NASA Astrophysics Data System (ADS)
Gursoy, Kadir Ali; Yavuz, Mehmet Metin
2014-11-01
In continuous casting operation of steel, the flow through tundish to the mold can be controlled by different flow rate control systems including stopper rod and slide-gate. Ladle changes in continuous casting machines result in liquid steel level changes in tundishes. During this transient event of production, the flow rate controller opening is increased to reduce the pressure drop across the opening which helps to keep the mass flow rate at the desired level for the reduced liquid steel level in tundish. In the present study, computational fluid dynamic (CFD) models are developed to investigate the effect of flow rate controller on mold flow structure, and particularly to understand the effect of flow controller opening on meniscus flow. First, a detailed validation of the CFD models is conducted using available experimental data and the performances of different turbulence models are compared. Then, the constant throughput casting operations for different flow rate controller openings are simulated to quantify the opening effect on meniscus region. The results indicate that the meniscus velocities are significantly affected by the flow rate controller and its opening level. The steady state operations, specified as constant throughput casting, do not provide the same mold flow if the controller opening is altered. Thus, for quality and castability purposes, adjusting the flow controller opening to obtain the fixed mold flow structure is proposed. Supported by Middle East Technical University (METU) BAP (Scientific Research Projects) Coordination.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Berkel, Gary J
A system for sampling a sample material includes a probe which can have an outer probe housing with an open end. A liquid supply conduit within the housing has an outlet positioned to deliver liquid to the open end of the housing. The liquid supply conduit can be connectable to a liquid supply for delivering liquid at a first volumetric flow rate to the open end of the housing. A liquid exhaust conduit within the housing is provided for removing liquid from the open end of the housing. A liquid exhaust system can be provided for removing liquid from themore » liquid exhaust conduit at a second volumetric flow rate, the first volumetric flow rate exceeding the second volumetric flow rate, wherein liquid at the open end will receive sample, liquid containing sample material will be drawn into and through the liquid exhaust conduit, and liquid will overflow from the open end.« less
IN VITRO FLOW ANALYSIS OF NOVEL DOUBLE-CUTTING, OPEN-PORT, ULTRAHIGH-SPEED VITRECTOMY SYSTEMS.
Zehetner, Claus; Moelgg, Marion; Bechrakis, Emmanouil; Linhart, Caroline; Bechrakis, Nikolaos E
2017-10-09
To analyze the performance and flow characteristics of novel double-cutting, open-port, 23-, 25-, and 27-gauge ultrahigh-speed vitrectomy systems. In vitro fluidic measurements were performed to assess the volumetric aspiration profiles of several vitrectomy systems in basic salt solution and egg white. Double-cutting open-port vitrectomy probes delivered stable aspiration flow rates that were less prone to flow variation affected by the cutting speed. Increase in cutting frequency to the maximum level resulted in flow reduction of less than 10% (0.0%-9.5%). Commercially available 23-, 25-, and 27-G double-cutting probes exhibited higher egg-white and basic salt solution flow rates at all evaluated cut rates, with aspirational efficiencies being 1.1 to 2.9 times the flow rates of standard single-blade vitrectomy probes of the same caliber at the maximum preset vacuum. The highest relative differences were observed at faster cut rates. The newly introduced double-cutting open-port vitrectomy probes delivered stable aspiration flow rates that were less prone to flow variation affected by the cutting speed. The fluidic principle of constant flow even at the highest cut rates and low vacuum levels might impact surgical strategies, especially when performing manipulations close to the retina.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Berkel, Gary J.
A system for sampling a sample material includes a probe which can have an outer probe housing with an open end. A liquid supply conduit within the housing has an outlet positioned to deliver liquid to the open end of the housing. The liquid supply conduit can be connectable to a liquid supply for delivering liquid at a first volumetric flow rate to the open end of the housing. A liquid exhaust conduit within the housing is provided for removing liquid from the open end of the housing. A liquid exhaust system can be provided for removing liquid from themore » liquid exhaust conduit at a second volumetric flow rate, the first volumetric flow rate exceeding the second volumetric flow rate, wherein liquid at the open end will receive sample, liquid containing sample material will be drawn into and through the liquid exhaust conduit, and liquid will overflow from the open end.« less
NASA Astrophysics Data System (ADS)
Dong, Dai; Li, Xiaoning
2015-03-01
High-pressure solenoid valve with high flow rate and high speed is a key component in an underwater driving system. However, traditional single spool pilot operated valve cannot meet the demands of both high flow rate and high speed simultaneously. A new structure for a high pressure solenoid valve is needed to meet the demand of the underwater driving system. A novel parallel-spool pilot operated high-pressure solenoid valve is proposed to overcome the drawback of the current single spool design. Mathematical models of the opening process and flow rate of the valve are established. Opening response time of the valve is subdivided into 4 parts to analyze the properties of the opening response. Corresponding formulas to solve 4 parts of the response time are derived. Key factors that influence the opening response time are analyzed. According to the mathematical model of the valve, a simulation of the opening process is carried out by MATLAB. Parameters are chosen based on theoretical analysis to design the test prototype of the new type of valve. Opening response time of the designed valve is tested by verifying response of the current in the coil and displacement of the main valve spool. The experimental results are in agreement with the simulated results, therefore the validity of the theoretical analysis is verified. Experimental opening response time of the valve is 48.3 ms at working pressure of 10 MPa. The flow capacity test shows that the largest effective area is 126 mm2 and the largest air flow rate is 2320 L/s. According to the result of the load driving test, the valve can meet the demands of the driving system. The proposed valve with parallel spools provides a new method for the design of a high-pressure valve with fast response and large flow rate.
33 CFR 117.123 - Arkansas Waterway.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (RNA) as described in § 165.817. During periods of high velocity flow, which is defined as a flow rate... drawbridge opening. Upbound vessels shall request openings in accordance with the normal flow procedures as... Drawbridge, mile 300.8 at Van Buren, Arkansas, is maintained in the open position except as follows: (1) When...
Viumdal, Håkon; Mylvaganam, Saba
2017-01-01
In oil and gas and geothermal installations, open channels followed by sieves for removal of drill cuttings, are used to monitor the quality and quantity of the drilling fluids. Drilling fluid flow rate is difficult to measure due to the varying flow conditions (e.g., wavy, turbulent and irregular) and the presence of drilling cuttings and gas bubbles. Inclusion of a Venturi section in the open channel and an array of ultrasonic level sensors above it at locations in the vicinity of and above the Venturi constriction gives the varying levels of the drilling fluid in the channel. The time series of the levels from this array of ultrasonic level sensors are used to estimate the drilling fluid flow rate, which is compared with Coriolis meter measurements. Fuzzy logic, neural networks and support vector regression algorithms applied to the data from temporal and spatial ultrasonic level measurements of the drilling fluid in the open channel give estimates of its flow rate with sufficient reliability, repeatability and uncertainty, providing a novel soft sensing of an important process variable. Simulations, cross-validations and experimental results show that feedforward neural networks with the Bayesian regularization learning algorithm provide the best flow rate estimates. Finally, the benefits of using this soft sensing technique combined with Venturi constriction in open channels are discussed. PMID:29072595
Flow monitoring and control system for injection wells
Corey, John C.
1993-01-01
A system for monitoring and controlling the injection rate of fluid by an injection well of an in-situ remediation system for treating a contaminated groundwater plume. The well is fitted with a gated insert, substantially coaxial with the injection well. A plurality of openings, some or all of which are equipped with fluid flow sensors and gates, are spaced along the insert. The gates and sensors are connected to a surface controller. The insert may extend throughout part of, or substantially the entire length of the injection well. Alternatively, the insert may comprise one or more movable modules which can be positioned wherever desired along the well. The gates are opened part-way at the start of treatment. The sensors monitor and display the flow rate of fluid passing through each opening on a controller. As treatment continues, the gates are opened to increase flow in regions of lesser flow, and closed to decrease flow in regions of greater flow, thereby approximately equalizing the amount of fluid reaching each part of the plume.
Flow monitoring and control system for injection wells
Corey, J.C.
1993-02-16
A system for monitoring and controlling the injection rate of fluid by an injection well of an in-situ remediation system for treating a contaminated groundwater plume. The well is fitted with a gated insert, substantially coaxial with the injection well. A plurality of openings, some or all of which are equipped with fluid flow sensors and gates, are spaced along the insert. The gates and sensors are connected to a surface controller. The insert may extend throughout part of, or substantially the entire length of the injection well. Alternatively, the insert may comprise one or more movable modules which can be positioned wherever desired along the well. The gates are opened part-way at the start of treatment. The sensors monitor and display the flow rate of fluid passing through each opening on a controller. As treatment continues, the gates are opened to increase flow in regions of lesser flow, and closed to decrease flow in regions of greater flow, thereby approximately equalizing the amount of fluid reaching each part of the plume.
Wang, Shigang; Spencer, Shannon B; Woitas, Karl; Glass, Kristen; Kunselman, Allen R; Ündar, Akif
2017-01-01
The objective of this study is to evaluate the impact of an open or closed recirculation line on flow rate, circuit pressure, and hemodynamic energy transmission in simulated neonatal extracorporeal life support (ECLS) systems. The two neonatal ECLS circuits consisted of a Maquet HL20 roller pump (RP group) or a RotaFlow centrifugal pump (CP group), Quadrox-iD Pediatric oxygenator, and Biomedicus arterial and venous cannulae (8 Fr and 10 Fr) primed with lactated Ringer's solution and packed red blood cells (hematocrit 35%). Trials were conducted at flow rates ranging from 200 to 600 mL/min (200 mL/min increments) with a closed or open recirculation line at 36°C. Real-time pressure and flow data were recorded using a custom-based data acquisition system. In the RP group, the preoxygenator flow did not change when the recirculation line was open while the prearterial cannula flow decreased by 15.7-20.0% (P < 0.01). Circuit pressure, total circuit pressure drop, and hemodynamic energy delivered to patients also decreased (P < 0.01). In the CP group, the prearterial cannula flow did not change while preoxygenator flow increased by 13.6-18.8% (P < 0.01). Circuit pressure drop and hemodynamic energy transmission remained the same. The results showed that the shunt of an open recirculation line could decrease perfusion flow in patients in the ECLS circuit using a roller pump, but did not change perfusion flow in the circuit using a centrifugal pump. An additional flow sensor is needed to monitor perfusion flow in patients if any shunts exist in the ECLS circuit. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Flow rate limitation in open wedge channel under microgravity
NASA Astrophysics Data System (ADS)
Wei, YueXing; Chen, XiaoQian; Huang, YiYong
2013-08-01
A study of flow rate limitation in an open wedge channel is reported in this paper. Under microgravity condition, the flow is controlled by the convection and the viscosity in the channel as well as the curvature of the liquid free surface. A maximum flow rate is achieved when the curvature cannot balance the pressure difference leading to a collapse of the free surface. A 1-dimensional theoretical model is used to predict the critical flow rate and calculate the shape of the free surface. Computational Fluid Dynamics tool is also used to simulate the phenomenon. Results show that the 1-dimensional model overestimates the critical flow rate because extra pressure loss is not included in the governing equation. Good agreement is found in 3-dimensional simulation results. Parametric study with different wedge angles and channel lengths show that the critical flow rate increases with increasing the cross section area; and decreases with increasing the channel length. The work in this paper can help understand the surface collapsing without gravity and for the design in propellant management devices in satellite tanks.
Permeability of model porous medium formed by random discs
NASA Astrophysics Data System (ADS)
Gubaidullin, A. A.; Gubkin, A. S.; Igoshin, D. E.; Ignatev, P. A.
2018-03-01
Two-dimension model of the porous medium with skeleton of randomly located overlapping discs is proposed. The geometry and computational grid are built in open package Salome. Flow of Newtonian liquid in longitudinal and transverse directions is calculated and its flow rate is defined. The numerical solution of the Navier-Stokes equations for a given pressure drop at the boundaries of the area is realized in the open package OpenFOAM. Calculated value of flow rate is used for defining of permeability coefficient on the base of Darcy law. For evaluating of representativeness of computational domain the permeability coefficients in longitudinal and transverse directions are compered.
Solar wind energy transfer through the magnetopause of an open magnetosphere
NASA Technical Reports Server (NTRS)
Lee, L. C.; Roederer, J. G.
1982-01-01
An expression is derived for the total power, transferred from the solar wind to an open magnetosphere, which consists of the electromagnetic energy rate and the particle kinetic energy rate. The total rate of energy transferred from the solar wind to an open magnetosphere mainly consists of kinetic energy, and the kinetic energy flux is carried by particles, penetrating from the solar wind into the magnetosphere, which may contribute to the observed flow in the plasma mantle and which will eventually be convected slowly toward the plasma sheet by the electric field as they flow down the tail. While the electromagnetic energy rate controls the near-earth magnetospheric activity, the kinetic energy rate should dominate the dynamics of the distant magnetotail.
NASA Astrophysics Data System (ADS)
Kumar, L. Madan Ananda; Sivaramakrishnan, V.; Premalatha, M.; Vivekanandan, M.
2017-07-01
The zero energy building considered is a single storey building in Tiruchirappalli city retrofitted with various green features. This study investigated the effect of a suction opening orientation on a vertical solar chimney (VSC), integrated into a one-storey building. It was designed, manufactured and tested through selection of different suction openings for the entry of air, including right, left, front, back, both right and left and both front and back sides. Genetic algorithm (GA) calculates maximum air flow rate for a building with VSC for better suction opening, in Tiruchirappalli's dry, environmental conditions. GA is a useful technique for finding an improved suction opening specifically in the presence of a host of independent parameters which are large. The obtained results are related to fluid flow temperature distribution along the chimney, mass flow rate and air change per hour. The findings between the GA and the experimental results show sound agreement.
Flame Spread Along Free Edges of Thermally Thin Samples in Microgravity
NASA Technical Reports Server (NTRS)
Mell, W. E.; Olson, S. L.; Kashiwagi, T.
2000-01-01
The effects of imposed flow velocity on flame spread along open edges of a thermally thin cellulosic sample in microgravity are studied experimentally and theoretically. In this study, the sample is ignited locally at the middle of the 4 cm wide sample and subsequent flame spread reaches both open edges of the sample. The following flame behaviors are observed in the experiments and predicted by the numerical calculation; in order of increased imposed flow velocity: (1) ignition but subsequent flame spread is not attained, (2) flame spreads upstream (opposed mode) without any downstream flame, and (3) the upstream flame and two separate downstream flames traveling along the two open edges (concurrent mode). Generally, the upstream and downstream edge flame spread rates are faster than the central flame spread rate for an imposed flow velocity of up to 5 cm/s. This is due to greater oxygen supply from the outer free stream to the edge flames than the central flames, For the upstream edge flame, the greater oxygen supply results in a flame spread rate that is nearly independent of, or decreases gradually, with the imposed flow velocity. The spread rate of the downstream edge, however, increases significantly with the imposed flow velocity.
Calibration of sonic valves for the laminar flow control, leading-edge flight test
NASA Technical Reports Server (NTRS)
Petley, D. H.; Alexander, W., Jr.; Wright, A. S., Jr.; Vallas, M.
1985-01-01
Sonic needle valves were calibrated to measure and control airflow in the suction system for the leading-edge flight test. The procedure and results for the calibration flow test of 4:41 flight valves are given. Mass-flow rates, which ranged from 0.001 to 0.012 lbm/sec, and maximum back pressure were measured for total temperatures from -30 F to 75 F and total pressures from 120 to 540 psf. Correlating equations are obtained for mass-flow rate as a function of total pressure, total temperature, and valve opening length. The most important aspect of flow measurement and control is found to be the measurement of valve opening length.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stephen Seong Lee
Fuel flow to individual burners is complicated and difficult to determine on coal fired boilers, since coal solids were transported in a gas suspension that is governed by the complex physics of two-phase flow. The objectives of the project were the measurements of suspended coal solids-flows in the simulated test conditions. Various extractive methods were performed manually and can give only a snapshot result of fuel distribution. In order to measure particle diameter & velocity, laser based phase-Doppler particle analyzer (PDPA) and particle image velocimetry (PIV) were carefully applied. Statistical methods were used to analyze particle characteristics to see whichmore » factors have significant effect. The transparent duct model was carefully designed and fabricated for the laser-based-instrumentation of solids-flow monitoring (LISM). The experiments were conducted with two different kinds of particles with four different particle diameters. The particle types were organic particles and saw dust particles with the diameter range of 75-150 micron, 150-250 micron, 250-355 micron and 355-425 micron. The densities of the particles were measured to see how the densities affected the test results. Also the experiment was conducted with humid particles and fog particles. To generate humid particles, the humidifier was used. A pipe was connected to the humidifier to lead the particle flow to the intersection of the laser beam. The test results of the particle diameter indicated that, the mean diameter of humid particles was between 6.1703 microns and 6.6947 microns when the humid particle flow was low. When the humid particle flow was high, the mean diameter was between 6.6728 microns and 7.1872 microns. The test results of the particle mean velocity indicated that the mean velocity was between 1.3394 m/sec and 1.4556 m/sec at low humid particle flow. When the humid particle flow was high, the mean velocity was between 1.5694 m/sec and 1.7856 m/sec. The Air Flow Module, TQ AF 17 and shell ondina oil were used to generate fog particles. After the oil was heated inside the fog generator, the blower was used to generate the fog. The fog flew along the pipe to the intersection of the laser beam. The mean diameter of the fog particles was 5.765 microns. Compared with the humid particle diameter, we observed that the mean diameter of the fog particles was smaller than the humid particles. The test results of particle mean velocity was about 3.76 m/sec. Compared with the mean velocity of the humid particles, we can observed the mean velocity of fog particles were greater than humid particles. The experiments were conducted with four different kinds of particles with five different particle diameters. The particle types were organic particles, coal particles, potato particles and wheat particles with the diameter range of 63-75 micron, less than 150 micron, 150-250 micron, 250-355 micron and 355-425 micron. To control the flow rate, the control gate of the particle dispensing hopper was adjusted to 1/16 open rate, 1/8 open rate and 1/4 open rate. The captured image range was 0 cm to 5 cm from the control gate, 5 cm to 10 cm from the control gate and 10 cm to 15 cm from the control gate. Some of these experiments were conducted under both open environment conditions and closed environment conditions. Thus these experiments had a total of five parameters which were type of particles, diameter of particles, flow rate, observation range, and environment conditions. The coal particles (diameter between 63 and 75 microns) tested under the closed environment condition had three factors that were considered as the affecting factors. They were open rate, observation range, and environment conditions. In this experiment, the interaction of open rate and observation range had a significant effect on the lower limit. On the upper limit, the open rate and environment conditions had a significant effect. In addition, the interaction of open rate and environment conditions had a significant effect. The coal particles tested (diameter between 63 and 75 microns) under open environment, two factors were that considered as the affecting factors. They were the open rate and observation ranges. In this experiment, there was no significant effect on the lower limit. On the upper limit, the observation range had a significant effect. In addition, the interaction of open rate and observation range had a significant effect for the source of variation with 95% of confidence based on analysis of variance (ANOVA) results.« less
Effects of wall friction on flow in a quasi-2D hopper
NASA Astrophysics Data System (ADS)
Shah, Neil; Birwa, Sumit; Carballo-Ramirez, Brenda; Pleau, Mollie; Easwar, Nalini; Tewari, Shubha
Our experiments on the gravity-driven flow of spherical particles in a vertical hopper examine how the flow rate varies with opening size and wall friction. We report here on a model simulation using LAMMPS of the experimental geometry, a quasi-2D hopper. Keeping inter-particle friction fixed, the coefficient of friction at the walls is varied from 0.0 to 0.9 for a range of opening sizes. Our simulations find a steady rate of flow at each wall friction and outlet size. The Janssen effect attributes the constant rate of flow of a granular column to the column height independence of the pressure at the base, since the weight of the grains is borne in part by friction at the walls. However, we observe a constant flow regime even in the absence of wall friction, suggesting that wall friction may not be a necessary condition for pressure saturation. The observed velocities of particles near the opening are used to extrapolate their starting positions had they been in free fall. In contrast to scaling predictions, our data suggest that the height of this free-fall arch does not vary with opening size for higher frictional coefficients. We analyze the velocity traces of particles to see the range over which contact interactions remain collisional as they approach the hopper outlet.
NASA Astrophysics Data System (ADS)
Scully, Malcolm E.
We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.
Stability limits of unsteady open capillary channel flow
NASA Astrophysics Data System (ADS)
Grah, Aleksander; Haake, Dennis; Rosendahl, Uwe; Klatte, J.?Rg; Dreyer, Michael E.
This paper is concerned with steady and unsteady flow rate limitations in open capillary channels under low-gravity conditions. Capillary channels are widely used in Space technology for liquid transportation and positioning, e.g. in fuel tanks and life support systems. The channel observed in this work consists of two parallel plates bounded by free liquid surfaces along the open sides. The capillary forces of the free surfaces prevent leaking of the liquid and gas ingestion into the flow.In the case of steady stable flow the capillary pressure balances the differential pressure between the liquid and the surrounding constant-pressure gas phase. Increasing the flow rate in small steps causes a decrease of the liquid pressure. A maximum steady flow rate is achieved when the flow rate exceeds a certain limit leading to a collapse of the free surfaces due to the choking effect. In the case of unsteady flow additional dynamic effects take place due to flow rate transition and liquid acceleration. The maximum flow rate is smaller than in the case of steady flow. On the other hand, the choking effect does not necessarily cause surface collapse and stable temporarily choked flow is possible under certain circumstances.To determine the limiting volumetric flow rate and stable flow dynamic properties, a new stability theory for both steady and unsteady flow is introduced. Subcritical and supercritical (choked) flow regimes are defined. Stability criteria are formulated for each flow type. The steady (subcritical) criterion corresponds to the speed index defined by the limiting longitudinal small-amplitude wave speed, similar to the Mach number. The unsteady (supercritical) criterion for choked flow is defined by a new characteristic number, the dynamic index. It is based on pressure balances and reaches unity at the stability limit.The unsteady model based on the Bernoulli equation and the mass balance equation is solved numerically for perfectly wetting incompressible liquids. The unsteady model and the stability theory are verified by comparison to results of a sounding rocket experiment (TEXUS 41) on capillary channel flows launched in December 2005 from ESRANGE in north Sweden. For a clear overview of subcritical, supercritical, and unstable flow, parametric studies and stability diagrams are shown and compared to experimental observations.
Open-channel integrating-type flow meter
Koopman, K.C.
1971-01-01
A relatively inexpensive meter for measuring cumulative flow in open channels with a rated control,. called a "totalizer", was developed. It translates the nonlinear function of gage height to flow by use of a cam and a float. A variable resistance element in an electronic circuit is controlled by the float so that the electron flow in the circuit corresponds to the flow of water. The flow of electricity causes electroplating of an electrode with silver. The amount of silver deposited is proportionate to the flow of water. The total flow of water is determined by removing the silver from the electrode at a fixed rate with ·an electronic device and recording the time for removal with a counter. The circuit is designed so that the ,resultant reading on the counter is in acre-feet of water.
Cubic law with aperture-length correlation: implications for network scale fluid flow
NASA Astrophysics Data System (ADS)
Klimczak, Christian; Schultz, Richard A.; Parashar, Rishi; Reeves, Donald M.
2010-06-01
Previous studies have computed and modeled fluid flow through fractured rock with the parallel plate approach where the volumetric flow per unit width normal to the direction of flow is proportional to the cubed aperture between the plates, referred to as the traditional cubic law. When combined with the square root relationship of displacement to length scaling of opening-mode fractures, total flow rates through natural opening-mode fractures are found to be proportional to apertures to the fifth power. This new relationship was explored by examining a suite of flow simulations through fracture networks using the discrete fracture network model (DFN). Flow was modeled through fracture networks with the same spatial distribution of fractures for both correlated and uncorrelated fracture length-to-aperture relationships. Results indicate that flow rates are significantly higher for correlated DFNs. Furthermore, the length-to-aperture relations lead to power-law distributions of network hydraulic conductivity which greatly influence equivalent permeability tensor values. These results confirm the importance of the correlated square root relationship of displacement to length scaling for total flow through natural opening-mode fractures and, hence, emphasize the role of these correlations for flow modeling.
Open Markov Processes and Reaction Networks
NASA Astrophysics Data System (ADS)
Swistock Pollard, Blake Stephen
We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.
Investigation of Blade Angle of an Open Cross-Flow Runner
NASA Astrophysics Data System (ADS)
Katayama, Yusuke; Iio, Shouichiro; Veerapun, Salisa; Uchiyama, Tomomi
2015-04-01
The aim of this study was to develop a nano-hydraulic turbine utilizing drop structure in irrigation channels or industrial waterways. This study was focused on an open-type cross-flow turbine without any attached equipment for cost reduction and easy maintenance. In this study, the authors used an artificial indoor waterfall as lab model. Test runner which is a simple structure of 20 circular arc-shaped blades sandwiched by two circular plates was used The optimum inlet blade angle and the relationship between the power performance and the flow rate approaching theoretically and experimentally were investigated. As a result, the optimum inlet blade angle due to the flow rate was changed. Additionally, allocation rate of power output in 1st stage and 2nd stage is changed by the blade inlet angle.
Irrigation of human prepared root canal – ex vivo based computational fluid dynamics analysis
Šnjarić, Damir; Čarija, Zoran; Braut, Alen; Halaji, Adelaida; Kovačević, Maja; Kuiš, Davor
2012-01-01
Aim To analyze the influence of the needle type, insertion depth, and irrigant flow rate on irrigant flow pattern, flow velocity, and apical pressure by ex-vivo based endodontic irrigation computational fluid dynamics (CFD) analysis. Methods Human upper canine root canal was prepared using rotary files. Contrast fluid was introduced in the root canal and scanned by computed tomography (CT) providing a three-dimensional object that was exported to the computer-assisted design (CAD) software. Two probe points were established in the apical portion of the root canal model for flow velocity and pressure measurement. Three different CAD models of 27G irrigation needles (closed-end side-vented, notched open-end, and bevel open-end) were created and placed at 25, 50, 75, and 95% of the working length (WL). Flow rates of 0.05, 0.1, 0.2, 0.3, and 0.4 mL/s were simulated. A total of 60 irrigation simulations were performed by CFD fluid flow solver. Results Closed-end side-vented needle required insertion depth closer to WL, regarding efficient irrigant replacement, compared to open-end irrigation needle types, which besides increased velocity produced increased irrigant apical pressure. For all irrigation needle types and needle insertion depths, the increase of flow rate was followed by an increased irrigant apical pressure. Conclusions The human root canal shape obtained by CT is applicable in the CFD analysis of endodontic irrigation. All the analyzed values –irrigant flow pattern, velocity, and pressure – were influenced by irrigation needle type, as well as needle insertion depth and irrigant flow rate. PMID:23100209
Irrigation of human prepared root canal--ex vivo based computational fluid dynamics analysis.
Snjaric, Damir; Carija, Zoran; Braut, Alen; Halaji, Adelaida; Kovacevic, Maja; Kuis, Davor
2012-10-01
To analyze the influence of the needle type, insertion depth, and irrigant flow rate on irrigant flow pattern, flow velocity, and apical pressure by ex-vivo based endodontic irrigation computational fluid dynamics (CFD) analysis. Human upper canine root canal was prepared using rotary files. Contrast fluid was introduced in the root canal and scanned by computed tomography (CT) providing a three-dimensional object that was exported to the computer-assisted design (CAD) software. Two probe points were established in the apical portion of the root canal model for flow velocity and pressure measurement. Three different CAD models of 27G irrigation needles (closed-end side-vented, notched open-end, and bevel open-end) were created and placed at 25, 50, 75, and 95% of the working length (WL). Flow rates of 0.05, 0.1, 0.2, 0.3, and 0.4 mL/s were simulated. A total of 60 irrigation simulations were performed by CFD fluid flow solver. Closed-end side-vented needle required insertion depth closer to WL, regarding efficient irrigant replacement, compared to open-end irrigation needle types, which besides increased velocity produced increased irrigant apical pressure. For all irrigation needle types and needle insertion depths, the increase of flow rate was followed by an increased irrigant apical pressure. The human root canal shape obtained by CT is applicable in the CFD analysis of endodontic irrigation. All the analyzed values -irrigant flow pattern, velocity, and pressure - were influenced by irrigation needle type, as well as needle insertion depth and irrigant flow rate.
NASA Astrophysics Data System (ADS)
Fan, Tai-Fang
We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.
Magneto - Optical Imaging of Superconducting MgB2 Thin Films
NASA Astrophysics Data System (ADS)
Hummert, Stephanie Maria
We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.
Boron Carbide Filled Neutron Shielding Textile Polymers
NASA Astrophysics Data System (ADS)
Manzlak, Derrick Anthony
We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.
Parallel Unstructured Grid Generation for Complex Real-World Aerodynamic Simulations
NASA Astrophysics Data System (ADS)
Zagaris, George
We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.
NASA Astrophysics Data System (ADS)
Schiavone, Clinton Cleveland
We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.
Processing and Conversion of Algae to Bioethanol
NASA Astrophysics Data System (ADS)
Kampfe, Sara Katherine
We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.
The Development of the CALIPSO LiDAR Simulator
NASA Astrophysics Data System (ADS)
Powell, Kathleen A.
We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.
Exploring a Novel Approach to Technical Nuclear Forensics Utilizing Atomic Force Microscopy
NASA Astrophysics Data System (ADS)
Peeke, Richard Scot
We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.
Production of Cyclohexylene-Containing Diamines in Pursuit of Novel Radiation Shielding Materials
NASA Astrophysics Data System (ADS)
Bate, Norah G.
We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.
Development of Boron-Containing Polyimide Materials and Poly(arylene Ether)s for Radiation Shielding
NASA Astrophysics Data System (ADS)
Collins, Brittani May
We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.
Magnetization Dynamics and Anisotropy in Ferromagnetic/Antiferromagnetic Ni/NiO Bilayers
NASA Astrophysics Data System (ADS)
Petersen, Andreas
We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.
Ellingson, William A.; Forster, George A.
1999-11-02
Apparatus and a method for controlling the flow rate of viscous materials through a nozzle includes an apertured main body and an apertured end cap coupled together and having an elongated, linear flow channel extending the length thereof. An end of the main body is disposed within the end cap and includes a plurality of elongated slots concentrically disposed about and aligned with the flow channel. A generally flat cam plate having a center aperture is disposed between the main body and end cap and is rotatable about the flow channel. A plurality of flow control vane assemblies are concentrically disposed about the flow channel and are coupled to the cam plate. Each vane assembly includes a vane element disposed adjacent the end of the flow channel. Rotation of the cam plate in a first direction causes a corresponding rotation of each of the vane elements for positioning the individual vane elements over the aperture in the end cap blocking flow through the flow channel, while rotation in an opposite direction removes the vane elements from the aperture and positions them about the flow channel in a nested configuration in the full open position, with a continuous range of vane element positions available between the full open and closed positions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lalin, H.S.; Bermudez, J.E.; Fleming, W.T.
1987-09-08
A soap film gas flowmeter is described comprising: a flow tube having a hollow body with opposite open ends through which a soap film is propelled and a first closed chamber housing a soap solution. It also includes means for supporting the flow tube in a substantially vertical position with the open bottom end of the flow tube disposed in the first chamber above the soap solution; a second closed chamber into which the open top end of the flow tube extends and gas inlet means for introducing gas into the first chamber at a flow rate to be measuredmore » using the flowmeters. A gas exit means is included for discharging the gas introduced into the first chamber through the second chamber. Plus there are means for generating a single soap bubble from the soap solution substantially at the bottom end of the flow tube and a relatively large opening in the flowtube for providing an open passageway for inlet gas to pass through the flowtube when the bottom open end of the flowtube is covered by the soap solution.« less
González-Suárez, Ana; Berjano, Enrique; Guerra, Jose M.; Gerardo-Giorda, Luca
2016-01-01
Radiofrequency catheter ablation (RFCA) is a routine treatment for cardiac arrhythmias. During RFCA, the electrode-tissue interface temperature should be kept below 80°C to avoid thrombus formation. Open-irrigated electrodes facilitate power delivery while keeping low temperatures around the catheter. No computational model of an open-irrigated electrode in endocardial RFCA accounting for both the saline irrigation flow and the blood motion in the cardiac chamber has been proposed yet. We present the first computational model including both effects at once. The model has been validated against existing experimental results. Computational results showed that the surface lesion width and blood temperature are affected by both the electrode design and the irrigation flow rate. Smaller surface lesion widths and blood temperatures are obtained with higher irrigation flow rate, while the lesion depth is not affected by changing the irrigation flow rate. Larger lesions are obtained with increasing power and the electrode-tissue contact. Also, larger lesions are obtained when electrode is placed horizontally. Overall, the computational findings are in close agreement with previous experimental results providing an excellent tool for future catheter research. PMID:26938638
Abulon, Dina Joy K; Buboltz, David C
2015-02-01
To measure flow rate of balanced salt solution and IOP during simulated vitrectomy using two sets of high-speed dual-pneumatic probes. A closed-model eye system measured IOP and flow rate of a balanced salt solution through infusion cannula. The Constellation Vision System was tested with two sets of high-speed dual-pneumatic probes (UltraVit 23-gauge and enhanced 25+-gauge 5000-cpm probes; UltraVit 23-gauge and enhanced 25+-gauge 7500-cpm probes; n = 6 each) under different vacuum levels and cut rates in three duty cycle modes. In both probe sets, flow rates were dependent on cut rate with the biased open and biased closed duty cycles. Flow rates were highest with the biased open duty cycle, lower with the 50/50 duty cycle, and lowest with the biased closed duty cycle. IOP, as expected, was inversely associated with flow rate using both probe sets. The 7500-cpm probes offer greater control and customization compared with 5000-cpm probes under certain experimental conditions. At maximum cut rates, performance of 7500-cpm probes was similar to that of 5000-cpm probes, suggesting that 7500-cpm probes may be used without sacrifice of flow rate and IOP stability. Customization of vitrectomy parameters allows greater surgeon control during vitrectomy and may expand the usefulness of vitrectomy probes.
Pierce, Eric T; Kumar, Vikram; Zheng, Hui; Peterfreund, Robert A
2013-03-01
Gravity-driven micro-drip infusion sets allow control of medication dose delivery by adjusting drops per minute. When the roller clamp is fully open, flow in the drip chamber can be a continuous fluid column rather than discrete, countable, drops. We hypothesized that during this "wide-open" state, drug delivery becomes dependent on factors extrinsic to the micro-drip set and is therefore difficult to predict. We conducted laboratory experiments to characterize volume delivery under various clinically relevant conditions of wide-open flow in an in vitro laboratory model. A micro-drip infusion set, plugged into a bag of normal saline, was connected to a high-flow stopcock at the distal end. Vertically oriented IV catheters (gauges 14-22) were connected to the stopcock. The fluid meniscus height in the bag was fixed (60-120 cm) above the outflow point. The roller clamp on the infusion set was in fully open position for all experiments resulting in a continuous column of fluid in the drip chamber. Fluid volume delivered in 1 minute was measured 4 times with each condition. To model resistive effects of carrier flow, volumetric infusion pumps were used to deliver various flow rates of normal saline through a carrier IV set into which a micro-drip infusion was "piggybacked." We also compared delivery by micro-drip infusion sets from 3 manufacturers. The volume of fluid delivered by gravity-driven infusion under wide-open conditions (continuous fluid column in drip chamber) varied 2.9-fold (95% confidence interval, 2.84-2.96) depending on catheter size and fluid column height. Total model resistance of the micro-drip with stopcock and catheter varied with flow rate. Volume delivered by the piggybacked micro-drip decreased up to 29.7% ± 0.8% (mean ± SE) as the carrier flow increased from 0 to 1998 mL/min. Delivery characteristics of the micro-drip infusion sets from 3 different manufacturers were similar. Laboratory simulation of clinical situations with gravity-driven micro-drip infusion sets under wide-open flow conditions revealed that infusion rate (drug and/or volume delivery) can vary widely depending on extrinsic factors including catheter size, fluid column height, and carrier flow. The variable resistance implies nonlaminar flow in the micro-drip model that cannot be easily predicted mathematically. These findings support the use of mechanical pumps instead of gravity-driven micro-drips to enhance the precision and safety of IV infusions, especially for vasoactive drugs.
Mignot, E; Bonakdari, H; Knothe, P; Lipeme Kouyi, G; Bessette, A; Rivière, N; Bertrand-Krajewski, J-L
2012-01-01
Open-channel junctions are common occurrences in sewer networks and flow rate measurement often occurs near these singularities. Local flow structures are 3D, impact on the representativeness of the local flow measurements and thus lead to deviations in the flow rate estimation. The present study aims (i) to measure and simulate the flow pattern in a junction flow, (ii) to analyse the impact of the junction on the velocity distribution according to the distance from the junction and thus (iii) to evaluate the typical error derived from the computation of the flow rate close to the junction.
Hopper Flow: Experiments and Simulation
NASA Astrophysics Data System (ADS)
Li, Zhusong; Shattuck, Mark
2013-03-01
Jamming and intermittent granular flow are important problems in industry, and the vertical hopper is a canonical example. Clogging of granular hoppers account for significant losses across many industries. We use realistic DEM simulations of gravity driven flow in a hopper to examine flow and jamming of 2D disks and compare with identical companion experiments. We use experimental data to validate simulation parameters and the form of the inter particle force law. We measure and compare flow rate, emptying times, jamming statistics, and flow fields as a function of opening angle and opening size in both experiment and simulations. Suppored by: NSF-CBET-0968013
NASA Technical Reports Server (NTRS)
Harrington, Douglas E.; Burley, Richard R.; Corban, Robert R.
1986-01-01
Wall Mach number distributions were determined over a range of test-section free-stream Mach numbers from 0.2 to 0.92. The test section was slotted and had a nominal porosity of 11 percent. Reentry flaps located at the test-section exit were varied from 0 (fully closed) to 9 (fully open) degrees. Flow was bled through the test-section slots by means of a plenum evacuation system (PES) and varied from 0 to 3 percent of tunnel flow. Variations in reentry flap angle or PES flow rate had little or no effect on the Mach number distributions in the first 70 percent of the test section. However, in the aft region of the test section, flap angle and PES flow rate had a major impact on the Mach number distributions. Optimum PES flow rates were nominally 2 to 2.5 percent wtih the flaps fully closed and less than 1 percent when the flaps were fully open. The standard deviation of the test-section wall Mach numbers at the optimum PES flow rates was 0.003 or less.
Fuselage ventilation due to wind flow about a postcrash aircraft
NASA Technical Reports Server (NTRS)
Stuart, J. W.
1980-01-01
Postcrash aircraft fuselage fire development, dependent on the internal and external fluid dynamics is discussed. The natural ventilation rate, a major factor in the internal flow patterns and fire development is reviewed. The flow about the fuselage as affected by the wind and external fire is studied. An analysis was performend which estimated the rates of ventilation produced by the wind for a limited idealized environmental configuration. The simulation utilizes the empirical pressure coefficient distribution of an infinite circular cylinder near a wall with its boundary later flow to represent the atmospheric boundary layer. The resulting maximum ventilation rate for two door size openings, with varying circumferential location in a common 10 mph wind was an order of magnitude greater than the forced ventilation specified in full scale fire testing. The parameter discussed are: (1) fuselage size and shape, (2) fuselage orientation and proximity to the ground, (3) fuselage-openings size and location, (4) wind speed and direction, and (5) induced flow of the external fire plume is recommended. The fire testing should be conducted to a maximum ventilation rate at least an order of magnitude greater than the inflight air conditioning rates.
NASA Astrophysics Data System (ADS)
Auslander, Joseph Simcha
We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.
NASA Astrophysics Data System (ADS)
Frey, Alexander
We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.
NASA Astrophysics Data System (ADS)
Mountz, Elizabeth M.
We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.
NASA Astrophysics Data System (ADS)
Abelard, Joshua Erold Robert
We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.
NASA Astrophysics Data System (ADS)
Harbert, Emily Grace
We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.
Determination of Flow Resistance Coefficient for Vegetation in Open Channel: Laboratory study
NASA Astrophysics Data System (ADS)
Aliza Ahmad, Noor; Ali, ZarinaMd; Arish, Nur Aini Mohd; Munirah Mat Daud, Azra; Fatin Amirah Alias, Nur
2018-04-01
This study focused on determination of flow resistances coefficient for grass in an open channel. Laboratory works were conducted to examine the effects of varying of roughness elements on the flume to determine flow resistance coefficient and also to determine the optimum flow resistance with five different flow rate, Q. Laboratory study with two type of vegetation which are Cow Grass and Pearl Grass were implementing to the bed of a flume. The roughness coefficient, n value is determine using Manning’s equation while Soil Conservation Services (SCS) method was used to determine the surface resistance. From the experiment, the flow resistance coefficient for Cow Grass in range 0.0008 - 0.0039 while Pearl Grass value for the flow resistance coefficient are in between 0.0013 - 0.0054. As a conclusion the vegetation roughness value in open channel are depends on density, distribution type of vegetation used and physical characteristic of the vegetation itself
Li, Tianxin; Li, Li; Song, Hongqing; Meng, Linglong; Zhang, Shuli; Huang, Gang
2016-01-01
This study focused on using analytical and numerical models to develop and manage groundwater resources, and predict the effects of management measurements in the groundwater system. Movement of contaminants can be studied based on groundwater flow characteristics. This study can be used for prediction of ion concentration and evaluation of groundwater pollution as the theoretical basis. The Yimin open-pit mine is located in the northern part of the Inner Mongolia Autonomous Region of China. High concentrations of iron and manganese are observed in Yimin open-pit mine because of exploitation and pumping that have increased the concentration of the ions in groundwater. In this study, iron was considered as an index of contamination, and the solute model was calibrated using concentration observations from 14 wells in 2014. The groundwater flow model and analytical solutions were used in this study to forecast pollution concentration and variation trend after calibration. With continuous pumping, contaminants will migrate, and become enriched, towards the wellhead in the flow direction. The concentration of the contaminants and the range of pollution increase with the flow rate increased. The suitable flow rate of single well should be <380 m/day at Yimin open-pit for the standard value of pollution concentration.
Comparative Kinetic Analysis of Closed-Ended and Open-Ended Porous Sensors
NASA Astrophysics Data System (ADS)
Zhao, Yiliang; Gaur, Girija; Mernaugh, Raymond L.; Laibinis, Paul E.; Weiss, Sharon M.
2016-09-01
Efficient mass transport through porous networks is essential for achieving rapid response times in sensing applications utilizing porous materials. In this work, we show that open-ended porous membranes can overcome diffusion challenges experienced by closed-ended porous materials in a microfluidic environment. A theoretical model including both transport and reaction kinetics is employed to study the influence of flow velocity, bulk analyte concentration, analyte diffusivity, and adsorption rate on the performance of open-ended and closed-ended porous sensors integrated with flow cells. The analysis shows that open-ended pores enable analyte flow through the pores and greatly reduce the response time and analyte consumption for detecting large molecules with slow diffusivities compared with closed-ended pores for which analytes largely flow over the pores. Experimental confirmation of the results was carried out with open- and closed-ended porous silicon (PSi) microcavities fabricated in flow-through and flow-over sensor configurations, respectively. The adsorption behavior of small analytes onto the inner surfaces of closed-ended and open-ended PSi membrane microcavities was similar. However, for large analytes, PSi membranes in a flow-through scheme showed significant improvement in response times due to more efficient convective transport of analytes. The experimental results and theoretical analysis provide quantitative estimates of the benefits offered by open-ended porous membranes for different analyte systems.
Stagnation, circulation, and erosion of granular materials through belt conveyor sluice gate
NASA Astrophysics Data System (ADS)
Pohlman, Nicholas; Moralda, Michael; Dunne, Ryan
2013-11-01
Control of flow rates in conversion reactors for discrete materials like biomass can be achieved in belt conveyors through a combination of belt speed, hopper size, and aperture opening. As material is extracted from the bottom of the storage hopper, other material cannot achieve plug flow and therefore is restricted from exiting through a sluice-gate type opening. The excess material moves vertically from the opening causing a pile up and recirculation back along the free surface of the hopper. Experimental results obtained through high speed imaging show the position of the stagnation point as well as the rate of circulation is dependent on the mass flow rate achieved and instantaneous fill level. The movement of material into the plug flow along the belt allows verification of deposition models on erodible beds rather than rigid surfaces with artificial roughness of glued particles. Similarly, the pile-up at the exit influences the efficiency of the transport affecting the narrow energy return on investment of biomass resources. The laboratory-scale behavior can therefore be translated into industrial performance metrics for increased operational efficiency. This work is supported by the NSF REU Site Operation E-Tank under award number 1156789.
Seedorf, Jens; Schmidt, Ralf-Gunther
2017-08-01
Research that investigates bioaerosol emissions from animal transport vehicles (ATVs) and their importance in the spread of harmful airborne agents while the ATVs travel on roads is limited. To investigate the dynamical behaviour of theoretically released particles from a moving ATV, the open-source computational fluid dynamics (CFD) software OpenFOAM was used to calculate the external and internal air flow fields with passive and forced ventilated openings of a common ATV moving at a speed of 80 km/h. In addition to a computed flow rate of approximately 40,000 m 3 /h crossing the interior of the ATV, the visualization of the trajectories has demonstrated distinct patterns of the spatial distribution of potentially released bioaerosols in the vicinity of the ATV. Although the front openings show the highest air flow to the outside, the recirculations of air masses between the interior of the ATV and the atmosphere also occur, which complicate the emission and the dispersion characterizations. To specify the future emission rates of ATVs, a database of bioaerosol concentrations within the ATV is necessary in conjunction with high-performance computing resources to simulate the potential dispersion of bioaerosols in the environment.
Cooling and crystallization of lava in open channels, and the transition of Pāhoehoe Lava to 'A'ā
NASA Astrophysics Data System (ADS)
Cashman, Katharine V.; Thornber, Carl; Kauahikaua, James P.
Samples collected from a lava channel active at Kīlauea Volcano during May 1997 are used to constrain rates of lava cooling and crystallization during early stages of flow. Lava erupted at near-liquidus temperatures ( 1150 °C) cooled and crystallized rapidly in upper parts of the channel. Glass geothermometry indicates cooling by 12-14 °C over the first 2km of transport. At flow velocities of 1-2m/s, this translates to cooling rates of 22-50 °C/h. Cooling rates this high can be explained by radiative cooling of a well-stirred flow, consistent with observations of non-steady flow in proximal regions of the channel. Crystallization of plagioclase and pyroxene microlites occurred in response to cooling, with crystallization rates of 20-50% per hour. Crystallization proceeded primarily by nucleation of new crystals, and nucleation rates of 104/cm3s are similar to those measured in the 1984 open channel flow from Mauna Loa Volcano. There is no evidence for the large nucleation delays commonly assumed for plagioclase crystallization in basaltic melts, possibly a reflection of enhanced nucleation due to stirring of the flow. The transition of the flow surface morphology from pāhoehoe to 'a'ā occurred at a distance of 1.9km from the vent. At this point, the flow was thermally stratified, with an interior temperature of 1137 °C and crystallinity of 15%, and a flow surface temperature of 1100 °C and crystallinity of 45%. 'A'ā formation initiated along channel margins, where crust was continuously disrupted, and involved tearing and clotting of the flow surface. Both observations suggest that the transition involved crossing of a rheological threshold. We suggest this threshold to be the development of a lava yield strength sufficient to prevent viscous flow of lava at the channel margin. We use this concept to propose that 'a'ā formation in open channels requires both sufficiently high strain rates for continued disruption of surface crusts and sufficient groundmass crystallinity to generate a yield strength equivalent to the imposed stress. In Hawai'i, where lava is typically microlite poor on eruption, these combined requirements help to explain two common observations on 'a'ā formation: (a) 'a'ā flow fields are generated when effusion rates are high (thus promoting crustal disruption); and (b) under most eruption conditions, lava issues from the vent as pāhoehoe and changes to 'a'ā only after flowing some distance, thus permitting sufficient crystallization.
Zhang, Zhaoyan
2015-01-01
Maintaining a small glottal opening across a large range of voice conditions is critical to normal voice production. This study investigated the effectiveness of vocal fold approximation and stiffening in regulating glottal opening and airflow during phonation, using a three-dimensional numerical model of phonation. The results showed that with increasing subglottal pressure the vocal folds were gradually pushed open, leading to increased mean glottal opening and flow rate. A small glottal opening and a mean glottal flow rate typical of human phonation can be maintained against increasing subglottal pressure by proportionally increasing the degree of vocal fold approximation for low to medium subglottal pressures and vocal fold stiffening at high subglottal pressures. Although sound intensity was primarily determined by the subglottal pressure, the results suggest that, to maintain small glottal opening as the sound intensity increases, one has to simultaneously tighten vocal fold approximation and/or stiffen the vocal folds, resulting in increased glottal resistance, vocal efficiency, and fundamental frequency. PMID:25698022
Water balance in irrigation districts. Uncertainty in on-demand pressurized networks
NASA Astrophysics Data System (ADS)
Sánchez-Calvo, Raúl; Rodríguez-Sinobas, Leonor; Juana, Luis; Laguna, Francisco Vicente
2015-04-01
In on-demand pressurized irrigation distribution networks, applied water volume is usually controlled opening a valve during a calculated time interval, and assuming constant flow rate. In general, pressure regulating devices for controlling the discharged flow rate by irrigation units are needed due to the variability of pressure conditions. A pressure regulating valve PRV is the commonly used pressure regulating device in a hydrant, which, also, executes the open and close function. A hydrant feeds several irrigation units, requiring a wide range in flow rate. In addition, some flow meters are also available, one as a component of the hydrant and the rest are placed downstream. Every land owner has one flow meter for each group of field plots downstream the hydrant. Ideal PRV performance would maintain a constant downstream pressure. However, the true performance depends on both upstream pressure and the discharged flow rate. Theoretical flow rates values have been introduced into a PRV behavioral model, validated in laboratory, coupled with an on-demand irrigation district waterworks, composed by a distribution network and a multi-pump station. Variations on flow rate are simulated by taking into account the consequences of variations on climate conditions and also decisions in irrigation operation, such us duration and frequency application. The model comprises continuity, dynamic and energy equations of the components of both the PRV and the water distribution network. In this work the estimation of water balance terms during the irrigation events in an irrigation campaign has been simulated. The effect of demand concentration peaks has been estimated.
Development of Long-Lifetime Pulsed Gas Valves for Pulsed Electric Thrusters
NASA Technical Reports Server (NTRS)
Burkhardt, Wendel M.; Crapuchettes, John M.; Addona, Brad M.; Polzin, Kurt A.
2015-01-01
The design and test results for two types of pulsed gas valves are presented. The valves, a piezo valve and a solenoid actuated valve, must have exceedingly long lifetime to support gas-fed pulsed electric thruster operation for missions of interest. The performance of both valves was tested, with both demonstrating the capability to throttle the gas flow rate while maintaining low leakage levels below 10(exp -3) sccs of He at the beginning of valve lifetime. The piezo valve varies the flow rate by changing the amount that the valve is open, which is a function of applied voltage. This valve demonstrated continuous throttlability from 0-10 mL/s, with opening and closing times of 100 microsecond or less. The solenoid actuated valve flow rate changes as a function of the inlet gas pressure, with demonstrated flow rates in these tests from 2.7-11 mL per second. The valve response time is slower than the piezo valve, opening in 1-2 ms and closing in several ms. The solenoid actuated valve was tested to one million cycles, with the valve performance remaining relatively unchanged throughout the test. Galling of the sliding plunger caused the valve to bind and fail just after one million cycles, but at this point in the test the valve sealing surface leak rate still appeared to be well below the maximum target leak rake of 1×10(exp -3) sccs of He.
Flow Measurement. Training Module 3.315.2.77.
ERIC Educational Resources Information Center
Kirkwood Community Coll., Cedar Rapids, IA.
This document is an instructional module package prepared in objective form for use by an instructor familiar with the principles of liquid flow and the methods of measuring open channel and fuel pipe flow rates. Included are objectives, instructor guides, student handouts, and transparency masters. The module addresses the basic flow formula, and…
Oldenburg, Curtis M.; Freifeld, Barry M.; Pruess, Karsten; Pan, Lehua; Finsterle, Stefan; Moridis, George J.
2012-01-01
In response to the urgent need for estimates of the oil and gas flow rate from the Macondo well MC252-1 blowout, we assembled a small team and carried out oil and gas flow simulations using the TOUGH2 codes over two weeks in mid-2010. The conceptual model included the oil reservoir and the well with a top boundary condition located at the bottom of the blowout preventer. We developed a fluid properties module (Eoil) applicable to a simple two-phase and two-component oil-gas system. The flow of oil and gas was simulated using T2Well, a coupled reservoir-wellbore flow model, along with iTOUGH2 for sensitivity analysis and uncertainty quantification. The most likely oil flow rate estimated from simulations based on the data available in early June 2010 was about 100,000 bbl/d (barrels per day) with a corresponding gas flow rate of 300 MMscf/d (million standard cubic feet per day) assuming the well was open to the reservoir over 30 m of thickness. A Monte Carlo analysis of reservoir and fluid properties provided an uncertainty distribution with a long tail extending down to 60,000 bbl/d of oil (170 MMscf/d of gas). The flow rate was most strongly sensitive to reservoir permeability. Conceptual model uncertainty was also significant, particularly with regard to the length of the well that was open to the reservoir. For fluid-entry interval length of 1.5 m, the oil flow rate was about 56,000 bbl/d. Sensitivity analyses showed that flow rate was not very sensitive to pressure-drop across the blowout preventer due to the interplay between gas exsolution and oil flow rate. PMID:21730177
Lock and Dam Number 8 Hydropower Study; Mississippi River Near LaCrosse, Wisconsin. Supplement.
1985-01-01
unit used in scheme 3 is a standardized module consisting of an axial flow turbine , a speed increasing gear set, and a generator combined in a short...the flow and generating head ranges associated with specific turbine generator sizes, the program produces annual and monthly flow -duration curves and...open flume turbine passing a rated flow of 14O0 eta at a rated head of 9.75 feat. Cost estimates were made for two and four unit plants having
Portable wastewater flow meter
Hunter, Robert M.
1999-02-02
A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under fill pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.
Portable wastewater flow meter
Hunter, Robert M.
1990-01-01
A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under full pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.
Chapotin, Saharah Moon; Razanameharizaka, Juvet H; Holbrook, N Michele
2006-01-01
Baobab trees (Adansonia, Bombacaceae) are widely thought to store water in their stems for use when water availability is low. We tested this hypothesis by assessing the role of stored water during the dry season in three baobab species in Madagascar. In the dry season, leaves are present only during and after leaf flush. We quantified the relative contributions of stem and soil water during this period through measures of stem water content, sap flow and stomatal conductance. Rates of sap flow at the base of the trunk were near zero, indicating that leaf flushing was almost entirely dependent on stem water. Stem water content declined by up to 12% during this period, yet stomatal conductance and branch sap flow rates remained very low. Stem water reserves were used to support new leaf growth and cuticular transpiration, but not to support stomatal opening before the rainy season. Stomatal opening coincided with the onset of sap flow at the base of the trunk and occurred only after significant rainfall.
A Physical Model Study of Two-Phase Gas-Liquid Flows in a Ladle Shroud
NASA Astrophysics Data System (ADS)
Singh, Prince K.; Mazumdar, Dipak
2018-06-01
Argon-steel flows inside a ladle shroud during teeming from a ladle to a tundish have been modelled physically. To this end, full-scale Perspex models of bloom as well as slab casting shrouds (BCS and SCS), operating with air and water, have been applied. Both open to air as well as immersed conditions were investigated with and without gas injection. Flows inside a ladle shroud under open to air and immersed conditions were found to be substantially different with a strong function of gas and liquid flow rates, collector nozzle and shroud diameters. Depending on the volumetric gas injection rate relative to liquid flow rate, different flow regimes have been observed in an immersed shroud [ i.e., 0 < ( ds/L_{s} ) ≤ 0.24 ]. At extremely low gas flow rates, [ i.e., ( Qg/Q_{L} ) ≤ 0.02 ], injected gas is completely entrained as bubbles by the down-flowing liquid resulting in a bubbly two-phase flow over the entire length of a shroud. However, with an increasing gas flow rate, two distinctly different regions start to develop within the shroud body: a free liquid jet in the upper part and a gas-liquid mixing zone below. The length of the free jet increases with an increasing gas flow rate and at significantly higher gas to liquid flow rates [ viz., ( Qg/Q_{L} )_{BCS} ≥ 0.42 ] and [ viz., ( Qg/Q_{L} )_{SCS} ≥ 0.30 ] , and the free jet is found to prevail over the entire length of the shroud. Within the range of conditions studied, it is observed that the free jet length or the line of demarcation between the jetting and two-phase mixing zone depends on gas and liquid flow rates and is specific to a particular shroud-collector nozzle system. Physical model results further indicate that a sufficiently large free jet length ( shroud length) tends to create a high pressure region inside a shroud and prevent ingression of air. Possible implications of the present findings with reference to industrial teeming practices are also discussed in the text.
Afterload-dependent flow fluctuation of centrifugal pump: should it be actively fixed?
Nishida, H; Akazawa, T; Nishinaka, T; Aomi, S; Endo, M; Koyanagi, H
1998-05-01
To evaluate the clinical meaning and effects of afterload-dependent flow fluctuation in a centrifugal pump, concomitant measurement of flow rate and mixed venous oxygen saturation (SVO2) was performed in 5 cases of open heart surgery in which the patients underwent cardiopulmonary bypass (CPB) with the Terumo Capiox centrifugal pump. Continuous measurement of SVO2 using the 3M CDI System 100 was performed with a disposable cuvette incorporated into the drainage circuit. After the target flow rate of 2.4 L/min/m2 was obtained under a nonbeating condition, the pump rotational speed was fixed. During the cooling and low temperature period, SVO2 decreased as the flow rate spontaneously decreased but still stayed around 80% even with a 15-20% decrease in blood flow rate. This indicates that a luxury perfusion condition is ensured as long as the body temperature is kept low. In contrast, during the rewarming period, SVO2 decreased to around 70-75% despite a 15-25% spontaneous increase in flow rate. Although this level of SVO2 still indicates adequate systemic perfusion, there is a possibility of regional hypoperfusion in patients with such conditions as cerebrovascular disease. In conclusion, although diligent adjustment of the physiological fluctuating flow rate in the centrifugal pump seems unnecessary during conventional open heart surgery, manual control may be necessary especially during the rewarming period, normothermic surgery, or circulatory assist for shocked patients. From this study, we also conclude that the major benefit of the afterload-independent autoflow control system of the centrifugal pump is the improvement of safety in terms of the fixed reservoir level and the handling of cardiopulmonary bypass.
Discharge ratings for control gates at Mississippi River lock and dam 12, Bellevue, Iowa
Heinitz, Albert J.
1986-01-01
The water level of the navigation pools on the Mississippi River are maintained by the operation of tainter and roller gates at the locks and dams. Discharge ratings for the gates on Lock and Dam 12, at Bellevue, Iowa, were developed from current-meter discharge measurements made in the forebays of the gate structures. Methodology is given to accurately compute the gate openings of the tainter gates. Discharge coefficients, in equations that express discharge as a function of tailwater head , forebay head, and height of gate opening, were determined for conditions of submerged-orifice and fee-weir flow. A comparison of the rating discharges to the hydraulic-model rating discharges is given for submerged orifice flow for the tainter and roller gates.
Method and apparatus for controlling fluid flow
Miller, J.R.
1980-06-27
A method and apparatus for precisely controlling the rate (and hence amount) of fluid flow are given. The controlled flow rate is finely adjustable, can be extremely small (on the order of microliter-atmospheres per second), can be adjusted to zero (flow stopped), and is stable to better than 1% with time. The dead volume of the valve can be made arbitrarily small, in fact essentially zero. The valve employs no wearing mechanical parts (including springs, stems, or seals). The valve is finely adjustable, has a flow rate dynamic range of many decades, can be made compatible with any fluid, and is suitable for incorporation into an open or closed loop servo-control system.
NASA Astrophysics Data System (ADS)
Johnson, Ryan Federick; Chelliah, Harsha Kumar
2017-01-01
For a range of flow and chemical timescales, numerical simulations of two-dimensional laminar flow over a reacting carbon surface were performed to understand further the complex coupling between heterogeneous and homogeneous reactions. An open-source computational package (OpenFOAM®) was used with previously developed lumped heterogeneous reaction models for carbon surfaces and a detailed homogeneous reaction model for CO oxidation. The influence of finite-rate chemical kinetics was explored by varying the surface temperatures from 1800 to 2600 K, while flow residence time effects were explored by varying the free-stream velocity up to 50 m/s. The reacting boundary layer structure dependence on the residence time was analysed by extracting the ratio of chemical source and species diffusion terms. The important contributions of radical species reactions on overall carbon removal rate, which is often neglected in multi-dimensional simulations, are highlighted. The results provide a framework for future development and validation of lumped heterogeneous reaction models based on multi-dimensional reacting flow configurations.
A survey of the role of thermodynamic stability in viscous flow
NASA Technical Reports Server (NTRS)
Horne, W. C.; Smith, C. A.; Karamcheti, K.
1991-01-01
The stability of near-equilibrium states has been studied as a branch of the general field of nonequilibrium thermodynamics. By treating steady viscous flow as an open thermodynamic system, nonequilibrium principles such as the condition of minimum entropy-production rate for steady, near-equilibrium processes can be used to generate flow distributions from variational analyses. Examples considered in this paper are steady heat conduction, channel flow, and unconstrained three-dimensional flow. The entropy-production-rate condition has also been used for hydrodynamic stability criteria, and calculations of the stability of a laminar wall jet support this interpretation.
NASA Astrophysics Data System (ADS)
Swanson, Kenneth D.; Worth, Anne L.; Glish, Gary L.
2018-02-01
A simple design for an open port sampling interface coupled to electrospray ionization (OPSI-ESI) is presented for the analysis of organic aerosols. The design uses minimal modifications to a Bruker electrospray (ESI) emitter to create a continuous flow, self-aspirating open port sampling interface. Considerations are presented for introducing aerosol to the open port sampling interface including aerosol gas flow and solvent flow rates. The device has been demonstrated for use with an aerosol of nicotine as well as aerosol formed in the pyrolysis of biomass. Upon comparison with extractive electrospray ionization (EESI), this device has similar sensitivity with increased reproducibility by nearly a factor of three. The device has the form factor of a standard Bruker/Agilent ESI emitter and can be used without any further instrument modifications.
Fluid-dynamic design optimization of hydraulic proportional directional valves
NASA Astrophysics Data System (ADS)
Amirante, Riccardo; Catalano, Luciano Andrea; Poloni, Carlo; Tamburrano, Paolo
2014-10-01
This article proposes an effective methodology for the fluid-dynamic design optimization of the sliding spool of a hydraulic proportional directional valve: the goal is the minimization of the flow force at a prescribed flow rate, so as to reduce the required opening force while keeping the operation features unchanged. A full three-dimensional model of the flow field within the valve is employed to accurately predict the flow force acting on the spool. A theoretical analysis, based on both the axial momentum equation and flow simulations, is conducted to define the design parameters, which need to be properly selected in order to reduce the flow force without significantly affecting the flow rate. A genetic algorithm, coupled with a computational fluid dynamics flow solver, is employed to minimize the flow force acting on the valve spool at the maximum opening. A comparison with a typical single-objective optimization algorithm is performed to evaluate performance and effectiveness of the employed genetic algorithm. The optimized spool develops a maximum flow force which is smaller than that produced by the commercially available valve, mainly due to some major modifications occurring in the discharge section. Reducing the flow force and thus the electromagnetic force exerted by the solenoid actuators allows the operational range of direct (single-stage) driven valves to be enlarged.
NASA Astrophysics Data System (ADS)
Li, L.; Brunet, J. P. L.; Karpyn, Z.; Huerta, N. J.
2016-12-01
During geological carbon sequestration (GCS) large quantities of CO2 are injected in underground formations. Cement fractures represent preferential leakage pathways in abandoned wells upon exposure to CO2-rich fluid. Contrasting self- healing and fracture opening behavior have been observed while a unifying framework is still missing. The modelling of this process is challenging as it involves complex chemical, mechanical and transport interactions. We developed a process-based reactive transport model that explicitly simulates flow and multi-component reactive transport in fractured cement by reproducing experimental observations of sharp flow rate reduction during exposure to carbonated water. Mechanical interactions have not been included. The simulation shows a similar reaction network as in diffusion-controlled systems without flow. That is, CO2-rich water induced portlandite dissolution, releasing calcium that further reacted with carbonate to form calcite. This created localized changes in porosity and permeability inducing large differences in the long term response of the system through a complex positive feedback loop (e.g., a decrease in local permeability induces a decrease in flow that in turn amplifies the precipitation of calcite through a reduced acidic brine flow). The calibrated model was used to generate 250 numerical experiments of CO2-flooding in cement fractures with varying initial hydraulic apertures (b) and residence times (τ) defined as the ratio of fracture volume over flow rate. A long τ leads to slow replenishment of carbonated water, calcite precipitation, and self-sealing. The opposite occurs when τ is small with short fractures and fast flow rates. Simulation results indicate that a critical residence time τc - the minimum τ required for self-sealing -divides the conditions that trigger the diverging opening and self-sealing behavior. The τc value depends on the initial aperture size (see figure). Among the 250 simulated fracture cases, significant changes in effective permeability - self-healing or opening - typically occurs within hours to a day, thus providing a supporting argument for the extrapolation of short-term laboratory observations (hours to months) to long-term predictions at relevant GCS time scales (years to hundreds of years).
Convection-Enhanced Transport into Open Cavities : Effect of Cavity Aspect Ratio.
Horner, Marc; Metcalfe, Guy; Ottino, J M
2015-09-01
Recirculating fluid regions occur in the human body both naturally and pathologically. Diffusion is commonly considered the predominant mechanism for mass transport into a recirculating flow region. While this may be true for steady flows, one must also consider the possibility of convective fluid exchange when the outer (free stream) flow is transient. In the case of an open cavity, convective exchange occurs via the formation of lobes at the downstream attachment point of the separating streamline. Previous studies revealed the effect of forcing amplitude and frequency on material transport rates into a square cavity (Horner in J Fluid Mech 452:199-229, 2002). This paper summarizes the effect of cavity aspect ratio on exchange rates. The transport process is characterized using both computational fluid dynamics modeling and dye-advection experiments. Lagrangian analysis of the computed flow field reveals the existence of turnstile lobe transport for this class of flows. Experiments show that material exchange rates do not vary linearly as a function of the cavity aspect ratio (A = W/H). Rather, optima are predicted for A ≈ 2 and A ≈ 2.73, with a minimum occurring at A ≈ 2.5. The minimum occurs at the point where the cavity flow structure bifurcates from a single recirculating flow cell into two corner eddies. These results have significant implications for mass transport environments where the geometry of the flow domain evolves with time, such as coronary stents and growing aneurysms. Indeed, device designers may be able to take advantage of the turnstile-lobe transport mechanism to tailor deposition rates near newly implanted medical devices.
A study of waste and delivery valve design modification to the pump performance
NASA Astrophysics Data System (ADS)
Harith, M. N.; Bakar, R. A.; Ramasamy, D.; Kardigama, K.; Quanjin, Ma
2018-04-01
This paper objective is to share design revolution of waste and delivery valve that contribute to the overall pump performance. In this paper, 3 new designs of waste and delivery valve pump are presented with comprehensive internal flow analysis using computational fluid dynamics (CFD) simulation over 4 cases that have been deeply study for one of the design chosen. 4 cases involving opening and closing both valve or either one. 0.265m height size of customized waste valve with an opening limiter and spring was used to demonstrate cyclic closing and opening valve operation extended up to 0.164m gap. Based on result, this characteristics contribute to 10-20% waste water reduction and enhancement of flow rate height up to 80m. Apart from that this paper also share some of pressure (dynamic, total, static), velocity (x, y, z axis) simulation including the vector flow were under different flow cases.
The use of three-parameter rating table lookup programs, RDRAT and PARM3, in hydraulic flow models
Sanders, C.L.
1995-01-01
Subroutines RDRAT and PARM3 enable computer programs such as the BRANCH open-channel unsteady-flow model to route flows through or over combinations of critical-flow sections, culverts, bridges, road- overflow sections, fixed spillways, and(or) dams. The subroutines also obstruct upstream flow to simulate operation of flapper-type tide gates. A multiplier can be applied by date and time to simulate varying numbers of tide gates being open or alternative construction scenarios for multiple culverts. The subroutines use three-parameter (headwater, tailwater, and discharge) rating table lookup methods. These tables may be manually prepared using other programs that do step-backwater computations or compute flow through bridges and culverts or over dams. The subroutine, therefore, precludes the necessity of incorporating considerable hydraulic computational code into the client program, and provides complete flexibility for users of the model for routing flow through almost any affixed structure or combination of structures. The subroutines are written in Fortran 77 language, and have minimal exchange of information with the BRANCH model or other possible client programs. The report documents the interpolation methodology, data input requirements, and software.
Optical spectral sweep comb liquid flow rate sensor.
Shen, Changyu; Lian, Xiaokang; Kavungal, Vishnu; Zhong, Chuan; Liu, Dejun; Semenova, Yuliya; Farrell, Gerald; Albert, Jacques; Donegan, John F
2018-02-15
In microfluidic chip applications, the flow rate plays an important role. Here we propose a simple liquid flow rate sensor by using a tilted fiber Bragg grating (TFBG) as the sensing element. As the water flows in the vicinity of the TFBG along the fiber axis direction, the TFBG's spectrum changes due to its contact with water. By comparing the time-swept spectra of the TFBG in water to that of the TFBG with water flowing over it, a spectral sweep comb was formed, and the flow rate can be detected by selecting a suitable sweeping frequency. The proposed sensor has a high Q-value of over 17,000 for the lower rate and a large detectable range from 0.0058 mm/s to 3.2 mm/s. And the calculated corresponding lower detectable flow rate of 0.03 nL/s is 3 orders magnitude better than that of the current fiber flowmeter. Meanwhile, the proposed sensor has the temperature self-compensation function for the variation of the external temperature. We believe that this simple configuration will open a research direction of the TFBG-deriving theory and configuration for lower flow rate measurements for microfluidic chip applications.
NASA Technical Reports Server (NTRS)
Mcardle, Jack G.; Esker, Barbara S.
1993-01-01
A one-third-scale model of a generic tailpipe offtake system for an advanced short takeoff, vertical landing (ASTOVL) aircraft was tested at the NASA Lewis Research Center Powered Lift Facility. The basic model consisted of a tailpipe with a center body to form an annulus simulating turbine outflow with no swirl; twin offtake ducts with elbows at the ends to turn the flow to a downward direction; flow control nozzles at the ends of the elbows; and a blind flange at the end of the tailpipe to simulate a closed cruise nozzle. The offtake duct-to-tailpipe diameter ratio was 0.74. Modifications of a generic nature were then made to this basic configuration to measure the effects of flow-path changes on the flow and pressure-loss characteristics. The modifications included adding rounded entrances at the forward edges of the offtake openings, blocking the tailpipe just aft the openings instead of at the cruise nozzle, changing the location of the openings along the tailpipe, removing the center body, and varying the Mach number (flow rate) over a wide range in the tailpipe ahead of the openings by changing the size of the flow control nozzles. The tests were made with unheated air at tailpipe-to-ambient pressure ratios from 1.4 to 5. Results are presented and compared with performance graphs, total-pressure contour plots, paint streak flow visualization photographs, and a flow-angle probe traverse at the offtake entrance.
DISCHARGE VALVE FOR GRANULAR MATERIAL
Stoughton, L.D.; Robinson, S.T.
1962-05-15
A gravity-red dispenser or valve is designed for discharging the fueled spherical elements used in a pebble bed reactor. The dispenser consists of an axially movable tube terminating under a hood having side walls with openings. When the tube is moved so that its top edge is above the tops of the side openings the elements will not flow. As the tube is moved downwardly, the elements flow into the hood through the side openings and over the top edge into the tube at an increasing rate as the tube is lowered further. The tube is spaced at all times from the hood and side walls a distance greater than the diameter of the largest element to prevent damaging of the elements when the dispenser is closed to flow. (AEC)
Experiments in a flighted conveyor comparing shear rates in compressed versus free surface flows
NASA Astrophysics Data System (ADS)
Pohlman, Nicholas; Higgins, Hannah; Krupiarz, Kamila; O'Connor, Ryan
2017-11-01
Uniformity of granular flow rate is critical in industry. Experiments in a flighted conveyor system aim to fill a gap in knowledge of achieving steady mass flow rate by correlating velocity profile data with mass flow rate measurements. High speed images were collected for uniformly-shaped particles in a bottom-driven flow conveyor belt system from which the velocity profiles can be generated. The correlation of mass flow rates from the velocity profiles to the time-dependent mass measurements will determine energy dissipation rates as a function of operating conditions. The velocity profiles as a function of the size of the particles, speed of the belt, and outlet size, will be compared to shear rate relationships found in past experiments that focused on gravity-driven systems. The dimension of the linear shear and type of decaying transition to the stationary bed may appear different due to the compression versus dilation space in open flows. The application of this research can serve to validate simulations in discrete element modeling and physically demonstrate a process that can be further developed and customized for industry applications, such as feeding a biomass conversion reactor. Sponsored by NIU's Office of Student Engagement and Experiential Learning.
Accountability for Information Flow via Explicit Formal Proof
2009-10-01
macrobenchmarks. The first (called OpenSSL in the table below), unpacks the OpenSSL source code, compiles it and deletes it. The other (called Fuse in...penalty for PCFS as compared to Fuse/Null is approximately 10% for OpenSSL , and 2.5% for Fuse. The difference arises because the OpenSSL benchmark depends...Macrobenchmarks Benchmark PCFS Fuse/Null Ext3 OpenSSL 126 114 94 Fuse x 5 79 77 70 15 In summary, assuming a low rate of cache misses, the
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jianping Jing; Zhengqi Li; Guangkui Liu
Measurements were performed on a 200 MWe, wall-fired, lignite utility boiler. For different overfire air (OFA) damper openings, the gas temperature, gas species concentration, coal burnout, release rates of components (C, H, and N), furnace temperature, and heat flux and boiler efficiency were measured. Cold air experiments for a single burner were conducted in the laboratory. The double-swirl flow pulverized-coal burner has two ring recirculation zones starting in the secondary air region in the burner. As the secondary air flow increases, the axial velocity of air flow increases, the maxima of radial velocity, tangential velocity and turbulence intensity all increase,more » and the swirl intensity of air flow and the size of recirculation zones increase slightly. In the central region of the burner, as the OFA damper opening widens, the gas temperature and CO concentration increase, while the O{sub 2} concentration, NOx concentration, coal burnout, and release rates of components (C, H, and N) decrease, and coal particles ignite earlier. In the secondary air region of the burner, the O{sub 2} concentration, NOx concentration, coal burnout, and release rates of components (C, H, and N) decrease, and the gas temperature and CO concentration vary slightly. In the sidewall region, the gas temperature, O{sub 2} concentration, and NOx concentration decrease, while the CO concentration increases and the gas temperature varies slightly. The furnace temperature and heat flux in the main burning region decrease appreciably, but increase slightly in the burnout region. The NOx emission decreases from 1203.6 mg/m{sup 3} (6% O{sub 2}) for a damper opening of 0% to 511.7 mg/m{sup 3} (6% O{sub 2}) for a damper opening of 80% and the boiler efficiency decreases from 92.59 to 91.9%. 15 refs., 17 figs., 3 tabs.« less
Investigation of the effect of wall friction on the flow rate in 2D and 3D Granular Flow
NASA Astrophysics Data System (ADS)
Carballo-Ramirez, Brenda; Pleau, Mollie; Easwar, Nalini; Birwa, Sumit; Shah, Neil; Tewari, Shubha
We have measured the mass flow rate of spherical steel spheres under gravity in vertical, straight-walled 2 and 3-dimensional hoppers, where the flow velocity is controlled by the opening size. Our measurements focus on the role of friction and its placement along the walls of the hopper. In the 2D case, an increase in the coefficient of static friction from μ = 0.2 to 0.6 is seen to decrease the flow rate significantly. We have changed the placement of frictional boundaries/regions from the front and back walls of the 2D hopper to the side walls and floor to investigate the relative importance of the different regions in determining the flow rate. Fits to the Beverloo equation show significant departure from the expected exponent of 1.5 in the case of 2D flow. In contrast, 3D flow rates do not show much dependence on wall friction and its placement. We compare the experimental data to numerical simulations of gravity driven hopper granular flow with varying frictional walls constructed using LAMMPS*. *http://lammps.sandia.gov Supported by NSF MRSEC DMR 0820506.
LOFT L2-3 blowdown experiment safety analyses D, E, and G; LOCA analyses H, K, K1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perryman, J.L.; Keeler, C.D.; Saukkoriipi, L.O.
1978-12-01
Three calculations using conservative off-nominal conditions and evaluation model options were made using RELAP4/MOD5 for blowdown-refill and RELAP4/MOD6 for reflood for Loss-of-Fluid Test Experiment L2-3 to support the experiment safety analysis effort. The three analyses are as follows: Analysis D: Loss of commercial power during Experiment L2-3; Analysis E: Hot leg quick-opening blowdown valve (QOBV) does not open during Experiment L2-3; and Analysis G: Cold leg QOBV does not open during Experiment L2-3. In addition, the results of three LOFT loss-of-coolant accident (LOCA) analyses using a power of 56.1 MW and a primary coolant system flow rate of 3.6 millionmore » 1bm/hr are presented: Analysis H: Intact loop 200% hot leg break; emergency core cooling (ECC) system B unavailable; Analysis K: Pressurizer relief valve stuck in open position; ECC system B unavailable; and Analysis K1: Same as analysis K, but using a primary coolant system flow rate of 1.92 million 1bm/hr (L2-4 pre-LOCE flow rate). For analysis D, the maximum cladding temperature reached was 1762/sup 0/F, 22 sec into reflood. In analyses E and G, the blowdowns were slower due to one of the QOBVs not functioning. The maximum cladding temperature reached in analysis E was 1700/sup 0/F, 64.7 sec into reflood; for analysis G, it was 1300/sup 0/F at the start of reflood. For analysis H, the maximum cladding temperature reached was 1825/sup 0/F, 0.01 sec into reflood. Analysis K was a very slow blowdown, and the cladding temperatures followed the saturation temperature of the system. The results of analysis K1 was nearly identical to analysis K; system depressurization was not affected by the primary coolant system flow rate.« less
NASA Technical Reports Server (NTRS)
Criswell, C. W.; Elston, W. E.
1984-01-01
Between 1217 and 1620 hours (PDT), on May 18, 1980, the magmatic eruption column of Mount St. Helens formed an ash fountain and pyroclastic flows dominated the eruption process over tephra ejection. Eurption-rate pulsations generally increased to a maximum at 1600 to 1700 hrs. After 1620 hrs, the eruption assumed an open-vent discharge with strong, vertical ejection of tephra. Relative eruption rates (relative mass flux rates) of the pyroclastic flows were determined by correlating sequential photographs and SLAR images, obtained during the eruption, with stratigraphy and surface morphology of the deposits.
Shi, Yubing; Yeo, Tony Joon Hock; Zhao, Yong; Hwang, Ned H C
2006-12-01
Particle Image Velocimetry (PIV) is an important technique in studying blood flow in heart valves. Previous PIV studies of flow around prosthetic heart valves had different research concentrations, and thus never provided the physical flow field pictures in a complete heart cycle, which compromised their pertinence for a better understanding of the valvular mechanism. In this study, a digital PIV (DPIV) investigation was carried out with improved accuracy, to analyse the pulsatile flow field around the bi-leaflet mechanical heart valve (MHV) in a complete heart cycle. For this purpose a pulsatile flow test rig was constructed to provide the necessary in vitro test environment, and the flow field around a St. Jude size 29 bi-leaflet MHV and a similar MHV model were studied under a simulated physiological pressure waveform with flow rate of 5.2 l/min and pulse rate at 72 beats/min. A phase-locking method was applied to gate the dynamic process of valve leaflet motions. A special image-processing program was applied to eliminate optical distortion caused by the difference in refractive indexes between the blood analogue fluid and the test section. Results clearly showed that, due to the presence of the two leaflets, the valvular flow conduit was partitioned into three flow channels. In the opening process, flow in the two side channels was first to develop under the presence of the forward pressure gradient. The flow in the central channel was developed much later at about the mid-stage of the opening process. Forward flows in all three channels were observed at the late stage of the opening process. At the early closing process, a backward flow developed first in the central channel. Under the influence of the reverse pressure gradient, the flow in the central channel first appeared to be disturbed, which was then transformed into backward flow. The backward flow in the central channel was found to be the main driving factor for the leaflet rotation in the valve closing process. After the valve was fully closed, local flow activities in the proximity of the valve region persisted for a certain time before slowly dying out. In both the valve opening and closing processes, maximum velocity always appeared near the leaflet trailing edges. The flow field features revealed in the present paper improved our understanding of valve motion mechanism under physiological conditions, and this knowledge is very helpful in designing the new generation of MHVs.
NASA Astrophysics Data System (ADS)
Kaur, K.; Laanearu, J.; Annus, I.
2017-10-01
The numerical experiments are carried out for qualitative and quantitative interpretation of a multi-phase flow processes associated with malfunctioning of the Tallinn storm-water system during rain storms. The investigations are focused on the single-line inverted siphon, which is used as under-road connection of pipes of the storm-water system under interest. A multi-phase flow solver of Computational Fluid Dynamics software OpenFOAM is used for simulating the three-phase flow dynamics in the hydraulic system. The CFD simulations are performed with different inflow rates under same initial conditions. The computational results are compared essentially in two cases 1) design flow rate and 2) larger flow rate, for emptying the initially filled inverted siphon from a slurry-fluid. The larger flow-rate situations are under particular interest to detected possible flooding. In this regard, it is anticipated that the CFD solutions provide an important insight to functioning of inverted siphon under a restricted water-flow conditions at simultaneous presence of air and slurry-fluid.
Acoustic modes in fluid networks
NASA Technical Reports Server (NTRS)
Michalopoulos, C. D.; Clark, Robert W., Jr.; Doiron, Harold H.
1992-01-01
Pressure and flow rate eigenvalue problems for one-dimensional flow of a fluid in a network of pipes are derived from the familiar transmission line equations. These equations are linearized by assuming small velocity and pressure oscillations about mean flow conditions. It is shown that the flow rate eigenvalues are the same as the pressure eigenvalues and the relationship between line pressure modes and flow rate modes is established. A volume at the end of each branch is employed which allows any combination of boundary conditions, from open to closed, to be used. The Jacobi iterative method is used to compute undamped natural frequencies and associated pressure/flow modes. Several numerical examples are presented which include acoustic modes for the Helium Supply System of the Space Shuttle Orbiter Main Propulsion System. It should be noted that the method presented herein can be applied to any one-dimensional acoustic system involving an arbitrary number of branches.
Ammonium and nitrate were used as nitrogen sources to support microbial biodegradation of crude oil in continuous-flow beach microcosms to determine whether either nutrient was more effective in open systems, such as intertidal shorelines. No differences in the rate or the exten...
Transient Characteristics of a Fluidic Device for Circulatory Jet Flow.
Phan, Hoa Thanh; Dinh, Thien Xuan; Bui, Phong Nhu; Dau, Van Thanh
2018-03-13
In this paper, we report on the design, simulation, and experimental analysis of a miniaturized device that can generate multiple circulated jet flows. The device is actuated by a lead zirconate titanate (PZT) diaphragm. The flows in the device were studied using three-dimensional transient numerical simulation with the programmable open source OpenFOAM and was comparable to the experimental result. Each flow is verified by two hotwires mounted at two positions inside each consisting chamber. The experiment confirmed that the flow was successfully created, and it demonstrated good agreement with the simulation. In addition, a prospective application of the device as an angular rate sensor is also demonstrated. The device is robust, is minimal in size, and can contribute to the development of multi-axis fluidic inertial sensors, fluidic amplifiers, gas mixing, coupling, and analysis.
Transient Characteristics of a Fluidic Device for Circulatory Jet Flow
Phan, Hoa Thanh; Dinh, Thien Xuan; Bui, Phong Nhu
2018-01-01
In this paper, we report on the design, simulation, and experimental analysis of a miniaturized device that can generate multiple circulated jet flows. The device is actuated by a lead zirconate titanate (PZT) diaphragm. The flows in the device were studied using three-dimensional transient numerical simulation with the programmable open source OpenFOAM and was comparable to the experimental result. Each flow is verified by two hotwires mounted at two positions inside each consisting chamber. The experiment confirmed that the flow was successfully created, and it demonstrated good agreement with the simulation. In addition, a prospective application of the device as an angular rate sensor is also demonstrated. The device is robust, is minimal in size, and can contribute to the development of multi-axis fluidic inertial sensors, fluidic amplifiers, gas mixing, coupling, and analysis. PMID:29534014
Permafrost thaw in a nested groundwater-flow system
McKenzie, Jeffery M.; Voss, Clifford I.
2013-01-01
Groundwater flow in cold regions containing permafrost accelerates climate-warming-driven thaw and changes thaw patterns. Simulation analyses of groundwater flow and heat transport with freeze/thaw in typical cold-regions terrain with nested flow indicate that early thaw rate is particularly enhanced by flow, the time when adverse environmental impacts of climate-warming-induced permafrost loss may be severest. For the slowest climate-warming rate predicted by the Intergovernmental Panel on Climate Change (IPCC), once significant groundwater flow begins, thick permafrost layers can vanish in several hundred years, but survive over 1,000 years where flow is minimal. Large-scale thaw depends mostly on the balance of heat advection and conduction in the supra-permafrost zone. Surface-water bodies underlain by open taliks allow slow sub-permafrost flow, with lesser influence on regional thaw. Advection dominance over conduction depends on permeability and topography. Groundwater flow around permafrost and flow through permafrost impact thaw differently; the latter enhances early thaw rate. Air-temperature seasonality also increases early thaw. Hydrogeologic heterogeneity and topography strongly affect thaw rates/patterns. Permafrost controls the groundwater/surface-water-geomorphology system; hence, prediction and mitigation of impacts of thaw on ecology, chemical exports and infrastructure require improved hydrogeology/permafrost characterization and understanding
Optimized open-flow mixing: insights from microbubble streaming
NASA Astrophysics Data System (ADS)
Rallabandi, Bhargav; Wang, Cheng; Guo, Lin; Hilgenfeldt, Sascha
2015-11-01
Microbubble streaming has been developed into a robust and powerful flow actuation technique in microfluidics. Here, we study it as a paradigmatic system for microfluidic mixing under a continuous throughput of fluid (open-flow mixing), providing a systematic optimization of the device parameters in this practically important situation. Focusing on two-dimensional advective stirring (neglecting diffusion), we show through numerical simulation and analytical theory that mixing in steady streaming vortices becomes ineffective beyond a characteristic time scale, necessitating the introduction of unsteadiness. By duty cycling the streaming, such unsteadiness is introduced in a controlled fashion, leading to exponential refinement of the advection structures. The rate of refinement is then optimized for particular parameters of the time modulation, i.e. a particular combination of times for which the streaming is turned ``on'' and ``off''. The optimized protocol can be understood theoretically using the properties of the streaming vortices and the throughput Poiseuille flow. We can thus infer simple design principles for practical open flow micromixing applications, consistent with experiments. Current Address: Mechanical and Aerospace Engineering, Princeton University.
Rate dependent fractionation of sulfur isotopes in through-flowing systems
NASA Astrophysics Data System (ADS)
Giannetta, M.; Sanford, R. A.; Druhan, J. L.
2017-12-01
The fidelity of reactive transport models in quantifying microbial activity in the subsurface is often improved through the use stable isotopes. However, the accuracy of current predictions for microbially mediated isotope fractionations within open through-flowing systems typically depends on nutrient availability. This disparity arises from the common application of a single `effective' fractionation factor assigned to a given system, despite extensive evidence for variability in the fractionation factor between eutrophic environments and many naturally occurring, nutrient-limited environments. Here, we demonstrate a reactive transport model with the capacity to simulate a variable fractionation factor over a range of microbially mediated reduction rates and constrain the model with experimental data for nutrient limited conditions. Two coupled isotope-specific Monod rate laws for 32S and 34S, constructed to quantify microbial sulfate reduction and predict associated S isotope partitioning, were parameterized using a series of batch reactor experiments designed to minimize microbial growth. In the current study, we implement these parameterized isotope-specific rate laws within an open, through-flowing system to predict variable fractionation with distance as a function of sulfate reduction rate. These predictions are tested through a supporting laboratory experiment consisting of a flow-through column packed with homogenous porous media inoculated with the same species of sulfate reducing bacteria used in the previous batch reactors, Desulfovibrio vulgaris. The collective results of batch reactor and flow-through column experiments support a significant improvement for S isotope predictions in isotope-sensitive multi-component reactive transport models through treatment of rate-dependent fractionation. Such an update to the model will better equip reactive transport software for isotope informed characterization of microbial activity within energy and nutrient limited environments.
NASA Astrophysics Data System (ADS)
Liu, Jian; Wang, Yi; Zhao, Yuqian; Dou, Shidan; Ma, Yushu; Ma, Zhenhe
2016-03-01
Activity of brain neurons will lead to changes in local blood flow rate (BFR). Thus, it is important to measure the local BFR of cerebral cortex on research of neuron activity in vivo, such as rehabilitation evaluation after stroke, etc. Currently, laser Doppler flowmetry is commonly used for blood flow measurement, however, relatively low resolution limits its application. Optical coherence tomography (OCT) is a powerful noninvasive 3D imaging modality with high temporal and spatial resolutions. Furthermore, OCT can provide flow distribution image by calculating Doppler frequency shift which makes it possible for blood flow rate measurement. In this paper, we applied OCT to measure the blood flow rate of the primary motor cortex in rats. The animal was immobilized and anesthetized with isoflurane, an incision was made along the sagittal suture, and bone was exposed. A skull window was opened on the primary motor cortex. Then, blood flow rate changes in the primary motor cortex were monitored by our homemade spectral domain OCT with a stimulation of the passive movement of the front legs. Finally, we established the relationship between blood flow rate and the test design. The aim is to demonstrate the potential of OCT in the evaluation of cerebral cortex function.
Sato, Emi; Matsuda, Kouhei
2018-06-11
The purpose of this study was to examine cerebral blood flow in the frontal cortex area during personality self-rating tasks. Our two hypotheses were (1) cerebral blood flow varies based on personality rating condition and (2) cerebral blood flow varies based on the personality traits. This experiment measured cerebral blood flow under 3 personal computer rating conditions and 2 questionnaire conditions. Comparing the rating conditions, the results of the t-test indicated that cerebral blood flow was higher in the questionnaire condition than it was in the personal computer condition. With respect to the Big Five, the result of the correlation coefficient, that is, cerebral blood flow during a personality rating task, changed according to the trait for agreeableness. The results of the analysis of the 5-cluster on individual differences indicated that certain personality traits were related to the factors that increased or decreased cerebral blood flow. An analysis of variance indicated that openness to experience and Behavioural Activation System-drive was significant given that participants with high intellectual curiosity were motivated in this experiment, thus, their cerebral blood flow may have increased. The significance of this experiment was that by employing certain performance measures we could examine differences in physical changes based on personality traits. © 2018 International Union of Psychological Science.
Nonlinear pressure-flow relationships for passive microfluidic valves.
Seker, Erkin; Leslie, Daniel C; Haj-Hariri, Hossein; Landers, James P; Utz, Marcel; Begley, Matthew R
2009-09-21
An analytical solution is presented for the nonlinear pressure-flow relationship of deformable passive valves, which are formed by bonding a deformable film over etched channels separated by a weir. A fluidic pathway connecting the channels is opened when the upstream pressure creates a tunnel along a predefined narrow strip where the film is not bonded to the weir. When the width of the strip is comparable to the inlet channel width, the predicted closed-form pressure-flow rate relationship is in excellent agreement with experiments, which determine pressures by measuring film deflections for prescribed flow rates. The validated closed-form models involve no fitting parameters, and provide the foundation to design passive diodes with specific nonlinear pressure-flow characteristics.
1988-10-01
sample these ducts. This judgement was based on the following factors : 1. The ducts were open to the atmosphere. 2. RMA records of building area samples...selected based on several factors including piping arrangements, volume to be sampled, sampling equipment flow rates, and the flow rate necessary for...effective sampling. Therefore, each sampling point strategy and procedure was customized based on these factors . The individual specific sampling
Computation of Flow Through Water-Control Structures Using Program DAMFLO.2
Sanders, Curtis L.; Feaster, Toby D.
2004-01-01
As part of its mission to collect, analyze, and store streamflow data, the U.S. Geological Survey computes flow through several dam structures throughout the country. Flows are computed using hydraulic equations that describe flow through sluice and Tainter gates, crest gates, lock gates, spillways, locks, pumps, and siphons, which are calibrated using flow measurements. The program DAMFLO.2 was written to compute, tabulate, and plot flow through dam structures using data that describe the physical properties of dams and various hydraulic parameters and ratings that use time-varying data, such as lake elevations or gate openings. The program uses electronic computer files of time-varying data, such as lake elevation or gate openings, retrieved from the U.S. Geological Survey Automated Data Processing System. Computed time-varying flow data from DAMFLO.2 are output in flat files, which can be entered into the Automated Data Processing System database. All computations are made in units of feet and seconds. DAMFLO.2 uses the procedures and language developed by the SAS Institute Inc.
Electromechanically Actuated Valve for Controlling Flow Rate
NASA Technical Reports Server (NTRS)
Patterson, Paul
2007-01-01
A proposed valve for controlling the rate of flow of a fluid would include an electric-motor-driven ball-screw mechanism for adjusting the seating element of the valve to any position between fully closed and fully open. The motor would be of a type that can be electronically controlled to rotate to a specified angular position and to rotate at a specified rate, and the ball screw would enable accurate linear positioning of the seating element as a function of angular position of the motor. Hence, the proposed valve would enable fine electronic control of the rate of flow and the rate of change of flow. The uniqueness of this valve lies in a high degree of integration of the actuation mechanism with the flow-control components into a single, relatively compact unit. A notable feature of this integration is that in addition to being a major part of the actuation mechanism, the ball screw would also be a flow-control component: the ball screw would be hollow so as to contain part of the main flow passage, and one end of the ball screw would be the main seating valve element. The relationships among the components of the valve are best understood by reference to the figure, which presents meridional cross sections of the valve in the fully closed and fully open positions. The motor would be supported by a bracket bolted to the valve body. By means of gears or pulleys and a timing belt, motor drive would be transmitted to a sleeve that would rotate on bearings in the valve body. A ball nut inside the sleeve would be made to rotate with the sleeve by use of a key. The ball screw would pass through and engage the ball nut. A key would prevent rotation of the ball screw in the valve body while allowing the ball screw to translate axially when driven by the ball nut. The outer surface of the ball screw would be threaded only in a mid-length region: the end regions of the outer surface of the ball screw would be polished so that they could act as dynamic sealing surfaces. The inlet end (the right end as depicted in the figure) of the ball screw would be the main seating valve element: in the fully closed position, it would be pressed against the valve seat, as depicted in the upper part of the figure. A retainer would hold the valve seat in an inlet fitting. In addition, the retainer would be contoured to obtain a specified flow rate as a function of axial position of the ball screw. In the fully closed position, little force would be needed to press the ball screw against the seat because the push bore area upon which the upstream pressure would act would be small. The motor would position and hold the ball screw against the seat, providing the force necessary for sealing. To open the valve to a particular position, the motor would be commanded to rotate to a particular angular position (equivalently, a particular number of revolutions) at a particular rate of rotation within its torque limitations. Once the valve was open, fluid would flow through the inlet fitting and the chamber in the inlet housing, past the seat and its retainer, along the hollow core of the ball screw, and through the outlet housing and outlet fitting. The net force generated from fluid pressure in the open position would be small because the pressure exposed to the push bore areas at the inlet and outlet are nearly equal and the forces generated would be in opposing directions.
Adjustable flow rate controller for polymer solutions
Jackson, Kenneth M.
1981-01-01
An adjustable device for controlling the flow rate of polymer solutions which results in only little shearing of the polymer molecules, said device comprising an inlet manifold, an outlet manifold, a plurality of tubes capable of providing communication between said inlet and outlet manifolds, said tubes each having an internal diameter that is smaller than that of the inlet manifold and large enough to insure that viscosity of the polymer solution passing through each said tube will not be reduced more than about 25 percent, and a valve associated with each tube, said valve being capable of opening or closing communication in that tube between the inlet and outlet manifolds, each said valve when fully open having a diameter that is substantially at least as great as that of the tube with which it is associated.
Kubicka, Zuzanna J; Limauro, Joseph; Darnall, Robert A
2008-01-01
The goal was to estimate the level of delivered continuous positive airway pressure by measuring oral cavity pressure with the mouth closed in infants of various weights and ages treated with heated, humidified high-flow nasal cannula at flow rates of 1-5 L/minute. We hypothesized that clinically relevant levels of continuous positive airway pressure would not be achieved if a nasal leak is maintained. After performing bench measurements and demonstrating that oral cavity pressure closely approximated levels of traditionally applied nasal continuous positive airway pressure, we successfully measured oral cavity pressure during heated, humidified, high-flow nasal cannula treatment in 27 infants. Small (outer diameter: 0.2 cm) cannulae were used for all infants, and flow rates were left as ordered by providers. Bench measurements showed that, for any given leak size, there was a nearly linear relationship between flow rate and pressure. The highest pressure achieved was 4.5 cmH2O (flow rate: 8 L/minute; leak: 3 mm). In our study infants (postmenstrual age: 29.1-44.7 weeks; weight: 835-3735 g; flow rate: 1-5 L/minute), no pressure was generated with the mouth open at any flow rate. With the mouth closed, the oral cavity pressure was related to both flow rate and weight. For infants of < or = 1500 g, there was a linear relationship between flow rate and oral cavity pressure. Oral cavity pressure can estimate the level of continuous positive airway pressure. Continuous positive airway pressure generated with heated, humidified, high-flow nasal cannula treatment depends on the flow rate and weight. Only in the smallest infants with the highest flow rates, with the mouth fully closed, can clinically significant but unpredictable levels of continuous positive airway pressure be achieved. We conclude that heated, humidified high-flow nasal cannula should not be used as a replacement for delivering continuous positive airway pressure.
Reproducible direct exposure environmental testing of metal-based magnetic media
NASA Technical Reports Server (NTRS)
Sides, Paul J.
1994-01-01
A flow geometry and flow rate for mixed flowing gas testing is proposed. Use of an impinging jet of humid polluted air can provide a uniform and reproducible exposure of coupons of metal-based magnetic media. Numerical analysis of the fluid flow and mass transfer in such as system has shown that samples confined within a distance equal to the nozzle radius on the surface of impingement are uniformly accessible to pollutants in the impinging gas phase. The critical factor is the nozzle height above the surface of impingement. In particular, the uniformity of exposure is less than plus/minus 2% for a volumetric flow rate of 1600 cm(exp 3)/minute total flow with the following specifications: For a one inch nozzle, the height of the nozzle opening above the stage should be 0.177 inches; for a 2 inch nozzle - 0.390 inches. Not only is the distribution uniform, but one can calculate the maximum delivery rate of pollutants to the samples for comparison with the observed deterioration.
Energy Harvesting from Fluid Flow in Water Pipelines for Smart Metering Applications
NASA Astrophysics Data System (ADS)
Hoffmann, D.; Willmann, A.; Göpfert, R.; Becker, P.; Folkmer, B.; Manoli, Y.
2013-12-01
In this paper a rotational, radial-flux energy harvester incorporating a three-phase generation principle is presented for converting energy from water flow in domestic water pipelines. The energy harvester together with a power management circuit and energy storage is used to power a smart metering system installed underground making it independent from external power supplies or depleting batteries. The design of the radial-flux energy harvester is adapted to the housing of a conventional mechanical water flow meter enabling the use of standard components such as housing and impeller. The energy harvester is able to generate up to 720 mW when using a flow rate of 20 l/min (fully opened water tab). A minimum flow rate of 3 l/min is required to get the harvester started. In this case a power output of 2 mW is achievable. By further design optimization of the mechanical structure including the impeller and magnetic circuit the threshold flow rate can be further reduced.
Compact Instruments Measure Helium-Leak Rates
NASA Technical Reports Server (NTRS)
Stout, Stephen; Immer, Christopher
2003-01-01
Compact, lightweight instruments have been developed for measuring small flows of helium and/or detecting helium leaks in solenoid valves when the valves are nominally closed. These instruments do not impede the flows when the valves are nominally open. They can be integrated into newly fabricated valves or retrofitted to previously fabricated valves. Each instrument includes an upstream and a downstream thermistor separated by a heater, plus associated analog and digital heater-control, signal- conditioning, and data-processing circuits. The thermistors and heater are off-the-shelf surface mount components mounted on a circuit board in the flow path. The operation of the instrument is based on a well-established thermal mass-flow-measurement technique: Convection by the flow that one seeks to measure gives rise to transfer of heat from the heater to the downstream thermistor. The temperature difference measured by the thermistors is directly related to the rate of flow. The calibration curve from temperature gradient to helium flow is closely approximated via fifth-order polynomial. A microprocessor that is part of the electronic circuitry implements the calibration curve to compute the flow rate from the thermistor readings.
NASA Astrophysics Data System (ADS)
Stelian, Carmen
2015-02-01
Lorentz force velocimetry is a new technique in electromagnetic flow measurements based on exposing an electrical conducting metal to a static magnetic field and measuring the force acting on the magnet system. The calibration procedure of a Lorentz force flowmeter used in industrial open-channel flow measurements is difficult because of the fluctuating liquid level in the channel. In this paper, the application of Manning's formula to estimate the depth of a liquid metal flowing in an open channel is analyzed by using the numerical modeling. Estimations of Manning's n parameter for aluminum show higher values as compared with water flowing in artificial channels. Saint-Venant equations are solved in order to analyze the wave propagation at the free surface of the liquid. Numerical results show a significant damping of waves at the surface of liquid metals as compared with water. Therefore, the Manning formula can be used to correlate the liquid depth and the flow rate in LFF numerical calibration procedure. These results show that the classical formulas, used exclusively to study the water flow in open channels, can be also applied for the liquid metals. The application of Manning's formulas requires experimental measurements of the parameter n, which depends on the channel bed roughness and also on the physical properties of the liquid flowing in channel.
Characteristic Analysis and Experiment of a Dynamic Flow Balance Valve
NASA Astrophysics Data System (ADS)
Bin, Li; Song, Guo; Xuyao, Mao; Chao, Wu; Deman, Zhang; Jin, Shang; Yinshui, Liu
2017-12-01
Comprehensive characteristics of a dynamic flow balance valve of water system were analysed. The flow balance valve can change the drag efficient automatically according to the condition of system, and the effective control flowrate is constant in the range of job pressure. The structure of the flow balance valve was introduced, and the theoretical calculation formula for the variable opening of the valve core was derived. A rated pressure of 20kPa to 200kPa and a rated flowrate of 10m3/h were offered in the numerical work. Static and fluent CFX analyses show good behaviours: through the valve core structure optimization and improve design of the compressive spring, the dynamic flow balance valve can stabilize the flowrate of system evidently. And experiments show that the flow control accuracy is within 5%.
Method of Testing Oxygen Regulators
NASA Technical Reports Server (NTRS)
Sontag, Harcourt; Borlik, E L
1935-01-01
Oxygen regulators are used in aircraft to regulate automatically the flow of oxygen to the pilot from a cylinder at pressures ranging up to 150 atmospheres. The instruments are adjusted to open at an altitude of about 15,000 ft. and thereafter to deliver oxygen at a rate which increases with the altitude. The instruments are tested to determine the rate of flow of oxygen delivered at various altitudes and to detect any mechanical defects which may exist. A method of testing oxygen regulators was desired in which the rate of flow could be determined more accurately than by the test method previously used (reference 1) and by which instruments defective mechanically could be detected. The new method of test fulfills these requirements.
Buoyant miscible displacement flow of shear-thinning fluids: Experiments and Simulations
NASA Astrophysics Data System (ADS)
Ale Etrati Khosroshahi, Seyed Ali; Frigaard, Ian
2017-11-01
We study displacement flow of two miscible fluids with density and viscosity contrast in an inclined pipe. Our focus is mainly on displacements where transverse mixing is not significant and thus a two-layer, stratified flow develops. Our experiments are carried out in a long pipe, covering a wide range of flow-rates, inclination angles and viscosity ratios. Density and viscosity contrasts are achieved by adding Glycerol and Xanthan gum to water, respectively. At each angle, flow rate and viscosity ratio are varied and density contrast is fixed. We identify and map different flow regimes, instabilities and front dynamics based on Fr , Re / Frcosβ and viscosity ratio m. The problem is also studied numerically to get a better insight into the flow structure and shear-thinning effects. Numerical simulations are completed using OpenFOAM in both pipe and channel geometries and are compared against the experiments. Schlumberger, NSERC.
Laborie, Benoit; Rouyer, Florence; Angelescu, Dan E; Lorenceau, Elise
2016-11-23
We study the formation of yield-stress fluid foams in millifluidic flow-focusing and T-junction devices. First, we provide a phase diagram for the unsteady operating regimes of bubble production when the gas pressure and the yield-stress fluid flow rate are imposed. Three regimes are identified: a co-flow of gas and yield-stress fluid, a transient production of bubble and a flow of yield-stress fluid only. Taking wall slip into account, we provide a model for the pressure at the onset of bubble formation. Then, we detail and compare two simple methods to ensure steady bubble production: regulation of the gas pressure or flow-rate. These techniques, which are easy to implement, thus open pathways for controlled production of dry yield-stress fluid foams as shown at the end of this article.
Hydraulically-actuated operating system for an electric circuit breaker
Barkan, Philip; Imam, Imdad
1978-01-01
This hydraulically-actuated operating system comprises a cylinder, a piston movable therein in an opening direction to open a circuit breaker, and an accumulator for supplying pressurized liquid to a piston-actuating space within the cylinder. A normally-closed valve between the accumulator and the actuating space is openable to allow pressurized liquid from the accumulator to flow through the valve into the actuating space to drive the piston in an opening direction. A vent is located hydraulically between the actuating space and the valve for affording communication between said actuating space and a low pressure region. Flow control means is provided for restricting leakage through said vent to a rate that prevents said leakage from substantially detracting from the development of pressure within said actuatng space during the period from initial opening of the valve to the time when said piston has moved through most of its opening stroke. Following such period and while the valve is still open, said flow control means allows effective leakage through said vent. The accumulator has a limited capacity that results in the pressure within said actuating space decaying promptly to a low value as a result of effective leakage through said vent after the piston has moved through a circuit-breaker opening stroke and while the valve is in its open state. Means is provided for resetting the valve to its closed state in response to said pressure decay in the actuating space.
Unimpeded air velocity profiles of air-assisted five-port sprayer
USDA-ARS?s Scientific Manuscript database
A capability that relies on tree structure information to control liquid and air flow rates is the preferential design in the development of variable-rate orchard and nursery sprayers. Unimpeded air jet velocities from an air assisted, five-port sprayer in an open field were measured at four height...
NASA Astrophysics Data System (ADS)
Johnson, Erika; Cowen, Edwin
2013-11-01
The effect of increased bed roughness on the free surface turbulence signature of an open channel flow is investigated with the goal of incorporating the findings into a methodology to remotely monitor volumetric flow rates. Half of a wide (B = 2 m) open channel bed is covered with a 3 cm thick layer of loose gravel (D50 = 0.6 cm). Surface PIV (particle image velocimetry) experiments are conducted for a range of flow depths (B/H = 10-30) and Reynolds numbers (ReH = 10,000-60,000). It is well established that bed roughness in wall-bounded flows enhances the vertical velocity fluctuations (e.g. Krogstad et al. 1992). When the vertical velocity fluctuations approach the free surface they are redistributed (e.g. Cowen et al. 1995) to the surface parallel component directions. It is anticipated and confirmed that the interaction of these two phenomena result in enhanced turbulence at the free surface. The effect of the rough bed on the integral length scales and the second order velocity structure functions calculated at the free surface are investigated. These findings have important implications for developing new technologies in stream gaging.
Electrokinetic high pressure hydraulic system
Paul, Phillip H.; Rakestraw, David J.; Arnold, Don W.; Hencken, Kenneth R.; Schoeniger, Joseph S.; Neyer, David W.
2001-01-01
An electrokinetic high pressure hydraulic pump for manipulating fluids in capillary-based systems. The pump uses electro-osmotic flow to provide a high pressure hydraulic system, having no moving mechanical parts, for pumping and/or compressing fluids, for providing valve means and means for opening and closing valves, for controlling fluid flow rate, and manipulating fluid flow generally and in capillary-based systems (Microsystems), in particular. The compact nature of the inventive high pressure hydraulic pump provides the ability to construct a micro-scale or capillary-based HPLC system that fulfills the desire for small sample quantity, low solvent consumption, improved efficiency, the ability to run samples in parallel, and field portability. Control of pressure and solvent flow rate is achieved by controlling the voltage applied to an electrokinetic pump.
Electrokinetic high pressure hydraulic system
Paul, Phillip H.; Rakestraw, David J.; Arnold, Don W.; Hencken, Kenneth R.; Schoeniger, Joseph S.; Neyer, David W.
2003-06-03
An electrokinetic high pressure hydraulic pump for manipulating fluids in capillary-based system. The pump uses electro-osmotic flow to provide a high pressure hydraulic system, having no moving mechanical parts, for pumping and/or compressing fluids, for providing valve means and means for opening and closing valves, for controlling fluid flow rate, and manipulating fluid flow generally and in capillary-based systems (microsystems), in particular. The compact nature of the inventive high pressure hydraulic pump provides the ability to construct a micro-scale or capillary-based HPLC system that fulfills the desire for small sample quantity, low solvent consumption, improved efficiency, the ability to run samples in parallel, and field portability. Control of pressure and solvent flow rate is achieved by controlling the voltage applied to an electrokinetic pump.
The Shape of the Urine Stream — From Biophysics to Diagnostics
Wheeler, Andrew P. S.; Morad, Samir; Buchholz, Noor; Knight, Martin M.
2012-01-01
We develop a new computational model of capillary-waves in free-jet flows, and apply this to the problem of urological diagnosis in this first ever study of the biophysics behind the characteristic shape of the urine stream as it exits the urethral meatus. The computational fluid dynamics model is used to determine the shape of a liquid jet issuing from a non-axisymmetric orifice as it deforms under the action of surface tension. The computational results are verified with experimental modelling of the urine stream. We find that the shape of the stream can be used as an indicator of both the flow rate and orifice geometry. We performed volunteer trials which showed these fundamental correlations are also observed in vivo for male healthy volunteers and patients undergoing treatment for low flow rate. For healthy volunteers, self estimation of the flow shape provided an accurate estimation of peak flow rate (). However for the patients, the relationship between shape and flow rate suggested poor meatal opening during voiding. The results show that self measurement of the shape of the urine stream can be a useful diagnostic tool for medical practitioners since it provides a non-invasive method of measuring urine flow rate and urethral dilation. PMID:23091609
A catchment-scale groundwater model including sewer pipe leakage in an urban system
NASA Astrophysics Data System (ADS)
Peche, Aaron; Fuchs, Lothar; Spönemann, Peter; Graf, Thomas; Neuweiler, Insa
2016-04-01
Keywords: pipe leakage, urban hydrogeology, catchment scale, OpenGeoSys, HYSTEM-EXTRAN Wastewater leakage from subsurface sewer pipe defects leads to contamination of the surrounding soil and groundwater (Ellis, 2002; Wolf et al., 2004). Leakage rates at pipe defects have to be known in order to quantify contaminant input. Due to inaccessibility of subsurface pipe defects, direct (in-situ) measurements of leakage rates are tedious and associated with a high degree of uncertainty (Wolf, 2006). Proposed catchment-scale models simplify leakage rates by neglecting unsaturated zone flow or by reducing spatial dimensions (Karpf & Krebs, 2013, Boukhemacha et al., 2015). In the present study, we present a physically based 3-dimensional numerical model incorporating flow in the pipe network, in the saturated zone and in the unsaturated zone to quantify leakage rates on the catchment scale. The model consists of the pipe network flow model HYSTEM-EXTAN (itwh, 2002), which is coupled to the subsurface flow model OpenGeoSys (Kolditz et al., 2012). We also present the newly developed coupling scheme between the two flow models. Leakage functions specific to a pipe defect are derived from simulations of pipe leakage using spatially refined grids around pipe defects. In order to minimize computational effort, these leakage functions are built into the presented numerical model using unrefined grids around pipe defects. The resulting coupled model is capable of efficiently simulating spatially distributed pipe leakage coupled with subsurficial water flow in a 3-dimensional environment. References: Boukhemacha, M. A., Gogu, C. R., Serpescu, I., Gaitanaru, D., & Bica, I. (2015). A hydrogeological conceptual approach to study urban groundwater flow in Bucharest city, Romania. Hydrogeology Journal, 23(3), 437-450. doi:10.1007/s10040-014-1220-3. Ellis, J. B., & Revitt, D. M. (2002). Sewer losses and interactions with groundwater quality. Water Science and Technology, 45(3), 195-202. itwh (2002). Modellbeschreibung, Institut für technisch-wissenschaftliche Hydrologie GmbH, Hannover. Karpf, C. & Krebs, P. (2013). Modelling of groundwater infiltration into sewer systems. Urban Water Journal, 10:4, 221-229, DOI: 10.1080/1573062X.2012.724077. Kolditz, O., Bauer, S. et al. (2012). OpenGeoSys: an open source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media. Env. Earth Sci. 67(2):589-599. Wolf, L., Held, I., Eiswirth, M., & Hötzl, H. (2004). Impact of leaky sewers on groundwater quality. Acta Hydrochimica et Hydrobiologica, 32(4-5), 361-373. doi:10.1002/aheh.200400538. Wolf, L. (2006). Influence of leaky sewer systems on groundwater resources beneath the city of Rastatt, Germany. Dissertation, University of Karlsruhe.
Sadler, L J; Hagen, C D; Wang, C; Widowski, T M; Johnson, A K; Millman, S T
2014-02-01
The objectives of this study were to assess efficacy and welfare implications of gas euthanasia when applied to weaned and neonate pigs. Parameters associated with welfare, which were measured before loss of consciousness, included open-mouth breathing, ataxia, righting response, and escape attempts. Two age groups (weaned and neonate) were assessed in 9 gas treatments arranged in a 2 × 4 factorial design, with 2 gas types (CO2 = 100% CO2 and 50:50 = 50:50 CO2:argon) and 4 flow rates (box volume exchange/min: slow = 20%; medium = 35%; fast = 50%; prefill = prefilled followed by 20%) and a control treatment in which ambient air was passed through the box. Pig pairs (10/treatment) were placed in a modified Euthanex AgPro system (Euthanex Corp., Palmer, PA). Behavioral and physiological responses were observed directly and from video recordings for latency, duration, prevalence (percent of pigs affected), and frequency (number of occurrences/pig). Data were analyzed as linear mixed models or with a Cox proportional hazard model as appropriate. Piglet pair was the experimental unit. For the weaned pig, welfare was superior with CO2 relative to 50:50 within 1 or more flow rates on the basis of reduced duration of open-mouth breathing, duration of ataxia, frequency of escape attempts, and duration and frequency of righting response (P < 0.05). No measured parameters indicated superior welfare with the use of 50:50, whereas latencies to loss of posture and last movement favored CO2 (P < 0.05). Faster flow rates were associated with reduced (P < 0.05) duration or frequency of open-mouth breathing, ataxia, and righting response, as well as superior (P < 0.05) indicators of efficacy, including latencies to loss of posture, gasping, and last movement, relative to slower flow rates. Weaned pigs were more likely to defecate (P < 0.01), display nasal discharge (P < 0.05), and display longer (P < 0.001) latencies to loss of posture and last movement than neonates. Duration of ataxia was the only parameter for which neonates were superior (P < 0.01) to weaned pigs during euthanasia. As such, a 50:50 CO2:argon gas mixture and slower flow rates should be avoided when euthanizing weaned or neonate pigs with gas methods. Neonate pigs succumb to the effects of gas euthanasia quicker than weaned pigs and display fewer signs of distress.
NASA Technical Reports Server (NTRS)
Monje, Oscar; Nolek, Sara D.; Wheeler, Raymond M.
2011-01-01
NH3 is a degradation product of SA9T, a solid-amine sorbent developed by Hamilton Sundstrand, that is continually emitted into the gas stream being conditioned by this sorbent. NH3 offgassing rates were measured using FTIR spectroscopy using a packed bed at similar contact times as offgassing tests conducted at Hamilton Sundstrand and at the Ames Research Center. The bed was challenged with moist air at several flow rates and humidities and NH3 concentration of the effluent was measured for several hours. The NH3 offgassing rates in open-loop testing were calculated from the steady state outlet NH3 concentration and flow rate. NH3 offgassing rates from SA9T were found to be influenced by the contact time with the adsorbent (flow rate) and by the humidity of the inlet gas stream, which are consistent with previous studies. Closed-loop vacuum-swing adsorption cycling rates verified that NH3 offgassing continues when a constant source of water vapor is present.
Bedload and Total Load Sediment Transport Equations for Rough Open-Channel Flow
NASA Astrophysics Data System (ADS)
Abrahams, A. D.; Gao, P.
2001-12-01
The total sediment load transported by an open-channel flow may be divided into bedload and suspended load. Bedload transport occurs by saltation at low shear stress and by sheetflow at high shear stress. Dimensional analysis is used to identify the dimensionless variables that control the transport rate of noncohesive sediments over a plane bed, and regression analysis is employed to isolate the significant variables and determine the values of the coefficients. In the general bedload transport equation (i.e. for saltation and sheetflow) the dimensionless bedload transport rate is a function of the dimensionless shear stress, the friction factor, and an efficiency coefficient. For sheetflow the last term approaches 1, so that the bedload transport rate becomes a function of just the dimensionless shear stress and the friction factor. The dimensional analysis indicates that the dimensionless total load transport rate is a function of the dimensionless bedload transport rate and the dimensionless settling velocity of the sediment. Predicted values of the transport rates are graphed against the computed values of these variables for 505 flume experiments reported in the literature. These graphs indicate that the equations developed in this study give good unbiased predictions of both the bedload transport rate and total load transport rate over a wide range of conditions.
NASA Astrophysics Data System (ADS)
Zamora, Blas; Kaiser, Antonio S.
2012-01-01
The effects of the air variable properties (density, viscosity and thermal conductivity) on the buoyancy-driven flows established in open square cavities are investigated, as well as the influence of the stated boundary conditions at open edges and the employed differencing scheme. Two-dimensional, laminar, transitional and turbulent simulations are obtained, considering both uniform wall temperature and uniform heat flux heating conditions. In transitional and turbulent cases, the low-Reynolds k - ω turbulence model is employed. The average Nusselt number and the dimensionless mass-flow rate have been obtained for a wide and not yet covered range of the Rayleigh number varying from 103 to 1016. The results obtained taking into account variable properties effects are compared with those calculated assuming constant properties and the Boussinesq approximation. For uniform heat flux heating, a correlation for the critical heating parameter above which the burnout phenomenon can be obtained is presented, not reported in previous works. The effects of variable properties on the flow patterns are analyzed.
Hydraulic fracturing system and method
Ciezobka, Jordan; Salehi, Iraj
2017-02-28
A hydraulic fracturing system and method for enhancing effective permeability of earth formations to increase hydrocarbon production, enhance operation efficiency by reducing fluid entry friction due to tortuosity and perforation, and to open perforations that are either unopened or not effective using traditional techniques, by varying a pump rate and/or a flow rate to a wellbore.
Eernisse, Errol P.; Peterson, Gary D.
1976-01-01
A variable gas leak rate valve which utilizes a poled piezoelectric element to control opening and closing of the valve. The gas flow may be around a cylindrical rod with a tubular piezoelectric member encircling the rod for seating thereagainst to block passage of gas and for reopening thereof upon application of suitable electrical fields.
Hydraulic fracturing system and method
Ciezobka, Jordan; Maity, Debotyam
2018-01-30
A hydraulic fracturing system and method for enhancing effective permeability of earth formations to increase hydrocarbon production, enhance operation efficiency by reducing fluid entry friction due to tortuosity and perforation, and to open perforations that are either unopened or not effective using traditional techniques, by varying a pump rate and/or a flow rate to a wellbore.
Hydraulic fracturing system and method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ciezobka, Jordan; Maity, Debotyam
A hydraulic fracturing system and method for enhancing effective permeability of earth formations to increase hydrocarbon production, enhance operation efficiency by reducing fluid entry friction due to tortuosity and perforation, and to open perforations that are either unopened or not effective using traditional techniques, by varying a pump rate and/or a flow rate to a wellbore.
NASA Astrophysics Data System (ADS)
Ahmadi Nadooshan, Afshin; Kalbasi, Rasool; Afrand, Masoud
2018-04-01
Perforated fins effects on the heat transfer rate of a circular tube are examined experimentally. An experimental system is set up through the wind tunnel and equipped with necessary measurement tools. Hot water passes through the finned tube and heat transfers to the fin-side air created using the wind tunnel with different velocities. Two fin sets of identical weight are installed on a circular tube with different outer diameters of 22 and 26 mm. The experiments are conducted at two different mass flow rates of the hot water and six Reynolds number of external air flow. Considering the four finned tubes and one no finned tube, a total of 60 tests are conducted. Results showed that with increasing the internal or external flow rates, the effect of larger cross-sectional area is greater. By opening holes on the fins, in addition to weight loss, the maximum heat transfer rate for perforated fins increases by 8.78% and 9.23% respectively for mass flow rates of 0.05 and 0.1 kg/s at low external Reynolds number. While, at high external Reynolds number, the holes reduces heat transfer by 8.4% and 10.6% for mass flow rates of 0.05 and 0.1 kg/s, respectively.
Gritti, Fabrice; Fogwill, Michael
2017-06-09
The potential advantage of turbulent supercritical fluid chromatography (TSFC) in open tubular columns (OTC) was evaluated on both theoretical and practical viewpoints. First, the dispersion model derived by Golay in 1958 and recently extended from laminar to turbulent flow regime is used for the predictions of the speed-resolution performance in TSFC. The average dispersion coefficient of matter in the turbulent flow regime was taken from the available experimental data over a range of Reynolds number from 2000 to 6000. Kinetic plots are built at constant pressure drop (ΔP=4500psi) and Schmidt number (Sc=15) for four inner diameters (10, 30, 100, and 300μm) of the OTC and for three retention factors (0, 1, and 10). Accordingly, in turbulent flow regime, for a Reynolds number of 4000 and a retention factor of 1 (the stationary film thickness is assumed to be negligible with respect to the OTC diameter), the theory projects that a 300μm i.d. OTC has the same speed-resolution power (200,000 theoretical plates; 2.4min hold-up time) as that of a 10μm i.d. OTC operated in laminar flow regime. Secondly, the experimental plate heights of n-butylbenzene are measured in laminar and turbulent flow regimes for a 180μm×4.8m fused silica capillary column using pure carbon dioxide as the mobile phase. The back pressure regulator was set at 1500psi, the temperature was uniform at 297K, and the flow rate was increased step-wise from 0.50 to 3.60mL/min so that the experimental Reynolds number increases from 700 to 5400. The experiments are in good agreement with the plate heights projected in TSFC at high flow rates and with those expected at low flow rates in a laminar flow regime. Copyright © 2017 Elsevier B.V. All rights reserved.
Geometric optimization of microreactor chambers to increase the homogeneity of the velocity field
NASA Astrophysics Data System (ADS)
Pálovics, Péter; Ender, Ferenc; Rencz, Márta
2018-06-01
In this work microfluidic flow-through chambers are investigated. They are filled with magnetic nanoparticle (MNP) suspension in order to facilitate enzymatic reactions. The enzyme is immobilized on the surface of the MNPs. These reactions have been found to be flow rate dependent. To overcome this issue various chamber geometries have been examined and optimized geometries have been designed and tested experimentally. The investigation is supported with dedicated CFD simulations using the open source software OpenFOAM. The paper presents the theoretical background and the results of the simulations. The simulations have been verified with measurements and these too are presented in the paper.
NASA Astrophysics Data System (ADS)
Shen, Jialei; Gao, Zhi; Ding, Wowo; Yu, Ying
2017-09-01
Street canyons are vulnerable to air pollution mainly caused by vehicle emissions, which are therefore closely related to pedestrians' health. Previous studies have showed that air quality in street canyons is associated with street morphology, though the majority of them have focused on idealized street models. This paper attempts to investigate the relationship of street morphology to air quality for 6 irregular real-world cases selected from America, Europe, and China, i.e. Manhattan, Paris, Barcelona, Berlin, London and Nanjing. Each street is analyzed as a set of slices to propose a couple of morphology indices for quantitatively assessing the actual street morphology. Pollutant transport rate of mean flows and turbulent diffusion, net escape velocity and age of air are obtained from computational fluid dynamics (CFD) simulations to assess the ventilations and pollutant dispersion within street canyons with a parallel approaching wind. The results show that the street morphology characteristics, including the street width, lateral openings and intersections, are closely related to the air flows in street canyons. The air quality improves with a decreasing aspect ratio of central street owing to a larger vertical exchange through the street roof, which suggests an open central street is of better air quality. The lateral openings and intersections of streets have important effects on the air flows in street canyons, and the effects are particularly pronounced when the street widths are similar. The street continuity ratio indicates street continuity. It relates to the openings and the symmetry of a street and impacts on the air flows and pollutant dispersion through the lateral openings of the central street. The street spatial closure ratio is determined by the street continuity ratio and the aspect ratio of the central street. When the aspect ratio of central street is not excessively high, higher values of street continuity ratio and spatial closure ratio can lead to a stronger channel flow in street canyons and improve the air quality. The octagon intersections are favorable for air flowing through the lateral openings and improve the channel flows. The oblique intersections can also greatly improve the street ventilations, mainly due to the enhanced air flows through the lateral openings and the increased turbulent diffusion through the street roofs.
Respiratory analysis system and method
NASA Technical Reports Server (NTRS)
Liu, F. F. (Inventor)
1973-01-01
A system is described for monitoring the respiratory process in which the gas flow rate and the frequency of respiration and expiration cycles can be determined on a real time basis. A face mask is provided with one-way inlet and outlet valves where the gas flow is through independent flowmeters and through a mass spectrometer. The opening and closing of a valve operates an electrical switch, and the combination of the two switches produces a low frequency electrical signal of the respiratory inhalation and exhalation cycles. During the time a switch is operated, the corresponsing flowmeter produces electric pulses representative of the flow rate; the electrical pulses being at a higher frequency than that of the breathing cycle and combined with the low frequency signal. The high frequency pulses are supplied to conventional analyzer computer which also receives temperature and pressure inputs and computes mass flow rate and totalized mass flow of gas. From the mass spectrometer, components of the gas are separately computed as to flow rate. The electrical switches cause operation of up-down inputs of a reversible counter. The respective up and down cycles can be individually monitored and combined for various respiratory measurements.
Sheared bioconvection in a horizontal tube
NASA Astrophysics Data System (ADS)
Croze, O. A.; Ashraf, E. E.; Bees, M. A.
2010-12-01
The recent interest in using microorganisms for biofuels is motivation enough to study bioconvection and cell dispersion in tubes subject to imposed flow. To optimize light and nutrient uptake, many microorganisms swim in directions biased by environmental cues (e.g. phototaxis in algae and chemotaxis in bacteria). Such taxes inevitably lead to accumulations of cells, which, as many microorganisms have a density different to the fluid, can induce hydrodynamic instabilites. The large-scale fluid flow and spectacular patterns that arise are termed bioconvection. However, the extent to which bioconvection is affected or suppressed by an imposed fluid flow and how bioconvection influences the mean flow profile and cell transport are open questions. This experimental study is the first to address these issues by quantifying the patterns due to suspensions of the gravitactic and gyrotactic green biflagellate alga Chlamydomonas in horizontal tubes subject to an imposed flow. With no flow, the dependence of the dominant pattern wavelength at pattern onset on cell concentration is established for three different tube diameters. For small imposed flows, the vertical plumes of cells are observed merely to bow in the direction of flow. For sufficiently high flow rates, the plumes progressively fragment into piecewise linear diagonal plumes, unexpectedly inclined at constant angles and translating at fixed speeds. The pattern wavelength generally grows with flow rate, with transitions at critical rates that depend on concentration. Even at high imposed flow rates, bioconvection is not wholly suppressed and perturbs the flow field.
A comparison of coarse bedload transport measured with bedload traps and Helley Smith samplers
Kristin Bunte; Steven R. Abt; John P. Potyondy; Kurt W. Swingle
2008-01-01
Gravel bedload transport rates were measured at eight study sites in coarse-bedded Rocky Mountain streams using 4-6 bedload traps deployed across the stream width and a 76 by 76 mm opening Helley Smith sampler. Transport rates obtained from bedload traps increased steeply with flow which resulted in steep and well-defined transport rating curves with exponents of 8 to...
Methods to quantify seepage beneath Levee 30, Miami-Dade County, Florida
Sonenshein, R.S.
2001-01-01
A two-dimensional, cross-sectional, finite-difference, ground-water flow model and a simple application of Darcy?s law were used to quantify ground-water flow (from a wetlands) beneath Levee 30 in Miami-Dade County, Florida. Geologic and geophysical data, vertical seepage data from the wetlands, canal discharge data, ground-water-level data, and surface-water-stage data collected during 1995 and 1996 were used as boundary conditions and calibration data for the ground-water flow model and as input for the analytical model. Vertical seepage data indicated that water from the wetlands infiltrated the subsurface, near Levee 30, at rates ranging from 0.033 to 0.266 foot per day when the gates at the control structures along Levee 30 canal were closed. During the same period, stage differences between the wetlands (Water Conservation Area 3B) and Levee 30 canal ranged from 0.11 to 1.27 feet. A layer of low-permeability limestone, located 7 to 10 feet below land surface, restricts vertical flow between the surface water in the wetlands and the ground water. Based on measured water-level data, ground-water flow appears to be generally horizontal, except in the direct vicinity of the canal. The increase in discharge rate along a 2-mile reach of the Levee 30 canal ranged from 9 to 30 cubic feet per second per mile and can be attributed primarily to ground-water inflow. Flow rates in Levee 30 canal were greatest when the gates at the control structures were open. The ground-water flow model data were compared with the measured ground-water heads and vertical seepage from the wetlands. Estimating the horizontal ground-water flow rate beneath Levee 30 was difficult owing to the uncertainty in the horizontal hydraulic conductivity of the main flow zone of the Biscayne aquifer. Measurements of ground-water flows into Levee 30 canal, a substantial component of the water budget, were also uncertain, which lessened the ability to validate the model results. Because of vertical flows near Levee 30 canal and a very low hydraulic gradient east of the canal, a simplified Darcian approach simulated with the ground-water flow model does not accurately estimate the horizontal ground-water flow rate. Horizontal ground-water flow rates simulated with the ground-water flow model (for a 60-foot-deep by 1-foot-wide section of the Biscayne aquifer) ranged from 150 to 450 cubic feet per day west of Levee 30 and from 15 to 170 cubic feet per day east of Levee 30 canal. Vertical seepage from the wetlands, within 500 feet of Levee 30, generally accounted for 10 to 15 percent of the total horizontal flow beneath the levee. Simulated horizontal ground-water flow was highest during the wet season and when the gates at the control structures were open.
The structure of evaporating and combusting sprays: Measurements and predictions
NASA Technical Reports Server (NTRS)
Shuen, J. S.; Solomon, A. S. P.; Faeth, G. M.
1982-01-01
An apparatus was constructed to provide measurements in open sprays with no zones of recirculation, in order to provide well-defined conditions for use in evaluating spray models. Measurements were completed in a gas jet, in order to test experimental methods, and are currently in progress for nonevaporating sprays. A locally homogeneous flow (LHF) model where interphase transport rates are assumed to be infinitely fast; a separated flow (SF) model which allows for finite interphase transport rates but neglects effects of turbulent fluctuations on drop motion; and a stochastic SF model which considers effects of turbulent fluctuations on drop motion were evaluated using existing data on particle-laden jets. The LHF model generally overestimates rates of particle dispersion while the SF model underestimates dispersion rates. The stochastic SF flow yield satisfactory predictions except at high particle mass loadings where effects of turbulence modulation may have caused the model to overestimate turbulence levels.
NASA Astrophysics Data System (ADS)
Slovacek, A. E.; Fisher, A. T.; Kirkwood, W.; Wheat, C. G.; Maughan, T.; Gomes, K.
2011-12-01
We developed an autonomous electromagnetic flowmeter as part of a cross-hole hydrogeologic experiment using subseafloor borehole observatories (CORKs) that penetrate into the volcanic ocean crust. The cylindrical flowmeter is adapted from a conventional industrial tool and hardened for use at water depths up to 6000 m. In addition, the electronics were modified with a new power controller, and a data logger and communication board was added to enable data storage and long-term, autonomous use for up to eight years. The flowmeter generates a magnetic field and measures a voltage gradient that is created across the orifice as water moves through it. This kind of tool is ideally suited for use in the deep sea, particularly for measuring hydrothermal fluids emanating from the ocean crust, because it requires no moving parts, places no obstructions along the flow path, gives total flow volume as well as instantaneous flow rate, and is highly accurate across a large dynamic range, including bi-directional flow. This flowmeter was deployed on a CORK wellhead using an adapter and ring clamp system located above a 4-inch ball valve. The ball valve can be opened to permit flow (from an overpressured formation) out of the CORK and into the overlying ocean. A polyvinyl chloride "chimney" positioned vertically above the flowmeter is instrumented with autonomous temperature loggers to permit an additional estimate of fluid flow rates with time, based on heat loss during fluid ascent, and to facilitate fluid sampling. Calibration of the new flowmeter was completed in two stages: tank testing using a pump at flow rates of 0.5 to 1.2 L/s, and by lowering the flowmeter on a wireline at sea at rates equivalent to 0.5 to 5.2 L/s. A cross plot of apparent and reference flow rates obtained during calibration indicates a highly linear instrument response. Comparison of instantaneous (once per minute) and integrated (total flow) data collected during calibration indicates good agreement, although the instantaneous data tended to be noisy because of irregularity of flow (turbulence). The flowmeter was deployed in Summer 2011 on a CORK installed in IODP Hole 1362B, on the eastern flank of the Juan de Fuca ridge. Once the flowmeter was attached to the wellhead, the underlying ball valve was opened, which allowed overpressured fluids from the permeable ocean crust to flow upward and out of the seafloor at 5 to 10 L/s (estimated rate). Changes in formation fluid pressure resulting from this flow are being monitored in four additional CORKs located 310 to 2320 m away from Hole 1362B, which will allow large-scale, directional assessment of formation properties. The flowmeter is recording data for instantaneous flow rate and total flow once per hour, and will be recovered to permit collection and analysis of experimental data during a servicing visit in Summer 2012.
Laminar boundary layer near the rotating end wall of a confined vortex
NASA Astrophysics Data System (ADS)
Shakespeare, W. J.; Levy, E. K.
1982-06-01
The results of an experimental and theoretical investigation of the fluid mechanics in a confined vortex are discussed with particular emphasis on behavior away from the axis of symmetry and near the end walls. The vortex is generated in a rotating cylindrical chamber with an exit opening in one end. Both end walls rotate. For the range of flow rates and swirl ratios (S between 1 and 5) of interest here, the flow field far from the end walls behaves as inviscid and irrotational; and the end wall boundary layers are thin and laminar. Measurements and calculations of tangential and radial velocity in the end wall region show the development of a secondary flow resulting in a strong velocity 'overshoot' in the radial component. Results illustrating the nature of the velocity variations on the end walls are presented; and it is shown that the mass flow rate through the end wall boundary layers, while only a small fraction of the total flow, increases with increasing swirl and with decreasing total flow rate through the chamber.
A High Precision $3.50 Open Source 3D Printed Rain Gauge Calibrator
NASA Astrophysics Data System (ADS)
Lopez Alcala, J. M.; Udell, C.; Selker, J. S.
2017-12-01
Currently available rain gauge calibrators tend to be designed for specific rain gauges, are expensive, employ low-precision water reservoirs, and do not offer the flexibility needed to test the ever more popular small-aperture rain gauges. The objective of this project was to develop and validate a freely downloadable, open-source, 3D printed rain gauge calibrator that can be adjusted for a wide range of gauges. The proposed calibrator provides for applying low, medium, and high intensity flow, and allows the user to modify the design to conform to unique system specifications based on parametric design, which may be modified and printed using CAD software. To overcome the fact that different 3D printers yield different print qualities, we devised a simple post-printing step that controlled critical dimensions to assure robust performance. Specifically, the three orifices of the calibrator are drilled to reach the three target flow rates. Laboratory tests showed that flow rates were consistent between prints, and between trials of each part, while the total applied water was precisely controlled by the use of a volumetric flask as the reservoir.
Miniature open channel scrubbers for gas collection.
Toda, Kei; Koga, Tomoko; Tanaka, Toshinori; Ohira, Shin-Ichi; Berg, Jordan M; Dasgupta, Purnendu K
2010-10-15
An open channel scrubber is proposed as a miniature fieldable gas collector. The device is 100mm in length, 26 mm in width and 22 mm in thickness. The channel bottom is rendered hydrophilic and liquid flows as a thin layer on the bottom. Air sample flows atop the appropriately chosen flowing liquid film and analyte molecules are absorbed into the liquid. There is no membrane at the air-liquid interface: they contact directly each other. Analyte species collected over a 10 min interval are determined by fluorometric flow analysis or ion chromatography. A calculation algorithm was developed to estimate the collection efficiency a priori; experimental and simulated results agreed well. The characteristics of the open channel scrubber are discussed in this paper from both theoretical and experimental points of view. In addition to superior collection efficiencies at relatively high sample air flow rates, this geometry is particularly attractive that there is no change in collection performance due to membrane fouling. We demonstrate field use for analysis of ambient SO(2) near an active volcano. This is basic investigation of membraneless miniature scrubber and is expected to lead development of an excellent micro-gas analysis system integrated with a detector for continuous measurements. Copyright © 2010 Elsevier B.V. All rights reserved.
Modification and performance evaluation of a mono-valve engine
NASA Astrophysics Data System (ADS)
Behrens, Justin W.
A four-stroke engine utilizing one tappet valve for both the intake and exhaust gas exchange processes has been built and evaluated. The engine operates under its own power, but has a reduced power capacity than the conventional 2-valve engine. The reduction in power is traced to higher than expected amounts of exhaust gases flowing back into the intake system. Design changes to the cylinder head will fix the back flow problems, but the future capacity of mono-valve engine technology cannot be estimated. The back flow of exhaust gases increases the exhaust gas recirculation (EGR) rate and deteriorates combustion. Intake pressure data shows the mono-valve engine requires an advanced intake valve closing (IVC) time to prevent back flow of charge air. A single actuation camshaft with advanced IVC was tested in the mono-valve engine, and was found to improve exhaust scavenging at TDC and nearly eliminated all charge air back flow at IVC. The optimum IVC timing is shown to be approximately 30 crank angle degrees after BDC. The mono-valve cylinder head utilizes a rotary valve positioned above the tappet valve. The open spaces inside the rotary valveand between the rotary valve and tappet valve represent a common volume that needs to be reduced in order to reduce the base EGR rate. Multiple rotary valve configurations were tested, and the size of the common volume was found to have no effect on back flow but a direct effect on the EGR rate and engine performance. The position of the rotary valve with respect to crank angle has a direct effect on the scavenging process. Optimum scavenging occurs when the intake port is opened just after TDC.
Characteristic angles in the wetting of an angular region: deposit growth.
Popov, Yuri O; Witten, Thomas A
2003-09-01
Solids dispersed in a drying drop migrate to the (pinned) contact line. This migration is caused by outward flows driven by the loss of the solvent due to evaporation and by geometrical constraint that the drop maintains an equilibrium surface shape with a fixed boundary. Here, in continuation of our earlier paper, we theoretically investigate the evaporation rate, the flow field, and the rate of growth of the deposit patterns in a drop over an angular sector on a plane substrate. Asymptotic power laws near the vertex (as distance to the vertex goes to zero) are obtained. A hydrodynamic model of fluid flow near the singularity of the vertex is developed and the velocity field is obtained. The rate of the deposit growth near the contact line is found in two time regimes. The deposited mass falls off as a weak power gamma of distance close to the vertex and as a stronger power beta of distance further from the vertex. The power gamma depends only slightly on the opening angle alpha and stays roughly between -1/3 and 0. The power beta varies from -1 to 0 as the opening angle increases from 0 degrees to 180 degrees. At a given distance from the vertex, the deposited mass grows faster and faster with time, with the greatest increase in the growth rate occurring at the early stages of the drying process.
The Development of an 8-inch by 8-inch Slotted Tunnel for Mach Numbers up to 1.28
NASA Technical Reports Server (NTRS)
Little, B. H., Jr.; Cubbage, James J., Jr.
1961-01-01
An 8-inch by 8-inch transonic tunnel model with test section slotted on two opposite walls was constructed in which particular emphasis -was given to the development of slot geometry, slot-flow reentry section, and short-diffuser configurations for good test-region flow and minimum total-pressure losses. Center-line static pressures through the test section, wall static pressures through the other parts of the tunnel, and total-pressure distributions at the inlet and exit stations of the diffuser were measured- With a slot length equal to two tunnel heights and 1/14 open-area-ratio slotted walls) a test region one tunnel height in length was obtained in which the deviation from the mean Mach number was less than +/- 0.01 up to Mach number 1.15. With 1/7 open-area-ratio slotted walls, a test region 0.84 tunnel heights in length with deviation less than +/- O.01 was obtained up to Mach number 1.26. Increasing the tunnel diffuser angle from 6.4 to 10 deg. increased pressure loss through the tunnel at Mach number 1.20 from 15 percent to 20 percent of the total pressure. The use of other diffusers with equivalent angles of 10 deg. but contoured so that the initial diffusion angle was less than 10 deg. and the final angle was 200 reduced the losses to as low as 16 percent. A method for changing the test-section Mach number rapidly by controlling the flow through a bypass line from the tunnel settling chamber to the slot-flow plenum chamber of the test section was very effective. The test-section Mach number was reduced approximately 5 percent in 1/8 second by bleeding into the test section a flow of air equal to 2 percent of the mainstream flow and 30 percent in 1/4 second with bleed flow equal to 10 percent of the mainstream flow. The rate of reduction was largely determined by the opening rate of the bleed-flow-control valve.
Fluidics comparison between dual pneumatic and spring return high-speed vitrectomy systems.
Brant Fernandes, Rodrigo A; Diniz, Bruno; Falabella, Paulo; Ribeiro, Ramiro; Teixeira, Anderson G; Magalhães, Octaviano; Moraes, Nilva; Maia, Andre; Farah, Michel E; Maia, Mauricio; Humayun, Mark S
2015-01-01
To compare the water and vitreous flow rates and duty cycle (DC) between two ultrahigh-speed vitrectomy systems: pneumatic with spring return (SR) and dual pneumatic (DP) probes. The flow rate was calculated using a high-sampling precision balance that measured the mass of water and vitreous removed from a vial by a vitreous cutter. Frame-by-frame analysis of a high-speed video of the cutter was used to determine the DC. Three cutters of each gauge (20, 23, and 25 G) were tested with an SR and a DP system using the standard DC setting (biased open) at 0 (water only), 1,000, 2,000, 3,000, 4,000, and 5,000 cuts per minute (CPM) with aspiration levels of 100, 200, 300, 400, 500, and 600 mm Hg. The DC was slightly higher with the SR system using most parameters and gauges although without statistical significance. The water flow rate was somewhat higher with the SR system, except for 25 G with 4,000 and 5,000 CPM. The vitreous flow rate was similar using most parameters, with the SR system showing higher flows at lower cut rates (1,000-3,000 CPM). SR and DP systems produced similar water and vitreous flow rates. Additional studies in human eyes are necessary to confirm these findings. Copyright 2015, SLACK Incorporated.
A method of calibrating wind velocity sensors with a modified gas flow calibrator
NASA Technical Reports Server (NTRS)
Stump, H. P.
1978-01-01
A procedure was described for calibrating air velocity sensors in the exhaust flow of a gas flow calibrator. The average velocity in the test section located at the calibrator exhaust was verified from the mass flow rate accurately measured by the calibrator's precision sonic nozzles. Air at elevated pressures flowed through a series of screens, diameter changes, and flow straighteners, resulting in a smooth flow through the open test section. The modified system generated air velocities of 2 to 90 meters per second with an uncertainty of about two percent for speeds below 15 meters per second and four percent for the higher speeds. Wind tunnel data correlated well with that taken in the flow calibrator.
Stability and sensitivity of ABR flow control protocols
NASA Astrophysics Data System (ADS)
Tsai, Wie K.; Kim, Yuseok; Chiussi, Fabio; Toh, Chai-Keong
1998-10-01
This tutorial paper surveys the important issues in stability and sensitivity analysis of ABR flow control of ATM networks. THe stability and sensitivity issues are formulated in a systematic framework. Four main cause of instability in ABR flow control are identified: unstable control laws, temporal variations of available bandwidth with delayed feedback control, misbehaving components, and interactions between higher layer protocols and ABR flow control. Popular rate-based ABR flow control protocols are evaluated. Stability and sensitivity is shown to be the fundamental issues when the network has dynamically-varying bandwidth. Simulation result confirming the theoretical studies are provided. Open research problems are discussed.
Flow resistance in open channels with fixed movable bed
Simoes, Francisco J.
2010-01-01
In spite of an increasingly large body of research by many investigators, accurate quantitative prediction of open channel flow resistance remains a challenge. In general, the relations between the elements influencing resistance (turbulence, boundary roughness, and channel shape features, such as discrete obstacles, bars, channel curvature, recirculation areas, secondary circulation, etc.) and mean flow variables are complex and poorly understood. This has resulted in numerous approaches to compute friction using many and diverse variables and equally diverse prescriptions for their use. In this paper, a new resistance law for surface (grain) resistance, the resistance due to the flow viscous effects on the channel boundary roughness elements, is presented for the cases of flow in the transition (5 < Re* <70) and fully rough (Re* ≥ 70) turbulent flow regimes, where Re* is the Reynolds number based on shear velocity and sediment particle mean diameter. It is shown that the new law is sensitive to bed movement without requiring previous knowledge of sediment transport conditions. Comparisons between computation and measurements, as well as comparisons with other well-known existing roughness predictors, are presented to demonstrate its accuracy and range of application. It is shown that the method accurately predicts total friction losses in channels and natural rivers with plane beds, regardless of sediment transport conditions. This work is useful to hydraulic engineers involved with the derivation of depth-discharge relations in open channel flow and with the estimation of sediment transport rates for the case of bedload transport.
Alper, Cuneyt M; Rath, Tanya J; Teixeira, Miriam S; Swarts, J Douglas
2018-01-01
In vivo imaging of the open cartilaginous Eustachian tube (ET) lumen by computed tomography (CT) scan during ET function (ETF) testing to establish new methodology. Five adults underwent unilateral ETF testing of an ear with a nonintact tympanic membrane using the forced response test (FRT) to measure the opening pressure (PO), steady state pressure (PS), and flow conductance (CS). Then at baseline and during the PS phase of the FRT, a temporal-bone CT scan with continuous 0.625 mm thickness was obtained. Multiplanar oblique reformats along the axis of the ET were created, and point value and region of interest (ROI) Hounsfield unit measurements were recorded from the location of the ET lumen. At the FRT flow rate of 11 ml/min, the average PO, PS, and CS were 370.5 daPa, 119.6 daPa, and 0.16 ml/min/daPa, respectively. For flow rates of 23 and 46 ml/min, these values were 236.2, 204.2, 0.12 and 385.5, 321.1, 0.18, respectively. Although areas with lower attenuation were suggestive of air density, a distinct air-filled cartilaginous ET lumen could not be confirmed. While the current imaging parameters failed to resolve the air-soft tissue interface throughout the open cartilaginous ET, further advances in imaging may obviate this limitation.
NASA Astrophysics Data System (ADS)
Williams, J. H.; Johnson, C. D.; Paillet, F. L.
2004-05-01
In the past, flow logging was largely restricted to the application of spinner flowmeters to determine flow-zone contributions in large-diameter production wells screened in highly transmissive aquifers. Development and refinement of tool-measurement technology, field methods, and analysis techniques has greatly extended and enhanced flow logging to include the hydraulic characterization of boreholes and aquifer flow zones at contaminated bedrock sites. State-of-the-art in flow logging will be reviewed, and its application to bedrock-contamination investigations will be presented. In open bedrock boreholes, vertical flows are measured with high-resolution flowmeters equipped with flexible rubber-disk diverters fitted to the nominal borehole diameters to concentrate flow through the measurement throat of the tools. Heat-pulse flowmeters measure flows in the range of 0.05 to 5 liters per minute, and electromagnetic flowmeters measure flows in the range of 0.3 to 30 liters per minute. Under ambient and low-rate stressed (either extraction or injection) conditions, stationary flowmeter measurements are collected in competent sections of the borehole between fracture zones identified on borehole-wall images. Continuous flow, fluid-resistivity, and temperature logs are collected under both sets of conditions while trolling with a combination electromagnetic flowmeter and fluid tool. Electromagnetic flowmeters are used with underfit diverters to measure flow rates greater than 30 liters per minute and suppress effects of diameter variations while trolling. A series of corrections are applied to the flow-log data to account for the zero-flow response, bypass, trolling, and borehole-diameter biases and effects. The flow logs are quantitatively analyzed by matching simulated flows computed with a numerical model to measured flows by varying the hydraulic properties (transmissivity and hydraulic head) of the flow zones. Several case studies will be presented that demonstrate the integration of flow logging in site-characterization activities framework; 2) evaluate cross-connection effects and determine flow-zone contributions to water-quality samples from open boreholes; and 3) design discrete-zone hydraulic tests and monitoring-well completions.
In-cylinder air-flow characteristics of different intake port geometries using tomographic PIV
NASA Astrophysics Data System (ADS)
Agarwal, Avinash Kumar; Gadekar, Suresh; Singh, Akhilendra Pratap
2017-09-01
For improving the in-cylinder flow characteristics of intake air/charge and for strengthening the turbulence intensity, specific intake port geometries have shown significant potential in compression ignition engines. In this experimental study, effects of intake port geometries on air-flow characteristics were investigated using tomographic particle imaging velocimetry (TPIV). Experiments were performed using three experimental conditions, namely, swirl port open (SPO), tangential port open (TPO), and both port open (BPO) configurations in a single cylinder optical research engine. Flow investigations were carried out in a volumetric section located in the middle of the intake and exhaust valves. Particle imaging velocimetry (PIV) images were captured using two high speed cameras at a crank angle resolution of 2° in the intake and compression strokes. The captured PIV images were then pre-processed and post-processed to obtain the final air-flow-field. Effects of these two intake ports on flow-field are presented for air velocity, vorticity, average absolute velocity, and turbulent kinetic energy. Analysis of these flow-fields suggests the dominating nature of the swirl port over the tangential port for the BPO configuration and higher rate of flow energy dissipation for the TPO configuration compared to the SPO and BPO configurations. These findings of TPIV investigations were experimentally verified by combustion and particulate characteristics of the test engine in thermal cylinder head configuration. Combustion results showed that the SPO configuration resulted in superior combustion amongst all three port configurations. Particulate characteristics showed that the TPO configuration resulted in higher particulate compared to other port configurations.
Open cycle traveling wave thermoacoustics: mean temperature difference at the regenerator interface.
Weiland, Nathan T; Zinn, Ben T
2003-11-01
In an open cycle traveling wave thermoacoustic engine, the hot heat exchanger is replaced by a steady flow of hot gas into the regenerator to provide the thermal energy input to the engine. The steady-state operation of such a device requires that a potentially large mean temperature difference exist between the incoming gas and the solid material at the regenerator's hot side, due in part to isentropic gas oscillations in the open space adjacent to the regenerator. The magnitude of this temperature difference will have a significant effect on the efficiencies of these open cycle devices. To help assess the feasibility of such thermoacoustic engines, a numerical model is developed that predicts the dependence of the mean temperature difference upon the important design and operating parameters of the open cycle thermoacoustic engine, including the acoustic pressure, mean mass flow rate, acoustic phase angles, and conductive heat loss. Using this model, it is also shown that the temperature difference at the regenerator interface is approximately proportional to the sum of the acoustic power output and the conductive heat loss at this location.
NASA Astrophysics Data System (ADS)
Regmi, Raju; Mohan, Kavya; Mondal, Partha Pratim
2014-09-01
Visualization of intracellular organelles is achieved using a newly developed high throughput imaging cytometry system. This system interrogates the microfluidic channel using a sheet of light rather than the existing point-based scanning techniques. The advantages of the developed system are many, including, single-shot scanning of specimens flowing through the microfluidic channel at flow rate ranging from micro- to nano- lit./min. Moreover, this opens-up in-vivo imaging of sub-cellular structures and simultaneous cell counting in an imaging cytometry system. We recorded a maximum count of 2400 cells/min at a flow-rate of 700 nl/min, and simultaneous visualization of fluorescently-labeled mitochondrial network in HeLa cells during flow. The developed imaging cytometry system may find immediate application in biotechnology, fluorescence microscopy and nano-medicine.
TI-59 helps predict IPRs for gravel-packed gas wells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capdevielle, W.C.
The inflow performance relationship (IPR) is an important tool for reservoir and production engineers. It helps optimize completion, tubing, gas lift, and storm choke design. It facilitates accurate rate predictions that can be used to evaluate field development decisions. The IPR is the first step of the systems analysis that translates reservoir rock and fluid parameters into predictable flow rates. Use of gravel packing for sand control complicates the calculation that predicts a well's IPR curve, particularly in gas wells where high velocities in the formation and through gravel-filled perforation tunnels can cause turbulent flow. The program presented in thismore » article calculates the pressure drop and the flowing bottomhole pressures at varying flow rates for gravel-packed gas wells. The program was written for a Texas Instruments TI-59 programmable calculator with a PC-100 printer. Program features include: Calculations for in-casing gravel packs, open-hole gravel packs, or ungravel packed wells. Program prompts for the required data variables. Easy change of data values to run new cases. Calculates pressures for an unlimited number of flow rates. Results show the total pressure drop and the relative magnitude of its components.« less
42 CFR 84.93 - Gas flow test; open-circuit apparatus.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 42 Public Health 1 2011-10-01 2011-10-01 false Gas flow test; open-circuit apparatus. 84.93...-Contained Breathing Apparatus § 84.93 Gas flow test; open-circuit apparatus. (a) A static-flow test will be performed on all open-circuit apparatus. (b) The flow from the apparatus shall be greater than 200 liters...
42 CFR 84.93 - Gas flow test; open-circuit apparatus.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 42 Public Health 1 2010-10-01 2010-10-01 false Gas flow test; open-circuit apparatus. 84.93...-Contained Breathing Apparatus § 84.93 Gas flow test; open-circuit apparatus. (a) A static-flow test will be performed on all open-circuit apparatus. (b) The flow from the apparatus shall be greater than 200 liters...
Saline-Induced Coronary Hyperemia: Mechanisms and Effects on Left Ventricular Function.
De Bruyne, Bernard; Adjedj, Julien; Xaplanteris, Panagiotis; Ferrara, Angela; Mo, Yujing; Penicka, Martin; Floré, Vincent; Pellicano, Mariano; Toth, Gabor; Barbato, Emanuele; Duncker, Dirk J; Pijls, Nico H J
2017-04-01
During thermodilution-based assessment of volumetric coronary blood flow, we observed that intracoronary infusion of saline increased coronary flow. This study aims to quantify the extent and unravel the mechanisms of saline-induced hyperemia. Thirty-three patients were studied; in 24 patients, intracoronary Doppler flow velocity measurements were performed at rest, after intracoronary adenosine, and during increasing infusion rates of saline at room temperature through a dedicated catheter with 4 lateral side holes. In 9 patients, global longitudinal strain and flow propagation velocity were assessed by transthoracic echocardiography during a prolonged intracoronary saline infusion. Taking adenosine-induced maximal hyperemia as reference, intracoronary infusion of saline at rates of 5, 10, 15, and 20 mL/min induced 6%, 46%, 111%, and 112% of maximal hyperemia, respectively. There was a close agreement of maximal saline- and adenosine-induced coronary flow reserve (intraclass correlation coefficient, 0.922; P <0.001). The same infusion rates given through 1 end hole (n=6) or in the contralateral artery (n=6) did not induce a significant increase in flow velocity. Intracoronary saline given on top of an intravenous infusion of adenosine did not further increase flow. Intracoronary saline infusion did not affect blood pressure, systolic, or diastolic left ventricular function. Heart rate decreased by 15% during saline infusion ( P =0.021). Intracoronary infusion of saline at room temperature through a dedicated catheter for coronary thermodilution induces steady-state maximal hyperemia at a flow rate ≥15 mL/min. These findings open new possibilities to measure maximal absolute coronary blood flow and minimal microcirculatory resistance. © 2017 American Heart Association, Inc.
Estimating zero-g flow rates in open channels having capillary pumping vanes
NASA Astrophysics Data System (ADS)
Srinivasan, Radhakrishnan
2003-02-01
In vane-type surface tension propellant management devices (PMD) commonly used in satellite fuel tanks, the propellant is transported along guiding vanes from a reservoir at the inlet of the device to a sump at the outlet from where it is pumped to the satellite engine. The pressure gradient driving this free-surface flow under zero-gravity (zero-g) conditions is generated by surface tension and is related to the differential curvatures of the propellant-gas interface at the inlet and outlet of the PMD. A new semi-analytical procedure is prescribed for accurately calculating the extremely small fuel flow rates under reasonably idealized conditions. Convergence of the algorithm is demonstrated by detailed numerical calculations. Owing to the substantial cost and the technical hurdles involved in accurately estimating these minuscule flow rates by either direct numerical simulation or by experimental methods which simulate zero-g conditions in the lab, it is expected that the proposed method will be an indispensable tool in the design and operation of satellite fuel tanks.
Large springs of east Tennessee
Sun, Pao-chang P.; Criner, J.H.; Poole, J.L.
1963-01-01
Springs constitute an important source of water in east Tennessee, and many individual springs are capable of supplying the large quantities needed for municipal and industrial supplies. Most of the springs in east Tennessee issue from solution openings and fractured and faulted zones in limestone and dolomite of the Knox Group, Chickamauga Limestone, and Conasauga Group. The ability of these rocks to yield a sustained flow of water to springs is dependent on a system of interconnected openings through which water can infiltrate from the land surface and move to points of natural discharge. Ninety springs were selected for detailed study, and 84 of these are analyzed in terms of magnitude and variability of discharge. Of the 84 springs analyzed, 4 flow at an average rate of 10 to 100 cfs (cubic feet per second), 62 at an average rate of 1 to 10 cfs, and 18 at an average rate of 1 cfs or less. Of the 90 springs, 75 are variable in their discharge; that is, the ratio of their fluctuations to their average discharges exceeds 100 percent. Mathematical analysis of the flow recession curve of Mill Spring near Jefferson City shows that the hydrologic system contributing to the flow of the spring has an effective capacity of about 70 million cubic feet of water. The rate of depletion of this volume of water, in the absence of significant precipitation, averages 0.0056 cfs per day between the time when the hydrologic system is full and the time when the spring ceases to flow. From such a curve it is possible to determine at any time the residual volume of water remaining in the system and the expected rate of decrease in discharge from that time to cessation of flow. Correlation of discharge measurements of 22 springs with those of Mill Spring shows that rough approximations of discharge can be projected for springs for which few measurements are available. Seventeen of the springs analyzed in this manner show good correlation with Mill Spring: that is, their coefficients of correlation were 0.70 or better as compared with a perfect correlation factor of 1.00.
Comparison of Three Exit-Area Control Devices on an N.A.C.A. Cowling, Special Report
NASA Technical Reports Server (NTRS)
McHugh, James G.
1940-01-01
Adjustable cowling flaps, an adjustable-length cowling skirt, and a bottom opening with adjustable flap were tested as means of controlling the rate of cooling-air flow through an air-cooled radial-engine cowling. The devices were tested in the NACA 20-foot tunnel on a model wing-nacelle-propeller combination, through an airspeed range of 20 to 80 miles per hour, and with the propeller blade angle set 23 degrees at 0.75 of the tip radius. The resistance of the engine to air flow through the cowling was simulated by a perforated plate. The results indicated that the adjustable cowling flap and the bottom opening with adjustable flap were about equally effective on the basis of pressure drop obtainable and that both were more effective means of increasing the pressure drop through the cowling than the adjustable-length skirt. At conditions of equal cooling-air flow, the net efficiency obtained with the adjustable cowling flaps and the adjustable-length cowling skirt was about 1% greater than the net efficiency obtained with the bottom opening with adjustable flap.
NASA Technical Reports Server (NTRS)
Weislogel, Mark M.; Wollman, Andrew P.; Jenson, Ryan M.; Geile, John T.; Tucker, John F.; Wiles, Brentley M.; Trattner, Andy L.; DeVoe, Claire; Sharp, Lauren M.; Canfield, Peter J.;
2015-01-01
It would be signicantly easier to design fluid systems for spacecraft if the fluid phases behaved similarly to those on earth. In this research an open 15:8 degree wedge-sectioned channel is employed to separate bubbles from a two-phase flow in a microgravity environment. The bubbles appear to rise in the channel and coalesce with the free surface in much the same way as would bubbles in a terrestrial environment, only the combined effects of surface tension, wetting, and conduit geometry replace the role of buoyancy. The host liquid is drawn along the channel by a pump and noncondensible gas bubbles are injected into it near the channel vertex at the channel inlet. Control parameters include bubble volume, bubble frequency, liquid volumetric flow rate, and channel length. The asymmetrically confined bubbles are driven in the cross-flow direction by capillary forces until they at least become inscribed within the section or until they come in contact with the free surface, whereupon they usually coalesce and leave the flow. The merging of bubbles enhances, but does not guarantee, the latter. The experiments are performed aboard the International Space Station as a subset of the Capillary Channel Flow experiments. The flight hardware is commanded remotely and continuously from ground stations during the tests and an extensive array of experiments is conducted identifying numerous bubble flow regimes and regime transitions depending on the ratio and magnitude of the gas and liquid volumetric flow rates. The breadth of the publicly available experiments is conveyed herein primarily by narrative and by regime maps, where transitions are approximated by simple expressions immediately useful for the purposes of design and deeper analysis.
Numerical modeling of rapidly varying flows using HEC-RAS and WSPG models.
Rao, Prasada; Hromadka, Theodore V
2016-01-01
The performance of two popular hydraulic models (HEC-RAS and WSPG) for modeling hydraulic jump in an open channel is investigated. The numerical solutions are compared with a new experimental data set obtained for varying channel bottom slopes and flow rates. Both the models satisfactorily predict the flow depths and location of the jump. The end results indicate that the numerical models output is sensitive to the value of chosen roughness coefficient. For this application, WSPG model is easier to implement with few input variables.
Liquid Acquisition Device Design Sensitivity Study
NASA Technical Reports Server (NTRS)
VanDyke, M. K.; Hastings, L. J.
2012-01-01
In-space propulsion often necessitates the use of a capillary liquid acquisition device (LAD) to assure that gas-free liquid propellant is available to support engine restarts in microgravity. If a capillary screen-channel device is chosen, then the designer must determine the appropriate combination screen mesh and channel geometry. A screen mesh selection which results in the smallest LAD width when compared to any other screen candidate (for a constant length) is desirable; however, no best screen exists for all LAD design requirements. Flow rate, percent fill, and acceleration are the most influential drivers for determining screen widths. Increased flow rates and reduced percent fills increase the through-the-screen flow pressure losses, which drive the LAD to increased widths regardless of screen choice. Similarly, increased acceleration levels and corresponding liquid head pressures drive the screen mesh selection toward a higher bubble point (liquid retention capability). After ruling out some screens on the basis of acceleration requirements alone, candidates can be identified by examining screens with small flow-loss-to-bubble point ratios for a given condition (i.e., comparing screens at certain flow rates and fill levels). Within the same flow rate and fill level, the screen constants inertia resistance coefficient, void fraction, screen pore or opening diameter, and bubble point can become the driving forces in identifying the smaller flow-loss-to-bubble point ratios.
NASA Astrophysics Data System (ADS)
Chen, Yang; Wang, Huasheng; Xia, Jixia; Cai, Guobiao; Zhang, Zhenpeng
2017-04-01
For the pressure reducing regulator and check valve double-valve combined test system in an integral bipropellant propulsion system, a system model is established with modular models of various typical components. The simulation research is conducted on the whole working process of an experiment of 9 MPa working condition from startup to rated working condition and finally to shutdown. Comparison of simulation results with test data shows: five working conditions including standby, startup, rated pressurization, shutdown and halt and nine stages of the combined test system are comprehensively disclosed; valve-spool opening and closing details of the regulator and two check valves are accurately revealed; the simulation also clarifies two phenomena which test data are unable to clarify, one is the critical opening state in which the check valve spools slightly open and close alternately in their own fully closed positions, the other is the obvious effects of flow-field temperature drop and temperature rise in pipeline network with helium gas flowing. Moreover, simulation results with consideration of component wall heat transfer are closer to the test data than those under the adiabatic-wall condition, and more able to reveal the dynamic characteristics of the system in various working stages.
A dynamic plug flow reactor model for a vanadium redox flow battery cell
NASA Astrophysics Data System (ADS)
Li, Yifeng; Skyllas-Kazacos, Maria; Bao, Jie
2016-04-01
A dynamic plug flow reactor model for a single cell VRB system is developed based on material balance, and the Nernst equation is employed to calculate cell voltage with consideration of activation and concentration overpotentials. Simulation studies were conducted under various conditions to investigate the effects of several key operation variables including electrolyte flow rate, upper SOC limit and input current magnitude on the cell charging performance. The results show that all three variables have a great impact on performance, particularly on the possibility of gassing during charging at high SOCs or inadequate flow rates. Simulations were also carried out to study the effects of electrolyte imbalance during long term charging and discharging cycling. The results show the minimum electrolyte flow rate needed for operation within a particular SOC range in order to avoid gassing side reactions during charging. The model also allows scheduling of partial electrolyte remixing operations to restore capacity and also avoid possible gassing side reactions during charging. Simulation results also suggest the proper placement for cell voltage monitoring and highlight potential problems associated with setting the upper charging cut-off limit based on the inlet SOC calculated from the open-circuit cell voltage measurement.
NASA Astrophysics Data System (ADS)
Inomata, Teppei; Kimura, Kouji; Hagiwara, Masafumi
Studies for video surveillance applications for preventing various crimes such as stealing and violence have become a hot topic. This paper proposes a new video surveillance system that can detect suspicious behaviors such as a car break-in and vandalization in an open space parking, and that is based on image processing. The proposed system has the following features: it 1)deals time series data flow, 2)recognizes “human elemental actions” using statistic features, and 3)detects suspicious behavior using Subspace method and AdaBoost. We conducted the experiments to test the performance of the proposed system using open space parking scenes. As a result, we obtained about 10.0% for false positive rate, and about 4.6% for false negative rate.
Feng, Yuping; Fornell, Jordina; Zhang, Huiyan; Solsona, Pau; Barό, Maria Dolors; Suriñach, Santiago; Sort, Jordi
2018-01-01
Open cell foams consisting of Fe and Fe-Mn oxides are prepared from metallic Fe and Mn powder precursors by the replication method using porous polyurethane (PU) templates. First, reticulated PU templates are coated by slurry impregnation. The templates are then thermally removed at 260 °C and the debinded powders are sintered at 1000 °C under N2 atmosphere. The morphology, structure, and magnetic properties are studied by scanning electron microscopy, X-ray diffraction and vibrating sample magnetometry, respectively. The obtained Fe and Fe-Mn oxide foams possess both high surface area and homogeneous open-cell structure. Hematite (α-Fe2O3) foams are obtained from the metallic iron slurry independently of the N2 flow. In contrast, the microstructure of the FeMn-based oxide foams can be tailored by adjusting the N2 flow. While the main phases for a N2 flow rate of 180 L/h are α-Fe2O3 and FeMnO3, the predominant phase for high N2 flow rates (e.g., 650 L/h) is Fe2MnO4. Accordingly, a linear magnetization versus field behavior is observed for the hematite foams, while clear hysteresis loops are obtained for the Fe2MnO4 foams. Actually, the saturation magnetization of the foams containing Mn increases from 5 emu/g to 52 emu/g when the N2 flow rate (i.e., the amount of Fe2MnO4) is increased. The obtained foams are appealing for a wide range of applications, such as electromagnetic absorbers, catalysts supports, thermal and acoustic insulation systems or wirelessly magnetically-guided porous objects in fluids. PMID:29439450
Feng, Yuping; Fornell, Jordina; Zhang, Huiyan; Solsona, Pau; Barό, Maria Dolors; Suriñach, Santiago; Pellicer, Eva; Sort, Jordi
2018-02-11
Open cell foams consisting of Fe and Fe-Mn oxides are prepared from metallic Fe and Mn powder precursors by the replication method using porous polyurethane (PU) templates. First, reticulated PU templates are coated by slurry impregnation. The templates are then thermally removed at 260 °C and the debinded powders are sintered at 1000 °C under N₂ atmosphere. The morphology, structure, and magnetic properties are studied by scanning electron microscopy, X-ray diffraction and vibrating sample magnetometry, respectively. The obtained Fe and Fe-Mn oxide foams possess both high surface area and homogeneous open-cell structure. Hematite (α-Fe₂O₃) foams are obtained from the metallic iron slurry independently of the N₂ flow. In contrast, the microstructure of the FeMn-based oxide foams can be tailored by adjusting the N₂ flow. While the main phases for a N₂ flow rate of 180 L/h are α-Fe₂O₃ and FeMnO₃, the predominant phase for high N₂ flow rates (e.g., 650 L/h) is Fe₂MnO₄. Accordingly, a linear magnetization versus field behavior is observed for the hematite foams, while clear hysteresis loops are obtained for the Fe₂MnO₄ foams. Actually, the saturation magnetization of the foams containing Mn increases from 5 emu/g to 52 emu/g when the N₂ flow rate (i.e., the amount of Fe₂MnO₄) is increased. The obtained foams are appealing for a wide range of applications, such as electromagnetic absorbers, catalysts supports, thermal and acoustic insulation systems or wirelessly magnetically-guided porous objects in fluids.
Modifications Of A Commercial Spray Gun
NASA Technical Reports Server (NTRS)
Allen, Peter B.
1993-01-01
Commercial spray gun modified to increase spray rate and make sprayed coats more nearly uniform. Consists of gun head and pneumatic actuator. Actuator opens valves for two chemical components, called "A" and "B," that react to produce foam. Components flow through orifices, into mixing chamber in head. Mixture then flows through control orifice to spray tip. New spray tip tapered to reduce area available for accumulation of foam and makes tip easier to clean.
NASA Technical Reports Server (NTRS)
Ludewig, M.; Omori, S.; Rao, G. L.
1974-01-01
Tests were conducted to determine the experimental pressure drop and velocity data for water flowing through woven screens. The types of materials used are dutch twill and square weave fabrics. Pressure drop measures were made at four locations in a rectangular channel. The data are presented as change in pressure compared with the average entry velocity and the numerical relationship is determined by dividing the volumetric flow rate by the screen area open to flow. The equations of continuity and momentum are presented. A computer program listing an extension of a theoretical model and data from that computer program are included.
Ribosome flow model with positive feedback
Margaliot, Michael; Tuller, Tamir
2013-01-01
Eukaryotic mRNAs usually form a circular structure; thus, ribosomes that terminatae translation at the 3′ end can diffuse with increased probability to the 5′ end of the transcript, initiating another cycle of translation. This phenomenon describes ribosomal flow with positive feedback—an increase in the flow of ribosomes terminating translating the open reading frame increases the ribosomal initiation rate. The aim of this paper is to model and rigorously analyse translation with feedback. We suggest a modified version of the ribosome flow model, called the ribosome flow model with input and output. In this model, the input is the initiation rate and the output is the translation rate. We analyse this model after closing the loop with a positive linear feedback. We show that the closed-loop system admits a unique globally asymptotically stable equilibrium point. From a biophysical point of view, this means that there exists a unique steady state of ribosome distributions along the mRNA, and thus a unique steady-state translation rate. The solution from any initial distribution will converge to this steady state. The steady-state distribution demonstrates a decrease in ribosome density along the coding sequence. For the case of constant elongation rates, we obtain expressions relating the model parameters to the equilibrium point. These results may perhaps be used to re-engineer the biological system in order to obtain a desired translation rate. PMID:23720534
Pahoehoe and aa in Hawaii: volumetric flow rate controls the lava structure
NASA Astrophysics Data System (ADS)
Rowland, Scott K.; Walker, George Pl
1990-11-01
The historical records of Kilauea and Mauna Loa volcanoes reveal that the rough-surfaced variety of basalt lava called aa forms when lava flows at a high volumetric rate (>5 10 m3/s), and the smooth-surfaced variety called pahoehoe forms at a low volumetric rate (<5 10 m3/s). This relationship is well illustrated by the 1983 1990 and 1969 1974 eruptions of Kilauea and the recent eruptions of Mauna Loa. It is also illustrated by the eruptions that produced the remarkable paired flows of Mauna Loa, in which aa formed during an initial short period of high discharge rate (associated with high fountaining) and was followed by the eruption of pahoehoe over a sustained period at a low discharge rate (with little or no fountaining). The finest examples of paired lava flows are those of 1859 and 1880 1881. We attribute aa formation to rapid and concentrated flow in open channels. There, rapid heat loss causes an increase in viscosity to a threshold value (that varies depending on the actual flow velocity) at which, when surface crust is torn by differential flow, the underlying lava is unable to move sufficiently fast to heal the tear. We attribute pahoehoe formation to the flowage of lava at a low volumetric rate, commonly in tubes that minimize heat loss. Flow units of pahoehoe are small (usually <1 m thick), move slowly, develop a chilled skin, and become virtually static before the viscosity has risen, to the threshold value. We infer that the high-discharge-rate eruptions that generate aa flows result from the rapid emptying of major or subsidiary magma chambers. Rapid near-surface vesiculation of gas-rich magma leads to eruptions with high discharge rates, high lava fountains, and fast-moving channelized flows. We also infer that long periods of sustained flow at a low discharge rate, which favor pahoehoe, result from the development of a free and unimpeded pathway from the deep plumbing system of the volcano and the separation of gases from the magma before eruption. Achievement of this condition requires one or more episodes of rapid magma excursion through the rift zone to establish a stable magma pathway.
NASA Technical Reports Server (NTRS)
Everhart, Joel L.
2008-01-01
Impact and debris damage to the Space Shuttle Orbiter Thermal Protection System tiles is a random phenomenon, occurring at random locations on the vehicle surface, resulting in random geometrical shapes that are exposed to a definable range of surface flow conditions. In response to the 2003 Final Report of the Columbia Accident Investigation Board, wind tunnel aeroheating experiments approximating a wide range of possible damage scenarios covering both open and closed cavity flow conditions were systematically tested in hypersonic ground based facilities. These data were analyzed and engineering assessment tools for damage-induced fully-laminar heating were developed and exercised on orbit. These tools provide bounding approximations for the damaged-surface heating environment. This paper presents a further analysis of the baseline, zero-pressure-gradient, idealized, rectangular-geometry cavity heating data, yielding new laminar correlations for the floor-averaged heating, peak cavity endwall heating, and the downstream decay rate. Correlation parameters are derived in terms of cavity geometry and local flow conditions. Prediction Limit Uncertainty values are provided at the 95%, 99% and 99.9% levels of significance. Non-baseline conditions, including non-rectangular geometries and flows with known pressure gradients, are used to assess the range of applicability of the new correlations. All data variations fall within the 99% Prediction Limit Uncertainty bounds. Importantly, both open-flow and closed-flow cavity heating are combined into a single-curve parameterization of the heating predictions, and provide a concise mathematical model of the laminar cavity heating flow field with known uncertainty.
Pigtail catheters used for percutaneous fluid drainage: comparison of performance characteristics.
Macha, Douglas B; Thomas, John; Nelson, Rendon C
2006-03-01
To compare the performance characteristics of various single-lumen all-purpose pigtail drainage catheters. The following parameters were compared: flow rates between catheters of the same size, whether changing the fluid viscosity has any effect on catheter comparisons, the effect on flow of leaving an open three-way stopcock in the drainage pathway, the tendency of the catheters to kink, and catheter patency after kinking, as measured according to flow. All-purpose 8.0-, 8.3-, and 8.5-F (collectively referred to as 8-F); 10.0-, 10.2-, and 10.3-F (collectively referred to as 10-F); and 12.0-F pigtail drainage catheters from three manufacturers were evaluated. Data were compared by using two-tailed t tests after normal distributions were confirmed. P < .05 was considered to represent a significant difference. At comparison of the 8-F catheters, the C.R. Bard catheters demonstrated better flow rates than the Cook and Boston Scientific devices. Among the 10-F catheters, there were no significant differences in the flow rates of fluid with viscosity equivalent to that of water between the C.R. Bard and Boston Scientific catheters; however, both these catheter types demonstrated significantly (P < .05) better flow rates than the Cook devices. Among the 12-F catheters, the C.R. Bard catheters demonstrated significantly (P < .05) better flow rates than the other two catheter types. Changing the fluid viscosity caused no changes in comparison results. In all catheter groups, the presence of a stopcock significantly (P < .05) impaired flow. None of the evaluated catheters demonstrated a clear advantage in terms of patency or susceptibility to kinking. At comparison of the in vitro performances of catheters from different manufacturers, the C.R. Bard 8.0-F and Cook 10.2-F catheters had comparable flow rates, and flow rates through the C.R. Bard and Boston Scientific 10.0-F catheters were comparable to flow rates through the Cook and Boston Scientific 12.0-F catheters. Varying viscosity had no effect on comparisons of catheter flow rates; however, a stopcock between the vacuum source and the catheter was noted to impair flow rates in all brands and sizes of evaluated catheters. Copyright RSNA, 2006.
Chen, Cheryl Chia-Hui; Wu, Kuo-Hsiang; Ku, Shih-Chi; Chan, Ding-Cheng; Lee, Jang-Jaer; Wang, Tyng-Guey; Hsiao, Tzu-Yu
2018-06-01
To describe the sequelae of oral endotracheal intubation by evaluating prevalence rates of structural injury, hyposalivation, and impaired vocal production over 14days following extubation. Consecutive adults (≥20years, N=114) with prolonged (≥48h) endotracheal intubation were enrolled from medical intensive care units at a university hospital. Participants were assessed by trained nurses at 2, 7, and 14days after extubation, using a standardized bedside screening protocol. Within 48-hour postextubation, structural injuries were common, with 51% having restricted mouth opening. Unstimulated salivary flow was reduced in 43%. For vocal production, 51% had inadequate breathing support for phonation, dysphonia was common (94% had hoarseness and 36% showed reduced efficiency of vocal fold closure), and >40% had impaired articulatory precision. By 14days postextubation, recovery was noted in most conditions, but reduced efficiency of vocal fold closure persisted. Restricted mouth opening (39%) and reduced salivary flow (34%) remained highly prevalent. After extubation, restricted mouth opening, reduced salivary flow, and dysphonia were common and prolonged in recovery. Reduced efficiency of vocal cord closure persisted at 14days postextubation. The extent and duration of these sequelae remind clinicians to screen for them up to 2weeks after extubation. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, D.
2017-12-01
Plants, especially trees, in the riparian zone may have a significant impact on the flow rate, temperature and chemical properties of groundwater. A field study was conducted in the downstream bank of the Xin'an River dam, Zhejiang, China. In the field, two areas of about 20 meters apart were chosen, of which one was a open place and the other was covered with many orange trees. Comparison of hyporheic flow and water quality in the open and tree-covered banks were made by monitoring the water level, water temperature, water chemistry (March, 2015) along the cross sections perpendicular to the river. The analyses indicated that water level around the trees was relatively low in the day and high in the evening, thus changed the direction and magnitude of the natural groundwater flow velocity, totally strengthened the hyporheic exchange between the groundwater and river. The trees also changed the temperature distribution of the natural river bank, and induced the wider infiltration range of the low-temperature water. The temperature around the trees was relatively low in the day, yet it was high in the evening. Dissolved oxygen (DO) and electricity conductivity (EC) around the trees were significantly increased, yet the pH was almost unaffected.
Research on three-phase traffic flow modeling based on interaction range
NASA Astrophysics Data System (ADS)
Zeng, Jun-Wei; Yang, Xu-Gang; Qian, Yong-Sheng; Wei, Xu-Ting
2017-12-01
On the basis of the multiple velocity difference effect (MVDE) model and under short-range interaction, a new three-phase traffic flow model (S-MVDE) is proposed through careful consideration of the influence of the relationship between the speeds of the two adjacent cars on the running state of the rear car. The random slowing rule in the MVDE model is modified in order to emphasize the influence of vehicle interaction between two vehicles on the probability of vehicles’ deceleration. A single-lane model which without bottleneck structure under periodic boundary conditions is simulated, and it is proved that the traffic flow simulated by S-MVDE model will generate the synchronous flow of three-phase traffic theory. Under the open boundary, the model is expanded by adding an on-ramp, the congestion pattern caused by the bottleneck is simulated at different main road flow rates and on-ramp flow rates, which is compared with the traffic congestion pattern observed by Kerner et al. and it is found that the results are consistent with the congestion characteristics in the three-phase traffic flow theory.
Model Experiment on the Temporary Closure of a Breached Bank
NASA Astrophysics Data System (ADS)
Shimada, T.; Maeda, S.; Nakashima, Y.
2016-12-01
In recent years, the possibility of river bank failures has been rising due to increased occurrences of floods from localized torrential downpours and typhoons. To mitigate bank failure damage, we made an experiment to simulate the flood discharge reduction effect of a temporary closure at an opening in a breached bank. A scale river model was used. A bank was made and then breached. Then, model blocks were placed to close the breach, to observe the flood discharge reduction afforded by the closure. We assumed that the blocks would be placed by a crane or from a helicopter, so we placed the model blocks accordingly. Regardless of the placement method, the flood discharge reduction was about 20% when about 50% of the breach was closed by the placement of blocks starting from the upstream-most portion of the breach. That result was because the water flow hit the tip of the placed closure, scoured the bed near the tip, and lowered the bed at the remaining part of the breach opening, after which the area where water flows out did not decrease at the same rate as the rate of longitudinal closure for the breach. In addition, with each successive length of breach closure, the required number of blocks increased and the closure progress decreased, because of the bed degradation. The results show that it is possible to reduce the flood flow from a bank breach effectively while closing the opening by taking measures to reduce bed scouring near the breach.
NASA Astrophysics Data System (ADS)
Xing, Fangyuan; Wang, Honghuan; Yin, Hongxi; Li, Ming; Luo, Shenzi; Wu, Chenguang
2016-02-01
With the extensive application of cloud computing and data centres, as well as the constantly emerging services, the big data with the burst characteristic has brought huge challenges to optical networks. Consequently, the software defined optical network (SDON) that combines optical networks with software defined network (SDN), has attracted much attention. In this paper, an OpenFlow-enabled optical node employed in optical cross-connect (OXC) and reconfigurable optical add/drop multiplexer (ROADM), is proposed. An open source OpenFlow controller is extended on routing strategies. In addition, the experiment platform based on OpenFlow protocol for software defined optical network, is designed. The feasibility and availability of the OpenFlow-enabled optical nodes and the extended OpenFlow controller are validated by the connectivity test, protection switching and load balancing experiments in this test platform.
Kinematic, Dynamic, and Energy Characteristics of Diastolic Flow in the Left Ventricle
Khalafvand, Seyed Saeid; Hung, Tin-Kan; Ng, Eddie Yin-Kwee; Zhong, Liang
2015-01-01
Blood flow characteristics in the normal left ventricle are studied by using the magnetic resonance imaging, the Navier-Stokes equations, and the work-energy equation. Vortices produced during the mitral valve opening and closing are modeled in a two-dimensional analysis and correlated with temporal variations of the Reynolds number and pressure drop. Low shear stress and net pressures on the mitral valve are obtained for flow acceleration and deceleration. Bernoulli energy flux delivered to blood from ventricular dilation is practically balanced by the energy influx and the rate change of kinetic energy in the ventricle. The rates of work done by shear and energy dissipation are small. The dynamic and energy characteristics of the 2D results are comparable to those of a 3D model. PMID:26417381
Flow distribution in parallel microfluidic networks and its effect on concentration gradient
Guermonprez, Cyprien; Michelin, Sébastien; Baroud, Charles N.
2015-01-01
The architecture of microfluidic networks can significantly impact the flow distribution within its different branches and thereby influence tracer transport within the network. In this paper, we study the flow rate distribution within a network of parallel microfluidic channels with a single input and single output, using a combination of theoretical modeling and microfluidic experiments. Within the ladder network, the flow rate distribution follows a U-shaped profile, with the highest flow rate occurring in the initial and final branches. The contrast with the central branches is controlled by a single dimensionless parameter, namely, the ratio of hydrodynamic resistance between the distribution channel and the side branches. This contrast in flow rates decreases when the resistance of the side branches increases relative to the resistance of the distribution channel. When the inlet flow is composed of two parallel streams, one of which transporting a diffusing species, a concentration variation is produced within the side branches of the network. The shape of this concentration gradient is fully determined by two dimensionless parameters: the ratio of resistances, which determines the flow rate distribution, and the Péclet number, which characterizes the relative speed of diffusion and advection. Depending on the values of these two control parameters, different distribution profiles can be obtained ranging from a flat profile to a step distribution of solute, with well-distributed gradients between these two limits. Our experimental results are in agreement with our numerical model predictions, based on a simplified 2D advection-diffusion problem. Finally, two possible applications of this work are presented: the first one combines the present design with self-digitization principle to encapsulate the controlled concentration in nanoliter chambers, while the second one extends the present design to create a continuous concentration gradient within an open flow chamber. PMID:26487905
NASA Astrophysics Data System (ADS)
Su, Yuanjie; Xie, Guangzhong; Xie, Fabiao; Xie, Tao; Zhang, Qiuping; Zhang, Hulin; Du, Hongfei; Du, Xiaosong; Jiang, Yadong
2016-06-01
A single-electrode-based segmented triboelectric nanogenerator (S-TENG) was developed. By utilizing the wind-induced vibration of a fluorinated ethylene propylene (FEP) film between two copper electrodes, the S-TENG delivers an open-circuit voltage up to 36 V and a short-circuit current of 11.8 μA, which can simultaneously light up 20 LEDs and charge capacitors. Moreover, the S-TENG holds linearity between output current and flow rate, revealing its feasibility as a self-powered wind speed sensor. This work demonstrates potential applications of S-TENG in wind energy harvester, self-powered gas sensor, high altitude air navigation.
Study on an undershot cross-flow water turbine
NASA Astrophysics Data System (ADS)
Nishi, Yasuyuki; Inagaki, Terumi; Li, Yanrong; Omiya, Ryota; Fukutomi, Junichiro
2014-06-01
This study aims to develop a water turbine suitable for ultra-low heads in open channels, with the end goal being the effective utilization of unutilized hydroelectric energy in agricultural water channels. We performed tests by applying a cross-flow runner to an open channel as an undershot water turbine while attempting to simplify the structure and eliminate the casing. We experimentally investigated the flow fields and performance of water turbines in states where the flow rate was constant for the undershot cross-flow water turbine mentioned above. In addition, we compared existing undershot water turbines with our undershot cross-flow water turbine after attaching a bottom plate to the runner. From the results, we were able to clarify the following. Although the effective head for cross-flow runners with no bottom plate was lower than those found in existing runners equipped with a bottom plate, the power output is greater in the high rotational speed range because of the high turbine efficiency. Also, the runner with no bottom plate differed from runners that had a bottom plate in that no water was being wound up by the blades or retained between the blades, and the former received twice the flow due to the flow-through effect. As a result, the turbine efficiency was greater for runners with no bottom plate in the full rotational speed range compared with that found in runners that had a bottom plate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Ben; Li, Peiwen; Waller, Peter
2015-02-27
This paper analyzes and evaluates the flow mixing in an open channel algal raceway for biofuel production. The flow mixing governs the frequency of how algae cells are exposed to sunlight, due to the fluid movement between the surface and the bottom of the algal raceway, thereby affecting algal growth rate. In this work, we investigated the flow mixing performance in a table-sized model of the High Velocity Algae Raceway Integrated Design (ARID-HV). Various geometries of the raceway channels and dams were considered in both the CFD analysis and experimental flowvisualization. In the CFD simulation, the pathlines of fluid particlesweremore » analyzed to obtain the distribution of the number of times that particles passed across a critical water depth, Dc, defined as a cycle count. In addition, the distribution of the time period fraction that the fluid particles stayed in the zones above and below Dc was recorded. Such information was used to evaluate the flow mixing in the raceway. The CFD evaluation of the flow mixing was validated using experimental flow visualization, which showed a good qualitative agreement with the numerical results. In conclusion, this CFD-based evaluation methodology is recommended for flow field optimization for open channel algal raceways, as well as for other engineering applications in which flow mixing is an important concern.« less
NASA Technical Reports Server (NTRS)
Ohara, D.; Vo, T.; Vedder, J. F.
1985-01-01
A multistage open-tube trap for cryogenic collection of trace components in low-pressure air samples is described. The open-tube design allows higher volumetric flow rates than densely packed glass-bead traps commonly reported and is suitable for air samples at pressures below 27 kPa with liquid nitrogen as the cryogen. Gas blends containing 200 to 2500 parts per trillion by volume each of ethane and ethene were sampled and hydrocarbons were enriched with 100 + or - 4 percent trap efficiency. The multistage design is more efficient than equal-length open-tube traps under the conditions of the measurements.
Solute transport and storage mechanisms in wetlands of the Everglades, south Florida
Harvey, Judson W.; Saiers, James E.; Newlin, Jessica T.
2005-01-01
Solute transport and storage processes in wetlands play an important role in biogeochemical cycling and in wetland water quality functions. In the wetlands of the Everglades, there are few data or guidelines to characterize transport through the heterogeneous flow environment. Our goal was to conduct a tracer study to help quantify solute exchange between the relatively fast flowing water in the open part of the water column and much more slowly moving water in thick floating vegetation and in the pore water of the underlying peat. We performed a tracer experiment that consisted of a constant‐rate injection of a sodium bromide (NaBr) solution for 22 hours into a 3 m wide, open‐ended flume channel in Everglades National Park. Arrival of the bromide tracer was monitored at an array of surface water and subsurface samplers for 48 hours at a distance of 6.8 m downstream of the injection. A one‐dimensional transport model was used in combination with an optimization code to identify the values of transport parameters that best explained the tracer observations. Parameters included dimensions and mass transfer coefficients describing exchange with both short (hours) and longer (tens of hours) storage zones as well as the average rates of advection and longitudinal dispersion in the open part of the water column (referred to as the “main flow zone”). Comparison with a more detailed set of tracer measurements tested how well the model's storage zones approximated the average characteristics of tracer movement into and out of the layer of thick floating vegetation and the pore water in the underlying peat. The rate at which the relatively fast moving water in the open water column was exchanged with slowly moving water in the layer of floating vegetation and in sediment pore water amounted to 50 and 3% h−1, respectively. Storage processes decreased the depth‐averaged velocity of surface water by 50% relative to the water velocity in the open part of the water column. As a result, flow measurements made with other methods that only work in the open part of the water column (e.g., acoustic Doppler) would have overestimated the true depth‐averaged velocity by a factor of 2. We hypothesize that solute exchange and storage in zones of floating vegetation and peat pore water increase contact time of solutes with biogeochemically active surfaces in this heterogeneous wetland environment.
Anna, D H; Zellers, E T; Sulewski, R
1998-08-01
ASTM (American Society for Testing and Materials) Method F739-96 specifies a test-cell design and procedures for measuring the permeation resistance of chemical protective clothing. Among the specifications are open-loop collection stream flow rates of 0.050 to 0.150 L/min for a gaseous medium. At elevated temperatures the test must be maintained within 1 degree C of the set point. This article presents a critical analysis of the effect of the collection stream flow rate on the measured permeation rate and on the temperature uniformity within the test cell. Permeation tests were conducted on four polymeric glove materials with 44 solvents at 25 degrees C. Flow rates > 0.5 L/min were necessary to obtain accurate steady-state permeation rate (SSPR) values in 25 percent of the tests. At the lower flow rates the true SSPR typically was underestimated by a factor of two or less, but errors of up to 33-fold were observed. No clear relationship could be established between the need for a higher collection stream flow rate and either the vapor pressure or the permeation rate of the solvent, but test results suggest that poor mixing within the collection chamber was a contributing factor. Temperature gradients between the challenge and collection chambers and between the bottom and the top of the collection chamber increased with the water-bath temperature and the collection stream flow rate. Use of a test cell modified to permit deeper submersion reduced the gradients to < or = 0.5 degrees C. It is recommended that all SSPR measurements include verification of the adequacy of the collection stream flow rate. For testing at nonambient temperatures, the modified test cell described here could be used to ensure temperature uniformity throughout the cell.
Sublithospheric flows in the mantle
NASA Astrophysics Data System (ADS)
Trifonov, V. G.; Sokolov, S. Yu.
2017-11-01
The estimated rates of upper mantle sublithospheric flows in the Hawaii-Emperor Range and Ethiopia-Arabia-Caucasus systems are reported. In the Hawaii-Emperor Range system, calculation is based on motion of the asthenospheric flow and the plate moved by it over the branch of the Central Pacific plume. The travel rate has been determined based on the position of variably aged volcanoes (up to 76 Ma) with respect to the active Kilauea Volcano. As for the Ethiopia-Arabia-Caucasus system, the age of volcanic eruptions (55-2.8 Ma) has been used to estimate the asthenospheric flow from the Ethiopian-Afar superplume in the northern bearing lines. Both systems are characterized by variations in a rate of the upper mantle flows in different epochs from 4 to 12 cm/yr, about 8 cm/yr on average. Analysis of the global seismic tomographic data has made it possible to reveal rock volumes with higher seismic wave velocities under ancient cratons; rocks reach a depth of more than 2000 km and are interpreted as detached fragments of the thickened continental lithosphere. Such volumes on both sides of the Atlantic Ocean were submerged at an average velocity of 0.9-1.0 cm/yr along with its opening. The estimated rates of the mantle flows clarify the deformation properties of the mantle and regulate the numerical models of mantle convection.
Liquid Nitrogen Subcooler Pressure Vessel Engineering Note
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rucinski, R.; /Fermilab
1997-04-24
The normal operating pressure of this dewar is expected to be less than 15 psig. This vessel is open to atmospheric pressure thru a non-isolatable vent line. The backpressure in the vent line was calculated to be less than 1.5 psig at maximum anticipated flow rates.
Van Berkel, Gary J.; Kertesz, Vilmos
2015-08-25
RATIONALE: A simple method to introduce unprocessed samples into a solvent for rapid characterization by liquid introduction atmospheric pressure ionization mass spectrometry has been lacking. The continuous flow, self-cleaning open port sampling interface introduced here fills this void. METHODS: The open port sampling interface used a vertically aligned, co-axial tube arrangement enabling solvent delivery to the sampling end of the device through the tubing annulus and solvent aspiration down the center tube and into the mass spectrometer ionization source via the commercial APCI emitter probe. The solvent delivery rate to the interface was set to exceed the aspiration rate creatingmore » a continuous sampling interface along with a constant, self-cleaning spillover of solvent from the top of the probe. RESULTS: Using the open port sampling interface with positive ion mode APCI and a hybrid quadrupole time of flight mass spectrometer, rapid, direct sampling and analysis possibilities are exemplified with plastics, ballpoint and felt tip ink pens, skin, and vegetable oils. These results demonstrated that the open port sampling interface could be used as a simple, versatile and self-cleaning system to rapidly introduce multiple types of unprocessed, sometimes highly concentrated and complex, samples into a solvent flow stream for subsequent ionization and analysis by mass spectrometry. The basic setup presented here could be incorporated with any self-aspirating liquid introduction ionization source (e.g., ESI, APCI, APPI, ICP, etc.) or any type of atmospheric pressure sampling ready mass spectrometer system. CONCLUSIONS: The open port sampling interface provides a means to introduce and quickly analyze unprocessed solid or liquid samples with liquid introduction atmospheric pressure ionization source without fear of sampling interface or ionization source contamination.« less
NASA Astrophysics Data System (ADS)
Nakashima, K.; Watanabe, S.; Matsushita, D.; Tsuda, S.; Furukawa, A.
2016-11-01
Small hydropower is one of the renewable energies and is expected to be effectively used for local supply of electricity. We have developed Darrieus-type hydro-turbine systems, and among them, the Darrieus-turbine with a weir and a nozzle installed upstream of turbine is, so far, in success to obtain more output power by gathering all water into the turbine. However, there can several cases exist, in which installing the weir covering all the flow channel width is unrealistic, and in such cases, the turbine should be put alone in open channels without upstream weir. Since the output power is very small in such a utilization of small hydropower, it is important to derive more power for the cost reduction. In the present study, we parametrically investigate the preferable shape of the inlet nozzle for the Darrieus-type hydroturbine operated in an open flow channel. Experimental investigation is carried out in the open channel in our lab. Tested inlet nozzles are composed of two flat plates with the various nozzle converging angles and nozzle outlet (runner inlet) widths with the nozzle inlet width kept constant. As a result, the turbine with the nozzles having large converging angle and wide outlet width generates higher power. Two-dimensional unsteady numerical simulation is also carried out to qualitatively understand the flow mechanism leading to the better performance of turbine. Since the depth, the width and the flow rate in the real open flow channels are different from place to place and, in some cases from time to time, it is also important to predict the onsite performance of the hydroturbine from the lab experiment at planning stage. One-dimensional stream-tube model is developed for this purpose, in which the Darrieus-type hydroturbine with the inlet nozzle is considered as an actuator-disk modelled based on our experimental and numerical results.
Spiromax, a New Dry Powder Inhaler: Dose Consistency under Simulated Real-World Conditions.
Canonica, Giorgio Walter; Arp, Jan; Keegstra, Johan René; Chrystyn, Henry
2015-10-01
Spiromax(®) is a novel dry powder inhaler for patients with asthma or chronic obstructive pulmonary disease (COPD). The studies presented here provide further data on attributes (in vitro dosing consistency with budesonide-formoterol (DuoResp) Spiromax; flow rates through empty versions of the Spiromax and Turbuhaler inhaler) of importance to patients with asthma or COPD. Dose-delivery studies were performed using low-, middle-, and high-strength DuoResp Spiromax. Dose consistency was assessed over inhaler life. Total emitted doses (TEDs) were measured at various flow rates, after exposure to high and low temperature or humidity, at different inhaler orientations, and after dropping the inhaler. The criterion for evaluating dose uniformity was whether mean TEDs were within the product specification limits. In separate studies, flow rates were measured after training, using the patient information leaflets, and again after enhanced training as part of a randomized, open-label, cross-over study. Mean values for both budesonide and formoterol were within 85%-115% of the label claim for each strength of DuoResp Spiromax for initial dose uniformity and for the other investigated conditions (temperature, humidity, orientation, dropping, knocking), with the exception of approximately an 80% increase in first dose after dropping the inhaler (subsequent doses not affected). In the flow rate patient study, two patients' inhalations with Spiromax and six with Turbuhaler were <30 L/min. The majority of asthma patients [91% (Spiromax) versus 82% (Turbuhaler)] achieved the preferred flow rate of >60 L/min. DuoResp Spiromax consistently meets dose uniformity criteria, under controlled laboratory conditions and with variations intended to mimic real-world use. Following enhanced training, all patients in the flow study were able to achieve the minimal inspiratory flow rate of >30 L/min, which is required for effective treatment.
Can Hall effect trigger Kelvin-Helmholtz instability in sub-Alfvénic flows?
NASA Astrophysics Data System (ADS)
Pandey, B. P.
2018-05-01
In the Hall magnetohydrodynamics, the onset condition of the Kelvin-Helmholtz instability is solely determined by the Hall effect and is independent of the nature of shear flows. In addition, the physical mechanism behind the super- and sub-Alfvénic flows becoming unstable is quite different: the high-frequency right circularly polarized whistler becomes unstable in the super-Alfvénic flows whereas low-frequency, left circularly polarized ion-cyclotron wave becomes unstable in the presence of sub-Alfvénic shear flows. The growth rate of the Kelvin-Helmholtz instability in the super-Alfvénic case is higher than the corresponding ideal magnetohydrodynamic rate. In the sub-Alfvénic case, the Hall effect opens up a new, hitherto inaccessible (to the magnetohydrodynamics) channel through which the partially or fully ionized fluid can become Kelvin-Helmholtz unstable. The instability growth rate in this case is smaller than the super-Alfvénic case owing to the smaller free shear energy content of the flow. When the Hall term is somewhat smaller than the advection term in the induction equation, the Hall effect is also responsible for the appearance of a new overstable mode whose growth rate is smaller than the purely growing Kelvin-Helmholtz mode. On the other hand, when the Hall diffusion dominates the advection term, the growth rate of the instability depends only on the Alfvén -Mach number and is independent of the Hall diffusion coefficient. Further, the growth rate in this case linearly increases with the Alfvén frequency with smaller slope for sub-Alfvénic flows.
The flow field investigations of no load conditions in axial flow fixed-blade turbine
NASA Astrophysics Data System (ADS)
Yang, J.; Gao, L.; Wang, Z. W.; Zhou, X. Z.; Xu, H. X.
2014-03-01
During the start-up process, the strong instabilities happened at no load operation in a low head axial flow fixed-blade turbine, with strong pressure pulsation and vibration. The rated speed can not reach until guide vane opening to some extent, and stable operation could not be maintained under the rated speed at some head, which had a negative impact on the grid-connected operation of the unit. In order to find the reason of this phenomenon, the unsteady flow field of the whole flow passage at no load conditions was carried out to analyze the detailed fluid field characteristics including the pressure pulsation and force imposed on the runner under three typical heads. The main hydraulic cause of no load conditions instability was described. It is recommended that the power station should try to reduce the no-load running time and go into the high load operation as soon as possible when connected to grid at the rated head. Following the recommendations, the plant operation practice proved the unstable degree of the unit was reduced greatly during start up and connect to the power grid.
NASA Astrophysics Data System (ADS)
Rosenwaks, Salman; Barmashenko, Boris D.; Bruins, Esther; Furman, Dov; Rybalkin, Victor; Katz, Arje
2002-05-01
Spatial distributions of the gain and temperament across the flow were studied for transonic and supersonic schemes of the iodine injection in a slit nozzle supersonic chemical oxygen-iodine laser as a function of the iodine and secondary nitrogen flow rate, jet penetration parameter and gas pumping rate. The mixing efficiency for supersonic injection of iodine is found to be much larger than for transonic injection, the maximum values of the gain being approximately 0.65 percent/cm for both injection schemes. Measurements of the gain distribution as a function of the iodine molar flow rate nI2 were carried out. For transonic injection the optimal value of nI2 at the flow centerline is smaller than that at the off axis location. The temperature is distributed homogeneously across the flow, increasing only in the narrow boundary layers near the walls. Opening a leak downstream of the cavity in order to decease the Mach number results in a decrease of the gain and increase of the temperature. The mixing efficiency in this case is much larger than for closed leak.
Heat Extraction from a Hydraulically Fractured Penny-Shaped Crack in Hot Dry Rock
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abe, H.; Mura, T.; Keer, L.M.
1976-12-01
Heat extraction from a penny-shaped crack having both inlet and outlet holes is investigated analytically by considering the hydraulic and thermal growth of the crack when fluid is injected at a constant flow rate. The rock mass is assumed to be infinitely extended, homogeneous, and isotropic. The equations for fluid flow are derived and solved to determine the flow pattern in the crack. Temperature distributions in both rock and fluid are also determined. The crack width change due to thermal contraction and the corresponding flow rate increase are discussed. Some numerical calculations of outlet temperature, thermal power extraction, and crackmore » opening displacement due to thermal contraction of rocks are presented for cracks after they attain stationary states for given inlet flow rate and outlet suction pressure. The present paper is a further development of the previous works of Bodvarsson (1969), Gringarten et al. (1975), Lowell (1976), Harlow and Pracht (1972), McFarland (1975), among others, and considers the two-dimensional rather than the one-dimensional crack. Furthermore, the crack radius and width are quantities to be determined rather than given a priori. 11 refs., 1 tab., 5 figs.« less
Non-contact flow gauging for the extension and development of rating curves
NASA Astrophysics Data System (ADS)
Perks, Matthew; Large, Andy; Russell, Andy
2015-04-01
Accurate measurement of river discharge is fundamental to understanding hydrological processes, associated hazards and ecological responses within fluvial systems. Established protocols for determining river discharge are partial, predominantly invasive and logistically difficult during high flows. There is demand for new methods for accurate quantification of flow velocity under high-flow/flood conditions to in turn enable better post-event reconstruction of peak discharge. As a consequence considerable effort has been devoted to the development of innovative technologies for the representation of flow in open channels. Remotely operated fixed and mobile systems capable of providing quantitative estimates of instantaneous and time-averaged flow characteristics using non-contact methods has been a major development. Amongst the new approaches for stand-alone continuous monitoring of surface flows is Large Scale Particle Image Velocimetry (LSPIV). Here we adapt the LSPIV concept, to provide continuous discharge measurements in non-uniform channels with complex flow conditions. High Definition videos (1080p; 30fps) of the water surface are acquired at 5 minute intervals. The image is rectified to correct for perspective distortion using a new, open source tool which minimises errors resulting from oblique image capture. Naturally occurring artefacts on the water surface (e.g. bubbles, debris, etc.) are tracked with the Kanade-Lucas-Tomasi (KLT) algorithm. The data generated is in the form of a complex surface water velocity field which can be interrogated to extract a range of hydrological information such as the streamwise velocity at a cross-section of interest, or even allow the interrogation of hydrodynamic flow structures. Here we demonstrate that this approach is capable of generating river discharge data comparable to concurrent measurements made using existing, accepted technologies (e.g. ADCP). The outcome is better constraint and extension of rating curves. The approach is suited to water management authorities throughout Europe who seek ever-increasingly cost-effective and non-invasive techniques for maximising the monitoring capabilities of their operational network.
Capillarics: pre-programmed, self-powered microfluidic circuits built from capillary elements.
Safavieh, Roozbeh; Juncker, David
2013-11-07
Microfluidic capillary systems employ surface tension effects to manipulate liquids, and are thus self-powered and self-regulated as liquid handling is structurally and chemically encoded in microscale conduits. However, capillary systems have been limited to perform simple fluidic operations. Here, we introduce complex capillary flow circuits that encode sequential flow of multiple liquids with distinct flow rates and flow reversal. We first introduce two novel microfluidic capillary elements including (i) retention burst valves and (ii) robust low aspect ratio trigger valves. These elements are combined with flow resistors, capillary retention valves, capillary pumps, and open and closed reservoirs to build a capillary circuit that, following sample addition, autonomously delivers a defined sequence of multiple chemicals according to a preprogrammed and predetermined flow rate and time. Such a circuit was used to measure the concentration of C-reactive protein. This work illustrates that as in electronics, complex capillary circuits may be built by combining simple capillary elements. We define such circuits as "capillarics", and introduce symbolic representations. We believe that more complex circuits will become possible by expanding the library of building elements and formulating abstract design rules.
Critical capillary channel flow
NASA Astrophysics Data System (ADS)
Grah, Aleksander; Klatte, Jörg; Dreyer, Michael E.
The main subject are numerical studies on capillary channel flow, based on results of the sounding rocket experiments TEXUS 41/42. The flow through a capillary channel is established by a gear pump at the outlet. The channel, consists of two parallel glass plates with a width of 25 mm, a gap of 10 mm and a length of 12 mm. The meniscus of a compensation tube maintains a constant system pressure. Steady and dynamic pressure effects in the system force the surfaces to bend inwards. A maximum flow rate is achieved when the free surface collapses and gas ingestion occurs at the outlet. This critical flow rate depends on the channel geometry, the flow regime and the liquid properties. The aim of the experiments is the determination of the free surface shape and to find the maximum flow rate. In order to study the unsteady liquid loop behaviour, a dimensionless transient model was developed. It is based on the unsteady Bernoulli equation, the unsteady continuity equation and geometrical conditions for the surface curvature and the flow cross-section. The pressure is related to the curvature of the free liquid surface by the dimensionless Gauss-Laplace equation with two principal radii. The experimental and evaluated contour data shows good agreement for a sequence of transient flow rate perturbations. The surface oscillation frequencies and amplitudes can be predicted with quite high accuracy. The dynamic of the pump is defined by the increase of the flow rate in a time period. To study the unsteady system behavior in the "worst case", we use a perturbations related to the natural frequency of the oscillating liquid. In the case of steady flow at maximum flow rate, when the "choking" effect occurs, the surfaces collapse and cause gas ingestion into the channel. This effect is related to the Speed Index. At the critical flow rate the Speed Index reaches the value Sca = 1, in analogy to the Mach Number. Unsteady choking does not necessarily cause surface collapse. We show, that temporarily Speed Index values exceeding One may be achieved for a perfectly stable supercritical dynamic flow. As a supercritical criterion for the dynamic free surface stability we define a Dynamic Index D considering the local capillary pressure and the convective pressure, which is a function of the local velocity. The Dynamic Index is below One for stable flow while D = 1 indicates surface collapse. This studies result in a stability diagram, which defines the limits of flow dynamics and the maximum unsteady flow rate. It may serve as a road map for open capillary channel flow control.
Flow rate of some pharmaceutical diluents through die-orifices relevant to mini-tableting.
Kachrimanis, K; Petrides, M; Malamataris, S
2005-10-13
The effects of cylindrical orifice length and diameter on the flow rate of three commonly used pharmaceutical direct compression diluents (lactose, dibasic calcium phosphate dihydrate and pregelatinised starch) were investigated, besides the powder particle characteristics (particle size, aspect ratio, roundness and convexity) and the packing properties (true, bulk and tapped density). Flow rate was determined for three different sieve fractions through a series of miniature tableting dies of different orifice diameter (0.4, 0.3 and 0.2 cm) and thickness (1.5, 1.0 and 0.5 cm). It was found that flow rate decreased with the increase of the orifice length for the small diameter (0.2 cm) but for the large diameter (0.4 cm) was increased with the orifice length (die thickness). Flow rate changes with the orifice length are attributed to the flow regime (transitional arch formation) and possible alterations in the position of the free flowing zone caused by pressure gradients arising from the flow of self-entrained air, both above the entrance in the die orifice and across it. Modelling by the conventional Jones-Pilpel non-linear equation and by two machine learning algorithms (lazy learning, LL, and feed-forward back-propagation, FBP) was applied and predictive performance of the fitted models was compared. It was found that both FBP and LL algorithms have significantly higher predictive performance than the Jones-Pilpel non-linear equation, because they account both dimensions of the cylindrical die opening (diameter and length). The automatic relevance determination for FBP revealed that orifice length is the third most influential variable after the orifice diameter and particle size, followed by the bulk density, the difference between bulk and tapped densities and the particle convexity.
NASA Astrophysics Data System (ADS)
Taddeucci, J.; Spieler, O.; Ichihara, M.; Dingwell, D. B.; Scarlato, P.
2006-03-01
To visualize the behavior of erupting magma in volcanic conduits, we performed shock tube experiments on the ductile-brittle response of a viscoelastic medium to diffusion-driven bubble expansion. A sample of shear-thinning magma analogue is saturated by gas Ar under high pressure. On rapid decompression, Ar supersaturation causes bubbles to nucleate, grow, and coalesce in the sample, forcing it to expand, flow, and fracture. Experimental variables include saturation pressure and duration, and shape and lubrication of the flow path. Bubble growth in the experiments controls both flow and fracturing, and is consistent with physical models of magma vesiculation. Two types of fractures are observed: i) sharp fractures along the uppermost rim of the sample, and ii) fractures pervasively diffused throughout the sample. Rim fractures open when shear stress accumulates and strain rate is highest at the margin of the flow (a process already inferred from observations and models to occur in magma). Pervasive fractures originate when wall-friction retards expansion of the sample, causing pressure to build-up in the bubbles. When bubble pressure overcomes wall-friction and the tensile strength of the porous sample, fractures open with a range of morphologies. Both types of fracture open normally to flow direction, and both may heal as the flow proceeds. These experiments also illustrate how the development of pervasive fractures allows exsolving gas to escape from the sample before the generation of a permeable network via other processes, e.g., bubble coalescence. This is an observation that potentially impact the degassing of magma and the transition between explosive and effusive eruptions.
Bedload Rating and Flow Competence Curves Vary With Watershed and Bed Material Parameters
NASA Astrophysics Data System (ADS)
Bunte, K.; Abt, S. R.
2003-12-01
Bedload transport rating curves and flow competence curves (largest bedload size for specified flow) are usually not known for streams unless a large number of bedload samples has been collected and analyzed. However, this information is necessary for assessing instream flow needs and stream responses to watershed effects. This study therefore analyzed whether bedload transport rating and flow competence curves were related to stream parameters. Bedload transport rating curves and flow competence curves were obtained from extensive bedload sampling in six gravel- and cobble-bed mountain streams. Samples were collected using bedload traps and a large net sampler, both of which provide steep and relatively well-defined bedload rating and flow competence curves due to a long sampling duration, a large sampler opening and a large sampler capacity. The sampled streams have snowmelt regimes, steep (1-9%) gradients, and watersheds that are mainly forested and relatively undisturbed with basin area sizes of 8 to 105 km2. The channels are slightly incised and can contain flows of more than 1.5 times bankfull with little overbank flow. Exponents of bedload rating and flow competence curves obtained from these measurements were found to systematically increase with basin area size and decrease with the degree of channel armoring. By contrast, coefficients of bedload rating and flow competence curves decreased with basin size and increased with armoring. All of these relationships were well-defined (0.86 < r2 < 0.99). Data sets from other studies in coarse-bedded streams fit the indicated trend if the sampling device used allows measuring bedload transport rates over a wide range and if bedload supply is somewhat low. The existence of a general positive trend between bedload rating curve exponents and basin area, and a negative trend between coefficients and basin area, is confirmed by a large data set of bedload rating curves obtained from Helley-Smith samples. However, in this case, the trends only become visible as basin area sizes span a wide range (1 - 10,000 km2). The well-defined relationships obtained from the bedload trap and the large net sampler suggest that exponents and coefficients of bedload transport rating curves (and flow competence curves) are predictable from an easily obtainable parameter such as basin size. However, the relationships of bedload rating curve exponents and coefficients with basin size and armoring appear to be influenced by the sampling device used and the watershed sediment production.
TiCl4 as a source of TiO2 particles for laser anemometry measurements in hot gas
NASA Technical Reports Server (NTRS)
Weikle, Donald H.; Seasholtz, Richard G.; Oberle, Lawrence G.
1990-01-01
A method of reacting TiCl4 with water saturated gaseous nitrogen (GN2) at the entrance into a high temperature gas flow is described. The TiO2 particles formed are then entrained in the gas flow and used as seed particles for making laser anemometry (LA) measurements of the flow velocity distribution in the hot gas. Scanning electron microscope photographs of the TiO2 particles are shown. Data rate of the LA processor was measured to determine the amount of TiO2 formed. The TiCl4 and mixing gas flow diagram is shown. This work was performed in an open jet burner.
Improving flow distribution in influent channels using computational fluid dynamics.
Park, No-Suk; Yoon, Sukmin; Jeong, Woochang; Lee, Seungjae
2016-10-01
Although the flow distribution in an influent channel where the inflow is split into each treatment process in a wastewater treatment plant greatly affects the efficiency of the process, and a weir is the typical structure for the flow distribution, to the authors' knowledge, there is a paucity of research on the flow distribution in an open channel with a weir. In this study, the influent channel of a real-scale wastewater treatment plant was used, installing a suppressed rectangular weir that has a horizontal crest to cross the full channel width. The flow distribution in the influent channel was analyzed using a validated computational fluid dynamics model to investigate (1) the comparison of single-phase and two-phase simulation, (2) the improved procedure of the prototype channel, and (3) the effect of the inflow rate on flow distribution. The results show that two-phase simulation is more reliable due to the description of the free-surface fluctuations. It should first be considered for improving flow distribution to prevent a short-circuit flow, and the difference in the kinetic energy with the inflow rate makes flow distribution trends different. The authors believe that this case study is helpful for improving flow distribution in an influent channel.
NASA Astrophysics Data System (ADS)
Ishizeki, Keisuke; Sasaoka, Kenji; Konabe, Satoru; Souma, Satofumi; Yamamoto, Takahiro
2018-06-01
We theoretically investigate quantum decoherence in electronic currents flowing through metallic carbon nanotubes caused by thermal atomic vibrations using the time-dependent Schrödinger equation for an open system. We reveal that the quantum coherence of conduction electrons decays exponentially with tube length at a fixed temperature, and that the decay rate increases with temperature. We also find that the phase relaxation length due to the thermal atomic vibrations is inversely proportional to temperature.
A compositional framework for reaction networks
NASA Astrophysics Data System (ADS)
Baez, John C.; Pollard, Blake S.
Reaction networks, or equivalently Petri nets, are a general framework for describing processes in which entities of various kinds interact and turn into other entities. In chemistry, where the reactions are assigned ‘rate constants’, any reaction network gives rise to a nonlinear dynamical system called its ‘rate equation’. Here we generalize these ideas to ‘open’ reaction networks, which allow entities to flow in and out at certain designated inputs and outputs. We treat open reaction networks as morphisms in a category. Composing two such morphisms connects the outputs of the first to the inputs of the second. We construct a functor sending any open reaction network to its corresponding ‘open dynamical system’. This provides a compositional framework for studying the dynamics of reaction networks. We then turn to statics: that is, steady state solutions of open dynamical systems. We construct a ‘black-boxing’ functor that sends any open dynamical system to the relation that it imposes between input and output variables in steady states. This extends our earlier work on black-boxing for Markov processes.
NASA Technical Reports Server (NTRS)
Holt, James M.; Clanton, Stephen E.
2001-01-01
Results of the International Space Station (ISS) Node 2 Internal Active Thermal Control System (IATCS) gross leakage analysis are presented for evaluating total leakage flow rates and volume discharge caused by a gross leakage event (i.e. open boundary condition). A Systems Improved Numerical Differencing Analyzer and Fluid Integrator (SINDA85/FLUINT) thermal hydraulic mathematical model (THMM) representing the Node 2 IATCS was developed to simulate system performance under steady-state nominal conditions as well as the transient flow effect resulting from an open line exposed to ambient. The objective of the analysis was to determine the adequacy of the leak detection software in limiting the quantity of fluid lost during a gross leakage event to within an acceptable level.
Marginal states in a cubic autocatalytic reaction
NASA Astrophysics Data System (ADS)
Das, Debojyoti; Ghosh, Pushpita; Ray, Deb Shankar
2011-09-01
Marginal steady state belongs to a special class of states in nonlinear dynamics. To realize this state we consider a cubic autocatalytic reaction A + 2B → 3B in a continuous-stirred-tank-reactor, where the flow rate of the reactant A can be controlled to manipulate the dynamical behavior of the open system. We demonstrate that when the flow rate is weakly noisy the autocatalytic reaction admits of a steady state which is marginal in nature and is surrounded by infinite number of periodic trajectories. When the uncatalyzed reaction A → B is included in the reaction scheme, there exists a marginal steady state which is a critical state corresponding to the point of transition between the flow branch and the equilibrium branch, similar to gas-liquid critical point of transition. This state loses its stability in the weak noise limit.
High precision high flow range control valve
McCray, J.A.
1999-07-13
A fluid control valve is described having a valve housing having first and second valve housing openings for the ingress and egress of fluid through the control valve. Disposed within a void formed by the control valve is a sleeve having at least one sleeve opening to permit the flow of fluid therethrough. A flow restricter travels within the sleeve to progressively block off the sleeve opening and thereby control flow. A fluid passageway is formed between the first valve housing opening and the outer surface of the sleeve. A second fluid passageway is formed between the inside of the sleeve and the second valve housing opening. Neither fluid passageway contains more than one 90 [degree] turn. In the preferred embodiment only one of the two fluid passageways contains a 90[degree] turn. In another embodiment, the control valve housing is bifurcated by a control surface having control surface opening disposed therethrough. A flow restricter is in slidable contact with the control surface to restrict flow of fluid through the control surface openings. 12 figs.
High precision high flow range control valve
McCray, John A.
1999-01-01
A fluid control valve is described having a valve housing having first and second valve housing openings for the ingress and egress of fluid through the control valve. Disposed within a void formed by the control valve is a sleeve having at least one sleeve opening to permit the flow of fluid therethrough. A flow restricter travels within the sleeve to progressively block off the sleeve opening and thereby control flow. A fluid passageway is formed between the first valve housing opening and the outer surface of the sleeve. A second fluid passageway is formed between the inside of the sleeve and the second valve housing opening. Neither fluid passageway contains more than one 90.degree. turn. In the preferred embodiment only one of the two fluid passageways contains a 90.degree. turn. In another embodiment, the control valve housing is bifurcated by a control surface having control surface opening disposed therethrough. A flow restricter is in slidable contact with the control surface to restrict flow of fluid through the control surface openings.
Fluid circulation determined in the isolated bovine lens.
Candia, Oscar A; Mathias, Richard; Gerometta, Rosana
2012-10-11
In 1997, a theoretical model was developed that predicted the existence of an internal, Na(+)-driven fluid circulation from the poles to the equator of the lens. In the present work, we demonstrate with a novel system that fluid movement can be measured across the polar and equatorial surface areas of isolated cow lenses. We have also determined the effects of ouabain and reduced bath [Na(+)]. Lenses were isolated in a chamber with three compartments separated by two thin O-rings. Each compartment, anterior (A), equatorial (E), and posterior (P), was connected to a vertical capillary graduated in 0.25 μL. Capillary levels were read every 15 minutes. The protocols consisted of 2 hours in either open circuit or short circuit. The effects of ouabain and low-Na(+) solutions were determined under open circuit. In 21 experiments, the E capillary increased at a mean rate of 0.060 μL/min while the A and P levels decreased at rates of 0.044 and 0.037 μL/min, respectively, closely accounting for the increase in E. The first-hour flows under short circuit were approximately 40% larger than those in open-circuit conditions. The first-hour flows were always larger than those during the second hour. Preincubation of lenses with either ouabain or low-[Na(+)] solutions resulted in reduced rates of fluid transport. When KCl was used to replace NaCl, a transitory stimulation of fluid transport occurred. These experiments support that a fluid circulation consistent with the 1997 model is physiologically active.
Analysis of pedestrian dynamics in counter flow via an extended lattice gas model.
Kuang, Hua; Li, Xingli; Song, Tao; Dai, Shiqiang
2008-12-01
The modeling of human behavior is an important approach to reproduce realistic phenomena for pedestrian flow. In this paper, an extended lattice gas model is proposed to simulate pedestrian counter flow under the open boundary conditions by considering the human subconscious behavior and different maximum velocities. The simulation results show that the presented model can capture some essential features of pedestrian counter flows, such as lane formation, segregation effect, and phase separation at higher densities. In particular, an interesting feature that the faster walkers overtake the slower ones and then form a narrow-sparse walkway near the central partition line is discovered. The phase diagram comparison and analysis show that the subconscious behavior plays a key role in reducing the occurrence of jam cluster. The effects of the symmetrical and asymmetrical injection rate, different partition lines, and different combinations of maximum velocities on pedestrian flow are investigated. An important conclusion is that it is needless to separate faster and slower pedestrians in the same direction by a partition line. Furthermore, the increase of the number of faster walkers does not always benefit the counter flow in all situations. It depends on the magnitude and asymmetry of injection rate. And at larger maximum velocity, the obtained critical transition point corresponding to the maximum flow rate of the fundamental diagram is in good agreement with the empirical results.
A comparison of two methods for measuring vessel length in woody plants.
Pan, Ruihua; Geng, Jing; Cai, Jing; Tyree, Melvin T
2015-12-01
Vessel lengths are important to plant hydraulic studies, but are not often reported because of the time required to obtain measurements. This paper compares the fast dynamic method (air injection method) with the slower but traditional static method (rubber injection method). Our hypothesis was that the dynamic method should yield a larger mean vessel length than the static method. Vessel length was measured by both methods in current year stems of Acer, Populus, Vitis and Quercus representing short- to long-vessel species. The hypothesis was verified. The reason for the consistently larger values of vessel length is because the dynamic method measures air flow rates in cut open vessels. The Hagen-Poiseuille law predicts that the air flow rate should depend on the product of number of cut open vessels times the fourth power of vessel diameter. An argument is advanced that the dynamic method is more appropriate because it measures the length of the vessels that contribute most to hydraulic flow. If all vessels had the same vessel length distribution regardless of diameter, then both methods should yield the same average length. This supports the hypothesis that large-diameter vessels might be longer than short-diameter vessels in most species. © 2015 John Wiley & Sons Ltd.
Experimental Investigation of Diffuser Hub Injection to Improve Centrifugal Compressor Stability
NASA Technical Reports Server (NTRS)
Skoch, Gary J.
2004-01-01
Results from a series of experiments to investigate whether centrifugal compressor stability could be improved by injecting air through the diffuser hub surface are reported. The research was conducted in a 4:1 pressure ratio centrifugal compressor configured with a vane-island diffuser. Injector nozzles were located just upstream of the leading edge of the diffuser vanes. Nozzle orientations were set to produce injected streams angled at 8, 0 and +8 degrees relative to the vane mean camber line. Several injection flow rates were tested using both an external air supply and recirculation from the diffuser exit. Compressor flow range did not improve at any injection flow rate that was tested. Compressor flow range did improve slightly at zero injection due to the flow resistance created by injector openings on the hub surface. Leading edge loading and semi-vaneless space diffusion showed trends similar to those reported earlier from shroud surface experiments that did improve compressor flow range. Opposite trends are seen for hub injection cases where compressor flow range decreased. The hub injection data further explain the range improvement provided by shroud-side injection and suggest that different hub-side techniques may produce range improvement in centrifugal compressors.
Biomass drying in a pulsed fluidized bed without inert bed particles
Jia, Dening; Bi, Xiaotao; Lim, C. Jim; ...
2016-08-29
Batch drying was performed in the pulsed fluidized bed with various species of biomass particles as an indicator of gas–solid contact efficiency and mass transfer rate under different operating conditions including pulsation duty cycle and particle size distribution. The fluidization of cohesive biomass particles benefited from the shorter opening time of pulsed gas flow and increased peak pressure drop. The presence of fines enhanced gas–solid contact of large and irregular biomass particles, as well as the mass transfer efficiency. A drying model based on two-phase theory was proposed, from which effective diffusivity was calculated for various gas flow rates, temperaturemore » and pulsation frequency. Intricate relationship was discovered between pulsation frequency and effective diffusivity, as mass transfer was deeply connected with the hydrodynamics. Effective diffusivity was also found to be proportional to gas flow rate and drying temperature. In conclusion, operating near the natural frequency of the system also favored drying and mass transfer.« less
Electromagnetically-Actuated Reciprocating Pump for High-Flow-Rate Microfluidic Applications
Ke, Ming-Tsun; Zhong, Jian-Hao; Lee, Chia-Yen
2012-01-01
This study presents an electromagnetically-actuated reciprocating pump for high-flow-rate microfluidic applications. The pump comprises four major components, namely a lower glass plate containing a copper microcoil, a middle PMMA plate incorporating a PDMS diaphragm with a surface-mounted magnet, upper PMMA channel plates, and a ball-type check valve located at the channel inlet. When an AC current is passed through the microcoil, an alternating electromagnetic force is established between the coil and the magnet. The resulting bi-directional deflection of the PDMS diaphragm causes the check-valve to open and close; thereby creating a pumping effect. The experimental results show that a coil input current of 0.4 A generates an electromagnetic force of 47 mN and a diaphragm deflection of 108 μm. Given an actuating voltage of 3 V and a driving frequency of 15 Hz, the flow rate is found to be 13.2 mL/min under zero head pressure conditions. PMID:23201986
Blood Flow through an Open-Celled Foam
NASA Astrophysics Data System (ADS)
Ortega, Jason; Maitland, Duncan
2011-11-01
The Hazen-Dupuit-Darcy (HDD) equation is commonly used in engineering applications to model the pressure gradient of flow through a porous media. One major advantage of this equation is that it simplifies the complex geometric details of the porous media into two coefficients: the permeability, K, and form factor, C. However through this simplification, the flow details within the porous media are no longer accessible, making it difficult to study the phenomena that contribute to changes in K and C due to clotting of blood flow. To obtain a more detailed understanding of blood flow through a porous media, a direct assessment of the complex interstitial geometry and flow is required. In this study, we solve the Navier-Stokes equations for Newtonian and non-Newtonian blood flow through an open-celled foam geometry obtained from a micro-CT scan. The nominal strut size of the foam sample is of O(10e-5) m and the corresponding Reynolds number based upon this length ranges up to O(10). Fitting the pressure gradient vs. Darcy velocity data with the HDD equation demonstrates that both viscous and inertial forces play an important role in the flow through the foam at these Reynolds numbers. Recirculation zones are observed to form in the wake of the pore struts, producing regions of flow characterized by both low shear rates and long fluid residence times, factors of which have been shown in previous studies to promote blood clotting.
Keszthelyi, L.; McEwen, A.S.; Phillips, C.B.; Milazzo, M.; Geissler, P.; Turtle, E.P.; Radebaugh, J.; Williams, D.A.; Simonelli, D.P.; Breneman, H.H.; Klaasen, K.P.; Levanas, G.; Denk, T.; Alexander, D.D.A.; Capraro, K.; Chang, S.-H.; Chen, A.C.; Clark, J.; Conner, D.L.; Culver, A.; Handley, T.H.; Jensen, D.N.; Knight, D.D.; LaVoie, S.K.; McAuley, M.; Mego, V.; Montoya, O.; Mortensen, H.B.; Noland, S.J.; Patel, R.R.; Pauro, T.M.; Stanley, C.L.; Steinwand, D.J.; Thaller, T.F.; Woncik, P.J.; Yagi, G.M.; Yoshimizu, J.R.; Alvarez, Del; Castillo, E.M.; Belton, M.J.S.; Beyer, R.; Branston, D.; Fishburn, M.B.; Mueller, B.; Ragan, R.; Samarasinha, N.; Anger, C.D.; Cunningham, C.; Little, B.; Arriola, S.; Carr, M.H.; Asphaug, E.; Moore, J.; Morrison, D.; Rages, K.; Banfield, D.; Bell, M.; Burns, J.A.; Carcich, B.; Clark, B.; Currier, N.; Dauber, I.; Gierasch, P.J.; Helfenstein, P.; Mann, M.; Othman, O.; Rossier, L.; Solomon, N.; Sullivan, R.; Thomas, P.C.; Veverka, J.; Becker, T.; Edwards, K.; Gaddis, L.; Kirk, R.; Lee, E.; Rosanova, T.; Sucharski, R.M.; Beebe, R.F.; Simon, A.; Bender, K.; Chuang, F.; Fagents, S.; Figueredo, P.; Greeley, R.; Homan, K.; Kadel, S.; Kerr, J.; Klemaszewski, J.; Lo, E.; Schwarz, W.; Williams, K.; Bierhaus, E.; Brooks, S.; Chapman, C.R.; Merline, B.; Keller, J.; Schenk, P.; Tamblyn, P.; Bouchez, A.; Dyundian, U.; Ingersoll, A.P.; Showman, A.; Spitale, J.; Stewart, S.; Vasavada, A.; Cunningham, W.F.; Johnson, T.V.; Jones, T.J.; Kaufman, J.M.; Magee, K.P.; Meredith, M.K.; Orton, G.S.; Senske, D.A.; West, A.; Winther, D.; Collins, G.; Fripp, W.J.; Head, J. W.; Pappalardo, R.; Pratt, S.; Procter, L.; Spaun, N.; Colvin, T.; Davies, M.; DeJong, E.M.; Hall, J.; Suzuki, S.; Gorjian, Z.; Giese, B.; Koehler, U.; Neukum, G.; Oberst, J.; Roatsch, T.; Tost, W.; Schuster, P.; Wagner, R.; Dieter, N.; Durda, D.; Greenberg, R.J.; Hoppa, G.; Jaeger, W.; Plassman, J.; Tufts, R.; Fanale, F.P.; Gran,
2001-01-01
The Solid-State Imaging (SSI) instrument provided the first high- and medium-resolution views of Io as the Galileo spacecraft closed in on the volcanic body in late 1999 and early 2000. While each volcanic center has many unique features, the majority can be placed into one of two broad categories. The "Promethean" eruptions, typified by the volcanic center Prometheus, are characterized by long-lived steady eruptions producing a compound flow field emplaced in an insulating manner over a period of years to decades. In contrast, "Pillanian" eruptions are characterized by large pyroclastic deposits and short-lived but high effusion rate eruptions from fissures feeding open-channel or open-sheet flows. Both types of eruptions commonly have ???100-km-tall, bright, SO2-rich plumes forming near the flow fronts and smaller deposits of red material that mark the vent for the silicate lavas. Copyright 2001 by the American Geophysical Union.
FloWave.US: validated, open-source, and flexible software for ultrasound blood flow analysis.
Coolbaugh, Crystal L; Bush, Emily C; Caskey, Charles F; Damon, Bruce M; Towse, Theodore F
2016-10-01
Automated software improves the accuracy and reliability of blood velocity, vessel diameter, blood flow, and shear rate ultrasound measurements, but existing software offers limited flexibility to customize and validate analyses. We developed FloWave.US-open-source software to automate ultrasound blood flow analysis-and demonstrated the validity of its blood velocity (aggregate relative error, 4.32%) and vessel diameter (0.31%) measures with a skeletal muscle ultrasound flow phantom. Compared with a commercial, manual analysis software program, FloWave.US produced equivalent in vivo cardiac cycle time-averaged mean (TAMean) velocities at rest and following a 10-s muscle contraction (mean bias <1 pixel for both conditions). Automated analysis of ultrasound blood flow data was 9.8 times faster than the manual method. Finally, a case study of a lower extremity muscle contraction experiment highlighted the ability of FloWave.US to measure small fluctuations in TAMean velocity, vessel diameter, and mean blood flow at specific time points in the cardiac cycle. In summary, the collective features of our newly designed software-accuracy, reliability, reduced processing time, cost-effectiveness, and flexibility-offer advantages over existing proprietary options. Further, public distribution of FloWave.US allows researchers to easily access and customize code to adapt ultrasound blood flow analysis to a variety of vascular physiology applications. Copyright © 2016 the American Physiological Society.
Swirl, Expansion Ratio and Blockage Effects on Confined Turbulent Flow. M.S. Thesis
NASA Technical Reports Server (NTRS)
Scharrer, G. L.
1982-01-01
A confined jet test facility, a swirles, flow visualization equipment, five-hole pitot probe instrumentation; flow visualization; and effects of swirl on open-ended flows, of gradual expansion on open-ended flows, and blockages of flows are addressed.
An improved delivery system for bladder irrigation
Moslemi, Mohammad K; Rajaei, Mojtaba
2010-01-01
Introduction Occasionally, urologists may see patients requiring temporary bladder irrigation at hospitals without stocks of specialist irrigation apparatus. One option is to transfer the patient to a urology ward, but often there are outstanding medical issues that require continued specialist input. Here, we describe an improved system for delivering temporary bladder irrigation by utilizing readily available components and the novel modification of a sphygmomanometer blub. This option is good for bladder irrigation in patients with moderate or severe gross hematuria due to various causes. Materials and methods In this prospective study from March 2007 to April 2009, we used our new system in eligible cases. In this system, an irrigant bag with 1 L of normal saline was suspended 80 cm above the indwelled 3-way Foley catheter, and its drainage tube was inserted into the irrigant port of the catheter. To increase the flow rate of the irrigant system, we inserted a traditional sphygmomanometer bulb at the top of the irrigant bag. This closed system was used for continuous bladder irrigation (CBI) in patients who underwent open prostatectomy, transurethral resection of the prostate (TURP), or transurethral resection of the bladder (TURB). This high-pressure system is also used for irrigation during cystourethroscopy, internal urethrotomy, and transurethral lithotripsy. Our 831 eligible cases were divided into two groups: group 1 were endourologic cases and group 2 were open prostatectomy, TURP, and TURB cases. The maximum and average flow rates were evaluated. The efficacy of our new system was compared prospectively with the previous traditional system used in 545 cases. Results In group 1, we had clear vision at the time of endourologic procedures. The success rate of this system was 99.5%. In group 2, the incidence of clot retention decreased two fold in comparison to traditional gravity-dependent bladder flow system. These changes were statistically significant (P = 0.001). We did not observe any adverse effects such as bladder perforation due to our high-pressure, high-flow system. Conclusion A pressurized irrigant system has better visualization during endourologic procedures, and prevents clot formation after open prostatectomy, TURP, and TURB without any adverse effects. PMID:20957138
An improved delivery system for bladder irrigation.
Moslemi, Mohammad K; Rajaei, Mojtaba
2010-10-05
Occasionally, urologists may see patients requiring temporary bladder irrigation at hospitals without stocks of specialist irrigation apparatus. One option is to transfer the patient to a urology ward, but often there are outstanding medical issues that require continued specialist input. Here, we describe an improved system for delivering temporary bladder irrigation by utilizing readily available components and the novel modification of a sphygmomanometer blub. This option is good for bladder irrigation in patients with moderate or severe gross hematuria due to various causes. In this prospective study from March 2007 to April 2009, we used our new system in eligible cases. In this system, an irrigant bag with 1 L of normal saline was suspended 80 cm above the indwelled 3-way Foley catheter, and its drainage tube was inserted into the irrigant port of the catheter. To increase the flow rate of the irrigant system, we inserted a traditional sphygmomanometer bulb at the top of the irrigant bag. This closed system was used for continuous bladder irrigation (CBI) in patients who underwent open prostatectomy, transurethral resection of the prostate (TURP), or transurethral resection of the bladder (TURB). This high-pressure system is also used for irrigation during cystourethroscopy, internal urethrotomy, and transurethral lithotripsy. Our 831 eligible cases were divided into two groups: group 1 were endourologic cases and group 2 were open prostatectomy, TURP, and TURB cases. The maximum and average flow rates were evaluated. The efficacy of our new system was compared prospectively with the previous traditional system used in 545 cases. In group 1, we had clear vision at the time of endourologic procedures. The success rate of this system was 99.5%. In group 2, the incidence of clot retention decreased two fold in comparison to traditional gravity-dependent bladder flow system. These changes were statistically significant (P = 0.001). We did not observe any adverse effects such as bladder perforation due to our high-pressure, high-flow system. A pressurized irrigant system has better visualization during endourologic procedures, and prevents clot formation after open prostatectomy, TURP, and TURB without any adverse effects.
Numerical simulation of rotating stall and surge alleviation in axial compressors
NASA Astrophysics Data System (ADS)
Niazi, Saeid
Axial compression systems are widely used in many aerodynamic applications. However, the operability of such systems is limited at low-mass flow rates by fluid dynamic instabilities. These instabilities lead the compressor to rotating stall or surge. In some instances, a combination of rotating stall and surge, called modified surge, has also been observed. Experimental and computational methods are two approaches for investigating these adverse aerodynamic phenomena. In this study, numerical investigations have been performed to study these phenomena, and to develop control strategies for alleviation of rotating stall and surge. A three-dimensional unsteady Navier-Stokes analysis capable of modeling multistage turbomachinery components has been developed. This method uses a finite volume approach that is third order accurate in space, and first or second order in time. The scheme is implicit in time, permitting the use of large time steps. A one-equation Spalart-Allmaras model is used to model the effects of turbulence. The analysis is cast in a very general form so that a variety of configurations---centrifugal compressors and multistage compressors---may be analyzed with minor modifications to the analysis. Calculations have been done both at design and off-design conditions for an axial compressor tested at NASA Glenn Research Center. At off-design conditions the calculations show that the tip leakage flow becomes strong, and its interaction with the tip shock leads to compressor rotating stall and modified surge. Both global variations to the mass flow rate, associated with surge, and azimuthal variations in flow conditions indicative of rotating stall, were observed. It is demonstrated that these adverse phenomena may be eliminated, and stable operation restored, by the use of bleed valves located on the diffuser walls. Two types of controls were examined: open-loop and closed-loop. In the open-loop case mass is removed at a fixed, preset rate from the diffuser. In the closed-loop case, the rate of bleed is linked to pressure fluctuations upstream of the compressor face. The bleed valve is activated when the amplitude of pressure fluctuations sensed by the probes exceeds a certain range. Calculations show that both types of bleeding eliminate both rotating stall and modified surge, and suppress the precursor disturbances upstream of the compressor face. It is observed that smaller amounts of compressed air need to be removed with the closed-loop control, as compared to open-loop control.
Coulomb-coupled quantum-dot thermal transistors
NASA Astrophysics Data System (ADS)
Zhang, Yanchao; Yang, Zhimin; Zhang, Xin; Lin, Bihong; Lin, Guoxing; Chen, Jincan
2018-04-01
A quantum-dot thermal transistor consisting of three Coulomb-coupled quantum dots coupled to the respective electronic reservoirs by tunnel contacts is established. The heat flows through the collector and emitter can be controlled by the temperature of the base. It is found that a small change in the base heat flow can induce a large heat flow change in the collector and emitter. The huge amplification factor can be obtained by optimizing the Coulomb interaction between the collector and the emitter or by decreasing the tunneling rate at the base. The proposed quantum-dot thermal transistor may open up potential applications in low-temperature solid-state thermal circuits at the nanoscale.
NASA Astrophysics Data System (ADS)
Singh, Umesh; Anapagaddi, Ravikiran; Mangal, Saurabh; Padmanabhan, Kuppuswamy Anantha; Singh, Amarendra Kumar
2016-06-01
Ladle furnace is a key unit in which various phenomena such as deoxidation, desulfurization, inclusion removal, and homogenization of alloy composition and temperature take place. Therefore, the processes present in the ladle play an important role in determining the quality of steel. Prediction of flow behavior of the phases present in the ladle furnace is needed to understand the phenomena that take place there and accordingly control the process parameters. In this study, first a mathematical model is developed to analyze the transient three-phase flow present. Argon gas bottom-stirred ladle with off-centered plugs has been used in this study. Volume of fluid method is used in a computational fluid dynamics (CFD) model to capture the behavior of slag, steel, and argon interfaces. The results are validated with data from literature. Eye opening and slag-steel interfacial area are calculated for different operating conditions and are compared with experimental and simulated results cited in literature. Desulfurization rate is then predicted using chemical kinetic equations, interfacial area, calculated from CFD model, and thermodynamic data, obtained from the Thermo-Calc software. Using the model, it is demonstrated that the double plug purging is more suitable than the single plug purging for the same level of total flow. The advantage is more distinct at higher flow rates as it leads higher interfacial area, needed for desulfurization and smaller eye openings (lower oxygen/nitrogen pickup).
Bacterial populations growth under co- and counter-flow condition
NASA Astrophysics Data System (ADS)
Tesser, Francesca; Zeegers, Jos C. H.; Clercx, Herman J. H.; Toschi, Federico
2014-11-01
For organisms living in a liquid ecosystem, flow and flow gradients play a major role on the population level: the flow has a dual role as it transports the nutrient while dispersing the individuals. In absence of flow and under homogeneous conditions, the growth of a population towards an empty region is usually described by a reaction diffusion equation. The solution predicts the expansion as a wave front (Fisher wave) proceeding at constant speed, till the carrying capacity is reached everywhere. The effect of fluid flow, however, is not well understood and the interplay between transport of individuals and nutrient opens a wide scenario of possible behaviors. In this work, we experimentally observe non-motile E. coli bacteria spreading inside rectangular channels in a PDMS microfluidic device. By use of a fluorescent microscope we analyze the dynamics of the population density subjected to different co- and counter-flow conditions and shear rates.
Water Pipeline Monitoring and Leak Detection using Flow Liquid Meter Sensor
NASA Astrophysics Data System (ADS)
Rahmat, R. F.; Satria, I. S.; Siregar, B.; Budiarto, R.
2017-04-01
Water distribution is generally installed through underground pipes. Monitoring the underground water pipelines is more difficult than monitoring the water pipelines located on the ground in open space. This situation will cause a permanent loss if there is a disturbance in the pipeline such as leakage. Leaks in pipes can be caused by several factors, such as the pipe’s age, improper installation, and natural disasters. Therefore, a solution is required to detect and to determine the location of the damage when there is a leak. The detection of the leak location will use fluid mechanics and kinematics physics based on harness water flow rate data obtained using flow liquid meter sensor and Arduino UNO as a microcontroller. The results show that the proposed method is able to work stably to determine the location of the leak which has a maximum distance of 2 metres, and it’s able to determine the leak location as close as possible with flow rate about 10 litters per minute.
Unbalanced-flow, fluid-mixing plug with metering capabilities
NASA Technical Reports Server (NTRS)
England, John Dwight (Inventor); Kelley, Anthony R. (Inventor); Van Buskirk, Paul D. (Inventor)
2009-01-01
A fluid mixer plug has holes formed therethrough such that a remaining portion is closed to fluid flow. The plug's inlet face defines a central circuit region and a ring-shaped region with the ring-shaped region including at least some of the plug's remaining portion so-closed to fluid flow. This remaining portion or closed region at each radius R of the ring shaped region satisfies a radius independent, flow-based relationship. Entry openings are defined in the plug's inlet face in correspondence with the holes. The entry openings define an open flow area at each radius of the ring-shaped region. The open flow area at each such radius satisfies the inverse of the flow-based relationship defining the closed regions of the plug.
Lykov, Kirill; Li, Xuejin; Lei, Huan; ...
2015-08-28
When blood flows through a bifurcation, red blood cells (RBCs) travel into side branches at different hematocrit levels, and it is even possible that all RBCs enter into one branch only, leading to a complete separation of plasma and R- BCs. To quantify this phenomenon via particle-based mesoscopic simulations, we developed a general framework for open boundary conditions in multiphase flows that is effective even for high hematocrit levels. The inflow at the inlet is duplicated from a fully developed flow generated in a pilot simulation with periodic boundary conditions. The outflow is controlled by adaptive forces to maintain themore » flow rate and velocity gradient at fixed values, while the particles leaving the arteriole at the outlet are removed from the system. Upon valida- tion of this approach, we performed systematic 3D simulations to study plasma skimming in arterioles of diameters 20 to 32 microns. For a flow rate ratio 6:1 at the branches, we observed the \\all-or-nothing" phenomenon with plasma only entering the low flow rate branch. We then simulated blood-plasma separation in arteriolar bifurcations with different bifurcation angles and same diameter of the daughter branches. Our simulations predict a significant increase in RBC flux through the main daughter branch as the bifurcation angle is increased. Lastly, we demonstrated the new methodology for simulating blood flow in ves- sels with multiple inlets and outlets, constructed using an angiogenesis model.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lykov, Kirill; Li, Xuejin; Lei, Huan
When blood flows through a bifurcation, red blood cells (RBCs) travel into side branches at different hematocrit levels, and it is even possible that all RBCs enter into one branch only, leading to a complete separation of plasma and R- BCs. To quantify this phenomenon via particle-based mesoscopic simulations, we developed a general framework for open boundary conditions in multiphase flows that is effective even for high hematocrit levels. The inflow at the inlet is duplicated from a fully developed flow generated in a pilot simulation with periodic boundary conditions. The outflow is controlled by adaptive forces to maintain themore » flow rate and velocity gradient at fixed values, while the particles leaving the arteriole at the outlet are removed from the system. Upon valida- tion of this approach, we performed systematic 3D simulations to study plasma skimming in arterioles of diameters 20 to 32 microns. For a flow rate ratio 6:1 at the branches, we observed the \\all-or-nothing" phenomenon with plasma only entering the low flow rate branch. We then simulated blood-plasma separation in arteriolar bifurcations with different bifurcation angles and same diameter of the daughter branches. Our simulations predict a significant increase in RBC flux through the main daughter branch as the bifurcation angle is increased. Lastly, we demonstrated the new methodology for simulating blood flow in ves- sels with multiple inlets and outlets, constructed using an angiogenesis model.« less
Lykov, Kirill; Li, Xuejin; Lei, Huan; Pivkin, Igor V; Karniadakis, George Em
2015-08-01
When blood flows through a bifurcation, red blood cells (RBCs) travel into side branches at different hematocrit levels, and it is even possible that all RBCs enter into one branch only, leading to a complete separation of plasma and RBCs. To quantify this phenomenon via particle-based mesoscopic simulations, we developed a general framework for open boundary conditions in multiphase flows that is effective even for high hematocrit levels. The inflow at the inlet is duplicated from a fully developed flow generated in a pilot simulation with periodic boundary conditions. The outflow is controlled by adaptive forces to maintain the flow rate and velocity gradient at fixed values, while the particles leaving the arteriole at the outlet are removed from the system. Upon validation of this approach, we performed systematic 3D simulations to study plasma skimming in arterioles of diameters 20 to 32 microns. For a flow rate ratio 6:1 at the branches, we observed the "all-or-nothing" phenomenon with plasma only entering the low flow rate branch. We then simulated blood-plasma separation in arteriolar bifurcations with different bifurcation angles and same diameter of the daughter branches. Our simulations predict a significant increase in RBC flux through the main daughter branch as the bifurcation angle is increased. Finally, we demonstrated the effectiveness of the new methodology in simulations of blood flow in vessels with multiple inlets and outlets, constructed using an angiogenesis model.
On the implicit density based OpenFOAM solver for turbulent compressible flows
NASA Astrophysics Data System (ADS)
Fürst, Jiří
The contribution deals with the development of coupled implicit density based solver for compressible flows in the framework of open source package OpenFOAM. However the standard distribution of OpenFOAM contains several ready-made segregated solvers for compressible flows, the performance of those solvers is rather week in the case of transonic flows. Therefore we extend the work of Shen [15] and we develop an implicit semi-coupled solver. The main flow field variables are updated using lower-upper symmetric Gauss-Seidel method (LU-SGS) whereas the turbulence model variables are updated using implicit Euler method.
Jahrome, Ommid K; Hoefer, Imo; Houston, Graeme J; Stonebridge, Peter A; Blankestijn, Peter J; Moll, Frans L; de Borst, Gert J
2011-01-01
The primary patency rate of arteriovenous (AV) grafts is limited by distal venous anastomosis stenosis or occlusion due to intimal hyperplasia associated with distal graft turbulence. The normal blood flow in native arteries is spiral laminar flow. Standard vascular grafts do not produce spiral laminar flow at the distal anastomosis. Vascular grafts which induce a spiral laminar flow distally result in lower turbulence, particularly near the vessel wall. This initial study compares the hemodynamic effects of a spiral flow-inducing graft and a standard graft in a new AV carotid to jugular vein crossover graft porcine model. Four spiral flow grafts and 4 control grafts were implanted from the carotid artery to the contralateral jugular vein in 4 pigs. Two animals were terminated after 48 hours and 2 at 14 days. Graft patency was assessed by selective catheter digital angiography, and the flow pattern was assessed by intraoperative flow probe and color Doppler ultrasound (CDU) measurements. The spiral grafts were also assessed at enhanced flow rates using an external roller pump to simulate increased flow rates that may occur during dialysis using a standard dialysis needle cannulation. The method increased the flow rate through the graft by 660 ml/min. The graft distal anastomotic appearances were evaluated by explant histopathology. All grafts were patent at explantation with no complications. All anastomoses were found to be wide open and showed no significant angiographic stenosis at the distal anastomosis in both spiral and control grafts. CDU examinations showed a spiral flow pattern in the spiral graft and double helix pattern in the control graft. No gross histopathological effects were seen in either spiral or control grafts. This porcine model is robust and allows hemodynamic flow assessment up to 14 days postimplantation. The spiral flow-inducing grafts produced and maintained spiral flow at baseline and enhanced flow rates during dialysis needle cannulation, whereas control grafts did not produce spiral flow through the distal anastomosis. There was no deleterious effect of the spiral flow-inducing graft on macroscopic and histological examination. The reducing effect of spiral flow on intima hyperplasia formation will be the subject of further study using the same AV graft model at a longer period of implantation.
40 CFR 53.63 - Test procedure: Wind tunnel inlet aspiration test.
Code of Federal Regulations, 2010 CFR
2010-07-01
... the sampler inlet opening centered in the sampling zone. To meet the maximum blockage limit of § 53.62(c)(1) or for convenience, part of the test sampler may be positioned external to the wind tunnel... = reference method sampler volumetric flow rate; and t = sampling time. (iii) Remove the reference method...
USDA-ARS?s Scientific Manuscript database
Methane (CH4) and carbon dioxide (CO2) represent 11 and 81%, respectively, of all anthropogenic greenhouse gas emissions. Agricultural CH4 emissions account for approximately 43% of all anthropogenic CH4 emissions. Most agricultural CH4 emissions are attributed to enteric fermentation within rumin...
Design and setup of intermittent-flow respirometry system for aquatic organisms.
Svendsen, M B S; Bushnell, P G; Steffensen, J F
2016-01-01
Intermittent-flow respirometry is an experimental protocol for measuring oxygen consumption in aquatic organisms that utilizes the best features of closed (stop-flow) and flow-through respirometry while eliminating (or at least reducing) some of their inherent problems. By interspersing short periods of closed-chamber oxygen consumption measurements with regular flush periods, accurate oxygen uptake rate measurements can be made without the accumulation of waste products, particularly carbon dioxide, which may confound results. Automating the procedure with easily available hardware and software further reduces error by allowing many measurements to be made over long periods thereby minimizing animal stress due to acclimation issues. This paper describes some of the fundamental principles that need to be considered when designing and carrying out automated intermittent-flow respirometry (e.g. chamber size, flush rate, flush time, chamber mixing, measurement periods and temperature control). Finally, recent advances in oxygen probe technology and open source automation software will be discussed in the context of assembling relatively low cost and reliable measurement systems. © 2015 The Fisheries Society of the British Isles.
System and method for multi-stage bypass, low operating temperature suppressor for automatic weapons
Moss, William C.; Anderson, Andrew T.
2015-06-09
The present disclosure relates to a suppressor for use with a weapon. The suppressor may be formed to have a body portion having a bore extending concentric with a bore axis of the weapon barrel. An opening in the bore extends at least substantially circumferentially around the bore. A flow path communicates with the opening and defines a channel for redirecting gasses flowing in the bore out from the bore, through the opening, into a rearward direction in the flow path. The flow path raises a pressure at the opening to generate a Mach disk within the bore at a location approximately coincident with the opening. The Mach disk forms as a virtual baffle to divert at least a portion of the gasses into the opening and into the flow path.
NASA Astrophysics Data System (ADS)
Biggs, J.; Arnold, D. W. D.; Mothes, P. A.; Anderson, K. R.; Albino, F.; Wadge, G.; Vallejo Vargas, S.; Ebmeier, S. K.
2017-12-01
There are relatively few studies of active lava flows of an andesitic rather than basaltic composition. The flow field at El Reventador volcano, Ecuador is a good example, but observations are hampered by persistent cloud cover. We use high resolution satellite radar from Radarsat-2 and TanDEM-X to map the dimensions of 43 lava flows extruded between 9 Feb 2012 and 24 Aug 2016. Flow height is measured using the width of radar shadow cast by steep sided features, or the difference in radar phase between two sensors separated in space. The cumulative volume of erupted material was 44.8M m3 dense rock equivalent with an average rate of 0.31 ± 0.02 m3s-1, similar to the long term average. The flows were mostly emplaced over durations shorter than the satellite repeat interval of 24 days and ranged in length from 0.3 to 1.7 km. We use the dimensions of the levees to estimate the flow yield strengths and compare measurements of diversions around barriers with observations from laboratory experiments. The rate of effusion, flow length and flow volume all decrease with time, and simple physics-based models can be equally well fit by a closed reservoir depressurising during the eruption with no magma recharge, or an open reservoir with a time-constant magma recharge rate of up to 0.35 ± 0.01 m3s-1. We propose that the conduit acts as magma capacitor and individual flows are volume-limited. Emplaced flows are subsiding at rates proportional to lava thickness that decay with time following a square-root relationship. Radar observations, such as those presented here, could be used to map and measure properties of evolving lava flow fields at other remote or difficult to monitor volcanoes. Physics-based models can be run into the future, but a sudden increase in flow length in 2017 seen by Sentinel illustrates that changes in magma supply can cause rapid changes in behavior, which remain challenging to forecast.
User's Guide for Mixed-Size Sediment Transport Model for Networks of One-Dimensional Open Channels
Bennett, James P.
2001-01-01
This user's guide describes a mathematical model for predicting the transport of mixed sizes of sediment by flow in networks of one-dimensional open channels. The simulation package is useful for general sediment routing problems, prediction of erosion and deposition following dam removal, and scour in channels at road embankment crossings or other artificial structures. The model treats input hydrographs as stepwise steady-state, and the flow computation algorithm automatically switches between sub- and supercritical flow as dictated by channel geometry and discharge. A variety of boundary conditions including weirs and rating curves may be applied both external and internal to the flow network. The model may be used to compute flow around islands and through multiple openings in embankments, but the network must be 'simple' in the sense that the flow directions in all channels can be specified before simulation commences. The location and shape of channel banks are user specified, and all bedelevation changes take place between these banks and above a user-specified bedrock elevation. Computation of sediment-transport emphasizes the sand-size range (0.0625-2.0 millimeter) but the user may select any desired range of particle diameters including silt and finer (<0.0625 millimeter). As part of data input, the user may set the original bed-sediment composition of any number of layers of known thickness. The model computes the time evolution of total transport and the size composition of bed- and suspended-load sand through any cross section of interest. It also tracks bed -surface elevation and size composition. The model is written in the FORTRAN programming language for implementation on personal computers using the WINDOWS operating system and, along with certain graphical output display capability, is accessed from a graphical user interface (GUI). The GUI provides a framework for selecting input files and parameters of a number of components of the sediment-transport process. There are no restrictions in the use of the model as to numbers of channels, channel junctions, cross sections per channel, or points defining the cross sections. Following completion of the simulation computations, the GUI accommodates display of longitudinal plots of either bed elevation and size composition, or of transport rate and size composition of the various components, for individual channels and selected times during the simulation period. For individual cross sections, the GUI also allows display of time series of transport rate and size composition of the various components and of bed elevation and size composition.
NASA Astrophysics Data System (ADS)
Adib, M. R. M.; Amirza, A. R. M.; Wardah, T.; Junaidah, A.
2016-07-01
Hydraulic control gate structure plays an important role in regulating the flow of water in river, canal or water reservoir. One of the most appropriate structures in term of resolving the problem of flood occured is the construction of circular fibre steel flap gate. Therefore, an experiment has been conducted by using an open channel model at laboratory. In this case, hydraulic jump and backwater were the method to determined the hydraulic characteristics of circular fibre steel flap gate in an open channel model. From the experiment, the opening angle of flap gate can receive discharges with the highest flow rate of 0.035 m3/s with opening angle was 47°. The type of jump that occurs at the slope of 1/200 for a distance of 5.0 m is a standing jump or undulating wave. The height of the backwater can be identified based on the differences of specific force which is specific force before jump, F1 and specific force after jump, F2 from the formation of backwater. Based on the research conducted, the tendency of incident backwater wave occurred was high in every distance of water control location from water inlet is flap slope and the slope of 1/300 which is 0.84 m/s and 0.75 m/s of celerity in open channel model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yidong Xia; Mitch Plummer; Robert Podgorney
2016-02-01
Performance of heat production process over a 30-year period is assessed in a conceptual EGS model with a geothermal gradient of 65K per km depth in the reservoir. Water is circulated through a pair of parallel wells connected by a set of single large wing fractures. The results indicate that the desirable output electric power rate and lifespan could be obtained under suitable material properties and system parameters. A sensitivity analysis on some design constraints and operation parameters indicates that 1) the fracture horizontal spacing has profound effect on the long-term performance of heat production, 2) the downward deviation anglemore » for the parallel doublet wells may help overcome the difficulty of vertical drilling to reach a favorable production temperature, and 3) the thermal energy production rate and lifespan has close dependence on water mass flow rate. The results also indicate that the heat production can be improved when the horizontal fracture spacing, well deviation angle, and production flow rate are under reasonable conditions. To conduct the reservoir modeling and simulations, an open-source, finite element based, fully implicit, fully coupled hydrothermal code, namely FALCON, has been developed and used in this work. Compared with most other existing codes that are either closed-source or commercially available in this area, this new open-source code has demonstrated a code development strategy that aims to provide an unparalleled easiness for user-customization and multi-physics coupling. Test results have shown that the FALCON code is able to complete the long-term tests efficiently and accurately, thanks to the state-of-the-art nonlinear and linear solver algorithms implemented in the code.« less
Microfluidics and Coagulation Biology
Colace, Thomas V.; Tormoen, Garth W.
2014-01-01
The study of blood ex vivo can occur in closed or open systems, with or without flow. Microfluidic devices facilitate measurements of platelet function, coagulation biology, cellular biorheology, adhesion dynamics, pharmacology, and clinical diagnostics. An experimental session can accommodate 100s to 1000s of unique clotting events. Using microfluidics, thrombotic events can be studied on defined surfaces of biopolymers, matrix proteins, and tissue factor under constant flow rate or constant pressure drop conditions. Distinct shear rates can be created on a device with a single perfusion pump. Microfluidic devices facilitated the determination of intraluminal thrombus permeability and the discovery that platelet contractility can be activated by a sudden decrease in flow. Microfluidics are ideal for multicolor imaging of platelets, fibrin, and phosphatidylserine and provide a human blood analog to the mouse injury models. Overall, microfluidic advances offer many opportunities for research, drug testing under relevant hemodynamic conditions, and clinical diagnostics. PMID:23642241
Reproductive phenology of transgenic Brassica napus cultivars: Effect on intraspecific gene flow.
Simard, Marie-Josée; Légère, Anne; Willenborg, Christian J
2009-01-01
Pollen-mediated gene flow in space is well documented and isolation distances are recommended to ensure genetic purity of Brassica napus seed crops. Isolation in time could also contribute to gene flow management but has been little investigated. We assessed the effects of asynchronous and synchronous flowering on intraspecific B. napus gene flow by seeding adjacent plots of transgenic spring canola cultivars, either resistant to glyphosate or glufosinate, over a 0-4 week interval and measuring outcrossing rates and seed-set. Outcrossing rates, evaluated in the center of the first adjacent row, were reduced to the lowest level in plots flowering first when the seeding interval > 2 weeks. Increasing the time gap increased outcrossing rates in plots flowering second up to a seeding interval of two weeks. Flowers that opened during the last week of the flowering period produced fewer seed (< 10% of total seed production) and a smaller fraction of outcrossed seed (-25%). Observed time gap effects were likely caused by extraneous pollen load during the receptivity of productive seed-setting early flowers. Clearly, manipulation of B. napus flowering development through staggered planting dates can contribute to gene flow management. The approach will need to be validated by additional site-years and increased isolation distances.
Intraoperative IR imaging in the cardiac operating room
NASA Astrophysics Data System (ADS)
Szabo, Tamas; Fazekas, Levente; Horkay, Ferenc; Geller, Laslu; Gyongy, Tibor; Juhasz-Nagy, Alexander
1999-07-01
The high blood flow rate and the considerable metabolic activity render the myocardium a possible candidate for IR imaging. The study was aimed to test cardiothermography in evaluating arterial bypass graft patency and in assessing myocardial protection during open-heart surgery. Ten patients underwent arterial bypass grafting. Thermograms were obtained immediately before and after opening the grafts. As the bypasses were opened in hypothermia the warmer blood coming from the extracorporeal circulation readily delineated graft and coronary anatomy. By the end of the 5 min observation period, the revascularized area exhibited a temperature increase of 5.9 +/- 0.7 degrees C. The affectivity of antegrade cardioplegia was monitored in 38 patients undergoing either valve implantations or aorto- coronary bypass surgery. Thermographic imags were taken after sternotomy, before aortic cross-clamping and after administrating the 4 degrees C cardioplegic solution. Most of the patients displayed adequate myocardial cooling, moreover the bypass-group exhibited a more profound temperature-decrease. In conclusion, cardiothermography can visualize arterial grafts, recipient coronaries and collaterals seconds after opening by bypass, thus it properly evaluated arterial bypass graft patency. The obtained images could easily be analyzed for qualitative flow- and quantitative temperature changes. Myocardial protection could also be safely assessed with thermography.
Rapid granular flows on a rough incline: phase diagram, gas transition, and effects of air drag.
Börzsönyi, Tamás; Ecke, Robert E
2006-12-01
We report experiments on the overall phase diagram of granular flows on an incline with emphasis on high inclination angles where the mean layer velocity approaches the terminal velocity of a single particle free falling in air. The granular flow was characterized by measurements of the surface velocity, the average layer height, and the mean density of the layer as functions of the hopper opening, the plane inclination angle, and the downstream distance x of the flow. At high inclination angles the flow does not reach an x -invariant steady state over the length of the inclined plane. For low volume flow rates, a transition was detected between dense and very dilute (gas) flow regimes. We show using a vacuum flow channel that air did not qualitatively change the phase diagram and did not quantitatively modify mean flow velocities of the granular layer except for small changes in the very dilute gaslike phase.
Satellite-driven modeling approach for monitoring lava flow hazards during the 2017 Etna eruption
NASA Astrophysics Data System (ADS)
Del Negro, C.; Bilotta, G.; Cappello, A.; Ganci, G.; Herault, A.; Zago, V.
2017-12-01
The integration of satellite data and modeling represents an efficient strategy that may provide immediate answers to the main issues raised at the onset of a new effusive eruption. Satellite-based thermal remote sensing of hotspots related to effusive activity can effectively provide a variety of products suited to timing, locating, and tracking the radiant character of lava flows. Hotspots show the location and occurrence of eruptive events (vents). Discharge rate estimates may indicate the current intensity (effusion rate) and potential magnitude (volume). High-spatial resolution multispectral satellite data can complement field observations for monitoring the front position (length) and extension of flows (area). Physics-based models driven, or validated, by satellite-derived parameters are now capable of fast and accurate forecast of lava flow inundation scenarios (hazard). Here, we demonstrate the potential of the integrated application of satellite remote-sensing techniques and lava flow models during the 2017 effusive eruption at Mount Etna in Italy. This combined approach provided insights into lava flow field evolution by supplying detailed views of flow field construction (e.g., the opening of ephemeral vents) that were useful for more accurate and reliable forecasts of eruptive activity. Moreover, we gave a detailed chronology of the lava flow activity based on field observations and satellite images, assessed the potential extent of impacted areas, mapped the evolution of lava flow field, and executed hazard projections. The underside of this combination is the high sensitivity of lava flow inundation scenarios to uncertainties in vent location, discharge rate, and other parameters, which can make interpreting hazard forecasts difficult during an effusive crisis. However, such integration at last makes timely forecasts of lava flow hazards during effusive crises possible at the great majority of volcanoes for which no monitoring exists.
Numerical Analysis of the Cavity Flow subjected to Passive Controls Techniques
NASA Astrophysics Data System (ADS)
Melih Guleren, Kursad; Turk, Seyfettin; Mirza Demircan, Osman; Demir, Oguzhan
2018-03-01
Open-source flow solvers are getting more and more popular for the analysis of challenging flow problems in aeronautical and mechanical engineering applications. They are offered under the GNU General Public License and can be run, examined, shared and modified according to user’s requirements. SU2 and OpenFOAM are the two most popular open-source solvers in Computational Fluid Dynamics (CFD) community. In the present study, some passive control methods on the high-speed cavity flows are numerically simulated using these open-source flow solvers along with one commercial flow solver called ANSYS/Fluent. The results are compared with the available experimental data. The solver SU2 are seen to predict satisfactory the mean streamline velocity but not turbulent kinetic energy and overall averaged sound pressure level (OASPL). Whereas OpenFOAM predicts all these parameters nearly as the same levels of ANSYS/Fluent.
Liquid Loss From Advancing Aqueous Foams With Very Low Water Content
2011-01-14
fractionation used by pharmaceutical and food industries for protein separation, and froth flotation used by the mining industry for mineral separation...SureShotsSprayer.com) onto a copper screen with a diameter of 6.4 cm and 30x30 mesh cells per inch (40.8% open area) held in place by a rubber gasket. The N2 pressure...distribution over the copper screen. Air flow rates of 8 L/min and 20 L/min, as determined by a mass-flow controller (Sierra Control Flo-Box Model
2013-07-26
8 (2000 mg/m 3 ) may have produced transient impairment of rat cochlear outer hair cell function in the absence of noise (Fechter et al., 2010); the...system is a dynamic, non- rebreathing system. In this system, an exposure atmosphere flow rate of approximately 0.5 L/min per open port was maintained...exposure atmosphere flow to the chamber or the exhaust. The outer plenum of the nose-only exposure system carried the animals’ exhaled breath and excess
Sloto, R.A.; Macchiaroli, Paola; Towle, M.T.
1996-01-01
The study area consists of a 9-square-mile area underlain by sedimentary rocks of the middle arkose member of the Stockton Formation of Upper Triassic age. In the Hatboro area, the Stockton Formation strikes approximately N. 65 degrees E. and dps approximately 9 degrees NW. The rocks are chiefly arkosic sandstone and siltstone. Rocks of the Stocton Formation form a complex, heterogeneous, multiaquifer system consisting of a series of gently dipping lithologic units with different hydraulic properties. Most ground water in the unweathered zone moves through a network of interconnecting secondary openigns-fractures, bedding plans, and joints. Ground water is unconfined in the shallower part of the aquifer and semiconfined or confined in the deeper part of the aquifer. Nearly all deep wells in the Stockton Formation are open to several water-bearing zones and are multiaquifer wells. Each water-bearing zone usually has a different hydraulic head. Where differences in hydraulic head exist between water-bearing zones, water in the well bore flows under nonpumping conditions in the direction of decreasing head. Determination of the potential for borehole flow was based on caliper, natural-gamma, single- point-resistance, fluid-resistivity, and (or) fluid-temperature logs that were run in 162 boreholes 31 to 655 feet deep. The direction and rate of borehole-fluid movement were determined in 83 boreholes by the bring-tracing method and in 10 boreholes by use of a heat-pulse flowmeter. Borehole flow was measurable in 65 of the 93 boreholes (70 percent). Fluid movement at rates up to 17 gallons per minute was measured. Downward flow was measured in 36 boreholes, and upward flow was measured in 23 boreholes, not including those boreholes in which two directions of flow were measured. Both upward and downward vertical flow was measured in six boreholes; these boreholes are 396 to 470 feet deep and were among the deepest boreholes logged. Fluid movement was upward in the upper part of the borehole and downward in the lower part of the borehole in two boreholes. Fluid movement wad downward in the upper part of the borehole and upward in the lower part of the borehole in three boreholes. Groung-water contamination by volatile organic compounds (VOC's) is widespread in the study area. Detectable concentrations of VOC's were present in water samples from 24 wells sampled in Hatboro Brough and in water samples for 10 of 14 wells (71 percent) samples in Warminster Township. Samples of borehole flow from nine boreholes in the industrial area of Hatboro were collected for laboratory analysis to estimate the quantity of VOC's in borehole flow. Downward flow was measured in all of these boreholes. Concentrations of TCE, TCA, and 1,1-DCE as great at 5,800, 1,400 and 260 micrograms per liter, respectively, show that some water moving downward in the aquifer through these open boreholes is highly contaminated and that open boreholes may contribute substantially to ground-water contamination. An estimated 14.7 gallons per year of VOC's were moving downward through the nine open boreholes sampled from the contaminated, upper part of the aquifer to the lower part, which is tapped by public supply wells. Borehole geophysical logs were used as a guide to design and construct monitor-well networks at three National Priorities List sites in the area. An open borehole was dirlled, and a suite of geophysical logs was run. Interpretation of geophysical logs enabled the identification of water-bearing zones that produce and receive water; these are zones that should not be connected. From the logs, discrete intervals to be monitored were selected. In the Stockton Formation, the same water-bearing zone may not be intersected in adjacent boreholes, especially if it is a vertical fracture with a diffident magnetic orientation than that of the adjacent boreholes. In most areas of the stockton Formation, depth of water-bearing zones in an are
Modelling rating curves using remotely sensed LiDAR data
Nathanson, Marcus; Kean, Jason W.; Grabs, Thomas J.; Seibert, Jan; Laudon, Hjalmar; Lyon, Steve W.
2012-01-01
Accurate stream discharge measurements are important for many hydrological studies. In remote locations, however, it is often difficult to obtain stream flow information because of the difficulty in making the discharge measurements necessary to define stage-discharge relationships (rating curves). This study investigates the feasibility of defining rating curves by using a fluid mechanics-based model constrained with topographic data from an airborne LiDAR scanning. The study was carried out for an 8m-wide channel in the boreal landscape of northern Sweden. LiDAR data were used to define channel geometry above a low flow water surface along the 90-m surveyed reach. The channel topography below the water surface was estimated using the simple assumption of a flat streambed. The roughness for the modelled reach was back calculated from a single measurment of discharge. The topographic and roughness information was then used to model a rating curve. To isolate the potential influence of the flat bed assumption, a 'hybrid model' rating curve was developed on the basis of data combined from the LiDAR scan and a detailed ground survey. Whereas this hybrid model rating curve was in agreement with the direct measurements of discharge, the LiDAR model rating curve was equally in agreement with the medium and high flow measurements based on confidence intervals calculated from the direct measurements. The discrepancy between the LiDAR model rating curve and the low flow measurements was likely due to reduced roughness associated with unresolved submerged bed topography. Scanning during periods of low flow can help minimize this deficiency. These results suggest that combined ground surveys and LiDAR scans or multifrequency LiDAR scans that see 'below' the water surface (bathymetric LiDAR) could be useful in generating data needed to run such a fluid mechanics-based model. This opens a realm of possibility to remotely sense and monitor stream flows in channels in remote locations.
Influence of the Haizhou Open Pit Coal Mine on the atmospheric flow over Fuxin, China.
Chen, He; Yang, Zhi-Feng; Wang, Xuan
2004-01-01
The influence of the Haizhou Open Pit Mine on the atmospheric flow in nearby Fuxin City in China was analyzed with the aid of the steady-state Navier-Stokes equations. The finite element method was used to obtain numerical solutions to these equations. The results showed that the Haizhou Open Pit Coal Mine contributes to the turbulent flow in the Fuxin City and its surroundings. However, when compared with the climatic effects, the open pit mine has a relatively small impact on the atmospheric flow over Fuxin.
An electromagnetic microvalve for pneumatic control of microfluidic systems.
Liu, Xuling; Li, Songjing
2014-10-01
An electromagnetic microvalve for pneumatic control of microfluidic devices has been designed, fabricated, and tested. The microvalve is composed of two parts: a miniature electromagnetic actuator and a valve body. The electromagnetic actuator consists mainly of a thin polydimethylsiloxane (PDMS)-based elastomer, which acts as the valve diaphragm. The diaphragm, used as a solid hydraulic medium, converts the large contact area of a valve core into a small contact area of valve head while maintaining a large stroking force. This microvalve remains closed because of a compressed mechanical spring force generated by the actuator. On the other hand, when a voltage is applied, the valve core moves up, relaxing the thin PDMS membrane, opening the microvalve. The fast open response (~17 ms) of the valve was achieved with a leak rate as low as 0.026 sccm at 200 KPa (N2) pressure. We tested the pertinent dynamic parameters such as flow rate in on/off mode, flow rate of duty cycles, and actuated frequencies in pulse width modulation (PWM) mode. Our method provides a simple, cheap, and small microvalve that avoids the bulky and expensive external pressure control solenoid manifold. This allows it to be easily integrated into portable and disposable devices. © 2014 Society for Laboratory Automation and Screening.
Effect of cabin ventilation rate on ultrafine particle exposure inside automobiles.
Knibbs, Luke D; de Dear, Richard J; Morawska, Lidia
2010-05-01
We alternately measured on-road and in-vehicle ultrafine (<100 nm) particle (UFP) concentration for 5 passenger vehicles that comprised an age range of 18 years. A range of cabin ventilation settings were assessed during 301 trips through a 4 km road tunnel in Sydney, Australia. Outdoor air flow (ventilation) rates under these settings were quantified on open roads using tracer gas techniques. Significant variability in tunnel trip average median in-cabin/on-road (I/O) UFP ratios was observed (0.08 to approximately 1.0). Based on data spanning all test automobiles and ventilation settings, a positive linear relationship was found between outdoor air flow rate and I/O ratio, with the former accounting for a substantial proportion of variation in the latter (R(2) = 0.81). UFP concentrations recorded in-cabin during tunnel travel were significantly higher than those reported by comparable studies performed on open roadways. A simple mathematical model afforded the ability to predict tunnel trip average in-cabin UFP concentrations with good accuracy. Our data indicate that under certain conditions, in-cabin UFP exposures incurred during tunnel travel may contribute significantly to daily exposure. The UFP exposure of automobile occupants appears strongly related to their choice of ventilation setting and vehicle.
Behaviour and design considerations for continuous flow closed-open-closed liquid microchannels.
Melin, Jessica; van der Wijngaart, Wouter; Stemme, Göran
2005-06-01
This paper introduces a method of combining open and closed microchannels in a single component in a novel way which couples the benefits of both open and closed microfluidic systems and introduces interesting on-chip microfluidic behaviour. Fluid behaviour in such a component, based on continuous pressure driven flow and surface tension, is discussed in terms of cross sectional flow behaviour, robustness, flow-pressure performance, and its application to microfluidic interfacing. The closed-open-closed microchannel possesses the versatility of upstream and downstream closed microfluidics along with open fluidic direct access. The device has the advantage of eliminating gas bubbles present upstream when these enter the open channel section. The unique behaviour of this device opens the door to applications including direct liquid sample interfacing without the need for additional and bulky sample tubing.
The NASA Subsonic Jet Particle Image Velocimetry (PIV) Dataset
NASA Technical Reports Server (NTRS)
Bridges, James; Wernet, Mark P.
2011-01-01
Many tasks in fluids engineering require prediction of turbulence of jet flows. The present document documents the single-point statistics of velocity, mean and variance, of cold and hot jet flows. The jet velocities ranged from 0.5 to 1.4 times the ambient speed of sound, and temperatures ranged from unheated to static temperature ratio 2.7. Further, the report assesses the accuracies of the data, e.g., establish uncertainties for the data. This paper covers the following five tasks: (1) Document acquisition and processing procedures used to create the particle image velocimetry (PIV) datasets. (2) Compare PIV data with hotwire and laser Doppler velocimetry (LDV) data published in the open literature. (3) Compare different datasets acquired at the same flow conditions in multiple tests to establish uncertainties. (4) Create a consensus dataset for a range of hot jet flows, including uncertainty bands. (5) Analyze this consensus dataset for self-consistency and compare jet characteristics to those of the open literature. The final objective was fulfilled by using the potential core length and the spread rate of the half-velocity radius to collapse of the mean and turbulent velocity fields over the first 20 jet diameters.
Final report on the Controlled Cold Helium Spill Test in the LHC tunnel at CERN
NASA Astrophysics Data System (ADS)
Dufay-Chanat, L.; Bremer, J.; Casas-Cubillos, J.; Chorowski, M.; Grabowski, M.; Jedrusyna, A.; Lindell, G.; Nonis, M.; Koettig, T.; Vauthier, N.; van Weelderen, R.; Winkler, T.
2015-12-01
The 27 km circumference LHC underground tunnel is a space in which the helium cooled LHC magnets are installed. The vacuum enclosures of the superconducting magnets are protected by over-pressure safety relief devices that open whenever cold helium escapes either from the magnet cold enclosure or from the helium supply headers, into this vacuum enclosure. A 3-m long no stay zone around these devices is defined based on scale model studies, protecting the personnel against cold burns or asphyxia caused by such a helium release event. Recently, several simulation studies have been carried out modelling the propagation of the helium/air mixture, resulting from the opening of such a safety device, along the tunnel. The released helium flows vary in the range between 1 kg/s and 0.1 kg/s. To validate these different simulation studies, real life mock-up tests have been performed inside the LHC tunnel, releasing helium flow rates of 1 kg/s, 0.3 kg/s and 0.1 kg/s. For each test, up to 1000 liters of liquid helium were released under standard operational tunnel conditions. The data recorded include oxygen concentration, temperature and flow speed measurements, and video footage used to assess qualitatively the visibility. These measurements have been made in the up- and downstream directions, with respect to the air ventilation flow, of the spill point. This paper presents the experimental set-up under which these release tests were made, the effects of these releases on the atmospheric tunnel condition as a function of the release flow rate. We discuss the modification to the personnel access conditions to the LHC tunnel that are presently implemented as a result of these tests.
Fluid Circulation Determined in the Isolated Bovine Lens
Candia, Oscar A.; Mathias, Richard; Gerometta, Rosana
2012-01-01
Purpose. In 1997, a theoretical model was developed that predicted the existence of an internal, Na+-driven fluid circulation from the poles to the equator of the lens. In the present work, we demonstrate with a novel system that fluid movement can be measured across the polar and equatorial surface areas of isolated cow lenses. We have also determined the effects of ouabain and reduced bath [Na+]. Methods. Lenses were isolated in a chamber with three compartments separated by two thin O-rings. Each compartment, anterior (A), equatorial (E), and posterior (P), was connected to a vertical capillary graduated in 0.25 μL. Capillary levels were read every 15 minutes. The protocols consisted of 2 hours in either open circuit or short circuit. The effects of ouabain and low-Na+ solutions were determined under open circuit. Results. In 21 experiments, the E capillary increased at a mean rate of 0.060 μL/min while the A and P levels decreased at rates of 0.044 and 0.037 μL/min, respectively, closely accounting for the increase in E. The first-hour flows under short circuit were approximately 40% larger than those in open-circuit conditions. The first-hour flows were always larger than those during the second hour. Preincubation of lenses with either ouabain or low-[Na+] solutions resulted in reduced rates of fluid transport. When KCl was used to replace NaCl, a transitory stimulation of fluid transport occurred. Conclusions. These experiments support that a fluid circulation consistent with the 1997 model is physiologically active. PMID:22969071
Morphology of the 1984 open-channel lava flow at Krafla volcano, northern Iceland
NASA Astrophysics Data System (ADS)
Rossi, Matti J.
1997-09-01
An open-channel lava flow of olivine tholeiite basalt, 9 km long and 1-2 km wide, formed in a volcanic eruption that took place in the Krafla volcano, Iceland, on the 4-18 September 1984. The eruption started with emplacement of a pahoehoe sheet which was fed by a 8.5-km-long fissure. After two days of eruption, lava effusion from the fissure ceased but one crater at the northern end of the fissure continued to release lava for another twelve days. That crater supplied an open-channel flow that moved toward the north along the rift valley. The lava was emplaced on a slope of 1°. The final lava flow is composed of five flow facies: (1) the initial pahoehoe sheet; (2) proximal slab pahoehoe and aa; (3) shelly-type overflows from the channel; (4) distal rubbly aa lava; and (5) secondary outbreaks of toothpaste lava and cauliflower aa. The main lava channel within the flow is 6.4 km long. The mean width of this channel is 189 m (103 m S.D.). An initial lava channel that forms in a Bingham plastic substance is fairly constant in width. This channel, however, varies in width especially in the proximal part indicating channel erosion. Large drifted blocks of channel walls are found throughout the flow front area and on the top of overflow levees. This suggests that the channel erosion was mainly mechanical. The lava flow has a mean height of 6 m above its surroundings, measured at the flow margins. However, a study of the pre-flow topography indicates that the lava filled a considerable topographic depression. Combined surface and pre-flow profiles give an average lava-flow thickness of 11 m; the thickness of the initial sheet-flow is estimated as 2 m. The volume of the lava flow calculated from these figures is 0.11 km 3. The mean effusion rate was 91 m 3/s. When lava flow models are used to deduce the rheological properties of this type of lava flow, the following points must be considered: (1) when a lava flow is emplaced along tectonic lineaments, its depth and volume may be significantly larger than what the surface exposure suggests; (2) lava channels may become severely eroded during channel flow even if a lava flow was formed in a relatively short time; (3) the levee dimensions, and hence lava flow dimensions, may be significantly altered by extensive overflows.
Spiromax, a New Dry Powder Inhaler: Dose Consistency under Simulated Real-World Conditions
Canonica, Giorgio Walter; Arp, Jan; Keegstra, Johan René
2015-01-01
Abstract Background: Spiromax® is a novel dry powder inhaler for patients with asthma or chronic obstructive pulmonary disease (COPD). The studies presented here provide further data on attributes (in vitro dosing consistency with budesonide–formoterol (DuoResp) Spiromax; flow rates through empty versions of the Spiromax and Turbuhaler inhaler) of importance to patients with asthma or COPD. Methods: Dose-delivery studies were performed using low-, middle-, and high-strength DuoResp Spiromax. Dose consistency was assessed over inhaler life. Total emitted doses (TEDs) were measured at various flow rates, after exposure to high and low temperature or humidity, at different inhaler orientations, and after dropping the inhaler. The criterion for evaluating dose uniformity was whether mean TEDs were within the product specification limits. In separate studies, flow rates were measured after training, using the patient information leaflets, and again after enhanced training as part of a randomized, open-label, cross-over study. Results: Mean values for both budesonide and formoterol were within 85%–115% of the label claim for each strength of DuoResp Spiromax for initial dose uniformity and for the other investigated conditions (temperature, humidity, orientation, dropping, knocking), with the exception of approximately an 80% increase in first dose after dropping the inhaler (subsequent doses not affected). In the flow rate patient study, two patients' inhalations with Spiromax and six with Turbuhaler were <30 L/min. The majority of asthma patients [91% (Spiromax) versus 82% (Turbuhaler)] achieved the preferred flow rate of >60 L/min. Conclusions: DuoResp Spiromax consistently meets dose uniformity criteria, under controlled laboratory conditions and with variations intended to mimic real-world use. Following enhanced training, all patients in the flow study were able to achieve the minimal inspiratory flow rate of >30 L/min, which is required for effective treatment. PMID:26352860
NASA Astrophysics Data System (ADS)
Varseev, E.
2017-11-01
The present work is dedicated to verification of numerical model in standard solver of open-source CFD code OpenFOAM for two-phase flow simulation and to determination of so-called “baseline” model parameters. Investigation of heterogeneous coolant flow parameters, which leads to abnormal friction increase of channel in two-phase adiabatic “water-gas” flows with low void fractions, presented.
Morozov, Victor [Manassas, VA
2011-01-18
A flow chamber having a vacuum chamber and a specimen chamber. The specimen chamber may have an opening through which a fluid may be introduced and an opening through which the fluid may exit. The vacuum chamber may have an opening through which contents of the vacuum chamber may be evacuated. A portion of the flow chamber may be flexible, and a vacuum may be used to hold the components of the flow chamber together.
Free-Flow Open-Chamber Electrophoresis
NASA Technical Reports Server (NTRS)
Sharnez, Rizwan; Sammons, David W.
1994-01-01
Free-flow open-chamber electrophoresis variant of free-flow electrophoresis performed in chamber with open ends and in which velocity of electro-osmotic flow adjusted equal to and opposite mean electrophoretic velocity of sample. Particles having electrophoretic mobilities greater than mean mobility of sample particles move toward cathode, those with mobilities less move toward anode. Technique applied to separation of components of mixtures of biologically important substances. Sensitivity enhanced by use of tapered chamber.
Experimental investigation of MHD pressure losses in a mock-up of a liquid metal blanket
NASA Astrophysics Data System (ADS)
Mistrangelo, C.; Bühler, L.; Brinkmann, H.-J.
2018-03-01
Experiments have been performed to investigate the influence of a magnetic field on liquid metal flows in a scaled mock-up of a helium cooled lead lithium (HCLL) blanket. During the experiments pressure differences between points on the mock-up have been recorded for various values of flow rate and magnitude of the imposed magnetic field. The main contributions to the total pressure drop in the test-section have been identified as a function of characteristic flow parameters. For sufficiently strong magnetic fields the non-dimensional pressure losses are practically independent on the flow rate, namely inertia forces become negligible. Previous experiments on MHD flows in a simplified test-section for a HCLL blanket showed that the main contributions to the total pressure drop in a blanket module originate from the flow in the distributing and collecting manifolds. The new experiments confirm that the largest pressure drops occur along manifolds and near the first wall of the blanket module, where the liquid metal passes through small openings in the stiffening plates separating two breeder units. Moreover, the experimental data shows that with the present manifold design the flow does not distribute homogeneously among the 8 stacked boxes that form the breeding zone.
Slugging Flow of Water Draining from the Bottom of a Non-Vented Container
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charles W. Solbrig
2010-06-01
Experiments were run to observe the behavior of water exiting through an orifice at the bottom of an non-vented container. Initially, the container is nearly full of water with a small air space on top. Once the orifice was uncovered, the slugging rate and the drain rate of the water leaving the container were measured. Upon initially opening the orifice, water drains out until the air pressure above the water reduces enough that the air pressure drop from inside to outside of the container supports the water column and the water stops flowing. Air then enters the container through themore » orifice forming a bubble, which grows until it detaches and bubbles through the water to reach the air space. Once the bubble enters, this added air increases the pressure in the air space enough to allow the water to start flowing out again. This cycle of flow out, flow stoppage, air inflow, and bubble breakoff continues over and over until the hole is closed or the container empties. This is referred to as the “slugging cycle.” A mechanism is proposed to describe the slugging cycle which is modeled analytically. This paper presents the description of the experiments, data obtained, the mechanistic model, and comparison of the model to the experimental data. The model predicts outflow rates close to experimental values. Flow rates from non-vented containers are more than 10 to 20 less than vented containers. The bubbles which must enter the container periodically to increase the internal air pressure stop the water flow momentarily so are responsible for this large decrease in flow rate. Swirl induced in the non-vented container causes the flow rates to increase by a factor of two. The flow rate out of a non-vented container is independent of water height which is in direct contrast to a vented container where the flow rate is proportional to the square root of the water height. The constant rate is due to the container pressure. The higher the water level, the lower the air pressure is in the container. This analytical model requires input of the bubble size. The volume recommended is the volume of a cylinder with the base of the orifice area and length of 3.3 cm. Slugging rate varies only a small amount falling in the range to 2 to 4 cycles/sec. Preliminary work with other containers indicates larger containers, larger orifices and nozzle exit shapes produce higher specific flow rates. The standard multiphase flow equations could not be used to analyze this situation because the two phases are not interpenetrating. Instead one phase must fully stop before the other can flow. Interpenetrating phases allow can pass one another each affecting the other with friction and virtual mass. An interesting observation: The negative air pressure in the container is observable. It equals the water height.« less
NASA Astrophysics Data System (ADS)
Spence, Robin J. S.; Baxter, Peter J.; Zuccaro, Giulio
2004-05-01
Pyroclastic flows clearly present a serious threat to life for the inhabitants of settlements on the slopes of volcanoes with a history of explosive eruptions; but it is increasingly realised that buildings can provide a measure of protection to occupants trapped by such flows. One important example is Vesuvius, whose eruption history includes many events which were lethal for the inhabitants of the neighbouring Vesuvian villages. Recent computational fluid dynamics computer modelling for Vesuvius [Todesco et al., Bull. Volcanol. 64 (2002) 155-177] has enabled a realistic picture of an explosive eruption to be modelled, tracing the time-dependent development of the physical parameters of a simulated flow at a large three-dimensional mesh of points, based on assumed conditions of temperature, mass-flow rate and particle size distribution at the vent. The output includes mapping of temperature, mixture density and mixture velocity over the whole adjacent terrain. But to date this information has not been used to assess the impacts of such flows on buildings and their occupants. In the project reported in this paper, estimates of the near-ground flow parameters were used to assess the impact of a particular simulated pyroclastic flow (modelled roughly on the 1631 eruption) on the buildings and population in four of the Vesuvian villages considered most at risk. The study had five components. First, a survey of buildings and the urban environment was conducted to identify the incidence of characteristics and elements likely to affect human vulnerability, and to classify the building stock. The survey emphasised particularly the number, location and type of openings characteristic of the major classes of the local building stock. In the second part of the study, this survey formed the basis for estimates of the probable impact of the pyroclastic flow on the envelope and internal air conditions of typical buildings. In the third part, a number of distinct ways in which human casualties would occur were identified, and estimates were made of the relationship between casualty rates and environmental conditions for each casualty type. In the fourth part of the study, the assumed casualty rates were used to estimate the proportions of occupants who would be killed or seriously injured for the assumed pyroclastic flow scenario in the Vesuvian villages studied, and their distribution by distance from the vent. It was estimated that in a daytime eruption, 25 min after the start of the eruption, there would be 480 deaths and a further 190 serious injuries, for every 1000 remaining in the area. In a night-time scenario, there would be 360 deaths with a further 230 serious injuries per 1000 after the same time interval. Finally, a set of risk factors for casualties was identified, and factors were discussed and ranked for their mitigation impact in the eruption scenario. The most effective mitigation action would of course be total evacuation before the start of the eruption. But if this were not achieved, barred window openings or sealed openings to slow the ingress of hot gases, together with a reduction of the fire load, could be effective means of reducing casualty levels.
Tracking the hidden growth of a lava flow field: the 2014-15 eruption of Fogo volcano (Cape Verde)
NASA Astrophysics Data System (ADS)
Silva, Sonia; Calvari, Sonia; Hernandez, Pedro; Perez, Nemesio; Ganci, Gaetana; Alfama, Vera; Barrancos, José; Cabral, Jeremias; Cardoso, Nadir; Dionis, Samara; Fernandes, Paulo; Melian, Gladys; Pereira, José; Semedo, Hélio; Padilla, German; Rodriguez, Fatima
2017-04-01
Fogo volcano erupted in 2014-15 producing an extensive lava flow field in the summit caldera that destroyed two villages, Portela and Bangaeira. The eruption started with powerful explosive activity, lava fountaining, and a substantial ash column accompanying the opening of an eruptive fissure. Lava flows spreading from the base of the eruptive fissure produced three arterial lava flows, spreading S (Flow 1), N-NW (Flow 2) and W (Flow 3). By a week after the start of the eruption, a master lava tube had already developed within the eruptive fissure and along Flow 2. When Flow 2 front stopped against the N caldera cliff, the whole flow field behind it inflated, and eventually its partial drainage produced a short tube that fed Flow 3, but no lava tube formed within Flow 1. Here we analyze the emplacement processes on the basis of observations carried out directly on the lava flow field and through satellite image, in order to unravel the key factors leading to the development of lava tubes. These tubes were responsible for the rapid expansion of lava for the 7.9 km length of the flow field, as well as the destruction of the Portela and Bangaeira villages. Comparing time-averaged effusion rates (TADR) obtained from satellite and Supply Rate (SR) derived from SO2 flux data, we estimate the amount and timing of the lava flow field endogenous growth, with the aim of developing a tool that could be used for risk mitigation at this and other volcanoes.
1985-10-04
peso- dollar rate has slightly moved be- yond PI8.60, the rate which held on for about two weeks. Favila, also one-time head of the Forex Club of...intervene in their forex markets in order to defend the local; curren- cy," he said. Thus the CB should intervene only in accordance with its econo- mic...banks in order to let the forex market "lift off." He said this will open the gates for the local forex market and facilitate free flow
A numerical study of blood flow using mixture theory
Wu, Wei-Tao; Aubry, Nadine; Massoudi, Mehrdad; Kim, Jeongho; Antaki, James F.
2014-01-01
In this paper, we consider the two dimensional flow of blood in a rectangular microfluidic channel. We use Mixture Theory to treat this problem as a two-component system: One component is the red blood cells (RBCs) modeled as a generalized Reiner–Rivlin type fluid, which considers the effects of volume fraction (hematocrit) and influence of shear rate upon viscosity. The other component, plasma, is assumed to behave as a linear viscous fluid. A CFD solver based on OpenFOAM® was developed and employed to simulate a specific problem, namely blood flow in a two dimensional micro-channel, is studied. Finally to better understand this two-component flow system and the effects of the different parameters, the equations are made dimensionless and a parametric study is performed. PMID:24791016
A numerical study of blood flow using mixture theory.
Wu, Wei-Tao; Aubry, Nadine; Massoudi, Mehrdad; Kim, Jeongho; Antaki, James F
2014-03-01
In this paper, we consider the two dimensional flow of blood in a rectangular microfluidic channel. We use Mixture Theory to treat this problem as a two-component system: One component is the red blood cells (RBCs) modeled as a generalized Reiner-Rivlin type fluid, which considers the effects of volume fraction (hematocrit) and influence of shear rate upon viscosity. The other component, plasma, is assumed to behave as a linear viscous fluid. A CFD solver based on OpenFOAM ® was developed and employed to simulate a specific problem, namely blood flow in a two dimensional micro-channel, is studied. Finally to better understand this two-component flow system and the effects of the different parameters, the equations are made dimensionless and a parametric study is performed.
Coupled discrete element and finite volume solution of two classical soil mechanics problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Feng; Drumm, Eric; Guiochon, Georges A
One dimensional solutions for the classic critical upward seepage gradient/quick condition and the time rate of consolidation problems are obtained using coupled routines for the finite volume method (FVM) and discrete element method (DEM), and the results compared with the analytical solutions. The two phase flow in a system composed of fluid and solid is simulated with the fluid phase modeled by solving the averaged Navier-Stokes equation using the FVM and the solid phase is modeled using the DEM. A framework is described for the coupling of two open source computer codes: YADE-OpenDEM for the discrete element method and OpenFOAMmore » for the computational fluid dynamics. The particle-fluid interaction is quantified using a semi-empirical relationship proposed by Ergun [12]. The two classical verification problems are used to explore issues encountered when using coupled flow DEM codes, namely, the appropriate time step size for both the fluid and mechanical solution processes, the choice of the viscous damping coefficient, and the number of solid particles per finite fluid volume.« less
Rühle, K H; Karweina, D; Domanski, U; Nilius, G
2009-07-01
The function of automatic CPAP devices is difficult to investigate using clinical examinations due to the high variability of breathing disorders. With a flow generator, however, identical breathing patterns can be reproduced so that comparative studies on the behaviour of pressure of APAP devices are possible. Because the algorithms of APAP devices based on the experience of users can be modified without much effort, also previously investigated devices should regularly be reviewed with regard to programme changes. Had changes occurred in the algorithms of 3 selected devices--compared to the previously published benchmark studies? Do the current versions of these investigated devices differentiate between open and closed apnoeas? With a self-developed respiratory pump, sleep-related breathing patterns and, with the help of a computerised valve, resistances of the upper respiratory tract were simulated. Three different auto-CPAP devices were subjected to a bench test with and without feedback (open/closed loop). Open loop: the 3 devices showed marked differences in the rate of pressure rise but did not differ from the earlier published results. From an initial pressure of 4 mbar the pressure increased to 10 mbar after a different number of apnoeas (1-6 repetitive apnoeas). Only one device differentiated between closed and open apnoeas. Closed loop: due to the pressure increase, the flow generator simulated reduced obstruction of the upper airways (apnoeas changed to hypopnoeas, hypopnoeas changed to flattening) but different patterns of pressure regulation could still be observed. By applying bench-testing, the algorithms of auto-CPAP devices can regularly be reviewed to detect changes in the software. The differentiation between open and closed apnoeas should be improved in several APAP devices.
NASA Astrophysics Data System (ADS)
Ameen, Sheeraz; Taher, Taha; Ahmed, Thamir M.
2018-06-01
Hydrostatics and hydrodynamics forces are generated and applied on the vertical lift tunnel gates due to the influence of a wide range of dam operating conditions. One of the most important forces is the uplift force resulting from the jet flow issuing below the gate. This force is based mainly upon many hydraulic and geometrical parameters. In this work, the uplift force is studied in terms of bottom pressure coefficient. The investigation is made paying particular attention on the effects of various three discharges and three gate lip angles on values of bottom pressure coefficients in addition to four different tunnel longitudinal slopes whose impact has not been studied in many previous works. Hydraulic model is constructed in this work for the sake of measuring all parameters required for estimating the bottom pressure coefficients, which are all examined against gate openings. The results show that the bottom pressure coefficient is related to the said variables, however, its behaviour and values are not necessary regular with variance of studied variables. The values are seen more significantly related to the flow rates and for some extent to the slopes of tunnel. An attempt by using the nonlinear regression of Statistical package of social sciences (SPSS) is made to set equations relating bottom pressure coefficient with gate openings for several angles of gate lips. The obtained equations are shown in good agreement with the selected cases of experimental results. The results are applicable for design purposes for similar geometrical and flow parameters considered in this study.
Hsu, Cheng-Ting
1984-01-01
A tornado type wind turbine has a vertically disposed wind collecting tower with spaced apart inner and outer walls and a central bore. The upper end of the tower is open while the lower end of the structure is in communication with a wind intake chamber. An opening in the wind chamber is positioned over a turbine which is in driving communication with an electrical generator. An opening between the inner and outer walls at the lower end of the tower permits radially flowing air to enter the space between the inner and outer walls while a vertically disposed opening in the wind collecting tower permits tangentially flowing air to enter the central bore. A porous portion of the inner wall permits the radially flowing air to interact with the tangentially flowing air so as to create an intensified vortex flow which exits out of the top opening of the tower so as to create a low pressure core and thus draw air through the opening of the wind intake chamber so as to drive the turbine.
High-flow oxygen therapy: pressure analysis in a pediatric airway model.
Urbano, Javier; del Castillo, Jimena; López-Herce, Jesús; Gallardo, José A; Solana, María J; Carrillo, Ángel
2012-05-01
The mechanism of high-flow oxygen therapy and the pressures reached in the airway have not been defined. We hypothesized that the flow would generate a low continuous positive pressure, and that elevated flow rates in this model could produce moderate pressures. The objective of this study was to analyze the pressure generated by a high-flow oxygen therapy system in an experimental model of the pediatric airway. An experimental in vitro study was performed. A high-flow oxygen therapy system was connected to 3 types of interface (nasal cannulae, nasal mask, and oronasal mask) and applied to 2 types of pediatric manikin (infant and neonatal). The pressures generated in the circuit, in the airway, and in the pharynx were measured at different flow rates (5, 10, 15, and 20 L/min). The experiment was conducted with and without a leak (mouth sealed and unsealed). Linear regression analyses were performed for each set of measurements. The pressures generated with the different interfaces were very similar. The maximum pressure recorded was 4 cm H(2)O with a flow of 20 L/min via nasal cannulae or nasal mask. When the mouth of the manikin was held open, the pressures reached in the airway and pharynxes were undetectable. Linear regression analyses showed a similar linear relationship between flow and pressures measured in the pharynx (pressure = -0.375 + 0.138 × flow) and in the airway (pressure = -0.375 + 0.158 × flow) with the closed mouth condition. According to our hypothesis, high-flow oxygen therapy systems produced a low-level CPAP in an experimental pediatric model, even with the use of very high flow rates. Linear regression analyses showed similar linear relationships between flow and pressures measured in the pharynx and in the airway. This finding suggests that, at least in part, the effects may be due to other mechanisms.
Flow zone characterisation in a fractured aquifer using spring and open-well T and EC monitoring.
NASA Astrophysics Data System (ADS)
Agbotui, Prodeo; West, Landis; Bottrell, Simon
2017-04-01
The Cretaceous Chalk is a very important aquifer in England, and its relatively high transmissivity derives essentially from a well-developed network of solutionally-enhanced fractures and conduits. Like other fractured aquifers, characterisation and delineation of flow pathways and hence catchment boundaries is important. Determination of flow pathways for source catchment delineation (e.g. identification of safeguarding zones around wells) is critical for the effective management and protection of the groundwater resource. It also determines the areal extent of contamination from known sources, and enables the targeted sampling of flow zones e.g. for monitored natural attenuation (MNA). A rather simplistic conceptualisation of the unconfined chalk aquifer of East Yorkshire is currently used as a basis for numerical simulations: linearly reducing hydraulic conductivity (K) with depth below the maximum groundwater elevation, reducing to a minimum value below the zone of groundwater table fluctuation. This study represents an attempt to improve this conceptualisation via improved characterisation of permeable zones within the aquifer. The methods used are: pumping test drawdown analyses for transmissivity, ambient open-well dilution testing; rainfall, groundwater head, and spring / open-well specific electrical conductance (SEC) and temperature monitoring. Pumping test analyses yield overall well transmissivity; the open-well dilution/monitoring approach identifies inflow, outflow, crossflow zones and direction and rate of flow in wells; seasonal changes in flows in wells and springs reflect the annual recharge and recession cycle and the impact of seasonal hydraulic head variation on the activation/deactivation of permeable pathways. Variations in spring and well-water electrical conductivity / temperature provide insight into groundwater residence times and the degree of isolation of groundwater from atmospheric and soil zone sources of CO2. The results of the study combined with stratigraphic information on the aquifer, allows the characterisation of the development of bedding-controlled features such as solutionally-enhanced fractures or conduits, and the role of steeply inclined normal faults. The results have implications for catchment management because it will inform a refinement and improvement of the regulatory body) groundwater model for assessment, evaluation and protection of groundwater resource. The method and techniques used can be applicable for characterising fractured aquifers in other jurisdictions.
Design and Evaluation of a Proxy-Based Monitoring System for OpenFlow Networks.
Taniguchi, Yoshiaki; Tsutsumi, Hiroaki; Iguchi, Nobukazu; Watanabe, Kenzi
2016-01-01
Software-Defined Networking (SDN) has attracted attention along with the popularization of cloud environment and server virtualization. In SDN, the control plane and the data plane are decoupled so that the logical topology and routing control can be configured dynamically depending on network conditions. To obtain network conditions precisely, a network monitoring mechanism is necessary. In this paper, we focus on OpenFlow which is a core technology to realize SDN. We propose, design, implement, and evaluate a network monitoring system for OpenFlow networks. Our proposed system acts as a proxy between an OpenFlow controller and OpenFlow switches. Through experimental evaluations, we confirm that our proposed system can capture packets and monitor traffic information depending on administrator's configuration. In addition, we show that our proposed system does not influence significant performance degradation to overall network performance.
Design and Evaluation of a Proxy-Based Monitoring System for OpenFlow Networks
Taniguchi, Yoshiaki; Tsutsumi, Hiroaki; Iguchi, Nobukazu; Watanabe, Kenzi
2016-01-01
Software-Defined Networking (SDN) has attracted attention along with the popularization of cloud environment and server virtualization. In SDN, the control plane and the data plane are decoupled so that the logical topology and routing control can be configured dynamically depending on network conditions. To obtain network conditions precisely, a network monitoring mechanism is necessary. In this paper, we focus on OpenFlow which is a core technology to realize SDN. We propose, design, implement, and evaluate a network monitoring system for OpenFlow networks. Our proposed system acts as a proxy between an OpenFlow controller and OpenFlow switches. Through experimental evaluations, we confirm that our proposed system can capture packets and monitor traffic information depending on administrator's configuration. In addition, we show that our proposed system does not influence significant performance degradation to overall network performance. PMID:27006977
A DNS Investigation of Non-Newtonian Turbulent Open Channel Flow
NASA Astrophysics Data System (ADS)
Guang, Raymond; Rudman, Murray; Chryss, Andrew; Slatter, Paul; Bhattacharya, Sati
2010-06-01
The flow of non-Newtonian fluids in open channels has great significance in many industrial settings from water treatment to mine waste disposal. The turbulent behaviour during transportation of these materials is of interest for many reasons, one of which is keeping settleable particles in suspension. The mechanism governing particle transport in turbulent flow has been studied in the past, but is not well understood. A better understanding of the mechanism operating in the turbulent flow of non-Newtonian suspensions in open channel would lead to improved design of many of the systems used in the mining and mineral processing industries. The objective of this paper is to introduce our work on the Direct Numerical Simulation of turbulent flow of non-Newtonian fluids in an open channel. The numerical method is based on spectral element/Fourier formulation. The flow simulation of a Herschel-Bulkley fluid agrees qualitatively with experimental results. The simulation results over-predict the flow velocity by approximately 15% for the cases considered, although the source of the discrepancy is difficult to ascertain. The effect of variation in yield stress and assumed flow depth are investigated and used to assess the sensitivity of the flow to these physical parameters. This methodology is seen to be useful in designing and optimising the transport of slurries in open channels.
Statistical properties of gravity-driven granular discharge flow under the influence of an obstacle
NASA Astrophysics Data System (ADS)
Endo, Keita; Katsuragi, Hiroaki
2017-06-01
Two-dimensional granular discharge flow driven by gravity under the influence of an obstacle is experimentally investigated. A horizontal exit of width W is opened at the bottom of vertical Hele-Shaw cell filled with stainless-steel particles to start the discharge flow. In this experiment, a circular obstacle is placed in front of the exit. Thus, the distance between the exit and obstacle L is also an important parameter. During the discharge, granular-flow state is acquired by a high-speed camera. The bulk discharge-flow rate is also measured by load cell sensors. The obtained high-speed-image data are analyzed to clarify the particle-level granular-flow dynamics. Using the measured data, we find that the obstacle above the exit affects the granular- flow field. Specifically, the existence of obstacle results in large horizontal granular temperature and small packing fraction. This tendency becomes significant when L is smaller than approximately 6Dg when W ≃ 4Dg, where Dg is diameter of particles.
NASA Technical Reports Server (NTRS)
Kazin, S. B.; Minzner, W. R.; Paas, J. E.
1971-01-01
A scale model of the bypass flow region of a 1.5 pressure ratio, single stage, low tip speed fan was tested with a rotor tip casing bleed slot to determine its effects on noise generation. The bleed slot was located 1/2 inch (1.3 cm) upstream of the rotor leading edge and was configured to be a continuous opening around the circumference. The bleed manifold system was operated over a range of bleed rates corresponding to as much as 6% of the fan flow at approach thrust and 4.25% of the fan flow at takeoff thrust. Acoustic results indicate that a bleed rate of 4% of the fan flow reduces the fan maximum approach 200 foot (61.0 m) sideline PNL 0.5 PNdB and the corresponding takeoff thrust noise 1.1 PNdB below the level with zero bleed. However, comparison of the standard casing (no bleed slot) and the slotted bleed casing with zero bleed shows that the bleed slot itself caused a noise increase.
NASA Astrophysics Data System (ADS)
Moore, Joel; Lichtner, Peter C.; White, Art F.; Brantley, Susan L.
2012-09-01
The reactive transport model FLOTRAN was used to forward-model weathering profiles developed on granitic outwash alluvium over 40-3000 ka from the Merced, California (USA) chronosequence as well as deep granitic regolith developed over 800 ka near Davis Run, Virginia (USA). Baseline model predictions that used laboratory rate constants (km), measured fluid flow velocities (v), and BET volumetric surface areas for the parent material (AB,mo) were not consistent with measured profiles of plagioclase, potassium feldspar, and quartz. Reaction fronts predicted by the baseline model are deeper and thinner than the observed, consistent with faster rates of reaction in the model. Reaction front depth in the model depended mostly upon saturated versus unsaturated hydrologic flow conditions, rate constants controlling precipitation of secondary minerals, and the average fluid flow velocity (va). Unsaturated hydrologic flow conditions (relatively open with respect to CO2(g)) resulted in the prediction of deeper reaction fronts and significant differences in the separation between plagioclase and potassium feldspar reaction fronts compared to saturated hydrologic flow (relatively closed with respect to CO2(g)). Under saturated or unsaturated flow conditions, the rate constant that controls precipitation rates of secondary minerals must be reduced relative to laboratory rate constants to match observed reaction front depths and measured pore water chemistry. Additionally, to match the observed reaction front depths, va was set lower than the measured value, v, for three of the four profiles. The reaction front gradients in mineralogy and pore fluid chemistry could only be modeled accurately by adjusting values of the product kmAB,mo. By assuming km values were constrained by laboratory data, field observations were modeled successfully with TST-like rate equations by dividing measured values of AB,mo by factors from 50 to 1700. Alternately, with sigmoidal or Al-inhibition rate models, this adjustment factor ranges from 5 to 170. Best-fit models of the wetter, hydrologically saturated Davis Run profile required a smaller adjustment to AB,mo than the drier hydrologically unsaturated Merced profiles. We attributed the need for large adjustments in va and AB,mo necessary for the Merced models to more complex hydrologic flow that decreased the reactive surface area in contact with bulk flow water, e.g., dead-end pore spaces containing fluids that are near or at chemical equilibrium. Thus, rate models from the laboratory can successfully predict weathering over millions of years, but work is needed to understand how to incorporate changes in what controls the relationship between reactive surface area and hydrologic flow.
Massive units deposited by bedload transport in sheet flow mode
NASA Astrophysics Data System (ADS)
Viparelli, E.; Hernandez Moreira, R. R.; Jafarinik, S.; Sanders, S.; Huffman, B.; Parker, G.; Kendall, C.
2017-12-01
A sandy massive (structureless) unit overlying a basal erosional surface and underlying a parallel or cross-laminated unit often characterizes turbidity current and coastal storm deposits. The basal massive units are thought to be the result of relatively rapid deposition of suspended sediment. However, suspension-based models fail to explain how basal massive units can be emplaced for long distances, far away from the source and can contain gravel particles as floating clasts. Here we present experimental results that can significantly change the understanding of the processes forming turbidity current and coastal storm deposits. The experiments were performed in open channel flow mode in the Hydraulics Laboratory at the University of South Carolina. The sediment was a mixture of sand size particles with a geometric mean diameter of 0.95 mm and a geometric standard deviation of 1.65. Five experiments were performed with a flow rate of 30 l/s and sediment feed rates varying between 1.5 kg/min and 20 kg/min. Each experiment was characterized by two phases, 1) the equilibration phase, in which we waited for the system to reach equilibrium condition, and 2) the aggradation phase, in which we slowly raised the water surface base level to induce channel bed aggradation under the same transport conditions observed over the equilibrium bed. Our experiments show that sandy massive units can be the result of deposition from a thick bedload layer of colliding grains, the sheet flow layer. The presence of this sheet flow layer explains how a strong, sustained current can emplace extensive massive units containing gravel clasts. Although our experiments were conducted in open-channel mode, observations of bedload driven by density underflows suggest that our results are directly applicable to sheet flows driven by deep-sea turbidity currents. More specifically, we believe that this mechanism offers an explanation for massive turbidites that heretofore have been identified as the deposits of "high density" turbidity currents.
Coupled Viscous Fluid Flow and Joint Deformation Analysis for Grout Injection in a Rock Joint
NASA Astrophysics Data System (ADS)
Kim, Hyung-Mok; Lee, Jong-Won; Yazdani, Mahmoud; Tohidi, Elham; Nejati, Hamid Reza; Park, Eui-Seob
2018-02-01
Fluid flow modeling is a major area of interest within the field of rock mechanics. The main objective of this study is to gain insight into the performance of grout injection inside jointed rock masses by numerical modeling of grout flow through a single rock joint. Grout flow has been widely simulated using non-Newtonian Bingham fluid characterized by two main parameters of dynamic viscosity and shear yield strength both of which are time dependent. The increasing value of these properties with injection time will apparently affect the parameters representing the grouting performance including grout penetration length and volumetric injection rate. In addition, through hydromechanical coupling a mutual influence between the injection pressure from the one side and the joint opening/closing behavior and the aperture profile variation on the other side is anticipated. This is capable of producing a considerable impact on grout spread within the rock joints. In this study based on the Bingham fluid model, a series of numerical analysis has been conducted using UDEC to simulate the flow of viscous grout in a single rock joint with smooth parallel surfaces. In these analyses, the time-dependent evolution of the grout fluid properties and the hydromechanical coupling have been considered to investigate their impact on grouting performance. In order to verify the validity of these simulations, the results of analyses including the grout penetration length and the injection flow rate were compared with a well-known analytical solution which is available for the simple case of constant grout properties and non-coupled hydraulic analysis. The comparison demonstrated that the grout penetration length can be overestimated when the time-dependent hardening of grout material is not considered. Moreover, due to the HM coupling, it was shown that the joint opening induced by injection pressure may have a considerable increasing impression on the values of penetration length and injected grout volume.
van 't Veer, Marcel; Adjedj, Julien; Wijnbergen, Inge; Tóth, Gabor G; Rutten, Marcel C M; Barbato, Emanuele; van Nunen, Lokien X; Pijls, Nico H J; De Bruyne, Bernard
2016-08-20
The aim of this study is to validate a novel monorail infusion catheter for thermodilution-based quantitative coronary flow measurements. Based on the principles of thermodilution, volumetric coronary flow can be determined from the flow rate of a continuous saline infusion, the temperature of saline when it enters the coronary artery, and the temperature of the blood mixed with the saline in the distal part of the coronary artery. In an in vitro set-up of the systemic and coronary circulation at body temperature, coronary flow values were varied from 50-300 ml/min in steps of 50 ml/min. At each coronary flow value, thermodilution-based measurements were performed at infusion rates of 15, 20, and 30 ml/min. Temperatures and pressures were simultaneously measured with a pressure/temperature sensor-tipped guidewire. Agreement of the calculated flow and the measured flow as well as repeatability were assessed. A total of five catheters were tested, with a total of 180 measurements. A strong correlation (ρ=0.976, p<0.0001) and a difference of -6.5±15.5 ml/min were found between measured and calculated flow. The difference between two repeated measures was 0.2%±8.0%. This novel infusion catheter used in combination with a pressure/temperature sensor-tipped guidewire allows accurate and repeatable absolute coronary flow measurements. This opens a window to a better understanding of the coronary microcirculation.
Technical Development for S-CO 2 Advanced Energy Conversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Mark; Ranjan, Devesh; Hassan, Yassin
This report is divided into four parts. First part of the report describes the methods used to measure and model the flow of supercritical carbon dioxide (S-CO 2) through annuli and straight-through labyrinth seals. The effects of shaft eccentricity in small diameter annuli were observed for length-to-hydraulic diameter (L/D) ratios of 6, 12, 143, and 235. Flow rates through tooth-cavity labyrinth seals were measured for inlet pressures of 7.7, 10, and 11 MPa with corresponding inlet densities of 325, 475, and 630 kg/m 3. Various leakage models were compared to this result to describe their applicability in supercritical carbon dioxidemore » applications. Flow rate measurements were made varying tooth number for labyrinth seals of same total length. Second part of the report describes the computational study performed to understand the leakage through the labyrinth seals using Open source CFD package OpenFOAM. Fluid Property Interpolation Tables (FIT) program was implemented in OpenFOAM to accurately model the properties of CO2 required to solve the governing equations. To predict the flow behavior in the two phase dome Homogeneous Equilibrium Model (HEM) is assumed to be valid. Experimental results for plain orifice (L/D ~ 5) were used to show the capabilities of the FIT model implemented in OpenFOAM. Error analysis indicated that OpenFOAM is capable of predicting experimental data within ±10% error with the majority of data close to ±5% error. Following the validation of computational model, effects of geometrical parameters and operating conditions are isolated from each other and a parametric study was performed in two parts to understand their effects on leakage flow. Third part of the report provides the details of the constructed heat exchanger test facility and presents the experimental results obtained to investigate the effects of buoyancy on heat transfer characteristics of Supercritical carbon dioxide in heating mode. Turbulent flows with Reynolds numbers up to 60,000, at operating pressures of 7.5, 8.1, and 10.2 MPa were tested in a round tube. Local heat transfer coefficients were obtained from measured wall temperatures over a large set of experimental parameters that varied inlet temperature from 20 °C to 55 °C,mass flux from 150 to 350 kg/m 2s, and a maximum heat flux of 65 KW/m 2. Horizontal, upward and downward flows were tested to investigate the unusual heat-transfer characteristics to the effect of buoyancy and flow acceleration caused by large variation in density. Final part of this report presents the simplified analysis performed to investigate the possibility of using wet cooling tower option to reject heat from the supercritical carbon dioxide Brayton cycle power convertor for AFR-100 and ABR-1000 plants. A code was developed to estimate the tower dimensions, power and water consumption, and to perform economic analysis. The code developed was verified by comparing the calculations to a vendor quote. The effect of ambient air and water conditions on the sizing and construction of the cooling tower as well as the cooler is studied. Finally, a cost-based optimization technique is used to estimate the optimum water conditions which will improve the plant economics.« less
Automatic dilution gaging of rapidly varying flow
Duerk, M.D.
1983-01-01
The analysis showed that the discharges measured by dye-dilution techniques were generally within ± 10 percent of the discharges determined from ratings established by current-meter measurements. Larger differences were noted at the start of and on the rising limb of four hydrographs. Of the 20 storms monitored, dilution measurements on 17 were of acceptable accuracy. Peak discharges from the open-channel site ranged from 0 to 12 percent departures from the existing rating whereas the comparison of peak discharge at the storm sewer site ranged from 0 to 5 percent departures from the existing rating.
Ramiar, Abas; Larimi, Morsal Momenti; Ranjbar, Ali Akbar
2017-01-01
Hemodynamic factors, such as Wall Shear Stress (WSS), play a substantial role in arterial diseases. In the larger arteries, such as the carotid artery, interaction between the vessel wall and blood flow affects the distribution of hemodynamic factors. The fluid is considered to be non-Newtonian, whose flow is governed by the equation of a second-grade viscoelastic fluid and the effects of viscoelastic on blood flow in carotid artery is investigated. Pulsatile flow studies were carried out in a 3D model of carotid artery. The governing equations were solved using finite volume C++ based on open source code, OpenFOAM. To describe blood flow, conservation of mass and momentum, a constitutive relation of simplified Phan-Thien-Tanner (sPTT), and appropriate relations were used to explain shear thinning behavior. The first recirculation was observed at t = 0.2 s, in deceleration phase. In the acceleration phase from t = 0.3 s to t = 0.5 s, vortex and recirculation sizes in bulb regions in both ECA and ICA gradually increased. As is observed in the line graphs based on extracted data from ICA, at t = 0.2 s, τyy is the maximum amount of wall shear stress and τxy the minimum one. The maximum shear stress occurred in the inner side of the main branch (inner side of ICA and ECA) because the velocity of blood flow in the inner side of the bulb region was maximum due to the created recirculation zone in the opposite side in this area. The rheology of blood flow and shear stress in various important parts (the area that are in higher rates of WSS such as bifurcation region and the regions after bulb areas in both branches, Line1-4 in Fig. 7) were also analyzed. The investigation of velocity stream line, velocity profile and shear stress in various sections of carotid artery showed that the maximum shear stress occurred in acceleration phase and in the bifurcation region between ECA and ICA which is due to velocity gradients and changes in thinning behavior of blood and increasing strain rate in Newtonian stress part.
A Numerical Model of Exchange Chromatography Through 3D Lattice Structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salloum, Maher; Robinson, David B.
Rapid progress in the development of additive manufacturing technologies is opening new opportunities to fabricate structures that control mass transport in three dimensions across a broad range of length scales. We describe a structure that can be fabricated by newly available commercial 3D printers. It contains an array of regular three-dimensional flow paths that are in intimate contact with a solid phase, and thoroughly shuffle material among the paths. We implement a chemically reacting flow model to study its behavior as an exchange chromatography column, and compare it to an array of one-dimensional flow paths that resemble more traditional honeycombmore » monoliths. A reaction front moves through the columns and then elutes. Here, the front is sharper at all flow rates for the structure with three-dimensional flow paths, and this structure is more robust to channel width defects than the one-dimensional array.« less
Arrays of flow channels with heat transfer embedded in conducting walls
Bejan, A.; Almerbati, A.; Lorente, S.; ...
2016-04-20
Here we illustrate the free search for the optimal geometry of flow channel cross-sections that meet two objectives simultaneously: reduced resistances to heat transfer and fluid flow. The element cross section and the wall material are fixed, while the shape of the fluid flow opening, or the wetted perimeter is free to vary. Two element cross sections are considered, square and equilateral triangular. We find that the two objectives are best met when the solid wall thickness is uniform, i.e., when the wetted perimeters are square and triangular, respectively. In addition, we consider arrays of square elements and triangular elements,more » on the basis of equal mass flow rate per unit of array cross sectional area. The conclusion is that the array of triangular elements meets the two objectives better than the array of square elements.« less
A Numerical Model of Exchange Chromatography Through 3D Lattice Structures
Salloum, Maher; Robinson, David B.
2018-01-30
Rapid progress in the development of additive manufacturing technologies is opening new opportunities to fabricate structures that control mass transport in three dimensions across a broad range of length scales. We describe a structure that can be fabricated by newly available commercial 3D printers. It contains an array of regular three-dimensional flow paths that are in intimate contact with a solid phase, and thoroughly shuffle material among the paths. We implement a chemically reacting flow model to study its behavior as an exchange chromatography column, and compare it to an array of one-dimensional flow paths that resemble more traditional honeycombmore » monoliths. A reaction front moves through the columns and then elutes. Here, the front is sharper at all flow rates for the structure with three-dimensional flow paths, and this structure is more robust to channel width defects than the one-dimensional array.« less
2010-05-06
Open fractures frequently result in serious complications for patients, including infections, wound healing problems, and failure of fracture healing, many of which necessitate subsequent operations. One of the most important steps in the initial management of open fractures is a thorough wound irrigation and debridement to remove any contaminants. There is, however, currently no consensus regarding the optimal approach to irrigating open fracture wounds during the initial operative procedure. The selection of both the type of irrigating fluid and the pressure of fluid delivery remain controversial. The primary objective of this study is to investigate the effects of irrigation solutions (soap vs. normal saline) and pressure (low vs. high; gravity flow vs. high; low vs. gravity flow) on re-operation within one year among patients with open fractures. The FLOW study is a multi-center, randomized controlled trial using a 2 x 3 factorial design. Surgeons at clinical sites in North America, Europe, Australia, and Asia will recruit 2 280 patients who will be centrally randomized into one of the 6 treatment arms (soap + low pressure; soap + gravity flow pressure; soap + high pressure; saline + low pressure; saline + gravity flow pressure; saline + high pressure). The primary outcome of the study is re-operation to promote wound or bone healing, or to treat an infection. This composite endpoint of re-operation includes a narrow spectrum of patient-important procedures: irrigation and debridement for infected wound, revision and closure for wound dehiscence, wound coverage procedures for infected or necrotic wound, bone grafts or implant exchange procedures for established nonunion in patients with postoperative fracture gaps less than 1 cm, intramedullary nail dynamizations in the operating room, and fasciotomies for compartment syndrome. Patients, outcome adjudicators, and data analysts will be blinded. We will compare rates of re-operation at 12 months across soap vs. saline, low pressure vs. high pressure, gravity flow pressure vs. high pressure, and low pressure vs. gravity flow pressure. We will measure function and quality of life with the Short Form-12 (SF-12) and the EuroQol-5 Dimensions (EQ-5D) at baseline, 2 weeks, 6 weeks, 3 months, 6 months, 9 months, and 12 months after initial surgical management, and measure patients' illness beliefs with the Somatic Pre-Occupation and Coping (SPOC) questionnaire at 1 and 6 weeks. We will also compare non-operatively managed infections, wound healing, and fracture healing problems at 12 months after initial surgery. This study represents a major international effort to identify a simple and easily applicable strategy for emergency wound management. The importance of the question and the potential to identify a low cost treatment strategy argues strongly for global participation, especially in low and middle income countries such as India and China where disability from traumatic injuries is substantial. This trial is registered at ClinicalTrials.gov (NCT00788398).
76 FR 62605 - Virginia Graeme Baker Pool and Spa Safety Act; Interpretation of Unblockable Drain
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-11
... the VGB Act defines an ``unblockable drain'' as ``a drain of any size and shape that a human body...'' as follows: A suction outlet defined as all components, including the sump and/or body, cover/grate...'' Body Blocking Element of ASME/ANSI A112.19.8-2007 and that the rated flow through the remaining open...
Echtler, Joseph P.
1978-01-01
A pressure tap having utility in an environment of a solid-gas phase process flow includes a tubular coupling part having attached over a passage therethrough at an end opening thereof exposed to the flow a grating of spaced bars, and affixed internally across a passage therethrough so as to cover over an opening therein a screen which maintains contained within the passage between it and the grating a matrix of smooth spheres. The grating bars are so oriented by the disposition of the aforesaid end opening with respect to the flow such that accumulations of solids therebetween tending to bridge the opening are removed therefrom by the flow.
Variability of hydrologic regimes and morphology in constructed open-ditch channels
Strock, J.S.; Magner, J.A.; Richardson, W.B.; Sadowsky, M.J.; Sands, G.R.; Venterea, R.T.; ,
2004-01-01
Open-ditch ecosystems are potential transporters of considerable loads of nutrients, sediment, pathogens and pesticides from direct inflow from agricultural land to small streams and larger rivers. Our objective was to compare hydrology and channel morphology between two experimental open-ditch channels. An open-ditch research facility incorporating a paired design was constructed during 2002 near Lamberton, MN. A200-m reach of existing drainage channel was converted into a system of four parallel channels. The facility was equipped with water level control devices and instrumentation for flow monitoring and water sample collection on upstream and downstream ends of the system. Hydrographs from simulated flow during year one indicated that paired open-ditch channels responded similarly to changes in inflow. Variability in hydrologic response between open-ditches was attributed to differences in open-ditch channel bottom elevation and vegetation density. No chemical, biological, or atmospheric measurements were made during 2003. Potential future benefits of this research include improved biological diversity and integrity of open-ditch ecosystems, reduce flood peaks and increased flow during critical low-flow periods, improved and more efficient nitrogen retention within the open-ditch ecosystem, and decreased maintenance cost associated with reduced frequency of open-ditch maintenance.
Factors Affecting the Capture Efficiency of a Fume Extraction Torch for Gas Metal Arc Welding.
Bonthoux, Francis
2016-07-01
Welding fumes are classified as Group 2B 'possibly carcinogenic' and this prompts to the implementation of local exhaust ventilation (LEV). The fume extraction torch with LEV integrated into the tool is the most attractive solution but its capture efficiency is often disappointing in practice. This study assesses the main parameters affecting fume capture efficiency namely the extraction flow rate, the positioning of the suction openings on the torch, the angle of inclination of the torch to the workpiece during welding, the metal transfer modes, and the welding deposition rate. The theoretical velocity induced by suction, estimated from the extraction flow rate and the position of the suction openings, is the main parameter affecting effectiveness of the device. This is the design parameter and its value should never be <0.25 m s(-1) The angle of the torch relative to the workpiece also has a great deal of influence. To improve efficiency, work station layouts need to favour positions where the torch is held with angles closer to perpendicular (<15°). Welding with high deposition rates (>1.1g s(-1)) and spray transfer leads to low capture efficiency if induced velocities are <0.5 m s(-1) The results of the study can be used in the design of integrated on-torch extraction systems and provide information for fixing system objectives. © The Author 2016. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Anagnostou, Paolo; Dominici, Valentina; Battaggia, Cinzia; Pagani, Luca; Vilar, Miguel; Wells, R. Spencer; Pettener, Davide; Sarno, Stefania; Boattini, Alessio; Francalacci, Paolo; Colonna, Vincenza; Vona, Giuseppe; Calò, Carla; Destro Bisol, Giovanni; Tofanelli, Sergio
2017-01-01
Human populations are often dichotomized into “isolated” and “open” categories using cultural and/or geographical barriers to gene flow as differential criteria. Although widespread, the use of these alternative categories could obscure further heterogeneity due to inter-population differences in effective size, growth rate, and timing or amount of gene flow. We compared intra and inter-population variation measures combining novel and literature data relative to 87,818 autosomal SNPs in 14 open populations and 10 geographic and/or linguistic European isolates. Patterns of intra-population diversity were found to vary considerably more among isolates, probably due to differential levels of drift and inbreeding. The relatively large effective size estimated for some population isolates challenges the generalized view that they originate from small founding groups. Principal component scores based on measures of intra-population variation of isolated and open populations were found to be distributed along a continuum, with an area of intersection between the two groups. Patterns of inter-population diversity were even closer, as we were able to detect some differences between population groups only for a few multidimensional scaling dimensions. Therefore, different lines of evidence suggest that dichotomizing human populations into open and isolated groups fails to capture the actual relations among their genomic features. PMID:28145502
NASA Technical Reports Server (NTRS)
Hunt, L. Roane; Notestine, Kristopher K.
1990-01-01
Surface and gap pressures and heating-rate distributions were obtained for simulated Thermal Protection System (TPS) tile arrays on the curved surface test apparatus of the Langley 8-Foot High Temperature Tunnel at Mach 6.6. The results indicated that the chine gap pressures varied inversely with gap width because larger gap widths allowed greater venting from the gap to the lower model side pressures. Lower gap pressures caused greater flow ingress from the surface and increased gap heating. Generally, gap heating was greater in the longitudinal gaps than in the circumferential gaps. Gap heating decreased with increasing gap depth. Circumferential gap heating at the mid-depth was generally less than about 10 percent of the external surface value. Gap heating was most severe at local T-gap junctions and tile-to-tile forward-facing steps that caused the greatest heating from flow impingement. The use of flow stoppers at discrete locations reduced heating from flow impingement. The use of flow stoppers at discrete locations reduced heating in most gaps but increased heating in others. Limited use of flow stoppers or gap filler in longitudinal gaps could reduce gap heating in open circumferential gaps in regions of high surface pressure gradients.
An Open-Access Modeled Passenger Flow Matrix for the Global Air Network in 2010
Huang, Zhuojie; Wu, Xiao; Garcia, Andres J.; Fik, Timothy J.; Tatem, Andrew J.
2013-01-01
The expanding global air network provides rapid and wide-reaching connections accelerating both domestic and international travel. To understand human movement patterns on the network and their socioeconomic, environmental and epidemiological implications, information on passenger flow is required. However, comprehensive data on global passenger flow remain difficult and expensive to obtain, prompting researchers to rely on scheduled flight seat capacity data or simple models of flow. This study describes the construction of an open-access modeled passenger flow matrix for all airports with a host city-population of more than 100,000 and within two transfers of air travel from various publicly available air travel datasets. Data on network characteristics, city population, and local area GDP amongst others are utilized as covariates in a spatial interaction framework to predict the air transportation flows between airports. Training datasets based on information from various transportation organizations in the United States, Canada and the European Union were assembled. A log-linear model controlling the random effects on origin, destination and the airport hierarchy was then built to predict passenger flows on the network, and compared to the results produced using previously published models. Validation analyses showed that the model presented here produced improved predictive power and accuracy compared to previously published models, yielding the highest successful prediction rate at the global scale. Based on this model, passenger flows between 1,491 airports on 644,406 unique routes were estimated in the prediction dataset. The airport node characteristics and estimated passenger flows are freely available as part of the Vector-Borne Disease Airline Importation Risk (VBD-Air) project at: www.vbd-air.com/data. PMID:23691194
An open-access modeled passenger flow matrix for the global air network in 2010.
Huang, Zhuojie; Wu, Xiao; Garcia, Andres J; Fik, Timothy J; Tatem, Andrew J
2013-01-01
The expanding global air network provides rapid and wide-reaching connections accelerating both domestic and international travel. To understand human movement patterns on the network and their socioeconomic, environmental and epidemiological implications, information on passenger flow is required. However, comprehensive data on global passenger flow remain difficult and expensive to obtain, prompting researchers to rely on scheduled flight seat capacity data or simple models of flow. This study describes the construction of an open-access modeled passenger flow matrix for all airports with a host city-population of more than 100,000 and within two transfers of air travel from various publicly available air travel datasets. Data on network characteristics, city population, and local area GDP amongst others are utilized as covariates in a spatial interaction framework to predict the air transportation flows between airports. Training datasets based on information from various transportation organizations in the United States, Canada and the European Union were assembled. A log-linear model controlling the random effects on origin, destination and the airport hierarchy was then built to predict passenger flows on the network, and compared to the results produced using previously published models. Validation analyses showed that the model presented here produced improved predictive power and accuracy compared to previously published models, yielding the highest successful prediction rate at the global scale. Based on this model, passenger flows between 1,491 airports on 644,406 unique routes were estimated in the prediction dataset. The airport node characteristics and estimated passenger flows are freely available as part of the Vector-Borne Disease Airline Importation Risk (VBD-Air) project at: www.vbd-air.com/data.
High voltage pulse ignition of mercury discharge hollow cathodes
NASA Technical Reports Server (NTRS)
Wintucky, E. G.
1973-01-01
A high voltage pulse generated by a capacitor discharge into a step-up transformer has been demonstrated capable of consistently igniting hollow cathode mercury discharges at propellant flows and heater power levels much below those required by conventional cathode starting. Results are presented for 3.2-mm diameter enclosed and open keeper cathodes. Starting characteristics are shown to depend on keeper voltage, mercury flow rate, heater power, keeper orifice size, emissive materials, and electrode to which the pulse is applied. This starting technique has been used to start a cathode over 10,000 times without any degradation of starting capability.
NASA Technical Reports Server (NTRS)
Kelly, Jeff; Betts, Juan Fernando; Fuller, Chris
2000-01-01
The study of normal impedance of perforated plate acoustic liners including the effect of bias flow was studied. Two impedance models were developed by modeling the internal flows of perforate orifices as infinite tubes with the inclusion of end corrections to handle finite length effects. These models assumed incompressible and compressible flows, respectively, between the far field and the perforate orifice. The incompressible model was used to predict impedance results for perforated plates with percent open areas ranging from 5% to 15%. The predicted resistance results showed better agreement with experiments for the higher percent open area samples. The agreement also tended to deteriorate as bias flow was increased. For perforated plates with percent open areas ranging from 1% to 5%, the compressible model was used to predict impedance results. The model predictions were closer to the experimental resistance results for the 2% to 3% open area samples. The predictions tended to deteriorate as bias flow was increased. The reactance results were well predicted by the models for the higher percent open area, but deteriorated as the percent open area was lowered (5%) and bias flow was increased. A fit was done on the incompressible model to the experimental database. The fit was performed using an optimization routine that found the optimal set of multiplication coefficients to the non-dimensional groups that minimized the least squares slope error between predictions and experiments. The result of the fit indicated that terms not associated with bias flow required a greater degree of correction than the terms associated with the bias flow. This model improved agreement with experiments by nearly 15% for the low percent open area (5%) samples when compared to the unfitted model. The fitted model and the unfitted model performed equally well for the higher percent open area (10% and 15%).
Impact of methane flow through deformable lake sediments on atmospheric release
NASA Astrophysics Data System (ADS)
Scandella, B.; Juanes, R.
2010-12-01
Methane is a potent greenhouse gas that is generated geothermally and biologically in lake and ocean sediments. Free gas bubbles may escape oxidative traps and contribute more to the atmospheric source than dissolved methane, but the details of the methane release depend on the interactions between the multiple fluid phases and the deformable porous medium. We present a model and supporting laboratory experiments of methane release through “breathing” dynamic flow conduits that open in response to drops in the hydrostatic load on lake sediments, which has been validated against a high-resolution record of free gas flux and hydrostatic pressure in Upper Mystic Lake, MA. In contrast to previous linear elastic fracture mechanics analysis of gassy sediments, the evolution of gas transport in a deformable compliant sediment is presented within the framework of multiphase poroplasticity. Experiments address how strongly the mode and rate of gas flow, captured by our model, impacts the size of bubbles released into the water column. A bubble's size in turn determines how efficiently it transports methane to the atmosphere, and integrating this effect will be critical to improving estimates of the atmospheric methane source from lakes. Cross-sectional schematic of lake sediments showing two venting sites: one open at left and one closed at right. The vertical release of gas bubbles (red) at the open venting site creates a local pressure drop, which drives both bubble formation from the methane-rich pore water (higher concentrations shaded darker red) and lateral advection of dissolved methane (purple arrows). Even as bubbles in the open site escape, those at the closed site remain trapped.
Direct simulation Monte Carlo method for gas flows in micro-channels with bends with added curvature
NASA Astrophysics Data System (ADS)
Tisovský, Tomáš; Vít, Tomáš
Gas flows in micro-channels are simulated using an open source Direct Simulation Monte Carlo (DSMC) code dsmcFOAM for general application to rarefied gas flow written within the framework of the open source C++ toolbox called OpenFOAM. Aim of this paper is to investigate the flow in micro-channel with bend with added curvature. Results are compared with flows in channel without added curvature and equivalent straight channel. Effects of micro-channel bend was already thoroughly investigated by White et al. Geometry proposed by White is also used here for refference.
Influence of mechanical rock properties and fracture healing rate on crustal fluid flow dynamics
NASA Astrophysics Data System (ADS)
Sachau, Till; Bons, Paul; Gomez-Rivas, Enrique; Koehn, Daniel; de Riese, Tamara
2016-04-01
Fluid flow in the Earth's crust is very slow over extended periods of time, during which it occurs within the connected pore space of rocks. If the fluid production rate exceeds a certain threshold, matrix permeability alone is insufficient to drain the fluid volume and fluid pressure builds up, thereby reducing the effective stress supported by the rock matrix. Hydraulic fractures form once the effective pressure exceeds the tensile strength of the rock matrix and act subsequently as highly effective fluid conduits. Once local fluid pressure is sufficiently low again, flow ceases and fractures begin to heal. Since fluid flow is controlled by the alternation of fracture permeability and matrix permeability, the flow rate in the system is strongly discontinuous and occurs in intermittent pulses. Resulting hydraulic fracture networks are largely self-organized: opening and subsequent healing of hydraulic fractures depends on the local fluid pressure and on the time-span between fluid pulses. We simulate this process with a computer model and describe the resulting dynamics statistically. Special interest is given to a) the spatially and temporally discontinuous formation and closure of fractures and fracture networks and b) the total flow rate over time. The computer model consists of a crustal-scale dual-porosity setup. Control parameters are the pressure- and time-dependent fracture healing rate, and the strength and the permeability of the intact rock. Statistical analysis involves determination of the multifractal properties and of the power spectral density of the temporal development of the total drainage rate and hydraulic fractures. References Bons, P. D. (2001). The formation of large quartz veins by rapid ascent of fluids in mobile hydrofractures. Tectonophysics, 336, 1-17. Miller, S. a., & Nur, A. (2000). Permeability as a toggle switch in fluid-controlled crustal processes. Earth and Planetary Science Letters, 183(1-2), 133-146. Sachau, T., Bons, P. D., & Gomez-Rivas, E. (2015). Transport efficiency and dynamics of hydraulic fracture networks. Frontiers in Physics, 3.
NASA Astrophysics Data System (ADS)
Sargent, S.; Somers, J. M.
2015-12-01
Trace-gas eddy covariance flux measurement can be made with open-path or closed-path analyzers. Traditional closed-path trace-gas analyzers use multipass absorption cells that behave as mixing volumes, requiring high sample flow rates to achieve useful frequency response. The high sample flow rate and the need to keep the multipass cell extremely clean dictates the use of a fine-pore filter that may clog quickly. A large-capacity filter cannot be used because it would degrade the EC system frequency response. The high flow rate also requires a powerful vacuum pump, which will typically consume on the order of 1000 W. The analyzer must measure water vapor for spectroscopic and dilution corrections. Open-path analyzers are available for methane, but not for nitrous oxide. The currently available methane analyzers have low power consumption, but are very large. Their large size degrades frequency response and disturbs the air flow near the sonic anemometer. They require significant maintenance to keep the exposed multipass optical surfaces clean. Water vapor measurements for dilution and spectroscopic corrections require a separate water vapor analyzer. A new closed-path eddy covariance system for measuring nitrous oxide or methane fluxes provides an elegant solution. The analyzer (TGA200A, Campbell Scientific, Inc.) uses a thermoelectrically-cooled interband cascade laser. Its small sample-cell volume and unique sample-cell configuration (200 ml, 1.5 m single pass) provide excellent frequency response with a low-power scroll pump (240 W). A new single-tube Nafion® dryer removes most of the water vapor, and attenuates fluctuations in the residual water vapor. Finally, a vortex intake assembly eliminates the need for an intake filter without adding volume that would degrade system frequency response. Laboratory testing shows the system attenuates the water vapor dilution term by more than 99% and achieves a half-power band width of 3.5 Hz.
NASA Technical Reports Server (NTRS)
Patel, D. K.
1974-01-01
A description of the flow field within a vortex sink rate sensor was obtained, and the influence of viscous effects on its performance was observed. The sensor basically consisted of a vortex chamber and a sink tube. The vortex chamber consisted of two circular coaxial disks held apart, at their periphery, by a porous coupling. One circular disk had an opening to permit the mounting of the sink tube, in such a manner that the vortex chamber as well as the sink tube had a common axis of rotation. Air was supplied radially to the sensor through its porous coupling as the sensor was rotated at various speeds. Particular emphasis was directed toward an understanding of the flow field in the sink tube region. Thus velocity measurements at various stations along the length of the sink tube as well as along a given radius at any designated station were taken.
Evaluation of bed load transport subject to high shear stress fluctuations
NASA Astrophysics Data System (ADS)
Cheng, Nian-Sheng; Tang, Hongwu; Zhu, Lijun
2004-05-01
Many formulas available in the literature for computing sediment transport rates are often expressed in terms of time mean variables such as time mean bed shear stress or flow velocity, while effects of turbulence intensity, e.g., bed shear stress fluctuation, on sediment transport were seldom considered. This may be due to the fact that turbulence fluctuation is relatively limited in laboratory open-channel flows, which are often used for conducting sediment transport experiments. However, turbulence intensity could be markedly enhanced in practice. This note presents an analytical method to compute bed load transport by including effects of fluctuations in the bed shear stress. The analytical results obtained show that the transport rate enhanced by turbulence can be expressed as a simple function of the relative fluctuation of the bed shear stress. The results are also verified using data that were collected recently from specifically designed laboratory experiments. The present analysis is applicable largely for the condition of a flat bed that is comprised of uniform sand particles subject to unidirectional flows.
Basic hydraulic principles of open-channel flow
Jobson, Harvey E.; Froehlich, David C.
1988-01-01
The three basic principles of open-channel-flow analysis--the conservation of mass, energy, and momentum--are derived, explained, and applied to solve problems of open-channel flow. These principles are introduced at a level that can be comprehended by a person with an understanding of the principles of physics and mechanics equivalent to that presented in the first college level course of the subject. The reader is assumed to have a working knowledge of algebra and plane geometry as well as some knowledge of calculus. Once the principles have been derived, a number of example applications are presented that illustrate the computation of flow through culverts and bridges, and over structures, such as dams and weirs. Because resistance to flow is a major obstacle to the successful application of the energy principle to open-channel flow, procedures are outlined for the rational selection of flow resistance coefficients. The principle of specific energy is shown to be useful in the prediction of water-surface profiles both in the qualitative and quantitative sense. (USGS)
NASA Technical Reports Server (NTRS)
Lewis, G. W., Jr.; Osborn, W. M.; Moore, R. D.
1976-01-01
A 51-cm-diam model of a fan stage for a short haul aircraft was tested in a single stage-compressor research facility. The rotor blades were set 5 deg toward the axial direction (opened) from design setting angle. Surveys of the air flow conditions ahead of the rotor, between the rotor and stator, and behind the stator were made over the stable operating range of the stage. At the design speed of 213.3 m/sec and a weight flow of 31.5 kg/sec, the stage pressure ratio and efficiency were 1.195 and 0.88, respectively. The design speed rotor peak efficiency of 0.91 occurred at the same flow rate.
Sandia’s Current Energy Conversion module for the Flexible-Mesh Delft3D flow solver v. 1.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chartand, Chris; Jagers, Bert
The DOE has funded Sandia National Labs (SNL) to develop an open-source modeling tool to guide the design and layout of marine hydrokinetic (MHK) arrays to maximize power production while minimizing environmental effects. This modeling framework simulates flows through and around a MHK arrays while quantifying environmental responses. As an augmented version of the Dutch company, Deltares’s, environmental hydrodynamics code, Delft3D, SNL-Delft3D-CEC-FM includes a new module that simulates energy conversion (momentum withdrawal) by MHK current energy conversion devices with commensurate changes in the turbulent kinetic energy and its dissipation rate. SNL-Delft3D-CEC-FM modified the Delft3D flexible mesh flow solver, DFlowFM.
NASA Technical Reports Server (NTRS)
Cutler, A. D.; Harding, G. C.; Diskin, G. S.
2001-01-01
An injector has been developed to provide high-speed high-frequency (order 10 kHz) pulsed a supersonic crossflow. The injector nozzle is formed between the fixed internal surface of the nozzle and a freely rotating three- or four-sided wheel embedded within the device. Flow-induced rotation of the wheel causes the nozzle throat to open and close at a frequency proportional to the speed of sound of the injected gas. Measurements of frequency and mass flow rate as a function of supply pressure are discussed for various injector designs. Preliminary results are presented for wall-normal injection of helium into a Mach-2 ducted airflow. The data include schlieren images in the injectant plume in a plane normal to the flow, downstream of injection.
NASA Technical Reports Server (NTRS)
Lewis, G. W., Jr.; Kovich, G.
1976-01-01
A 51-cm-diam model of a fan stage for short haul aircraft was tested in a single stage compressor research facility. The rotor blades were set 7 deg toward the axial direction (opened) from the design setting angle. Surveys of the air flow conditions ahead of the rotor, between the rotor and stator, and behind the stator were made over the stable operating range of the stage. At the design speed and a weight flow of 30.9 kg/sec, the stage pressure ratio and efficiency were 1.205 and 0.85, respectively. The design speed rotor peak efficiency of 0.90 occurred at a flow rate of 32.5 kg/sec.
NASA Technical Reports Server (NTRS)
Rowlette, J. J. (Inventor)
1985-01-01
A coulometer for accurately measuring the state-of-charge of an open-cell battery utilizing an aqueous electrolyte, includes a current meter for measuring the battery/discharge current and a flow meter for measuring the rate at which the battery produces gas during charge and discharge. Coupled to the flow meter is gas analyzer which measures the oxygen fraction of the battery gas. The outputs of the current meter, flow meter, and gas analyzer are coupled to a programmed microcomputer which includes a CPU and program and data memories. The microcomputer calculates that fraction of charge and discharge current consumed in the generation of gas so that the actual state-of-charge can be determined. The state-of-charge is then shown on a visual display.
Capillary channel flow experiments aboard the International Space Station
NASA Astrophysics Data System (ADS)
Conrath, M.; Canfield, P. J.; Bronowicki, P. M.; Dreyer, M. E.; Weislogel, M. M.; Grah, A.
2013-12-01
In the near-weightless environment of orbiting spacecraft capillary forces dominate interfacial flow phenomena over unearthly large length scales. In current experiments aboard the International Space Station, partially open channels are being investigated to determine critical flow rate-limiting conditions above which the free surface collapses ingesting bubbles. Without the natural passive phase separating qualities of buoyancy, such ingested bubbles can in turn wreak havoc on the fluid transport systems of spacecraft. The flow channels under investigation represent geometric families of conduits with applications to liquid propellant acquisition, thermal fluids circulation, and water processing for life support. Present and near future experiments focus on transient phenomena and conduit asymmetries allowing capillary forces to replace the role of gravity to perform passive phase separations. Terrestrial applications are noted where enhanced transport via direct liquid-gas contact is desired.
How the flow affects the phase behaviour and microstructure of polymer nanocomposites.
Stephanou, Pavlos S
2015-02-14
We address the issue of flow effects on the phase behaviour of polymer nanocomposite melts by making use of a recently reported Hamiltonian set of evolution equations developed on principles of non-equilibrium thermodynamics. To this end, we calculate the spinodal curve, by computing values for the nanoparticle radius as a function of the polymer radius-of-gyration for which the second derivative of the generalized free energy of the system becomes zero. Under equilibrium conditions, we recover the phase diagram predicted by Mackay et al. [Science 311, 1740 (2006)]. Under non-equilibrium conditions, we account for the extra terms in the free energy due to changes in the conformations of polymer chains by the shear flow. Overall, our model predicts that flow enhances miscibility, since the corresponding miscibility window opens up for non-zero shear rate values.
Liquid Bismuth Feed System for Electric Propulsion
NASA Technical Reports Server (NTRS)
Markusic, T. E.; Polzin, K. A.; Stanojev, B. J.
2006-01-01
Operation of Hall thrusters with bismuth propellant has been shown to be a promising path toward high-power, high-performance, long-lifetime electric propulsion for spaceflight missions. For example, the VHITAL project aims td accurately, experimentally assess the performance characteristics of 10 kW-class bismuth-fed Hall thrusters - in order to validate earlier results and resuscitate a promising technology that has been relatively dormant for about two decades. A critical element of these tests will be the precise metering of propellant to the thruster, since performance cannot be accurately assessed without an accurate accounting of mass flow rate. Earlier work used a pre/post-test propellant weighing scheme that did not provide any real-time measurement of mass flow rate while the thruster was firing, and makes subsequent performance calculations difficult. The motivation of the present work was to develop a precision liquid bismuth Propellant Management System (PMS) that provides real-time propellant mass flow rate measurement and control, enabling accurate thruster performance measurements. Additionally, our approach emphasizes the development of new liquid metal flow control components and, hence, will establish a basis for the future development of components for application in spaceflight. The design of various critical components in a bismuth PMS are described - reservoir, electromagnetic pump, hotspot flow sensor, and automated control system. Particular emphasis is given to material selection and high-temperature sealing techniques. Open loop calibration test results are reported, which validate the systems capability to deliver bismuth at mass flow rates ranging from 10 to 100 mg/sec with an uncertainty of less than +/- 5%. Results of integrated vaporizer/liquid PMS tests demonstrate all of the necessary elements of a complete bismuth feed system for electric propulsion.
NASA Astrophysics Data System (ADS)
Thomas, Siti A.; Empaling, Shirly; Darlis, Nofrizalidris; Osman, Kahar; Dillon, Jeswant; Taib, Ishkrizat; Khudzari, Ahmad Zahran Md
2017-09-01
Aortic cannulation has been the gold standard for maintaining cardiovascular function during open heart surgery while being connected onto the heart lung machine. These cannulation produces high velocity outflow which may lead to adverse effect on patient condition, especially sandblasting effect on aorta wall and blood cells damage. This paper reports a novel design that was able to decrease high velocity outflow. There were three design factors of that was investigated. The design factors consist of the cannula type, the flow rate, and the cannula tip design which result in 12 variations. The cannulae type used were the spiral flow inducing cannula and the standard cannula. The flow rates are varied from three to five litres per minute (lpm). Parameters for each cannula variation included maximum velocity within the aorta, pressure drop, wall shear stress (WSS) area exceeding 15 Pa, and impinging velocity on the aorta wall were evaluated. Based on the result, spiral flow inducing cannulae is proposed as a better alternatives due to its ability to reduce outflow velocity. Meanwhile, the pressure drop of all variations are less than the limit of 100 mmHg, although standard cannulae yielded better result. All cannulae show low reading of wall shear stress which decrease the possibilities for atherogenesis formation. In conclusion, as far as velocity is concerned, spiral flow is better compared to standard flow across all cannulae variations.
Hirst, Deborah V.L.; Dunn, Kevin H.; Shulman, Stanley A.; Hammond, Duane R.; Sestito, Nicholas
2015-01-01
Exposures to diacetyl, a primary ingredient of butter flavoring, have been shown to cause respiratory disease among workers who mix flavorings. This study focused on evaluating ventilation controls designed to reduce emissions from the flavor mixing tanks, the major source of diacetyl in the plants. Five exhaust hood configurations were evaluated in the laboratory: standard hinged lid-opened, standard hinged lid-closed, hinged lid-slotted, dome with 38-mm gap, and dome with 114-mm gap. Tracer gas tests were performed to evaluate quantitative capture efficiency for each hood. A perforated copper coil was used to simulate an area source within the 1.2-meter diameter mixing tank. Capture efficiencies were measured at four hood exhaust flow rates (2.83, 5.66, 11.3, and 17.0 cubic meters per minute) and three cross draft velocities (0, 30, and 60 meters per minute). All hoods evaluated performed well with capture efficiencies above 90% for most combinations of exhaust volume and cross drafts. The standard hinged lid was the least expensive to manufacture and had the best average capture efficiency (over 99%) in the closed configuration for all exhaust flow rates and cross drafts. The hinged lid-slotted hood had some of the lowest capture efficiencies at the low exhaust flow rates compared to the other hood designs. The standard hinged lid performed well, even in the open position, and it provided a flexible approach to controlling emissions from mixing tanks. The dome hood gave results comparable to the standard hinged lid but it is more expensive to manufacture. The results of the study indicate that emissions from mixing tanks used in the production of flavorings can be controlled using simple inexpensive exhaust hoods. PMID:24649880
Hypersonic simulations using open-source CFD and DSMC solvers
NASA Astrophysics Data System (ADS)
Casseau, V.; Scanlon, T. J.; John, B.; Emerson, D. R.; Brown, R. E.
2016-11-01
Hypersonic hybrid hydrodynamic-molecular gas flow solvers are required to satisfy the two essential requirements of any high-speed reacting code, these being physical accuracy and computational efficiency. The James Weir Fluids Laboratory at the University of Strathclyde is currently developing an open-source hybrid code which will eventually reconcile the direct simulation Monte-Carlo method, making use of the OpenFOAM application called dsmcFoam, and the newly coded open-source two-temperature computational fluid dynamics solver named hy2Foam. In conjunction with employing the CVDV chemistry-vibration model in hy2Foam, novel use is made of the QK rates in a CFD solver. In this paper, further testing is performed, in particular with the CFD solver, to ensure its efficacy before considering more advanced test cases. The hy2Foam and dsmcFoam codes have shown to compare reasonably well, thus providing a useful basis for other codes to compare against.
Rapid black hole growth under anisotropic radiation feedback
NASA Astrophysics Data System (ADS)
Sugimura, Kazuyuki; Hosokawa, Takashi; Yajima, Hidenobu; Omukai, Kazuyuki
2017-07-01
Discovery of high-redshift (z > 6) supermassive black holes (BHs) may indicate that the rapid (or super-Eddington) gas accretion has aided their quick growth. Here, we study such rapid accretion of the primordial gas on to intermediate-mass (102-105 M⊙) BHs under anisotropic radiation feedback. We perform two-dimensional radiation hydrodynamics simulations that solve the flow structure across the Bondi radius, from far outside of the Bondi radius down to a central part that is larger than a circum-BH accretion disc. The radiation from the unresolved circum-BH disc is analytically modelled considering self-shadowing effect. We show that the flow settles into a steady state, where the flow structure consists of two distinct parts: (1) bipolar ionized outflowing regions, where the gas is pushed outward by thermal gas pressure and super-Eddington radiation pressure, and (2) an equatorial neutral inflowing region, where the gas falls towards the central BH without affected by radiation feedback. The resulting accretion rate is much higher than that in the case of isotropic radiation, far exceeding the Eddington-limited rate to reach a value slightly lower than the Bondi one. The opening angle of the equatorial inflowing region is determined by the luminosity and directional dependence of the central radiation. We find that photoevaporation from its surfaces set the critical opening angle of about 10° below which the accretion to the BH is quenched. We suggest that the shadowing effect allows even stellar-remnant BHs to grow rapidly enough to become high-redshift supermassive BHs.
Lead Coolant Test Facility Systems Design, Thermal Hydraulic Analysis and Cost Estimate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soli Khericha; Edwin Harvego; John Svoboda
2012-01-01
The Idaho National Laboratory prepared a preliminary technical and functional requirements (T&FR), thermal hydraulic design and cost estimate for a lead coolant test facility. The purpose of this small scale facility is to simulate lead coolant fast reactor (LFR) coolant flow in an open lattice geometry core using seven electrical rods and liquid lead or lead-bismuth eutectic coolant. Based on review of current world lead or lead-bismuth test facilities and research needs listed in the Generation IV Roadmap, five broad areas of requirements were identified as listed: (1) Develop and Demonstrate Feasibility of Submerged Heat Exchanger; (2) Develop and Demonstratemore » Open-lattice Flow in Electrically Heated Core; (3) Develop and Demonstrate Chemistry Control; (4) Demonstrate Safe Operation; and (5) Provision for Future Testing. This paper discusses the preliminary design of systems, thermal hydraulic analysis, and simplified cost estimate. The facility thermal hydraulic design is based on the maximum simulated core power using seven electrical heater rods of 420 kW; average linear heat generation rate of 300 W/cm. The core inlet temperature for liquid lead or Pb/Bi eutectic is 4200 C. The design includes approximately seventy-five data measurements such as pressure, temperature, and flow rates. The preliminary estimated cost of construction of the facility is $3.7M (in 2006 $). It is also estimated that the facility will require two years to be constructed and ready for operation.« less
NASA Technical Reports Server (NTRS)
Booth, Earl R., Jr.; Henderson, Brenda S.
2005-01-01
The NASA Langley Research Center Low Speed Aeroacoustic Wind Tunnel is a premier facility for model-scale testing of jet noise reduction concepts at realistic flow conditions. However, flow inside the open jet test section is less than optimum. A Construction of Facilities project, scheduled for FY 05, will replace the flow collector with a new design intended to reduce recirculation in the open jet test section. The reduction of recirculation will reduce background noise levels measured by a microphone array impinged by the recirculation flow and will improve flow characteristics in the open jet tunnel flow. In order to assess the degree to which this modification is successful, background noise levels and tunnel flow are documented, in order to establish a baseline, in this report.
Control-Structure Ratings on the Fox River at McHenry and Algonquin, Illinois
Straub, Timothy D.; Johnson, Gary P.; Hortness, Jon E.; Parker, Joseph R.
2009-01-01
The Illinois Department of Natural Resources-Office of Water Resources operates control structures on a reach of the Fox River in northeastern Illinois between McHenry and Algonquin. The structures maintain water levels in the river for flood-control and recreational purposes. This report documents flow ratings for hinged-crest gates, a broad-crested weir, sluice gates, and an ogee spillway on the control structures at McHenry and Algonquin. The ratings were determined by measuring headwater and tailwater stage along with streamflow at a wide range of flows at different gate openings. Standard control-structure rating techniques were used to rate each control structure. The control structures at McHenry consist of a 221-feet(ft)-long broad-crested weir, a 4-ft-wide fish ladder, a 50-ft-wide hinged-crest gate, five 13.75-ft-wide sluice gates, and a navigational lock. Sixty measurements were used to rate the McHenry structures. The control structures at Algonquin consist of a 242-ft-long ogee spillway and a 50-ft-wide hinged-crest gate. Forty-one measurements were used to rate the Algonquin control structures.
NASA Technical Reports Server (NTRS)
Kaul, U. K.; Ross, J. C.; Jacocks, J. L.
1985-01-01
The flow into an open return wind tunnel inlet was simulated using Euler equations. An explicit predictor-corrector method was employed to solve the system. The calculation is time-accurate and was performed to achieve a steady-state solution. The predictions are in reasonable agreement with the experimental data. Wall pressures are accurately predicted except in a region of recirculating flow. Flow-field surveys agree qualitatively with laser velocimeter measurements. The method can be used in the design process for open return wind tunnels.
Simulation of heart rate variability model in a network
NASA Astrophysics Data System (ADS)
Cascaval, Radu C.; D'Apice, Ciro; D'Arienzo, Maria Pia
2017-07-01
We consider a 1-D model for the simulation of the blood flow in the cardiovascular system. As inflow condition we consider a model for the aortic valve. The opening and closing of the valve is dynamically determined by the pressure difference between the left ventricular and aortic pressures. At the outflow we impose a peripheral resistance model. To approximate the solution we use a numerical scheme based on the discontinuous Galerkin method. We also considering a variation in heart rate and terminal reflection coefficient due to monitoring of the pressure in the network.
Analysis of vehicular traffic flow in the major areas of Kuala Lumpur utilizing open-traffic
NASA Astrophysics Data System (ADS)
Manogaran, Saargunawathy; Ali, Muhammad; Yusof, Kamaludin Mohamad; Suhaili, Ramdhan
2017-09-01
Vehicular traffic congestion occurs when a large number of drivers are overcrowded on the road and the traffic flow does not run smoothly. Traffic congestion causes chaos on the road and interruption to daily activities of users. Time consumed on road give lots of negative effects on productivity, social behavior, environmental and cost to economy. Congestion is worsens and leads to havoc during the emergency such as flood, accidents, road maintenance and etc., where behavior of traffic flow is always unpredictable and uncontrollable. Real-time and historical traffic data are critical inputs for most traffic flow analysis applications. Researcher attempt to predict traffic using simulations as there is no exact model of traffic flow exists due to its high complexity. Open Traffic is an open source platform available for traffic data analysis linked to Open Street Map (OSM). This research is aimed to study and understand the Open Traffic platform. The real-time traffic flow pattern in Kuala Lumpur area was successfully been extracted and analyzed using Open Traffic. It was observed that the congestion occurs on every major road in Kuala Lumpur and most of it owes to the offices and the economic and commercial centers during rush hours. At some roads the congestion occurs at night due to the tourism activities.
Carolan, Michael Francis; Cooke, John Albert; Buzinski, Michael David
2010-04-27
A gas flow isolation device includes a gas flow isolation valve movable from an opened condition to a closed condition. The module isolation valve in one embodiment includes a rupture disk in flow communication with a flow of gas when the module isolation valve is in an opened condition. The rupture disk ruptures when a predetermined pressure differential occurs across it causing the isolation valve to close. In one embodiment the valve is mechanically linked to the rupture disk to maintain the valve in an opened condition when the rupture disk is intact, and which permits the valve to move into a closed condition when the rupture disk ruptures. In another embodiment a crushable member maintains the valve in an open condition, and the flow of gas passed the valve upon rupturing of the rupture disk compresses the crushable member to close the isolation valve.
Advanced porous electrodes with flow channels for vanadium redox flow battery
NASA Astrophysics Data System (ADS)
Bhattarai, Arjun; Wai, Nyunt; Schweiss, Ruediger; Whitehead, Adam; Lim, Tuti M.; Hng, Huey Hoon
2017-02-01
Improving the overall energy efficiency by reducing pumping power and improving flow distribution of electrolyte, is a major challenge for developers of flow batteries. The use of suitable channels can improve flow distribution through the electrodes and reduce flow resistance, hence reducing the energy consumption of the pumps. Although several studies of vanadium redox flow battery have proposed the use of bipolar plates with flow channels, similar to fuel cell designs, this paper presents the use of flow channels in the porous electrode as an alternative approach. Four types of electrodes with channels: rectangular open channel, interdigitated open cut channel, interdigitated circular poked channel and cross poked circular channels, are studied and compared with a conventional electrode without channels. Our study shows that interdigitated open channels can improve the overall energy efficiency up to 2.7% due to improvement in flow distribution and pump power reduction while interdigitated poked channel can improve up to 2.5% due to improvement in flow distribution.
NASA Astrophysics Data System (ADS)
Min, K. B.; Park, S.; Xie, L.; Kim, K. I.; Yoo, H.; Kim, K. Y.; Choi, J.; Yoon, K. S.; Yoon, W. S.; Lee, T. J.; Song, Y.
2017-12-01
Enhanced Geothermal System (EGS) relies on sufficient and irreversible enhancement of reservoir permeability through hydraulic stimulation and possibility of such desirable change of permeability is an open question that can undermine the universality of EGS concept. We report results of first hydraulic stimulation campaign conducted in two deep boreholes in fractured granodiorite geothermal reservoir in Pohang, Korea. Borehole PX-1, located at 4.22 km, was subjected to the injection of 3,907 m3 with flow rate of up to 18 kg/s followed by bleeding off of 1,207 m3. The borehole PX-2, located at 4.35 km, was subjected to the injection of 1,970 m3 with flow rate of up to 46 kg/sIn PX-1, a sharp distinct decline of wellhead pressure was observed at around 16 MPa of wellhead pressure which was similar to the predicted injection pressure to induce hydraulic shearing. Injectivity interpretation before and after the hydraulic shearing indicates that permanent increase of permeability was achieved by a factor of a few. In PX-2, however, injectivity was very small and hydraulic shearing was not observed due possibly to the near wellbore damage made by the remedying process of lost circulation such as using lost circulation material during drilling. Flow rate of larger than 40 kg/s was achieved at very high well head pressure of nearly 90 MPa. Hydraulic jacking, that is reversible opening and closure of fracture with change of injection pressure, was clearly observed. Although sharp increase of permeability due to fracture opening was achieved with elevated injection pressure, the increased permeability was reversed with decreased injection pressure.Two contrasting response observed in the same reservoir at two different boreholes which is apart only 600 m apart provide important implication that can be used for the stimulation strategy for EGS.This work was supported by the New and Renewable Energy Technology Development Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) through a grant funded by the Korean Government's Ministry of Trade, Industry & Energy (No. 20123010110010).
NASA Astrophysics Data System (ADS)
Schneider, Ling; Laustsen, Milan; Mandsberg, Nikolaj; Taboryski, Rafael
2016-02-01
We discuss the influence of surface structure, namely the height and opening angles of nano- and microcones on the surface wettability. We show experimental evidence that the opening angle of the cones is the critical parameter on sample superhydrophobicity, namely static contact angles and roll-off angles. The textured surfaces are fabricated on silicon wafers by using a simple one-step method of reactive ion etching at different processing time and gas flow rates. By using hydrophobic coating or hydrophilic surface treatment, we are able to switch the surface wettability from superhydrophilic to superhydrophobic without altering surface structures. In addition, we show examples of polymer replicas (polypropylene and poly(methyl methacrylate) with different wettability, fabricated by injection moulding using templates of the silicon cone-structures.
Comparison of attraction capabilities associated with high-speed, dual-pneumatic vitrectomy probes.
Dugel, Pravin U; Abulon, Dina J K; Dimalanta, Ramon
2015-05-01
To measure membrane attraction capabilities of enhanced 27-gauge, enhanced 25-gauge, and 23-gauge vitrectomy probes under various parameters. A membrane-on-cantilever apparatus was used to measure membrane attraction for enhanced 27-, enhanced 25-, and 23-gauge UltraVit probes (n = 6 for each). The following parameters were evaluated: effects of cut rates and duty cycles on membrane attraction distances, and flow rates and vacuum levels required to attract a membrane at a fixed distance. The enhanced 27-gauge probe had the shortest attraction distance across all cutting speeds and duty cycles. To attract a membrane at a fixed distance, increasing vacuum was necessary with higher cutting rates and smaller probe gauges but flow rate remained relatively constant. The biased open duty cycle was associated with a longer attraction distance than 50/50 or biased closed modes. The shorter membrane attraction distance of the enhanced 27-gauge probe versus 23-gauge and enhanced 25-gauge probes may permit greater membrane dissection precision while providing improved access to small tissue planes. Equivalent fluid flow capabilities of the 27-gauge probe compared with the 23-gauge and 25-gauge probes may provide efficient aspiration. Surgeon selection of duty cycle modes may improve intraoperative fluid control and expand the cutter utility as a multifunctional tool.
Richards, Chandra M; Pallud, Céline
2016-05-01
The bar-built Pescadero Estuary in Northern California is a major fish rearing habitat, though recently threatened by near-annual fish kill events, which occur when the estuary transitions from closed to open state. The direct and indirect effects of hydrogen sulfide are suspected to play a role in these mortalities, but the spatial variability of hydrogen sulfide production and its link to fish kills remains poorly understood. Using flow-through reactors containing intact littoral sediment slices, we measured potential sulfate reduction rates, kinetic parameters of microbial sulfate reduction (Rmax, the maximum sulfate reduction rate, and Km, the half-saturation constant for sulfate), potential sulfide precipitation rates, and potential hydrogen sulfide export rates to water at four sites in the closed and open states. At all sites, the Michaelis-Menten kinetic rate equation adequately describes the utilization of sulfate by the complex resident microbial communities. We estimate that 94-96% of hydrogen sulfide produced through sulfate reduction precipitates in the sediment and that only 4-6% is exported to water, suggesting that elevated sulfide concentrations in water, which would affect fish through toxicity and oxygen consumption, cannot be responsible for fish deaths. However, the indirect effects of sulfide precipitates, which chemically deplete, contaminate, and acidify the water column during sediment re-suspension and re-oxidation in the transition from closed to open state, can be implicated in fish mortalities at Pescadero Estuary. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Jones, Brendon R.; Brouwers, Luke B.; Dippenaar, Matthys A.
2018-05-01
Fractures are both rough and irregular but can be expressed by a simple model concept of two smooth parallel plates and the associated cubic law governing discharge through saturated fractures. However, in natural conditions and in the intermediate vadose zone, these assumptions are likely violated. This paper presents a qualitative experimental study investigating the cubic law under variable saturation in initially dry free-draining discrete fractures. The study comprised flow visualisation experiments conducted on transparent replicas of smooth parallel plates with inlet conditions of constant pressure and differing flow rates over both vertical and horizontal inclination. Flow conditions were altered to investigate the influence of intermittent and continuous influx scenarios. Findings from this research proved, for instance, that saturated laminar flow is not likely achieved, especially in nonhorizontal fractures. In vertical fractures, preferential flow occupies the minority of cross-sectional area despite the water supply. Movement of water through the fractured vadose zone therefore becomes a matter of the continuity principle, whereby water should theoretically be transported downward at significantly higher flow rates given the very low degree of water saturation. Current techniques that aim to quantify discrete fracture flow, notably at partial saturation, are questionable. Inspired by the results of this study, it is therefore hypothetically improbable to achieve saturation in vertical fractures under free-draining wetting conditions. It does become possible under extremely excessive water inflows or when not free-draining; however, the converse is not true, as a wet vertical fracture can be drained.
Activated carbon fiber composite material and method of making
Burchell, Timothy D.; Weaver, Charles E.; Chilcoat, Bill R.; Derbyshire, Frank; Jagtoyen, Marit
2000-01-01
An activated carbon fiber composite for separation and purification, or catalytic processing of fluids is described. The activated composite comprises carbon fibers rigidly bonded to form an open, permeable, rigid monolith capable of being formed to near-net-shape. Separation and purification of gases are effected by means of a controlled pore structure that is developed in the carbon fibers contained in the composite. The open, permeable structure allows the free flow of gases through the monolith accompanied by high rates of adsorption. By modification of the pore structure and bulk density the composite can be rendered suitable for applications such as gas storage, catalysis, and liquid phase processing.
Activated carbon fiber composite material and method of making
Burchell, Timothy D.; Weaver, Charles E.; Chilcoat, Bill R.; Derbyshire, Frank; Jagtoyen, Marit
2001-01-01
An activated carbon fiber composite for separation and purification, or catalytic processing of fluids is described. The activated composite comprises carbon fibers rigidly bonded to form an open, permeable, rigid monolith capable of being formed to near-net-shape. Separation and purification of gases are effected by means of a controlled pore structure that is developed in the carbon fibers contained in the composite. The open, permeable structure allows the free flow of gases through the monolith accompanied by high rates of adsorption. By modification of the pore structure and bulk density the composite can be rendered suitable for applications such as gas storage, catalysis, and liquid phase processing.
Momose, Naoki; Yamakoshi, Rie; Kokubo, Ryo; Yasuda, Toru; Iwamoto, Norio; Umeda, Chinori; Nakajima, Itsuro; Yanagisawa, Mitsunobu; Tomizawa, Yasuko
2010-03-01
We developed a simple device that stabilizes the blood level in the reservoir of the extracorporeal circulation open circuit system by measuring the hydrostatic pressure of the reservoir to control the flow rate of the arterial pump. When the flow rate of the venous return decreases, the rotation speed of the arterial pump is automatically slowed down. Consequently, the blood level in the reservoir is stabilized quickly between two arbitrarily set levels and never falls below the pre-set low level. We conducted a basic experiment to verify the operation of the device, using a mock circuit with water. Commercially available pumps and reservoir were used without modification. The results confirmed that the control method effectively regulates the reservoir liquid level and is highly reliable. The device possibly also functions as a safety device.
NASA Astrophysics Data System (ADS)
Khan, W. Q.; Wang, Qun; Jin, Xin; Yasin, G.
2017-11-01
Iron nitride thin films of different compositions and thicknesses were deposited on flexible polymer substrate in Ar/N2 atmosphere by reactive magnetron sputtering under varying nitrogen flow rates. The nano structured films were characterized by X-ray diffraction, UV-visible spectrophotometer, electrochemical impedance (EIS), atomic force (AFM) and transmission electron microscopies. The dependence of their functional properties on coating and growth conditions was studied in detail. It was found that the thin films show a uniform permeability in the frequency range of 200 MHz to 1 Ghz and can be used in this range without appreciable changes. Decrease of nitrogen flow rate resulted in the smoother surfaces which in turn increase transmittance quality and corrosion resistance. Functional properties are dependent of nature, relative concentration of the iron nitride phases and film thickness. Surface integrity is excellent for180 nm thick sample because the films appear to be very dense and free from open pores. By keeping sputtering power stable at 110 W, nitrogen flow rate of 10 sccm was ideal to develop the ferromagnetic γʹFe4N phase at room temperature.
Research on virtual network load balancing based on OpenFlow
NASA Astrophysics Data System (ADS)
Peng, Rong; Ding, Lei
2017-08-01
The Network based on OpenFlow technology separate the control module and data forwarding module. Global deployment of load balancing strategy through network view of control plane is fast and of high efficiency. This paper proposes a Weighted Round-Robin Scheduling algorithm for virtual network and a load balancing plan for server load based on OpenFlow. Load of service nodes and load balancing tasks distribution algorithm will be taken into account.
Access control mechanism of wireless gateway based on open flow
NASA Astrophysics Data System (ADS)
Peng, Rong; Ding, Lei
2017-08-01
In order to realize the access control of wireless gateway and improve the access control of wireless gateway devices, an access control mechanism of SDN architecture which is based on Open vSwitch is proposed. The mechanism utilizes the features of the controller--centralized control and programmable. Controller send access control flow table based on the business logic. Open vSwitch helps achieve a specific access control strategy based on the flow table.
Szyrkowiec, Thomas; Autenrieth, Achim; Gunning, Paul; Wright, Paul; Lord, Andrew; Elbers, Jörg-Peter; Lumb, Alan
2014-02-10
For the first time, we demonstrate the orchestration of elastic datacenter and inter-datacenter transport network resources using a combination of OpenStack and OpenFlow. Programmatic control allows a datacenter operator to dynamically request optical lightpaths from a transport network operator to accommodate rapid changes of inter-datacenter workflows.
Eddy Current Minimizing Flow Plug for Use in Flow Conditioning and Flow Metering
NASA Technical Reports Server (NTRS)
England, John Dwight (Inventor); Kelley, Anthony R. (Inventor)
2015-01-01
An eddy-current-minimizing flow plug has an outer radial wall with open flow channels formed between the plug's inlet and outlet. The plug has a central region coupled to the inner surface of the outer radial wall. Each open flow channel includes (i) a first portion originating at the inlet and converging to a location in the plug where convergence is contributed to by changes in thickness of the outer radial wall and divergence of the central region, and (ii) a second portion originating in the plug and diverging to the outlet where divergence is contributed to by changes in thickness of the outer radial wall and convergence of the central region. For at least a portion of the open flow channels, a central axis passing through the first and second portions is non-parallel with respect to the given direction of the flow.
Flow field and performance characteristics of combustor diffusers: A basic study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hestermann, R.; Kim, S.; Ben Khaled, A.
1995-10-01
Results of a detailed study concerning the influence of geometric as well as fluid mechanic parameters o the performance of a plane model combustor diffuser in cold flow are presented. For a qualitative insight into the complex flow field inside the prediffuser, the sudden expansion region, and the flow field around the flame tube dome, results of a flow visualization study with the hydrogen bubble method as well as with the ink jet method are presented for different opening angles of the prediffuser and for different flame tube distances. Also, quantitative data from detailed measurements with LDV and conventional pressuremore » probes in a geometrically similar air-driven setup are presented. These data clearly demonstrate the effect of boundary layer thickness as well as the influence of different turbulence levels at the entry of the prediffuser on the performance characteristics of combustor diffusers. The possibility of getting an unseparated flow field inside the prediffuser even at large opening angles by appropriately matching the diffuser`s opening angle and the flame tube distance is demonstrated. Also, for flows with an increased turbulence level at the entrance--all other conditions held constant--an increased opening angle can be realized without experiencing flow separation. The comparison of the experimental data with predictions utilizing a finite-volume-code based on a body-fitted coordinate system for diffusers with an included total opening angle less than 18 deg demonstrates the capability of describing the flow field in combustor diffusers with reasonable accuracy.« less
Estimated flows of gases and carbon within CEEF ecosystem composed of human, crops and goats
NASA Astrophysics Data System (ADS)
Tako, Y.; Komatsubara, O.; Honda, G.; Arai, R.; Nitta, K.
The Closed Ecology Experiment Facilities (CEEF) can be used as a test bed for Controlled Ecological Life Support Systems (CELSS), because technologies developed for the CEEF system facilitate self-sufficient material circulation necessary for long term missions such as Lunar and Mars exploration. In the experiment conducted under closed condition in FY2003, rice and soybeans were cultivated sequentially in two chambers and a chamber, each having a cultivation area of 30 m2 and floor area of 43 m2, inside the Plantation Module with artificial lighting of the CEEF. In the chamber having a cultivation area of 60 m2 and floor area of 65 m2, inside the Plantation Module with natural and artificial lighting, peanuts and safflowers were also cultivated. Stable transplant (or seeding) and harvest of each crop were maintained during a month. Flows of CO2, O2 and carbon to and from the crops were analyzed during the stable cultivation period. Simulated works and stay in the CEEF lasting five days were conducted two times under ventilating condition in FY2003. Gas exchange of human was estimated using heart rate data collected during the experiments and correlation between gas exchange rate and heart rate. Gas exchange rate and carbon balance of female goats were determined using an open-flow measurement system with a gastight chamber. From these results, flows of gases and carbon in the CEEF were discussed.
Dynamics of barite growth in porous media quantified by in situ synchrotron X-ray tomography
NASA Astrophysics Data System (ADS)
Godinho, jose; Gerke, kirill
2016-04-01
Current models used to formulate mineral sequestration strategies of dissolved contaminants in the bedrock often neglect the effect of confinement and the variation of reactive surface area with time. In this work, in situ synchrotron X-ray micro-tomography is used to quantify barite growth rates in a micro-porous structure as a function of time during 13.5 hours with a resolution of 1 μm. Additionally, the 3D porous network at different time frames are used to simulate the flow velocities and calculate the permeability evolution during the experiment. The kinetics of barite growth under porous confinement is compared with the kinetics of barite growth on free surfaces in the same fluid composition. Results are discussed in terms of surface area normalization and the evolution of flow velocities as crystals fill the porous structure. During the initial hours the growth rate measured in porous media is similar to the growth rate on free surfaces. However, as the thinner flow paths clog the growth rate progressively decreases, which is correlated to a decrease of local flow velocity. The largest pores remain open, enabling growth to continue throughout the structure. Quantifying the dynamics of mineral precipitation kinetics in situ in 4D, has revealed the importance of using a time dependent reactive surface area and accounting for the local properties of the porous network, when formulating predictive models of mineral precipitation in porous media.
Dual Rate Adaptive Control for an Industrial Heat Supply Process Using Signal Compensation Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chai, Tianyou; Jia, Yao; Wang, Hong
The industrial heat supply process (HSP) is a highly nonlinear cascaded process which uses a steam valve opening as its control input, the steam flow-rate as its inner loop output and the supply water temperature as its outer loop output. The relationship between the heat exchange rate and the model parameters, such as steam density, entropy, and fouling correction factor and heat exchange efficiency are unknown and nonlinear. Moreover, these model parameters vary in line with steam pressure, ambient temperature and the residuals caused by the quality variations of the circulation water. When the steam pressure and the ambient temperaturemore » are of high values and are subjected to frequent external random disturbances, the supply water temperature and the steam flow-rate would interact with each other and fluctuate a lot. This is also true when the process exhibits unknown characteristic variations of the process dynamics caused by the unexpected changes of the heat exchange residuals. As a result, it is difficult to control the supply water temperature and the rates of changes of steam flow-rate well inside their targeted ranges. In this paper, a novel compensation signal based dual rate adaptive controller is developed by representing the unknown variations of dynamics as unmodeled dynamics. In the proposed controller design, such a compensation signal is constructed and added onto the control signal obtained from the linear deterministic model based feedback control design. Such a compensation signal aims at eliminating the unmodeled dynamics and the rate of changes of the currently sample unmodeled dynamics. A successful industrial application is carried out, where it has been shown that both the supply water temperature and the rate of the changes of the steam flow-rate can be controlled well inside their targeted ranges when the process is subjected to unknown variations of its dynamics.« less
Drop Tower Experiments concerning Fluid Management under Microgravity
NASA Astrophysics Data System (ADS)
Gaulke, Diana; Dreyer, Michael
2012-07-01
Transport and positioning of liquid under microgravity is done utilizing capillary forces. Therefore, capillary transport processes have to be understood for a wide variety of space applications, ranging from propellant management in tanks of space transportation systems to eating and drinking devices for astronauts. There are two types of liquid transportation in microgravity using capillary forces. First, the driven liquid flow in open channels where the capillary forces at free surfaces ensure a gas and vapor free flow. Here it is important to know the limiting flow rate through such an open channel before the free surface collapses and gas is sucked into the channel. A number of different experiments at the drop tower Bremen, on sounding rockets and at the ISS have been conducted to analyse this phenomenon within different geometries. As result a geometry dependent theory for calculating the maximum flow rate has been found. On the other hand liquid positioning and transportation requires the capillary pressure of curved surfaces to achieve a liquid flow to a desired area. Especially for space applications the weight of structure has to be taken into account for development. For example liquid positioning in tanks can be achieved via a complicated set of structure filling the whole tank resulting in heavy devices not reasonable in space applications. Astrium developed in cooperation with ZARM a propellant management device much smaller than the tank volume and ensuring a gas and vapour free supply of propellant to the propulsion system. In the drop tower Bremen a model of this device was tested concerning different microgravity scenarios. To further decrease weight and ensure functionality within different scenarios structure elements are designed as perforated geometries. Capillary transport between perforated plates has been analyzed concerning the influence of geometrical pattern of perforations. The conducted experiments at the drop tower Bremen show the remarkable influence of perforations on the capillary transport capability.
MHD effects on heat transfer and entropy generation of nanofluid flow in an open cavity
NASA Astrophysics Data System (ADS)
Mehrez, Zouhaier; El Cafsi, Afif; Belghith, Ali; Le Quéré, Patrick
2015-01-01
The present numerical work investigates the effect of an external oriented magnetic field on heat transfer and entropy generation of Cu-water nanofluid flow in an open cavity heated from below. The governing equations are solved numerically by the finite-volume method. The study has been carried out for a wide range of solid volume fraction 0≤φ≤0.06, Hartmann number 0≤Ha≤100, Reynolds number 100≤Re≤500 and Richardson number 0.001≤Ri≤1 at three inclination angles of magnetic field γ: 0°, 45° and 90°. The numerical results are given by streamlines, isotherms, average Nusselt number, average entropy generation and Bejan number. The results show that flow behavior, temperature distribution, heat transfer and entropy generation are strongly affected by the presence of a magnetic field. The average Nusselt number and entropy generation, which increase by increasing volume fraction of nanoparticles, depend mainly on the Hartmann number and inclination angle of the magnetic field. The variation rates of heat transfer and entropy generation while adding nanoparticles or applying a magnetic field depend on the Richardson and Reynolds numbers.
Effects of Buoyancy on the Flowfields of Lean Premixed Turbulent V-Flames
NASA Technical Reports Server (NTRS)
Cheng, R. K.; Greenberg, P.; Bedat, B.; Yegian, D. T.
1999-01-01
Open laboratory turbulent flames used for investigating fundament flame turbulence interactions are greatly affected by buoyancy. Though much of our current knowledge is based on observations made in these open flames, the effects of buoyancy are usually not included in data interpretation, numerical analysis or theories. This inconsistency remains an obstacle to merging experimental observations and theoretical predictions. To better understanding the effects of buoyancy, our research focuses on steady lean premixed flames propagating in fully developed turbulence. We hypothesize that the most significant role of buoyancy forces on these flames is to influence their flowfields through a coupling with mean and fluctuating pressure fields. Changes in flow pattern alter the mean aerodynamic stretch and in turn affect turbulence fluctuation intensities both upstream and downstream of the flame zone. Consequently, flame stabilization, reaction rates, and turbulent flame processes are all affected. This coupling relates to the elliptical problem that emphasizes the importance of the upstream, wall and downstream boundary conditions in determining all aspects of flame propagation. Therefore, buoyancy has the same significance as other parameters such as flow configuration, flame geometry, means of flame stabilization, flame shape, enclosure size, mixture conditions, and flow conditions.
Experimental study on unsteady open channel flow and bedload transport based on a physical model
NASA Astrophysics Data System (ADS)
Cao, W.
2015-12-01
Flow in a nature river are usually unsteady, while nearly all the theories about bedload transport are on the basis of steady, uniform flow, and also with supposed equilibrium state of sediment transport. This is may be one of the main reasons why the bedload transport formulas are notoriously poor accuracy to predict the bedload. The aim of this research is to shed light on the effect of unsteadiness on the bedload transport based on experimental studies. The novel of this study is that the experiments were not carried out in a conventional flume but in a physical model, which are more similar to the actual river. On the other hand, in our experiments, multiple consecutive flood wave were reproduced in the physical model, and all the flow and sediment parameters are based on a large number of data obtained from many of identical flood waves. This method allow us to get more data for one flood, efficiently avoids the uncertainty of bedload rate only for one single flood wave, due to the stochastic fluctuation of the bedload transport. Three different flood waves were selected in the experiments. During each run of experiment, the water level of five different positions along the model were measured by ultrasonic water level gauge, flow velocity at the middle of the channel were measured by two dimensional electromagnetic current meter. Moreover, the bedload transport rate was measured by a unique automatic trap collecting and weighing system at the end of the physical model. The results shows that the celerity of flood wave propagate varies for different flow conditions. The velocity distribution was approximately accord with log-law profile during the entire rising and falling limb of flood. The bedload transport rate show intensity fluctuation in all the experiments, moreover, for different flood waves, the moment when the shear stress reaches its maximum value is not the exact moment when the sediment transport rate reaches its maximum value, which indicates that the movement of flow and the sediment are not always synchronous during the flood processes. Comparing the bedload transport rate with the existing results of steady flows shows that the bedload transport capacity in unsteady flow is greater than that of the steady flow with same bed shear stresses. (Supported by KPNST(2013BAB12B01; 2012BAB04B01) and NSFC(11472310))
NASA Astrophysics Data System (ADS)
Lewis, B. J.; Cimbala, J. M.; Wouden, A. M.
2014-03-01
At their best efficiency point (BEP), hydroturbines operate at very high efficiency. However, with the ever-increasing penetration of alternative electricity generation, it has become common to operate hydroturbines at off-design conditions in order to maintain stability in the electric power grid. This paper demonstrates a method for improving hydroturbine performance during off-design operation by injecting water through slots at the trailing edges of the wicket gates. The injected water causes a change in bulk flow direction at the inlet of the runner. This change in flow angle from the wicket gate trailing-edge jets provides the capability of independently varying the flow rate and swirl angle through the runner, which in current designs are both determined by the wicket gate opening angle. When properly tuned, altering the flow angle results in a significant improvement in turbine efficiency during off-design operation.
Role of mantle flow in Nubia-Somalia plate divergence
NASA Astrophysics Data System (ADS)
Stamps, D. S.; Iaffaldano, G.; Calais, E.
2015-01-01
Present-day continental extension along the East African Rift System (EARS) has often been attributed to diverging sublithospheric mantle flow associated with the African Superplume. This implies a degree of viscous coupling between mantle and lithosphere that remains poorly constrained. Recent advances in estimating present-day opening rates along the EARS from geodesy offer an opportunity to address this issue with geodynamic modeling of the mantle-lithosphere system. Here we use numerical models of the global mantle-plates coupled system to test the role of present-day mantle flow in Nubia-Somalia plate divergence across the EARS. The scenario yielding the best fit to geodetic observations is one where torques associated with gradients of gravitational potential energy stored in the African highlands are resisted by weak continental faults and mantle basal drag. These results suggest that shear tractions from diverging mantle flow play a minor role in present-day Nubia-Somalia divergence.
High-speed video capillaroscopy method for imaging and evaluation of moving red blood cells
NASA Astrophysics Data System (ADS)
Gurov, Igor; Volkov, Mikhail; Margaryants, Nikita; Pimenov, Aleksei; Potemkin, Andrey
2018-05-01
The video capillaroscopy system with high image recording rate to resolve moving red blood cells with velocity up to 5 mm/s into a capillary is considered. Proposed procedures of the recorded video sequence processing allow evaluating spatial capillary area, capillary diameter and central line with high accuracy and reliability independently on properties of individual capillary. Two-dimensional inter frame procedure is applied to find lateral shift of neighbor images in the blood flow area with moving red blood cells and to measure directly the blood flow velocity along a capillary central line. The developed method opens new opportunities for biomedical diagnostics, particularly, due to long-time continuous monitoring of red blood cells velocity into capillary. Spatio-temporal representation of capillary blood flow is considered. Experimental results of direct measurement of blood flow velocity into separate capillary as well as capillary net are presented and discussed.
Determining the Coefficient of Discharge for a Draining Container
ERIC Educational Resources Information Center
Hicks, Ashley; Slaton, William
2014-01-01
The flow of fluids through open containers is a topic studied frequently in introductory physics classes. A fluid mechanics class delves deeper into the topic of fluid flow through open containers with holes or barriers. The flow of a fluid jet out of a sharp-edged orifice rarely has the same area as the orifice due to a fluid flow phenomenon…
Wave Augmented Diffuser for Centrifugal Compressor
NASA Technical Reports Server (NTRS)
Skoch, Gary J. (Inventor); Paxson, Daniel E. (Inventor)
2001-01-01
A wave augmented diffuser for a centrifugal compressor surrounds the outlet of an impeller that rotates on a drive shaft having an axis of rotation. The impeller brings flow in in an axial direction and imparts kinetic energy to the flow discharging it in radial and tangential directions. The flow is discharged into a plurality of circumferentially disposed wave chambers. The wave chambers are periodically opened and closed by a rotary valve such that the flow through the diffuser is unsteady. The valve includes a plurality of valve openings that are periodically brought into and out of fluid communication with the wave chambers. When the wave chambers are closed, a reflected compression wave moves upstream towards the diffuser bringing the flow into the wave chamber to rest. This action recovers the kinetic energy from the flow and limits any boundary layer growth. The flow is then discharged in an axial direction through an opening in the valve plate when the valve plate is rotated to an open position. The diffuser thus efficiently raises the static pressure of the fluid and discharges an axially directed flow at a radius that is predominantly below the maximum radius of the diffuser.
Fuel cell assembly unit for promoting fluid service and electrical conductivity
Jones, Daniel O.
1999-01-01
Fluid service and/or electrical conductivity for a fuel cell assembly is promoted. Open-faced flow channel(s) are formed in a flow field plate face, and extend in the flow field plate face between entry and exit fluid manifolds. A resilient gas diffusion layer is located between the flow field plate face and a membrane electrode assembly, fluidly serviced with the open-faced flow channel(s). The resilient gas diffusion layer is restrained against entering the open-faced flow channel(s) under a compressive force applied to the fuel cell assembly. In particular, a first side of a support member abuts the flow field plate face, and a second side of the support member abuts the resilient gas diffusion layer. The support member is formed with a plurality of openings extending between the first and second sides of the support member. In addition, a clamping pressure is maintained for an interface between the resilient gas diffusion layer and a portion of the membrane electrode assembly. Preferably, the support member is spikeless and/or substantially flat. Further, the support member is formed with an electrical path for conducting current between the resilient gas diffusion layer and position(s) on the flow field plate face.
Investigation of flow in data rack
NASA Astrophysics Data System (ADS)
Manoch, Lukáš; Nožička, Jiří; Pohan, Petr
2012-04-01
The main purpose of this paper was to set up a functioning numerical model of data rack verified by an experimental measurement. The verification of the numerical model was carried out by means of the PIV method (Particle Image Velocimetry). The numerical model was "found" while using the assumed and preset values from the experimental measurement which represent boundary conditions. The server model was conceived as a four-channel with a controlled flow rate without simulation of heat transfer. The flow rate in each channel was implemented by means of pressure loss. The numerical model was further used for simulation of several phases and configurations of data rack (21U rack space) fitted with two server workstations Dell Precision R5400. The flow field in the inlet of data rack in the front of the workstations were observed and evaluated in such a way that a 2U-dimensional free space between the workstations was being left and the remaining inlet space was blanked-off/fully opened. The results of this paper will serve for designing optimization treatment of data rack from the viewpoint of cooling efficiency both within the data rack and within the data center design.
NASA Technical Reports Server (NTRS)
Schuster, P. R.
1984-01-01
Laser Doppler Anemometry (LDA) and accelerated fatigue testing were used in an attempt to assess the durability of two cardiac value bioprostheses. The LDA system was used to monitor the function of the cardiac valves over time. This was done through flow characterization in an aortic flow chamber, designed to closely simulate in vivo conditions, both in the near vicinity (sinuses of valsalva region) and also somewhat downstream (aortic region) from the values. The accelerated fatigue tester was operated by opening and closing the valves at a rate of 1300 R.P.M., about 18 x the normal rate. The results from the two test valves indicate a definite change in the flow characteristics downstream from the valve after certain accelerated test intervals. The high velocity cross-sectional flow area seems to increase over time in use, causing a decrease in the peak velocity. The tissue became more flaccid in certain areas, and tears were apparent at about 9.4 million cycles for the Ionescu-Shiley valve and at 24 million cycles for the Carpentier-Edwards valve. The use of Doppler ultrasound as a technique for monitoring the function of bioprostheses over time in vivo is also discussed.
Laryngeal Aerodynamics in Healthy Older Adults and Adults With Parkinson's Disease.
Matheron, Deborah; Stathopoulos, Elaine T; Huber, Jessica E; Sussman, Joan E
2017-03-01
The present study compared laryngeal aerodynamic function of healthy older adults (HOA) to adults with Parkinson's disease (PD) while speaking at a comfortable and increased vocal intensity. Laryngeal aerodynamic measures (subglottal pressure, peak-to-peak flow, minimum flow, and open quotient [OQ]) were compared between HOAs and individuals with PD who had a diagnosis of hypophonia. Increased vocal intensity was elicited via monaurally presented multitalker background noise. At a comfortable speaking intensity, HOAs and individuals with PD produced comparable vocal intensity, rates of vocal fold closure, and minimum flow. HOAs used smaller OQs, higher subglottal pressure, and lower peak-to-peak flow than individuals with PD. Both groups increased speaking intensity when speaking in noise to the same degree. However, HOAs produced increased intensity with greater driving pressure, faster vocal fold closure rates, and smaller OQs than individuals with PD. Monaural background noise elicited equivalent vocal intensity increases in HOAs and individuals with PD. Although both groups used laryngeal mechanisms as expected to increase sound pressure level, they used these mechanisms to different degrees. The HOAs appeared to have better control of the laryngeal mechanism to make changes to their vocal intensity.
NASA Technical Reports Server (NTRS)
Ferrera, J. D.
1972-01-01
The purpose of this report is to define and program the transient pneumatic flow equations necessary to determine, for a given set of conditions (geometry, pressures, temperatures, valve on time, etc.), the total nitrogen impulse and mass flow per pulse for the single pulsing of a Mariner type reaction control assembly valve. The rates of opening and closing of the valves are modeled, and electrical pulse durations from 20 to 100 ms are investigated. In developing the transient flow analysis, maximum use was made of the steady-state analysis. The impulse results are also compared to an equivalent square-wave impulse for both the Mariner Mars 1971 (MM'71) and Mariner Mars 1964 (MM'64) systems. It is demonstrated that, whereas in the MM'64 system, the actual impulse was as much as 56 percent higher than an assumed impulse (which is the product of the steady-state thrust and value on time i.e., the square wave), in the MM'71 system, these two values were in error in the same direction by only approximately 4 percent because of the larger nozzle areas and shorter valve stroke used.
Theoretical analysis of multiphase flow during oil-well drilling by a conservative model
NASA Astrophysics Data System (ADS)
Nicolas-Lopez, Ruben
2005-11-01
In order to decrease cost and improve drilling operations is necessary a better understood of the flow mechanisms. Therefore, it was carried out a multiphase conservative model that includes three mass equations and a momentum equation. Also, the measured geothermal gradient is utilized by state equations for estimating physical properties of the phases flowing. The mathematical model is solved by numerical conservative schemes. It is used to analyze the interaction among solid-liquid-gas phases. The circulating system consists as follow, the circulating fluid is pumped downward into the drilling pipe until the bottom of the open hole then it flows through the drill bit, and at this point formation cuttings are incorporated to the circulating fluid and carried upward to the surface. The mixture returns up to the surface by an annular flow area. The real operational conditions are fed to conservative model and the results are matched up to field measurements in several oil wells. Mainly, flow rates, drilling rate, well and tool geometries are data to estimate the profiles of pressure, mixture density, equivalent circulating density, gas fraction and solid carrying capacity. Even though the problem is very complex, the model describes, properly, the hydrodynamics of drilling techniques applied at oil fields. *Authors want to thank to Instituto Mexicano del Petroleo and Petroleos Mexicanos for supporting this research.
Planform structure and heat transfer in turbulent free convection over horizontal surfaces
NASA Astrophysics Data System (ADS)
Theerthan, S. Ananda; Arakeri, Jaywant H.
2000-04-01
This paper deals with turbulent free convection in a horizontal fluid layer above a heated surface. Experiments have been carried out on a heated surface to obtain and analyze the planform structure and the heat transfer under different conditions. Water is the working fluid and the range of flux Rayleigh numbers (Ra) covered is 3×107-2×1010. The different conditions correspond to Rayleigh-Bénard convection, convection with either the top water surface open to atmosphere or covered with an insulating plate, and with an imposed external flow on the heated boundary. Without the external flow the planform is one of randomly oriented line plumes. At large Rayleigh number Ra and small aspect ratio (AR), these line plumes seem to align along the diagonal, presumably due to a large scale flow. The side views show inclined dyelines, again indicating a large scale flow. When the external flow is imposed, the line plumes clearly align in the direction of external flow. The nondimensional average plume spacing, Raλ1/3, varies between 40 and 90. The heat transfer rate, for all the experiments conducted, represented as RaδT-1/3, where δT is the conduction layer thickness, varies only between 0.1-0.2, showing that in turbulent convection the heat transfer rates are similar under the different conditions.
Sia, Sheau Fung; Zhao, Xihai; Li, Rui; Zhang, Yu; Chong, Winston; He, Le; Chen, Yu
2016-11-01
Internal carotid artery stenosis requires an accurate risk assessment for the prevention of stroke. Although the internal carotid artery area stenosis ratio at the common carotid artery bifurcation can be used as one of the diagnostic methods of internal carotid artery stenosis, the accuracy of results would still depend on the measurement techniques. The purpose of this study is to propose a novel method to estimate the effect of internal carotid artery stenosis on the blood flow based on the concept of minimization of energy loss. Eight internal carotid arteries from different medical centers were diagnosed as stenosed internal carotid arteries, as plaques were found at different locations on the vessel. A computational fluid dynamics solver was developed based on an open-source code (OpenFOAM) to test the flow ratio and energy loss of those stenosed internal carotid arteries. For comparison, a healthy internal carotid artery and an idealized internal carotid artery model have also been tested and compared with stenosed internal carotid artery in terms of flow ratio and energy loss. We found that at a given common carotid artery bifurcation, there must be a certain flow distribution in the internal carotid artery and external carotid artery, for which the total energy loss at the bifurcation is at a minimum; for a given common carotid artery flow rate, an irregular shaped plaque at the bifurcation constantly resulted in a large value of minimization of energy loss. Thus, minimization of energy loss can be used as an indicator for the estimation of internal carotid artery stenosis.
Experimental Study of a Nitrogen Natural Circulation Loop at Low Heat Flux
NASA Astrophysics Data System (ADS)
Baudouy, B.
2010-04-01
A natural convection circulation loop in liquid nitrogen, i.e. an open thermosiphon flow configuration, has been investigated experimentally near atmospheric pressure. The experiments were conducted on a 2 m high loop with a copper tube of 10 mm inner diameter uniformly heated over a length of 0.95 m. Evolution of the total mass flow rate of the loop and the pressure difference along the tube are described. We also report the boiling curves where single phase and two-phase flows are identified with increasing heat flux. We focus our heat transfer analysis on the single phase regime where mixed convection is encountered. A heat transfer coefficient correlation is proposed. We also examine the boiling incipience as a function of the tube height.
Fixed-target protein serial microcrystallography with an x-ray free electron laser
Hunter, Mark S.; Segelke, Brent; Messerschmidt, Marc; Williams, Garth J.; Zatsepin, Nadia A.; Barty, Anton; Benner, W. Henry; Carlson, David B.; Coleman, Matthew; Graf, Alexander; Hau-Riege, Stefan P.; Pardini, Tommaso; Seibert, M. Marvin; Evans, James; Boutet, Sébastien; Frank, Matthias
2014-01-01
We present results from experiments at the Linac Coherent Light Source (LCLS) demonstrating that serial femtosecond crystallography (SFX) can be performed to high resolution (~2.5 Å) using protein microcrystals deposited on an ultra-thin silicon nitride membrane and embedded in a preservation medium at room temperature. Data can be acquired at a high acquisition rate using x-ray free electron laser sources to overcome radiation damage, while sample consumption is dramatically reduced compared to flowing jet methods. We achieved a peak data acquisition rate of 10 Hz with a hit rate of ~38%, indicating that a complete data set could be acquired in about one 12-hour LCLS shift using the setup described here, or in even less time using hardware optimized for fixed target SFX. This demonstration opens the door to ultra low sample consumption SFX using the technique of diffraction-before-destruction on proteins that exist in only small quantities and/or do not produce the copious quantities of microcrystals required for flowing jet methods. PMID:25113598
NASA Astrophysics Data System (ADS)
Hernandez Moreira, R. R.; Huffman, B.; Vautin, D.; Viparelli, E.
2015-12-01
The interactions between flow hydrodynamics and bedform characteristics at the transition between upper plane-bed bedload transport regime and sheet-flow have not yet been thoroughly described and still remain poorly understood. The present study focuses on the experimental study of this transition in open channel mode. The experiments were performed in the hydraulic laboratory of the Department of Civil and Environmental Engineering of the University of South Carolina in a sediment-feed flume, 9-m long by 19-cm wide with uniform material sediment of geometric mean grain size diameter of 1.11 mm. Sediment feed rates ranged between 0.5 kg/min and 20 kg/min with two different flow rates of 20 l/s and 30 l/s. We recorded periodic measurements of water surface and bed elevation to estimate the global flow parameters, e.g. mean flow velocity and bed shear stress, and to determine when the flow and the sediment transport reached conditions of mobile bed equilibrium. We define mobile bed equilibrium as a condition in which the mean bed elevation does not change in time. At equilibrium, measurements of bed elevation fluctuations were taken with an ultrasonic transducer system at six discrete locations. In the runs with low and medium feed rates, i.e. smaller than ~12 kg/min, the long wavelength and small amplitude bedforms typical of the upper plane bed regime, which were observed in previous experimental work, formed and migrated downstream. In particular, with increasing feed rates, the amplitude of the bedforms decreases and their geometry changes, from well-defined triangular shapes, to rounded shapes to flat bed with very small amplitude, long wavelength undulations. The decrease in amplitude corresponds to a decrease in form drag and an increase in the thickness of the bedload layer. The ultrasonic measurements are analyzed to statistically describe the observed transition in terms of probability distribution functions of the bed elevation fluctuations.
Open Markov Processes and Reaction Networks
ERIC Educational Resources Information Center
Swistock Pollard, Blake Stephen
2017-01-01
We begin by defining the concept of "open" Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain "boundary" states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow…
2013-06-26
flow code used ( OpenFOAM ) to include differential diffusion and cell-based stochastic RTE solvers. The models were validated by simulation of laminar...wavenumber selection is improved about by a factor of 10. (5) OpenFOAM Improvements for Laminar Flames A laminar-diffusion combustion solver, taking into...account the effects of differential diffusion, was developed within the open source CFD package OpenFOAM [18]. In addition, OpenFOAM was augmented to take
A field technique for estimating aquifer parameters using flow log data
Paillet, Frederick L.
2000-01-01
A numerical model is used to predict flow along intervals between producing zones in open boreholes for comparison with measurements of borehole flow. The model gives flow under quasi-steady conditions as a function of the transmissivity and hydraulic head in an arbitrary number of zones communicating with each other along open boreholes. The theory shows that the amount of inflow to or outflow from the borehole under any one flow condition may not indicate relative zone transmissivity. A unique inversion for both hydraulic-head and transmissivity values is possible if flow is measured under two different conditions such as ambient and quasi-steady pumping, and if the difference in open-borehole water level between the two flow conditions is measured. The technique is shown to give useful estimates of water levels and transmissivities of two or more water-producing zones intersecting a single interval of open borehole under typical field conditions. Although the modeling technique involves some approximation, the principle limit on the accuracy of the method under field conditions is the measurement error in the flow log data. Flow measurements and pumping conditions are usually adjusted so that transmissivity estimates are most accurate for the most transmissive zones, and relative measurement error is proportionately larger for less transmissive zones. The most effective general application of the borehole-flow model results when the data are fit to models that systematically include more production zones of progressively smaller transmissivity values until model results show that all accuracy in the data set is exhausted.A numerical model is used to predict flow along intervals between producing zones in open boreholes for comparison with measurements of borehole flow. The model gives flow under quasi-steady conditions as a function of the transmissivity and hydraulic head in an arbitrary number of zones communicating with each other along open boreholes. The theory shows that the amount of inflow to or outflow from the borehole under any one flow condition may not indicate relative zone transmissivity. A unique inversion for both hydraulic-head and transmissivity values is possible if flow is measured under two different conditions such as ambient and quasi-steady pumping, and if the difference in open-borehole water level between the two flow conditions is measured. The technique is shown to give useful estimates of water levels and transmissivities of two or more water-producing zones intersecting a single interval of open borehole under typical field conditions. Although the modeling technique involves some approximation, the principle limit on the accuracy of the method under field conditions is the measurement error in the flow log data. Flow measurements and pumping conditions are usually adjusted so that transmissivity estimates are most accurate for the most transmissive zones, and relative measurement error is proportionately larger for less transmissive zones. The most effective general application of the borehole-flow model results when the data are fit to models that symmetrically include more production zones of progressively smaller transmissivity values until model results show that all accuracy in the data set is exhausted.
The Mars Development of a Micro-Isolation Valve
NASA Technical Reports Server (NTRS)
Mueller, Juergen; Vargo, Steven; Forgrave, John; Bame, David; Chakraborty, Indrani; Tang, William
1999-01-01
A feasibility investigation for a newly proposed microfabricated, normally-closed isolation valve was initiated. The micro-isolation valve is silicon based and relies on the principle of melting a silicon plug, opening an otherwise sealed flow passage. This valve may thus serve a similar role as a conventional pyrovalve and is intended for use in micropropulsion systems onboard future microspacecraft, having wet masses of no more than 10-20 kg, as well as in larger scale propulsion systems having only low flow rate requirements, such as ion propulsion or Hall thruster systems. Two key feasibility issues - melting of the plug and pressure handling capability - were addressed. Thermal finite element modeling showed that valves with plugs having widths between 10 and 50 gm have power requirements of only 10 . 30 Watts to open over a duration of 0.5 ms or less. Valve chips featuring 5 0 micron plugs were burst pressure tested and reached maximum pressure values o f 2900 psig (19.7 Mpa).
NASA Astrophysics Data System (ADS)
Reiss, Philipp; Hager, Philipp
2013-04-01
In the field of planetary and asteroid exploration missions, one of the main interests is to gain knowledge about the components of the local Regolith to understand the properties and formation of these objects and to possibly use bound elements for in-situ resource utilization (ISRU). The handling and transport of Regolith, especially within smaller scientific sampling devices and analysis instruments, is a central issue that is often underestimated. Due to its physical properties, lunar Regolith for instance has an increased risk of clogging conveying and processing devices and hence complicates the design of such systems. In most current concepts for lunar and Martian exploration missions, the excavated Regolith is fed to a storage or analysis instrument through a series of hoppers, pipes, and similar devices. This transport process is mainly affected by the flow characteristics of the Regolith, and reduced flowability or clogging could impact the success of any mission trying to handle, sample or process Regolith. As part of the Lunar In-situ Resource Experiment (LUISE), transport processes for lunar Regolith were examined. A series of experiments with representative funnel geometries were conducted on a partial-g parabolic flight under 0.38g Martian and 0.16g lunar gravity. The experiments aimed to examine key parameters for hopper designs used in sampling processes for science experiments or ISRU processes on Mars and Moon. Two different representative lunar Regolith simulants, JSC-1A and NU-LHT-2M, were used in the investigation (sample mass < 50g, grain size < 2mm). To avoid gas inclusions in the porous simulant material, the experiments were conducted under a low vacuum between 10-3 and 100kPa. 21 different funnel geometries with variable inclination angle and opening width were tested. They were designed similar to an hourglass, with two different funnels on each side. The material flow was initiated by turning the assembly upside-down. The inclination angles of the funnels varied from 55deg to 75deg in 5deg steps, both in symmetrical and asymmetrical configuration. Three opening widths were investigated, namely 8mm, 13mm, and 18mm. Although both simulant materials showed highly variable flow characteristics, a clear direct proportional dependence between flow rate and g-level was observed. With the transition to lower g-levels, the consolidation of the simulant was significantly reduced, so that in some cases the filling level of the respective hoppers raised and prevented further material flow. The cohesive character of both simulants mainly appeared at lunar gravity. Here the material flow of NU-LHT-2M occasionally came to a sudden stop or did not start at all. Steeper and wider hoppers in most cases lead to increased flow rates, whereas geometries with wider openings tended to reduce the flow continuity. Based on these results, guidelines can be established for designing conveying devices to be used for instruments on Mars or Moon.
Anatomy of a lower Mississippian oil reservoir, West Virginia, United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patchen, D.; Hohn, M.E.; McDowell, R.
1993-09-01
Several lines of evidence indicate that the oil reservoir in Granny Creek field is compartmentalized due to internal heterogeneities: an analysis of initial open flows vs. year completed and well location; mapping of initial open flows and cumulative production; and the nonuniform behavior of injection pressures and rates in waterflood patterns. The Big Injun sandstones includes an upper, coarse-grained, fluvial channel facies, and a lower, fine-grained, distributary mouthbar facies. The bar facies is the main reservoir, and can be subdivided into crest, distal, and proximal subfacies. Low original porosity and permeability in the poorly sorted channel facies was reduced furthermore » by quartz cementation. In contrast, chlorite coatings restricted quartz cementation and preserved porosity and permeability in the proximal bar subfacies. Small, low-amplitude folds plunge northeastward on the flank of the main syncline in which the fields is located. These minor structural highs seem to match areas of high initial open flows and cumulative production. High production also occurs where the distal and marine-influenced, proximal mouth-bar subfacies pinch out against at least a few feet of the relatively impremeable channel facies. Lower production is associated with (1) thin areas of proximal mouth-bar subfacies; (2) a change from marine to fluvial dominance of the bar facies, which is accompanied by a reduction in porosity and permeability; and (3) loss of the less permeable channel facies above the porous reservoir sandstone, due to downcutting by regional erosion that produced a post-Big Injun unconformity.« less
HPC enabled real-time remote processing of laparoscopic surgery
NASA Astrophysics Data System (ADS)
Ronaghi, Zahra; Sapra, Karan; Izard, Ryan; Duffy, Edward; Smith, Melissa C.; Wang, Kuang-Ching; Kwartowitz, David M.
2016-03-01
Laparoscopic surgery is a minimally invasive surgical technique. The benefit of small incisions has a disadvantage of limited visualization of subsurface tissues. Image-guided surgery (IGS) uses pre-operative and intra-operative images to map subsurface structures. One particular laparoscopic system is the daVinci-si robotic surgical system. The video streams generate approximately 360 megabytes of data per second. Real-time processing this large stream of data on a bedside PC, single or dual node setup, has become challenging and a high-performance computing (HPC) environment may not always be available at the point of care. To process this data on remote HPC clusters at the typical 30 frames per second rate, it is required that each 11.9 MB video frame be processed by a server and returned within 1/30th of a second. We have implement and compared performance of compression, segmentation and registration algorithms on Clemson's Palmetto supercomputer using dual NVIDIA K40 GPUs per node. Our computing framework will also enable reliability using replication of computation. We will securely transfer the files to remote HPC clusters utilizing an OpenFlow-based network service, Steroid OpenFlow Service (SOS) that can increase performance of large data transfers over long-distance and high bandwidth networks. As a result, utilizing high-speed OpenFlow- based network to access computing clusters with GPUs will improve surgical procedures by providing real-time medical image processing and laparoscopic data.
Astrophysically relevant radiatively cooled hypersonic bow shocks in nested wire arrays
NASA Astrophysics Data System (ADS)
Ampleford, David
2009-11-01
We have performed laboratory experiments which introduce obstructions into hypersonic plasma flows to study the formation of shocks. Astrophysical observations have demonstrated many examples of equivalent radiatively cooled bow shocks, for example the head of protostellar jets or supernova remnants passing through the interstellar medium or between discrete clumps in jets. Wire array z-pinches allow us to study quasi-planar radiatively cooled flows in the laboratory. The early stage of a wire array z-pinch implosion consists of a steady flow of the wire material towards the axis. Given a high rate of radiative cooling, these flows reach high sonic- Mach numbers, typically up to 5. The 2D nature of this configuration allows the insertion of obstacles into the flow, such as a concentric ``inner'' wire array, as has previously been studied for ICF research. Here we study the application of such a nested array to laboratory astrophysics where the inner wires act as obstructions perpendicular to the flow, and induce bow shocks. By varying the wire array material (W/Al), the significance of radiative cooling on these shocks can be controlled, and is shown to change the shock opening angle. As multiple obstructions are present, the experiments show the interaction of multiple bow shocks. It is also possible to introduce a magnetic field around the static object, increasing the opening angle of the shocks. Further experiments can be designed to control the flow density, magnetic field structure and obstruction locations. In collaboration with: S.V. Lebedev, M.E. Cuneo, C.A. Jennings, S.N. Bland, J.P. Chittenden, A. Ciardi, G.N. Hall, S.C. Bott, M. Sherlock, A. Frank, E. Blackman
On a sparse pressure-flow rate condensation of rigid circulation models
Schiavazzi, D. E.; Hsia, T. Y.; Marsden, A. L.
2015-01-01
Cardiovascular simulation has shown potential value in clinical decision-making, providing a framework to assess changes in hemodynamics produced by physiological and surgical alterations. State-of-the-art predictions are provided by deterministic multiscale numerical approaches coupling 3D finite element Navier Stokes simulations to lumped parameter circulation models governed by ODEs. Development of next-generation stochastic multiscale models whose parameters can be learned from available clinical data under uncertainty constitutes a research challenge made more difficult by the high computational cost typically associated with the solution of these models. We present a methodology for constructing reduced representations that condense the behavior of 3D anatomical models using outlet pressure-flow polynomial surrogates, based on multiscale model solutions spanning several heart cycles. Relevance vector machine regression is compared with maximum likelihood estimation, showing that sparse pressure/flow rate approximations offer superior performance in producing working surrogate models to be included in lumped circulation networks. Sensitivities of outlets flow rates are also quantified through a Sobol’ decomposition of their total variance encoded in the orthogonal polynomial expansion. Finally, we show that augmented lumped parameter models including the proposed surrogates accurately reproduce the response of multiscale models they were derived from. In particular, results are presented for models of the coronary circulation with closed loop boundary conditions and the abdominal aorta with open loop boundary conditions. PMID:26671219
Experimental Evaluation of a Carbon Slurry Droplet Combustion Model
1981-12-14
the increased mass and energy transport due to the flow percolating through the open porous structure of the carbon agglomerate. Two separate models...catalysts. Transport-rate enhancement factors were also employed in the carbon-agglomerate reaction analysis to account for the increased mass and energy ...D Effective binary diffusivity Ei Activation energy h Heat transfer coefficient H2 Diatomic hydrogen H20 Water i Enthalpy if Enthalpy of formation
Zielinski, Robert A.
1979-01-01
Well-characterized samples of rhyolitic obsidian, perlite and felsite from a single lava flow are leached of U by alkaline oxidizing solutions under open-system conditions. Pressure, temperature, flow rate and solution composition are held constant in order to evaluate the relative importance of differences in surface area and crystallinity. Under the experimental conditions U removal from crushed glassy samples proceeds by a mechanism of glass dissolution in which U and silica are dissolved in approximately equal weight fractions. The rate of U removal from crushed glassy samples increases with decreasing average grain size (surface area). Initial rapid loss of a small component (≈ 2.5%) of the total U from crushed felsite. followed by much slower U loss, reflects variable rates of attack of numerous uranium sites. The fractions of U removed during the experiment ranged from 3.2% (felsite) to 27% (perlite). An empirical method for evaluating the relative rate of U loss from contemporaneous volcanic rocks is presented which incorporates leaching results and rock permeability data.
Computational open-channel hydraulics for movable-bed problems
Lai, Chintu; ,
1990-01-01
As a major branch of computational hydraulics, notable advances have been made in numerical modeling of unsteady open-channel flow since the beginning of the computer age. According to the broader definition and scope of 'computational hydraulics,' the basic concepts and technology of modeling unsteady open-channel flow have been systematically studied previously. As a natural extension, computational open-channel hydraulics for movable-bed problems are addressed in this paper. The introduction of the multimode method of characteristics (MMOC) has made the modeling of this class of unsteady flows both practical and effective. New modeling techniques are developed, thereby shedding light on several aspects of computational hydraulics. Some special features of movable-bed channel-flow simulation are discussed here in the same order as given by the author in the fixed-bed case.
Numerical simulation of pressure fluctuation in 1000MW Francis turbine under small opening condition
NASA Astrophysics Data System (ADS)
Gong, R. Z.; Wang, H. G.; Yao, Y.; Shu, L. F.; Huang, Y. J.
2012-11-01
In order to study the cause of abnormal vibration in large Francis turbine under small opening condition, CFD method was adopted to analyze the flow filed and pressure fluctuation. Numerical simulation was performed on the commercial CFD code Ansys FLUENT 12, using DES method. After an effective validation of the computation result, the flow behaviour of internal flow field under small opening condition is analyzed. Pressure fluctuation in different working mode is obtained by unsteady CFD simulation, and results is compared to study its change. Radial force fluctuation is also analyzed. The result shows that the unstable flow under small opening condition leads to an increase of turbine instability in reverse pump mode, and is one possible reason of the abnormal oscillation.
NASA Astrophysics Data System (ADS)
Tatsumoto, H.; Shirai, Y.; Shiotsu, M.; Hata, K.; Kobayashi, H.; Naruo, Y.; Inatani, Y.; Kato, T.; Futakawa, M.; Kinoshita, K.
2010-06-01
A thermal-hydraulics experimental system of liquid hydrogen was developed in order to investigate the forced flow heat transfer characteristics in the various cooling channels for wide ranges of subcoolings, flow velocities, and pressures up to supercritical. A main tank is connected to a sub tank through a hydrogen transfer line with a control valve. A channel heater is located at one end of the transfer line in the main tank. Forced flow through the channel is produced by adjusting the pressure difference between the tanks and the valve opening. The mass flow rate is measured from the weight change of the main tank. For the explosion protection, electrical equipments are covered with a nitrogen gas blanket layer and a remote control system was established. The first cryogenic performance tests confirmed that the experimental system had satisfied with the required performances. The forced convection heat transfer characteristics was successfully measured at the pressure of 0.7 MPa for various flow velocities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forman, S.A.
1989-01-01
Modulation of the nicotinic acethylcholine receptor from Torpedo by cholinergic agonists, local anesthetics, and n-alkanols was studied using {sup 86}Rb{sup +} flux studies in sealed native Torpedo electroplaque membrane vesicles. Reliable concentration-response and kinetic data were obtained using manual ten sec filtration assays in vesicles partially blocked with alpha-bungarotoxin to remove spare receptors and quenched-flow assays to assess initial {sup 86}Rb{sup +} flux rates or the rate of drug-induced receptor inactivation. Concentration response relationships for the agonists acetylcholine, carbamylcholine, suberyldicholine, phenyltrimethylammonium, and (-)-nicotine are all bell-shape due to stimulation of cation channel opening at low concentrations and inhibition of channelsmore » at higher concentrations. The rate of agonist-induced fast desensitization (k{sub d}) increases with (acetylcholine) in parallel with channel activation, suggesting that desensitization proceeds from the open state and/or states in rapid equilibrium with it. At self-inhibitory acetylcholine concentrations, a new rapid inactivation (rate = k{sub f}) is observed before fast desensitization. The rate and extent of rapid inactivation is compatible with bimolecular association between acethylcholine and inhibitory site with K{sub B} = 40 mM.« less
... leaflets) that open and close, allowing blood to flow from your left atrium to your left ventricle ... does not open enough to allow sufficient blood flow. Usually this is the result of hardening (calcification) ...
Gas transport and vesicularity in low-viscosity liquids
NASA Astrophysics Data System (ADS)
Pioli, Laura; Bonadonna, Costanza; Abdulkareem, Lokman; Azzopardi, Barry; Phillips, Jeremy
2010-05-01
Vesicle textures of basaltic scoria preserve information on magma bubble content at fragmentation and are commonly used to constrain degassing, vesiculation and magma permeability. These studies are based on the assumption that microscale textures are representative of the conduit-scale structures and processes. However, the conditions for which this assumption is valid have not been investigated in detail. We have investigated conduit-scale structures by performing a series of experiments of separate two-phase flows in a 6.5-m high cylindrical bubble column using a combination of air with pure glucose syrup, water-syrup mixtures and pure water to reproduce open-system degassing and strombolian activity conditions in the upper volcanic conduit (i.e. at very low or zero liquid fluxes). We have varied gas fluxes, initial liquid height, gas inlet configuration and liquid viscosity and analyzed flow regimes and properties. Temperature and pressure were measured at several heights along the pipe and vesicularity was calculated using pressure data, liquid level measurements and an Electrical Capacitance tomography (ECT) system, which measures instantaneous vesicularity and phase distribution from capacitance measurements between pairs of electrodes placed uniformly around the pipe circumference. The aim of the experiments was to identify the effect of gas-flow rates on the flow regimes (i.e. bubbly, slug, churn and annular), the main degassing structures and the total gas content of the column. The effect of increasing and decreasing gas flow rates was also studied to check hysteresis effects. Results indicate that the vesicularity of the liquid column depends primarily on gas flux, whereas flow regimes exert a minor control. In fact, vesicularity increases with gas flux following a power-law trend whose exponent depends on the viscosity of the liquid. In addition, distributions of instantaneous gas fraction in the column cross section during syrup experiments have shown that gas is mainly transported by large, conduit-size bubbles rising in a microvesicular liquid. Coalescence processes occur throughout the whole column, and are strongly affected by bubble size, shearing and flow dynamics. Increasing gas fluxes increases frequency and length of the large bubbles but does not affect the concentration of small bubbles in the liquid matrix. Scaling of these experiments suggest that these conditions could be met in low viscosity, crystal-poor magmas and we therefore suggest that this dynamics could also characterize two-phase flow in open conduit mafic systems.
Thermal-hydraulic performance of metal foam heat exchangers under dry operating conditions
Nawaz, Kashif; Bock, Jessica; Jacobi, Anthony M.
2017-03-14
High porosity metal foams with novel thermal, mechanical, electrical, and acoustic properties are being more widely adopted for application. Due to their large surface-area-to-volume ratio and complex structure which induces better fluid mixing, boundary layer restarting and wake destruction, they hold promise for heat transfer applications. In this study, the thermal-hydraulic performance of open-cell aluminum metal foam heat exchanger has been evaluated. The impact of flow conditions and metal foam geometry on the heat transfer coefficient and gradient have been investigated. Metal foam heat exchanger with same geometry (face area, flow depth and fin dimensions) consisting of four different typemore » of metal foams have been built for the study. Experiments are conducted in a closed-loop wind tunnel at different flow rate under dry operating condition. Metal foams with a smaller pore size (40 PPI) have a larger heat transfer coefficient compared to foams with a larger pore size (5 PPI). However, foams with larger pores result in relatively smaller pressure gradients. Current thermal-hydraulic modeling practices have been reviewed and potential issues have been identified. Permeability and inertia coefficients are determined and compared to data reported in open literature. Finally, on the basis of the new experimental results, correlations are developed relating the foam characteristics and flow conditions through the friction factor f and the Colburn j factor.« less
Thermal-hydraulic performance of metal foam heat exchangers under dry operating conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nawaz, Kashif; Bock, Jessica; Jacobi, Anthony M.
High porosity metal foams with novel thermal, mechanical, electrical, and acoustic properties are being more widely adopted for application. Due to their large surface-area-to-volume ratio and complex structure which induces better fluid mixing, boundary layer restarting and wake destruction, they hold promise for heat transfer applications. In this study, the thermal-hydraulic performance of open-cell aluminum metal foam heat exchanger has been evaluated. The impact of flow conditions and metal foam geometry on the heat transfer coefficient and gradient have been investigated. Metal foam heat exchanger with same geometry (face area, flow depth and fin dimensions) consisting of four different typemore » of metal foams have been built for the study. Experiments are conducted in a closed-loop wind tunnel at different flow rate under dry operating condition. Metal foams with a smaller pore size (40 PPI) have a larger heat transfer coefficient compared to foams with a larger pore size (5 PPI). However, foams with larger pores result in relatively smaller pressure gradients. Current thermal-hydraulic modeling practices have been reviewed and potential issues have been identified. Permeability and inertia coefficients are determined and compared to data reported in open literature. Finally, on the basis of the new experimental results, correlations are developed relating the foam characteristics and flow conditions through the friction factor f and the Colburn j factor.« less
Undulations on the surface of elongated bubbles in confined gas-liquid flows
NASA Astrophysics Data System (ADS)
Magnini, M.; Ferrari, A.; Thome, J. R.; Stone, H. A.
2017-08-01
A systematic analysis is presented of the undulations appearing on the surface of long bubbles in confined gas-liquid flows. CFD simulations of the flow are performed with a self-improved version of the open-source solver ESI OpenFOAM (release 2.3.1), for Ca =0.002 -0.1 and Re =0.1 -1000 , where Ca =μ U /σ and Re =2 ρ U R /μ , with μ and ρ being, respectively, the viscosity and density of the liquid, σ the surface tension, U the bubble velocity, and R the tube radius. A model, based on an extension of the classical axisymmetric Bretherton theory, accounting for inertia and for the curvature of the tube's wall, is adopted to better understand the CFD results. The thickness of the liquid film, and the wavelength and decay rate of the undulations extracted from the CFD simulations, agree well with those obtained with the theoretical model. Inertial effects appear when the Weber number of the flow We =Ca Re =O (10-1) and are manifest by a larger number of undulation crests that become evident on the surface of the rear meniscus of the bubble. This study demonstrates that the necessary bubble length for a flat liquid film region to exist between the rear and front menisci rapidly increases above 10 R when Ca >0.01 and the value of the Reynolds number approaches 1000.
Range Image Flow using High-Order Polynomial Expansion
2013-09-01
included as a default algorithm in the OpenCV library [2]. The research of estimating the motion between range images, or range flow, is much more...Journal of Computer Vision, vol. 92, no. 1, pp. 1‒31. 2. G. Bradski and A. Kaehler. 2008. Learning OpenCV : Computer Vision with the OpenCV Library
The Determinants of Interdistrict Open Enrollment Flows: Evidence from Two States
ERIC Educational Resources Information Center
Carlson, Deven; Lavery, Lesley; Witte, John F.
2011-01-01
Interdistrict open enrollment is the most widely used form of school choice in the United States. Through the theoretical lens of a utility maximization framework, this article analyzes the determinants of interdistrict open enrollment flows in Minnesota and Colorado. The authors' empirical analysis employs an original data set that details open…
Blended Wing Body Concept Development with Open Rotor Engine Intergration
NASA Technical Reports Server (NTRS)
Pitera, David M.; DeHaan, Mark; Brown, Derrell; Kawai, Ronald T.; Hollowell, Steve; Camacho, Peter; Bruns, David; Rawden, Blaine K.
2011-01-01
The purpose of this study is to perform a systems analysis of a Blended Wing Body (BWB) open rotor concept at the conceptual design level. This concept will be utilized to estimate overall noise and fuel burn performance, leveraging recent test data. This study will also investigate the challenge of propulsion airframe installation of an open rotor engine on a BWB configuration. Open rotor engines have unique problems relative to turbofans. The rotors are open, exposed to flow conditions outside of the engine. The flow field that the rotors are immersed in may be higher than the free stream flow and it may not be uniform, both of these characteristics could increase noise and decrease performance. The rotors sometimes cause changes in the flow conditions imposed on aircraft surfaces. At high power conditions such as takeoff and climb out, the stream tube of air that goes through the rotors contracts rapidly causing the boundary layer on the body upper surface to go through an adverse pressure gradient which could result with separated airflow. The BWB / Open Rotor configuration must be designed to mitigate these problems.
NASA Astrophysics Data System (ADS)
Ghosh, Sudip K.; Brasseur, James G.; Zaki, Tamer; Kahrilas, Peter J.
2003-11-01
Surgery is commonly used to rebuild a weak lower esophageal sphincter (LES) and reduce reflux. Because the driving pressure (DP) is proportional to muscle tension generated in the esophagus, we developed models using lubrication theory to evaluate the consequences of surgery on muscle force required to open the LES and drive the flow. The models relate time changes in DP to lumen geometry and trans-LES flow with a manometric catheter. Inertial effects were included and found negligible. Two models, direct (opening specified) and indirect (opening predicted), were combined with manometric pressure and imaging data from normal and post-surgery LES. A very high sensitivity was predicted between the details of the DP and LES opening. The indirect model accurately captured LES opening and predicted a 3-phase emptying process, with phases I and III requiring rapid generation of muscle tone to open the LES and empty the esophagus. Data showed that phases I and III are adversely altered by surgery causing incomplete emptying. Parametric model studies indicated that changes to the surgical procedure can positively alter LES flow mechanics and improve clinical outcomes.
Influence of conduit flow mechanics on magma rheology and the growth style of lava domes
NASA Astrophysics Data System (ADS)
Husain, Taha; Elsworth, Derek; Voight, Barry; Mattioli, Glen; Jansma, Pamela
2018-06-01
We develop a 2-D particle-mechanics model to explore different lava-dome growth styles. These range from endogenous lava dome growth comprising expansion of a ductile dome core to the exogenous extrusion of a degassed lava plug resulting in generation of a lava spine. We couple conduit flow dynamics with surface growth of the evolving lava dome, fuelled by an open-system magma chamber undergoing continuous replenishment. The conduit flow model accounts for the variation in rheology of ascending magma that results from degassing-induced crystallization. A period of reduced effusive flow rates promote enhanced degassing-induced crystallization. A degassed lava plug extrudes exogenously for magmas with crystal contents (ϕ) of 78 per cent, yield strength >1.62 MPa, and at flow rates of <0.5 m3 s-1, while endogenous dome growth is predicted at higher flow rates (Qout > 3 m3 s-1) for magma with lower relative yield strengths (<1 MPa). At moderately high flow rates (Qout = 4 m3 s-1), the extrusion of magma with lower crystal content (62 per cent) and low interparticulate yield strength (0.6 MPa) results in the development of endogenous shear lobes. Our simulations model the periodic extrusion history at Mount St. Helens (1980-1983). Endogenous growth initiates in the simulated lava dome with the extrusion of low yield strength magma (ϕ = 0.63 and τp = 0.76 MPa) after the crystallized viscous plug (ϕ = 0.87 and τ
Oscillatory erosion and transport flume with superimposed unidirectional flow
Jepsen, Richard A.; Roberts, Jesse D.
2004-01-20
A method and apparatus for measuring erosion rates of sediments and at high shear stresses due to complex wave action with, or without, a superimposed unidirectional current. Water is forced in a channel past an exposed sediment core sample, which erodes sediments when a critical shear stress has been exceeded. The height of the core sample is adjusted during testing so that the sediment surface remains level with the bottom of the channel as the sediments erode. Complex wave action is simulated by driving tandom piston/cylinder mechanisms with computer-controlled stepper motors. Unidirectional flow, forced by a head difference between two open tanks attached to each end of the channel, may be superimposed on to the complex wave action. Sediment traps may be used to collect bedload sediments. The total erosion rate equals the change in height of the sediment core sample divided by a fixed period of time.
Burner rig study of variables involved in hole plugging of air cooled turbine engine vanes
NASA Technical Reports Server (NTRS)
Deadmore, D. L.; Lowell, C. E.
1983-01-01
The effects of combustion gas composition, flame temperatures, and cooling air mass flow on the plugging of film cooling holes by a Ca-Fe-P-containing deposit were investigated. The testing was performed on film-cooled vanes exposed to the combustion gases of an atmospheric Mach 0.3 burner rig. The extent of plugging was determined by measurement of the open hole area at the conclusion of the tests as well as continuous monitoring of some of the tests using stop-action photography. In general, as the P content increased, plugging rates also increased. The plugging was reduced by increasing flame temperature and cooling air mass flow rates. At times up to approximately 2 hours little plugging was observed. This apparent incubation period was followed by rapid plugging, reaching in several hours a maximum closure whose value depended on the conditions of the test.
The Effect of Impeller Type on Floc Size and Structure during Shear-Induced Flocculation
Spicer; Keller; Pratsinis
1996-12-01
The effect of impeller type and shear rate on the evolution of floc size and structure during shear-induced flocculation of polystyrene particles with aluminum sulfate is investigated by image analysis. One radial flow (six-blade Rushton turbine) and two axial flow (three-blade fluid foil, four-blade 45° pitch) impeller configurations are examined. The steady state average floc size is shown to depend on the frequency of recirculation to the impeller zone and its characteristic velocity gradient. The concepts of fractal geometry are used to characterize the floc structure. For all impellers, the two-dimensional floc fractal dimension, Dpf, increases during floc growth, indicating formation of more open structures. Later on, Dpf levels off at a steady state value as breakage becomes significant and the floc size distribution approaches steady state. The shear rate does not affect the steady state Dpf of the flocs within experimental uncertainty.
Ju, Xiao-bing; Gu, Xiao-jian; Zhang, Zheng-yu; Wei, Zhong-qing; Xu, Zhuo-qun; Miao, Hui-dong; Zhou, Wei-min; Xu, Ren-fang; Cheng, Bin; Ma, Jian-guo; Niu, Tian-li; Qu, Ping; Xue, Bo-xin; Zhang, Wei
2015-12-01
To assess the efficacy and safety of Saw Palmetto Extract Capsules in the treatment of benign prostatic hyperplasia (BPH). We conducted a multi-centered open clinical study on 165 BPH patients treated with Saw Palmetto Extract Capsules at a dose of 160 mg qd for 12 weeks. At the baseline and after 6 and 12 weeks of medication, we compared the International Prostate Symptom Scores (IPSS), prostate volume, postvoid residual urine volume, urinary flow rate, quality of life scores (QOL), and adverse events between the two groups of patients. Compared with the baseline, both IPSS and QOL were improved after 6 weeks of medication, and at 12 weeks, significant improvement was found in IPSS, QOL, urinary flow rate, and postvoid residual urine. Mild stomachache occurred in 1 case, which necessitated no treatment. Saw Palmetto Extract Capsules were safe and effective for the treatment of BPH.
3D Numerical Simulation of Turbulent Buoyant Flow and Heat Transport in a Curved Open Channel
USDA-ARS?s Scientific Manuscript database
A three-dimensional buoyancy-extended version of kappa-epsilon turbulence model was developed for simulating the turbulent flow and heat transport in a curved open channel. The density- induced buoyant force was included in the model, and the influence of temperature stratification on flow field was...
30 CFR 57.22213 - Air flow (III mines).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Air flow (III mines). 57.22213 Section 57.22213... Methane in Metal and Nonmetal Mines Ventilation § 57.22213 Air flow (III mines). The quantity of air coursed through the last open crosscut in pairs or sets of entries, or through other ventilation openings...
Fan, Wen; Almirall, José
2014-03-01
A novel geometry configuration based on sorbent-coated glass microfibers packed within a glass capillary is used to sample volatile organic compounds, dynamically, in the headspace of an open system or in a partially open system to achieve quantitative extraction of the available volatiles of explosives with negligible breakthrough. Air is sampled through the newly developed sorbent-packed 2 cm long, 2 mm diameter capillary microextraction of volatiles (CMV) and subsequently introduced into a commercially available thermal desorption probe fitted directly into a GC injection port. A sorbent coating surface area of ∼5 × 10(-2) m(2) or 5,000 times greater than that of a single solid-phase microextraction (SPME) fiber allows for fast (30 s), flow-through sampling of relatively large volumes using sampling flow rates of ∼1.5 L/min. A direct comparison of the new CMV extraction to a static (equilibrium) SPME extraction of the same headspace sample yields a 30 times improvement in sensitivity for the CMV when sampling nitroglycerine (NG), 2,4-dinitrotoluene (2,4-DNT), and diphenylamine (DPA) in a mixture containing a total mass of 500 ng of each analyte, when spiked into a liter-volume container. Calibration curves were established for all compounds studied, and the recovery was determined to be ∼1 % or better after only 1 min of sampling time. Quantitative analysis is also possible using this extraction technique when the sampling temperature, flow rate, and time are kept constant between calibration curves and the sample.
Dolcetti, Giulio; Krynkin, Anton
2017-11-01
Experimental data are presented on the Doppler spectra of airborne ultrasound forward scattered by the rough dynamic surface of an open channel turbulent flow. The data are numerically interpreted based on a Kirchhoff approximation for a stationary random water surface roughness. The results show a clear link between the Doppler spectra and the characteristic spatial and temporal scales of the water surface. The decay of the Doppler spectra is proportional to the velocity of the flow near the surface. At higher Doppler frequencies the measurements show a less steep decrease of the Doppler spectra with the frequency compared to the numerical simulations. A semi-empirical equation for the spectrum of the surface elevation in open channel turbulent flows over a rough bed is provided. The results of this study suggest that the dynamic surface of open channel turbulent flows can be characterized remotely based on the Doppler spectra of forward scattered airborne ultrasound. The method does not require any equipment to be submerged in the flow and works remotely with a very high signal to noise ratio.
NASA Astrophysics Data System (ADS)
Sehlke, A.; Kobs-Nawotniak, S. E.; Hughes, S. S.; Sears, D. W. G.; Downs, M.; Whittington, A. G.; Lim, D. S. S.; Heldmann, J. L.
2017-12-01
Lava terrains on other planets and moons exhibit morphologies similar to those found on Earth, such as smooth pāhoehoe transitioning to rough `a`ā terrains based on the viscosity - strain rate relationship of the lava. Therefore, the morphology of lava flows is governed by eruptive conditions such as effusion rate, underlying slope, and the fundamental thermo-physical properties of the lava, including temperature (T), composition (X), viscosity (η), fraction of crystals (φc) and vesicles (φb), as well as bulk density (ρ). These textural and rheological changes were previously studied for Hawaiian lava, where the lava flow started as channelized pāhoehoe and transitioned into `a`ā, demonstrating a systematic trend in T, X, η, φc, φb, and ρ. NASA's FINESSE focuses on Science and Exploration through analogue research. One of the field sites is Craters of the Moon, Idaho. We present field work done at a 3.0 km long lava flow belonging to the Blue Dragon lavas erupted from a chain of spatter cones, which then coalesced into channelized flows. We acquired UAV imagery along the entire length of the flow, and generated a high resolution DTM of 5 cm/pixel, from which we derived height profiles and surface roughness values. Field work included mapping the change in surface morphology and sample collection every 150 meters. In the laboratory, we measured φc, φb, and ρ for all collected samples. Viscosity measurements were carried out by concentric cylinder viscometry at subliquidus temperatures between 1310ºC to 1160ºC to study the rheology of the lava, enabling us to relate changes in flow behavior to T and φc. Our results are consistent with observations made for Hawaiian lava, including increasing bulk density downflow, and porosity changing from connected to isolated pore space. Crystallinity increases downflow, and the transition from pāhoehoe to `a`ā occurs between 1230ºC to 1150ºC, which is prompted by nucleation and growth of plagioclase microcrystals, strongly increasing the viscosity of the lava several orders of magnitude. The results of this study allows us to correlate T, X, η, φc, φb, and ρ to the lava flow morphology expressed as surface roughness, which can then be used as a tool to infer these physical properties of the rocks for open channel lava flows on other airless bodies, such as the Moon and Mercury, based on DTMs.
Determining the Discharge Rate from a Submerged Oil Leaks using ROV Video and CFD study
NASA Astrophysics Data System (ADS)
Saha, Pankaj; Shaffer, Frank; Shahnam, Mehrdad; Savas, Omer; Devites, Dave; Steffeck, Timothy
2016-11-01
The current paper reports a technique to measure the discharge rate by analyzing the video from a Remotely Operated Vehicle (ROV). The technique uses instantaneous images from ROV video to measure the velocity of visible features (turbulent eddies) along the boundary of an oil leak jet and subsequently classical theory of turbulent jets is imposed to determine the discharge rate. The Flow Rate Technical Group (FRTG) Plume Team developed this technique that manually tracked the visible features and produced the first accurate government estimates of the oil discharge rate from the Deepwater Horizon (DWH). For practical application this approach needs automated control. Experiments were conducted at UC Berkeley and OHMSETT that recorded high speed, high resolution video of submerged dye-colored water or oil jets and subsequently, measured the velocity data employing LDA and PIV software. Numerical simulation have been carried out using experimental submerged turbulent oil jets flow conditions employing LES turbulence closure and VOF interface capturing technique in OpenFOAM solver. The CFD results captured jet spreading angle and jet structures in close agreement with the experimental observations. The work was funded by NETL and DOI Bureau of Safety and Environmental Enforcement (BSEE).
Hydrology of a nuclear-processing plant site, Rocky Flats, Jefferson County, Colorado
Hurr, R. Theodore
1976-01-01
Accidental releases of contaminants resulting from the operation of the U.S. Energy Research and Development Administration's nuclear-processing and recovery plant located on Rocky Flats will move at different rates through -different parts of the hydrologic system. Rates of movement are dependent upon the magnitude of the accidental release and the hydrologic conditions at the time of the release. For example, during wet periods, a contaminant resulting from a 5,000-gallon (19,000-1itre) release on the land surface would enter the ground-water system in about 2 to 12 hours. Ground-water flow in the Rocky Flats Alluvium might move the contaminant eastward at a rate of about 3 to 11 feet (0.9 to 3.4 metres) per day, if it remains dissolved. Maximum time to a point of discharge would be about 3 years; minimum time could be a few days. A contaminant entering a stream would then move at a rate of about 60 feet (18 metres) per minute under pool-and-riffle conditions. The rate of movement might be about 420 feet (128 metres) per minute under open-channel-flow conditions following intense thunderstorms.
NASA Astrophysics Data System (ADS)
Agi, Augustine; Junin, Radzuan; Gbadamosi, Afeez
2018-06-01
Nanotechnology has found its way to petroleum engineering, it is well-accepted path in the oil and gas industry to recover more oil trapped in the reservoir. But the addition of nanoparticles to a liquid can result in the simplest flow becoming complex. To understand the working mechanism, there is a need to study the flow behaviour of these particles. This review highlights the mechanism affecting the flow of nanoparticles in porous media as it relates to enhanced oil recovery. The discussion focuses on chemical-enhanced oil recovery, a review on laboratory experiment on wettability alteration, effect of interfacial tension and the stability of emulsion and foam is discussed. The flow behaviour of nanoparticles in porous media was discussed laying emphasis on the physical aspect of the flow, the microscopic rheological behaviour and the adsorption of the nanoparticles. It was observed that nanofluids exhibit Newtonian behaviour at low shear rate and non-Newtonian behaviour at high shear rate. Gravitational and capillary forces are responsible for the shift in wettability from oil-wet to water-wet. The dominant mechanisms of foam flow process were lamellae division and bubble to multiple bubble lamellae division. In a water-wet system, the dominant mechanism of flow process and residual oil mobilization are lamellae division and emulsification, respectively. Whereas in an oil-wet system, the generation of pre-spinning continuous gas foam was the dominant mechanism. The literature review on oil displacement test and field trials indicates that nanoparticles can recover additional oil. The challenges encountered have opened new frontier for research and are highlighted herein.
Flow pattern in the ventricle of brain with cilia beating and CSF circulation
NASA Astrophysics Data System (ADS)
Wang, Yong; Westendorf, Christian; Faubel, Regina; Eichele, Gregor; Bodenschatz, Eberhard
We recently discovered that cilia of the ventral third ventricle (v3V) of mammalian brain generate a complex flow network close to the wall. However, the flow pattern in the overall three dimensional v3V, especially under physiological condition, remains to be investigated. Computational fluid dynamics is arguably the best approach for such investigations. Several v3V geometries are reconstructed from different data for comparison study. The lattice Boltzmann method and immersed boundary method are used to reproduce the experimental set-up for an opened v3V firstly. The experimentally recorded cilia induced flow network is projected on the curved v3V wall. The flow maps obtained numerically at different heights from the v3V wall agree with the experimental data qualitatively. We then consider the entire v3V with ciliary flow network along the wall for boundary condition. Moreover, we add a time dependent flow rate to represent the CSF circulation, and study flow pattern in the ventricle. We thank the Max Planck Society (MPG) for financial support. This work is conducted within the Physics and Medicine Initiative at Goettingen Campus between MPG and University Medical Center.
Quantitative analysis of skin flap blood flow in the rat using laser Doppler velocimetry.
Marks, N J
1985-01-01
Two experiments carried out on rat skin flaps are described, where microvascular flow has been measured noninvasively by a laser Doppler velocimeter. Using this technique it is possible to define the limits of an axial pattern flap in terms of microvascular flow; this was found to increase when the flap is elevated. 'Random-pattern' perfusion is defined by a fall in flow. This recovers sequentially along the flap, and at a constant rate at all sites. A differential in microvascular perfusion is thus maintained along a random-pattern flap for at least the first postoperative week. In a second experiment it is shown that there appears to be a linear relationship between the reduction in skin blood flow in a random-pattern flap and the distance from the base at which the measurements are made. It is suggested that these data support the view that the blood flow in a skin flap recovers primarily from its base rather than via peripheral neovascularization, and that this is due to vascular collaterals opening within the flap rather than to a relaxation of sympathetic tone. PMID:3156992
Bacterial finite-size effects for population expansion under flow
NASA Astrophysics Data System (ADS)
Toschi, Federico; Tesser, Francesca; Zeegers, Jos C. H.; Clercx, Herman J. H.; Brunsveld, Luc
2016-11-01
For organisms living in a liquid ecosystem, flow and flow gradients have a dual role as they transport nutrient while, at the same time, dispersing the individuals. In absence of flow and under homogeneous conditions, the growth of a population towards an empty region is usually described by a reaction-diffusion equation. The effect of fluid flow is not yet well understood and the interplay between transport of individuals and growth opens a wide scenario of possible behaviors. In this work, we study experimentally the dynamics of non-motile E. coli bacteria colonies spreading inside rectangular channels, in PDMS microfluidic devices. By use of a fluorescent microscope we analyze the dynamics of the population density subjected to different co- and counter-flow conditions and shear rates. A simple model incorporating growth, dispersion and drift of finite size beads is able to explain the experimental findings. This indicates that models based on the Fisher-Kolmogorov-Petrovsky-Piscounov equation (FKPP) may have to be supplemented with bacterial finite-size effects in order to be able to accurately reproduce experimental results for population spatial growth.
Stevens, Ken
1984-01-01
Mobil Oil Corporation personnel have designated at least four sandstone intervals, A-D (top to bottom), on the single-point resistivity logs of wells drilled in the South Trend Development Area. This report presents time-drawdown data reported by Mobil Oil Corporation from singly (A or B or C or D sandstone interval) and multiply (A, B, C, and D sandstone Intervals) completed wells for the August 16-17, 1982 aquifer test at the South Trend Development Area Site 1. This report also describes the results of flowmeter and brine-injection tests by the U.S. Geological Survey in monitoring well 16P52. Well 16P52 is open to sandstone intervals A, B, C, and D. On July 26, 1982, water was injected at a rate of 1.43 cubic feet per minute above the A sandstone interval in well 16P52. Based on flowmeter data, the calculated rates of flow were 1.23 cubic feet per minute between the A and B sandstone intervals, 0.63 cubic foot per minute between the B and C sandstone intervals, and less than 0.17 cubic foot per minute between the C and D sandstone intervals. Based upon brine-slug-injection tests conducted during August 1982, the calculated flow rates between sandstone intervals A and B are as follows: 0.01 cubic foot per minute upward flow (B to A) about 5 hours after pumping began for the aquifer test; 0.004 cubic foot per minute upward flow (B to A) about 21 hours after pumping began; and 0.0 cubic foot per minute about 46 hours after the pump was turned off. All other brine-slug-injection tests measured no flow.
High speed hydraulically-actuated operating system for an electric circuit breaker
Iman, I.
1983-06-07
This hydraulically-actuated operating system comprises a cylinder, a piston movable therein in an opening direction to open a circuit breaker, and an accumulator for supplying pressurized liquid to a breaker-opening piston-actuating space within the cylinder. A normally-closed valve between the accumulator and the actuating space is openable to allow pressurized liquid from the accumulator to flow through the valve into the actuating space to drive the piston in an opening direction. A dashpotting mechanism operating separately from the hydraulic actuating system is provided, thereby reducing flow restriction interference with breaker opening. 3 figs.
High speed hydraulically-actuated operating system for an electric circuit breaker
Iman, Imdad
1983-06-07
This hydraulically-actuated operating system comprises a cylinder, a piston movable therein in an opening direction to open a circuit breaker, and an accumulator for supplying pressurized liquid to a breaker-opening piston-actuating space within the cylinder. A normally-closed valve between the accumulator and the actuating space is openable to allow pressurized liquid from the accumulator to flow through the valve into the actuating space to drive the piston in an opening direction. A dashpotting mechanism operating separately from the hydraulic actuating system is provided, thereby reducing flow restriction interference with breaker opening.
Stauning, M T; Bediako-Bowan, A; Andersen, L P; Opintan, J A; Labi, A-K; Kurtzhals, J A L; Bjerrum, S
2018-07-01
Current literature examining the relationship between door-opening rate, number of people present, and microbial air contamination in the operating room is limited. Studies are especially needed from low- and middle-income countries, where the risk of surgical site infections is high. To assess microbial air contamination in operating rooms at a Ghanaian teaching hospital and the association with door-openings and number of people present. Moreover, we aimed to document reasons for door-opening. We conducted active air-sampling using an MAS 100 ® portable impactor during 124 clean or clean-contaminated elective surgical procedures. The number of people present, door-opening rate and the reasons for each door-opening were recorded by direct observation using pretested structured observation forms. During surgery, the mean number of colony-forming units (cfu) was 328 cfu/m 3 air, and 429 (84%) of 510 samples exceeded a recommended level of 180 cfu/m 3 . Of 6717 door-openings recorded, 77% were considered unnecessary. Levels of cfu/m 3 were strongly correlated with the number of people present (P = 0.001) and with the number of door-openings/h (P = 0.02). In empty operating rooms, the mean cfu count was 39 cfu/m 3 after 1 h of uninterrupted ventilation and 52 (51%) of 102 samples exceeded a recommended level of 35 cfu/m 3 . The study revealed high values of intraoperative airborne cfu exceeding recommended levels. Minimizing the number of door-openings and people present during surgery could be an effective strategy to reduce microbial air contamination in low- and middle-income settings. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Macaskill, Charlie; Davis, Michael J.; Moore, James E.
2016-01-01
The observed properties of valves in collecting lymphatic vessels include transmural pressure-dependent bias to the open state and hysteresis. The bias may reduce resistance to flow when the vessel is functioning as a conduit. However, lymphatic pumping implies a streamwise increase in mean pressure across each valve, suggesting that the bias is then potentially unhelpful. Lymph pumping by a model of several collecting lymphatic vessel segments (lymphangions) in series, which incorporated these properties, was investigated under conditions of adverse pressure difference while varying the refractory period between active muscular contractions and the inter-lymphangion contraction delay. It was found that many combinations of the timing parameters and the adverse pressure difference led to one or more intermediate valves remaining open instead of switching between open and closed states during repetitive contraction cycles. Cyclic valve switching was reliably indicated if the mean pressure in a lymphangion over a cycle was higher than that in the lymphangion upstream, but either lack of or very brief valve closure could cause mean pressure to be lower downstream. Widely separated combinations of refractory period and delay time were found to produce the greatest flow-rate for a given pressure difference. The efficiency of pumping was always maximized by a long refractory period and lymphangion contraction starting when the contraction of the lymphangion immediately upstream was peaking. By means of an ex vivo experiment, it was verified that intermediate valves in a chain of pumping lymphangions can remain open, while the lymphangions on either side of the open valve continue to execute contractions. PMID:26747501
Analysis of Cisco Open Network Environment (ONE) OpenFlow Controller Implementation
2014-08-01
Software - Defined Networking ( SDN ), when fully realized, offer many improvements over the current rigid and...functionalities like handshake, connection setup, switch management, and security. 15. SUBJECT TERMS OpenFlow, software - defined networking , Cisco ONE, SDN ...innovating packet-forwarding technologies. Network device roles are strictly defined with little or no flexibility. In Software - Defined Networks ( SDNs ),
36 CFR 9.44 - Open flows and control of “wild” wells.
Code of Federal Regulations, 2014 CFR
2014-07-01
... THE INTERIOR MINERALS MANAGEMENT Non-Federal Oil and Gas Rights § 9.44 Open flows and control of “wild... water well from blowing open or becoming “wild,” and shall take immediate steps and exercise due diligence to bring under control any “wild” well, or burning oil or gas well. ...
36 CFR 9.44 - Open flows and control of “wild” wells.
Code of Federal Regulations, 2010 CFR
2010-07-01
... THE INTERIOR MINERALS MANAGEMENT Non-Federal Oil and Gas Rights § 9.44 Open flows and control of “wild... water well from blowing open or becoming “wild,” and shall take immediate steps and exercise due diligence to bring under control any “wild” well, or burning oil or gas well. ...
36 CFR 9.44 - Open flows and control of “wild” wells.
Code of Federal Regulations, 2013 CFR
2013-07-01
... THE INTERIOR MINERALS MANAGEMENT Non-Federal Oil and Gas Rights § 9.44 Open flows and control of “wild... water well from blowing open or becoming “wild,” and shall take immediate steps and exercise due diligence to bring under control any “wild” well, or burning oil or gas well. ...
36 CFR 9.44 - Open flows and control of “wild” wells.
Code of Federal Regulations, 2012 CFR
2012-07-01
... THE INTERIOR MINERALS MANAGEMENT Non-Federal Oil and Gas Rights § 9.44 Open flows and control of “wild... water well from blowing open or becoming “wild,” and shall take immediate steps and exercise due diligence to bring under control any “wild” well, or burning oil or gas well. ...
36 CFR 9.44 - Open flows and control of “wild” wells.
Code of Federal Regulations, 2011 CFR
2011-07-01
... THE INTERIOR MINERALS MANAGEMENT Non-Federal Oil and Gas Rights § 9.44 Open flows and control of “wild... water well from blowing open or becoming “wild,” and shall take immediate steps and exercise due diligence to bring under control any “wild” well, or burning oil or gas well. ...
Franz, Delbert D.; Melching, Charles S.
1997-01-01
The Full EQuations UTiLities (FEQUTL) model is a computer program for computation of tables that list the hydraulic characteristics of open channels and control structures as a function of upstream and downstream depths; these tables facilitate the simulation of unsteady flow in a stream system with the Full Equations (FEQ) model. Simulation of unsteady flow requires many iterations for each time period computed. Thus, computation of hydraulic characteristics during the simulations is impractical, and preparation of function tables and application of table look-up procedures facilitates simulation of unsteady flow. Three general types of function tables are computed: one-dimensional tables that relate hydraulic characteristics to upstream flow depth, two-dimensional tables that relate flow through control structures to upstream and downstream flow depth, and three-dimensional tables that relate flow through gated structures to upstream and downstream flow depth and gate setting. For open-channel reaches, six types of one-dimensional function tables contain different combinations of the top width of flow, area, first moment of area with respect to the water surface, conveyance, flux coefficients, and correction coefficients for channel curvilinearity. For hydraulic control structures, one type of one-dimensional function table contains relations between flow and upstream depth, and two types of two-dimensional function tables contain relations among flow and upstream and downstream flow depths. For hydraulic control structures with gates, a three-dimensional function table lists the system of two-dimensional tables that contain the relations among flow and upstream and downstream flow depths that correspond to different gate openings. Hydraulic control structures for which function tables containing flow relations are prepared in FEQUTL include expansions, contractions, bridges, culverts, embankments, weirs, closed conduits (circular, rectangular, and pipe-arch shapes), dam failures, floodways, and underflow gates (sluice and tainter gates). The theory for computation of the hydraulic characteristics is presented for open channels and for each hydraulic control structure. For the hydraulic control structures, the theory is developed from the results of experimental tests of flow through the structure for different upstream and downstream flow depths. These tests were done to describe flow hydraulics for a single, steady-flow design condition and, thus, do not provide complete information on flow transitions (for example, between free- and submerged-weir flow) that may result in simulation of unsteady flow. Therefore, new procedures are developed to approximate the hydraulics of flow transitions for culverts, embankments, weirs, and underflow gates.
Generation of a Sediment Rating and Load Curve Demonstrated at the Mackinaw River Confluence
2016-12-01
Illinois. The Mackinaw River produces a shoal in the Illinois River that impinges on the navigation channel . The sediment deposition forms a natural...delta that would encroach on the channel if not removed via dredging. However, the sediment has the potential for beneficial use. The Streamside...function for sediment transportation in open channel flows. Technical Bulletin No. 1026. Washington, DC: U.S. Department of Agriculture. ERDC/CHL
Chnafa, C; Brina, O; Pereira, V M; Steinman, D A
2018-02-01
Computational fluid dynamics simulations of neurovascular diseases are impacted by various modeling assumptions and uncertainties, including outlet boundary conditions. Many studies of intracranial aneurysms, for example, assume zero pressure at all outlets, often the default ("do-nothing") strategy, with no physiological basis. Others divide outflow according to the outlet diameters cubed, nominally based on the more physiological Murray's law but still susceptible to subjective choices about the segmented model extent. Here we demonstrate the limitations and impact of these outflow strategies, against a novel "splitting" method introduced here. With our method, the segmented lumen is split into its constituent bifurcations, where flow divisions are estimated locally using a power law. Together these provide the global outflow rate boundary conditions. The impact of outflow strategy on flow rates was tested for 70 cases of MCA aneurysm with 0D simulations. The impact on hemodynamic indices used for rupture status assessment was tested for 10 cases with 3D simulations. Differences in flow rates among the various strategies were up to 70%, with a non-negligible impact on average and oscillatory wall shear stresses in some cases. Murray-law and splitting methods gave flow rates closest to physiological values reported in the literature; however, only the splitting method was insensitive to arbitrary truncation of the model extent. Cerebrovascular simulations can depend strongly on the outflow strategy. The default zero-pressure method should be avoided in favor of Murray-law or splitting methods, the latter being released as an open-source tool to encourage the standardization of outflow strategies. © 2018 by American Journal of Neuroradiology.
Reactive Fluid Flow and Applications to Diagenesis, Mineral Deposits, and Crustal Rocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rye, Danny M.; Bolton, Edward W.
2002-11-04
The objective is to initiate new: modeling of coupled fluid flow and chemical reactions of geologic environments; experimental and theoretical studies of water-rock reactions; collection and interpretation of stable isotopic and geochemical field data at many spatial scales of systems involving fluid flow and reaction in environments ranging from soils to metamorphic rocks. Theoretical modeling of coupled fluid flow and chemical reactions, involving kinetics, has been employed to understand the differences between equilibrium, steady-state, and non-steady-state behavior of the chemical evolution of open fluid-rock systems. The numerical codes developed in this project treat multi-component, finite-rate reactions combined with advective andmore » dispersive transport in multi-dimensions. The codes incorporate heat, mass, and isotopic transfer in both porous and fractured media. Experimental work has obtained the kinetic rate laws of pertinent silicate-water reactions and the rates of Sr release during chemical weathering. Ab-initio quantum mechanical techniques have been applied to obtain the kinetics and mechanisms of silicate surface reactions and isotopic exchange between water and dissolved species. Geochemical field-based studies were carried out on the Wepawaug metamorphic schist, on the Irish base-metal sediment-hosted ore system, in the Dalradian metamorphic complex in Scotland, and on weathering in the Columbia River flood basalts. The geochemical and isotopic field data, and the experimental and theoretical rate data, were used as constraints on the numerical models and to determine the length and time scales relevant to each of the field areas.« less
A hybrid method of estimating pulsating flow parameters in the space-time domain
NASA Astrophysics Data System (ADS)
Pałczyński, Tomasz
2017-05-01
This paper presents a method for estimating pulsating flow parameters in partially open pipes, such as pipelines, internal combustion engine inlets, exhaust pipes and piston compressors. The procedure is based on the method of characteristics, and employs a combination of measurements and simulations. An experimental test rig is described, which enables pressure, temperature and mass flow rate to be measured within a defined cross section. The second part of the paper discusses the main assumptions of a simulation algorithm elaborated in the Matlab/Simulink environment. The simulation results are shown as 3D plots in the space-time domain, and compared with proposed models of phenomena relating to wave propagation, boundary conditions, acoustics and fluid mechanics. The simulation results are finally compared with acoustic phenomena, with an emphasis on the identification of resonant frequencies.
SDTCP: Towards Datacenter TCP Congestion Control with SDN for IoT Applications.
Lu, Yifei; Ling, Zhen; Zhu, Shuhong; Tang, Ling
2017-01-08
The Internet of Things (IoT) has gained popularity in recent years. Today's IoT applications are now increasingly deployed in cloud platforms to perform Big Data analytics. In cloud data center networks (DCN), TCP incast usually happens when multiple senders simultaneously communicate with a single receiver. However, when TCP incast happens, DCN may suffer from both throughput collapse for TCP burst flows and temporary starvation for TCP background flows. In this paper, we propose a software defined network (SDN)-based TCP congestion control mechanism, referred to as SDTCP, to leverage the features, e.g., centralized control methods and the global view of the network, in order to solve the TCP incast problems. When we detect network congestion on an OpenFlow switch, our controller can select the background flows and reduce their bandwidth by adjusting the advertised window of TCP ACK packets of the corresponding background flows so as to reserve more bandwidth for burst flows. SDTCP is transparent to the end systems and can accurately decelerate the rate of background flows by leveraging the global view of the network gained via SDN. The experiments demonstrate that our SDTCP can provide high tolerance for burst flows and achieve better flow completion time for short flows. Therefore, SDTCP is an effective and scalable solution for the TCP incast problem.
2010-02-16
field. Techniques utilizing this design use an open- loop control and no flow monitoring sensors are required. Conversely, reactive (or closed - loop ...and closed (dashed line) configuration. 38 closed configuration described above, the ambiguity in the critical limits of the transition...flow; a new vortex is then shed from the cavity leading edge, closing the feedback loop .[31] Open cavities with an L/D approximately greater than
Gas turbine engine exhaust diffuser including circumferential vane
Orosa, John A.; Matys, Pawel
2015-05-19
A flow passage defined between an inner and an outer boundary for guiding a fluid flow in an axial direction. A flow control vane is supported at a radial location between the inner and outer boundaries. A fluid discharge opening is provided for discharging a flow of the compressed fluid from a trailing edge of the vane, and a fluid control surface is provided adjacent to the fluid discharge opening and extends in the axial direction at the trailing edge of the vane. The fluid control surface has a curved trailing edge forming a Coanda surface. The fluid discharge opening is selectively provided with a compressed fluid to produce a Coanda effect along the control surface. The Coanda effect has a component in the radial direction effecting a turning of the fluid flow in the flow path radially inward or outward toward one of the inner and outer boundaries.
Bubble pump: scalable strategy for in-plane liquid routing.
Oskooei, Ali; Günther, Axel
2015-07-07
We present an on-chip liquid routing technique intended for application in well-based microfluidic systems that require long-term active pumping at low to medium flowrates. Our technique requires only one fluidic feature layer, one pneumatic control line and does not rely on flexible membranes and mechanical or moving parts. The presented bubble pump is therefore compatible with both elastomeric and rigid substrate materials and the associated scalable manufacturing processes. Directed liquid flow was achieved in a microchannel by an in-series configuration of two previously described "bubble gates", i.e., by gas-bubble enabled miniature gate valves. Only one time-dependent pressure signal is required and initiates at the upstream (active) bubble gate a reciprocating bubble motion. Applied at the downstream (passive) gate a time-constant gas pressure level is applied. In its rest state, the passive gate remains closed and only temporarily opens while the liquid pressure rises due to the active gate's reciprocating bubble motion. We have designed, fabricated and consistently operated our bubble pump with a variety of working liquids for >72 hours. Flow rates of 0-5.5 μl min(-1), were obtained and depended on the selected geometric dimensions, working fluids and actuation frequencies. The maximum operational pressure was 2.9 kPa-9.1 kPa and depended on the interfacial tension of the working fluids. Attainable flow rates compared favorably with those of available micropumps. We achieved flow rate enhancements of 30-100% by operating two bubble pumps in tandem and demonstrated scalability of the concept in a multi-well format with 12 individually and uniformly perfused microchannels (variation in flow rate <7%). We envision the demonstrated concept to allow for the consistent on-chip delivery of a wide range of different liquids that may even include highly reactive or moisture sensitive solutions. The presented bubble pump may provide active flow control for analytical and point-of-care diagnostic devices, as well as for microfluidic cells culture and organ-on-chip platforms.
A mechanistic model of heat transfer for gas-liquid flow in vertical wellbore annuli.
Yin, Bang-Tang; Li, Xiang-Fang; Liu, Gang
2018-01-01
The most prominent aspect of multiphase flow is the variation in the physical distribution of the phases in the flow conduit known as the flow pattern. Several different flow patterns can exist under different flow conditions which have significant effects on liquid holdup, pressure gradient and heat transfer. Gas-liquid two-phase flow in an annulus can be found in a variety of practical situations. In high rate oil and gas production, it may be beneficial to flow fluids vertically through the annulus configuration between well tubing and casing. The flow patterns in annuli are different from pipe flow. There are both casing and tubing liquid films in slug flow and annular flow in the annulus. Multiphase heat transfer depends on the hydrodynamic behavior of the flow. There are very limited research results that can be found in the open literature for multiphase heat transfer in wellbore annuli. A mechanistic model of multiphase heat transfer is developed for different flow patterns of upward gas-liquid flow in vertical annuli. The required local flow parameters are predicted by use of the hydraulic model of steady-state multiphase flow in wellbore annuli recently developed by Yin et al. The modified heat-transfer model for single gas or liquid flow is verified by comparison with Manabe's experimental results. For different flow patterns, it is compared with modified unified Zhang et al. model based on representative diameters.
Low pressure spark gap triggered by an ion diode
Prono, Daniel S.
1985-01-01
Spark gap apparatus for use as an electric switch operating at high voltage, high current and high repetition rate. Mounted inside a housing are an anode, cathode and ion plate. An ionizable fluid is pumped through the chamber of the housing. A pulse of current to the ion plate causes ions to be emitted by the ion plate, which ions move into and ionize the fluid. Electric current supplied to the anode discharges through the ionized fluid and flows to the cathode. Current stops flowing when the current source has been drained. The ionized fluid recombines into its initial dielectric ionizable state. The switch is now open and ready for another cycle.
Low-pressure spark gap triggered by an ion diode
Prono, D.S.
1982-08-31
Spark gap apparatus for use as an electric switch operating at high voltage, high current and high repetition rate. Mounted inside a housing are an anode, cathode and ion plate. An ionizable fluid is pumped through the chamber of the housing. A pulse of current to the ion plate causes ions to be emitted by the ion plate, which ions move into and ionize the fluid. Electric current supplied to the anode discharges through the ionized fluid and flows to the cathode. Current stops flowing when the current source has been drained. The ionized fluid recombines into its initial dielectric ionizable state. The switch is now open and ready for another cycle.
Steady hydromagnetic flows in open magnetic fields. II - Global flows with static zones
NASA Technical Reports Server (NTRS)
Tsinganos, K.; Low, B. C.
1989-01-01
A theoretical study of an axisymmetric steady stellar wind with a static zone is presented, with emphasis on the situation where the global magnetic field is symmetrical about the stellar equator and is partially open. In this scenario, the wind escapes in open magnetic fluxes originating from a region at the star pole and a region at an equatorial belt of closed magnetic field in static equilibrium. The two-dimensional balance of the pressure gradient and the inertial, gravitational, and Lorentz forces in different parts of the flow are studied, along with the static interplay between external sources of energy (heating and/or cooling) distributed in the flow and the pressure distribution.
Novel approach for extinguishing large-scale coal fires using gas-liquid foams in open pit mines.
Lu, Xinxiao; Wang, Deming; Qin, Botao; Tian, Fuchao; Shi, Guangyi; Dong, Shuaijun
2015-12-01
Coal fires are a serious threat to the workers' security and safe production in open pit mines. The coal fire source is hidden and innumerable, and the large-area cavity is prevalent in the coal seam after the coal burned, causing the conventional extinguishment technology difficult to work. Foams are considered as an efficient means of fire extinguishment in these large-scale workplaces. A noble foam preparation method is introduced, and an original design of cavitation jet device is proposed to add foaming agent stably. The jet cavitation occurs when the water flow rate and pressure ratio reach specified values. Through self-building foaming system, the high performance foams are produced and then infused into the blast drilling holes at a large flow. Without complicated operation, this system is found to be very suitable for extinguishing large-scale coal fires. Field application shows that foam generation adopting the proposed key technology makes a good fire extinguishment effect. The temperature reduction using foams is 6-7 times higher than water, and CO concentration is reduced from 9.43 to 0.092‰ in the drilling hole. The coal fires are controlled successfully in open pit mines, ensuring the normal production as well as the security of personnel and equipment.
Plumb, John M.; Adams, Noah S.; Perry, Russell W.; Holbrook, Christopher; Romine, Jason G.; Blake, Aaron R.; Burau, Jon R.
2016-01-01
In the Sacramento-San Joaquin River Delta, California, tidal forces that reverse river flows increase the proportion of water and juvenile late fall-run Chinook salmon diverted into a network of channels that were constructed to support agriculture and human consumption. This area is known as the interior delta, and it has been associated with poor fish survival. Under the rationale that the fish will be diverted in proportion to the amount of water that is diverted, the Delta Cross Channel (DCC) has been prescriptively closed during the winter out-migration to reduce fish entrainment and mortality into the interior delta. The fish are thought to migrate mostly at night, and so daytime operation of the DCC may allow for water diversion that minimizes fish entrainment and mortality. To assess this, the DCC gate was experimentally opened and closed while we released 2983 of the fish with acoustic transmitters upstream of the DCC to monitor their arrival and entrainment into the DCC. We used logistic regression to model night-time arrival and entrainment probabilities with covariates that included the proportion of each diel period with upstream flow, flow, rate of change in flow and water temperature. The proportion of time with upstream flow was the most important driver of night-time arrival probability, yet river flow had the largest effect on fish entrainment into the DCC. Modelling results suggest opening the DCC during daytime while keeping the DCC closed during night-time may allow for water diversion that minimizes fish entrainment into the interior delta.
NASA Astrophysics Data System (ADS)
Blessent, Daniela; Therrien, René; Lemieux, Jean-Michel
2011-12-01
This paper presents numerical simulations of a series of hydraulic interference tests conducted in crystalline bedrock at Olkiluoto (Finland), a potential site for the disposal of the Finnish high-level nuclear waste. The tests are in a block of crystalline bedrock of about 0.03 km3 that contains low-transmissivity fractures. Fracture density, orientation, and fracture transmissivity are estimated from Posiva Flow Log (PFL) measurements in boreholes drilled in the rock block. On the basis of those data, a geostatistical approach relying on a transitional probability and Markov chain models is used to define a conceptual model based on stochastic fractured rock facies. Four facies are defined, from sparsely fractured bedrock to highly fractured bedrock. Using this conceptual model, three-dimensional groundwater flow is then simulated to reproduce interference pumping tests in either open or packed-off boreholes. Hydraulic conductivities of the fracture facies are estimated through automatic calibration using either hydraulic heads or both hydraulic heads and PFL flow rates as targets for calibration. The latter option produces a narrower confidence interval for the calibrated hydraulic conductivities, therefore reducing the associated uncertainty and demonstrating the usefulness of the measured PFL flow rates. Furthermore, the stochastic facies conceptual model is a suitable alternative to discrete fracture network models to simulate fluid flow in fractured geological media.
Eddy Current Minimizing Flow Plug for Use in Flow Conditioning and Flow Metering
NASA Technical Reports Server (NTRS)
England, John Dwight (Inventor); Kelley, Anthony R. (Inventor)
2015-01-01
An eddy-current-minimizing flow plug has open flow channels formed between the plug's inlet and outlet. Each open flow channel includes (i) a first portion that originates at the inlet face and converges to a location within the plug that is downstream of the inlet, and (ii) a second portion that originates within the plug and diverges to the outlet. The diverging second portion is approximately twice the length of the converging first portion. The plug is devoid of planar surface regions at its inlet and outlet, and in fluid flow planes of the plug that are perpendicular to the given direction of a fluid flowing therethrough.
Panova, I E; Ermak, E M; Shaimova, T A; Shaimova, V A
2016-01-01
Ocular circulation disorders are an important factor in the development of primary open-angle glaucoma (POAG) and age-related macular degeneration (AMD). To date, however, there have been no studies on choroidal blood flow peculiarities in case of concurrent AMD and POAG. to determine distinctive features of choroidal blood flow characteristic of concurrent AMD and POAG and to assess their role in disease pathogenesis. Macular choroidal blood flow, including blood supply, was assessed in 54 patients (102 eyes) by means of Doppler ultrasound. Three groups were formed: group 1 - 38 eyes with both AMD and POAG; group 2 - 41 eyes with AMD and no signs of optic nerve pathology; and group 3 - 23 eyes with POAG and no signs of AMD. Groups 1 and 2 were subdivided into two subgroups each: А - atrophic AMD and B - macular drusen. The mean patient age was 78.7±8.4 years. The following parameters of choroidal blood flow were of interest: peak systolic velocity (Vps), end diastolic velocity (Ved), time-averaged maximum velocity (Vtamax), and resistance index (RI). Groups 1, 3, and 2A had an evident choroidal hypoperfusion in the macular area (decreased Vtamax) with uncompensated perfusion deficit, despite autoregulation efforts (decreased Vps, Ved, decreased or normal RI). Group 2B demonstrated a significantly higher rate of choroidal hyperperfusion (increased Vps, Ved, Vtamax, and RI). Concurrent AMD and POAG are notable for choroidal hypoperfusion in the macular area that leads to inadequate trophism of the neurosensory retina and can aggravate the course of AMD contributing to progression of its atrophic form.
NASA Astrophysics Data System (ADS)
Cover, Keith S.; van Asperen, Niek; de Jong, Joost; Verdaasdonk, Rudolf M.
2013-03-01
Infection following neurosurgery is all too common. One possible source of infection is the transportation of dust and other contaminates into the open wound by airflow within the operating theatre. While many modern operating theatres have a filtered, uniform and gentle flow of air cascading down over the operating table from a large area fan in the ceiling, many obstacles might introduce turbulence into the laminar flow including lights, equipment and personal. Schlieren imaging - which is sensitive to small disturbances in the laminar flow such as breathing and turbulence caused by air warmed by a hand at body temperature - was used to image the air flow due to activities in an operating theatre. Color intensity projections (CIPs) were employed to reduce the workload of analyzing the large amount of video data. CIPs - which has been applied to images in angiography, 4D CT, nuclear medicine and astronomy - summarizes the changes over many gray scale images in a single color image in a way which most interpreters find intuitive. CIPs uses the hue, saturation and brightness of the color image to encode the summary. Imaging in an operating theatre showed substantial disruptions to the airflow due to equipment such as the lighting. When these disruptions are combined with such minor factors as heat from the hand, reversal of the preferred airflow patterns can occur. These reversals of preferred airflow patterns have the potential to transport contaminates into the open wound. Further study is required to understand both the frequency of the reversed airflow patterns and the impact they may have on infection rates.
Pulse thermal energy transport/storage system
Weislogel, Mark M.
1992-07-07
A pulse-thermal pump having a novel fluid flow wherein heat admitted to a closed system raises the pressure in a closed evaporator chamber while another interconnected evaporator chamber remains open. This creates a large pressure differential, and at a predetermined pressure the closed evaporator is opened and the opened evaporator is closed. This difference in pressure initiates fluid flow in the system.
Low-quality habitat corridors as movement conduits for two butterfly species.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haddad, Nick, M.; Tewksbury, Joshua, J.
2005-01-01
Haddad, Nick, M, and Joshua J. Tewksbury. Low-quality habitat corridors as movement conduits for two butterfly species. Ecol. Apps. 15(1):250-257. Abstract. Corridors are a primary conservation tool to increase connectivity, promote individual movement, and increase gene flow among populations in fragmented landscapes. The establishment of effective conservation corridors will depend on constructing or pre-serving connecting habitat that attracts dispersing individuals. Yet, it remains unclear whether corridors must necessarily be composed of high-quality habitat to be effective and promote dispersal and gene flow. We address this issue with two mobile, open-habitat butterfly species, Junonia coenia HuÈbner and Euptoieta claudia Cramer. Usingmore » experimental landscapes created explicitly to examine the effects of corridors on dispersal rates, we show that open-habitat corridors can serve as dispersal conduits even when corridors do not support resident butterfly populations. Both butterfly species were rare near forest edges and equally rare in narrow corridors, yet both species dispersed more often between patches connected by these corridors than between isolated patches. At least for species that can traverse corridors within a generation, corridor habitat may be lower in quality than larger patches and still increase dispersal and gene flow. For these species, abundance surveys may not accurately represent the conservation value of corridors.« less
NASA Astrophysics Data System (ADS)
Ezzaraa, K.; Bahlaoui, A.; Arroub, I.; Raji, A.; Hasnaoui, M.; Naïmi, M.
2018-05-01
In this work, we investigated numerically heat transfer by mixed convection coupled to thermal radiation in a vented rectangular enclosure uniformly heated from below with a constant heat flux. The fresh fluid is admitted into the cavity by injection or suction, by means of two openings located on the lower part of both right and left vertical sides. Another opening is placed on the middle of the top wall to ensure the ventilation. Air, a radiatively transparent medium, is considered to be the cooling fluid. The inner surfaces, in contact with the fluid, are assumed to be gray, diffuse emitters and reflectors of radiation with identical emissivities. The effects of some pertinent parameters such as the Reynolds number, 300 ≤ Re ≤ 5000, and the emissivity of the walls, 0 ≤ ɛ ≤ 0.85, on flow and temperature patterns as well as on the heat transfer rate within the enclosure are presented for the two ventilation modes (injection and suction). The results indicate that the flow and thermal structures are affected by the thermal radiation for the two modes of imposed flow. However, the suction mode is found to be more favorable to the heat transfer in comparison with the injection one.
NASA Technical Reports Server (NTRS)
Burley, Richard R.; Harrington, Douglas E.
1987-01-01
An experimental investigation was conducted in the slotted test section of the 0.1-scale model of the proposed Altitude Wind Tunnel to evaluate wall interference effects at tunnel Mach numbers from 0.70 to 0.95 on bodies of revolution with blockage rates of 0.43, 3, 6, and 12 percent. The amount of flow that had to be removed from the plenum chamber (which surrounded the slotted test section) by the plenum evacuation system (PES) to eliminate wall interference effects was determined. The effectiveness of tunnel reentry flaps in removing flow from the plenum chamber was examined. The 0.43-percent blockage model was the only one free of wall interference effects with no PES flow. Surface pressures on the forward part of the other models were greater than interference-free results and were not influenced by PES flow. Interference-free results were achieved on the aft part of the 3- and 6-percent blockage models with the proper amount of PES flow. The required PES flow was substantially reduced by opening the reentry flaps.
Numerical Simulation of Liquids Draining From a Tank Using OpenFOAM
NASA Astrophysics Data System (ADS)
Sakri, Fadhilah Mohd; Sukri Mat Ali, Mohamed; Zaki Shaikh Salim, Sheikh Ahmad; Muhamad, Sallehuddin
2017-08-01
Accurate simulation of liquids draining is a challenging task. It involves two phases flow, i.e. liquid and air. In this study draining a liquid from a cylindrical tank is numerically simulated using OpenFOAM. OpenFOAM is an open source CFD package and it becomes increasingly popular among the academician and also industries. Comparisons with theoretical and results from previous published data confirmed that OpenFOAM is able to simulate the liquids draining very well. This is done using the gas-liquid interface solver available in the standard library of OpenFOAM. Additionally, this study was also able to explain the physics flow of the draining tank.
Davies, Frederick S.; Flore, James A.
1986-01-01
Roots of 1.5-year-old `Woodard' rabbiteye blueberry plants (Vaccinium ashei Reade) were flooded in containers or maintained at container capacity over a 5-day period. Carbon assimilation, and stomatal and residual conductances were monitored on one fully expanded shoot/plant using an open flow gas analysis system. Quantum yield was calculated from light response curves. Carbon assimilation and quantum yield of flooded plants decreased to 64 and 41% of control values, respectively, after 1 day of flooding and continued decreasing to 38 and 27% after 4 days. Stomatal and residual conductances to CO2 also decreased after 1 day of flooding compared with those of unflooded plants with residual conductance severely limiting carbon assimilation after 4 days of flooding. Stomatal opening occurred in 75 to 90 minutes and rate of opening was unaffected by flooding. PMID:16664791
Mathematical modelling of cell layer growth in a hollow fibre bioreactor.
Chapman, Lloyd A C; Whiteley, Jonathan P; Byrne, Helen M; Waters, Sarah L; Shipley, Rebecca J
2017-04-07
Generating autologous tissue grafts of a clinically useful volume requires efficient and controlled expansion of cell populations harvested from patients. Hollow fibre bioreactors show promise as cell expansion devices, owing to their potential for scale-up. However, further research is required to establish how to specify appropriate hollow fibre bioreactor operating conditions for expanding different cell types. In this study we develop a simple model for the growth of a cell layer seeded on the outer surface of a single fibre in a perfused hollow fibre bioreactor. Nutrient-rich culture medium is pumped through the fibre lumen and leaves the bioreactor via the lumen outlet or passes through the porous fibre walls and cell layer, and out via ports on the outer wall of the extra-capillary space. Stokes and Darcy equations for fluid flow in the fibre lumen, fibre wall, cell layer and extra-capillary space are coupled to reaction-advection-diffusion equations for oxygen and lactate transport through the bioreactor, and to a simple growth law for the evolution of the free boundary of the cell layer. Cells at the free boundary are assumed to proliferate at a rate that increases with the local oxygen concentration, and to die and detach from the layer if the local fluid shear stress or lactate concentration exceed critical thresholds. We use the model to predict operating conditions that maximise the cell layer growth for different cell types. In particular, we predict the optimal flow rate of culture medium into the fibre lumen and fluid pressure imposed at the lumen outlet for cell types with different oxygen demands and fluid shear stress tolerances, and compare the growth of the cell layer when the exit ports on the outside of the bioreactor are open with that when they are closed. Model simulations reveal that increasing the inlet flow rate and outlet fluid pressure increases oxygen delivery to the cell layer and, therefore, the growth rate of cells that are tolerant to high shear stresses, but may be detrimental for shear-sensitive cells. The cell layer growth rate is predicted to increase, and be less sensitive to the lactate tolerance of the cells, when the exit ports are opened, as the radial flow through the bioreactor is enhanced and the lactate produced by the cells cleared more rapidly from the cell layer. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Husain, Taha Murtuza
Large (1--4 x 106 m3) to major (> 4 x 106 m3) dome collapses for andesitic lava domes such as Soufriere Hills Volcano, Montserrat are observed for elevated magma discharge rates (6--13 m3/s). The gas rich magma pulses lead to pressure build up in the lava dome that result in structural failure of the over steepened canyon-like walls which may lead to rockfall or pyroclastic flow. This indicates that dome collapse intimately related to magma extrusion rate. Variation in magma extrusion rate for open-system magma chambers is observed to follow alternating periods of high and low activity. Periodic behavior of magma exhibits a rich diversity in the nature of its eruptive history due to variation in magma chamber size, total crystal content, linear crystal growth rate and magma replenishment rate. Distinguished patterns of growth were observed at different magma flow rates ranging from endogenous to exogenous dome growth for magma with varying strengths. Determining the key parameters that control the transition in flow pattern of the magma during its lava dome building eruption is the main focus. This dissertation examines the mechanical effects on the morphology of the evolving lava dome on the extrusion of magma from a central vent using a 2D particle dynamics model. The particle dynamics model is coupled with a conduit flow model that incorporates the kinetics of crystallization and rheological stiffening to investigate important mechanisms during lava dome building eruptions. Chapter I of this dissertation explores lava dome growth and failure mechanics using a two-dimensional particle-dynamics model. The model follows the evolution of fractured lava, with solidification driven by degassing induced crystallization of magma. The particle-dynamics model emulates the natural development of dome growth and rearrangement of the lava dome which is difficult in mesh-based analyses due to mesh entanglement effects. The deformable talus evolves naturally as a frictional carapace that caps a ductile magma core. Extrusion rate and magma rheology together with crystallization temperature and volatile content govern the distribution of strength in the composite structure. This new model is calibrated against existing observational models of lava dome growth. Chapter II of this dissertation explores the effects of a spectrum of different rheological regimes, on eruptive style and morphologic evolution of lava domes, using a two-dimensional (2D) particle-dynamics model for a spreading viscoplastic (Bingham) fluid. We assume that the ductile magma core of a 2-D synthetic lava dome develops finite yield strength, and that deformable frictional talus evolves from a carapace that caps the magma core. Our new model is calibrated against an existing analytical model for a spreading viscoplastic lava dome and is further compared against observational data of lava dome growth. Chapter III of this dissertation explores different lava-dome styles by developing a two-dimensional particle-dynamics model. These growth patterns range from endogenous lava dome growth comprising expansion of a ductile dome core to the exogenous extrusion of a degassed lava plug resulting in generation of a lava spine. We couple conduit flow dynamics with surface growth of the evolving lava dome, fueled by an open-system magma chamber undergoing continuous replenishment. The conduit flow model accounts for the variation in rheology of ascending magma that results from degassing-induced crystallization. Chapter IV of this dissertation explores the Variation in the extruding lava flow patterns range from endogenous dome growth with a ductile core to the exogenous extrusion of a degassed lava plug that results in the generation of a spine. The variations are a manifestation of the changes in the magma rheology which is governed by magma composition and rate of decompression of the ascending magma. We simulate using a two-dimensional particle-dynamics model, the cyclic behavior of lava dome growth with endogenous growth at high discharge rates followed by exogenous extrusion of rheologically stiffened lava due to degassing induced crystallization at low discharge rates. We couple conduit flow dynamics with surface growth of the evolving lava dome which is fueled by an overpressured reservoir undergoing constant replenishment. The periodic behavior between magma chamber pressure and discharge rate is reproduced as a result of the temporal and spatial change in magma viscosity controlled by crystallization kinetics. Dimensionless numbers are used to map the flow behaviors with the changing extrusion regime. A dimensionless plot identifying the flow transition region during the growth cycle of an evolving lava dome in its lava dome eruptive period is presented. The plot provides a the threshold value of a dimensionless strength parameter (pi 2 < 3.31 x 10-4) below which the transition in flow pattern occurs from endogenously evolving lava dome with a ductile core to the development of a shear lobe for short or long lived periodic episode of the extrusion of magma. (Abstract shortened by UMI.).
OpenFlow arbitrated programmable network channels for managing quantum metadata
Dasari, Venkat R.; Humble, Travis S.
2016-10-10
Quantum networks must classically exchange complex metadata between devices in order to carry out information for protocols such as teleportation, super-dense coding, and quantum key distribution. Demonstrating the integration of these new communication methods with existing network protocols, channels, and data forwarding mechanisms remains an open challenge. Software-defined networking (SDN) offers robust and flexible strategies for managing diverse network devices and uses. We adapt the principles of SDN to the deployment of quantum networks, which are composed from unique devices that operate according to the laws of quantum mechanics. We show how quantum metadata can be managed within a software-definedmore » network using the OpenFlow protocol, and we describe how OpenFlow management of classical optical channels is compatible with emerging quantum communication protocols. We next give an example specification of the metadata needed to manage and control quantum physical layer (QPHY) behavior and we extend the OpenFlow interface to accommodate this quantum metadata. Here, we conclude by discussing near-term experimental efforts that can realize SDN’s principles for quantum communication.« less
OpenFlow arbitrated programmable network channels for managing quantum metadata
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dasari, Venkat R.; Humble, Travis S.
Quantum networks must classically exchange complex metadata between devices in order to carry out information for protocols such as teleportation, super-dense coding, and quantum key distribution. Demonstrating the integration of these new communication methods with existing network protocols, channels, and data forwarding mechanisms remains an open challenge. Software-defined networking (SDN) offers robust and flexible strategies for managing diverse network devices and uses. We adapt the principles of SDN to the deployment of quantum networks, which are composed from unique devices that operate according to the laws of quantum mechanics. We show how quantum metadata can be managed within a software-definedmore » network using the OpenFlow protocol, and we describe how OpenFlow management of classical optical channels is compatible with emerging quantum communication protocols. We next give an example specification of the metadata needed to manage and control quantum physical layer (QPHY) behavior and we extend the OpenFlow interface to accommodate this quantum metadata. Here, we conclude by discussing near-term experimental efforts that can realize SDN’s principles for quantum communication.« less
CO2 Washout Testing of the REI and EM-ACES Space Suits
NASA Technical Reports Server (NTRS)
Mitchell, Kathryn C.; Norcross, Jason
2012-01-01
When a space suit is used during ground testing, adequate carbon dioxide (CO2) washout must be provided for the suited subject. Symptoms of acute CO2 exposure depend on partial pressure of CO2 (ppCO2), metabolic rate of the subject, and other factors. This test was done to characterize inspired oronasal ppCO2 in the Rear Entry I-Suit (REI) and the Enhanced Mobility Advanced Crew Escape Suit (EM-ACES) for a range of workloads and flow rates for which ground testing is nominally performed. Three subjects were tested in each suit. In all but one case, each subject performed the test twice. Suit pressure was maintained at 4.3 psid. Subjects wore the suit while resting, performing arm ergometry, and walking on a treadmill to generate metabolic workloads of about 500 to 3000 BTU/hr. Supply airflow was varied between 6, 5, and 4 actual cubic feet per minute (ACFM) at each workload. Subjects wore an oronasal mask with an open port in front of the mouth and were allowed to breathe freely. Oronasal ppCO2 was monitored in real time by gas analyzers with sampling tubes connected to the mask. Metabolic rate was calculated from the total CO2 production measured by an additional gas analyzer at the suit air outlet. Real-time metabolic rate was used to adjust the arm ergometer or treadmill workload to meet target metabolic rates. In both suits, inspired CO2 was affected mainly by the metabolic rate of the subject: increased metabolic rate significantly (P < 0.05) increased inspired ppCO2. Decreased air flow caused small increases in inspired ppCO2. The effect of flow was more evident at metabolic rates . 2000 BTU/hr. CO2 washout values of the EM-ACES were slightly but not significantly better than those of the REI suit. Regression equations were developed for each suit to predict the mean inspired ppCO2 as a function of metabolic rate and suit flow rate. This paper provides detailed descriptions of the test hardware, methodology, and results as well as implications for future ground testing in the REI-suit and EM-ACES.
Dietterich, Hannah; Lev, Einat; Chen, Jiangzhi; Richardson, Jacob A.; Cashman, Katharine V.
2017-01-01
Numerical simulations of lava flow emplacement are valuable for assessing lava flow hazards, forecasting active flows, designing flow mitigation measures, interpreting past eruptions, and understanding the controls on lava flow behavior. Existing lava flow models vary in simplifying assumptions, physics, dimensionality, and the degree to which they have been validated against analytical solutions, experiments, and natural observations. In order to assess existing models and guide the development of new codes, we conduct a benchmarking study of computational fluid dynamics (CFD) models for lava flow emplacement, including VolcFlow, OpenFOAM, FLOW-3D, COMSOL, and MOLASSES. We model viscous, cooling, and solidifying flows over horizontal planes, sloping surfaces, and into topographic obstacles. We compare model results to physical observations made during well-controlled analogue and molten basalt experiments, and to analytical theory when available. Overall, the models accurately simulate viscous flow with some variability in flow thickness where flows intersect obstacles. OpenFOAM, COMSOL, and FLOW-3D can each reproduce experimental measurements of cooling viscous flows, and OpenFOAM and FLOW-3D simulations with temperature-dependent rheology match results from molten basalt experiments. We assess the goodness-of-fit of the simulation results and the computational cost. Our results guide the selection of numerical simulation codes for different applications, including inferring emplacement conditions of past lava flows, modeling the temporal evolution of ongoing flows during eruption, and probabilistic assessment of lava flow hazard prior to eruption. Finally, we outline potential experiments and desired key observational data from future flows that would extend existing benchmarking data sets.
Zhang, Z; Jones, D; Yue, S; Lee, P D; Jones, J R; Sutcliffe, C J; Jones, E
2013-10-01
Porous titanium implants are a common choice for bone augmentation. Implants for spinal fusion and repair of non-union fractures must encourage blood flow after implantation so that there is sufficient cell migration, nutrient and growth factor transport to stimulate bone ingrowth. Additive manufacturing techniques allow a large number of pore network designs. This study investigates how the design factors offered by selective laser melting technique can be used to alter the implant architecture on multiple length scales to control and even tailor the flow. Permeability is a convenient parameter that characterises flow, correlating to structure openness (interconnectivity and pore window size), tortuosity and hence flow shear rates. Using experimentally validated computational simulations, we demonstrate how additive manufacturing can be used to tailor implant properties by controlling surface roughness at a microstructual level (microns), and by altering the strut ordering and density at a mesoscopic level (millimetre). Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
Thermal signature, eruption style, and eruption evolution at Pele and Pillan on Io
Davies, A.G.; Keszthelyi, L.P.; Williams, D.A.; Phillips, C.B.; McEwen, A.S.; Lopes, R.M.C.; Smythe, W.D.; Kamp, L.W.; Soderblom, L.A.; Carlson, R.W.
2001-01-01
The Galileo spacecraft has been periodically monitoring volcanic activity on Io since June 1996, making it possible to chart the evolution of individual eruptions. We present results of coanalysis of Near-Infrared Mapping Spectrometer (NIMS) and solid-state imaging (SSI) data of eruptions at Pele and Pillan, especially from a particularly illuminating data set consisting of mutually constraining, near-simultaneous NIMS and SSI observations obtained during orbit C9 in June 1997. The observed thermal signature from each hot spot, and the way in which the thermal signature changes with time, tightly constrains the possible styles of eruption. Pele and Pillan have very different eruption styles. From September 1996 through May 1999, Pele demonstrates an almost constant total thermal output, with thermal emission spectra indicative of a long-lived, active lava lake. The NIMS Pillan data exhibit the thermal signature of a "Pillanian" eruption style, a large, vigorous eruption with associated open channel, or sheet flows, producing an extensive flow field by orbit C10 in September 1997. The high mass eruption rate, high liquidus temperature (at least 1870 K) eruption at Pillan is the best candidate so far for an active ultramafic (magnesium-rich, "komatiitic") flow on Io, a style of eruption never before witnessed. The thermal output per unit area from Pillan is, however, consistent with the emplacement of large, open-channel flows. Magma temperature at Pele is ~1600 K. If the magma temperature is 1600 K, it suggests a komatiitic-basalt composition. The power output from Pele is indicative of a magma volumetric eruption rate of ~250 to 340 m3 s-1. Although the Pele lava lake is considerably larger than its terrestrial counterparts, the power and mass fluxes per unit area are similar to active terrestrial lava lakes. Copyright 2001 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Konangi, S.; Palakurthi, N. K.; Karadimitriou, N.; Comer, K.; Ghia, U.
2017-12-01
We present results of pore-scale direct numerical simulations (DNS) of drainage and imbibition in a quasi-two-dimensional (40µm thickness) porous medium with a randomly distributed packing of cylindrical obstructions. The Navier-Stokes (NS) equations are solved in the pore space on an Eulerian mesh using the open-source finite-volume computational fluid dynamics (CFD) code, OpenFOAM. The Volume-of-Fluid (VOF) method is employed to track the evolution of the fluid-fluid interface; a static contact angle is used to account for wall adhesion. From the DNS data, we focus on the macroscopic capillary pressure-saturation (Pc-Sw) relation, which is known to be hysteretic, i.e., this relation is flow process (such as drainage, imbibition and scanning curves) and history dependent. In order to overcome the problem of hysteresis, extended theories of multiphase flow hypothesized that the inclusion of specific interfacial area as a state variable will result in a unique relation between capillary pressure, saturation and interfacial area (Pc-Sw-awn). We study the role of specific interfacial area on hysteresis in the macroscopic Pc-Sw relation under non-equilibrium (dynamic) conditions. Under dynamic conditions, capillary pressure depends on the rate of change of the wetting phase saturation, and the dynamic Pc-Sw relation includes the changes caused by viscous effects. Simulations of drainage and imbibition are performed for two capillary numbers by controlling the flow rate of the non-wetting (polydimenthlysiloxane oil) and wetting (water) fluids. From these simulations, the Pc-Sw curves will be estimated; the Pc-S-awn surface will be constructed to determine whether the data points from drainage and imbibition processes fall on a unique surface under transient conditions. Different macroscopic capillary pressure definitions based on phase-averaged pressures and interfacial area will be evaluated. Understanding macroscopic capillary pressure definitions and the uniqueness of the Pc-S- awn relation is step towards complete description of two-phase flow at the Darcy scale.
Watras, Carl J; Morrow, Michael; Morrison, Ken; Scannell, Sean; Yaziciaglu, Steve; Read, Jordan S; Hu, Yu-Hen; Hanson, Paul C; Kratz, Tim
2014-02-01
Here, we describe and evaluate two low-power wireless sensor networks (WSNs) designed to remotely monitor wetland hydrochemical dynamics over time scales ranging from minutes to decades. Each WSN (one student-built and one commercial) has multiple nodes to monitor water level, precipitation, evapotranspiration, temperature, and major solutes at user-defined time intervals. Both WSNs can be configured to report data in near real time via the internet. Based on deployments in two isolated wetlands, we report highly resolved water budgets, transient reversals of flow path, rates of transpiration from peatlands and the dynamics of chromophoric-dissolved organic matter and bulk ionic solutes (specific conductivity)-all on daily or subdaily time scales. Initial results indicate that direct precipitation and evapotranspiration dominate the hydrologic budget of both study wetlands, despite their relatively flat geomorphology and proximity to elevated uplands. Rates of transpiration from peatland sites were typically greater than evaporation from open waters but were more challenging to integrate spatially. Due to the high specific yield of peat, the hydrologic gradient between peatland and open water varied with precipitation events and intervening periods of dry out. The resultant flow path reversals implied that the flux of solutes across the riparian boundary varied over daily time scales. We conclude that WSNs can be deployed in remote wetland-dominated ecosystems at relatively low cost to assess the hydrochemical impacts of weather, climate, and other perturbations.
Behavior of Fatigue Crack Tip Opening in Air and Corrosive Atmosphere
NASA Astrophysics Data System (ADS)
Hayashi, Morihito; Toeda, Kazunori
In the study, a formula for predicting fatigue crack tip opening displacement is deduced firstly. And then, due to comparing actual crack growth rate with the deduced formula, the crack tip configuration factor is defined to figure out the crack tip opening configuration that is useful to clarify the behavior of fatigue crack tip formation apparently. Applying the concept, the crack growth of 7/3 brass and 6/4 brass is predicted from the formula, by replacing material properties such as plastic flow resistance, Young modulus, the Poisson ratio, and fatigue toughness, and fatigue test conditions such as the stress intensity factor range, the load ratio, and cycle frequency. Furthermore, the theoretically expected results are verified with the fatigue tests which were carried out on CT specimens under different load conditions of load ratio, cycle frequency, and cyclic peak load, in different environments of air or corrosive ammonia atmosphere, for various brasses. And by comparing and discussing the calculated crack growth rate with attained experimental results, the apparent configuration factor at the crack tip is determined. And through the attained factor which changes along with crack growth, the behaviors of fatigue crack tip formation under different test conditions have been found out.
A NON-OSCILLATORY SCHEME FOR OPEN CHANNEL FLOWS. (R825200)
In modeling shocks in open channel flows, the traditional finite difference schemes become inefficient and warrant special numerical treatment for smooth computations. This paper provides a general introduction to the non-oscillatory high-resolution methodology, coupled with the ...
Research on Closed Residential Area Based on Balanced Distribution Theory
NASA Astrophysics Data System (ADS)
Lan, Si; Fang, Ni; Lin, Hai Peng; Ye, Shi Qi
2018-06-01
With the promotion of the street system, residential quarters and units of the compound gradually open. In this paper, the relationship between traffic flow and traffic flow is established for external roads, and the road resistance model is established by internal roads. We propose a balanced distribution model from the two aspects of road opening conditions and traffic flow inside and outside the district, and quantitatively analyze the impact of the opening and closing on the surrounding roads. Finally, it puts forward feasible suggestions to improve the traffic situation and optimize the network structure.
Investigation of the capillary flow through open surface microfluidic structures
NASA Astrophysics Data System (ADS)
Taher, Ahmed; Jones, Benjamin; Fiorini, Paolo; Lagae, Liesbet
2017-02-01
The passive nature of capillary microfluidics for pumping and actuation of fluids is attractive for many applications including point of care medical diagnostics. For such applications, there is often the need to spot dried chemical reagents in the bottom of microfluidic channels after device fabrication; it is often more practical to have open surface devices (i.e., without a cover or lid). However, the dynamics of capillary driven flow in open surface devices have not been well studied for many geometries of interest. In this paper, we investigate capillary flow in an open surface microchannel with a backward facing step. An analytical model is developed to calculate the capillary pressure as the liquid-vapor interface traverses a backward facing step in an open microchannel. The developed model is validated against results from Surface Evolver liquid-vapor surface simulations and ANSYS Fluent two-phase flow simulations using the volume of fluid approach. Three different aspect ratios (inlet channel height by channel width) were studied. The analytical model shows good agreement with the simulation results from both modeling methods for all geometries. The analytical model is used to derive an expression for the critical aspect ratio (the minimum channel aspect ratio for flow to proceed across the backward facing step) as a function of contact angle.
Electrochemical determination of the onset of bacterial surface adhesion
NASA Astrophysics Data System (ADS)
Jones, Akhenaton-Andrew; Buie, Cullen
2017-11-01
Microbial biofouling causes economic loss through corrosion and drag losses on ship hulls, and in oil and food distribution. Microorganisms interacting with surfaces under these open channel flows contend with high shear rates and active transport to the surface. The metallic surfaces they interact with carry charge at various potentials that are little addressed in literature. In this study we demonstrate that the Levich curve, chronoamperometry, and cyclic voltammetry in a rotating disk electrode are ideal for studying adhesion of microbes to metallic surfaces. We study the adhesion of Escherichia coli, Bacillus subtilis, and 1 μm silica microspheres over a 0.15 - 37.33 dynes .cm-2 or shear rates of 14.73 - 3727.28 s-1 range. Our results agree with literature on red blood cells in rotating disk electrodes, deposition rates from optical systems, and show that we can quantify changes in active electrode area by bacteria adhesion and protein secretion. These methods measure changes in area instead of mass, are more accurate than fluorescence microscopy, and apply to a larger range of problems than on-chip flow devices.
NASA Technical Reports Server (NTRS)
Rossow, V. J.; Schmidt, G. I.; Meyn, L. A.; Ortner, K. R.; Holmes, R. E.
1986-01-01
A 1/50-scale model of the 40- by 80-Foot Wind Tunnel at Ames Research Center was used to study various air-exchange configurations. System components were tested throughout a range of parameters, and approximate analytical relationships were derived to explain the observed characteristics. It is found that the efficiency of the air exchanger could be increased (1) by adding a shaped wall to smoothly turn the incoming air downstream, (2) by changing to a contoured door at the inlet to control the flow rate, and (3) by increasing the size of the exhaust opening. The static pressures inside the circuit then remain within the design limits at the higher tunnel speeds if the air-exchange rate is about 5% or more. Since the model is much smaller than the full-scale facility, it is not possible to completely duplicate the tunnel, and it will be necessary to measure such characteristics as flow rate and tunnel pressures during implementation of the remodeled facility. The aerodynamic loads estimated for the inlet door and for nearby walls are also presented.
Human Cough as a Two-Stage Jet and Its Role in Particle Transport
Li, Yuguo
2017-01-01
The human cough is a significant vector in the transmission of respiratory diseases in indoor environments. The cough flow is characterized as a two-stage jet; specifically, the starting jet (when the cough starts and flow is released) and interrupted jet (after the source supply is terminated). During the starting-jet stage, the flow rate is a function of time; three temporal profiles of the exit velocity (pulsation, sinusoidal and real-cough) were investigated in this study, and our results showed that the cough flow’s maximum penetration distance was in the range of a 50.6–85.5 opening diameter (D) under our experimental conditions. The real-cough and sinusoidal cases exhibited greater penetration ability than the pulsation cases under the same characteristic Reynolds number (Rec) and normalized cough expired volume (Q/AD, with Q as the cough expired volume and A as the opening area). However, the effects of Rec and Q/AD on the maximum penetration distances proved to be more significant; larger values of Rec and Q/AD reflected cough flows with greater penetration distances. A protocol was developed to scale the particle experiments between the prototype in air, and the model in water. The water tank experiments revealed that although medium and large particles deposit readily, their maximum spread distance is similar to that of small particles. Moreover, the leading vortex plays an important role in enhancing particle transport. PMID:28046084
Power formula for open-channel flow resistance
Chen, Cheng-lung
1988-01-01
This paper evaluates various power formulas for flow resistance in open channels. Unlike the logarithmic resistance equation that can be theoretically derived either from Prandtl's mixing-length hypothesis or von Karman's similarity hypothesis, the power formula has long had an appearance of empiricism. Nevertheless, the simplicity in the form of the power formula has made it popular among the many possible forms of flow resistance formulas. This paper reexamines the concept and rationale of the power formulation, thereby addressing some critical issues in the modeling of flow resistance.
High efficiency virtual impactor
Loo, B.W.
1980-03-27
Environmental monitoring of atmospheric air is facilitated by a single stage virtual impactor for separating an inlet flow (Q/sub 0/) having particulate contaminants into a coarse particle flow (Q/sub 1/) and a fine particle flow (Q/sub 2/) to enable collection of such particles on different filters for separate analysis. An inlet particle acceleration nozzle and coarse particle collection probe member having a virtual impaction opening are aligned along a single axis and spaced apart to define a flow separation region at which the fine particle flow (Q/sub 2/) is drawn radially outward into a chamber while the coarse particle flow (Q/sub 1/) enters the virtual impaction opening.
Senior, Lisa A.; Goode, Daniel J.
1999-01-01
Ground water in Triassic-age sedimentary fractured-rock aquifers in the area of Lansdale, Pa., is used as drinking water and for industrial supply. In 1979, ground water in the Lansdale area was found to be contaminated with trichloroethylene, tetrachloroethylene, and other man-made organic compounds, and in 1989, the area was placed on the U.S. Environmental Protection Agency's (USEPA) National Priority List as the North Penn Area 6 site. To assist the USEPA in the hydrogeological assessment of the site, the U.S. Geological Survey began a study in 1995 to describe the ground-water system and to determine the effects of changes in the well pumping patterns on the direction of ground-water flow in the Lansdale area. This determination is based on hydrologic and geophysical data collected from 1995-98 and on results of the simulation of the regional ground-water-flow system by use of a numerical model.Correlation of natural-gamma logs indicate that the sedimentary rock beds strike generally northeast and dip at angles less than 30 degrees to the northwest. The ground-water system is confined or semi-confined, even at shallow depths; depth to bedrock commonly is less than 20 feet (6 meters); and depth to water commonly is about 15 to 60 feet (5 to 18 meters) below land surface. Single-well, aquifer-interval-isolation (packer) tests indicate that vertical permeability of the sedimentary rocks is low. Multiple-well aquifer tests indicate that the system is heterogeneous and that flow appears primarily in discrete zones parallel to bedding. Preferred horizontal flow along strike was not observed in the aquifer tests for wells open to the pumped interval. Water levels in wells that are open to the pumped interval, as projected along the dipping stratigraphy, are drawn down more than water levels in wells that do not intersect the pumped interval. A regional potentiometric map based on measured water levels indicates that ground water flows from Lansdale towards discharge areas in three drainages, the Wissahickon, Towamencin, and Neshaminy Creeks.Ground-water flow was simulated for different pumping patterns representing past and current conditions. The three-dimensional numerical flow model (MODFLOW) was automatically calibrated by use of a parameter estimation program (MODFLOWP). Steady-state conditions were assumed for the calibration period of 1996. Model calibration indicates that estimated recharge is 8.2 inches (208 millimeters) and the regional anisotropy ratio for the sedimentary-rock aquifer is about 11 to 1, with permeability greatest along strike. The regional anisotropy is caused by up- and down-dip termination of high-permeability bed-oriented features, which were not explicitly simulated in the regional-scale model. The calibrated flow model was used to compare flow directions and capture zones in Lansdale for conditions corresponding to relatively high pumping rates in 1994 and to lower pumping rates in 1997. Comparison of the 1994 and 1997 simulations indicates that wells pumped at the lower 1997 rates captured less ground water from known sites of contamination than wells pumped at the 1994 rates. Ground-water flow rates away from Lansdale increased as pumpage decreased in 1997.A preliminary evaluation of the relation between ground-water chemistry and conditions favorable for the degradation of chlorinated solvents was based on measurements of dissolved-oxygen concentration and other chemical constituents in water samples from 92 wells. About 18 percent of the samples contained less than or equal to 5 milligrams per liter dissolved oxygen, a concentration that indicates reducing conditions favorable for degradation of chlorinated solvents.
Experimental investigation of door dynamic opening caused by impinging shock wave
NASA Astrophysics Data System (ADS)
Biamino, L.; Jourdan, G.; Mariani, C.; Igra, O.; Massol, A.; Houas, L.
2011-02-01
To prevent damage caused by accidental overpressure inside a closed duct (e.g. jet engine) safety valves are introduced. The present study experimentally investigates the dynamic opening of such valves by employing a door at the end of a shock tube driven section. The door is hung on an axis and is free to rotate, thereby opening the tube. The evolved flow and wave pattern due to a collision of an incident shock wave with the door, causing the door opening, is studied by employing a high speed schlieren system and recording pressures at different places inside the tube as well as on the rotating door. Analyzing this data sheds light on the air flow evolution and the behavior of the opening door. In the present work, emphasis is given to understanding the complex, unsteady flow developed behind the transmitted shock wave as it diffracts over the opening door. It is shown that both the door inertia and the shock wave strength influence the opening dynamic evolution, but not in the proportions that might be expected.
Closed-Loop Control of Vortex Formation in Separated Flows
NASA Technical Reports Server (NTRS)
Colonius, Tim; Joe, Won Tae; MacMynowski, Doug; Rowley, Clancy; Taira, Sam; Ahuja, Sunil
2010-01-01
In order to phase lock the flow at the desired shedding cycle, particularly at Phi,best, We designed a feedback compensator. (Even though the open-loop forcing at Wf below Wn can lead to phase-locked limit cycles with a high average lift,) This feedback controller resulted in the phase-locked limit cycles that the open-loop control could not achieve for alpha=30 and 40 Particularly for alpha=40, the feedback was able to stabilize the limit cycle that was not stable with any of the open-loop periodic forcing. This results in stable phase-locked limit cycles for a larger range of forcing frequencies than the open-loop control. Also, it was shown that the feedback achieved the high-lift unsteady flow states that open-loop control could not sustain even after the states have been achieved for a long period of time.
NASA Astrophysics Data System (ADS)
Ding, Y.; Bi, H. T.; Wilkinson, D. P.
The dynamic formation of water droplets emerging from a gas diffusion layer (GDL) surface in micro-channels was simulated using the volume of fluid (VOF) method. The influence of GDL surface microstructure was investigated by changing the pore diameter and the number of pore openings on the GDL surface. Simulation results show that the microstructure of the GDL surface has a significant impact on the two-phase flow patterns in gas flow channels. For a non-uniform GDL surface, three stages were identified, namely emergence and merging on the GDL surface, accumulation on the channel sidewalls and detachment from the top wall. It was also found that if the pore size is small enough, the flow pattern in the channel does not change with further reduction in the pore diameter. However, the two-phase flow patterns change significantly with the wettability of the GDL surface and sidewalls, but remain the same when the liquid flow rate is reduced by two orders of magnitude from the reference case.
NASA Astrophysics Data System (ADS)
Park, Chan-Hee; Lee, Cholwoo
2016-04-01
Raspberry Pi series is a low cost, smaller than credit-card sized computers that various operating systems such as linux and recently even Windows 10 are ported to run on. Thanks to massive production and rapid technology development, the price of various sensors that can be attached to Raspberry Pi has been dropping at an increasing speed. Therefore, the device can be an economic choice as a small portable computer to monitor temporal hydrogeological data in fields. In this study, we present a Raspberry Pi system that measures a flow rate, and temperature of groundwater at sites, stores them into mysql database, and produces interactive figures and tables such as google charts online or bokeh offline for further monitoring and analysis. Since all the data are to be monitored on internet, any computers or mobile devices can be good monitoring tools at convenience. The measured data are further integrated with OpenGeoSys, one of the hydrogeological models that is also ported to the Raspberry Pi series. This leads onsite hydrogeological modeling fed by temporal sensor data to meet various needs.
Single and two-phase flows of shear-thinning media in safety valves.
Moncalvo, D; Friedel, L
2009-09-15
This study is the first one in the scientific literature to investigate the liquid and two-phase flows of shear-thinning media, here aqueous solutions of polyvinylpyrrolidone, in a fully opened safety valve. In liquid flows the volume flux at the valve seat does not show any appreciable reduction when increasing the percental weight of polymer in the solution. This result may suggest that the viscous losses in the valve do not increase sensibly from the most aqueous to the most viscous solution. The authors explain it considering that in the region between the seat and the disk, where large pressure and velocity gradients occur, large shear rates are expected. On behalf of the rheological measurements, which show that both the pseudoplasticity and the zero-shear viscosity of the solutions increase with the polymer weight, the difference between the viscosities of the most viscous and those of the most aqueous solution is between the seat and the disk far less than that existing at zero-shear condition. Therefore, the effective viscous pressure drop of the safety valve, which occurs mostly in that region, must increase only modestly with the polymer percental weight in the solution. In two-phase flows the total mass flow rate at constant quality and constant relieving pressure increases remarkably with the polymer weight. The analogy with similar results in cocurrent pipe flows suggests that air entrainment causes large velocity gradients in the liquids and strains them to very large shear rates. It suggests also that a redistribution of the gas agglomerates within the liquid must be expected when increasing the polymer weight in the solutions. In fact, the gas agglomerates react to the larger viscous drag of the liquid by compressing their volume in order to exert a higher internal pressure. The reduction of the void fraction of the mixture at constant quality and constant relieving pressure imposes an increment in the total mass flow rate, since otherwise it would lead to a reduction in the momentum of the mixture and therefore to a drop in the relieving pressure.
An open-loop controlled active lung simulator for preterm infants.
Cecchini, Stefano; Schena, Emiliano; Silvestri, Sergio
2011-01-01
We describe the underlying theory, design and experimental evaluation of an electromechanical analogue infant lung to simulate spontaneous breathing patterns of preterm infants. The aim of this work is to test the possibility to obtain breathing patterns of preterm infants by taking into consideration the air compressibility. Respiratory volume function represents the actuation pattern, and pulmonary pressure and flow-rate waveforms are mathematically obtained through the application of the perfect gas and adiabatic laws. The mathematical model reduces the simulation interval into a step shorter than 1 ms, allowing to consider an entire respiratory act as composed of a large number of almost instantaneous adiabatic transformations. The device consists of a spherical chamber where the air is compressed by four cylinder-pistons, moved by stepper motors, and flows through a fluid-dynamic resistance, which also works as flow-rate sensor. Specifically designed software generates the actuators motion, based on the desired ventilation parameters, without controlling the gas pneumatic parameters with a closed-loop. The system is able to simulate tidal volumes from 3 to 8 ml, breathing frequencies from 60 to 120 bpm and functional residual capacities from 25 to 80 ml. The simulated waveforms appear very close to the measured ones. Percentage differences on the tidal volume waveform vary from 7% for the tidal volume of 3 ml, down to 2.2-3.5% for tidal volumes in the range of 4-7 ml, and 1.3% for the tidal volume equal to 8 ml in the whole breathing frequency and functional residual capacity ranges. The open-loop electromechanical simulator shows that gas compressibility can be theoretically assessed in the typical pneumatic variable range of preterm infant respiratory mechanics. Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved.
The 2005 eruption of Sierra Negra volcano, Galápagos, Ecuador
Geist, Dennis J.; Harpp, Karen S.; Naumann, Terry R.; Poland, Michael P.; Chadwick, William W.; Hall, Minard; Rader, Erika
2008-01-01
Sierra Negra volcano began erupting on 22 October 2005, after a repose of 26 years. A plume of ash and steam more than 13 km high accompanied the initial phase of the eruption and was quickly followed by a ~2-km-long curtain of lava fountains. The eruptive fissure opened inside the north rim of the caldera, on the opposite side of the caldera from an active fault system that experienced an mb 4.6 earthquake and ~84 cm of uplift on 16 April 2005. The main products of the eruption were an `a`a flow that ponded in the caldera and clastigenic lavas that flowed down the north flank. The `a`a flow grew in an unusual way. Once it had established most of its aerial extent, the interior of the flow was fed via a perched lava pond, causing inflation of the `a`a. This pressurized fluid interior then fed pahoehoe breakouts along the margins of the flow, many of which were subsequently overridden by `a`a, as the crust slowly spread from the center of the pond and tumbled over the pahoehoe. The curtain of lava fountains coalesced with time, and by day 4, only one vent was erupting. The effusion rate slowed from day 7 until the eruption’s end two days later on 30 October. Although the caldera floor had inflated by ~5 m since 1992, and the rate of inflation had accelerated since 2003, there was no transient deformation in the hours or days before the eruption. During the 8 days of the eruption, GPS and InSAR data show that the caldera floor deflated ~5 m, and the volcano contracted horizontally ~6 m. The total eruptive volume is estimated as being ~150×106 m3. The opening-phase tephra is more evolved than the eruptive products that followed. The compositional variation of tephra and lava sampled over the course of the eruption is attributed to eruption from a zoned sill that lies 2.1 km beneath the caldera floor.
Magnetocentrifugally Driven Flows from Young Stars and Disks. IV. The Accretion Funnel and Dead Zone
NASA Astrophysics Data System (ADS)
Ostriker, Eve C.; Shu, Frank H.
1995-07-01
We formulate the time-steady, axisymmetric problem of stellar magnetospheric inflow of gas from a surrounding accretion disk. The computational domain is bounded on the outside by a surface of given shape containing the open field lines associated with an induced disk wind. The mechanism for this wind has been investigated in previous publications in this journal. Our zeroth-order solution incorporates an acceptable accounting of the pressure balance between the magnetic field lines loaded with accreting gas (funnel flow) and those empty of matter (dead zone). In comparison with previous models, our funnel-flow/dead-zone solution has the following novel features: (1) Because of a natural tendency for the trapped stellar magnetic flux to pinch toward the corotation radius Rx (X-point of the effective potential), most of the interesting magnetohydrodynamics is initiated within a small neighborhood of Rx (X-region), where the Keplerian angular speed of rotation in the disk equals the spin rate of the star. (2) Unimpeded funnel flow from the inner portion of the X-region to the star can occur when the amount of trapped magnetic flux equals or exceeds 1.5 times the unperturbed dipole flux that would lie outside Rx in the absence of an accretion disk. (3). Near the equatorial plane, radial infall from the X-point is terminated at a "kink" point Rk = 0.74Rx that deflects the flow away from the midplane, mediating thereby between the field topology imposed by a magnetic fan of trapped flux at Rx and the geometry of a strong stellar dipole. (4) The excess angular momentum of accretion that would otherwise spin up the star rapidly is deposited by the magnetic torques of the funnel flow into the inner portion of the X-region of the disk. (5) An induced disk wind arises in the outer portion of the .X-region, where the stellar field lines have been blown open, and removes whatever excess angular momentum that viscous torques do not transport to the outer disk. (6) The interface between open field lines loaded with outflowing matter (connected to the disk) and those not loaded (connected to the star) forms a "helmet streamer," along which major mass-ejection and reconnection events may arise in response to changing boundary conditions (e.g., stellar magnetic cycles), much the way that such events occur in the active Sun. (7) Pressure balance across the dead-zone/wind interface will probably yield an asymptotically vertical (i.e., "jetlike") trajectory for the matter ejected along the helmet streamer, but mathematical demonstration of this fact is left for future studies. (8) In steady state the overall balance of angular momentum in the star/disk/ magnetosphere system fixes the fractions, f and 1 - f, of the disk mass accretion rate into the X-region carried away, respectively, by the wind and funnel flows.
A high-performance dual-scale porous electrode for vanadium redox flow batteries
NASA Astrophysics Data System (ADS)
Zhou, X. L.; Zeng, Y. K.; Zhu, X. B.; Wei, L.; Zhao, T. S.
2016-09-01
In this work, we present a simple and cost-effective method to form a dual-scale porous electrode by KOH activation of the fibers of carbon papers. The large pores (∼10 μm), formed between carbon fibers, serve as the macroscopic pathways for high electrolyte flow rates, while the small pores (∼5 nm), formed on carbon fiber surfaces, act as active sites for rapid electrochemical reactions. It is shown that the Brunauer-Emmett-Teller specific surface area of the carbon paper is increased by a factor of 16 while maintaining the same hydraulic permeability as that of the original carbon paper electrode. We then apply the dual-scale electrode to a vanadium redox flow battery (VRFB) and demonstrate an energy efficiency ranging from 82% to 88% at current densities of 200-400 mA cm-2, which is record breaking as the highest performance of VRFB in the open literature.
Space-Time Dependent Transport, Activation, and Dose Rates for Radioactivated Fluids.
NASA Astrophysics Data System (ADS)
Gavazza, Sergio
Two methods are developed to calculate the space - and time-dependent mass transport of radionuclides, their production and decay, and the associated dose rates generated from the radioactivated fluids flowing through pipes. The work couples space- and time-dependent phenomena, treated as only space- or time-dependent in the open literature. The transport and activation methodology (TAM) is used to numerically calculate space- and time-dependent transport and activation of radionuclides in fluids flowing through pipes exposed to radiation fields, and volumetric radioactive sources created by radionuclide motions. The computer program Radionuclide Activation and Transport in Pipe (RNATPA1) performs the numerical calculations required in TAM. The gamma ray dose methodology (GAM) is used to numerically calculate space- and time-dependent gamma ray dose equivalent rates from the volumetric radioactive sources determined by TAM. The computer program Gamma Ray Dose Equivalent Rate (GRDOSER) performs the numerical calculations required in GAM. The scope of conditions considered by TAM and GAM herein include (a) laminar flow in straight pipe, (b)recirculating flow schemes, (c) time-independent fluid velocity distributions, (d) space-dependent monoenergetic neutron flux distribution, (e) space- and time-dependent activation process of a single parent nuclide and transport and decay of a single daughter radionuclide, and (f) assessment of space- and time-dependent gamma ray dose rates, outside the pipe, generated by the space- and time-dependent source term distributions inside of it. The methodologies, however, can be easily extended to include all the situations of interest for solving the phenomena addressed in this dissertation. A comparison is made from results obtained by the described calculational procedures with analytical expressions. The physics of the problems addressed by the new technique and the increased accuracy versus non -space and time-dependent methods are presented. The value of the methods is also discussed. It has been demonstrated that TAM and GAM can be used to enhance the understanding of the space- and time-dependent mass transport of radionuclides, their production and decay, and the associated dose rates related to radioactivated fluids flowing through pipes.
Influence of fiber packing structure on permeability
NASA Technical Reports Server (NTRS)
Cai, Zhong; Berdichevsky, Alexander L.
1993-01-01
The study on the permeability of an aligned fiber bundle is the key building block in modeling the permeability of advanced woven and braided preforms. Available results on the permeability of fiber bundles in the literature show that a substantial difference exists between numerical and analytical calculations on idealized fiber packing structures, such as square and hexagonal packing, and experimental measurements on practical fiber bundles. The present study focuses on the variation of the permeability of a fiber bundle under practical process conditions. Fiber bundles are considered as containing openings and fiber clusters within the bundle. Numerical simulations on the influence of various openings on the permeability were conducted. Idealized packing structures are used, but with introduced openings distributed in different patterns. Both longitudinal and transverse flow are considered. The results show that openings within the fiber bundle have substantial effect on the permeability. In the longitudinal flow case, the openings become the dominant flow path. In the transverse flow case, the fiber clusters reduce the gap sizes among fibers. Therefore the permeability is greatly influenced by these openings and clusters, respectively. In addition to the porosity or fiber volume fraction, which is commonly used in the permeability expression, another fiber bundle status parameter, the ultimate fiber volume fraction, is introduced to capture the disturbance within a fiber bundle.
Computing under-ice discharge: A proof-of-concept using hydroacoustics and the Probability Concept
NASA Astrophysics Data System (ADS)
Fulton, John W.; Henneberg, Mark F.; Mills, Taylor J.; Kohn, Michael S.; Epstein, Brian; Hittle, Elizabeth A.; Damschen, William C.; Laveau, Christopher D.; Lambrecht, Jason M.; Farmer, William H.
2018-07-01
Under-ice discharge is estimated using open-water reference hydrographs; however, the ratings for ice-affected sites are generally qualified as poor. The U.S. Geological Survey (USGS), in collaboration with the Colorado Water Conservation Board, conducted a proof-of-concept to develop an alternative method for computing under-ice discharge using hydroacoustics and the Probability Concept. The study site was located south of Minturn, Colorado (CO), USA, and was selected because of (1) its proximity to the existing USGS streamgage 09064600 Eagle River near Minturn, CO, and (2) its ease-of-access to verify discharge using a variety of conventional methods. From late September 2014 to early March 2015, hydraulic conditions varied from open water to under ice. These temporal changes led to variations in water depth and velocity. Hydroacoustics (tethered and uplooking acoustic Doppler current profilers and acoustic Doppler velocimeters) were deployed to measure the vertical-velocity profile at a singularly important vertical of the channel-cross section. Because the velocity profile was non-standard and cannot be characterized using a Power Law or Log Law, velocity data were analyzed using the Probability Concept, which is a probabilistic formulation of the velocity distribution. The Probability Concept-derived discharge was compared to conventional methods including stage-discharge and index-velocity ratings and concurrent field measurements; each is complicated by the dynamics of ice formation, pressure influences on stage measurements, and variations in cross-sectional area due to ice formation. No particular discharge method was assigned as truth. Rather one statistical metric (Kolmogorov-Smirnov; KS), agreement plots, and concurrent measurements provided a measure of comparability between various methods. Regardless of the method employed, comparisons between each method revealed encouraging results depending on the flow conditions and the absence or presence of ice cover. For example, during lower discharges dominated by under-ice and transition (intermittent open-water and under-ice) conditions, the KS metric suggests there is not sufficient information to reject the null hypothesis and implies that the Probability Concept and index-velocity rating represent similar distributions. During high-flow, open-water conditions, the comparisons are less definitive; therefore, it is important that the appropriate analytical method and instrumentation be selected. Six conventional discharge measurements were collected concurrently with Probability Concept-derived discharges with percent differences (%) of -9.0%, -21%, -8.6%, 17.8%, 3.6%, and -2.3%. This proof-of-concept demonstrates that riverine discharges can be computed using the Probability Concept for a range of hydraulic extremes (variations in discharge, open-water and under-ice conditions) immediately after the siting phase is complete, which typically requires one day. Computing real-time discharges is particularly important at sites, where (1) new streamgages are planned, (2) river hydraulics are complex, and (3) shifts in the stage-discharge rating are needed to correct the streamflow record. Use of the Probability Concept does not preclude the need to maintain a stage-area relation. Both the Probability Concept and index-velocity rating offer water-resource managers and decision makers alternatives for computing real-time discharge for open-water and under-ice conditions.
Computing under-ice discharge: A proof-of-concept using hydroacoustics and the Probability Concept
Fulton, John W.; Henneberg, Mark F.; Mills, Taylor J.; Kohn, Michael S.; Epstein, Brian; Hittle, Elizabeth A.; Damschen, William C.; Laveau, Christopher D.; Lambrecht, Jason M.; Farmer, William H.
2018-01-01
Under-ice discharge is estimated using open-water reference hydrographs; however, the ratings for ice-affected sites are generally qualified as poor. The U.S. Geological Survey (USGS), in collaboration with the Colorado Water Conservation Board, conducted a proof-of-concept to develop an alternative method for computing under-ice discharge using hydroacoustics and the Probability Concept.The study site was located south of Minturn, Colorado (CO), USA, and was selected because of (1) its proximity to the existing USGS streamgage 09064600 Eagle River near Minturn, CO, and (2) its ease-of-access to verify discharge using a variety of conventional methods. From late September 2014 to early March 2015, hydraulic conditions varied from open water to under ice. These temporal changes led to variations in water depth and velocity. Hydroacoustics (tethered and uplooking acoustic Doppler current profilers and acoustic Doppler velocimeters) were deployed to measure the vertical-velocity profile at a singularly important vertical of the channel-cross section. Because the velocity profile was non-standard and cannot be characterized using a Power Law or Log Law, velocity data were analyzed using the Probability Concept, which is a probabilistic formulation of the velocity distribution. The Probability Concept-derived discharge was compared to conventional methods including stage-discharge and index-velocity ratings and concurrent field measurements; each is complicated by the dynamics of ice formation, pressure influences on stage measurements, and variations in cross-sectional area due to ice formation.No particular discharge method was assigned as truth. Rather one statistical metric (Kolmogorov-Smirnov; KS), agreement plots, and concurrent measurements provided a measure of comparability between various methods. Regardless of the method employed, comparisons between each method revealed encouraging results depending on the flow conditions and the absence or presence of ice cover.For example, during lower discharges dominated by under-ice and transition (intermittent open-water and under-ice) conditions, the KS metric suggests there is not sufficient information to reject the null hypothesis and implies that the Probability Concept and index-velocity rating represent similar distributions. During high-flow, open-water conditions, the comparisons are less definitive; therefore, it is important that the appropriate analytical method and instrumentation be selected. Six conventional discharge measurements were collected concurrently with Probability Concept-derived discharges with percent differences (%) of −9.0%, −21%, −8.6%, 17.8%, 3.6%, and −2.3%.This proof-of-concept demonstrates that riverine discharges can be computed using the Probability Concept for a range of hydraulic extremes (variations in discharge, open-water and under-ice conditions) immediately after the siting phase is complete, which typically requires one day. Computing real-time discharges is particularly important at sites, where (1) new streamgages are planned, (2) river hydraulics are complex, and (3) shifts in the stage-discharge rating are needed to correct the streamflow record. Use of the Probability Concept does not preclude the need to maintain a stage-area relation. Both the Probability Concept and index-velocity rating offer water-resource managers and decision makers alternatives for computing real-time discharge for open-water and under-ice conditions.
Zhang, Yuchi; Guo, Liping; Liu, Chunming; Fu, Zi' ao; Cong, Lei; Qi, Yanjuan; Li, Dongping; Li, Sainan; Wang, Jing
2013-09-15
Pressurized liquid extraction (PLE) coupled with high-speed countercurrent chromatography (HSCCC) via an automated procedure was firstly developed to extract and isolate ginsenosides from Panax quinquefolium. The experiments were designed under the guidance of mathematical model. The partition coefficient (K) values of the target compounds and resolutions of peak profiles were employed as the research indicators, and exponential function and binomial formulas were used to optimizing the solvent systems and flow rates of the mobile phases in a three-stage separation. In the first stage, ethyl acetate, n-butanol, and water were simultaneously pumped into the solvent separator at the flow rates 11.0, 10.0, and 23.0mL/min, respectively. The upper phase of the solvent system in the solvent separator was used as both the PLE solvent and the HSCCC stationary phase, followed by elution with the lower phase of the corresponding solvent system to separate the common ginsenosides. In the second and third stages, rare ginsenosides were first separated by elution with ethyl acetate, n-butanol, methanol, and water (flow rates: 20.0, 3.0, 5.0, and 11.0mL/min, respectively), then with n-heptane, n-butanol, methanol, and water (flow rates: 17.5, 6.0, 5.0, and 22.5mL/min, respectively). Nine target compounds, with purities exceeding 95.0%, and three non-target compounds, with purities above 84.48%, were successfully separated at the semipreparative scale in 450min. The separation results prove that the PLE/HSCCC parameters calculated via mathematical model and formulas were accurately and scientifically. This research has opened up great prospects for industrial automation application. Copyright © 2013 Elsevier B.V. All rights reserved.
Modeling dynamic accumulation of gas hydrates in Shenhu area, northern South China Sea
NASA Astrophysics Data System (ADS)
Su, Z.; Cao, Y.; Wu, N.
2013-12-01
The accumulation of the hydrates in Shenhu area on northern continental slope of the South China Sea (SCS) could not be well quantified by the numerical models. The formation mechanism of the hydrate deposits remains an open question. Here, a conceptual model was applied for illustrating the formation pattern of hydrate accumulation in Shenhu area based on the studies of sedimentary and tectonic geologies. Our results indicated that the present hydrate deposits were a development of 'ancient hydrates' in the faulted sediment. The dynamic accumulation of the hydrates was further quantified by using a numerical model with two controlling parameters of seafloor sedimentation rate and water flow rate. The model results were testified with the hydrate saturations derived from the chloride abnormalities at site SH2 in Shenhu area. It suggested that the hydrate accumulation in Shenhu area had experienced two typical stages. In the first stage, the gas hydrates grew in the fractured sediment ~1.5 Ma. High permeability of the fractured sediment permitted rapid water flow that carrying methane gas toward the seafloor. Massive gas transformed to gas hydrate in the gas hydrate stability zone (GHSZ) at water flow rate of 50m/kyr within 40kyrs. The 'ancient hydrate' filled 20% volume of the sediment pores in the stage. The second stage was initiated after ending of the last faulting activity. The water flow rate dropped to 0.7m/kyr due to quick burial of fine-grained sediments. Inadequate gas supply could merely sustain hydrate growth slowly at the base of GHSZ, and ultimately yielded the current hydrate deposits in Shenhu area after a subsequent evolution of 1.5 Myrs.
Bhatti, A; Khan, J; Murki, S; Sundaram, V; Saini, S S; Kumar, P
2015-11-01
To compare the failure rates between Jet continuous positive airway pressure device (J-CPAP-variable flow) and Bubble continuous positive airway device (B-CPAP) in preterm infants with respiratory distress. Preterm newborns <34 weeks gestation with onset of respiratory distress within 6 h of life were randomized to receive J-CPAP (a variable flow device) or B-CPAP (continuous flow device). A standardized protocol was followed for titration, weaning and removal of CPAP. Pressure was monitored close to the nares in both the devices every 6 hours and settings were adjusted to provide desired CPAP. The primary outcome was CPAP failure rate within 72 h of life. Secondary outcomes were CPAP failure within 7 days of life, need for surfactant post-randomization, time to CPAP failure, duration of CPAP and complications of prematurity. An intention to treat analysis was done. One-hundred seventy neonates were randomized, 80 to J-CPAP and 90 to B-CPAP. CPAP failure rates within 72 h were similar in infants who received J-CPAP and in those who received B-CPAP (29 versus 21%; relative risks 1.4 (0.8 to 2.3), P=0.25). Mean (95% confidence intervals) time to CPAP failure was 59 h (54 to 64) in the Jet CPAP group in comparison with 65 h (62 to 68) in the Bubble CPAP group (log rank P=0.19). All other secondary outcomes were similar between the two groups. In preterm infants with respiratory distress starting within 6 h of life, CPAP failure rates were similar with Jet CPAP and Bubble CPAP.
Micro system comprising 96 micro valves on a titer plate
NASA Astrophysics Data System (ADS)
Krabbe, S.; Flitsch, D.; Büchs, J.; Schomburg, W. K.
2016-10-01
A system of 96 micro valves has been developed and mounted on top of a 48-well micro titer plate providing two valves for each well controlling its air inlet and outlet. Testing of the valve system showed that all valves are working and are opened and closed reliably. A pneumatic system is switching inlet and outlet valves independently of each other. The geometry of the feed channels ensures an equal air flow through all wells, when the valves are open. Between the micro valves, one optical fibre was inserted through the lid of each well allowing measuring the oxygen partial pressure in the enclosed air volume by fluorescence sensor spots. Escherichia coli bacteria were grown inside the wells and their metabolism was observed by the oxygen partial pressure change due to respiration. In all 48 wells, the same oxygen transfer rate was observed within an averaged standard deviation of 1 mmol/L/h. The oxygen transfer rate differences compared to a macroscopic standard shake flask system were overall compatible within their uncertainties.
[Study of microorganism sterilization by instant microwave and electromagnetic pulse].
Lu, Zhiyuan; Shi, Pinpin; Zhu, Manzuo; Sun, Wenquan; Ding, Hua; Hou, Jianqiang
2008-08-01
The sterilization effects of constant electromagnetic wave and instant pulse on foods and traditional Chinese medical pills are introduced in this paper. From the velum's voltage variation caused by the outward electric filed,the dielectric properties of membranaceous ion and the pass rate of the membranaceous ion, we could analyze the biological heating effect and the biological non-heating effect. The sterilization effect of constant electromagnetic wave is based on the biological heating effect, while the instant electromagnetic pulse is based on the biological non-heating effect. With the applied electronic field, the voltage of membrane could increase, which results in the gates of K+ open, and the flowing out of K+. And the variation of the membranaceous voltage makes the gates of Ca2+ open. The Ca2+ of large consistency could come into the cell by the gradient of voltage. It could induce the death of the cells. The greater the variation of membranaceous voltage becomes, the higher will be the death rate of the cells.
Implementation of density-based solver for all speeds in the framework of OpenFOAM
NASA Astrophysics Data System (ADS)
Shen, Chun; Sun, Fengxian; Xia, Xinlin
2014-10-01
In the framework of open source CFD code OpenFOAM, a density-based solver for all speeds flow field is developed. In this solver the preconditioned all speeds AUSM+(P) scheme is adopted and the dual time scheme is implemented to complete the unsteady process. Parallel computation could be implemented to accelerate the solving process. Different interface reconstruction algorithms are implemented, and their accuracy with respect to convection is compared. Three benchmark tests of lid-driven cavity flow, flow crossing over a bump, and flow over a forward-facing step are presented to show the accuracy of the AUSM+(P) solver for low-speed incompressible flow, transonic flow, and supersonic/hypersonic flow. Firstly, for the lid driven cavity flow, the computational results obtained by different interface reconstruction algorithms are compared. It is indicated that the one dimensional reconstruction scheme adopted in this solver possesses high accuracy and the solver developed in this paper can effectively catch the features of low incompressible flow. Then via the test cases regarding the flow crossing over bump and over forward step, the ability to capture characteristics of the transonic and supersonic/hypersonic flows are confirmed. The forward-facing step proves to be the most challenging for the preconditioned solvers with and without the dual time scheme. Nonetheless, the solvers described in this paper reproduce the main features of this flow, including the evolution of the initial transient.
Low, Dennis J.; Goode, Daniel J.; Risser, Dennis W.
2000-01-01
Ground water in Triassic-age sedimentary fractured-rock aquifers in the area of Gettysburg, Pa., is used as drinking water and for industrial and commercial supply. In 1983, ground water at the Gettysburg Elevator Plant was found by the Pennsylvania Department of Environmental Resources to be contaminated with trichloroethene, 1,1,1-trichloroethane, and other synthetic organic compounds. As part of the U.S. Environmental Protection Agency?s Comprehensive Environmental Response, Compensation, and Liability Act, 1980 process, a Remedial Investigation was completed in July 1991, a method of site remediation was issued in the Record of Decision dated June 1992, and a Final Design Report was completed in May 1997. In cooperation with the U.S. Environmental Protection Agency in the hydrogeologic assessment of the site remediation, the U.S. Geological Survey began a study in 1997 to determine the effects of the onsite and offsite extraction wells on ground-water flow and contaminant migration from the Gettysburg Elevator Plant. This determination is based on hydrologic and geophysical data collected from 1991 to 1998 and on results of numerical model simulations of the local ground-water flow-system. The Gettysburg Elevator Site is underlain by red, green, gray, and black shales of the Heidlersburg Member of the Gettysburg Formation. Correlation of natural-gamma logs indicates the sedimentary rock strike about N. 23 degrees E. and dip about 23 degrees NW. Depth to bedrock onsite commonly is about 6 feet but offsite may be as deep as 40 feet. The ground-water system consists of two zones?a thin, shallow zone composed of soil, clay, and highly weathered bedrock and a thicker, nonweathered or fractured bedrock zone. The shallow zone overlies the bedrock zone and truncates the dipping beds parallel to land surface. Diabase dikes are barriers to ground-water flow in the bedrock zone. The ground-water system is generally confined or semi-confined, even at shallow depths. Depth to water can range from flowing at land surface to more than 71 feet below land surface. Potentiometric maps based on measured water levels at the Gettysburg Elevator Plant indicate ground water flows from west to east, towards Rock Creek. Multiple-well aquifer tests indicate the system is heterogeneous and flow is primarily in dipping beds that contain discrete secondary openings separated by less permeable beds. Water levels in wells open to the pumped bed, as projected along the dipping stratigraphy, are drawn down more than water levels in wells not open to the pumped bed. Ground-water flow was simulated for steady-state conditions prior to pumping and long-term average pumping conditions. The three-dimensional numerical flow model (MODFLOW) was calibrated by use of a parameter estimation program (MODFLOWP). Steady-state conditions were assumed for the calibration period of 1996. An effective areal recharge rate of 7 inches was used in model calibration. The calibrated flow model was used to evaluate the effectiveness of the current onsite and offsite extraction well system. The simulation results generally indicate that the extraction system effectively captures much of the ground-water recharge at the Gettysburg Elevator Plant and, hence, contaminated ground-water migrating from the site. Some of the extraction wells pump at low rates and have very small contributing areas. Results indicate some areal recharge onsite will move to offsite extraction wells.
Capillary Flows Along Open Channel Conduits: The Open-Star Section
NASA Technical Reports Server (NTRS)
Weislogel, Mark; Geile, John; Chen, Yongkang; Nguyen, Thanh Tung; Callahan, Michael
2014-01-01
Capillary rise in tubes, channels, and grooves has received significant attention in the literature for over 100 years. In yet another incremental extension of such work, a transient capillary rise problem is solved for spontaneous flow along an interconnected array of open channels forming what is referred to as an 'open-star' section. This geometry possesses several attractive characteristics including passive phase separations and high diffusive gas transport. Despite the complex geometry, novel and convenient approximations for capillary pressure and viscous resistance enable closed form predictions of the flow. As part of the solution, a combined scaling approach is applied that identifies unsteady-inertial-capillary, convective-inertial-capillary, and visco-capillary transient regimes in a single parameter. Drop tower experiments are performed employing 3-D printed conduits to corroborate all findings.
FLUX-CORRECTED TRANSPORT TECHNIQUE FOR OPEN CHANNEL FLOW. (R825200)
In modeling flow in open channels, the traditional finite difference/finite volume schemes become inefficient and warrant special numerical treatment in the presence of shocks and discontinuities. The numerical oscillations that arise by making use of a second- and higher-order s...
Relationship between Birkeland current regions, particle precipitation, and electric fields
NASA Technical Reports Server (NTRS)
De La Beaujardiere, O.; Watermann, J.; Newell, P.; Rich, F.
1993-01-01
The relationship of the large-scale dayside Birkeland currents to large-scale particle precipitation patterns, currents, and convection is examined using DMSP and Sondrestrom radar observations. It is found that the local time of the mantle currents is not limited to the longitude of the cusp proper, but covers a larger local time extent. The mantle currents flow entirely on open field lines. About half of region 1 currents flow on open field lines, consistent with the assumption that the region 1 currents are generated by the solar wind dynamo and flow within the surface that separates open and closed field lines. More than 80 percent of the Birkeland current boundaries do not correspond to particle precipitation boundaries. Region 2 currents extend beyond the plasma sheet poleward boundary; region 1 currents flow in part on open field lines; mantle currents and mantle particles are not coincident. On most passes when a triple current sheet is observed, the convection reversal is located on closed field lines.
Multi-bottle, no compressor, mean pressure control system for a Stirling engine
Corey, John A.
1990-01-01
The invention relates to an apparatus for mean pressure control of a Stirling engine without the need for a compressor. The invention includes a multi-tank system in which there is at least one high pressure level tank and one low pressure level tank wherein gas flows through a maximum pressure and supply line from the engine to the high pressure tank when a first valve is opened until the maximum pressure of the engine drops below that of the high pressure tank opening an inlet regulator to permit gas flow from the engine to the low pressure tank. When gas flows toward the engine it flows through the minimum pressure supply line 2 when a second valve is opened from the low pressure tank until the tank reaches the engine's minimum pressure level at which time the outlet regulator opens permitting gas to be supplied from the high pressure tank to the engine. Check valves between the two tanks prevent any backflow of gas from occurring.
Johnson, Barry L.; Knights, Brent C.; Barko, John W.; Gaugush, Robert F.; Soballe, David M.; James, William F.
1998-01-01
The backwaters of large rivers provide winter refuge for many riverine fish, but they often exhibit low dissolved oxygen levels due to high biological oxygen demand and low flows. Introducing water from the main channel can increase oxygen levels in backwaters, but can also increase current velocity and reduce temperature during winter, which may reduce habitat suitability for fish. In 1993, culverts were installed to introduce flow to the Finger Lakes, a system of six backwater lakes on the Mississippi River, about 160 km downstream from Minneapolis, Minnesota. The goal was to improve habitat for bluegills and black crappies during winter by providing dissolved oxygen concentrations >3 mg/L, current velocities <1 cm/s, and temperatures >1°C. To achieve these conditions, we used data on lake volume and oxygen demand to estimate the minimum flow required to maintain 3 mg/L of dissolved oxygen in each lake. Estimated flows ranged from 0.02 to 0.14 m3/s among lakes. Data gathered in winter 1994 after the culverts were opened, indicated that the estimated flows met habitat goals, but that thermal stratification and lake morphometry can reduce the volume of optimal habitat created.
Kinetics-based phase change approach for VOF method applied to boiling flow
NASA Astrophysics Data System (ADS)
Cifani, Paolo; Geurts, Bernard; Kuerten, Hans
2014-11-01
Direct numerical simulations of boiling flows are performed to better understand the interaction of boiling phenomena with turbulence. The multiphase flow is simulated by solving a single set of equations for the whole flow field according to the one-fluid formulation, using a VOF interface capturing method. Interface terms, related to surface tension, interphase mass transfer and latent heat, are added at the phase boundary. The mass transfer rate across the interface is derived from kinetic theory and subsequently coupled with the continuum representation of the flow field. The numerical model was implemented in OpenFOAM and validated against 3 cases: evaporation of a spherical uniformly heated droplet, growth of a spherical bubble in a superheated liquid and two dimensional film boiling. The computational model will be used to investigate the change in turbulence intensity in a fully developed channel flow due to interaction with boiling heat and mass transfer. In particular, we will focus on the influence of the vapor bubble volume fraction on enhancing heat and mass transfer. Furthermore, we will investigate kinetic energy spectra in order to identify the dynamics associated with the wakes of vapor bubbles. Department of Applied Mathematics, 7500 AE Enschede, NL.
Experimental Results of Performance Tests on a Four-Port Wave Rotor
NASA Technical Reports Server (NTRS)
Wilson, John; Welch, Gerard E.; Paxson, Daniel E.
2007-01-01
A series of tests has been performed on a four-port wave rotor suitable for use as a topping stage on a gas turbine engine, to measure the overall pressure ratio obtainable as a function of temperature ratio, inlet mass flow, loop flow ratio, and rotor speed. The wave rotor employed an open high pressure loop that is the high pressure inlet flow was not the air exhausted from the high pressure outlet, but was obtained from a separate heated source, although the mass flow rates of the two flows were balanced. This permitted the choice of a range of loop-flow ratios (i.e., ratio of high pressure flow to low pressure flow), as well as the possibility of examining the effect of mass flow imbalance. Imbalance could occur as a result of leakage or deliberate bleeding for cooling air. Measurements of the pressure drop in the high pressure loop were also obtained. A pressure ratio of 1.17 was obtained at a temperature ratio of 2.0, with an inlet mass flow of 0.6 lb/s. Earlier tests had given a pressure ratio of less than 1.12. The improvement was due to improved sealing between the high pressure and low pressure loops, and a modification to the movable end-wall which is provided to allow for rotor expansion.
SDTCP: Towards Datacenter TCP Congestion Control with SDN for IoT Applications
Lu, Yifei; Ling, Zhen; Zhu, Shuhong; Tang, Ling
2017-01-01
The Internet of Things (IoT) has gained popularity in recent years. Today’s IoT applications are now increasingly deployed in cloud platforms to perform Big Data analytics. In cloud data center networks (DCN), TCP incast usually happens when multiple senders simultaneously communicate with a single receiver. However, when TCP incast happens, DCN may suffer from both throughput collapse for TCP burst flows and temporary starvation for TCP background flows. In this paper, we propose a software defined network (SDN)-based TCP congestion control mechanism, referred to as SDTCP, to leverage the features, e.g., centralized control methods and the global view of the network, in order to solve the TCP incast problems. When we detect network congestion on an OpenFlow switch, our controller can select the background flows and reduce their bandwidth by adjusting the advertised window of TCP ACK packets of the corresponding background flows so as to reserve more bandwidth for burst flows. SDTCP is transparent to the end systems and can accurately decelerate the rate of background flows by leveraging the global view of the network gained via SDN. The experiments demonstrate that our SDTCP can provide high tolerance for burst flows and achieve better flow completion time for short flows. Therefore, SDTCP is an effective and scalable solution for the TCP incast problem. PMID:28075347
Li, Jigang; Li, Tao; Ma, Qiuhong; Li, Jianmin
2017-09-01
Percutaneous vertebroplasty has been widely applied in the treatment of osteoporotic vertebral compression fractures over the past two decades. However as one of the major complications, the rate of cement leakage seems not to be decreased significantly. In this study, the rate of cement leakage was compared between two groups using two different cement injection cannulas. The purpose was to determine the efficacy of side-opening cannula on preventing cement leakage in vertebroplasty for the treatment of osteoporotic vertebral compression fractures. A retrospective study was conducted from January 2013 to December 2015. Totally 225 patients who received bilateral vertebroplasty due to osteoporotic vertebral compression fractures were included in the study. The patients were divided into test group who received vertebroplasty with side-opening cannulas and control group who received vertebroplasty with front-opening cannulas. The patients' medical records were reviewed to determine the bone marrow density, preoperative vertebral compression ratio, preoperative and postoperative VAS, operation time, volume of injected bone cement, rate of cement leakage. Post-operative X-rays and CT scans were utilized to assess the degree of Cement leakage. Comparisons between groups and clinical results on VAS in each group were analyzed with appropriate test. All the patients were performed successfully without symptomatic complications. The back pain was significantly relieved after operation in both groups (P < 0.05). At 6 days and 6 months follow-up, there was no significant difference in the mean VAS score between the two groups (P > 0.05). The rate of cement leakage in the test group was significantly lower than that in the control group (P < 0.05). Percutaneous vertebroplasty with side-opening cannula is a safe and effective minimally invasive method in the treatment of osteoporotic vertebral compression fractures, the rate of cement leakage can be significantly reduced by redirecting the cement flow. Copyright © 2017 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Stallings, Robert L., Jr.; Plentovich, E. B.; Tracy, M. B.; Hemsch, Michael J.
1995-01-01
An experimental force and moment study was conducted in the Langley 8-Foot Transonic Pressure Tunnel for a generic store in and near rectangular box cavities contained in a flat-plate configuration at subsonic and transonic speeds. Surface pressures were measured inside the cavities and on the flat plate. The length-to-height ratios were 5.42, 6.25, 10.83, and 12.50. The corresponding width-to-height ratios were 2.00, 2.00, 4.00, and 4.00. The free-stream Mach number range was from 0.20 to 0.95. Surface pressure measurements inside the cavities indicated that the flow fields for the shallow cavities were either closed or transitional near the transitional/closed boundary. For the deep cavities, the flow fields were either open or near the open/transitional boundary. The presence of the store did not change the type of flow field and had only small effects on the pressure distributions. For transitional or open transitional flow fields, increasing the free-stream Mach number resulted in large reductions in pitching-moment coefficient. Values of pitching-moment coefficient were always much greater for closed flow fields than for open flow fields.
Advanced Laser-Based Techniques for Gas-Phase Diagnostics in Combustion and Aerospace Engineering.
Ehn, Andreas; Zhu, Jiajian; Li, Xuesong; Kiefer, Johannes
2017-03-01
Gaining information of species, temperature, and velocity distributions in turbulent combustion and high-speed reactive flows is challenging, particularly for conducting measurements without influencing the experimental object itself. The use of optical and spectroscopic techniques, and in particular laser-based diagnostics, has shown outstanding abilities for performing non-intrusive in situ diagnostics. The development of instrumentation, such as robust lasers with high pulse energy, ultra-short pulse duration, and high repetition rate along with digitized cameras exhibiting high sensitivity, large dynamic range, and frame rates on the order of MHz, has opened up for temporally and spatially resolved volumetric measurements of extreme dynamics and complexities. The aim of this article is to present selected important laser-based techniques for gas-phase diagnostics focusing on their applications in combustion and aerospace engineering. Applicable laser-based techniques for investigations of turbulent flows and combustion such as planar laser-induced fluorescence, Raman and Rayleigh scattering, coherent anti-Stokes Raman scattering, laser-induced grating scattering, particle image velocimetry, laser Doppler anemometry, and tomographic imaging are reviewed and described with some background physics. In addition, demands on instrumentation are further discussed to give insight in the possibilities that are offered by laser flow diagnostics.
Interaction of dihydrofolate reductase with methotrexate: Ensemble and single-molecule kinetics
NASA Astrophysics Data System (ADS)
Rajagopalan, P. T. Ravi; Zhang, Zhiquan; McCourt, Lynn; Dwyer, Mary; Benkovic, Stephen J.; Hammes, Gordon G.
2002-10-01
The thermodynamics and kinetics of the interaction of dihydrofolate reductase (DHFR) with methotrexate have been studied by using fluorescence, stopped-flow, and single-molecule methods. DHFR was modified to permit the covalent addition of a fluorescent molecule, Alexa 488, and a biotin at the N terminus of the molecule. The fluorescent molecule was placed on a protein loop that closes over methotrexate when binding occurs, thus causing a quenching of the fluorescence. The biotin was used to attach the enzyme in an active form to a glass surface for single-molecule studies. The equilibrium dissociation constant for the binding of methotrexate to the enzyme is 9.5 nM. The stopped-flow studies revealed that methotrexate binds to two different conformations of the enzyme, and the association and dissociation rate constants were determined. The single-molecule investigation revealed a conformational change in the enzyme-methotrexate complex that was not observed in the stopped-flow studies. The ensemble averaged rate constants for this conformation change in both directions is about 2-4 s1 and is attributed to the opening and closing of the enzyme loop over the bound methotrexate. Thus the mechanism of methotrexate binding to DHFR involves multiple steps and protein conformational changes.
Robust boundary treatment for open-channel flows in divergence-free incompressible SPH
NASA Astrophysics Data System (ADS)
Pahar, Gourabananda; Dhar, Anirban
2017-03-01
A robust Incompressible Smoothed Particle Hydrodynamics (ISPH) framework is developed to simulate specified inflow and outflow boundary conditions for open-channel flow. Being purely divergence-free, the framework offers smoothed and structured pressure distribution. An implicit treatment of Pressure Poison Equation and Dirichlet boundary condition is applied on free-surface to minimize error in velocity-divergence. Beyond inflow and outflow threshold, multiple layers of dummy particles are created according to specified boundary condition. Inflow boundary acts as a soluble wave-maker. Fluid particles beyond outflow threshold are removed and replaced with dummy particles with specified boundary velocity. The framework is validated against different cases of open channel flow with different boundary conditions. The model can efficiently capture flow evolution and vortex generation for random geometry and variable boundary conditions.
The effects of opening areas on solar chimney performance
NASA Astrophysics Data System (ADS)
Ling, L. S.; Rahman, M. M.; Chu, C. M.; Misaran, M. S. bin; Tamiri, F. M.
2017-07-01
To enhance natural ventilation at day time, solar chimney is one of the suitable options for topical country like Malaysia. Solar chimney creates air flow due to stack effect caused by temperature difference between ambient and inside wall. In the solar chimney, solar energy is harvested by the inner wall that cause temperature rise compare to ambient. Therefore, the efficiency of the solar chimney depends on the availability of solar energy as well as the solar intensity. In addition, it is very hard to get good ventilation at night time by using a solar chimney. To overcome this problem one of the suitable valid option is to integrate solar chimney with turbine ventilator. A new type of solar chimney is designed and fluid flow analyzed with the computational fluid dynamics (CFD) software. The aim of CFD and theoretical study are to investigate the effect of opening areas on modified solar chimney performance. The inlet and outlet area of solar chimney are varied from 0.0224m2 to 0.6m2 and 0.1m2 to 0.14m2 respectively based on the changes of inclination angle and gap between inner and outer wall. In the CFD study the constant heat flux is considered as 500W/m2. CFD result shows that there is no significant relation between opening areas and the air flow rate through solar chimney but the ratio between inlet and outlet is significant on flow performance. If the area ratio between inlet and outlet are equal to two or larger, the performance of the solar chimney is better than the solar chimney with ratio lesser than two. The solar chimney performance does not effect if the area ratio between inlet and outlet varies from 1 to 2. This result will be useful for design and verification of actual solar chimney performance.
Experimental study on the effects of fixed boundaries in channelized free surface dry granular flows
NASA Astrophysics Data System (ADS)
Sarno, Luca; Carleo, Luigi; Nicolina Papa, Maria
2017-04-01
The dynamics of granular mixtures, involved in geophysical flows like avalanches and debris flows, is far from being completely understood. Several features of their motion, such as rheological stratification, non-local and boundary effects, still represent open problems. Experimental investigations at laboratory scale are an important tool that can provide insights about the dynamics of gravity driven granular flows. The measuring techniques should be non-invasive in order to measure undisturbed flows. In this work we present an experimental campaign devoted to the measurement of the velocity profiles of free surface steady granular flows in an open channel. To achieve this goal the flows were recorded by two cameras and velocity profiles were obtained by image analysis. The employed granular medium consists of acetal-polymeric beads with a mean diameter of 3mm and an estimated internal friction angle of 27°. All the experiments have been performed in a 2m-long plexiglas flume with a rectangular cross-section and a slope angle of 30°. The upper part of the channel was used as a reservoir where the material was loaded before each run and then let flow down through an adjustable gate. Several mass flow rates were investigated. Three different basal surfaces were employed so as to observe slip and non-slip boundary conditions: a smooth Bakelite surface, a roughened surface, obtained by gluing a layer of grains on the bed surface and a sandpaper surface with characteristic length of the roughness equal to 425 µm. The flume is equipped with two high-speed cameras, one placed aside the channel and the other one perpendicular to the channel bed, as to get both side-wall and free surface velocity profiles. The particle image velocimetry open-source code, PIVlab, is employed for estimating the flow velocities. All the free surface velocity profiles show an approximately parabolic shape with a maximum at the cross-section midpoint and a minimum at the side-walls, due to the wall friction. Different kinds of side-wall velocity profiles are observed. As regards the smooth basal surface, a slip velocity at the bed is observed. The profiles are Bagnold-type near the free surface and become linear as the depth increases. On the glued-grain basal surface the flow velocity at the bed is null and all the velocity profiles show a rheological stratification with a lower exponential tail and an upper linear profile. Grain rolling is observed at the sandpaper bed, instead. With the increase of flow depths, the velocity profiles gradually shift from the ones observed on the smooth bed to the ones observed on the glued-grain bed. In order to further understand the constitutive behaviour of granular mixtures, it is useful to perform simultaneous measurements of flow velocity and volume fraction. In this perspective, a new series of experiments is actually undergoing for the measurement of the volume fraction.
Open-ocean boundary conditions from interior data: Local and remote forcing of Massachusetts Bay
Bogden, P.S.; Malanotte-Rizzoli, P.; Signell, R.
1996-01-01
Massachusetts and Cape Cod Bays form a semienclosed coastal basin that opens onto the much larger Gulf of Maine. Subtidal circulation in the bay is driven by local winds and remotely driven flows from the gulf. The local-wind forced flow is estimated with a regional shallow water model driven by wind measurements. The model uses a gravity wave radiation condition along the open-ocean boundary. Results compare reasonably well with observed currents near the coast. In some offshore regions however, modeled flows are an order of magnitude less energetic than the data. Strong flows are observed even during periods of weak local wind forcing. Poor model-data comparisons are attributable, at least in part, to open-ocean boundary conditions that neglect the effects of remote forcing. Velocity measurements from within Massachusetts Bay are used to estimate the remotely forced component of the flow. The data are combined with shallow water dynamics in an inverse-model formulation that follows the theory of Bennett and McIntosh [1982], who considered tides. We extend their analysis to consider the subtidal response to transient forcing. The inverse model adjusts the a priori open-ocean boundary condition, thereby minimizing a combined measure of model-data misfit and boundary condition adjustment. A "consistency criterion" determines the optimal trade-off between the two. The criterion is based on a measure of plausibility for the inverse solution. The "consistent" inverse solution reproduces 56% of the average squared variation in the data. The local-wind-driven flow alone accounts for half of the model skill. The other half is attributable to remotely forced flows from the Gulf of Maine. The unexplained 44% comes from measurement errors and model errors that are not accounted for in the analysis.
Macias, Diego; Stips, Adolf; Garcia-Gorriz, Elisa; Dosio, Alessandro
2018-01-01
We evaluate the changes on the hydrological (temperature and salinity) and biogeochemical (phytoplankton biomass) characteristics of the Mediterranean Sea induced by freshwater flow modifications under two different scenarios for the end of the 21st century. An ensemble of four regional climate model realizations using different global circulation models at the boundary and different emission scenarios are used to force a single ocean model for the Mediterranean Sea. Freshwater flow is modified according to the simulated changes in the precipitation rates for the different rivers' catchment regions. To isolate the effect resulting from a change in freshwater flow, model results are evaluated against a 'baseline' simulation realized assuming a constant inflow equivalent to climatologic values. Our model results indicate that sea surface salinity could be significantly altered by freshwater flow modification in specific regions and that the affected area and the sign of the anomaly are highly dependent on the used climate model and emission scenario. Sea surface temperature and phytoplankton biomass, on the contrary, show no coherent spatial pattern but a rather widespread scattered response. We found in open-water regions a significant negative relationship between sea surface temperature anomalies and phytoplankton biomass anomalies. This indicates that freshwater flow modification could alter the vertical stability of the water column throughout the Mediterranean Sea, by changing the strength of vertical mixing and consequently upper water fertilization. In coastal regions, however, the correlation between sea temperature anomalies and phytoplankton biomass is positive, indicating a larger importance of the physiological control of growth rates by temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Churchfield, M. J.; Sang, L.; Moriarty, P. J.
This paper describes changes made to NREL's OpenFOAM-based wind plant aerodynamics solver such that it can compute the stably stratified atmospheric boundary layer and flow over terrain. Background about the flow solver, the Simulator for Off/Onshore Wind Farm Applications (SOWFA) is given, followed by details of the stable stratification/complex terrain modifications to SOWFA, along with somepreliminary results calculations of a stable atmospheric boundary layer and flow over a simply set of hills.
NASA Technical Reports Server (NTRS)
Schmucker, R. H.
1983-01-01
Methods aimed at reduction of overexpansion and side load resulting from asymmetric flow separation for rocket nozzles with a high opening ratio are described. The methods employ additional measures for nozzles with a fixed opening ratio. The flow separation can be controlled by several types of nozzle inserts, the properties of which are discussed. Side loads and overexpansion can be reduced by adapting the shape of the nozzle and taking other additional measures for controlled separation of the boundary layer, such as trip wires.