The WIYN Open Cluster Study: A 15-Year Report
NASA Astrophysics Data System (ADS)
Mathieu, Robert D.; WOCS Collaboration
2013-06-01
The WIYN 3.5m telescope combines large aperture, wide field of view and superb image quality. The WIYN consortium includes investigators in numerous areas of open cluster research. The combination spawned the WIYN Open Cluster Study (WOCS) over a decade ago, with the goals of producing 1) comprehensive photometric, astrometric and spectroscopic data for new fundamental open clusters and 2) addressing key astrophysical problems with these data. The set of core WOCS open clusters spans age and metallicity. Low reddening, solar proximity and richness were also desirable features in selecting core open clusters. More than 50 WIYN Open Cluster Study papers have been published in refereed journals. Highlights include: deep and wide-field photometry of NGC 188, NGC 2168 (M35), and NGC 6819 (WOCS I, II, XI and LII); deep and wide-field proper-motion studies of the old open clusters NGC 188, NGC 2682 (M67) and NGC 6791 (WOCS XVII, XXXIII and XLVI); comprehensive radial-velocity surveys of NGC 188, NGC 2168 and NGC 6819 (WOCS XXXII, XXIV, and XXXVIII); metallicity and lithium abundances in NGC 2168 (WOCS V); comprehensive definition of the hard-binary populations of NGC 188 and NGC 2168 (WOCS XXII and XLVIII); rotation period distributions in NGC 1039 (M34) and NGC 2168 (WOCS XXXV, XLIII, and XLV); study of chromospheric activity in NGC 2682 (WOCS XVIII); photometric variability surveys in NGC 188 and NGC 2682 (IX and XV); new Bayesian techniques for determination of cluster parameters (WOCS XXIII); a new infrared age-diagnostic for open clusters (WOCS XL); theoretical studies of stellar rotation (WOCS XIII and XIV); sophisticated N-body simulations of NGC 188 (WOCS LI); and the discovery of a high binary frequency and white dwarf companions among NGC 188 blue stragglers. While the WIYN 3.5m telescope remains at its heart, today the WIYN Open Cluster Study collaboration extends beyond both the WIYN observatory and consortium, and continues as a vital and productive exploration into these fundamental stellar systems. Publication list can be found at http://www.astro.ufl.edu ata/wocs/pubs.html. The WIYN Open Cluster Study has been continuously supported by grants from the National Science Foundation.
VizieR Online Data Catalog: Gaia DR1 open cluster members (Gaia Collaboration+, 2017)
NASA Astrophysics Data System (ADS)
Gaia Collaboration; van Leeuwen F.; Vallenari, A.; Jordi, C.; Lindegren, L.; Bastian, U.; Prusti, T.; de Bruijne, J. H. J.; Brown, A. G. A.; Babusiaux, C.; Bailer-Jones, C. A. L.; Biermann, M.; Evans, D. W.; Eyer, L.; Jansen, F.; Klioner, S. A.; Lammers, U.; Luri, X.; Mignard, F.; Panem, C.; Pourbaix, D.; Randich, S.; Sartoretti, P.; Siddiqui, H. I.; Soubiran, C.; Valette, V.; Walton, N. A.; Aerts, C.; Arenou, F.; Cropper, M.; Drimmel, R.; Hog, E.; Katz, D.; Lattanzi, M. G.; O'Mullane, W.; Grebel, E. K.; Holland, A. D.; Huc, C.; Passot, X.; Perryman, M.; Bramante, L.; Cacciari, C.; Castaneda, J.; Chaoul, L.; Cheek, N.; de Angeli, F.; Fabricius, C.; Guerra, R.; Hernandez, J.; Jean-Antoine-Piccolo, A.; Masana, E.; Messineo, R.; Mowlavi, N.; Nienartowicz, K.; Ordonez-Blanco, D.; Panuzzo, P.; Portell, J.; Richards, P. J.; Riello, M.; Seabroke, G. M.; Tanga, P.; Thevenin, F.; Torra, J.; Els, S. G.; Gracia-Abril, G.; Comoretto, G.; Garcia-Reinaldos, M.; Lock, T.; Mercier, E.; Altmann, M.; Andrae, R.; Astraatmadja, T. L.; Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme, R.; Busso, G.; Carry, B.; Cellino, A.; Clementini, G.; Cowell, S.; Creevey, O.; Cuypers, J.; Davidson, M.; De Ridder, J.; de Torres, A.; Delchambre, L.; Dell'Oro, A.; Ducourant, C.; Fremat, Y.; Garcia-Torres, M.; Gosset, E.; Halbwachs, J.-L.; Hambly, N. C.; Harrison, D. L.; Hauser, M.; Hestroffer, D.; Hodgkin, S. T.; Huckle, H. E.; Hutton, A.; Jasniewicz, G.; Jordan, S.; Kontizas, M.; Korn, A. J.; Lanzafame, A. C.; Manteiga, M.; Moitinho, A.; Muinonen, K.; Osinde, J.; Pancino, E.; Pauwels, T.; Petit, J.-M.; Recio-Blanco, A.; Robin, A. C.; Sarro, L. M.; Siopis, C.; Smith, M.; Smith, K. W.; Sozzetti, A.; Thuillot, W.; van Reeven, W.; Viala, Y.; Abbas, U.; Abreu Aramburu, A.; Accart, S.; Aguado, J. J.; Allan, P. M.; Allasia, W.; Altavilla, G.; Alvarez, M. A.; Alves, J.; Anderson, R. I.; Andrei, A. H.; Anglada Varela, E.; Antiche, E.; Antoja, T.; Anton, S.; Arcay, B.; Bach, N.; Baker, S. G.; Balaguer-Nunez, L.; Barache, C.; Barata, C.; Barbier, A.; Barblan, F.; Barrado, Y. Navascues D.; Barros, M.; Barstow, M. A.; Becciani, U.; Bellazzini, M.; Bello Garcia, A.; Belokuro, V. V.; Ben Djoya, P.; Berihuete, A.; Bianchi, L.; Bienayme, O.; Billebaud, F.; Blagorodnova, N.; Blanco-Cuaresma, S.; Boch, T.; Bombrun, A.; Borrachero, R.; Bouquillon, S.; Bourda, G.; Bouy, H.; Bragaglia, A.; Breddels, M. A.; Brouillet, N.; Bruesemeister, T.; Bucciarelli, B.; Burgess, P.; Burgon, R.; Burlacu, A.; Busonero, D.; Buzzi, R.; Caffau, E.; Cambras, J.; Campbell, H.; Cancelliere, R.; Cantat-Gaudin, T.; Carlucci, T.; Carrasco, J. M.; Castellani, M.; Charlot, P.; Charnas, J.; Chiavassa, A.; Clotet, M.; Cocozza, G.; Collins, R. S.; Costigan, G.; Crifo, F.; Cross, N. J. G.; Crosta, M.; Crowley, C.; Dafonte, C.; Damerdji, Y.; Dapergolas, A.; David, P.; David, M.; De Cat, P.; de Felice, F.; de Laverny, P.; de Luise, F.; de March, R.; de Martino, D.; de Souza, R.; Debosscher, J.; Del Pozo, E.; Delbo, M.; Delgado, A.; Delgado, H. E.; Di Matteo, P.; Diakite, S.; Distefano, E.; Dolding, C.; Dos Anjos, S.; Drazinos, P.; Duran, J.; Dzigan, Y.; Edvardsson, B.; Enke, H.; Evans, N. W.; Eynard Bontemps, G.; Fabre, C.; Fabrizio, M.; Faigler, S.; Falcao, A. J.; Farras Casas, M.; Federici, L.; Fedorets, G.; Fernandez-Hernandez, J.; Fernique, P.; Fienga, A.; Figueras, F.; Filippi, F.; Findeisen, K.; Fonti, A.; Fouesneau, M.; Fraile, E.; Fraser, M.; Fuchs, J.; Gai, M.; Galleti, S.; Galluccio, L.; Garabato, D.; Garcia-Sedano, F.; Garofalo, A.; Garralda, N.; Gavras, P.; Gerssen, J.; Geyer, R.; Gilmore, G.; Girona, S.; Giuffrida, G.; Gomes, M.; Gonzalez-Marcos, A.; Gonzalez-Nunez, J.; Gonzalez-Vidal, J. J.; Granvik, M.; Guerrier, A.; Guillout, P.; Guiraud, J.; Gurpide, A.; Gutierrez-Sanchez, R.; Guy, L. P.; Haigron, R.; Hatzidimitriou, D.; Haywood, M.; Heiter, U.; Helmi, A.; Hobbs, D.; Hofmann, W.; Holl, B.; Holland, G.; Hunt, J. A. S.; Hypki, A.; Icardi, V.; Irwin, M.; Jevardat de Fombelle, G.; Jofre, P.; Jonker, P. G.; Jorissen, A.; Julbe, F.; Karampelas, A.; Kochoska, A.; Kohley, R.; Kolenberg, K.; Kontizas, E.; Koposov, S. E.; Kordopatis, G.; Koubsky, P.; Krone-Martins, A.; Kudryashova, M.; Kull, I.; Bachchan, R. K.; Lacoste-Seris, F.; Lanza, A. F.; Lavigne, J.-B.; Le Poncin-Lafitte, C.; Lebreton, Y.; Lebzelter, T.; Leccia, S.; Lecler, C. N.; Lecoeur-Taibi, I.; Lemaitre, V.; Lenhardt, H.; Leroux, F.; Liao, S.; Licata, E.; Lindstrom, H. E. P.; Lister, T. A.; Livanou, E.; Lobel, A.; Loeffler, W.; Lopez, M.; Lorenz, D.; MacDonald, I.; Magalhaes Fernandes, T.; Managau, S.; Mann, R. G.; Mantelet, G.; Marchal, O.; Marchant, J. M.; Marconi, M.; Marinoni, S.; Marrese, P. M.; Marschalko, G.; Marshall, D. J.; Martin-Fleitas, J. M.; Martino, M.; Mary, N.; Matijevic, G.; Mazeh, T.; McMillan, P. J.; Messina, S.; Michalik, D.; Millar, N. R.; Miranda, B. M. H.; Molina, D.; Molinaro, R.; Molinaro, M.; Molnar, L.; Moniez, M.; Montegriffo, P.; Mor, R.; Mora, A.; Morbidelli, R.; Morel, T.; Morgenthaler, S.; Morris, D.; Mulone, A. F.; Muraveva, T.; Musella, I.; Narbonne, J.; Nelemans, G.; Nicastro, L.; Noval, L.; Ordenovic, C.; Ordieres-Mere, J.; Osborne, P.; Pagani, C.; Pagano, I.; Pailler, F.; Palacin, H.; Palaversa, L.; Parsons, P.; Pecoraro, M.; Pedrosa, R.; Pentikaeinen, H.; Pichon, B.; Piersimoni, A. M.; Pineau, F.-X.; Plachy, E.; Plum, G.; Poujoulet, E.; Prsa, A.; Pulone, L.; Ragaini, S.; Rago, S.; Rambaux, N.; Ramos-Lerate, M.; Ranalli, P.; Rauw, G.; Read, A.; Regibo, S.; Reyle, C.; Ribeiro, R. A.; Rimoldini, L.; Ripepi, V.; Riva, A.; Rixon, G.; Roelens, M.; Romero-Gomez, M.; Rowell, N.; Royer, F.; Ruiz-Dern, L.; Sadowski, G.; Sagrista Selles, T.; Sahlmann, J.; Salgado, J.; Salguero, E.; Sarasso, M.; Savietto, H.; Schultheis, M.; Sciacca, E.; Segol, M.; Segovia, J. C.; Segransan, D.; Shih, I.-C.; Smareglia, R.; Smart, R. L.; Solano, E.; Solitro, F.; Sordo, R.; Soria Nieto, S.; Souchay, J.; Spagna, A.; Spoto, F.; Stampa, U.; Steele, I. A.; Steidelmueller, H.; Stephenson, C. A.; Stoev, H.; Suess, F. F.; Sueveges, M.; Surdej, J.; Szabados, L.; Szegedi-Elek, E.; Tapiador, D.; Taris, F.; Tauran, G.; Taylor, M. B.; Teixeira, R.; Terrett, D.; Tingley, B.; Trager, S. C.; Turon, C.; Ulla, A.; Utrilla, E.; Valentini, G.; van Elteren, A.; van Hemelryck, E.; Vanleeuwen, M.; Varadi, M.; Vecchiato, A.; Veljanoski, J.; Via, T.; Vicente, D.; Vogt, S.; Voss, H.; Votruba, V.; Voutsinas, S.; Walmsley, G.; Weiler, M.; Weingrill, K.; Wevers, T.; Wyrzykowski, L.; Yoldas, A.; Zerjal, M.; Zucker, S.; Zurbach, C.; Zwitter, T.; Alecu, A.; Allen, M.; Allende Prieto, C.; Amorim, A.; Anglada-Escude, G.; Arsenijevic, V.; Azaz, S.; Balm, P.; Beck, M.; Bernstein, H.-H.; Bigot, L.; Bijaoui, A.; Blasco, C.; Bonfigli, M.; Bono, G.; Boudreault, S.; Bressan, A.; Brown, S.; Brunet, P.-M.; Bunclark, P.; Buonanno, R.; Butkevich, A. G.; Carret, C.; Carrion, C.; Chemin, L.; Chereau, F.; Corcione, L.; Darmigny, E.; de Boer, K. S.; de Teodoro, P.; de Zeeuw, P. T.; Delle Luche, C.; Domingues, C. D.; Dubath, P.; Fodor, F.; Frezouls, B.; Fries, A.; Fustes, D.; Fyfe, D.; Gallardo, E.; Gallegos, J.; Gardiol, D.; Gebran, M.; Gomboc, A.; Gomez, A.; Grux, E.; Gueguen, A.; Heyrovsky, A.; Hoar, J.; Iannicola, G.; Isasi Parache, Y.; Janotto, A.-M.; Joliet, E.; Jonckheere, A.; Keil, R.; Kim, D.-W.; Klagyivik, P.; Klar, J.; Knude, J.; Kochukhov, O.; Kolka, I.; Kos, J.; Kutka, A.; Lainey, V.; Lebouquin, D.; Liu, C.; Loreggia, D.; Makarov, V. V.; Marseille, M. G.; Martayan, C.; Martinez-Rubi, O.; Massart, B.; Meynadier, F.; Mignot, S.; Munari, U.; Nguyen, A.-T.; Nordlander, T.; O'Flaherty, K. S.; Ocvirk, P.; Olias Sanz, A.; Ortiz, P.; Osorio, J.; Oszkiewicz, D.; Ouzounis, A.; Palmer, M.; Park, P.; Pasquato, E.; Peltzer, C.; Peralta, J.; Peturaud, F.; Pieniluoma, T.; Pigozzi, E.; Poels, J.; Prat, G.; Prod'homme, T.; Raison, F.; Rebordao, J. M.; Risquez, D.; Rocca-Volmerange, B.; Rosen, S.; Ruiz-Fuertes, M. I.; Russo, F.; Sembay, S.; Serraller Vizcaino, I.; Short, A.; Siebert, A.; Silva, H.; Sinachopoulos, D.; Slezak, E.; Soffel, M.; Sosnowska, D.; Straizys, V.; Ter Linden, M.; Terrell, D.; Theil, S.; Tiede, C.; Troisi, L.; Tsalmantza, P.; Tur, D.; Vaccari, M.; Vachier, F.; Valles, P.; van Hamme, W.; Veltz, L.; Virtanen, J.; Wallut, J.-M.; Wichmann, R.; Wilkinson, M. I.; Ziaeepour, H.; Zschocke, S.
2017-04-01
We have determined and examined the astrometric data for 19 open clusters, ranging from the Hyades at just under 47pc to NGC 2422 at nearly 440pc. The clusters are : the Hyades, Coma Berenices, the Pleiades, Praesepe, alpha Per, IC 2391, IC 2602, Blanco 1, NGC 2451, NGC 6475, NGC 7092, NGC 2516, NGC 2232, IC 4665, NGC 6633, Collinder 140, NGC 2422, NGC 3532 and NGC 2547. (2 data files).
Determining the Ages and Distances of 4 Open Clusters
NASA Astrophysics Data System (ADS)
Sawczynec, Erica A.; James D. Armstrong, Joe M. Ritter, Jeff Kuhn
2018-01-01
The study of nearby young open clusters can give insight into star formation and potentially the local rate of metal enrichment. Presented is a BVRI photometric analysis of 4 open clusters; NGC 2509, NGC 2483, NGC 2482, and NGC 6705, in order to reevaluate previously published ages and distances using modern CCD photometry, and newer stellar models. Observations were obtained from the Cerro Tololo node of the Las Cumbres Observatory 1.0 meter network. Color magnitude diagrams were compared to modeled isochrones and the updated ages and distances determined. An interesting stellar association was found in the color magnitude diagram of NGC 6705. The structure is suggestive of two epochs of stellar formation. Members of this structure were evaluated using the Gaia Archive in order to explore the possibility of a heterogeneous population. The status of NGC 2483 as an open cluster has been debated; however, it has been noted that there is a high concentration of Be stars found in the region. It is concluded that NGC 2483 is an open cluster.
NASA Astrophysics Data System (ADS)
Peña Suárez, V. J.; Sales Silva, J. V.; Katime Santrich, O. J.; Drake, N. A.; Pereira, C. B.
2018-02-01
Single stars in open clusters with known distances are important targets in constraining the nucleosynthesis process since their ages and luminosities are also known. In this work, we analyze a sample of 29 single red giants of the open clusters NGC 2360, NGC 3680, and NGC 5822 using high-resolution spectroscopy. We obtained atmospheric parameters, abundances of the elements C, N, O, Na, Mg, Al, Ca, Si, Ti, Ni, Cr, Y, Zr, La, Ce, and Nd, as well as radial and rotational velocities. We employed the local thermodynamic equilibrium atmospheric models of Kurucz and the spectral analysis code MOOG. Rotational velocities and light-element abundances were derived using spectral synthesis. Based on our analysis of the single red giants in these three open clusters, we could compare, for the first time, their abundance pattern with that of the binary stars of the same clusters previously studied. Our results show that the abundances of both single and binary stars of the open clusters NGC 2360, NGC 3680, and NGC 5822 do not have significant differences. For the elements created by the s-process, we observed that the open clusters NGC 2360, NGC 3680, and NGC 5822 also follow the trend already raised in the literature that young clusters have higher s-process element abundances than older clusters. Finally, we observed that the three clusters of our sample exhibit a trend in the [Y/Mg]-age relation, which may indicate the ability of the [Y/Mg] ratio to be used as a clock for the giants. Based on the observations made with the 2.2 m telescope at the European Southern Observatory (La Silla, Chile) under an agreement with Observatório Nacional and under an agreement between Observatório Nacional and Max-Planck Institute für Astronomie.
Interstellar Extinction in 20 Open Star Clusters
NASA Astrophysics Data System (ADS)
Rangwal, Geeta; Yadav, R. K. S.; Durgapal, Alok K.; Bisht, D.
2017-12-01
The interstellar extinction law in 20 open star clusters namely, Berkeley 7, Collinder 69, Hogg 10, NGC 2362, Czernik 43, NGC 6530, NGC 6871, Bochum 10, Haffner 18, IC 4996, NGC 2384, NGC 6193, NGC 6618, NGC 7160, Collinder 232, Haffner 19, NGC 2401, NGC 6231, NGC 6823, and NGC 7380 have been studied in the optical and near-IR wavelength ranges. The difference between maximum and minimum values of E(B - V) indicates the presence of non-uniform extinction in all the clusters except Collinder 69, NGC 2362, and NGC 2384. The colour excess ratios are consistent with a normal extinction law for the clusters NGC 6823, Haffner 18, Haffner 19, NGC 7160, NGC 6193, NGC 2401, NGC 2384, NGC 6871, NGC 7380, Berkeley 7, Collinder 69, and IC 4996. We have found that the differential colour-excess ΔE(B - V), which may be due to the occurrence of dust and gas inside the clusters, decreases with the age of the clusters. A spatial variation of colour excess is found in NGC 6193 in the sense that it decreases from east to west in the cluster region. For the clusters Berkeley 7, NGC 7380, and NGC 6871, a dependence of colour excess E(B - V) with spectral class and luminosity is observed. Eight stars in Collinder 232, four stars in NGC 6530, and one star in NGC 6231 have excess flux in near-IR. This indicates that these stars may have circumstellar material around them.
Hogg 12 and NGC 3590: A New Open Cluster Binary System Candidate
NASA Astrophysics Data System (ADS)
Piatti, Andrés E.; Clariá, Juan J.; Ahumada, Andrea V.
2010-05-01
We have obtained CCD UBVIKC photometry down to V ˜ 22.0 for the open clusters Hogg 12 and NGC 3590 and the fields surrounding them. Based on photometric and morphological criteria, as well as on the stellar density in the region, our evidence is sufficient to confirm that Hogg 12 is a genuine open cluster. NGC 3590 was used as a control cluster. The color-magnitude diagrams of Hogg 12, cleaned from field star contamination, reveal that this is a solar metal content cluster, affected by E(B - V) = 0.40 ± 0.05, located at a heliocentric distance d = 2.0 ± 0.5 kpc, and of an age similar to that of NGC 3590 (t = 30 Myr). Both clusters are surprisingly small objects whose radii are barely ˜1 pc, andthey are separated in the sky by scarcely 3.6 pc. These facts, added to their similar ages, reddenings, and metallicities, allow us to consider them a new open cluster binary system candidate. Of the ˜180 open cluster binary systems estimated to exist in the Galaxy, of which 27 are actually well known, Hogg 12 and NGC 3590 appear to be one of the two closest pairs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sales Silva, J. V.; Peña Suárez, V. J.; Katime Santrich, O. J.
2014-11-01
Binary stars in open clusters are very useful targets in constraining the nucleosynthesis process. The luminosities of the stars are known because the distances of the clusters are also known, so chemical peculiarities can be linked directly to the evolutionary status of a star. In addition, binary stars offer the opportunity to verify a relationship between them and the straggler population in both globular and open clusters. We carried out a detailed spectroscopic analysis to derive the atmospheric parameters for 16 red giants in binary systems and the chemical composition of 11 of them in the open clusters NGC 2360,more » NGC 3680, and NGC 5822. We obtained abundances of C, N, O, Na, Mg, Al, Ca, Si, Ti, Ni, Cr, Y, Zr, La, Ce, and Nd. The atmospheric parameters of the studied stars and their chemical abundances were determined using high-resolution optical spectroscopy. We employ the local thermodynamic equilibrium model atmospheres of Kurucz and the spectral analysis code MOOG. The abundances of the light elements were derived using the spectral synthesis technique. We found that the stars NGC 2360-92 and 96, NGC 3680-34, and NGC 5822-4 and 312 are yellow straggler stars. We show that the spectra of NGC 5822-4 and 312 present evidence of contamination by an A-type star as a secondary star. For the other yellow stragglers, evidence of contamination is given by the broad wings of the Hα. Detection of yellow straggler stars is important because the observed number can be compared with the number predicted by simulations of binary stellar evolution in open clusters. We also found that the other binary stars are not s-process enriched, which may suggest that in these binaries the secondary star is probably a faint main-sequence object. The lack of any s-process enrichment is very useful in setting constraints for the number of white dwarfs in the open cluster, a subject that is related to the birthrate of these kinds of stars in open clusters and also to the age of a cluster. Finally, rotational velocities were also determined and their values were compared with those already determined for field giant stars.« less
A Chandra X-ray census of the interacting binaries in old open clusters - NGC 188
NASA Astrophysics Data System (ADS)
Vats, Smriti; Van Den Berg, Maureen
2017-01-01
We present a new X-ray study of NGC 188, one of the oldest open clusters known in the Milky Way (7 Gyr). Our X-ray observation using the Chandra X-ray Observatory is aimed at uncovering the population of close interacting binaries in the cluster. We detect 84 X-ray sources with a limiting X-ray luminosity, LX ~ 4×1029 erg s-1 (0.3-7 keV), of which 28 are within the half-mass radius. Of these, 13 are proper-motion or radial-velocity cluster members, wherein we identify a mix of active binaries (ABs) and blue straggler stars (BSSs). We also identify one tentative cataclysmic variable (CV) candidate which is a known short-period photometric variable, but whose membership to NGC 188 is unknown. We have compared the X-ray luminosity per unit of cluster mass (i.e. the X-ray emissivity) of NGC 188 with those of other old Galactic open clusters and dense globular clusters (47 Tuc, NGC 6397). Our findings confirm the earlier result that old open clusters have higher X-ray emissivities than the globular clusters (LX ≥1×1030 erg s-1). This may be explained by dynamical encounters in globulars, which could have a net effect of destroying binaries, or the typically higher metallicities of open clusters. We find one intriguing X-ray source in NGC 188 that is a BSS and cluster member, whose X-ray luminosity cannot be explained by its currently understood binary configuration. Its X-ray detection invokes the need for a third companion in the system.
Photometry Using Kepler "Superstamps" of Open Clusters NGC 6791 & NGC 6819
NASA Astrophysics Data System (ADS)
Kuehn, Charles A.; Drury, Jason A.; Bellamy, Beau R.; Stello, Dennis; Bedding, Timothy R.; Reed, Mike; Quick, Breanna
2015-09-01
The Kepler space telescope has proven to be a gold mine for the study of variable stars. Usually, Kepler only reads out a handful of pixels around each pre-selected target star, omitting a large number of stars in the Kepler field. Fortunately, for the open clusters NGC 6791 and NGC 6819, Kepler also read out larger "superstamps" which contained complete images of the central region of each cluster. These cluster images can be used to study additional stars in the open clusters that were not originally on Kepler's target list. We discuss our work on using two photometric techniques to analyze these superstamps and present sample results from this project to demonstrate the value of this technique for a wide variety of variable stars.
NASA Astrophysics Data System (ADS)
Piatti, Andrés E.; Clariá, Juan J.; Ahumada, Andrea V.
2006-04-01
In this paper we present charge-coupled device (CCD) images in the Johnson B and V and Kron-Cousins I passbands for the previously unstudied open cluster NGC 5288. The sample consists of 15688 stars reaching down to V~ 20.5. The cluster appears to have a relatively small but conspicuous nucleus and a low-density extended coronal region. Star counts carried out in 25 × 25 pixel2 boxes distributed throughout the whole observed field allowed us to estimate the angular core and corona radii as ~1.3 and 6.3arcmin, respectively. Our analysis suggests that NGC 5288 is moderately young and probably more metal-rich than the Sun. Adopting the theoretical metal content Z= 0.040, which provides the best global fit, we derive an age of 130+40-30Myr. Simultaneously, we have obtained colour excesses E(B-V) = 0.75 and E(V-I) = 0.95 and an apparent distance modulus V-MV= 14.00. The law of interstellar extinction in the cluster direction is found to be normal. NGC 5288 is located at 2.1 +/- 0.3kpc from the Sun beyond the Carina spiral feature and ~7.4kpc from the Galactic Centre. The cluster metallicity seems to be compatible with the cluster position in the Galaxy, given the recognized radial abundance gradient in the disc. For the first time, in this paper we determine the basic parameters for the open cluster NGC 5381, situated in the same direction as NGC 5288. This determination was reached by using CCD VI data published almost a decade ago by Pietrzyński et al. (1997) for NGC 5381. The properties of some open clusters aligned along the line of sight of NGC 5288 are examined. The properties of clusters of similar ages to NGC 5288 are also looked into. Evidence is presented that these did not form mainly along the spiral arms but rather in the thin Galactic disc (Z~+/-100pc).
Deep and wide photometry of two open clusters NGC 1245 and NGC 2506: dynamical evolution and halo
NASA Astrophysics Data System (ADS)
Lee, S. H.; Kang, Y.-W.; Ann, H. B.
2013-06-01
We studied the structure of two old open clusters, NGC 1245 and NGC 2506, from a wide and deep VI photometry data acquired using the CFH12K CCD camera at Canada-France-Hawaii Telescope. We devised a new method for assigning cluster membership probability to individual stars using both spatial positions and positions in the colour-magnitude diagram. From analyses of the luminosity functions at several cluster-centric radii and the radial surface density profiles derived from stars with different luminosity ranges, we found that the two clusters are dynamically relaxed to drive significant mass segregation and evaporation of some fraction of low-mass stars. There seems to be a signature of tidal tail in NGC 1245 but the signal is too low to be confirmed.
Investigating Open Clusters Melotte 111 and NGC 6811
NASA Astrophysics Data System (ADS)
Gunshefski, Linda; Paust, Nathaniel E. Q.; van Belle, Gerard
2018-01-01
We present photometry and color-magnitude diagrams for the open clusters Melotte 111 (Coma Bernices) and NGC 6811. These clusters were observed with Lowell Observatory’s Discovery Channel Telescope Large Monolithic Imager in the V and I bands. The images were reduced with IRAF and photometry was performed with DAOPHOT/ALLSTAR. The resulting photometry extends many magnitudes below the main sequence turnoff. Both clusters are located nearby, (Melotte 111 d=86 pc and NGC 6811 d=1,107) and are evolutionarily young (Melotte 111, age=450 Myr and NGC 6811, age=1,000 Myr). This work marks the first step of a project to determine the cluster main sequence mass functions and examine how the mass functions evolve in young stellar populations.
UBVI CCD Photometry of the Open Clusters NGC 4609 and Hogg 15
NASA Astrophysics Data System (ADS)
Kook, Seung-Hwa; Sung, Hwankyung; Bessell, M. S.
2010-10-01
{UBVI CCD photometry is obtained for the open clusters NGC 4609 and Hogg 15 in Crux. For NGC 4609, CCD data are presented for the first time. From new photometry we derive the reddening, distance modulus and age of each cluster - NGC 4609 : E(B-V) = 0.37 ± 0.03, V_0 - M_V = 10.60 ± 0.08, log τ= 7.7 ± 0.1; Hogg 15 : E(B-V) = 1.13 ± 0.11, V_0 - M_V = 12.50 ± 0.15, log τ ≲ 6.6. The young age of Hogg 15 strongly implies that WR 47 is a member of the cluster. We also determine the mass function of these clusters and obtain a slope Γ = -1.2 (± 0.3) for NGC 4609 which is normal and a somewhat shallow slope (Γ = -0.95 ± 0.5) for Hogg 15.
Blue straggler stars: lessons from open clusters.
NASA Astrophysics Data System (ADS)
Geller, Aaron M.
Open clusters enable a deep dive into blue straggler characteristics. Recent work shows that the binary properties (frequency, orbital elements and companion masses and evolutionary states) of the blue stragglers are the most important diagnostic for determining their origins. To date the multi-epoch radial-velocity observations necessary for characterizing these blue straggler binaries have only been carried out in open clusters. In this paper, I highlight recent results in the open clusters NGC 188, NGC 2682 (M67) and NGC 6819. The characteristics of many of the blue stragglers in these open clusters point directly to origins through mass transfer from an evolved donor star. Additionally, a handful of blue stragglers show clear signatures of past dynamical encounters. These comprehensive, diverse and detailed observations also reveal important challenges for blue straggler formation models (and particularly the mass-transfer channel), which we must overcome to fully understand the origins of blue straggler stars and other mass-transfer products.
NASA Astrophysics Data System (ADS)
Lee, S. H.; Kang, Y.-W.; Ann, H. B.
2012-09-01
We have conducted VI CCD photometry of the two open clusters NGC 1245 and NGC 2506 using the CFH12K CCD camera. Our photometry covers a sky area of 84 × 82 and 42 × 81 arcmin2 for the two clusters, respectively, and reaches down to V ≈ 23. We derived the physical parameters using detailed theoretical isochrone fittings using χ2 minimization. The derived cluster parameters are E(B - V) = 0.24 ± 0.05 and 0.03 ± 0.04, (V - MV)0 = 12.25 ± 0.12 and 12.47 ± 0.08, age (Gyr) = 1.08 ± 0.09 and 2.31 ± 0.16, and [Fe/H] = -0.08 ± 0.06 and -0.24 ± 0.06, respectively, for NGC 1245 and NGC 2506. We present the luminosity functions of the two clusters, which reach down to MV ≈ 10, and derive mass functions with slopes of Γ = -1.29 for NGC 1245 and Γ = -1.26 for NGC 2506. The slopes are slightly shallower than that of the solar neighbourhood, implying the existence of dynamical evolution that drives the evaporation of the low-mass stars in the clusters.
X-Ray source populations in old open clusters: Collinder 261
NASA Astrophysics Data System (ADS)
Vats, Smriti; van den Berg, Maureen; Wijnands, Rudy
2014-09-01
We are carrying out an X-ray survey of old open clusters with the Chandra X-ray Observatory. Single old stars, being slow rotators, are very faint in X-rays (L_X < 1×10^27 erg/s). Hence, X-rays produced by mass transfer in cataclysmic variables (CVs) or by rapid rotation of the stars in tidally locked, detached binaries (active binaries; ABs) can be detected, without contamination from single stars. By comparing the properties of various types of interacting binaries in different environments (the Galactic field, old open clusters, globular clusters), we aim to study binary evolution and how it may be affected by dynamical encounters with other cluster stars. Stellar clusters are good targets to study binaries, as age, distance, chemical composition, are well constrained. Collinder (Cr) 261 is an old open cluster (age ~ 7 Gyr), with one of the richest populations inferred of close binaries and blue stragglers of all open clusters and is therefore an obvious target to study the products of close encounters in open clusters. We will present the first results of this study, detailing the low-luminosity X-ray population of Cr 261, in conjunction with other open clusters in our survey (NGC 188, Berkeley 17, NGC 6253, M67, NGC 6791) and in comparison with populations in globular clusters.
A QUANTITATIVE ANALYSIS OF DISTANT OPEN CLUSTERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janes, Kenneth A.; Hoq, Sadia
2011-03-15
The oldest open star clusters are important for tracing the history of the Galactic disk, but many of the more distant clusters are heavily reddened and projected against the rich stellar background of the Galaxy. We have undertaken an investigation of several distant clusters (Berkeley 19, Berkeley 44, King 25, NGC 6802, NGC 6827, Berkeley 52, Berkeley 56, NGC 7142, NGC 7245, and King 9) to develop procedures for separating probable cluster members from the background field. We next created a simple quantitative approach for finding approximate cluster distances, reddenings, and ages. We first conclude that with the possible exceptionmore » of King 25 they are probably all physical clusters. We also find that for these distant clusters our typical errors are about {+-}0.07 in E(B - V), {+-}0.15 in log(age), and {+-}0.25 in (m - M){sub o}. The clusters range in age from 470 Myr to 7 Gyr and range from 7.1 to 16.4 kpc from the Galactic center.« less
NASA Astrophysics Data System (ADS)
Aidelman, Y.; Cidale, L. S.; Zorec, J.; Panei, J. A.
2018-02-01
Context. Stellar physical properties of star clusters are poorly known and the cluster parameters are often very uncertain. Methods: Our goals are to perform a spectrophotometric study of the B star population in open clusters to derive accurate stellar parameters, search for the presence of circumstellar envelopes, and discuss the characteristics of these stars. The BCD spectrophotometric system is a powerful method to obtain stellar fundamental parameters from direct measurements of the Balmer discontinuity. To this end, we wrote the interactive code MIDE3700. The BCD parameters can also be used to infer the main properties of open clusters: distance modulus, color excess, and age. Furthermore, we inspected the Balmer discontinuity to provide evidence for the presence of circumstellar disks and identify Be star candidates. We used an additional set of high-resolution spectra in the Hα region to confirm the Be nature of these stars. Results: We provide Teff, log g, Mv, Mbol, and spectral types for a sample of 68 stars in the field of the open clusters NGC 6087, NGC 6250, NGC 6383, and NGC 6530, as well as the cluster distances, ages, and reddening. Then, based on a sample of 230 B stars in the direction of the 11 open clusters studied along this series of three papers, we report 6 new Be stars, 4 blue straggler candidates, and 15 B-type stars (called Bdd) with a double Balmer discontinuity, which indicates the presence of circumstellar envelopes. We discuss the distribution of the fraction of B, Be, and Bdd star cluster members per spectral subtype. The majority of the Be stars are dwarfs and present a maximum at the spectral type B2-B4 in young and intermediate-age open clusters (<40 Myr). Another maximum of Be stars is observed at the spectral type B6-B8 in open clusters older than 40 Myr, where the population of Bdd stars also becomes relevant. The Bdd stars seem to be in a passive emission phase. Conclusions: Our results support previous statements that the Be phenomenon is present along the whole main sequence band and occurs in very different evolutionary states. We find clear evidence of an increase of stars with circumstellar envelopes with cluster age. The Be phenomenon reaches its maximum in clusters of intermediate age (10-40 Myr) and the number of B stars with circumstellar envelopes (Be plus Bdd stars) is also high for the older clusters (40-100 Myr). Observations taken at CASLEO, operating under agreement of CONICET and the Universities of La Plata, Córdoba, and San Juan, Argentina.Tables 1, 2, 9-16 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/610/A30
A Survey of Open Clusters in the u'g'r'i'z' Filter System. 3. Results for the Cluster NGC 188
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fornal, Bartosz; Tucker, Douglas L.; Smith, J.Allyn
2006-11-01
The authors continue the series of papers describing the results of a photometric survey of open star clusters, primarily in the southern hemisphere, taken in the u'g'r'i'z' filter system. The entire observed sample covered more than 100 clusters, but here they present data only on NGC 188, which is one of the oldest open clusters known in the Milky Way. They fit the Padova theoretical isochrones to the data. Assuming a solar metallicity for NGC 188, they find a distance of 1700 {+-} 100 pc, an age of 7.5 {+-} 0.7 Gyr, and a reddening E(B-V) of 0.025 {+-} 0.005.more » This yields a distance modulus of 11.23 {+-} 0.14.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davidge, T. J.
2012-12-20
The stellar contents of the open clusters King 12, NGC 7788, and NGC 7790 are investigated using MegaCam images. Comparisons with isochrones yield an age <20 Myr for King 12, 20-40 Myr for NGC 7788, and 60-80 Myr for NGC 7790 based on the properties of stars near the main-sequence turnoff (MSTO) in each cluster. The reddening of NGC 7788 is much larger than previously estimated. The luminosity functions (LFs) of King 12 and NGC 7788 show breaks that are attributed to the onset of pre-main-sequence (PMS) objects, and comparisons with models of PMS evolution yield ages that are consistentmore » with those measured from stars near the MSTO. In contrast, the r' LF of main-sequence stars in NGC 7790 is matched to r' = 20 by a model that is based on the solar neighborhood mass function. The structural properties of all three clusters are investigated by examining the two-point angular correlation function of blue main-sequence stars. King 12 and NGC 7788 are each surrounded by a stellar halo that extends out to a radius of 5 arcmin ({approx}3.4 pc). It is suggested that these halos form in response to large-scale mass ejection early in the evolution of the clusters, as predicted by models. In contrast, blue main-sequence stars in NGC 7790 are traced out to a radius of {approx}7.5 arcmin ({approx}5.5 pc), with no evidence of a halo. It is suggested that all three clusters may have originated in the same star-forming complex, but not in the same giant molecular cloud.« less
NASA Astrophysics Data System (ADS)
Tadross, A. L.
2005-12-01
The main physical parameters; the cluster center, distance, radius, age, reddening, and visual absorbtion; have been re-estimated and improved for the open cluster NGC 7086. The metal abundance, galactic distances, membership richness, luminosity function, mass function, and the total mass of NGC 7086 have been examined for the first time here using Monet et al. (2003) catalog.
WIYN OPEN CLUSTER STUDY. LV. ASTROMETRY AND MEMBERSHIP IN NGC 6819
DOE Office of Scientific and Technical Information (OSTI.GOV)
Platais, Imants; Gosnell, Natalie M.; Meibom, Soren
2013-08-01
We present proper motions and astrometric membership analysis for 15,750 stars around the intermediate-age open cluster NGC 6819. The accuracy of relative proper motions for well-measured stars ranges from {approx}0.2 mas yr{sup -1} within 10' of the cluster center to 1.1 mas yr{sup -1} outside this radius. In the proper motion vector-point diagram, the separation between the cluster members and field stars is convincing down to V {approx} 18 and within 10' from the cluster center. The formal sum of membership probabilities indicates a total of {approx}2500 cluster members down to V {approx} 22. We confirm the cluster membership ofmore » several variable stars, including some eclipsing binaries. The estimated absolute proper motion of NGC 6819 is {mu}{sub x}{sup abs}=-2.6{+-}0.5 and {mu}{sub y}{sup abs}=-4.2{+-}0.5 mas yr{sup -1}. A cross-identification between the proper motion catalog and a list of X-ray sources in the field of NGC 6819 resulted in a number of new likely optical counterparts, including a candidate CV. For the first time we show that there is significant differential reddening toward NGC 6819.« less
Southern Clusters for Standardizing CCD Photometry
NASA Astrophysics Data System (ADS)
Moon, T. T.
2017-06-01
Standardizing photometric measurements typically involves undertaking all-sky photometry. This can be laborious and time-consuming and, for CCD photometry, particularly challenging. Transforming photometry to a standard system is, however, a crucial step when routinely measuring variable stars, as it allows photoelectric measurements from different observers to be combined. For observers in the northern hemisphere, standardized UBVRI values of stars in open clusters such as M67 and NGC 7790 have been established, greatly facilitating quick and accurate transformation of CCD measurements. Recently the AAVSO added the cluster NGC 3532 for southern hemisphere observers to similarly standardize their photometry. The availability of NGC 3532 standards was announced on the AAVSO Variable Star Observing, Photometry forum on 27 October 2016. Published photometry, along with some new measurements by the author, provide a means of checking these NGC 3532 standards which were determined through the AAVSO's Bright Star Monitor (BSM) program (see: https://www.aavso.org/aavsonet-epoch-photometry-database). New measurements of selected stars in the open clusters M25 and NGC 6067 are also included.
A new Be star in an open cluster - NGC 6871-8
NASA Technical Reports Server (NTRS)
Grigsby, James A.; Morrison, Nancy D.
1988-01-01
Spectroscopic observations of H-alpha show that star eight in the open cluster NGC 6871 is a previously-undiscovered Be star. The H-alpha profile was observed to vary from clear emission to pure absorption over a period of ten days; later observations over a five-day interval show weak emission along with asymmetries and filling in of the profile.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geller, Aaron M.; Hurley, Jarrod R.; Mathieu, Robert D., E-mail: a-geller@northwestern.edu, E-mail: mathieu@astro.wisc.edu, E-mail: jhurley@astro.swin.edu.au
2013-01-01
Following on from a recently completed radial-velocity survey of the old (7 Gyr) open cluster NGC 188 in which we studied in detail the solar-type hard binaries and blue stragglers of the cluster, here we investigate the dynamical evolution of NGC 188 through a sophisticated N-body model. Importantly, we employ the observed binary properties of the young (180 Myr) open cluster M35, where possible, to guide our choices for parameters of the initial binary population. We apply pre-main-sequence tidal circularization and a substantial increase to the main-sequence tidal circularization rate, both of which are necessary to match the observed tidalmore » circularization periods in the literature, including that of NGC 188. At 7 Gyr the main-sequence solar-type hard-binary population in the model matches that of NGC 188 in both binary frequency and distributions of orbital parameters. This agreement between the model and observations is in a large part due to the similarities between the NGC 188 and M35 solar-type binaries. Indeed, among the 7 Gyr main-sequence binaries in the model, only those with P {approx}> 1000 days begin to show potentially observable evidence for modifications by dynamical encounters, even after 7 Gyr of evolution within the star cluster. This emphasizes the importance of defining accurate initial conditions for star cluster models, which we propose is best accomplished through comparisons with observations of young open clusters like M35. Furthermore, this finding suggests that observations of the present-day binaries in even old open clusters can provide valuable information on their primordial binary populations. However, despite the model's success at matching the observed solar-type main-sequence population, the model underproduces blue stragglers and produces an overabundance of long-period circular main-sequence-white-dwarf binaries as compared with the true cluster. We explore several potential solutions to the paucity of blue stragglers and conclude that the model dramatically underproduces blue stragglers through mass-transfer processes. We suggest that common-envelope evolution may have been incorrectly imposed on the progenitors of the spurious long-period circular main-sequence-white-dwarf binaries, which perhaps instead should have gone through stable mass transfer to create blue stragglers, thereby bringing both the number and binary frequency of the blue straggler population in the model into agreement with the true blue stragglers in NGC 188. Thus, improvements in the physics of mass transfer and common-envelope evolution employed in the model may in fact solve both discrepancies with the observations. This project highlights the unique accessibility of open clusters to both comprehensive observational surveys and full-scale N-body simulations, both of which have only recently matured sufficiently to enable such a project, and underscores the importance of open clusters to the study of star cluster dynamics.« less
Red giants and yellow stragglers in the young open cluster NGC 2447
NASA Astrophysics Data System (ADS)
da Silveira, M. D.; Pereira, C. B.; Drake, N. A.
2018-06-01
In this work we analysed, using high-resolution spectroscopy, a sample of 12 single and 4 spectroscopic binary stars of the open cluster NGC 2447. For the single stars, we obtained atmospheric parameters and chemical abundances of Li, C, N, O, Na, Mg, Al, Ca, Si, Ti, Ni, Cr, Y, Zr, La, Ce, Nd, Eu. Rotational velocities were obtained for all the stars. The abundances of the light elements and Eu and the rotational velocities were derived using spectral synthesis technique. We obtained a mean metallicity of [Fe/H] = -0.17 ± 0.05. We found that the abundances of all elements are similar to field giants and/or giants of open clusters, even for the s-process elements, which are enhanced as in other young open clusters. We show that the spectroscopic binaries NGC 2447-26, 38, and 42 are yellow-straggler stars, of which the primary is a giant star and the secondary a main-sequence A-type star.
A Study of The Binary and Anomalous Stellar Populations in Two Intermediate-Aged Open Clusters
NASA Astrophysics Data System (ADS)
Mathieu, Robert D.; Milliman, Katelyn; Geller, Aaron M.; Gosnell, Natalie
2010-08-01
``Anomalous'' stars, such as blue stragglers and more recently sub- subgiants, have been an enduring challenge for stellar evolution theory. It is now clear that in star clusters these systems are closely linked to the binary star populations. Furthermore, sophisticated N-body models show that stellar dynamical processes play a central role in the formation of such anomalous stars. These stars trace the interface between the classical fields of stellar evolution and stellar dynamics. We propose to expand our highly successful radial-velocity survey to include two new rich open clusters NGC 7789 (1.8 Gyr, -0.1 dex) and NGC 2506 (2.1 Gyr, -0.4 dex) as part of the WIYN Open Cluster Study (WOCS). Though these two clusters are both of intermediate age and of similar richness, they have quite different blue straggler populations. NGC 2506 has only 10 known blue stragglers, while NGC 7789 has at least 27, among the largest known populations of blue stragglers in an open cluster. Defining the hard-binary populations in these two clusters is critical for understanding the factors that determine blue straggler production rates. Our proposed observations will establish the hard- binary fraction and frequency distributions of orbital parameters (periods, eccentricities, mass-ratios, etc.) for orbital periods approaching the hard-soft boundary, and will provide a comprehensive survey of the blue stragglers and other anomalous stars, including secure cluster memberships and binary properties. These data will then form direct constraints for detailed N-body open cluster simulations from which we will study the impact of the hard-binary population on the production rates and mechanisms of blue stragglers.
Characterizing X-ray Sources in the Rich Open Cluster NGC 7789 Using XMM-Newton
NASA Astrophysics Data System (ADS)
Farner, William; Pooley, David
2018-01-01
It is well established that globular clusters exhibit a correlation between their population of exotic binaries and their rate of stellar encounters, but little work has been done to characterize this relationship in rich open clusters. X-ray observations are the most efficient means to find various types of close binaries, and optical (and radio) identifications can provide secure source classifications. We report on an observation of the rich open cluster NGC 7789 using the XMM-Newton observatory. We present the X-ray and optical imaging data, source lists, and preliminary characterization of the sources based on their X-ray and multiwavelength properties.
The end of the White Dwarf Cooling Sequence of NGC 6752
NASA Astrophysics Data System (ADS)
Bedin, Luigi
2017-08-01
We propose to study the last HST-accessible white dwarf (WD) cooling sequence (CS) for a nearby globular cluster (GC), the chemically complex, extreme blue horizontal branch cluster NGC 6752. Over 97% of stars end their lives as WDs, and the WD CS provides constraints not only on the age, but also potentially the star formation history of a GC. The CS of WDs also lies in the least-explored region of the color-magnitude diagram of old stellar populations. Recent deep imaging with HST has successfully reached the end of the WD CS in only three classical old GCs, M4, NGC 6397 and 47 Tuc, and reveals an unexpectedly complex, and double-peaked, WD CS in the metal rich old open cluster NGC 6791. One more investigation is in progress on the massive globular Omega Centauri, where over 14 sub-populations are known to exist.While almost every cluster is known to host multiple populations, every single cluster is unique. NGC 6752 is a bridge between the relatively simple globular clusters, and Omega Cen, the most complex globular cluster known. NGC 6752 has an extended blue horizontal branch, a collapsed core and 3 chemically distinct populations. It is our last chance to add diversity to our very limited sample of WD CS, so far containing only 3 globular clusters, one old open cluster, and the complex Omega Cen system. We need to undertake this investigation while HST is still operational, as there is no foreseeable opportunity in the post-HST era to have one extra WD CS in the homogeneus optical photometric system of HST.
A method for determining the radius of an open cluster from stellar proper motions
NASA Astrophysics Data System (ADS)
Sánchez, Néstor; Alfaro, Emilio J.; López-Martínez, Fátima
2018-04-01
We propose a method for calculating the radius of an open cluster in an objective way from an astrometric catalogue containing, at least, positions and proper motions. It uses the minimum spanning tree in the proper motion space to discriminate cluster stars from field stars and it quantifies the strength of the cluster-field separation by means of a statistical parameter defined for the first time in this paper. This is done for a range of different sampling radii from where the cluster radius is obtained as the size at which the best cluster-field separation is achieved. The novelty of this strategy is that the cluster radius is obtained independently of how its stars are spatially distributed. We test the reliability and robustness of the method with both simulated and real data from a well-studied open cluster (NGC 188), and apply it to UCAC4 data for five other open clusters with different catalogued radius values. NGC 188, NGC 1647, NGC 6603, and Ruprecht 155 yielded unambiguous radius values of 15.2 ± 1.8, 29.4 ± 3.4, 4.2 ± 1.7, and 7.0 ± 0.3 arcmin, respectively. ASCC 19 and Collinder 471 showed more than one possible solution, but it is not possible to know whether this is due to the involved uncertainties or due to the presence of complex patterns in their proper motion distributions, something that could be inherent to the physical object or due to the way in which the catalogue was sampled.
Membership and Dynamical Parameters of the Open Cluster NGC 1039
NASA Astrophysics Data System (ADS)
Wang, Jiaxin; Ma, Jun; Wu, Zhenyu; Zhou, Xu
2017-11-01
In this paper, we analyze the open cluster NGC 1039. This young open cluster is observed as a part of Beijing-Arizona-Taiwan-Connecticut Multicolor Sky Survey. Combining our observations with the Sloan Digital Sky Survey photometric data, we employ the Padova stellar model and the zero-age main-sequence curve to the data to derive a reddening, E(B-V)=0.10+/- 0.02, and a distance modulus, {(m-M)}0=8.4+/- 0.2, for NGC 1039. The photometric membership probabilities of stars in the region of NGC 1039 are derived using the spectral energy distribution-fitting method. According to the membership probabilities ({P}{SED}) obtained here, 582 stars are cluster members with {P}{SED} larger than 60%. In addition, we determine the structural parameters of NGC 1039 by fitting its radial density profile with the King model. These parameters are a core radius, {R}{{c}}=4.44+/- 1.31 {pc}; a tidal radius, {R}{{t}}=13.57+/- 4.85 {pc}; and a concentration parameter of {C}0={log}({R}{{t}}/{R}{{c}})=0.49+/- 0.20. We also fit the observed mass function of NGC 1039 with masses from 0.3 {M}⊙ to 1.65 {M}⊙ with a power-law function {{Φ }}(m)\\propto {m}α to derive its slopes of mass functions of different spatial regions. The results obtained here show that the slope of the mass function of NGC 1039 is flatter in the central regions (α = 0.117), becomes steeper at larger radii (α = -2.878), and breaks at {m}{break}≈ 0.80 {M}⊙ . In particular, for the first time, our results show that the mass segregation appears in NGC 1039.
VizieR Online Data Catalog: Globular and open clusters observed by SDSS/SEGUE (Morrison+, 2016)
NASA Astrophysics Data System (ADS)
Morrison, H. L.; Ma, Z.; Clem, J. L.; An, D.; Connor, T.; Schechtman-Rook, A.; Casagrande, L.; Rockosi, C.; Yanny, B.; Harding, P.; Beers, T. C.; Johnson, J. A.; Schneider, D. P.
2018-03-01
The SEGUE project observed a number of globular and open clusters for calibration purposes. For calibration of the red giants, we selected the globular clusters M92, M13 and M71 (spanning metallicities from -2.4 to -0.8) and the open clusters Be 29, NGC 7789 and NGC 6791, whose [Fe/H] values range from -0.4 to +0.4. In all but one case, the clusters are within the SDSS footprint and so ugriz photometry is available for the cluster stars. The SDSS cluster images were analyzed using DAOPHOT (Stetson 1987PASP...99..191S) by An et al. (2008ApJS..179..326A) because the SDSS photometric pipeline was not designed to handle crowded fields. (8 data files).
ABUNDANCES OF RED GIANTS IN OLD OPEN CLUSTERS. V. Be 31, Be 32, Be 39, M 67, NGC 188, AND NGC 1193
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friel, Eileen D.; Jacobson, Heather R.; Pilachowski, Catherine A., E-mail: friel@lowell.ed, E-mail: jacob189@msu.ed, E-mail: catyp@astro.indiana.ed
2010-05-15
We present a detailed abundance analysis based on high resolution spectroscopy for 16 stars in the old open clusters Be 31, Be 32, Be 39, M 67, NGC 188, and NGC 1193. Average cluster metallicities of [Fe/H] = -0.30 {+-} 0.02, -0.21 {+-} 0.01, +0.03 {+-} 0.07, +0.12 {+-} 0.02, and -0.22 {+-} 0.14 (s.d.) have been found for Be 32, Be 39, M 67, NGC 188, and NGC 1193, respectively. The two stars observed in the field of Be 31 have disparate radial velocities and elemental abundance patterns, and also disagree with the possible Be 31 star studied bymore » Yong et al. We conclude that membership has yet to be established for this important cluster, and therefore no element abundances measured here or in previous studies of Be 31 should be taken as definitive cluster abundances. A careful comparison of our results for the clusters M 67 and Be 32 to those of other studies shows general good agreement and identifies systematic differences resulting from different analyses. After combination of our results with those of other studies for clusters spanning the full R{sub gc} range of the thin disk, we explore the abundance distributions as a function of R{sub gc} and age for the elements Fe, O, Na, Mg, Al, Si, Ca, Ti, and Ni. As found in previous work, the [Fe/H] gradient appears to be continuous up to R{sub gc} {approx} 13 kpc before flattening in the outer disk. [X/Fe] ratios show a scatter of 0.2-0.3 dex at all R{sub gc}, for all elements considered. The [X/Fe] values of the six clusters analyzed here are consistent with those of other clusters of similar metallicity and Galactocentric location. Our whole cluster sample shows trends of increasing [O/Fe] and [Al/Fe] with age, although these trends vanish with the inclusion of other clusters from the literature. Larger, homogeneous open cluster samples are necessary to verify the existence and magnitude of abundance trends with age.« less
Late-Type Membership of the Open Cluster NGC 2232
NASA Technical Reports Server (NTRS)
Orban, Chris; Patten, Brian
2004-01-01
NGC 2232 is one of the nearest open clusters (approx.360 pc) with an age of approx.25 Myr. This places it in the unique position to study the transition from T Tauri activity to the Zero Age Main Sequence. In order for those studies to begin, late-type members must be identified for the cluster. X-ray observations combined with ground-based photometry and spectroscopy offers the best way to accomplish this goal. We present photometry in the VRI bands, 2MASS near-infrared measurements in the J, H , Ks bands and spectra for the suspected optical counterparts to the X-ray sources in the field of NGC 2232. 46 candidate members were identified through these efforts ranging from F5 to M5.
Open clusters in the Kepler field. II. NGC 6866
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janes, Kenneth; Hoq, Sadia; Barnes, Sydney A.
We have developed a maximum-likelihood procedure to fit theoretical isochrones to the observed cluster color-magnitude diagrams of NGC 6866, an open cluster in the Kepler spacecraft field of view. The Markov chain Monte Carlo algorithm permits exploration of the entire parameter space of a set of isochrones to find both the best solution and the statistical uncertainties. For clusters in the age range of NGC 6866 with few, if any, red giant members, a purely photometric determination of the cluster properties is not well-constrained. Nevertheless, based on our UBVRI photometry alone, we have derived the distance, reddening, age, and metallicitymore » of the cluster and established estimates for the binary nature and membership probability of individual stars. We derive the following values for the cluster properties: (m – M) {sub V} = 10.98 ± 0.24, E(B – V) = 0.16 ± 0.04 (so the distance = 1250 pc), age =705 ± 170 Myr, and Z = 0.014 ± 0.005.« less
Search for Pulsating Stars in the Open Cluster NGC 1502
NASA Astrophysics Data System (ADS)
Stęślicki, M.
2006-04-01
We present results of a variability search in the field of the young open cluster NGC 1502. We confirm that a beta Cephei suspect WEBDA 26 is indeed pulsating with a period of 0.09612 d and semi-amplitude of about 3 mmag in V. A new VI light curve of the bright eclipsing binary and cluster member SZ Cam was obtained. In addition, we found two new variable stars. One is an interesting eclipsing binary showing total eclipses, which can be used to derive the distance to the cluster once radial velocities of the components will be obtained.
Isochrone Fittings for the Open Star Clusters NGC 3680 and Melotte 66
NASA Astrophysics Data System (ADS)
Guillemaud, Nikolas; Frinchaboy, P. M.; Thompson, B. A.
2013-01-01
I will be displaying the results from isochrone fittings on two open star clusters. The stellar evolution models used to generate the isochrones are from Dartmouth (Dotter et al. 2007) and Padova (Mango et al. 2008). Both of the models were applied to two star clusters: NGC 3680 and Melotte 66. The analysis is performed by utilizing infrared observations from the CPAPIR instrument; which is operated in conjunction with CTIO’s 1.5m telescope. This research was made possible by the NSF’s REU grant; award number 0851558.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stello, Dennis; Huber, Daniel; Bedding, Timothy R.
Studying star clusters offers significant advances in stellar astrophysics due to the combined power of having many stars with essentially the same distance, age, and initial composition. This makes clusters excellent test benches for verification of stellar evolution theory. To fully exploit this potential, it is vital that the star sample is uncontaminated by stars that are not members of the cluster. Techniques for determining cluster membership therefore play a key role in the investigation of clusters. We present results on three clusters in the Kepler field of view based on a newly established technique that uses asteroseismology to identifymore » fore- or background stars in the field, which demonstrates advantages over classical methods such as kinematic and photometry measurements. Four previously identified seismic non-members in NGC 6819 are confirmed in this study, and three additional non-members are found-two in NGC 6819 and one in NGC 6791. We further highlight which stars are, or might be, affected by blending, which needs to be taken into account when analyzing these Kepler data.« less
Lithium in Open Cluster Red Giants Hosting Substellar Companions
NASA Technical Reports Server (NTRS)
Carlberg, Joleen K.; Smith, Verne V.; Cunha, Katia; Carpenter, Kenneth G.
2016-01-01
We have measured stellar parameters, [Fe/H], lithium abundances, rotation, and (12)C/13C in a small sample of red giants (RGs) in three open clusters that are each home to a RG star that hosts a substellar companion (SSC) (NGC 2423 3, NGC 4349 127, and BD+12 1917 in M67). Our goal is to explore whether the presence of SSCs influences the Li content. Both (12)C/13C and stellar rotation are measured as additional tracers of stellar mixing. One of the companion hosts, NGC 2423?3, is found to be Li-rich with A(Li)(sub NLTE) = 1.56 dex, and this abundance is significantly higher than the A(Li) of the two comparison stars in NGC 2423. All three SSC hosts have the highest A(Li) and (12)C/13C when compared to the control RGs in their respective clusters; however, except for NGC 2423?3, at least one control star has similarly high abundances within the uncertainties. Higher A(Li) could suggest that the formation or presence of planets plays a role in the degree of internal mixing on or before the RG branch. However, a multitude of factors affect A(Li) during the RG phase, and when the abundances of our sample are compared with the abundances of RGs in other open clusters available in the literature, we find that they all fall well within a much larger distribution of A(Li) and (12)C/13C. Thus, even the high Li in NGC 2423 3 cannot be concretely tied to the presence of the SSC.
Lithium in Open Cluster Red Giants Hosting Substellar Companions
NASA Astrophysics Data System (ADS)
Carlberg, Joleen K.; Smith, Verne V.; Cunha, Katia; Carpenter, Kenneth G.
2016-02-01
We have measured stellar parameters, [Fe/H], lithium abundances, rotation, and 12C/13C in a small sample of red giants (RGs) in three open clusters that are each home to a RG star that hosts a substellar companion (SSC) (NGC 2423 3, NGC 4349 127, and BD+12 1917 in M67). Our goal is to explore whether the presence of SSCs influences the Li content. Both 12C/13C and stellar rotation are measured as additional tracers of stellar mixing. One of the companion hosts, NGC 2423 3, is found to be Li-rich with A(Li){}{{NLTE}} = 1.56 dex, and this abundance is significantly higher than the A(Li) of the two comparison stars in NGC 2423. All three SSC hosts have the highest A(Li) and 12C/13C when compared to the control RGs in their respective clusters; however, except for NGC 2423 3, at least one control star has similarly high abundances within the uncertainties. Higher A(Li) could suggest that the formation or presence of planets plays a role in the degree of internal mixing on or before the RG branch. However, a multitude of factors affect A(Li) during the RG phase, and when the abundances of our sample are compared with the abundances of RGs in other open clusters available in the literature, we find that they all fall well within a much larger distribution of A(Li) and 12C/13C. Thus, even the high Li in NGC 2423 3 cannot be concretely tied to the presence of the SSC.
Time-series Spectroscopy of Two Candidate Double Degenerates in the Open Cluster NGC 6633
NASA Astrophysics Data System (ADS)
Williams, Kurtis A.; Serna-Grey, Donald; Chakraborty, Subho; Gianninas, A.; Canton, Paul A.
2015-12-01
SNe Ia are heavily used tools in precision cosmology, yet we still are not certain what the progenitor systems are. General plausibility arguments suggest there is potential for identifying double degenerate SN Ia progenitors in intermediate-age open star clusters. We present time-resolved high-resolution spectroscopy of two white dwarfs (WDs) in the field of the open cluster NGC 6633 that had previously been identified as candidate double degenerates in the cluster. However, three hours of continuous observations of each candidate failed to detect any significant radial velocity variations at the ≳10 km s-1 level, making it highly unlikely that either WD is a double degenerate that will merge within a Hubble Time. The WD LAWDS NGC 6633 4 has a radial velocity inconsistent with cluster membership at the 2.5σ level, while the radial velocity of LAWDS NGC 6633 7 is consistent with cluster membership. We conservatively conclude that LAWDS 7 is a viable massive double degenerate candidate, though unlikely to be a Type Ia progenitor. Astrometric data from GAIA will likely be needed to determine if either WD is truly a cluster member. The data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.
Reddening and age for 13 southern Galactic open clusters determined from integrated spectra
NASA Astrophysics Data System (ADS)
Ahumada, A. V.; Clariá, J. J.; Bica, E.; Dutra, C. M.; Torres, M. C.
2001-10-01
In this study we present flux-calibrated integrated spectra in the range 3800-6800 Å for 13 concentrated open clusters with Galactic longitudes between 219deg and 316deg, nine of which have not been previously studied. Using the equivalent widths of the Balmer lines and comparing the cluster spectra with template spectra of Magellanic Clouds and Galactic star clusters with known parameters, we derive both foreground interstellar reddening values and age. For nine clusters these two parameters have been determined for the first time, while for the rest of the sample the results show good agreement with previous studies. The present analysis indicates four very young (Hogg 11, NGC 5606, vdB-RN 80 and Pismis 17), seven moderately young (ESO 429-SC13, Hogg 3, Hogg 12, Haffner 7, BH 87, NGC 2368 and Bochum 12) and two intermediate-age (Berkeley 75 and NGC 2635) open clusters. The derived foreground interstellar reddening values are in the range 0.00 <= E(B-V) <= 0.38. The age and reddening distributions of the present sample of relatively faint open clusters match those of open clusters with known parameters in a 90deg sector centered at l = 270deg. Based on observations made at Complejo Astronómico El Leoncito, which is operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba and San Juan, Argentina.
A Study Of Anomalous Stars and Binary Populations Within Open Clusters: Tests Of Theoretical Models
NASA Astrophysics Data System (ADS)
Geller, Aaron M.; Mathieu, Robert D.; Braden, Ella; Latham, David W.
2008-08-01
``Anomalous'' stars, such as blue stragglers and more recently sub- subgiants, have been an enduring challenge for stellar evolution theory. Recently it has become clear that in star clusters these systems are closely linked to the binary star populations. Furthermore, through advances in N-body modeling, we have come to realize that stellar dynamical processes play a central role in the formation of such anomalous stars. Indeed, these stars trace the interface between the classical fields of stellar evolution and stellar dynamics. We propose a thesis study to directly probe this interface through high-precision radial-velocity measurements of the anomalous stars and the binary populations in four open clusters. We have selected NGC 188 (7 Gyr), M67 (NGC 2682; 4 Gyr), NGC 6819 (2.4 Gyr), and M35 (NGC 2168; 150 Myr), as these span a wide range in age, are rich enough to provide statistically significant conclusions, and already have an extensive base of kinematic, spectroscopic, and photometric observations from the WIYN Open Cluster Study. Our proposed observations will define the spectroscopic hard binary populations (fraction, frequency distributions of orbital parameters, mass ratios) for orbital periods approaching the hard-soft boundary. These observations will also provide a comprehensive survey for anomalous stars, including secure establishment of their cluster membership. These data will allow us to perform the first detailed comparison to predictions from open cluster simulations of the binary populations among normal and anomalous stars, and thereby to constrain the evolutionary paths from one to the other.
A Study Of Anomalous Stars and Binary Populations Within Open Clusters: Tests Of Theoretical Models
NASA Astrophysics Data System (ADS)
Geller, Aaron M.; Mathieu, Robert D.; Gosnell, Natalie; Latham, David W.
2009-02-01
``Anomalous'' stars, such as blue stragglers and more recently sub- subgiants, have been an enduring challenge for stellar evolution theory. Recently it has become clear that in star clusters these systems are closely linked to the binary star populations. Furthermore, through advances in N-body modeling, we have come to realize that stellar dynamical processes play a central role in the formation of such anomalous stars. Indeed, these stars trace the interface between the classical fields of stellar evolution and stellar dynamics. We propose a thesis study to directly probe this interface through high-precision radial-velocity measurements of the anomalous stars and the binary populations in four open clusters. We have selected NGC 188 (7 Gyr), M67 (NGC 2682; 4 Gyr), NGC 6819 (2.4 Gyr), and M35 (NGC 2168; 150 Myr), as these span a wide range in age, are rich enough to provide statistically significant conclusions, and already have an extensive base of kinematic, spectroscopic, and photometric observations from the WIYN Open Cluster Study. Our proposed observations will define the spectroscopic hard binary populations (fraction, frequency distributions of orbital parameters, mass ratios) for orbital periods approaching the hard-soft boundary. These observations will also provide a comprehensive survey for anomalous stars, including secure establishment of their cluster membership. These data will allow us to perform the first detailed comparison to predictions from open cluster simulations of the binary populations among normal and anomalous stars, and thereby to constrain the evolutionary paths from one to the other.
A Study Of Anomalous Stars and Binary Populations Within Open Clusters: Tests Of Theoretical Models
NASA Astrophysics Data System (ADS)
Geller, Aaron M.; Mathieu, Robert D.; Braden, Ella; Latham, David W.
2008-02-01
``Anomalous'' stars, such as blue stragglers and more recently sub- subgiants, have been an enduring challenge for stellar evolution theory. Recently it has become clear that in star clusters these systems are closely linked to the binary star populations. Furthermore, through advances in N-body modeling, we have come to realize that stellar dynamical processes play a central role in the formation of such anomalous stars. Indeed, these stars trace the interface between the classical fields of stellar evolution and stellar dynamics. We propose a thesis study to directly probe this interface through high-precision radial-velocity measurements of the anomalous stars and the binary populations in four open clusters. We have selected NGC 188 (7 Gyr), M67 (NGC 2682; 4 Gyr), NGC 6819 (2.4 Gyr), and M35 (NGC 2168; 150 Myr), as these span a wide range in age, are rich enough to provide statistically significant conclusions, and already have an extensive base of kinematic, spectroscopic, and photometric observations from the WIYN Open Cluster Study. Our proposed observations will define the spectroscopic hard binary populations (fraction, frequency distributions of orbital parameters, mass ratios) for orbital periods approaching the hard-soft boundary. These observations will also provide a comprehensive survey for anomalous stars, including secure establishment of their cluster membership. These data will allow us to perform the first detailed comparison to predictions from open cluster simulations of the binary populations among normal and anomalous stars, and thereby to constrain the evolutionary paths from one to the other.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geller, Aaron M.; Grijs, Richard de; Li, Chengyuan
2015-05-20
The two Large Magellanic Cloud star clusters, NGC 1805 and NGC 1818, are approximately the same chronological age (∼30 Myr), but show different radial trends in binary frequency. The F-type stars (1.3–2.2 M{sub ⊙}) in NGC 1818 have a binary frequency that decreases toward the core, while the binary frequency for stars of similar mass in NGC 1805 is flat with radius, or perhaps bimodal (with a peak in the core). We show here, through detailed N-body modeling, that both clusters could have formed with the same primordial binary frequency and with binary orbital elements and masses drawn from themore » same distributions (defined from observations of open clusters and the field of our Galaxy). The observed radial trends in binary frequency for both clusters are best matched with models that have initial substructure. Furthermore, both clusters may be evolving along a very similar dynamical sequence, with the key difference that NGC 1805 is dynamically older than NGC 1818. The F-type binaries in NGC 1818 still show evidence of an initial period of rapid dynamical disruptions (which occur preferentially in the core), while NGC 1805 has already begun to recover a higher core binary frequency, owing to mass segregation (which will eventually produce a distribution in binary frequency that rises only toward the core, as is observed in old Milky Way star clusters). This recovery rate increases for higher-mass binaries, and therefore even at one age in one cluster, we predict a similar dynamical sequence in the radial distribution of the binary frequency as a function of binary primary mass.« less
A new open cluster binary system in the Milky Way
NASA Astrophysics Data System (ADS)
Piatti, A. E.; Clariá, J. J.; Ahumada, A. V.
2011-10-01
We have obtained CCD UBVI_{KC} photometry for the open clusters (OCs) Hogg 12 and NGC 3590. Based on photometric and morphological criteria, as well as on the stellar density in the region, our evidence is sufficient to consider them a new open cluster binary system candidate.
New insights into the origin and evolution of the old, metal-rich open cluster NGC 6791
NASA Astrophysics Data System (ADS)
Martinez-Medina, Luis A.; Gieles, Mark; Pichardo, Barbara; Peimbert, Antonio
2018-02-01
NGC 6791 is one of the most studied open clusters, it is massive (˜5000 M⊙), located at the solar circle, old (˜8 Gyr) and yet the most metal-rich cluster ([Fe/H] ≃ 0.4) known in the Milky Way. By performing an orbital analysis within a Galactic model including spiral arms and a bar, we found that it is plausible that NGC 6791 formed in the inner thin disc or in the bulge, and later displaced by radial migration to its current orbit. We apply different tools to simulate NGC 6791, including direct N-body summation in time-varying potentials, to test its survivability when going through different Galactic environments. In order to survive the 8-Gyr journey moving on a migrating orbit, NGC 6791 must have been more massive, M0 ≥ 5 × 104 M⊙, when formed. We find independent confirmation of this initial mass in the stellar mass function, which is observed to be flat; this can only be explained if the average tidal field strength experienced by the cluster is stronger than what it is at its current orbit. Therefore, the birth place and journeys of NGC 6791 are imprinted in its chemical composition, in its mass-loss and in its flat stellar mass function, supporting its origin in the inner thin disc or in the bulge.
WIYN OPEN CLUSTER STUDY. XLVIII. THE HARD-BINARY POPULATION OF NGC 188
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geller, Aaron M.; Mathieu, Robert D., E-mail: a-geller@northwestern.edu, E-mail: mathieu@astro.wisc.edu
2012-08-15
We present an in-depth study of the hard-binary population of the old (7 Gyr) open cluster NGC 188. Utilizing 85 spectroscopic binary orbits out of a complete sample of 129 detected binary members, we study the cluster binary frequency and the distributions of binary orbital elements among the main-sequence (MS), giant, and blue straggler (BS) populations. The results are derived from our ongoing radial velocity survey of the cluster, which spans in magnitude from the brightest stars in the cluster to V = 16.5 (about 1.1-0.9 M{sub Sun} ), and extends to a projected radius of 17 pc ({approx}13 coremore » radii). Our detectable binaries have periods ranging from a few days to of order 10{sup 4} days, and thus are hard binaries that dynamically power the cluster. The MS solar-type hard binaries in NGC 188 are nearly indistinguishable from similar binaries in the Galactic field. We observe a global solar-type MS hard-binary frequency in NGC 188 of 23% {+-} 2%, which when corrected for incompleteness results in a frequency of 29% {+-} 3% for binaries with periods less than 10{sup 4} days. For MS hard binaries in the cluster, we observe a log-period distribution that rises toward our detection limit, a roughly Gaussian eccentricity distribution centered on e = 0.35 (for binaries with periods longer than the circularization period), and a secondary-mass distribution that rises toward lower-mass companions. Importantly, the NGC 188 BS binaries show significantly different characteristics than the solar-type MS binaries in NGC 188. We observe a BS hard-binary frequency of 76% {+-} 19%, three times that of the MS. The excess of this binary frequency over the normal MS binary frequency is valid at the >99% confidence level. Furthermore, the BS binary eccentricity-log-period distribution is distinct from that of the MS at the 99% confidence level, with the majority of the BS binaries having periods of order 1000 days and lower eccentricities. The secondary-mass distribution for these long-period BS binaries is narrow and peaked with a mean value of about 0.5 M{sub Sun }. Predictions for mass-transfer products are most closely consistent with the binary properties of these NGC 188 BSs, which comprise two-thirds of the BS population. Additionally, we compare the NGC 188 binaries to those evolved within the sophisticated Hurley et al. (2005) N-body open cluster simulation. The MS hard-binary population predicted by the simulation is significantly different from the MS hard-binary population observed in NGC 188, in frequency and distributions of period and eccentricity. Many of these differences result from the adopted initial binary population, while others reflect on the physics used in the simulation (e.g., tidal circularization). Additional simulations with initial conditions that are better motivated by observations are necessary to properly investigate the dynamical evolution of a rich binary population in open clusters like NGC 188.« less
NASA Astrophysics Data System (ADS)
Lim, Beomdu; Sung, Hwankyung; Kim, Jinyoung S.; Bessell, Michael S.; Hwang, Narae; Park, Byeong-Gon
2016-11-01
The timescale of cluster formation is an essential parameter in order to understand the formation process of star clusters. Pre-main sequence (PMS) stars in nearby young open clusters reveal a large spread in brightness. If the spread were considered to be a result of a real spread in age, the corresponding cluster formation timescale would be about 5-20 Myr. Hence it could be interpreted that star formation in an open cluster is prolonged for up to a few tens of Myr. However, difficulties in reddening correction, observational errors, and systematic uncertainties introduced by imperfect evolutionary models for PMS stars can result in an artificial age spread. Alternatively, we can utilize Li abundance as a relative age indicator of PMS star to determine the cluster formation timescale. The optical spectra of 134 PMS stars in NGC 2264 have been obtained with MMT/Hectochelle. The equivalent widths have been measured for 86 PMS stars with a detectable Li line (3500\\lt {T}{eff}[{{K}}]≤slant 6500). Li abundance under the condition of local thermodynamic equilibrium (LTE) was derived using the conventional curve of growth method. After correction for non-LTE effects, we find that the initial Li abundance of NGC 2264 is A({Li})=3.2+/- 0.2. From the distribution of the Li abundances, the underlying age spread of the visible PMS stars is estimated to be about 3-4 Myr and this, together with the presence of embedded populations in NGC 2264, suggests that the cluster formed on a timescale shorter than 5 Myr.
DISCOVERY OF 14 NEW SLOWLY PULSATING B STARS IN THE OPEN CLUSTER NGC 7654
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Y. P.; Han, Z. W.; Zhang, X. B.
2012-02-10
We carried out time-series BV CCD photometric observations of the open cluster NGC 7654 (Messier 52) to search for variable stars. Eighteen slowly pulsating B (SPB) stars have been detected, among which 14 candidates are newly discovered, three known ones are confirmed, and a previously found {delta} Scuti star is also identified as an SPB candidate. Twelve SPBs are probable cluster members based on membership analysis. This makes NGC 7654 the richest galactic open cluster in terms of SPB star content. It is also a new discovery that NGC 7654 hosts three {gamma} Dor star candidates. We found that allmore » these stars (18 SPB and 3 {gamma} Dor stars) have periods longer than their corresponding fundamental radial mode. With such a big sample of g-mode pulsators in a single cluster, it is clear that multi-mode pulsation is more common in the upper part of the main sequence than in the lower part. All the stars span a narrow strip on the period-luminosity plane, which also includes the {gamma} Dor stars at the low-luminosity extension. This result implies that there may be a single period-luminosity relation applicable to all g-mode main-sequence pulsators. As a by-product, three EA-type eclipsing binaries and an EW-type eclipsing binary are also discovered.« less
A Photometric Search for Planets in the Open Cluster NGC 7086
NASA Astrophysics Data System (ADS)
Rosvick, Joanne M.; Robb, Russell
2006-12-01
In an attempt to discover short-period, Jupiter-mass planets orbiting solar-type stars in open clusters, we searched for planetary transits in the populous and relatively unstudied open cluster NGC 7086. A color-magnitude diagram constructed from new B and V photometry is presented, along with revised estimates of the cluster's color excess, distance modulus, and age. Several turnoff stars were observed spectroscopically in order to determine a color excess of E(B-V)=0.83+/-0.02. Empirically fitting the main sequences of two young open clusters and the semiempirical zero-age main sequence of Vandenberg and Poll yielded a distance modulus of (V-MV)=13.4+/-0.3 mag. This corresponds to a true distance modulus of (m-M)0=10.8 mag or a distance of 1.5 kpc to NGC 7086. These values were used with isochrones from the Padova group to obtain a cluster age of 100 Myr. Eleven nights of R-band photometry were used to search for planetary transits. Differential magnitudes were constructed for each star in the cluster. Light curves for each star were produced on a night-to-night basis and inspected for variability. No planetary transits were apparent; however, some interesting variable stars were discovered: a pulsating variable that appears to be a member of the γ Dor class and four possible eclipsing binary stars, one of which actually may be a multiple system.
Is the Hogg 12-NGC 3590 pair a new open cluster binary system?
NASA Astrophysics Data System (ADS)
Piatti, A. E.; Clariá, J. J.; Ahumada, A. V.
Based on CCD UBVI_(KC) images obtained at Cerro Tololo Inter-American Observatory (CTIO, Chile) and on morphological criteria, as well as on the stellar density in the region, we confirm that Hogg 12 is a genuine open cluster (OC) separated in the sky from NGC 3590 by scarcely 3.6 pc. The colour-magnitude diagrams of Hogg 12, cleaned from field star contamina- tion, reveal that this is a solar metal content cluster, affected by E(B-V) = 0.40 ± 0.05, located at a heliocentric distance d = 2.0 ± 0.5 kpc, and of an age similar to that of NGC 3590. Evidence that these two objects form an OC binary system is presented. A detailed version of this work can be seen in PASP, 122, 516 (2010).
NASA Astrophysics Data System (ADS)
Aidelman, Y.; Cidale, L. S.; Zorec, J.; Panei, J. A.
2015-05-01
Context. The knowledge of accurate values of effective temperature, surface gravity, and luminosity of stars in open clusters is very important not only to derive cluster distances and ages but also to discuss the stellar structure and evolution. Unfortunately, stellar parameters are still very scarce. Aims: Our goal is to study five open clusters to derive stellar parameters of the B and Be star population and discuss the cluster properties. In a near future, we intend to gather a statistically relevant samples of Be stars to discuss their origin and evolution. Methods: We use the Barbier-Chalonge-Divan spectrophotometric system, based on the study of low-resolution spectra around the Balmer discontinuity, since it is independent of the interstellar and circumstellar extinction and provides accurate Hertzsprung-Russell diagrams and stellar parameters. Results: We determine stellar fundamental parameters, such as effective temperatures, surface gravities, spectral types, luminosity classes, absolute and bolometric magnitudes and colour gradient excesses of the stars in the field of Collinder 223, Hogg 16, NGC 2645, NGC 3114, and NGC 6025. Additional information, mainly masses and ages of cluster stellar populations, is obtained using stellar evolution models. In most cases, stellar fundamental parameters have been derived for the first time. We also discuss the derived cluster properties of reddening, age and distance. Conclusions: Collinder 223 cluster parameters are overline{E(B-V) = 0.25 ± 0.03} mag and overline{(mv - M_v)0 = 11.21 ± 0.25} mag. In Hogg 16, we clearly distinguish two groups of stars (Hogg 16a and Hogg 16b) with very different mean true distance moduli (8.91 ± 0.26 mag and 12.51 ± 0.38 mag), mean colour excesses (0.26 ± 0.03 mag and 0.63 ± 0.08 mag), and spectral types (B early-type and B late-/A-type stars, respectively). The farthest group could be merged with Collinder 272. NGC 2645 is a young cluster (<14 Myr) with overline{E(B-V) = 0.58 ± 0.05} mag and overline{(mv - M_v)0 = 12.18 ± 0.30} mag. The cluster parameters of NGC 3114 are overline{E(B-V) = 0.10 ± 0.01} mag and overline{(mv - M_v)0 = 9.20 ± 0.15} mag. This cluster presents an important population of Be star, but it is difficult to define the cluster membership of stars because of the high contamination by field stars or the possible overlapping with a nearby cluster. Finally, we derive the following cluster parameters of NGC 6025: overline{E(B-V) = 0.34 ± 0.02} mag, overline{(mv - M_v)0 = 9.25 ± 0.17} mag, and an age between 40 Myr and 69 Myr. In all the cases, new Be candidate stars are reported based on the appearance of a second Balmer discontinuity. Observations taken at CASLEO, operating under agreement of CONICET and the Universities of La Plata, Córdoba and San Juan, Argentina.
An X-Ray Survey of the Open Cluster NGC 6475 (M7) with ROSAT
NASA Technical Reports Server (NTRS)
Prosser, Charles F.; Stauffer, John R.; Caillault, J.-P.; Balachandran, Suchitra; Stern, Robert A.; Randich, Sofia
1995-01-01
A ROSAT x-ray survey, with complimentary optical photometry, of the open cluster NGC 6475 has enabled the detection of approx. 50 late-F to K0 and approx. 70 K/M dwarf new candidate members, providing the first reliable detection of low-mass stars in this low. galactic latitude, 220 Myr old cluster. The x-ray observations reported here have a typical limiting sensitivity of L(sub x) approx. equal to 10(exp 29) erg/s. The detection frequency of early type cluster members is consistent with the hypothesis that the x-ray emitting early type stars are binary systems with an unseen, low-mass secondary producing the x rays. The ratio between x-ray and bolometric luminosity among NGC 6475 members saturates at a spectral-type/color which is intermediate between that in much younger and in much older clusters, consistent with rotational spindown of solar-type stars upon their arrival on the ZAMS. The upper envelope of x-ray luminosity as a function of spectral type is comparable to that of the Pleiades, with the observed spread in x-ray luminosity among low-mass members being likely due to the presence of binaries and relatively rapid rotators. However, the list of x-ray selected candidate members is likely biased against low-mass, slowly rotating single stars. While some preliminary spectroscopic information is given in an appendix, further spectroscopic observations of the new candidate members will aid in interpreting the coronal activity among solar-type NGC 6475 members and their relation to similar stars in older and younger open clusters.
Accurate age determinations of several nearby open clusters containing magnetic Ap stars
NASA Astrophysics Data System (ADS)
Silaj, J.; Landstreet, J. D.
2014-06-01
Context. To study the time evolution of magnetic fields, chemical abundance peculiarities, and other characteristics of magnetic Ap and Bp stars during their main sequence lives, a sample of these stars in open clusters has been obtained, as such stars can be assumed to have the same ages as the clusters to which they belong. However, in exploring age determinations in the literature, we find a large dispersion among different age determinations, even for bright, nearby clusters. Aims: Our aim is to obtain ages that are as accurate as possible for the seven nearby open clusters α Per, Coma Ber, IC 2602, NGC 2232, NGC 2451A, NGC 2516, and NGC 6475, each of which contains at least one magnetic Ap or Bp star. Simultaneously, we test the current calibrations of Te and luminosity for the Ap/Bp star members, and identify clearly blue stragglers in the clusters studied. Methods: We explore the possibility that isochrone fitting in the theoretical Hertzsprung-Russell diagram (i.e. log (L/L⊙) vs. log Te), rather than in the conventional colour-magnitude diagram, can provide more precise and accurate cluster ages, with well-defined uncertainties. Results: Well-defined ages are found for all the clusters studied. For the nearby clusters studied, the derived ages are not very sensitive to the small uncertainties in distance, reddening, membership, metallicity, or choice of isochrones. Our age determinations are all within the range of previously determined values, but the associated uncertainties are considerably smaller than the spread in recent age determinations from the literature. Furthermore, examination of proper motions and HR diagrams confirms that the Ap stars identified in these clusters are members, and that the presently accepted temperature scale and bolometric corrections for Ap stars are approximately correct. We show that in these theoretical HR diagrams blue stragglers are particularly easy to identify. Conclusions: Constructing the theoretical HR diagram of a nearby open cluster makes possible an accurate age determination, with well defined uncertainty. This diagnostic of a cluster also provides a useful tool for studying unusual stars such as Ap stars and blue stragglers. Table 3 is available in electronic form at http://www.aanda.org
Orbital Analysis of Two Triple Systems in the Open Cluster NGC 2516
NASA Astrophysics Data System (ADS)
Veramendi, M. E.; González, J. F.
2010-12-01
We report the discovery of two hierarchical triple systems in the open cluster NGC 2516. Both systems are double-lined spectroscopic binaries whose center-of-mass velocity varies in a time scale of a few years. The system BDA 19 consists of an eccentric spectroscopic binary with a period of 8.7 days and a third body orbiting with a period of about 3300 days. The close pair in the triple BDA 2 has an orbital period of 11.2 days and contains a HgMn star.
Star Formation in NGC 6531-Evidence From the age Spread and Initial Mass Function
NASA Astrophysics Data System (ADS)
Forbes, Douglas
1996-09-01
The results of a photometric UBV study of the young open cluster NGC 6531 are presented. The cluster is found to have a mean reddening E(B-V)=0.28±0.04 (s.d.) and distance modulus (V0-Mv)=10.70±0.13 (s.e.), and 105±11 likely cluster members have been identified within the cluster coronal radius of 9 arcmin. A comparison of the high-luminosity end of the cluster color-magnitude diagram to the evolutionary models by Maeder & Meynet [A&AS, 76, 411(1988)] suggests a nuclear age of (8±2) Myr. The very clear gap in the distribution of stars with 0≤(B-V)0≤0.20, corresponding to the "burn-off" of 3He in stars contracting to the main sequence [Ulrich, ApJ, 168, 57 (1971)], implies a contraction age of (8±3) Myr. There would seem to be no evidence of a spread in the ages of cluster stars, as has been observed in several other young open clusters [Herbst & Miller, AJ, 87, 1478 (1982)]. The initial mass function (IMF) constructed from the cluster luminosity function and the mass-luminosity relation given by Scab (1986) shows good agreement with the field star IMF, and with the IMFS of a number of clusters of similar age and richness. The relative deficiency of low-mass stars seen by Herbst and Miller in NGC 3293 (a cluster of quite similar age and reddening) is not evident in NGC 6531.
NASA Astrophysics Data System (ADS)
Kalari, Venu M.; Carraro, Giovanni; Evans, Christopher J.; Rubio, Monica
2018-04-01
NGC 796 is a massive young cluster located 59 kpc from us in the diffuse intergalactic medium of the 1/5–1/10 Z⊙ Magellanic Bridge, allowing us to probe variations in star formation and stellar evolution processes as a function of metallicity in a resolved fashion, and providing a link between resolved studies of nearby solar-metallicity and unresolved distant metal-poor clusters located in high-redshift galaxies. In this paper, we present adaptive optics griHα imaging of NGC 796 (at 0.″5, which is ∼0.14 pc at the cluster distance) along with optical spectroscopy of two bright members to quantify the cluster properties. Our aim is to explore whether star formation and stellar evolution vary as a function of metallicity by comparing the properties of NGC 796 to higher-metallicity clusters. We find an age of {20}-5+12 Myr from isochronal fitting of the cluster main sequence in the color–magnitude diagram. Based on the cluster luminosity function, we derive a top-heavy stellar initial mass function (IMF) with a slope α = 1.99 ± 0.2, hinting at a metallicity and/or environmental dependence of the IMF, which may lead to a top-heavy IMF in the early universe. Study of the Hα emission-line stars reveals that classical Be stars constitute a higher fraction of the total B-type stars when compared with similar clusters at greater metallicity, providing some support to the chemically homogeneous theory of stellar evolution. Overall, NGC 796 has a total estimated mass of 990 ± 200 M⊙, and a core radius of 1.4 ± 0.3 pc, which classifies it as a massive young open cluster, unique in the diffuse interstellar medium of the Magellanic Bridge.
Cluster membership probability: polarimetric approach
NASA Astrophysics Data System (ADS)
Medhi, Biman J.; Tamura, Motohide
2013-04-01
Interstellar polarimetric data of the six open clusters Hogg 15, NGC 6611, NGC 5606, NGC 6231, NGC 5749 and NGC 6250 have been used to estimate the membership probability for the stars within them. For proper-motion member stars, the membership probability estimated using the polarimetric data is in good agreement with the proper-motion cluster membership probability. However, for proper-motion non-member stars, the membership probability estimated by the polarimetric method is in total disagreement with the proper-motion cluster membership probability. The inconsistencies in the determined memberships may be because of the fundamental differences between the two methods of determination: one is based on stellar proper motion in space and the other is based on selective extinction of the stellar output by the asymmetric aligned dust grains present in the interstellar medium. The results and analysis suggest that the scatter of the Stokes vectors q (per cent) and u (per cent) for the proper-motion member stars depends on the interstellar and intracluster differential reddening in the open cluster. It is found that this method could be used to estimate the cluster membership probability if we have additional polarimetric and photometric information for a star to identify it as a probable member/non-member of a particular cluster, such as the maximum wavelength value (λmax), the unit weight error of the fit (σ1), the dispersion in the polarimetric position angles (overline{ɛ }), reddening (E(B - V)) or the differential intracluster reddening (ΔE(B - V)). This method could also be used to estimate the membership probability of known member stars having no membership probability as well as to resolve disagreements about membership among different proper-motion surveys.
BARIUM SURFACE ABUNDANCES OF BLUE STRAGGLERS IN THE OPEN CLUSTER NGC 6819
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milliman, Katelyn E.; Mathieu, Robert D.; Schuler, Simon C., E-mail: milliman@astro.wisc.edu
2015-09-15
We present a barium surface abundance of 12 blue stragglers (BSs) and 18 main-sequence (MS) stars in the intermediate-age open cluster NGC 6819 (2.5 Gyr) based on spectra obtained from the Hydra Multi-object Spectrograph on the WIYN 3.5 m telescope. For the MS stars we find [Fe/H] = +0.05 ± 0.04 and [Ba/Fe] = −0.01 ± 0.10. The majority of the BS stars are consistent with these values. We identify five BSs with significant barium enhancement. These stars most likely formed through mass transfer from an asymptotic giant branch star that polluted the surface of the BS with the nucleosynthesismore » products generated during thermal pulsations. This conclusion aligns with the results from the substantial work done on the BSs in old open cluster NGC 188 that identifies mass transfer as the dominant mechanism for BS formation in that open cluster. However, four of the BSs with enhanced barium show no radial-velocity evidence for a companion. The one star that is in a binary is a double-lined system, meaning the companion is not a white dwarf and not the remnant of a prior AGB star. In this paper we attempt to develop a consistent scenario to explain the origin of these five BSs.« less
Binarity and Variable Stars in the Open Cluster NGC 2126
NASA Astrophysics Data System (ADS)
Chehlaeh, Nareemas; Mkrtichian, David; Kim, Seung-Lee; Lampens, Patricia; Komonjinda, Siramas; Kusakin, Anatoly; Glazunova, Ljudmila
2018-04-01
We present the results of an analysis of photometric time-series observations for NGC 2126 acquired at the Thai National Observatory (TNO) in Thailand and the Mount Lemmon Optical Astronomy Observatory (LOAO) in USA during the years 2004, 2013 and 2015. The main purpose is to search for new variable stars and to study the light curves of binary systems as well as the oscillation spectra of pulsating stars. NGC 2126 is an intermediate-age open cluster which has a population of stars inside the δ Scuti instability strip. Several variable stars are reported including three eclipsing binary stars, one of which is an eclipsing binary star with a pulsating component (V551 Aur). The Wilson-Devinney technique was used to analyze its light curves and to determine a new set of the system’s parameters. A frequency analysis of the eclipse-subtracted light curve was also performed. Eclipsing binaries which are members of open clusters are capable of delivering strong constraints on the cluster’s properties which are in turn useful for a pulsational analysis of their pulsating components. Therefore, high-resolution, high-quality spectra will be needed to derive accurate component radial velocities of the faint eclipsing binaries which are located in the field of NGC 2126. The new Devasthal Optical Telescope, suitably equipped, could in principle do this.
Analytical studies of NGC 1193
NASA Astrophysics Data System (ADS)
Tadross, A. L.
2005-01-01
The photometric data of Kalu\\dot{z}ny (1988) was used in conjunction with the proper motion measurements of USNO-B1.0 catalog (Monet et al. 2003) to refine and complete the main physical properties of the faint open cluster NGC 1193.
NASA Astrophysics Data System (ADS)
Carraro, G.; Villanova, S.; Demarque, P.; Moni Bidin, C.; McSwain, M. V.
2008-05-01
We report on a new, wide-field (20 × 20 arcmin2), multicolour (UBVI), photometric campaign in the area of the nearby old open cluster NGC 2112. At the same time, we provide medium-resolution spectroscopy of 35 (and high-resolution of additional 5) red giant and turn-off stars. This material is analysed with the aim to update the fundamental parameters of this traditionally difficult cluster, which is very sparse and suffers from heavy field star contamination. Among the 40 stars with spectra, we identified 21 bona fide radial velocity members which allow us to put more solid constraints on the cluster's metal abundance, long suggested to be as low as the metallicity of globulars. As indicated earlier by us on a purely photometric basis, the cluster [Fe/H] abundance is slightly supersolar ([Fe/H] = 0.16 +/- 0.03) and close to the Hyades value, as inferred from a detailed abundance analysis of three of the five stars with higher resolution spectra. Abundance ratios are also marginally supersolar. Based on this result, we revise the properties of NGC 2112 using stellar models from the Padova and Yale-Yonsei groups. For this metal abundance, we find that the cluster's age, reddening and distance values are 1.8 Gyr, 0.60 mag and 940 pc, respectively. Both the Yale-Yonsei and Padova models predict the same values for the fundamental parameters within the errors. Overall, NGC 2112 is a typical solar neighbourhood, thin-disc star cluster, sharing the same chemical properties of F-G stars and open clusters close to the Sun. This investigation outlines the importance of a detailed membership analysis in the study of disc star clusters. This paper includes data gathered with the 6.5 Magellan Telescopes, located at Las Campanas Observatory, Chile. The data discussed in this paper will be made available at the WEBDA open cluster data base http://www.univie.ac.at/webda, which is maintained by E. Paunzen and J.-C. Mermilliod. ‡ E-mail: gcarraro@eso.org (GC); sandro.villanova@unipd.it (SV); demarque@astro.yale.edu (PD); mbidin@das.uchile.cl (CMB); mcswain@lehigh.edu(MVM)
Espectrofotometría en NGC 3255 y Hogg 17
NASA Astrophysics Data System (ADS)
Giorgi, E. E.; Solivella, G. R.; Vázquez, R. A.; Rizzo, L.
We present a spectrophotometric study of the open clusters NGC 3255 and Hogg 17, located in Carina and Centaurus respectively, based on new CCD UBVI photometry and spectral classification carried out in brightest stars in their fields. FULL TEXT IN SPANISH
NASA Astrophysics Data System (ADS)
Piatti, A. E.; Clariá, J. J.; Bica, E.
2000-08-01
We present CCD observations in the B, V , and I passbands obtained for stars in the fields of the open clusters Pismis 22, NGC 6178, NGC 6216, and Ruprecht 130, projected not far from the Galactic centre (|l| < 30̂, |b| < 2̂). The sample consists of about 790 stars reaching down to V ~ 18-19 mag. From the analysis of the colour magnitude diagrams, we confirmed the physical reality of the clusters and derived their reddening, distance and age. In addition, we obtained flux-calibrated integrated spectra in the range 3500-9200 Å for the cluster sample. The equivalent widths of the Balmer lines provided us with age estimates, while the comparison with template spectra allowed us to derive both foreground reddening and age. The photometric and spectroscopic results reveal that the four studied objects are young open clusters with ages ranging between 35 and 50 Myr. The clusters, located between 1.0 kpc and 4.3 kpc from the Sun, are affected by different amounts of interstellar visual absorption (0.6 ≃ Av ≃ 6.0). Based on observations made at Complejo Astronómico El Leoncito, which is operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la Repúbica Argentina and the National Universities of La Plata, Córdoba, and San Juan, Argentina, and at the University of Toronto (David Dunlap Observatory) 24-inch telescope, Las Campanas, Chile. Tables 3-6 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tofflemire, Benjamin M.; Gosnell, Natalie M.; Mathieu, Robert D.
2014-10-01
The open cluster NGC 6791 has been the focus of much recent study due to its intriguing combination of old age and high metallicity (∼8 Gyr, [Fe/H] = +0.30), as well as its location within the Kepler field. As part of the WIYN Open Cluster Study, we present precise (σ = 0.38 km s{sup –1}) radial velocities for proper motion candidate members of NGC 6791 from Platais et al. Our survey, extending down to g' ∼ 16.8, is comprised of the evolved cluster population, including blue stragglers, giants, and horizontal branch stars. Of the 280 proper-motion-selected stars above our magnitudemore » limit, 93% have at least one radial velocity measurement and 79% have three measurements over the course of at least 200 days, sufficient for secure radial-velocity-determined membership of non-velocity-variable stars. The Platais et al. proper motion catalog includes 12 anomalous horizontal branch candidates blueward of the red clump, of which we find only 4 to be cluster members. Three fall slightly blueward of the red clump and the fourth is consistent with being a blue straggler. The cleaned color-magnitude diagram shows a richly populated red giant branch and a blue straggler population. Half of the blue stragglers are in binaries. From our radial velocity measurement distribution, we find the cluster's radial velocity dispersion to be σ {sub c} = 0.62 ± 0.10 km s{sup –1}. This corresponds to a dynamical mass of ∼4600 M {sub ☉}.« less
CHEMICAL ABUNDANCES IN A SAMPLE OF RED GIANTS IN THE OPEN CLUSTER NGC 2420 FROM APOGEE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Souto, Diogo; Cunha, K.; Smith, V.
NGC 2420 is a ∼2 Gyr old well-populated open cluster that lies about 2 kpc beyond the solar circle, in the general direction of the Galactic anti-center. Most previous abundance studies have found this cluster to be mildly metal-poor, but with a large scatter in the obtained metallicities. Detailed chemical abundance distributions are derived for 12 red-giant members of NGC 2420 via a manual abundance analysis of high-resolution ( R = 22,500) near-infrared ( λ 1.5–1.7 μ m) spectra obtained from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey. The sample analyzed contains six stars that are identified asmore » members of the first-ascent red giant branch (RGB), as well as six members of the red clump (RC). We find small scatter in the star-to-star abundances in NGC 2420, with a mean cluster abundance of [Fe/H] = −0.16 ± 0.04 for the 12 red giants. The internal abundance dispersion for all elements (C, N, O, Na, Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, Co and Ni) is also very small (∼0.03–0.06 dex), indicating a uniform cluster abundance distribution within the uncertainties. NGC 2420 is one of the clusters used to calibrate the APOGEE Stellar Parameter and Chemical Abundance Pipeline (ASPCAP). The results from this manual analysis compare well with ASPCAP abundances for most of the elements studied, although for Na, Al, and V there are more significant offsets. No evidence of extra-mixing at the RGB luminosity bump is found in the {sup 12}C and {sup 14}N abundances from the pre-luminosity-bump RGB stars in comparison to the post-He core-flash RC stars.« less
Multicolor CCD photometry of the open cluster NGC 752
NASA Astrophysics Data System (ADS)
Bartašiūtė, Stanislava; Janusz, Robert; Boyle, Richard P.; Philip, A. G. Davis; Deveikis, Viktoras
2010-01-01
We obtained CCD observations of the open cluster NGC 752 with the 1.8m Vatican Advanced Technology Telescope (Mt. Graham, Arizona) with a 4K CCD camera and eight intermediate-band filters of the Stromvil (Strömgren + Vilnius) system. Four 12‧ × 12‧ fields were observed, covering the central part of the cluster. The good-quality multicolor data made it possible to obtain precise estimates of distance moduli, metallicity and foreground reddening for individual stars down to the limiting magnitude, V = 17.5, enabling photometric identification of faint cluster members. The new observations provide an extension of the lower main sequence to three magnitudes beyond the previous (photographic) limit. A relatively small number of photometric members identified at fainter magnitudes seems to be indicative of actual dissolution of the cluster from the low-mass end.
WIYN Open Cluster Study. XXXII. Stellar Radial Velocities in the Old Open Cluster NGC 188
NASA Astrophysics Data System (ADS)
Geller, Aaron M.; Mathieu, Robert D.; Harris, Hugh C.; McClure, Robert D.
2008-06-01
We present the results of our ongoing radial-velocity (RV) survey of the old (7 Gyr) open cluster NGC 188. Our WIYN 3.5 m data set spans a time baseline of 11 years, a magnitude range of 12 <= V <= 16.5 (1.18-0.94 M sun), and a 1° diameter region on the sky. With the addition of a Domain Astrophysical Observatory data set we extend our bright limit to V = 10.8 and, for some stars, extend our time baseline to 35 years. Our magnitude limits include solar-mass main-sequence stars, subgiants, giants, and blue stragglers (BSs), and our spatial coverage extends radially to 17 pc (~13 core radii). For the WIYN data we present a detailed description of our data reduction process and a thorough analysis of our measurement precision of 0.4 km s-1 for narrow-lined stars. We have measured radial velocities for 1046 stars in the direction of NGC 188, and have calculated RV membership probabilities for stars with >=3 measurements, finding 473 to be likely cluster members. We detect 124 velocity-variable cluster members, all of which are likely to be dynamically hard-binary stars. Using our single member stars, we find an average cluster radial velocity of -42.36 ± 0.04 km s-1. We use our precise RV and proper-motion membership data to greatly reduce field-star contamination in our cleaned color-magnitude diagram, from which we identify six stars of note that lie far from a standard single-star isochrone. We present a detailed study of the spatial distribution of cluster-member populations, and find the binaries to be centrally concentrated, providing evidence for the presence of mass segregation in NGC 188. We observe the BSs to populate a bimodal spatial distribution that is not centrally concentrated, suggesting that we may be observing two populations of BSs in NGC 188, including a centrally concentrated distribution as well as a halo population. Finally, we find NGC 188 to have a global RV dispersion of 0.64 ± 0.04 km s-1, which may be inflated by up to 0.23 km s-1 from unresolved binaries. When corrected for unresolved binaries, the NGC 188 RV dispersion has a nearly isothermal radial distribution. We use this mean-corrected velocity dispersion to derive a virial mass of 2300 ± 460 M sun .
New red giant star in the Kepler open cluster NGC 6819
NASA Astrophysics Data System (ADS)
Komucyeya, E.; Abedigamba, O. P.; Jurua, E.; Anguma, S. K.
2018-05-01
A recent study indicated that 39 red giant stars showing solar-like oscillations were discovered in the field of Kepleropen cluster NGC 6819. The study was based on photometric distance estimates of 27 stars out of the 39. Using photometric method alone may not be adequate to confirm the membership of these stars. The stars were not previously known in literature to belong to the open cluster NGC 6819. In this study, Kepler data was used to study the membership of the 27 stars. A plot of apparent magnitude as a function of the large frequency separation, supplemented with the proper motion and radial velocity values from literature revealed KIC 5112840 to lie on the same plane with the well known members of the cluster. Echelle diagram was constructed, and the median gravity-mode period spacings (ΔP) calculated for KIC 5112840. A value of ΔP = 66.3 s was obtained, thus placing the red giant star KIC 5112840 on the Red Giant Branch stage of evolution. Our evolutionary status result using the approach in this paper is in agreement with what is in the available literature.
Polarimetry of an intermediate-age open cluster: NGC 5617
NASA Astrophysics Data System (ADS)
Orsatti, A. M.; Feinstein, C.; Vergne, M. M.; Martínez, R. E.; Vega, E. I.
2010-04-01
Aims: We present polarimetric observations in the UBVRI bands of 72 stars located in the direction of the medium age open cluster NGC 5617. Our intention is to use polarimetry as a tool in membership identification, by building on previous investigations intended mainly to determine the cluster's general characteristics rather than provide membership suitable for studies such as stellar content and metallicity, as well as study the characteristics of the dust lying between the Sun and the cluster. Methods: The obsevations were carried out using the five-channel photopolarimeter of the Torino Astronomical Observatory attached to the 2.15 m telescope at the Complejo Astronómico El Leoncito (CASLEO; Argentina). Results: We are able to add 32 stars to the list of members of NGC 5617, and review the situation for others listed in the literature. In particular, we find that five blue straggler stars in the region of the cluster are located behind the same dust as the member stars are and we confirm the membership of two red giants. The proposed polarimetric memberships are compared with those derived by photometric and kinematical methods, with excellent results. Among the observed stars, we identify 10 with intrinsic polarization in their light. NGC 5617 can be polarimetrically characterized with Pmax = 4.40 % and θv = 73.1 deg. The spread in polarization values for the stars observed in the direction of the cluster seems to be caused by the uneven distribution of dust in front of the cluster's face. Finally, we find that in the direction of the cluster, the interstellar medium is apparently free of dust, from the Sun's position up to the Carina-Sagittarius arm, where NGC 5617 seems to be located at its farthest border. Based on observations obtained at Complejo Astronómico El Leoncito, operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the Universities of La Plata, Córdoba, and San Juan.
Detailed studies om three open clusters from Gaia ESO Survey (GES)
NASA Astrophysics Data System (ADS)
Balaguer-Núnez, L.; Casamiquela, L.; Jordana, N.; Massana, P.; Jordi, C.; Masana, E.
2017-03-01
We present results for the intermediate-age and old open clusters NGC 6633, NGC 6705 (M 11) and NGC 2682 (M 67). We have used new Str ̈omgren-Crawford photometry, proper motions from ROA observations and spectral information from Gaia-ESO Survey (GES), to study the physical parameters of the stars in the three cluster's areas. The astrometric studies cover an area of about 1°x2° and down to r' ˜ 17 while our INT-WFC CCD intermediate-band photometry covers an area of about 40'x40' down to V ˜ 19. The stars of those areas selected as cluster members from their proper motions, are classified into photometric regions and their physical parameters determined, using uvbyHβ photometry and standard relations among colour indices for each of the photometric regions of the HR diagram. That allows us to determine reddening, distances, absolute magnitudes, spectral types, effective temperatures, gravities and metallicities, thus providing an astrophysical characterization of the clusters. These results are compared with the physical parameters obtained from GES spectral data as well as radial velocities to confirm membership. All these data lead us to a comparison of photometric and spectroscopic physical parameters.
Membership and Coronal Activity in the NGC 2232 and Cr 140 Open Clusters
NASA Technical Reports Server (NTRS)
Oliversen, Ronald J. (Technical Monitor); Patten, Brian M.
2004-01-01
Making use of eight archival ROSAT HRI images in the regions of the NGC 2232 and Cr 140, this project's primary focus is to identify X-ray sources and to extract net source counts for these sources in these two open clusters. These X-ray data would be combined with ground-based photometry and spectroscopy in order to identify G, K, and early-M type cluster members. Such membership data are important because, at present, no members later than spectral type approx. F5 are currently known for either cluster. With ages estimated to be approx. 25 Myr and at distances of just approx. 350 pc, the combined late-type membership of the NGC 2232 and Cr 140 clusters would yield an almost unique sample of solar-type stars in the post-T Tauri/pre-main sequence phase of evolution. These stars could be used to assess the level and dispersion of coronal activity levels, as a part of a probe of the importance of magnetic braking and the level of magnetic dynamo activity, for solar-type stars just before they reach the zero-age main sequence.
A mass transfer origin for blue stragglers in NGC 188 as revealed by half-solar-mass companions.
Geller, Aaron M; Mathieu, Robert D
2011-10-19
In open star clusters, where all members formed at about the same time, blue straggler stars are typically observed to be brighter and bluer than hydrogen-burning main-sequence stars, and therefore should already have evolved into giant stars and stellar remnants. Correlations between blue straggler frequency and cluster binary star fraction, core mass and radial position suggest that mass transfer or mergers in binary stars dominates the production of blue stragglers in open clusters. Analytic models, detailed observations and sophisticated N-body simulations, however, argue in favour of stellar collisions. Here we report that the blue stragglers in long-period binaries in the old (7 × 10(9)-year) open cluster NGC 188 have companions with masses of about half a solar mass, with a surprisingly narrow mass distribution. This conclusively rules out a collisional origin, as the collision hypothesis predicts a companion mass distribution with significantly higher masses. Mergers in hierarchical triple stars are marginally permitted by the data, but the observations do not favour this hypothesis. The data are highly consistent with a mass transfer origin for the long-period blue straggler binaries in NGC 188, in which the companions would be white dwarfs of about half a solar mass.
First photometric analysis of six open cluster candidates
NASA Astrophysics Data System (ADS)
Piatti, A. E.; Clariá, J. J.; Ahumada, A. V.
2011-10-01
In this study we try to clarify the nature of six catalogued open cluster (OC) candidates using CCD UBVI_{KC} photometry down to V = 22. The objects are Haffner 3, Haffner 5, NGC 2368, Haffner 25, Hogg 3 and Hogg 4. None of them was found to be a real OC.
Estructura del diagrama HR para gigantes rojas de poblacion I de masas intermedias.
NASA Astrophysics Data System (ADS)
Clariá, J. J.; Lapasset, E.; Minniti, D.
1990-11-01
The structure of the HR diagram (clump and giant branch) for intermediate mass population I red giants is examined on the basis of multicolour photometry (UBV, DDO, and DT1T2) of open clusters belonging to the NGC 3532 and NGC 6475 groups.
NASA Astrophysics Data System (ADS)
Moździerski, D.; Pigulski, A.; Kopacki, G.; Kołaczkowski, Z.; Stęślicki, M.
2014-06-01
We present results of a BVIC variability survey in the young open cluster NGC 457 based on observations obtained during three separate runs spanning almost 20 years. In total, we found 79 variable stars, of which 66 are new. The BVIC photometry was transformed to the standard system and used to derive cluster parameters by means of isochrone fitting. The cluster is about 20 Myr old, the mean reddening amounts to about 0.48 mag in terms of the color excess E(B-V). Depending on the metallicity, the isochrone fitting yields a distance between 2.3 kpc and 2.9 kpc, which locates the cluster in the Perseus arm of the Galaxy. Using the complementary Hα photometry carried out in two seasons separated by over 10 years, we find that the cluster is very rich in Be stars. In total, 15 stars in the observed field of which 14 are cluster members showed Hα in emission either during our observations or in the past. Most of the Be stars vary in brightness on different time scales including short-period variability related most likely to g-mode pulsations. A single-epoch spectrum of NGC 457-6 shows that this Be star is presently in the shell phase. The inventory of variable stars in the observed field consists of a single β Cep-type star, NGC 457-8, 13 Be stars, 21 slowly pulsating B stars, seven δ Sct stars, one γ Dor star, 16 unclassified periodic stars, 8 eclipsing systems and a dozen of stars with irregular variability, of which six are also B-type stars. As many as 45 variable stars are of spectral type B which is the largest number in all open clusters presented in this series of papers. The most interesting is the discovery of a large group of slowly pulsating B stars which occupy the cluster main sequence in the range between V=11 mag and 14.5 mag, corresponding to spectral types B3 to B8. They all have very low amplitudes and about half show pulsations with frequencies higher than 3 d-1. We argue that these are most likely fast-rotating slowly pulsating B stars, observed also in other open clusters.
The star-forming history of the young cluster NGC 2264
NASA Technical Reports Server (NTRS)
Adams, M. T.; Strom, K. M.; Strom, S. E.
1983-01-01
UBVRI H-alpha photographic photometry was obtained for a sample of low-mass stars in the young open cluster NGC 2264 in order to investigate the star-forming history of this region. A theoretical H-R diagram was constructed for the sample of probable cluster members. Isochrones and evolutionary tracks were adopted from Cohen and Kuhi (1979). Evidence for a significant age spread in the cluster was found amounting to over ten million yr. In addition, the derived star formation rate as a function of stellar mass suggests that the principal star-forming mass range in NGC 2264 has proceeded sequentially in time from the lowest to the highest masses. The low-mass cluster stars were the first cluster members to form in significant numbers, although their present birth rate is much lower now than it was about ten million yr ago. The star-formation rate has risen to a peak at successively higher masses and then declined.
Membership and Coronal Activity in the NGC 2232 and Cr 140 Open Clusters
NASA Technical Reports Server (NTRS)
Patten, Brian M.; Oliversen, Ronald J. (Technical Monitor)
2001-01-01
This is the second annual performance report for our grant "Membership and Coronal Activity in the NGC 2232 and Cr 140 Open Clusters." We propose to identify X-ray sources and extract net source counts in 8 archival ROSAT HRI images in the regions of the NGC 2232 and Cr 140 open clusters. These X-ray data will be combined with ground-based photometry and spectroscopy in order to identify G, K, and early-M type cluster members. At present, no members later than approximately F5 are currently known for either cluster. With ages of approximately 25 Myr and at a distance of just 320 - 360 pc, the combined late-type membership of the NGC 2232 and Cr 140 clusters will yield an almost unique sample of solar-type stars in the post-T Tauri/pre-main sequence phase of evolution. These stars will be used to assess the level and dispersion in coronal activity levels, as part of a probe of the importance of magnetic braking and the level of magnetic dynamo activity, for solar-type stars just before they reach the ZAMS. Over the past year we have successfully acquired all of the ground-based data necessary to support the analysis of the archival ROSAT X-ray data in the regions around both of these clusters. By the end of 2001 we expect to have completed the reduction and analysis of the ground-based photometry and spectroscopy and will begin the integration of these data with the ROSAT X-ray data. A certain amount of pressure to complete the work on NGC 2232 is coming from the SIRTF project, as this cluster may be a key component to a circumstellar disk evolution GTO program. We are only too happy to try to help and have worked to speed the analysis as much as possible. The primary activity to be undertaken in the next few months is the integration of the groundbased photometry and spectroscopy with the archival ROSAT X-ray data and then writing the paper summarizing our results. The most time consuming portion of this next phase is, of course, seeing the paper through publication in a peer-reviewed journal. Therefore, we have requested a no-cost extension to the grant to allow us to bring this project to a conclusion.
WIYN Open Cluster Study. XXXVI. Spectroscopic Binary Orbits in NGC 188
2009-04-01
2000; Pleiades , Mermilliod et al. 1992; M67, Mathieu et al. 1990). Today, the advent of multi-object spectrographs permits surveys of larger stellar...open clusters (e.g., M67, Mathieu et al. (1990); Praesepe, Mermilliod et al. (1994); Pleiades , Bouvier et al. (1997); Hyades, Patience et al. (1998
The B and Be Star Population of NGC 3766
NASA Astrophysics Data System (ADS)
McSwain, M. V.
2006-12-01
I present results from a spectroscopic monitoring program of B and Be stars in the open cluster NGC 3766. From a 4-year time baseline of photometric and spectroscopic data, I have identified 9 Be stars in the cluster that have undergone disk outbursts or whose disks have disappeared. Using Kurucz ATLAS9 model spectra to measure temperatures, gravities, rotational velocities, and abundances among the cluster members, I present preliminary results of the stellar and cluster properties that may affect the long term variability of Be stars. M.V.M. is supported by an NSF Astronomy and Astrophysics Postdoctoral Fellowship under award AST-0401460.
The Search for Bright Variable Stars in Open Cluster NGC 6819.
NASA Astrophysics Data System (ADS)
Talamantes, Antonio; Sandquist, E. L.
2009-01-01
During this research period data was taken for seven nights at the 1m telescope at Mt. Laguna Observatory for the open cluster NGC 6819. For four of the nights data was taken using a V-band filter. For the three nights remaining nights the data was taken using an R-band filter. Photometry was done using the ISIS image subtraction package. Six new variable stars were located using these techniques. These variable types include a pulsating variable, five detached eclipsing binaries. Of the detached eclipsing binaries, three are near the cluster turnoff and two in the blue straggler region(and one of these has total eclipses). Nine previously known variables(six contact binaries, two detached eclipsing binaries and one near-contact binary) were also studied.
VizieR Online Data Catalog: NGC 225 CCD UBV photometry (Bilir+, 2016)
NASA Astrophysics Data System (ADS)
Bilir, S.; Bostanci, Z. F.; Yontan, T.; Guver, T.; Bakis, V.; Ak, T.; Ak, S.; Paunzen, E.; Eker, Z.
2016-11-01
CCD UBVRI images of the open cluster NGC 225 and standard stars selected from Landolt (2009, Cat. J/AJ/137/4186) were acquired on 2012 July 18 using a 1-m Ritchey-Chretien telescope (T100) located at the TUBITAK National Observatory (TUG) in Bakirlitepe, Antalya/Turkey. (1 data file).
VizieR Online Data Catalog: NGC 6819 CCD UBV photometry (Ak+, 2016)
NASA Astrophysics Data System (ADS)
Ak, T.; Bostanci, Z. F.; Yontan, T.; Bilir, S.; Guver, T.; Ak, S.; Urgup, H.; Paunzen, E.
2016-11-01
CCD UBVRI images of the open cluster NGC 6819 and standard stars selected from Landolt (2009, Cat. J/AJ/137/4186) were acquired on 2015 May 18 using a 1-m Ritchey-Chretien telescope (T100) located at the TUBITAK National Observatory (TUG) in Bakirlitepe, Antalya/Turkey. (1 data file).
The fate of NGC602, an intense region of star-formation in the Wing of the SMC
NASA Astrophysics Data System (ADS)
Sabbi, Elena
2017-08-01
This is a small 2 orbit proposal designed to measure the internal dynamics of NGC602, a small region of intense star formation in the Wing of the SMC, with a low gas and dust density that has been often considered an unfavorable place for star formation. Small regions of massive star formation are important to study for our understanding of the process of star and cluster formation, the ionization of the interstellar medium, and the injection of energy and momentum into their host galaxy. By combining our new observations with archival ACS/WFC data acquired in July 2004, we will be able to measure the relative proper motions of the NGC602 sub-structures better than 2.3 km/s and investigate the nature of the apparently isolated massive stars found around NGC602. This study will provide unique observational data to characterize the early phase of cluster evolution and test cluster formation theories. It will also address significant open issues in star formation, cluster dynamics and the origin of isolated supernovae and GRBs.
On the lithium dip in the metal poor open cluster NGC 2243
NASA Astrophysics Data System (ADS)
François, P.; Pasquini, L.; Biazzo, K.; Bonifacio, P.; Palsa, R.
2014-05-01
Lithium is a key element for studying the mixing mechanisms operating in stellar interiors. It can also be used to probe the chemical evolution of the Galaxy and the Big Bang nucleosynthesis. Measuring the abundance of Lithium in stars belonging to Open Clusters (hereafter OC) allows a detailed comparison with stellar evolutionary models. NGC 2243 is particularly interesting thanks to its relative low metallicity ([Fe/H]=-0.54 ± 0.10 dex). We performed a detailed analysis of high-resolution spectra obtained with the multi-object facility FLAMES at the VLT 8.2m telescope. Lithium abundance has been measured in 27 stars. We found a Li dip center of 1.06 M⊙, which is significantly smaller than that observed in solar metallicity and metal-rich clusters. This finding confirms and strengthens the conclusion that the mass of the stars in the Li dip strongly depends on stellar metallicity. The mean Li abundance of the cluster is log n(Li) = 2.70 dex, which is substantially higher than that observed in 47 Tue. We derived an iron abundance of [Fe/H]=-0.54±0.10 dex for NGC 2243, in agreement (within the errors) with previous findings.
NGC 2548: clumpy spatial and kinematic structure in an intermediate-age Galactic cluster
NASA Astrophysics Data System (ADS)
Vicente, Belén; Sánchez, Néstor; Alfaro, Emilio J.
2016-09-01
NGC 2548 is a ˜400-500 Myr old open cluster with evidence of spatial substructures likely caused by its interaction with the Galactic disc. In this work we use precise astrometric data from the Carte du Ciel - San Fernando (CdC-SF) catalogue to study the clumpy structure in this cluster. We confirm the fragmented structure of NGC 2548 but, additionally, the relatively high precision of our kinematic data lead us to the first detection of substructures in the proper motion space of a stellar cluster. There are three spatially separated cores each of which has its own counterpart in the proper motion distribution. The two main cores lie nearly parallel to the Galactic plane whereas the third one is significantly fainter than the others and it moves towards the Galactic plane separating from the rest of the cluster. We derive core positions and proper motions, as well as the stars belonging to each core.
The Open Cluster NGC 2437 (Messier 46)
NASA Astrophysics Data System (ADS)
Davidge, T. J.
2013-02-01
The stellar content of the open cluster NGC 2437 (Messier 46) is investigated using moderately deep u∗, g‧, and r‧ MegaCam images. When compared with solar metallicity isochrones, the (g‧,u‧ - g‧) and (r‧,g‧ - r‧) CMDs are consistent with an age log(tyr) = 8.35 ± 0.15, a distance modulus μ0 = 11.05 ± 0.05, and a color excess E(B - V) = 0.115 ± 0.035. The r‧ luminosity function (LF) of main sequence stars in the magnitude range r‧ < 17 (i.e., masses ≳0.8 M⊙) has a shape that follows solar neighborhood star counts. However, at fainter magnitudes, the cluster LF is flat, in contrast with what would be expected from solar neighborhood counts. The clustering properties of stars in NGC 2437 are investigated by examining the two-point angular correlation functions of main sequence stars in different brightness ranges. Main sequence stars fainter than r‧ = 17 are less centrally concentrated than brighter stars and are found over a larger area of the sky, suggesting that there is a corona of faint main sequence stars around NGC 2437. Based on the flat LF and extended spatial distribution of faint stars, it is concluded that NGC 2437 is actively shedding stars with masses ≲0.8 M⊙. Based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and Commissariat à l'énergie atomique et aux énergies alternative (CEA)/Dapnia, at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l’Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii.
Optical and near-infrared photometric study of NGC 6724
NASA Astrophysics Data System (ADS)
Bendary, Reda; Tadross, Ashraf; Hasan, Priya; Osman, Anas; Essam, Ahmed
2018-02-01
BVRI CCD photometry of the poorly studied open cluster NGC 6724 has been carried out down to a limiting magnitude of V∼20 mag. The stars of the cluster have been observed using the Newtonian focus (f/4.84) of the 74-inch telescope at Kottamia Astronomical Observatory in Egypt. Also, the 2MASS - JHK system is used to confirm the results we obtained. The main photometric parameters have been estimated for the present object; the diameter is found to be 6 arcmin, the distance is 1530±60 pc from the Sun and the age is 900±50 Myr. The optical reddening E(B-V)=0.65 {mag}, while the infrared reddening is E(J-H)=0.20 {mag}. The slope of the mass function distribution and the relaxation time estimations indicate that cluster NGC 6724 is dynamically relaxed.
NASA Astrophysics Data System (ADS)
Piskunov, A. E.; Belikov, A. N.; Kharchenko, N. V.; Sagar, R.; Subramaniam, A.
2004-04-01
We construct the observed luminosity functions of the remote young open clusters NGC 2383, 2384, 4103, 4755, 7510 and Hogg 15 from CCD observations of them. The observed LFs are corrected for field star contamination determined with the help of a Galactic star count model. In the case of Hogg 15 and NGC 2383 we also consider the additional contamination from neighbouring clusters NGC 4609 and 2384, respectively. These corrections provide a realistic pattern of cluster LF in the vicinity of the main-sequence (MS) turn-on point and at fainter magnitudes reveal the so-called H-feature arising as a result of the transition of the pre-MS phase to the MS, which is dependent on the cluster age. The theoretical LFs are constructed representing a cluster population model with continuous star formation for a short time-scale and a power-law initial mass function (IMF), and these are fitted to the observed LF. As a result, we are able to determine for each cluster a set of parameters describing the cluster population (the age, duration of star formation, IMF slope and percentage of field star contamination). It is found that in spite of the non-monotonic behaviour of observed LFs, cluster IMFs can be described as power-law functions with slopes similar to Salpeter's value. The present main-sequence turn-on cluster ages are several times lower than those derived from the fitting of theoretical isochrones to the turn-off region of the upper main sequences.
First CCD UBVI photometric analysis of six open cluster candidates
NASA Astrophysics Data System (ADS)
Piatti, A. E.; Clariá, J. J.; Ahumada, A. V.
2011-04-01
We have obtained CCD UBVIKC photometry down to V ˜ 22 for the open cluster candidates Haffner 3, Haffner 5, NGC 2368, Haffner 25, Hogg 3 and Hogg 4 and their surrounding fields. None of these objects have been photometrically studied so far. Our analysis shows that these stellar groups are not genuine open clusters since no clear main sequences or other meaningful features can be seen in their colour-magnitude and colour-colour diagrams. We checked for possible differential reddening across the studied fields that could be hiding the characteristics of real open clusters. However, the dust in the directions to these objects appears to be uniformly distributed. Moreover, star counts carried out within and outside the open cluster candidate fields do not support the hypothesis that these objects are real open clusters or even open cluster remnants.
NASA Technical Reports Server (NTRS)
Boehm-Vitense, E.; Hodge, P.
1984-01-01
High-resolution and low-resolution IUE spectra of O and B stars in the LMC cluster NGC 2100, the SMC cluster NGC 330, and the young Galactic cluster NGC 6530 are investigated. Temperatures and luminosities are determined. In the LMC and SMC clusters, the most luminous stars are evolved stars on the horizontal supergiant branch, while in NGC 6530 the stars are all still on the main sequence. Extinction laws were determined. They confirm the known differences between LMC and Galactic extinctions. No mass loss was detected for the evolved B stars in the LMC and SMC clusters, while the high-luminosity stars in NGC 6530 show P Cygni profiles.
A Deep X-ray Survey of Low-Mass PMS Stars in NGC 2264
NASA Technical Reports Server (NTRS)
Simon, Theodore
2005-01-01
Two X-ray images were obtained with the XMM-Newton spacecraft of more than 300 members of the NGC 2264 Open Cluster and its associated molecular cloud in order to investigate their magnetic activity. The X-ray fluxes extracted from those observations were used to study the dependence of stellar dynamo activity upon age and rotation for the optically revealed T Tauri stars and to place empirical constraints on theoretical models of angular momentum/dynamo evolution. The observations were also used to study the role of magnetic fields in the formation of low mass stars through the observation of very young protostars that are deeply embedded in the molecular cloud located behind the visible open cluster.
WIYN OPEN CLUSTER STUDY. LXXI. SPECTROSCOPIC MEMBERSHIP AND ORBITS OF NGC 6791 SUB-SUBGIANTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milliman, Katelyn E.; Leiner, Emily; Mathieu, Robert D.
2016-06-01
In an optical color–magnitude diagram, sub-subgiants (SSGs) lie redward of the main sequence and fainter than the base of the red giant branch in a region not easily populated by standard stellar-evolution pathways. In this paper, we present multi-epoch radial velocities for five SSG candidates in the old and metal-rich open cluster NGC 6791 (8 Gyr, [Fe/H] = +0.30). From these data, we are able to make three-dimensional kinematic membership determinations and confirm four SSG candidates as likely cluster members. We also identify three member SSGs as short-period binary systems and present their orbital solutions. These are the first SSGsmore » with known three-dimensional kinematic membership, binary status, and orbital parameters since the two SSGs in M67 studied by Mathieu et al. We also remark on the other properties of these stars including photometric variability, H α emission, and X-ray luminosity. The membership confirmation of these SSGs in NGC 6791 strengthens the case that SSGs are a new class of nonstandard stellar evolution products, and that a physical mechanism must be found that explains the evolutionary paths of these stars.« less
Globular and Open Clusters Observed by SDSS/SEGUE: the Giant Stars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morrison, Heather L.; Ma, Zhibo; Clem, James L.
We present griz observations for the clusters M92, M13 and NGC 6791 and gr photometry for M71, Be 29 and NGC 7789. In addition we present new membership identifications for all these clusters, which have been observed spectroscopically as calibrators for the SDSS/SEGUE survey; this paper focuses in particular on the red giant branch stars in the clusters. In a number of cases, these giants were too bright to be observed in the normal SDSS survey operations, and we describe the procedure used to obtain spectra for these stars. For M71, also present a new variable reddening map and amore » new fiducial for the gr giant branch. For NGC 7789, we derived a transformation from Teff to g-r for giants of near solar abundance, using IRFM Teff measures of stars with good ugriz and 2MASS photometry and SEGUE spectra. The result of our analysis is a robust list of known cluster members with correctly dereddened and (if needed) transformed gr photometry for crucial calibration efforts for SDSS and SEGUE.« less
Globular and Open Clusters Observed by SDSS/SEGUE: The Giant Stars
NASA Astrophysics Data System (ADS)
Morrison, Heather L.; Ma, Zhibo; Clem, James L.; An, Deokkeun; Connor, Thomas; Schechtman-Rook, Andrew; Casagrande, Luca; Rockosi, Constance; Yanny, Brian; Harding, Paul; Beers, Timothy C.; Johnson, Jennifer A.; Schneider, Donald P.
2016-01-01
We present griz observations for the clusters M92, M13 and NGC 6791 and gr photometry for M71, Be 29 and NGC 7789. In addition we present new membership identifications for all these clusters, which have been observed spectroscopically as calibrators for the Sloan Digital Sky Survey (SDSS)/SEGUE survey; this paper focuses in particular on the red giant branch stars in the clusters. In a number of cases, these giants were too bright to be observed in the normal SDSS survey operations, and we describe the procedure used to obtain spectra for these stars. For M71, we also present a new variable reddening map and a new fiducial for the gr giant branch. For NGC 7789, we derived a transformation from Teff to g-r for giants of near solar abundance, using IRFM Teff measures of stars with good ugriz and 2MASS photometry and SEGUE spectra. The result of our analysis is a robust list of known cluster members with correctly dereddened and (if needed) transformed gr photometry for crucial calibration efforts for SDSS and SEGUE.
Globular and Open Clusters Observed by SDSS/SEGUE: the Giant Stars
Morrison, Heather L.; Ma, Zhibo; Clem, James L.; ...
2015-12-18
We present griz observations for the clusters M92, M13 and NGC 6791 and gr photometry for M71, Be 29 and NGC 7789. In addition we present new membership identifications for all these clusters, which have been observed spectroscopically as calibrators for the SDSS/SEGUE survey; this paper focuses in particular on the red giant branch stars in the clusters. In a number of cases, these giants were too bright to be observed in the normal SDSS survey operations, and we describe the procedure used to obtain spectra for these stars. For M71, also present a new variable reddening map and amore » new fiducial for the gr giant branch. For NGC 7789, we derived a transformation from Teff to g-r for giants of near solar abundance, using IRFM Teff measures of stars with good ugriz and 2MASS photometry and SEGUE spectra. The result of our analysis is a robust list of known cluster members with correctly dereddened and (if needed) transformed gr photometry for crucial calibration efforts for SDSS and SEGUE.« less
Bayesian investigation of isochrone consistency using the old open cluster NGC 188
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hills, Shane; Courteau, Stéphane; Von Hippel, Ted
2015-03-01
This paper provides a detailed comparison of the differences in parameters derived for a star cluster from its color–magnitude diagrams (CMDs) depending on the filters and models used. We examine the consistency and reliability of fitting three widely used stellar evolution models to 15 combinations of optical and near-IR photometry for the old open cluster NGC 188. The optical filter response curves match those of theoretical systems and are thus not the source of fit inconsistencies. NGC 188 is ideally suited to this study thanks to a wide variety of high-quality photometry and available proper motions and radial velocities thatmore » enable us to remove non-cluster members and many binaries. Our Bayesian fitting technique yields inferred values of age, metallicity, distance modulus, and absorption as a function of the photometric band combinations and stellar models. We show that the historically favored three-band combinations of UBV and VRI can be meaningfully inconsistent with each other and with longer baseline data sets such as UBVRIJHK{sub S}. Differences among model sets can also be substantial. For instance, fitting Yi et al. (2001) and Dotter et al. (2008) models to UBVRIJHK{sub S} photometry for NGC 188 yields the following cluster parameters: age = (5.78 ± 0.03, 6.45 ± 0.04) Gyr, [Fe/H] = (+0.125 ± 0.003, −0.077 ± 0.003) dex, (m−M){sub V} = (11.441 ± 0.007, 11.525 ± 0.005) mag, and A{sub V} = (0.162 ± 0.003, 0.236 ± 0.003) mag, respectively. Within the formal fitting errors, these two fits are substantially and statistically different. Such differences among fits using different filters and models are a cautionary tale regarding our current ability to fit star cluster CMDs. Additional modeling of this kind, with more models and star clusters, and future Gaia parallaxes are critical for isolating and quantifying the most relevant uncertainties in stellar evolutionary models.« less
Searching for the birthplaces of open clusters with ages of several billion years
NASA Astrophysics Data System (ADS)
Acharova, I. A.; Shevtsova, E. S.
2016-01-01
We discuss the possibility of finding the birthplaces of open clusters (OC) with ages of several billion years. The proposed method is based on the comparison of the results of the chemical evolution modeling of the Galactic disk with the parameters of the cluster. Five OCs older than 7 Gyr are known: NGC6791, BH176, Collinder 261, Berkeley 17, and Berkeley 39. The oxygen and iron abundances in NGC6791 and the oxygen abundance in BH176 are twice the solar level, the heavy-element abundances in other clusters are close to the corresponding solar values. According to chemical evolution models, at the time of the formation of the objects considered the regions where the oxygen and iron abundances reached the corresponding levels extended out to 5 kpc from the Galactic center.At present time theOCs considered are located several kpc from the Galactic center. Some of these clusters are located extremely high, about 1 kpc above the disk midplane, i.e., they have been subject to some mechanism that has carried them into orbits uncharacteristic of this type of objects. It follows from a comparison with the results of chemical evolution that younger clusters with ages of 4-5 Gyr, e.g., NGC1193,M67, and others, may have formed in a broad range of Galactocentric distances. Their large heights above the disk midplane is sufficient to suggest that these clusters have moved away from their likely birthplaces. Clusters are carried far away from the Galactic disk until the present time: about 40 clusters with ages from 0 to 2 Gyr are observed at heights ranging from 300 to 750 pc.
The gap in the color-magnitude diagram of NGC 2420: A test of convective overshoot and cluster age
NASA Technical Reports Server (NTRS)
Demarque, Pierre; Sarajedini, Ata; Guo, X.-J.
1994-01-01
Theoretical isochrones have been constructed using the OPAL opacities specifically to study the color-magnitude diagram of the open star cluster NGC 2420. This cluster provides a rare test of core convection in intermediate-mass stars. At the same time, its age is of interest because of its low metallicity and relatively high Galactic latitude for an open cluster. The excellent color-magnitude diagram constructed by Anthony-Twarog et al. (1990) allows a detailed fit of the isochrones to the photometric data. We discuss the importance of convective overshoot at the convective core edge in determining the morphology of the gap located near the main-sequence turnoff. We find that given the assumptions made in the models, a modest amount of overshoot (0.23 H(sub p)) is required for the best fit. Good agreement is achieved with all features of the turnoff gap for a cluster age of 2.4 +/- 0.2 Gyr. We note that a photometrically complete luminosity function near the main-sequence turnoff and subgiant branch would also provide an important test of the overshoot models.
A Photometric Survey of the Open Clusters NGC 7789 and M67
NASA Astrophysics Data System (ADS)
Janes, Kenneth
2010-01-01
Although there is strong evidence that stellar activity declines as a star ages, beyond about the age of the Hyades (600 Myr) there is little direct confirmation of this decline in stars of known age. This report is an update of an earlier report (Hayes-Gehrke, et al., 2004, AJ, 128, 2862) of a long-term project to explore stellar activity in old open clusters. I have now accumulated 12 years of photometry of the old clusters NGC 7789 (about 1.8 Gyr) and M 67 (about 4 Gyr). An analysis of these data has revealed a substantial number of low-amplitude variable stars in both clusters, including a number of previously-discovered eclipsing binary stars, and several stars near the main sequence turnoff of both clusters that exhibit apparently erratic variations. Some of the M 67 erratics are known X-ray sources. On the main sequence, the large majority of stars show little or no evidence for variability at the 0.1% - 0.2% level, consistent with a regular systematic decline in activity level with age.
Estrellas variables reconocidas en el campo del cúmulo abierto NGC 6250
NASA Astrophysics Data System (ADS)
Oviedo, C. G.; Palma, T.; Chavero, C.; Dékány, I.; Clariá, J. J.; Minniti, D.
2017-10-01
We present preliminary results obtained from a search of variable stars in the field of the moderately young open cluster NGC6250. The present study is based on the analysis of photometric near-infrared data in the and bands obtained with the 4.1m VISTA telescope of the VVV (Vista Variables in the Vía Láctea) Survey. Based on the obtained light curves, we performed a first classification of the newly detected variable stars. We also present the color-magnitude diagram of NGC6250, which is projected towards the galactic center direction, and we examined the possible physical association of the new variables discovered to NGC6250.
NASA Astrophysics Data System (ADS)
Corsaro, Enrico; Lee, Yueh-Ning; García, Rafael A.; Hennebelle, Patrick; Mathur, Savita; Beck, Paul G.; Mathis, Stephane; Stello, Dennis; Bouvier, Jérôme
2017-10-01
Stars originate by the gravitational collapse of a turbulent molecular cloud of a diffuse medium, and are often observed to form clusters. Stellar clusters therefore play an important role in our understanding of star formation and of the dynamical processes at play. However, investigating the cluster formation is diffcult because the density of the molecular cloud undergoes a change of many orders of magnitude. Hierarchical-step approaches to decompose the problem into different stages are therefore required, as well as reliable assumptions on the initial conditions in the clouds. We report for the first time the use of the full potential of NASA Kepler asteroseismic observations coupled with 3D numerical simulations, to put strong constraints on the early formation stages of open clusters. Thanks to a Bayesian peak bagging analysis of about 50 red giant members of NGC 6791 and NGC 6819, the two most populated open clusters observed in the nominal Kepler mission, we derive a complete set of detailed oscillation mode properties for each star, with thousands of oscillation modes characterized. We therefore show how these asteroseismic properties lead us to a discovery about the rotation history of stellar clusters. Finally, our observational findings will be compared with hydrodynamical simulations for stellar cluster formation to constrain the physical processes of turbulence, rotation, and magnetic fields that are in action during the collapse of the progenitor cloud into a proto-cluster.
NASA Astrophysics Data System (ADS)
Wu, T.; Li, Y.; Hekker, S.
2014-01-01
Stellar mass M, radius R, and gravity g are important basic parameters in stellar physics. Accurate values for these parameters can be obtained from the gravitational interaction between stars in multiple systems or from asteroseismology. Stars in a cluster are thought to be formed coevally from the same interstellar cloud of gas and dust. The cluster members are therefore expected to have some properties in common. These common properties strengthen our ability to constrain stellar models and asteroseismically derived M, R, and g when tested against an ensemble of cluster stars. Here we derive new scaling relations based on a relation for stars on the Hayashi track (\\sqrt{T_eff} \\sim g^pR^q) to determine the masses and metallicities of red giant branch stars in open clusters NGC 6791 and NGC 6819 from the global oscillation parameters Δν (the large frequency separation) and νmax (frequency of maximum oscillation power). The Δν and νmax values are derived from Kepler observations. From the analysis of these new relations we derive: (1) direct observational evidence that the masses of red giant branch stars in a cluster are the same within their uncertainties, (2) new methods to derive M and z of the cluster in a self-consistent way from Δν and νmax, with lower intrinsic uncertainties, and (3) the mass dependence in the Δν - νmax relation for red giant branch stars.
CHEMICAL ABUNDANCES OF MEMBER STARS IN THE OPEN CLUSTER NGC 2632 (PRAESEPE)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, X. L.; Chen, Y. Q.; Zhao, G.
2015-11-15
Based on high-resolution, high signal-to-noise ratio spectra, we present abundances of 17 elements (Fe, O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Co, Ni, Y, Zr, Ba, La) for six stars (one Am star, one F dwarf star, and four GK giant stars) and radial velocities for 18 proper-motion selected member stars in the open cluster NGC 2632. In the Am star, s-process elements Y and Ba are clearly overabundant, which may be considered as an indicator of a peculiar Am star. The average [Fe/H] is 0.16 ± 0.06 from four GK giant member stars, which is similarmore » to that of solar-type stars in the literature. As compared with dwarf stars, significant overabundances are found for Na, Mg, and Ba elements in our giant stars, which can be explained by the evolutionary effect. We also detect a star-to-star scatter of [Na/Fe] ratios among four giants which locate approximately at the same position in the CMD. Finally, we perform an analysis on the possible connection between the abundance and spatial structure of NGC 2632, but we find no inhomogeneous abundance among different clumps of stars in this cluster based on our limited sample.« less
GLOBULAR AND OPEN CLUSTERS OBSERVED BY SDSS/SEGUE: THE GIANT STARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morrison, Heather L.; Ma, Zhibo; Connor, Thomas
We present griz observations for the clusters M92, M13 and NGC 6791 and gr photometry for M71, Be 29 and NGC 7789. In addition we present new membership identifications for all these clusters, which have been observed spectroscopically as calibrators for the Sloan Digital Sky Survey (SDSS)/SEGUE survey; this paper focuses in particular on the red giant branch stars in the clusters. In a number of cases, these giants were too bright to be observed in the normal SDSS survey operations, and we describe the procedure used to obtain spectra for these stars. For M71, we also present a newmore » variable reddening map and a new fiducial for the gr giant branch. For NGC 7789, we derived a transformation from T{sub eff} to g–r for giants of near solar abundance, using IRFM T{sub eff} measures of stars with good ugriz and 2MASS photometry and SEGUE spectra. The result of our analysis is a robust list of known cluster members with correctly dereddened and (if needed) transformed gr photometry for crucial calibration efforts for SDSS and SEGUE.« less
WIYN OPEN CLUSTER STUDY. XXXVI. SPECTROSCOPIC BINARY ORBITS IN NGC 188
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geller, Aaron M.; Mathieu, Robert D.; Harris, Hugh C.
2009-04-15
We present 98 spectroscopic binary orbits resulting from our ongoing radial velocity survey of the old (7 Gyr) open cluster NGC 188. All but 13 are high-probability cluster members based on both radial velocity and proper motion membership analyses. Fifteen of these member binaries are double lined. Our stellar sample spans a magnitude range of 10.8 {<=}V{<=} 16.5 (1.14-0.92 M {sub sun}) and extends spatially to 17 pc ({approx}13 core radii). All of our binary orbits have periods ranging from a few days to on the order of 10{sup 3} days, and thus are hard binaries that dynamically power themore » cluster. For each binary, we present the orbital solutions and place constraints on the component masses. Additionally, we discuss a few binaries of note from our sample, identifying a likely blue straggler-blue straggler binary system (7782), a double-lined binary with a secondary star which is underluminous for its mass (5080), two potential eclipsing binaries (4705 and 5762), and two binaries which are likely members of a quadruple system (5015a and 5015b)« less
Vilnius Multicolor CCD Photometry of the Open Cluster NGC 752
NASA Astrophysics Data System (ADS)
Bartašiūtė, S.; Janusz, R.; Boyle, R. P.; Philip, A. G. Davis
We have performed multicolor CCD observations of the central area of NGC 752 to search for faint, low-mass members of this open cluster. Four 12'x12' fields were taken on the 1.8 m Vatican Advanced Technology Telescope (Mt. Graham, Arizona) using a 4K CCD camera and eight intermediate-band filters of the Strömvil system. In this paper we present a catalog of photometry for 405 stars down to the limiting magnitude V=18.5, which contains V magnitudes and color indices of the Vilnius system, together with photometric determinations of spectral types, absolute magnitudes MV, interstellar reddening values EY-V and metallicity parameters [Fe/H]. The good quality multicolor data made it possible to identify the locus of the lower main sequence to four magnitudes beyond the previous (photographic) limit. A relatively small number of photometric members identified at faint magnitudes seems to be indicative of actual dissolution of the cluster from the low-mass end.
Tails and streams around the Galactic globular clusters NGC 1851, NGC 1904, NGC 2298 and NGC 2808
NASA Astrophysics Data System (ADS)
Carballo-Bello, Julio A.; Martínez-Delgado, David; Navarrete, Camila; Catelan, Márcio; Muñoz, Ricardo R.; Antoja, Teresa; Sollima, Antonio
2018-02-01
We present Dark Energy Camera imaging for the peculiar Galactic globular clusters NGC 1851, NGC 1904 (M 79), NGC 2298 and NGC 2808. Our deep photometry reveals that all the clusters have an important contribution of stars beyond their King tidal radii and present tails with different morphologies. We have also explored the surroundings of the clusters where the presence of the Canis Major overdensity and/or the low Galactic latitude Monoceros ring at d⊙ ˜ 8 kpc is evident. A second stellar system is found at d⊙ ˜ 17 kpc and spans at least 18 deg × 15 deg in the sky. As one of the possible scenarios to explain that feature, we propose that the unveiled system is part of Monoceros explained as a density wave moving towards the outer Milky Way. Alternatively, the unveiled system might be connected with other known halo substructures or associated with the progenitor dwarf galaxy of NGC 1851 and NGC 1904, which are widely considered accreted globular clusters.
NASA Astrophysics Data System (ADS)
Clariá, J. J.; Mermilliod, J. C.; Piatti, A. E.
We present new Coravel radial-velocity observations and photoelectric photometry in the UBV, DDO and Washington systems for a sample of red giant candidates in the field of the intermediate-age open cluster NGC 2354. Photometric membership probabilities show very good agrement with those obtained from Coravel radial velocities. The analysis of the photometric and kinematical data allow us to confirm cluster membership for 9 red giants, one of them being a spectroscopic binary, while 4 confirmed spectroscopic binaries appear to be probable members. We have also discovered 4 spectroscopic binaries not belonging to the cluster. A mean radial velocity of (33.40±0.27)km s-1 and a mean reddening E(B-V)= 0.13±0.03 were derived for the cluster giants. NGC 2354 has a mean ultraviolet excess <δ(U-B)>=-0.03±0.01, relative to the field K giants, and a mean new cyanogen anomaly ΔCN=-0.035±0.007, both implying [Fe/H]≈-0.3. The moderately metal-poor character of NGC 2354 is confirmed using five different metal abundance indicators of the Washington system. The cluster giant branch is formed by a well defined clump of 7 stars and 4 stars with high membership probabilities seem to define an ascending giant branch. The whole red giant locus cannot be reproduced by any theoretical track. This paper will appear in Astron. & Astrophys. Suppl. (1999).
Hubble space telescope observations of young star clusters in NGC-4038/4039, 'the antennae' galaxies
NASA Technical Reports Server (NTRS)
Whitmore, Bradley C.; Schweizer, Francois
1995-01-01
New, high-resolution images of the disks of NGC 4038/4039 obtained with the Wide Field Camera of the Hubble Space Telescope (HST) are presented. NGC 4038/4039, nicknamed The Antennae, is a prototypical example of a pair of colliding galaxies believed to be at an early stage of a merger. Down to the limiting magnitude of V approximately 23 mag, the HST images reveal a population of over 700 blue pointlike objects within the disks. The mean absolute magnitude of these objects is M(sub V) = -11 mag, with the brightest objects reaching M(sub V) approximately -15. Their mean apparent color indices ar U - V = -0.7 mag and V - 1 = 0.8 mag on the Johnson UVI passband system, while their mean indices corrected for internal reddening are (u - v)(sub 0) = -1.0 mag and (V - I(sub 0) = 0.5. Their mean effective radius, determined from slightly resolved images, is 18 pc (for H(sub 0) = 50 km/s /Mpc). Based on their luminosities and resolution, most of these objects cannot be individual stars, but are likely young compact star clusters. The brighter ones are similar to the objects found in NGC 1275 and NGC 7252, which appear to be young globular clusters formed during recent galazy mergers. Based on their U - V and V - I colors, the brightest, bluest clusters of NGC 4038/4039 appear to be less than 10 Myr old. Most of these bright clusters are relatively tightly clustered themselves, with typically a dozen individual clusters belonging to a complex identified as a giant H II region from ground-based observations. The cluster luminosity function (LF) is approximately a power law, phi(L)dL proportional to L(exp -1.78+/-0.05)dL, with no hint of a turnover at fainter magnitudes. This power-law shape agrees with the LF of Magellanic Cloud clusters and Galactic open clusters, but differs from the LF of old globular cluster systems that is typically Gaussian with a Full Width at Half Maximum (FWHM) of approximately 3 mag. Besides the blue clusters, we also find about a dozen extremely red objects with V - I greater than 3.0. The highest number density of these red objects is found in the SE quadrant, where star formation appears to be most recent. We propose that these objects may be very young star clusters still embedded in their placental dust cocoons.
The first search for variable stars in the open cluster NGC 6253 and its surrounding field
NASA Astrophysics Data System (ADS)
de Marchi, F.; Poretti, E.; Montalto, M.; Desidera, S.; Piotto, G.
2010-01-01
Aims: This work presents the first high-precision variability survey in the field of the intermediate-age, metal-rich open cluster NGC 6253. Clusters of this type are benchmarks for stellar evolution models. Methods: Continuous photometric monitoring of the cluster and its surrounding field was performed over a time span of ten nights using the Wide Field Imager mounted at the ESO-MPI 2.2 m telescope. High-quality timeseries, each composed of about 800 datapoints, were obtained for 250 000 stars using ISIS and DAOPHOT packages. Candidate members were selected by using the colour-magnitude diagrams and period-luminosity-colour relations. Membership probabilities based on the proper motions were also used. The membership of all the variables discovered within a radius of 8´ from the centre is discussed by comparing the incidence of the classes in the cluster direction and in the surrounding field. Results: We discovered 595 variables and we also characterized most of them providing their variability classes, periods, and amplitudes. The sample is complete for short periods: we classified 20 pulsating variables, 225 contact systems, 99 eclipsing systems (22 β Lyr type, 59 β Per type, 18 RS CVn type), and 77 rotational variables. The time-baseline hampered the precise characterization of 173 variables with periods longer than 4-5 days. Moreover, we found a cataclysmic system undergoing an outburst of about 2.5 mag. We propose a list of 35 variable stars as probable members of NGC 6253. ARRAY(0x383c870)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, T.; Li, Y.; Hekker, S., E-mail: wutao@ynao.ac.cn, E-mail: ly@ynao.ac.cn, E-mail: hekker@mps.mpg.de
2014-01-20
Stellar mass M, radius R, and gravity g are important basic parameters in stellar physics. Accurate values for these parameters can be obtained from the gravitational interaction between stars in multiple systems or from asteroseismology. Stars in a cluster are thought to be formed coevally from the same interstellar cloud of gas and dust. The cluster members are therefore expected to have some properties in common. These common properties strengthen our ability to constrain stellar models and asteroseismically derived M, R, and g when tested against an ensemble of cluster stars. Here we derive new scaling relations based on amore » relation for stars on the Hayashi track (√(T{sub eff})∼g{sup p}R{sup q}) to determine the masses and metallicities of red giant branch stars in open clusters NGC 6791 and NGC 6819 from the global oscillation parameters Δν (the large frequency separation) and ν{sub max} (frequency of maximum oscillation power). The Δν and ν{sub max} values are derived from Kepler observations. From the analysis of these new relations we derive: (1) direct observational evidence that the masses of red giant branch stars in a cluster are the same within their uncertainties, (2) new methods to derive M and z of the cluster in a self-consistent way from Δν and ν{sub max}, with lower intrinsic uncertainties, and (3) the mass dependence in the Δν - ν{sub max} relation for red giant branch stars.« less
Looking for Interacting Binaries in Old Open Clusters
NASA Technical Reports Server (NTRS)
Grindley, Jonathan
2005-01-01
We requested a 12 ks observation of the old open cluster NGC7142 with the aim to investigate the population of interacting binaries, and compare the properties with those of interacting binaries in other old open clusters. Unfortunately, the observation suffered from long periods of background flaring, and as a result the effective exposure time was shortened to only approximately 25% of the planned exposure. The sensitivity to detect sources in the cluster was therefore much reduced, hampering a useful comparison with other clusters observed with Chandra and XMM. We detect 5 sources (all less than 300 counts) in the full field of view of the detectors; based on the large separations from the cluster center, we expect that at least 3-4 are not associated with the cluster. A brief paper that reports the results is in preparation.
Be Stars in the Open Cluster NGC 6830
NASA Astrophysics Data System (ADS)
Yu, Po-Chieh; Lin, Chien-Cheng; Lin, Hsing-Wen; Lee, Chien-De; Konidaris, Nick; Ngeow, Chow-Choong; Ip, Wing-Huen; Chen, Wen-Ping; Chen, Hui-Chen; Malkan, Matthew A.; Chang, Chan-Kao; Laher, Russ; Huang, Li-Ching; Cheng, Yu-Chi; Edelson, Rick; Ritter, Andreas; Quimby, Robert; Ben-Ami, Sagi; Ofek, Eran. O.; Surace, Jason; Kulkarni, Shrinivas R.
2016-05-01
We report the discovery of two new Be stars, and re-identify one known Be star in the open cluster NGC 6830. Eleven Hα emitters were discovered using the Hα imaging photometry of the Palomar Transient Factory Survey. Stellar membership of the candidates was verified with photometric and kinematic information using 2MASS data and proper motions. The spectroscopic confirmation was carried out by using the Shane 3 m telescope at the Lick observatory. Based on their spectral types, three Hα emitters were confirmed as Be stars with Hα equivalent widths greater than -10 Å. Two objects were also observed by the new spectrograph spectral energy distribution-machine (SED-machine) on the Palomar 60-inch Telescope. The SED-machine results show strong Hα emission lines, which are consistent with the results of the Lick observations. The high efficiency of the SED-machine can provide rapid observations for Be stars in a comprehensive survey in the future.
Multimode delta Scuti stars in the open cluster NGC 7062
NASA Astrophysics Data System (ADS)
Freyhammer, L. M.; Arentoft, T.; Sterken, C.
2001-03-01
The central field of NGC 7062 was observed intensively with the main goal of finding delta Scuti stars suitable for use in asteroseismological tests of stellar structure and evolution theory. BV time series photometry was obtained for this northern open cluster, which has a large population of stars inside the delta Scuti instability strip, making it a probable host of several such variables. We report findings of 15 pulsating stars, including at least 13 delta Scuti stars. Ten variables oscillate in two or more frequencies. Only one of these variables was known before, for which we detected 9 frequencies. Five probable variables are mentioned, and period analysis is given for all 20 stars. Based on observations obtained at the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisíca de Canarias.
An optical study of X-ray sources in the old open clusters NGC 752 and NGC 6940
NASA Astrophysics Data System (ADS)
van den Berg, M.; Verbunt, F.
2001-08-01
We observed the optical counterparts of X-ray sources in the old open clusters NGC 752 and NGC 6940 to search for the origin of the X-rays. The photometric variability reported earlier for the blue straggler H 209 is not confirmed by our light curves, nor is an indication for variability seen in the spectra; thus its X-rays remain unexplained. The X-rays of VR 111 and VR 114 are likely not a result of magnetic activity as these stars lack strong Ca II H&K emission, while in VR 108 the level of activity could be enhanced. The short-period binary H 313 is a photometric variable; this supports the interpretation that it is a magnetically active binary. From the detection of the Li I 6707.8 Å line, we classify the giant in VR 84 as a first-ascent giant; this leaves its circular orbit unexplained. As a side-result we report the detection of Li I 6707.8 Å in the spectrum of the giant H 3 and the absence of this line in the spectrum of the giant H 11; this classifies H 3 as a first-ascent giant and H 11 as a core-helium-burning clump star, and confirms the faint extension of the red-giant clump in NGC 752. Based on observations made with the Jacobus Kapteyn Telescope and the William Herschel Telescope operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias.
An x-ray study of massive star forming regions with CHANDRA
NASA Astrophysics Data System (ADS)
Wang, Junfeng
2007-08-01
Massive stars are characterized by powerful stellar winds, strong ultraviolet (UV) radiation, and consequently devastating supernovae explosions, which have a profound influence on their natal clouds and galaxy evolution. However, the formation and evolution of massive stars themselves and how their low-mass siblings are affected in the wind-swept and UV-radiation-dominated environment are not well understood. Much of the stellar populations inside of the massive star forming regions (MSFRs) are poorly studied in the optical and IR wavelengths because of observational challenges caused by large distance, high extinction, and heavy contamination from unrelated sources. Although it has long been recognized that X-rays open a new window to sample the young stellar populations residing in the MSFRs, the low angular resolution of previous generation X-ray telescopes has limited the outcome from such studies. The sensitive high spatial resolution X-ray observations enabled by the Chandra X- ray Observatory and the Advanced CCD Imaging Spectrometer (ACIS) have significantly improved our ability to study the X-ray-emitting populations in the MSFRs in the last few years. In this thesis, I analyzed seven high spatial resolution Chandra /ACIS images of two massive star forming complexes, namely the NGC 6357 region hosting the 1 Myr old Pismis 24 cluster (Chapter 3) and the Rosette Complex including the 2 Myr old NGC 2244 cluster immersed in the Rosette Nebula (Chapter 4), embedded clusters in the Rosette Molecular Cloud (RMC; Chapter 5), and a triggered cluster NGC 2237 (Chapter 6). The X-ray sampled stars were studied in great details. The unique power of X-ray selection of young stellar cluster members yielded new knowledge in the stellar populations, the cluster structures, and the star formation histories. The census of cluster members is greatly improved in each region. A large fraction of the X-ray detections have optical or near-infrared (NIR) stellar counterparts (from 2MASS, SIRIUS and FLAMINGOS JHK images), most of which are previously uncatalogued young cluster members. This provides a reliable probe of the rich intermediate-mass and low-mass young stellar populations accompanying the massive OB stars in each region. For example, In the poorly- studied NGC 6357 region, our study increased the number of known members from optical study by a factor of ~40. As a result, normal initial mass functions (IMFs) for NGC 6357 and NGC 2244 were found, inconsistent with the top-heavy IMFs suspected in previous optical studies. The observed X-ray luminosity functions (XLFs) in NGC 6357 and NGC 2244 are compared to the Orion Nebula Cluster XLF, yielding the first estimate of NGC 6357's total cluster population, a few times the known Orion population. For NGC 2244, a total population of ~2000 X-ray-emitting stars is derived, consistent with previous estimate from IR studies. The morphologies and spatial structures of the clusters are investigated with absorption-stratified stellar surface density maps. Small-scale substructures superposed on the spherical clusters are found in NGC 6357 and NGC 2244. Both of their radial stellar density profiles show a power-law cusp around the density peak surrounded by an isothermal sphere. In NGC 2244, the spatial distribution of X-ray stars is strongly concentrated around the central O5 star, HD 46150. The other O4 star HD 46223 has few companions. The X-ray sources in the RMC show three distinctive structures and substructures within them, which include previously known embedded IR clusters and a new unobscured cluster (RMC A). We do not find clear evidence of sequentially triggered formation. The concentration of X-ray identified young stars implies that [Special characters omitted.] 35% of stars could be in a distributed population throughout the RMC region and clustered star formation is the dominant mode in this cloud. The NGC 2237 cluster, similar to RMC A, may have formed from collapse of pre-existing massive molecular clumps accompanying the formation of the NGC 2244 cluster. The spatial distribution of the NIR counterparts to X-ray stars in the optical dark region northwest of NGC 2237 show little evidence of triggered star formation in the pillar objects. The observed inner disk fraction in the MSFRs as indicated by K-band excess appears lower than the IR-excess disk fractions found in the nearby low-mass star formation regions of similar age. An overall K -excess disk frequency of ~6% for X-ray selected stars in the intermediate- to high-mass range in the NGC 6357 region (Chapter 3), and ~10% for stars with mass M [Special characters omitted.] in NGC 2244 (Chapter 4) are derived, which indicates that the inner disks around higher-mass stars evolve more rapidly. The X-ray stars in these regions provide an important new sample for studies of intermediate-mass PMS stars that are not accreting, in addition to the accreting HAeBe stars. The low K -excess disk frequency for X-ray selected stars in the solar mass range in NGC 2244 is intriguing, which may be attributed to different sensitivities to disk materials, selection effects between X-ray samples and IR samples and/or faster disk dissipation due to photoevaporation in the MSFRs. X-ray properties of stars across the mass spectrum are presented. Diversities in the X-ray spectra of O stars are seen, both soft X-ray emission consistent with the microshocks in stellar winds and hard X-ray components signifying magnetically confined winds or close binarity. X-ray luminosities for a sample of stars earlier than B4 in NGC 6357, NGC 2244, and M 17 confirm the long- standing log( L x /L bol ) ~ -7 relation, although larger scatter is seen among the L x /L bol ratios of B-type stars. Low-mass PMS stars frequently show X-ray flaring, including intense flares with luminosities above L x >= 10 32 ergs s - 1 . Diffuse X-ray emission is present in the NGC 6357 region and in the NGC 2244 cluster. The derived luminosity of diffuse emission in NGC 6357 is consistent with the integrated emission from the unresolved PMS stars. The NGC 2244 diffuse emission is likely originated from the wind termination shocks, and hence is truly diffuse in nature. In summary, Chandra X-ray observations offer multifaceted approaches to study the young stellar clusters in MSFRs in depth. Future perspectives with the Spitzer Space Telescope mid-IR observations for a systematic measurement of disk frequencies in X-ray sampled massive clusters and X-ray observations of the earliest phases of massive star formation are discussed.
Membership determination of open clusters based on a spectral clustering method
NASA Astrophysics Data System (ADS)
Gao, Xin-Hua
2018-06-01
We present a spectral clustering (SC) method aimed at segregating reliable members of open clusters in multi-dimensional space. The SC method is a non-parametric clustering technique that performs cluster division using eigenvectors of the similarity matrix; no prior knowledge of the clusters is required. This method is more flexible in dealing with multi-dimensional data compared to other methods of membership determination. We use this method to segregate the cluster members of five open clusters (Hyades, Coma Ber, Pleiades, Praesepe, and NGC 188) in five-dimensional space; fairly clean cluster members are obtained. We find that the SC method can capture a small number of cluster members (weak signal) from a large number of field stars (heavy noise). Based on these cluster members, we compute the mean proper motions and distances for the Hyades, Coma Ber, Pleiades, and Praesepe clusters, and our results are in general quite consistent with the results derived by other authors. The test results indicate that the SC method is highly suitable for segregating cluster members of open clusters based on high-precision multi-dimensional astrometric data such as Gaia data.
NASA Astrophysics Data System (ADS)
Venuti, L.; Prisinzano, L.; Sacco, G. G.; Flaccomio, E.; Bonito, R.; Damiani, F.; Micela, G.; Guarcello, M. G.; Randich, S.; Stauffer, J. R.; Cody, A. M.; Jeffries, R. D.; Alencar, S. H. P.; Alfaro, E. J.; Lanzafame, A. C.; Pancino, E.; Bayo, A.; Carraro, G.; Costado, M. T.; Frasca, A.; Jofré, P.; Morbidelli, L.; Sousa, S. G.; Zaggia, S.
2018-01-01
Context. Reconstructing the structure and history of young clusters is pivotal to understanding the mechanisms and timescales of early stellar evolution and planet formation. Recent studies suggest that star clusters often exhibit a hierarchical structure, possibly resulting from several star formation episodes occurring sequentially rather than a monolithic cloud collapse. Aims: We aim to explore the structure of the open cluster and star-forming region NGC 2264 ( 3 Myr), which is one of the youngest, richest and most accessible star clusters in the local spiral arm of our Galaxy; we link the spatial distribution of cluster members to other stellar properties such as age and evolutionary stage to probe the star formation history within the region. Methods: We combined spectroscopic data obtained as part of the Gaia-ESO Survey (GES) with multi-wavelength photometric data from the Coordinated Synoptic Investigation of NGC 2264 (CSI 2264) campaign. We examined a sample of 655 cluster members, with masses between 0.2 and 1.8 M⊙ and including both disk-bearing and disk-free young stars. We used Teff estimates from GES and g,r,i photometry from CSI 2264 to derive individual extinction and stellar parameters. Results: We find a significant age spread of 4-5 Myr among cluster members. Disk-bearing objects are statistically associated with younger isochronal ages than disk-free sources. The cluster has a hierarchical structure, with two main blocks along its latitudinal extension. The northern half develops around the O-type binary star S Mon; the southern half, close to the tip of the Cone Nebula, contains the most embedded regions of NGC 2264, populated mainly by objects with disks and ongoing accretion. The median ages of objects at different locations within the cluster, and the spatial distribution of disked and non-disked sources, suggest that star formation began in the north of the cluster, over 5 Myr ago, and was ignited in its southern region a few Myr later. Star formation is likely still ongoing in the most embedded regions of the cluster, while the outer regions host a widespread population of more evolved objects; these may be the result of an earlier star formation episode followed by outward migration on timescales of a few Myr. We find a detectable lag between the typical age of disk-bearing objects and that of accreting objects in the inner regions of NGC 2264: the first tend to be older than the second, but younger than disk-free sources at similar locations within the cluster. This supports earlier findings that the characteristic timescales of disk accretion are shorter than those of disk dispersal, and smaller than the average age of NGC 2264 (i.e., ≲3 Myr). At the same time, we note that disks in the north of the cluster tend to be shorter-lived ( 2.5 Myr) than elsewhere; this may reflect the impact of massive stars within the region (notably S Mon), that trigger rapid disk dispersal. Conclusions: Our results, consistent with earlier studies on NGC 2264 and other young clusters, support the idea of a star formation process that takes place sequentially over a prolonged span in a given region. A complete understanding of the dynamics of formation and evolution of star clusters requires accurate astrometric and kinematic characterization of its population; significant advance in this field is foreseen in the upcoming years thanks to the ongoing Gaia mission, coupled with extensive ground-based surveys like GES. Full Table B.1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/609/A10
Detection of a late B star companion of the bright cluster giant C PUP equals HD 63032
NASA Astrophysics Data System (ADS)
Groote, D.; Reimers, D.
1983-03-01
IUE observations show that c Pup, the central bright K giant in the open cluster NGC 2451, has a blue companion. A fit of theoretical line blanketed model atmosphere fluxes to the observed energy distribution yields reddening E(B-V) = 0.15 (from λ2200 Å feature), an effective temperature Te = 10,200K, and an angular diameter θ = 0.060. If the companion is a main-sequence star, c Pup and its companion are located at a distance of 310 ± 50 pc which lends additional support to membership of c Pup in NGC 2451. The evolutionary status of c Pup is briefly discussed.
AGE AND DISTANCE FOR THE OLD OPEN CLUSTER NGC 188 FROM THE ECLIPSING BINARY MEMBER V 12
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meibom, Soeren; Mathieu, Robert D.; Grundahl, Frank
2009-06-15
We present time series radial velocity, and photometric observations of a solar-type double-lined eclipsing binary star (V 12) in the old open cluster NGC 188. We use these data to determine the spectroscopic orbit and the photometric elements for V 12. From our analysis, we determine accurate masses (M{sub p} = 1.103 {+-} 0.007 M {sub sun}, M{sub s} = 1.081 {+-} 0.007 M {sub sun}) and radii (R{sub p} = 1.424 {+-} 0.019 R {sub sun}, R{sub s} = 1.373 {+-} 0.019 R {sub sun}) for the primary (p) and secondary (s) binary components. We adopt a reddening ofmore » E {sub B-V} = 0.087 for NGC 188, and derive component effective temperatures of 5900 {+-} 100 K and 5875 {+-} 100 K, respectively, for the primary and secondary stars. From their absolute dimensions, the two components of V 12 yield identical distance moduli of V {sub 0} - M{sub V} = 11fm24 {+-} 0fm09, corresponding to 1770 {+-} 75 pc. Both stars are near the end of their main-sequence evolutionary phase, and are located at the cluster turnoff in the color-magnitude diagram. We determine an age of 6.2 {+-} 0.2 Gyr for V 12 and NGC 188, from a comparison with theoretical isochrones in the mass-radius diagram. This age is independent of distance, reddening, and color-temperature transformations. We use isochrones from Victoria-Regina (VRSS) and Yonsei-Yale (Y {sup 2}) with [Fe/H] = -0.1 and [Fe/H] = 0.0. From the solar metallicity isochrones, an age of 6.4 Gyr provides the best fit to the binary components for both sets of models. For the isochrones with [Fe/H] = -0.1, ages of 6.0 Gyr and 5.9 Gyr provide the best fits for the (VRSS) and (Y {sup 2}) models, respectively. We use the distance and age estimates for V 12, together with best estimates for the metallicity and reddening of NGC 188, to investigate the locations of the corresponding VRSS and Y {sup 2} isochrones relative to cluster members in the color-magnitude diagram. Plausible changes in the model metallicity and distance to better match the isochrones to the cluster sequences, result in a range of ages for NGC 188 that is more than 3 times that resulting from our analysis of V 12.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Christian I.; Caldwell, Nelson; Rich, R. Michael
We present radial velocities and chemical abundances for red giant branch stars in the Galactic bulge globular clusters NGC 6342 and NGC 6366. The velocities and abundances are based on measurements of high-resolution ( R ≳ 20,000) spectra obtained with the MMT–Hectochelle and WIYN–Hydra spectrographs. We find that NGC 6342 has a heliocentric radial velocity of +112.5 km s{sup −1} ( σ = 8.6 km s{sup −1}), NGC 6366 has a heliocentric radial velocity of −122.3 km s{sup −1} ( σ = 1.5 km s{sup −1}), and both clusters have nearly identical metallicities ([Fe/H] ≈ −0.55). NGC 6366 shows evidencemore » of a moderately extended O–Na anti-correlation, but more data are needed for NGC 6342 to determine if this cluster also exhibits the typical O–Na relation likely found in all other Galactic globular clusters. The two clusters are distinguished from similar metallicity field stars as having larger [Na/Fe] spreads and enhanced [La/Fe] ratios, but we find that NGC 6342 and NGC 6366 display α and Fe-peak element abundance patterns that are typical of other metal-rich ([Fe/H] > −1) inner Galaxy clusters. However, the median [La/Fe] abundance may vary from cluster-to-cluster.« less
The extended stellar substructures of four metal-poor globular clusters in the galactic bulge
NASA Astrophysics Data System (ADS)
Chun, Sang-Hyun; Sohn, Young-Jong
2015-08-01
We investigated stellar spatial density distribution around four metal-poor globular clusters (NGC 6266, NGC 6626, NGC 6642 and NGC 6723) in order to find extended stellar substructures. Wide-field deep J, H, and K imaging data were taken using the WFCAM near-infrared array on United Kingdom Infrared Telescope (UKIRT). The contamination of field stars around clusters was minimised by applying a statistical weighted filtering algorithm for the stars on the color-magnitude diagram. In two-dimensional isodensity contour map, we find that all four of the globular clusters shows tidal stripping stellar features in the form of tidal tails (NGC 6266 and NGC 6723) or small density lobes/chunk (NGC 6642 and NGC 6723). The stellar substructures extend toward the Galactic centre or anticancer, and the proper motion direction of the clusters. The radial density profiles of the clusters also depart from theoretical King and Wilson models and show overdensity feature with a break in a slope of profile at the outer region of clusters. The observed results indicate that four globular clusters in the Galactic bulge have experienced strong tidal force or bulge/disk shock effect of the Galaxy. These observational results provide us further constraints to understand the evolution of clusters in the Galactic bulge region as well as the formation of the Galaxy.
An XMM-Newton Observation of the Lagoon Nebula and the Very Young Open Cluster NGC 6530
NASA Technical Reports Server (NTRS)
Rauw, G.; Naze, Y.; Gosset, E.; Stevens, I. R.; Blomme, R.; Corcoran, M. F.; Pittard, J. M.; Runacres, M. C.
2002-01-01
We report the results of an XMM-Newton observation of the Lagoon Nebula (M 8). Our EPIC images of this region reveal a cluster of point sources, most of which have optical counterparts inside the very young open cluster NGC 6530. The bulk of these X-ray sources are probably associated with low and intermediate mass pre-main sequence stars. One of the sources experiences a flare-like increase of its X-ray flux making it the second brightest source in M 8 after the O4 star 9 Sgr. The X-ray spectra of most of the brightest sources can be fitted with thermal plasma models with temperatures of kT approximately a few keV. Only a few of the X-ray selected PMS candidates are known to display H(alpha) emission and were previously classified as classical T Tauri stars. This suggests that most of the X-ray emitting PMS stars in NGC 6530 are weak line T Tauri stars. In addition to 9 Sgr, our EPIC field of view contains also a few early-type stars. The X-ray emission from HD 164816 is found to be typical for an O9.5III-IV star. At least one of the known Herbig Be stars in NGC 6530 (LkH(alpha) 115) exhibits a relatively strong X-ray emission, while most of the main sequence stars of spectral type B1 and later are not detected. We also detect (probably) diffuse X-ray emission from the Hourglass Region that might reveal a hot bubble blown by the stellar wind of Herschel 36, the ionizing star of the Hourglass Region.
Photometric Calibrations of Gemini Images of NGC 6253
NASA Astrophysics Data System (ADS)
Pearce, Sean; Jeffery, Elizabeth
2017-01-01
We present preliminary results of our analysis of the metal-rich open cluster NGC 6253 using imaging data from GMOS on the Gemini-South Observatory. These data are part of a larger project to observe the effects of high metallicity on white dwarf cooling processes, especially the white dwarf cooling age, which have important implications on the processes of stellar evolution. To standardize the Gemini photometry, we have also secured imaging data of both the cluster and standard star fields using the 0.6-m SARA Observatory at CTIO. By analyzing and comparing the standard star fields of both the SARA data and the published Gemini zero-points of the standard star fields, we will calibrate the data obtained for the cluster. These calibrations are an important part of the project to obtain a standardized deep color-magnitude diagram to analyze the cluster. We present the process of verifying our standardization process. With a standardized CMD, we also present an analysis of the cluster's main sequence turn off age.
NASA Astrophysics Data System (ADS)
Jeon, Young-Beom; Nemec, James M.; Walker, Alistair R.; Kunder, Andrea M.
2014-06-01
Homogeneous B, V photometry is presented for 19,324 stars in and around 5 Magellanic Cloud globular clusters: NGC 1466, NGC 1841, NGC 2210, NGC 2257, and Reticulum. The photometry is derived from eight nights of CCD imaging with the Cerro Tololo Inter-American Observatory 0.9 m SMARTS telescope. Instrumental magnitudes were transformed to the Johnson B, V system using accurate calibration relations based on a large sample of Landolt-Stetson equatorial standard stars, which were observed on the same nights as the cluster stars. Residual analysis of the equatorial standards used for the calibration, and validation of the new photometry using Stetson's sample of secondary standards in the vicinities of the five Large Magellanic Cloud clusters, shows excellent agreement with our values in both magnitudes and colors. Color-magnitude diagrams reaching to the main-sequence turnoffs at V ~ 22 mag, sigma-magnitude diagrams, and various other summaries are presented for each cluster to illustrate the range and quality of the new photometry. The photometry should prove useful for future studies of the Magellanic Cloud globular clusters, particularly studies of their variable stars.
The outer envelopes of globular clusters. II. NGC 1851, NGC 5824 and NGC 1261*
NASA Astrophysics Data System (ADS)
Kuzma, P. B.; Da Costa, G. S.; Mackey, A. D.
2018-01-01
We present a second set of results from a wide-field photometric survey of the environs of Milky Way globular clusters. The clusters studied are NGC 1261, NGC 1851 and NGC 5824: all have data from the Dark Energy Camera on the Blanco 4 m telescope. NGC 5824 also has data from the Magellan Clay telescope with MegaCam. We confirm the existence of a large diffuse stellar envelope surrounding NGC 1851 of size at least 240 pc in radius. The radial density profile of the envelope follows a power-law decline with index γ = -1.5 ± 0.2 and the projected shape is slightly elliptical. For NGC 5824, there is no strong detection of a diffuse stellar envelope, but we find the cluster is remarkably extended and is similar in size (at least 230 pc in radius) to the envelope of NGC 1851. A stellar envelope is also revealed around NGC 1261. However, it is notably smaller in size with radius ∼105 pc. The radial density profile of the envelope is also much steeper with γ = -3.8 ± 0.2. We discuss the possible nature of the diffuse stellar envelopes, but are unable to draw definitive conclusions based on the current data. NGC 1851, and potentially NGC 5824, could be stripped dwarf galaxy nuclei, akin to the cases of ω Cen, M54 and M2. On the other hand, the different characteristics of the NGC 1261 envelope suggest that it may be the product of dynamical evolution of the cluster.
CLUSTER DYNAMICS LARGELY SHAPES PROTOPLANETARY DISK SIZES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vincke, Kirsten; Pfalzner, Susanne, E-mail: kvincke@mpifr-bonn.mpg.de
2016-09-01
To what degree the cluster environment influences the sizes of protoplanetary disks surrounding young stars is still an open question. This is particularly true for the short-lived clusters typical for the solar neighborhood, in which the stellar density and therefore the influence of the cluster environment change considerably over the first 10 Myr. In previous studies, the effect of the gas on the cluster dynamics has often been neglected; this is remedied here. Using the code NBody6++, we study the stellar dynamics in different developmental phases—embedded, expulsion, and expansion—including the gas, and quantify the effect of fly-bys on the diskmore » size. We concentrate on massive clusters (M {sub cl} ≥ 10{sup 3}–6 ∗ 10{sup 4} M {sub Sun}), which are representative for clusters like the Orion Nebula Cluster (ONC) or NGC 6611. We find that not only the stellar density but also the duration of the embedded phase matters. The densest clusters react fastest to the gas expulsion and drop quickly in density, here 98% of relevant encounters happen before gas expulsion. By contrast, disks in sparser clusters are initially less affected, but because these clusters expand more slowly, 13% of disks are truncated after gas expulsion. For ONC-like clusters, we find that disks larger than 500 au are usually affected by the environment, which corresponds to the observation that 200 au-sized disks are common. For NGC 6611-like clusters, disk sizes are cut-down on average to roughly 100 au. A testable hypothesis would be that the disks in the center of NGC 6611 should be on average ≈20 au and therefore considerably smaller than those in the ONC.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Correnti, Matteo; Goudfrooij, Paul; Kalirai, Jason S.
2014-10-01
We use the Wide Field Camera 3 on board the Hubble Space Telescope (HST) to obtain deep, high-resolution images of two intermediate-age star clusters in the Large Magellanic Cloud of relatively low mass (≈10{sup 4} M {sub ☉}) and significantly different core radii, namely NGC 2209 and NGC 2249. For comparison purposes, we also reanalyzed archival HST images of NGC 1795 and IC 2146, two other relatively low-mass star clusters. From the comparison of the observed color-magnitude diagrams with Monte Carlo simulations, we find that the main-sequence turnoff (MSTO) regions in NGC 2209 and NGC 2249 are significantly wider thanmore » that derived from simulations of simple stellar populations, while those in NGC 1795 and IC 2146 are not. We determine the evolution of the clusters' masses and escape velocities from an age of 10 Myr to the present age. We find that differences among these clusters can be explained by dynamical evolution arguments if the currently extended clusters (NGC 2209 and IC 2146) experienced stronger levels of initial mass segregation than the currently compact ones (NGC 2249 and NGC 1795). Under this assumption, we find that NGC 2209 and NGC 2249 have estimated escape velocities, V {sub esc} ≳ 15 km s{sup –1} at an age of 10 Myr, large enough to retain material ejected by slow winds of first-generation stars, while the two clusters that do not feature extended MSTOs have V {sub esc} ≲ 12 km s{sup –1} at that age. These results suggest that the extended MSTO phenomenon can be better explained by a range of stellar ages rather than a range of stellar rotation velocities or interacting binaries.« less
From Globular Clusters to Tidal Dwarfs: Structure Formation in the Tidal Tails of Merging Pairs
NASA Astrophysics Data System (ADS)
Knierman, K. A.; Gallagher, S. C.; Charlton, J. C.; Hunsberger, S. D.; Whitmore, B. C.; Kundu, A.; Hibbard, J. E.; Zaritsky, D. F.
2001-05-01
Using V and I images obtained with the Wide Field Planetary Camera 2 (WFPC2) of the Hubble Space Telescope, we investigate compact stellar structures within tidal tails. Six regions of tidal debris in the four classic ``Toomre Sequence'' mergers: NGC 4038/9 (``Antennae''), NGC 3256, NGC 3921, and NGC 7252 (``Atoms for Peace'') have been studied in order to explore how the star formation depends upon the local and global physical conditions. These mergers sample a range of stages in the evolutionary sequence, and include HI--rich and HI--poor environments. The six tails are found to contain a variety of stellar structures, with sizes ranging from those of globular clusters up to those of dwarf galaxies. From V and I WFPC2 images, we measure the luminosities and colors of the star clusters. NGC 3256 is found to have a large population of young clusters lying along both tails, similar to those found in the inner region of the merger. In contrast, NGC 4038/9 has no clusters in the observed region of the tail, only less luminous point sources likely to be individual stars. NGC 3921 and NGC 7252 have small populations of clusters that are concentrated in certain regions of the tail, and particularly in the prominent tidal dwarfs in the eastern and western tails of NGC 7252. The two cluster--rich tails of NGC 3256 are not distinguished from the others by their ages or by their total HI masses. We acknowledge support from NASA through STScI, and from NSF for an REU supplement for Karen Knierman.
Observations and analysis of the contact binary H 235 in the open cluster NGC 752
NASA Astrophysics Data System (ADS)
Milone, E. F.; Stagg, C. R.; Sugars, B. A.; McVean, J. R.; Schiller, S. J.; Kallrath, J.; Bradstreet, D. H.
1995-01-01
The short-period variable star Heinemann 235 in the open cluster NGC 752 has been identified as a contact binary with a variable period of about 0 d 4118. BVRI light curves and radial velocity curves have been obtained and analyzed with enhanced versions of the Wilson-Devinney light curve program. We find that the system is best modeled as an A-type W UMa system, with a contact parameter of 0.21 +/- 0.11. The masses of the components are found to be 1.18 +/- 0.17 and 0.24 +/- 0.04 solar mass, with bolometric magnitudes of 3.60 +/- 0.10 and 5.21 +/- 0.13, for the hotter (6500 K, assumed) and cooler (6421 K) components, respectively, with Delta T=79 +/- 25 K. The distance to the binary is established at 381 +/- 17 pc. H235 becomes one of a relatively small number of open-cluster contact systems with detailed light curve analysis for which an age may be estimated. If it is coeval with the cluster, and with the detached eclipsing and double-lined spectroscopic binary H219 (DS And), H235 is approximately 1.8 Gyr old, and may provide a fiducial point for the evolution of contact systems. There is, however, evidence for dynamical evolution of the cluster and the likelihood of weak interactions over the age of the binary precludes the determination of its initial state with certainty.
The potassium abundance in the globular clusters NGC 104, NGC 6752 and NGC 6809
NASA Astrophysics Data System (ADS)
Mucciarelli, A.; Merle, T.; Bellazzini, M.
2017-04-01
We derived potassium abundances in red-giant-branch stars in the Galactic globular clusters NGC 104 (144 stars), NGC 6752 (134 stars), and NGC 6809 (151 stars) using high-resolution spectra collected with FLAMES at the ESO - Very Large Telescope. In the samples we consider, we do not find significant intrinsic spreads in [K/Fe], which confirms the previous findings, but which is at variance with the cases of the massive clusters NGC 2419 and NGC 2808. Additionally, marginally significant [K/Fe]-[O/Fe] anti-correlations are found in NGC 104 and NGC 6809, and [K/Fe]-[Na/Fe] correlations are found in NGC 104 and NGC 6752. No evidence of [K/Fe]-[Mg/Fe] anti-correlation are found. The results of our analysis are consistent with a scenario in which the process leading to the multi-populations in globular clusters also implies enrichment in the K abundance, the amplitude of the associated [K/Fe] enhancement becoming measurable only in stars showing the most extreme effects of O and Mg depletion. Stars enhanced in [K/Fe] have so far only been found in clusters harbouring some Mg-poor stars, while the other globulars, without a Mg-poor sub-population, show small or null [K/Fe] spreads. Full Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/600/A104
From Globular Clusters to Tidal Dwarfs: Structure Formation in the Tidal Tails of Merging Galaxies
NASA Astrophysics Data System (ADS)
Knierman, Karen A.; Gallagher, Sarah C.; Charlton, Jane C.; Hunsberger, Sally D.; Whitmore, Bradley; Kundu, Arunav; Hibbard, J. E.; Zaritsky, Dennis
2003-09-01
Using V and I images obtained with the Wide Field Planetary Camera 2 (WFPC2) of the Hubble Space Telescope, we investigate compact stellar structures within tidal tails. Six regions of tidal debris in the four classic ``Toomre sequence'' mergers: NGC 4038/39 (``Antennae''), NGC 3256, NGC 3921, and NGC 7252 (``Atoms for Peace'') have been studied in order to explore how the star formation depends on the local and global physical conditions. These mergers sample a range of stages in the evolutionary sequence and tails with and without embedded tidal dwarf galaxies. The six tails are found to contain a variety of stellar structures, with sizes ranging from those of globular clusters up to those of dwarf galaxies. From V and I WFPC2 images, we measure the luminosities and colors of the star clusters. NGC 3256 is found to have a large population of blue clusters (0.2<~V-I<~0.9), particularly in its western tail, similar to those found in the inner region of the merger. In contrast, NGC 4038/39 has no clusters in the observed region of the tail, only less luminous point sources likely to be individual stars. NGC 3921 and NGC 7252 have small populations of clusters along their tails. A significant cluster population is clearly associated with the prominent tidal dwarf candidates in the eastern and western tails of NGC 7252. The cluster-rich western tail of NGC 3256 is not distinguished from the others by its dynamical age or by its total H I mass. However, the mergers that have few clusters in the tail all have tidal dwarf galaxies, while NGC 3256 does not have prominent tidal dwarfs. We speculate that star formation in tidal tails may manifest itself either in small structures like clusters along the tail or in large structures such as dwarf galaxies, but not in both. Also, NGC 3256 has the highest star formation rate of the four mergers studied, which may contribute to the high number of star clusters in its tidal tails. Based in part on observations obtained with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under NASA contract NAS 5-26555.
New Cepheid variables in the young open clusters Berkeley 51 and Berkeley 55
NASA Astrophysics Data System (ADS)
Lohr, M. E.; Negueruela, I.; Tabernero, H. M.; Clark, J. S.; Lewis, F.; Roche, P.
2018-05-01
As part of a wider investigation of evolved massive stars in Galactic open clusters, we have spectroscopically identified three candidate classical Cepheids in the little-studied clusters Berkeley 51, Berkeley 55 and NGC 6603. Using new multi-epoch photometry, we confirm that Be 51 #162 and Be 55 #107 are bona fide Cepheids, with pulsation periods of 9.83±0.01 d and 5.850±0.005 d respectively, while NGC 6603 star W2249 does not show significant photometric variability. Using the period-luminosity relationship for Cepheid variables, we determine a distance to Be 51 of 5.3^{+1.0}_{-0.8} kpc and an age of 44^{+9}_{-8} Myr, placing it in a sparsely-attested region of the Perseus arm. For Be 55, we find a distance of 2.2±0.3 kpc and age of 63^{+12}_{-11} Myr, locating the cluster in the Local arm. Taken together with our recent discovery of a long-period Cepheid in the starburst cluster VdBH222, these represent an important increase in the number of young, massive Cepheids known in Galactic open clusters. We also consider new Gaia (data release 2) parallaxes and proper motions for members of Be 51 and Be 55; the uncertainties on the parallaxes do not allow us to refine our distance estimates to these clusters, but the well-constrained proper motion measurements furnish further confirmation of cluster membership. However, future final Gaia parallaxes for such objects should provide valuable independent distance measurements, improving the calibration of the period-luminosity relationship, with implications for the distance ladder out to cosmological scales.
Eclipsing Binaries in Open Clusters
NASA Astrophysics Data System (ADS)
Southworth, John; Clausen, Jens Viggo
2006-08-01
The study of detached eclipsing binaries in open clusters can provide stringent tests of theoretical stellar evolutionary models, which must simultaneously fit the masses, radii, and luminosities of the eclipsing stars and the radiative properties of every other star in the cluster. We review recent progress in such studies and discuss two unusually interesting objects currently under analysis. GV Carinae is an A0 m + A8 m binary in the Southern open cluster NGC 3532; its eclipse depths have changed by 0.1 mag between 1990 and 2001, suggesting that its orbit is being perturbed by a relatively close third body. DW Carinae is a high-mass unevolved B1 V + B1 V binary in the very young open cluster Collinder 228, and displays double-peaked emission in the centre of the Hα line which is characteristic of Be stars. We conclude by pointing out that the great promise of eclipsing binaries in open clusters can only be satisfied when both the binaries and their parent clusters are well-observed, a situation which is less common than we would like.
VizieR Online Data Catalog: NGC3115 & NGC1399 VEGAS-SSS globular clusters (Cantiello+, 2018)
NASA Astrophysics Data System (ADS)
Cantiello, M.; D'Abrusco, R.; Spavone, M.; Paolillo, M.; Capaccioli, M.; Limatola, L.; Grado, A.; Iodice, E.; Raimondo, G.; Napolitano, N.; Blakeslee, J. P.; Brocato, E.; Forbes, D. A.; Hilker, M.; Mieske, S.; Peletier, R.; van de Ven, G.; Schipani, P.
2017-11-01
Photometric catalogs for globular cluster (GC) candidates over the the 1 sq. degree area around NGC3115 and NGC1399 (ngc3115.dat and ngc1399.dat). The catalogues are based on u-, g- and i- band images from the VST elliptical galaxies survey (VEGAS). Aperture magnitudes, corrected for aperture correction are reported. We also provide the full catalogs of matched sources, which also include the matched background and foreground sources in the frames (ngc3115_full.dat and ngc1399_full.dat). (4 data files).
Ages of intermediate-age Magellanic Cloud star clusters
NASA Technical Reports Server (NTRS)
Flower, P. J.
1984-01-01
Ages of intermediate-age Large Magellanic Cloud star clusters have been estimated without locating the faint, unevolved portion of cluster main sequences. Six clusters with established color-magnitude diagrams were selected for study: SL 868, NGC 1783, NGC 1868, NGC 2121, NGC 2209, and NGC 2231. Since red giant photometry is more accurate than the necessarily fainter main-sequence photometry, the distributions of red giants on the cluster color-magnitude diagrams were compared to a grid of 33 stellar evolutionary tracks, evolved from the main sequence through core-helium exhaustion, spanning the expected mass and metallicity range for Magellanic Cloud cluster red giants. The time-dependent behavior of the luminosity of the model red giants was used to estimate cluster ages from the observed cluster red giant luminosities. Except for the possibility of SL 868 being an old globular cluster, all clusters studied were found to have ages less than 10 to the 9th yr. It is concluded that there is currently no substantial evidence for a major cluster population of large, populous clusters greater than 10 to the 9th yr old in the Large Magellanic Cloud.
VizieR Online Data Catalog: WIYN open cluster study. LIX. RVs of NGC 6791 (Tofflemire+, 2014)
NASA Astrophysics Data System (ADS)
Tofflemire, B. M.; Gosnell, N. M.; Mathieu, R. D.; Platais, I.
2014-11-01
Our observations utilize the Hydra Multi-Object Spectrograph (MOS) on the WIYN 3.5m telescope. We use 3.1'' diameter fibers along with the bench spectrograph echelle grating, resulting in a spectral resolution of ~20000 (15km/s). See Geller et al. 2008 (cat. J/AJ/135/2264; Paper XXXII) for full details about our observing and data reduction procedures. Variations in our methods from previous WIYN Open Cluster Study (WOCS) radial velocity papers are given in Section 3. (3 data files).
The massive star binary fraction in young open clusters - II. NGC6611 (Eagle Nebula)
NASA Astrophysics Data System (ADS)
Sana, H.; Gosset, E.; Evans, C. J.
2009-12-01
Based on a set of over 100 medium- to high-resolution optical spectra collected from 2003 to 2009, we investigate the properties of the O-type star population in NGC6611 in the core of the Eagle Nebula (M16). Using a much more extended data set than previously available, we revise the spectral classification and multiplicity status of the nine O-type stars in our sample. We confirm two suspected binaries and derive the first SB2 orbital solutions for two systems. We further report that two other objects are displaying a composite spectrum, suggesting possible long-period binaries. Our analysis is supported by a set of Monte Carlo simulations, allowing us to estimate the detection biases of our campaign and showing that the latter do not affect our conclusions. The absolute minimal binary fraction in our sample is fmin = 0.44 but could be as high as 0.67 if all the binary candidates are confirmed. As in NGC6231 (see Paper I), up to 75 per cent of the O star population in NGC6611 are found in an O+OB system, thus implicitly excluding random pairing from a classical IMF as a process to describe the companion association in massive binaries. No statistical difference could be further identified in the binary fraction, mass-ratio and period distributions between NGC6231 and NGC 6611, despite the difference in age and environment of the two clusters.
DETECTION OF A STELLAR STREAM BEHIND OPEN CLUSTER NGC 188: ANOTHER PART OF THE MONOCEROS STREAM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casetti-Dinescu, Dana I.; Girard, Terrence M.; Van Altena, William F.
2010-05-15
We present results from a WIYN/Orthogonal Parallel Transfer Imaging Camera photometric and astrometric survey of the field of the open cluster NGC 188 ((l, b) = (122.{sup 0}8, 22.{sup 0}5)). We combine these results with the proper-motion and photometry catalog of Platais et al. and demonstrate the existence of a stellar overdensity in the background of NGC 188. The theoretical isochrone fits to the color-magnitude diagram of the overdensity are consistent with an age between 6 and 10 Gyr and an intermediately metal poor population ([Fe/H] = -0.5 to -1.0). The distance to the overdensity is estimated to be betweenmore » 10.0 and 12.6 kpc. The proper motions indicate that the stellar population of the overdensity is kinematically cold. The distance estimate and the absolute proper motion of the overdensity agree reasonably well with the predictions of the Penarrubia et al. model of the formation of the Monoceros stream. Orbits for this material constructed with plausible radial-velocity values, indicate that dynamically, this material is unlikely to belong to the thick disk. Taken together, this evidence suggests that the newly found overdensity is part of the Monoceros stream.« less
Investigation of Galactic open cluster remnants: the case of NGC 7193
NASA Astrophysics Data System (ADS)
de Souza Angelo, Mateus; Francisco Coelho dos Santos, João, Jr.; Barbosa Corradi, Wagner José; Ferreira de Souza Maia, Francisco; Piatti, Andrés Eduardo
2017-01-01
Galactic open clusters (OCs) that survive the early gas-expulsion phase are gradually destroyed over time by the action of disruptive dynamical processes. Their final evolutionary stages are characterized by a poorly populated concentration of stars called an open cluster remnant (OCR). This study is devoted to assessing the real physical nature of the OCR candidate NGC 7193. GMOS/Gemini spectroscopy of 53 stars in the inner target region were obtained to derive radial velocities and atmospheric parameters. We also employed photometric and proper motion data. The analysis method consists of the following steps: (i) analysis of the statistical resemblance between the cluster and a set of field samples with respect to the sequences defined in color-magnitude diagrams (CMDs); (ii) a 5-dimensional iterative exclusion routine was employed to identify outliers from kinematical and positional data; (iii) isochrone fitting to the Ks×(J-Ks) CMD of the remaining stars and the dispersion of spectral types along empirical sequences in the (J-H)×(H-Ks) diagram were checked. A group of stars was identified for which the mean heliocentric distance is compatible with that obtained via isochrone fitting and whose metallicities are compatible with each other. Fifteen of the member stars observed spectroscopically were identified together with another 19 probable members. Our results indicate that NGC 7193 is a genuine OCR, of a once very populous OC, for which the following parameters were derived: d = 501±46 pc, t=2.5+/-1.2 Gyr, < [Fe/H] >=-0.17+/-0.23 and E(B-V)=0.05+/-0.05. Its luminosity and mass functions show depletion of low mass stars, confirming the OCR is in a dynamically evolved state. Based on observations obtained at the Gemini Observatory, which is operated by the AURA under a cooperative agreement with the NSF on behalf of the Gemini partnership: NSF (United States), STFC (United Kingdom), NRC (Canada), CONICYT (Chile), ARC (Australia), CNPq (Brazil) and CONICET (Argentina).
The Low Mass IMF in Young Open Clusters
NASA Astrophysics Data System (ADS)
Williams, Douglas M.
1995-01-01
We present the results of the investigation of the Initial Mass Function at the end of the Main Sequence in young open clusters. We find that over a large range in age and environment the IMFs are similar to each other, and to recent determinations of the field star IMF. We have obtained V, I, and K band photometry of fields in the three relatively unembedded open clusters. The photometry reaches down to various masses in each cluster: 0.08{cal M}_⊙ for Praesepe, 0.04{cal M}odot for the Pleiades, and 0.15{cal M}_⊙ for NGC 7160. We compare the methods for estimating the masses of young, embedded stars developed by Comeron et al. (1993 - CRBR) and by Strom, Kepner, & Strom (1995) and show them to be in good agreement. Spectra in the 2 mu m region of six low mass objects from CRBR are also in agreement with the mass estimates using these methods. The spectrum of a brown dwarf candidate is used to place an upper limit on its mass of 60% of the minimum required for hydrogen burning. The IMFs from these four clusters plus NGC 2024 are shown to be in agreement with each other. The composite MF can be fitted with a power law between 0.04 and 0.5 {cal M}_⊙ with a slope of -0.75 +/- 0.3. There is no evidence for a cutoff at the bottom of the main sequence (0.08{cal M}odot); brown dwarfs appear to be abundant in open clusters. However, the slope of the MF is well above the value of _sp {~}<-2 required for very low mass stars and brown dwarfs to contribute a significant portion of the mass of open clusters. The composite cluster MF also is in agreement with recent determinations of the field star IMF for stellar masses. The field star data do not extend into the brown dwarf range; however, if we extrapolate in accordance with the cluster MF, we conclude that brown dwarfs probably do not contribute significantly to the dark matter.
The CNO Bi-cycle in the Open Cluster NGC 752
NASA Astrophysics Data System (ADS)
Hawkins, Keith; Schuler, S.; King, J.; The, L.
2011-01-01
The CNO bi-cycle is the primary energy source for main sequence stars more massive than the sun. To test our understanding of stellar evolution models using the CNO bi-cycle, we have undertaken light-element (CNO) abundance analysis of three main sequence dwarf stars and three red giant stars in the open cluster NGC 752 utilizing high resolution (R 50,000) spectroscopy from the Keck Observatory. Preliminary results indicate, as expected, there is a depletion of carbon in the giants relative to the dwarfs. Additional analysis is needed to determine if the amount of depletion is in line with model predictions, as seen in the Hyades open cluster. Oxygen abundances are derived from the high-excitation O I triplet, and there is a 0.19 dex offset in the [O/H] abundances between the giants and dwarfs which may be explained by non-local thermodynamic equilibrium (NLTE), although further analysis is needed to verify this. The standard procedure for spectroscopically determining stellar parameters used here allows for a measurement of the cluster metallicity, [Fe/H] = 0.04 ± 0.02. In addition to the Fe abundances we have determined Na, Mg, and Al abundances to determine the status of other nucleosynthesis processes. The Na, Mg and Al abundances of the giants are enhanced relative to the dwarfs, which is consistent with similar findings in giants of other open clusters. Support for K. Hawkins was provided by the NOAO/KPNO Research Experiences for Undergraduates (REU) Program which is funded by the National Science Foundation Research Experiences for Undergraduates Program and the Department of Defense ASSURE program through Scientific Program Order No. 13 (AST-0754223) of the Cooperative Agreement No. AST-0132798 between the Association of Universities for Research in Astronomy (AURA) and the NSF.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobson, Heather R.; Pilachowski, Catherine A.; Friel, Eileen D., E-mail: jacob189@msu.edu, E-mail: catyp@astro.indiana.edu, E-mail: edfriel@mac.com
We present a detailed chemical abundance study of evolved stars in 10 open clusters based on Hydra multi-object echelle spectra obtained with the WIYN 3.5 m telescope. From an analysis of both equivalent widths and spectrum synthesis, abundances have been determined for the elements Fe, Na, O, Mg, Si, Ca, Ti, Ni, Zr, and for two of the 10 clusters, Al and Cr. To our knowledge, this is the first detailed abundance analysis for clusters NGC 1245, NGC 2194, NGC 2355, and NGC 2425. These 10 clusters were selected for analysis because they span a Galactocentric distance range R{sub gc}more » {approx} 9-13 kpc, the approximate location of the transition between the inner and outer disks. Combined with cluster samples from our previous work and those of other studies in the literature, we explore abundance trends as a function of cluster R{sub gc}, age, and [Fe/H]. As found previously by us and other studies, the [Fe/H] distribution appears to decrease with increasing R{sub gc} to a distance of {approx}12 kpc and then flattens to a roughly constant value in the outer disk. Cluster average element [X/Fe] ratios appear to be independent of R{sub gc}, although the picture for [O/Fe] is more complicated with a clear trend of [O/Fe] with [Fe/H] and sample incompleteness. Other than oxygen, no other element [X/Fe] exhibits a clear trend with [Fe/H]; likewise, there does not appear to be any strong correlation between abundance and cluster age. We divided clusters into different age bins to explore temporal variations in the radial element distributions. The radial metallicity gradient appears to have flattened slightly as a function of time, as found by other studies. There is also some indication that the transition from the inner disk metallicity gradient to the {approx}constant [Fe/H] distribution of the outer disk occurs at different Galactocentric radii for different age bins. However, interpretation of the time evolution of radial abundance distributions is complicated by the unequal R{sub gc} and [Fe/H] ranges spanned by clusters in different age bins.« less
Image-Subtraction Photometry of Variable Stars in the Globular Clusters NGC 6388 and NGC 6441
NASA Technical Reports Server (NTRS)
Corwin, Michael T.; Sumerel, Andrew N.; Pritzl, Barton J.; Smith, Horace A.; Catelan, M.; Sweigart, Allen V.; Stetson, Peter B.
2006-01-01
We have applied Alard's image subtraction method (ISIS v2.1) to the observations of the globular clusters NGC 6388 and NGC 6441 previously analyzed using standard photometric techniques (DAOPHOT, ALLFRAME). In this reanalysis of observations obtained at CTIO, besides recovering the variables previously detected on the basis of our ground-based images, we have also been able to recover most of the RR Lyrae variables previously detected only in the analysis of Hubble Space Telescope WFPC2 observations of the inner region of NGC 6441. In addition, we report five possible new variables not found in the analysis of the EST observations of NGC 6441. This dramatically illustrates the capabilities of image subtraction techniques applied to ground-based data to recover variables in extremely crowded fields. We have also detected twelve new variables and six possible variables in NGC 6388 not found in our previous groundbased studies. Revised mean periods for RRab stars in NGC 6388 and NGC 6441 are 0.676 day and 0.756 day, respectively. These values are among the largest known for any galactic globular cluster. Additional probable type II Cepheids were identified in NGC 6388, confirming its status as a metal-rich globular cluster rich in Cepheids.
The same frequency of planets inside and outside open clusters of stars.
Meibom, Søren; Torres, Guillermo; Fressin, Francois; Latham, David W; Rowe, Jason F; Ciardi, David R; Bryson, Steven T; Rogers, Leslie A; Henze, Christopher E; Janes, Kenneth; Barnes, Sydney A; Marcy, Geoffrey W; Isaacson, Howard; Fischer, Debra A; Howell, Steve B; Horch, Elliott P; Jenkins, Jon M; Schuler, Simon C; Crepp, Justin
2013-07-04
Most stars and their planets form in open clusters. Over 95 per cent of such clusters have stellar densities too low (less than a hundred stars per cubic parsec) to withstand internal and external dynamical stresses and fall apart within a few hundred million years. Older open clusters have survived by virtue of being richer and denser in stars (1,000 to 10,000 per cubic parsec) when they formed. Such clusters represent a stellar environment very different from the birthplace of the Sun and other planet-hosting field stars. So far more than 800 planets have been found around Sun-like stars in the field. The field planets are usually the size of Neptune or smaller. In contrast, only four planets have been found orbiting stars in open clusters, all with masses similar to or greater than that of Jupiter. Here we report observations of the transits of two Sun-like stars by planets smaller than Neptune in the billion-year-old open cluster NGC6811. This demonstrates that small planets can form and survive in a dense cluster environment, and implies that the frequency and properties of planets in open clusters are consistent with those of planets around field stars in the Galaxy.
Deep HST Photometry of NGC 6388: Age and Horizontal Branch Luminosity
NASA Technical Reports Server (NTRS)
Stetson, Peter B.; Catelan, M.; Pritzl, Barton J.; Smith, Horace A.; Kinemuchi, Karen; Layden, Andrew C.; Sweigart, Allen V.; Rich, R. M.
2006-01-01
We present the first deep color-magnitude diagram (CMD) of the Galactic globular cluster NGC 6388, obtained with the Hubble Space Telescope, that is able to reach the main-sequence turnoff point of the cluster. From a detailed comparison between the cluster CMD and that of 47 Tucanae (NGC 104), we find that the bulk of the stars in these two clusters have nearly the same age and chemical composition. On the other hand, our results indicate that the blue horizontal branch and RR Lyrae components in NGC 6388 are intrinsically over-luminous, which must be due to one or more, still undetermined, non-canonical second parameter(s) affecting a relatively minor fraction of the stars in NGC 6388.
The coma cluster after lunch: Has a galaxcy group passed through the cluster core?
NASA Technical Reports Server (NTRS)
Burns, Jack O.; Roettiger, Kurt; Ledlow, Michael; Klypin, Anatoly
1994-01-01
We propose that the Coma cluster has recently undergone a collision with the NGC 4839 galaxy group. The ROSAT X-ray morphology, the Coma radio halo, the presence of poststarburst galaxies in the bridge between Coma and NGC 4839, the usually high velocity dispersion for the NGC 4839 group, and the position of a large-scale galaxy filament to the NE of Coma are all used to argue that the NGC 4839 group passed through the core of Coma approximately 2 Gyr ago. We present a new Hydro/N-body simulation of the merger between a galaxy group and a rich cluster that reproduces many of the observed X-ray and optical properties of Coma/NGC 4839.
Analisis fotometrico del cumulo abierto NGC 6611
NASA Astrophysics Data System (ADS)
Suarez Nunez, Johanna
2007-08-01
Matlab programs were designed to apply differential aperture photometry. Two images were taken with a charge-couple device ( CCD ) in the visible V and blue filters, to calculate physical parameters (the flux( f ), the apparent magnitude ( m V ) and its reddening corrected value ( V 0 ), color index ( B- V ) and ( B-V ) 0 , the log of effective temperature (log T eff ), the absolute magnitude ( M V ), the bolometric magnitude ( M B ) & log(L [low *] /[Special characters omitted.] )) of each studied star pertaining to the open cluster NGC 6611. Upon obtaining the parameters, the color-magnitude diagram was graphed and by fitting to the main sequence, the distance modulus and thus the distance to the cluster was found. The stars were assumed to be at the same distance and born at approximately the same moment.
The nuclear regions of NGC 3311 and NGC 7768 imaged with the Hubble Space Telescope Planetary Camera
NASA Technical Reports Server (NTRS)
Grillmair, Carl J.; Faber, S.M.; Lauer, Tod R.; Baum, William A.; Lynds, Roger C.; O'Neil, Earl J., Jr.; Shaya, Edward J.
1994-01-01
We present high-resolution, V band images of the central regions of the brightest cluster ellipticals NGC 3311 and NGC 7768 taken with the Planetary Camera of the Hubble Space Telescope. The nuclei of both galaxies are found to be obscured by dust, though the morphology of the dust is quite different in the two cases. The dust cloud which obscures the central 3 arcsec of NGC 3311 is complex and irregular, while the central region of NGC 7768 contains a disk of material similar in appearance and scale to that recently observed in HST images of NGC 4261. The bright, relatively blue source detected in ground-based studies of NGC 3311 is marginally resolved and is likely to be a site of ongoing star formation. We examine the distribution of globular clusters in the central regions of NGC 3311. The gradient in the surface density profile of the cluster system is significantly shallower than that found by previous investigators at larger radii. We find a core radius for the cluster distribution of 12 plus or minus 3 kpc, which is even larger than the core radius of the globular cluster system surrounding M87. It is also an order of magnitude larger than the upper limit on the core radius of NGC 3311's stellar light and suggests that the central field-star population and the globular cluster system are dynamically distinct. We briefly discuss possible sources for the cold/warm interstellar material in early-type galaxies. While the issue has not been resolved, models which involve galactic wind failure appear to be mo st naturally consistent with the observations.
Chandra X-ray observation of the young stellar cluster NGC 3293 in the Carina Nebula Complex
NASA Astrophysics Data System (ADS)
Preibisch, T.; Flaischlen, S.; Gaczkowski, B.; Townsley, L.; Broos, P.
2017-09-01
Context. NGC 3293 is a young stellar cluster at the northwestern periphery of the Carina Nebula Complex that has remained poorly explored until now. Aims: We characterize the stellar population of NGC 3293 in order to evaluate key parameters of the cluster population such as the age and the mass function, and to test claims of an abnormal IMF and a deficit of M ≤ 2.5 M⊙ stars. Methods: We performed a deep (70 ks) X-ray observation of NGC 3293 with Chandra and detected 1026 individual X-ray point sources. These X-ray data directly probe the low-mass (M ≤ 2 M⊙) stellar population by means of the strong X-ray emission of young low-mass stars. We identify counterparts for 74% of the X-ray sources in our deep near-infrared images. Results: Our data clearly show that NGC 3293 hosts a large population of ≈solar-mass stars, refuting claims of a lack of M ≤ 2.5 M⊙ stars. The analysis of the color magnitude diagram suggests an age of 8-10 Myr for the low-mass population of the cluster. There are at least 511 X-ray detected stars with color magnitude positions that are consistent with young stellar members within 7 arcmin of the cluster center. The number ratio of X-ray detected stars in the [1-2 ] M⊙ range versus the M ≥ 5 M⊙ stars (known from optical spectroscopy) is consistent with the expectation from a normal field initial mass function. Most of the early B-type stars and ≈20% of the later B-type stars are detected as X-ray sources. Conclusions: Our data shows that NGC 3293 is one of the most populous stellar clusters in the entire Carina Nebula Complex (very similar to Tr 16 and Tr 15; only Tr 14 is more populous). The cluster probably harbored several O-type stars, whose supernova explosions may have had an important impact on the early evolution of the Carina Nebula Complex. The Chandra data described in this paper have been obtained in the open time project with ObsID 16648 (PI: T. Preibisch) ivo://ADS/Sa.CXO#obs/16648.Tables 1-3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/605/A85
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shields, G. A.; Bonning, E. W., E-mail: shields@astro.as.utexas.edu, E-mail: erin.bonning@questu.ca
Recent results indicate that the compact lenticular galaxy NGC 1277 in the Perseus Cluster contains a black hole of mass {approx}10{sup 10} M{sub Sun }. This far exceeds the expected mass of the central black hole in a galaxy of the modest dimensions of NGC 1277. We suggest that this giant black hole was ejected from the nearby giant galaxy NGC 1275 and subsequently captured by NGC 1277. The ejection was the result of gravitational radiation recoil when two large black holes merged following the merger of two giant ellipticals that helped to form NGC 1275. The black hole wanderedmore » in the cluster core until it was captured in a close encounter with NGC 1277. The migration of black holes in clusters may be a common occurrence.« less
NGC 6067: a young and massive open cluster with high metallicity
NASA Astrophysics Data System (ADS)
Alonso-Santiago, J.; Negueruela, I.; Marco, A.; Tabernero, H. M.; González-Fernández, C.; Castro, N.
2017-08-01
NGC 6067 is a young open cluster hosting the largest population of evolved stars among known Milky Way clusters in the 50-150 Ma age range. It thus represents the best laboratory in our Galaxy to constrain the evolutionary tracks of 5-7 M⊙ stars. We have used high-resolution spectra of a large sample of bright cluster members (45), combined with archival photometry, to obtain accurate parameters for the cluster as well as stellar atmospheric parameters. We derive a distance of 1.78 ± 0.12 kpc, an age of 90 ± 20 Ma and a tidal radius of 14.8^{+6.8}_{-3.2} arcmin. We estimate an initial mass above 5700 M⊙, for a present-day evolved population of two Cepheids, two A supergiants and 12 red giants with masses ≈6 M⊙. We also determine chemical abundances of Li, O, Na, Mg, Si, Ca, Ti, Ni, Rb, Y and Ba for the red clump stars. We find a supersolar metallicity, [Fe/H] = +0.19 ± 0.05, and a homogeneous chemical composition, consistent with the Galactic metallicity gradient. The presence of a Li-rich red giant, star 276 with A(Li) = 2.41, is also detected. An overabundance of Ba is found, supporting the enhanced s-process. The ratio of yellow to red giants is much smaller than 1, in agreement with models with moderate overshooting, but the properties of the cluster Cepheids do not seem consistent with current Padova models for supersolar metallicity.
Optical polarization observations in Hogg 22 and NGC 6204
NASA Astrophysics Data System (ADS)
Martínez, R.; Vergne, M. M.; Feinstein, C.
2004-06-01
We present new (UBVRI) multicolor linear polarimetric data for 22 of the brightest stars in the area of the open clusters Hogg 22 and NGC 6204 to study the properties of the ISM (interstellar medium) toward these clusters and between them. The new data were incorporated in our data set of previous observations (Waldhausen et al. \\cite{waldhausen}), resulting in 28 observed stars in the region. Our data yield for NGC 6204 a mean polarization percentage of Pλ_max˜1.8%, close to the polarization value produced by the ISM with normal efficiency (Pλ_max ˜ 5 EB-V) with a color excess of EB-V =0.51. Meanwhile for Hogg 22, located behind NGC 6204, the mean polarization is Pλ_max˜ 2.15%, lower than the expected value for the observed color excess of EB-V =0.68 (Forbes et al. 1996) and the average efficiency of polarization for the interstellar dust. The mean angle of the polarization vectors of Hogg 22 is θ=44.9 °, which agrees with the expected angle produce by dust particles aligned in the direction of the Galactic Plane (θ=48°), while for NGC 6204 a lower value, θ=33.7 °, was found. Therefore, we believe that Hogg 22 is depolarized by the same dust that is polarizing NGC 6204, due to different orientations of the dust particles (and magnetic fields) that polarize the starlight. Based on observations obtanined at Complejo Astronómico El Leoncito (CASLEO), operated under agreement between the CONICET and the National Universities of La Plata, Córdoba, and San Juan, Argentina.
On the physical nature of six galactic open cluster candidates
NASA Astrophysics Data System (ADS)
Piatti, A. E.; Clariá, J. J.; Ahumada, A. V.
We present CCD UBVI_(KC) photometry in the fields of the unstudied open cluster (OC) candidates Haffner 3, Haffner 5, NGC 2368, Haffner 25, Hogg 3 and Hogg 4. Our analysis shows that none of these objects are genuine OCs since no clear main sequences or other typical features can be seen in their colour-magnitude and colour-colour diagrams. Star counts performed within and outside the OC candidate fields not only support these results but also suggest that these objects are not OC remnants. A detailed version of this work can be seen in New Astronomy, 16, 161 (2011).
Newly discovered globular clusters in NGC 147 and NGC 185 from PAndAS
NASA Astrophysics Data System (ADS)
Veljanoski, J.; Ferguson, A. M. N.; Huxor, A. P.; Mackey, A. D.; Fishlock, C. K.; Irwin, M. J.; Tanvir, N.; Chapman, S. C.; Ibata, R. A.; Lewis, G. F.; McConnachie, A.
2013-11-01
Using data from the Pan-Andromeda Archaeological Survey (PAndAS), we have discovered four new globular clusters (GCs) associated with the M31 dwarf elliptical (dE) satellites NGC 147 and NGC 185. Three of these are associated with NGC 147 and one with NGC 185. All lie beyond the main optical boundaries of the galaxies and are the most remote clusters yet known in these systems. Radial velocities derived from low-resolution spectra are used to argue that the GCs are bound to the dwarfs and are not part of the M31 halo population. Combining PAndAS with United Kingdom Infrared Telescope (UKIRT)/WFCAM (Wide-Field Camera) data, we present the first homogeneous optical and near-IR photometry for the entire GC systems of these dEs. Colour-colour plots and published colour-metallicity relations are employed to constrain GC ages and metallicities. It is demonstrated that the clusters are in general metal poor ([Fe/H] < -1.25 dex), while the ages are more difficult to constrain. The mean (V - I)0 colours of the two GC systems are very similar to those of the GC systems of dEs in the Virgo and Fornax clusters, as well as the extended halo GC population in M31. The new clusters bring the GC-specific frequency (SN) to ˜9 in NGC 147 and ˜5 in NGC 185, consistent with values found for dEs of similar luminosity residing in a range of environments.
Migration in the shearing sheet and estimates for young open cluster migration
NASA Astrophysics Data System (ADS)
Quillen, Alice C.; Nolting, Eric; Minchev, Ivan; De Silva, Gayandhi; Chiappini, Cristina
2018-04-01
Using tracer particles embedded in self-gravitating shearing sheet N-body simulations, we investigate the distance in guiding centre radius that stars or star clusters can migrate in a few orbital periods. The standard deviations of guiding centre distributions and maximum migration distances depend on the Toomre or critical wavelength and the contrast in mass surface density caused by spiral structure. Comparison between our simulations and estimated guiding radii for a few young supersolar metallicity open clusters, including NGC 6583, suggests that the contrast in mass surface density in the solar neighbourhood has standard deviation (in the surface density distribution) divided by mean of about 1/4 and larger than measured using COBE data by Drimmel and Spergel. Our estimate is consistent with a standard deviation of ˜0.07 dex in the metallicities measured from high-quality spectroscopic data for 38 young open clusters (<1 Gyr) with mean galactocentric radius 7-9 kpc.
The Age of the Inner Halo Globular Cluster NGC 6652
NASA Technical Reports Server (NTRS)
Chaboyer, Brian; Sarajedini, Ata; Armandroff, Taft E.
2000-01-01
Hubble Space Telescope (HST) (V,I) photometry has been obtained for the inner halo globular cluster NGC 6652. The photometry reaches approximately 4 mag below the turn-off and includes a well populated horizontal branch (HB). This cluster is located close to the Galactic center at RGC approximately equal to 2.0 kpc with a reddening of E(V-I) = 0.15 +/- 0.02 and has a metallicity of [Fe/H] approximately equal to -0.85. Based upon DELTA V (sup SGB) (sub HB), NGC 6652 is 11.7 plus or minus 1.6 Gyr old. Using A HB precise differential ages for 47 Tuc (a thick disk globular), M107 and NGC 1851 (both halo clusters) were obtained. NGC 6652 appears to be the same age as 47 Tuc and NGC 1851 (within +/- 1.2 Gyr), while there is a slight suggestion that M107 is older than NGC 6652 by 2.3 +/- 1.5 Gyr. As this is a less than 2 sigma result, this issue needs to be investigated further before a definitive statement regarding the relative age of M107 and NGC 6652 may be made.
High-resolution Spectroscopic Abundances of Red Giant Branch Stars in NGC 6584 and NGC 7099
NASA Astrophysics Data System (ADS)
O’Malley, Erin M.; Chaboyer, Brian
2018-04-01
We obtain high-resolution spectra of red giant branch stars in NGC 6584 and NGC 7099 to perform a detailed abundance analysis. We confirm cluster membership for these stars based on consistent radial velocities measured in this study and small pixel offsets between the observations of Sarajedini et al. and Piotto et al. We find mean metallicities of [Fe/H] = ‑1.53 ± 0.08 dex and [Fe/H] = ‑2.29 ± 0.07 dex for NGC 6584 and NGC 7099, respectively. We also find these clusters to be enhanced in their [α/Fe] ratios, consistent with what is expected for metal-poor globular clusters. Additionally, we find evidence of a statistically significant Na–O anti-correlation in both clusters. Finally, with the use of HST photometry, we compare the location of the enhanced and pristine populations in chromosome maps of the clusters to confirm previous photometric evidence of multiple stellar populations. Although we cannot confirm the nature of the polluter stars responsible for the abundance differences, our results can be used to constrain pollution models.
12C/13C isotopic ratios in red-giant stars of the open cluster NGC 6791
NASA Astrophysics Data System (ADS)
Szigeti, László; Mészáros, Szabolcs; Smith, Verne V.; Cunha, Katia; Lagarde, Nadège; Charbonnel, Corinne; García-Hernández, D. A.; Shetrone, Matthew; Pinsonneault, Marc; Allende Prieto, Carlos; Fernández-Trincado, J. G.; Kovács, József; Villanova, Sandro
2018-03-01
Carbon isotope ratios, along with carbon and nitrogen abundances, are derived in a sample of 11 red-giant members of one of the most metal-rich clusters in the Milky Way, NGC 6791. The selected red-giants have a mean metallicity and standard deviation of [Fe/H] = +0.39 ± 0.06 (Cunha et al. 2015). We used high-resolution H-band spectra obtained by the SDSS-IV Apache Point Observatory Galactic Evolution Experiment. The advantage of using high-resolution spectra in the H band is that lines of CO are well represented and their line profiles are sensitive to the variation of 12C/13C. Values of the 12C/13C ratio were obtained from a spectrum synthesis analysis. The derived 12C/13C ratios varied between 6.3 and 10.6 in NGC 6791, in agreement with the final isotopic ratios from thermohaline-induced mixing models. The ratios derived here are combined with those obtained for more metal poor red-giants from the literature to examine the correlation between 12C/13C, mass, metallicity, and evolutionary status.
FIDUCIAL STELLAR POPULATION SEQUENCES FOR THE VJK{sub S} PHOTOMETRIC SYSTEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brasseur, Crystal M.; VandenBerg, Don A.; Stetson, Peter B.
2010-12-15
We have obtained broadband near-infrared photometry for seven Galactic star clusters (M 92, M 15, M 13, M 5, NGC 1851, M 71, and NGC 6791) using the WIRCam wide-field imager on the Canada-France-Hawaii Telescope, supplemented by images of NGC 1851 taken with HAWK-I on the Very Large Telescope. In addition, Two Micron All Sky Survey (2MASS) observations of the [Fe/H] {approx}0.0 open cluster M 67 were added to the cluster database. From the resultant (V - J) - V and (V - K{sub S} ) - V color-magnitude diagrams (CMDs), fiducial sequences spanning the range in metallicity, -2.4 {approx}
NASA Astrophysics Data System (ADS)
Bassino, Lilia P.; Richtler, Tom; Dirsch, Boris
2008-05-01
We present a deep Very Large Telescope (VLT) photometry in the regions surrounding the two dominant galaxies of the Antlia cluster, the giant ellipticals NGC3258 and NGC3268. We construct the luminosity functions of their globular cluster systems (GCSs) and determine their distances through the turn-over magnitudes. These distances are in good agreement with those obtained by the SBF method. There is some, but not conclusive, evidence that the distance to NGC3268 is larger by several Mpc. The GCSs colour distributions are bimodal but the brightest globular clusters (GCs) show a unimodal distribution with an intermediate colour peak. The radial distributions of both GCSs are well fitted by de Vaucouleurs laws up to 5arcmin. Red GCs present a steeper radial density profile than the blue GCs, and follow closely the galaxies' brightness profiles. Total GC populations are estimated to be about 6000 +/- 150GCs in NGC3258 and NGC4750 +/- 150GCs in NGC3268. We discuss the possible existence of GCs in a field located between the two giant galaxies (intracluster GCs). Their luminosity functions and number densities are consistent with the two GCSs overlapping in projection. Based on observations carried out at the European Southern Observatory, Paranal (Chile). Programme 71.B-0122(A). E-mail: lbassino@fcaglp.unlp.edu.ar (LPB); tom@mobydick.cfm.udec.cl (TR); borischacabuco@yahoo.co.uk (BD)
Variable Stars In the Unusual, Metal-Rich Globular Cluster
NASA Technical Reports Server (NTRS)
Pritzl, Barton J.; Smith, Horace A.; Catelan, Marcio; Sweigart, Allen V.; Oegerle, William R. (Technical Monitor)
2002-01-01
We have undertaken a search for variable stars in the metal-rich globular cluster NGC 6388 using time-series BV photometry. Twenty-eight new variables were found in this survey, increasing the total number of variables found near NGC 6388 to approx. 57. A significant number of the variables are RR Lyrae (approx. 14), most of which are probable cluster members. The periods of the fundamental mode RR Lyrae are shown to be unusually long compared to metal-rich field stars. The existence of these long period RRab stars suggests that the horizontal branch of NGC 6388 is unusually bright. This implies that the metallicity-luminosity relationship for RR Lyrae stars is not universal if the RR Lyrae in NGC 6388 are indeed metal-rich. We consider the alternative possibility that the stars in NGC 6388 may span a range in [Fe/H]. Four candidate Population II Cepheids were also found. If they are members of the cluster, NGC 6388 would be the most metal-rich globular cluster to contain Population II Cepheids. The mean V magnitude of the RR Lyrae is found to be 16.85 +/- 0.05 resulting in a distance of 9.0 to 10.3 kpc, for a range of assumed values of (M(sub V)) for RR Lyrae. We determine the reddening of the cluster to be E(B - V) = 0.40 +/- 0.03 mag, with differential reddening across the face of the cluster. We discuss the difficulty in determining the Oosterhoff classification of NGC 6388 and NGC 6441 due to the unusual nature of their RR Lyrae, and address evolutionary constraints on a recent suggestion that they are of Oosterhoff type II.
RR Lyrae stars in and around NGC 6441: signatures of dissolving cluster stars
NASA Astrophysics Data System (ADS)
Kunder, Andrea
2018-06-01
Detailed elemental abundance patterns of metal-poor ([Fe/H]~ -1 dex) stars in the Galactic bulge indicate that a number of them are consistent with globular cluster (GC) stars and may be former members of dissolved GCs. This would indicate that a few per cent of the Galactic bulge was built up from destruction and/or evaporation of globular clusters. Here an attempt is made to identify such presumptive destroyed stars originating from the massive, inner Galaxy globular cluster NGC~6441 using its rich RR Lyrae variable star (RRL) population. We present radial velocities of forty RRLs centered on the globular cluster NGC~6441. All of the 13 RRLs observed within the cluster tidal radius have velocities consistent with cluster membership, with an average radial velocity of 24 +- 5~km/s and a star-to-star scatter of 11~km/s. This includes two new RRLs that were previously not associated with the cluster. Eight RRLs with radial velocities consistent with cluster membership but up to three time the distance from the tidal radius are also reported. These potential extra-tidal RRLs also have exceptionally long periods, which is a curious characteristic of the NGC~6441 RRL population that hosts RRLs with periods longer than seen anywhere else in the Milky Way. As expected of stripped cluster stars, most are inline with the cluster's orbit. Therefore, either the tidal radius of NGC~6441 is underestimated and/or we are seeing dissolving cluster stars stemming from NGC~6441 that are building up the old spheroidal bulge. Both the mean velocity of the cluster as well as the underlying field population is consistent with belonging to an old spheroidal bulge with low rotation and high velocity dispersion that formed before the bar.
CCD photometry of NGC 6101 - Another globular cluster with blue straggler stars
NASA Technical Reports Server (NTRS)
Sarajedini, Ata; Da Costa, G. S.
1991-01-01
Results are presented on CCD photometric observations of a large sample of stars in the southern globular cluster NGC 6101, and the procedures used to derive the color-magnitude (C-M) diagram of the cluster are described. No indication was found of any difference in age, at the less than 2 Gyr level, between NGC 6101 cluster and other clusters of similar abundance, such as M92. The C-M diagram revealed a significant blue straggler population. It was found that, in NGC 6101, these stars are more centrally concentrated than the cluster subgiants of similar magnitude, indicating that the blue stragglers have larger masses. Results on the magnitude and luminosity function of the sample are consistent with the bianry mass transfer or merger hypotheses for the origin of blue straggler stars.
MOCCA-SURVEY Database I: Is NGC 6535 a dark star cluster harbouring an IMBH?
NASA Astrophysics Data System (ADS)
Askar, Abbas; Bianchini, Paolo; de Vita, Ruggero; Giersz, Mirek; Hypki, Arkadiusz; Kamann, Sebastian
2017-01-01
We describe the dynamical evolution of a unique type of dark star cluster model in which the majority of the cluster mass at Hubble time is dominated by an intermediate-mass black hole (IMBH). We analysed results from about 2000 star cluster models (Survey Database I) simulated using the Monte Carlo code MOnte Carlo Cluster simulAtor and identified these dark star cluster models. Taking one of these models, we apply the method of simulating realistic `mock observations' by utilizing the Cluster simulatiOn Comparison with ObservAtions (COCOA) and Simulating Stellar Cluster Observation (SISCO) codes to obtain the photometric and kinematic observational properties of the dark star cluster model at 12 Gyr. We find that the perplexing Galactic globular cluster NGC 6535 closely matches the observational photometric and kinematic properties of the dark star cluster model presented in this paper. Based on our analysis and currently observed properties of NGC 6535, we suggest that this globular cluster could potentially harbour an IMBH. If it exists, the presence of this IMBH can be detected robustly with proposed kinematic observations of NGC 6535.
Chemical Complexity in the Eu-enhanced Monometallic Globular NGC 5986
NASA Astrophysics Data System (ADS)
Johnson, Christian I.; Caldwell, Nelson; Rich, R. Michael; Mateo, Mario; Bailey, John I., III; Olszewski, Edward W.; Walker, Matthew G.
2017-06-01
NGC 5986 is a poorly studied but relatively massive Galactic globular cluster that shares several physical and morphological characteristics with “iron-complex” clusters known to exhibit significant metallicity and heavy-element dispersions. In order to determine whether NGC 5986 joins the iron-complex cluster class, we investigated the chemical composition of 25 red giant branch and asymptotic giant branch cluster stars using high-resolution spectra obtained with the Magellan-M2FS instrument. Cluster membership was verified using a combination of radial velocity and [Fe/H] measurements, and we found the cluster to have a mean heliocentric radial velocity of +99.76 km s-1 (σ = 7.44 km s-1). We derived a mean metallicity of [Fe/H] = -1.54 dex (σ = 0.08 dex), but the cluster’s small dispersion in [Fe/H] and low [La/Eu] abundance preclude it from being an iron-complex cluster. NGC 5986 has < [{Eu}/{Fe}]> =+0.76 {dex} (σ = 0.08 dex), which is among the highest ratios detected in a Galactic cluster, but the small [Eu/Fe] dispersion is puzzling because such high values near [Fe/H] ˜ -1.5 are typically only found in dwarf galaxies exhibiting large [Eu/Fe] variations. NGC 5986 exhibits classical globular cluster characteristics, such as uniformly enhanced [α/Fe] ratios, a small dispersion in Fe-peak abundances, and (anti)correlated light-element variations. Similar to NGC 2808, we find evidence that NGC 5986 may host at least four to five populations with distinct light-element compositions, and the presence of a clear Mg-Al anticorrelation along with an Al-Si correlation suggests that the cluster gas experienced processing at temperatures ≳65-70 MK. However, the current data do not support burning temperatures exceeding ˜100 MK. We find some evidence that the first- and second-generation stars in NGC 5986 may be fully spatially mixed, which could indicate that the cluster has lost a significant fraction of its original mass. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.
NASA Astrophysics Data System (ADS)
Salinas, R.; Alabi, A.; Richtler, T.; Lane, R. R.
2015-05-01
As tracers of star formation, galaxy assembly, and mass distribution, globular clusters have provided important clues to our understanding of early-type galaxies. But their study has been mostly constrained to galaxy groups and clusters where early-type galaxies dominate, leaving the properties of the globular cluster systems (GCSs) of isolated ellipticals as a mostly uncharted territory. We present Gemini-South/GMOS g'i' observations of five isolated elliptical galaxies: NGC 3962, NGC 2865, IC 4889, NGC 2271, and NGC 4240. Photometry of their GCSs reveals clear color bimodality in three of them, but remains inconclusive for the other two. All the studied GCSs are rather poor with a mean specific frequency SN ~ 1.5, independently of the parent galaxy luminosity. Considering information from previous work as well, it is clear that bimodality and especially the presence of a significant, even dominant, population of blue clusters occurs at even the most isolated systems, which casts doubts on a possible accreted origin of metal-poor clusters, as suggested by some models. Additionally, we discuss the possible existence of ultra-compact dwarfs around the isolated elliptical NGC 3962. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência, Tecnologia e Inovação (Brazil) and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina).Globular cluster photometry is available in electronic form at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/577/A59Appendices are available in electronic form at http://www.aanda.org
DOE Office of Scientific and Technical Information (OSTI.GOV)
Proffitt, Charles R.; Lennon, Daniel J.; Langer, Norbert
2016-06-10
Spectra from the Hubble Space Telescope Cosmic Origins Spectrograph and the Space Telescope Imaging Spectrograph covering the B iii resonance line have been obtained for 10 early-B stars near the turnoff of the young Galactic open cluster NGC 3293. This is the first sample of boron abundance determinations in a single, clearly defined population of early-B stars that also covers a substantial range of projected rotational velocities. In most of these stars we detect partial depletion of boron at a level consistent with that expected for rotational mixing in single stars, but inconsistent with expectations for depletion from close binarymore » evolution. However, our results do suggest that the efficiency of rotational mixing is at or slightly below the low end of the range predicted by the available theoretical calculations. The two most luminous targets observed have a very large boron depletion and may be the products of either binary interactions or post-main-sequence evolution.« less
Chemical abundances in the globular clusters NGC6229 and NGC6779
NASA Astrophysics Data System (ADS)
Khamidullina, D. A.; Sharina, M. E.; Shimansky, V. V.; Davoust, E.
2014-10-01
Long-slit medium-resolution spectra of the Galactic globular clusters (GCs) NGC6229 and NGC6779, obtained with the CARELEC spectrograph at the 1.93-m telescope of the Haute-Provence observatory, have been used to determine the age, helium abundance (Y), and metallicity [Fe/H] as well as the first estimate of the abundances of C, N, O, Mg, Ca, Ti, and Cr for these objects. We solved this task by comparing the observed spectra and the integrated synthetic spectra, calculated with the use of the stellar atmosphere models with the parameters preset for the stars from these clusters. The model mass estimates, T eff, and log g were derived by comparing the observed "color-magnitude" diagrams and the theoretical isochrones. The summing-up of the synthetic blanketed stellar spectra was conducted according to the Chabrier mass function. To test the accuracy of the results, we estimated the chemical abundances, [Fe/H], log t, and Y for the NGC5904 and NGC6254 clusters, which, according to the literature, are considered to be the closest analogues of the two GCs of our study. Using the medium-resolution spectra from the library of Schiavon et al., we obtained for these two clusters a satisfactory agreement with the reported estimates for all the parameters within the errors. We derived the following cluster parameters. NGC6229: [Fe/H] = -1.65 dex, t = 12.6 Gyr, Y = 0.26, [ α/Fe] = 0.28 dex; NGC6779: [Fe/H] = -1.9 dex, t = 12.6 Gyr, Y = 0.23, [ α/Fe] = 0.08 dex; NGC5904: [Fe/H] = -1.6 dex, t = 12.6 Gyr, Y = 0.30, [ α/Fe] = 0.35 dex; NGC6254: [Fe/H] = -1.52 dex, t = 11.2 Gyr, Y = 0.30, [ α/Fe] = 0.025 dex. The value [ α/Fe] denotes the average of the Ca and Mg abundances.
The Gaia-ESO Survey: dynamical models of flattened, rotating globular clusters
NASA Astrophysics Data System (ADS)
Jeffreson, S. M. R.; Sanders, J. L.; Evans, N. W.; Williams, A. A.; Gilmore, G. F.; Bayo, A.; Bragaglia, A.; Casey, A. R.; Flaccomio, E.; Franciosini, E.; Hourihane, A.; Jackson, R. J.; Jeffries, R. D.; Jofré, P.; Koposov, S.; Lardo, C.; Lewis, J.; Magrini, L.; Morbidelli, L.; Pancino, E.; Randich, S.; Sacco, G. G.; Worley, C. C.; Zaggia, S.
2017-08-01
We present a family of self-consistent axisymmetric rotating globular cluster models which are fitted to spectroscopic data for NGC 362, NGC 1851, NGC 2808, NGC 4372, NGC 5927 and NGC 6752 to provide constraints on their physical and kinematic properties, including their rotation signals. They are constructed by flattening Modified Plummer profiles, which have the same asymptotic behaviour as classical Plummer models, but can provide better fits to young clusters due to a slower turnover in the density profile. The models are in dynamical equilibrium as they depend solely on the action variables. We employ a fully Bayesian scheme to investigate the uncertainty in our model parameters (including mass-to-light ratios and inclination angles) and evaluate the Bayesian evidence ratio for rotating to non-rotating models. We find convincing levels of rotation only in NGC 2808. In the other clusters, there is just a hint of rotation (in particular, NGC 4372 and NGC 5927), as the data quality does not allow us to draw strong conclusions. Where rotation is present, we find that it is confined to the central regions, within radii of R ≤ 2rh. As part of this work, we have developed a novel q-Gaussian basis expansion of the line-of-sight velocity distributions, from which general models can be constructed via interpolation on the basis coefficients.
Hubble Space Telescope imaging of the central star forming region in NGC 1140 (exp 1)
NASA Technical Reports Server (NTRS)
Hunter, Deidre A.; O'Connell, Robert W.; Gallagher, John S. Iii
1994-01-01
We present broadband images taken with the Hubble Space Telescope's Planetary Camera of the central supergiant H II region in the amorphous galaxy NGC 1140. These images allow observations to a resolution of about 13 pc at the galaxy, and they reveal that its central 1/2 kpc contains 6-7 blue, luminous, compact super star clusters, many of which would be comparable in luminosity to globular clusters at the same age. A blue arc-shaped structure near the center may be a grouping of less luminous, R136/NGC 2070-sized clusters or a sheet of OB stars. Additional somewhat less luminous and redder clusters are also found farther out from the center. If these clusters are older, they too could have had luminosities comparable to those of the central six clusters at a comparable age. Thus, we find that NGC 1140 is remarkable in the number of extreme clusters that it has formed recently in a relatively small area of the galaxy. Since NGC 1140 exhibits global characteristics that are consistent with a recent merger, these clusters are likely to be a product of that event. This galaxy adds to the number of cases where rapid star formation has evidently produced super star clusters.
The environment of young massive clusters
NASA Astrophysics Data System (ADS)
Vanzi, L.; Sauvage, M.
2006-06-01
We observed a sample of Blue Dwarf Galaxies in the Ks (2.2 μm) and Lα (3.7 μm) IR bands at the ESO VLT with ISAAC. The purpose of the observations was to study the population of young massive clusters and the conditions under which they are formed. The sample galaxies included: Tol 1924-416, Tol 35, Pox 36, UM 462, He 2-10, II Zw 40, Tol 3, NGC 1705, NGC 5408, IC 4662, NGC 5253. They were selected to have evidence for star formation and firm detection by IRAS. All galaxies observed turned to be very rich of young massive clusters in Ks. Only few clusters, about 8%, showed counterparts in Lα. Most L' sources can be associated to radio thermal sources, with the only exception of the NGC 1705's one. For two galaxies, NGC 5408 and IC 4662, we derived the cluster luminosity functions finding them consistent with a power law of index about -2. We compared the numbers and luminosities of the clusters with the star formation rate of the host galaxy and could not find any evidence of a relation.
THE BLUE HOOK POPULATIONS OF MASSIVE GLOBULAR CLUSTERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Thomas M.; Smith, Ed; Sweigart, Allen V.
2010-08-01
We present new Hubble Space Telescope ultraviolet color-magnitude diagrams of five massive Galactic globular clusters: NGC 2419, NGC 6273, NGC 6715, NGC 6388, and NGC 6441. These observations were obtained to investigate the 'blue hook' (BH) phenomenon previously observed in UV images of the globular clusters {omega} Cen and NGC 2808. Blue hook stars are a class of hot (approximately 35,000 K) subluminous horizontal branch stars that occupy a region of the HR diagram that is unexplained by canonical stellar evolution theory. By coupling new stellar evolution models to appropriate non-LTE synthetic spectra, we investigate various theoretical explanations for thesemore » stars. Specifically, we compare our photometry to canonical models at standard cluster abundances, canonical models with enhanced helium (consistent with cluster self-enrichment at early times), and flash-mixed models formed via a late helium-core flash on the white dwarf cooling curve. We find that flash-mixed models are required to explain the faint luminosity of the BH stars, although neither the canonical models nor the flash-mixed models can explain the range of color observed in such stars, especially those in the most metal-rich clusters. Aside from the variation in the color range, no clear trends emerge in the morphology of the BH population with respect to metallicity.« less
Light and Heavy Element Abundance Variations in the Outer Halo Globular Cluster NGC 6229
NASA Astrophysics Data System (ADS)
Johnson, Christian I.; Caldwell, Nelson; Rich, R. Michael; Walker, Matthew G.
2017-10-01
NGC 6229 is a relatively massive outer halo globular cluster that is primarily known for exhibiting a peculiar bimodal horizontal branch morphology. Given the paucity of spectroscopic data on this cluster, we present a detailed chemical composition analysis of 11 red giant branch members based on high resolution (R ≈ 38,000), high S/N (>100) spectra obtained with the MMT-Hectochelle instrument. We find the cluster to have a mean heliocentric radial velocity of -{138.1}-1.0+1.0 {km} {{{s}}}-1, a small dispersion of {3.8}-0.7+1.0 {km} {{{s}}}-1, and a relatively low {(M/{L}{{V}})}⊙ ={0.82}-0.28+0.49. The cluster is moderately metal-poor with < [{Fe}/{{H}}]> =-1.13 dex and a modest dispersion of 0.06 dex. However, 18% (2/11) of the stars in our sample have strongly enhanced [La, Nd/Fe] ratios that are correlated with a small (˜0.05 dex) increase in [Fe/H]. NGC 6229 shares several chemical signatures with M75, NGC 1851, and the intermediate metallicity populations of ω Cen, which lead us to conclude that NGC 6229 is a lower mass iron-complex cluster. The light elements exhibit the classical (anti-)correlations that extend up to Si, but the cluster possesses a large gap in the O-Na plane that separates first and second generation stars. NGC 6229 also has unusually low [Na, Al/Fe] abundances that are consistent with an accretion origin. A comparison with M54 and other Sagittarius clusters suggests that NGC 6229 could also be the remnant core of a former dwarf spheroidal galaxy.
NASA Astrophysics Data System (ADS)
Dotson, Jessie; Barentsen, Geert; Cody, Ann Marie
2018-01-01
The K2 survey has expanded the Kepler legacy by using the repurposed spacecraft to observe over 20 star clusters. The sample includes open and globular clusters at all ages, including very young (1-10 Myr, e.g. Taurus, Upper Sco, NGC 6530), moderately young (0.1-1 Gyr, e.g. M35, M44, Pleiades, Hyades), middle-aged (e.g. M67, Ruprecht 147, NGC 2158), and old globular clusters (e.g. M9, M19, Terzan 5). K2 observations of stellar clusters are exploring the rotation period-mass relationship to significantly lower masses than was previously possible, shedding light on the angular momentum budget and its dependence on mass and circumstellar disk properties, and illuminating the role of multiplicity in stellar angular momentum. Exoplanets discovered by K2 in stellar clusters provides planetary systems ripe for modeling given the extensive information available about their ages and environment. I will review the star clusters sampled by K2 across 16 fields so far, highlighting several characteristics, caveats, and unexplored uses of the public data set along the way. With fuel expected to run out in 2018, I will discuss the closing Campaigns, highlight the final target selection opportunities, and explain the data archive and TESS-compatible software tools the K2 mission intends to leave behind for posterity.
NASA Astrophysics Data System (ADS)
D'Antona, F.; Stetson, P. B.; Ventura, P.; Milone, A. P.; Piotto, G.; Caloi, V.
2009-10-01
The colour-magnitude diagram (CMD) of NGC1851 presents two subgiant branches (SGBs), probably due to the presence of two populations differing in total C+N+O (carbon+nitrogen+oxygen) content. We test the idea that a difference in total C+N+O may simulate an age difference when comparing the CMD of clusters to derive relative ages. We compare NGC1851 with NGC6121 (M4), a cluster of very similar [Fe/H]. We find that, with a suitable shift of the CMDs that brings the two red horizontal branches at the same magnitude level, the unevolved main sequence and red giant branch match, but the SGB of NGC6121 and its red giant branch `bump' are fainter than in NGC1851. In particular, the SGB of NGC6121 is even slightly fainter than the faint SGB in NGC1851. Both these features can be explained if the total C+N+O in NGC6121 is larger than that in NGC1851, even if the two clusters are coeval. We conclude by warning that different initial C+N+O abundances between two clusters, otherwise similar in metallicity and age, may lead to differences in the turnoff morphology that can be easily attributed to an age difference. Based in part on observations made with the European Southern Observatory (ESO) telescopes obtained from the ESO/ST-ECF Science Archive Facility. This paper makes use of data obtained from the Isaac Newton Group Archive which is maintained as part of the CASU Astronomical Data Centre at the Institute of Astronomy, Cambridge. ‡ E-mail: dantona@oa-roma.inaf.it (FD); peter.stetson@nrc-cnrc.gc.ca (PBS); ventura@oa-roma.inaf.it (PV); antonino.milone@unipd.it (APM); giampaolo.piotto@unipd.it (GP); vittoria.caloi@iasf-roma.inaf.it (VC)
Globular Clusters Shine in a Galaxy Lacking Dark Matter
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2018-04-01
You may have seen recent news about NGC 1052DF2, a galaxy that was discovered to have little or no dark matter. Now, a new study explores what NGC 1052DF2 does have: an enigmatic population of unusually large and luminous globular clusters.Keck/LRIS spectra (left and right) and HST images (center) of the 11 clusters associated with NGC 1052DF2. The color images each span 1 1. [van Dokkum et al. 2018]An Unusual DwarfThe ultra-diffuse galaxy NGC 1052DF2, originally identified with the Dragonfly Telescope Array, has puzzled astronomers since the discovery that its dynamical mass determined by the motions of globular-cluster-like objects spotted within it is essentially the same as its stellar mass. This equivalence implies that the galaxy is strangely lacking dark matter; the upper limit set on its dark matter halo is 400 times smaller than what we would expect for such a dwarf galaxy.Led by Pieter van Dokkum (Yale University), the team that made this discovery has now followed up with detailed Hubble Space Telescope imaging and Keck spectroscopy. Their goal? To explore the objects that allowed them to make the dynamical-mass measurement: the oddly bright globular clusters of NGC 1052DF2.Sizes (circularized half-light radii) vs. absolute magnitudes for globular clusters in NGC1052DF2 (black) and the Milky Way (red). [Adapted from van Dokkum et al. 2018]Whats Up with the Globular Clusters?Van Dokkum and collaborators spectroscopically confirmed 11 compact objects associated with the faint galaxy. These objects are globular-cluster-like in their appearance, but the peak of their luminosity distribution is offset by a factor of four from globular clusters of other galaxies; these globular clusters are significantly brighter than is typical.Using the Hubble imaging, the authors determined that NGC 1052DF2s globular clusters are more than twice the size of the Milky Ways globular clusters in the same luminosity range. As is typical for globular clusters, they are an old ( 9.3 billion years) population and metal-poor.Rethinking Formation TheoriesThe long-standing picture of galaxies has closely connected old, metal-poor globular clusters to the galaxies dark-matter halos. Past studies have found that the ratio between the total globular-cluster mass and the overall mass of a galaxy (i.e., all dark + baryonic matter) holds remarkably constant across galaxies its typically 3 x 10-5. This has led researchers to believe that properties of the dark-matter halo may determine globular-cluster formation.The luminosity function of the compact objects in NGC 1052DF2. The red and blue curves show the luminosity functions of globular clusters in the Milky Way and in the typical ultra-diffuse galaxies of the Coma cluster, respectively. NGC 1052DF2s globular clusters peak at a significantly higher luminosity. [Adapted from van Dokkum et al. 2018]NGC 1052DF2, with a globular-cluster mass thats 3% of the mass of the galaxy ( 1000 times the expected ratio!), defies this picture. This unusual galaxy therefore demonstrates that the usual relation between globular-cluster mass and total galaxy mass probably isnt due to a fundamental connection between the dark-matter halo and globular-cluster formation. Instead, van Dokkum and collaborators suggest, globular-cluster formation may ultimately be a baryon-driven process.As with all unexpected discoveries in astronomy, we must now determine whether NGC 1052DF2 is simply a fluke, or whether it represents a new class of object we can expect to find more of. Either way, this unusual galaxy is forcing us to rethink what we know about galaxies and the star clusters they host.CitationPieter van Dokkum et al 2018 ApJL 856 L30. doi:10.3847/2041-8213/aab60b
NASA Astrophysics Data System (ADS)
Mishenina, T.; Pignatari, M.; Carraro, G.; Kovtyukh, V.; Monaco, L.; Korotin, S.; Shereta, E.; Yegorova, I.; Herwig, F.
2015-02-01
Recently, an increasing number of studies were devoted to measure the abundances of neutron-capture elements heavier than iron in stars belonging to Galactic Open Clusters (OCs). OCs span a sizeable range in metallicity (-0.6 ≤ [Fe/H] ≤ +0.4), and they show abundances of light elements similar to disc stars of the same age. A different pattern is observed for heavy elements. A large scatter is observed for Ba, with most OCs showing [Ba/Fe] and [Ba/La] overabundant with respect to the Sun. The origin of this overabundance is not clearly understood. With the goal of providing new observational insights, we determined radial velocities, atmospheric parameters and chemical composition of 27 giant stars members of five OCs: Cr 110, Cr 261, NGC 2477, NGC 2506 and NGC 5822. We used high-resolution spectra obtained with the UVES spectrograph at European Southern Observatory Paranal. We perform a detailed spectroscopic analysis of these stars to measure the abundance of up to 22 elements per star. We study the dependence of element abundance on metallicity and age with unprecedented detail, complementing our analysis with data culled from the literature. We confirm the trend of Ba overabundance in OCs, and show its large dispersion for clusters younger than ˜4 Gyr. Finally, the implications of our results for stellar nucleosynthesis are discussed. We show in this work that the Ba enrichment compared to other neutron-capture elements in OCs cannot be explained by the contributions from the slow neutron-capture process and the rapid neutron-capture process. Instead, we argue that this anomalous signature can be explained by assuming an additional contribution by the intermediate neutron-capture process.
Determining open cluster membership. A Bayesian framework for quantitative member classification
NASA Astrophysics Data System (ADS)
Stott, Jonathan J.
2018-01-01
Aims: My goal is to develop a quantitative algorithm for assessing open cluster membership probabilities. The algorithm is designed to work with single-epoch observations. In its simplest form, only one set of program images and one set of reference images are required. Methods: The algorithm is based on a two-stage joint astrometric and photometric assessment of cluster membership probabilities. The probabilities were computed within a Bayesian framework using any available prior information. Where possible, the algorithm emphasizes simplicity over mathematical sophistication. Results: The algorithm was implemented and tested against three observational fields using published survey data. M 67 and NGC 654 were selected as cluster examples while a third, cluster-free, field was used for the final test data set. The algorithm shows good quantitative agreement with the existing surveys and has a false-positive rate significantly lower than the astrometric or photometric methods used individually.
1999-12-02
Atlas Image mosaic, covering 34 x 34 on the sky, of the Coma cluster, aka Abell 1656. This is a particularly rich cluster of individual galaxies over 1000 members, most prominently the two giant ellipticals, NGC 4874 right and NGC 4889 left.
Cúmulos jóvenes inmersos en campos de edad intermedia en la barra de la Nube Mayor de Magallanes
NASA Astrophysics Data System (ADS)
Piatti, A. E.; Geisler, D.; Bica, E.; Clariá, J. J.
We present Washington system photometry for 11 star clusters immersed in the northwest part of the Large Magellanic Cloud (LMC) bar. The fields are heavily populated by the intermediate-age component of the LMC bar. We succeeded in disentangling cluster colour-magnitude diagrams from those of the fields and in deriving reddening and ages for five clusters - SL 218, BRHT4b, NGC 1839, NGC 1838 and NGC 1863 - with the aid of recent Washington System theoretical isochrones. The resulting cluster ages range between 50 and 125 Myr. Despite their proximity, NGC 1836 and BRHT4b have very different ages. Thus the possibility for these two objects being a binary cluster is very unlikely, although a capture cannot be ruled out a priori. Our results suggest that for each intermediate-age cluster remaining in the LMC bar region, a number of robust young blue star clusters occurs in the same region (Piatti et al. 2003, MNRAS, 343, 851).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Chengyuan; De Grijs, Richard; Deng, Licai, E-mail: joshuali@pku.edu.cn, E-mail: grijs@pku.edu.cn
2014-04-01
Using a combination of high-resolution Hubble Space Telescope/Wide-Field and Planetary Camera-2 observations, we explore the physical properties of the stellar populations in two intermediate-age star clusters, NGC 1831 and NGC 1868, in the Large Magellanic Cloud based on their color-magnitude diagrams. We show that both clusters exhibit extended main-sequence turn offs. To explain the observations, we consider variations in helium abundance, binarity, age dispersions, and the fast rotation of the clusters' member stars. The observed narrow main sequence excludes significant variations in helium abundance in both clusters. We first establish the clusters' main-sequence binary fractions using the bulk of themore » clusters' main-sequence stellar populations ≳ 1 mag below their turn-offs. The extent of the turn-off regions in color-magnitude space, corrected for the effects of binarity, implies that age spreads of order 300 Myr may be inferred for both clusters if the stellar distributions in color-magnitude space were entirely due to the presence of multiple populations characterized by an age range. Invoking rapid rotation of the population of cluster members characterized by a single age also allows us to match the observed data in detail. However, when taking into account the extent of the red clump in color-magnitude space, we encounter an apparent conflict for NGC 1831 between the age dispersion derived from that based on the extent of the main-sequence turn off and that implied by the compact red clump. We therefore conclude that, for this cluster, variations in stellar rotation rate are preferred over an age dispersion. For NGC 1868, both models perform equally well.« less
NASA Astrophysics Data System (ADS)
Murphy, Brian W.; Darragh, Andrew; Hettinger, Paul; Hibshman, Adam; Johnson, Elliott W.; Liu, Z. J.; Pajkos, Michael A.; Stephenson, Hunter R.; Vondersaar, John R.; Conroy, Kyle E.; McCombs, Thayne A.; Reinhardt, Erik D.; Toddy, Joseph
2015-08-01
We present the results of an extensive study intended to search for and properly classify the variable stars in five galactic globular clusters. Each of the five clusters was observed hundreds to thousands of times over a time span ranging from 2 to 4 years using the SARA 0.6m located at Cerro Tololo Interamerican Observatory. The images were analyzed using the image subtract method of Alard (2000) to identify and produce light curves of all variables found in each cluster. In total we identified 373 variables with 140 of these being newly discovered increasing the number of known variables stars in these clusters by 60%. Of the total we have identified 312 RR Lyrae variables (187 RR0, 18 RR01, 99 RR1, 8 RR2), 9 SX Phe stars, 6 Cepheid variables, 11 eclipsing variables, and 35 long period variables. For IC4499 we identified 64 RR0, 18 RR01, 14 RR1, 4 RR2, 1 SX Phe, 1 eclipsing binary, and 2 long period variables. For NGC4833 we identified 10 RR0, 7 RR1, 2 RR2, 6 SX Phe, 5 eclipsing binaries, and 9 long period variables. For NGC6171 (M107) we identified 13 RR0, 7 RR1, and 1 SX Phe. For NGC6402 (M14) we identified 52 RR0, 56 RR1, 1 RR2, 1 SX Phe, 6 Cepheids, 1 eclipsing binary, and 15 long period variables. For NGC6584 we identified 48 RR0, 15 RR1, 1 RR2, 5 eclipsing binaries, and 9 long period variables. Using the RR Lyrae variables we found the mean V magnitude of the horizontal branch to be VHB = ⟨V ⟩RR = 17.63, 15.51, 15.72, 17.13, and 16.37 magnitudes for IC4499, NGC4833, NGC6171 (M107), NGC6402 (M14), and NGC6584, respectively. From our extensive data set we were able to obtain sufficient temporal and complete phase coverage of the RR Lyrae variables. This has allowed us not only to properly classify each of the RR Lyrae variables but also to use Fourier decomposition of the light curves to further analyze the properties of the variable stars and hence physical properties of each clusters. In this poster we will give the temperature, radius, stellar mass, metallicity, and helium abundance of the set of RR Lyrae variable stars found in each of the five globular clusters.
Ground-base multicolour photometry of NGC 6811
NASA Astrophysics Data System (ADS)
Ocando, S.; Martín-Ruiz, S.; Rodríguez, E.
2017-03-01
NGC 6811 is one of the four open clusters in the field of view of the Kepler space mission. Among its members there are several known pulsating A-F stars of the δ Scuti, γ Doradus, and hybrid type, which makes this cluster a very interesting object to study its pulsational content. During the summers of 2013 and 2014 we performed an extensive observational campaign using the 1.5 m telescope at the Sierra Nevada Observatory and multicolour photometry. New pulsating variables candidates were detected in this work. We fulfilled a frequency analysis for the known variables, with very good agreement with previous results. By using Str ̈omgren photometry we were able to obtain the main physical parameters of the stars such as temperature, surface gravity, metallicity and luminosity. We have also determined the corresponding frequency phase-shifts and amplitude ratios between different filters as a first step to identify the pulsational modes of the variables.
WIYN Open Cluster Study: Binary Orbits and Tidal Circularization in NGC 6819
NASA Astrophysics Data System (ADS)
Morscher, Meagan B.; Mathieu, R. D.; Kaeppler, S.; Hole, K. T.; Meibom, S.
2006-12-01
We are conducting a comprehensive stellar radial-velocity survey in NGC 6819, a rich, intermediate age ( 2.4 Gyr) open cluster with [Fe/H] -0.05. As of October 2006, we have obtained 7065 radial-velocity measurements of 1409 stars using the WIYN Hydra Multi-Object Spectrograph, with typical velocity measurement precisions of 0.4 km/s. Using an E/I criterion of 3, we have identified 282 velocity variables. In the past year we have expanded the number of final orbital solutions by 45 to a total of more than 80 solutions. In coeval stellar populations, circular binaries tend to have the shortest orbital periods, while longer period binaries show a distribution of non-zero eccentricities. The circularization of the shortest period orbits is the result of an exchange of stellar and orbital angular momentum due to tidal interactions. We defined a population’s tidal circularization period as the longest orbital period at which a binary of typical initial eccentricity has become circularized (e.g., has evolved to an eccentricity e = 0.01) over the lifetime of the cluster (Meibom & Mathieu, 2005, ApJ, 620, 970). We are studying the trend of increasing tidal circularization periods with population age. Preliminary results in NGC 6819 indicate a tidal circularization period of 7.5 days, which is consistent with this overall trend. We will recalculate the tidal circularization period in order to include the latest sample of orbital solutions. This comprehensive survey also allows us to investigate the relative spatial distributions of spectroscopic binaries and other constant-velocity cluster members of similar mass. We find the spectroscopic binaries to be more centrally concentrated at a statistically significant level, which we attribute to energy equipartition processes. MM was supported by REU NSF grant AST-0453442. RDM, SK, KTH, and SM were supported by NSF grant AST-0406615.
Cluster AgeS Experiment (CASE): deficiency of observed dwarf novae in globular clusters
NASA Astrophysics Data System (ADS)
Pietrukowicz, P.; Kaluzny, J.; Schwarzenberg-Czerny, A.; Thompson, I. B.; Pych, W.; Krzeminski, W.; Mazur, B.
2008-08-01
We present the results of a search for dwarf novae (DNe) in globular clusters (GCs). It is based on the largest available homogeneous sample of observations, in terms of the time-span, number of observations and number of clusters. It includes 16 Galactic GCs and yielded two new certain DNe: M55-CV1 and M22-CV2. All previously known systems located in our fields were recovered, too. We surveyed M4, M5, M10, M12, M22, M30, M55, NGC 288, NGC 362, NGC 2808, NGC 3201, NGC 4372, NGC 6362, NGC 6752, ω Centauri (NGC 5139) and 47 Tucanae (NGC 104). The discovery of two DNe, namely M55-CV1 and M22-CV2, was already reported by Kaluzny et al. and Pietrukowicz et al., respectively. In the remaining 14 GCs, we found no certain new DNe. Our result raises the total number of known DNe in the Galactic GCs to 12 DNe, distributed among seven clusters. Our survey recovered all three already known erupting cataclysmic variables (CVs) located in our fields, namely M5-V101, M22-CV1, and V4 in the foreground of M30. To assess the efficiency of the survey, we analysed images with inserted artificial stars mimicking outbursts of the prototype DNe SS Cygni and U Geminorum. Depending on the conditions, we recovered between 16-100 per cent of these artificial stars. The efficiency seems to be predominantly affected by duty cycle/time-sampling and much less by distance/magnitude. Except for saturated tiny collapsed cores of M30, NGC 362 and NGC 6752 (and also the dense core of NGC 2808), crowding effects in the V band were avoided by our image subtraction technique augmented with auxiliary unsaturated B-band images. Our results clearly demonstrate that in GCs common types of DNe are very rare indeed. However, great care must be taken before these conclusions can be extended to the CV population in GCs.
NASA Astrophysics Data System (ADS)
Michalska, G.; Pigulski, A.; Stęlicki, M.; Narwid, A.
2009-12-01
We present results of variability search in the field of the young open cluster NGC 1502. Eight variable stars were discovered. Of six other stars in the observed field that were suspected for variability, we confirm variability of two, including one β Cep star, NGC 1502-26. The remaining four suspects were found to be constant in our photometry. In addition, UBVIC photometry of the well-known massive eclipsing binary SZ Cam was obtained. The new variable stars include: two eclipsing binaries of which one is a relatively bright detached system with an EA-type light curve, an α2 CVn-type variable, an SPB candidate, a field RR Lyr star and three other variables showing variability of unknown origin. The variability of two of them is probably related to their emission in Hα, which has been measured by means of the α index obtained for 57 stars brighter than V≍16 mag in the central part of the observed field. Four other non-variable stars with emission in Hα were also found. Additionally, we provide VIC photometry for stars down to V=17 mag and UB photometry for about 50 brightest stars in the observed field. We also show that the 10 Myr isochrone fits very well the observed color-magnitude diagram if a distance of 1 kpc and mean reddening, E(V-IC)=0.9 mag are adopted.
Massive Star Clusters in Ongoing Galaxy Interactions: Clues to Cluster Formation
NASA Astrophysics Data System (ADS)
Keel, William C.; Borne, Kirk D.
2003-09-01
We present HST WFPC2 observations, supplemented by ground-based Hα data, of the star-cluster populations in two pairs of interacting galaxies selected for being in very different kinds of encounters seen at different stages. Dynamical information and n-body simulations provide the details of encounter geometry, mass ratio, and timing. In NGC 5752/4 we are seeing a weak encounter, well past closest approach, after about 2.5×108 yr. The large spiral NGC 5754 has a normal population of disk clusters, while the fainter companion NGC 5752 exhibits a rich population of luminous clusters with a flatter luminosity function. The strong, ongoing encounter in NGC 6621/2, seen about 1.0×108 yr past closest approach between roughly equal-mass galaxies, has produced an extensive population of luminous clusters, particularly young and luminous in a small region between the two nuclei. This region is dynamically interesting, with such a strong perturbation in the velocity field that the rotation curve reverses sign. From these results, in comparison with other strongly interacting systems discussed in the literature, cluster formation requires a threshold level of perturbation, with stage of the interaction a less important factor. The location of the most active star formation in NGC 6621/2 draws attention to a possible role for the Toomre stability threshold in shaping star formation in interacting galaxies. The rich cluster populations in NGC 5752 and NGC 6621 show that direct contact between gas-rich galaxy disks is not a requirement to form luminous clusters and that they can be triggered by processes happening within a single galaxy disk (albeit triggered by external perturbations). Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.
NASA Astrophysics Data System (ADS)
Li, Chengyuan; Hong, Jongsuk
2018-06-01
Using the high-resolution observations obtained by the Hubble Space Telescope, we analysed the blue straggler stars (BSSs) in the Large Magellanic Cloud cluster NGC 2213. We found that the radial distribution of BSSs is consistent with that of the normal giant stars in NGC 2213, showing no evidence of mass segregation. However, an analytic calculation carried out for these BSSs shows that they are already dynamically old, because the estimated half-mass relaxation time for these BSSs is significantly shorter than the isochronal age of the cluster. We also performed direct N-body simulations for an NGC 2213-like cluster to understand the dynamical processes that lead to this non-segregated radial distribution of BSSs. Our numerical simulation shows that the presence of black hole subsystems inside the cluster centre can significantly affect the dynamical evolution of BSSs. The combined effects of the delayed segregation, binary disruption, and exchange interactions of BSS progenitor binaries may result in this non-segregated radial distribution of BSSs in NGC 2213.
Another collision for the Coma cluster
NASA Technical Reports Server (NTRS)
Vikhlinin, A.; Forman, W.; Jones, C.
1996-01-01
The wavelet transform analysis of the Rosat position sensitive proportional counter (PSPC) images of the Coma cluster are presented. The analysis shows, on small scales, a substructure dominated by two extended sources surrounding the two bright clusters NGC 4874 and NGC 4889. On scales of about 2 arcmin to 3 arcmin, the analysis reveals a tail of X-ray emission originating near the cluster center, curving to the south and east for approximately 25 arcmin and ending near the galaxy NGC 4911. The results are interpreted in terms of a merger of a group, having a core mass of approximately 10(exp 13) solar mass, with the main body of the Coma cluster.
NASA Astrophysics Data System (ADS)
Whitmore, Brad; Schweizer, Francois; Leitherer, Claus; Borne, Kirk; Robert, Carmelle
1993-05-01
A population of about 40 blue pointlike objects has been discovered in NGC 7252 using the Planetary Camera on board of the Hubble Space Telescope. NGC 7252 (sometimes referred to as the ``Atoms-for-Peace'' galaxy) is one of the prototypical examples of a merger between two disk galaxies. Schweizer (1982: ApJ, 252, 455) has argued that the remnant will eventually become an elliptical galaxy. The luminosities, V-I colors, spatial distribution, and sizes are all compatible with the hypothesis that these objects formed <= 1 Gyr ago during the original merger, and that they are the progenitors of globular clusters similar to those we see around galaxies today. It therefore appears that the number of globular clusters is not a conserved quantity during the merger of two spiral galaxies, but increases instead. This weakens van den Bergh's objection against ellipticals being formed through disk mergers, based mainly on the fact that disk galaxies have fewer globular clusters per unit luminosity than ellipticals galaxies do. The objects found in NGC 7252 are very similar to the pointlike sources recently discovered in NGC 1275 by Holtzman et al. (1992: AJ, 103, 691). However, NGC 1275 is a peculiar galaxy in the center of the Perseus cluster. While Holtzman et al. argue that the objects in NGC 1275 may be the progenitors of globular clusters, Richer et al. (1993: AJ, 105, 877) suggest that these objects may instead be related to the strong cooling flow in the cluster. Our discovery of a population of bright blue pointlike objects in NGC 7252, a prototypical merger, makes a much stronger connection between the formation of globular clusters and the merger history of a galaxy. Other findings are: (1) NGC 7252 has a single, semi-stellar nucleus; (2) spiral arms are seen within 3.5'' (1.6 kpc) of the center, presumably formed through the continued infall of gas into a disk around the center of the galaxy; (3) dust lanes and very weak spiral structure are seen out to about 9.2'' (4.3 kpc), primarily on the NE side; and (4) a ripple is found on the west side, 5.0'' from the center.
RUBIDIUM ABUNDANCES IN THE GLOBULAR CLUSTERS NGC 6752, NGC 1904, AND NGC 104 (47 Tuc)
DOE Office of Scientific and Technical Information (OSTI.GOV)
D'Orazi, Valentina; Lugaro, Maria; Campbell, Simon W.
2013-10-10
Large star-to-star variations of the abundances of proton-capture elements, such as Na and O, in globular clusters (GCs) are interpreted as the effect of internal pollution resulting from the presence of multiple stellar populations. To better constrain this scenario, we investigate the abundance distribution of the heavy element rubidium (Rb) in NGC 6752, NGC 1904, and NGC 104 (47 Tuc). Combining the results from our sample with those in the literature, we found that Rb exhibits no star-to-star variations, regardless of cluster metallicity, with the possible intriguing, although very uncertain, exception of the metal-rich bulge cluster NGC 6388. If nomore » star-to-star variations can be confirmed for all GCs, this finding implies that the stellar source of the proton-capture element variations must not have produced significant amounts of Rb. This element is observed to be enhanced at extremely high levels in intermediate-mass asymptotic giant branch (IM-AGB) stars in the Magellanic Clouds (i.e., at a metallicity similar to 47 Tuc and NGC 6388). This fact may present a challenge to this popular candidate polluter, unless the mass range of the observed IM-AGB stars does not participate in the formation of the second-generation stars in GCs. A number of possible solutions are available to resolve this conundrum, including the fact that the Magellanic Cloud observations are very uncertain and may need to be revised. The fast rotating massive stars scenario would not face this potential problem as the slow mechanical winds of these stars during their main-sequence phase do not carry any Rb enhancements; however, these candidates face even bigger issues such as the production of Li and the close overlap with core-collapse supernova timescales. Observations of Sr, Rb, and Zr in metal-rich clusters such as NGC 6388 and NGC 6441 are sorely needed to clarify the situation.« less
DARK MATTER SUBHALOS AND THE X-RAY MORPHOLOGY OF THE COMA CLUSTER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrade-Santos, Felipe; Nulsen, Paul E. J.; Kraft, Ralph P.
2013-04-01
Structure formation models predict that clusters of galaxies contain numerous massive subhalos. The gravity of a subhalo in a cluster compresses the surrounding intracluster gas and enhances its X-ray emission. We present a simple model, which treats subhalos as slow moving and gasless, for computing this effect. Recent weak lensing measurements by Okabe et al. have determined masses of {approx}10{sup 13} M{sub Sun} for three mass concentrations projected within 300 kpc of the center of the Coma Cluster, two of which are centered on the giant elliptical galaxies NGC 4889 and NGC 4874. Adopting a smooth spheroidal {beta}-model for themore » gas distribution in the unperturbed cluster, we model the effect of these subhalos on the X-ray morphology of the Coma Cluster, comparing our results to Chandra and XMM-Newton X-ray data. The agreement between the models and the X-ray morphology of the central Coma Cluster is striking. With subhalo parameters from the lensing measurements, the distances of the three subhalos from the Coma Cluster midplane along our line of sight are all tightly constrained. Using the model to fit the subhalo masses for NGC 4889 and NGC 4874 gives 9.1 Multiplication-Sign 10{sup 12} M{sub Sun} and 7.6 Multiplication-Sign 10{sup 12} M{sub Sun }, respectively, in good agreement with the lensing masses. These results lend strong support to the argument that NGC 4889 and NGC 4874 are each associated with a subhalo that resides near the center of the Coma Cluster. In addition to constraining the masses and 3-d location of subhalos, the X-ray data show promise as a means of probing the structure of central subhalos.« less
A comprehensive study of the rich open star cluster NGC 2099 based on deep BVI CCD observations
NASA Astrophysics Data System (ADS)
Nilakshi,; Sagar, R.
2002-01-01
The CCD observations of the rich open star cluster NGC 2099 and its surrounding field region have been carried out up to a limiting magnitude of V ~ 22 mag in B, V and I passbands for the first time. A total of ~ 12 000 stars have been observed in the area of about 24arcmin x 34arcmin in the cluster region, as well as ~ 2180 stars in the ~ 12arcmin x 12arcmin area of the field region located ~ 45arcmin away from the cluster center. The cluster parameters determined by fitting the convective core overshoot isochrones in the V, (B-V) and V, (V-I) diagrams are E(B-V) = 0.30+/-0.04 mag, distance = 1360+/- 100 pc, age = 400 Myr and metallicity Z = 0.008. A well-defined cluster main sequence spread over about 8 mag in range is observed for the first time. Its intrinsic spread amounting to ~ 0.06 mag in colour is almost the same over the entire brightness and can be understood in terms of the presence of physical/optical binaries. The core and cluster radii determined from the radial stellar density profiles are 185 arcsec and 1000 arcsec respectively. Only about 22% of cluster members are present in the core region. The effects of mass segregation, most probably due to dynamical evolution, have been observed in the cluster. The mass function slope of the entire cluster is ~ -0.67+/-0.12. It becomes closer to the Salpeter value of -1.35, if flattening in the cluster mass function due to presence of both binaries and a much more extended corona is considered. Full Table 4 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/381/65
NASA Technical Reports Server (NTRS)
Busso, G.; Piotto, G.; Cassisi, S.; Romaniello, M.; Castelli, F.; Catelan, M.; Djorgovski, S. G.; King, I. R.; Landsman, W. B.; Blanco, A. Reico;
2006-01-01
In this paper we present multiband optical and UV Hubble Space Telescope photometry of the two Galactic globular clusters NGC 6388 and NGC 6441 Aims. We investigate the properties of their anomalous horizontal branches (HB) in different photometric planes in order to shed light on the nature of the physical mechanism(s) responsible for the existence of an extended HB blue tail, and of a slope in the HB, visible in all the color-magnitude diagrams. Methods. New photometric data have been collected and carefully reduced. Empirical data have been compared with updated stellar models of low-mass, metal-rich, He-burning structures, transformed to the observational plane with appropriate atmosphere models. Results. We have obtained the first UV color-magnitude diagrams for NGC 6388 and NGC 6441. These diagrams confirm previous results, obtained in optical bands, about the presence of a sizeable stellar population of extremely hot Horizontal Branch stars. At least in NGC 6388, we find a clear indication that at the hot end of the horizontal branch the distribution of stars forms a hook-like feature, closely resembling those observed in NGC 2808 and w Centauri. We briefly review the theoretical scenarios which have been suggested for interpreting this observational feature. We investigate also on the tilt in the horizontal branch morphology, and provide further evidence that supports early suggestions according to which this feature cannot be interpreted as an effect of differential reddening or radiative levitation, though these effects contribute to create the anomaly. We demonstrate that a possible solution of the puzzle is to assume that a small fraction (approx. 13% in NGC 6388 and approx. 8% NGC 6441) of the stellar population in the two clusters is strongly helium enriched (Y approx. 0.40 in NGC6388 and Y approx. 0.35 in NGC 6441). This solution necessarily implies the presence of a double generation of stars in the two clusters.
LBT/MODS spectroscopy of globular clusters in the irregular galaxy NGC 4449
NASA Astrophysics Data System (ADS)
Annibali, F.; Morandi, E.; Watkins, L. L.; Tosi, M.; Aloisi, A.; Buzzoni, A.; Cusano, F.; Fumana, M.; Marchetti, A.; Mignoli, M.; Mucciarelli, A.; Romano, D.; van der Marel, R. P.
2018-05-01
We present intermediate-resolution (R ˜ 1000) spectra in the ˜3500-10 000 Å range of 14 globular clusters in the Magellanic irregular galaxy NGC 4449 acquired with the Multi-Object Double Spectrograph on the Large Binocular Telescope. We derived Lick indices in the optical and the Ca II triplet index in the near-infrared in order to infer the clusters' stellar population properties. The inferred cluster ages are typically older than ˜9 Gyr, although ages are derived with large uncertainties. The clusters exhibit intermediate metallicities, in the range -1.2 ≲ [Fe/H] ≲ -0.7, and typically sub-solar [α/Fe] ratios, with a peak at ˜-0.4. These properties suggest that (i) during the first few Gyr NGC 4449 formed stars slowly and inefficiently, with galactic winds having possibly contributed to the expulsion of the α-elements, and (ii) globular clusters in NGC 4449 formed relatively `late', from a medium already enriched in the products of Type Ia supernovae. The majority of clusters appear also underabundant in CN compared to Milky Way halo globular clusters, perhaps because of the lack of a conspicuous N-enriched, second generation of stars like that observed in Galactic globular clusters. Using the cluster velocities, we infer the dynamical mass of NGC 4449 inside 2.88 kpc to be M(<2.88 kpc) = 3.15^{+3.16}_{-0.75} × 10^9 M_{\\odot }. We also report the serendipitous discovery of a planetary nebula within one of the targeted clusters, a rather rare event.
NASA Astrophysics Data System (ADS)
González-Lópezlira, Rosa A.; Lomelí-Núñez, Luis; Álamo-Martínez, Karla; Órdenes-Briceño, Yasna; Loinard, Laurent; Georgiev, Iskren Y.; Muñoz, Roberto P.; Puzia, Thomas H.; Bruzual A., Gustavo; Gwyn, Stephen
2017-02-01
We aim to explore the relationship between globular cluster total number, {N}{GC}, and central black hole mass, M •, in spiral galaxies, and compare it with that recently reported for ellipticals. We present results for the Sbc galaxy NGC 4258, from Canada-France-Hawaii Telescope data. Thanks to water masers with Keplerian rotation in a circumnuclear disk, NGC 4258 has the most precisely measured extragalactic distance and supermassive black hole mass to date. The globular cluster (GC) candidate selection is based on the ({u}* -{I}\\prime ) versus ({I}\\prime -{K}s) diagram, which is a superb tool to distinguish GCs from foreground stars, background galaxies, and young stellar clusters, and hence can provide the best number counts of GCs from photometry alone, virtually free of contamination, even if the galaxy is not completely edge-on. The mean optical and optical-near-infrared colors of the clusters are consistent with those of the Milky Way and M 31, after extinction is taken into account. We directly identify 39 GC candidates; after completeness correction, GC luminosity function extrapolation, and correction for spatial coverage, we calculate a total {N}{GC}=144+/- {31}-36+38 (random and systematic uncertainties, respectively). We have thus increased to six the sample of spiral galaxies with measurements of both M • and {N}{GC}. NGC 4258 has a specific frequency {S}{{N}}=0.4+/- 0.1 (random uncertainty), and is consistent within 2σ with the {N}{GC} versus M • correlation followed by elliptical galaxies. The Milky Way continues to be the only spiral that deviates significantly from the relation.
EXTENDED STAR FORMATION IN THE INTERMEDIATE-AGE LARGE MAGELLANIC CLOUD STAR CLUSTER NGC 2209
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keller, Stefan C.; Mackey, A. Dougal; Da Costa, Gary S.
2012-12-10
We present observations of the 1 Gyr old star cluster NGC 2209 in the Large Magellanic Cloud made with the GMOS imager on the Gemini South Telescope. These observations show that the cluster exhibits a main-sequence turnoff that spans a broader range in luminosity than can be explained by a single-aged stellar population. This places NGC 2209 amongst a growing list of intermediate-age (1-3 Gyr) clusters that show evidence for extended or multiple epochs of star formation of between 50 and 460 Myr in extent. The extended main-sequence turnoff observed in NGC 2209 is a confirmation of the prediction inmore » Keller et al. made on the basis of the cluster's large core radius. We propose that secondary star formation is a defining feature of the evolution of massive star clusters. Dissolution of lower mass clusters through evaporation results in only clusters that have experienced secondary star formation surviving for a Hubble time, thus providing a natural connection between the extended main-sequence turnoff phenomenon and the ubiquitous light-element abundance ranges seen in the ancient Galactic globular clusters.« less
Shaping Globular Clusters with Black Holes
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2018-03-01
How many black holes lurk within the dense environments of globular clusters, and how do these powerful objects shape the properties of the cluster around them? One such cluster, NGC 3201, is now helping us to answer these questions.Hunting Stellar-Mass Black HolesSince the detection of merging black-hole binaries by the Laser Interferometer Gravitational-Wave Observatory (LIGO), the dense environments of globular clusters have received increasing attention as potential birthplaces of these compact binary systems.The central region of the globular star cluster NGC 3201, as viewed by Hubble. The black hole is in orbit with the star marked by the blue circle. [NASA/ESA]In addition, more and more stellar-mass black-hole candidates have been observed within globular clusters, lurking in binary pairs with luminous, non-compact companions. The most recent of these detections, found in the globular cluster NGC 3201, stands alone as the first stellar-mass black hole candidate discovered via radial velocity observations: the black holes main-sequence companion gave away its presence via a telltale wobble.Now a team of scientists led by Kyle Kremer (CIERA and Northwestern University) is using models of this system to better understand the impact that black holes might have on their host clusters.A Model ClusterThe relationship between black holes and their host clusters is complicated. Though the cluster environment can determine the dynamical evolution of the black holes, the retention rate of black holes in a globular cluster (i.e., how many remain in the cluster when they are born as supernovae, rather than being kicked out during the explosion) influences how the host cluster evolves.Kremer and collaborators track this complex relationship by modeling the evolution of a cluster similar to NGC 3201 with a Monte Carlo code. The code incorporates physics relevant to the evolution of black holes and black-hole binaries in globular clusters, such as two-body relaxation, single and binary star evolution, galactic tides, and multi-body encounters. From their grid of models with varying input parameters, the authors then determine which fit best to NGC 3201s final observational properties.Surface brightness profiles for all globular-cluster models at late times compared to observations of NGC 3201 (yellow circles). Blue lines represent models with few retained black holes; black lines represent models with many retained black holes. [Kremer et al. 2018]Retention MattersKremer and collaborators find that the models that best represent NGC 3201 all retain more than 200 black holes at the end of the simulation; models that lost too many black holes due to natal kicks did not match observations of NGC 3201 as well. The models with large numbers of retained black holes also harbored binaries just like the one recently detected in NGC 3201.Models that retain few black holes, on the other hand, may instead be good descriptions of so-called core-collapsed globular clusters observed in the Milky Way. The authors demonstrate that these clusters could contain black holes in binaries with stars known as blue stragglers, which may also be detectable with radial velocity techniques.Kremer and collaborators results suggest that globular clusters similar to NGC 3201 contain hundreds of invisible black holes waiting to be discovered, and they indicate some of the differences in cluster properties caused by hosting such a large population of black holes. We can hope that future observations and modeling will continue to illuminate the complicated relationship between globular clusters and the black holes that live in them.CitationKyle Kremer et al 2018 ApJL 855 L15. doi:10.3847/2041-8213/aab26c
Radial Velocities of RR Lyrae Stars in and around NGC 6441
NASA Astrophysics Data System (ADS)
Kunder, Andrea; Mills, Arthur; Edgecomb, Joseph; Thomas, Mathew; Schilter, Levi; Boyle, Craig; Parker, Stephen; Bellevue, Gordon; Rich, R. Michael; Koch, Andreas; Johnson, Christian I.; Nataf, David M.
2018-04-01
Detailed elemental abundance patterns of metal-poor ([Fe/H] ∼ ‑1 dex) stars in the Galactic bulge indicate that a number of them are consistent with globular cluster (GC) stars and may be former members of dissolved GCs. This would indicate that a few per cent of the Galactic bulge was built up from destruction and/or evaporation of GCs. Here, an attempt is made to identify such presumptive stripped stars originating from the massive, inner Galaxy GC NGC 6441 using its rich RR Lyrae variable star (RRL) population. We present radial velocities of 40 RRLs centered on the GC NGC 6441. All 13 of the RRLs observed within the cluster tidal radius have velocities consistent with cluster membership, with an average radial velocity of 24 ± 5 km s‑1 and a star-to-star scatter of 11 km s‑1. This includes two new RRLs that were previously not associated with the cluster. Eight RRLs with radial velocities consistent with cluster membership but up to three time the distance from the tidal radius are also reported. These potential extra-tidal RRLs also have exceptionally long periods, which is a curious characteristic of the NGC 6441 RRL population that hosts RRLs with periods longer than seen anywhere else in the Milky Way. As expected of stripped cluster stars, most are inline with the cluster’s orbit. Therefore, either the tidal radius of NGC 6441 is underestimated and/or we are seeing dissolving cluster stars stemming from NGC 6441 that are building up the old spheroidal bulge.
NASA Technical Reports Server (NTRS)
Stauffer, John R.; Petre, Robert (Technical Monitor)
2000-01-01
This grant was originally awarded to Dr. Charles Prosser, who died tragically in a car accident in Tucson in 1998. We had hoped to finish the work Charles had started, which involved analysis of ROSAT data for three programs (observations of the clusters NGC2232, Crl4O and the Pleiades) and also analysis of optical data for each cluster in order to allow interpretation of the ROSAT observations. The Pleiades portion of the program was completed during the past year, and a paper published. We have obtained optical imaging of the other two clusters, and those data are being analyzed. Dr. Brian Patten intends to complete analysis of the ROSAT observations and to combine those data with the optical photometry, but progress on those efforts has been slow due to the press of other work (Dr. Patten is responsible for the pipeline processing of data from SWAS). We intend to publish those results as soon as we can, but it will now be completed without further support from this grant.
NASA Astrophysics Data System (ADS)
Ahumada, A. V.; Claria, J. J.; Bica, E.; Parisi, M. C.; Torres, M. C.; Pavani, D. B.
We present integrated spectra obtained at CASLEO (Argentina) for 9 galactic open clusters of small angular diameter. Two of them (BH 55 and Rup 159) have not been the target of previous research. The flux-calibrated spectra cover the spectral range approx. 3600-6900 A. Using the equivalent widths (EWs) of the Balmer lines and comparing the cluster spectra with template spectra, we determined E(B-V) colour excesses and ages for the present cluster sample. The parameters obtained for 6 of the clusters show good agreement with previous determinations based mainly on photometric methods. This is not the case, however, for BH 90, a scarcely reddened cluster, for which Moffat and Vogt (1975, Astron. and Astroph. SS, 20, 125) derived E(B-V) = 0.51. We explain and justify the strong discrepancy found for this object. According to the present analysis, 3 clusters are very young (Bo 14, Tr 15 and Tr 27), 2 are moderately young (NGC 6268 and BH 205), 3 are Hyades-like clusters (Rup 164, BH 90 and BH 55) and only one is an intermediate-age cluster (Rup 159).
CCD UBVRI photometry of NGC 6811
NASA Astrophysics Data System (ADS)
Yontan, T.; Bilir, S.; Bostancı, Z. F.; Ak, T.; Karaali, S.; Güver, T.; Ak, S.; Duran, Ş.; Paunzen, E.
2015-02-01
We present the results of CCD UBVRI observations of the open cluster NGC 6811 obtained on 18th July 2012 with the 1 m telescope at the TÜBİTAK National Observatory (TUG). Using these photometric results, we determine the structural and astrophysical parameters of the cluster. The mean photometric uncertainties are better than 0.02 mag in the V magnitude and B- V, V- R, and V- I colour indices to about 0.03 mag for U- B among stars brighter than magnitude V=18. Cluster member stars were separated from the field stars using the Galaxia model of Sharma et al. (2011) together with other techniques. The core radius of the cluster is found to be r c =3.60 arcmin. The astrophysical parameters were determined simultaneously via Bayesian statistics using the colour-magnitude diagrams V versus B- V, V versus V- I, V versus V- R, and V versus R- I of the cluster. The resulting most likely parameters were further confirmed using independent methods, removing any possible degeneracies. The colour excess, distance modulus, metallicity and the age of the cluster are determined simultaneously as E( B- V)=0.05±0.01 mag, μ=10.06±0.08 mag, [ M/ H]=-0.10±0.01 dex and t=1.00±0.05 Gyr, respectively. Distances of five red clump stars which were found to be members of the cluster further confirm our distance estimation.
STAR CLUSTERS BORN IN THE WRECKAGE OF COSMIC COLLISIONS
NASA Technical Reports Server (NTRS)
2002-01-01
This close-up view of Stephan's Quintet, a group of five galaxies, reveals a string of bright star clusters that sparkles like a diamond necklace. The clusters, each harboring up to millions of stars, were born from the violent interactions between some members of the group. The rude encounters also have distorted the galaxies' shapes, creating elongated spiral arms and long, gaseous streamers. The NASA Hubble Space Telescope photo showcases three regions of star birth: the long, sweeping tail and spiral arms of NGC 7319 [near center]; the gaseous debris of two galaxies, NGC 7318B and NGC 7318A [top right]; and the area north of those galaxies, dubbed the northern starburst region [top left]. The clusters' bluish color indicates that they're relatively young. Their ages span from about 2 million to more than 1 billion years old. The brilliant star clusters in NGC 7318B's spiral arm (about 30,000 light-years long) and the northern starburst region are between 2 million and more than 100 million years old. NGC 7318B instigated the starburst by barreling through the region. The bully galaxy is just below NGC 7318A at top right. Although NGC 7318B appears dangerously close to NGC 7318A, it's traveling too fast to merge with its close neighbor. The partial galaxy on the far right is NGC 7320, a foreground galaxy not physically bound to the other galaxies in the picture. About 20 to 50 of the clusters in the northern starburst region reside far from the coziness of galaxies. The clusters were born about 150,000 light-years from the nearest galaxy. A galaxy that is no longer part of the group triggered another collision that wreaked havoc. NGC 7320C [not in the photo] plowed through the quintet several hundred million years ago, pulling out the 100,000 light-year-long tail of gaseous debris from NGC 7319. The clusters in NGC 7319's streaming tail are 10 million to 500 million years old and may have formed at the time of the violent collision. The faint bluish object at the tip of the tail is a young dwarf galaxy, which formed in the gaseous debris. The quintet is in the constellation Pegasus, 270 million light-years from Earth. Spied by Edouard M. Stephan in 1877, Stephan's Quintet is the first compact group ever discovered. The mosaic picture was taken by Hubble's Wide Field and Planetary Camera 2 on Dec. 30, 1998 and June 17, 1999. Image credits: NASA, Jayanne English (University of Manitoba), Sally Hunsberger (Pennsylvania State University), Zolt Levay (Space Telescope Science Institute), Sarah Gallagher (Pennsylvania State University), and Jane Charlton (Pennsylvania State University) Science credits: Sarah Gallagher (Pennsylvania State University), Jane Charlton (Pennsylvania State University), Sally Hunsberger (Pennsylvania State University), Dennis Zaritsky (University of Arizona), and Bradley Whitmore (Space Telescope Science Institute)
VizieR Online Data Catalog: WIYN open cluster study. LX. RV survey of NGC 6819 (Milliman+, 2014)
NASA Astrophysics Data System (ADS)
Milliman, K. E.; Mathieu, R. D.; Geller, A. M.; Gosnell, N. M.; Meibom, S.; Platais, I.
2014-10-01
The WOCS radial velocity target sample for NGC 6819 has 3895 stars that span 1° on the sky centered at RA=19h41m17.5s, DE=+40°11'47'' (J2000). The details of our radial velocity survey of NGC 6819 including the observing procedure, data reduction, and membership classification are discussed in depth in Hole et al. 2009 (cat. J/AJ/138/159; Paper XXIV) and Geller et al. 2008 (cat. J/AJ/135/2264; Paper XXXII). Observations of NGC 6819 with the Hydra Multi-Object Spectrograph (MOS) on the WIYN 3.5m telescope began in 1998 June and are still ongoing. We have almost 14000 spectra for over 2600 stars. These observations are augmented with 733 radial velocity measurements for 170 stars taken at the Harvard-Smithsonian Center for Astrophysics (CfA) facilities between 1988 May and 1995 by R. D. Mathieu and D. W Latham (Hole et al. 2009, cat. J/AJ/138/159; Paper XXIV). (4 data files).
Chemical Abundances of Two Stars in the Large Magellanic Cloud Globular Cluster NGC 1718
NASA Astrophysics Data System (ADS)
Sakari, Charli M.; McWilliam, Andrew; Wallerstein, George
2017-05-01
Detailed chemical abundances of two stars in the intermediate-age Large Magellanic Cloud (LMC) globular cluster NGC 1718 are presented, based on high-resolution spectroscopic observations with the MIKE spectrograph. The detailed abundances confirm NGC 1718 to be a fairly metal-rich cluster, with an average [Fe/H] ˜ -0.55 ± 0.01. The two red giants appear to have primordial O, Na, Mg and Al abundances, with no convincing signs of a composition difference between the two stars - hence, based on these two stars, NGC 1718 shows no evidence for hosting multiple populations. The Mg abundance is lower than Milky Way field stars, but is similar to LMC field stars at the same metallicity. The previous claims of very low [Mg/Fe] in NGC 1718 are therefore not supported in this study. Other abundances (Si, Ca, Ti, V, Mn, Ni, Cu, Rb, Y, Zr, La and Eu) all follow the LMC field star trend, demonstrating yet again that (for most elements) globular clusters trace the abundances of their host galaxy's field stars. Similar to the field stars, NGC 1718 is found to be mildly deficient in explosive α-elements, but moderately to strongly deficient in O, Na, Mg, Al and Cu, elements that form during hydrostatic burning in massive stars. NGC 1718 is also enhanced in La, suggesting that it was enriched in ejecta from metal-poor asymptotic giant branch stars.
NASA Astrophysics Data System (ADS)
Lagarde, Nadège; Miglio, Andrea; Eggenberger, Patrick; Morel, Thierry; Montalbàn, Josefina; Mosser, Benoit
2015-08-01
The availability of asteroseismic constraints for a large sample of red giant stars from the CoRoT and Kepler missions paves the way for various statistical studies of the seismic properties of stellar populations.We use the first detailed spectroscopic study of CoRoT red-giant stars (Morel et al 2014) to compare theoretical stellar evolution models to observations of the open cluster NGC 6633 and field stars.In order to explore the effects of rotation-induced mixing and thermohaline instability, we compare surface abundances of carbon isotopic ratio and lithium with stellar evolution predictions. These chemicals are sensitive to extra-mixing on the red-giant branch.We estimate mass, radius, and distance for each star using the seismic constraints. We note that the Hipparcos and seismic distances are different. However, the uncertainties are such that this may not be significant. Although the seismic distances for the cluster members are self consistent they are somewhat larger than the Hipparcos distance. This is an issue that should be considered elsewhere. Models including thermohaline instability and rotation-induced mixing, together with the seismically determined masses can explain the chemical properties of red-giants targets. Tighter constraints on the physics of the models would be possible if there were detailed knowledge of the core rotation rate and the asymptotic period spacing.
A single population of red globular clusters around the massive compact galaxy NGC 1277
NASA Astrophysics Data System (ADS)
Beasley, Michael A.; Trujillo, Ignacio; Leaman, Ryan; Montes, Mireia
2018-03-01
Massive galaxies are thought to form in two phases: an initial collapse of gas and giant burst of central star formation, followed by the later accretion of material that builds up their stellar and dark-matter haloes. The systems of globular clusters within such galaxies are believed to form in a similar manner. The initial central burst forms metal-rich (spectrally red) clusters, whereas more metal-poor (spectrally blue) clusters are brought in by the later accretion of less-massive satellites. This formation process is thought to result in the multimodal optical colour distributions that are seen in the globular cluster systems of massive galaxies. Here we report optical observations of the massive relic-galaxy candidate NGC 1277—a nearby, un-evolved example of a high-redshift ‘red nugget’ galaxy. We find that the optical colour distribution of the cluster system of NGC 1277 is unimodal and entirely red. This finding is in strong contrast to other galaxies of similar and larger stellar mass, the cluster systems of which always exhibit (and are generally dominated by) blue clusters. We argue that the colour distribution of the cluster system of NGC 1277 indicates that the galaxy has undergone little (if any) mass accretion after its initial collapse, and use simulations of possible merger histories to show that the stellar mass due to accretion is probably at most ten per cent of the total stellar mass of the galaxy. These results confirm that NGC 1277 is a genuine relic galaxy and demonstrate that blue clusters constitute an accreted population in present-day massive galaxies.
A single population of red globular clusters around the massive compact galaxy NGC 1277.
Beasley, Michael A; Trujillo, Ignacio; Leaman, Ryan; Montes, Mireia
2018-03-22
Massive galaxies are thought to form in two phases: an initial collapse of gas and giant burst of central star formation, followed by the later accretion of material that builds up their stellar and dark-matter haloes. The systems of globular clusters within such galaxies are believed to form in a similar manner. The initial central burst forms metal-rich (spectrally red) clusters, whereas more metal-poor (spectrally blue) clusters are brought in by the later accretion of less-massive satellites. This formation process is thought to result in the multimodal optical colour distributions that are seen in the globular cluster systems of massive galaxies. Here we report optical observations of the massive relic-galaxy candidate NGC 1277-a nearby, un-evolved example of a high-redshift 'red nugget' galaxy. We find that the optical colour distribution of the cluster system of NGC 1277 is unimodal and entirely red. This finding is in strong contrast to other galaxies of similar and larger stellar mass, the cluster systems of which always exhibit (and are generally dominated by) blue clusters. We argue that the colour distribution of the cluster system of NGC 1277 indicates that the galaxy has undergone little (if any) mass accretion after its initial collapse, and use simulations of possible merger histories to show that the stellar mass due to accretion is probably at most ten per cent of the total stellar mass of the galaxy. These results confirm that NGC 1277 is a genuine relic galaxy and demonstrate that blue clusters constitute an accreted population in present-day massive galaxies.
The hot interstellar medium in NGC 1399
NASA Technical Reports Server (NTRS)
Loewenstein, Michael; Serlemitsos, Peter J.
1993-01-01
The first two high signal-to-noise, broad bandpass x-ray spectra of elliptical galaxies were obtained with the Broad Band X-ray Telescope (BBXRT) as part of the December 1990 Astro mission. These observations provided unprecedented information on the thermal and metallicity structure of the hot interstellar media in two ellipticals: NGC 1399, the central galaxy in the Fornax cluster, and NGC 4472, the brightest galaxy in the Virgo cluster. The finalized analysis and interpretation of the approximately 4000 sec of BBXRT data on NGC 1399 is reported.
NGC 346: Looking in the Cradle of a Massive Star Cluster
NASA Astrophysics Data System (ADS)
Gouliermis, Dimitrios A.; Hony, Sacha
2017-03-01
How does a star cluster of more than few 10,000 solar masses form? We present the case of the cluster NGC 346 in the Small Magellanic Cloud, still embedded in its natal star-forming region N66, and we propose a scenario for its formation, based on observations of the rich stellar populations in the region. Young massive clusters host a high fraction of early-type stars, indicating an extremely high star formation efficiency. The Milky Way galaxy hosts several young massive clusters that fill the gap between young low-mass open clusters and old massive globular clusters. Only a handful, though, are young enough to study their formation. Moreover, the investigation of their gaseous natal environments suffers from contamination by the Galactic disk. Young massive clusters are very abundant in distant starburst and interacting galaxies, but the distance of their hosting galaxies do not also allow a detailed analysis of their formation. The Magellanic Clouds, on the other hand, host young massive clusters in a wide range of ages with the youngest being still embedded in their giant HII regions. Hubble Space Telescope imaging of such star-forming complexes provide a stellar sampling with a high dynamic range in stellar masses, allowing the detailed study of star formation at scales typical for molecular clouds. Our cluster analysis on the distribution of newly-born stars in N66 shows that star formation in the region proceeds in a clumpy hierarchical fashion, leading to the formation of both a dominant young massive cluster, hosting about half of the observed pre-main-sequence population, and a self-similar dispersed distribution of the remaining stars. We investigate the correlation between stellar surface density (and star formation rate derived from star-counts) and molecular gas surface density (derived from dust column density) in order to unravel the physical conditions that gave birth to NGC 346. A power law fit to the data yields a steep correlation between these two parameters with a considerable scatter. The fraction of stellar over the total (gas plus young stars) mass is found to be systematically higher within the central 15 pc (where the young massive cluster is located) than outside, which suggests variations in the star formation efficiency within the same star-forming complex. This trend possibly reflects a change of star formation efficiency in N66 between clustered and non-clustered star formation. Our findings suggest that the formation of NGC 346 is the combined result of star formation regulated by turbulence and of early dynamical evolution induced by the gravitational potential of the dense interstellar medium.
The Metal-poor non-Sagittarius (?) Globular Cluster NGC 5053: Orbit and Mg, Al, and Si Abundances
NASA Astrophysics Data System (ADS)
Tang, Baitian; Fernández-Trincado, J. G.; Geisler, Doug; Zamora, Olga; Mészáros, Szabolcs; Masseron, Thomas; Cohen, Roger E.; García-Hernández, D. A.; Dell’Agli, Flavia; Beers, Timothy C.; Schiavon, Ricardo P.; Sohn, Sangmo Tony; Hasselquist, Sten; Robin, Annie C.; Shetrone, Matthew; Majewski, Steven R.; Villanova, Sandro; Schiappacasse Ulloa, Jose; Lane, Richard R.; Minnti, Dante; Roman-Lopes, Alexandre; Almeida, Andres; Moreno, E.
2018-03-01
Metal-poor globular clusters (GCs) exhibit intriguing Al–Mg anti-correlations and possible Si–Al correlations, which are important clues to decipher the multiple-population phenomenon. NGC 5053 is one of the most metal-poor GCs in the nearby universe and has been suggested to be associated with the Sagittarius (Sgr) dwarf galaxy, due to its similarity in location and radial velocity with one of the Sgr arms. In this work, we simulate the orbit of NGC 5053, and argue against a physical connection between Sgr and NGC 5053. On the other hand, the Mg, Al, and Si spectral lines, which are difficult to detect in the optical spectra of NGC 5053 stars, have been detected in the near-infrared APOGEE spectra. We use three different sets of stellar parameters and codes to derive the Mg, Al, and Si abundances. Regardless of which method is adopted, we see a large Al variation, and a substantial Si spread. Along with NGC 5053, metal-poor GCs exhibit different Mg, Al, and Si variations. Moreover, NGC 5053 has the lowest cluster mass among the GCs that have been identified to exhibit an observable Si spread until now.
Discovery of Extended Blue Horizontal Branches in Two Metal-rich Globular Clusters
NASA Astrophysics Data System (ADS)
Rich, R. Michael; Sosin, Craig; Djorgovski, S. George; Piotto, Giampaolo; King, Ivan R.; Renzini, Alvio; Phinney, E. Sterl; Dorman, Ben; Liebert, James; Meylan, Georges
1997-07-01
We have used WFPC2 to construct B, V color-magnitude diagrams of four metal-rich globular clusters, NGC 104 (47 Tuc), NGC 5927, NGC 6388, and NGC 6441. All four clusters have well populated red horizontal branches (RHB), as expected for their metallicity. However, NGC 6388 and 6441 also exhibit a prominent blue horizontal-branch (BHB) extension, including stars reaching as faint in V as the turnoff luminosity. This discovery demonstrates directly for the first time that a major population of hot horizontal-branch (HB) stars can exist in old, metal-rich systems. This may have important implications for the interpretation of the integrated spectra of elliptical galaxies. The cause of the phenomenon remains uncertain. We examine the possibility that NGC 6388 and 6441 are older than the other clusters, but a simple difference in age may not be sufficient to produce the observed distributions along the HB. The high central densities in NGC 6388 and 6441 suggest that the existence of the BHB tails might be caused by stellar interactions in the dense cores of these clusters, which we calculate to have two of the highest collision rates among globular clusters in the Galaxy. Tidal collisions might act in various ways to enhance loss of envelope mass and therefore populate the blue side of the HB. However, the relative frequency of tidal collisions does not seem large enough (compared to that of the clusters with pure RHBs) to account for such a drastic difference in HB morphology. While a combination of an age difference and dynamical interactions may help, prima facie the lack of a radial gradient in the BHB/RHB star ratio seems to argue against dynamical effects playing a role. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555.
HST-WFPC2 Observations of the Star Clusters in the Giant H II Regions of M33
NASA Astrophysics Data System (ADS)
Lee, Myung Gyoon; Park, Hong Soo; Kim, Sang Chul; Waller, William H.; Parker, Joel Wm.; Malumuth, Eliot M.; Hodge, Paul W.
We present a photometric study of the stars in ionizing star clusters embedded in several giant H II regions of M33 (CC93, IC 142, NGC 595, MA2, NGC 604 and NGC 588). Our photometry is based on the HST-WFPC2 images of these clusters. Color-magnitude diagrams and color-color diagrams of these clusters are obtained and are used for estimating the reddenings and ages of the clusters. The luminosity functions (LFs) and initial mass functions (IMFs) of the massive stars in these clusters are also derived. The slopes of the IMFs range from Γ = -0.5 to -2.1. Interestingly, it is found that the IMFs get steeper with increasing galactocentric distance and with decreasing [O/H] abundance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qian, S.-B.; Wang, J.-J.; Liu, L.
2015-02-01
NGC 7789 is an intermediate-age open cluster with an age similar to the mean age of contact binary stars. V12 is a bright W UMa-type binary star with an orbital period of 0.3917 days. The first complete light curves of V12 in the V, R, and I bands are presented and analyzed with the Wilson–Devinney (W-D) method. The results show that V12 is an intermediate-contact binary (f=43.0(±2.2)%) with a mass ratio of 3.848, and it is a W-type contact binary where the less massive component is slightly hotter than the more massive one. The asymmetry of the light curves ismore » explained by the presence of a dark spot on the more massive component. The derived orbital inclination (i=83{sub .}{sup ∘}6) indicates that it is a totally eclipsing binary, which suggests that the determined parameters are reliable. The orbital period may show a long-term increase at a rate of P-dot =+2.48(±0.17)×10{sup −6} days yr{sup −1} that reveals a rapid mass transfer from the less massive component to the more massive one. However, more observations are needed to confirm this conclusion. The presence of an intermediate-contact binary in an intermediate-age open cluster may suggest that some contact binaries have a very short pre-contact timescale. The presence of a third body and/or stellar collision may help to shorten the pre-contact evolution.« less
Proper motions in the VVV Survey: Results for more than 15 million stars across NGC 6544
NASA Astrophysics Data System (ADS)
Contreras Ramos, R.; Zoccali, M.; Rojas, F.; Rojas-Arriagada, A.; Gárate, M.; Huijse, P.; Gran, F.; Soto, M.; Valcarce, A. A. R.; Estévez, P. A.; Minniti, D.
2017-12-01
Context. In the last six years, the VISTA Variable in the Vía Láctea (VVV) survey mapped 562 sq. deg. across the bulge and southern disk of the Galaxy. However, a detailed study of these regions, which includes 36 globular clusters (GCs) and thousands of open clusters is by no means an easy challenge. High differential reddening and severe crowding along the line of sight makes highly hamper to reliably distinguish stars belonging to different populations and/or systems. Aims: The aim of this study is to separate stars that likely belong to the Galactic GC NGC 6544 from its surrounding field by means of proper motion (PM) techniques. Methods: This work was based upon a new astrometric reduction method optimized for images of the VVV survey. Results: PSF-fitting photometry over the six years baseline of the survey allowed us to obtain a mean precision of 0.51 mas yr-1, in each PM coordinate, for stars with Ks< 15 mag. In the area studied here, cluster stars separate very well from field stars, down to the main sequence turnoff and below, allowing us to derive for the first time the absolute PM of NGC 6544. Isochrone fitting on the clean and differential reddening corrected cluster color magnitude diagram yields an age of 11-13 Gyr, and metallicity [Fe/H] =-1.5 dex, in agreement with previous studies restricted to the cluster core. We were able to derive the cluster orbit assuming an axisymmetric model of the Galaxy and conclude that NGC 6544 is likely a halo GC. We have not detected tidal tail signatures associated to the cluster, but a remarkable elongation in the galactic center direction has been found. The precision achieved in the PM determination also allows us to separate bulge stars from foreground disk stars, enabling the kinematical selection of bona fide bulge stars across the whole survey area. Conclusions: Kinematical techniques are a fundamental step toward disentangling different stellar populations that overlap in a studied field. Our results show that VVV data is perfectly suitable for this kind of analysis. Based on observations taken with ESO telescopes at Paranal Observatory under programme IDs 179.B-2002.
2007-11-14
This image from NASA Galaxy Evolution Explorer shows the galaxy NGC 4569 in the constellation Virgo. It is one of the largest and brightest spiral galaxies found in the Virgo cluster of galaxies, the nearest major galaxy cluster to our Milky Way galaxy.
NASA Astrophysics Data System (ADS)
Pancino, E.; Rejkuba, M.; Zoccali, M.; Carrera, R.
2010-12-01
Context. Globular clusters show star-to-star abundance variations for light elements that are not yet well understood. The preferred explanation involves a self-enrichment scenario, within which two subsequent generations of stars co-exist in globular clusters. Observations of chemical abundances in the main sequence and sub-giant branch stars allow us to investigate the signature of this chemically processed material without the complicating effects caused by stellar evolution and internal mixing. Aims: Our main goal is to investigate the carbon-nitrogen anti-correlation with low-resolution spectroscopy of 20-50 stars fainter than the first dredge-up in seven Galactic globular clusters (NGC 288, NGC 1851, NGC 5927, NGC 6352, NGC 6388, and Pal 12) with different properties. We complemented our observations with 47 Tuc archival data, with four additional clusters from the literature (M 15, M 22, M 55, NGC 362), and with additional literature data on NGC 288. Methods: In this first paper, we measured the strengh of the CN and CH band indices, which correlate with the N and C abundances, and we investigated the anti-correlation and bimodality of these indices. We compared rCN, the ratio of stars belonging to the CN-strong and weak groups, with 15 different cluster parameters. Results: We clearly see bimodal anti-correlation of the CH and CN band stregths in the metal-rich clusters (Pal 12, 47 Tuc, NGC 6352, NGC 5927). Only M 15 among the metal-poor clusters shows a clearly bimodal anti-correlation. We found weak correlations (sligthly above 1σ) of rCN with the cluster orbital parameters, present-day total mass, cluster concentration, and age. Conclusions: Our findings support the self-enrichment scenario, and suggest that the occurrence of more than two major generations of stars in a GGC should be rare. Small additional generations (<10-20% of the total) would be difficult to detect with our samples. The first generation, which corresponds to the CN-weak stars, usually contains more stars than the second one (
The Compositin of the Bulge Globular Cluster NGC 6273
NASA Astrophysics Data System (ADS)
Pilachowski, Catherine A.; Johnson, Christian
2015-08-01
Observations of red giants in the Bulge globular cluster NGC 6273 with the Michigan/Magellan Fiber System (M2FS) mounted on the Nasmyth-East port of the Magellan-Clay 6.5m telescope at Las Campanas Observatory reveal a spread in metallicity. Members have been confirmed with radial velocity. NGC 6273 has at least two populations separated by 0.2-0.3 dex in [Fe/H]. The sodium and aluminum abundances are correlated while the magnesium and aluminum abundances are anti-correlated. The cluster also shows a rise in the abundance of the s-process element lanthanum with [Fe/H] similar to other massive clusters. The cluster contains a possible 3rd population depleted in most elements by 0.3 dex.
The Composition of the Bulge Globular Cluster NGC 6273
NASA Astrophysics Data System (ADS)
Pilachowski, C. A.; Johnson, C. I.; Rich, R. M.; Caldwell, N.; Mateo, M.; Bailey, J. I.; Crane, J. D.
2017-03-01
Observations of red giants in the Bulge globular cluster NGC 6273 with the Michigan/Magellan Fiber System (M2FS) mounted on the Nasmuth-East port of the Magellan-Clay 6.5-m telescope at the Las Campanas Observatory reveal a spread in metallicity. Members have been confirmed with radial velocity. NGC 6273 has at least two populations separated by 0.2-0.3 dex in [Fe/H]. The sodium and aluminum abundances are correlated while the magnesium and aluminum abundances are anti-correlated. The cluster also shows a rise in the abundance of the s-process element lanthanum with [Fe/H] similar to other massive clusters. The cluster contains a possible third population depleted in most elements by 0.3 dex.
Globular cluster content and evolutionary history of NGC 147
NASA Astrophysics Data System (ADS)
Sharina, M.; Davoust, E.
2009-04-01
Context: Globular clusters are representative of the oldest stellar populations. It is thus essential to have a complete census of these systems in dwarf galaxies, from which more massive galaxies are progressively formed in the hierarchical scenario. Aims: We present the results of spectroscopic observations of eight globular cluster candidates in NGC 147, a satellite dwarf elliptical galaxy of M 31. Our goal is to make a complete inventory of the globular cluster system of this galaxy, determine the properties of their stellar populations, and compare these properties with those of systems of globular clusters in other dwarf galaxies. Methods: The candidates were identified on Canada-France-Hawaii telescope photographic plates. Medium resolution spectra were obtained with the SCORPIO spectrograph at the prime focus of the 6 m telescope of the Russian Academy of Sciences. They were analyzed using predictions of stellar population synthesis models. Results: We were able to confirm the nature of all eight candidates, three of which (GC5, GC7, and GC10) are indeed globular clusters, and to estimate evolutionary parameters for the two brightest ones and for Hodge II. The bright clusters GC5 and GC7 appear to have metallicities ([Z/H] -1.5 div -1.8) that are lower than the oldest stars in the galaxy. The fainter GC Hodge II has a metallicity [Z/H] = -1.1, similar to that of the oldest stars in the galaxy. The clusters GC5 and GC7 have low alpha-element abundance ratios. The mean age of the globular clusters in NGC 147 is 9 ± 1 Gyr. We also measured the radial velocities of Hodge II and IV, and derived a mass of NGC 147 in good agreement with the value from the literature. The frequency, Sn = 6.4, and mass fraction, T = 14 of globular clusters in NGC 147 appear to be higher than those for NGC 185 and 205. Conclusions: Our results indicate that the bright clusters GC5, GC7, and Hodge III formed in the main star-forming period 8-10 Gyr ago, while the fainter clusters Hodge I and II formed together with the second generation of field stars.
The highly ionized, high-velocity gas in NGC 6231
NASA Astrophysics Data System (ADS)
Massa, Derck
2017-02-01
It is well known that clusters of massive stars are influenced by the presence of strong winds, that they are sources of diffuse X-rays from shocked gas, and that this gas can be vented into the surrounding region or the halo through the champagne effect. However, the details of how these different environments interact and evolve are far from complete. This paper attributes the broad C IVλλ1500 absorption features (extending to -1900 km s-1) that are seen in the spectra of main sequence B stars in NGC 6231 to gas in the cluster environment and not the B stars themselves. It is shown that the presence of a WC star, WR 79, in the cluster makes this gas detectable because its wind enriches the cluster gas with carbon. Given the available data, it is not clear whether the absorbing gas is simply the far wind of WR 79 or a collective cluster wind enriched by carbon from the wind of WR 79. If it is simply due to the wind, then this wind must flow, unimpeded for more than 2 pc, suggesting that the inner region of the cluster is nearly devoid of obstructing material. If it is actually a collective wind from the cluster, then we could be witnessing an important stage of galactic feedback. In either case, the observations provide a unique and significant piece to the puzzle of how massive, open clusters evolve.
NGC 6705 a young α-enhanced open cluster from OCCASO data
NASA Astrophysics Data System (ADS)
Casamiquela, L.; Carrera, R.; Balaguer-Núñez, L.; Jordi, C.; Chiappini, C.; Anders, F.; Antoja, T.; Miret-Roig, N.; Romero-Gomez, M.; Blanco-Cuaresma, S.; Pancino, E.; Aguado, D. S.; del Pino, A.; Diaz-Perez, L.; Gallart, C.
2018-03-01
Context. The stellar [α/Fe] abundance is sometimes used as a proxy for stellar age, following standard chemical evolution models for the Galaxy, as seen by different observational results. Aim. In this work, we aim to show that the open cluster NGC 6705/M 11 has a significant α-enhancement [α/Fe] > 0.1 dex, despite its young age ( 300 Myr), challenging the current paradigm. Methods: We used high resolution (R > 65 000) high signal-to-noise ( 70) spectra of eight red clump stars, acquired within the OCCASO survey. We determined very accurate chemical abundances of several α elements, using an equivalent width methodology (Si, Ca and Ti), and spectral synthesis fits (Mg and O). Results: We obtain [Si/Fe] = 0.13 ± 0.05, [Mg/Fe] = 0.14 ± 0.07, [O/Fe] = 0.17 ± 0.07, [Ca/Fe] = 0.06 ± 0.05, and [Ti/Fe] = 0.03 ± 0.03. Our results place these clusters within the group of young [α/Fe]-enhanced field stars recently found by several authors in the literature. The ages of our stars have an uncertainty of around 50 Myr, much more precise than for field stars. By integrating the cluster's orbit in several non-axisymmetric Galactic potentials, we establish the M 11's most likely birth radius as lying between 6.8-7.5 kpc from the Galactic centre, not far from its current position. Conclusions: With the robust open cluster age scale, our results prove that a moderate [α/Fe]-enhancement is no guarantee for a star to be old, and that not all α-enhanced stars can be explained with an evolved blue straggler scenario. Based on our orbit calculations, we further argue against a Galactic bar origin of M 11. Full Table 2 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/610/A66
NASA Technical Reports Server (NTRS)
Mighell, Kenneth J.; Sarajedini, Ata; French, Rica S.
1998-01-01
We present our analysis of archival Hubble Space Telescope Wide Field Planetary Camera 2 (WFPC2) observations in F45OW ( approximately B) and F555W (approximately V) of the intermediate-age populous star clusters NGC 121, NGC 339, NGC 361, NGC 416, and Kron 3 in the Small Magellanic Cloud. We use published photometry of two other SMC populous star clusters, Lindsay 1 and Lindsay 113, to investigate the age sequence of these seven populous star clusters in order to improve our understanding of the formation chronology of the SMC. We analyzed the V vs B-V and M(sub V) vs (B-V)(sub 0) color-magnitude diagrams of these populous Small Magellanic Cloud star clusters using a variety of techniques and determined their ages, metallicities, and reddenings. These new data enable us to improve the age-metallicity relation of star clusters in the Small Magellanic Cloud. In particular, we find that a closed-box continuous star-formation model does not reproduce the age-metallicity relation adequately. However, a theoretical model punctuated by bursts of star formation is in better agreement with the observational data presented herein.
NASA Astrophysics Data System (ADS)
Cantiello, Michele; D'Abrusco, Raffaele; Spavone, Marilena; Paolillo, Maurizio; Capaccioli, Massimo; Limatola, Luca; Grado, Aniello; Iodice, Enrica; Raimondo, Gabriella; Napolitano, Nicola; Blakeslee, John P.; Brocato, Enzo; Forbes, Duncan A.; Hilker, Michael; Mieske, Steffen; Peletier, Reynier; van de Ven, Glenn; Schipani, Pietro
2018-04-01
We analyze the globular cluster (GC) systems in two very different galaxies, NGC 3115 and NGC 1399. With the papers of this series, we aim at highlighting common and different properties in the GC systems in galaxies covering a wide range of parameter space. We compare the GCs in NGC 3115 and NGC 1399 as derived from the analysis of one square degree u-, g-, and i-band images taken with the VST telescope as part of the VST early-type galaxy survey (VEGAS) and Fornax deep survey (FDS). We selected GC candidates using as reference the morpho-photometric and color properties of confirmed GCs. The surface density maps of GCs in NGC 3115 reveal a morphology similar to the light profile of field stars; the same is true when blue and red GCs are taken separately. The GC maps for NGC 1399 are richer in structure and confirm the existence of an intra-cluster GC component. We confirm the presence of a spatial offset in the NGC 1399 GC centroid and find that the centroid of the GCs for NGC 3115 coincides well with the galaxy center. Both GC systems show unambiguous color bimodality in (g - i) and (u - i); the color-color relations of the two GC systems are slightly different with NGC 3115 appearing more linear than NGC 1399. The azimuthal average of the radial density profiles in both galaxies reveals a larger spatial extent for the total GCs population with respect to the galaxy surface brightness profile. For both galaxies, the red GCs have radial density profiles compatible with the galaxy light profile, while the radial profiles for blue GCs are shallower. As for the specific frequency of GCs, SN, we find it is a factor of two higher in NGC 1399 than for NGC 3115; this is mainly the result of extra blue GCs. By inspecting the radial behavior of the specific frequency, SN(
Fluorine Abundances of AGB Stars in Stellar Clusters
NASA Astrophysics Data System (ADS)
Hren, A.; Lebzelter, T.; Aringer, B.; Hinkle, K. H.; Nowotny, W.
2015-08-01
We have measured the abundance of fluorine, [F/Fe], in a number of AGB stars in stellar clusters have correlated the results with their C/O ratios. This allows us to investigate the change in the fluorine abundance along the evolution on the giant branch. The target list includes primarily O-rich stars in three LMC globular clusters - NGC 1806, NGC 1846 and NGC 1978 - as well as Rup 106 and 47 Tuc in our Galaxy. The observational data were obtained with the PHOENIX spectrograph, and the COMA code was used for modelling the synthetic spectra. Within individual clusters, we find consistent [F/Fe] values at similar C/O for most of our target stars.
VizieR Online Data Catalog: NGC 2264, NGC 2547 and NGC 2516 stellar radii (Jackson+, 2016)
NASA Astrophysics Data System (ADS)
Jackson, R. J.; Jeffries, R. D.; Randich, S.; Bragaglia, A.; Carraro, G.; Costado, M. T.; Flaccomio, E.; Lanzafame; Lardo, C.; Monaco, L.; Morbidelli, L.; Smiljanic, R.; Zaggia, S.
2015-11-01
File Table1.dat contains Photometric and spectroscopic data of GES Survey targets in clusters in NGC 2547, NGC 2516, NGC 22264 downloaded from the Edinburugh GES archive (http://ges/roe.ac.uk/) . Photometric data comprised the (Cousins) I magnitude and 2MASS J, H and K magnitudes. Spectroscopic data comprises the signal to noise ratio, S/N of the target spectrum, the radial velocity, RV (in km/s), the projected equatorial velocity, vsini (in km/s), the number of separate observations co-added to produce the target spectrum and the log of effective temperature (logTeff) of the template spectrum fitted to measure RV and vsini. The absolute precision in RV, pRV (in km/s) and relative precision vsini (pvsini) were estimated, as a function of the logTeff, vsini and S/N, using the prescription described in Jackson et al. (2015A&A...580A..75J, Cat. J/A+A/580/A75). File Table3.dat contains measured and calculated properties of cluster targets with resolved vsini and a reported rotation period. The cluster name, right ascension, RA (deg) and declination, Dec (deg) are given for targets with measured periods given in the literature. Dynamic properties comprise: the radial velocity, RV (in km/s), the absolute precision in RV, pRV (km/s), the projected equatorial velocity, vsini (in km/s), the relative precision in vsini (pvsini) and the rotational period (in days). Also shown are values of absolute K magnitude, MK log of luminosity, log L (in solar units) and probability of cluster membership estimated using cluster data given in the text. Period shows reported values of cluster taken from the literature Estimated values of the projected radius, Rsini (in Rsolar) and uncertainty in projected radius, e_Rsini (in Rsolar) are given for targets where vsini>5km/s and pvsini>0.2. The final column shows a flag which is set to 1 for targets in cluster NGC 2264 where a (H-K) versus (J-H) colour-colour plot indicates possible infra-red excess. Period shows reported values of cluster taken from the literature (2 data files).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, T. M.; Bellini, A.; Anderson, J.
2016-05-01
The UV-initiative Hubble Space Telescope Treasury survey of Galactic globular clusters provides a new window into the phenomena that shape the morphological features of the horizontal branch (HB). Using this large and homogeneous catalog of UV and blue photometry, we demonstrate that the HB exhibits discontinuities that are remarkably consistent in color (effective temperature). This consistency is apparent even among some of the most massive clusters hosting multiple distinct sub-populations (such as NGC 2808, ω Cen, and NGC 6715), demonstrating that these phenomena are primarily driven by atmospheric physics that is independent of the underlying population properties. However, inconsistencies arisemore » in the metal-rich clusters NGC 6388 and NGC 6441, where the discontinuity within the blue HB (BHB) distribution shifts ∼1000–2000 K hotter. We demonstrate that this shift is likely due to a large helium enhancement in the BHB stars of these clusters, which in turn affects the surface convection and evolution of such stars. Our survey also increases the number of Galactic globular clusters known to host blue-hook stars (also known as late hot flashers) from 6 to 23 clusters. These clusters are biased toward the bright end of the globular cluster luminosity function, confirming that blue-hook stars tend to form in the most massive clusters with significant self-enrichment.« less
NASA Astrophysics Data System (ADS)
Kerber, L. O.; Nardiello, D.; Ortolani, S.; Barbuy, B.; Bica, E.; Cassisi, S.; Libralato, M.; Vieira, R. G.
2018-01-01
Bulge globular clusters (GCs) with metallicities [Fe/H] ≲ ‑1.0 and blue horizontal branches are candidates to harbor the oldest populations in the Galaxy. Based on the analysis of HST proper-motion-cleaned color–magnitude diagrams in filters F435W and F625W, we determine physical parameters for the old bulge GCs NGC 6522 and NGC 6626 (M28), both with well-defined blue horizontal branches. We compare these results with similar data for the inner halo cluster NGC 6362. These clusters have similar metallicities (‑1.3 ≤ [Fe/H] ≤ ‑1.0) obtained from high-resolution spectroscopy. We derive ages, distance moduli, and reddening values by means of statistical comparisons between observed and synthetic fiducial lines employing likelihood statistics and the Markov chain Monte Carlo method. The synthetic fiducial lines were generated using α-enhanced BaSTI and Dartmouth stellar evolutionary models, adopting both canonical (Y ∼ 0.25) and enhanced (Y ∼ 0.30–0.33) helium abundances. RR Lyrae stars were employed to determine the HB magnitude level, providing an independent indicator to constrain the apparent distance modulus and the helium enhancement. The shape of the observed fiducial line could be compatible with some helium enhancement for NGC 6522 and NGC 6626, but the average magnitudes of RR Lyrae stars tend to rule out this hypothesis. Assuming canonical helium abundances, BaSTI and Dartmouth models indicate that all three clusters are coeval, with ages between ∼12.5 and 13.0 Gyr. The present study also reveals that NGC 6522 has at least two stellar populations, since its CMD shows a significantly wide subgiant branch compatible with 14% ± 2% and 86% ± 5% for first and second generations, respectively. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute.
Tidal origin of NGC 1427A in the Fornax cluster
NASA Astrophysics Data System (ADS)
Lee-Waddell, K.; Serra, P.; Koribalski, B.; Venhola, A.; Iodice, E.; Catinella, B.; Cortese, L.; Peletier, R.; Popping, A.; Keenan, O.; Capaccioli, M.
2018-02-01
We present new HI observations from the Australia Telescope Compact Array and deep optical imaging from OmegaCam on the VLT Survey Telescope of NGC 1427A, an arrow-shaped dwarf irregular galaxy located in the Fornax cluster. The data reveal a star-less HI tail that contains ˜10 per cent of the atomic gas of NGC 1427A as well as extended stellar emission that shed new light on the recent history of this galaxy. Rather than being the result of ram pressure induced star formation, as previously suggested in the literature, the disturbed optical appearance of NGC 1427A has tidal origins. The galaxy itself likely consists of two individual objects in an advanced stage of merging. The HI tail may be made of gas expelled to large radii during the same tidal interaction. It is possible that some of this gas is subject to ram pressure, which would be considered a secondary effect and implies a north-west trajectory of NGC 1427A within the Fornax cluster.
Seeing Red in NGC 1978, NGC 55, and NGC 3109
NASA Astrophysics Data System (ADS)
Davidge, T. J.
2018-04-01
Spectra of the intermediate-age star cluster NGC 1978 and the dwarf irregular galaxies NGC 55 and NGC 3109 are discussed. The spectra were recorded with the Gemini Multi-object Spectrograph on Gemini South and span the 0.7–1.1 μm wavelength interval. Five slit pointings were observed in NGC 1978, and these are used to examine stochastic effects on the integrated red light from an intermediate-age cluster. The removal of either the brightest M giant or the brightest C star from the co-added spectrum has minor effects on the equivalent withs of the Ca triplet. The most robust signature of C stars in the integrated cluster spectrum at these wavelengths is the CN band head near 7900 Å. The equivalent widths of Ca triplet lines in the NGC 1978 spectrum and in the spectra of individual cluster stars are larger than expected for a scaled-solar abundance system. It is suggested that these stars have a lower than expected surface gravity, which might occur if the stars in NGC 1978 have been subject to extra mixing processes, as suggested by Lederer et al. The near-infrared color profile of NGC 1978 is shown to contain a prominent red cusp in the central 10 arcsec, and the suppression of light from this cusp does not affect the depth of the Ca lines in the integrated spectrum. The NGC 55 spectra run parallel to the major axis, and a gradient is found in the strength of the Ca lines, in the sense that the Ca lines weaken with increasing distance from the disk plane. Comparisons with models suggest that the disk light is dominated by stars with ages 1–2 Gyr, in agreement with star-forming histories (SFHs) obtained from the analysis of color–magnitude diagrams (CMDs). The NGC 55 spectra also sample a large star-forming complex. The age of this complex inferred from comparisons with models is broadly consistent with that estimated from a near-infrared CMD of the same region. The CN band head at 7900 Å in this part of NGC 55 is detected, but this is likely a signature of red supergiants (RSGs) rather than C stars. The NGC 3109 observations sample three different parts of that galaxy but have a low signal-to-noise ratio. Comparisons with models suggest that the light from the NGC 3109 disk at red wavelengths is dominated by RSGs with ages of at most a few tens of Myr, in qualitative agreement with SFHs that are based on photometric measurements.
GLOBULAR CLUSTERS AND SPUR CLUSTERS IN NGC 4921, THE BRIGHTEST SPIRAL GALAXY IN THE COMA CLUSTER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Myung Gyoon; Jang, In Sung, E-mail: mglee@astro.snu.ac.kr, E-mail: isjang@astro.snu.ac.kr
2016-03-01
We resolve a significant fraction of globular clusters (GCs) in NGC 4921, the brightest spiral galaxy in the Coma cluster. We also find a number of extended bright star clusters (star complexes) in the spur region of the arms. The latter are much brighter and bluer than those in the normal star-forming region, being as massive as 3 × 10{sup 5} M{sub ⊙}. The color distribution of the GCs in this galaxy is found to be bimodal. The turnover magnitudes of the luminosity functions of the blue (metal-poor) GCs (0.70 < (V − I) ≤ 1.05) in the halo are estimated V(max) = 27.11 ± 0.09 mag and I(max) = 26.21 ± 0.11 mag.more » We obtain similar values for NGC 4923, a companion S0 galaxy, and two Coma cD galaxies (NGC 4874 and NGC 4889). The mean value for the turnover magnitudes of these four galaxies is I(max) = 26.25 ± 0.03 mag. Adopting M{sub I} (max) = −8.56 ± 0.09 mag for the metal-poor GCs, we determine the mean distance to the four Coma galaxies to be 91 ± 4 Mpc. Combining this with the Coma radial velocity, we derive a value of the Hubble constant, H{sub 0} = 77.9 ± 3.6 km s{sup −1} Mpc{sup −1}. We estimate the GC specific frequency of NGC 4921 to be S{sub N} = 1.29 ± 0.25, close to the values for early-type galaxies. This indicates that NGC 4921 is in the transition phase to S0s.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luhman, K. L.; Esplin, T. L.; Loutrel, N. P., E-mail: kluhman@astro.psu.edu
We have obtained optical and near-infrared spectra of candidate members of the star-forming clusters IC 348 and NGC 1333. We classify 100 and 42 candidates as new members of the clusters, respectively, which brings the total numbers of known members to 478 and 203. We also have performed spectroscopy on a large majority of the previously known members of NGC 1333 in order to provide spectral classifications that are measured with the same scheme that has been applied to IC 348 in previous studies. The new census of members is nearly complete for K {sub s}< 16.8 at A {submore » J}< 1.5 in IC 348 and for K {sub s}< 16.2 at A {sub J}< 3 in NGC 1333, which correspond to masses of ≳0.01 M {sub ⊙} for ages of 3 Myr according to theoretical evolutionary models. The faintest known members extend below these completeness limits and appear to have masses of ∼0.005 M {sub ⊙}. In extinction-limited samples of cluster members, NGC 1333 exhibits a higher abundance of objects at lower masses than IC 348. It would be surprising if the initial mass functions of these clusters differ significantly given their similar stellar densities and formation environments. Instead, it is possible that average extinctions are lower for less massive members of star-forming clusters, in which case extinction-limited samples could be biased in favor of low-mass objects in the more heavily embedded clusters like NGC 1333. In the Hertzsprung–Russell diagram, the median sequences of IC 348 and NGC 1333 coincide with each other for the adopted distances of 300 and 235 pc, which would suggest that they have similar ages. However, NGC 1333 is widely believed to be younger than IC 348 based on its higher abundance of disks and protostars and its greater obscuration. Errors in the adopted distances may be responsible for this discrepancy.« less
Swift Confirmation of new transient activity in NGC 6440
NASA Astrophysics Data System (ADS)
Bahramian, A.; Kennea, J. A.; Altamirano, D.; Beri, Aru; Heinke, C. O.; Sivakoff, G. R.; Tetarenko, A. J.; Wijnands, Rudy; Degenaar, Nathalie
2017-10-01
Following report of enhanced X-ray brightness from the direction of the globular cluster NGC 6440 (ATel #10821), we observed this cluster on 2017-10-05 18:52:35 UT for 1.5 ks with Swift/XRT in Photon Counting mode.
The Next Generation of Numerical Modeling in Mergers- Constraining the Star Formation Law
NASA Astrophysics Data System (ADS)
Chien, Li-Hsin
2010-09-01
Spectacular images of colliding galaxies like the "Antennae", taken with the Hubble Space Telescope, have revealed that a burst of star/cluster formation occurs whenever gas-rich galaxies interact. A?The ages and locations of these clusters reveal the interaction history and provide crucial clues to the process of star formation in galaxies. A?We propose to carry out state-of-the-art numerical simulations to model six nearby galaxy mergers {Arp 256, NGC 7469, NGC 4038/39, NGC 520, NGC 2623, NGC 3256}, hence increasing the number with this level of sophistication by a factor of 3. These simulations provide specific predictions for the age and spatial distributions of young star clusters. The comparison between these simulation results and the observations will allow us to answer a number of fundamental questions including: 1} is shock-induced or density-dependent star formation the dominant mechanism; 2} are the demographics {i.e. mass and age distributions} of the clusters in different mergers similar, i.e. "universal", or very different; and 3} will it be necessary to include other mechanisms, e.g., locally triggered star formation, in the models to better match the observations?
Photometric binary stars in Praesepe and the search for globular cluster binaries
NASA Technical Reports Server (NTRS)
Bolte, Michael
1991-01-01
A radial velocity study of the stars which are located on a second sequence above the single-star zero-age main sequence at a given color in the color-magnitude diagram of the open cluster Praesepe, (NGC 2632) shows that 10, and possibly 11, of 17 are binary systems. Of the binary systems, five have full amplitudes for their velocity variations that are greater than 50 km/s. To the extent that they can be applied to globular clusters, these results suggests that (1) observations of 'second-sequence' stars in globular clusters would be an efficient way of finding main-sequence binary systems in globulars, and (2) current instrumentation on large telescopes is sufficient for establishing unambiguously the existence of main-sequence binary systems in nearby globular clusters.
The globular cluster NGC 7492 and the Sagittarius tidal stream: together but unmixed
NASA Astrophysics Data System (ADS)
Carballo-Bello, J. A.; Corral-Santana, J. M.; Catelan, M.; Martínez-Delgado, D.; Muñoz, R. R.; Sollima, A.; Navarrete, C.; Duffau, S.; Côté, P.; Mora, M. D.
2018-03-01
We have derived from VIMOS spectroscopy the radial velocities for a sample of 71 stars selected from CFHT/Megacam photometry around the Galactic globular cluster NGC 7492. In the resulting velocity distribution, it is possible to distinguish two relevant non-Galactic kinematic components along the same line of sight: a group of stars at 〈vr〉 ˜ 125 km s-1 which is compatible with the velocity of the old leading arm of the Sagittarius tidal stream, and a larger number of objects at 〈vr〉 ˜ -110 km s-1 that might be identified as members of the trailing wrap of the same stream. The systemic velocity of NGC 7492 set at vr ˜ -177 km s-1 differs significantly from that of both components, thus our results confirm that this cluster is not one of the globular clusters deposited by the Sagittarius dwarf spheroidal in the Galactic halo, even if it is immersed in the stream. A group of stars with 〈vr〉 ˜ - 180 km s-1 might be comprised of cluster members along one of the tidal tails of NGC 7492.
Chemical abundances of globular clusters in NGC 5128 (Centaurus A)
NASA Astrophysics Data System (ADS)
Hernandez, Svea; Larsen, Søren; Trager, Scott; Kaper, Lex; Groot, Paul
2018-06-01
We perform a detailed abundance analysis on integrated-light spectra of 20 globular clusters (GCs) in the early-type galaxy NGC 5128 (Centaurus A). The GCs were observed with X-Shooter on the Very Large Telescope (VLT). The cluster sample spans a metallicity range of -1.92 < [Fe/H] < -0.13 dex. Using theoretical isochrones, we compute synthetic integrated-light spectra and iterate the individual abundances until the best fit to the observations is obtained. We measured abundances of Mg, Ca, and Ti, and find a slightly higher enhancement in NGC 5128 GCs with metallicities [Fe/H] < -0.75 dex, of the order of ˜0.1 dex, than in the average values observed in the Milky Way (MW) for GCs of the same metallicity. If this α-enhancement in the metal-poor GCs in NGC 5128 is genuine, it could hint at a chemical enrichment history different than that experienced by the MW. We also measure Na abundances in 9 out of 20 GCs. We find evidence for intracluster abundance variations in six of these clusters where we see enhanced [Na/Fe] > +0.25 dex. We obtain the first abundance measurements of Cr, Mn, and Ni for a sample of the GC population in NGC 5128 and find consistency with the overall trends observed in the MW, with a slight enhancement (<0.1 dex) in the Fe-peak abundances measured in the NGC 5128.
A Deep Look at the Fornax Cluster
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-04-01
Traditionally, dense cluster centers are cannibalistic environments, with larger galaxies stripping stars from smaller interlopers in minor mergers and dynamical harassment. A recent survey of the Fornax cluster, one example of such an environment, reveals how this cluster may have been built.Clues in HalosContext for the southern constellation Fornax (the furnace). The Fornax cluster is marked with a red circle. [ESO, IAU and Sky Telescope]Deep surveys of dense cluster environments are necessary because the imprint of mass assembly is hidden in galactic halos, the faint outer regions of galaxies. Deep observations can reveal answers to questions about how the galaxies in these extreme environments formed and evolved for instance, did the majority of the galaxies stars form in situ, or were they accreted from interactions with other galaxies?The Fornax Deep Survey (FDS) is just such a campaign. FDS uses the European Southern Observatorys VLT Survey Telescope to obtain deep photometry of the entire 26 square degrees of the Fornax cluster, a spectacular galaxy cluster located 65 million light-years away.Central ObservationsThe FDS team plans to release the full results from the survey soon. For now, in an initial study led by Enrichetta Iodice (INAFs Astronomical Observatory of Capodimonte, Italy), the team presents their first findings from the two square degrees around NGC 1399, a supergiant elliptical galaxy in the cluster center.The two main results from this study are:The discovery of a faint stellar bridge between NGC 1399 and a nearby galaxy, NGC 1387.The characterization of NGC 1399s light profile, which shows that the galaxy consists of two main components separated by a strong break. The bright central galaxy is likely composed of stars that formed in situ, whereas the exponential outer component is a stellar halo composed of stars likely captured from accretion events.What do these points tell us about the history of the center of the Fornax cluster? These observations are indications that the Fornax cluster was built up by mergers and accretion events.A Violent PastThe light profile the authors found is consistent with those of simulated galaxies whose halos were formed through the multiple accretion of progenitors. This suggests that the stellar halo of NGC 1399 has been through a major merging event.This enlarged view of NGC 1399 and 1387 in the g band (top) and gi band (bottom) gives a better view of the faint stellar stream connecting the two galaxies. North is up and east is left. [Iodice et al. 2016]The faint stellar bridge is likely a sign of an ongoing interaction between NGC 1399 and NGC 1387, in which NGC 1387s outer envelope on its east side is being stripped away. But besides this indication, there is little evidence for recent merger activity, which would usually produce a significant number of luminous stellar streams and tidal tails.The authors argue that this means that any major mergers in the Fornax cluster center probably happened in an early formation epoch. The cluster is now in a more dynamically evolved stage, in which most of the gravitational interactions between galaxies have already taken place.Follow-up kinematics studies will be crucial to further interpreting these photometric observations from the center of the Fornax cluster. In the meantime, keep an eye out for future results from FDS!CitationE. Iodice et al 2016 ApJ 820 42. doi:10.3847/0004-637X/820/1/42
Search for OB stars running away from young star clusters. I. NGC 6611
NASA Astrophysics Data System (ADS)
Gvaramadze, V. V.; Bomans, D. J.
2008-11-01
N-body simulations have shown that the dynamical decay of the young (~1 Myr) Orion Nebula cluster could be responsible for the loss of at least half of its initial content of OB stars. This result suggests that other young stellar systems could also lose a significant fraction of their massive stars at the very beginning of their evolution. To confirm this expectation, we used the Mid-Infrared Galactic Plane Survey (completed by the Midcourse Space Experiment satellite) to search for bow shocks around a number of young (⪉several Myr) clusters and OB associations. We discovered dozens of bow shocks generated by OB stars running away from these stellar systems, supporting the idea of significant dynamical loss of OB stars. In this paper, we report the discovery of three bow shocks produced by O-type stars ejected from the open cluster NGC 6611 (M16). One of the bow shocks is associated with the O9.5Iab star HD165319, which was suggested to be one of “the best examples for isolated Galactic high-mass star formation” (de Wit et al. 2005, A&A, 437, 247). Possible implications of our results for the origin of field OB stars are discussed.
The enigma of the open cluster M29 (NGC 6913) solved
DOE Office of Scientific and Technical Information (OSTI.GOV)
Straižys, V.; Milašius, K.; Černis, K.
2014-11-01
Determining the distance to the open cluster M29 (NGC 6913) has proven difficult, with distances determined by various authors differing by a factor of two or more. To solve this problem, we have initiated a new photometric investigation of the cluster in the Vilnius seven-color photometric system, supplementing it with available data in the BV and JHK {sub s} photometric systems and spectra of the nine brightest stars of spectral classes O and B. Photometric spectral classes and luminosities of 260 stars in a 15' × 15' area down to V = 19 mag are used to investigate the interstellarmore » extinction run with distance and to estimate the distance of the Great Cygnus Rift, ∼ 800 pc. The interstellar reddening law in the optical and near-infrared regions is found to be close to normal, with the ratio of extinction to color excess R{sub BV} = 2.87. The extinction A{sub V} of cluster members is between 2.5 and 3.8 mag, with a mean value of 2.97 mag, or E {sub B–V} = 1.03. The average distance of eight stars of spectral types O9-B2 is 1.54 ± 0.15 kpc. Two stars from the seven brightest stars are field stars: HDE 229238 is a background B0.5 supergiant and HD 194378 is a foreground F star. In the intrinsic color-magnitude diagram, seven fainter stars of spectral classes B3-B8 are identified as possible members of the cluster. The 15 selected members of the cluster of spectral classes O9-B8 plotted on the log L/L {sub ☉} versus log T {sub eff} diagram, together with the isochrones from the Padova database, give the age of the cluster as 5 ± 1 Myr.« less
A white dwarf cooling age of 8 Gyr for NGC 6791 from physical separation processes.
García-Berro, Enrique; Torres, Santiago; Althaus, Leandro G; Renedo, Isabel; Lorén-Aguilar, Pablo; Córsico, Alejandro H; Rohrmann, René D; Salaris, Maurizio; Isern, Jordi
2010-05-13
NGC 6791 is a well studied open cluster that it is so close to us that can be imaged down to very faint luminosities. The main-sequence turn-off age ( approximately 8 Gyr) and the age derived from the termination of the white dwarf cooling sequence ( approximately 6 Gyr) are very different. One possible explanation is that as white dwarfs cool, one of the ashes of helium burning, (22)Ne, sinks in the deep interior of these stars. At lower temperatures, white dwarfs are expected to crystallize and phase separation of the main constituents of the core of a typical white dwarf ((12)C and (16)O) is expected to occur. This sequence of events is expected to introduce long delays in the cooling times, but has not hitherto been proven. Here we report that, as theoretically anticipated, physical separation processes occur in the cores of white dwarfs, resolving the age discrepancy for NGC 6791.
Large amplitude change in spot-induced rotational modulation of the Kepler Ap star KIC 2569073
NASA Astrophysics Data System (ADS)
Drury, Jason A.; Murphy, Simon J.; Derekas, Aliz; Sódor, Ádám; Stello, Dennis; Kuehn, Charles A.; Bedding, Timothy R.; Bognár, Zsófia; Szigeti, László; Szakáts, Róbert; Sárneczky, Krisztián; Molnár, László
2017-11-01
An investigation of the 200 × 200 pixel `superstamp' images of the centres of the open clusters NGC 6791 and NGC 6819 allows for the identification and study of many variable stars that were not included in the Kepler target list. KIC 2569073 (V = 14.22), is a particularly interesting variable Ap star that we discovered in the NGC 6791 superstamp. With a rotational period of 14.67 d and 0.034 mag variability, it has one of the largest peak-to-peak variations of any known Ap star. Colour photometry reveals an antiphase correlation between the B band, and the V, R and I bands. This Ap star is a rotational variable, also known as an α2 CVn star, and is one of only a handful of Ap stars observed by Kepler. While no change in spot period or amplitude is observed within the 4 yr Kepler time series, the amplitude shows a large increase compared to ground-based photometry obtained two decades ago.
An Introverted Starburst: Gas and SSC Formation in NGC 5253
NASA Astrophysics Data System (ADS)
Turner, J. L.; Beck, S. C.
2004-06-01
High resolution Brackett line spectroscopy with the Keck Telescope reveals relatively narrow recombination lines toward the embedded young super star cluster nebula in NGC 5253. The gas within this nebula is almost certainly gravitationally bound by the massive and compact young star cluster.
Proper motions and membership probabilities of stars in the region of globular cluster NGC 6366
NASA Astrophysics Data System (ADS)
Sariya, Devesh P.; Yadav, R. K. S.
2015-12-01
Context. NGC 6366 is a metal-rich globular cluster that is relatively unstudied. It is a kinematically interesting cluster, reported as belonging to the slowly rotating halo system, which is unusual given its metallicity and spatial location in the Galaxy. Aims: The purpose of this research is to determine the relative proper motion and membership probability of the stars in the region of globular cluster NGC 6366. To target cluster members reliably during spectroscopic surveys without including field stars, a good proper motion and membership probability catalogue of NGC 6366 is needed. Methods: To derive relative proper motions, the archival data from the Wide Field Imager mounted on the ESO 2.2 m telescope have been reduced using a high precision astrometric software. The images used are in the B,V, and I photometric bands with an epoch gap of ~3.2 yr. The calibrated BVI magnitudes have been determined using recent data for secondary standard stars. Results: We determined relative proper motions and cluster membership probabilities for 2530 stars in the field of globular cluster NGC 6366. The median proper motion rms errors for stars brighter than V ~ 18 mag is ~2 mas yr-1, which gradually increases to ~5 mas yr-1 for stars having magnitudes V ~ 20 mag. Based on the membership catalogue, we checked the membership status of the X-ray sources and variable stars of NGC 6366 mentioned in the literature. We also provide the astronomical community with an electronic catalogue that includes B, V, and I magnitudes; relative proper motions; and membership probabilities of the stars in the region of NGC 6366. Based on observations with the MPG/ESO 2.2 m and ESO/VLT telescopes, located at La Silla and Paranal Observatory, Chile, under DDT programs 164.O-0561(F), 71.D-0220(A) and the archive material.Full Table 4 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/584/A59
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simunovic, Mirko; Puzia, Thomas H., E-mail: msimunov@astro.puc.cl, E-mail: tpuzia@astro.puc.cl
2014-02-10
We present the first dynamical study of blue straggler stars (BSSs) in three Galactic globular clusters, NGC 3201, NGC 5139 (ω Cen), and NGC 6218, based on medium-resolution spectroscopy (R ≈ 10, 000) obtained with the Inamori-Magellan Areal Camera and Spectrograph mounted at the 6.5 m Baade Magellan telescope. Our BSS candidate selection technique uses HST/ACS and ESO/WFI photometric data out to >4.5 r{sub c} . We use radial velocity measurements to discard non-members and achieve a success rate of ∼93%, which yields a sample of 116 confirmed BSSs. Using the penalized pixel-fitting method (pPXF), we measure the vsin (i)more » values of the sample BSSs and find their distribution functions peaked at slow velocities with a long tail toward fast velocities in each globular cluster. About 90% of the BSS population in NGC 3201 and NGC 6218 exhibits values in the range 10-50 km s{sup –1}, while about 80% of the BSSs in ω Cen show vsin (i) values between 20 and 70 km s{sup –1}. We find that the BSSs in NGC 3201 and NGC 6218 that show vsin (i) > 50 km s{sup –1} are all found in the central cluster regions, inside a projected 2r{sub c} , of their parent clusters. We find a similar result in ω Cen for BSSs with vsin (i) > 70 km s{sup –1}, which are all, except for two, concentrated inside 2r{sub c} . In all globular clusters, we find rapidly rotating BSSs that have relatively high differential radial velocities that likely put them on hyperbolic orbits, suggestive of strong dynamical interactions in the past. Based on stellar spin-down and dynamical crossing timescales, we estimate that all the observed rapidly rotating BSSs are likely to form in their central cluster regions no longer than ∼300 Myr ago and may be subsequently ejected from their host globular clusters. Using dereddened V – I colors of our photometric selection, we show that blue BSSs in ω Cen with (V – I){sub 0} ≲ 0.25 mag show a significantly increased vsin (i) dispersion compared with their red counterparts and all other BSSs in our sample, therefore strongly implying that fast-rotating BSSs in ω Cen are preferentially bluer, i.e., more massive. This may indicate that this particular blue BSS population was formed in a unique formation event and/or through a unique mechanism.« less
Multi-wavelength study of NGC 281 A
NASA Technical Reports Server (NTRS)
Henning, TH.; Martin, K.; Reimann, H.-G.; Launhardt, R.; Leisawitz, D.; Zinnecker, H.
1994-01-01
We present a study of the molecular cloud NGC 281 A and the associated compact and young star cluster NGC 281 (AS 179). Optical photometry leads to a new distance of 3500 pc for the star cluster which is in good agreement with the kinematical distance of the adjacent molecular cloud NGC 281 A. The exciting star HD 5005 of the optical nebulosity is a Trapezium system with O6 III as photometric spectral type for the component HD 5005 AB. For the age of the star cluster we estimated a value of about 3 x 10(exp 6) yr. The (12)CO (2 to 1), (13)CO (2 to 1), and (12)CO (3 to 2) emission shows that the molecular cloud NGC 281 A consists of two cloud fragments. The western fragment is more compact and massive than the eastern fragment and contains an NH3 core. This core is associated with the IRAS source 00494+5617, an H2O maser, and 1.3 millimeter dust continuum radiation. Both cloud fragments contain altogether 22 IRAS point sources which mostly share the properties of young stellar objects. They have luminosities between 150 and 8800 solar luminosity. The maxima of the 60 and 100 micrometers HIRES maps correspond to the maxima of the (12)CO (3 to 2) emission. The NGC 281 A region shares many properties with the Orion Trapezium-BN/KL region the main differences being a larger separation between the cluster centroid and the new site of star formation as well as a lower mass and luminosity of the molecular cloud and the infrared cluster.
The Globular Cluster NGC 5286. I. A New CCD BV Color-Magnitude Diagram
NASA Astrophysics Data System (ADS)
Zorotovic, M.; Catelan, M.; Zoccali, M.; Pritzl, B. J.; Smith, H. A.; Stephens, A. W.; Contreras, R.; Escobar, M. E.
2009-01-01
We present BV photometry of the Galactic globular cluster NGC 5286, based on 128 V frames and 133 B frames, and covering the entire face of the cluster. Our photometry reaches almost two magnitudes below the turn-off level, and is accordingly suitable for age analysis. Field stars were removed statistically from the cluster's color-magnitude diagram (CMD), and a differential reddening correction applied, thus allowing a precise ridgeline to be calculated. Using the latter, a metallicity of [Fe/H] = -1.70 ± 0.05 in the Zinn & West scale, and [Fe/H] = -1.47 ± 0.02 in the Carretta & Gratton scale, was derived on the basis of several parameters measured from the red giant branch, in good agreement with the value provided in the Harris catalog. Comparing the NGC 5286 CMD with the latest photometry for M3 by P. B. Stetson, and using VandenBerg isochrones for a suitable chemical composition, we find evidence that NGC 5286 is around 1.7 ± 0.9 Gyr older than M3. This goes in the right sense to help account for the blue horizontal branch of NGC 5286, for which we provide a measurement of several morphological indicators. If NGC 5286 is a bona fide member of the Canis Major dwarf spheroidal galaxy, as previously suggested, our results imply that the latter's oldest components may be at least as old as the oldest Milky Way globular clusters. Based on observations obtained with the 1.3 m Warsaw telescope at the Las Campanas Observatory, Chile.
Kinematic evidence for feedback-driven star formation in NGC 1893
NASA Astrophysics Data System (ADS)
Lim, Beomdu; Sung, Hwankyung; Bessell, Michael S.; Lee, Sangwoo; Lee, Jae Joon; Oh, Heeyoung; Hwang, Narae; Park, Byeong-Gon; Hur, Hyeonoh; Hong, Kyeongsoo; Park, Sunkyung
2018-06-01
OB associations are the prevailing star-forming sites in the Galaxy. Up to now, the process of how OB associations were formed remained a mystery. A possible process is self-regulating star formation driven by feedback from massive stars. However, although a number of observational studies uncovered various signposts of feedback-driven star formation, the effectiveness of such feedback has been questioned. Stellar and gas kinematics is a promising tool to capture the relative motion of newborn stars and gas away from ionizing sources. We present high-resolution spectroscopy of stars and gas in the young open cluster NGC 1893. Our findings show that newborn stars and the tadpole nebula Sim 130 are moving away from the central cluster containing two O-type stars, and that the time-scale of sequential star formation is about 1 Myr within a 9 pc distance. The newborn stars formed by feedback from massive stars account for at least 18 per cent of the total stellar population in the cluster, suggesting that this process can play an important role in the formation of OB associations. These results support the self-regulating star formation model.
Image Subtraction Reduction of Open Clusters M35 & NGC 2158 in the K2 Campaign 0 Super Stamps
NASA Astrophysics Data System (ADS)
Soares-Furtado, M.; Hartman, J. D.; Bakos, G. Á.; Huang, C. X.; Penev, K.; Bhatti, W.
2017-04-01
We observed the open clusters M35 and NGC 2158 during the initial K2 campaign (C0). Reducing these data to high-precision photometric timeseries is challenging due to the wide point-spread function (PSF) and the blending of stellar light in such dense regions. We developed an image-subtraction-based K2 reduction pipeline that is applicable to both crowded and sparse stellar fields. We applied our pipeline to the data-rich C0 K2 super stamp, containing the two open clusters, as well as to the neighboring postage stamps. In this paper, we present our image subtraction reduction pipeline and demonstrate that this technique achieves ultra-high photometric precision for sources in the C0 super stamp. We extract the raw light curves of 3960 stars taken from the UCAC4 and EPIC catalogs and de-trend them for systematic effects. We compare our photometric results with the prior reductions published in the literature. For de-trended TFA-corrected sources in the 12-12.25 {{{K}}}{{p}} magnitude range, we achieve a best 6.5-hour window running rms of 35 ppm, falling to 100 ppm for fainter stars in the 14-14.25 {{{K}}}{{p}} magnitude range. For stars with {K}p> 14, our de-trended and 6.5-hour binned light curves achieve the highest photometric precision. Moreover, all our TFA-corrected sources have higher precision on all timescales investigated. This work represents the first published image subtraction analysis of a K2 super stamp. This method will be particularly useful for analyzing the Galactic bulge observations carried out during K2 campaign 9. The raw light curves and the final results of our de-trending processes are publicly available at http://k2.hatsurveys.org/archive/.
Nuclear Star Formation in the Hot-Spot Galaxy NGC 2903
NASA Technical Reports Server (NTRS)
Alonso-Herrero, A.; Ryder, S. D.; Knapen, J. H.
1994-01-01
We present high-resolution near-infrared imaging obtained using adaptive optics and HST/NICMOS and ground-based spectroscopy of the hot-spot galaxy NGC 2903. Our near-infrared resolution imaging enables us to resolve the infrared hot spots into individual young stellar clusters or groups of these. The spatial distribution of the stellar clusters is not coincident with that of the bright H II regions, as revealed by the HST/NICMOS Pace image. Overall, the circumnuclear star formation in NGC 2903 shows a ring-like morphology with an approximate diameter of 625 pc. The SF properties of the stellar clusters and H II regions have been studied using the photometric and spectroscopic information in conjunction with evolutionary synthesis models. The population of bright stellar clusters shows a very narrow range of ages, 4 to 7 x 10(exp 6) yr after the peak of star formation, or absolute ages 6.5 to 9.5 x 10(exp 6) yr (for the assumed short-duration Gaussian bursts), and luminosities similar to the clusters found in the Antennae interacting galaxy. This population of young stellar clusters accounts for some 7 - 12% of the total stellar mass in the central 625 pc of NGC 2903. The H II regions in the ring of star formation have luminosities close to that of the super-giant H II region 30 Doradus, they are younger than the stellar clusters, and will probably evolve into bright infrared stellar clusters similar to those observed today. We find that the star formation efficiency in the central regions of NGC 2903 is higher than in normal galaxies, approaching the lower end of infrared luminous galaxies.
A Spectroscopic Analysis of the Galactic Globular Cluster NGC 6273 (M19)
NASA Astrophysics Data System (ADS)
Johnson, Christian I.; Rich, R. Michael; Pilachowski, Catherine A.; Caldwell, Nelson; Mateo, Mario; Bailey, John I., III; Crane, Jeffrey D.
2015-08-01
A combined effort utilizing spectroscopy and photometry has revealed the existence of a new globular cluster class. These “anomalous” clusters, which we refer to as “iron-complex” clusters, are differentiated from normal clusters by exhibiting large (≳0.10 dex) intrinsic metallicity dispersions, complex sub-giant branches, and correlated [Fe/H] and s-process enhancements. In order to further investigate this phenomenon, we have measured radial velocities and chemical abundances for red giant branch stars in the massive, but scarcely studied, globular cluster NGC 6273. The velocities and abundances were determined using high resolution (R ˜ 27,000) spectra obtained with the Michigan/Magellan Fiber System (M2FS) and MSpec spectrograph on the Magellan-Clay 6.5 m telescope at Las Campanas Observatory. We find that NGC 6273 has an average heliocentric radial velocity of +144.49 km s-1 (σ = 9.64 km s-1) and an extended metallicity distribution ([Fe/H] = -1.80 to -1.30) composed of at least two distinct stellar populations. Although the two dominant populations have similar [Na/Fe], [Al/Fe], and [α/Fe] abundance patterns, the more metal-rich stars exhibit significant [La/Fe] enhancements. The [La/Eu] data indicate that the increase in [La/Fe] is due to almost pure s-process enrichment. A third more metal-rich population with low [X/Fe] ratios may also be present. Therefore, NGC 6273 joins clusters such as ω Centauri, M2, M22, and NGC 5286 as a new class of iron-complex clusters exhibiting complicated star formation histories. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.
A NEW CENSUS OF THE VARIABLE STAR POPULATION IN THE GLOBULAR CLUSTER NGC 2419
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Criscienzo, M.; Greco, C.; Ripepi, V.
We present B, V, and I CCD light curves for 101 variable stars belonging to the globular cluster NGC 2419, 60 of which are new discoveries, based on data sets obtained at the Telescopio Nazionale Galileo, the Subaru telescope, and the Hubble Space Telescope. The sample includes 75 RR Lyrae stars (38 RRab, 36 RRc, and one RRd), one Population II Cepheid, 12 SX Phoenicis variables, two {delta} Scuti stars, three binary systems, five long-period variables, and three variables of uncertain classification. The pulsation properties of the RR Lyrae variables are close to those of Oosterhoff type II clusters, consistentmore » with the low metal abundance and the cluster horizontal branch morphology, disfavoring (but not totally ruling out) an extragalactic hypothesis for the origin of NGC 2419. The observed properties of RR Lyrae and SX Phoenicis stars are used to estimate the cluster reddening and distance, using a number of different methods. Our final value is {mu}{sub 0} (NGC 2419) = 19.71 {+-} 0.08 mag (D = 87.5 {+-} 3.3 kpc), with E(B - V) = 0.08 {+-} 0.01 mag, [Fe/H] = -2.1 dex on the Zinn and West metallicity scale, and a value of M{sub V} that sets {mu}{sub 0} (LMC) = 18.52 mag. This value is in good agreement with the most recent literature estimates of the distance to NGC 2419.« less
Three close binaries in different evolutionary stages in the old open cluster NGC 188
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, L. Y.; Qian, S. B.; Liu, L.
2014-02-01
NGC 188 is a good laboratory for studying the formation and evolution of W UMa type contact binaries due to its rich populations of them. We present a detailed photometric study of three short-period close binaries, EP Cep, ES Cep, and V369 Cep, in the old open cluster NGC 188 based on our two-set photometric observations. We discovered that both EP Cep and ES Cep are shallow-contact binaries with continuously decreasing periods. The difference is in their mass ratios. EP Cep has an extremely low-mass ratio, q = 0.15, while ES Cep has a relatively high-mass ratio, q = 0.69,more » indicating that they lie in different evolutionary stages. ES Cep is likely a newly formed contact binary via a Case A mass transfer, while EP Cep is an evolved system and may be on the oscillations caused by the combined effect of the thermal relaxation oscillation and the variable angular momentum loss. For another system, V369 Cep, we found that it is a primary-filling near-contact binary. Both the semidetached configuration and the continuous decrease in the orbital period indicate that it is undergoing a mass transfer from the primary component to the secondary one. This conclusion is in agreement with the excess luminosity seen in the light curves on the ingress of the secondary minimum produced by the impact of the mass transfer. All of the results suggest that V369 Cep is evolving into contact, and a shallow-contact high-mass ratio system similar to ES Cep will be formed. Then, it will evolve into a low-mass ratio contact binary just like EP Cep, and finally merge into a rapidly rotating single star.« less
The Structure of the Young Star Cluster NGC 6231. II. Structure, Formation, and Fate
NASA Astrophysics Data System (ADS)
Kuhn, Michael A.; Getman, Konstantin V.; Feigelson, Eric D.; Sills, Alison; Gromadzki, Mariusz; Medina, Nicolás; Borissova, Jordanka; Kurtev, Radostin
2017-12-01
The young cluster NGC 6231 (stellar ages ˜2-7 Myr) is observed shortly after star formation activity has ceased. Using the catalog of 2148 probable cluster members obtained from Chandra, VVV, and optical surveys (Paper I), we examine the cluster’s spatial structure and dynamical state. The spatial distribution of stars is remarkably well fit by an isothermal sphere with moderate elongation, while other commonly used models like Plummer spheres, multivariate normal distributions, or power-law models are poor fits. The cluster has a core radius of 1.2 ± 0.1 pc and a central density of ˜200 stars pc-3. The distribution of stars is mildly mass segregated. However, there is no radial stratification of the stars by age. Although most of the stars belong to a single cluster, a small subcluster of stars is found superimposed on the main cluster, and there are clumpy non-isotropic distributions of stars outside ˜4 core radii. When the size, mass, and age of NGC 6231 are compared to other young star clusters and subclusters in nearby active star-forming regions, it lies at the high-mass end of the distribution but along the same trend line. This could result from similar formation processes, possibly hierarchical cluster assembly. We argue that NGC 6231 has expanded from its initial size but that it remains gravitationally bound.
NASA Astrophysics Data System (ADS)
Simioni, M.; Bedin, L. R.; Aparicio, A.; Piotto, G.; Milone, A. P.; Nardiello, D.; Anderson, J.; Bellini, A.; Brown, T. M.; Cassisi, S.; Cunial, A.; Granata, V.; Ortolani, S.; van der Marel, R. P.; Vesperini, E.
2018-05-01
As part of the Hubble Space Telescope UV Legacy Survey of Galactic globular clusters, 110 parallel fields were observed with the Wide Field Channel of the Advanced Camera for Surveys, in the outskirts of 48 globular clusters, plus the open cluster NGC 6791. Totalling about 0.3 deg2 of observed sky, this is the largest homogeneous Hubble Space Telescope photometric survey of Galalctic globular clusters outskirts to date. In particular, two distinct pointings have been obtained for each target on average, all centred at about 6.5 arcmin from the cluster centre, thus covering a mean area of about 23 arcmin2 for each globular cluster. For each field, at least one exposure in both F475W and F814W filters was collected. In this work, we publicly release the astrometric and photometric catalogues and the astrometrized atlases for each of these fields.
UVBY beta photometry of the young southern cluster NGC3293 and comparison with other young clusters
NASA Astrophysics Data System (ADS)
Shobbrook, R. R.
1980-09-01
Stromgren uvby photometry has been obtained for 42 members and beta photometry for 37 members of the young southern galactic cluster NGC 3293. The distance modulus obtained from using Crawford's beta/M(V) calibration is 12.75 mag, corresponding to a distance of 3.55 kpc. Comparison of the colour/colour and the HR diagrams of NGC 3293 with those of the five other young northern and southern clusters reveals large differences between the clusters which may possibly be due to metal abundance variations across the Galaxy. Apparently correlated with this effect is a variation of the luminosities of the lower main sequences over about 1 mag. The fainter stars in the southern clusters appear to be an average of 0.7 mag brighter than those in the northern clusters, but it is not certain at present how much of this difference is due to possible systematic errors in the beta index zero point between the northern and southern hemispheres.
VizieR Online Data Catalog: Globular cluster candidates in NGC253 (Cantiello+, 2018)
NASA Astrophysics Data System (ADS)
Cantiello, M.; Grado, A.; Rejkuba, M.; Arnaboldi, M.; Capaccioli, M.; Greggio, L.; Iodice, E.; Limatola, L.
2017-11-01
Photometric catalogs for globular cluster (GC) candidates over the 1 sq. degree area around NGC253. The catalogues are based on ugri-band photometry from the VST data, and JKs photometry from VISTA. Aperture magnitudes, corrected for aperture correction are reported. (1 data file).
A population of gamma-ray emitting globular clusters seen with the Fermi Large Area Telescope
Abdo, A. A.
2010-11-24
Context. Globular clusters with their large populations of millisecond pulsars (MSPs) are believed to be potential emitters of high-energy gamma-ray emission. The observation of this emission provides a powerful tool to assess the millisecond pulsar population of a cluster, is essential for understanding the importance of binary systems for the evolution of globular clusters, and provides complementary insights into magnetospheric emission processes. Aims. Our goal is to constrain the millisecond pulsar populations in globular clusters from analysis of gamma-ray observations. Methods. We use 546 days of continuous sky-survey observations obtained with the Large Area Telescope aboard the Fermi Gamma-ray Spacemore » Telescope to study the gamma-ray emission towards 13 globular clusters. Results. Steady point-like high-energy gamma-ray emission has been significantly detected towards 8 globular clusters. Five of them (47 Tucanae, Omega Cen, NGC 6388, Terzan 5, and M 28) show hard spectral power indices (0.7 < Γ < 1.4) and clear evidence for an exponential cut-off in the range 1.0 - 2.6 GeV, which is the characteristic signature of magnetospheric emission from MSPs. Three of them (M 62, NGC 6440 and NGC 6652) also show hard spectral indices (1.0 < Γ < 1.7), however the presence of an exponential cut-off can not be unambiguously established. Three of them (Omega Cen, NGC 6388, NGC 6652) have no known radio or X-ray MSPs yet still exhibit MSP spectral properties. From the observed gamma-ray luminosities, we estimate the total number of MSPs that is expected to be present in these globular clusters. We show that our estimates of the MSP population correlate with the stellar encounter rate and we estimate 2600 - 4700 MSPs in Galactic globular clusters, commensurate with previous estimates. Conclusions. The observation of high-energy gamma-ray emission from globular clusters thus provides a reliable independent method to assess their millisecond pulsar populations.« less
No Evidence of Chemical Abundance Variations in the Intermediate-age Cluster NGC 1783
NASA Astrophysics Data System (ADS)
Zhang, Hao; de Grijs, Richard; Li, Chengyuan; Wu, Xiaohan
2018-02-01
We have analyzed multi-passband photometric observations, obtained with the Hubble Space Telescope, of the massive (1.8 × 105 M ⊙), intermediate-age (1.8 Gyr-old) Large Magellanic Cloud star cluster NGC 1783. The morphology of the cluster’s red giant branch does not exhibit a clear broadening beyond its intrinsic width; the observed width is consistent with that owing to photometric uncertainties alone and independent of the photometric selection boundaries we applied to obtain our sample of red giant stars. The color dispersion of the cluster’s red giant stars around the best-fitting ridgeline is 0.062 ± 0.009 mag, which is equivalent to the width of 0.080 ± 0.001 mag derived from artificial simple stellar population tests, that is, tests based on single-age, single-metallicity stellar populations. NGC 1783 is comparably as massive as other star clusters that show clear evidence of multiple stellar populations. After incorporating mass-loss recipes from its current age of 1.8 Gyr to an age of 6 Gyr, NGC 1783 is expected to remain as massive as some other clusters that host clear multiple populations at these intermediate ages. If we were to assume that mass is an important driver of multiple population formation, then NGC 1783 should have exhibited clear evidence of chemical abundance variations. However, our results support the absence of any chemical abundance variations in NGC 1783.
Capturing the 3D Motion of an Infalling Galaxy via Fluid Dynamics
NASA Astrophysics Data System (ADS)
Su, Yuanyuan; Kraft, Ralph P.; Nulsen, Paul E. J.; Roediger, Elke; Forman, William R.; Churazov, Eugene; Randall, Scott W.; Jones, Christine; Machacek, Marie E.
2017-01-01
The Fornax Cluster is the nearest (≤slant 20 Mpc) galaxy cluster in the southern sky. NGC 1404 is a bright elliptical galaxy falling through the intracluster medium (ICM) of the Fornax Cluster. The sharp leading edge of NGC 1404 forms a classical “cold front” that separates 0.6 keV dense interstellar medium and 1.5 keV diffuse ICM. We measure the angular pressure variation along the cold front using a very deep (670 ks) Chandra X-ray observation. We are taking the classical approach—using stagnation pressure to determine a substructure’s speed—to the next level by not only deriving a general speed but also directionality, which yields the complete velocity field as well as the distance of the substructure directly from the pressure distribution. We find a hydrodynamic model consistent with the pressure jump along NGC 1404's atmosphere measured in multiple directions. The best-fit model gives an inclination of 33° and a Mach number of 1.3 for the infall of NGC 1404, in agreement with complementary measurements of the motion of NGC 1404. Our study demonstrates the successful treatment of a highly ionized ICM as ideal fluid flow, in support of the hypothesis that magnetic pressure is not dynamically important over most of the virial region of galaxy clusters.
Tidal stripping stellar substructures around four metal-poor globular clusters in the galactic bulge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chun, Sang-Hyun; Kang, Minhee; Jung, DooSeok
2015-01-01
We investigate the spatial density configuration of stars around four metal-poor globular clusters (NGC 6266, NGC 6626, NGC 6642, and NGC 6723) in the Galactic bulge region using wide-field deep J, H, and K imaging data obtained with the Wide Field Camera near-infrared array on the United Kingdom Infrared Telescope. A statistical weighted filtering algorithm for the stars on the color–magnitude diagram is applied in order to sort cluster member candidates from the field star contamination. In two-dimensional isodensity contour maps of the clusters, we find that all four of the globular clusters exhibit strong evidence of tidally stripped stellarmore » features beyond the tidal radius in the form of tidal tails or small density lobes/chunks. The orientations of the extended stellar substructures are likely to be associated with the effect of dynamic interaction with the Galaxy and the cluster's space motion. The observed radial density profiles of the four globular clusters also describe the extended substructures; they depart from theoretical King and Wilson models and have an overdensity feature with a break in the slope of the profile at the outer region of clusters. The observed results could imply that four globular clusters in the Galactic bulge region have experienced strong environmental effects such as tidal forces or bulge/disk shocks of the Galaxy during the dynamical evolution of globular clusters. These observational results provide further details which add to our understanding of the evolution of clusters in the Galactic bulge region as well as the formation of the Galaxy.« less
Gas Dynamics in the Fornax Cluster: Viscosity, turbulence, and sloshing
NASA Astrophysics Data System (ADS)
Kraft, Ralph; Su, Yuanyuan; Sheardown, Alexander; Roediger, Elke; Nulsen, Paul; Forman, William; Jones, Christine; Churazov, Eugene
2018-01-01
We present results from deep Chandra and XMM-Newton observations of the ICM in the Fornax cluster, and combine these data with specifically-tailored hydrodynamic simulations for an unprecedented view of the gas dynamics in this nearby cluster. We report the detection of four sloshing fronts (Su+2017). Based on our simulations, all four of these fronts can plausibly be attributed to the infall of the early-type galaxy NGC 1404 into the cluster potential. We argue that the presence of these sloshing cold fronts, the lack of its own extended gas halo, and the approximately transonic infall velocity indicate that this must be at least the second core passage for NGC 1404. Additionally, there is virtually no stripped tail of cool gas behind NGC 1404, conclusively demonstrating that the stripped gas is efficiently mixed with the cluster ICM. This mixing most likely occurs via small-scale Kelvin-Helmholtz instabilities formed in the high Reynolds number flow.
Mass concentrations associated with extended X-ray sources in the core of the Coma cluster
NASA Technical Reports Server (NTRS)
Vikhlinin, A.; Forman, W.; Jones, C.
1994-01-01
Using a deep (approx. 20,200 s) ROSAT Position Sensitive Proportional Counter (PSPC) image we have examined the central region of the Coma cluster. Two extended regions of enhanced X-ray emission are found, centered at the positions of the brightest elliptical galaxies in the cluster: NGC 4874 and NGC 4889. Spectral analysis of the sources reveals no evidence of any difference between the spectra of these sources and that of the surrounding cluster emission. We assume that the enhancement in the X-ray surface brightness results from gas density enhancements and also that the underlying mass concentrations lie either at the cluster center or 1 core radius out of the center (420 kpc). With these assumptions, we derive total masses of 1.2 x 10(exp 13) - 1.6 x 10(exp 13), and 0.9 x 10(exp 13) - 1.8 x 10(exp 13) Solar mass within 2 min (80 kpc) of NGC 4874 and NGC 4889, respectively, assuming a Hubble constant H(sub 0) = 50 km/s/Mpc. Corresponding mass-to-light ratios for the galaxies are 30-40 and 25-50 in solar units, increasing at larger radii and approaching the values derived for the entire cluster at distances of more than approximately 150 kpc from the galaxies.
A Chandra X-Ray Census of the Interacting Binaries in Old Open Clusters—Collinder 261
NASA Astrophysics Data System (ADS)
Vats, Smriti; van den Berg, Maureen
2017-03-01
We present the first X-ray study of Collinder 261 (Cr 261), which at an age of 7 Gyr is one of the oldest open clusters known in the Galaxy. Our observation with the Chandra X-Ray Observatory is aimed at uncovering the close interacting binaries in Cr 261, and reaches a limiting X-ray luminosity of {L}X≈ 4× {10}29 {erg} {{{s}}}-1 (0.3-7 keV) for stars in the cluster. We detect 107 sources within the cluster half-mass radius r h , and we estimate that among the sources with {L}X≳ {10}30 {erg} {{{s}}}-1, ˜26 are associated with the cluster. We identify a mix of active binaries and candidate active binaries, candidate cataclysmic variables, and stars that have “straggled” from the main locus of Cr 261 in the color-magnitude diagram. Based on a deep optical source catalog of the field, we estimate that Cr 261 has an approximate mass of 6500 M ⊙, roughly the same as the old open cluster NGC 6791. The X-ray emissivity of Cr 261 is similar to that of other old open clusters, supporting the trend that they are more luminous in X-rays per unit mass than old populations of higher (globular clusters) and lower (the local neighborhood) stellar density. This implies that the dynamical destruction of binaries in the densest environments is not solely responsible for the observed differences in X-ray emissivity.
The Fornax Deep Survey with VST. I. The Extended and Diffuse Stellar Halo of NGC 1399 out to 192 kpc
NASA Astrophysics Data System (ADS)
Iodice, E.; Capaccioli, M.; Grado, A.; Limatola, L.; Spavone, M.; Napolitano, N. R.; Paolillo, M.; Peletier, R. F.; Cantiello, M.; Lisker, T.; Wittmann, C.; Venhola, A.; Hilker, M.; D'Abrusco, R.; Pota, V.; Schipani, P.
2016-03-01
We have started a new, deep multi-imaging survey of the Fornax cluster, dubbed the Fornax Deep Survey (FDS), at the VLT Survey Telescope (VST). In this paper we present the deep photometry inside two square degrees around the bright galaxy NGC 1399 in the core of the cluster. We found that the core of the Fornax cluster is characterized by a very extended and diffuse envelope surrounding the luminous galaxy NGC 1399: we map the surface brightness out to 33 arcmin (˜192 kpc) from the galaxy center and down to μg ˜ 31 mag arcsec-2 in the g band. The deep photometry allows us to detect a faint stellar bridge in the intracluster region on the west side of NGC 1399 and toward NGC 1387. By analyzing the integrated colors of this feature, we argue that it could be due to the ongoing interaction between the two galaxies, where the outer envelope of NGC 1387 on its east side is stripped away. By fitting the light profile, we found that there exists a physical break radius in the total light distribution at R = 10 arcmin (˜58 kpc) that sets the transition region between the bright central galaxy and the outer exponential halo, and that the stellar halo contributes 60% of the total light of the galaxy (Section 3.5). We discuss the main implications of this work on the build-up of the stellar halo at the center of the Fornax cluster. By comparing with the numerical simulations of the stellar halo formation for the most massive bright cluster galaxies (I.e., 13\\lt {log}{M}200/{M}⊙ \\lt 14), we find that the observed stellar halo mass fraction is consistent with a halo formed through the multiple accretion of progenitors with stellar mass in the range 108-1011 M⊙. This might suggest that the halo of NGC 1399 has also gone through a major merging event. The absence of a significant number of luminous stellar streams and tidal tails out to 192 kpc suggests that the epoch of this strong interaction goes back to an early formation epoch. Therefore, different from the Virgo cluster, the extended stellar halo around NGC 1399 is characterized by a more diffuse and well-mixed component, including the intracluster light.
NASA Astrophysics Data System (ADS)
Marco, Amparo; Negueruela, Ignacio
2016-06-01
We study the area around the H II region Sh 2-234, including the young open cluster Stock 8, to investigate the extent and definition of the association Aur OB2 and the possible role of triggering in massive cluster formation. We obtained Strömgren and J, H, KS photometry for Stock 8 and Strömgren photometry for two other cluster candidates in the area, which we confirm as young open clusters and name Alicante 11 and Alicante 12. We took spectroscopy of ˜33 early-type stars in the area, including the brightest cluster members. We calculate a common distance of 2.80^{+0.27}_{-0.24} kpc for the three open clusters and surrounding association. We derive an age 4-6 Ma for Stock 8, and do not find a significantly different age for the other clusters or the association. The star LS V +34°23, with spectral type O8 II(f), is likely the main source of ionization of Sh 2-234. We observe an important population of pre-main-sequence stars, some of them with discs, associated with the B-type members lying on the main sequence. We interpret the region as an area of recent star formation with some residual and very localized ongoing star formation. We do not find evidence for sequential star formation on a large scale. The classical definition of Aur OB2 has to be reconsidered, because its two main open clusters, Stock 8 and NGC 1893, are not at the same distance. Stock 8 is probably located in the Perseus arm, but other nearby H II regions whose distances also place them in this arm show quite different distances and radial velocities and, therefore, are not connected.
NASA Astrophysics Data System (ADS)
Martocchia, S.; Niederhofer, F.; Dalessandro, E.; Bastian, N.; Kacharov, N.; Usher, C.; Cabrera-Ziri, I.; Lardo, C.; Cassisi, S.; Geisler, D.; Hilker, M.; Hollyhead, K.; Kozhurina-Platais, V.; Larsen, S.; Mackey, D.; Mucciarelli, A.; Platais, I.; Salaris, M.
2018-04-01
We have recently shown that the ˜2 Gyr old Large Magellanic Cloud star cluster NGC 1978 hosts multiple populations in terms of star-to-star abundance variations in [N/Fe]. These can be seen as a splitting or spread in the sub-giant and red giant branches (SGB and RGB) when certain photometric filter combinations are used. Due to its relative youth, NGC 1978 can be used to place stringent limits on whether multiple bursts of star-formation have taken place within the cluster, as predicted by some models for the origin of multiple populations. We carry out two distinct analyses to test whether multiple star-formation epochs have occurred within NGC 1978. First, we use UV CMDs to select stars from the first and second population along the SGB, and then compare their positions in optical CMDs, where the morphology is dominantly controlled by age as opposed to multiple population effects. We find that the two populations are indistinguishable, with age differences of 1 ± 20 Myr between them. This is in tension with predictions from the AGB scenario for the origin of multiple populations. Second, we estimate the broadness of the main sequence turnoff (MSTO) of NGC 1978 and we report that it is consistent with the observational errors. We find an upper limit of ˜65 Myr on the age spread in the MSTO of NGC 1978. This finding is in conflict with the age spread scenario as origin of the extendend MSTO in intermediate age clusters, while it fully supports predictions from the stellar rotation model.
NASA Astrophysics Data System (ADS)
Martocchia, S.; Niederhofer, F.; Dalessandro, E.; Bastian, N.; Kacharov, N.; Usher, C.; Cabrera-Ziri, I.; Lardo, C.; Cassisi, S.; Geisler, D.; Hilker, M.; Hollyhead, K.; Kozhurina-Platais, V.; Larsen, S.; Mackey, D.; Mucciarelli, A.; Platais, I.; Salaris, M.
2018-07-01
We have recently shown that the ˜2 Gyr old Large Magellanic Cloud star cluster NGC 1978 hosts multiple populations in terms of star-to-star abundance variations in [N/Fe]. These can be seen as a splitting or spread in the subgiant and red giant branches (SGB and RGB) when certain photometric filter combinations are used. Because of its relative youth, NGC 1978 can be used to place stringent limits on whether multiple bursts of star formation have taken place within the cluster, as predicted by some models for the origin of multiple populations. We carry out two distinct analyses to test whether multiple star formation epochs have occurred within NGC 1978. First, we use ultraviolet colour-magnitude diagrams (CMDs) to select stars from the first and second population along the SGB, and then compare their positions in optical CMDs, where the morphology is dominantly controlled by age as opposed to multiple population effects. We find that the two populations are indistinguishable, with age differences of 1 ± 20 Myr between them. This is in tension with predictions from the asymptotic giant branch scenario for the origin of multiple populations. Second, we estimate the broadness of the main-sequence turn-off (MSTO) of NGC 1978 and we report that it is consistent with the observational errors. We find an upper limit of ˜65 Myr on the age spread in the MSTO of NGC 1978. This finding is in conflict with the age spread scenario as origin of the extended MSTO in intermediate-age clusters, while it fully supports predictions from the stellar rotation model.
NASA Astrophysics Data System (ADS)
Lee, Myung Gyoon; Kang, Jisu; Im, Myungshin
2018-05-01
NGC 4993 hosts a binary neutron star merger, GW170817/GRB 170817A, emitting gravitational waves and electromagnetic waves. The distance to this galaxy is not well established. We select the globular cluster candidates from the Hubble Space Telescope (HST)/ACS F606W images of NGC 4993 in the archive, using the structural parameters of the detected sources. The radial number density distribution of these candidates shows a significant central concentration around the galaxy center at the galactocentric distance r < 50″, showing that they are mostly the members of NGC 4993. Also, the luminosity function of these candidates is fit well by a Gaussian function. Therefore, the selected candidates at r < 50″ are mostly considered to be globular clusters in NGC 4993. We derive an extinction-corrected turnover Vega magnitude in the luminosity function of the globular clusters at 20″ < r < 50″, F606W (max)0 = 25.36 ± 0.08 (V 0 = 25.52 ± 0.11) mag. Adopting the calibration of the turnover magnitudes of the globular clusters, M V (max) = ‑7.58 ± 0.11, we derive a distance to NGC 4993, d = 41.65 ± 3.00 Mpc ({(m-M)}0 = 33.10+/- 0.16). The systematic error of this method can be as large as ±0.3 mag. This value is consistent with the previous distance estimates based on the fundamental plane relation and the gravitational wave method in the literature. The distance in this study can be used to constrain the values of the parameters including the inclination angle of the binary system in the models of gravitational wave analysis.
STAR CLUSTER POPULATIONS IN THE OUTER DISKS OF NEARBY GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herbert-Fort, Stephane; Zaritsky, Dennis; Moustakas, John
We present a Large Binocular Telescope imaging study that characterizes the star cluster component of nearby galaxy outer disks (beyond the optical radius R{sub 25}). Expanding on the pilot project of Herbert-Fort et al., we present deep ({approx}27.5 mag V-band point-source limiting magnitude) U- and V-band imaging of six galaxies: IC 4182, NGC 3351, NGC 4736, NGC 4826, NGC 5474, and NGC 6503. We find that the outer disk of each galaxy is populated with marginally resolved star clusters with masses {approx}10{sup 3} M{sub Sun} and ages up to {approx}1 Gyr (masses and ages are limited by the depth ofmore » our imaging and uncertainties are large given how photometry can be strongly affected by the presence or absence of a few stars in such low-mass systems), and that they are typically found out to at least 2 R{sub 25} but sometimes as far as 3-4 R{sub 25}-even beyond the apparent H I disk. The mean rate of cluster formation for 1 R{sub 25} {<=} R {<=} 1.5 R{sub 25} is at least one every {approx}2.5 Myr and the clusters are spatially correlated with the H I, most strongly with higher density gas near the periphery of the optical disk and with lower density neutral gas at the H I disk periphery. We hypothesize that the clusters near the edge of the optical disk are formed in the extension of spiral structure from the inner disk and are a fairly consistent phenomenon and that the clusters formed at the periphery of the H I disk are the result of accretion episodes.« less
NASA Astrophysics Data System (ADS)
Johnson, Christian I.; Rich, R. Michael; Caldwell, Nelson; Mateo, Mario; Bailey, John I., III; Olszewski, Edward W.; Walker, Matthew G.
2018-02-01
Photometric and spectroscopic analyses have shown that the Galactic bulge cluster Terzan 5 hosts several populations with different metallicities and ages that manifest as a double red horizontal branch (HB). A recent investigation of the massive bulge cluster NGC 6569 revealed a similar, though less extended, HB luminosity split, but little is known about the cluster’s detailed chemical composition. Therefore, we have used high-resolution spectra from the Magellan–M2FS and VLT–FLAMES spectrographs to investigate the chemical compositions and radial velocity distributions of red giant branch and HB stars in NGC 6569. We found the cluster to have a mean heliocentric radial velocity of ‑48.8 km s‑1 (σ = 5.3 km s‑1 148 stars) and < [{Fe}/{{H}}]> =-0.87 dex (19 stars), but the cluster’s 0.05 dex [Fe/H] dispersion precludes a significant metallicity spread. NGC 6569 exhibits light- and heavy-element distributions that are common among old bulge/inner Galaxy globular clusters, including clear (anti)correlations between [O/Fe], [Na/Fe], and [Al/Fe]. The light-element data suggest that NGC 6569 may be composed of at least two distinct populations, and the cluster’s low < [{La}/{Eu}]> =-0.11 dex indicates significant pollution with r-process material. We confirm that both HBs contain cluster members, but metallicity and light-element variations are largely ruled out as sources for the luminosity difference. However, He mass fraction differences as small as ΔY ∼ 0.02 cannot be ruled out and may be sufficient to reproduce the double HB.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goudfrooij, Paul, E-mail: goudfroo@stsci.edu
We study mass functions of globular clusters derived from Hubble Space Telescope/Advanced Camera for Surveys images of the early-type merger remnant galaxy NGC 1316, which hosts a significant population of metal-rich globular clusters of intermediate age ({approx}3 Gyr). For the old, metal-poor ({sup b}lue{sup )} clusters, the peak mass of the mass function M{sub p} increases with internal half-mass density {rho}{sub h} as M{sub p}{proportional_to}{rho}{sub h}{sup 0.44}, whereas it stays approximately constant with galactocentric distance R{sub gal}. The mass functions of these clusters are consistent with a simple scenario in which they formed with a Schechter initial mass function andmore » evolved subsequently by internal two-body relaxation. For the intermediate-age population of metal-rich ({sup r}ed{sup )} clusters, the faint end of the previously reported power-law luminosity function of the clusters with R{sub gal} > 9 kpc is due to many of those clusters having radii larger than the theoretical maximum value imposed by the tidal field of NGC 1316 at their R{sub gal}. This renders disruption by two-body relaxation ineffective. Only a few such diffuse clusters are found in the inner regions of NGC 1316. Completeness tests indicate that this is a physical effect. Using comparisons with star clusters in other galaxies and cluster disruption calculations using published models, we hypothesize that most red clusters in the low-{rho}{sub h} tail of the initial distribution have already been destroyed in the inner regions of NGC 1316 by tidal shocking, and that several remaining low-{rho}{sub h} clusters will evolve dynamically to become similar to 'faint fuzzies' that exist in several lenticular galaxies. Finally, we discuss the nature of diffuse red clusters in early-type galaxies.« less
On the missing second generation AGB stars in NGC 6752
NASA Astrophysics Data System (ADS)
Cassisi, Santi; Salaris, Maurizio; Pietrinferni, Adriano; Vink, Jorick S.; Monelli, Matteo
2014-11-01
In recent years the view of Galactic globular clusters as simple stellar populations has changed dramatically, it is now thought that basically all globular clusters host multiple stellar populations, each with its own chemical abundance pattern and colour-magnitude diagram sequence. Recent spectroscopic observations of asymptotic giant branch stars in the globular cluster NGC 6752 have disclosed a low [Na/Fe] abundance for the whole sample, suggesting that they are all first generation stars, and that all second generation stars fail to reach the AGB in this cluster. A scenario proposed to explain these observations invokes strong mass loss in second generation horizontal branch stars - all located at the hot side of the blue and extended horizontal branch of this cluster - possibly induced by the metal enhancement associated to radiative levitation. This enhanced mass loss would prevent second generation stars from reaching the asymptotic giant branch phase, thus explaining at the same time the low value of the ratio between horizontal branch and asymptotic giant branch stars (the R2 parameter) observed in NGC 6752. We have critically discussed this mass-loss scenario, finding that the required mass-loss rates are of the order of 10-9 M⊙ yr-1, significantly higher than current theoretical and empirical constraints. By making use of synthetic horizontal branch simulations, we demonstrate that our modelling correctly predicts the R2 parameter for NGC 6752, without the need to invoke very efficient mass loss during the core He-burning stage. As a test of our stellar models we show that we can reproduce the observed value of R2 for both M 3, a cluster of approximately the same metallicity and with a redder horizontal branch morphology, and M 13, a cluster with a horizontal branch very similar to NGC 6752. However, our simulations for the NGC 6752 horizontal branch predict however the presence of a significant fraction of second generation stars (about 50%) along the cluster asymptotic giant branch. We conclude that there is no simple explanation for the lack of second generation stars in the spectroscopically surveyed sample, although the interplay between mass loss (with low rates) and radiative levitation may play a role in explaining this puzzle.
The Secrets of the Nearest Starburst Cluster. I. Very Large Telescope/ISAAC Photometry of NGC 3603
NASA Astrophysics Data System (ADS)
Stolte, Andrea; Brandner, Wolfgang; Brandl, Bernhard; Zinnecker, Hans; Grebel, Eva K.
2004-08-01
VLT/ISAAC JHKL photometry with subarcsecond resolution of the dense, massive starburst cluster NGC 3603 YC forming the core of the NGC 3603 giant molecular cloud is analyzed to reveal characteristics of the stellar population in unprecedented detail. The color-magnitude plane features a strong pre-main-sequence/main-sequence (PMS/MS) transition region, including the PMS/MS transition point, and reveals a secondary sequence for the first time in a nearby young starburst cluster. Arguments for a possible binary nature of this sequence are given. The resolved PMS/MS transition region allows isochrone fitting below the hydrogen-burning turn-on in NGC 3603 YC, yielding an independent estimate of global cluster parameters. A distance modulus of 13.9 mag, equivalent to d=6.0+/-0.3 kpc, is derived, as well as a line-of-sight extinction of AV=4.5+/-0.6 toward PMS stars in the cluster center. The interpretation of a binary candidate sequence suggests a single age of 1 Myr for NGC 3603 YC, providing evidence for a single burst of star formation without the need to employ an age spread in the PMS population, as argued for in earlier studies. Disk fractions are derived from L-band excesses, indicating a radial increase in the disk frequency from 20% to 40% from the core to the cluster outskirts. The low disk fraction in the cluster core, as compared to the 42% L-band excess fraction found for massive stars in the Trapezium cluster of a comparably young age, indicates strong photoevaporation in the cluster center. The estimated binary fraction of 30%, as well as the low disk fraction, suggest strong impacts on low-mass star formation due to stellar interactions in the dense starburst. The significant differences between NGC 3603 YC and less dense and massive young star clusters in the Milky Way reveal the importance of using local starbursts as templates for massive extragalactic star formation. Based on observations obtained at the ESO VLT on Paranal, Chile, under programs 63.I-0015 and 65.I-0135, and data from the public VLT archive provided by ESO, as well as observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract NAS5-26555.
NASA Astrophysics Data System (ADS)
Adamo, A.; Ryon, J. E.; Messa, M.; Kim, H.; Grasha, K.; Cook, D. O.; Calzetti, D.; Lee, J. C.; Whitmore, B. C.; Elmegreen, B. G.; Ubeda, L.; Smith, L. J.; Bright, S. N.; Runnholm, A.; Andrews, J. E.; Fumagalli, M.; Gouliermis, D. A.; Kahre, L.; Nair, P.; Thilker, D.; Walterbos, R.; Wofford, A.; Aloisi, A.; Ashworth, G.; Brown, T. M.; Chandar, R.; Christian, C.; Cignoni, M.; Clayton, G. C.; Dale, D. A.; de Mink, S. E.; Dobbs, C.; Elmegreen, D. M.; Evans, A. S.; Gallagher, J. S., III; Grebel, E. K.; Herrero, A.; Hunter, D. A.; Johnson, K. E.; Kennicutt, R. C.; Krumholz, M. R.; Lennon, D.; Levay, K.; Martin, C.; Nota, A.; Östlin, G.; Pellerin, A.; Prieto, J.; Regan, M. W.; Sabbi, E.; Sacchi, E.; Schaerer, D.; Schiminovich, D.; Shabani, F.; Tosi, M.; Van Dyk, S. D.; Zackrisson, E.
2017-06-01
We report the large effort that is producing comprehensive high-level young star cluster (YSC) catalogs for a significant fraction of galaxies observed with the Legacy ExtraGalactic UV Survey (LEGUS) Hubble treasury program. We present the methodology developed to extract cluster positions, verify their genuine nature, produce multiband photometry (from NUV to NIR), and derive their physical properties via spectral energy distribution fitting analyses. We use the nearby spiral galaxy NGC 628 as a test case for demonstrating the impact that LEGUS will have on our understanding of the formation and evolution of YSCs and compact stellar associations within their host galaxy. Our analysis of the cluster luminosity function from the UV to the NIR finds a steepening at the bright end and at all wavelengths suggesting a dearth of luminous clusters. The cluster mass function of NGC 628 is consistent with a power-law distribution of slopes ˜ -2 and a truncation of a few times 105 {M}⊙ . After their formation, YSCs and compact associations follow different evolutionary paths. YSCs survive for a longer time frame, confirming their being potentially bound systems. Associations disappear on timescales comparable to hierarchically organized star-forming regions, suggesting that they are expanding systems. We find mass-independent cluster disruption in the inner region of NGC 628, while in the outer part of the galaxy there is little or no disruption. We observe faster disruption rates for low mass (≤104 {M}⊙ ) clusters, suggesting that a mass-dependent component is necessary to fully describe the YSC disruption process in NGC 628. Based on observations obtained with the NASA/ESA Hubble Space Telescope, at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.
Large-scale Filamentary Structures around the Virgo Cluster Revisited
NASA Astrophysics Data System (ADS)
Kim, Suk; Rey, Soo-Chang; Bureau, Martin; Yoon, Hyein; Chung, Aeree; Jerjen, Helmut; Lisker, Thorsten; Jeong, Hyunjin; Sung, Eon-Chang; Lee, Youngdae; Lee, Woong; Chung, Jiwon
2016-12-01
We revisit the filamentary structures of galaxies around the Virgo cluster, exploiting a larger data set, based on the HyperLeda database, than previous studies. In particular, this includes a large number of low-luminosity galaxies, resulting in better sampled individual structures. We confirm seven known structures in the distance range 4 h -1 Mpc < SGY < 16 h -1 Mpc, now identified as filaments, where SGY is the axis of the supergalactic coordinate system roughly along the line of sight. The Hubble diagram of the filament galaxies suggests they are infalling toward the main body of the Virgo cluster. We propose that the collinear distribution of giant elliptical galaxies along the fundamental axis of the Virgo cluster is smoothly connected to two of these filaments (Leo II A and B). Behind the Virgo cluster (16 h -1 Mpc < SGY < 27 h -1 Mpc), we also identify a new filament elongated toward the NGC 5353/4 group (“NGC 5353/4 filament”) and confirm a sheet that includes galaxies from the W and M clouds of the Virgo cluster (“W-M sheet”). In the Hubble diagram, the NGC 5353/4 filament galaxies show infall toward the NGC 5353/4 group, whereas the W-M sheet galaxies do not show hints of gravitational influence from the Virgo cluster. The filamentary structures identified can now be used to better understand the generic role of filaments in the build-up of galaxy clusters at z ≈ 0.
The Clusters AgeS Experiment (CASE). Variable stars in the field of the globular cluster NGC 362
NASA Astrophysics Data System (ADS)
Rozyczka, M.; Thompson, I. B.; Narloch, W.; Pych, W.; Schwarzenberg-Czerny, A.
2016-09-01
The field of the globular cluster NGC 362 was monitored between 1997 and 2015 in a search for variable stars. BV light curves were obtained for 151 periodic or likely periodic variable stars, over a hundred of which are new detections. Twelve newly detected variable stars are proper-motion members of the cluster: two SX Phe and two RR Lyr pulsators, one contact binary, three detached or semi-detached eclipsing binaries, and four spotted variable stars. The most interesting objects among these are the binary blue straggler V20 with an asymmetric light curve, and the 8.1 d semidetached binary V24 located on the red giant branch of NGC 362, which is a Chandra X-ray source. We also provide substantial new data for 24 previously known variable stars.
VizieR Online Data Catalog: NGC 6802 dwarf cluster members and non-members (Tang+, 2017)
NASA Astrophysics Data System (ADS)
Tang, B.; Geisler, D.; Friel, E.; Villanova, S.; Smiljanic, R.; Casey, A. R.; Randich, S.; Magrini, L.; San, Roman I.; Munoz, C.; Cohen, R. E.; Mauro, F.; Bragaglia, A.; Donati, P.; Tautvaisiene, G.; Drazdauskas, A.; Zenoviene, R.; Snaith, O.; Sousa, S.; Adibekyan, V.; Costado, M. T.; Blanco-Cuaresma, S.; Jimenez-Esteban, F.; Carraro, G.; Zwitter, T.; Francois, P.; Jofre, P.; Sordo, R.; Gilmore, G.; Flaccomio, E.; Koposov, S.; Korn, A. J.; Lanzafame, A. C.; Pancino, E.; Bayo, A.; Damiani, F.; Franciosini, E.; Hourihane, A.; Lardo, C.; Lewis, J.; Monaco, L.; Morbidelli, L.; Prisinzano, L.; Sacco, G.; Worley, C. C.; Zaggia, S.
2016-11-01
The dwarf stars in NGC 6802 observed by GIRAFFE spectrograph are separated into four tables: 1. cluster members in the lower main sequence; 2. cluster members in the upper main sequence; 3. non-member dwarfs in the lower main sequence; 4. non-member dwarfs in the upper main sequence. The star coordinates, V band magnitude, V-I color, and radial velocity are given. (4 data files).
Characterizing the Stellar Population of NGC 1980
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kounkel, Marina; Hartmann, Lee; Calvet, Nuria
NGC 1980 is a young cluster that is located about 0.°5 south of the Orion Nebula Cluster (ONC). Recent studies by Bouy et al. and Pillitteri et al. have suggested that NGC 1980 contains an older population of stars compared to a much younger ONC, and that it belongs to a foreground population that may be located in front of the Orion A molecular gas by as much as 40 pc. In this work, we present low-resolution spectra toward 148 young stars found toward the NGC 1980 region. We determine the spectral types of these stars, examine accretion signatures and measuremore » the extinction toward them. We determine that based on these observations, the age of the population of NGC 1980 is indistinguishable from L1641, estimated to be ∼3 Myr, comparable with the study by Fang et al.« less
NASA Technical Reports Server (NTRS)
Rosenzweig, P.; Morrison, N. D.
1986-01-01
Five early B-type stars near the main-sequence turnoff in NGC 457 have been observed at low dispersion with the short-wavelength prime and the long-wavelength redundant cameras of the IUE satellite. The equivalent widths of spectral features that are particularly strong and sensitive to temperature and luminosity were computed in the cluster stars and in 20 lightly reddened stars of types O9-B3 and luminosity classes III-V. The comparison of the equivalent widths provides a reliable method for finding matching pairs. Having identified the best comparison star for each program star, binned fluxes were used to determine the mean extinction curve. In order to cover the visible region, monochromatic fluxes of Phi Cas were derived from observations with the intensified Reticon scanner mounted on the No. 2 0.9 m telescope of KPNO, and they were dereddened with the mean extinction curve of Savage and Mathis. Thus, the intrinsic energy distribution of Phi Cas were determined from 1500 to 5800 A for use in a detailed model-atmosphere analysis.
Origin of the high velocity gas in NGC 6231
NASA Astrophysics Data System (ADS)
Massa, Derck
2017-08-01
It is well known that clusters of massive stars are influenced by the presence of strong winds, that they are sources of diffuse X-rays from shocked gas, and that this gas can be vented into the surrounding region or the halo, forming a critical element in the process of galactic feedback. However, the details of how these different environments interact and evolve are far from complete. Recently, Massa (2017) showed that the peculiar C IV 1550 Ang absorption seen in several otherwise normal main sequence B stars in NGC 6231 is not intrinsic to the stars. Instead, this absorption, which extends to more than -2000 km/s, is due to intervening carbon rich, high speed gas in the cluster environment. In this proposal, we seek to identify the origin of the high speed gas. The proposed observations will enable us to determine whether it is due to the outer wind of the WC star WR79, or to a collective cluster wind, enriched by carbon from the wind of WR79. If it is due to the wind of WR79, then the new data will furnish a novel, less model dependent estimate of the mass loss rate of a WC star. If it is due to a collective wind from the cluster, then we could be witnessing an important stage of galactic feedback. In either case, the proposed observations will provide a unique and significant insight on how massive, open clusters evolve - insight that can only be obtained through UV spectroscopy.
NASA Astrophysics Data System (ADS)
Spiniello, C.; Napolitano, N. R.; Arnaboldi, M.; Tortora, C.; Coccato, L.; Capaccioli, M.; Gerhard, O.; Iodice, E.; Spavone, M.; Cantiello, M.; Peletier, R.; Paolillo, M.; Schipani, P.
2018-06-01
We present the largest and most spatially extended planetary nebulae (PNe) catalogue ever obtained for the Fornax cluster. We measured velocities of 1452 PNe out to 200 kpc in the cluster core using a counter-dispersed slitless spectroscopic technique with data from FORS2 on the Very Large Telescope (VLT). With such an extended spatial coverage, we can study separately the stellar haloes of some of the cluster main galaxies and the intracluster light. In this second paper of the Fornax Cluster VLT Spectroscopic Survey, we identify and classify the emission-line sources, describe the method to select PNe, and calculate their coordinates and velocities from the dispersed slitless images. From the PN 2D velocity map, we identify stellar streams that are possibly tracing the gravitational interaction of NGC 1399 with NGC 1404 and NGC 1387. We also present the velocity dispersion profile out to ˜200 kpc radii, which shows signatures of a superposition of the bright central galaxy and the cluster potential, with the latter clearly dominating the regions outside R ˜ 1000 arcsec (˜100 kpc).
A Cepheid Distance to NGC 4603 in the Centaurus Cluster
NASA Technical Reports Server (NTRS)
Madore, B.; Newman, J.; Zepf, S.; Davis, M.; Freedman, W.; Madore, B.; Stetson, P.; Silbermann, N.; Phelps, R.
1999-01-01
In an attempt to use Cepheid variables to determine the distance to the Centaurus cluster, we have obtained images of NGC 4603 with the Hubble Space Telescope for 9 epochs (totalling 24 orbits) over 14 months in the F555W filter and 2 epochs (totalling 6 orbits) in the F814W filter.
Chandra/HETG Observations of NGC1275
NASA Astrophysics Data System (ADS)
Reynolds, Christopher
2017-09-01
NGC1275 is the active galactic nucleus (AGN) at the heart of the Perseus cluster of galaxies responsible for the mechanical heating of the intracluster medium (ICM) cool core. We propose a deep (500ks) HETG observation of NGC1275, allowing the first high-S/N, high resolution spectrum of this AGN free from contamination by the bright ICM. We will seek the signatures of powerful winds, answering the central question of whether galactic-scale quasar-mode feedback is occuring simultaneously with cluster-scale radio-mode feedback. We also probe circumnuclear gas (i.e. the fuel supply) through the 6.4keV line previously seen by XMM and Hitomi. These issues are crucial unknowns in our models for the evolution of the most massive galaxies and cluster cores.
A Starburst in the Core of a Galaxy Cluster: the Dwarf Irregular NGC 1427A in Fornax
NASA Astrophysics Data System (ADS)
Mora, Marcelo D.; Chanamé, Julio; Puzia, Thomas H.
2015-09-01
Gas-rich galaxies in dense environments such as galaxy clusters and massive groups are affected by a number of possible types of interactions with the cluster environment, which make their evolution radically different than that of field galaxies. The dwarf irregular galaxy NGC 1427A, presently infalling toward the core of the Fornax galaxy cluster for the first time, offers a unique opportunity to study those processes at a level of detail not possible to achieve for galaxies at higher redshifts, when galaxy-scale interactions were more common. Using the spatial resolution of the Hubble Space Telescope/Advanced Camera for Surveys and auxiliary Very Large Telescope/FORS1 ground-based observations, we study the properties of the most recent episodes of star formation in this gas-rich galaxy, the only one of its type near the core of the Fornax cluster. We study the structural and photometric properties of young star cluster complexes in NGC 1427A, identifying 12 bright such complexes with exceptionally blue colors. The comparison of our broadband near-UV/optical photometry with simple stellar population models yields ages below ˜ 4× {10}6 years and stellar masses from a few 1000 up to ˜ 3× {10}4{M}⊙ , slightly dependent on the assumption of cluster metallicity and initial mass function. Their grouping is consistent with hierarchical and fractal star cluster formation. We use deep Hα imaging data to determine the current star formation rate in NGC 1427A and estimate the ratio, Γ, of star formation occurring in these star cluster complexes to that in the entire galaxy. We find Γ to be among the largest such values available in the literature, consistent with starburst galaxies. Thus a large fraction of the current star formation in NGC 1427A is occurring in star clusters, with the peculiar spatial arrangement of such complexes strongly hinting at the possibility that the starburst is being triggered by the passage of the galaxy through the cluster environment. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 70.B-0695.
NASA Astrophysics Data System (ADS)
Nguyen, Dieu D.; Seth, Anil C.; Neumayer, Nadine; Kamann, Sebastian; Voggel, Karina T.; Cappellari, Michele; Picotti, Arianna; Nguyen, Phuong M.; Böker, Torsten; Debattista, Victor; Caldwell, Nelson; McDermid, Richard; Bastian, Nathan; Ahn, Christopher C.; Pechetti, Renuka
2018-05-01
We present a detailed study of the nuclear star clusters (NSCs) and massive black holes (BHs) of four of the nearest low-mass early-type galaxies: M32, NGC 205, NGC 5102, and NGC 5206. We measure the dynamical masses of both the BHs and NSCs in these galaxies using Gemini/NIFS or VLT/SINFONI stellar kinematics, Hubble Space Telescope (HST) imaging, and Jeans anisotropic models. We detect massive BHs in M32, NGC 5102, and NGC 5206, while in NGC 205, we find only an upper limit. These BH mass estimates are consistent with previous measurements in M32 and NGC 205, while those in NGC 5102 and NGC 5206 are estimated for the first time and both found to be <106 M ⊙. This adds to just a handful of galaxies with dynamically measured sub-million M ⊙ central BHs. Combining these BH detections with our recent work on NGC 404's BH, we find that 80% (4/5) of nearby, low-mass ({10}9{--}{10}10 M ⊙ {σ }\\star ∼ 20{--}70 km s‑1) early-type galaxies host BHs. Such a high occupation fraction suggests that the BH seeds formed in the early epoch of cosmic assembly likely resulted in abundant seeds, favoring a low-mass seed mechanism of the remnants, most likely from the first generation of massive stars. We find dynamical masses of the NSCs ranging from 2 to 73 × 106 M ⊙ and compare these masses to scaling relations for NSCs based primarily on photometric mass estimates. Color gradients suggest that younger stellar populations lie at the centers of the NSCs in three of the four galaxies (NGC 205, NGC 5102, and NGC 5206), while the morphology of two are complex and best fit with multiple morphological components (NGC 5102 and NGC 5206). The NSC kinematics show they are rotating, especially in M32 and NGC 5102 (V/{σ }\\star ∼ 0.7).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, Michael D.; Dowell, Jessica L.; Rhode, Katherine L., E-mail: youngmd@indiana.edu, E-mail: jlwind@astro.indiana.edu, E-mail: rhode@astro.indiana.edu
We present results from a study of the globular cluster (GC) systems of four spiral and S0 galaxies imaged as part of an ongoing wide-field survey of the GC systems of giant galaxies. The target galaxies-the SB0 galaxy NGC 1023, the SBb galaxy NGC 1055, and an isolated pair comprised of the Sbc galaxy NGC 7339 and the S0 galaxy NGC 7332-were observed in BVR filters with the WIYN 3.5 m telescope and Minimosaic camera. For two of the galaxies, we combined the WIYN imaging with previously published data from the Hubble Space Telescope and the Keck Observatory to helpmore » characterize the GC distribution in the central few kiloparsecs. We determine the radial distribution (surface density of GCs versus projected radius) of each galaxy's GC system and use it to calculate the total number of GCs (N{sub GC}). We find N{sub GC} = 490 {+-} 30, 210 {+-} 40, 175 {+-} 15, and 75 {+-} 10 for NGC 1023, NGC 1055, NGC 7332, and NGC 7339, respectively. We also calculate the GC specific frequency (N{sub GC} normalized by host galaxy luminosity or mass) and find values typical of those of the other spiral and E/S0 galaxies in the survey. The two lenticular galaxies have sufficient numbers of GC candidates for us to perform statistical tests for bimodality in the GC color distributions. We find evidence at a high confidence level (>95%) for two populations in the B - R distribution of the GC system of NGC 1023. We find weaker evidence for bimodality (>81% confidence) in the GC color distribution of NGC 7332. Finally, we identify eight GC candidates that may be associated with the Magellanic dwarf galaxy NGC 1023A, which is a satellite of NGC 1023.« less
Chemical analysis of eight giant stars of the globular cluster NGC 6366
NASA Astrophysics Data System (ADS)
Puls, Arthur A.; Alves-Brito, Alan; Campos, Fabíola; Dias, Bruno; Barbuy, Beatriz
2018-05-01
The metal-rich Galactic globular cluster NGC 6366 is the fifth closest to the Sun. Despite its interest, it has received scarce attention, and little is known about its internal structure. Its kinematics suggests a link to the halo, but its metallicity indicates otherwise. We present a detailed chemical analysis of eight giant stars of NGC 6366, using high-resolution and high-quality spectra (R > 40 000, S/N > 60) obtained at the VLT (8.2 m) and CFHT (3.6 m) telescopes. We attempted to characterize its chemistry and to search for evidence of multiple stellar populations. The atmospheric parameters were derived using the method of excitation and ionization equilibrium of Fe I and Fe II lines and from those atmospheric parameters we calculated the abundances for other elements and found that none of the elements measured presents star-to-star variation greater than the uncertainties. We compared the derived abundances with those of other globular clusters and field stars available in the literature. We determined a mean [Fe/H] = -0.60 ± 0.03 for NGC 6366 and found some similarity of this object with M 71, another inner halo globular cluster. The Na-O anticorrelation extension is short and no star-to-star variation in Al is found. The presence of second generation stars is not evident in NGC 6366.
NASA Astrophysics Data System (ADS)
Su, Yuanyuan; Kraft, Ralph P.; Roediger, Elke; Nulsen, Paul; Forman, William R.; Churazov, Eugene; Randall, Scott W.; Jones, Christine; Machacek, Marie E.
2017-01-01
The intracluster medium (ICM), as a magnetized and highly ionized fluid, provides an ideal laboratory to study plasma physics under extreme conditions that cannot be achieved on Earth. NGC 1404 is a bright elliptical galaxy that is being gas stripped as it falls through the ICM of the Fornax Cluster. We use the new Chandra X-ray observations of NGC 1404 to study ICM microphysics. The interstellar medium of NGC 1404 is characterized by a sharp leading edge, 8 kpc from the Galaxy center, and a short downstream gaseous tail. Contact discontinuities are resolved on unprecedented spatial scales (0.″5 = 45 pc) due to the combination of the proximity of NGC 1404, the superb spatial resolution of Chandra, and the very deep (670 ks) exposure. At the leading edge, we observe sub-kiloparsec-scale eddies generated by Kelvin-Helmholtz instability (KHI) and put an upper limit of 5% Spitzer on the isotropic viscosity of the hot cluster plasma. We also observe mixing between the hot cluster gas and the cooler galaxy gas in the downstream stripped tail, which provides further evidence of a low viscosity plasma. The assumed ordered magnetic fields in the ICM ought to be smaller than 5 μG to allow KHI to develop. The lack of an evident magnetic draping layer just outside the contact edge is consistent with such an upper limit.
Comparing the white dwarf cooling sequences in 47 Tuc and NGC 6397
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richer, Harvey B.; Goldsbury, Ryan; Heyl, Jeremy
2013-12-01
Using deep Hubble Space Telescope imaging, color-magnitude diagrams are constructed for the globular clusters 47 Tuc and NGC 6397. As expected, because of its lower metal abundance, the main sequence of NGC 6397 lies well to the blue of that of 47 Tuc. A comparison of the white dwarf cooling sequences of the two clusters, however, demonstrates that these sequences are indistinguishable over most of their loci—a consequence of the settling out of heavy elements in the dense white dwarf atmosphere and the near equality of their masses. Lower quality data on M4 continues this trend to a third clustermore » whose metallicity is intermediate between these two. While the path of the white dwarfs in the color-magnitude diagram is nearly identical in 47 Tuc and NGC 6397, the numbers of white dwarfs along the path are not. This results from the relatively rapid relaxation in NGC 6397 compared to 47 Tuc and provides a cautionary note that simply counting objects in star clusters in random locations as a method of testing stellar evolutionary theory is likely dangerous unless dynamical considerations are included.« less
NASA Astrophysics Data System (ADS)
Hill, T.; Motte, F.; Didelon, P.; White, G. J.; Marston, A. P.; Nguyên Luong, Q.; Bontemps, S.; André, Ph.; Schneider, N.; Hennemann, M.; Sauvage, M.; Di Francesco, J.; Minier, V.; Anderson, L. D.; Bernard, J. P.; Elia, D.; Griffin, M. J.; Li, J. Z.; Peretto, N.; Pezzuto, S.; Polychroni, D.; Roussel, H.; Rygl, K. L. J.; Schisano, E.; Sousbie, T.; Testi, L.; Thompson, D. Ward; Zavagno, A.
2012-06-01
We present Herschel images from the HOBYS key program of the Eagle Nebula (M 16) in the far-infrared and sub-millimetre, using the PACS and SPIRE cameras at 70 μm, 160 μm, 250 μm, 350 μm, 500 μm. M 16, home to the Pillars of Creation, is largely under the influence of the nearby NGC 6611 high-mass star cluster. The Herschel images reveal a clear dust temperature gradient running away from the centre of the cavity carved by the OB cluster. We investigate the heating effect of NGC 6611 on the entire M 16 star-forming complex seen by Herschel including the diffuse cloud environment and the dense filamentary structures identified in this region. In addition, we interpret the three-dimensional geometry of M 16 with respect to the nebula, its surrounding environment, and the NGC 6611 cavity. The dust temperature and column density maps reveal a prominent eastern filament running north-south and away from the high-mass star-forming central region and the NGC 6611 cluster, as well as a northern filament which extends around and away from the cluster. The dust temperature in each of these filaments decreases with increasing distance from the NGC 6611 cluster, indicating a heating penetration depth of ~10 pc in each direction in 3-6 × 1022 cm-2 column density filaments. We show that in high-mass star-forming regions OB clusters impact the temperature of future star-forming sites, modifying the initialconditions for collapse and effecting the evolutionary criteria of protostars developed from spectral energy distributions. Possible scenarios for the origin of the morphology seen in this region are discussed, including a western equivalent to the eastern filament, which was destroyed by the creation of the OB cluster and its subsequent winds and radiation. Herschel is a ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Appendices are available in electronic form at http://www.aanda.org
An AO-assisted Variability Study of Four Globular Clusters
NASA Astrophysics Data System (ADS)
Salinas, R.; Contreras Ramos, R.; Strader, J.; Hakala, P.; Catelan, M.; Peacock, M. B.; Simunovic, M.
2016-09-01
The image-subtraction technique applied to study variable stars in globular clusters represented a leap in the number of new detections, with the drawback that many of these new light curves could not be transformed to magnitudes due to severe crowding. In this paper, we present observations of four Galactic globular clusters, M 2 (NGC 7089), M 10 (NGC 6254), M 80 (NGC 6093), and NGC 1261, taken with the ground-layer adaptive optics module at the SOAR Telescope, SAM. We show that the higher image quality provided by SAM allows for the calibration of the light curves of the great majority of the variables near the cores of these clusters as well as the detection of new variables, even in clusters where image-subtraction searches were already conducted. We report the discovery of 15 new variables in M 2 (12 RR Lyrae stars and 3 SX Phe stars), 12 new variables in M 10 (11 SX Phe and 1 long-period variable), and 1 new W UMa-type variable in NGC 1261. No new detections are found in M 80, but previous uncertain detections are confirmed and the corresponding light curves are calibrated into magnitudes. Additionally, based on the number of detected variables and new Hubble Space Telescope/UVIS photometry, we revisit a previous suggestion that M 80 may be the globular cluster with the richest population of blue stragglers in our Galaxy. Based on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU).
Modeling and analysis of the spectrum of the globular cluster NGC 2419
NASA Astrophysics Data System (ADS)
Sharina, M. E.; Shimansky, V. V.; Davoust, E.
2013-06-01
The properties of the stellar population of the unusual object NGC 2419 are studied; this is the most distant high-mass globular cluster of the Galaxy's outer halo, and a spectrum taken with the 1.93-m telescope of the Haute Provence Observatory displays elemental abundance anomalies. Since traditional high-resolution spectroscopicmethods are applicable to bright stars only, spectroscopic information for the cluster's stellar population as a whole, integrated along the spectrograph slit placed in various positions, is used. Population synthesis is carried out for the spectrum of NGC 2419 using synthetic spectra calculated from a grid of stellar model atmospheres, based on the theoretical isochrone from the literature that best fits the color-magnitude diagram of the cluster. The derived age (12.6 billion years), metallicity ([Fe/H] = -2.25 dex), and abundances of helium ( Y = 0.26) and other chemical elements (a total of 14) are in a good qualitative agreement with estimates from the literature made from high-resolution spectra of eight red giants in the cluster. The influence on the spectrum of deviations from local thermodynamic equilibrium is considered for several elements. The derived abundance of α-elements ([ α/Fe] = 0.13 dex, as the mean of [O/Fe], [Mg/Fe], and [Ca/Fe]) differs from the mean value in the literature ([ α/Fe] = 0.4 for the eight brightest red giants) and may be explained by recently discovered in NGC2419 large [a/Fe] dispersion. Further studies of the integrated properties of the stellar population in NGC 2419 using higher-resolution spectrographs in various wavelength ranges should help improve our understanding of the cluster's chemical anomalies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Contreras Pena, C.; Catelan, M.; Grundahl, F.
We present BV photometry of the Galactic globular cluster NGC 6402 (M14), based on 65 V frames and 67 B frames, reaching two magnitudes below the turnoff level. This represents, to the best of our knowledge, the deepest color-magnitude diagram (CMD) of NGC 6402 available in the literature. Statistical decontamination of field stars as well as differential reddening corrections are performed in order to derive a precise ridgeline and hence physical parameters of the cluster. We discuss previous attempts at deriving a reddening value for the cluster, and argue in favor of a value E(B - V) = 0.57 {+-}more » 0.02, which is significantly higher than indicated by either the Burstein and Heiles or Schlegel et al. (corrected according to Bonifacio et al.) interstellar dust maps. Differential reddening across the face of the cluster, which we find to be present at the level of {Delta}E(B - V) Almost-Equal-To 0.17 mag, is taken into account in our analysis. We measure several metallicity indicators based on the position of the red giant branch (RGB) in the cluster CMD. These give a metallicity of [Fe/H] = -1.38 {+-} 0.07 on the Zinn and West scale and [Fe/H] = -1.28 {+-} 0.08 on the new Carretta et al. (UVES) scale. We also provide measurements of other important photometric parameters for this cluster, including the position of the RGB luminosity function ''bump'' and the horizontal branch morphology. We compare the NGC 6402 ridgeline with that of NGC 5904 (M5) derived by Sandquist et al., and find evidence that NGC 6402 and M5 have approximately the same age to within the uncertainties, although the possibility that M14 may be slightly older cannot be ruled out.« less
NASA Astrophysics Data System (ADS)
Weidner, Carsten; Kroupa, Pavel; Pflamm-Altenburg, Jan
2014-07-01
It has been claimed in the recent literature that a non-trivial relation between the mass of the most-massive star, mmax, in a star cluster and its embedded star cluster mass (the mmax - Mecl relation) is falsified by observations of the most-massive stars and the Hα luminosity of young star clusters in the starburst dwarf galaxy NGC 4214. Here, it is shown by comparing the NGC 4214 results with observations from the Milky Way that NGC 4214 agrees very well with the predictions of the mmax - Mecl relation and with the integrated galactic stellar initial mass function theory. The difference in conclusions is based on a high degree of degeneracy between expectations from random sampling and those from the mmax - Mecl relation, but are also due to interpreting mmax as a truncation mass in a randomly sampled initial mass function. Additional analysis of galaxies with lower SFRs than those currently presented in the literature will be required to break this degeneracy.
Modelling linewidths of Kepler red giants in NGC 6819
NASA Astrophysics Data System (ADS)
Aarslev, Magnus J.; Houdek, Günter; Handberg, Rasmus; Christensen-Dalsgaard, Jørgen
2018-04-01
We present a comparison between theoretical, frequency-dependent, damping rates and linewidths of radial-mode oscillations in red-giant stars located in the open cluster NGC 6819. The calculations adopt a time-dependent non-local convection model, with the turbulent pressure profile being calibrated to results of 3D hydrodynamical simulations of stellar atmospheres. The linewidths are obtained from extensive peakbagging of Kepler lightcurves. These observational results are of unprecedented quality owing to the long continuous observations by Kepler. The uniqueness of the Kepler mission also means that, for asteroseismic properties, this is the best data that will be available for a long time to come. We therefore take great care in modelling nine RGB stars in NGC 6819 using information from 3D simulations to obtain realistic temperature stratifications and calibrated turbulent pressure profiles. Our modelled damping rates reproduce well the Kepler observations, including the characteristic depression in the linewidths around the frequency of maximum oscillation power. Furthermore, we thoroughly test the sensitivity of the calculated damping rates to changes in the parameters of the nonlocal convection model.
Modelling linewidths of Kepler red giants in NGC 6819
NASA Astrophysics Data System (ADS)
Aarslev, Magnus J.; Houdek, Günter; Handberg, Rasmus; Christensen-Dalsgaard, Jørgen
2018-07-01
We present a comparison between theoretical, frequency-dependent, damping rates and linewidths of radial-mode oscillations in red giant stars located in the open cluster NGC 6819. The calculations adopt a time-dependent non-local convection model, with the turbulent pressure profile being calibrated to results of 3D hydrodynamical simulations of stellar atmospheres. The linewidths are obtained from extensive peakbagging of Kepler light curves. These observational results are of unprecedented quality owing to the long continuous observations by Kepler. The uniqueness of the Kepler mission also means that, for asteroseismic properties, this is the best data that will be available for a long time to come. We therefore take great care in modelling nine RGB stars in NGC 6819 using information from 3D simulations to obtain realistic temperature stratifications and calibrated turbulent pressure profiles. Our modelled damping rates reproduce well the Kepler observations, including the characteristic depression in the linewidths around the frequency of maximum oscillation power. Furthermore, we thoroughly test the sensitivity of the calculated damping rates to changes in the parameters of the non-local convection model.
The faint X-ray sources in and out of omega Centauri: X-ray observations and optical identifications
NASA Technical Reports Server (NTRS)
Cool, Adrienne M.; Grindlay, Jonathan E.; Bailyn, Charles D.; Callanan, Paul J.; Hertz, Paul
1995-01-01
We present the results of an observation of the globular cluster omega Cen (NGC 5139) with the Einstein high-resolution imager (HRI). Of the five low-luminosity X-ray sources toward omega Cen which were first identified with the Einstein imaging proportional counter (IPC) (Hertz and Grindlay 1983a, b), two are detected in the Einstein HRI observation: IPC sources A and D. These detections provide source positions accurate to 3 sec-4 sec; the positions are confirmed in a ROSAT HRI observation reported here. Using CCD photometry and spectroscopy, we have identified both sources as foreground dwarf M stars with emission lines (dMe). The chance projection of two Mde stars within approximately 13 min of the center of omega Cen is not extraordinary, given the space density of these stellar coronal X-ray sources. We discuss the possible nature of the three as yet unidentified IPC sources toward omega Cen, and consider the constraints that the Einstein observations place on the total population of X-ray sources in this cluster. The integrated luminosity from faint X-ray sources in omega Cen appears to be low relative to both the old open cluster M67 and the post-core-collapse globular, NGC 6397.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Sooyoung; Yoon, Suk-Jin, E-mail: sjyoon0691@yonsei.ac.kr
Spectroscopy on the globular cluster (GC) system of NGC 5128 revealed bimodality in absorption-line index distributions of its old GCs. GC division is a widely observed and studied phenomenon whose interpretation has depicted host galaxy formation and evolution such that it harbors two distinct metallicity groups. Such a conventional view of GC bimodality has mainly been based on photometry. The recent GC photometric data, however, presented an alternative perspective in which the nonlinear metallicity-to-color transformation is responsible for color bimodality of GC systems. Here we apply the same line of analysis to the spectral indices and examine the absorption-line indexmore » versus metallicity relations for the NGC 5128 GC system. NGC 5128 GCs display nonlinearity in the metallicity-index planes, most prominently for the Balmer lines and by a non-negligible degree for the metallicity-sensitive magnesium line. We demonstrate that the observed spectroscopic division of NGC 5128 GCs can be caused by the nonlinear nature of the metallicity-to-index conversions and thus one does not need to resort to two separate GC subgroups. Our analysis incorporating this nonlinearity provides a new perspective on the structure of NGC 5128's GC system, and a further piece to the global picture of the formation of GC systems and their host galaxies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raso, S.; Ferraro, F. R.; Lanzoni, B.
We used data from the Hubble Space Telescope UV Legacy Survey of Galactic Globular Clusters to select the Blue Straggler Star (BSS) population in four intermediate/high density systems (namely NGC 2808, NGC 6388, NGC 6541, and NGC 7078) through a “UV-guided search.” This procedure consists of using the F275W images in each cluster to construct the master list of detected sources, and then force it to the images acquired in the other filters. Such an approach optimizes the detection of relatively hot stars and allows the detection of a complete sample of BSSs even in the central region of high-densitymore » clusters, because the light from the bright cool giants, which dominates the optical emission in old stellar systems, is sensibly reduced at UV wavelengths. Our UV-guided selections of BSSs have been compared to the samples obtained in previous, optical-driven surveys, clearly demonstrating the efficiency of the UV approach. In each cluster we also measured the parameter A {sup +}, defined as the area enclosed between the cumulative radial distribution of BSSs and that of a reference population, which traces the level of BSS central segregation and the level of dynamical evolution suffered by the system. The values measured for the four clusters studied in this paper nicely fall along the dynamical sequence recently presented for a sample of 25 clusters.« less
The Formation and Evolution of the Large Magellanic Cloud from Selected Clusters and Star Fields
NASA Astrophysics Data System (ADS)
Olsen, Knut Anders Grova
We have obtained deep Hubble Space Telescope color-magnitude diagrams of fields centered on the six old LMC globular clusters NGC 1754, NGC 1835, WGC 1898, NGC 1916, NGC 2005, and NGC 2019. The data have been carefully calibrated and the effects of crowding on the photometric accuracy have been thoroughly investigated. The observations have been used to produce V-I,V color-magnitude diagrams of the clusters and of the background field stars, which we have separated from each other through a statistical cleaning technique. The cluster color-magnitude diagrams show that the clusters are old, with main sequence turnoffs at V~ 22.5 and well-developed horizontal branches. We used the slopes of the red giant branches to measure the abundances, which we find to be 0.3 dex higher, on average, than previously measured spectroscopic abundances. In two cases there is significant variable reddening across at least part of the image, but only for NGC 1916 does differential reddening preclude accurate measurements of the CMD characteristics. The mean reddenings of the clusters, measured both from the color of the red giant branch and through comparison with Milky Way clusters, are <=0.10 magnitudes in E(B-V) in all cases. By matching tbe color-magnitude diagrams of the clusters to fiducial sequences of the Milky Way globular clusters M3, M5, and M55, we find that the mean difference of the LMC and Milky Way cluster ages is 1.0 ± 1.2 Gyr, calculated such that a positive difference indicates that the LMC clusters are older. Through Monte Carlo simulations, errors in the individual measurements of the ages relative to Milky Way clusters are found to be ~<1.0 Gyr. We find a similar chronology by comparing the horizontal branch morphologies and abundances with HB evolutionary tracks, assuming that age is the 'second parameter'. These results imply that the LMC formed at the same time as the Milky Way Galaxy. The evolution of the LMC following its formation has been studied through an analysis of the field star CMDs. We used an automated technique to disentangle the evolutionary tracks of varying age and composition that are represented in the CMDs. We computed star formation rates as a function of age for a number of models having different initial mass function slopes, distances, and uniform reddenings, assuming that the chemical evolution follows that implied by LMC clusters. Our results show that the LMC has been actively forming stars over the last 4 Gyr, with evidence for a decline in the last 0.5-1 Gyr. While the NGC 1754 field, which lies in the disk, has had only a low level of star formation after the globular cluster formation epoch until 4 Gyr ago, we find that the bar has been actively forming stars for the past 6-8 Gyr. We find that these qualitative results are robust against errors in the model parameters. (Abstract shortened by UMI.)* ftn*Originally published in DAI Vol. 59, No. 6. Reprinted here with corrected author name.
STAR CLUSTER FORMATION AND DESTRUCTION IN THE MERGING GALAXY NGC 3256
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mulia, A. J.; Chandar, R.; Whitmore, B. C.
2016-07-20
We use the Advanced Camera for Surveys on the Hubble Space Telescope to study the rich population of young massive star clusters in the main body of NGC 3256, a merging pair of galaxies with a high star formation rate (SFR) and SFR per unit area (Σ{sub SFR}). These clusters have luminosity and mass functions that follow power laws, dN / dL ∝ L{sup α} with α = 2.23 ± 0.07, and dN / dM ∝ M{sup β} with β = 1.86 ± 0.34 for τ < 10 Myr clusters, similar to those found in more quiescent galaxies. The agemore » distribution can be described by dN / dτ ∝ τ{sup γ}, with γ ≈ 0.67 ± 0.08 for clusters younger than about a few hundred million years, with no obvious dependence on cluster mass. This is consistent with a picture where ∼80% of the clusters are disrupted each decade in time. We investigate the claim that galaxies with high Σ{sub SFR} form clusters more efficiently than quiescent systems by determining the fraction of stars in bound clusters (Γ) and the CMF/SFR statistic (CMF is the cluster mass function) for NGC 3256 and comparing the results with those for other galaxies. We find that the CMF/SFR statistic for NGC 3256 agrees well with that found for galaxies with Σ{sub SFR} and SFRs that are lower by 1–3 orders of magnitude, but that estimates for Γ are only robust when the same sets of assumptions are applied. Currently, Γ values available in the literature have used different sets of assumptions, making it more difficult to compare the results between galaxies.« less
Star Cluster Formation and Destruction in the Merging Galaxy NGC 3256
NASA Astrophysics Data System (ADS)
Mulia, A. J.; Chandar, R.; Whitmore, B. C.
2016-07-01
We use the Advanced Camera for Surveys on the Hubble Space Telescope to study the rich population of young massive star clusters in the main body of NGC 3256, a merging pair of galaxies with a high star formation rate (SFR) and SFR per unit area (ΣSFR). These clusters have luminosity and mass functions that follow power laws, dN/dL ∝ L α with α = -2.23 ± 0.07, and dN/dM ∝ M β with β = -1.86 ± 0.34 for τ < 10 Myr clusters, similar to those found in more quiescent galaxies. The age distribution can be described by dN/dτ ∝ τ γ , with γ ≈ -0.67 ± 0.08 for clusters younger than about a few hundred million years, with no obvious dependence on cluster mass. This is consistent with a picture where ˜80% of the clusters are disrupted each decade in time. We investigate the claim that galaxies with high ΣSFR form clusters more efficiently than quiescent systems by determining the fraction of stars in bound clusters (Γ) and the CMF/SFR statistic (CMF is the cluster mass function) for NGC 3256 and comparing the results with those for other galaxies. We find that the CMF/SFR statistic for NGC 3256 agrees well with that found for galaxies with ΣSFR and SFRs that are lower by 1-3 orders of magnitude, but that estimates for Γ are only robust when the same sets of assumptions are applied. Currently, Γ values available in the literature have used different sets of assumptions, making it more difficult to compare the results between galaxies.
UV properties of hot stars in NGC 6752
NASA Technical Reports Server (NTRS)
Altner, Bruce
1990-01-01
The UV properties of hot stars found in the center of NGC 6752 are compared with those outside the core. Few, if any, faint sdB stars are found in the central region, whereas they occur in significant numbers far from the core. A statistically complete photographic survey is used to demonstrate that the faint blue stars in NGC 6752 occur in greater numbers with increasing distance form the center, and the International Ultraviolet Explorer (IUE) findings extend this result all the way to the center of the cluster. A similar phenomenon has been observed optically in other clusters, such as M15.
A Large C+N+O Abundance Spread in Giant Stars of the Globular Cluster NGC 1851
NASA Astrophysics Data System (ADS)
Yong, David; Grundahl, Frank; D'Antona, Francesca; Karakas, Amanda I.; Lattanzio, John C.; Norris, John E.
2009-04-01
Abundances of C, N, and O are determined in four bright red giants that span the known abundance range for light (Na and Al) and s-process (Zr and La) elements in the globular cluster NGC 1851. The abundance sum C+N+O exhibits a range of 0.6 dex, a factor of 4, in contrast to other clusters in which no significant C+N+O spread is found. Such an abundance range offers support for the Cassisi et al. scenario in which the double subgiant branch populations are coeval but with different mixtures of C+N+O abundances. Further, the Na, Al, Zr, and La abundances are correlated with C+N+O, and therefore NGC 1851 is the first cluster to provide strong support for the scenario in which asymptotic giant branch stars are responsible for the globular cluster light element abundance variations. This paper includes data gathered with the 6.5 meter Magellan Telescopes located at Las Campanas Observatory, Chile.
The Clusters AgeS Experiment (CASE). Variable Stars in the Field of the Globular Cluster NGC 6362
NASA Astrophysics Data System (ADS)
Kaluzny, J.; Thompson, I. B.; Rozyczka, M.; Pych, W.; Narloch, W.
2014-12-01
The field of the globular cluster NGC 6362 was monitored between 1995 and 2009 in a search for variable stars. BV light curves were obtained for 69 periodic variable stars including 34 known RR Lyr stars, 10 known objects of other types and 25 newly detected variable stars. Among the latter we identified 18 proper-motion members of the cluster: seven detached eclipsing binaries (DEBs), six SX Phe stars, two W UMa binaries, two spotted red giants, and a very interesting eclipsing binary composed of two red giants - the first example of such a system found in a globular cluster. Five of the DEBs are located at the turnoff region, and the remaining two are redward of the lower main sequence. Eighty-four objects from the central 9×9 arcmin2 of the cluster were found in the region of cluster blue stragglers. Of these 70 are proper motion (PM) members of NGC 6362 (including all SX Phe and two W UMa stars), and five are field stars. The remaining nine objects lacking PM information are located at the very core of the cluster, and as such they are likely genuine blue stragglers.
NASA Astrophysics Data System (ADS)
Mucciarelli, Alessio; Lapenna, Emilio; Ferraro, Francesco R.; Lanzoni, Barbara
2018-05-01
NGC 5824 is a massive Galactic globular cluster suspected to have an intrinsic spread in its iron content, according to the strength of the calcium triplet lines. We present chemical abundances of 117 cluster giant stars using high-resolution spectra acquired with the multi-object spectrograph FLAMES. The metallicity distribution of 87 red giant branch stars is peaked at [Fe/H] = ‑2.11 ± 0.01 dex, while that derived from 30 asymptotic giant branch stars is peaked at [Fe/H] = ‑2.20 ± 0.01 dex. Both the distributions are compatible with a null spread, indicating that this cluster did not retain the ejecta of supernovae. The small iron abundance offset between the two groups of stars is similar to the abundances already observed among red and asymptotic giant branch stars in other clusters. The lack of intrinsic iron spread rules out the possibility that NGC 5824 is the remnant of a disrupted dwarf galaxy, as previously suggested. We also find evidence of the chemical anomalies usually observed in globular clusters, namely the Na–O and the Mg–Al anticorrelations. In particular, NGC 5824 exhibits a huge range of [Mg/Fe] abundance, observed in only a few metal-poor and/or massive clusters. We conclude that NGC 5824 is a normal globular cluster, without spread in [Fe/H] but with an unusually large spread in [Mg/Fe], possibly due to an efficient self-enrichment driven by massive asymptotic giant branch stars. Based on observations collected at the ESO-VLT under the program 095.D-0290.
NGC 6273: Towards Defining A New Class of Galactic Globular Clusters?
NASA Astrophysics Data System (ADS)
Johnson, Christian I.; Rich, Robert Michael; Pilachowski, Catherine A.; Caldwell, Nelson; Mateo, Mario L.; Ira Bailey, John; Crane, Jeffrey D.
2016-01-01
A growing number of observations have found that several Galactic globular clusters exhibit abundance dispersions beyond the well-known light element (anti-)correlations. These clusters tend to be very massive, have >0.1 dex intrinsic metallicity dispersions, have complex sub-giant branch morphologies, and have correlated [Fe/H] and s-process element enhancements. Interestingly, nearly all of these clusters discovered so far have [Fe/H]~-1.7. In this context, we have examined the chemical composition of 18 red giant branch (RGB) stars in the massive, metal-poor Galactic bulge globular cluster NGC 6273 using high signal-to-noise, high resolution (R~27,000) spectra obtained with the Michigan/Magellan Fiber System (M2FS) and MSpec spectrograph mounted on the Magellan-Clay 6.5m telescope at Las Campanas Observatory. We find that the cluster exhibits a metallicity range from [Fe/H]=-1.80 to -1.30 and is composed of two dominant populations separated in [Fe/H] and [La/Fe] abundance. The increase in [La/Eu] as a function of [La/H] suggests that the increase in [La/Fe] with [Fe/H] is due to almost pure s-process enrichment. The most metal-rich star in our sample is not strongly La-enhanced, but is α-poor and may belong to a third "anomalous" stellar population. The two dominant populations exhibit the same [Na/Fe]-[Al/Fe] correlation found in other "normal" globular clusters. Therefore, NGC 6273 joins ω Centauri, M 22, M 2, and NGC 5286 as a possible new class of Galactic globular clusters.
Lithium in giant stars in NGC 752 and M67
NASA Astrophysics Data System (ADS)
Pilachowski, Catherine; Saha, A.; Hobbs, L. M.
1988-04-01
Spectra of giant stars in the intermediate-age galactic cluster NGC 752 and in the old cluster M67 have been examined for the presence of Li I λ6707. The lithium feature is not present in any of the M67 giants observed, leading to upper-limit abundances of log ɛ(Li) ≤ -1.0 to 0.3. While lithium is not present in most NGC 752 giants, the feature is strong in two giants, Heinemann 77 and 208, log ɛ(Li) = +1.1 and +1.4, respectively. In the remaining giants in NGC 752, log ɛ(Li) < 0.5. The absence of lithium in M67 giants may be because these giants evolve from progenitors in the region of the main-sequence lithium dip.
Discovery of Extended Main-sequence Turnoffs in Four Young Massive Clusters in the Magellanic Clouds
NASA Astrophysics Data System (ADS)
Li, Chengyuan; de Grijs, Richard; Deng, Licai; Milone, Antonino P.
2017-08-01
An increasing number of young massive clusters (YMCs) in the Magellanic Clouds have been found to exhibit bimodal or extended main sequences (MSs) in their color-magnitude diagrams (CMDs). These features are usually interpreted in terms of a coeval stellar population with different stellar rotational rates, where the blue and red MS stars are populated by non- (or slowly) and rapidly rotating stellar populations, respectively. However, some studies have shown that an age spread of several million years is required to reproduce the observed wide turnoff regions in some YMCs. Here we present the ultraviolet-visual CMDs of four Large and Small Magellanic Cloud YMCs, NGC 330, NGC 1805, NGC 1818, and NGC 2164, based on high-precision Hubble Space Telescope photometry. We show that they all exhibit extended main-sequence turnoffs (MSTOs). The importance of age spreads and stellar rotation in reproducing the observations is investigated. The observed extended MSTOs cannot be explained by stellar rotation alone. Adopting an age spread of 35-50 Myr can alleviate this difficulty. We conclude that stars in these clusters are characterized by ranges in both their ages and rotation properties, but the origin of the age spread in these clusters remains unknown.
NASA Technical Reports Server (NTRS)
Zepf, Stephen E.; Ashman, Keith M.; Geisler, Doug
1995-01-01
We present a study of the colors of globular clusters associated with the elliptical galaxy NGC 3923. Our final sample consists of Wasington system C and T(sub 1) photometry for 143 globular cluster candidates with an expected contamination of no more than 10%. We find that the color distribution of the NGC 3923 globular cluster system (GCS) is broad and appears to have at least two peaks. A mixture modeling analysis of the color distribution indicates that a two-component model is favored over a single-component one at a high level of confidence (greater than 99%). This evidence for more than one population in the GCS of NGC 3923 is similar to that previously noted for the four other elliptical galaxies for which similar data have been published. Furthermore, we find that the NGC 3923 GCS is redder than the GCSs of previously studed elliptical galaxies of similar luminosity. The median metallicity inferred from our (C-(T(sub 1)))(sub 0) colors is (Fe/H)(sub med) = -0.56, with an uncertainty of 0.14 dex arising from all sources of uncertainty in the mean color. This is more metal rich than the median metallicity found for the GCS of M87 using the same method, (Fe/H)(sub med) = -0.94. Since M87 is more luminous than NGC 3923, this result points to significant scatter about any trend of higher GCS metallicity with increasing galaxy luminosity. We also show that there is a color gradient in the NGC 3923 GCS corresponding to about -0.5 dex in Delta(Fe/H)/Delta(log r). We conclude that the shape of the color distribution of individual GCSs and the variation in mean color among the GCSs of ellipticals are difficult to understand if elliptical galaxies are formed in a single protogalactic collapse. Models in which ellipticals and their globular clusters are formed in more than one event, such as a merger scenario, are more successful in accounting for these observations.
An X-ray study of the Centaurus Cluster of galaxies using Einstein
NASA Technical Reports Server (NTRS)
Matilsky, T.; Jones, C.; Forman, W.
1985-01-01
Einstein Imaging Proportional Counter observations of the core of the Centaurus Cluster of galaxies have been analyzed to map the 0.5-3.5 keV surface brightness and temperature of the intracluster gas. The emission is centered on NGC 4696, the elliptical galaxy believed to be at or near the dynamical center of the cluster. Because the X-ray-emitting gas responds to the gravitational potential of the cluster, the observations may be used to measure the total mass distribution around the central region. It is shown that the gas is very likely in hydrostatic equilibrium. It is found that surrounding NGC 4696, like M87 at the center of the Virgo Cluster, is a dark, massive halo, with a gravitating mass of about 2 x 10 to the 13th M out to a radius of about 20 arcmin (or 200 kpc for H(o) = 50 km/s Mpc). The elliptical galaxy NGC 4709, at the core of a more distant cluster, is also detected with a luminosity of 2 x 10 to the 40th ergs per sec.
Forming clusters within clusters: how 30 Doradus recollapsed and gave birth again
NASA Astrophysics Data System (ADS)
Rahner, Daniel; Pellegrini, Eric W.; Glover, Simon C. O.; Klessen, Ralf S.
2018-01-01
The 30 Doradus nebula in the Large Magellanic Cloud (LMC) contains the massive starburst cluster NGC 2070 with a massive and probably younger stellar sub clump at its centre: R136. It is not clear how such a massive inner cluster could form several million years after the older stars in NGC 2070, given that stellar feedback is usually thought to expel gas and inhibit further star formation. Using the recently developed 1D feedback scheme WARPFIELD to scan a large range of cloud and cluster properties, we show that an age offset of several million years between the stellar populations is in fact to be expected given the interplay between feedback and gravity in a giant molecular cloud with a density ≳500 cm-3 due to re-accretion of gas on to the older stellar population. Neither capture of field stars nor gas retention inside the cluster have to be invoked in order to explain the observed age offset in NGC 2070 as well as the structure of the interstellar medium around it.
2016-06-27
This NASA/ESA Hubble Space Telescope image reveals the iridescent interior of one of the most active galaxies in our local neighbourhood — NGC 1569, a small galaxy located about eleven million light-years away in the constellation of Camelopardalis (The Giraffe). This galaxy is currently a hotbed of vigorous star formation. NGC 1569 is a starburst galaxy, meaning that — as the name suggests — it is bursting at the seams with stars, and is currently producing them at a rate far higher than that observed in most other galaxies. For almost 100 million years, NGC 1569 has pumped out stars over 100 times faster than the Milky Way! As a result, this glittering galaxy is home to super star clusters, three of which are visible in this image — one of the two bright clusters is actually the superposition of two massive clusters. Each containing more than a million stars, these brilliant blue clusters reside within a large cavity of gas carved out by multiple supernovae, the energetic remnants of massive stars. In 2008, Hubble observed the galaxy's cluttered core and sparsely populated outer fringes. By pinpointing individual red giant stars, Hubble’s Advanced Camera for Surveys enabled astronomers to calculate a new — and much more precise — estimate for NGC 1569’s distance. This revealed that the galaxy is actually one and a half times further away than previously thought, and a member of the IC 342 galaxy group. Astronomers suspect that the IC 342 cosmic congregation is responsible for the star-forming frenzy observed in NGC 1569. Gravitational interactions between this galactic group are believed to be compressing the gas within NGC 1569. As it is compressed, the gas collapses, heats up and forms new stars.
A Proper Motions Study of the Globular Cluster NGC 3201
NASA Astrophysics Data System (ADS)
Sariya, Devesh P.; Jiang, Ing-Guey; Yadav, R. K. S.
2017-03-01
With a high value of heliocentric radial velocity, a retrograde orbit, and suspected to have an extragalactic origin, NGC 3201 is an interesting globular cluster for kinematical studies. Our purpose is to calculate the relative proper motions (PMs) and membership probability for the stars in the wide region of globular cluster NGC 3201. PM based membership probabilities are used to isolate the cluster sample from the field stars. The membership catalog will help address the question of chemical inhomogeneity in the cluster. Archive CCD data taken with a wide-field imager (WFI) mounted on the ESO 2.2 m telescope are reduced using the high-precision astrometric software developed by Anderson et al. for the WFI images. The epoch gap between the two observational runs is ˜14.3 years. To standardize the BVI photometry, Stetson’s secondary standard stars are used. The CCD data with an epoch gap of ˜14.3 years enables us to decontaminate the cluster stars from field stars efficiently. The median precision of PMs is better than ˜0.8 mas yr-1 for stars having V< 18 mag that increases up to ˜1.5 mas yr-1 for stars with 18< V< 20 mag. Kinematic membership probabilities are calculated using PMs for stars brighter than V˜ 20 mag. An electronic catalog of positions, relative PMs, BVI magnitudes, and membership probabilities in the ˜19.7 × 17 arcmin2 region of NGC 3201 is presented. We use our membership catalog to identify probable cluster members among the known variables and X-ray sources in the direction of NGC 3201. Based on observations with the MPG/ESO 2.2 m and ESO/VLT telescopes, located at La Silla and Paranal Observatory, Chile, under DDT programs 164.O-0561(F), 093.A-9028(A), and the archive material.
NASA Astrophysics Data System (ADS)
Chies-Santos, A. L.; Larsen, S. S.; Cantiello, M.; Strader, J.; Kuntschner, H.; Wehner, E. M.; Brodie, J. P.
2012-03-01
Context. The interpretation that bimodal colour distributions of globular clusters (GCs) reflect bimodal metallicity distributions has been challenged. Non-linearities in the colour to metallicity conversions caused for example by the horizontal branch (HB) stars may be responsible for transforming a unimodal metallicity distribution into a bimodal (optical) colour distribution. Aims: We study optical/near-infrared (NIR) colour distributions of the GC systems in 14 E/S0 galaxies. Methods: We test whether the bimodal feature, generally present in optical colour distributions, remains in the optical/NIR ones. The latter colour combination is a better metallicity proxy than the former. We use KMM and GMM tests to quantify the probability that different colour distributions are better described by a bimodal, as opposed to a unimodal distribution. Results: We find that double-peaked colour distributions are more commonly seen in optical than in optical/NIR colours. For some of the galaxies where the optical (g - z) distribution is clearly bimodal, a bimodal distribution is not preferred over a unimodal one at a statistically significant level for the (g - K) and (z - K) distributions. The two most cluster-rich galaxies in our sample, NGC 4486 and NGC 4649, show some interesting differences. The (g - K) distribution of NGC 4649 is better described by a bimodal distribution, while this is true for the (g - K) distribution of NGC 4486 GCs only if restricted to a brighter sub-sample with small K-band errors (<0.05 mag). Formally, the K-band photometric errors cannot be responsible for blurring bimodal metallicity distributions to unimodal (g - K) colour distributions. However, simulations including the extra scatter in the colour-colour diagrams (not fully accounted for in the photometric errors) show that such scatter may contribute to the disappearance of bimodality in (g - K) for the full NGC 4486 sample. For the less cluster-rich galaxies results are inconclusive due to poorer statistics. Conclusions: A bimodal optical colour distribution is not necessarily an indication of an underlying bimodal metallicity distribution. Horizontal branch morphology may play an important role in shaping some of the optical GC colour distributions. However, we find tentative evidence that the (g - K) colour distributions remain bimodal in the two cluster-rich galaxies in our sample (NGC 4486 and NGC 4649) when restricted to clusters with small K-band photometric errors. This bimodality becomes less pronounced when including objects with larger errors, or for the (z - K) colour distributions. Deeper observations of large numbers of GCs will be required to reach more secure conclusions.
Chromospheric activity in open clusters
NASA Technical Reports Server (NTRS)
Pilger, E. J.
1987-01-01
Spectra of Ca II H and K are being taken for stars of similar mass in the Hyades, the Pleiades, and NGC 752. These spectra will be used to create indices of chromospheric activity on these stars. The dispersion in these indices will then be compared to model dispersions which take into account stellar inclination, position of active regions, and filling factor. Only a few observations have been made to date. These show that a high signal to noise is achievable over reasonable exposure times. Modeling has only just begun.
COS Spectroscopy of White Dwarf Companions to Blue Stragglers
NASA Astrophysics Data System (ADS)
Gosnell, Natalie M.; Geller, Aaron M.; Knigge, Christian; Mathieu, Robert D.; Sills, Alison; Leiner, Emily; Leigh, Nathan
2017-01-01
Complete membership studies of open stellar clusters reveal that 25% of the evolved stars follow alternative pathways in stellar evolution, meaning something in the history of these stars changed their composition or mass (or both). In order to draw a complete picture of stellar evolution we must include these canonically "strange" stars in our definition of standard stellar populations. The formation mechanism of blue straggler stars, traditionally defined to be brighter and bluer than the main sequence turnoff in a star cluster, has been an outstanding question for almost six decades. Recent Hubble Space Telescope (HST) far-ultraviolet (far-UV) observations directly reveal that the blue straggler stars in the old (7 Gyr) open cluster NGC 188 are predominantly formed through mass transfer. We will present HST far-UV COS spectroscopy of white dwarf companions to blue stragglers. These white dwarfs are the remnants of the mass transfer formation process. The effective temperatures and surface gravities of the white dwarfs delineate the timeline of blue straggler formation in this cluster. The existence of these binaries in a well-studied cluster environment provides an unprecedented opportunity to observationally constrain mass transfer models and inform our understanding of many other alternative pathway stellar products.
The NGC 4839 group falling into the Coma cluster observed by XMM-Newton
NASA Astrophysics Data System (ADS)
Neumann, D. M.; Arnaud, M.; Gastaud, R.; Aghanim, N.; Lumb, D.; Briel, U. G.; Vestrand, W. T.; Stewart, G. C.; Molendi, S.; Mittaz, J. P. D.
2001-01-01
We present here the first analysis of the XMM-Newton EPIC-MOS data of the galaxy group around NGC 4839, which lies at a projected distance to the Coma cluster center of 1.6h50-1 Mpc. In our analysis, which includes imaging, spectro-imaging and spectroscopy we find compelling evidence for the sub group being on its first infall onto the Coma cluster. The complex temperature structure around NGC 4839 is consistent with simulations of galaxies falling into a cluster environment. We see indications of a bow shock and of ram pressure stripping around NGC 4839. Furthermore our data reveal a displacement between NGC 4839 and the center of the hot gas in the group of about 300h50-1 kpc. With a simple approximation we can explain this displacement by the pressure force originating from the infall, which acts much stronger on the group gas than on the galaxies. Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and the USA (NASA). EPIC was developed by the EPIC Consortium led by the Principal Investigator, Dr. M. J. L. Turner. The consortium comprises the following Institutes: University of Leicester, University of Birmingham, (UK); CEA/Saclay, IAS Orsay, CESR Toulouse, (France); IAAP Tuebingen, MPE Garching, (Germany); IFC Milan, ITESRE Bologna, IAUP Palermo, Italy. EPIC is funded by: PPARC, CEA, CNES, DLR and ASI.
Giant H II Regions in the Merging System NGC 3256: Are They the Birthplaces of Globular Clusters?
NASA Astrophysics Data System (ADS)
English, J.; Freeman, K. C.
2003-03-01
CCD images and spectra of ionized hydrogen in the merging system NGC 3256 were acquired as part of a kinematic study to investigate the formation of globular clusters (GCs) during the interactions and mergers of disk galaxies. This paper focuses on the proposition by Kennicutt & Chu that giant H II regions (GHRs), with an Hα luminosity greater than 1.5×1040 ergs s-1, are birthplaces of young populous clusters (YPCs). Although, compared with some other interacting systems, NGC 3256 has relatively few (seven) giant H II complexes, these regions are comparable in total flux to about 85 30 Doradus-like giant H II regions (GHRs). The bluest, massive YPCs (Zepf et al.) are located in the vicinity of observed 30 Dor GHRs, contributing to the notion that some fraction of 30 Dor GHRs do cradle massive YPCs, as 30 Dor harbors R136. If interactions induce the formation of 30 Dor GHRs, the observed luminosities indicate that almost 900 30 Dor GHRs would form in NGC 3256 throughout its merger epoch. In order for 30 Dor GHRs to be considered GC progenitors, this number must be consistent with the specific frequencies of globular clusters estimated for elliptical galaxies formed via mergers of spirals (Ashman & Zepf). This only requires that about 10% of NGC 3256's 900 30 Dor GHRs harbor YPCs, which survive several gigayears and have masses >=MR136.
The Secrets of the Nearest Starburst Cluster. II. The Present-Day Mass Function in NGC 3603
NASA Astrophysics Data System (ADS)
Stolte, Andrea; Brandner, Wolfgang; Brandl, Bernhard; Zinnecker, Hans
2006-07-01
Based on deep Very Large Telescope Infrared Spectrometer and Array Camera JHK photometry, we have derived the present-day mass function (MF) of the central starburst cluster NGC 3603 YC (Young Cluster) in the giant H II region NGC 3603. The effects of field contamination, individual reddening, and a possible binary contribution are investigated. The MF slopes resulting from the different methods are compared and lead to a surprisingly consistent cluster MF with a slope of Γ=-0.9+/-0.15. Analyzing different radial annuli around the cluster core, no significant change in the slope of the MF is observed. However, mass segregation in the cluster is evidenced by the increasing depletion of the high-mass tail of the stellar mass distribution with increasing radius. We discuss the indications of mass segregation with respect to the changes observed in the binned and cumulative stellar MFs and argue that the cumulative function, as well as the fraction of high- to low-mass stars, provides better indicators for mass segregation than the MF slope alone. Finally, the observed MF and starburst morphology of NGC 3603 YC are discussed in the context of massive local star-forming regions such as the Galactic center Arches cluster, R136/30 Dor in the LMC, and the Orion Trapezium cluster, all providing resolved templates for extragalactic star formation. Despite the similarity in the observed MF slopes, dynamical considerations suggest that the starburst clusters do not form gravitationally bound systems over a Hubble time. Both the environment (gravitational potential of the Milky Way) and the concentration of stars in the cluster core determine the dynamical stability of a dense star cluster, such that the long-term evolution of a starburst is not exclusively determined by the stellar evolution of its members, as frequently assumed for globular cluster systems. Based on observations obtained at the ESO Very Large Telescope on Paranal, Chile, under programs 63.I-0015 and 65.I-0135.
NASA Technical Reports Server (NTRS)
1999-01-01
A famous group of five compact galaxies featured in the holiday film classic 'It's a Wonderful Life' appears in a new image from NASA's Hubble Space Telescope.
In the movie, angelic figures take on the form of the galactic group called Stephan's Quintet. But the new pictures show the group has actually been doing some devilish things. At least two of its galaxies have been involved in high-speed, hit-and-run accidents, ripping stars and gas from neighboring galaxies and tossing them into space. The image, taken by Hubble's Wide Field and Planetary Camera 2, is online at http://oposite.stsci.edu/pubinfo/pr/2001/22 and http://www.jpl.nasa.gov/images/wfpc . The camera was designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif. The close-up view of Stephan's Quintet reveals a string of bright star clusters sparkling like a diamond necklace. The clusters, each harboring up to millions of stars, were born from the violent interactions between some members of the group. The rude encounters also have distorted the galaxies' shapes, creating elongated spiral arms and long, gaseous streamers. The photo showcases three regions of star birth: the long, sweeping tail and spiral arms of the galaxy NGC 7319 (near center); the gaseous debris of two galaxies, NGC 7318B and NGC 7318A (top right); and the area north of those galaxies, dubbed the northern starburst region (top left). The clusters' bluish color indicates that they're relatively young -- between about 2 million to more than 1 billion years old. The brilliant star clusters in NGC 7318B's spiral arm and the northern starburst region are between 2 million and more than 100 million years old. NGC 7318B instigated the starburst by barreling through the region. The bully galaxy is just below NGC 7318A at top right. Although NGC 7318B appears dangerously close to NGC 7318A, it's traveling too fast to merge with its neighbor. The partial galaxy on the far right is NGC 7320, a foreground galaxy not physically bound to the other galaxies in the picture. About 20 to 50 of the clusters in the northern starburst region reside far from the coziness of galaxies. The clusters were born about 150,000 light-years from the nearest galaxy. Another galaxy, NGC 7320C, which is no longer part of the group and is not seen in the photo, plowed through the quintet several hundred million years ago. It pulled out the long tail of gaseous debris from NGC 7319. The clusters in NGC 7319's streaming tail are 10 million to 500 million years old and may have formed at the time of the violent collision. The faint bluish object at the tip of the tail is a young dwarf galaxy, which formed in the gaseous debris. Stephan's Quintet is in the constellation Pegasus, 270 million light-years from Earth. The pictures in this mosaic were taken by the Wide Field Planetary Camera 2 on Dec. 30, 1998 and June 17, 1999. Additional information about the Hubble Space Telescope is online at http://www.stsci.edu . More information about the Wide Field and Planetary Camera 2 is at http://wfpc2.jpl.nasa.gov . The Space Telescope Science Institute, Baltimore, Md., manages space operations for Hubble for NASA's Office of Space Science, Washington, D.C. The institute is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract with the Goddard Space Flight Center, Greenbelt, Md. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. JPL is a division of the California Institute of Technology in Pasadena.Buoyant AGN Bubbles in the Quasi-isothermal Potential of NGC 1399
NASA Astrophysics Data System (ADS)
Su, Yuanyuan; Nulsen, Paul E. J.; Kraft, Ralph P.; Forman, William R.; Jones, Christine; Irwin, Jimmy A.; Randall, Scott W.; Churazov, Eugene
2017-10-01
The Fornax Cluster is a low-mass cool-core galaxy cluster. We present a deep Chandra study of NGC 1399, the central dominant elliptical galaxy of Fornax. The cluster center harbors two symmetric X-ray cavities coincident with a pair of radio lobes fed by two collimated jets along a north-south axis. A temperature map reveals that the active galactic nucleus (AGN) outburst has created a channel filled with cooler gas out to a radius of 10 kpc. The cavities are surrounded by cool bright rims and filaments that may have been lifted from smaller radii by the buoyant bubbles. X-ray imaging suggests a potential ghost bubble of ≳5 kpc diameter to the northwest. We find that the amount of gas lifted by AGN bubbles is comparable to that which would otherwise cool, demonstrating that AGN-driven outflow is effective in offsetting cooling in low-mass clusters. The cluster cooling timescale is > 30 times longer than the dynamical timescale, which is consistent with the lack of cold molecular gas at the cluster center. The X-ray hydrostatic mass is consistent within 10%, with the total mass derived from the optical data. The observed entropy profile rises linearly, following a steeper slope than that observed at the centers of massive clusters; gas shed by stars in NGC 1399 may be incorporated in the hot phase. However, it is far-fetched for supernova-driven outflow to produce and maintain the thermal distribution in NGC 1399, and it is in tension with the metal content in the hot gas.
Search For Star Cluster Age Gradients Across Spiral Arms of Three LEGUS Disk Galaxies
NASA Astrophysics Data System (ADS)
Shabani, F.; Grebel, E. K.; Pasquali, A.; D'Onghia, E.; Gallagher, J. S.; Adamo, A.; Messa, M.; Elmegreen, B. G.; Dobbs, C.; Gouliermis, D. A.; Calzetti, D.; Grasha, K.; Elmegreen, D. M.; Cignoni, M.; Dale, D. A.; Aloisi, A.; Smith, L. J.; Tosi, M.; Thilker, D. A.; Lee, J. C.; Sabbi, E.; Kim, H.; Pellerin, A.
2018-05-01
One of the main theories for explaining the formation of spiral arms in galaxies is the stationary density wave theory. This theory predicts the existence of an age gradient across the arms. We use the stellar cluster catalogues of the galaxies NGC 1566, M51a, and NGC 628 from the Legacy Extragalactic UV Survey (LEGUS) program. In order to test for the possible existence of an age sequence across the spiral arms, we quantified the azimuthal offset between star clusters of different ages in our target galaxies. We found that NGC 1566, a grand-design spiral galaxy with bisymmetric arms and a strong bar, shows a significant age gradient across the spiral arms that appears to be consistent with the prediction of the stationary density wave theory. In contrast, M51a with its two well-defined spiral arms and a weaker bar does not show an age gradient across the arms. In addition, a comparison with non-LEGUS star cluster catalogues for M51a yields similar results. We believe that the spiral structure of M51a is not the result of a stationary density wave with a fixed pattern speed. Instead, tidal interactions could be the dominant mechanism for the formation of spiral arms. We also found no offset in the azimuthal distribution of star clusters with different ages across the weak spiral arms of NGC 628.
Star clusters in evolving galaxies
NASA Astrophysics Data System (ADS)
Renaud, Florent
2018-04-01
Their ubiquity and extreme densities make star clusters probes of prime importance of galaxy evolution. Old globular clusters keep imprints of the physical conditions of their assembly in the early Universe, and younger stellar objects, observationally resolved, tell us about the mechanisms at stake in their formation. Yet, we still do not understand the diversity involved: why is star cluster formation limited to 105M⊙ objects in the Milky Way, while some dwarf galaxies like NGC 1705 are able to produce clusters 10 times more massive? Why do dwarfs generally host a higher specific frequency of clusters than larger galaxies? How to connect the present-day, often resolved, stellar systems to the formation of globular clusters at high redshift? And how do these links depend on the galactic and cosmological environments of these clusters? In this review, I present recent advances on star cluster formation and evolution, in galactic and cosmological context. The emphasis is put on the theory, formation scenarios and the effects of the environment on the evolution of the global properties of clusters. A few open questions are identified.
Far-infrared observations of the evolved H II region M16
NASA Technical Reports Server (NTRS)
Mcbreen, B.; Fazio, G. G.; Jaffe, D. T.
1982-01-01
The results of far infrared (FIR) observations of the larger H II region M16, associated with the young open star cluster NGC 6611, are discussed. Three FIR sources detected on an extended ridge of FIR emission within the scanned region are described. The observations confirm that M16 is an H II region in a late stage of evolution. The H II region has expanded and is now extremely density bounded, consisting of an extended region of ionized gas and a series of ionization fronts located at the surrounding molecular cloud boundaries nearest to the exciting OB star cluster. The FIR radiation arises from heated dust at these boundaries.
Chandra/ACIS-I Study of the X-Ray Properties of the NGC 6611 and M16 Stellar Populations
NASA Astrophysics Data System (ADS)
Guarcello, M. G.; Caramazza, M.; Micela, G.; Sciortino, S.; Drake, J. J.; Prisinzano, L.
2012-07-01
Mechanisms regulating the origin of X-rays in young stellar objects and the correlation with their evolutionary stage are under debate. Studies of the X-ray properties in young clusters allow us to understand these mechanisms. One ideal target for this analysis is the Eagle Nebula (M16), with its central cluster NGC 6611. At 1750 pc from the Sun, it harbors 93 OB stars, together with a population of low-mass stars from embedded protostars to disk-less Class III objects, with age <=3 Myr. We study an archival 78 ks Chandra/ACIS-I observation of NGC 6611 and two new 80 ks observations of the outer region of M16, one centered on the Column V and the other on a region of the molecular cloud with ongoing star formation. We detect 1755 point sources with 1183 candidate cluster members (219 disk-bearing and 964 disk-less). We study the global X-ray properties of M16 and compare them with those of the Orion Nebula Cluster. We also compare the level of X-ray emission of Class II and Class III stars and analyze the X-ray spectral properties of OB stars. Our study supports the lower level of X-ray activity for the disk-bearing stars with respect to the disk-less members. The X-ray luminosity function (XLF) of M16 is similar to that of Orion, supporting the universality of the XLF in young clusters. Eighty-five percent of the O stars of NGC 6611 have been detected in X-rays. With only one possible exception, they show soft spectra with no hard components, indicating that mechanisms for the production of hard X-ray emission in O stars are not operating in NGC 6611.
CHEMICAL TAGGING OF THREE DISTINCT POPULATIONS OF RED GIANTS IN THE GLOBULAR CLUSTER NGC 6752
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carretta, E.; Bragaglia, A.; Gratton, R. G.
2012-05-01
We present aluminum, magnesium, and silicon abundances in the metal-poor globular cluster NGC 6752 for a sample of more than 130 red giants with homogeneous oxygen and sodium abundances. We find that [Al/Fe] shows a spread of about 1.4 dex among giants in NGC 6752 and is anticorrelated with [Mg/Fe] and [O/Fe] and correlated with [Na/Fe] and [Si/Fe]. These relations are not continuous in nature, but the distribution of stars is clearly clustered around three distinct Al values, low, intermediate, and high. These three groups nicely correspond to the three distinct sequences previously detected using Stroemgren photometry along the redmore » giant branch. These two independent findings strongly indicate the existence of three distinct stellar populations in NGC 6752. Comparing the abundances of O and Mg, we find that the population with intermediate chemical abundances cannot originate from material with the same composition of the most O- and Mg-poor population, diluted by material with that of the most O- and Mg-rich one. This calls for different polluters.« less
Effect of binary fraction on color-magnitude diagram of NGC 1904
NASA Astrophysics Data System (ADS)
Li, Zhongmu; Deng, Yangyang
2018-05-01
The age of a southern globular cluster in Milky Way, NGC 1904, was shown to be larger than the typical age of the universe, around 13.7 Gyr, by some photometric studies which assumed all stars as single stars. Besides the uncertainties in photometry, isochrone and fitting technique, the neglect of binary stars possibly distorted the result. We study the effect of binary fraction on the color-magnitude diagram (CMD) of NGC 1904, via a new tool for CMD studies, Powerful CMD, which can determine binary fraction, age, metallicity, distance modulus, color excess, rotating star fraction and star formation history simultaneously. We finally obtain the youngest age of 14.1±2.1 Gyr with a zero-age binary fraction of 60 percent for cluster NGC 1904. The result is consistent with the age of the universe. Although our result suggests that binary fraction affects the determination of age slightly, it can improve the fitting to observed CMD, in particular blue stragglers. This suggests us to consider the effect of binaries in the studies of star clusters.
NASA Astrophysics Data System (ADS)
Subramaniam, Annapurni; Sindhu, N.; Tandon, S. N.; Kameswara Rao, N.; Postma, J.; Côté, Patrick; Hutchings, J. B.; Ghosh, S. K.; George, K.; Girish, V.; Mohan, R.; Murthy, J.; Sankarasubramanian, K.; Stalin, C. S.; Sutaria, F.; Mondal, C.; Sahu, S.
2016-12-01
We present early results from the Ultra-Violet Imaging Telescope (UVIT) on board the ASTROSAT observatory. We report the discovery of a hot companion associated with one of the blue straggler stars (BSSs) in the old open cluster, NGC 188. Using fluxes measured in four filters in UVIT’s far-UV (FUV) channel, and two filters in the near-UV (NUV) channel, we have constructed the spectral energy distribution (SED) of the star WOCS-5885, after combining with flux measurements from GALEX, Ultraviolet Imaging Telescope, Ultraviolet Optical Telescope, SPITZER, WISE, and several ground-based facilities. The resulting SED spans a wavelength range of 0.15 μm to 7.8 μm. This object is found to be one of the brightest FUV sources in the cluster. An analysis of the SED reveals the presence of two components. The cooler component is found to have a temperature of 6000 ± 150 K, confirming that it is a BSS. Assuming it to be a main-sequence star, we estimate its mass to be ˜1.1-1.2 M ⊙. The hotter component, with an estimated temperature of 17,000 ± 500 K, has a radius of ˜ 0.6 R ⊙ and L ˜30 L ⊙. Bigger and more luminous than a white dwarf, yet cooler than a sub-dwarf, we speculate that it is a post-AGB/HB star that has recently transferred its mass to the BSS, which is known to be a rapid rotator. This binary system, which is the first BSS with a post-AGB/HB companion identified in an open cluster, is an ideal laboratory to study the process of BSS formation via mass transfer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leiner, Emily; Mathieu, Robert D.; Geller, Aaron M., E-mail: leiner@astro.wisc.edu
Sub-subgiant stars (SSGs) lie to the red of the main sequence and fainter than the red giant branch in cluster color–magnitude diagrams (CMDs), a region not easily populated by standard stellar evolution pathways. While there has been speculation on what mechanisms may create these unusual stars, no well-developed theory exists to explain their origins. Here we discuss three hypotheses of SSG formation: (1) mass transfer in a binary system, (2) stripping of a subgiant’s envelope, perhaps during a dynamical encounter, and (3) reduced luminosity due to magnetic fields that lower convective efficiency and produce large starspots. Using the stellar evolutionmore » code MESA, we develop evolutionary tracks for each of these hypotheses, and compare the expected stellar and orbital properties of these models with six known SSGs in the two open clusters M67 and NGC 6791. All three of these mechanisms can create stars or binary systems in the SSG CMD domain. We also calculate the frequency with which each of these mechanisms may create SSG systems, and find that the magnetic field hypothesis is expected to create SSGs with the highest frequency in open clusters. Mass transfer and envelope stripping have lower expected formation frequencies, but may nevertheless create occasional SSGs in open clusters. They may also be important mechanisms to create SSGs in higher mass globular clusters.« less
NASA Astrophysics Data System (ADS)
Bailey, John I.; Mateo, Mario; White, Russel J.; Shectman, Stephen A.; Crane, Jeffrey D.
2018-04-01
We present multi-epoch high-dispersion optical spectra obtained with the Michigan/Magellan Fibre System of 126 and 125 Sun-like stars in the young clusters NGC 2516 (141 Myr) and NGC 2422 (73 Myr). We determine stellar properties including radial velocity (RV), Teff, [Fe/H], [α/Fe] and the line-of-sight rotation rate, vrsin (i), from these spectra. Our median RV precision of 80 m s-1 on individual epochs that span a temporal baseline of 1.1 yr enables us to investigate membership and stellar binarity, and to search for sub-stellar companions. We determine membership probabilities and RV variability probabilities for our sample along with candidate companion orbital periods for a select subset of stars. In NGC 2516, we identified 81 RV members, 27 spectroscopic binaries (17 previously identified as photometric binaries) and 16 other stars that show significant RV variability after accounting for average stellar jitter at the 74 m s-1 level. In NGC 2422, we identify 57 members, 11 spectroscopic binaries and three other stars that show significant RV variability after accounting for an average jitter of 138 m s-1. We use Monte Carlo simulations to verify our stellar jitter measurements, determine the proportion of exoplanets and stellar companions to which we are sensitive, and estimate companion-mass limits for our targets. We also report mean cluster metallicity, velocity and velocity dispersion based on our member targets. We identify 58 non-member stars as RV variables, 24 of which have RV amplitudes that imply stellar or brown-dwarf mass companions. Finally, we note the discovery of a separate RV clustering of stars in our NGC 2422 sample.
A search for extra-solar planetary transits in the field of open cluster NGC 6819
NASA Astrophysics Data System (ADS)
Street, Rachel Amanda
The technique of searching for extra-solar planetary transits is investigated. This technique, which relies on detecting the brief, shallow eclipses caused by planets passing across the line of sight to the primary star, requires high-precision time-series photometry of large numbers of stars in order to detect these statistically rare events. Observations of 18000 stars in the field including the intermediate-age open cluster NGC 6819 are presented. This target field constrasts with the stellar environment surveyed by the radial velocity technique, which concentrates on the Solar neighbourhood. I present the data-reduction techniques used to obtain high-precision photometry in a semi-automated fashion for tens of thousands of stars at a time, together with an algorithm designed to search the resulting lightcurves for the transit signatures of hot Jupiter type planets. I describe simulations designed to test the detection efficiency of this algorithm and, for comparison, predict the number of transits expected from this data, assuming that hot Jupiter planets similar to HD 209458 are as common in the field of NGC 6819 as they are in the Solar neighbourhood. While no planetary transits have yet been identified, the detection of several very low amplitude eclipses by stellar companions demonstrates the effectiveness of the method. This study also indicates that stellar activity and particularly blending are significant causes of false detections. A useful additional consequence of studying this time-series photometry is the census it provides of some of the variable stars in the field. I report on the discovery of a variety of newly-discovered variables, including Algol-type detached eclipsing binaries which are likely to consist of M-dwarf stars. Further study of these stars is strongly recommended in order to help constrain models of stellar structure at the very low mass end. I conclude with a summary of this work in the context of other efforts being made in this field and recommend promising avenues of further study.
The [Y/Mg] clock works for evolved solar metallicity stars
NASA Astrophysics Data System (ADS)
Slumstrup, D.; Grundahl, F.; Brogaard, K.; Thygesen, A. O.; Nissen, P. E.; Jessen-Hansen, J.; Van Eylen, V.; Pedersen, M. G.
2017-08-01
Aims: Previously [Y/Mg] has been proven to be an age indicator for solar twins. Here, we investigate if this relation also holds for helium-core-burning stars of solar metallicity. Methods: High resolution and high signal-to-noise ratio (S/N) spectroscopic data of stars in the helium-core-burning phase have been obtained with the FIES spectrograph on the NOT 2.56 m telescope and the HIRES spectrograph on the Keck I 10 m telescope. They have been analyzed to determine the chemical abundances of four open clusters with close to solar metallicity; NGC 6811, NGC 6819, M 67 and NGC 188. The abundances are derived from equivalent widths of spectral lines using ATLAS9 model atmospheres with parameters determined from the excitation and ionization balance of Fe lines. Results from asteroseismology and binary studies were used as priors on the atmospheric parameters, where especially the log g is determined to much higher precision than what is possible with spectroscopy. Results: It is confirmed that the four open clusters are close to solar metallicity and they follow the [Y/Mg] vs. age trend previously found for solar twins. Conclusions: The [Y/Mg] vs. age clock also works for giant stars in the helium-core burning phase, which vastly increases the possibilities to estimate the age of stars not only in the solar neighborhood, but in large parts of the Galaxy, due to the brighter nature of evolved stars compared to dwarfs. Based on spectroscopic observations made with two telescopes: the Nordic Optical Telescope operated by NOTSA at the Observatorio del Roque de los Muchachos (La Palma, Spain) of the Instituto de Astrofísica de Canarias and the Keck I Telescope at the W.M. Keck Observatory (Mauna Kea, Hawaii, USA) operated by the California Institute of Technology, the University of California and the National Aeronautics and Space Administration.
The complex star cluster system of NGC 1316 (Fornax A)
NASA Astrophysics Data System (ADS)
Sesto, Leandro A.; Faifer, Favio R.; Forte, Juan C.
2016-10-01
This paper presents Gemini-gri' high-quality photometry for cluster candidates in the field of NGC 1316 (Fornax A) as part of a study that also includes GMOS spectroscopy. A preliminary discussion of the photometric data indicates the presence of four stellar cluster populations with distinctive features in terms of age, chemical abundance and spatial distribution. Two of them seem to be the usually old (metal poor and metal rich) populations typically found in elliptical galaxies. In turn, an intermediate-age (5 Gyr) globular cluster population is the dominant component of the sample (as reported by previous papers). We also find a younger cluster population with a tentative age of ≈ 1 Gyr.
VizieR Online Data Catalog: IN-SYNC. III. Radial velocities of IC348 stars (Cottaar+, 2015)
NASA Astrophysics Data System (ADS)
Cottaar, M.; Covey, K. R.; Foster, J. B.; Meyer, M. R.; Tan, J. C.; Nidever, D. L.; Drew Chojnowski, S.; da Rio, N.; Flaherty, K. M.; Frinchaboy, P. M.; Majewski, S.; Skrutskie, M. F.; Wilson, J. C.; Zasowski, G.
2015-11-01
Cottaar et al. (Paper I, 2014, J/ApJ/794/125) describes the analysis of the high-resolution near-infrared spectra obtained by the APOGEE multi-object spectrograph from stars in IC 348, NGC 1333, NGC 2264, and Orion A as part of the INfrared Spectroscopy of Young Nebulous Clusters (IN-SYNC) ancillary program. Using radial velocities determined from APOGEE spectra of 380 likely cluster members, we have measured the radial velocity distribution of the young (2-6Myr) cluster IC 348. (2 data files).
NASA Astrophysics Data System (ADS)
Lehmann, I.; Scholz, R.-D.
1997-04-01
We present new tidal radii for seven Galactic globular clusters using the method of automated star counts on Schmidt plates of the Tautenburg, Palomar and UK telescopes. The plates were fully scanned with the APM system in Cambridge (UK). Special account was given to a reliable background subtraction and the correction of crowding effects in the central cluster region. For the latter we used a new kind of crowding correction based on a statistical approach to the distribution of stellar images and the luminosity function of the cluster stars in the uncrowded area. The star counts were correlated with surface brightness profiles of different authors to obtain complete projected density profiles of the globular clusters. Fitting an empirical density law (King 1962) we derived the following structural parameters: tidal radius r_t_, core radius r_c_ and concentration parameter c. In the cases of NGC 5466, M 5, M 12, M 13 and M 15 we found an indication for a tidal tail around these objects (cf. Grillmair et al. 1995).
Optical studies of the X-ray globular cluster NGC 6624
NASA Technical Reports Server (NTRS)
Canizares, C. R.; Grindlay, J. E.; Hiltner, W. A.; Liller, W.; Mcclintock, J. E.
1978-01-01
Photographic, photometric, and spectroscopic studies of the core of the globular cluster NGC 6624 have been undertaken with the aim of obtaining some evidence regarding the location and nature of the associated X-ray source 3U 1820-30. The studies include an extended simultaneous observation with the SAS 3 satellite, which was carried out to search (unsuccessfully) for optical emission during X-ray bursts. All the results reported are shown to be negative, but serve to set some constraints on the source properties. The photometric results are used to derive a core radius of 5.0 + or - 0.5 arcsec (0.19 + or 0.02 pc at 8 kpc) and a central density of 110,000 solar masses per cu pc for the cluster. It is found that NGC 6624 is one of the most centrally dense globular clusters but otherwise normal and that the colors and spectrum of the nucleus are the same as those of the cluster as a whole. An X-ray source similar to HZ Her at maximum light is ruled out.
Discovery of Extended Main-sequence Turnoffs in Four Young Massive Clusters in the Magellanic Clouds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Chengyuan; De Grijs, Richard; Deng, Licai
An increasing number of young massive clusters (YMCs) in the Magellanic Clouds have been found to exhibit bimodal or extended main sequences (MSs) in their color–magnitude diagrams (CMDs). These features are usually interpreted in terms of a coeval stellar population with different stellar rotational rates, where the blue and red MS stars are populated by non- (or slowly) and rapidly rotating stellar populations, respectively. However, some studies have shown that an age spread of several million years is required to reproduce the observed wide turnoff regions in some YMCs. Here we present the ultraviolet–visual CMDs of four Large and Smallmore » Magellanic Cloud YMCs, NGC 330, NGC 1805, NGC 1818, and NGC 2164, based on high-precision Hubble Space Telescope photometry. We show that they all exhibit extended main-sequence turnoffs (MSTOs). The importance of age spreads and stellar rotation in reproducing the observations is investigated. The observed extended MSTOs cannot be explained by stellar rotation alone. Adopting an age spread of 35–50 Myr can alleviate this difficulty. We conclude that stars in these clusters are characterized by ranges in both their ages and rotation properties, but the origin of the age spread in these clusters remains unknown.« less
Hubble Space Telescope discovery of candidate young globular clusters in the merger remnant NGC 7252
NASA Technical Reports Server (NTRS)
Whitmore, Bradley C.; Schweizer, Francois; Leitherer, Claus; Borne, Kirk; Robert, Carmelle
1993-01-01
New, high-resolution images of the central region of NGC 7252 obtained with the Planetary Camera of the HST are presented. NGC 7252 is a prototypical example of a remnant of two merged disk galaxies. Our most striking result is the discovery of a population of about 40 blue pointlike objects in this galaxy. The mean absolute magnitude of these objects is Mv = -13 mag; the mean color is V-I = 0.7 mag; and the mean effective radius is 10 pc. The luminosities, colors, projected spatial distribution, and sizes are all compatible with the hypothesis that these objects formed within the last 1 Gyr following the collision of two spiral galaxies, and that they are young globular clusters. It therefore appears that the number of globular clusters may increase during the merger of gas-rich galaxies. This weakens van den Bergh's objection against ellipticals being formed through disk mergers, based mainly on the fact that disk galaxies have fewer globular clusters per unit luminosity than ellipticals do. NGC 7252 shows a single, semistellar nucleus; relatively bright spiral structure is seen within 1.6 kpc of the center, presumably formed through the continued infall of gas into a disk around the center of the galaxy.
NASA Astrophysics Data System (ADS)
Vollmer, B.; Wong, O. I.; Braine, J.; Chung, A.; Kenney, J. D. P.
2012-07-01
The influence of the environment on gas surface density and star formation efficiency of cluster spiral galaxies is investigated. We extend previous work on radial profiles by a pixel-to pixel analysis looking for asymmetries due to environmental interactions. The star formation rate is derived from GALEX UV and Spitzer total infrared data based on the 8, 24, 70, and 160 μm data. As in field galaxies, the star formation rate for most Virgo galaxies is approximately proportional to the molecular gas mass. Except for NGC 4438, the cluster environment does not affect the star formation efficiency with respect to the molecular gas. Gas truncation is not associated with major changes in the total gas surface density distribution of the inner disk of Virgo spiral galaxies. In three galaxies (NGC 4430, NGC 4501, and NGC 4522), possible increases in the molecular fraction and the star formation efficiency with respect to the total gas, of factors of 1.5 to 2, are observed on the windward side of the galactic disk. A significant increase of the star formation efficiency with respect to the molecular gas content on the windward side of ram pressure-stripped galaxies is not observed. The ram-pressure stripped extraplanar gas of 3 highly inclined spiral galaxies (NGC 4330, NGC 4438, and NGC 4522) shows a depressed star formation efficiency with respect to the total gas, and one of them (NGC 4438) shows a depressed rate even with respect to the molecular gas. The interpretation is that stripped gas loses the gravitational confinement and associated pressure of the galactic disk, and the gas flow is diverging, so the gas density decreases and the star formation rate drops. We found two such regions of low star formation efficiency in the more face-on galaxies NGC 4501 and NGC 4654 which are both undergoing ram pressure stripping. These regions show low radio continuum emission or unusually steep radio spectral index. However, the stripped extraplanar gas in one highly inclined galaxy (NGC 4569) shows a normal star formation efficiency with respect to the total gas. We propose this galaxy is different because it is observed long after peak pressure, and its extraplanar gas is now in a converging flow as it resettles back into the disk. Appendices are available in electronic form http://www.aanda.org
The Rose-red Glow of Star Formation
NASA Astrophysics Data System (ADS)
2011-03-01
The vivid red cloud in this new image from ESO's Very Large Telescope is a region of glowing hydrogen surrounding the star cluster NGC 371. This stellar nursery lies in our neighbouring galaxy, the Small Magellanic Cloud. The object dominating this image may resemble a pool of spilled blood, but rather than being associated with death, such regions of ionised hydrogen - known as HII regions - are sites of creation with high rates of recent star birth. NGC 371 is an example of this; it is an open cluster surrounded by a nebula. The stars in open clusters all originate from the same diffuse HII region, and over time the majority of the hydrogen is used up by star formation, leaving behind a shell of hydrogen such as the one in this image, along with a cluster of hot young stars. The host galaxy to NGC 371, the Small Magellanic Cloud, is a dwarf galaxy a mere 200 000 light-years away, which makes it one of the closest galaxies to the Milky Way. In addition, the Small Magellanic Cloud contains stars at all stages of their evolution; from the highly luminous young stars found in NGC 371 to supernova remnants of dead stars. These energetic youngsters emit copious amounts of ultraviolet radiation causing surrounding gas, such as leftover hydrogen from their parent nebula, to light up with a colourful glow that extends for hundreds of light-years in every direction. The phenomenon is depicted beautifully in this image, taken using the FORS1 instrument on ESO's Very Large Telescope (VLT). Open clusters are by no means rare; there are numerous fine examples in our own Milky Way. However, NGC 371 is of particular interest due to the unexpectedly large number of variable stars it contains. These are stars that change in brightness over time. A particularly interesting type of variable star, known as slowly pulsating B stars, can also be used to study the interior of stars through asteroseismology [1], and several of these have been confirmed in this cluster. Variable stars play a pivotal role in astronomy: some types are invaluable for determining distances to far-off galaxies and the age of the Universe. The data for this image were selected from the ESO archive by Manu Mejias as part of the Hidden Treasures competition [2]. Three of Manu's images made the top twenty; his picture of NGC 371 was ranked sixth in the competition. Notes [1] Asteroseismology is the study of the internal structure of pulsating stars by looking at the different frequencies at which they oscillate. This is a similar approach to the study of the structure of the Earth by looking at earthquakes and how their oscillations travel through the interior of the planet. [2] ESO's Hidden Treasures 2010 competition gave amateur astronomers the opportunity to search through ESO's vast archives of astronomical data, hoping to find a well-hidden gem that needed polishing by the entrants. Participants submitted nearly 100 entries and ten skilled people were awarded some extremely attractive prizes, including an all expenses paid trip for the overall winner to ESO's Very Large Telescope (VLT) on Cerro Paranal, in Chile, the world's most advanced optical telescope. The ten winners submitted a total of 20 images that were ranked as the highest entries in the competition out of the near 100 images. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 15 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".
Rubidium and Lead Abundances in Giant Stars of the Globular Clusters M13 and NGC 6752
NASA Astrophysics Data System (ADS)
Yong, David; Aoki, Wako; Lambert, David L.; Paulson, Diane B.
2006-03-01
We present measurements of the neutron-capture elements Rb and Pb in five giant stars of the globular cluster NGC 6752 and Pb measurements in four giants of the globular cluster M13. The abundances were derived by comparing synthetic spectra with high-resolution, high signal-to-noise ratio spectra obtained using HDS on the Subaru telescope and MIKE on the Magellan telescope. The program stars span the range of the O-Al abundance variation. In NGC 6752, the mean abundances are [Rb/Fe]=-0.17+/-0.06 (σ=0.14), [Rb/Zr]=-0.12+/-0.06 (σ=0.13), and [Pb/Fe]=-0.17+/-0.04 (σ=0.08). In M13 the mean abundance is [Pb/Fe]=-0.28+/-0.03 (σ=0.06). Within the measurement uncertainties, we find no evidence for star-to-star variation for either Rb or Pb within these clusters. None of the abundance ratios [Rb/Fe], [Rb/Zr], or [Pb/Fe] are correlated with the Al abundance. NGC 6752 may have slightly lower abundances of [Rb/Fe] and [Rb/Zr] compared to the small sample of field stars at the same metallicity. For M13 and NGC 6752 the Pb abundances are in accord with predictions from a Galactic chemical evolution model. If metal-poor intermediate-mass asymptotic giant branch stars did produce the globular cluster abundance anomalies, then such stars do not synthesize significant quantities of Rb or Pb. Alternatively, if such stars do synthesize large amounts of Rb or Pb, then they are not responsible for the abundance anomalies seen in globular clusters. Based in part on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan, and on observations made with the Magellan Clay Telescope at Las Campanas Observatory.
RR Lyrae stars and the horizontal branch of NGC 5904 (M5)
NASA Astrophysics Data System (ADS)
Arellano Ferro, A.; Luna, A.; Bramich, D. M.; Giridhar, Sunetra; Ahumada, J. A.; Muneer, S.
2016-05-01
We report the distance and [Fe/H] value for the globular cluster NGC 5904 (M5) derived from the Fourier decomposition of the light curves of selected RRab and RRc stars. The aim in doing this was to bring these parameters into the homogeneous scales established by our previous work on numerous other globular clusters, allowing a direct comparison of the horizontal branch luminosity in clusters with a wide range of metallicities. Our CCD photometry of the large variable star population of this cluster is used to discuss light curve peculiarities, like Blazhko modulations, on an individual basis. New Blazhko variables are reported.
NASA Technical Reports Server (NTRS)
2007-01-01
[figure removed for brevity, see original site] Click on image for larger poster version This false-color mosaic of the central region of the Coma cluster combines infrared and visible-light images to reveal thousands of faint objects (green). Follow-up observations showed that many of these objects, which appear here as faint green smudges, are dwarf galaxies belonging to the cluster. Two large elliptical galaxies, NGC 4889 and NGC 4874, dominate the cluster's center. The mosaic combines visible-light data from the Sloan Digital Sky Survey (color coded blue) with long- and short-wavelength infrared views (red and green, respectively) from NASA's Spitzer Space Telescope.2011-09-28
This composite image of the star cluster NGC 28 contains X-ray data from Chandra, in purple, with infrared observations from Spitzer, in red, green, blue. NGC 281 is known informally as the Pacman Nebula because of its appearance in optical images.
NASA Astrophysics Data System (ADS)
Gómez, M.; Geisler, D.; Harris, W. E.; Richtler, T.; Harris, G. L. H.; Woodley, K. A.
2006-03-01
We have investigated a number of globular cluster candidates from a recent wide-field study by Harris et al. (2004a, AJ, 128, 712) of the giant elliptical galaxy NGC 5128. We used the Magellan I telescope + MagIC camera under excellent seeing conditions (0.3 arcsec-0.6 arcsec) and obtained very high resolution images for a sample of 44 candidates. Of these, 15 appear to be bonafide globular clusters in NGC 5128 while the rest are either foreground stars or background galaxies. We also serendipitously discovered 18 new cluster candidates in the same fields. Our images allow us to study the light profiles of the likely clusters, all of which are well resolved. This is the first ground-based study of structural parameters for globular clusters outside the Local Group. We compare the psf-deconvolved profiles with King models and derive structural parameters, ellipticities and surface brightnesses. We compare the derived structural properties with those of other well-studied globular cluster systems. In general, our clusters are similar in size, ellipticity, core radius and central surface brightness to their counterparts in other galaxies, in particular those in NGC 5128 observed with HST by Harris et al. (2002, AJ, 124, 1435). However, our clusters extend to higher ellipticities and larger half-light radii than their Galactic counterparts, as do the Harris et al. sample. Combining our results with those of Harris et al. fills in the gaps previously existing in rh - MV parameter space and indicates that any substantial difference between presumed distinct cluster types in this diagram, including for example the Faint Fuzzies of Larsen & Brodie (2000, AJ, 120, 2938) and the "extended, luminous" M 31 clusters of Huxor et al. (2005, MNRAS, 360, 1007) is now removed and that clusters form a continuum in this diagram. Indeed, this continuum now extends to the realm of the Ultra Compact Dwarfs. The metal-rich clusters in our sample have half-light radii that are almost twice as large in the mean as their metal-poor counterparts, at odds with the generally accepted trend. The possibility exists that this result could be due in part to contamination by background galaxies. We have carried out additional analysis to quantify this contamination. This shows that, although galaxies cannot be easily told apart from clusters in some of the structural diagrams, the combination of excellent image quality and Washington photometry should limit the contamination to roughly 10% of the population of cluster candidates. Finally, our discovery of a substantial number of new cluster candidates in the relatively distant regions of the NGC 5128 halo suggests that current values of the total number of globular clusters may be underestimates.
AGB subpopulations in the nearby globular cluster NGC 6397
NASA Astrophysics Data System (ADS)
MacLean, B. T.; Campbell, S. W.; De Silva, G. M.; Lattanzio, J.; D'Orazi, V.; Cottrell, P. L.; Momany, Y.; Casagrande, L.
2018-03-01
It has been well established that Galactic Globular clusters (GCs) harbour more than one stellar population, distinguishable by the anticorrelations of light-element abundances (C-N, Na-O, and Mg-Al). These studies have been extended recently to the asymptotic giant branch (AGB). Here, we investigate the AGB of NGC 6397 for the first time. We have performed an abundance analysis of high-resolution spectra of 47 red giant branch (RGB) and eight AGB stars, deriving Fe, Na, O, Mg, and Al abundances. We find that NGC 6397 shows no evidence of a deficit in Na-rich AGB stars, as reported for some other GCs - the subpopulation ratios of the AGB and RGB in NGC 6397 are identical, within uncertainties. This agrees with expectations from stellar theory. This GC acts as a control for our earlier work on the AGB of M4 (with contrasting results), since the same tools and methods were used.
Timing and searching millisecond pulsars in globular clusters
NASA Astrophysics Data System (ADS)
D'Amico, Nichi; Possenti, Andrea; Manchester, Dick; Johnston, Simon; Kramer, Michael; Sarkissian, John; Lyne, Andrew; Burgay, Marta; Corongiu, Alessandro; Camilo, Fernando; Bailes, Matthew; van Straten, Willem
2010-04-01
Timing the dozen pulsars discovered in P303 is ensuring high quality results: (a) the peculiarities (in position or projected acceleration) of all the 5 millisecond pulsars in NGC6752 suggested the presence of non thermal dynamics in the core, perhaps due to black-holes of intermediate mass; (b) the eclipsing pulsar in NGC6397 is a stereotype for studying the late evolution of exotic binaries. We propose to continue our timing project focusing mostly on NGC6752 at 20cm (in order to measure additional parameters useful to constrain the existence of a black-hole) and NGC6397 at 10cm (for studying the eclipse region and the orbital secular evolution). We also request time for performing observations for a new deeper than ever search for millisecond pulsars in a subset of suitable clusters. This revamped search (as well as the requested timing observations) will exploit the new back-ends (APSR and DFB4) now available at Parkes.
Hubble Hotbed of Vigorous Star Formation
2017-12-08
This galaxy is currently a hotbed of vigorous star formation. NGC 1569 is a starburst galaxy, meaning that — as the name suggests — it is bursting at the seams with stars, and is currently producing them at a rate far higher than that observed in most other galaxies. For almost 100 million years, NGC 1569 has pumped out stars more than 100 times faster than the Milky Way! As a result, this glittering galaxy is home to super star clusters, three of which are visible in this image — one of the two bright clusters is actually the superposition of two massive clusters. Each containing more than a million stars, these brilliant blue clusters reside within a large cavity of gas carved out by multiple supernovae, the energetic remnants of massive stars. In 2008, Hubble observed the galaxy's cluttered core and sparsely populated outer fringes. By pinpointing individual red giant stars, Hubble’s Advanced Camera for Surveys enabled astronomers to calculate a new — and much more precise — estimate for NGC 1569’s distance. This revealed that the galaxy is actually one and a half times farther away than previously thought, and a member of the IC 342 galaxy group. Astronomers suspect that the IC 342 cosmic congregation is responsible for the star-forming frenzy observed in NGC 1569. Gravitational interactions between this galactic group are believed to be compressing the gas within NGC 1569. As it is compressed, the gas collapses, heats up and forms new stars. Image credit: ESA/Hubble & NASA, Aloisi, Ford; Acknowledgement: Judy Schmidt
NASA Astrophysics Data System (ADS)
Cho, Hyejeon; Blakeslee, John P.; Chies-Santos, Ana L.; Jee, M. James; Jensen, Joseph B.; Peng, Eric W.; Lee, Young-Wook
2016-05-01
We present new Hubble Space Telescope (HST) optical and near-infrared (NIR) photometry of the rich globular cluster (GC) system NGC 4874, the cD galaxy in the core of the Coma cluster (Abell 1656). NGC 4874 was observed with the HST Advanced Camera for Surveys in the F475W (g 475) and F814W (I 814) passbands and with the Wide Field Camera 3 IR Channel in F160W (H 160). The GCs in this field exhibit a bimodal optical color distribution with more than half of the GCs falling on the red side at g 475-I 814 > 1. Bimodality is also present, though less conspicuously, in the optical-NIR I 814-H 160 color. Consistent with past work, we find evidence for nonlinearity in the g 475-I 814 versus I 814-H 160 color-color relation. Our results thus underscore the need for understanding the detailed form of the color-metallicity relations in interpreting observational data on GC bimodality. We also find a very strong color-magnitude trend, or “blue tilt,” for the blue component of the optical color distribution of the NGC 4874 GC system. A similarly strong trend is present for the overall mean I 814-H 160 color as a function of magnitude; for M 814 < -10 mag, these trends imply a steep mass-metallicity scaling with Z\\propto {M}{{GC}}1.4+/- 0.4, but the scaling is not a simple power law and becomes much weaker at lower masses. As in other similar systems, the spatial distribution of the blue GCs is more extended than that of the red GCs, partly because of blue GCs associated with surrounding cluster galaxies. In addition, the center of the GC system is displaced by 4 ± 1 kpc toward the southwest from the luminosity center of NGC 4874, in the direction of NGC 4872. Finally, we remark on a dwarf elliptical galaxy with a noticeably asymmetrical GC distribution. Interestingly, this dwarf has a velocity of nearly -3000 km s-1 with respect to NGC 4874; we suggest it is on its first infall into the cluster core and is undergoing stripping of its GC system by the cluster potential. Based on observations with the NASA/ESA Hubble Space Telescope, obtained from the Space Telescope Science Institute (STScI), which is operated by AURA, Inc., under NASA contract NAS 5-26555. These observations are associated with program #11712.
Young star clusters in the interacting galaxies of Hickson Compact Group 90
NASA Astrophysics Data System (ADS)
Miah, J. A.; Sharples, R. M.; Cho, J.
2015-03-01
Deep images of Hickson Compact Group 90 (HCG 90) have been obtained using the Advanced Camera for Surveys on the Hubble Space Telescope. We report results for star clusters observed in the interacting pair of galaxies NGC 7174 and NGC 7176. We present magnitude and colour distributions for the observed cluster population and find that the majority of objects show colours similar to intermediate/old age (>1 Gyr) globular clusters. However, a significant population of blue star clusters are also observed which may have formed from the tidal interaction currently occurring between the two galaxies. We find luminosity function turnover magnitudes of m^{TO}g = 25.1 ± 0.1 and m^{TO}z = 24.3 ± 0.1 for the g and z bands, respectively, implying distances of Dg = 28.8 ± 2.6 Mpc and Dz = 34.7 ± 3.1 Mpc to these galaxies, using the globular cluster luminosity function method. Lastly, we determine a total cluster population of approximately NGC ≃ 212 ± 10 over all magnitudes and a low specific frequency of SN ˜ 0.6 ± 0.1 for this pair of interacting elliptical and spiral galaxies. The small globular cluster population is likely due to tidal interactions taking place between the two galaxies which may have stripped many progenitor clusters away and formed the diffuse light observed at the core of HCG 90.
NGC 3312: A victim of ram pressure sweeping
NASA Technical Reports Server (NTRS)
Mcmahon, P. M.; Richter, O.-G.; Vangorkom, Jacqueline H.; Ferguson, H. C.
1990-01-01
Researchers are undertaking a volume limited survey of the Hydra I cluster in neutral hydrogen using the National Radio Astronomy Observatory's Very Large Array (VLA). The main purpose is to study the effects of a dense environment on the gaseous component of the galaxies. Observational evidence has been accumulating recently that ram pressure sweeping does occur in the centers of clusters, but it is possible that tidal interactions play a role as well. Results of high resolution HI imaging of NGC 3312, the large peculiar spiral near the cluster center are presented. Hydra I (= A1060) is the nearest rich cluster beyond Virgo and, as such, presents a unique opportunity to do a complete survey of a cluster. It is similar to the Virgo cluster in many of its general physical characteristics, such as size, x ray luminosity, velocity dispersion, and galaxy content (high spiral fraction). However, Hydra I appears to be more regular and relaxed. This is evident in the x ray distribution in its central region, which is radially symmetric and centered on the dominant galaxy, NGC 3311, a cD-like elliptical. The observed x ray luminosity implies a central gas density of 4.5 x 10 to the 3rd power cm(-3). Gallagher (1978) argued from optical images of NGC 3312 that this galaxy might be an ideal candidate to directly study effects of the ram pressure process; it might currently be undergoing stripping of its interstellar medium. The researchers' data are consistent with this suggestion, but other origins of the peculiar appearance cannot yet be ruled out.
NASA Astrophysics Data System (ADS)
Reines, Amy E.; Johnson, Kelsey E.; Goss, W. M.
2008-06-01
We present a multi-wavelength study of embedded massive clusters in the nearby (3.9 Mpc) starburst galaxy NGC 4449 in an effort to uncover the earliest phases of massive cluster evolution. By combining high-resolution imaging from the radio to the ultraviolet, we reveal these clusters to be in the process of emerging from their gaseous and dusty birth cocoons. We use Very Large Array (VLA) observations at centimeter wavelengths to identify young clusters surrounded by ultra-dense H II regions, detectable via their production of thermal free-free radio continuum. Ultraviolet, optical and infrared observations are obtained from the Hubble and Spitzer Space Telescope archives for comparison. We detect 39 compact radio sources toward NGC 4449 at 3.6 cm using the highest resolution (1farcs3) and sensitivity (~12 μJy) VLA image of the galaxy to date. We reliably identify 13 thermal radio sources and derive their physical properties using both nebular emission from the H II regions and spectral energy distribution fitting to the stellar continuum. These radio-detected clusters have ages lsim5 Myr and stellar masses of order 104 M sun. The measured extinctions are quite low: 12 of the 13 thermal radio sources have A V lsim 1.5, while the most obscured source has A V ≈ 4.3. By combining results from the nebular and stellar emission, we find an I-band excess that is anti-correlated with cluster age and an apparent mass-age correlation. Additionally, we find evidence that local processes such as supernovae and stellar winds likely play an important role in triggering the current bursts of star formation within NGC 4449.
Three candidate double clusters in the LMC: truth or dare?
NASA Astrophysics Data System (ADS)
Dalessandro, Emanuele; Zocchi, Alice; Varri, Anna Lisa; Mucciarelli, Alessio; Bellazzini, Michele; Ferraro, Francesco R.; Lanzoni, Barbara; Lapenna, Emilio; Origlia, Livia
2018-02-01
The Large Magellanic Cloud (LMC) hosts a large number of candidate stellar cluster pairs. Binary stellar clusters provide important clues about cluster formation processes and the evolutionary history of the host galaxy. However, to properly extract and interpret this information, it is crucial to fully constrain the fraction of real binary systems and their physical properties. Here we present a detailed photometric analysis based on ESO-FORS2 images of three candidate cluster multiplets in the LMC, namely SL349-SL353, SL385-SL387-NGC 1922 and NGC 1836-BRHT4b-NGC 1839. For each cluster, we derived ages, structural parameters and morphological properties. We have also estimated the degree of filling of their Roche lobe, as an approximate tool to measure the strength of the tidal perturbations induced by the LMC. We find that the members of the possible pairs SL349-SL353 and BRHT4b-NGC 1839 have a similar age (t = 1.00 ± 0.12 Gyr and t = 140 ± 15 Myr, respectively), thus possibly hinting at a common origin of their member systems. We also find that all candidate pairs in our sample show evidence of intracluster overdensities that can be a possible indication of real binarity. Particularly interesting is the case of SL349-SL353. In fact, SL353 is relatively close to the condition of critical filling, thus suggesting that these systems might actually constitute an energetically bound pair. It is therefore key to pursue a detailed kinematic screening of such clusters, without which, at present, we do not dare making a conclusive statement about the true nature of this putative pair.
Detection of the Tip of Red Giant Branc in NGC 5128
NASA Technical Reports Server (NTRS)
Soria, Roberto; Mould, Jeremy R.; Watson, Alan M.; Gallagher, John S., III; Ballester, Gilda E.; Burrows, Christopher J.; Casertano, Stefano; Clarke, John T.; Crisp, David; Griffiths, Richard E.;
1996-01-01
We present a color-magnitude diagram of more than 10,000 stars in the halo of galaxy NGC 5128 (Centaurus A), based on WFPC2 images through the V and I filters. The position of the red-giant branch stars is compared with the loci of the RGB in six well-studied globular clusters and in the dwarf elliptical galaxy NGC 185;...
Optical and X-ray studies of Compact X-ray Binaries in NGC 5904
NASA Astrophysics Data System (ADS)
Bhalotia, Vanshree; Beck-Winchatz, Bernhard
2018-06-01
Due to their high stellar densities, globular cluster systems trigger various dynamical interactions, such as the formation of compact X-ray binaries. Stellar collisional frequencies have been correlated to the number of X-ray sources detected in various clusters and we hope to measure this correlation for NGC 5904. Optical fluxes of sources from archival HST images of NGC 5904 have been measured using a DOLPHOT PSF photometry in the UV, optical and near-infrared. We developed a data analysis pipeline to process the fluxes of tens of thousands of objects using awk, python and DOLPHOT. We plot color magnitude diagrams in different photometric bands in order to identify outliers that could be X-ray binaries, since they do not evolve the same way as singular stars. Aligning previously measured astrometric data for X-ray sources in NGC 5904 from Chandra with archival astrometric data from HST will filter out the outlier objects that are not X-ray producing, and provide a sample of compact binary systems that are responsible for X-ray emission in NGC 5904. Furthermore, previously measured X-ray fluxes of NGC 5904 from Chandra have also been used to measure the X-ray to optical flux ratio and identify the types of compact X-ray binaries responsible for the X-ray emissions in NGC 5904. We gratefully acknowledge the support from the Illinois Space Grant Consortium.
From Globular Clusters to Tidal Dwarfs: Structure Formation in Tidal Tails
NASA Astrophysics Data System (ADS)
Knierman, K.; Hunsberger, S.; Gallagher, S.; Charlton, J.; Whitmore, B.; Hibbard, J.; Kundu, A.; Zaritsky, D.
1999-12-01
Galaxy interactions trigger star formation in tidal debris. How does this star formation depend on the local and global physical conditions? Using WFPC2/HST images, we investigate the range of structure within tidal tails of four classic ``Toomre Sequence'' mergers: NGC 4038/9 (``Antennae''), NGC 7252 (``Atoms for Peace''), NGC 3921, and NGC 3256. These tails contain a variety of stellar associations with sizes from globular clusters up to dwarf Irregulars. We explore whether there is a continuum between the two extremes. Our eight fields sample seven tidal tails at a variety of stages in the evolutionary sequence. Some of these tails are rich in HI while others are HI poor. Large tidal dwarfs are embedded in three of the tails. Using V and I WFPC2 images, we measure luminosities and colors of substructures within the tidal tails. The properties of globular cluster candidates in the tails will be contrasted with those of the hundreds of young clusters in the central regions of these mergers. We address whether globular clusters form and survive in the tidal tails and whether tidal dwarfs are composed of only young stars. By comparing the properties of structures in the tails of the four mergers with different ages, we examine systematic evolution of structure along the evolutionary sequence and as a function of HI content. We acknowledge support from NASA through STScI, and from NSF for an REU supplement for Karen Knierman.
The NGC 7742 star cluster luminosity function: a population analysis revisited
NASA Astrophysics Data System (ADS)
de Grijs, Richard; Ma, Chao
2018-02-01
We re-examine the properties of the star cluster population in the circumnuclear starburst ring in the face-on spiral galaxy NGC 7742, whose young cluster mass function has been reported to exhibit significant deviations from the canonical power law. We base our reassessment on the clusters’ luminosities (an observational quantity) rather than their masses (a derived quantity), and confirm conclusively that the galaxy’s starburst-ring clusters—and particularly the youngest subsample, {log}(t {{{yr}}}-1)≤ 7.2—show evidence of a turnover in the cluster luminosity function well above the 90% completeness limit adopted to ensure the reliability of our results. This confirmation emphasizes the unique conundrum posed by this unusual cluster population.
NASA Technical Reports Server (NTRS)
Carney, B. W.; Janes, K. A.; Flower, P. J.
1985-01-01
A color-magnitude diagram has been obtained for the young SMC cluster NGC 330. The diagram shows a well-defined main sequence, a group of blue supergiants, a group of red supergiants between B-V = 1.2 m and 1.6 m about one magnitude fainter, and an empty Hertzsprung gap. The surrounding field is a composite of a very gold population resembling galactic globular clusters and a very young population. DDO and infrared photometry strongly suggest that the cluster is metal-poor, but a definitive measure could not be made because of calibration difficulties. The cluster's age is estimated at 12 million years, with the surrounding field about 50 percent older. The cluster will prove very useful in testing stellar evolution models for young, metal-poor stars if the cluster's metallicity can be established via high-resolution spectroscopy.
Search for OB stars running away from young star clusters. II. The NGC 6357 star-forming region
NASA Astrophysics Data System (ADS)
Gvaramadze, V. V.; Kniazev, A. Y.; Kroupa, P.; Oh, S.
2011-11-01
Dynamical few-body encounters in the dense cores of young massive star clusters are responsible for the loss of a significant fraction of their massive stellar content. Some of the escaping (runaway) stars move through the ambient medium supersonically and can be revealed via detection of their bow shocks (visible in the infrared, optical or radio). In this paper, which is the second of a series of papers devoted to the search for OB stars running away from young ( ≲ several Myr) Galactic clusters and OB associations, we present the results of the search for bow shocks around the star-forming region NGC 6357. Using the archival data of the Midcourse Space Experiment (MSX) satellite and the Spitzer Space Telescope, and the preliminary data release of the Wide-Field Infrared Survey Explorer (WISE), we discovered seven bow shocks, whose geometry is consistent with the possibility that they are generated by stars expelled from the young (~1-2 Myr) star clusters, Pismis 24 and AH03 J1725-34.4, associated with NGC 6357. Two of the seven bow shocks are driven by the already known OB stars, HD 319881 and [N78] 34. Follow-up spectroscopy of three other bow-shock-producing stars showed that they are massive (O-type) stars as well, while the 2MASS photometry of the remaining two stars suggests that they could be B0 V stars, provided that both are located at the same distance as NGC 6357. Detection of numerous massive stars ejected from the very young clusters is consistent with the theoretical expectation that star clusters can effectively lose massive stars at the very beginning of their dynamical evolution (long before the second mechanism for production of runaway stars, based on a supernova explosion in a massive tight binary system, begins to operate) and lends strong support to the idea that probably all field OB stars have been dynamically ejected from their birth clusters. A by-product of our search for bow shocks around NGC 6357 is the detection of three circular shells typical of luminous blue variable and late WN-type Wolf-Rayet stars.
HST/WFPC2 and VLT/ISAAC Observations of Proplyds in the Giant H II Region NGC 3603
NASA Astrophysics Data System (ADS)
Brandner, Wolfgang; Grebel, Eva K.; Chu, You-Hua; Dottori, Horacio; Brandl, Bernhard; Richling, Sabine; Yorke, Harold W.; Points, Sean D.; Zinnecker, Hans
2000-01-01
We report the discovery of three proplyd-like structures in the giant H II region NGC 3603. The emission nebulae are clearly resolved in narrowband and broadband HST/WFPC2 observations in the optical and broadband VLT/ISAAC observations in the near-infrared. All three nebulae are tadpole shaped, with the bright ionization front at the head facing the central cluster and a fainter ionization front around the tail pointing away from the cluster. Typical sizes are 6000 AUx20,000 AU The nebulae share the overall morphology of the proplyds (PROto PLanetarY DiskS) in Orion, but are 20 to 30 times larger in size. Additional faint filaments located between the nebulae and the central ionizing cluster can be interpreted as bow shocks resulting from the interaction of the fast winds from the high-mass stars in the cluster with the evaporation flow from the proplyds. Low-resolution spectra of the brightest nebula, which is at a projected separation of 1.3 pc from the cluster, reveal that it has the spectral excitation characteristics of an ultra compact H II region with electron densities well in excess of 104 cm-3. The near-infrared data reveal a point source superposed on the ionization front. The striking similarity of the tadpole-shaped emission nebulae in NGC 3603 to the proplyds in Orion suggests that the physical structure of both types of objects might be the same. We present two-dimensional radiation hydrodynamical simulations of an externally illuminated star-disk-envelope system, which was still in its main accretion phase when first exposed to ionizing radiation from the central cluster. The simulations reproduce the overall morphology of the proplyds in NGC 3603 very well, but also indicate that mass-loss rates of up to 10-5 Msolar yr-1 are required in order to explain the size of the proplyds. Due to these high mass-loss rates, the proplyds in NGC 3603 should only survive ~105 yr. Despite this short survival time, we detect three proplyds. This indicates that circumstellar disks must be common around young stars in NGC 3603 and that these particular proplyds have only recently been exposed to their present harsh UV environment.
Mapping the filaments in NGC 1275
NASA Astrophysics Data System (ADS)
Cobos, Aracely Susan; Rich, Jeffrey; Great Observatories All-sky LIRG Survey (GOALS)
2018-01-01
The giant elliptical brightest cluster galaxies (BCGs) at the centers of many massive clusters are often surrounded by drawn-out forms of gaseous material. It is believed that this gaseous material is gas condensing from the intracluster medium (ICM) in a “cooling flow,” and it can directly impact the growth of the BCG. The galaxy NGC 1275 is one of the closest giant elliptical BCGs and lies at the center of the Perseus cluster. NGC 1275 has large filaments that are thought to be associated with a cooling flow, but they may also be affected by its AGN. To investigate the relationship between the AGN and the cooling flow we have mapped the filaments around NGC 1275 with the Cosmic Web Imager, an image-slicing integral field spectrograph at Palomar Observatories. We employ standard emission-line ratio diagnostics to determine the source of ionizing radiation. We use our analysis to investigate whether the formation of the extended filaments is a result of gas from the ICM collapsing onto the galaxy as it cools or if it is possible that the filaments are a result of the cluster’s interaction with the outflow driven by the AGN.
NASA Astrophysics Data System (ADS)
Nadège, Lagarde
The availability of asteroseismic constraints for a large sample of red-giant stars from the CoRoT and Kepler missions paves the way for various statistical studies of the seismic properties of stellar populations. We use a detailed spectroscopic study of 19 CoRoT red-giant stars (Morel et al. 2014) to compare theoretical stellar evolution models to observations of the open cluster NGC 6633 and field stars. This study is already published in Lagarde et al. (2015)
Cúmulos globulares en galaxias elípticas aisladas: el peculiar caso de NGC7507
NASA Astrophysics Data System (ADS)
Caso, J. P.; Richtler, T.; Bassino, L.
We present results of the study of the glolular cluster system of NGC7507. The number of members of the system is calculated; and compared with other elliptical galaxies from literature. FULL TEXT IN SPANISH
NASA Astrophysics Data System (ADS)
Landin, N. R.; Mendes, L. T. S.; Vaz, L. P. R.; Alencar, S. H. P.
2016-02-01
Context. Rotational evolution in young stars is described by pre-main sequence evolutionary tracks including non-gray boundary conditions, rotation, conservation of angular momentum, and simulations of disk-locking. Aims: By assuming that disk-locking is the regulation mechanism for the stellar angular velocity during the early stages of pre-main sequence evolution, we use our rotating models and observational data to constrain disk lifetimes (Tdisk) of a representative sample of low-mass stars in two young clusters, the Orion Nebula cluster (ONC) and NGC 2264, and to better understand their rotational evolution. Methods: The period distributions of the ONC and NGC 2264 are known to be bimodal and to depend on the stellar mass. To follow the rotational evolution of these two clusters' stars, we generated sets of evolutionary tracks from a fully convective configuration with low central temperatures (before D- and Li-burning). We assumed that the evolution of fast rotators can be represented by models considering conservation of angular momentum during all stages and of moderate rotators by models considering conservation of angular velocity during the first stages of evolution. With these models we estimate a mass and an age for all stars. Results: The resulting mass distribution for the bulk of the cluster population is in the ranges of 0.2-0.4 M⊙ and 0.1-0.6 M⊙ for the ONC and NGC 2264, respectively. For the ONC, we assume that the secondary peak in the period distribution is due to high-mass objects still locked in their disks, with a locking period (Plock) of ~8 days. For NGC 2264 we make two hypotheses: (1) the stars in the secondary peak are still locked with Plock = 5 days, and (2) NGC 2264 is in a later stage in the rotational evolution. Hypothesis 2 implies in a disk-locking scenario with Plock = 8 days, a disk lifetime of 1 Myr and, after that, constant angular momentum evolution. We then simulated the period distribution of NGC 2264 when the mean age of the cluster was 1 Myr. Dichotomy and bimodality appear in the simulated distribution, presenting one peak at 2 days and another one at 5-7 days, indicating that the assumption of Plock = 8 days is plausible. Our hypotheses are compared with observational disk diagnoses available in the literature for the ONC and NGC 2264, such as near-infrared excess, Hα emission, and spectral energy distribution slope in the mid-infrared. Conclusions: Disk-locking models with Plock = 8 days and 0.2 Myr ≤ Tdisk ≤ 3 Myr are consistent with observed periods of moderate rotators of the ONC. For NGC 2264, the more promising explanation for the observed period distribution is an evolution with disk-locking (with Plock near 8 days) during the first 1 Myr, approximately, but after this, the evolution continued with constant angular momentum. Full Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/586/A96
ULTRA-DEEP GEMINI NEAR-INFRARED OBSERVATIONS OF THE BULGE GLOBULAR CLUSTER NGC 6624
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saracino, S.; Dalessandro, E.; Ferraro, F. R.
2016-11-20
We used ultra-deep J and K {sub s} images secured with the near-infrared (NIR) GSAOI camera assisted by the multi-conjugate adaptive optics system GeMS at the GEMINI South Telescope in Chile, to obtain a ( K {sub s} , J - K {sub s} ) color–magnitude diagram (CMD) for the bulge globular cluster NGC 6624. We obtained the deepest and most accurate NIR CMD from the ground for this cluster, by reaching K {sub s} ∼ 21.5, approximately 8 mag below the horizontal branch level. The entire extension of the Main Sequence (MS) is nicely sampled and at K {submore » s} ∼ 20 we detected the so-called MS “knee” in a purely NIR CMD. By taking advantage of the exquisite quality of the data, we estimated the absolute age of NGC 6624 ( t {sub age} = 12.0 ± 0.5 Gyr), which turns out to be in good agreement with previous studies in the literature. We also analyzed the luminosity and mass functions of MS stars down to M ∼ 0.45 M{sub ⊙}, finding evidence of a significant increase of low-mass stars at increasing distances from the cluster center. This is a clear signature of mass segregation, confirming that NGC 6624 is in an advanced stage of dynamical evolution.« less
The low-metallicity starburst NGC346: massive-star population and feedback
NASA Astrophysics Data System (ADS)
Oskinova, Lida
2017-08-01
The Small Magellanic Cloud (SMC) is ideal to study young, massive stars at low metallicity. The compact cluster NGC346 contains about half of all O-type stars in the entire SMC. The massive-star population of this cluster powers N66, the brightest and largest HII region in the SMC. We propose to use HST-STIS to slice NGC346 with 20 long-slit exposures, in order to obtain the UV spectra of most of the massive early-type stars of this cluster. Archival data of 13 exposures that cover already a minor part of this cluster will be included in our analyses. Our aim is to quantitatively analyze virtually the whole massive-star population of NGC346. We have already secured the optical spectra of all massive stars in the field with the integral-field spectrograph MUSE at the ESO-VLT. However, for the determination of the stellar-wind parameters, i.e. the mass-loss rates and the wind velocities, ultraviolet spectra are indispensable. Our advanced Potsdam Wolf-Rayet (PoWR) code will be used for modeling the stellar and wind spectra in the course of the analysis. Finally, we will obtain:(a) the fundamental stellar and wind parameters of all stars brighter than spectral type B2V in the field, which, e,g,, will constrain the initial mass function in this young low-metallicity starburst;(b) mass-loss rates of many more OB-type stars at SMC metallicity than hitherto known, allowing to better constrain their metallicity dependence;(c) the integrated feedback by ionizing radiation and stellar winds of the whole massive-star population of NGC346, which will be used as input to model the ecology of the giant HII region N66.These HST UV data will be of high legacy value.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dalessandro, E.; Lapenna, E.; Mucciarelli, A.
We used a combination of optical and near-UV Hubble Space Telescope photometry and FLAMES/ESO-VLT high-resolution spectroscopy to characterize the stellar content of the old and massive globular cluster (GC) NGC 121 in the Small Magellanic Cloud (SMC). We report on the detection of multiple stellar populations, the first case in the SMC stellar cluster system. This result enforces the emerging scenario in which the presence of multiple stellar populations is a distinctive-feature of old and massive GCs regardless of the environment, as far as the light-element distribution is concerned. We find that second-generation (SG) stars are more centrally concentrated thanmore » first-generation (FG) ones. More interestingly, at odds with what is typically observed in Galactic GCs, we find that NGC 121 is the only cluster so far to be dominated by FG stars that account for more than 65% of the total cluster mass. In the framework where GCs were born with 90%–95% of FG stars, this observational finding would suggest that either NGC 121 experienced a milder stellar mass-loss with respect to Galactic GCs or it formed a smaller fraction of SG stars.« less
2016-05-30
This 10.5-billion-year-old globular cluster, NGC 6496, is home to heavy-metal stars of a celestial kind! The stars comprising this spectacular spherical cluster are enriched with much higher proportions of metals — elements heavier than hydrogen and helium, are in astronomy curiously known as metals — than stars found in similar clusters. A handful of these high-metallicity stars are also variable stars, meaning that their brightness fluctuates over time. NGC 6496 hosts a selection of long-period variables — giant pulsating stars whose brightness can take up to, and even over, a thousand days to change — and short-period eclipsing binaries, which dim when eclipsed by a stellar companion. The nature of the variability of these stars can reveal important information about their mass, radius, luminosity, temperature, composition, and evolution, providing astronomers with measurements that would be difficult or even impossible to obtain through other methods. NGC 6496 was discovered in 1826 by Scottish astronomer James Dunlop. The cluster resides at about 35 000 light-years away in the southern constellation of Scorpius (The Scorpion).
NGC 6362: THE LEAST MASSIVE GLOBULAR CLUSTER WITH CHEMICALLY DISTINCT MULTIPLE POPULATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mucciarelli, Alessio; Dalessandro, Emanuele; Ferraro, Francesco R.
2016-06-20
We present the first measure of Fe and Na abundances in NGC 6362, a low-mass globular cluster (GC) where first- and second-generation stars are fully spatially mixed. A total of 160 member stars (along the red giant branch (RGB) and the red horizontal branch (RHB)) were observed with the multi-object spectrograph FLAMES at the Very Large Telescope. We find that the cluster has an iron abundance of [Fe/H] = −1.09 ± 0.01 dex, without evidence of intrinsic dispersion. On the other hand, the [Na/Fe] distribution turns out to be intrinsically broad and bimodal. The Na-poor and Na-rich stars populate, respectively,more » the bluest and the reddest RGBs detected in the color–magnitude diagrams including the U filter. The RGB is composed of a mixture of first- and second-generation stars in a similar proportion, while almost all the RHB stars belong to the first cluster generation. To date, NGC 6362 is the least massive GC where both the photometric and spectroscopic signatures of multiple populations have been detected.« less
A soft X-ray map of the Perseus cluster of galaxies
NASA Technical Reports Server (NTRS)
Cash, W.; Malina, R. F.; Wolff, R. S.
1976-01-01
A 0.5-3-keV X-ray map of the Perseus cluster of galaxies is presented. The map shows a region of strong emission centered near NGC 1275 plus a highly elongated emission region which lies along the line of bright galaxies that dominates the core of the cluster. The data are compared with various models that include point and diffuse sources. One model which adequately represents the data is the superposition of a point source at NGC 1275 and an isothermal ellipsoid resulting from the bremsstrahlung emission of cluster gas. The ellipsoid has a major core radius of 20.5 arcmin and a minor core radius of 5.5 arcmin, consistent with the values obtained from galaxy counts. All acceptable models provide evidence for a compact source (less than 3 arcmin FWHM) at NGC 1275 containing about 25% of the total emission. Since the diffuse X-ray and radio components have radically different morphologies, it is unlikely that the emissions arise from a common source, as proposed in inverse-Compton models.
Rotational and radial velocities of 1.3-2.2 M {sub ☉} red giants in open clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlberg, Joleen K., E-mail: jcarlberg@dtm.ciw.edu
2014-06-01
This study presents the rotational distribution of red giant (RG) stars in 11 old to intermediate age open clusters. The masses of these stars are all above the Kraft break, so they lose negligible amounts of their birth angular momentum (AM) during the main-sequence (MS) evolution. However, they do span a mass range with quite different AM distributions imparted during formation, with the stars less massive than ∼1.6M {sub ☉} arriving on the MS with lower rotation rates than the more massive stars. The majority of RGs in this study are slow rotators across the entire red giant branch regardlessmore » of mass, supporting the picture that intermediate-mass stars rapidly spin down when they evolve off the MS and develop convection zones capable of driving a magnetic dynamo. Nevertheless, a small fraction of RGs in open clusters show some level of enhanced rotation, and faster rotators are as common in these clusters as in the field RG population. Most of these enhanced rotators appear to be red clump stars, which is also true of the underlying stellar sample, while others are clearly RGs that are above or below the clump. In addition to rotational velocities, the radial velocities (RVs) and membership probabilities of individual stars are also presented. Cluster heliocentric RVs for NGC 6005 and Pismis 18 are reported for the first time.« less
Dust and super star clusters in NGC 5253
NASA Astrophysics Data System (ADS)
Vanzi, L.; Sauvage, M.
2004-02-01
We present new observations of the famous starburst galaxy NGC 5253 which owes its celebrity to possibly being the youngest and closest starburst galaxy known. Our observations in the infrared and millimeter contribute to shed light on the properties of this interesting object. We have used our new data along with data from the literature to study the properties of the young stellar clusters present in NGC 5253. We find that the brightest optical clusters are all characterized by a near-infrared excess that is explained by the combined effect of extinction and emission by dust. For the brightest infrared cluster we model the spectral energy distribution from the optical to the radio. We find that this cluster dominates the galaxy emission longward of 3 \\mum, that it has a bolometric luminosity of 1.2× 109 L⊙ and a mass of 1.2× 106 M⊙, giving L/M≈103. The cluster is obscured by 7 mag of optical extinction produced by about 1.5× 105 M⊙ of dust. The dust properties are peculiar with respect to the dust properties in the solar neighbourhood with a composition characterized by a lack of silicates and a flatter size distribution than the standard one, i.e. a bias toward larger grains. We find that NGC 5253 is a striking example of a galaxy where the infrared-submillimeter and ultraviolet-optical emissions originate in totally decoupled regions of vastly different physical sizes. Based on observations obtained at the ESO telescopes of La Silla and Paranal, program 69.B-0345; and on observations with ISO, an ESA project with instruments funded by ESA Member States (especially the PI countries: France, Germany, The Netherlands and the United Kingdom) and with the participation of ISAS and NASA.
Hubble Admires a Youthful Globular Star Cluster
2017-12-08
Hubble sees an unusal global cluster that is enriching the interstellar medium with metals Globular clusters offer some of the most spectacular sights in the night sky. These ornate spheres contain hundreds of thousands of stars, and reside in the outskirts of galaxies. The Milky Way contains over 150 such clusters — and the one shown in this NASA/ESA Hubble Space Telescope image, named NGC 362, is one of the more unusual ones. As stars make their way through life they fuse elements together in their cores, creating heavier and heavier elements — known in astronomy as metals — in the process. When these stars die, they flood their surroundings with the material they have formed during their lifetimes, enriching the interstellar medium with metals. Stars that form later therefore contain higher proportions of metals than their older relatives. By studying the different elements present within individual stars in NGC 362, astronomers discovered that the cluster boasts a surprisingly high metal content, indicating that it is younger than expected. Although most globular clusters are much older than the majority of stars in their host galaxy, NGC 362 bucks the trend, with an age lying between 10 and 11 billion years old. For reference, the age of the Milky Way is estimated to be above 13 billion years. This image, in which you can view NGC 362’s individual stars, was taken by Hubble’s Advanced Camera for Surveys (ACS). Credit: ESA/Hubble& NASA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Double blue straggler sequences in globular clusters: The case of NGC 362
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dalessandro, E.; Ferraro, F. R.; Massari, D.
2013-12-01
We used high-quality images acquired with the Wide Field Camera 3 on board the Hubble Space Telescope to probe the blue straggler star (BSS) population of the galactic globular cluster NGC 362. We have found two distinct sequences of BSSs: this is the second case, after M30, where such a feature has been observed. Indeed, the BSS location, their extension in magnitude and color, and their radial distribution within the cluster nicely resemble those observed in M30, thus suggesting that the same interpretative scenario can be applied: the red BSS sub-population is generated by mass-transfer binaries, the blue one bymore » collisions. The discovery of four new W UMa stars, three of which lie along the red BSS sequence, further supports this scenario. We also found that the inner portion of the density profile deviates from a King model and is well reproduced by either a mild power law (α ∼ –0.2) or a double King profile. This feature supports the hypothesis that the cluster is currently undergoing the core-collapse phase. Moreover, the BSS radial distribution shows a central peak and monotonically decreases outward without any evidence of an external rising branch. This evidence is a further indication of the advanced dynamical age of NGC 362; in fact, together with M30, NGC 362 belongs to the family of dynamically old clusters (Family III) in the 'dynamical clock' classification proposed by Ferraro et al. The observational evidence presented here strengthens the possible connection between the existence of a double BSS sequence and a quite advanced dynamical status of the parent cluster.« less
The JCMT Gould Belt Survey: Dense Core Clusters in Orion B
NASA Astrophysics Data System (ADS)
Kirk, H.; Johnstone, D.; Di Francesco, J.; Lane, J.; Buckle, J.; Berry, D. S.; Broekhoven-Fiene, H.; Currie, M. J.; Fich, M.; Hatchell, J.; Jenness, T.; Mottram, J. C.; Nutter, D.; Pattle, K.; Pineda, J. E.; Quinn, C.; Salji, C.; Tisi, S.; Hogerheijde, M. R.; Ward-Thompson, D.; The JCMT Gould Belt Survey Team
2016-04-01
The James Clerk Maxwell Telescope Gould Belt Legacy Survey obtained SCUBA-2 observations of dense cores within three sub-regions of Orion B: LDN 1622, NGC 2023/2024, and NGC 2068/2071, all of which contain clusters of cores. We present an analysis of the clustering properties of these cores, including the two-point correlation function and Cartwright’s Q parameter. We identify individual clusters of dense cores across all three regions using a minimal spanning tree technique, and find that in each cluster, the most massive cores tend to be centrally located. We also apply the independent M-Σ technique and find a strong correlation between core mass and the local surface density of cores. These two lines of evidence jointly suggest that some amount of mass segregation in clusters has happened already at the dense core stage.
CHANDRA/ACIS-I STUDY OF THE X-RAY PROPERTIES OF THE NGC 6611 AND M16 STELLAR POPULATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guarcello, M. G.; Drake, J. J.; Caramazza, M.
2012-07-10
Mechanisms regulating the origin of X-rays in young stellar objects and the correlation with their evolutionary stage are under debate. Studies of the X-ray properties in young clusters allow us to understand these mechanisms. One ideal target for this analysis is the Eagle Nebula (M16), with its central cluster NGC 6611. At 1750 pc from the Sun, it harbors 93 OB stars, together with a population of low-mass stars from embedded protostars to disk-less Class III objects, with age {<=}3 Myr. We study an archival 78 ks Chandra/ACIS-I observation of NGC 6611 and two new 80 ks observations of themore » outer region of M16, one centered on the Column V and the other on a region of the molecular cloud with ongoing star formation. We detect 1755 point sources with 1183 candidate cluster members (219 disk-bearing and 964 disk-less). We study the global X-ray properties of M16 and compare them with those of the Orion Nebula Cluster. We also compare the level of X-ray emission of Class II and Class III stars and analyze the X-ray spectral properties of OB stars. Our study supports the lower level of X-ray activity for the disk-bearing stars with respect to the disk-less members. The X-ray luminosity function (XLF) of M16 is similar to that of Orion, supporting the universality of the XLF in young clusters. Eighty-five percent of the O stars of NGC 6611 have been detected in X-rays. With only one possible exception, they show soft spectra with no hard components, indicating that mechanisms for the production of hard X-ray emission in O stars are not operating in NGC 6611.« less
NASA Astrophysics Data System (ADS)
Sirianni, Marco; Nota, Antonella; De Marchi, Guido; Leitherer, Claus; Clampin, Mark
2002-11-01
As part of a larger program aimed at investigating the universality of the initial mass function (IMF) at low masses in a number of young clusters in the LMC and SMC, we present a new study of the low end of the stellar IMF of NGC 330, the richest young star cluster in the SMC, from deep broadband V and I images obtained with HST/WFPC2. We detect stars down to a limiting magnitude of m555=24.9, which corresponds to stellar masses of ~0.8Msolar at the distance of the SMC. A comparison of the cluster color-magnitude diagram with theoretical evolutionary tracks indicates an age of ~30 Myr for NGC 330, in agreement with previous published results. We derive the cluster luminosity function, which we correct for background contamination using an adjacent SMC field, and construct the mass function in the 1-7Msolar mass range. Given the young cluster age, the MF can well approximate the IMF. We find that the IMF in the central cluster regions (within 30") is well reproduced by a power law with a slope consistent with Salpeter's. In addition, the richness of the cluster allows us to investigate the IMF as a function of radial distance from the center. We find that the IMF becomes steeper at increasing distances from the cluster center (between 30" and 90"), with the number of massive stars (>5Msolar) decreasing from the core to the outskirts of the cluster 5 times more rapidly than the less-massive objects (~=1Msolar). We believe the observed mass segregation to be of a primordial nature rather than dynamical since the age of NGC 330 is 10 times shorter than the expected relaxation time of the cluster. Based on observations with the NASA/ESA Hubble Space Telescope obtained at the Space Telescope Science Institute, which is operated by AURA for NASA under contract NAS5-26555.
Kron 3: a fourth intermediate age cluster in the SMC with evidence of multiple populations
NASA Astrophysics Data System (ADS)
Hollyhead, K.; Lardo, C.; Kacharov, N.; Bastian, N.; Hilker, M.; Rejkuba, M.; Koch, A.; Grebel, E. K.; Georgiev, I.
2018-05-01
We present the results of a spectroscopic study of the intermediate age (≈6.5 Gyr) massive cluster Kron 3 in the Small Magellanic Cloud. We measure CN and CH band strengths (at ≃3839 and 4300 Å, respectively) using VLT FORS2 spectra of 16 cluster members and find a sub-population of five stars enriched in nitrogen. We conclude that this is evidence for multiple populations in Kron 3, the fourth intermediate age cluster, after Lindsay 1, NGC 416 and NGC 339 (ages 6-8 Gyr), to display this phenomenon originally thought to be a unique characteristic of old globular clusters. At ≈6.5 Gyr this is one of the youngest clusters with multiple populations, indicating that the mechanism responsible for their onset must operate until a redshift of at least 0.75, much later than the peak of globular cluster formation at redshift ˜3.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merchant Boesgaard, Ann; Lum, Michael G.; Deliyannis, Constantine P., E-mail: boes@ifa.hawaii.edu, E-mail: mikelum@ifa.hawaii.edu, E-mail: cdeliyan@indiana.edu
The study of star clusters has advanced our understanding of stellar evolution, Galactic chemical evolution, and nucleosynthesis. Here we investigate the composition of turn-off stars in the intriguing open cluster, NGC 6791, which is old, but super-metal-rich with high-resolution (R = 46,000) Keck/HIRES spectra. We find [Fe/H] = +0.30 ± 0.02 from measurements of some 40 unblended, unsaturated lines of both Fe I and Fe II in eight turn-off stars. Our O abundances come from the O I triplet near 7774 Å and we perform a differential analysis relative to the Sun from our Lunar spectrum also obtained with Keck/HIRES. The O results aremore » corrected for small nLTE effects. We find consistent ratios of [O/Fe]{sub n} with a mean of –0.06 ± 0.02. This is low with respect to field stars that are also both old and metal-rich and continue the trend of decreasing [O/Fe] with increasing [Fe/H]. The small range in our oxygen abundances is consistent with a single population of stars. Our results for the alpha elements [Mg/Fe], [Si/Fe], [Ca/Fe], and [Ti/Fe] are near solar and compare well with those of the old, metal-rich field stars. The two Fe-peak elements, Cr and Ni, are consistent with Fe. These turn-off-star abundances provide benchmark abundances to investigate whether there are any observable abundance differences with the giants that might arise from nuclear-burning and dredge-up processes. Determinations of upper limits were found for Li by spectrum synthesis and are consistent with the upper limits in similar stars in the relatively old, super-metal-rich cluster NGC 6253. Our results support the prediction from standard theory that higher-metallicity stars deplete more Li. Probably no stars in NGC 6791 have retained their initial Li.« less
The low-mass star and disk populations in NGC 6611
NASA Astrophysics Data System (ADS)
Oliveira, Joana
2005-07-01
The aim of our observational program is to find empirical answers to two major questions. Do regions of high-mass star formation also produce lots of solar- and low-mass stars, i.e. is the low-mass IMF unaffected by high-mass siblings? Can low-mass stars in hostile environments retain circumstellar disks? We present results of our survey of NGC 6611, a massive cluster with an age of approximately 2 Myr which is currently ionizing the Eagle nebula. This cluster contains a dozen O-stars that emit 10 times more ionizing radiation than the Trapezium, providing a challenging environment for their lower-mass siblings. Our dataset consists of wide field optical and near infrared imaging, intermediate resolution spectroscopy (ESO-VLT) and deep L-band photometry. We have photometrically selected solar- and low-mass stars, placed them on the HR diagram and determined the IMF over an area sufficient to deal with mass segregation. We show that the IMF in NGC6611 is similar to that of the Orion Nebula Cluster down to 0.5Msun. Using K-L indices we search for colour excesses that betray the presence of circumstellar material and study what fraction of solar-mass stars still possess disks as a function of age and proximity to the massive stars. By comparing the disk frequency in NGC6611 with similarly aged but quieter regions, we find no evidence that the harsher environment of NGC6611 significantly hastens disk dissipation. Apparently the massive stars in NGC6611 have no global effect on the probability of low-mass star formation or disk retention. We have an approved HST program that will allows us to investigate the very low-mass and brown dwarf populations in NGC6611. And we complement our IR imaging with Spitzer/ORAC data, extending the area of our ground-based survey.
VizieR Online Data Catalog: Carbon in red giants in GCs and dSph galaxies (Kirby+, 2015)
NASA Astrophysics Data System (ADS)
Kirby, E. N.; Guo, M.; Zhang, A. J.; Deng, M.; Cohen, J. G.; Guhathakurta, P.; Shetrone, M. D.; Lee, Y. S.; Rizzi, L.
2015-07-01
We obtained Keck/DEIMOS spectra of the carbon G band in red giants in Milky Way (MW) globular clusters (GCs) and dwarf spheroidal galaxies (dSphs) between 2011 Jul 29 and 2012 Mar 19. The GCs are NGC 2419, NGC 4590 (M68), and NGC 7078 (M15). The dSphs are Sculptor, Fornax, Ursa Minor, and Draco. See table 1. (3 data files).
NASA Technical Reports Server (NTRS)
Drissen, Laurent; Moffat, Anthony F. J.; Shara, Michael M.
1993-01-01
We present images of NGC 595 and NGC 604, the most massive giant H II regions in M33, obtained with the Planetary Camera aboard the HST in order to study their WR population. Fourteen WR and/or Of candidates are detected in NGC 604, and eleven in NGC 595. All previously claimed 'superluminous' WR stars are found to be tight (diameter less than 3 pc) stellar aggregates containing one (or sometimes more) normal WR star. As suspected from ground-based data, the WR/O number ratio is significantly higher in NGC 595 (about 0.3) than in NGC 604 (about 0.1). The WR stars may be major contributors to the output of mechanical power and energy into the interstellar medium in both clusters. Over the observable initial mass range, the initial mass functions (IMFs) have similar slopes. These IMFs are somewhat flatter than those generally derived for massive stars in the Galaxy or the Magellanic Clouds.
Sloshing in its cD halo: MUSE kinematics of the central galaxy NGC 3311 in the Hydra I cluster
NASA Astrophysics Data System (ADS)
Barbosa, C. E.; Arnaboldi, M.; Coccato, L.; Gerhard, O.; Mendes de Oliveira, C.; Hilker, M.; Richtler, T.
2018-01-01
Context. Early-type galaxies (ETGs) show a strong size evolution with redshift. This evolution is explained by fast "in-situ" star formation at high-z followed by a late mass assembly mostly driven by minor mergers that deposit stars primarily in the outer halo. Aims: We aim to identify the main structural components of the Hydra I cD galaxy NGC 3311 to investigate the connection between the central galaxy and the surrounding stellar halo. Methods: We produce maps of the line-of-sight velocity distribution (LOSVD) moments from a mosaic of MUSE pointings covering NGC 3311 out to 25 kpc. Combining deep photometric and spectroscopic data, we model the LOSVD maps using a finite mixture distribution, including four non-concentric components that are nearly isothermal spheroids, with different line-of-sight systemic velocities V, velocity dispersions σ, and small (constant) values of the higher order Gauss-Hermite moments h3 and h4. Results: The kinemetry analysis indicates that NGC 3311 is classified as a slow rotator, although the galaxy shows a line-of-sight velocity gradient along the photometric major axis. The comparison of the correlations between h3 and h4 with V/σ with simulated galaxies indicates that NGC 3311 assembled mainly through dry mergers. The σ profile rises to ≃ 400 km s-1 at 20 kpc, a significant fraction (0.55) of the Hydra I cluster velocity dispersion, indicating that stars there were stripped from progenitors orbiting in the cluster core. The finite mixture distribution modeling supports three inner components related to the central galaxy and a fourth component with large effective radius (51 kpc) and velocity dispersion (327 km s-1) consistent with a cD envelope. We find that the cD envelope is offset from the center of NGC 3311 both spatially (8.6 kpc) and in velocity (ΔV = 204 km s-1), but coincides with the cluster core X-ray isophotes and the mean velocity of core galaxies. Also, the envelope contributes to the broad wings of the LOSVD measured by large h4 values within 10 kpc. Conclusions: The cD envelope of NGC 3311 is dynamically associated with the cluster core, which in Hydra I is in addition displaced from the cluster center, presumably due to a recent subcluster merger. The combined datacubes are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/609/A78
Timing and searching millisecond pulsars in globular clusters
NASA Astrophysics Data System (ADS)
D'Amico, Nichi; Possenti, Andrea; Manchester, Dick; Johnston, Simon; Kramer, Michael; Sarkissian, John; Lyne, Andrew; Burgay, Marta; Corongiu, Alessandro; Camilo, Fernando; Bailes, Matthew
2009-10-01
Timing the dozen pulsars discovered in P303 is ensuring high quality results: (a) the peculiarities (in position or projected acceleration) of all the 5 millisecond pulsars in NGC6752 suggested the presence of non thermal dynamics in the core, perhaps due to black-holes of intermediate mass; (b) the eclipsing pulsar in NGC6397 is a stereotype for studying the late evolution of exotic binaries. We propose to continue our timing project focusing mostly on NGC6752 at 20cm (in order to measure additional parameters useful to constrain the existence of a black-hole) and NGC6397 at 10cm (for studying the eclipse region and the orbital secular evolution). We also request time for performing pilot observations for a new deeper than ever search for millisecond pulsars in a subset of suitable clusters. This revamped search (as well as the requested timing observations) will exploit the new back-ends (APSR and DFB4) now available at Parkes.
A PSF-based approach to Kepler/K2 data - II. Exoplanet candidates in Praesepe (M 44)
NASA Astrophysics Data System (ADS)
Libralato, M.; Nardiello, D.; Bedin, L. R.; Borsato, L.; Granata, V.; Malavolta, L.; Piotto, G.; Ochner, P.; Cunial, A.; Nascimbeni, V.
2016-12-01
In this work, we keep pushing K2 data to a high photometric precision, close to that of the Kepler main mission, using a point-spread function (PSF)-based, neighbour-subtraction technique, which also overcome the dilution effects in crowded environments. We analyse the open cluster M 44 (NGC 2632), observed during the K2 Campaign 5, and extract light curves of stars imaged on module 14, where most of the cluster lies. We present two candidate exoplanets hosted by cluster members and five by field stars. As a by-product of our investigation, we find 1680 eclipsing binaries and variable stars, 1071 of which are new discoveries. Among them, we report the presence of a heartbeat binary star. Together with this work, we release to the community a catalogue with the variable stars and the candidate exoplanets found, as well as all our raw and detrended light curves.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carraro, Giovanni; Vázquez, Rubén A.; Costa, Edgardo
In the third Galactic quadrant (180{sup ∘}⩽l⩽270{sup ∘}) of the Milky Way, the Galactic thin disk exhibits a significant warp—shown both by gas and young stars—bending down a few kiloparsecs below the formal Galactic plane (b=0{sup ∘}). This warp shows its maximum at l∼240{sup ∘}, in the direction of the Canis Major constellation. In a series of papers, we have traced the detailed structure of this region using open star clusters, putting particular emphasis on the spiral structure of the outer disk. We noted a conspicuous accumulation of young star clusters within 2–3 kpc from the Sun and close tomore » b = 0°, which we interpreted as the continuation of the Local (Orion) arm toward the outer disk. While most clusters (and young stars in their background) closely follow the warp of the disk, our decade-old survey of the spiral structure of this region led us to identify three clusters, Haffner 18 (1 and 2) and Haffner 19, which remain very close to b = 0° and lie at distances (4.5, ∼8.0, and 6.4 kpc) where most of the material is already significantly warped. Here, we report on a search for clusters that share the same properties as Haffner 18 and 19, and investigate the possible reasons for such an unexpected occurrence. We present UBVRI photometry of five young clusters, namely NGC 2345, NGC 2374, Trumpler 9, Haffner 20, and Haffner 21, which also lie close to the formal Galactic plane. With the exception of Haffner 20, in the background of these clusters we detected young stars that appear close to b=0{sup ∘} and are located at distances up to ∼8 kpc from the Sun, thus deviating significantly from the warp. These populations define a structure that distributes over almost the entire third Galactic quadrant. We discuss this structure in the context of a possible thin disk flaring, similar to the Galactic thick disk.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandage, A.
The galactic disk is a dissipative structure and must, therefore be younger than the halo if galaxy formation generally proceeds by collapse. Just how much younger the oldest stars in the galactic disk are than the oldest halo stars remains an open question. A fast collapse (on a time scale no longer than the rotation period of the extended protogalaxy) permits an age gap of the order of approximately 10 to the 9th power years. A slow collapse, governed by the cooling rate of the partially pressure supported falling gas that formed into what is now the thick stellar disk,more » permits a longer age gap, claimed by some to be as long as 6 Gyr. Early methods of age dating the oldest components of the disk contain implicit assumptions concerning the details of the age-metallicity relation for stars in the solar neighborhood. The discovery that this relation for open clusters outside the solar circle is different that in the solar neighborhood (Geisler 1987), complicates the earlier arguments. The oldest stars in the galactic disk are at least as old as NGC 188. The new data by Janes on NGC 6791, shown first at this conference, suggest a disk age of at least 12.5 Gyr, as do data near the main sequence termination point of metal rich, high proper motion stars of low orbital eccentricity. Hence, a case can still be made that the oldest part of the galactic thick disk is similar in age to the halo globular clusters, if their ages are the same as 47 Tuc.« less
NASA Technical Reports Server (NTRS)
Sandage, Allan
1988-01-01
The galactic disk is a dissipative structure and must, therefore be younger than the halo if galaxy formation generally proceeds by collapse. Just how much younger the oldest stars in the galactic disk are than the oldest halo stars remains an open question. A fast collapse (on a time scale no longer than the rotation period of the extended protogalaxy) permits an age gap of the order of approximately 10 to the 9th power years. A slow collapse, governed by the cooling rate of the partially pressure supported falling gas that formed into what is now the thick stellar disk, permits a longer age gap, claimed by some to be as long as 6 Gyr. Early methods of age dating the oldest components of the disk contain implicit assumptions concerning the details of the age-metallicity relation for stars in the solar neighborhood. The discovery that this relation for open clusters outside the solar circle is different that in the solar neighborhood (Geisler 1987), complicates the earlier arguments. The oldest stars in the galactic disk are at least as old as NGC 188. The new data by Janes on NGC 6791, shown first at this conference, suggest a disk age of at least 12.5 Gyr, as do data near the main sequence termination point of metal rich, high proper motion stars of low orbital eccentricity. Hence, a case can still be made that the oldest part of the galactic thick disk is similar in age to the halo globular clusters, if their ages are the same as 47 Tuc.
Constraints on Helium Enhancement in the Globular Cluster M3 (NGC 5272): The Horizontal Branch Test
NASA Technical Reports Server (NTRS)
Catelan, M.; Grundahl, F.; Sweigart, A. V.; Valcarce, A. A. R.; Cortes, C.
2007-01-01
It has recently been suggested that the presence of multiple populations showing various amounts of helium enhancement is a common feature among globular star clusters. In this scenario, such a helium enhancement would be particularly apparent in the enhanced luminosity of thc blue horizontal branch (HB) stars compared to the red HB stars. In this Letter, wc test this scenario in the case of the Galactic globular cluster M3 (NGC 5272), using high-precision Stromgren photometry and spectroscopic gravities for blue HB stars. We find that any helium enhancement among the cluster's blue HB stars must be significantly less than I%, thus ruling out the much higher helium enhancements that have been proposed in the literature.
AGES OF STAR CLUSTERS IN THE TIDAL TAILS OF MERGING GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mulia, A. J.; Chandar, R.; Whitmore, B. C.
We study the stellar content in the tidal tails of three nearby merging galaxies, NGC 520, NGC 2623, and NGC 3256, using BVI imaging taken with the Advanced Camera for Surveys on board the Hubble Space Telescope. The tidal tails in all three systems contain compact and fairly massive young star clusters, embedded in a sea of diffuse, unresolved stellar light. We compare the measured colors and luminosities with predictions from population synthesis models to estimate cluster ages and find that clusters began forming in tidal tails during or shortly after the formation of the tails themselves. We find amore » lack of very young clusters (≤10 Myr old), implying that eventually star formation shuts off in the tails as the gas is used up or dispersed. There are a few clusters in each tail with estimated ages that are older than the modeled tails themselves, suggesting that these may have been stripped out from the original galaxy disks. The luminosity function of the tail clusters can be described by a single power-law, dN/dL ∝ L{sup α}, with −2.6 < α < −2.0. We find a stellar age gradient across some of the tidal tails, which we interpret as a superposition of (1) newly formed stars and clusters along the dense center of the tail and (2) a sea of broadly distributed, older stellar material ejected from the progenitor galaxies.« less
High-resolution Spectroscopic Abundances of Red Giant Branch Stars in NGC 6681
DOE Office of Scientific and Technical Information (OSTI.GOV)
O’Malley, Erin M.; Chaboyer, Brian; Knaizev, Alexei
We obtain high-resolution spectra of nine red giant branch stars in NGC 6681 and perform the first detailed abundance analysis of stars in this cluster. We confirm cluster membership for these stars based on consistent radial velocities of 214.5 ± 3.7 km s{sup −1} and find a mean [Fe/H] = −1.63 ± 0.07 dex and [ α /Fe] = 0.42 ± 0.11 dex. Additionally, we confirm the existence of a Na–O anti-correlation in NGC 6681 and identify two populations of stars with unique abundance trends. With the use of HST photometry from Sarajedini et al. and Piotto et al. wemore » are able to identify these two populations as discrete sequences in the cluster CMD. Although we cannot confirm the nature of the polluter stars responsible for the abundance differences in these populations, these results do help put constraints on possible polluter candidates.« less
NASA Astrophysics Data System (ADS)
Kalirai, Jasonjot S.; Bergeron, P.; Hansen, Brad M. S.; Kelson, Daniel D.; Reitzel, David B.; Rich, R. Michael; Richer, Harvey B.
2007-12-01
We present the first detailed study of the properties (temperatures, gravities, and masses) of the NGC 6791 white dwarf population. This unique stellar system is both one of the oldest (8 Gyr) and most metal-rich ([Fe/H]~+0.4) open clusters in our Galaxy and has a color-magnitude diagram (CMD) that exhibits both a red giant clump and a much hotter extreme horizontal branch. Fitting the Balmer lines of the white dwarfs in the cluster using Keck/LRIS spectra suggests that most of these stars are undermassive,
Main-Sequence O Stars in NGC 6231: Enhanced Winds
NASA Astrophysics Data System (ADS)
Morrison, Nancy D.
Three late O-type main-sequence stars in the open cluster NGC 6231 will be observed with IUE at high dispersion, and their C IV and N V resonance-line profiles will be studied. From low-dispersion IUE observations, 10 members of the cluster have been found to have anomalously strong C IV resonance lines for their spectral types. Massa, Savage, and Cassinelli (1984) observed two of these "UV peculiar" stars (spectral types B0.5 V and B1 V) at high dispersion. They found that the C IV lines have a strong, broad, shortward-shifted absorption component, which suggests a greatly enhanced wind relative to the average for the spectral type. They proposed that the enhancement is due to an overabundance of C. Recently, however, Grigsby, Gordon, Morrison, and Zimba (1992) showed from optical spectra that these stars have normal C abundances. Thus, there is not yet a convincing explanation for these strikingly anomalous stellar winds. By extending the temperature range over which the phenomenon has been studied at high dispersion, however, we expect to gain new physical information. From wind modeling of the line profiles, we will derive mass-loss rates and terminal velocities, and we will test whether these winds are described by radiation-driven wind theory.
ELM: an Algorithm to Estimate the Alpha Abundance from Low-resolution Spectra
NASA Astrophysics Data System (ADS)
Bu, Yude; Zhao, Gang; Pan, Jingchang; Bharat Kumar, Yerra
2016-01-01
We have investigated a novel methodology using the extreme learning machine (ELM) algorithm to determine the α abundance of stars. Applying two methods based on the ELM algorithm—ELM+spectra and ELM+Lick indices—to the stellar spectra from the ELODIE database, we measured the α abundance with a precision better than 0.065 dex. By applying these two methods to the spectra with different signal-to-noise ratios (S/Ns) and different resolutions, we found that ELM+spectra is more robust against degraded resolution and ELM+Lick indices is more robust against variation in S/N. To further validate the performance of ELM, we applied ELM+spectra and ELM+Lick indices to SDSS spectra and estimated α abundances with a precision around 0.10 dex, which is comparable to the results given by the SEGUE Stellar Parameter Pipeline. We further applied ELM to the spectra of stars in Galactic globular clusters (M15, M13, M71) and open clusters (NGC 2420, M67, NGC 6791), and results show good agreement with previous studies (within 1σ). A comparison of the ELM with other widely used methods including support vector machine, Gaussian process regression, artificial neural networks, and linear least-squares regression shows that ELM is efficient with computational resources and more accurate than other methods.
Convective-core Overshoot and Suppression of Oscillations: Constraints from Red Giants in NGC 6811
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arentoft, T.; Brogaard, K.; Jessen-Hansen, J.
Using data from the NASA spacecraft Kepler , we study solar-like oscillations in red giant stars in the open cluster NGC 6811. We determine oscillation frequencies, frequency separations, period spacings of mixed modes, and mode visibilities for eight cluster giants. The oscillation parameters show that these stars are helium-core-burning red giants. The eight stars form two groups with very different oscillation power spectra; the four stars with the lowest Δ ν values display rich sets of mixed l = 1 modes, while this is not the case for the four stars with higher Δ ν . For the four starsmore » with lowest Δ ν , we determine the asymptotic period spacing of the mixed modes, Δ P , which together with the masses we derive for all eight stars suggest that they belong to the so-called secondary clump. Based on the global oscillation parameters, we present initial theoretical stellar modeling that indicates that we can constrain convective-core overshoot on the main sequence and in the helium-burning phase for these ∼2 M {sub ⊙} stars. Finally, our results indicate less mode suppression than predicted by recent theories for magnetic suppression of certain oscillation modes in red giants.« less
BULGELESS GIANT GALAXIES CHALLENGE OUR PICTURE OF GALAXY FORMATION BY HIERARCHICAL CLUSTERING ,
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kormendy, John; Cornell, Mark E.; Drory, Niv
2010-11-01
To better understand the prevalence of bulgeless galaxies in the nearby field, we dissect giant Sc-Scd galaxies with Hubble Space Telescope (HST) photometry and Hobby-Eberly Telescope (HET) spectroscopy. We use the HET High Resolution Spectrograph (resolution R {identical_to} {lambda}/FWHM {approx_equal} 15, 000) to measure stellar velocity dispersions in the nuclear star clusters and (pseudo)bulges of the pure-disk galaxies M 33, M 101, NGC 3338, NGC 3810, NGC 6503, and NGC 6946. The dispersions range from 20 {+-} 1 km s{sup -1} in the nucleus of M 33 to 78 {+-} 2 km s{sup -1} in the pseudobulge of NGC 3338.more » We use HST archive images to measure the brightness profiles of the nuclei and (pseudo)bulges in M 101, NGC 6503, and NGC 6946 and hence to estimate their masses. The results imply small mass-to-light ratios consistent with young stellar populations. These observations lead to two conclusions. (1) Upper limits on the masses of any supermassive black holes are M{sub .} {approx}< (2.6 {+-} 0.5) x 10{sup 6} M{sub sun} in M 101 and M{sub .} {approx}< (2.0 {+-} 0.6) x 10{sup 6} M{sub sun} in NGC 6503. (2) We show that the above galaxies contain only tiny pseudobulges that make up {approx}<3% of the stellar mass. This provides the strongest constraints to date on the lack of classical bulges in the biggest pure-disk galaxies. We inventory the galaxies in a sphere of radius 8 Mpc centered on our Galaxy to see whether giant, pure-disk galaxies are common or rare. We find that at least 11 of 19 galaxies with V{sub circ} > 150 km s{sup -1}, including M 101, NGC 6946, IC 342, and our Galaxy, show no evidence for a classical bulge. Four may contain small classical bulges that contribute 5%-12% of the light of the galaxy. Only four of the 19 giant galaxies are ellipticals or have classical bulges that contribute {approx}1/3 of the galaxy light. We conclude that pure-disk galaxies are far from rare. It is hard to understand how bulgeless galaxies could form as the quiescent tail of a distribution of merger histories. Recognition of pseudobulges makes the biggest problem with cold dark matter galaxy formation more acute: How can hierarchical clustering make so many giant, pure-disk galaxies with no evidence for merger-built bulges? Finally, we emphasize that this problem is a strong function of environment: the Virgo cluster is not a puzzle, because more than 2/3 of its stellar mass is in merger remnants.« less
Deep HST Imaging In 47 Tuc And NGC 6397: Helium-core White Dwarfs In The Core Of NGC 6397
NASA Astrophysics Data System (ADS)
Goldsbury, Ryan; Woodley, K.; Anderson, J.; Dotter, A.; Fahlman, G.; Hansen, B.; Hurley, J.; Kalirai, J.; King, I.; Rich, R. M.; Richer, H.; Shara, M.; Stetson, P.; Zurek, D.
2011-01-01
We present a detailed analysis of a population of helium-core white dwarfs in the core of the Galactic globular cluster NGC 6397. We analyze the radial distribution of these objects compared to the distributions of various other populations of known mass within the this cluster. From this comparison we are able to determine the average mass of the helium-core white dwarfs and their possible binary companions. We find that their distribution is inconsistent with the expected mass range of low-mass white dwarfs, but may be explained by the presence of massive companions to these objects. We also analyze the spectral energy distributions of the He-core white dwarfs to place constraints on the nature of their unresolved partners.
CORS BAADE-WESSELINK DISTANCE TO THE LMC NGC 1866 BLUE POPULOUS CLUSTER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molinaro, R.; Ripepi, V.; Marconi, M.
2012-03-20
We used optical, near-infrared photometry, and radial velocity data for a sample of 11 Cepheids belonging to the young LMC blue populous cluster NGC 1866 to estimate their radii and distances on the basis of the CORS Baade-Wesselink method. This technique, based on an accurate calibration of surface brightness as a function of (U - B), (V - K) colors, allows us to estimate, simultaneously, the linear radius and the angular diameter of Cepheid variables, and consequently to derive their distance. A rigorous error estimate on radii and distances was derived by using Monte Carlo simulations. Our analysis gives amore » distance modulus for NGC 1866 of 18.51 {+-} 0.03 mag, which is in agreement with several independent results.« less
Picture processing analysis of the optical structure of NGC 5128 /Centaurus A/
NASA Technical Reports Server (NTRS)
Dufour, R. J.; Harvel, C. A.; Martins, D. M.; Schiffer, F. H., III; Talent, D. L.; Wells, D. C.; Van Den Bergh, S.; Talbot, R. J., Jr.
1979-01-01
Results are presented for a detailed study of the peculiar elliptical galaxy NGC 5128 (Cen A), based on computer video analysis of several photographic plates of exceptional quality reduced to the standard UBV system. The picture-processing results and the measured properties of the elliptical and gaseous-disk components of NGC 5128 are examined, along with the distribution, spectral characteristics, and chemical composition of the H II regions in the disk. The data show that NGC 5128 consists of a giant E2 galaxy containing a significant amount of gas and dust situated predominantly in an equatorial disk where vigorous star formation is occurring. Reasons why NGC 5128 is so different from giant ellipticals in clusters are considered.
The Environmental Impact of Intra-Cluster Medium on the Interstellar Medium in Early Type Galaxies
NASA Technical Reports Server (NTRS)
Trinchieri, Ginevra
1993-01-01
Draft versions of three articles submitted for publication are presented. The first two articles address high resolution X-ray images of early type galaxies observed with the ROSAT HRI and PSPC. Data for NGC 1553 and NGC 5846 indicate that the emission is highly irregular, with interesting features at different scales. The gas temperatures also vary both with the galactocentric radius and in correspondence to regions of higher emission and denser material. Strikingly similar features are observed in the X-ray and H-alpha morphologies of NGC 1553 and NGC 5846, while smooth, regular isophotes are observed in NGC 4649 at both wavelengths. The third article addresses ROSAT PSPC observations of 5 X-ray bright early type galaxies.
Young star clusters in circumnuclear starburst rings
NASA Astrophysics Data System (ADS)
de Grijs, Richard; Ma, Chao; Jia, Siyao; Ho, Luis C.; Anders, Peter
2017-03-01
We analyse the cluster luminosity functions (CLFs) of the youngest star clusters in two galaxies exhibiting prominent circumnuclear starburst rings. We focus specifically on NGC 1512 and NGC 6951, for which we have access to Hα data that allow us to unambiguously identify the youngest sample clusters. To place our results on a firm statistical footing, we first explore in detail a number of important technical issues affecting the process from converting the observational data into the spectral energy distributions of the objects in our final catalogues. The CLFs of the young clusters in both galaxies exhibit approximate power-law behaviour down to the 90 per cent observational completeness limits, thus showing that star cluster formation in the violent environments of starburst rings appears to proceed similarly as that elsewhere in the local Universe. We discuss this result in the context of the density of the interstellar medium in our starburst-ring galaxies.
An X-ray Investigation of the NGC 346 Field. 1; The LBV HD 5980 and the NGC 346 Cluster
NASA Technical Reports Server (NTRS)
Naze, Y.; Hartwell, J. M.; Stevens, I. R.; Corcoran, M. F.; Chu, Y.-H.; Koenigsberger, G.; Moffat, A. F. J.; Niemela, V. S.
2002-01-01
We present results from a Chandra observation of the NGC 346 star formation region, which contains numerous massive stars, and is related to N66, the largest H(II) region of the SMC (Small Magellanic Cloud). In this first paper, we will focus on the characteristics of the main objects of the field. The NGC 346 cluster itself shows only relatively faint X-ray emission (with L((sub X)(sup unabs)) is approximately 1.5 x 10(exp 34) erg s(exp -1), tightly correlated with the core of the cluster. In the field also lies HD 5980, a LBV (Luminous Blue Variable) star in a binary (or triple system) that is detected for the first time at X-ray energies. The star is X-ray bright, with an unabsorbed luminosity of L((sub X)(sup unabs)) is approximately 1.7 x 10(exp 34) erg s(exp -1), but needs to be monitored further to investigate its X-ray variability over a complete orbital cycle. The high X-ray luminosity may be associated either with colliding winds in the binary system or with the 1994 eruption. HD 5980 is surrounded by a region of diffuse X-ray emission, which may be a superimposed supernova remnant.
Another brick in understanding chemical and kinematical properties of BSSs: NGC 6752
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lovisi, L.; Mucciarelli, A.; Dalessandro, E.
2013-11-20
We used high-resolution spectra acquired with the multifiber facility FLAMES at the Very Large Telescope of the European Southern Observatory to investigate the chemical and kinematical properties of a sample of 22 blue straggler stars (BSSs) and 26 red giant branch stars in the nearby globular cluster NGC 6752. We measured radial and rotational velocities and Fe, O, and C abundances. According to radial velocities, metallicity, and proper motions, we identified 18 BSSs as likely cluster members. We found that all the BSSs rotate slowly (less than 40 km s{sup –1}), similar to the findings in 47 Tucanae, NGC 6397,more » and M30. The Fe abundance analysis reveals the presence of three BSSs affected by radiative levitation (showing [Fe/H] significantly higher than that measured in 'normal' cluster stars), confirming that element transport mechanisms occur in the photosphere of BSSs hotter than ≅8000 K. Finally, BSS C and O abundances are consistent with those measured in dwarf stars. No C and O depletion ascribable to mass transfer processes has been found on the atmospheres of the studied BSSs (at odds with previous results for 47 Tucanae and M30), suggesting the collisional origin for BSSs in NGC 6752 or that the CO depletion is a transient phenomenon.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Yuanyuan; Kraft, Ralph P.; Nulsen, Paul
The intracluster medium (ICM), as a magnetized and highly ionized fluid, provides an ideal laboratory to study plasma physics under extreme conditions that cannot be achieved on Earth. NGC 1404 is a bright elliptical galaxy that is being gas stripped as it falls through the ICM of the Fornax Cluster. We use the new Chandra X-ray observations of NGC 1404 to study ICM microphysics. The interstellar medium of NGC 1404 is characterized by a sharp leading edge, 8 kpc from the Galaxy center, and a short downstream gaseous tail. Contact discontinuities are resolved on unprecedented spatial scales (0.″5 = 45 pc)more » due to the combination of the proximity of NGC 1404, the superb spatial resolution of Chandra , and the very deep (670 ks) exposure. At the leading edge, we observe sub-kiloparsec-scale eddies generated by Kelvin–Helmholtz instability (KHI) and put an upper limit of 5% Spitzer on the isotropic viscosity of the hot cluster plasma. We also observe mixing between the hot cluster gas and the cooler galaxy gas in the downstream stripped tail, which provides further evidence of a low viscosity plasma. The assumed ordered magnetic fields in the ICM ought to be smaller than 5 μ G to allow KHI to develop. The lack of an evident magnetic draping layer just outside the contact edge is consistent with such an upper limit.« less
VizieR Online Data Catalog: VR photometry for 914 stars in NGC 188 (Chen+, 2016)
NASA Astrophysics Data System (ADS)
Chen, X.; Deng, L.; de Grijs, R.; Zhang, X.; Xin, Y.; Wang, K.; Luo, C.; Yan, Z.; Tian, J.; Sun, J.; Liu, Q.; Zhou, Q.; Luo, Z.
2017-01-01
We observed the open cluster NGC188 for a total of 36 nights during two separate periods (2014 September 28-October 7: 2014 Sep 28, 2014 Oct 01, 2014 Oct 02, 2014 Oct 04, 2014 Oct 05, 2014 Oct 07; and 2016 January 13-March 10: 2016 Jan 13, 2016 Jan 14, 2016 Jan 15, 2016 Jan 20, 2016 Jan 22, 2016 Jan 23, 2016 Jan 25, 2016 Jan 26, 2016 Jan 27, 2016 Jan 28, 2016 Jan 29, 2016 Jan 30, 2016 Feb 02, 2016 Feb 03, 2016 Feb 04, 2016 Feb 05, 2016 Feb 06, 2016 Feb 07, 2016 Feb 09, 2016 Feb 14, 2016 Feb 17, 2016 Feb 19, 2016 Feb 22, 2016 Feb 24, 2016 Feb 25, 2016 Feb 27, 2016 Feb 28, 2016 Feb 29, 2016 Mar 05, 2016 Mar 07) using the 50cm Binocular Network telescope (50BiN) at the Qinghai Station of Purple Mountain Observatory (Chinese Academy of Sciences). The time-series light-curve observations in the Johnson V and R bands were obtained simultaneously using two Andor 2k*2k CCDs. The telescope's field of view is 20*20arcmin2, which is adequate for covering the central region of NGC188. (1 data file).
NASA Astrophysics Data System (ADS)
Karaali, S.; Gökçe, E. Yaz; Bilir, S.; Güçtekin, S. Tunçel
2014-07-01
We present two absolute magnitude calibrations for dwarfs based on colour-magnitude diagrams of Galactic clusters. The combination of the Mg absolute magnitudes of the dwarf fiducial sequences of the clusters M92, M13, M5, NGC 2420, M67, and NGC 6791 with the corresponding metallicities provides absolute magnitude calibration for a given (g - r)0 colour. The calibration is defined in the colour interval 0.25 ≤ (g - r)0 ≤ 1.25 mag and it covers the metallicity interval - 2.15 ≤ [Fe/H] ≤ +0.37 dex. The absolute magnitude residuals obtained by the application of the procedure to another set of Galactic clusters lie in the interval - 0.15 ≤ ΔMg ≤ +0.12 mag. The mean and standard deviation of the residuals are < ΔMg > = - 0.002 and σ = 0.065 mag, respectively. The calibration of the MJ absolute magnitude in terms of metallicity is carried out by using the fiducial sequences of the clusters M92, M13, 47 Tuc, NGC 2158, and NGC 6791. It is defined in the colour interval 0.90 ≤ (V - J)0 ≤ 1.75 mag and it covers the same metallicity interval of the Mg calibration. The absolute magnitude residuals obtained by the application of the procedure to the cluster M5 ([Fe/H] = -1.40 dex) and 46 solar metallicity, - 0.45 ≤ [Fe/H] ≤ +0.35 dex, field stars lie in the interval - 0.29 and + 0.35 mag. However, the range of 87% of them is rather shorter, - 0.20 ≤ ΔMJ ≤ +0.20 mag. The mean and standard deviation of all residuals are < ΔMJ > =0.05 and σ = 0.13 mag, respectively. The derived relations are applicable to stars older than 4 Gyr for the Mg calibration, and older than 2 Gyr for the MJ calibration. The cited limits are the ages of the youngest calibration clusters in the two systems.
NASA Astrophysics Data System (ADS)
Handberg, R.; Brogaard, K.; Miglio, A.; Bossini, D.; Elsworth, Y.; Slumstrup, D.; Davies, G. R.; Chaplin, W. J.
2017-11-01
We present an extensive peakbagging effort on Kepler data of ∼50 red giant stars in the open star cluster NGC 6819. By employing sophisticated pre-processing of the time series and Markov chain Monte Carlo techniques we extracted individual frequencies, heights and line widths for hundreds of oscillation modes. We show that the 'average' asteroseismic parameter δν02, derived from these, can be used to distinguish the stellar evolutionary state between the red giant branch (RGB) stars and red clump (RC) stars. Masses and radii are estimated using asteroseismic scaling relations, both empirically corrected to obtain self-consistency and agreement with independent measures of distance, and using updated theoretical corrections. Remarkable agreement is found, allowing the evolutionary state of the giants to be determined exclusively from the empirical correction to the scaling relations. We find a mean mass of the RGB stars and RC stars in NGC 6819 to be 1.61 ± 0.02 and 1.64 ± 0.02 M⊙, respectively. The difference ΔM = -0.03 ± 0.01 M⊙ is almost insensitive to systematics, suggesting very little RGB mass loss, if any. Stars that are outliers relative to the ensemble reveal overmassive members that likely evolved via mass transfer in a blue straggler phase. We suggest that KIC 4937011, a low-mass Li-rich giant, is a cluster member in the RC phase that experienced very high mass loss during its evolution. Such over- and undermassive stars need to be considered when studying field giants, since the true age of such stars cannot be known and there is currently no way to distinguish them from normal stars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Young Sun; Beers, Timothy C.; Prieto, Carlos Allende
We present a method for the determination of [{alpha}/Fe] ratios from low-resolution (R = 2000) SDSS/SEGUE stellar spectra. By means of a star-by-star comparison with degraded spectra from the ELODIE spectral library and with a set of moderately high-resolution (R = 15, 000) and medium-resolution (R = 6000) spectra of SDSS/SEGUE stars, we demonstrate that we are able to measure [{alpha}/Fe] from SDSS/SEGUE spectra (with S/N>20/1) to a precision of better than 0.1 dex, for stars with atmospheric parameters in the range T{sub eff} = [4500, 7000] K, log g = [1.5, 5.0], and [Fe/H] = [-1.4, +0.3], over themore » range [{alpha}/Fe] = [-0.1, +0.6]. For stars with [Fe/H] <-1.4, our method requires spectra with slightly higher signal-to-noise to achieve this precision (S/N>25/1). Over the full temperature range considered, the lowest metallicity star for which a confident estimate of [{alpha}/Fe] can be obtained from our approach is [Fe/H] {approx}-2.5; preliminary tests indicate that a metallicity limit as low as [Fe/H] {approx}-3.0 may apply to cooler stars. As a further validation of this approach, weighted averages of [{alpha}/Fe] obtained for SEGUE spectra of likely member stars of Galactic globular clusters (M15, M13, and M71) and open clusters (NGC 2420, M67, and NGC 6791) exhibit good agreement with the values of [{alpha}/Fe] from previous studies. The results of the comparison with NGC 6791 imply that the metallicity range for the method may extend to {approx}+0.5.« less
Hour-Scale Variability in NGC 663 and NGC 1960
NASA Astrophysics Data System (ADS)
Souza, Steven P.; Garcia Soto, Aylin; Wong, Hallee
2016-06-01
Since 2010 we have been monitoring massive emission-line (mainly Be) stars in young open clusters using narrowband imaging at Hα (656nm) and the nearby continuum (645nm) (Souza, Davis, and Teich 2013, BAAS. 45, PM354.22; Souza, Beltz-Mohrmann, and Sami 2014. JAAVSO, 42, 154). To supplement longer-timescale data taken at Williams College we obtained high-cadence observations, in both filters, of NGC 663 on the night of 12/10/15, and of NGC 1960 on the nights of 12/10/14, 1/23/15, 1/25/15, 11/11/15, and 12/13/15 at the 0.5m ARCSAT at Apache Point Observatory. After raw magnitude extraction using Aperture Photometry Tool (Laher et al. 2012, PASP, 124, 737), we used inhomogeneous ensemble photometry (Bhatti et al., 2010, ApJ Supp., 186, 233) to correct for transparency and seeing variations. The NGC 663 field is crowded; of 29 known Be stars in the observed field, 10 have nearby interferers. None of the remaining 19 Be stars showed significant variation during ~5.5 hours of observation. 1σ uncertainty estimates range from 0.02mag at R~10 to 0.15mag at R~14. To verify the observing and reduction procedure, we recovered hour-scale variability in known variables BY Cas (δ Cephei type, ~0.05mag decline) and V1155 Cas (β Cephei type, ~0.04mag amplitude). In NGC 1960, of 5 known and suspect Be stars observed, two not previously reported as variable (BD+34 1110 and USNOB1.0 1241-0103450) showed irregular variation on timescales of hours. In NGC 1960 we also report the incidental discovery of two non-Be suspect variables: a likely eclipsing binary (0.07mag), and a possible δ Scuti star (maximum amplitude ~0.02mag). We gratefully acknowledge support for student research from NSF grant AST-1005024 to the Keck Northeast Astronomy Consortium, and the Office of the Dean of Faculty and the DIII Research Funding Committee of Williams College. Based on observations obtained with Apache Point Observatory's 0.5-m Astrophysical Research Consortium Small Aperture Telescope.
HST Snapshot Study of Variable Stars in Globular Clusters: Inner Region of NGC 6441
NASA Technical Reports Server (NTRS)
Pritzl, Barton J.; Smith, Horace A.; Stetson, Peter B.; Catelan, Marcio; Sweigart, Allen V.; Layden, Andrew C.; Rich, R. Michael
2003-01-01
We present the results of a Hubble Space Telescope snapshot program to survey the inner region of the metal-rich globular cluster NGC 6441 for its variable stars. A total of 57 variable stars was found including 38 RR Lyrae stars, 6 Population II Cepheids, and 12 long period variables. Twenty-four of the RR Lyrae stars and all of the Population II Cepheids were previously undiscovered in ground-based surveys. Of the RR Lyrae stars observed in h s survey, 26 are pulsating in the fundamental mode with a mean period of 0.753 d and 12 are first-overtone mode pulsators with a mean period of 0.365 d. These values match up very well with those found in ground-based surveys. Combining all the available data for NGC 6441, we find mean periods of 0.759 d and 0.375 d for the RRab and RRc stars, respectively. We also find that the RR Lyrae in this survey are located in the same regions of a period-amplitude diagram as those found in ground-based surveys. The overall ratio of RRc to total RR Lyrae is 0.33. Although NGC 6441 is a metal-rich globular cluster and would, on that ground, be expected either to have few RR Lyrae stars, or to be an Oosterhoff type I system, its RR Lyrae more closely resemble those in Oosterhoff type II globular clusters. However, even compared to typical Oosterhoff type II systems, the mean period of its RRab stars is unusually long. We also derived I-band period-luminosity relations for the RR Lyrae stars. Of the six Population II Cepheids, five are of W Virginis type and one is a BL Herculis variable star. This makes NGC 6441, along with NGC 6388, the most metal-rich globular cluster known to contain these types of variable stars. Another variable, V118, may also be a Population II Cepheid given its long period and its separation in magnitude from the RR Lyrae stars. We examine the period-luminosity relation for these Population II Cepheids and compare it to those in other globular clusters and in the Large Magellanic Cloud. We argue that there does not appear to be a change in the period-luminosity relation slope between the BL Herculis and W Virginis stars, but that a change of slope does occur when the RV Tauri stars are added to the period-luminosity relation.
VizieR Online Data Catalog: RR Lyraes in NGC 6101 (Fitzgerald+, 2012)
NASA Astrophysics Data System (ADS)
Fitzgerald, M.; Criss, J.; Lukaszewicz, T.; Frew, D. J.; Catelan, M.; Woodward, S.; Danaia, L.; McKinnon, D. H.
2012-04-01
V- and I-band observations of cluster NGC 6101 were taken over 31 nights between June 2010 and April 2011 using the Merope CCD camera attached to the robotically controlled 2-metre Faulkes Telescope South at Siding Spring Observatory, NSW, Australia. (2 data files).
Integrated spectral study of small angular diameter galactic open clusters
NASA Astrophysics Data System (ADS)
Clariá, J. J.; Ahumada, A. V.; Bica, E.; Pavani, D. B.; Parisi, M. C.
2017-10-01
This paper presents flux-calibrated integrated spectra obtained at Complejo Astronómico El Leoncito (CASLEO, Argentina) for a sample of 9 Galactic open clusters of small angular diameter. The spectra cover the optical range (3800-6800 Å), with a resolution of ˜14 Å. With one exception (Ruprecht 158), the selected clusters are projected into the fourth Galactic quadrant (282o < l < 345o) near the Galactic plane (∣b∣ ≤ 9o). We performed simultaneous estimates of foreground interstellar reddening and age by comparing the continuum distribution and line strenghts of the cluster spectra with those of template cluster spectra with known parameters. We thus provide spectroscopic information independent from that derived through color-magnitude diagram studies. We found three clusters (Collinder 249, NGC 4463 and Ruprecht 122) younger than ˜40 Myr, four moderately young ones (BH 92, Harvard 5, Hogg 14 and Pismis 23) with ages within 200-400 Myr, and two intermediate-age ones (Ruprecht 158 and ESO 065-SC07) with ages within 1.0-2.2 Gyr. The derived foreground E(B - V) color excesses vary from around 0.0 in Ruprecht 158 to ˜1.1 in Pismis 23. In general terms, the results obtained show good agreement with previous photometric results. In Ruprecht 158 and BH 92, however, some differences are found between the parameters here obtained and previous values in the literature. Individual spectra of some comparatively bright stars located in the fields of 5 out of the 9 clusters here studied, allowed us to evaluate their membership status. The current cluster sample complements that of 46 open clusters previously studied by our group in an effort to gather a spectral library with several clusters per age bin. The cluster spectral library that we have been building is an important tool to tie studies of resolved and unresolved stellar content.
NASA Astrophysics Data System (ADS)
Gargiulo, I. D.; García, F.; Combi, J. A.; Caso, J. P.; Bassino, L. P.
2018-05-01
We report on a detailed X-ray study of the extended emission of the intracluster medium (ICM) around NGC 3268, in the Antlia cluster of galaxies, together with a characterization of an extended source in the field, namely a background cluster of galaxies at z ≈ 0.41, which was previously accounted as an X-ray point source. The spectral properties of the extended emission of the gas present in Antlia were studied using data from the XMM-Newton satellite complemented with optical images of CTIO-Blanco telescope, to attain for associations of the optical sources with the X-ray emission. The XMM-Newton observations show that the intracluster gas is concentrated in a region centred in one of the main galaxies of the cluster, NGC 3268. By means of a spatially-resolved spectral analysis we derived the abundances of the ICM plasma. We found a wall-like feature in the northeast direction where the gas is characterized by a lower temperature with respect to the rest of the ICM. Furthermore, using combined optical observations we inferred the presence of an elliptical galaxy in the centre of the extended X-ray source considered as a background cluster, which favours this interpretation.
The Clusters AgeS Experiment (CASE). Variable Stars in the Field of the Globular Cluster NGC 3201
NASA Astrophysics Data System (ADS)
Kaluzny, J.; Rozyczka, M.; Thompson, I. B.; Narloch, W.; Mazur, B.; Pych, W.; Schwarzenberg-Czerny, A.
2016-01-01
The field of the globular cluster NGC 3201 was monitored between 1998 and 2009 in a search for variable stars. BV light curves were obtained for 152 periodic or likely periodic variables, fifty-seven of which are new detections. Thirty-seven newly detected variables are proper motion members of the cluster. Among them we found seven detached or semi-detached eclipsing binaries, four contact binaries, and eight SX Phe pulsators. Four of the eclipsing binaries are located in the turnoff region, one on the lower main sequence and the remaining two slightly above the subgiant branch. Two contact systems are blue stragglers, and another two reside in the turnoff region. In the blue straggler region a total of 266 objects were found, of which 140 are proper motion (PM) members of NGC 3201, and another nineteen are field stars. Seventy-eight of the remaining objects for which we do not have PM data are located within the half-light radius from the center of the cluster, and most of them are likely genuine blue stragglers. Four variable objects in our field of view were found to coincide with X-ray sources: three chromospherically active stars and a quasar at a redshift z≍0.5.
SEARCH FOR RED DWARF STARS IN GLOBULAR CLUSTER NGC 6397
NASA Technical Reports Server (NTRS)
2002-01-01
Left A NASA Hubble Space Telescope image of a small region (1.4 light-years across) in the globular star cluster NGC 6397. Simulated stars (diamonds) have been added to this view of the same region of the cluster to illustrate what astronomers would have expected to see if faint red dwarf stars were abundant in the Milky Way Galaxy. The field would then contain 500 stars, according to theoretical calculations. Right The unmodified HST image shows far fewer stars than would be expected, according to popular theories of star formation. HST resolves about 200 stars. The stellar density is so low that HST can literally see right through the cluster and resolve far more distant background galaxies. From this observation, scientists have identified the surprising cutoff point below which nature apparently doesn't make many stars smaller that 1/5 the mass of our Sun. These HST findings provide new insights into star formation in our Galaxy. Technical detail:The globular cluster NGC 6397, one of the nearest and densest agglomerations of stars, is located 7,200 light-years away in the southern constellation Ara. This visible-light picture was taken on March 3, 1994 with the Wide Field Planetary Camera 2, as part the HST parallel observing program. Credit: F. Paresce, ST ScI and ESA and NASA
A deeper look at the X-ray point source population of NGC 4472
NASA Astrophysics Data System (ADS)
Joseph, T. D.; Maccarone, T. J.; Kraft, R. P.; Sivakoff, G. R.
2017-10-01
In this paper we discuss the X-ray point source population of NGC 4472, an elliptical galaxy in the Virgo cluster. We used recent deep Chandra data combined with archival Chandra data to obtain a 380 ks exposure time. We find 238 X-ray point sources within 3.7 arcmin of the galaxy centre, with a completeness flux, FX, 0.5-2 keV = 6.3 × 10-16 erg s-1 cm-2. Most of these sources are expected to be low-mass X-ray binaries. We finding that, using data from a single galaxy which is both complete and has a large number of objects (˜100) below 1038 erg s-1, the X-ray luminosity function is well fitted with a single power-law model. By cross matching our X-ray data with both space based and ground based optical data for NGC 4472, we find that 80 of the 238 sources are in globular clusters. We compare the red and blue globular cluster subpopulations and find red clusters are nearly six times more likely to host an X-ray source than blue clusters. We show that there is evidence that these two subpopulations have significantly different X-ray luminosity distributions. Source catalogues for all X-ray point sources, as well as any corresponding optical data for globular cluster sources, are also presented here.
Coronal Activity in Low-Mass Pre-Main Sequence Stars: NGC 2264
NASA Technical Reports Server (NTRS)
Tebbe, H. J.; Patten, B. M.
2000-01-01
We present the preliminary results of an analysis of ROSAT images in the region of the populous young (age approx. 3 Myr) star-forming region NGC 2264. The cluster was imaged with the ROSAT HRI in two sets of pointings -- one set near the central region of the cluster, centered on the star LW Mon, and the other set in the southern part of the cluster, centered near the star V428 Mon, just south of the Cone Nebula. In total 113 unique X-ray sources have been identified in the ROSAT images with signal-to-noise ratios greater than 3. The limiting luminosities (log Lx(ergs/sec)) for 3-sigma detections are estimated to be 30.18, 30.23, and 30.08 for the northern field, southern field, and overlap region between the two fields respectively. Extensive optical photometry, classification spectroscopy, and proper motions, obtained from recent ground-based surveys of this region, were used to identify the most likely optical counterpart to each X-ray source. Although most of our X-ray selected sample appears to be associated with NGC 2264 members, we find that the vast majority of the cluster membership was undetected in the ROSAT HRI survey. The X-ray cumulative luminosity function for solar-mass stars in NGC 2264 shows that most of the low-mass members probably have X-ray luminosities similar to those seen for the X-ray brightest members of older clusters such as IC 2391/IC 2602 (age approx. 50 Myr) and the Pleiades (age approx. 100 Myr). This research was funded in part by the SAO Summer Intern Program and NASA grant NAG5-8120.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goudfrooij, Paul; Correnti, Matteo; Girardi, Léo, E-mail: goudfroo@stsci.edu
Extended main-sequence turn-off (eMSTO) regions are a common feature in color–magnitude diagrams of young- and intermediate-age star clusters in the Magellanic Clouds. The nature of eMSTOs remains debated in the literature. The currently most popular scenarios are extended star formation activity and ranges of stellar rotation rates. Here we study details of differences in main-sequence turn-off (MSTO) morphology expected from spreads in age versus spreads in rotation rates, using Monte Carlo simulations with the Geneva syclist isochrone models that include the effects of stellar rotation. We confirm a recent finding of Niederhofer et al. that a distribution of stellar rotationmore » velocities yields an MSTO extent that is proportional to the cluster age, as observed. However, we find that stellar rotation yields MSTO crosscut widths that are generally smaller than observed ones at a given age. We compare the simulations with high-quality Hubble Space Telescope data of NGC 1987 and NGC 2249, which are the two only relatively massive star clusters with an age of ∼1 Gyr for which such data is available. We find that the distribution of stars across the eMSTOs of these clusters cannot be explained solely by a distribution of stellar rotation velocities, unless the orientations of rapidly rotating stars are heavily biased toward an equator-on configuration. Under the assumption of random viewing angles, stellar rotation can account for ∼60% and ∼40% of the observed FWHM widths of the eMSTOs of NGC 1987 and NGC 2249, respectively. In contrast, a combination of distributions of stellar rotation velocities and stellar ages fits the observed eMSTO morphologies very well.« less
The Enigma of the Open Cluster M29(NGC 6913) Solved
2014-10-13
Survey ( 2MASS ) system (Skrutskie et al. 2006) and the ratios of color excesses EV−m/EB−V , where m are the near-infrared magnitudes J, H, and K. In...andEV−K/EB−V with the J, H, and K magnitudes from 2MASS . For this aim, we used a list of B and A stars identified in the central 15′ × 15′ area. Their...V and B − V data were taken from Massey et al. (1995) and the AAVSO APASS survey, DR7,7 and the near-infrared magnitudes from 2MASS . The ratios of
Hubble Catches a Transformation in the Virgo Constellation
2017-12-08
The constellation of Virgo (The Virgin) is especially rich in galaxies, due in part to the presence of a massive and gravitationally-bound collection of more than 1300 galaxies called the Virgo Cluster. One particular member of this cosmic community, NGC 4388, is captured in this image, as seen by the NASA/ESA Hubble Space Telescope’s Wide Field Camera 3. Located some 60 million light-years away, NGC 4388 is experiencing some of the less desirable effects that come with belonging to such a massive galaxy cluster. It is undergoing a transformation and has taken on a somewhat confused identity. While the galaxy’s outskirts appear smooth and featureless, a classic feature of an elliptical galaxy, its center displays remarkable dust lanes constrained within two symmetric spiral arms, which emerge from the galaxy’s glowing core — one of the obvious features of a spiral galaxy. Within the arms, speckles of bright blue mark the locations of young stars, indicating that NGC 4388 has hosted recent bursts of star formation. Despite the mixed messages, NGC 4388 is classified as a spiral galaxy. Its unusual combination of features are thought to have been caused by interactions between NGC 4388 and other galaxies in the Virgo Cluster. Gravitational interactions — from glancing blows to head-on collisions, tidal influencing, mergers, and galactic cannibalism — can be devastating to galaxies. While some may be lucky enough to simply suffer a distorted spiral arm or newly-triggered wave of star formation, others see their structure and contents completely and irrevocably altered. Image credits: ESA/NASA
Hubble Views a Galaxy Fit to Burst
2017-12-08
This NASA/ESA Hubble Space Telescope image reveals the vibrant core of the galaxy NGC 3125. Discovered by John Herschel in 1835, NGC 3125 is a great example of a starburst galaxy — a galaxy in which unusually high numbers of new stars are forming, springing to life within intensely hot clouds of gas. Located approximately 50 million light-years away in the constellation of Antlia (The Air Pump), NGC 3125 is similar to, but unfathomably brighter and more energetic than, one of the Magellanic Clouds. Spanning 15,000 light-years, the galaxy displays massive and violent bursts of star formation, as shown by the hot, young, and blue stars scattered throughout the galaxy’s rose-tinted core. Some of these clumps of stars are notable — one of the most extreme Wolf–Rayet star clusters in the local Universe, NGC 3125-A1, resides within NGC 3125. Despite their appearance, the fuzzy white blobs dotted around the edge of this galaxy are not stars, but globular clusters. Found within a galaxy’s halo, globular clusters are ancient collections of hundreds of thousands of stars. They orbit around galactic centers like satellites — the Milky Way, for example, hosts over 150 of them. Image credit: ESA/Hubble & NASA, Acknowledgement: Judy Schmidt NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Turbulence and the Formation of Filaments, Loops, and Shock Fronts in NGC 1275
NASA Astrophysics Data System (ADS)
Falceta-Gonçalves, D.; de Gouveia Dal Pino, E. M.; Gallagher, J. S.; Lazarian, A.
2010-01-01
NGC 1275, the central galaxy in the Perseus cluster, is the host of gigantic hot bipolar bubbles inflated by active galactic nucleus (AGN) jets observed in the radio as Perseus A. It presents a spectacular Hα-emitting nebulosity surrounding NGC 1275, with loops and filaments of gas extending to over 50 kpc. The origin of the filaments is still unknown, but probably correlates with the mechanism responsible for the giant buoyant bubbles. We present 2.5 and three-dimensional magnetohydrodynamical (MHD) simulations of the central region of the cluster in which turbulent energy, possibly triggered by star formation and supernovae (SNe) explosions, is introduced. The simulations reveal that the turbulence injected by massive stars could be responsible for the nearly isotropic distribution of filaments and loops that drag magnetic fields upward as indicated by recent observations. Weak shell-like shock fronts propagating into the intracluster medium (ICM) with velocities of 100-500 km s-1 are found, also resembling the observations. The isotropic outflow momentum of the turbulence slows the infall of the ICM, thus limiting further starburst activity in NGC 1275. As the turbulence is subsonic over most of the simulated volume, the turbulent kinetic energy is not efficiently converted into heat and additional heating is required to suppress the cooling flow at the core of the cluster. Simulations combining the MHD turbulence with the AGN outflow can reproduce the temperature radial profile observed around NGC 1275. While the AGN mechanism is the main heating source, the SNe are crucial to isotropize the energy distribution.
Photometric and Structural Properties of NGC 6544: A Combined VVV-Hubble Space Telescope Study
NASA Astrophysics Data System (ADS)
Cohen, Roger E.; Mauro, Francesco; Geisler, Doug; Moni Bidin, Christian; Dotter, Aaron; Bonatto, Charles
2014-07-01
We combine archival Hubble Space Telescope imaging with wide-field near-infrared photometry to study the neglected metal-poor Galactic globular cluster NGC 6544. A high spatial resolution map of differential reddening over the inner portion of the cluster is constructed, revealing variations of up to half of the total reddening, and the resulting corrected color-magnitude diagrams reveal a sparse blue horizontal branch and centrally concentrated blue straggler population, verified via relative proper motions. Using the corrected photometry to investigate the cluster distance, reddening, and age via direct comparison to well-calibrated photometry of clusters with similar metallicities, we estimate (m - M)0 = 11.96, E(B - V) = 0.79, and an age coeval with M13 to within the relevant uncertainties. Although our data are insufficient to place tight constraints on the reddening law toward NGC 6544, we find no strong evidence that it is non-standard at optical or near-infrared wavelengths. We also provide near-infrared fiducial sequences extending nearly 2 mag below the cluster main sequence turnoff, generated from a statistically decontaminated sample of cluster stars. Lastly, we redetermine the cluster center and construct a radial number density profile which is well fit by an atypically flat power law with a slope of about 1.7. We discuss this result, together with a flattened main sequence luminosity function and inverted mass function, in the context of mass segregation and tidal stripping via interactions with Milky Way potential.
The Multiple Stellar Populations in the Ancient LMC Globular Clusters Hodge 11 and NGC 2210
NASA Astrophysics Data System (ADS)
Chaboyer, Brian; Gilligan, Christina; Wagner-Kaiser, Rachel; Mackey, Dougal; Sarajedini, Ata; Cummings, Jeffrey; Grocholski, Aaron; Geisler, Doug; Cohen, Roger; Villanova, Sandro; Yang, Soung-Chul; Parisi, Celeste
2018-01-01
Hubble Space telescope images of the ancient LMC globular clusters Hodge 11 and NGC 2210 in the F336W, F606W and F814W filters were obtained between June 2016 and April 2017. These deep images has been analyzed with the Dolphot software package. High quality photometry has been obtained from three magnitudes brighter than the horizontal branch, to about four magnitudes fainter than the main sequence turn-off. Both clusters show an excess of red main sequence stars in the F336W filter, indicating that multiple stellar populations exist in both clusters. Hodge 11 shows irregularities in its horizontal branch morphology, which is indicative of the presence of an approximately 0.1 dex internal helium abundance spread.
NASA Astrophysics Data System (ADS)
Cummings, Jeffrey D.; Kalirai, Jason S.; Tremblay, P.-E.; Ramirez-Ruiz, Enrico
2016-02-01
We observed a sample of 10 white dwarf candidates in the rich open cluster NGC 2323 (M50) with the Keck Low-Resolution Imaging Spectrometer. The spectroscopy shows eight to be DA white dwarfs, with six of these having high signal-to-noise ratio appropriate for our analysis. Two of these white dwarfs are consistent with singly evolved cluster membership, and both are high mass ˜1.07 M⊙, and give equivalent progenitor masses of 4.69 M⊙. To supplement these new high-mass white dwarfs and analyze the initial-final mass relation (IFMR), we also looked at 30 white dwarfs from publicly available data that are mostly all high-mass (≳ 0.9 M⊙). These original published data exhibited significant scatter, and to test if this scatter is true or simply the result of systematics, we have uniformly analyzed the white dwarf spectra and have adopted thorough photometric techniques to derive uniform cluster parameters for their parent clusters. The resulting IFMR scatter is significantly reduced, arguing that mass-loss rates are not stochastic in nature and that within the ranges of metallicity and mass analyzed in this work mass loss is not highly sensitive to variations in metallicity. Lastly, when adopting cluster ages based on Y2 isochrones, the slope of the high-mass IFMR remains steep and consistent with that found from intermediate-mass white dwarfs, giving a linear IFMR from progenitor masses between 3 and 6.5 M⊙. In contrast, when adopting the slightly younger cluster ages based on PARSEC isochrones, the high-mass IFMR has a moderate turnover near an initial mass of 4 M⊙. Based on observations with the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA, was made possible by the generous financial support of the W.M. Keck Foundation.
Vacuum ultraviolet imagery of the Virgo cluster region
NASA Astrophysics Data System (ADS)
Onaka, T.; Tanaka, W.; Watanabe, T.; Watanabe, J.; Yamaguchi, A.; Nakagiri, M.; Kodaira, K.; Nakano, M.; Sasaki, M.; Tsujimura, T.; Yamashita, K.
1989-07-01
The results are reported of an experiment using the UV imager aboard an attitude-controlled S520 type sounding rocket. The total UV fluxes of galaxies in the Virgo Cluster as well as the flux level of the diffuse UV background around the cluster were measured. The data on NGC 4486 and NGC 4472 confirm the variation in the degree of the 'turnup' below 200 nm in the energy spectrum of the total light of elliptical galaxies. At two-color diagram of galaxies of visual/near-UV/vacuum UV indicates that colors of spiral galaxies are distributed within a strip and well-correlated with the morphological type, while elliptical galaxies are located differently from spiral galaxies.
Ultraviolet properties of individual hot stars in globular cluster cores. 1: NGC 1904 (M 79)
NASA Technical Reports Server (NTRS)
Altner, Bruce; Matilsky, Terry A.
1992-01-01
As part of an observing program using the International Ultraviolet Explorer (IUE) satellite to investigate the ultraviolet properties of stars found within the cores of galactic globular clusters with blue horizontal branches (HBs), we obtained three spectra of the cluster NGC 1904 (M 79). All three were long integration-time, short-wavelength (SWP) spectra obtained at the so called 'center of light' and all three showed evidence of sources within the IUE large aperture (21.4 in. by 10 in.). In this paper we shall describe the analysis of these spectra and present evidence that the UV sources represent individual hot stars in the post-HB stage of evolution.
NASA Astrophysics Data System (ADS)
Milone, A. P.; Bedin, L. R.; Piotto, G.; Marino, A. F.; Cassisi, S.; Bellini, A.; Jerjen, H.; Pietrinferni, A.; Aparicio, A.; Rich, R. M.
2015-07-01
Recent studies have shown that the extended main-sequence turn-off (eMSTO) is a common feature of intermediate-age star clusters in the Magellanic Clouds (MCs). The most simple explanation is that these stellar systems harbour multiple generations of stars with an age difference of a few hundred million years. However, while an eMSTO has been detected in a large number of clusters with ages between ˜1-2 Gyr, several studies of young clusters in both MCs and in nearby galaxies do not find any evidence for a prolonged star formation history, i. e. for multiple stellar generations. These results have suggested alternative interpretation of the eMSTOs observed in intermediate-age star clusters. The eMSTO could be due to stellar rotation mimicking an age spread or to interacting binaries. In these scenarios, intermediate-age MC clusters would be simple stellar populations, in close analogy with younger clusters. Here, we provide the first evidence for an eMSTO in a young stellar cluster. We exploit multiband Hubble Space Telescope photometry to study the ˜300-Myr old star cluster NGC 1856 in the Large Magellanic Cloud and detected a broadened MSTO that is consistent with a prolonged star formation which had a duration of about 150 Myr. Below the turn-off, the main sequence (MS) of NGC 1856 is split into a red and blue component, hosting 33 ± 5 and 67 ± 5 per cent of the total number of MS stars, respectively. We discuss these findings in the context of multiple-stellar-generation, stellar-rotation, and interacting-binary hypotheses.
A perfect starburst cluster made in one go: The NGC 3603 young cluster
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banerjee, Sambaran; Kroupa, Pavel
2014-06-01
Understanding how distinct, near-spherical gas-free clusters of very young, massive stars shape out of vast, complex clouds of molecular hydrogen is one of the biggest challenges in astrophysics. A popular thought dictates that a single gas cloud fragments into many newborn stars which, in turn, energize and rapidly expel the residual gas to form a gas-free cluster. This study demonstrates that the above classical paradigm remarkably reproduces the well-observed central, young cluster (HD 97950) of the Galactic NGC 3603 star-forming region, in particular, its shape, internal motion, and mass distribution of stars naturally and consistently follow from a single modelmore » calculation. Remarkably, the same parameters (star formation efficiency, gas expulsion timescale, and delay) reproduce HD 97950, as were found to reproduce the Orion Nebula Cluster, Pleiades, and R136. The present results therefore provide intriguing evidence of formation of star clusters through single-starburst events followed by significant residual gas expulsion.« less
The Initial-Final Mass Relationship: Spectroscopy of White Dwarfs in NGC 2099 (M37)
NASA Astrophysics Data System (ADS)
Kalirai, Jasonjot Singh; Richer, Harvey B.; Reitzel, David; Hansen, Brad M. S.; Rich, R. Michael; Fahlman, Gregory G.; Gibson, Brad K.; von Hippel, Ted
2005-01-01
We present new observations of very faint white dwarfs (WDs) in the rich open star cluster NGC 2099 (M37). Following deep, wide-field imaging of the cluster using the Canada-France-Hawaii Telescope, we have now obtained spectroscopic observations of candidate WDs using both the Gemini Multi-Object Spectrograph on Gemini North and the Low-Resolution Imaging Spectrometer on Keck. Of our 24 WD candidates (all fainter than V=22.4), 21 are spectroscopically confirmed to be bona fide WDs, four or five of which are most likely field objects. Fitting 18 of the 21 WD spectra with model atmospheres, we find that most WDs in this cluster are quite massive (0.7-0.9 Msolar), as expected given the cluster's young age (650 Myr) and, hence, high turnoff mass (~2.4 Msolar). We determine a new initial-final mass relationship and almost double the number of existing data points from previous studies. The results indicate that stars with initial masses between 2.8 and 3.4 Msolar lose 70%-75% of their mass through stellar evolution. For the first time, we find some evidence of a metallicity dependence on the initial-final mass relationship. Based on observations with Gemini (run ID GN-2002B-Q-11) and Keck. Gemini is an international partnership managed by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the National Science Foundation. The W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA, was made possible by the generous financial support of the W. M. Keck Foundation.
Time-Series Monitoring of Open Star Clusters
NASA Astrophysics Data System (ADS)
Hojaev, A. S.; Semakov, D. G.
2006-08-01
Star clusters especially a compact ones (with diameter of few to ten arcmin) are suitable targets to search of light variability for orchestera of stars by means of ordinary Casegrain telescope plus CCD system. A special patroling with short time-fixed exposures and mmag accuracy could be used also to study of stellar oscillation for group of stars simultaneously. The last can be carried out both separately from one site and within international campaigns. Detection and study of optical variability of X-ray sources including X-ray binaries with compact objects might be as a result of a long-term monitoring of such clusters as well. We present the program of open star clusters monitoring with Zeiss 1 meter RCC telescope of Maidanak observatory has been recently automated. In combination with quite good seeing at this observatory (see, e.g., Sarazin, M. 1999, URL http://www.eso.org/gen-fac/pubs/astclim/) the automatic telescope equipped with large-format (2KX2K) CCD camera AP-10 available will allow to collect homogenious time-series for analysis. We already started this program in 2001 and had a set of patrol observations with Zeiss 0.6 meter telescope and AP-10 camera in 2003. 7 compact open clusters in the Milky Way (NGC 7801, King1, King 13, King18, King20, Berkeley 55, IC 4996) have been monitored for stellar variability and some results of photometry will be presented. A few interesting variables were discovered and dozens were suspected for variability to the moment in these clusters for the first time. We have made steps to join the Whole-Earth Telescope effort in its future campaigns.
The SLUGGS Survey: HST/ACS Mosaic Imaging of the NGC 3115 Globular Cluster System
NASA Astrophysics Data System (ADS)
Jennings, Zachary G.; Strader, Jay; Romanowsky, Aaron J.; Brodie, Jean P.; Arnold, Jacob A.; Lin, Dacheng; Irwin, Jimmy A.; Sivakoff, Gregory R.; Wong, Ka-Wah
2014-08-01
We present Hubble Space Telescope/Advanced Camera for Surveys (HST/ACS) g and z photometry and half-light radii R h measurements of 360 globular cluster (GC) candidates around the nearby S0 galaxy NGC 3115. We also include Subaru/Suprime-Cam g, r, and i photometry of 421 additional candidates. The well-established color bimodality of the GC system is obvious in the HST/ACS photometry. We find evidence for a "blue tilt" in the blue GC subpopulation, wherein the GCs in the blue subpopulation get redder as luminosity increases, indicative of a mass-metallicity relationship. We find a color gradient in both the red and blue subpopulations, with each group of clusters becoming bluer at larger distances from NGC 3115. The gradient is of similar strength in both subpopulations, but is monotonic and more significant for the blue clusters. On average, the blue clusters have ~10% larger R h than the red clusters. This average difference is less than is typically observed for early-type galaxies but does match that measured in the literature for the Sombrero Galaxy (M104), suggesting that morphology and inclination may affect the measured size difference between the red and blue clusters. However, the scatter on the R h measurements is large. We also identify 31 clusters more extended than typical GCs, which we term ultra-compact dwarf (UCD) candidates. Many of these objects are actually considerably fainter than typical UCDs. While it is likely that a significant number will be background contaminants, six of these UCD candidates are spectroscopically confirmed as NGC 3115 members. To explore the prevalence of low-mass X-ray binaries in the GC system, we match our ACS and Suprime-Cam detections to corresponding Chandra X-ray sources. We identify 45 X-ray-GC matches: 16 among the blue subpopulation and 29 among the red subpopulation. These X-ray/GC coincidence fractions are larger than is typical for most GC systems, probably due to the increased depth of the X-ray data compared to previous studies of GC systems.
2015-08-24
Shown here in a new image taken with the Advanced Camera for Surveys (ACS) on board the NASA/ESA Hubble Space Telescope, is the globular cluster NGC 1783. This is one of the biggest globular clusters in the Large Magellanic Cloud, a satellite galaxy of our own galaxy, the Milky Way, in the southern hemisphere constellation of Dorado. First observed by John Herschel in 1835, NGC 1783 is nearly 160 000 light-years from Earth, and has a mass around 170 000 times that of the Sun. Globular clusters are dense collections of stars held together by their own gravity, which orbit around galaxies like satellites. The image clearly shows the symmetrical shape of NGC 1783 and the concentration of stars towards the centre, both typical features of globular clusters. By measuring the colour and brightness of individual stars, astronomers can deduce an overall age for a cluster and a picture of its star formation history. NGC 1783 is thought to be under one and a half billion years old — which is very young for globular clusters, which are typically several billion years old. During that time, it is thought to have undergone at least two periods of star formation, separated by 50 to 100 million years. This ebb and flow of star-forming activity is an indicator of how much gas is available for star formation at any one time. When the most massive stars created in the first burst of formation explode as supernovae they blow away the gas needed to form further stars, but the gas reservoir can later be replenished by less massive stars which last longer and shed their gas less violently. After this gas flows to the dense central regions of the star cluster, a second phase of star formation can take place and once again the short-lived massive stars blow away any leftover gas. This cycle can continue a few times, at which time the remaining gas reservoir is thought to be too small to form any new stars. A version of this image was entered into the Hubble's Hidden Treasures image pr
The sluggs survey: HST/ACS mosaic imaging of the NGC 3115 globular cluster system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jennings, Zachary G.; Romanowsky, Aaron J.; Brodie, Jean P.
We present Hubble Space Telescope/Advanced Camera for Surveys (HST/ACS) g and z photometry and half-light radii R {sub h} measurements of 360 globular cluster (GC) candidates around the nearby S0 galaxy NGC 3115. We also include Subaru/Suprime-Cam g, r, and i photometry of 421 additional candidates. The well-established color bimodality of the GC system is obvious in the HST/ACS photometry. We find evidence for a 'blue tilt' in the blue GC subpopulation, wherein the GCs in the blue subpopulation get redder as luminosity increases, indicative of a mass-metallicity relationship. We find a color gradient in both the red and bluemore » subpopulations, with each group of clusters becoming bluer at larger distances from NGC 3115. The gradient is of similar strength in both subpopulations, but is monotonic and more significant for the blue clusters. On average, the blue clusters have ∼10% larger R {sub h} than the red clusters. This average difference is less than is typically observed for early-type galaxies but does match that measured in the literature for the Sombrero Galaxy (M104), suggesting that morphology and inclination may affect the measured size difference between the red and blue clusters. However, the scatter on the R {sub h} measurements is large. We also identify 31 clusters more extended than typical GCs, which we term ultra-compact dwarf (UCD) candidates. Many of these objects are actually considerably fainter than typical UCDs. While it is likely that a significant number will be background contaminants, six of these UCD candidates are spectroscopically confirmed as NGC 3115 members. To explore the prevalence of low-mass X-ray binaries in the GC system, we match our ACS and Suprime-Cam detections to corresponding Chandra X-ray sources. We identify 45 X-ray-GC matches: 16 among the blue subpopulation and 29 among the red subpopulation. These X-ray/GC coincidence fractions are larger than is typical for most GC systems, probably due to the increased depth of the X-ray data compared to previous studies of GC systems.« less
A violent interaction between the dwarf galaxy UGC 7636 and the giant elliptical galaxy NGC 4472
NASA Technical Reports Server (NTRS)
Mcnamara, Brian R.; Sancisi, Renzo; Henning, Patricia A.; Junor, William
1994-01-01
We present new U, B, R, and H I imagery of the Virgo Cluster giant elliptical galaxy NGC 4472 and its interacting dwarf companion galaxy UGC 7636. Using a composite image reconstruction technique, we show that a trail of debris approx. 5 arcmin in length and approx. 1 arcmin in width (30x6 kpc for a Virgo cluster distance of 20 Mpc) is projected northward from the dwarf galaxy. A cloud of H I is projected along the northwest edge of the debris between the dwarf and gE. The dwarf's nuclear morphology is irregular and bow-shaped on what appears to be its leading edge. Apart from a number of isolated blue regions, most of of the trailing debris is similar in color to the dwarf's nucleus. Only a modest enhancement of star formation appears to have been induced by the interaction. Although separated by 15 kpc, the H I and stellar morphologies are remarkably similar. The stars and H I appear to have been tidally distorted in situ, prior to the cloud's removal by ram pressure. If the H I has maintained its shape by magnetic support, a magnetic field strength an order of magnitude larger than the galaxy's is required. Ram pressure deceleration due to the cloud's motion through NGC 4472's x-ray-emitting interstellar medium shold be sufficient for the cloud to become gravitationally bound to NGC 4472. The H I cloud is not self-gravitating and may fragment and be destroyed in the interaction. UGC 7636 will probably be disrupted by NGC 4472's strong tidal forces; the stellar debris will disperse into the Virgo cluster or become bound to NGC 4472's halo on eccentric orbits. The debris captured in the collision will have a negligible impact on NGC 4472's stellar and gaseous content. On the other hand, if similar interactions are common in giant elliptical galaxies, they could alter or deplete surrounding dwarf galaxy populations, fuel bursts of nuclear activity, and perhaps provide a source of magnetic energy to their interstellar media.
The mass-ratio and eccentricity distributions of barium and S stars, and red giants in open clusters
NASA Astrophysics Data System (ADS)
Van der Swaelmen, M.; Boffin, H. M. J.; Jorissen, A.; Van Eck, S.
2017-01-01
Context. A complete set of orbital parameters for barium stars, including the longest orbits, has recently been obtained thanks to a radial-velocity monitoring with the HERMES spectrograph installed on the Flemish Mercator telescope. Barium stars are supposed to belong to post-mass-transfer systems. Aims: In order to identify diagnostics distinguishing between pre- and post-mass-transfer systems, the properties of barium stars (more precisely their mass-function distribution and their period-eccentricity (P-e) diagram) are compared to those of binary red giants in open clusters. As a side product, we aim to identify possible post-mass-transfer systems among the cluster giants from the presence of s-process overabundances. We investigate the relation between the s-process enrichment, the location in the (P-e) diagram, and the cluster metallicity and turn-off mass. Methods: To invert the mass-function distribution and derive the mass-ratio distribution, we used the method pioneered by Boffin et al. (1992) that relies on a Richardson-Lucy deconvolution algorithm. The derivation of s-process abundances in the open-cluster giants was performed through spectral synthesis with MARCS model atmospheres. Results: A fraction of 22% of post-mass-transfer systems is found among the cluster binary giants (with companion masses between 0.58 and 0.87 M⊙, typical for white dwarfs), and these systems occupy a wider area than barium stars in the (P-e) diagram. Barium stars have on average lower eccentricities at a given orbital period. When the sample of binary giant stars in clusters is restricted to the subsample of systems occupying the same locus as the barium stars in the (P-e) diagram, and with a mass function compatible with a WD companion, 33% (=4/12) show a chemical signature of mass transfer in the form of s-process overabundances (from rather moderate - about 0.3 dex - to more extreme - about 1 dex). The only strong barium star in our sample is found in the cluster with the lowest metallicity in the sample (I.e. star 173 in NGC 2420, with [Fe/H] = -0.26), whereas the barium stars with mild s-process abundance anomalies (from 0.25 to 0.6 dex) are found in the clusters with slightly subsolar metallicities. Our finding confirms the classical prediction that the s-process nucleosynthesis is more efficient at low metallicities, since the s-process overabundance is not clearly correlated with the cluster turn-off (TO) mass; such a correlation would instead hint at the importance of the dilution factor. We also find a mild barium star in NGC 2335, a cluster with a large TO mass of 4.3 M⊙, which implies that asymptotic giant branch stars that massive still operate the s-process and the third dredge-up. Based on observations made with the Mercator Telescope, operated on the island of La Palma by the Flemish Community, at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias, and on observations made with the HARPS spectrograph installed on the 3.6 m telescope at the European Southern Observatory.
Photometric study of the eclipsing blue straggler V205 in the globular cluster NGC 5139
NASA Astrophysics Data System (ADS)
Li, K.
2018-02-01
B and V light curves of an EA-type binary V205 in the globular cluster NGC 5139 are analyzed by the W-D program. We found that V205 is possibly a detached binary and the mass ratio is 0.1596. The secondary component is touching or nearly touching its inner Roche Lobe. By studying the O - C diagram of V205, we discovered that the orbital period is continuously decrease at a rate of dp / dt = - 1.89(± 0.01) ×10-7 d yr-1 and should be caused by angular momentum and mass loss. The angular momentum loss will drive it evolve into a contact binary. Since V205 is a proper motion member of NGC 5139, we estimated its absolute parameters based on the distance modulus of the cluster and determined that: a = 2.50R⊙ , M1 = 0.76M⊙ , R1 = 1.14R⊙ , L1 = 5.46L⊙ , M2 = 0.12M⊙ , R2 = 0.52R⊙ , and L2 = 0.70L⊙ . V205 occupied the blue straggler stars on the color-magnitude diagram of NGC 5139. It is an eclipsing blue straggler and is most possibly formed by mass transfer between the two components. Since original short-period systems similar to V205 should be evolved in such a long life time of the globular cluster, the short-period binary should undergo special evolutionary stages. High accuracy photometric and high resolution spectral observations are essential for this unusual system.
High resolution infrared spectra of Bulge Globular Clusters: Liller 1, NGC 6553, and Ter 5
NASA Astrophysics Data System (ADS)
Origlia, L.; Rich, R. M.; Castro, S. M.
2001-12-01
Using the NIRSPEC spectrograph at Keck II, we have obtained echelle spectra covering the range 1.5-1.8μ m for 2 of the brightest giants in Liller 1 and NGC 6553, old metal rich globular clusters in the Galactic bulge. We also report a preliminary analysis for two giants in the obscured bulge globular cluster Ter 5. We use spectrum synthesis for the abundance analysis, and find [Fe/H]=-0.3+/-0.2 and [O/H]=+0.3+/- 0.1 (from the OH lines) for the giants in Liller 1 and NGC 6553. We measure strong lines for the alpha elements Mg, Ca, and Si, but the lower sensitivity of these lines to abundance permits us to only state a general [α /Fe]=+0.3+/-0.2 dex. The composition of the clusters is similar to that of field stars in the bulge and is consistent with a scenario in which the clusters formed early, with rapid enrichment. Our iron abundance for NGC 6553 is poorly consistent with either the low or the high values recently reported in the literature, unless unusally large, or no α -element enhancements are adopted, respectively. We will also present an abundance analsyis for 2 giants in the highly reddened bulge cluster Ter 5, which appears to be near the Solar metallicity. R. Michael Rich acknowledges finacial support from grant AST-0098739, from the National Science Foundation. Data presented herein were obtained at the W.M.Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation. The authors gratefully acknowledge those of Hawaiian ancestry on whose sacred mountain we are privileged to be guests. Without their generous hospitality, none of the observations presented would have been possible.
The SEGUE Stellar Parameter Pipeline. II. Validation with Galactic Globular and Open Clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Y.S.; Beers, T.C.; Sivarani, T.
2007-10-01
The authors validate the performance and accuracy of the current SEGUE (Sloan Extension for Galactic Understanding and Exploration) Stellar Parameter Pipeline (SSPP), which determines stellar atmospheric parameters (effective temperature, surface gravity, and metallicity) by comparing derived overall metallicities and radial velocities from selected likely members of three globular clusters (M 13, M 15, and M 2) and two open clusters (NGC 2420 and M 67) to the literature values. Spectroscopic and photometric data obtained during the course of the original Sloan Digital Sky Survey (SDSS-1) and its first extension (SDSS-II/SEGUE) are used to determine stellar radial velocities and atmospheric parametermore » estimates for stars in these clusters. Based on the scatter in the metallicities derived for the members of each cluster, they quantify the typical uncertainty of the SSPP values, {sigma}([Fe/H]) = 0.13 dex for stars in the range of 4500 K {le} T{sub eff} {le} 7500 K and 2.0 {le} log g {le} 5.0, at least over the metallicity interval spanned by the clusters studied (-2.3 {le} [Fe/H] < 0). The surface gravities and effective temperatures derived by the SSPP are also compared with those estimated from the comparison of the color-magnitude diagrams with stellar evolution models; they find satisfactory agreement. At present, the SSPP underestimates [Fe/H] for near-solar-metallicity stars, represented by members of M 67 in this study, by {approx} 0.3 dex.« less
NASA Astrophysics Data System (ADS)
Lyubenova, M.; Kuntschner, H.; Rejkuba, M.; Silva, D. R.; Kissler-Patig, M.; Tacconi-Garman, L. E.
2012-07-01
Context. The rest-frame near-IR spectra of intermediate age (1-2 Gyr) stellar populations are dominated by carbon based absorption features offering a wealth of information. Yet, spectral libraries that include the near-IR wavelength range do not sample a sufficiently broad range of ages and metallicities to allow for accurate calibration of stellar population models and thus the interpretation of the observations. Aims: In this paper we investigate the integrated J- and H-band spectra of six intermediate age and old globular clusters in the Large Magellanic Cloud (LMC). Methods: The observations for six clusters were obtained with the SINFONI integral field spectrograph at the ESO VLT Yepun telescope, covering the J (1.09-1.41 μm) and H-band (1.43-1.86 μm) spectral range. The spectral resolution is 6.7 Å in J and 6.6 Å in H-band (FWHM). The observations were made in natural seeing, covering the central 24″ × 24″ of each cluster and in addition sampling the brightest eight red giant branch and asymptotic giant branch (AGB) star candidates within the clusters' tidal radii. Targeted clusters cover the ages of ~1.3 Gyr (NGC 1806, NGC 2162), 2 Gyr (NGC 2173) and ~13 Gyr (NGC 1754, NGC 2005, NGC 2019). Results.H-band C2 and K-band 12CO (2-0) feature strengths for the LMC globular clusters are compared to the models of Maraston (2005). C2 is reasonably well reproduced by the models at all ages, while 12CO (2-0) shows good agreement for older (age ≥ 2 Gyr) populations, but the younger (1.3 Gyr) globular clusters do not follow the models. We argue that this is due to the fact that the empirical calibration of the models relies on only a few Milky Way carbon star spectra, which show different 12CO (2-0) index strengths than the LMC stars. The C2 absorption feature strength correlates strongly with age. It is present essentially only in populations that have 1-2 Gyr old stars, while its value is consistent with zero for older populations. The distinct spectral energy distribution observed for the intermediate age globular clusters in the J- and H-bands agrees well with the model predictions of Maraston for the contribution from the thermally pulsing AGB phase. Conclusions: In this pilot project we present an empirical library of six LMC globular cluster integrated near-IR spectra that are useful for testing stellar population models in this wavelength regime. We show that the H-band C2 absorption feature and the J-, H-band spectral shape can be used as an age indicator for intermediate age stellar populations in integrated spectra of star clusters and galaxies. Based on observation collected at the ESO Paranal La Silla Observatory, Chile, Prog. ID 078.B-0205.Table 2 is available in electronic form at http://www.aanda.orgJ- and H-spectra are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/543/A75
2007-11-14
This image from NASA Galaxy Evolution Explorer shows the galaxy NGC 300, located about seven million light-years away in the constellation Sculptor. It is a classic spiral galaxy with open arms and vigorous star formation throughout.
High-resolution observations of the globular cluster NGC 7099
NASA Astrophysics Data System (ADS)
Sams, Bruce Jones, III
The globular cluster NGC 7099 is a prototypical collapsed core cluster. Through a series of instrumental, observational, and theoretical observations, I have resolved its core structure using a ground based telescope. The core has a radius of 2.15 arcsec when imaged with a V band spatial resolution of 0.35 arcsec. Initial attempts at speckle imaging produced images of inadequate signal to noise and resolution. To explain these results, a new, fully general signal-to-noise model has been developed. It properly accounts for all sources of noise in a speckle observation, including aliasing of high spatial frequencies by inadequate sampling of the image plane. The model, called Full Speckle Noise (FSN), can be used to predict the outcome of any speckle imaging experiment. A new high resolution imaging technique called ACT (Atmospheric Correlation with a Template) was developed to create sharper astronomical images. ACT compensates for image motion due to atmospheric turbulence. ACT is similar to the Shift and Add algorithm, but uses apriori spatial knowledge about the image to further constrain the shifts. In this instance, the final images of NGC 7099 have resolutions of 0.35 arcsec from data taken in 1 arcsec seeing. The PAPA (Precision Analog Photon Address) camera was used to record data. It is subject to errors when imaging cluster cores in a large field of view. The origin of these errors is explained, and several ways to avoid them proposed. New software was created for the PAPA camera to properly take flat field images taken in a large field of view. Absolute photometry measurements of NGC 7099 made with the PAPA camera are accurate to 0.1 magnitude. Luminosity sampling errors dominate surface brightness profiles of the central few arcsec in a collapsed core cluster. These errors set limits on the ultimate spatial accuracy of surface brightness profiles.
Timing of millisecond pulsars in globular clusters
NASA Astrophysics Data System (ADS)
D'Amico, Nichi; Possenti, Andrea; Manchester, Dick; Johnston, Simon; Kramer, Michael; Sarkissian, John; Lyne, Andrew; Burgay, Marta; Corongiu, Alessandro; Camilo, Fernando; Bailes, Matthew; van Straten, Willem
2010-10-01
Timing of the dozen pulsars discovered by us in P303 is ensuring high quality results: (a) the peculiarities (in position or projected acceleration) of all the 5 millisecond pulsars in NGC6752 suggested the presence of non thermal dynamics in the core, perhaps due to black-holes of intermediate mass; (b) the eclipsing pulsar in NGC6397 is a stereotype for studying the late evolution of exotic binaries. We propose to continue our timing project focusing mostly on NGC6752 at 20cm (in order to measure additional parameters useful to constrain the existence of a black-hole) and NGC6397 at 10cm (for studying the eclipse region and the orbital secular evolution).
Catching Galactic open clusters in advanced stages of dynamical evolution
NASA Astrophysics Data System (ADS)
Angelo, M. S.; Piatti, A. E.; Dias, W. S.; Maia, F. F. S.
2018-04-01
During their dynamical evolution, Galactic open clusters (OCs) gradually lose their stellar content mainly because of internal relaxation and tidal forces. In this context, the study of dynamically evolved OCs is necessary to properly understand such processes. We present a comprehensive Washington CT1 photometric analysis of six sparse OCs, namely: ESO 518-3, Ruprecht 121, ESO 134-12, NGC 6573, ESO 260-7 and ESO 065-7. We employed Markov chain Monte-Carlo simulations to robustly determine the central coordinates and the structural parameters and T1 × (C - T1) colour-magnitude diagrams (CMDs) cleaned from field contamination were used to derive the fundamental parameters. ESO 518-03, Ruprecht 121, ESO 134-12 and NGC 6573 resulted to be of nearly the same young age (8.2 ≤log(t yr-1) ≤ 8.3); ESO 260-7 and ESO065-7 are of intermediate age (9.2 ≤log(t yr-1) ≤ 9.4). All studied OCs are located at similar Galactocentric distances (RG ˜ 6 - 6.9 kpc), considering uncertainties, except for ESO 260-7 (RG = 8.9 kpc). These OCs are in a tidally filled regime and are dynamically evolved, since they are much older than their half-mass relaxation times (t/trh ≳ 30) and present signals of low-mass star depletion. We distinguished two groups: those dynamically evolving towards final disruptions and those in an advanced dynamical evolutionary stage. Although we do not rule out that the Milky Way potential could have made differentially faster their dynamical evolutions, we speculate here with the possibility that they have been mainly driven by initial formation conditions.
Catching Galactic open clusters in advanced stages of dynamical evolution
NASA Astrophysics Data System (ADS)
Angelo, M. S.; Piatti, A. E.; Dias, W. S.; Maia, F. F. S.
2018-07-01
During their dynamical evolution, Galactic open clusters (OCs) gradually lose their stellar content mainly because of internal relaxation and tidal forces. In this context, the study of dynamically evolved OCs is necessary to properly understand such processes. We present a comprehensive Washington CT1 photometric analysis of six sparse OCs, namely ESO 518-3, Ruprecht 121, ESO 134-12, NGC 6573, ESO 260-7, and ESO 065-7. We employed Markov chain Monte Carlo simulations to robustly determine the central coordinates and the structural parameters and T1 × (C - T1) colour-magnitude diagrams cleaned from field contamination were used to derive the fundamental parameters. ESO 518-03, Ruprecht 121, ESO 134-12, and NGC 6573 resulted to be of nearly the same young age [8.2 ≤log(t yr-1) ≤ 8.3]; ESO 260-7 and ESO065-7 are of intermediate age [9.2 ≤log(t yr-1) ≤ 9.4]. All studied OCs are located at similar Galactocentric distances (RG ˜6-6.9 kpc), considering uncertainties, except for ESO 260-7 (RG = 8.9 kpc). These OCs are in a tidally filled regime and are dynamically evolved, since they are much older than their half-mass relaxation times (t/trh ≳ 30) and present signals of low-mass star depletion. We distinguished two groups: those dynamically evolving towards final disruptions and those in an advanced dynamical evolutionary stage. Although we do not rule out that the Milky Way potential could have made differentially faster their dynamical evolutions, we speculate here with the possibility that they have been mainly driven by initial formation conditions.
NASA Astrophysics Data System (ADS)
Anthony-Twarog, Barbara J.; Lee-Brown, Donald B.; Deliyannis, Constantine P.; Twarog, Bruce A.
2018-03-01
HYDRA spectra of 287 stars in the field of NGC 2506 from the turnoff through the giant branch are analyzed. With previous data, 22 are identified as probable binaries; 90 more are classified as potential non-members. Spectroscopic analyses of ∼60 red giants and slowly rotating turnoff stars using line equivalent widths and a neural network approach lead to [Fe/H] = ‑0.27 ± 0.07 (s.d.) and [Fe/H] = ‑0.27 ± 0.06 (s.d.), respectively. Li abundances are derived for 145 probable single-star members, 44 being upper limits. Among turnoff stars outside the Li-dip, A(Li) = 3.04 ± 0.16 (s.d.), with no trend with color, luminosity, or rotation speed. Evolving from the turnoff across the subgiant branch, there is a well-delineated decline to A(Li) ∼1.25 at the giant branch base, coupled with the rotational spindown from between ∼20 and 70 km s‑1 to less than 20 km s‑1 for stars entering the subgiant branch and beyond. A(Li) remains effectively constant from the giant branch base to the red giant clump level. A new member above the clump redefines the path of the first-ascent red giant branch; its Li is 0.6 dex below the first-ascent red giants. With one exception, all post-He-flash stars have upper limits to A(Li), at or below the level of the brightest first-ascent red giant. The patterns are in excellent qualitative agreement with the model predictions for low/intermediate-mass stars which undergo rotation-induced mixing at the turnoff and subgiant branch, first dredge-up, and thermohaline mixing beyond the red giant bump.
Globular cluster systems and their host galaxies: comparison of spatial distributions and colors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hargis, Jonathan R.; Rhode, Katherine L., E-mail: jhargis@haverford.edu
2014-11-20
We present a study of the spatial and color distributions of four early-type galaxies and their globular cluster (GC) systems observed as part of our ongoing wide-field imaging survey. We use BVR KPNO 4 m+MOSAIC imaging data to characterize the galaxies' GC populations, perform surface photometry of the galaxies, and compare the projected two-dimensional shape of the host galaxy light to that of the GC population. The GC systems of the ellipticals NGC 4406 and NGC 5813 both show an elliptical distribution consistent with that of the host galaxy light. Our analysis suggests a similar result for the giant ellipticalmore » NGC 4472, but a smaller GC candidate sample precludes a definite conclusion. For the S0 galaxy NGC 4594, the GCs have a circular projected distribution, in contrast to the host galaxy light, which is flattened in the inner regions. For NGC 4406 and NGC 5813, we also examine the projected shapes of the metal-poor and metal-rich GC subpopulations and find that both subpopulations have elliptical shapes that are consistent with those of the host galaxy light. Lastly, we use integrated colors and color profiles to compare the stellar populations of the galaxies to their GC systems. For each galaxy, we explore the possibility of color gradients in the individual metal-rich and metal-poor GC subpopulations. We find statistically significant color gradients in both GC subpopulations of NGC 4594 over the inner ∼5 effective radii (∼20 kpc). We compare our results to scenarios for the formation and evolution of giant galaxies and their GC systems.« less
First confirmed ultra-compact dwarf galaxy in the NGC 5044 group
NASA Astrophysics Data System (ADS)
Faifer, Favio R.; Escudero, Carlos G.; Scalia, María C.; Smith Castelli, Analía V.; Norris, Mark; De Rossi, María E.; Forte, Juan C.; Cellone, Sergio A.
2017-03-01
Context. Ultra-compact dwarfs (UCDs) are stellar systems displaying colours and metallicities between those of globular clusters (GCs) and early-type dwarf galaxies, as well as sizes of Reff ≲ 100 pc and luminosities in the range -13.5
Neutrino and axion bounds from the globular cluster M5 (NGC 5904).
Viaux, N; Catelan, M; Stetson, P B; Raffelt, G G; Redondo, J; Valcarce, A A R; Weiss, A
2013-12-06
The red-giant branch (RGB) in globular clusters is extended to larger brightness if the degenerate helium core loses too much energy in "dark channels." Based on a large set of archival observations, we provide high-precision photometry for the Galactic globular cluster M5 (NGC 5904), allowing for a detailed comparison between the observed tip of the RGB with predictions based on contemporary stellar evolution theory. In particular, we derive 95% confidence limits of g(ae)<4.3×10(-13) on the axion-electron coupling and μ(ν)<4.5×10(-12)μ(B) (Bohr magneton μ(B)=e/2m(e)) on a neutrino dipole moment, based on a detailed analysis of statistical and systematic uncertainties. The cluster distance is the single largest source of uncertainty and can be improved in the future.
An Ultraviolet-Excess Optical Candidate for the Luminous Globular Cluster X-Ray Source in NGC 1851
NASA Technical Reports Server (NTRS)
Deutsch, Eric W.; Anderson, Scott F.; Margon, Bruce; Downes, Ronald A.
1996-01-01
The intense, bursting X-ray source in the globular cluster NGC 1851 was one of the first cluster sources discovered, but has remained optically unidentified for 25 years. We report here on results from Hubble Space Telescope WFPC2 multicolor images in NGC 1851. Our high spatial resolution images resolve approximately 200 objects in the 3 minute radius Einstein X-ray error circle, 40 times as many as in previous ground-based work. A color-magnitude diagram of the cluster clearly reveals a markedly UV-excess object with B approximately 21, (U - B) approximately -0.9, only 2 minutes from the X-ray position. The UV-excess candidate is 0.12 minutes distant from a second, unremarkable star that is 0.5 mag brighter in B; thus ground-based studies of this field are probably impractical. Three other UV-excess objects are also present among the approximately 16,000 objects in the surveyed region of the cluster, leaving an approximately 5% probability that a UV-excess object has fallen in the X-ray error circle by chance. No variability of the candidate is seen in these data, although a more complete study is required. If this object is in fact the counterpart of the X-ray source, previous inferences that some globular cluster X-ray sources are optically subluminous with respect to low-mass X-ray binaries in the field are now strengthened.
Stellar Variability in the Intermediate Age Cluster NGC 1846
NASA Astrophysics Data System (ADS)
Pajkos, Michael A.; Salinas, Ricardo; Vivas, Anna Katherina; Strader, Jay; Contreras, Rodrigo
2017-01-01
The existence of multiple stellar populations in Galactic globular clusters is considered a widespread phenomenon, with only a few possible exceptions. In the LMC intermediate-age globular clusters, the presence of extended main sequence turn off points (MSTOs), initially interpreted as evidence for multiple stellar populations, is now under scrutiny and stellar rotation has emerged as an alternative explanation. Here we propose yet another ingredient to this puzzle: the fact that the MSTO of these clusters passes through the instability strip making stellar variability a new alternative to explain this phenomenon. We report the first in-depth characterization of the variability, at the MSTO level, in any LMC cluster, and assess the role of variability masquerading as multiple stellar populations. We used the Gemini-S/GMOS to obtain time series photometry of NGC 1846. Using differencing image analysis, we identified 90 variables in the r-band, 68 of which were also found in the g-band. Of these 68, 57 were δ-scuti—with 35 having full phase coverage and 22 without. The average full period (Pfull) was 1.93 ± 0.79 hours. Furthermore, two eclipsing binaries and two RR Lyrae identified by OGLE were recovered. We conclude that not enough variables were found to provide a statistically significant impact on the extended MSTO, nor to explain the bifurcation of MSTO in NGC 1846. But the effect of variable stars could still be a viable explanation on clusters where only a hint of a MS extension is seen.
Low-luminosity stellar mass functions in globular clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richer, H.B.; Fahlman, G.G.; Buonanno, R.
New data are presented on cluster luminosity functions and mass functions for selected fields in the globular clusters M13 and M71, extending down the main sequence to at least 0.2 solar mass. In this experiment, CCD photometry data were obtained at the prime focus of the CFHT on the cluster fields that were far from the cluster center. Luminosity functions were constructed, using the ADDSTAR routine to correct for the background, and mass functions were derived using the available models. The mass functions obtained for M13 and M71 were compared to existing data for NGC 6397. Results show that (1)more » all three globular clusters display a marked change in slope at about 0.4 solar mass, with the slopes becoming considerably steeper toward lower masses; (2) there is no correlation between the slope of the mass function and metallicity; and (3) the low-mass slope of the mass function for M13 is much steeper than for NGC 6397 and M71. 22 refs.« less
The Environmental Impact of Intra-Cluster Medium on the Interstellar Medium in Early Type Galaxies
NASA Technical Reports Server (NTRS)
Trinchieri, Ginevra
1997-01-01
High resolution X-ray images of three early type galaxies observed with the ROSAT HRI are presented. Data for NGC 1553 and NGC 5846 indicate that the emission is highly irregular, with interesting features on scales from a few arcsec to a few arcmin. The gas temperatures also vary both with the galactocentric radius and in correspondence to regions of higher emission and denser material. Strikingly similar features are observed in the X-ray and H(alpha) morphologies of NGC 1553 and NGC 5846, while smoother, more regular isophotes are observed in NGC 4649 at both wavelengths. A connection between these two kinds of emission therefore seems likely. In the light of our observations we discuss possible scenarios that can and account for the connection between X-ray and H(alpha) emissions.
Resolved photometry of extragalactic young massive star clusters
NASA Astrophysics Data System (ADS)
Larsen, S. S.; de Mink, S. E.; Eldridge, J. J.; Langer, N.; Bastian, N.; Seth, A.; Smith, L. J.; Brodie, J.; Efremov, Yu. N.
2011-08-01
Aims: We present colour-magnitude diagrams (CMDs) of young massive star clusters in several galaxies located well beyond the Local Group. The richness of these clusters allows us to obtain large samples of post-main sequence stars and test how well the observed CMDs are reproduced by canonical stellar isochrones. Methods: We use imaging of seven clusters in the galaxies NGC 1313, NGC 1569, NGC 1705, NGC 5236 and NGC 7793 obtained with the Advanced Camera for Surveys on board the Hubble Space Telescope and carry out PSF-fitting photometry of individual stars in the clusters. The clusters have ages in the range ~(5-50) × 106 years and masses of ~105 M⊙-106 M⊙. Although crowding prevents us from obtaining photometry in the inner regions of the clusters, we are still able to measure up to 30-100 supergiant stars in each of the richest clusters. The resulting CMDs and luminosity functions are compared with photometry of artificially generated clusters, designed to reproduce the photometric errors and completeness as realistically as possible. Results: In agreement with previous studies, our CMDs show no clear gap between the H-burning main sequence and the He-burning supergiant stars, contrary to predictions by common stellar isochrones. In general, the isochrones also fail to match the observed number ratios of red-to-blue supergiant stars, although the difficulty of separating blue supergiants from the main sequence complicates this comparison. In several cases we observe a large spread (1-2 mag) in the luminosities of the supergiant stars that cannot be accounted for by observational errors. We find that this spread can be reproduced by including an age spread of ~(10-30) × 106 years in the models. However, age spreads cannot fully account for the observed morphology of the CMDs and other processes, such as the evolution of interacting binary stars, may also play a role. Conclusions: Colour-magnitude diagrams can be successfully obtained for massive star clusters out to distances of at least 4-5 Mpc. Comparing such CMDs with models based on canonical isochrones we find several areas of disagreement. One interesting possibility is that an age spread of up to ~30 Myr may be present in some clusters. The data presented here may provide useful constraints on models for single and/or binary stellar evolution. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Science Institute. STScI is operated by the association of Universities for Research in Astronomy, Inc. under the NASA contract NAS 5-26555Tables 4-10 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/532/A147
Tycho- Gaia Astrometric Solution Parallaxes and Proper Motions for Five Galactic Globular Clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watkins, Laura L.; Van der Marel, Roeland P., E-mail: lwatkins@stsci.edu
2017-04-20
We present a pilot study of Galactic globular cluster (GC) proper motion (PM) determinations using Gaia data. We search for GC stars in the Tycho- Gaia Astrometric Solution (TGAS) catalog from Gaia Data Release 1 (DR1), and identify five members of NGC 104 (47 Tucanae), one member of NGC 5272 (M3), five members of NGC 6121 (M4), seven members of NGC 6397, and two members of NGC 6656 (M22). By taking a weighted average of member stars, fully accounting for the correlations between parameters, we estimate the parallax (and, hence, distance) and PM of the GCs. This provides a homogeneousmore » PM study of multiple GCs based on an astrometric catalog with small and well-controlled systematic errors and yields random PM errors similar to existing measurements. Detailed comparison to the available Hubble Space Telescope ( HST ) measurements generally shows excellent agreement, validating the astrometric quality of both TGAS and HST . By contrast, comparison to ground-based measurements shows that some of those must have systematic errors exceeding the random errors. Our parallax estimates have uncertainties an order of magnitude larger than previous studies, but nevertheless imply distances consistent with previous estimates. By combining our PM measurements with literature positions, distances, and radial velocities, we measure Galactocentric space motions for the clusters and find that these also agree well with previous analyses. Our analysis provides a framework for determining more accurate distances and PMs of Galactic GCs using future Gaia data releases. This will provide crucial constraints on the near end of the cosmic distance ladder and provide accurate GC orbital histories.« less
Constraints on Massive Axion-Like Particles from X-ray Observations of NGC1275
NASA Astrophysics Data System (ADS)
Chen, Linhan; Conlon, Joseph P.
2018-06-01
If axion-like particles (ALPs) exist, photons can convert to ALPs on passage through regions containing magnetic fields. The magnetised intracluster medium of large galaxy clusters provides a region that is highly efficient at ALP-photon conversion. X-ray observations of Active Galactic Nuclei (AGNs) located within galaxy clusters can be used to search for and constrain ALPs, as photon-ALP conversion would lead to energy-dependent quasi-sinusoidal modulations in the X-ray spectrum of an AGN. We use Chandra observations of the central AGN of the Perseus Cluster, NGC1275, to place bounds on massive ALPs up to ma ˜ 10-11eV, extending previous work that used this dataset to constrain massless ALPs.
NASA Astrophysics Data System (ADS)
Asa'd, Randa S.; Vazdekis, Alexandre; Cerviño, Miguel; Noël, Noelia E. D.; Beasley, Michael A.; Kassab, Mahmoud
2017-11-01
The optical integrated spectra of three Large Magellanic Cloud young stellar clusters (NGC 1984, NGC 1994 and NGC 2011) exhibit concave continua and prominent molecular bands which deviate significantly from the predictions of single stellar population (SSP) models. In order to understand the appearance of these spectra, we create a set of young stellar population (MILES) models, which we make available to the community. We use archival International Ultraviolet Explorer integrated UV spectra to independently constrain the cluster masses and extinction, and rule out strong stochastic effects in the optical spectra. In addition, we also analyse deep colour-magnitude diagrams of the clusters to provide independent age determinations based on isochrone fitting. We explore hypotheses, including age spreads in the clusters, a top-heavy initial mass function, different SSP models and the role of red supergiant stars (RSG). We find that the strong molecular features in the optical spectra can be only reproduced by modelling an increased fraction of about ˜20 per cent by luminosity of RSG above what is predicted by canonical stellar evolution models. Given the uncertainties in stellar evolution at Myr ages, we cannot presently rule out the presence of Myr age spreads in these clusters. Our work combines different wavelengths as well as different approaches (resolved data as well as integrated spectra for the same sample) in order to reveal the complete picture. We show that each approach provides important information but in combination we can better understand the cluster stellar populations.
Photometric and structural properties of NGC 6544: A combined VVV-Hubble space telescope study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohen, Roger E.; Mauro, Francesco; Geisler, Doug
We combine archival Hubble Space Telescope imaging with wide-field near-infrared photometry to study the neglected metal-poor Galactic globular cluster NGC 6544. A high spatial resolution map of differential reddening over the inner portion of the cluster is constructed, revealing variations of up to half of the total reddening, and the resulting corrected color-magnitude diagrams reveal a sparse blue horizontal branch and centrally concentrated blue straggler population, verified via relative proper motions. Using the corrected photometry to investigate the cluster distance, reddening, and age via direct comparison to well-calibrated photometry of clusters with similar metallicities, we estimate (m – M){sub 0}more » = 11.96, E(B – V) = 0.79, and an age coeval with M13 to within the relevant uncertainties. Although our data are insufficient to place tight constraints on the reddening law toward NGC 6544, we find no strong evidence that it is non-standard at optical or near-infrared wavelengths. We also provide near-infrared fiducial sequences extending nearly 2 mag below the cluster main sequence turnoff, generated from a statistically decontaminated sample of cluster stars. Lastly, we redetermine the cluster center and construct a radial number density profile which is well fit by an atypically flat power law with a slope of about 1.7. We discuss this result, together with a flattened main sequence luminosity function and inverted mass function, in the context of mass segregation and tidal stripping via interactions with Milky Way potential.« less
Spitzer observations of NGC 2264: the nature of the disk population
NASA Astrophysics Data System (ADS)
Teixeira, P. S.; Lada, C. J.; Marengo, M.; Lada, E. A.
2012-04-01
Aims: NGC 2264 is a young cluster with a rich circumstellar disk population which makes it an ideal target for studying the evolution of stellar clusters. Our goal is to study the star formation history of NGC 2264 and to analyse the primordial disk evolution of its members. Methods: The study presented is based on data obtained with the Infrared Array Camera (IRAC) and the Multiband Imaging Photometer for Spitzer (MIPS) on board the Spitzer Space Telescope, combined with deep near-infrared (NIR) ground-based FLAMINGOS imaging and previously published optical data. Results: We build NIR dust extinction maps of the molecular cloud associated with the cluster, and determine it to have a mass of 2.1 × 103 M⊙ above an AV of 7 mag. Using a differential Ks-band luminosity function (KLF) of the cluster, we estimate the size of the population of NGC 2264, within the area observed by FLAMINGOS, to be 1436 ± 242 members. The star formation efficiency is ≥ ~25%. We identify the disk population and divide it into 3 groups based on their spectral energy distribution slopes from 3.6 μm to 8 μm and on the 24 μm excess emission: (i) optically thick inner disks, (ii) anaemic inner disks, and (iii) disks with inner holes, or transition disks. We analyse the spatial distribution of these sources and find that sources with thick disks segregate into sub-clusterings, whereas sources with anaemic disks do not. Furthermore, sources with anaemic disks are found to be unembedded (i.e., with AV < 3 mag), whereas the clustered sources with thick disks are still embedded within the parental cloud. Conclusions: NGC 2264 has undergone more than one star-forming event, where the anaemic and extincted thick disk population appear to have formed in separate episodes: the sources with anaemic disks are more evolved and have had time to disperse and populate a halo of the cluster. We also find tentative evidence of triggered star-formation in the Fox Fur Nebula. In terms of disk evolution, our findings support the emerging disk evolution paradigm of two distinct evolutionary paths for primordial optically thick disks: a homologous one where the disk emission decreases uniformly at NIR and mid-infrared (MIR) wavelengths, and a radially differential one where the emission from the inner region of the disk decreases more rapidly than from the outer region (forming transition disks).
Globular cluster chemistry in fast-rotating dwarf stars belonging to intermediate-age open clusters
NASA Astrophysics Data System (ADS)
Pancino, Elena
2018-06-01
The peculiar chemistry observed in multiple populations of Galactic globular clusters is not generally found in other systems such as dwarf galaxies and open clusters, and no model can currently fully explain it. Exploring the boundaries of the multiple-population phenomenon and the variation of its extent in the space of cluster mass, age, metallicity, and compactness has proven to be a fruitful line of investigation. In the framework of a larger project to search for multiple populations in open clusters that is based on literature and survey data, I found peculiar chemical abundance patterns in a sample of intermediate-age open clusters with publicly available data. More specifically, fast-rotating dwarf stars (v sin i ≥ 50 km s-1) that belong to four clusters (Pleiades, Ursa Major, Come Berenices, and Hyades) display a bimodality in either [Na/Fe] or [O/Fe], or both, with the low-Na and high-O peak more populated than the high-Na and low-O peak. Additionally, two clusters show a Na-O anti-correlation in the fast-rotating stars, and one cluster shows a large [Mg/Fe] variation in stars with high [Na/Fe], reaching the extreme Mg depletion observed in NGC 2808. Even considering that the sample sizes are small, these patterns call for attention in the light of a possible connection with the multiple population phenomenon of globular clusters. The specific chemistry observed in these fast-rotating dwarf stars is thought to be produced by a complex interplay of different diffusion and mixing mechanisms, such as rotational mixing and mass loss, which in turn are influenced by metallicity, binarity, mass, age, variability, and so on. However, with the sample in hand, it was not possible to identify which stellar parameters cause the observed Na and O bimodality and Na-O anti-correlation. This suggests that other stellar properties might be important in addition to stellar rotation. Stellar binarity might influence the rotational properties and enhance rotational mixing and mass loss of stars in a dense environment like that of clusters (especially globulars). In conclusion, rotation and binarity appear as a promising research avenue for better understanding multiple stellar populations in globular clusters; this is certainly worth exploring further.
ELM: AN ALGORITHM TO ESTIMATE THE ALPHA ABUNDANCE FROM LOW-RESOLUTION SPECTRA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bu, Yude; Zhao, Gang; Kumar, Yerra Bharat
We have investigated a novel methodology using the extreme learning machine (ELM) algorithm to determine the α abundance of stars. Applying two methods based on the ELM algorithm—ELM+spectra and ELM+Lick indices—to the stellar spectra from the ELODIE database, we measured the α abundance with a precision better than 0.065 dex. By applying these two methods to the spectra with different signal-to-noise ratios (S/Ns) and different resolutions, we found that ELM+spectra is more robust against degraded resolution and ELM+Lick indices is more robust against variation in S/N. To further validate the performance of ELM, we applied ELM+spectra and ELM+Lick indices to SDSSmore » spectra and estimated α abundances with a precision around 0.10 dex, which is comparable to the results given by the SEGUE Stellar Parameter Pipeline. We further applied ELM to the spectra of stars in Galactic globular clusters (M15, M13, M71) and open clusters (NGC 2420, M67, NGC 6791), and results show good agreement with previous studies (within 1σ). A comparison of the ELM with other widely used methods including support vector machine, Gaussian process regression, artificial neural networks, and linear least-squares regression shows that ELM is efficient with computational resources and more accurate than other methods.« less
Hubble Friday - Heavy Metal Stars
2017-12-08
Hubble rocks out with heavy metal stars! This 10.5-billion-year-old globular cluster, NGC 6496, is home to heavy-metal stars of a celestial kind! The stars comprising this spectacular spherical cluster are enriched with much higher proportions of metals — elements heavier than hydrogen and helium are curiously known as metals in astronomy — than stars found in similar clusters. A handful of these high-metallicity stars are also variable stars, meaning that their brightness fluctuates over time. NGC 6496 hosts a selection of long-period variables — giant pulsating stars whose brightness can take up to, and even over, a thousand days to change — and short-period eclipsing binaries, which dim when eclipsed by a stellar companion. The nature of the variability of these stars can reveal important information about their mass, radius, luminosity, temperature, composition, and evolution, providing astronomers with measurements that would be difficult or even impossible to obtain through other methods. NGC 6496 was discovered in 1826 by Scottish astronomer James Dunlop. The cluster resides at about 35,000 light-years away in the southern constellation of Scorpius (The Scorpion). Image credit: ESA/Hubble & NASA, Acknowledgement: Judy Schmidt Text credit: European Space Agency Read more: go.nasa.gov/1U2wqGW
Observational Evidence for a Dark Side to NGC 5128's Globular Cluster System
NASA Astrophysics Data System (ADS)
Taylor, Matthew A.; Puzia, Thomas H.; Gomez, Matias; Woodley, Kristin A.
2015-05-01
We present a study of the dynamical properties of 125 compact stellar systems (CSSs) in the nearby giant elliptical galaxy NGC 5128, using high-resolution spectra (R ≈ 26, 000) obtained with Very Large Telescope/FLAMES. Our results provide evidence for a new type of star cluster, based on the CSS dynamical mass scaling relations. All radial velocity (vr) and line-of-sight velocity dispersion (σlos) measurements are performed with the penalized pixel fitting (ppxf ) technique, which provided σppxf estimates for 115 targets. The σppxf estimates are corrected to the 2D projected half-light radii, σ1/2, as well as the cluster cores, σ0, accounting for observational/aperture effects and are combined with structural parameters, from high spatial resolution imaging, in order to derive total dynamical masses ({{M}dyn}) for 112 members of NGC 5128’s star cluster system. In total, 89 CSSs have dynamical masses measured for the first time along with the corresponding dynamical mass-to-light ratios (\\Upsilon Vdyn). We find two distinct sequences in the \\Upsilon Vdyn-{{M}dyn} plane, which are well approximated by power laws of the forms \\Upsilon Vdyn\\propto Mdyn0.33+/- 0.04 and \\Upsilon Vdyn\\propto Mdyn0.79+/- 0.04. The shallower sequence corresponds to the very bright tail of the globular cluster luminosity function (GCLF), while the steeper relation appears to be populated by a distinct group of objects that require significant dark gravitating components such as central massive black holes and/or exotically concentrated dark matter distributions. This result would suggest that the formation and evolution of these CSSs are markedly different from the “classical” globular clusters in NGC 5128 and the Local Group, despite the fact that these clusters have luminosities similar to the GCLF turnover magnitude. We include a thorough discussion of myriad factors potentially influencing our measurements. Based on observations collected under program 081.D-0651 (PI: Matias Gomez) with FLAMES at the Very Large Telescope of the Paranal Observatory in Chile, operated by the ESO.
Image-Subtraction Photometry of Variable Stars in the Field of the Globular Cluster NGC 6934
NASA Astrophysics Data System (ADS)
Kaluzny, J.; Olech, A.; Stanek, K. Z.
2001-03-01
We present CCD BVI photometry of 85 variable stars from the field of the globular cluster NGC 6934. The photometry was obtained with the image subtraction package ISIS. 35 variables are new identifications: 24 RRab stars, five RRc stars, two eclipsing binaries of W UMa-type, one SX Phe star, and three variables of other types. Both detected contact binaries are foreground stars. The SX Phe variable belongs most likely to the group of cluster blue stragglers. Large number of newly found RR Lyr variables in this cluster, as well as in other clusters recently observed by us, indicates that total RR Lyr population identified up to date in nearby galactic globular clusters is significantly (>30%) incomplete. Fourier decomposition of the light curves of RR Lyr variables was used to estimate the basic properties of these stars. From the analysis of RRc variables we obtain a mean mass of M=0.63 Msolar, luminosity logL/Lsolar=1.72, effective temperature Teff=7300 and helium abundance Y=0.27. The mean values of the absolute magnitude, metallicity (on Zinn's scale) and effective temperature for RRab variables are MV=0.81, [Fe/H]=-1.53 and Teff=6450, respectively. From the B-V color at minimum light of the RRab variables we obtained the color excess to NGC 6934 equal to E(B-V)=0.09+/-0.01. Different calibrations of absolute magnitudes of RRab and RRc available in literature were used to estimate apparent distance modulus of the cluster: (m-M)V=16.09+/-0.06. We note a likely error in the zero point of the HST-based V-band photometry of NGC 6934 recently presented by Piotto et al. Among analyzed sample of RR Lyr stars we have detected a short period and low amplitude variable which possibly belongs to the group of second overtone pulsators (RRe subtype variables). The BVI photometry of all variables is available electronically via anonymous ftp. The complete set of the CCD frames is available upon request. Based on observations obtained with the 1.2 m Telescope at the F. L. Whipple Observatory of the Harvard-Smithsonian Center for Astrophysics.
A Detailed Survey of Pulsating Variables in Five Globular Clusters (Abstract)
NASA Astrophysics Data System (ADS)
Murphy, B. W.
2016-12-01
(Abstract only) Globular clusters are ideal laboratories for conducting a stellar census. Of particular interest are pulsating variables, which provide astronomers with a tool to probe the properties of the stars and the cluster. We observed each of five globular clusters hundreds to thousands of times over a time span ranging from 2 to 4 years in B, V, and I filters using the SARA 0.6-meter telescope located at Cerro Tololo Interamerican Observatory and the 0.9-meter telescope located at Kitt Peak, Arizona. The images were analyzed using difference image analysis to identify and produce light curves of all variables found in each cluster. In total we identified 377 variables with 140 of these being newly discovered increasing the number of known variables stars in these clusters by 60%. Of the total we have identified 319 RR Lyrae variables (193 RR0, 18 RR01, 101 RR1, 7 RR2), 9 SX Phe stars, 5 Cepheid variables, 11 eclipsing variables, and 33 long period variables. For IC4499 we identified 64 RR0, 18 RR01, 14 RR1, 4 RR2, 1 SX Phe, 1 eclipsing binary, and 2 long period variables. For NGC4833 we identified 10 RR0, 7 RR1, 3 RR2, 6 SX Phe, 5 eclipsing binaries, and 9 long period variables. For NGC6171 (M107) we identified 14 RR0, 7 RR1, and 1 SX Phe. For NGC6402 (M14) we identified 55 RR0, 57 RR1, 1 RR2, 1 SX Phe, 6 Cepheids, 1 eclipsing binary, and 15 long period variables. For NGC6584 we identified 50 RR0, 16 RR1, 4 eclipsing binaries, and 7 long period variables. From our extensive data set we were able to obtain sufficient temporal and complete phase coverage of the RR Lyrae variables. This has allowed us not only to properly classify each of the RR Lyrae variables but also to use Fourier decomposition of the B, V, and I light curves to further analyze the properties of the variable stars and hence the physical properties of each globular cluster.
THE VERY MASSIVE STAR CONTENT OF THE NUCLEAR STAR CLUSTERS IN NGC 5253
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, L. J.; Crowther, P. A.; Calzetti, D.
2016-05-20
The blue compact dwarf galaxy NGC 5253 hosts a very young starburst containing twin nuclear star clusters, separated by a projected distance of 5 pc. One cluster (#5) coincides with the peak of the H α emission and the other (#11) with a massive ultracompact H ii region. A recent analysis of these clusters shows that they have a photometric age of 1 ± 1 Myr, in apparent contradiction with the age of 3–5 Myr inferred from the presence of Wolf-Rayet features in the cluster #5 spectrum. We examine Hubble Space Telescope ultraviolet and Very Large Telescope optical spectroscopy ofmore » #5 and show that the stellar features arise from very massive stars (VMSs), with masses greater than 100 M {sub ⊙}, at an age of 1–2 Myr. We further show that the very high ionizing flux from the nuclear clusters can only be explained if VMSs are present. We investigate the origin of the observed nitrogen enrichment in the circumcluster ionized gas and find that the excess N can be produced by massive rotating stars within the first 1 Myr. We find similarities between the NGC 5253 cluster spectrum and those of metal-poor, high-redshift galaxies. We discuss the presence of VMSs in young, star-forming galaxies at high redshift; these should be detected in rest-frame UV spectra to be obtained with the James Webb Space Telescope . We emphasize that population synthesis models with upper mass cutoffs greater than 100 M {sub ⊙} are crucial for future studies of young massive star clusters at all redshifts.« less
Dating star clusters in the Small Magellanic Cloud by means of integrated spectra
NASA Astrophysics Data System (ADS)
Ahumada, A. V.; Clariá, J. J.; Bica, E.; Dutra, C. M.
2002-10-01
In this study flux-calibrated integrated spectra in the range (3600-6800) Å are presented for 16 concentrated star clusters in the Small Magellanic Cloud (SMC), approximately half of which constitute unstudied objects. We have estimated ages and foreground interstellar reddening values from the comparison of the line strengths and continuum distribution of the cluster spectra with those of template cluster spectra with known parameters. Most of the sample clusters are young blue clusters (6-50 Myr), while L 28, NGC 643 and L 114 are found to be intermediate-age clusters (1-6 Gyr). One well known SMC cluster (NGC 416) was observed for comparison purposes. The sample includes clusters in the surroundings and main body of the SMC, and the derived foreground reddening values are in the range 0.00 <= E(B-V) <= 0.15. The present data also make up a cluster spectral library at SMC metallicity. Based on observations made at Complejo Astronómico El Leoncito, which is operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba and San Juan, Argentina.
2016-01-11
The subject of this NASA/ESA Hubble Space Telescope image is known as NGC 3597. It is the product of a collision between two good-sized galaxies, and is slowly evolving to become a giant elliptical galaxy. This type of galaxy has grown more and more common as the Universe has evolved, with initially small galaxies merging and progressively building up into larger galactic structures over time. NGC 3597 is located approximately 150 million light-years away in the constellation of Crater (The Cup). Astronomers study NGC 3597 to learn more about how elliptical galaxies form — many ellipticals began their lives far earlier in the history of the Universe. Older ellipticals are nicknamed “red and dead” by astronomers because these bloated galaxies are not anymore producing new, bluer, stars in ages, and are thus packed full of old and redder stellar populations. Before infirmity sets in, some freshly formed elliptical galaxies experience a final flush of youth, as is the case with NGC 3597. Galaxies smashing together pool their available gas and dust, triggering new rounds of star birth. Some of this material ends up in dense pockets initially called proto-globular clusters, dozens of which festoon NGC 3597. These pockets will go on to collapse and form fully-fledged globular clusters, large spheres that orbit the centres of galaxies like satellites, packed tightly full of millions of stars.
AGB Sodium Abundances in the Globular Cluster 47 Tucanae (NGC 104)
NASA Astrophysics Data System (ADS)
Johnson, Christian I.; McDonald, Iain; Pilachowski, Catherine A.; Mateo, Mario; Bailey, John I., III; Cordero, Maria J.; Zijlstra, Albert A.; Crane, Jeffrey D.; Olszewski, Edward; Shectman, Stephen A.; Thompson, Ian
2015-02-01
A recent analysis comparing the [Na/Fe] distributions of red giant branch (RGB) and asymptotic giant branch (AGB) stars in the Galactic globular cluster NGC 6752 found that the ratio of Na-poor to Na-rich stars changes from 30:70 on the RGB to 100:0 on the AGB. The surprising paucity of Na-rich stars on the AGB in NGC 6752 warrants additional investigations to determine if the failure of a significant fraction of stars to ascend the AGB is an attribute common to all globular clusters. Therefore, we present radial velocities, [Fe/H], and [Na/Fe] abundances for 35 AGB stars in the Galactic globular cluster 47 Tucanae (47 Tuc; NGC 104), and compare the AGB [Na/Fe] distribution with a similar RGB sample published previously. The abundances and velocities were derived from high-resolution spectra obtained with the Michigan/Magellan Fiber System and MSpec spectrograph on the Magellan-Clay 6.5 m telescope. We find the average heliocentric radial velocity and [Fe/H] values to be < R{{V}helio.}> = -18.56 km s-1 (σ = 10.21 km s-1) and < [Fe/H]> = -0.68 (σ = 0.08), respectively, in agreement with previous literature estimates. The average [Na/Fe] abundance is 0.12 dex lower in the 47 Tuc AGB sample compared to the RGB sample, and the ratio of Na-poor to Na-rich stars is 63:37 on the AGB and 45:55 on the RGB. However, in contrast to NGC 6752, the two 47 Tuc populations have nearly identical [Na/Fe] dispersion and interquartile range values. The data presented here suggest that only a small fraction (≲20%) of Na-rich stars in 47 Tuc may fail to ascend the AGB, which is a similar result to that observed in M13. Regardless of the cause for the lower average [Na/Fe] abundance in AGB stars, we find that Na-poor stars and at least some Na-rich stars in 47 Tuc evolve through the early AGB phase. The contrasting behavior of Na-rich stars in 47 Tuc and NGC 6752 suggests that the RGB [Na/Fe] abundance alone is insufficient for predicting if a star will ascend the AGB.
AGB sodium abundances in the globular cluster 47 Tucanae (NGC 104)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Christian I.; McDonald, Iain; Zijlstra, Albert A., E-mail: cjohnson@cfa.harvard.edu, E-mail: iain.mcdonald-2@manchester.ac.uk, E-mail: albert.zijlstra@manchester.ac.uk
A recent analysis comparing the [Na/Fe] distributions of red giant branch (RGB) and asymptotic giant branch (AGB) stars in the Galactic globular cluster NGC 6752 found that the ratio of Na-poor to Na-rich stars changes from 30:70 on the RGB to 100:0 on the AGB. The surprising paucity of Na-rich stars on the AGB in NGC 6752 warrants additional investigations to determine if the failure of a significant fraction of stars to ascend the AGB is an attribute common to all globular clusters. Therefore, we present radial velocities, [Fe/H], and [Na/Fe] abundances for 35 AGB stars in the Galactic globularmore » cluster 47 Tucanae (47 Tuc; NGC 104), and compare the AGB [Na/Fe] distribution with a similar RGB sample published previously. The abundances and velocities were derived from high-resolution spectra obtained with the Michigan/Magellan Fiber System and MSpec spectrograph on the Magellan–Clay 6.5 m telescope. We find the average heliocentric radial velocity and [Fe/H] values to be 〈RV{sub helio.}〉 = −18.56 km s{sup −1} (σ = 10.21 km s{sup −1}) and 〈[Fe/H]〉 = −0.68 (σ = 0.08), respectively, in agreement with previous literature estimates. The average [Na/Fe] abundance is 0.12 dex lower in the 47 Tuc AGB sample compared to the RGB sample, and the ratio of Na-poor to Na-rich stars is 63:37 on the AGB and 45:55 on the RGB. However, in contrast to NGC 6752, the two 47 Tuc populations have nearly identical [Na/Fe] dispersion and interquartile range values. The data presented here suggest that only a small fraction (≲20%) of Na-rich stars in 47 Tuc may fail to ascend the AGB, which is a similar result to that observed in M13. Regardless of the cause for the lower average [Na/Fe] abundance in AGB stars, we find that Na-poor stars and at least some Na-rich stars in 47 Tuc evolve through the early AGB phase. The contrasting behavior of Na-rich stars in 47 Tuc and NGC 6752 suggests that the RGB [Na/Fe] abundance alone is insufficient for predicting if a star will ascend the AGB.« less
NGC 3503 and its molecular environment
NASA Astrophysics Data System (ADS)
Duronea, N. U.; Vasquez, J.; Cappa, C. E.; Corti, M.; Arnal, E. M.
2012-01-01
Aims: We present a study of the molecular gas and interstellar dust distribution in the environs of the Hii region NGC 3503 associated with the open cluster Pis 17 with the aim of investigating the spatial distribution of the molecular gas linked to the nebula and achieving a better understanding of the interaction of the nebula and Pis 17 with their molecular environment. Methods: We based our study on 12CO(1-0) observations of a region of ~0.6° in size obtained with the 4-m NANTEN telescope, unpublished radio continuum data at 4800 and 8640 MHz obtained with the ATCA telescope, radio continuum data at 843 MHz obtained from SUMSS, and available IRAS, MSX, IRAC-GLIMPSE, and MIPSGAL images. Results: We found a molecular cloud (Component 1) having a mean velocity of -24.7 km s-1 ,compatible with the velocity of the ionized gas, which is associated with the nebula and its surroundings. Adopting a distance of 2.9 ± 0.4 kpc, the total molecular mass yields (7.6 ± 2.1) × 103M⊙ and density yields 400 ± 240 cm-3. The radio continuum data confirm the existence of an electron density gradient in NGC 3503. The IR emission shows a PDR bordering the higher density regions of the nebula. The spatial distribution of the CO emission shows that the nebula coincides with a molecular clump, and the strongest CO emission peak is located close to the higher electron density region. The more negative velocities of the molecular gas (about -27 km s-1), are coincident with NGC 3503. Candidate young stellar objects (YSOs) were detected toward the Hii region, suggesting that embedded star formation may be occurring in the neighborhood of the nebula. The clear electron density gradient, along with the spatial distribution of the molecular gas and PAHs in the region indicates that NGC 3503 is a blister-type Hii region that has probably undergone a champagne phase.
Hubble Sees 'Island Universe' in the Coma Cluster
2017-12-08
NASA image release August 10, 2010 A long-exposure Hubble Space Telescope image shows a majestic face-on spiral galaxy located deep within the Coma Cluster of galaxies, which lies 320 million light-years away in the northern constellation Coma Berenices. The galaxy, known as NGC 4911, contains rich lanes of dust and gas near its center. These are silhouetted against glowing newborn star clusters and iridescent pink clouds of hydrogen, the existence of which indicates ongoing star formation. Hubble has also captured the outer spiral arms of NGC 4911, along with thousands of other galaxies of varying sizes. The high resolution of Hubble's cameras, paired with considerably long exposures, made it possible to observe these faint details. NGC 4911 and other spirals near the center of the cluster are being transformed by the gravitational tug of their neighbors. In the case of NGC 4911, wispy arcs of the galaxy's outer spiral arms are being pulled and distorted by forces from a companion galaxy (NGC 4911A), to the upper right. The resultant stripped material will eventually be dispersed throughout the core of the Coma Cluster, where it will fuel the intergalactic populations of stars and star clusters. The Coma Cluster is home to almost 1,000 galaxies, making it one of the densest collections of galaxies in the nearby universe. It continues to transform galaxies at the present epoch, due to the interactions of close-proximity galaxy systems within the dense cluster. Vigorous star formation is triggered in such collisions. Galaxies in this cluster are so densely packed that they undergo frequent interactions and collisions. When galaxies of nearly equal masses merge, they form elliptical galaxies. Merging is more likely to occur in the center of the cluster where the density of galaxies is higher, giving rise to more elliptical galaxies. This natural-color Hubble image, which combines data obtained in 2006, 2007, and 2009 from the Wide Field Planetary Camera 2 and the Advanced Camera for Surveys, required 28 hours of exposure time. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI) conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, Inc. in Washington, D.C. Credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA) Acknowledgment: K. Cook (Lawrence Livermore National Laboratory) To learn more about Hubble go to: www.nasa.gov/mission_pages/hubble/main/index.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hargis, Jonathan R.; Rhode, Katherine L., E-mail: jhargis@astro.indiana.edu, E-mail: rhode@astro.indiana.edu
This paper presents results from wide-field imaging of the globular cluster (GC) systems of five intermediate-luminosity (M{sub V} {approx} -21 to -22) early-type galaxies. The aim is to accurately quantify the global properties of the GC systems by measuring them out to large radii. We obtained BVR imaging of four lenticular galaxies (NGC 5866, NGC 4762, NGC 4754, NGC 3384) and one elliptical galaxy (NGC 5813) using the KPNO 4 m telescope and Mosaic imager and traced the GC population to projected galactocentric radii ranging from {approx}20 kpc to 120 kpc. We combine our imaging with Hubble Space Telescope datamore » to measure the GC surface density close to the galaxy center. We calculate the total number of GCs (N{sub GC}) from the integrated radial profile and find N{sub GC} = 340 {+-} 80 for NGC 5866, N{sub GC} = 2900 {+-} 400 for NGC 5813, N{sub GC} = 270 {+-} 30 for NGC 4762, N{sub GC} = 115 {+-} 15 for NGC 4754, and N{sub GC} = 120 {+-} 30 for NGC 3384. The measured GC specific frequencies are S{sub N} between 0.6 and 3.6 and T in the range 0.9-4.2. These values are consistent with the mean specific frequencies for the galaxies' morphological types found by our survey and other published data. Three galaxies (NGC 5866, NGC 5813, and NGC 4762) had sufficient numbers of GC candidates to investigate color bimodality and color gradients in the GC systems. NGC 5813 shows strong evidence (>3{sigma}) for bimodality and a B - R color gradient resulting from a more centrally concentrated red (metal-rich) GC subpopulation. We find no evidence for statistically significant color gradients in the other two galaxies.« less
2013-01-01
Spitzer, 2MASS , VVISE and IPHAS databases is acknowledged. The project is partly supported by the Research Council of Lithuania, grant No. MIP-061/2013...1304. YSO [WISE, IPHAS]; 1305. HD 19 (A), B5V [5], B8III [6]; 1306. G5III [5[; 1307. WDS 20243+3811 (sep ~ 1.9"); 1313. YSO [ 2MASS , Spitze... 2MASS , IPHAS); 1387. Fl III [!6[; 1391. HD 229261 (B9), BS [5,8], B6II [16], B5IV-V [17[; 1407. F2 [5[; 1408. B3 V [16[; 1419. A2IV [16[; 1427
Timing of millisecond pulsars in globular clusters
NASA Astrophysics Data System (ADS)
D'Amico, Nichi; Possenti, Andrea; Manchester, Dick; Johnston, Simon; Kramer, Michael; Sarkissian, John; Lyne, Andrew; Burgay, Marta; Corongiu, Alessandro; Camilo, Fernando; Bailes, Matthew; van Straten, Willem
2011-04-01
Timing of the dozen pulsars discovered by us in P303 is ensuring high quality results: (a) the peculiarities (in position or projected acceleration) of all the 5 millisecond pulsars in NGC6752 suggested the presence of non thermal dynamics in the core, perhaps due to black-holes of intermediate mass; (b) the eclipsing pulsar in NGC6397 is a stereotype for studying the late evolution of exotic binaries. We propose to continue our timing project focusing mostly on NGC6752 at 20cm (in order to measure additional parameters useful to constrain the existence of a black-hole) and NGC6397 at 10cm (for studying the orbital secular evolution, the eclipse region, and the mechanisms leading to the ejection of matter from the binary system).
Timing of millisecond pulsars in globular clusters
NASA Astrophysics Data System (ADS)
D'Amico, Nichi; Possenti, Andrea; Manchester, Dick; Johnston, Simon; Kramer, Michael; Sarkissian, John; Lyne, Andrew; Burgay, Marta; Corongiu, Alessandro; Camilo, Fernando; Bailes, Matthew; van Straten, Willem
2012-10-01
Timing of the dozen pulsars discovered by us in P303 is ensuring high quality results: (a) the peculiarities (in position or projected acceleration) of all the 5 millisecond pulsars in NGC6752 suggested the presence of non thermal dynamics in the core, perhaps due to black-holes of intermediate mass; (b) the eclipsing pulsar in NGC6397 is a stereotype for studying the late evolution of exotic binaries. We propose to continue our timing project focusing mostly on NGC6752 at 20cm (in order to measure additional parameters useful to constrain the existence of a black-hole) and NGC6397 at 10cm (for studying the orbital secular evolution, the eclipse region, and the mechanisms leading to the ejection of matter from the binary system).
Timing of millisecond pulsars in globular clusters
NASA Astrophysics Data System (ADS)
D'Amico, Nichi; Possenti, Andrea; Manchester, Dick; Johnston, Simon; Kramer, Michael; Sarkissian, John; Lyne, Andrew; Burgay, Marta; Corongiu, Alessandro; Camilo, Fernando; Bailes, Matthew; van Straten, Willem
2012-04-01
Timing of the dozen pulsars discovered by us in P303 is ensuring high quality results: (a) the peculiarities (in position or projected acceleration) of all the 5 millisecond pulsars in NGC6752 suggested the presence of non thermal dynamics in the core, perhaps due to black-holes of intermediate mass; (b) the eclipsing pulsar in NGC6397 is a stereotype for studying the late evolution of exotic binaries. We propose to continue our timing project focusing mostly on NGC6752 at 20cm (in order to measure additional parameters useful to constrain the existence of a black-hole) and NGC6397 at 10cm (for studying the orbital secular evolution, the eclipse region, and the mechanisms leading to the ejection of matter from the binary system).
Timing of millisecond pulsars in globular clusters
NASA Astrophysics Data System (ADS)
D'Amico, Nichi; Possenti, Andrea; Manchester, Dick; Johnston, Simon; Kramer, Michael; Sarkissian, John; Lyne, Andrew; Burgay, Marta; Corongiu, Alessandro; Camilo, Fernando; Bailes, Matthew; van Straten, Willem
2011-10-01
Timing of the dozen pulsars discovered by us in P303 is ensuring high quality results: (a) the peculiarities (in position or projected acceleration) of all the 5 millisecond pulsars in NGC6752 suggested the presence of non thermal dynamics in the core, perhaps due to black-holes of intermediate mass; (b) the eclipsing pulsar in NGC6397 is a stereotype for studying the late evolution of exotic binaries. We propose to continue our timing project focusing mostly on NGC6752 at 20cm (in order to measure additional parameters useful to constrain the existence of a black-hole) and NGC6397 at 10cm (for studying the orbital secular evolution, the eclipse region, and the mechanisms leading to the ejection of matter from the binary system).
Timing of millisecond pulsars in globular clusters
NASA Astrophysics Data System (ADS)
D'Amico, Nichi; Possenti, Andrea; Manchester, Dick; Johnston, Simon; Kramer, Michael; Sarkissian, John; Lyne, Andrew; Burgay, Marta; Corongiu, Alessandro; Camilo, Fernando; Bailes, Matthew; van Straten, Willem
2013-04-01
Timing of the dozen pulsars discovered by us in P303 is ensuring high quality results: (a) the peculiarities (in position or projected acceleration) of all the 5 millisecond pulsars in NGC6752 suggested the presence of non thermal dynamics in the core, perhaps due to black-holes of intermediate mass; (b) the eclipsing pulsar in NGC6397 is a stereotype for studying the late evolution of exotic binaries. We propose to continue our timing project focusing mostly on NGC6752 at 20cm (in order to measure additional parameters useful to constrain the existence of a black-hole) and NGC6397 at 10cm (for studying the orbital secular evolution, the eclipse region, and the mechanisms leading to the ejection of matter from the binary system).
Observing multiple populations in globular clusters with the ESO archive: NGC 6388 reloaded
NASA Astrophysics Data System (ADS)
Carretta, Eugenio; Bragaglia, Angela
2018-06-01
The metal-rich and old bulge globular cluster (GC) NGC 6388 is one of the most massive Galactic GCs (M 106 M⊙). However, the spectroscopic properties of its multiple stellar populations rested only on 32 red giants (only 7 of which observed with UVES, the others with GIRAFFE), given the difficulties in observing a rather distant cluster, heavily contaminated by bulge and disc field stars. We bypassed the problem using the resources of the largest telescope facility ever: the European Southern Observatory (ESO) archive. By selecting member stars identified by other programmes, we derive atmospheric parameters and the full set of abundances for 15 species from high-resolution UVES spectra of another 17 red giant branch stars in NGC 6388. We confirm that no metallicity dispersion is detectable in this GC. About 30% of the stars show the primordial composition of first-generation stars, about 20% present an extremely modified second-generation composition, and 50% have an intermediate composition. The stars are clearly distributed in the Al-O and Na-O planes in three discrete groups. We find substantial hints that more than a single class of polluters is required to reproduce the composition of the intermediate component in NGC 6388. In the heavily polluted component the sum Mg+Al increases as Al increases. The sum Mg+Al+Si is constant, and is the fossil record of hot H-burning at temperatures higher than about 70 MK in the first-generation polluters that contributed to form multiple populations in this cluster. Based on observations collected at ESO telescopes under programmes 073.D-0211 (propr ietary), and 073.D-0760, 381.D-0329, 095.D-0834 (archival).
First evidence of multiple populations along the AGB from Strömgren photometry
NASA Astrophysics Data System (ADS)
Gruyters, Pieter; Casagrande, Luca; Milone, Antonino P.; Hodgkin, Simon T.; Serenelli, Aldo; Feltzing, Sofia
2017-07-01
Spectroscopic studies have demonstrated that nearly all Galactic globular clusters (GCs) harbour multiple stellar populations with different chemical compositions. Moreover, colour-magnitude diagrams based exclusively on Strömgrem photometry have allowed us to identify and characterise multiple populations along the RGB of a large number of clusters. In this paper we show for the first time that Strömgren photometry is also very efficient at identifying multiple populations along the AGB, and demonstrate that the AGB of M 3, M 92, NGC 362, NGC 1851, and NGC 6752 are not consistent with a single stellar population. We also provide a catalogue of RGB and AGB stars photometrically identified in these clusters for further spectroscopic follow-up studies. We combined photometry and elemental abundances from the literature for RGB and AGB stars in NGC 6752 where the presence of multiple populations along the AGB has been widely debated. We find that, while the MS, SGB, and RGB host three stellar populations with different helium and light element abundances, only two populations of AGB stars are present in the cluster. These results are consistent with standard evolutionary theory. Based on observations made with the Isaac Newton Telescope operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.Full Tables B.1 and B.2 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/603/A37
2014-05-07
This composite image shows one of the clusters, NGC 2024, which is found in the center of the so-called Flame Nebula about 1,400 light years from Earth. Astronomers have studied two star clusters using NASA Chandra and infrared telescopes.
NASA Astrophysics Data System (ADS)
Hedlund, Anne; Sandquist, Eric L.; Arentoft, Torben; Brogaard, Karsten; Grundahl, Frank; Stello, Dennis; Bedin, Luigi R.; Libralato, Mattia; Malavolta, Luca; Nardiello, Domenico; Molenda-Zakowicz, Joanna; Vanderburg, Andrew
2018-06-01
V1178 Tau is a double-lined spectroscopic eclipsing binary in NGC1817, one of the more massive clusters observed in the K2 mission. We have determined the orbital period (P = 2.20 d) for the first time, and we model radial velocity measurements from the HARPS and ALFOSC spectrographs, light curves collected by Kepler, and ground based light curves using the Eclipsing Light Curve code (ELC, Orosz & Hauschildt 2000). We present masses and radii for the stars in the binary, allowing for a reddening-independent means of determining the cluster age. V1178 Tau is particularly useful for calculating the age of the cluster because the stars are close to the cluster turnoff, providing a more precise age determination. Furthermore, because one of the stars in the binary is a delta Scuti variable, the analysis provides improved insight into their pulsations.
The Age Related Properties of Solar Type Stars
NASA Technical Reports Server (NTRS)
Soderblom, David
1999-01-01
The studies of lithium in solar-type stars in clusters of a wide range of ages has provided critical information on a tracer of convective processes, especially among very young stars. Our most recent work has been on a pre-main sequence cluster (NGC 2264) that took place after this grant expired, but was founded on it. The spread seen in Li in Zero-Age Main Sequence clusters like the Pleiades is huge and possibly related to rotation. No clear spread in seen in NGC 2264, so it does not have its origins in the conditions of formation but is instead a result of processes occurring during PMS evolution. Our observations of M67 were particularly interesting because this cluster is the same age as the Sun, i.e.,very old. Clear evidence was seen for a spread in Li there too, indicating that the spread seen in very young stars perpetuates itself into old age.
A detached stellar-mass black hole candidate in the globular cluster NGC 3201
NASA Astrophysics Data System (ADS)
Giesers, Benjamin; Dreizler, Stefan; Husser, Tim-Oliver; Kamann, Sebastian; Anglada Escudé, Guillem; Brinchmann, Jarle; Carollo, C. Marcella; Roth, Martin M.; Weilbacher, Peter M.; Wisotzki, Lutz
2018-03-01
As part of our massive spectroscopic survey of 25 Galactic globular clusters with MUSE, we performed multiple epoch observations of NGC 3201 with the aim of constraining the binary fraction. In this cluster, we found one curious star at the main-sequence turn-off with radial velocity variations of the order of 100 km s- 1, indicating the membership to a binary system with an unseen component since no other variations appear in the spectra. Using an adapted variant of the generalized Lomb-Scargle periodogram, we could calculate the orbital parameters and found the companion to be a detached stellar-mass black hole with a minimum mass of 4.36 ± 0.41 M⊙. The result is an important constraint for binary and black hole evolution models in globular clusters as well as in the context of gravitational wave sources.
From dust to light: a study of star formation in NGC2264
NASA Astrophysics Data System (ADS)
Teixeira, P. S.
2008-10-01
The goal of this dissertation is to characterize the star formation history of the young cluster NGC2264 using the unique observational capabilities of the Spitzer Space Telescope. The motivation to conduct this study stems from the fact that most stars are formed within clusters, so the formation and evolution of the latter will effect the stellar mass distribution in the field. Detailed observational studies of young stellar clusters are therefore crucial to provide necessary constraints for theoretical models of cloud and cluster formation and evolution. This study also addresses the evolution of circumstellar disks in NGC2264; empirical knowledge of protoplanetary disk evolution is required for the understanding of how planetary systems such as our own form. The first result obtained from this study was both completely new and unexpected. A dense region within NGC2264 was found to be teeming with bright 24 μm Class I protostars; these sources are embedded within dense submillimeter cores and are spatially distributed along dense filamentary fingers of gas and dust that radially converge on a B-type binary Class I source. This cluster of protostars was baptized the "Spokes cluster" and its analysis provided further insight into the role of thermal support during core formation, collapse and fragmentation. The nearest neighbor projected separation distribution of these Class I sources shows a characteristic spacing that is similar to the Jeans length for the region, indicating that the dusty filaments may have undergone thermal fragmentation. The submillimeter cores of the Spokes cluster were observed at 230GHz using the SubMillimeter Array (SMA) and the resulting high resolution (~1.3") continuum observations revealed a dense grouping of 7 Class 0 sources embedded within a particular core, D-MM1 (~20"x20"). The compact sources have masses ranging between 0.4M and 1.2M, and radii of ~600AU. The mean separation of the Class 0 sources within D-MM1 is considerably smaller than the characteristic spacing between the Class I sources in the larger Spokes cluster and is consistent with hierarchical thermal fragmentation of the dense molecular gas in this region. The results obtained by the study of the Spokes cluster show that the spatial substructuring of a cluster or subcluster is correlated with age, i.e., groupings of very young protostars have clearly more concentrated and substructured spatial distributions. The Spokes cluster could thus be one of several building blocks of NGC2264, and will likely expand and disperse its members through the surrounding region, adding to the rest of NGC2264's stellar population.To further explore this scenario, I identified Pre-Main Sequence (PMS) disk bearing sources in the whole region of NGC2264, as surveyed by InfraRed Array Camera (IRAC) analyzing both their spatial distributions and ages. Of the 1404 sources detected in all four IRAC bands, 116 sources were found to have anemic IRAC disks and 217 sources were found to have thick IRAC disks; the disk fraction was calculated to be 37.5%±6.3% and found to be a function of spectral type, increasing for later type sources. I identified 4 candidate sources with transition disks (disks with inner holes), as well as 6 sources with anemic inner disks and thick outer disks that could be the immediate precursors of transition disks. This is a relevant result for it suggests planet formation may be occurring in the inner disk at very early ages. I found that the spatial distribution of the disk-bearing sources was a function of both disk type and amount of reddening. This spatial analysis enabled the identification of three groups of sources, namely, (i) embedded (AV> 3 magnitudes) sources with thick disks, (ii) unembedded sources with thick disks, and (iii) sources with anemic disks. The first group was found to have a median age of 1 Myr and its spatial distribution is highly concentrated and substructured. The second group, (ii), has a median age of 2 Myr and its spatial distribution is less concentrated and substructured than group (i), but more than the group of sources with anemic disks - the spatial distribution of this third group (age ~ 2 Myr) is not substructured and is more distributed, showing no particular peak or concentration. The star formation history of NGC2264 appears to be as follows: the northern region appears to have undergone the first epoch or episode of star formation, while the second epoch is currently occurring in the center (Spokes cluster) and south (near Allen's source). Status: RO
The CN–CH Positive Correlation in the Globular Cluster NGC 5286
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Dongwook; Hong, Seungsoo; Lee, Young-Wook, E-mail: dwlim@yonsei.ac.kr, E-mail: ywlee2@yonsei.ac.kr
We performed low-resolution spectroscopy of the red giant stars in the Galactic globular cluster (GC) NGC 5286, which is known to show intrinsic heavy element abundance variations. We found that the observed stars in this GC are clearly divided into three subpopulations by CN index (CN-weak, CN-intermediate, and CN-strong). The CN-strong stars are also enhanced in the calcium HK′ (7.4 σ ) and CH (5.1 σ ) indices, while the CN-intermediate stars show no significant difference in the strength of the HK′ index from the CN-weak stars. From the comparison with high-resolution spectroscopic data, we found that the CN- andmore » HK′-strong stars are also enhanced in the abundances of Fe and s -process elements. It appears, therefore, that these stars are later-generation stars affected by some supernova enrichment in addition to the asymptotic giant branch ejecta. In addition, unlike normal GCs, sample stars in NGC 5286 show the CN–CH positive correlation, strengthening our previous suggestion that this positive correlation is only discovered in GCs with heavy element abundance variations, such as M22 and NGC 6273.« less
The white-dwarf cooling sequence of NGC 6791: a unique tool for stellar evolution
NASA Astrophysics Data System (ADS)
García-Berro, E.; Torres, S.; Renedo, I.; Camacho, J.; Althaus, L. G.; Córsico, A. H.; Salaris, M.; Isern, J.
2011-09-01
Context. NGC 6791 is a well-studied, metal-rich open cluster that is so close to us that it can be imaged down to luminosities fainter than that of the termination of its white-dwarf cooling sequence, thus allowing for an in-depth study of its white dwarf population. Aims: White dwarfs carry important information about the history of the cluster. We use observations of the white-dwarf cooling sequence to constrain important properties of the cluster stellar population, such as the existence of a putative population of massive helium-core white dwarfs, and the properties of a large population of unresolved binary white dwarfs. We also investigate the use of white dwarfs to disclose the presence of cluster subpopulations with a different initial chemical composition, and we obtain an upper bound to the fraction of hydrogen-deficient white dwarfs. Methods: We use a Monte Carlo simulator that employs up-to-date evolutionary cooling sequences for white dwarfs with hydrogen-rich and hydrogen-deficient atmospheres, with carbon-oxygen and helium cores. The cooling sequences for carbon-oxygen cores account for the delays introduced by both 22Ne sedimentation in the liquid phase and by carbon-oxygen phase separation upon crystallization. Results: We do not find evidence for a substantial fraction of helium-core white dwarfs, and hence our results support the suggestion that the origin of the bright peak of the white-dwarf luminosity function can only be attributed to a population of unresolved binary white dwarfs. Moreover, our results indicate that if this hypothesis is at the origin of the bright peak, the number distribution of secondary masses of the population of unresolved binaries has to increase with increasing mass ratio between the secondary and primary components of the progenitor system. We also find that the observed cooling sequence appears to be able to constrain the presence of progenitor subpopulations with different chemical compositions and the fraction of hydrogen-deficient white dwarfs. Conclusions: Our simulations place interesting constraints on important characteristics of the stellar populations of NGC 6791. In particular, we find that the fraction of single helium-core white dwarfs must be smaller than 5%, that a subpopulation of stars with zero metallicity must be ≲12%, while if the adopted metallicity of the subpopulation is solar the upper limit is ~8%. Finally, we also find that the fraction of hydrogen-deficient white dwarfs in this particular cluster is surprinsingly small (≲6%).
Pulsating Stars in the ASAS-3 Database. I. beta Cephei Stars
NASA Astrophysics Data System (ADS)
Pigulski, A.
2005-06-01
We present results of an analysis of the ASAS-3 data for short-period variables from the recently published catalog of over 38000 stars. Using the data available in the literature we verify the results of the automatic classification related to \\beta Cep pulsators. In particular, we find that 14 stars in the catalog can be classified unambiguously as new beta Cep stars. By means of periodogram analysis we derive the frequencies and amplitudes of the excited modes. The main modes in the new beta Cep stars have large semi-amplitudes, between 35 and 80 mmag. Up to four modes were found in some stars. Two (maybe three) new beta Cep stars are members of southern young open clusters: ASAS 164409-4719.1 belongs to NGC 6200, ASAS 164630-4701.2 is a member of Hogg 22, and ASAS 164939-4431.7 could be a member of NGC 6216. We also analyze the photometry of four known beta Cep stars in the ASAS-3 catalog, namely IL Vel, NSV 24078, V1449 Aql and SY Equ. Finally, we discuss the distribution of beta Cep stars in the Galaxy.
Young Stars at Home in Ancient Cluster
2017-12-08
NASA image release February 8, 2012 Looking like a hoard of gems fit for an emperor's collection, this deep sky object called NGC 6752 is in fact far more worthy of admiration. It is a globular cluster, and at over 10 billion years old is one the most ancient collections of stars known. It has been blazing for well over twice as long as our solar system has existed. NGC 6752 contains a high number of "blue straggler'' stars, some of which are visible in this image. These stars display characteristics of stars younger than their neighbors, despite models suggesting that most of the stars within globular clusters should have formed at approximately the same time. Their origin is therefore something of a mystery. Studies of NGC 6752 may shed light on this situation. It appears that a very high number -- up to 38 percent -- of the stars within its core region are binary systems. Collisions between stars in this turbulent area could produce the blue stragglers that are so prevalent. Lying 13,000 light-years distant, NGC 6752 is far beyond our reach, yet the clarity of Hubble's images brings it tantalizingly close. Credit: ESA/Hubble & NASA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Astrophysics Data System (ADS)
Luo, Rongxin; Hao, Lei; Blanc, Guillermo A.; Jogee, Shardha; van den Bosch, Remco C. E.; Weinzirl, Tim
2016-06-01
NGC 1042 is a late-type bulgeless disk galaxy that hosts low-luminosity active galactic nuclei (AGNs) coincident with a massive nuclear star cluster. In this paper, we present the integral field spectroscopy studies of this galaxy, based on the data obtained with the Mitchell spectrograph on the 2.7 m Harlan J. Smith telescope. In the central 100-300 pc region of NGC 1042, we find a circumnuclear ring structure of gas with enhanced ionization, which we suggest is mainly induced by shocks. Combining this with the harmonic decomposition analysis of the velocity field of the ionized gas, we propose that the shocked gas is the result of gas inflow driven by the inner spiral arms. The inflow velocity is ˜ 32+/- 10 {km} {{{s}}}-1, and the estimated mass-inflow rate is ˜ 1.1+/- 0.3× {10}-3 {M}⊙ {{yr}}-1. The mass-inflow rate is about one hundred times the black hole’s mass-accretion rate (˜ 1.4× {10}-5 {M}⊙ {{yr}}-1) and slightly larger than the star-formation rate in the nuclear star cluster (7.94× {10}-4 {M}⊙ {{yr}}-1), implying that the inflow material is enough to feed both the AGN activity and star formation in the nuclear star cluster. Our study highlights that secular evolution can be important in late-type unbarred galaxies like NGC 1042.
Observationally Testing the Triple Origin of Blue Straggler Stars with Near-Infrared Spectroscopy
NASA Astrophysics Data System (ADS)
Kohler, Jacob P.; Gosnell, Natalie M.; Sokal, Kimberly R.; Mace, Gregory N.
2018-01-01
Presented are results to constrain blue straggler star (BSS) formation mechanisms in open cluster NGC 188 using data from the Immersion Grating INfrared Spectrometer (IGRINS) while at the Discovery Channel Telescope. The majority (at least 16 of 21) of NGC 188s BSSs are binaries, and, to date, seven white dwarf (WD) companions have been detected. This leaves at least nine undetected companion stars. Observations show a sharp peak of the BSSs companion mass distribution at 0.5 solar masses, highly suggestive of a WD or M-type main sequence (MS) star. Under our tested formation mechanism, the progenitors of BSSs are arranged in primordial hierarchical triple star systems that dynamically evolve through the Kozai-cycle tidal friction (KCTF) process into a binary composed of a BSS and, statistically, an M dwarf companion. We test for the presence of an M dwarf by cross-correlating a near-IR spectrum with both a BSS template and an M dwarf template. We present, for the first time, a preliminary detection of a 3800K, 0.5 solar mass M dwarf companion in each of the long period (log[P(d)]=3), single-lined binaries WOCS 451 and WOCS 5671 in NGC 188. To assess the possibility of a false M dwarf detection, we carry out Monte Carlo simulations cross-correlating an M dwarf template with a BSS-only spectrum with a signal-to-noise ratio matching our observations. Theoretical detection limits for various BSS-M dwarf pairs are reported. In the case of a non-detection, such as in WOCS 4970, we are able to place an upper limit on the mass, and thus temperature, of the companion star. Current and future research goals aim for further insight into the BSS formation mechanism frequencies of NGC 188.
IMPLICATIONS FOR THE FORMATION OF BLUE STRAGGLER STARS FROM HST ULTRAVIOLET OBSERVATIONS OF NGC 188
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gosnell, Natalie M.; Mathieu, Robert D.; Geller, Aaron M.
We present results of a Hubble Space Telescope (HST) far-ultraviolet (FUV) survey searching for white dwarf (WD) companions to blue straggler stars (BSSs) in open cluster NGC 188. The majority of NGC 188 BSSs (15 of 21) are single-lined binaries with properties suggestive of mass-transfer formation via Roche lobe overflow, specifically through an asymptotic giant branch star transferring mass to a main sequence secondary, yielding a BSS binary with a WD companion. In NGC 188, a BSS formed by this mechanism within the past 400 Myr will have a WD companion that is hot and luminous enough to be directlymore » detected as a FUV photometric excess with HST. Comparing expected BSS FUV emission to observed photometry reveals four BSSs with WD companions above 12,000 K (younger than 250 Myr) and three WD companions with temperatures between 11,000 and 12,000 K. These BSS+WD binaries all formed through recent mass transfer. The location of the young BSSs in an optical color–magnitude diagram (CMD) indicates that distance from the zero-age main sequence does not necessarily correlate with BSS age. There is no clear CMD separation between mass transfer-formed BSSs and those likely formed through other mechanisms, such as collisions. The seven detected WD companions place a lower limit on the mass-transfer formation frequency of 33%. We consider other possible formation mechanisms by comparing properties of the BSS population to theoretical predictions. We conclude that 14 BSS binaries likely formed from mass transfer, resulting in an inferred mass-transfer formation frequency of approximately 67%.« less
VizieR Online Data Catalog: Spectroscopy of globular clusters (Larsen+, 2018)
NASA Astrophysics Data System (ADS)
Larsen, S. S.; Brodie, J. P.; Wasserman, A.; Strader, J.
2018-01-01
New observations of globular clusters in NGC 147 and NGC 6822 were obtained with the HIRES spectrograph on the Keck I telescope on 5 Oct 2015 and 25 Sep 2016. We also include older HIRES observations of four GCs in M33. The spectra are the same as those used by Larsen et al. (2002AJ....124.2615L). In addition to the HIRES observations, we include our previously published VLT/UVES spectra of GCs in the Fornax and WLM galaxies (Larsen et al. 2012A&A...546A..53L, 2014A&A...565A..98L) and we refer to our previous papers for details on the observational strategy and data reduction. These tables contain the individual abundance measurements for each cluster. (16 data files).