, including improved visualization without distortion, thus, enabling precise diagnosis and correction of deformities. While the surgical treatment of existing nasal deformities is tailored to the needs of the individual patient, the authors have noted a total of 10 essential components to form the foundation for successful technical execution of rhinoplasty. These include: (1) septoturbinotomy; (2) opening the nose; (3) humpectomy/spreader flaps; (4) tip-plasty; (5) supratip-plasty; (6) columellar strut; (7) dorsal augmentation; (8) nasal base reduction; (9) osteotomies; and (10) rim grafts. Postoperative, a variety of problems, such as edema, may be successfully addressed without surgical intervention. Diligent postoperative management is critical in ensuring a positive patient experience. Finally, a comprehensive understanding of possible postoperative complications, such as bleeding, ecchymosis, edema, and persistent or new iatrogenic deformity is mandatory prior to offering rhinoplasty to patients. PMID:27651480

  7. Open-market innovation.

    PubMed

    Rigby, Darrell; Zook, Chris

    2002-10-01

    Companies in many industries are feeling immense pressure to improve their ability to innovate. Even in these tough economic times, executives have pushed innovation initiatives to the top of their priority lists, but they know that the best ideas aren't always coming out of their own R&D labs. That's why a growing number of companies are exploring the idea of open-market innovation--an approach that uses tools such as licensing, joint ventures, and strategic alliances to bring the benefits of free trade to the flow of new ideas. For instance, when faced with the unanticipated anthrax scare last fall, Pitney Bowes had nothing in its R&D pipeline to help its customers combat the deadly spores. So it sought help from outside innovators to come up with scanning and imaging technologies that could alert its customers to tainted letters and packages. And Dow Chemical and Cargill jointly produced a new form of plastic derived from plant starches--a breakthrough product that neither company could have created on its own. In this article, Bain consultants Darrell Rigby and Chris Zook describe the advantages and disadvantages of open-market innovation and the ways some companies are using it to gain competitive advantage. By importing ideas from the outside, the authors say, companies can collect more and better ideas from different kinds of experts. Creative types within a company will stick around longer if they know their ideas will eventually find a home--as internal R&D projects or as concepts licensed to outside buyers. Exporting ideas also gives companies a way to measure an innovation's real value. However, the authors warn against entering into open-market innovation without properly structuring deals: Xerox and TRW virtually gave away their innovations and had to stand by while other companies capitalized on them. PMID:12389463

  8. Open-market innovation.

    PubMed

    Rigby, Darrell; Zook, Chris

    2002-10-01

    Companies in many industries are feeling immense pressure to improve their ability to innovate. Even in these tough economic times, executives have pushed innovation initiatives to the top of their priority lists, but they know that the best ideas aren't always coming out of their own R&D labs. That's why a growing number of companies are exploring the idea of open-market innovation--an approach that uses tools such as licensing, joint ventures, and strategic alliances to bring the benefits of free trade to the flow of new ideas. For instance, when faced with the unanticipated anthrax scare last fall, Pitney Bowes had nothing in its R&D pipeline to help its customers combat the deadly spores. So it sought help from outside innovators to come up with scanning and imaging technologies that could alert its customers to tainted letters and packages. And Dow Chemical and Cargill jointly produced a new form of plastic derived from plant starches--a breakthrough product that neither company could have created on its own. In this article, Bain consultants Darrell Rigby and Chris Zook describe the advantages and disadvantages of open-market innovation and the ways some companies are using it to gain competitive advantage. By importing ideas from the outside, the authors say, companies can collect more and better ideas from different kinds of experts. Creative types within a company will stick around longer if they know their ideas will eventually find a home--as internal R&D projects or as concepts licensed to outside buyers. Exporting ideas also gives companies a way to measure an innovation's real value. However, the authors warn against entering into open-market innovation without properly structuring deals: Xerox and TRW virtually gave away their innovations and had to stand by while other companies capitalized on them.

  9. Reusable fast opening switch

    DOEpatents

    Van Devender, John P.; Emin, David

    1986-01-01

    A reusable fast opening switch for transferring energy, in the form of a high power pulse, from an electromagnetic storage device such as an inductor into a load. The switch is efficient, compact, fast and reusable. The switch comprises a ferromagnetic semiconductor which undergoes a fast transition between conductive and insulating states at a critical temperature and which undergoes the transition without a phase change in its crystal structure. A semiconductor such as europium rich europhous oxide, which undergoes a conductor to insulator transition when it is joule heated from its conductor state, can be used to form the switch.

  10. Reusable fast opening switch

    DOEpatents

    Van Devender, J.P.; Emin, D.

    1983-12-21

    A reusable fast opening switch for transferring energy, in the form of a high power pulse, from an electromagnetic storage device such as an inductor into a load. The switch is efficient, compact, fast and reusable. The switch comprises a ferromagnetic semiconductor which undergoes a fast transition between conductive and metallic states at a critical temperature and which undergoes the transition without a phase change in its crystal structure. A semiconductor such as europium rich europhous oxide, which undergoes a conductor to insulator transition when it is joule heated from its conductor state, can be used to form the switch.

  11. Open-pit explosives

    SciTech Connect

    Dannenberg, J.

    1982-07-01

    This paper explains how mine operators are taking a closer look at the power of explosives and how primary breakage affects other open-pit mining costs. Slurries have overcome most of the disadvantages attributed to them in their early years and may replace Anfo. Effective blasting is the key to an efficient, low-cost mining operation. Reviews are presented on research in crater studies, computer-aided design, the expanding gas theory, and high-speed motion picture cameras that show the importance of shock energy in fracturing the rock interfaces throughout the burden. The paper concludes with MSHA-approved courses in blasting offered throughout the US.

  12. Reconciling inflation with openness

    NASA Astrophysics Data System (ADS)

    Amendola, Luca; Baccigalupi, Carlo; Occhionero, Franco

    1996-10-01

    It is already understood that the increasing observational evidence for an open universe can be reconciled with inflation if our horizon is contained inside one single huge bubble nucleated during the inflationary phase transition. In this frame of ideas, we show here that the probability of living in a bubble with the right Ω0 (~=0.2) can be comparable to unity, rather than infinitesimally small. For this purpose we modify both quantitatively and qualitatively an intuitive toy model of ours. Therefore, inferring from the observations that Ω0<1 not only does not conflict with the inflationary paradigm, but rather supports therein the occurrence of a primordial phase transition.

  13. Open Rotor Test Status

    NASA Technical Reports Server (NTRS)

    VanZante, Dale E.

    2010-01-01

    Testing of low noise, counter-rotating open rotor propulsion concepts has been ongoing at Glenn Research Center in collaboration with General Electric Company. The presentation is an overview of the testing that has been completed to date and previews the upcoming test entries. The NASA Environmentally Responsible Aviation Project Diagnostics entry is the most recent to finish. That test entry included acoustic phased array, pressure sensitive paint, particle image velocimetry, pylon installed measurements and acoustic shielding measurements. A preview of the data to be acquired in the 8x6 high-speed wind tunnel is also included.

  14. The VLT Opening Symposium

    NASA Astrophysics Data System (ADS)

    Bergeron, J.

    1999-06-01

    The beginning of the VLT era was marked by two major events: the VLT Official Inauguration Ceremony at Paranal on 5 March 1999, preceded by the VLT Opening Symposium on 1-4 March. ESO is indebted to Professor J.A. Music Tomicic, Rector of the Universidad Católica del Norte, for hosting this symposium. Another major event occurred on the night of 4 March: First light was achieved ahead of schedule at Kueyen, the second 8.2-m VLT unit telescope.

  15. Open airscrew VTOL concepts

    NASA Technical Reports Server (NTRS)

    Stepniewski, W. Z.; Tarczynski, T.

    1992-01-01

    The following concepts, based on using open airscrew(s) for VTOL maneuvers, are re-examined in light of current technology: (1) tip-driven helicopters, (2) compound helicopters; and (3) high-speed VTOL aircraft, represented by tiltrotors, tiltwings, retractoplanes and stoppable rotors. Criteria, permitting one to compare performance of aircraft using diverse lifting and propelling methods are established. Determination of currently possible performance, indication of near-future potentials, and comparison of those items with the baseline levels (as represented by contemporary shaft-driven helicopters, first generation tiltrotors, and commercial turboprop fixed-wind aircraft) constitutes bulk of this report.

  16. Decoding the X (5568 ) as a Fully Open-Flavor s u b ¯ d ¯ Tetraquark State

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Chen, Hua-Xing; Liu, Xiang; Steele, T. G.; Zhu, Shi-Lin

    2016-07-01

    We investigate the recent evidence for a charged X (5568 ) meson as an exotic open-flavor tetraquark state s u b ¯d ¯ with JP=0+/1+ in the framework of QCD sum rules. We use the color antisymmetric [3¯ c]s u⊗[3c]b ¯ d ¯ tetraquark currents in both scalar and axial-vector channels to perform evaluations and numerical analyses. Our results imply that the X (5568 ) can be interpreted as both the scalar s u b ¯d ¯ tetraquark state and the axial-vector one, which are in good agreement with the experimental measurement. We also discuss the possible decay patterns of the X (5568 ) and suggest to search for its neutral partner in the radiative decay into Bs0γ and Bs*γ , which can be used to determine its spin-parity quantum numbers. Moreover, we predict its charmed partner state around 2.55 GeV with the quark content s u c ¯d ¯ and JP=0+/1+.

  17. Decoding the X(5568) as a Fully Open-Flavor sub[over ¯]d[over ¯] Tetraquark State.

    PubMed

    Chen, Wei; Chen, Hua-Xing; Liu, Xiang; Steele, T G; Zhu, Shi-Lin

    2016-07-01

    We investigate the recent evidence for a charged X(5568) meson as an exotic open-flavor tetraquark state sub[over ¯]d[over ¯] with J^{P}=0^{+}/1^{+} in the framework of QCD sum rules. We use the color antisymmetric [3[over ¯]_{c}]_{su}⊗[3_{c}]_{b[over ¯]d[over ¯]} tetraquark currents in both scalar and axial-vector channels to perform evaluations and numerical analyses. Our results imply that the X(5568) can be interpreted as both the scalar sub[over ¯]d[over ¯] tetraquark state and the axial-vector one, which are in good agreement with the experimental measurement. We also discuss the possible decay patterns of the X(5568) and suggest to search for its neutral partner in the radiative decay into B_{s}^{0}γ and B_{s}^{*}γ, which can be used to determine its spin-parity quantum numbers. Moreover, we predict its charmed partner state around 2.55 GeV with the quark content suc[over ¯]d[over ¯] and J^{P}=0^{+}/1^{+}. PMID:27447501

  18. A cross section measurement of charm hyperons {Xi}{sub c}{sup +} and {Xi}{sub c}{sup 0} in 250 GeV p/K/{pi}-nucleon interactions

    SciTech Connect

    Francisco, J.; Vergara, A.

    1995-05-02

    Fermilab Experiment 769 used a charge-selected, hadron beam of mean energy 250 GeV/c, composed of pions, kaons, and protons, impinging on beryllium, aluminum, copper and tungsten targets. Using a sample of approximately 4000 {Xi}{sub s}{sup {minus}} {yields} {Lambda}{sup 0}{pi}{sup {minus}} decays, measurements of the charm baryon forward cross sections times branching ratio {pi}{sup {+-}}N {yields} {Xi}{sub c}{sup +}X and {pi}{sup {+-}}N {yields} {Xi}{sub c}{sup 0}X are presented. Upper limits on {alpha} x BR are also determined for the states {Xi}{sub c}{sup +} {yields} {Xi}{sub s}{sup {minus}}{pi}{sup +}{pi}{sup +} and {Xi}{sub c}{sup 0} {yields} {Xi}{sub s}{sup {minus}}{pi}{sup +} produced in (p, {pi}{sup +}, {pi}{sup {minus}}, K{sup +}, K{sup {minus}})-nucleon interactions.

  19. Open geochemical database

    NASA Astrophysics Data System (ADS)

    Zhilin, Denis; Ilyin, Vladimir; Bashev, Anton

    2010-05-01

    We regard "geochemical data" as data on chemical parameters of the environment, linked with the geographical position of the corresponding point. Boosting development of global positioning system (GPS) and measuring instruments allows fast collecting of huge amounts of geochemical data. Presently they are published in scientific journals in text format, that hampers searching for information about particular places and meta-analysis of the data, collected by different researchers. Part of the information is never published. To make the data available and easy to find, it seems reasonable to elaborate an open database of geochemical information, accessible via Internet. It also seems reasonable to link the data with maps or space images, for example, from GoogleEarth service. For this purpose an open geochemical database is being elaborating (http://maps.sch192.ru). Any user after registration can upload geochemical data (position, type of parameter and value of the parameter) and edit them. Every user (including unregistered) can (a) extract the values of parameters, fulfilling desired conditions and (b) see the points, linked to GoogleEarth space image, colored according to a value of selected parameter. Then he can treat extracted values any way he likes. There are the following data types in the database: authors, points, seasons and parameters. Author is a person, who publishes the data. Every author can declare his own profile. A point is characterized by its geographical position and type of the object (i.e. river, lake etc). Value of parameters are linked to a point, an author and a season, when they were obtained. A user can choose a parameter to place on GoogleEarth space image and a scale to color the points on the image according to the value of a parameter. Currently (December, 2009) the database is under construction, but several functions (uploading data on pH and electrical conductivity and placing colored points onto GoogleEarth space image) are

  20. Toy model for open inflation

    NASA Astrophysics Data System (ADS)

    Linde, Andrei

    1999-01-01

    The open inflation scenario based on the theory of bubble formation in the models of a single scalar field suffers from a fatal defect. In all the versions of this scenario known so far, the Coleman-De Luccia instantons describing the creation of an open universe do not exist. We propose a simple one-field model where the CDL instanton does exist and the open inflation scenario can be realized.