30 CFR 18.29 - Access openings and covers, including unused lead-entrance holes.
Code of Federal Regulations, 2013 CFR
2013-07-01
... lead-entrance holes. 18.29 Section 18.29 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... unused lead-entrance holes. (a) Access openings in explosion-proof enclosures will be permitted only... Figure 1 in Appendix II.) (c) Holes in enclosures that are provided for lead entrances but which are not...
30 CFR 18.29 - Access openings and covers, including unused lead-entrance holes.
Code of Federal Regulations, 2011 CFR
2011-07-01
... lead-entrance holes. 18.29 Section 18.29 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... unused lead-entrance holes. (a) Access openings in explosion-proof enclosures will be permitted only... Figure 1 in Appendix II.) (c) Holes in enclosures that are provided for lead entrances but which are not...
30 CFR 18.29 - Access openings and covers, including unused lead-entrance holes.
Code of Federal Regulations, 2014 CFR
2014-07-01
... lead-entrance holes. 18.29 Section 18.29 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... unused lead-entrance holes. (a) Access openings in explosion-proof enclosures will be permitted only... Figure 1 in Appendix II.) (c) Holes in enclosures that are provided for lead entrances but which are not...
30 CFR 18.29 - Access openings and covers, including unused lead-entrance holes.
Code of Federal Regulations, 2012 CFR
2012-07-01
... lead-entrance holes. 18.29 Section 18.29 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... unused lead-entrance holes. (a) Access openings in explosion-proof enclosures will be permitted only... Figure 1 in Appendix II.) (c) Holes in enclosures that are provided for lead entrances but which are not...
Johnston, Roger G.; Garcia, Anthony R. E.; Martinez, Ronald K.
2001-09-25
The invention includes a rotatable tool for collecting fluid through the wall of a container. The tool includes a fluid collection section with a cylindrical shank having an end portion for drilling a hole in the container wall when the tool is rotated, and a threaded portion for tapping the hole in the container wall. A passageway in the shank in communication with at least one radial inlet hole in the drilling end and an opening at the end of the shank is adapted to receive fluid from the container. The tool also includes a cylindrical chamber affixed to the end of the shank opposite to the drilling portion thereof for receiving and storing fluid passing through the passageway. The tool also includes a flexible, deformable gasket that provides a fluid-tight chamber to confine kerf generated during the drilling and tapping of the hole. The invention also includes a fluid extractor section for extracting fluid samples from the fluid collecting section.
29 CFR 1915.71 - Scaffolds or staging.
Code of Federal Regulations, 2011 CFR
2011-07-01
... large, loose or dead knots. It shall also be free from dry rot, large checks, worm holes or other... welding, burning, riveting or open flame work shall be performed on any staging suspended by means of... sections of extension trestle ladders shall be so spread that when in an open position the spread of the...
29 CFR 1915.71 - Scaffolds or staging.
Code of Federal Regulations, 2014 CFR
2014-07-01
... large, loose or dead knots. It shall also be free from dry rot, large checks, worm holes or other... welding, burning, riveting or open flame work shall be performed on any staging suspended by means of... sections of extension trestle ladders shall be so spread that when in an open position the spread of the...
29 CFR 1915.71 - Scaffolds or staging.
Code of Federal Regulations, 2012 CFR
2012-07-01
... large, loose or dead knots. It shall also be free from dry rot, large checks, worm holes or other... welding, burning, riveting or open flame work shall be performed on any staging suspended by means of... sections of extension trestle ladders shall be so spread that when in an open position the spread of the...
29 CFR 1915.71 - Scaffolds or staging.
Code of Federal Regulations, 2013 CFR
2013-07-01
... large, loose or dead knots. It shall also be free from dry rot, large checks, worm holes or other... welding, burning, riveting or open flame work shall be performed on any staging suspended by means of... sections of extension trestle ladders shall be so spread that when in an open position the spread of the...
2012-09-01
Technologies. Helius was developed as a user material subroutine for ABAQUS and ANSYS (9). Through an ABAQUS plug-in and graphical interface, a...incorporated into an ABAQUS subroutine and compared to experimental data. Xie and Biggers (18) look at the effect width-to-hole-diameter ratio on open- hole...smearing-unsmearing” approach, nonlinear anisotropy, and progressive failure analysis into ABAQUS . The subroutine UMAT is used to define the
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pietrobono, J.T.
1988-01-01
This paper reports on losing equipment in the hole that is one of the most expensive and potentially dangerous things that can go wrong in drilling a well. Drilling must come to a halt until the equipment is recovered, or the hole must be sidetracked. The well also can become hard to control with essential tools out of reach, increasing the risk of a blowout. Fishing, or recovering lost or stuck equipment in the hole, is therefore a critical procedure at any drilling operation. Fishing can be divided into two broad categories: open hole and cased hole. a major differencemore » between the two is timing: open-hole fishing is done as the well is being drilled, whereas cased-hole fishing is performed during production or well workover. Fishing techniques and types of equipment used also vary between the tow. This lesson describes some of the basic techniques and tools used in open-hole fishing-that is, retrieving fish from a hole that is being drilled but is not yet cased.« less
Paradoxical Long-Timespan Opening of the Hole in Self-Supported Water Films of Nanometer Thickness.
Barkay, Z; Bormashenko, E
2017-05-16
The opening of holes in self-supported thin (nanoscaled) water films has been investigated in situ with the environmental scanning electron microscope. The opening of a hole occurs within a two-stage process. In the first stage, the rim surrounding a hole is formed, resembling the process that is observed under the puncturing of soap bubbles. In the second stage, the exponential growth of the hole is observed, with a characteristic time of a dozen seconds. We explain the exponential kinetics of hole growth by the balance between inertia (gravity) and viscous dissipation. The kinetics of opening a microscaled hole is governed by the processes taking place in the nanothick bulk of the self-supported liquid film. Nanoparticles provide markers for the visualization of the processes occurring in self-supported thin nanoscale liquid films.
Standard methods for filled hole tension testing of textile composites
NASA Technical Reports Server (NTRS)
Portanova, M. A.; Masters, J. E.
1995-01-01
The effects of two test specimen geometry parameters, the specimen width and W/D ratio, on filled-hole tensile strength were determined for textile composite materials. Test data generated by Boeing and Lockheed on 2-D and 3-D braids, and 3-D weaves were used to make these evaluations. The investigation indicated that filled-hole tensile-strength showed little sensitivity to either parameter. Test specimen configurations used in open-hole tension tests, such as those suggested by ASTM D5766 - Standard Test Method for Open Hole Tensile Strength of Polymer Matrix Composite Laminates or those proposed by MIL-HDBK-17-lD should provide adequate results for material comparisons studies. Comparisons of the materials' open-hole and filled-hole tensile strengths indicated that the latter were generally lower than the former. The 3-D braids were the exception; their filled-hole strengths were unexpected larger than their open-hole strengths. However, these increases were small compared to the scatter in the data. Thus, filled hole tension may be a critical design consideration for textile composite materials.
Mud Gas Logging In A Deep Borehole: IODP Site C0002, Nankai Trough Accretionary Prism
NASA Astrophysics Data System (ADS)
Toczko, S.; Hammerschmidt, S.; Maeda, L.
2014-12-01
Mud logging, a tool in riser drilling, makes use of the essentially "closed-circuit" drilling mud flow between the drilling platform downhole to the bit and then back to the platform for analyses of gas from the formation in the drilling mud, cuttings from downhole, and a range of safety and operational parameters to monitor downhole drilling conditions. Scientific riser drilling, with coincident control over drilling mud, downhole pressure, and returning drilling mud analyses, has now been in use aboard the scientific riser drilling vessel Chikyu since 2009. International Ocean Discovery Program (IODP) Expedition 348, as part of the goal of reaching the plate boundary fault system near ~5000 mbsf, has now extended the deep riser hole (Hole C0002 N & P) to 3058.5 mbsf. The mud gas data discussed here are from two approximately parallel boreholes, one a kick-off from the other; 860-2329 mbsf (Hole C0002N) and 2163-3058 mbsf (Hole C0002P). An approximate overlap of 166 m between the holes allows for some slight depth comparison between the two holes. An additional 55 m overlap at the top of Hole C0002P exists where a 10-5/8-inch hole was cored, and then opened to 12-1/4-inch with logging while drilling (LWD) tools (Fig. 1). There are several fault zones revealed by LWD data, confirmed in one instance by coring. One of the defining formation characteristics of Holes C0002 N/P are the strongly dipping bedding planes, typically exceeding 60º. These fault zones and bedding planes can influence the methane/ethane concentrations found in the returning drilling mud. A focused comparison of free gas in drilling mud between one interval in Hole C0002 P, drilled first with a 10 5/8-inch coring bit and again with an 12 ¼-inch logging while drilling (LWD) bit is shown. Hole C0002N above this was cased all the way from the sea floor to the kick-off section. A fault interval (in pink) was identified from the recovered core section and from LWD resistivity and gamma. The plot of methane and ethane free gas (C1 and C2; ppmv) shows that the yield of free gas (primarily methane) was greater when the LWD bit returned to open the cored hole to a greater diameter. One possible explanation for this is the time delay between coring and LWD operations; approximately 3 days passed between the end of coring and the beginning of LWD (25-28 December 2013).
18 CFR 157.213 - Underground storage field facilities.
Code of Federal Regulations, 2010 CFR
2010-04-01
..., well logs, quantitative porosity and permeability data, and any other relevant data for both the.../withdrawal wells and observation wells; and the lengths of open-hole sections of existing and proposed injection/withdrawal wells; (3) Isobaric maps (data from the end of each injection and withdrawal cycle) for...
18 CFR 157.213 - Underground storage field facilities.
Code of Federal Regulations, 2012 CFR
2012-04-01
..., well logs, quantitative porosity and permeability data, and any other relevant data for both the.../withdrawal wells and observation wells; and the lengths of open-hole sections of existing and proposed injection/withdrawal wells; (3) Isobaric maps (data from the end of each injection and withdrawal cycle) for...
40 CFR 61.275 - Periodic report.
Code of Federal Regulations, 2010 CFR
2010-07-01
... internal floating roof, or there are holes, tears or other openings in the seal or seal fabric; or (ii... has defects, the primary seal has holes, tears, or other openings in the seal or the seal fabric, or the secondary seal (if one has been installed) has holes, tears, or other openings in the seal or the...
Radioactive hot cell access hole decontamination machine
Simpson, William E.
1982-01-01
Radioactive hot cell access hole decontamination machine. A mobile housing has an opening large enough to encircle the access hole and has a shielding door, with a door opening and closing mechanism, for uncovering and covering the opening. The housing contains a shaft which has an apparatus for rotating the shaft and a device for independently translating the shaft from the housing through the opening and access hole into the hot cell chamber. A properly sized cylindrical pig containing wire brushes and cloth or other disks, with an arrangement for releasably attaching it to the end of the shaft, circumferentially cleans the access hole wall of radioactive contamination and thereafter detaches from the shaft to fall into the hot cell chamber.
Standard methods for open hole tension testing of textile composites
NASA Technical Reports Server (NTRS)
Portanova, M. A.; Masters, J. E.
1995-01-01
Sizing effects have been investigated by comparing the open hole failure strengths of each of the four different braided architectures as a function of specimen thickness, hole diameter, and the ratio of specimen width to hole diameter. The data used to make these comparisons was primarily generated by Boeing. Direct comparisons of Boeing's results were made with experiments conducted at West Virginia University whenever possible. Indirect comparisons were made with test results for other 2-D braids and 3-D weaves tested by Boeing and Lockheed. In general, failure strength was found to decrease with increasing plate thickness, increase with decreasing hole size, and decreasing with decreasing width to diameter ratio. The interpretation of the sensitive to each of these geometrical parameters was complicated by scatter in the test data. For open hole tension testing of textile composites, the use of standard testing practices employed by industry, such as ASTM D5766 - Standard Test Method for Open Hole Tensile Strength of Polymer Matrix Composite Laminates should provide adequate results for material comparisons studies.
30 CFR 75.1320 - Multiple-shot blasting.
Code of Federal Regulations, 2013 CFR
2013-07-01
... in a round shall be initiated in sequence from the opener hole or holes. (e) Arrangement of detonator... blasting coal off the solid— (i) Each shot in the round shall be initiated in sequence from the opener hole or holes; and (ii) After the first shot or shots, the interval between the designated delay periods...
30 CFR 75.1320 - Multiple-shot blasting.
Code of Federal Regulations, 2014 CFR
2014-07-01
... in a round shall be initiated in sequence from the opener hole or holes. (e) Arrangement of detonator... blasting coal off the solid— (i) Each shot in the round shall be initiated in sequence from the opener hole or holes; and (ii) After the first shot or shots, the interval between the designated delay periods...
30 CFR 75.1320 - Multiple-shot blasting.
Code of Federal Regulations, 2012 CFR
2012-07-01
... in a round shall be initiated in sequence from the opener hole or holes. (e) Arrangement of detonator... blasting coal off the solid— (i) Each shot in the round shall be initiated in sequence from the opener hole or holes; and (ii) After the first shot or shots, the interval between the designated delay periods...
30 CFR 75.1320 - Multiple-shot blasting.
Code of Federal Regulations, 2011 CFR
2011-07-01
... in a round shall be initiated in sequence from the opener hole or holes. (e) Arrangement of detonator... blasting coal off the solid— (i) Each shot in the round shall be initiated in sequence from the opener hole or holes; and (ii) After the first shot or shots, the interval between the designated delay periods...
30 CFR 75.1320 - Multiple-shot blasting.
Code of Federal Regulations, 2010 CFR
2010-07-01
... in a round shall be initiated in sequence from the opener hole or holes. (e) Arrangement of detonator... blasting coal off the solid— (i) Each shot in the round shall be initiated in sequence from the opener hole or holes; and (ii) After the first shot or shots, the interval between the designated delay periods...
Lithostratigraphy from downhole logs in Hole AND-1B, Antarctica
Williams, Trevor; Morin, Roger H.; Jarrard, Richard D.; Jackolski, Chris L.; Henrys, Stuart A.; Niessen, Frank; Magens, Diana; Kuhn, Gerhard; Monien, Donata; Powell, Ross D.
2012-01-01
The ANDRILL (Antarctic Drilling Project) McMurdo Ice Shelf (MIS) project drilled 1285 m of sediment in Hole AND–1B, representing the past 12 m.y. of glacial history. Downhole geophysical logs were acquired to a depth of 1018 mbsf (meters below seafloor), and are complementary to data acquired from the core. The natural gamma radiation (NGR) and magnetic susceptibility logs are particularly useful for understanding lithological and paleoenvironmental change at ANDRILL McMurdo Ice Shelf Hole AND–1B. NGR logs cover the entire interval from the seafloor to 1018 mbsf, and magnetic susceptibility and other logs covered the open hole intervals between 692 and 1018 and 237–342 mbsf. In the upper part of AND–1B, clear alternations between low and high NGR values distinguish between diatomite (lacking minerals containing naturally radioactive K, U, and Th) and diamictite (containing K-bearing clays, K-feldspar, mica, and heavy minerals). In the lower open hole logged section, NGR and magnetic susceptibility can also distinguish claystones (rich in K-bearing clay minerals, relatively low in magnetite) and diamictites (relatively high in magnetite). Sandstones can be distinguished by their high resistivity values in AND–1B. On the basis of these three downhole logs, diamictite, claystones, and sandstones can be predicted correctly for 74% of the 692–1018 mbsf interval. The logs were then used to predict facies for the 6% of this interval that was unrecovered by coring. Given the understanding of the physical property characteristics of different facies, it is also possible to identify subtle changes in lithology from the physical properties and help refine parts of the lithostratigraphy, for example, the varying terrigenous content of diatomites and the transitions from subice diamictite to open-water diatomite.
46 CFR 35.30-10 - Cargo tank hatches, ullage holes, and Butterworth plates-TB/ALL.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 1 2011-10-01 2011-10-01 false Cargo tank hatches, ullage holes, and Butterworth plates... OPERATIONS General Safety Rules § 35.30-10 Cargo tank hatches, ullage holes, and Butterworth plates—TB/ALL. No cargo tank hatches, ullage holes, or Butterworth plates shall be opened or shall remain open...
46 CFR 35.30-10 - Cargo tank hatches, ullage holes, and Butterworth plates-TB/ALL.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 1 2013-10-01 2013-10-01 false Cargo tank hatches, ullage holes, and Butterworth plates... OPERATIONS General Safety Rules § 35.30-10 Cargo tank hatches, ullage holes, and Butterworth plates—TB/ALL. No cargo tank hatches, ullage holes, or Butterworth plates shall be opened or shall remain open...
46 CFR 35.30-10 - Cargo tank hatches, ullage holes, and Butterworth plates-TB/ALL.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 1 2010-10-01 2010-10-01 false Cargo tank hatches, ullage holes, and Butterworth plates... OPERATIONS General Safety Rules § 35.30-10 Cargo tank hatches, ullage holes, and Butterworth plates—TB/ALL. No cargo tank hatches, ullage holes, or Butterworth plates shall be opened or shall remain open...
46 CFR 35.30-10 - Cargo tank hatches, ullage holes, and Butterworth plates-TB/ALL.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 1 2012-10-01 2012-10-01 false Cargo tank hatches, ullage holes, and Butterworth plates... OPERATIONS General Safety Rules § 35.30-10 Cargo tank hatches, ullage holes, and Butterworth plates—TB/ALL. No cargo tank hatches, ullage holes, or Butterworth plates shall be opened or shall remain open...
46 CFR 35.30-10 - Cargo tank hatches, ullage holes, and Butterworth plates-TB/ALL.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 1 2014-10-01 2014-10-01 false Cargo tank hatches, ullage holes, and Butterworth plates... OPERATIONS General Safety Rules § 35.30-10 Cargo tank hatches, ullage holes, and Butterworth plates—TB/ALL. No cargo tank hatches, ullage holes, or Butterworth plates shall be opened or shall remain open...
IODP Expedition 335: Deep Sampling in ODP Hole 1256D
NASA Astrophysics Data System (ADS)
Teagle, D. A. H.; Ildefonse, B.; Blum, P.; IODP Expedition 335 Scientists, the
2012-04-01
Observations of the gabbroic layers of untectonized ocean crust are essential to test theoretical models of the accretion of new crust at mid-ocean ridges. Integrated Ocean Drilling Program (IODP) Expedition 335 ("Superfast Spreading Rate Crust 4") returned to Ocean Drilling Program (ODP) Hole 1256D with the intention of deepening this reference penetration of intact ocean crust a significant distance (~350 m) into cumulate gabbros. Three earlier cruises to Hole 1256D (ODP 206, IODP 309/312) have drilled through the sediments, lavas, and dikes and 100 m into a complex dike-gabbro transition zone. Operations on IODP Expedition 335 proved challenging throughout, with almost three weeks spent re-opening and securing unstable sections of the hole. When coring commenced, the comprehensive destruction of the coring bit required further remedial operations to remove junk and huge volumes of accumulated drill cuttings. Hole-cleaning operations using junk baskets were successful, and they recovered large irregular samples that document a hitherto unseen sequence of evolving geological conditions and the intimate coupling between temporally and spatially intercalated intrusive, hydrothermal, contact-metamorphic, partial melting, and retrogressive processes. Hole 1256D is now clean of junk, and it has been thoroughly cleared of the drill cuttings that hampered operations during this and previous expeditions. At the end of Expedition 335, we briefly resumed coring before undertaking cementing operations to secure problematic intervals. To ensure the greatest scientific return from the huge efforts to stabilize this primary ocean lithosphere reference site, it would be prudent to resume the deepening of Hole 1256D in the nearest possible future while it is open to full depth. doi:10.2204/iodp.sd.13.04.2011
NASA Technical Reports Server (NTRS)
Hodge, Andrew J.; Nettles, Alan T.; Jackson, Justin R.
2011-01-01
Notched (open hole) composite laminates were tested in compression. The effect on strength of various sizes of through holes was examined. Results were compared to the average stress criterion model. Additionally, laminated sandwich structures were damaged from low-velocity impact with various impact energy levels and different impactor geometries. The compression strength relative to damage size was compared to the notched compression result strength. Open-hole compression strength was found to provide a reasonable bound on compression after impact.
Noce, T.E.; Holzer, T.L.
2003-01-01
The long-term stability of deep holes 1.75 inches. (4.4 cm) in diameter by 98.4 feet (30 m) created by cone penetration testing (CPT) was monitored at a site in California underlain by Holocene and Pleistocene age alluvial fan deposits. Portions of the holes remained open both below and above the 28.6-foot (8.7 m)-deep water table for approximately three years, when the experiment was terminated. Hole closure appears to be a very slow process that may take decades in the stiff soils studied here. Other experience suggests holes in softer soils may also remain open. Thus, despite their small diameter, CPT holes may remain open for years and provide paths for rapid migration of contaminants. The observations confirm the need to grout holes created by CPT soundings as well as other direct-push techniques in areas where protection of shallow ground water is important.
Experimental Study on Fatigue Behaviour of Shot-Peened Open-Hole Steel Plates
Wang, Zhi-Yu; Wang, Qing-Yuan; Cao, Mengqin
2017-01-01
This paper presents an experimental study on the fatigue behaviour of shot-peened open-hole plates with Q345 steel. The beneficial effects induced by shot peening on the fatigue life improvement are highlighted. The characteristic fatigue crack initiation and propagation modes of open-hole details under fatigue loading are revealed. The surface hardening effect brought by the shot peening is analyzed from the aspects of in-depth micro-hardness and compressive residual stress. The fatigue life results are evaluated and related design suggestions are made as a comparison with codified detail categories. In particular, a fracture mechanics theory-based method is proposed and demonstrated its validity in predicting the fatigue life of studied shot-peened open-hole details. PMID:28841160
Solar Open Flux Migration from Pole to Pole: Magnetic Field Reversal.
Huang, G-H; Lin, C-H; Lee, L C
2017-08-25
Coronal holes are solar regions with low soft X-ray or low extreme ultraviolet intensities. The magnetic fields from coronal holes extend far away from the Sun, and thus they are identified as regions with open magnetic field lines. Coronal holes are concentrated in the polar regions during the sunspot minimum phase, and spread to lower latitude during the rising phase of solar activity. In this work, we identify coronal holes with outward and inward open magnetic fluxes being in the opposite poles during solar quiet period. We find that during the sunspot rising phase, the outward and inward open fluxes perform pole-to-pole trans-equatorial migrations in opposite directions. The migration of the open fluxes consists of three parts: open flux areas migrating across the equator, new open flux areas generated in the low latitude and migrating poleward, and new open flux areas locally generated in the polar region. All three components contribute to the reversal of magnetic polarity. The percentage of contribution from each component is different for different solar cycle. Our results also show that the sunspot number is positively correlated with the lower-latitude open magnetic flux area, but negatively correlated with the total open flux area.
30 CFR 817.13 - Casing and sealing of exposed underground openings: General requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... underground openings: General requirements. Each exploration hole, other drillhole or borehole, shaft, well..., fish and wildlife, and machinery in the permit area and adjacent area. Each exploration hole, drill hole or borehole or well that is uncovered or exposed by mining activities within the permit area shall...
30 CFR 817.13 - Casing and sealing of exposed underground openings: General requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... underground openings: General requirements. Each exploration hole, other drillhole or borehole, shaft, well..., fish and wildlife, and machinery in the permit area and adjacent area. Each exploration hole, drill hole or borehole or well that is uncovered or exposed by mining activities within the permit area shall...
49 CFR 177.837 - Class 3 materials.
Code of Federal Regulations, 2014 CFR
2014-10-01
... through an open filling hole, one end of a bond wire shall be connected to the stationary system piping or... interconnected.) This connection must be made before any filling hole is opened, and must remain in place until after the last filling hole has been closed. Additional bond wires are not needed around All-Metal...
49 CFR 177.837 - Class 3 materials.
Code of Federal Regulations, 2012 CFR
2012-10-01
... through an open filling hole, one end of a bond wire shall be connected to the stationary system piping or... interconnected.) This connection must be made before any filling hole is opened, and must remain in place until after the last filling hole has been closed. Additional bond wires are not needed around All-Metal...
30 CFR 817.13 - Casing and sealing of exposed underground openings: General requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... underground openings: General requirements. Each exploration hole, other drillhole or borehole, shaft, well..., fish and wildlife, and machinery in the permit area and adjacent area. Each exploration hole, drill hole or borehole or well that is uncovered or exposed by mining activities within the permit area shall...
49 CFR 177.837 - Class 3 materials.
Code of Federal Regulations, 2013 CFR
2013-10-01
... through an open filling hole, one end of a bond wire shall be connected to the stationary system piping or... interconnected.) This connection must be made before any filling hole is opened, and must remain in place until after the last filling hole has been closed. Additional bond wires are not needed around All-Metal...
30 CFR 817.13 - Casing and sealing of exposed underground openings: General requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... underground openings: General requirements. Each exploration hole, other drillhole or borehole, shaft, well..., fish and wildlife, and machinery in the permit area and adjacent area. Each exploration hole, drill hole or borehole or well that is uncovered or exposed by mining activities within the permit area shall...
30 CFR 817.13 - Casing and sealing of exposed underground openings: General requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... underground openings: General requirements. Each exploration hole, other drillhole or borehole, shaft, well..., fish and wildlife, and machinery in the permit area and adjacent area. Each exploration hole, drill hole or borehole or well that is uncovered or exposed by mining activities within the permit area shall...
Bujnowski, K; Getgood, A; Leitch, K; Farr, J; Dunning, C; Burkhart, T A
2018-02-01
It has been suggested that the use of a pilot-hole may reduce the risk of fracture to the lateral cortex. Therefore the purpose of this study was to determine the effect of a pilot hole on the strains and occurrence of fractures at the lateral cortex during the opening of a high tibial osteotomy (HTO) and post-surgery loading. A total of 14 cadaveric tibias were randomized to either a pilot hole (n = 7) or a no-hole (n = 7) condition. Lateral cortex strains were measured while the osteotomy was opened 9 mm and secured in place with a locking plate. The tibias were then subjected to an initial 800 N load that increased by 200 N every 5000 cycles, until failure or a maximum load of 2500 N. There was no significant difference in the strains on the lateral cortex during HTO opening between the pilot hole and no-hole conditions. Similarly, the lateral cortex and fixation plate strains were not significantly different during cyclic loading between the two conditions. Using a pilot hole did not significantly decrease the strains experienced at the lateral cortex, nor did it reduce the risk of fracture. The nonsignificant differences found here most likely occurred because the pilot hole merely translated the stress concentration laterally to a parallel point on the surface of the hole. Cite this article : K. Bujnowski, A. Getgood, K. Leitch, J. Farr, C. Dunning, T. A. Burkhart. A pilot hole does not reduce the strains or risk of fracture to the lateral cortex during and following a medial opening wedge high tibial osteotomy in cadaveric specimens. Bone Joint Res 2018;7:166-172. DOI: 10.1302/2046-3758.72.BJR-2017-0337.R1.
Effect of Impact Damage and Open Hole on Compressive Strength of Hybrid Composite Laminates
NASA Technical Reports Server (NTRS)
Hiel, Clement; Brinson, H. F.
1993-01-01
Impact damage tolerance is a frequently listed design requirement for composites hardware. The effect of impact damage and open hole size on laminate compressive strength was studied on sandwich beam specimens which combine CFRP-GFRP hybrid skins and a syntactic foam core. Three test specimen configurations have been investigated for this study. The first two were sandwich beams which were loaded in pure bending (by four point flexure). One series had a skin damaged by impact, and the second series had a circular hole machined through one of the skins. The reduction of compressive strength with increasing damage (hole) size was compared. Additionally a third series of uniaxially loaded open hole compression coupons were tested to generate baseline data for comparison with both series of sandwich beams.
Development of Ren Qiou fractured carbonate oil pools by water injection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Z.; Li, G.
1982-01-01
This work gives a brief description on the geologic characteristics of Ren Qiou oil field and its development. Different methods have been used in its reservoir engineering study such as outcrop investigation, fracture and crevice description in tunnels, observation on core samples and their statistical data, thin section observation, casting section, fluorescence section, scanning electron microscope, mercury injection and withdrawal, down-hole television, and geophysical well logging. Physical modeling, 3-dimensional numeric simulation and reservoir performance analysis, and production profiles by production logging in an open hole, have been used to study mechanics of displacing oil by water and the movement ofmore » oil and water in reservoir pools production technologies with double-porosity. Pressure maintenance by bottomwater injection to keep producing wells flowing, acidization with emulsifying acid to penetrate deeply into the reservoir formation, and water plugging with chemical agent, have been used to maintain a consistent annual recovery rate. 11 references.« less
40 CFR 60.113b - Testing and procedures.
Code of Federal Regulations, 2010 CFR
2010-07-01
...), prior to filling the storage vessel with VOL. If there are holes, tears, or other openings in the..., or the seal is detached, or there are holes or tears in the seal fabric, the owner or operator shall... has defects, the primary seal has holes, tears, or other openings in the seal or the seal fabric, or...
Strain measurements in composite bolted-joint specimens
NASA Technical Reports Server (NTRS)
Hyer, M. W.; Lightfoot, M. C.; Perry, J. C.
1979-01-01
Strain data from a series of bolted joint tests is presented. Double lap, double hole, double lap, single hole, and open hole tensile specimens were tested and the strain gage locations, load strain responses, and load axial displacement responses are presented. The open hole specimens were gaged to determine strain concentration factors. The double lap, double hole specimens were gaged to determine the uniformity of the strain in the joint and the amount of load transferred past the first bolt. The measurements indicated roughly half the load passed the first bolt to be reacted by the second bolt.
NASA Technical Reports Server (NTRS)
Guynn, E. Gail; Bradley, Walter L.
1989-01-01
Measurements of the stress supported by the crush zone in open hole specimens loaded in compression were carried out on two composite laminates, AS4/PEEK and IM6/HST-7, containing circular holes of three different diameters. Compression tests were conducted in a specially designed high-axial-alignment material test system machine. Results indicated that the local stress supported in the crush zone is much less than the stress required to initiate the crush, providing the reason for the finding of Guynn et al. (1987) that the Dugdale model does not accurately predict the load-damage size relationship of open hole composite specimens loaded in compression.
Sources of magnetic fields in recurrent interplanetary streams
NASA Technical Reports Server (NTRS)
Burlaga, L. F.; Behannon, K. W.; Hansen, S. F.; Pneuman, G. W.; Feldman, W. C.
1978-01-01
The paper examines sources of magnetic fields in recurrent streams observed by the Imp 8 and Heos spacecraft at 1 AU and by Mariner 10 en route to Mercury between October 31, 1973 and February 9, 1974, during Carrington rotations 1607-1610. Although most fields and plasmas at 1 AU were related to coronal holes and the magnetic field lines were open in those holes, some of the magnetic fields and plasmas at 1 AU were related to open field line regions on the sun which were not associated with known coronal holes, indicating that open field lines may be more basic than coronal holes as sources of the solar wind. Magnetic field intensities in five equatorial coronal holes, certain photospheric magnetic fields, and the coronal footprints of the sector boundaries on the source surface are characterized.
The Evolution of Open Magnetic Flux Driven by Photospheric Dynamics
NASA Technical Reports Server (NTRS)
Linker, Jon A.; Lionello, Roberto; Mikic, Zoran; Titov, Viacheslav S.; Antiochos, Spiro K.
2010-01-01
The coronal magnetic field is of paramount importance in solar and heliospheric physics. Two profoundly different views of the coronal magnetic field have emerged. In quasi-steady models, the predominant source of open magnetic field is in coronal holes. In contrast, in the interchange model, the open magnetic flux is conserved, and the coronal magnetic field can only respond to the photospheric evolution via interchange reconnection. In this view the open magnetic flux diffuses through the closed, streamer belt fields, and substantial open flux is present in the streamer belt during solar minimum. However, Antiochos and co-workers, in the form of a conjecture, argued that truly isolated open flux cannot exist in a configuration with one heliospheric current sheet (HCS) - it will connect via narrow corridors to the polar coronal hole of the same polarity. This contradicts the requirements of the interchange model. We have performed an MHD simulation of the solar corona up to 20R solar to test both the interchange model and the Antiochos conjecture. We use a synoptic map for Carrington Rotation 1913 as the boundary condition for the model, with two small bipoles introduced into the region where a positive polarity extended coronal hole forms. We introduce flows at the photospheric boundary surface to see if open flux associated with the bipoles can be moved into the closed-field region. Interchange reconnection does occur in response to these motions. However, we find that the open magnetic flux cannot be simply injected into closed-field regions - the flux eventually closes down and disconnected flux is created. Flux either opens or closes, as required, to maintain topologically distinct open and closed field regions, with no indiscriminate mixing of the two. The early evolution conforms to the Antiochos conjecture in that a narrow corridor of open flux connects the portion of the coronal hole that is nearly detached by one of the bipoles. In the later evolution, a detached coronal hole forms, in apparent violation of the Antiochos conjecture. Further investigation reveals that this detached coronal hole is actually linked to the extended coronal hole by a separatrix footprint on the photosphere of zero width. Therefore, the essential idea of the conjecture is preserved, if we modify it to state that coronal holes in the same polarity region are always linked, either by finite width corridors or separatrix footprints. The implications of these results for interchange reconnection and the sources of the slow solar wind are briefly discussed.
The Evolution of Open Magnetic Flux Driven by Photospheric Dynamics
NASA Astrophysics Data System (ADS)
Linker, Jon A.; Lionello, Roberto; Mikić, Zoran; Titov, Viacheslav S.; Antiochos, Spiro K.
2011-04-01
The coronal magnetic field is of paramount importance in solar and heliospheric physics. Two profoundly different views of the coronal magnetic field have emerged. In quasi-steady models, the predominant source of open magnetic field is in coronal holes. In contrast, in the interchange model, the open magnetic flux is conserved, and the coronal magnetic field can only respond to the photospheric evolution via interchange reconnection. In this view, the open magnetic flux diffuses through the closed, streamer belt fields, and substantial open flux is present in the streamer belt during solar minimum. However, Antiochos and coworkers, in the form of a conjecture, argued that truly isolated open flux cannot exist in a configuration with one heliospheric current sheet—it will connect via narrow corridors to the polar coronal hole of the same polarity. This contradicts the requirements of the interchange model. We have performed an MHD simulation of the solar corona up to 20 R sun to test both the interchange model and the Antiochos conjecture. We use a synoptic map for Carrington rotation 1913 as the boundary condition for the model, with two small bipoles introduced into the region where a positive polarity extended coronal hole forms. We introduce flows at the photospheric boundary surface to see if open flux associated with the bipoles can be moved into the closed-field region. Interchange reconnection does occur in response to these motions. However, we find that the open magnetic flux cannot be simply injected into closed-field regions—the flux eventually closes down and disconnected flux is created. Flux either opens or closes, as required, to maintain topologically distinct open- and closed-field regions, with no indiscriminate mixing of the two. The early evolution conforms to the Antiochos conjecture in that a narrow corridor of open flux connects the portion of the coronal hole that is nearly detached by one of the bipoles. In the later evolution, a detached coronal hole forms, in apparent violation of the Antiochos conjecture. Further investigation reveals that this detached coronal hole is actually linked to the extended coronal hole by a separatrix footprint on the photosphere of zero width. Therefore, the essential idea of the conjecture is preserved, if we modify it to state that coronal holes in the same polarity region are always linked, either by finite width corridors or separatrix footprints. The implications of these results for interchange reconnection and the sources of the slow solar wind are briefly discussed.
30 CFR 250.197 - Data and information to be made available to the public or for limited inspection.
Code of Federal Regulations, 2011 CFR
2011-07-01
... paragraph (b) of this section, whichever is earlier. (8) MMS-133S Open Hole Data Report Boxes 7 and 8 When... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Data and information to be made available to... OPERATIONS IN THE OUTER CONTINENTAL SHELF General Information and Reporting Requirements § 250.197 Data and...
Geometry and Hydraulics of Englacial Conduits, Storglaciaren, Sweden
NASA Astrophysics Data System (ADS)
Fountain, A. G.; Schlichting, R.; Frodin, S.; Jacobel, R. W.
2001-12-01
Englacial conduits are the primary structure responsible for transporting surface water to the base of a glacier, where it supplies the subglacial hydraulic system and, in turn, affects glacier movement. Despite the well-known theoretical descriptions of englacial conduits, little direct evidence exists about their geometry and hydraulics. In July 2001, we initiated a field effort on Storglaciären, Sweden, to intersect englacial conduits by drilling into the glacier using a hot water drill. A companion project (Jacobel et al., this session) attempted to detect the englacial conduits using ground-penetrating radar. In a typical borehole, the water level remained at the surface while drilling through the impermeable ice. Once a connection was made, the water level dropped roughly 10 m and remained low despite continued water pumping. A small video camera was lowered, with attachments, to measure the geometry of the opening, and water flow speed. The water level in the hole provided a piezometric measure of the pressure. We drilled 22 holes at 3 separate locations and 17 (77%) connected englacially, the remaining 5 reached the bed without englacial connection, of which 2 drained at the bed. The geometry of the connections was highly irregular in cross-section with 1-2 cm openings, reminiscent of crevasse-like features rather than circular cross-sections as anticipated from the theoretical literature. Flow behavior was observed by tracking particle motion. The flow was complicated, in part by the inferred tangential intersection between the borehole and structure, and by the observed surging behavior. Flow speeds were low, on the order of 1 cm sec-1. Water level records from 3 different holes over several days exhibited highly correlated variations and large diurnal excursions. In contrast, records from holes drilled to the bed showed little variation. Based on these measurements, our conceptual picture of the englacial system is that of a sluggish flow system composed of many passages with hydraulically inefficient cross-sections. In general, correlation between the radar images and directly measured connections was inconclusive. However, in one case we believe we drilled to a very clear linear subsurface structure imaged by the radar.
Interchange Reconnection and Coronal Hole Dynamics
NASA Technical Reports Server (NTRS)
Edmondson, J. K.; Antiochos, S. K.; DeVore, C. R.; Lynch, B. J.; Zurbuchen, T. H.
2011-01-01
We investigate the effect of magnetic reconnection between open and closed field, (often referred to as "interchange" reconnection), on the dynamics and topology of coronal hole boundaries. The most important and most prevalent 3D topology of the interchange process is that of a small-scale bipolar magnetic field interacting with a large-scale background field. We determine the evolution of such a magnetic topology by numerical solution of the fully 3D MHD equations in spherical coordinates. First, we calculate the evolution of a small-scale bipole that initially is completely inside an open field region and then is driven across a coronal hole boundary by photospheric motions. Next the reverse situation is calculated in which the bipole is initially inside the closed region and driven toward the coronal hole boundary. In both cases we find that the stress imparted by the photospheric motions results in deformation of the separatrix surface between the closed field of the bipole and the background field, leading to rapid current sheet formation and to efficient reconnection. When the bipole is inside the open field region, the reconnection is of the interchange type in that it exchanges open and closed field. We examine, in detail, the topology of the field as the bipole moves across the coronal hole boundary, and find that the field remains well-connected throughout this process. Our results imply that open flux cannot penetrate deeply into the closed field region below a helmet streamer and, hence, support the quasi-steady models in which open and closed flux remain topologically distinct. Our results also support the uniqueness hypothesis for open field regions as postulated by Antiochos et al. We discuss the implications of this work for coronal observations. Subject Headings: Sun: corona Sun: magnetic fields Sun: reconnection Sun: coronal hole
Diffo Kaze, Arnaud; Maas, Stefan; Hoffmann, Alexander; Pape, Dietrich
2017-12-01
This study aimed to investigate, by means of finite element analysis, the effect of a drill hole at the end of a horizontal osteotomy to reduce the risk of lateral cortex fracture while performing an opening wedge high tibial osteotomy (OWHTO). The question was whether drilling a hole relieves stress and increases the maximum correction angle without fracture of the lateral cortex depending on the ductility of the cortical bone. Two different types of osteotomy cuts were considered; one with a drill hole (diameter 5 mm) and the other without the hole. The drill holes were located about 20 mm distally to the tibial plateau and 6 mm medially to the lateral cortex, such that the minimal thickness of the contralateral cortical bone was 5 mm. Based on finite element calculations, two approaches were used to compare the two types of osteotomy cuts considered: (1) Assessing the static strength using local stresses following the idea of the FKM-guideline, subsequently referred to as the "FKM approach" and (2) limiting the total strain during the opening of the osteotomy wedge, subsequently referred to as "strain approach". A critical opening angle leading to crack initiation in the opposite lateral cortex was determined for each approach and was defined as comparative parameter. The relation to bone aging was investigated by considering the material parameters of cortical bones from young and old subjects. The maximum equivalent (von-Mises) stress was smaller for the cases with a drill hole at the end of the osteotomy cut. The critical angle was approximately 1.5 times higher for the specimens with a drill hole compared to those without. This corresponds to an average increase of 50%. The calculated critical angle for all approaches is below 5°. The critical angle depends on the used approach, on patient's age and assumed ductility of the cortical bone. Drilling a hole at the end of the osteotomy reduces the stresses in the lateral cortex and increases the critical opening angle prior to cracking of the opposite cortex in specimen with small correction angles. But the difference from having a drill hole or not is not so significant, especially for older patients. The ductility of the cortical bone is the decisive parameter for the critical opening angle.
Identifying open magnetic field regions of the Sun and their heliospheric counterparts
NASA Astrophysics Data System (ADS)
Krista, L. D.; Reinard, A.
2017-12-01
Open magnetic regions on the Sun are either long-lived (coronal holes) or transient (dimmings) in nature. Both phenomena are fundamental to our understanding of the solar behavior as a whole. Coronal holes are the sources of high-speed solar wind streams that cause recurrent geomagnetic storms. Furthermore, the variation of coronal hole properties (area, location, magnetic field strength) over the solar activity cycle is an important marker of the global evolution of the solar magnetic field. Dimming regions, on the other hand, are short-lived coronal holes that often emerge in the wake of solar eruptions. By analyzing their physical properties and their temporal evolution, we aim to understand their connection with their eruptive counterparts (flares and coronal mass ejections) and predict the possibility of a geomagnetic storm. The author developed the Coronal Hole Automated Recognition and Monitoring (CHARM) and the Coronal Dimming Tracker (CoDiT) algorithms. These tools not only identify but track the evolution of open magnetic field regions. CHARM also provides daily coronal hole maps, that are used for forecasts at the NOAA Space Weather Prediction Center. Our goal is to better understand the processes that give rise to eruptive and non-eruptive open field regions and investigate how these regions evolve over time and influence space weather.
The Effect of Hole Quality on the Fatigue Life of 2024-T3 Aluminum Alloy Sheet
NASA Technical Reports Server (NTRS)
Everett, Richard A., Jr.
2004-01-01
This paper presents the results of a study whose main objective was to determine which type of fabrication process would least affect the fatigue life of an open-hole structural detail. Since the open-hole detail is often the fundamental building block for determining the stress concentration of built-up structural parts, it is important to understand any factor that can affect the fatigue life of an open hole. A test program of constant-amplitude fatigue tests was conducted on five different sets of test specimens each made using a different hole fabrication process. Three of the sets used different mechanical drilling procedures while a fourth and fifth set were mechanically drilled and then chemically polished. Two sets of specimens were also tested under spectrum loading to aid in understanding the effects of residual compressive stresses on fatigue life. Three conclusions were made from this study. One, the residual compressive stresses caused by the hole-drilling process increased the fatigue life by two to three times over specimens that were chemically polished after the holes were drilled. Second, the chemical polishing process does not appear to adversely affect the fatigue life. Third, the chemical polishing process will produce a stress-state adjacent to the hole that has insignificant machining residual stresses.
Bolted joints in graphite-epoxy composites
NASA Technical Reports Server (NTRS)
Hart-Smith, L. J.
1976-01-01
All-graphite/epoxy laminates and hybrid graphite-glass/epoxy laminates were tested. The tests encompassed a range of geometries for each laminate pattern to cover the three basic failure modes - net section tension failure through the bolt hole, bearing and shearout. Static tensile and compressive loads were applied. A constant bolt diameter of 6.35 mm (0.25 in.) was used in the tests. The interaction of stress concentrations associated with multi-row bolted joints was investigated by testing single- and double-row bolted joints and open-hole specimens in tension. For tension loading, linear interaction was found to exist between the bearing stress reacted at a given bolt hole and the remaining tension stress running by that hole to be reacted elsewhere. The interaction under compressive loading was found to be non-linear. Comparative tests were run using single-lap bolted joints and double-lap joints with pin connection. Both of these joint types exhibited lower strengths than were demonstrated by the corresponding double-lap joints. The analysis methods developed here for single bolt joints are shown to be capable of predicting the behavior of multi-row joints.
6. OPEN HEARTH NO. 4 TRESTLE. THE ARCH WITH THE ...
6. OPEN HEARTH NO. 4 TRESTLE. THE ARCH WITH THE GATE IS KNOWN AS THE HOLE IN THE WALL BY FORMER STEELWORKERS. FOR YEARS THE HOLE IN THE WALL PROVIDED ACCESS TO THE INTERIOR OF THE MILL AND TO THE PAYMASTER'S OFFICE. (Martin Stupich) - U.S. Steel Homestead Works, Open Hearth Steelmaking Plant, Along Monongahela River, Homestead, Allegheny County, PA
The Thermodynamics of Black Holes.
Wald, Robert M
2001-01-01
We review the present status of black hole thermodynamics. Our review includes discussion of classical black hole thermodynamics, Hawking radiation from black holes, the generalized second law, and the issue of entropy bounds. A brief survey also is given of approaches to the calculation of black hole entropy. We conclude with a discussion of some unresolved open issues.
30 CFR 816.15 - Casing and sealing of drilled holes: Permanent.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Casing and sealing of drilled holes: Permanent...-SURFACE MINING ACTIVITIES § 816.15 Casing and sealing of drilled holes: Permanent. When no longer needed... exploration hole, other drilled hole or borehole, well, and other exposed underground opening shall be capped...
30 CFR 816.15 - Casing and sealing of drilled holes: Permanent.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Casing and sealing of drilled holes: Permanent...-SURFACE MINING ACTIVITIES § 816.15 Casing and sealing of drilled holes: Permanent. When no longer needed... exploration hole, other drilled hole or borehole, well, and other exposed underground opening shall be capped...
30 CFR 816.15 - Casing and sealing of drilled holes: Permanent.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Casing and sealing of drilled holes: Permanent...-SURFACE MINING ACTIVITIES § 816.15 Casing and sealing of drilled holes: Permanent. When no longer needed... exploration hole, other drilled hole or borehole, well, and other exposed underground opening shall be capped...
30 CFR 816.15 - Casing and sealing of drilled holes: Permanent.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Casing and sealing of drilled holes: Permanent...-SURFACE MINING ACTIVITIES § 816.15 Casing and sealing of drilled holes: Permanent. When no longer needed... exploration hole, other drilled hole or borehole, well, and other exposed underground opening shall be capped...
The EST Model for Predicting Progressive Damage and Failure of Open Hole Bending Specimens
NASA Technical Reports Server (NTRS)
Joseph, Ashith P. K.; Waas, Anthony M.; Pineda, Evan J.
2016-01-01
Progressive damage and failure in open hole composite laminate coupons subjected to flexural loading is modeled using Enhanced Schapery Theory (EST). Previous studies have demonstrated that EST can accurately predict the strength of open hole coupons under remote tensile and compressive loading states. This homogenized modeling approach uses single composite shell elements to represent the entire laminate in the thickness direction and significantly reduces computational cost. Therefore, when delaminations are not of concern or are active in the post-peak regime, the version of EST presented here is a good engineering tool for predicting deformation response. Standard coupon level tests provides all the input data needed for the model and they are interpreted in conjunction with finite element (FE) based simulations. Open hole bending test results of three different IM7/8552 carbon fiber composite layups agree well with EST predictions. The model is able to accurately capture the curvature change and deformation localization in the specimen at and during the post catastrophic load drop event.
Sources of magnetic fields in recurrent interplanetary streams
NASA Technical Reports Server (NTRS)
Burlaga, L. F.; Behannon, K. W.; Hansen, S. F.; Pneuman, G. W.; Feldman, W. C.
1977-01-01
The sources of magnetic fields in recurrent streams were examined. Most fields and plasmas at 1 AU were related to coronal holes, and the magnetic field lines were open in those holes. Some of the magnetic fields and plasmas were related to open field line regions on the sun which were not associated with known coronal holes, indicating that open field lines are more basic than coronal holes as sources of the solar wind. Magnetic field intensities in five equatorial coronal holes ranged from 2G to 18G. Average measured photospheric magnetic fields along the footprints of the corresponding unipolar fields on circular equatorial arcs at 2.5 solar radii had a similar range and average, but in two cases the intensities were approximately three times higher than the projected intensities. The coronal footprints of the sector boundaries on the source surface at 2.5 solar radii, meandered between -45 deg and +45 deg latitude, and their inclination ranged from near zero to near ninety degrees.
Experimental Demonstration on Air Cavity Mode of Violin Using Holed Sheets of Paper
ERIC Educational Resources Information Center
Matsutani, Akihiro
2018-01-01
The fundamental air cavity mode (A0) of a violin was investigated from the viewpoint of its dependence on the opening area and shape by using holed sheets of paper. The dependences of the frequency response of the A0 cavity mode on the shape, opening area, and orientation of the openings were observed. It was also demonstrated that the change of…
Code of Federal Regulations, 2011 CFR
2011-07-01
... carbon steel and 1/4-inch thick plywood, bonded together in that order. Opener hole. The first hole or holes fired in a round blasted off the solid to create an additional free face. Permissible blasting...
Code of Federal Regulations, 2014 CFR
2014-07-01
... carbon steel and 1/4-inch thick plywood, bonded together in that order. Opener hole. The first hole or holes fired in a round blasted off the solid to create an additional free face. Permissible blasting...
Code of Federal Regulations, 2012 CFR
2012-07-01
... carbon steel and 1/4-inch thick plywood, bonded together in that order. Opener hole. The first hole or holes fired in a round blasted off the solid to create an additional free face. Permissible blasting...
Code of Federal Regulations, 2013 CFR
2013-07-01
... carbon steel and 1/4-inch thick plywood, bonded together in that order. Opener hole. The first hole or holes fired in a round blasted off the solid to create an additional free face. Permissible blasting...
Code of Federal Regulations, 2010 CFR
2010-07-01
... carbon steel and 1/4-inch thick plywood, bonded together in that order. Opener hole. The first hole or holes fired in a round blasted off the solid to create an additional free face. Permissible blasting...
Cooling circuit for a gas turbine bucket and tip shroud
Willett, Fred Thomas
2004-07-13
An open cooling circuit for a gas turbine airfoil and associated tip shroud includes a first group of cooling holes internal to the airfoil and extending in a radially outward direction generally along a leading edge of the airfoil; a second group of cooling holes internal to the airfoil and extending in a radially outward direction generally along a trailing edge of the airfoil. A common plenum is formed in the tip shroud in direct communication with the first and second group of cooling holes, but a second plenum may be provided for the second group of radial holes. A plurality of exhaust holes extends from the plenum(s), through the tip shroud and opening along a peripheral edge of the tip shroud.
2016-09-21
A dark coronal hole that was facing towards Earth for several days spewed streams of solar wind in our direction (Sept. 18-21, 2016). A coronal hole is a magnetically open region. The magnetic fields have opened up allowing solar wind (comprised of charged particles) to stream into space. Gusts of solar wind can generate beautiful aurora when they reach Earth. The video clip shows the sun in a wavelength of extreme ultraviolet light. Movies are available at http://photojournal.jpl.nasa.gov/catalog/PIA21067
Magnetic reconnection and Blandford-Znajek process around rotating black holes
NASA Astrophysics Data System (ADS)
Singh, Chandra B.; Garofalo, David; de Gouveia Dal Pino, Elisabete M.
2018-05-01
We provide a semi-analytic comparison between the Blandford-Znajek (BZ) and the magnetic reconnection power for accreting black holes in the curved spacetime of a rotating black hole. Our main result is that for a realistic range of astrophysical parameters, the reconnection power may compete with the BZ power. The field lines anchored close to or on the black hole usually evolve to open field lines in general relativistic magnetohydrodynamic (GRMHD) simulations. The BZ power is dependent on the black hole spin while magnetic reconnection power is independent of it for the near force-free magnetic configuration with open field lines adopted in our theoretical study. This has obvious consequences for the time evolution of such systems particularly in the context of black hole X-ray binary state transitions. Our results provide analytical justification of the results obtained in GRMHD simulations.
Foundation Report, Dam & Spillway, Taylorsville Lake, Ohio River Basin, Salt River, Kentucky.
1983-04-01
methods. The spacing of the primary holes was set on 10- foot centers, followed by secondary holes on 5- foot centers and tertiary holes on 2.5- foot ...88’ and 5+00. This area was further divided into 100- foot sections and drilled and grouted in alternating sections. Sections 7, 9 and 5 were drilled...100- foot sections and grouted by alternate sections to preclude violating the 100- foot spacing requirement. Many of the first holes on the left abutment
30 CFR 816.13 - Casing and sealing of drilled holes: General requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Casing and sealing of drilled holes: General...-SURFACE MINING ACTIVITIES § 816.13 Casing and sealing of drilled holes: General requirements. Each exploration hole, other drill or borehole, well, or other exposed underground opening shall be cased, sealed...
30 CFR 816.13 - Casing and sealing of drilled holes: General requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Casing and sealing of drilled holes: General...-SURFACE MINING ACTIVITIES § 816.13 Casing and sealing of drilled holes: General requirements. Each exploration hole, other drill or borehole, well, or other exposed underground opening shall be cased, sealed...
30 CFR 816.13 - Casing and sealing of drilled holes: General requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Casing and sealing of drilled holes: General...-SURFACE MINING ACTIVITIES § 816.13 Casing and sealing of drilled holes: General requirements. Each exploration hole, other drill or borehole, well, or other exposed underground opening shall be cased, sealed...
30 CFR 816.13 - Casing and sealing of drilled holes: General requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Casing and sealing of drilled holes: General...-SURFACE MINING ACTIVITIES § 816.13 Casing and sealing of drilled holes: General requirements. Each exploration hole, other drill or borehole, well, or other exposed underground opening shall be cased, sealed...
30 CFR 816.13 - Casing and sealing of drilled holes: General requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Casing and sealing of drilled holes: General...-SURFACE MINING ACTIVITIES § 816.13 Casing and sealing of drilled holes: General requirements. Each exploration hole, other drill or borehole, well, or other exposed underground opening shall be cased, sealed...
30 CFR 816.14 - Casing and sealing of drilled holes: Temporary.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Casing and sealing of drilled holes: Temporary...-SURFACE MINING ACTIVITIES § 816.14 Casing and sealing of drilled holes: Temporary. Each exploration hole, other drill or boreholes, wells and other exposed underground openings which have been identified in the...
30 CFR 816.14 - Casing and sealing of drilled holes: Temporary.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Casing and sealing of drilled holes: Temporary...-SURFACE MINING ACTIVITIES § 816.14 Casing and sealing of drilled holes: Temporary. Each exploration hole, other drill or boreholes, wells and other exposed underground openings which have been identified in the...
30 CFR 816.14 - Casing and sealing of drilled holes: Temporary.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Casing and sealing of drilled holes: Temporary...-SURFACE MINING ACTIVITIES § 816.14 Casing and sealing of drilled holes: Temporary. Each exploration hole, other drill or boreholes, wells and other exposed underground openings which have been identified in the...
30 CFR 816.14 - Casing and sealing of drilled holes: Temporary.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Casing and sealing of drilled holes: Temporary...-SURFACE MINING ACTIVITIES § 816.14 Casing and sealing of drilled holes: Temporary. Each exploration hole, other drill or boreholes, wells and other exposed underground openings which have been identified in the...
Subsurface multidisciplinary research results at ICTJA-CSIC downhole lab and test site
NASA Astrophysics Data System (ADS)
Jurado, Maria Jose; Crespo, Jose; Salvany, Josep Maria; Teixidó, Teresa
2017-04-01
Two scientific boreholes, Almera-1 and Almera-2 were drilled in the Barcelona University campus area in 2011. The main purpose for this drilling was to create a new geophysical logging and downhole monitoring research facility and infrastructure. We present results obtained in the frame of multidisciplinary studies and experiments carried out since 2011 at the ICTJA "Borehole Geophysical Logging Lab - Scientific Boreholes Almera" downhole lab facilities. First results obtained from the scientific drilling, coring and logging allowed us to characterize the urban subsurface geology and hydrology adjacent to the Institute of Earth Sciences Jaume Almera (ICTJA-CSIC) in Barcelona. The subsurface geology and structural picture has been completed with recent geophysical studies and monitoring results. The upper section of Almera-1 214m deep hole was cased with PVC after drilling and after the logging operations. An open hole interval was left from 112m to TD (Paleozoic section). Almera-2 drilling reached 46m and was cased also with PVC to 44m. Since completion of the drilling in 2011, both Almera-1 and Almera-2 have been extensively used for research purposes, tests, training, hydrological and geophysical monitoring. A complete set of geophysical logging measurements and borehole oriented images were acquired in open hole mode of the entire Almera-1 section. Open hole measurements included acoustic and optical imaging, spectral natural gamma ray, full wave acoustic logging, magnetic susceptibility, hydrochemical-temperature logs and fluid sampling. Through casing (PVC casing) measurements included spectral gamma ray logging, full wave sonic and acoustic televiewer. A Quaternary to Paleozoic section was characterized based on the geophysical logging and borehole images interpretation and also on the complete set of (wireline) cores of the entire section. Sample availability was intended for geological macro and micro-facies detailed characterization, mineralogical and petrophysical tests and analyses. The interpretation of the geophysical logging data and borehole oriented images, and core data allowed us to define the stratigraphy, structures and petrophysical properties in the subsurface. Quaternary sediments overlie unconformably weathered, deformed and partially metamorphosed Paleozoic rocks. A gap of the Tertiary rocks at the drillsite was detected. Structures at intensely fractured and faulted sections were measured and have yielded valuable data to understand the subsurface geology, hydrology and geological evolution in that area. Logging, borehole imaging and monitoring carried out in the scientific boreholes Almera-1 and Almera-2 has allowed also to identify three preferential groundwater flow paths in the subsurface. Geophysical logging data combined with groundwater monitoring allowed us to identify three zones of high permeability in the subsurface. Logging data combined with core analysis were used to characterize the aquifers lithology and their respective petrophysical properties. We also analyzed the aquifer dynamics and potential relationships between the variations in groundwater levels and the rainfalls by comparing the groundwater monitoring results and the rainfall. A seismic survey was carried out to outline the geological structures beyond Almera-1 borehole, a vertical reverse pseudo-3D (2.5D) seismic tomography experiment. The results allowed us to define the geological structure beyond the borehole wall and also a correlation between the different geological units in the borehole and their geometry and spatial geophysical and seismic image.
Blasting methods for heterogeneous rocks in hillside open-pit mines with high and steep slopes
NASA Astrophysics Data System (ADS)
Chen, Y. J.; Chang, Z. G.; Chao, X. H.; Zhao, J. F.
2017-06-01
In the arid desert areas in Xinjiang, most limestone quarries are hillside open-pit mines (OPMs) where the limestone is hard, heterogeneous, and fractured, and can be easily broken into large blocks by blasting. This study tried to find effective technical methods for blasting heterogeneous rocks in such quarries based on an investigation into existing problems encountered in actual mining at Hongshun Limestone Quarry in Xinjiang. This study provided blasting schemes for hillside OPMs with different heights and slopes. These schemes involve the use of vertical deep holes, oblique shallow holes, and downslope hole-by-hole sublevel or simultaneous detonation techniques. In each bench, the detonations of holes in a detonation unit occur at intervals of 25-50 milliseconds. The research findings can offer technical guidance on how to blast heterogeneous rocks in hillside limestone quarries.
Woodwind Tone Hole Acoustics and the Spectrum Transformation Function.
NASA Astrophysics Data System (ADS)
Keefe, Douglas Howard
This report describes an investigation of woodwind musical instrument tone holes and their effect on the radiated spectrum, the total dissipation, the stability of oscillation, the psychoacoustical cues important in perception, and the tuning and response of the instrument. Varying tone hole proportions significantly affect the radiative and frictional damping near a single hole, the mutual interactions between holes, the onset of streaming and turbulence near the holes, and the perceived woodwind timbre. The interconnections between related fields are explored through a brief review of sound production in woodwinds plus more extensive reviews of room and psychological acoustics. A theoretical and experimental discussion of the spectrum transformation function from the mouthpiece into the room relates all these fields. Also, considered are differences between cylindrical and conical bore woodwinds, the systematic shifts in saxophone spectra produced by the beating of the reed, the coupling of many closely spaced tone holes to the room excitation, the role of the player, and the results pertaining to computer music synthesis. The complicated acoustical flow inside the main air column near a single tone hole has been examined using a Green function, integral equation approach. A variational formulation allows explicit calculation of the open and closed hole impedance parameters needed in the transmission line description of a woodwind, and experiments have verified the theory in detail. Major acoustical topics considered are listed below. The effective length t(,e) of an open hole, relevant for instrument design and modification, is calculated and measured in terms of the main bore diameter 2a, hole diameter 2b, and the height t of the hole chimney; the effect of a hanging pad is a semi-empirical correction on t(,e). When the fundamental plane-wave mode of the main air column oscillation is at a pressure node, both the open and closed hole series impedances are negative inertances whose values depend on the tone hole proportions. An open hole at a pressure node can radiate as a dipole when (b/a) is large and (t/2b) is small. Dissipative losses vary significantly with the frequency of oscillation and the tone hole geometry. Lowering the pad height above a tone hole increases the dissipation. Acoustical streaming through holes is very important for t << 2b, and the associated nonlinear dissipation can destroy the oscillation on poorly designed woodwinds. This unexpected phenomenon is critical in the playing behavior of some flutes, clarinets, and other woodwinds. The onset of streaming occurs at all dynamical levels and more easily for instruments whose spectra are in a 1:3:5 frequency ratio, rather than a 1:2:3 ratio. The streaming is most important for low register tones for which the usual dissipation is also the largest relative to the radiative dissipation, due to losses at the sharp edges inside the bore near the tone holes. Mutual interactions between holes separated by a distance 2s are most pronounced for large diameter holes (2b/2s not small). Holes interact externally via radiation, and internally via higher-order evanescent modes excited at the intersection of the main bore with each tone hole. The non-radiative dissipation increases, and the air column resonances are slightly shifted due to the presence of these interactions. Applications are discussed and numerous additional experiments are proposed which are relevant to woodwinds and their design, and the perception of listeners in rooms.
Bourgeois, Peter M.; Reger, Robert J.
1996-01-01
A variable depth core sampler apparatus comprising a first circular hole saw member, having longitudinal sections that collapses to form a point and capture a sample, and a second circular hole saw member residing inside said first hole saw member to support the longitudinal sections of said first hole saw member and prevent them from collapsing to form a point. The second hole saw member may be raised and lowered inside said first hole saw member.
Evaluation of Oil-Industry Stimulation Practices for Engineered Geothermal Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peter Van Dyke; Leen Weijers; Ann Robertson-Tait
Geothermal energy extraction is typically achieved by use of long open-hole intervals in an attempt to connect the well with the greatest possible rock mass. This presents a problem for the development of Enhanced (Engineered) Geothermal Systems (EGS), owing to the challenge of obtaining uniform stimulation throughout the open-hole interval. Fluids are often injected in only a fraction of that interval, reducing heat transfer efficiency and increasing energy cost. Pinnacle Technologies, Inc. and GeothermEx, Inc. evaluated a variety of techniques and methods that are commonly used for hydraulic fracturing of oil and gas wells to increase and evaluate stimulation effectivenessmore » in EGS wells. Headed by Leen Weijers, formerly Manager of Technical Development at Pinnacle Technologies, Inc., the project ran from August 1, 2004 to July 31, 2006 in two one-year periods to address the following tasks and milestones: 1) Analyze stimulation results from the closest oil-field equivalents for EGS applications in the United States (e.g., the Barnett Shale in North Texas) (section 3 on page 8). Pinnacle Technologies, Inc. has collected fracture growth data from thousands of stimulations (section 3.1 on page 12). This data was further evaluated in the context of: a) Identifying techniques best suited to developing a stimulated EGS fracture network (section 3.2 on page 29), and b) quantifying the growth of the network under various conditions to develop a calibrated model for fracture network growth (section 3.3 on page 30). The developed model can be used to design optimized EGS fracture networks that maximize contact with the heat source and minimize short-circuiting (section 3.4 on page 38). 2) Evaluate methods used in oil field applications to improve fluid diversion and penetration and determine their applicability to EGS (section 4 on page 50). These methods include, but are not limited to: a) Stimulation strategies (propped fracturing versus water fracturing versus injecting fluid below fracturing gradients) (section 4.1 on page 50); b) zonal isolation methods (by use of perforated casing or packers) (section 4.2 on page 57); c) fracture re-orientation and fracture network growth techniques (e.g., by use of alternating high- and low-rate injections) (section 4.4 on page 74); and d) fluid diversion methods (by use of the SurgiFrac technique, the StimGun perforation technique, or stress shadowing). This project task is to be completed in the first project year, enabling the most promising techniques to be field tested and evaluated in the second project year. 3) Study the applicability of the methods listed above by utilizing several techniques (section 5 on page 75) including, but not limited to: a) Hydraulic Impedance Testing (HIT) to determine the location of open hydraulic fractures along a open-hole interval; b) pressure transient testing to determine reservoir permeability, pore pressure, and closure stress; and c) treatment well tilt mapping or microseismic mapping to evaluate fracture coverage. These techniques were reviewed for their potential application for EGS in the first project year (section 5.1 on page 75). This study also includes further analysis of any field testing that will be conducted in the Desert Peak area in Nevada for ORMAT Nevada, Inc. (section 5.2 on page 86), with the aim to close the loop to provide reliable calibrated fracture model results. Developed through its hydraulic fracture consulting business, techniques of Pinnacle Technologies, Inc. for stimulating and analyzing fracture growth have helped the oil and gas industry to improve hydraulic fracturing from both a technical and economic perspective. In addition to more than 30 years of experience in the development of geothermal energy for commercial power generation throughout the world, GeothermEx, Inc. brings to the project: 1) Detailed information about specific developed and potential EGS reservoirs, 2) experience with geothermal well design, completion, and testing practices, and 3) a direct connection to the Desert Peak EGS project.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, G.
1984-09-01
Two classifications of fishing jobs are discussed: open hole and cased hole. When there is no casing in the area of the fish, it is called open hole fishing. When the fish is inside the casing, it is called cased hole fishing. The article lists various things that can become a fish-stuck drill pipe, including: broken drill pipe, drill collars, bit, bit cones, hand tools dropped in the well, sanded up or mud stuck tubing, packers become stuck, and much more. It is suggested that on a fishing job, all parties involved should cooperate with each other, and that fishingmore » tool people obtain all the information concerning the well. That way they can select the right tools and methods to clean out the well as quickly as possible.« less
Bourgeois, P.M.; Reger, R.J.
1996-02-20
A variable depth core sampler apparatus is described comprising a first circular hole saw member, having longitudinal sections that collapses to form a point and capture a sample, and a second circular hole saw member residing inside said first hole saw member to support the longitudinal sections of said first hole saw member and prevent them from collapsing to form a point. The second hole saw member may be raised and lowered inside said first hole saw member. 7 figs.
Relationship of Open-Circuit Voltage to CdTe Hole Concentration and Lifetime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duenow, Joel N.; Burst, James M.; Albin, David S.
We investigate the correlation of bulk CdTe and CdZnTe material properties with experimental open-circuit voltage (Voc) through fabrication and characterization of diverse single-crystal solar cells with different dopants. Several distinct crystal types reach Voc >900 mV. Correlations are in general agreement with Voc limits modeled from bulk minority-carrier lifetime and hole concentration.
NASA Technical Reports Server (NTRS)
Song, Kyonchan; Li, Yingyong; Rose, Cheryl A.
2011-01-01
The performance of a state-of-the-art continuum damage mechanics model for interlaminar damage, coupled with a cohesive zone model for delamination is examined for failure prediction of quasi-isotropic open-hole tension laminates. Limitations of continuum representations of intra-ply damage and the effect of mesh orientation on the analysis predictions are discussed. It is shown that accurate prediction of matrix crack paths and stress redistribution after cracking requires a mesh aligned with the fiber orientation. Based on these results, an aligned mesh is proposed for analysis of the open-hole tension specimens consisting of different meshes within the individual plies, such that the element edges are aligned with the ply fiber direction. The modeling approach is assessed by comparison of analysis predictions to experimental data for specimen configurations in which failure is dominated by complex interactions between matrix cracks and delaminations. It is shown that the different failure mechanisms observed in the tests are well predicted. In addition, the modeling approach is demonstrated to predict proper trends in the effect of scaling on strength and failure mechanisms of quasi-isotropic open-hole tension laminates.
Analysis of Solar Coronal Holes with Synoptic Magnetogram Data
NASA Astrophysics Data System (ADS)
Canner, A.; Kim, T. K.; Pogorelov, N.; Yalim, M. S.
2017-12-01
Coronal holes are regions in which the magnetic field of the Sun is open with high magnetic flux and low plasma density. Because of the low plasma beta in these regions, the open field lines transport plasma from the Sun throughout the heliosphere. Coronal hole area is closely related to the expansion factor of the magnetic flux tube, as demonstrated by Tokumaru et al. (2017). Following the approach of Tokumaru et al. (2017), we employ a potential field source surface model to identify the open field regions on the photosphere and estimate the area and expansion factor for each coronal hole. While Tokumaru et al. (2017) analyzed synoptic maps from Kitt Peak National Observatory for the period 1995-2011, we use different magnetograph observations with higher spatial resolution (e.g., SOHO-MDI) for the same time period. We compare the coronal hole area - expansion factor relationship with the original results of Tokumaru et al (2017). This work was supported by the NSF-funded Research Experience for Undergraduates program "Solar and Heliospheric Physics at UAH and MSFC" run by the University of Alabama in Huntsville in partnership with the Marshall Space Flight Center through grant AGS-1460767.
Hole-transport material variation in fully vacuum deposited perovskite solar cells
NASA Astrophysics Data System (ADS)
Polander, Lauren E.; Pahner, Paul; Schwarze, Martin; Saalfrank, Matthias; Koerner, Christian; Leo, Karl
2014-08-01
This work addresses the effect of energy level alignment between the hole-transporting material and the active layer in vacuum deposited, planar-heterojunction CH3NH3PbIx-3Clx perovskite solar cells. Through a series of hole-transport materials, with conductivity values set using controlled p-doping of the layer, we correlate their ionization potentials with the open-circuit voltage of the device. With ionization potentials beyond 5.3 eV, a substantial decrease in both current density and voltage is observed, which highlights the delicate energetic balance between driving force for hole-extraction and maximizing the photovoltage. In contrast, when an optimal ionization potential match is found, the open-circuit voltage can be maximized, leading to power conversion efficiencies of up to 10.9%. These values are obtained with hole-transport materials that differ from the commonly used Spiro-MeO-TAD and correspond to a 40% performance increase versus this reference.
Can Polar Fields Explain Missing Open Flux?
NASA Astrophysics Data System (ADS)
Linker, J.; Downs, C.; Caplan, R. M.; Riley, P.; Mikic, Z.; Lionello, R.
2017-12-01
The "open" magnetic field is the portion of the Sun's magnetic field that extends out into the heliosphere and becomes the interplanetary magnetic field (IMF). Both the IMF and the Sun's magnetic field in the photosphere have been measured for many years. In the standard paradigm of coronal structure, the open magnetic field originates primarily in coronal holes. The regions that are magnetically closed trap the coronal plasma and give rise to the streamer belt. This basic picture is qualitatively reproduced by models of coronal structure using photospheric magnetic fields as input. If this paradigm is correct, there are two primary observational constraints on the models: (1) The open field regions in the model should approximately correspond to coronal holes observed in emission, and (2) the magnitude of the open magnetic flux in the model should match that inferred from in situ spacecraft measurements. Linker et al. (2017, ApJ, submitted) investigated the July 2010 time period for a range of observatory maps and both PFSS and MHD models. We found that all of the model/map combinations underestimated the interplanetary magnetic flux, unless the modeled open field regions were larger than observed coronal holes. An estimate of the open magnetic flux made entirely from solar observations (combining detected coronal hole boundaries with observatory synoptic magnetic maps) also underestimated the interplanetary magnetic flux. The magnetic field near the Sun's poles is poorly observed and may not be well represented in observatory maps. In this paper, we explore whether an underestimate of the polar magnetic flux during this time period could account for the overall underestimate of open magnetic flux. Research supported by NASA, AFOSR, and NSF.
NASA Astrophysics Data System (ADS)
Beaumais, A.; Teagle, D. A. H.; James, R. H.; Pearce, C. R.; Milton, J. A.; Alt, J.; Coggon, R. M.
2017-12-01
Alteration of the oceanic crust is thought to be the principal sink of Mg in seawater, but the effect of this process on the Mg isotope (δ26Mg) composition of the oceans remains unclear. Here we present the first measurements of Mg isotopes in altered oceanic crust from ODP Holes 504B and 896A, located in 5.9 Ma crust, 200 km south of the intermediate spreading rate Costa Rica Rift. Hole 504B penetrates: (i) A volcanic section, consisting of partially altered basalt that was open to seawater circulation under oxic-suboxic conditions at temperatures of <150°C. (ii) A transition zone, characterized by mixing between upwelling hydrothermal fluid and seawater between 100 and 350°C. (iii) A sheeted dike complex consisting of diabase partially altered to greenschist facies minerals. Hole 896A penetrates volcanic rocks altered at low temperature (<100 °C) under oxic-suboxic conditions. The overall range in δ26Mg values is -0.53 to -0.01‰; significantly greater than the range observed in unaltered mid-ocean ridge basalts (MORB: -0.25 ± 0.06‰ [1]). δ26Mg values decrease with depth in the volcanic sections of both Holes 504B and 896A. The highest δ26Mg values are found in saponite-bearing basalts at the top of the volcanic sections of both holes, and are attributed to the preferential incorporation of heavy Mg isotopes into secondary clays (Mg-saponite). Lower δ26Mg values recorded in the deeper part of the volcanic section may be a result of fluid-rock interaction with isotopically lighter evolved seawater. The transition zone is characterised by MORB-like to relatively high δ26Mg values in the chlorite-smectite bearing basalts. The sheeted dike complex yields a narrow range of MORB-like δ26Mg values suggesting that limited fractionation occurs during high-temperature alteration and that the fluids have very low Mg concentrations. Low temperature fluid-rock interactions modify the Mg isotopic composition of the upper part of the oceanic crust. Therefore, this process could potentially play a role in balancing the δ26Mg of (i) the seawater via lateral fluid flow through oceanic crust off-axis ridge flanks, and (ii) the mantle via recycling of oceanic lithosphere at subduction zones. [1] Teng et al., (2010) GCA 74, 4150-4166.
NASA Astrophysics Data System (ADS)
Brown, Nicholas W. A.
Composite parts can be manufactured to near-net shape with minimum wastage of material; however, there is almost always a need for further machining. The most common post-manufacture machining operations for composite materials are to create holes for assembly. This thesis presents and discusses a thermally-assisted piercing process that can be used as a technique for introducing holes into thermoplastic composites. The thermally-assisted piercing process heats up, and locally melts, thermoplastic composites to allow material to be displaced around a hole, rather than cutting them out from the structure. This investigation was concerned with how the variation of piercing process parameters (such as the size of the heated area, the temperature of the laminate prior to piercing and the geometry of the piercing spike) changed the material microstructure within carbon fibre/Polyetheretherketone (PEEK) laminates. The variation of process parameters was found to significantly affect the formation of resin rich regions, voids and the fibre volume fraction in the material surrounding the hole. Mechanical testing (using open-hole tension, open-hole compression, plain-pin bearing and bolted bearing tests) showed that the microstructural features created during piercing were having significant influence over the resulting mechanical performance of specimens. By optimising the process parameters strength improvements of up to 11% and 21% were found for pierced specimens when compared with drilled specimens for open-hole tension and compression loading, respectively. For plain-pin and bolted bearing tests, maximum strengths of 77% and 85%, respectively, were achieved when compared with drilled holes. Improvements in first failure force (by 10%) and the stress at 4% hole elongation (by 18%), however, were measured for the bolted bearing tests when compared to drilled specimens. The overall performance of pierced specimens in an industrially relevant application ultimately depends on the properties required for that specific scenario. The results within this thesis show that the piercing technique could be used as a direct replacement to drilling depending on this application.
Vafi, Kourosh; Brandt, Adam
2016-07-19
This paper introduces GHGfrack, an open-source engineering-based model that estimates energy consumption and associated GHG emissions from drilling and hydraulic fracturing operations. We describe verification and calibration of GHGfrack against field data for energy and fuel consumption. We run GHGfrack using data from 6927 wells in Eagle Ford and 4431 wells in Bakken oil fields. The average estimated energy consumption in Eagle Ford wells using lateral hole diameters of 8 (3)/4 and 6 (1)/8 in. are 2.25 and 2.73 TJ/well, respectively. The average estimated energy consumption in Bakken wells using hole diameters of 6 in. for horizontal section is 2.16 TJ/well. We estimate average greenhouse gas (GHG) emissions of 419 and 510 tonne of equivalent CO2 per well (tonne of CO2 eq/well) for the two aforementioned assumed geometries in Eagle Ford, respectively, and 417 tonne of CO2 eq/well for the case of Bakken. These estimates are limited only to GHG emissions from combustion of diesel fuel to supply energy only for rotation of drill string, drilling mud circulation, and fracturing pumps. Sensitivity analysis of the model shows that the top three key variables in driving energy intensity in drilling are the lateral hole diameter, drill pipe internal diameter, and mud flow rate. In hydraulic fracturing, the top three are lateral casing diameter, fracturing fluid volume, and length of the lateral.
40 CFR 63.964 - Inspection and monitoring requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
.... Defects include, but are not limited to, visible cracks, holes, or gaps in the closure devices; broken..., visible cracks, holes, or gaps in the closure devices; broken, cracked, or otherwise damaged seals or..., visible cracks, holes, gaps, or other open spaces in the sewer line joints, seals, or other emission...
40 CFR 63.964 - Inspection and monitoring requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
.... Defects include, but are not limited to, visible cracks, holes, or gaps in the closure devices; broken..., visible cracks, holes, or gaps in the closure devices; broken, cracked, or otherwise damaged seals or..., visible cracks, holes, gaps, or other open spaces in the sewer line joints, seals, or other emission...
Number and location of drainage catheter side holes: in vitro evaluation.
Ballard, D H; Alexander, J S; Weisman, J A; Orchard, M A; Williams, J T; D'Agostino, H B
2015-09-01
To evaluate the influence of number and location of catheter shaft side holes regarding drainage efficiency in an in vitro model. Three different drainage catheter models were constructed: open-ended model with no side holes (one catheter), unilateral side hole model (six catheters with one to six unilateral side holes), and bilateral side hole model (six catheters with one to six bilateral side holes). Catheters were inserted into a drainage output-measuring device with a constant-pressure reservoir of water. The volume of water evacuated by each of the catheters at 10-second intervals was measured. A total of five trials were performed for each catheter. Data were analysed using one-way analysis of variance. The open-ended catheter had a mean drainage volume comparable to the unilateral model catheters with three, four, and five side holes. Unilateral model catheters had significant drainage volume increases up to three side holes; unilateral model catheters with more than three side holes had no significant improvement in drainage volume. All bilateral model catheters had significantly higher mean drainage volumes than their unilateral counterparts. There was no significant difference between the mean drainage volume with one, two, or three pairs of bilateral side holes. Further, there was no drainage improvement by adding additional bilateral side holes. The present in vitro study suggests that beyond a critical side hole number threshold, adding more distal side holes does not improve catheter drainage efficiency. These results may be used to enhance catheter design towards improving their drainage efficiency. Copyright © 2015 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Exercises in anatomy: holes between the ventricles.
Anderson, Robert H; Sarwark, Anne E; Spicer, Diane E; Backer, Carl L
2014-01-01
Holes between the ventricles are the commonest congenital cardiac malformations. As yet, however, there is no consensus as to how they can best be described and categorized. In this, our third exercise in cardiac anatomy, we address the issue of classification of ventricular septal defects. We begin our demonstration by analysing the normal heart. We show that the larger part of the ventricular septum is made up of its muscular component. The membranous part accounts for only a small portion, which is located centrally within the cardiac base. This small membranous part forms a boundary between the right-sided chambers and the aortic root. Holes at this site, therefore, which account for the commonest defects closed surgically, will open centrally in the cardiac base, being located postero-inferiorly relative to the supraventricular crest. We then show that the larger part of the crest itself is a free-standing muscular sleeve, which lifts the leaflets of the pulmonary valve away from the cardiac base. Only a very small part of the muscle forming the right ventricular outlet is located in the septal position. Turning our attention to malformed hearts, we show how holes between the ventricles can open centrally at the cardiac base, open to the inlet or outlet of the right ventricle or open within the substance of the apical muscular septum. We demonstrate, however, that description of such geographical location of the defects does not paint the full picture, since lesions with markedly different phenotypic features can open in comparable geographic locations. We illustrate how it is the phenotypic features, as seen from the right ventricle, which convey the crucial information for the surgeon with regard to the location of the atrioventricular conduction axis, using hearts with holes opening to the inlet of the right ventricle with muscular as opposed to partially fibrous borders to emphasize this point. We continue by showing how holes with different phenotypes can also open to the outlet of the right ventricle, the key feature in this regard being malalignment between the apical muscular septum relative to the muscular outlet septum or its fibrous remnant. Malalignment can also be found between the apical ventricular septum and the atrial septum, this being shown in a defect opening to the inlet of the right ventricle. We conclude by emphasizing that, so as to bring together all the information of surgical significance, it is necessary to take note of the geographical location of holes between the ventricles, their phenotypic features and the presence or absence of malalignment between the septal components. © The Author 2014. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
Alt, Jeffrey C.; Shanks, Wayne C.
2011-01-01
Sulfide mineralogy and the contents and isotope compositions of sulfur were analyzed in a complete oceanic volcanic section from IODP Hole 1256D in the eastern Pacific, in order to investigate the role of microbes and their effect on the sulfur budget in altered upper oceanic crust. Basalts in the 800m thick volcanic section are affected by a pervasive low-temperature background alteration and have mean sulfur contents of 530ppm, reflecting loss of sulfur relative to fresh glass through degassing during eruption and alteration by seawater. Alteration halos along fractures average 155ppm sulfur and are more oxidized, have high SO4/ΣS ratios (0.43), and lost sulfur through oxidation by seawater compared to host rocks. Although sulfur was lost locally, sulfur was subsequently gained through fixation of seawater-derived sulfur in secondary pyrite and marcasite in veins and in concentrations at the boundary between alteration halos and host rocks. Negative δ34Ssulfide-S values (down to -30 °) and low temperatures of alteration (down to ~40 °C) point to microbial reduction of seawater sulfate as the process resulting in local additions of sulfide-S. Mass balance calculations indicate that 15-20% of the sulfur in the volcanic section is microbially derived, with the bulk altered volcanic section containing 940ppm S, and with δ34S shifted to -6.0‰) from the mantle value (0 ‰). The bulk volcanic section may have gained or lost sulfur overall. The annual flux of microbial sulfur into oceanic basement based on Hole 1256D is 3-4 X1010molSyr-1, within an order of magnitude of the riverine sulfate source and the sedimentary pyrite sink. Results indicate a flux of bacterially derived sulfur that is fixed in upper ocean basement of 7-8 X 10-8molcm-2yr-1 over 15m.y. This is comparable to that in open ocean sediment sites, but is one to two orders of magnitude less than for ocean margin sediments. The global annual subduction of sulfur in altered oceanic basalt lavas based on Hole 1256D is 1.5-2.0 X 1011moly-1, comparable to the subduction of sulfide in sediments, and could contribute to sediment-like sulfur isotope heterogeneities in the mantle.
Understanding the rotation of coronal holes
NASA Astrophysics Data System (ADS)
Wang, Y.-M.; Sheeley, N. R., Jr.
1993-09-01
In an earlier study we found that the rotation of coronal holes could be understood on the basis of a nearly current-free coronal field, with the holes representing open magnetic regions. In this paper we illustrate the model by focusing on the case of CH1, the rigidly rotating boot-shaped hole observed by Skylab. We show that the interaction between the polar fields and the flux associated with active regions produces distortions in the coronal field configuration and thus in the polar-hole boundaries; these distortions corotate with the perturbing nonaxisymmetric flux. In the case of CH1, positive-polarity field lines in the northern hemisphere 'collided' with like-polarity field lines fanning out from a decaying active region complex located just below the equator, producing a midlatitude corridor of open field lines rotating at the rate of the active region complex. Sheared coronal holes result when nonaxisymmetric flux is present at high latitudes, or equivalently, when the photospheric neutral line extends to high latitudes. We demonstrate how a small active region, rotating at the local photospheric rate, can drift through a rigidly rotating hole like CH1. Finally, we discuss the role of field-line reconnection in maintaining a quasi-potential coronal configuration.
Skyrmion black hole hair: Conservation of baryon number by black holes and observable manifestations
NASA Astrophysics Data System (ADS)
Dvali, Gia; Gußmann, Alexander
2016-12-01
We show that the existence of black holes with classical skyrmion hair invalidates standard proofs that global charges, such as the baryon number, cannot be conserved by a black hole. By carefully analyzing the standard arguments based on a Gedankenexperiment in which a black hole is seemingly-unable to return the baryon number that it swallowed, we identify inconsistencies in this reasoning, which does not take into the account neither the existence of skyrmion black holes nor the baryon/skyrmion correspondence. We then perform a refined Gedankenexperiment by incorporating the new knowledge and show that no contradiction with conservation of baryon number takes place at any stage of black hole evolution. Our analysis also indicates no conflict between semi-classical black holes and the existence of baryonic gauge interaction arbitrarily-weaker than gravity. Next, we study classical cross sections of a minimally-coupled massless probe scalar field scattered by a skyrmion black hole. We investigate how the skyrmion hair manifests itself by comparing this cross section with the analogous cross section caused by a Schwarzschild black hole which has the same ADM mass as the skyrmion black hole. Here we find an order-one difference in the positions of the characteristic peaks in the cross sections. The peaks are shifted to smaller scattering angles when the skyrmion hair is present. This comes from the fact that the skyrmion hair changes the near horizon geometry of the black hole when compared to a Schwarzschild black hole with same ADM mass. We keep the study of this second aspect general so that the qualitative results which we obtain can also be applied to black holes with classical hair of different kind.
49 CFR 230.41 - Flexible staybolts with caps.
Code of Federal Regulations, 2012 CFR
2012-10-01
... staybolts that have telltale holes between 3/16 inch and 7/32 inch in diameter, and which extend the entire... or other suitable method, that the telltale holes are open their entire length. Any leakage from these telltale holes during the hydrostatic test indicates that the bolt is broken and must be replaced...
49 CFR 230.41 - Flexible staybolts with caps.
Code of Federal Regulations, 2013 CFR
2013-10-01
... staybolts that have telltale holes between 3/16 inch and 7/32 inch in diameter, and which extend the entire... or other suitable method, that the telltale holes are open their entire length. Any leakage from these telltale holes during the hydrostatic test indicates that the bolt is broken and must be replaced...
49 CFR 230.41 - Flexible staybolts with caps.
Code of Federal Regulations, 2011 CFR
2011-10-01
... staybolts that have telltale holes between 3/16 inch and 7/32 inch in diameter, and which extend the entire... or other suitable method, that the telltale holes are open their entire length. Any leakage from these telltale holes during the hydrostatic test indicates that the bolt is broken and must be replaced...
49 CFR 230.41 - Flexible staybolts with caps.
Code of Federal Regulations, 2014 CFR
2014-10-01
... staybolts that have telltale holes between 3/16 inch and 7/32 inch in diameter, and which extend the entire... or other suitable method, that the telltale holes are open their entire length. Any leakage from these telltale holes during the hydrostatic test indicates that the bolt is broken and must be replaced...
40 CFR 61.272 - Compliance provisions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... benzene. If there are holes, tears or other openings in the primary seal, the secondary seal, or the seal... detached, or there are holes or tears in the seal fabric, the owner or operator shall repair the items or... refilling. (ii) If the internal floating roof has defects, the primary seal has holes, tears, or other...
The observation of possible reconnection events in the boundary changes of solar coronal holes
NASA Technical Reports Server (NTRS)
Kahler, S. W.; Moses, J. Daniel
1989-01-01
Coronal holes are large scale regions of magnetically open fields which are easily observed in solar soft X-ray images. The boundaries of coronal holes are separatrices between large scale regions of open and closed magnetic fields where one might expect to observe evidence of solar magnetic reconnection. Previous studies by Nolte and colleagues using Skylab X-ray images established that large scale (greater than or equal to 9 x 10(4) km) changes in coronal hole boundaries were due to coronal processes, i.e., magnetic reconnection, rather than to photospheric motions. Those studies were limited to time scales of about one day, and no conclusion could be drawn about the size and time scales of the reconnection process at hole boundaries. Sequences of appropriate Skylab X-ray images were used with a time resolution of about 90 min during times of the central meridian passages of the coronal hole labelled Coronal Hole 1 to search for hole boundary changes which can yield the spatial and temporal scales of coronal magnetic reconnection. It was found that 29 of 32 observed boundary changes could be associated with bright points. The appearance of the bright point may be the signature of reconnection between small scale and large scale magnetic fields. The observed boundary changes contributed to the quasi-rigid rotation of Coronal Hole 1.
Modeling of viscous damping of perforated planar microstructures. Applications in acoustics
NASA Astrophysics Data System (ADS)
Homentcovschi, Dorel; Miles, Ronald N.
2004-11-01
The paper contains an analysis of the viscous damping in perforated planar microstructures that often serve as backplates or protecting surfaces in capacitive microsensors. The focus of this work is on planar surfaces containing an offset system of periodic oval holes or its limit cases: a system of circular holes or of slits. The viscous damping is calculated as the sum of squeeze film and the holes' resistances. The optimum number of holes is determined which minimizes the total viscous damping for a given percentage of open area. Graphs and formulas are provided for designing these devices. In the case the open area is higher than 15% the numerical results show that the influence of the holes' geometry (circular or oval) has a slight influence on viscous damping. As the planar structures containing oval holes assure a better protection against dust particles and water drops, they should be preferred in designing protective surfaces for microphones working in a natural environment. The obtained results also can be applied in designing other MEMS devices that use capacitive sensing such as accelerometers, micromechanical switches, resonators, and tunable microoptical interferometers. .
Coronal hole evolution by sudden large scale changes
NASA Technical Reports Server (NTRS)
Nolte, J. T.; Gerassimenko, M.; Krieger, A. S.; Solodyna, C. V.
1978-01-01
Sudden shifts in coronal-hole boundaries observed by the S-054 X-ray telescope on Skylab between May and November, 1973, within 1 day of CMP of the holes, at latitudes not exceeding 40 deg, are compared with the long-term evolution of coronal-hole area. It is found that large-scale shifts in boundary locations can account for most if not all of the evolution of coronal holes. The temporal and spatial scales of these large-scale changes imply that they are the results of a physical process occurring in the corona. It is concluded that coronal holes evolve by magnetic-field lines' opening when the holes are growing, and by fields' closing as the holes shrink.
Automated detection of open magnetic field regions in EUV images
NASA Astrophysics Data System (ADS)
Krista, Larisza Diana; Reinard, Alysha
2016-05-01
Open magnetic regions on the Sun are either long-lived (coronal holes) or transient (dimmings) in nature, but both appear as dark regions in EUV images. For this reason their detection can be done in a similar way. As coronal holes are often large and long-lived in comparison to dimmings, their detection is more straightforward. The Coronal Hole Automated Recognition and Monitoring (CHARM) algorithm detects coronal holes using EUV images and a magnetogram. The EUV images are used to identify dark regions, and the magnetogam allows us to determine if the dark region is unipolar - a characteristic of coronal holes. There is no temporal sensitivity in this process, since coronal hole lifetimes span days to months. Dimming regions, however, emerge and disappear within hours. Hence, the time and location of a dimming emergence need to be known to successfully identify them and distinguish them from regular coronal holes. Currently, the Coronal Dimming Tracker (CoDiT) algorithm is semi-automated - it requires the dimming emergence time and location as an input. With those inputs we can identify the dimming and track it through its lifetime. CoDIT has also been developed to allow the tracking of dimmings that split or merge - a typical feature of dimmings.The advantage of these particular algorithms is their ability to adapt to detecting different types of open field regions. For coronal hole detection, each full-disk solar image is processed individually to determine a threshold for the image, hence, we are not limited to a single pre-determined threshold. For dimming regions we also allow individual thresholds for each dimming, as they can differ substantially. This flexibility is necessary for a subjective analysis of the studied regions. These algorithms were developed with the goal to allow us better understand the processes that give rise to eruptive and non-eruptive open field regions. We aim to study how these regions evolve over time and what environmental factors influence their growth and decay over short and long time-periods (days to solar cycles).
NASA Technical Reports Server (NTRS)
Centrella, Joan M.
2011-01-01
The Laser Interferometer Space Antenna (LISA) is a space-borne observatory that will open the low frequency (approx.0.1-100 mHz) gravitational wave window on the universe. LISA will observe a rich variety of gravitational wave sources, including mergers of massive black holes, captures of stellar black holes by massive black holes in the centers of galaxies, and compact Galactic binaries. These sources are generally long-lived, providing unprecedented opportunities for multi-messenger astronomy in the transient sky. This talk will present an overview of these scientific arenas, highlighting how LISA will enable stunning discoveries in origins, understanding the cosmic order, and the frontiers of knowledge.
Method of determining interwell oil field fluid saturation distribution
Donaldson, Erle C.; Sutterfield, F. Dexter
1981-01-01
A method of determining the oil and brine saturation distribution in an oil field by taking electrical current and potential measurements among a plurality of open-hole wells geometrically distributed throughout the oil field. Poisson's equation is utilized to develop fluid saturation distributions from the electrical current and potential measurement. Both signal generating equipment and chemical means are used to develop current flow among the several open-hole wells.
NASA Astrophysics Data System (ADS)
Saddeek, Yasser B.; Mohamed, Hamdy F. M.; Azooz, Moenis A.
2004-07-01
Positron annihilation lifetime (PAL), ultrasonic techniques, and differential thermal analysis (DTA) were performed to study the structure of some aluminoborate glasses. The basic compositions of these glasses are 50 B2O3 + 10 Al2O3 + 40 RO (wt%), where RO is the divalent oxide (MgO, CaO, SrO, and CdO). The ultrasonic data show that the rigidity increases from MgO to CaO then decrease at SrO and again increases at CdO. The glass transition temperature (determined from DTA) decreases from MgO to SrO then increases at CdO. The trend of the thermal properties was attributed to thermal stability. The experimental data are correlated with the internal glass structure and its connectivity. The PAL data show that an inversely correlation between the relative fractional of the open hole volume and the density of the samples. Also, there is a good correlation between the ortho-positronium (o-Ps) lifetime (open hole volume size) and the bulk modulus of the samples (determined from ultrasonic technique). The open volume hole size distribution for the samples shows that the open volume holes expand in size for CaO, SrO, MgO, and CdO, respectively with their distribution function moving to higher volume size.
William Herschel's 'Hole in the Sky' and the discovery of dark nebulae
NASA Astrophysics Data System (ADS)
Steinicke, Wolfgang
2016-12-01
In 1785 William Herschel published a paper in the Philosophical Transactions containing the remarkable section "An opening or hole". It describes an unusual vacant place in Scorpius. This matter falls into oblivion until Caroline Herschel initiated a correspondence with her nephew John in 1833. It contains Herschel's spectacular words "Hier ist wahrhaftig ein Loch im Himmel" ("Here truly is a hole in the sky"). About a hundred years later, Johann Georg Hagen, Director of the Vatican Observatory, presented a spectacular candidate for the 'hole', discovered in 1857 by Angelo Secchi in Sagittarius and later catalogued by Edward E. Barnard as the dark nebula B 86. Hagen's claim initiated a debate, mainly in the Journal of the British Astronomical Association, about the identity of Herschel's 'object'. Though things could be partly cleared up, unjustified claims still remain. This is mainly due to the fact that original sources were not consulted. A comprehensive study of the curious 'hole' is presented here. It covers major parts of the epochal astronomical work of William, Caroline and John Herschel. This includes a general study of 'vacant places', found by William Herschel and others, and the speculations about their nature, eventually leading to the finding that dark nebulae are due to absorbing interstellar matter. Some of the 'vacant places' could be identified in catalogues of dark nebulae and this leads to a 'Herschel Catalogue of Dark Nebulae' - the first historic catalogue of its kind.
Mechanical analysis of a heat-shock induced developmental defect
NASA Astrophysics Data System (ADS)
Crews, Sarah M.; McCleery, W. Tyler; Hutson, M. Shane
2014-03-01
Embryonic development in Drosophila is a complex process involving coordinated movements of mechanically interacting tissues. Perturbing this system with a transient heat shock can result in a number of developmental defects. In particular, a heat shock applied during the earliest morphogenetic movements of gastrulation can lead to apparent recovery, but then subsequent morphogenetic failure 5-6 hours later during germ band retraction. The process of germ band retraction requires an intact amnioserosa - a single layered extra-embryonic epithelial tissue - and heat shock at gastrulation can induce the later opening of holes in the amnioserosa. These holes are highly correlated with failures of germ band retraction. These holes could be caused by a combination of mechanical weakness in the amnioserosa or local increases in mechanical stress. Here, we assess the role of mechanical stress using confocal imaging to compare cell and tissue morphology in the amnioserosa of normal and heat-shocked embryos and laser hole drilling to map the stress field around the times and locations at which heat-shock induced holes open.
The StarDate Black Hole Encyclopedia Website blackholes.stardate.org
NASA Astrophysics Data System (ADS)
Gebhardt, Karl; Benningfield, D.; Preston, S.
2013-01-01
The StarDate Black Hole Encyclopedia website was developed over the past seven years to provide an extensive but easy-to-read resource for the public and students. A Spanish-language version, Enciclopedia de agujeros negros, is also available at blackholes.radiouniverso.org. Evaluation shows that the sites are used by the public, students, and astronomy professionals, and the site is among the top references in most web searches for individual black holes. The site comprises seven major subsections: Basics, Directory, Research, History, Pop Culture, News, and Resources. The Basics section introduces black holes, explains how they are discovered and studied, and covers their basis in the theory of gravity. This section also includes a six-minute video introduction, “Black Holes: Stranger than Fiction.” The Directory section contains extensive descriptions of more than 80 well-known stellar, intermediate, and supermassive black holes as well as images and vital statistics of each. The Research section takes a look at three NSF-funded projects, including the work of Andrea Ghez, Karl Gebhardt and Jenny Greene, and the LIGO project. The History section provides a timeline of black holes from Isaac Newton to the present. Some of the best and worst roles played by black holes in films, TV shows, and books are included in the Pop Culture section (and pop culture references and images are sprinkled through the rest of the site). An archive of news reports about black holes is available in the News section, which provides links to the original stories or press releases. And the Resources section offers FAQs, articles from StarDate magazine and radio programs, activities for students that are tied to national standards, a glossary, and a reading list of books and websites. We have conducted both quantitative and qualitative evaluation on the black hole websites. This material is based upon work supported by the National Science Foundation under Grant No. 0935841. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.
46 CFR 32.20-20 - Liquid level gaging-T/ALL.
Code of Federal Regulations, 2013 CFR
2013-10-01
... a cargo tank without opening ullage holes, cargo hatches, or Butterworth plates, shall be provided on all tankships certificated for the carriage of Grade A liquids: Provided, That ullage holes fitted...
46 CFR 32.20-20 - Liquid level gaging-T/ALL.
Code of Federal Regulations, 2012 CFR
2012-10-01
... a cargo tank without opening ullage holes, cargo hatches, or Butterworth plates, shall be provided on all tankships certificated for the carriage of Grade A liquids: Provided, That ullage holes fitted...
46 CFR 32.20-20 - Liquid level gaging-T/ALL.
Code of Federal Regulations, 2014 CFR
2014-10-01
... a cargo tank without opening ullage holes, cargo hatches, or Butterworth plates, shall be provided on all tankships certificated for the carriage of Grade A liquids: Provided, That ullage holes fitted...
40 CFR 61.147 - Standard for fabricating.
Code of Federal Regulations, 2010 CFR
2010-07-01
... dismantling other than opening the device, the presence of tears, holes, and abrasions in filter bags and for... filters, including presence of any tears, holes, and abrasions. (iv) Presence of dust deposits on clean...
The structure and evolution of coronal holes
NASA Technical Reports Server (NTRS)
Timothy, A. F.; Krieger, A. S.; Vaiana, G. S.
1975-01-01
Soft X-ray observations of coronal holes are analyzed to determine the structure, temporal evolution, and rotational properties of those features as well as possible mechanisms which may account for their almost rigid rotational characteristics. It is shown that coronal holes are open features with a divergent magnetic-field configuration resulting from a particular large-scale magnetic-field topology. They are apparently formed when the successive emergence and dispersion of active-region fields produce a swath of unipolar field founded by fields of opposite polarity, and they die when large-scale field patterns emerge which significantly distort the original field configuration. Two types of holes are described (compact and elongated), and three possible rotation mechanisms are considered: a rigidly rotating subphotospheric phenomenon, a linking of high and low latitudes by closed field lines, and an interaction between moving coronal material and open field lines.
The Oxford Probe: an open access five-hole probe for aerodynamic measurements
NASA Astrophysics Data System (ADS)
Hall, B. F.; Povey, T.
2017-03-01
The Oxford Probe is an open access five-hole probe designed for experimental aerodynamic measurements. The open access probe can be manufactured by the end user via additive manufacturing (metal or plastic). The probe geometry, drawings, calibration maps, and software are available under a creative commons license. The purpose is to widen access to aerodynamic measurement techniques in education and research environments. There are many situations in which the open access probe will allow results of comparable accuracy to a well-calibrated commercial probe. We discuss the applications and limitations of the probe, and compare the calibration maps for 16 probes manufactured in different materials and at different scales, but with the same geometrical design.
Experimental Analysis of Spatial Learning in Goldfish
ERIC Educational Resources Information Center
Saito, Kotaro; Watanabe, Shigeru
2005-01-01
The present study examined spatial learning in goldfish using a new apparatus that was an open-field circular pool with latticed holes. The subjects were motivated to reach the baited hole. We examined gustatory cues, intramaze cues, the possibility that the subject could see the food, etc. In Experiment 1, the position of the baited hole was…
A Triumvirate: Three Coronal Holes
2015-09-10
Three substantial coronal holes rotated across the face of the Sun the week of Sept. 8-10, 2015 as seen by NASA Solar Dynamics Observatory. Coronal holes are areas where the Sun magnetic field is open and a source of streaming solar wind. They appear darker in extreme ultraviolet light because there is less material in the hole areas being imaged in this specific wavelength of light. It is a little unusual to have three coronal holes at the same time, but neither is it a rare occurrence. http://photojournal.jpl.nasa.gov/catalog/PIA19950
Stress and deformation analysis of tapered cantilever castellated beam using numerical method
NASA Astrophysics Data System (ADS)
Ilham Maulana, Taufiq; Soebandono, Bagus; Satria Jagad, Beta; Prayuda, Hakas
2018-05-01
The castellated beam is often used in buildings because of its lighter weight compared with a normal steel beam. There are many types of an opening in the castellated beam, one of which is hexagonal openings. This paper will discuss the analysis of stress and deformation on castellated beam with a variation of openings diameter, space between holes, and angle of hexagonal openings. Furthermore, stress distribution on specimen will be seen under static loading. This study used IWF section 150x75x5x7 with 4 variations of the span with one fixed support, and yield strength is 400 MPa. Linear finite element analysis is used with 10-node tetrahedron solid element, by observing von Misses stress. The software used in this study are freeware, which is LISAFEA 8.0 for analyzing and FreeCAD for drawing. The result shows that value of stress and deformation for each sample is quite volatile, but it can be concluded that stress distribution around the opening is larger than in web and flange.
Honodel, Charles A.
1985-01-01
A barrier breaching device that is designed primarily for opening holes in interior walls of buildings uses detonating fuse for explosive force. The fuse acts as the ribs or spokes of an umbrella-like device that may be opened up to form a cone. The cone is placed against the wall so that detonating fuse that rings the base of the device and which is ignited by the spoke-like fuses serves to cut a circular hole in the wall.
Honodel, C.A.
1983-06-01
A barrier breaching device that is designed primarily for opening holes in interior walls of buildings uses detonating fuse for explosive force. The fuse acts as the ribs or spokes of an umbrella-like device that may be opened up to form a cone. The cone is placed against the wall so that detonating fuse that rings the base of the device and which is ignited by the spoke-like fuses serves to cut a circular hole in the wall.
Post-Impact and Open Hole Tensile Of Kenaf Hybrid Composites
NASA Astrophysics Data System (ADS)
Yunus, S.; Salleh, Z.; Masdek, N. R. N. M.; Taib, Y. M.; Azhar, I. I. S.; Hyie, K. M.
2018-03-01
Nowadays, kenaf hybrid glass composites has been used for a vast field of study throughout the globe. There are several compositions and orientation of kenaf hybrid glass composites that has been studied. With regards to the study that has been done, this study will be focussing on a 90FG/0/90/90/0/90FG orientation of kenaf hybrid glass composites. Polyester resin is used as a matrix to these hybrid composites. Impacted and open hole specimens were then analyzed through tensile test. All specimens were fabricated by using the cold press hand lay-up technique. The results revealed that the hybrid composites were hardly affected by the impact up to 6J. After 6J the impacted specimens experienced a significant damage for both strength and modulus. The same goes to open hole specimens where the same trend of tensile properties were observed as impacted specimens.
Outokumpu Deep Drill Hole: Window to the Precambrian bedrock
NASA Astrophysics Data System (ADS)
Heinonen, Suvi; Kietäväinen, Riikka; Ahonen, Lasse; Kukkonen, Ilmo
2017-04-01
Outokumpu Deep Drill Hole is located in eastern Finland, at latitude 62°43'4'' N and longitude 29°3'43'' E. This 2516 m long and fully cored deep hole has been utilized as a geolaboratory open for researchers worldwide since it was drilled in 2004-2005. The 220 mm diameter drill hole is open without a casing (excluding the uppermost 40 m) and thus provides a direct access to in situ conditions to 2.5 km depth. There is a wide range of wire-line logs carried out by the drilling contractor and later by ICDP (International Continental Scientific Drilling Program) in several logging sessions for geothermal, hydrogeological and deep biosphere studies. Lithology, metamorphism, fluid inclusions, density, magnetic properties, seismic velocities and thermal properties of the drill core have been studied by several international groups. The hole has kept open since the end of drilling enabling future studies to be conducted in it. The drill hole is situated in the southwestern part of the Outokumpu historical mining district famous for its Cu-Co-Zn sulfide deposits. These sulfide deposits are hosted by 1.96 Ga old ophiolitic rock types, known as the Outokumpu assemblage, also penetrated by the deep drill hole at 1314-1515 m depth. Laboratory and in situ petrophysical measurements have provided valuable information about physical properties of the typical rocks of the area that can be utilized in the mineral exploration efforts. The drill site of Outokumpu was chosen based on strong reflectivity observed in the high resolution seismic profiles acquired earlier in the area. Outokumpu Deep Drill Hole revealed that these reflections originate from the acoustic impedance variations caused by the ore hosting Outokumpu assemblage. In 2006, surface seismic reflection and vertical seismic profiling (VSP) data were measured in the drill site, and these data show that not only is Outokumpu assemblage rocks reflective but also water bearing fracture at 965 m depth is observed as a strong reflector. This fracture, as well as other fractures penetrated by the drill hole, contains saline water and gases, mainly methane, nitrogen, hydrogen and helium. Salinity of water in the deeper part (>1000 m) of the drill hole has continuously increased since the drilling. Gas-rich water slowly seeps upward and bubble out at the water table. In total, five different water types have been discerned along the drill hole by geochemical and isotopic methods and residence times up to 58 Ma indicated by the accumulation of noble gases. Microbiological studies in the Outokumpu Deep Drill Hole show that not only do different fracture zones act as places for shift in groundwater chemistry but also in the microbial communities. After a decade of research, Outokumpu drill hole site is geologically well known and thus provides a good environment to test new tools developed for exploration, microbiological or hydrogeological purposes, for example. Geological Survey of Finland is open for new research collaboration projects related to the drill site.
Otton, James K.; Zielinski, Robert A.
2001-01-01
Simple, cost-effective techniques are needed for land managers to assess the environmental impacts of oil and gas production activities on public lands, so that sites may be prioritized for remediation or for further, more formal assessment. Field-portable instruments provide real-time data and allow the field investigator to extend an assessment beyond simply locating and mapping obvious disturbances. Field investigators can examine sites for the presence of hydrocarbons in the subsurface using a soil auger and a photoionization detector (PID). The PID measures volatile organic compounds (VOC) in soil gases. This allows detection of hydrocarbons in the shallow subsurface near areas of obvious oil-stained soils, oil in pits, or dead vegetation. Remnants of a condensate release occur in sandy soils at a production site on the Padre Island National Seashore in south Texas. Dead vegetation had been observed by National Park Service personnel in the release area several years prior to our visit. The site is located several miles south of the Malaquite Beach Campground. In early 2001, we sampled soil gases for VOCs in the area believed to have received the condensate. Our purpose in this investigation was: 1) to establish what sampling techniques might be effective in sandy soils with a shallow water and contrast them with techniques used in an earlier study; and 2) delineate the probable area of condensate release. Our field results show that sealing the auger hole with a clear, rigid plastic tube capped at the top end and sampling the soil gas through a small hole in the cap increases the soil VOC gas signature, compared to sampling soil gases in the bottom of an open hole. This sealed-tube sampling method increases the contrast between the VOC levels within a contaminated area and adjacent background areas. The tube allows the PID air pump to draw soil gas from the volume of soil surrounding the open hole below the tube in a zone less influenced by atmospheric air. In an open hole, the VOC readings seem to be strongly dependent on the degree of diffusion and advection of soil gas VOCs into the open hole from the surrounding soil, a process that may vary with soil and wind conditions. Making measurements with the sealed hole does take some additional time (4-7 minutes after the hole is augered) compared to the open-hole technique (1-2 minutes). We used the rigid-plastic tube technique to survey for soil gas VOCs across the entire site, less than ? acre. Condensate has impacted at least 0.28 acres. The impacted area may extend northwest of the surveyed area.
46 CFR 151.45-2 - Special operating requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... conditions. (c) No cargo tank hatch, ullage hole, or tank cleaning openings shall be opened or remain open... shown in black block style letters and numerals (characters) at least 3 inches high on a white...
46 CFR 151.45-2 - Special operating requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... conditions. (c) No cargo tank hatch, ullage hole, or tank cleaning openings shall be opened or remain open... shown in black block style letters and numerals (characters) at least 3 inches high on a white...
46 CFR 151.45-2 - Special operating requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... conditions. (c) No cargo tank hatch, ullage hole, or tank cleaning openings shall be opened or remain open... shown in black block style letters and numerals (characters) at least 3 inches high on a white...
Friction Pull Plug and Material Configuration for Anti-Chatter Friction Pull Plug Weld
NASA Technical Reports Server (NTRS)
Littell, Justin Anderson (Inventor)
2016-01-01
A friction pull plug is provided for use in forming a plug weld in a hole in a material. The friction pull plug includes a shank and a series of three frustoconical sections. The relative sizes of the sections assure that a central one of the sections defines the initial contact point between the hole's sides. The angle defined by the central one of the sections reduces or eliminates chatter as the plug is pulled into the hole.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1989-08-01
A summary is presented of open-hole data collected on two cooperative wells for the GRI Tight Gas Sands Program. The overall objective of gathering well data in the Frontier Formation is to identify and evaluate technological problems in formation evaluation and hydraulic fracturing. Open-hole data acquisition is emphasized for the Anderson Canyon No. 3-17, a full cooperative well (i.e., coring, logging, cased-hole stress testing, fracture monitoring). Data collected on the North Anderson Canyon No. 40-16, a partial cooperative well (i.e., logging only), is described in an appendix.
30 CFR 56.7055 - Intersecting holes.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Intersecting holes. 56.7055 Section 56.7055... Piercing Drilling § 56.7055 Intersecting holes. Holes shall not be drilled where there is a danger of intersecting a misfired hole or a hole containing explosives blasting agents, or detonators. [56 FR 46508, Sept...
30 CFR 56.7055 - Intersecting holes.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Intersecting holes. 56.7055 Section 56.7055... Piercing Drilling § 56.7055 Intersecting holes. Holes shall not be drilled where there is a danger of intersecting a misfired hole or a hole containing explosives blasting agents, or detonators. [56 FR 46508, Sept...
30 CFR 57.7055 - Intersecting holes.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Intersecting holes. 57.7055 Section 57.7055... Jet Piercing Drilling-Surface and Underground § 57.7055 Intersecting holes. Holes shall not be drilled where there is a danger of intersecting a misfired hole or a hole containing explosives, blasting agents...
30 CFR 57.7055 - Intersecting holes.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Intersecting holes. 57.7055 Section 57.7055... Jet Piercing Drilling-Surface and Underground § 57.7055 Intersecting holes. Holes shall not be drilled where there is a danger of intersecting a misfired hole or a hole containing explosives, blasting agents...
30 CFR 56.7055 - Intersecting holes.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Intersecting holes. 56.7055 Section 56.7055... Piercing Drilling § 56.7055 Intersecting holes. Holes shall not be drilled where there is a danger of intersecting a misfired hole or a hole containing explosives blasting agents, or detonators. [56 FR 46508, Sept...
30 CFR 57.7055 - Intersecting holes.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Intersecting holes. 57.7055 Section 57.7055... Jet Piercing Drilling-Surface and Underground § 57.7055 Intersecting holes. Holes shall not be drilled where there is a danger of intersecting a misfired hole or a hole containing explosives, blasting agents...
30 CFR 57.7055 - Intersecting holes.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Intersecting holes. 57.7055 Section 57.7055... Jet Piercing Drilling-Surface and Underground § 57.7055 Intersecting holes. Holes shall not be drilled where there is a danger of intersecting a misfired hole or a hole containing explosives, blasting agents...
30 CFR 56.7055 - Intersecting holes.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Intersecting holes. 56.7055 Section 56.7055... Piercing Drilling § 56.7055 Intersecting holes. Holes shall not be drilled where there is a danger of intersecting a misfired hole or a hole containing explosives blasting agents, or detonators. [56 FR 46508, Sept...
30 CFR 57.7055 - Intersecting holes.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Intersecting holes. 57.7055 Section 57.7055... Jet Piercing Drilling-Surface and Underground § 57.7055 Intersecting holes. Holes shall not be drilled where there is a danger of intersecting a misfired hole or a hole containing explosives, blasting agents...
30 CFR 56.7055 - Intersecting holes.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Intersecting holes. 56.7055 Section 56.7055... Piercing Drilling § 56.7055 Intersecting holes. Holes shall not be drilled where there is a danger of intersecting a misfired hole or a hole containing explosives blasting agents, or detonators. [56 FR 46508, Sept...
Plummer, Niel; Busenberg, E.; Riggs, A.C.
2000-01-01
Calcite grew continuously for 500,000 years on the submerged walls of an open fault plane (Devils Hole) in southern Nevada, U.S.A. at rates of 0.3 to 1.3 mm/ka, but ceased growing approximately 60,000 years ago, even though the fault plane remained open and was continuously submerged. The maximum initial in-situ growth rate on pre-weighed crystals of Iceland spar placed in Devils Hole (calcite saturation index, SI, is 0.16 to 0.21 at 33.7??C) for growth periods of 0.75 to 4.5 years was 0.22 mm/ka. Calcite growth on seed crystals slowed or ceased following initial contact with Devils Hole groundwater. Growth rates measured in synthetic Ca-HCO3 solutions at 34??C, CO2 partial pressures of 0.101, 0.0156 (similar to Devils Hole groundwater) and 0.00102 atm, and SI values of 0.2 to 1.9 were nearly independent of P(CO)(2), decreased with decreasing saturation state, and extrapolated through the historical Devils Hole rate. The results show that calcite growth rate is highly sensitive to saturation state near equilibrium. A calcite crystal retrieved from Devils Hole, and used without further treatment of its surface, grew in synthetic Devils Hole groundwater when the saturation index was raised nearly 10-fold that of Devils Hole water, but the rate was only 1/4 that of fresh laboratory crystals that had not contacted Devils Hole water. Apparently, inhibiting processes that halted calcite growth in Devils Hole 60,000 years ago continue today.
Plummer, Niel; Busenberg, Eurybiades; Riggs, Alan C.
2000-01-01
Calcite grew continuously for 500,000 years on the submerged walls of an open fault plane (Devils Hole) in southern Nevada, U.S.A. at rates of 0.3 to 1.3 mm/ka, but ceased growing approximately 60,000 years ago, even though the fault plane remained open and was continuously submerged. The maximum initial in-situ growth rate on pre-weighed crystals of Iceland spar placed in Devils Hole (calcite saturation index, SI, is 0.16 to 0.21 at 33.7 °C) for growth periods of 0.75 to 4.5 years was 0.22 mm/ka. Calcite growth on seed crystals slowed or ceased following initial contact with Devils Hole groundwater. Growth rates measured in synthetic Ca-HCO3 solutions at 34 °C, CO2 partial pressures of 0.101, 0.0156 (similar to Devils Hole groundwater) and 0.00102 atm, and SI values of 0.2 to 1.9 were nearly independent of PCO2, decreased with decreasing saturation state, and extrapolated through the historical Devils Hole rate. The results show that calcite growth rate is highly sensitive to saturation state near equilibrium. A calcite crystal retrieved from Devils Hole, and used without further treatment of its surface, grew in synthetic Devils Hole groundwater when the saturation index was raised nearly 10-fold that of Devils Hole water, but the rate was only 1/4 that of fresh laboratory crystals that had not contacted Devils Hole water. Apparently, inhibiting processes that halted calcite growth in Devils Hole 60,000 years ago continue today.
Magnetic Topology of Coronal Hole Linkages
NASA Technical Reports Server (NTRS)
Titov, V. S.; Mikic, Z.; Linker, J. A.; Lionello, R.; Antiochos, S. K.
2010-01-01
In recent work, Antiochos and coworkers argued that the boundary between the open and closed field regions on the Sun can be extremely complex with narrow corridors of open ux connecting seemingly disconnected coronal holes from the main polar holes, and that these corridors may be the sources of the slow solar wind. We examine, in detail, the topology of such magnetic configurations using an analytical source surface model that allows for analysis of the eld with arbitrary resolution. Our analysis reveals three important new results: First, a coronal hole boundary can join stably to the separatrix boundary of a parasitic polarity region. Second, a single parasitic polarity region can produce multiple null points in the corona and, more important, separator lines connecting these points. Such topologies are extremely favorable for magnetic reconnection, because it can now occur over the entire length of the separators rather than being con ned to a small region around the nulls. Finally, the coronal holes are not connected by an open- eld corridor of finite width, but instead are linked by a singular line that coincides with the separatrix footprint of the parasitic polarity. We investigate how the topological features described above evolve in response to motion of the parasitic polarity region. The implications of our results for the sources of the slow solar wind and for coronal and heliospheric observations are discussed.
Dynamics of Coronal Hole Boundaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Higginson, A. K.; Zurbuchen, T. H.; Antiochos, S. K.
Remote and in situ observations strongly imply that the slow solar wind consists of plasma from the hot, closed-field corona that is released onto open magnetic field lines. The Separatrix Web theory for the slow wind proposes that photospheric motions at the scale of supergranules are responsible for generating dynamics at coronal-hole boundaries, which result in the closed plasma release. We use three-dimensional magnetohydrodynamic simulations to determine the effect of photospheric flows on the open and closed magnetic flux of a model corona with a dipole magnetic field and an isothermal solar wind. A rotational surface motion is used tomore » approximate photospheric supergranular driving and is applied at the boundary between the coronal hole and helmet streamer. The resulting dynamics consist primarily of prolific and efficient interchange reconnection between open and closed flux. The magnetic flux near the coronal-hole boundary experiences multiple interchange events, with some flux interchanging over 50 times in one day. Additionally, we find that the interchange reconnection occurs all along the coronal-hole boundary and even produces a lasting change in magnetic-field connectivity in regions that were not driven by the applied motions. Our results show that these dynamics should be ubiquitous in the Sun and heliosphere. We discuss the implications of our simulations for understanding the observed properties of the slow solar wind, with particular focus on the global-scale consequences of interchange reconnection.« less
Entropy of N=2 black holes and their M-brane description
DOE Office of Scientific and Technical Information (OSTI.GOV)
Behrndt, K.; Mohaupt, T.
1997-08-01
In this paper we discuss the M-brane description for an N=2 black hole. This solution is a result of the compactification of M-5-brane configurations over a Calabi-Yau threefold with arbitrary intersection numbers C{sub ABC}. In analogy with the D-brane description where one counts open string states we count here open M-2-branes which end on the M-5-brane. {copyright} {ital 1997} {ital The American Physical Society}
Quan, Mingran; Tian, Jiajun; Yao, Yong
2015-11-01
An ultra-high sensitivity open-cavity Fabry-Perot interferometer (FPI) gas refractive index (RI) sensor based on the photonic crystal fiber (PCF) and Vernier effect is proposed and demonstrated. The sensor is prepared by splicing a section of PCF to a section of fiber tube fused with a section of single mode fiber. The air holes running along the cladding of the PCF enable the gas to enter or leave the cavity freely. The reflection beam from the last end face of the PCF is used to generate the Vernier effect, which significantly improves the sensitivity of the sensor. Experimental results show that the proposed sensor can provide an ultra-high RI sensitivity of 30899 nm/RIU. This sensor has potential applications in fields such as gas concentration analyzing and humidity monitoring.
Self consistent MHD modeling of the solar wind from coronal holes with distinct geometries
NASA Technical Reports Server (NTRS)
Stewart, G. A.; Bravo, S.
1995-01-01
Utilizing an iterative scheme, a self-consistent axisymmetric MHD model for the solar wind has been developed. We use this model to evaluate the properties of the solar wind issuing from the open polar coronal hole regions of the Sun, during solar minimum. We explore the variation of solar wind parameters across the extent of the hole and we investigate how these variations are affected by the geometry of the hole and the strength of the field at the coronal base.
NASA Technical Reports Server (NTRS)
Dowler, W. L.; Varsi, G.; Yang, L. C. (Inventor)
1979-01-01
A system for vibrating the earth in a location where seismic mapping is to take place is described. A relatively shallow hole formed in the earth, such as a hole 10 feet deep, placing a solid propellant in the hole, sealing a portion of the hole above the solid propellant with a device that can rapidly open and close to allow a repeatedly interrupted escape of gas. The propellant is ignited so that high pressure gas is created which escapes in pulses to vibrate the earth.
NASA Technical Reports Server (NTRS)
Obridko, Vladmir; Formichev, Valery; Kharschiladze, A. F.; Zhitnik, Igor; Slemzin, Vladmir; Hathaway, David H.; Wu, Shi T.
1998-01-01
Two low-latitude coronal holes observed by CORONAS-1 in April and June 1994 are analyzed together with magnetic field measurements obtained from Wilcox and Kitt Peak Solar Observatories. To estimate the comparable temperature of these two coronal holes, the YOHKOH observations are also utilized. Using this information, we have constructed three-dimensional magnetic field lines to illustrate the geometrical configuration of these coronal holes. The calculated synoptic maps are used to determine the existence of closed and open field regions of the hole. Finally, we have correlated the characteristics of two coronal holes with observed solar wind speed. We found that the brighter coronal hole has high speed solar wind, and the dimmer coronal hole has low speed solar wind.
Unbalanced-flow, fluid-mixing plug with metering capabilities
NASA Technical Reports Server (NTRS)
England, John Dwight (Inventor); Kelley, Anthony R. (Inventor); Van Buskirk, Paul D. (Inventor)
2009-01-01
A fluid mixer plug has holes formed therethrough such that a remaining portion is closed to fluid flow. The plug's inlet face defines a central circuit region and a ring-shaped region with the ring-shaped region including at least some of the plug's remaining portion so-closed to fluid flow. This remaining portion or closed region at each radius R of the ring shaped region satisfies a radius independent, flow-based relationship. Entry openings are defined in the plug's inlet face in correspondence with the holes. The entry openings define an open flow area at each radius of the ring-shaped region. The open flow area at each such radius satisfies the inverse of the flow-based relationship defining the closed regions of the plug.
Thermodynamics of Accelerating Black Holes.
Appels, Michael; Gregory, Ruth; Kubizňák, David
2016-09-23
We address a long-standing problem of describing the thermodynamics of an accelerating black hole. We derive a standard first law of black hole thermodynamics, with the usual identification of entropy proportional to the area of the event horizon-even though the event horizon contains a conical singularity. This result not only extends the applicability of black hole thermodynamics to realms previously not anticipated, it also opens a possibility for studying novel properties of an important class of exact radiative solutions of Einstein equations describing accelerated objects. We discuss the thermodynamic volume, stability, and phase structure of these black holes.
Effects of intraguild predators on nest-site selection by prey.
Huang, Wen-San; Pike, David A
2012-01-01
Nest-site selection involves tradeoffs between the risk of predation (on females and/or nests) and nest-site quality (microenvironment), and consequently suitable nesting sites are often in limited supply. Interactions with "classical" predators (e.g., those not competing for shared resources) can strongly influence nest-site selection, but whether intraguild predation also influences this behavior is unknown. We tested whether risk of predation from an intraguild predator [the diurnal scincid lizard Eutropis (Mabuya) longicaudata] influences nest-site selection by its prey (the nocturnal gecko Gekko hokouensis) on Orchid Island, Taiwan. These two species putatively compete for shared resources, including invertebrate prey and nesting microhabitat, but the larger E. longicaudata also predates G. hokouensis (but not its hard-shelled eggs). Both species nested within a concrete wall containing a series of drainage holes that have either one ("closed-in") or two openings ("open"). In allopatry, E. longicaudata preferred to nest within holes that were plugged by debris (thereby protecting eggs from water intrusion), whereas G. hokouensis selected holes that were open at both ends (facilitating escape from predators). When we experimentally excluded E. longicaudata from its preferred nesting area, G. hokouensis not only nested in higher abundances, but also modified its nest-site selection, such that communal nesting was more prevalent and both open and closed-in holes were used equally. Egg viability was unaffected by the choice of hole type, but was reduced slightly (by 7%) in the predator exclusion area (presumably due to higher local incubation temperatures). Our field experiment demonstrates that intraguild predators can directly influence the nest density of prey by altering maternal nest-site selection behavior, even when the predator and prey are active at different times of day and the eggs are not at risk of predation.
Li, Xu-Bing; Liu, Bin; Wen, Min; Gao, Yu-Ji; Wu, Hao-Lin; Huang, Mao-Yong; Li, Zhi-Jun; Chen, Bin; Tung, Chen-Ho; Wu, Li-Zhu
2016-04-01
Solar H 2 evolution of CdSe QDs can be significantly enhanced simply by introducing a suitable hole-accepting-ligand for achieving efficient hole extraction and transfer at the nanoscale interfaces, which opens an effective pathway for dissociation of excitons to generate long-lived charge separation, thus improving the solar-to-fuel conversion efficiency.
Magnetohydrodynamic Simulation of a Streamer Beside a Realistic Coronal Hole
NASA Technical Reports Server (NTRS)
Suess, S. T.; Wu, S. T.; Wang, A. H.; Poletto, G.
1994-01-01
Existing models of coronal streamers establish their credibility and act as the initial state for transients. The models have produced satisfactory streamer simulations, but unsatisfactory coronal hole simulations. This is a consequence of the character of the models and the boundary conditions. The models all have higher densities in the magnetically open regions than occur in coronal holes (Noci, et al., 1993).
NASA Astrophysics Data System (ADS)
Dick, H. J.; MacLeod, C. J.; Blum, P.; Scientific Party, E.
2016-12-01
IODP Hole U1473A drilled 809.4 m into a 700-m depth wave-cut platform at Atlantis Bank on the SW Indian Ridge. It is an oceanic core complex where massive gabbro was emplaced into the footwall of a single detachment fault for ≥2.7 Myr, with total slip ≥39 km. It was then uplifted to its present position flanking the 6,100 m deep 199-km Atlantis II Transform. The gabbros are back-tilted 20°S, while a sub-horizontal 15 km long mantle peridotite-gabbro contact lies along the transform wall at 4200 m depth 11.5 km west of Hole U1473A. Hole U1473A is 1.4 km north of 158-m deep Hole 1105A and 2.2 km NNE of 1508-m deep Hole 735B. Thus we examine the lateral continuity of the lower ocean crust at ultraslow rates ( 15-16 mm/yr.), and compare it to 1400-m Hole U1309D in the Atlantis Massif MAR core complex (24 mm/yr.) flanking the 63-km Atlantis Transform. The three Atlantis Bank holes are very similar, consisting of a complex series of oxide-rich gabbros and olivine gabbros. Several dikes crosscutting the gabbro sections show that they passed through the dike-gabbro transition after crystallizing and cooling deeper in the crust. They all show extensive high-temperature crystal-plastic deformation predating dike intrusion. A small amount of troctolite was recovered only in Hole 735B. By contrast, gabbro, rather than olivine gabbro was the dominant lithology in Hole U1309D, with intercalations of troctolite and mantle peridotite, and subordinate oxide gabbro. Oxide gabbro is often associated with crystal-plastic deformation. While these are concentrated in the upper 1/3 of Hole 735B, they are more uniformly distributed in Hole U1309D. While one section cannot be traced directly to the other at Atlantis Bank, it appears that they can be correlated based on chemical and structural similarities, with the 1105A and 1473A sections lying some hundreds of meters deeper structurally than Hole 735B, consistent with erosion on the platform. All these sections represent sequential emplacement of small gabbro bodies, with upward compaction of late melt, often fault controlled. The primary differences in the sections are due to variations in the melt supply, which was significantly lower at Hole U1309D, resulting in incorporation of mantle peridotite screens into the section as additional gabbro intrusions were added to the base of the section.
Evolution of perturbations of squashed Kaluza-Klein black holes: Escape from instability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishihara, Hideki; Kimura, Masashi; Konoplya, Roman A.
2008-04-15
The squashed Kaluza-Klien (KK) black holes differ from the Schwarzschild black holes with asymptotic flatness or the black strings even at energies for which the KK modes are not excited yet, so that squashed KK black holes open a window in higher dimensions. Another important feature is that the squashed KK black holes are apparently stable and, thereby, let us avoid the Gregory-Laflamme instability. In the present paper, the evolution of scalar and gravitational perturbations in time and frequency domains is considered for these squashed KK black holes. The scalar field perturbations are analyzed for general rotating squashed KK blackmore » holes. Gravitational perturbations for the so-called zero mode are shown to be decayed for nonrotating black holes, in concordance with the stability of the squashed KK black holes. The correlation of quasinormal frequencies with the size of extra dimension is discussed.« less
Newborn Coronal Holes Associated with the Disappearance of Polarity Reversal Boundaries (P46)
NASA Astrophysics Data System (ADS)
Shelke, R.
2006-11-01
rajendra_shelke@yahoo.co.in Coronal holes play an important role in the occurrence of various kinds of solar events. The geomagnetic activity, coronal transients, type II radio bursts, and soft X ray blowouts have shown their strong association with coronal holes (Webb et al., 1978; Shelke and Pande, 1985; Bhatnagar, 1996; Hewish and Bravo, 1986). Recently, Shelke (2006) has linked the onset of interplanetary erupting stream disturbances with the evolutionary changes in the coronal holes. The present study reveals that there exists some physical relationship between the formation of new coronal holes and the disappearance of polarity reversal boundaries with or without the overlying prominences. About 124 new coronal holes are found to emerge at the locations where polarity reversal boundaries existed prior to their disappearance. Among them, nearly 66% and 18% newborn coronal holes have been associated with disappearing prominences and disappearing small unipolar magnetic regions (UMRs) with encircled polarity reversal boundaries respectively. Coronal holes and quiescent prominences are stable solar features that last for many solar rotations. A coronal hole is indicative of a radial magnetic field of a predominant magnetic polarity at the photosphere, whereas solar prominence overlying the polarity reversal boundary straddles both the polarities of a bipolar magnetic region. The new coronal hole emerges on the Sun, owing to the changes in magnetic field configuration leading to the opening of closed magnetic structure into the corona. The mechanism that leads to the eruption of polarity reversal boundaries with or without prominences seems to be interlinked with the mechanism that converts bipolar magnetic regions into unipolar magnetic regions characterizing coronal holes. The fundamental activity for the onset of erupting polarity reversal boundary seems to be the opening of preexisting closed magnetic structures into a new coronal hole, which can support mass motion including erupting prominence.
Gibbs, S.J.; Bralower, T.J.; Bown, Paul R.; Zachos, J.C.; Bybell, L.M.
2006-01-01
Abrupt global warming and profound perturbation of the carbon cycle during the Paleocene-Eocene Thermal Maximum (PETM, ca. 55 Ma) have been linked to a massive release of carbon into the ocean-atmosphere system. Increased phytoplankton productivity has been invoked to cause subsequent CO2 drawdown, cooling, and environmental recovery. However, interpretations of geochemical and biotic data differ on when and where this increased productivity occurred. Here we present high-resolution nannofossil assemblage data from a shelf section (the U.S. Geological Survey [USGS] drill hole at Wilson Lake, New Jersey) and an open-ocean location (Ocean Drilling Program [ODP] Site 1209, paleoequatorial Pacific). These data combined with published biotic records indicate a transient steepening of shelf-offshelf trophic gradients across the PETM onset and peak, with a decrease in open-ocean productivity coeval with increased nutrient availability in shelf areas. Productivity levels recovered in the open ocean during the later stages of the event, which, coupled with intensified continental weathering rates, may have played an important role in carbon sequestration and CO2 drawdown. ?? 2006 Geological Society of America.
AT THE SOURCE OF AN EXTRAGALACTIC JET
NASA Technical Reports Server (NTRS)
2002-01-01
Artist's concept of the formation region of M87's jet. An accretion disk (red-yellow) surrounds the black hole, and its magnetic field lines twist tightly to channel the outpouring subatomic particles into a narrow jet. The jet opens widely near the black hole, then is shaped into a narrower beam within a light-year of the black hole. Credit: NASA and Ann Feild (Space Telescope Science Institute)
2017-08-14
A substantial coronal hole rotated into a position where it is facing Earth (Aug. 9-11, 2017). Coronal holes are areas of open magnetic field that spew out charged particles as solar wind that spreads into space. If that solar wind interacts with our own magnetosphere it can generate aurora. In this view of the sun in extreme ultraviolet light, the coronal hole appears as the dark stretch near the center of the sun. It was the most distinctive feature on the sun over the past week. Movies are available at https://photojournal.jpl.nasa.gov/catalog/PIA21874
2017-02-06
A substantial coronal hole rotated across the face of the sun this past week and is again streaming solar wind towards Earth (Jan. 30 - Feb. 2, 2017). This same coronal hole was facing Earth about a month ago and has rotated into a similar position again. Coronal holes are areas of open magnetic field from which solar wind particles stream into space. In this wavelength of extreme ultraviolet light it appears as a dark area near the center and lower portion of the sun. Movies are available at http://photojournal.jpl.nasa.gov/catalog/PIA11177
2016-12-06
A substantial coronal hole began to rotate into view over the past few days (Dec. 1-2, 2016). Coronal holes are magnetically open areas of the sun's magnetic field structure that spew streams of high speed solar wind into space. In about a week or so that coronal hole might send streams of particles in the direction of Earth. Often times these streams can interact with Earth's magnetosphere and generate aurora. The images were taken in a wavelength of extreme ultraviolet light. Movies are available at http://photojournal.jpl.nasa.gov/catalog/PIA21208
Hawking radiation from squashed Kaluza-Klein black holes: A window to extra dimensions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishihara, Hideki; Soda, Jiro
2007-09-15
We explore the observability of extra dimensions through five-dimensional squashed Kaluza-Klein black holes residing in the Kaluza-Klein spacetime. With the expectation that the Hawking radiation reflects the five-dimensional nature of the squashed horizon, we study the Hawking radiation of a scalar field in the squashed black hole background. As a result, we show that the luminosity of Hawking radiation tells us the size of the extra dimension, namely, the squashed Kaluza-Klein black holes open a window to extra dimensions.
2016-10-21
A pair of large coronal holes rotated into view over the past few days (Oct. 20-21, 2016). Coronal holes appear dark in certain wavelengths of extreme ultraviolet light, such as in the wavelength used here. These holes are areas of open magnetic field that spew solar wind into space. Sometimes, when they are facing Earth, they can cause geomagnetic disturbances that generate aurora. The lines you see were drawn to represent how solar scientists are modeling the magnetic field lines. Movies are available at the Photojournal http://photojournal.jpl.nasa.gov/catalog/PIA15378
Corner-cutting mining assembly
Bradley, J.A.
1981-07-01
This invention resulted from a contract with the United States Department of Energy and relates to a mining tool. More particularly, the invention relates to an assembly capable of drilling a hole having a square cross-sectional shape with radiused corners. In mining operations in which conventional auger-type drills are used to form a series of parallel, cylindrical holes in a coal seam, a large amount of coal remains in place in the seam because the shape of the holes leaves thick webs between the holes. A higher percentage of coal can be mined from a seam by a means capable of drilling holes having a substantially square cross section. It is an object of this invention to provide an improved mining apparatus by means of which the amount of coal recovered from a seam deposit can be increased. Another object of the invention is to provide a drilling assembly which cuts corners in a hole having a circular cross section. These objects and other advantages are attained by a preferred embodiment of the invention.
Safety System for Controlling Fluid Flow into a Suction Line
NASA Technical Reports Server (NTRS)
England, John Dwight (Inventor); Kelley, Anthony R. (Inventor); Cronise, Raymond J. (Inventor)
2018-01-01
A safety system includes a sleeve fitted within a pool's suction line at its inlet. The sleeve terminates with a plate that resides within the suction line. The plate has holes formed therethrough. A housing defining distinct channels is fitted in the sleeve so that the distinct channels lie within the sleeve. Each of the distinct channels has a first opening on one end thereof and a second opening on another end thereof. The second openings reside in the sleeve. The first openings are in fluid communication with the water in the pool, and are distributed around a periphery of an area of the housing that prevents coverage of all the first openings when a human interacts therewith. A first sensor is coupled to the sleeve to sense pressure therein, and a second pressure sensor is coupled to the plate to sense pressure in one of the plates' holes.
Berry, Robert Randolph; Palmer, Gene David; Wilson, Ian David
2000-01-01
A gas turbine rotor stacking fixture includes upstanding bolts for reception in aligned bolt holes in superposed aft disk, wheels and spacers and upstanding alignment rods received in openings of the disk, wheels and spacers during the rotor stacking assembly. The axially registering openings enable insertion of thin-walled tubes circumferentially about the rim of the rotor, with tight tolerances to the openings to provide supply and return steam for cooling buckets. The alignment rods have radial dimensions substantially less than their dimensions in a circumferential direction to allow for radial opening misalignment due to thermal expansion, tolerance stack-up and wheel-to-spacer mismatch due to rabbet mechanical growth. The circumferential dimension of the alignment rods affords tightly toleranced alignment of the openings through which the cooling tubes are installed.
Magendie and Luschka: Holes in the 4th ventricle.
Engelhardt, Eliasz
2016-01-01
Cerebrospinal fluid (CSF) is a complex liquid formed mainly by the choroid plexuses. After filling the ventricular system where it circulates, CSF flows out to the subarachnoid spaces through openings in the 4 th ventricle. Following numerous studies on CSF pathways, these openings were first discovered in the 19 th century by two notable researchers, François Magendie and Hubert von Luschka, who described the median and lateral openings subsequently named after them. Even after the studies of Axel Key and Gustav Magnus Retzius confirming these openings, their existence was questioned by many anatomists, yet acknowledged by others. Finally gaining the acceptance of all, recognition of the holes endures to the present day. Interest in these openings may be attributed to the several congenital or acquired pathological conditions that may affect them, usually associated with hydrocephalus. We report some historical aspects of these apertures and their discoverers.
Self-Advancing Step-Tap Drills
NASA Technical Reports Server (NTRS)
Pettit, Donald R.; Camarda, Charles J.; Penner, Ronald K.; Franklin, Larry D.
2007-01-01
Self-advancing tool bits that are hybrids of drills and stepped taps make it possible to form threaded holes wider than about 1/2 in. (about 13 mm) without applying any more axial force than is necessary for forming narrower pilot holes. These self-advancing stepped-tap drills were invented for use by space-suited astronauts performing repairs on reinforced carbon/carbon space-shuttle leading edges during space walks, in which the ability to apply axial drilling forces is severely limited. Self-advancing stepped-tap drills could also be used on Earth for making wide holes without applying large axial forces. A self-advancing stepped-tap drill (see figure) includes several sections having progressively larger diameters, typically in increments between 0.030 and 0.060 in. (between about 0.8 and about 1.5 mm). The tip section, which is the narrowest, is a pilot drill bit that typically has a diameter between 1/8 and 3/16 in. (between about 3.2 and about 4.8 mm). The length of the pilot-drill section is chosen, according to the thickness of the object to be drilled and tapped, so that the pilot hole is completed before engagement of the first tap section. Provided that the cutting-edge geometry of the drill bit is optimized for the material to be drilled, only a relatively small axial force [typically of the order of a few pounds (of the order of 10 newtons)] must be applied during drilling of the pilot hole. Once the first tap section engages the pilot hole, it is no longer necessary for the drill operator to apply axial force: the thread engagement between the tap and the workpiece provides the axial force to advance the tool bit. Like the pilot-drill section, each tap section must be long enough to complete its hole before engagement of the next, slightly wider tap section. The precise values of the increments in diameter, the thread pitch, the rake angle of the tap cutting edge, and other geometric parameters of the tap sections must be chosen, in consideration of the workpiece material and thickness, to prevent stripping of threads during the drilling/tapping operation. A stop-lip or shoulder at the shank end of the widest tap section prevents further passage of the tool bit through the hole.
Bender, M.; Bennett, F.K.; Kuckes, A.F.
1963-09-17
A fast-acting electric switch is described for rapidly opening a circuit carrying large amounts of electrical power. A thin, conducting foil bridges a gap in this circuit and means are provided for producing a magnetic field and eddy currents in the foil, whereby the foil is rapidly broken to open the circuit across the gap. Advantageously the foil has a hole forming two narrow portions in the foil and the means producing the magnetic field and eddy currents comprises an annular coil having its annulus coaxial with the hole in the foil and turns adjacent the narrow portions of the foil. An electrical current flows through the coil to produce the magnetic field and eddy currents in the foil. (AEC)
Exploring stellar evolution with gravitational-wave observations
NASA Astrophysics Data System (ADS)
Dvorkin, Irina; Uzan, Jean-Philippe; Vangioni, Elisabeth; Silk, Joseph
2018-05-01
Recent detections of gravitational waves from merging binary black holes opened new possibilities to study the evolution of massive stars and black hole formation. In particular, stellar evolution models may be constrained on the basis of the differences in the predicted distribution of black hole masses and redshifts. In this work we propose a framework that combines galaxy and stellar evolution models and use it to predict the detection rates of merging binary black holes for various stellar evolution models. We discuss the prospects of constraining the shape of the time delay distribution of merging binaries using just the observed distribution of chirp masses. Finally, we consider a generic model of primordial black hole formation and discuss the possibility of distinguishing it from stellar-origin black holes.
NASA Astrophysics Data System (ADS)
Bolan, B. A.; Soles, C. L.; Hristov, H. A.; Gidley, D. W.; Yee, A. F.
1996-03-01
A new method is proposed for the evaluation of the hole volume in amorphous polymers based upon PALS data measured over a temperature of 110 to 480 K. Extrapolation of the "open hole" volume to 0 K allows its separation into that attributed to the segmental motions of the polymer chains (dynamic) and that due to inefficient packing (static). The dynamic hole volume is correlated to thermodynamic volume/density fluctuations and its temperature dependencies are in good agreement with SAXS data. Several thermosetting epoxy materials are also studied over a similar temperature range with the "open hole" volume being separated into its dynamic and static components. How these two components affect diffusional properties of these systems is examined in detail. It is also shown that the o-Ps can localize in a nearly 100material (PET), we therefore conclude that PALS measures more than the "free volume" necessary for segmental motion. Work supported by the Air Force Office of Scientific Research (AFOSR) grant # F49620-95-1-0037.
21 CFR 882.5250 - Burr hole cover.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Burr hole cover. 882.5250 Section 882.5250 Food... DEVICES NEUROLOGICAL DEVICES Neurological Therapeutic Devices § 882.5250 Burr hole cover. (a) Identification. A burr hole cover is a plastic or metal device used to cover or plug holes drilled into the skull...
30 CFR 77.1010 - Collaring holes.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Collaring holes. 77.1010 Section 77.1010... Control § 77.1010 Collaring holes. (a) Starter steels shall be used when collaring holes with hand-held drills. (b) Men shall not hold the drill steel while collaring holes, or rest their hands on the chuck or...
21 CFR 882.5250 - Burr hole cover.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Burr hole cover. 882.5250 Section 882.5250 Food... DEVICES NEUROLOGICAL DEVICES Neurological Therapeutic Devices § 882.5250 Burr hole cover. (a) Identification. A burr hole cover is a plastic or metal device used to cover or plug holes drilled into the skull...
30 CFR 57.9360 - Shelter holes.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Shelter holes. 57.9360 Section 57.9360 Mineral....9360 Shelter holes. (a) Shelter holes shall be— (1) Provided at intervals adequate to assure the safety... farthest projection of moving equipment. (b) Shelter holes shall not be used for storage unless a 40-inch...
21 CFR 882.5250 - Burr hole cover.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Burr hole cover. 882.5250 Section 882.5250 Food... DEVICES NEUROLOGICAL DEVICES Neurological Therapeutic Devices § 882.5250 Burr hole cover. (a) Identification. A burr hole cover is a plastic or metal device used to cover or plug holes drilled into the skull...
30 CFR 77.1010 - Collaring holes.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Collaring holes. 77.1010 Section 77.1010... Control § 77.1010 Collaring holes. (a) Starter steels shall be used when collaring holes with hand-held drills. (b) Men shall not hold the drill steel while collaring holes, or rest their hands on the chuck or...
30 CFR 77.1010 - Collaring holes.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Collaring holes. 77.1010 Section 77.1010... Control § 77.1010 Collaring holes. (a) Starter steels shall be used when collaring holes with hand-held drills. (b) Men shall not hold the drill steel while collaring holes, or rest their hands on the chuck or...
30 CFR 57.9360 - Shelter holes.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Shelter holes. 57.9360 Section 57.9360 Mineral....9360 Shelter holes. (a) Shelter holes shall be— (1) Provided at intervals adequate to assure the safety... farthest projection of moving equipment. (b) Shelter holes shall not be used for storage unless a 40-inch...
30 CFR 57.9360 - Shelter holes.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Shelter holes. 57.9360 Section 57.9360 Mineral....9360 Shelter holes. (a) Shelter holes shall be— (1) Provided at intervals adequate to assure the safety... farthest projection of moving equipment. (b) Shelter holes shall not be used for storage unless a 40-inch...
30 CFR 57.9360 - Shelter holes.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Shelter holes. 57.9360 Section 57.9360 Mineral....9360 Shelter holes. (a) Shelter holes shall be— (1) Provided at intervals adequate to assure the safety... farthest projection of moving equipment. (b) Shelter holes shall not be used for storage unless a 40-inch...
30 CFR 77.1010 - Collaring holes.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Collaring holes. 77.1010 Section 77.1010... Control § 77.1010 Collaring holes. (a) Starter steels shall be used when collaring holes with hand-held drills. (b) Men shall not hold the drill steel while collaring holes, or rest their hands on the chuck or...
30 CFR 77.1010 - Collaring holes.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Collaring holes. 77.1010 Section 77.1010... Control § 77.1010 Collaring holes. (a) Starter steels shall be used when collaring holes with hand-held drills. (b) Men shall not hold the drill steel while collaring holes, or rest their hands on the chuck or...
30 CFR 57.9360 - Shelter holes.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Shelter holes. 57.9360 Section 57.9360 Mineral....9360 Shelter holes. (a) Shelter holes shall be— (1) Provided at intervals adequate to assure the safety... farthest projection of moving equipment. (b) Shelter holes shall not be used for storage unless a 40-inch...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanaka, H., E-mail: tanaka@semicon.kuee.kyoto-u.ac.jp; Mori, S.; Morioka, N.
2014-12-21
We calculated the phonon-limited hole mobility in rectangular cross-sectional [001], [110], [111], and [112]-oriented germanium nanowires, and the hole transport characteristics were investigated. A tight-binding approximation was used for holes, and phonons were described by a valence force field model. Then, scattering probability of holes by phonons was calculated taking account of hole-phonon interaction atomistically, and the linearized Boltzmann's transport equation was solved to calculate the hole mobility at low longitudinal field. The dependence of the hole mobility on nanowire geometry was analyzed in terms of the valence band structure of germanium nanowires, and it was found that the dependencemore » was qualitatively reproduced by considering an average effective mass and the density of states of holes. The calculation revealed that [110] germanium nanowires with large height along the [001] direction show high hole mobility. Germanium nanowires with this geometry are also expected to exhibit high electron mobility in our previous work, and thus they are promising for complementary metal-oxide-semiconductor (CMOS) applications.« less
Dynamics of Coronal Hole Boundaries
NASA Technical Reports Server (NTRS)
Higginson, A. K.; Antiochos, S. K.; DeVore, C. R.; Wyper, Peter F.; Zurbuchen, T. H.
2017-01-01
Remote and in situ observations strongly imply that the slow solar wind consists of plasma from the hot, closed-field corona that is released onto open magnetic field lines. The Separatrix Web theory for the slow wind proposesthat photospheric motions at the scale of supergranules are responsible for generating dynamics at coronal-holeboundaries, which result in the closed plasma release. We use three-dimensional magnetohydrodynamicsimulations to determine the effect of photospheric flows on the open and closed magnetic flux of a model coronawith a dipole magnetic field and an isothermal solar wind. A rotational surface motion is used to approximatephotospheric supergranular driving and is applied at the boundary between the coronal hole and helmet streamer.The resulting dynamics consist primarily of prolific and efficient interchange reconnection between open andclosed flux. The magnetic flux near the coronal-hole boundary experiences multiple interchange events, with someflux interchanging over 50 times in one day. Additionally, we find that the interchange reconnection occurs allalong the coronal-hole boundary and even produces a lasting change in magnetic-field connectivity in regions thatwere not driven by the applied motions. Our results show that these dynamics should be ubiquitous in the Sun andheliosphere. We discuss the implications of our simulations for understanding the observed properties of the slowsolar wind, with particular focus on the global-scale consequences of interchange reconnection.
NASA Technical Reports Server (NTRS)
Shyam, Vikram; Thurman, Douglas R.; Poinsatte, Philip E.; Ameri, Ali A.; Culley, Dennis E.
2018-01-01
Surface infrared thermography, hotwire anemometry, and thermocouple surveys were performed on two new film cooling hole geometries: spiral/rifled holes and fluidic sweeping holes. Ways to quantify the efficacy of novel cooling holes that are asymmetric, not uniformly spaced or that show variation from hole to hole are presented. The spiral holes attempt to induce large-scale vorticity to the film cooling jet as it exits the hole to prevent the formation of the kidney shaped vortices commonly associated with film cooling jets. The fluidic sweeping hole uses a passive in-hole geometry to induce jet sweeping at frequencies that scale with blowing ratios. The spiral hole performance is compared to that of round holes with and without compound angles. The fluidic hole is of the diffusion class of holes and is therefore compared to a 777 hole and square holes. A patent-pending spiral hole design showed the highest potential of the nondiffusion type hole configurations. Velocity contours and flow temperature were acquired at discreet cross-sections of the downstream flow field. The passive fluidic sweeping hole shows the most uniform cooling distribution but suffers from low span-averaged effectiveness levels due to enhanced mixing. The data was taken at a Reynolds number of 11,000 based on hole diameter and freestream velocity. Infrared thermography was taken for blowing ratios of 1.0, 1.5, 2.0, and 2.5 at a density ratio of 1.05. The flow inside the fluidic sweeping hole was studied using 3D unsteady RANS. A section on ideas for future work is included that addresses issues of quantifying cooling uniformity and provides some ideas for changing the way we think about cooling such as changing the direction of cooling or coupling acoustic devices to cooling holes to regulate frequency.
Coronal hole boundaries evolution at small scales. I. EIT 195 Å and TRACE 171 Å view
NASA Astrophysics Data System (ADS)
Madjarska, M. S.; Wiegelmann, T.
2009-09-01
Aims: We aim to study the small-scale evolution at the boundaries of an equatorial coronal hole connected with a channel of open magnetic flux to the polar region and an “isolated” one in the extreme-ultraviolet spectral range. We determine the spatial and temporal scale of these changes. Methods: Imager data from TRACE in the Fe ix/x 171 Å passband and EIT on-board Solar and Heliospheric Observatory in the Fe xii 195 Å passband were analysed. Results: We found that small-scale loops known as bright points play an essential role in coronal hole boundary evolution at small scales. Their emergence and disappearance continuously expand or contract coronal holes. The changes appear to be random on a time scale comparable to the lifetime of the loops seen at these temperatures. No signature was found for a major energy release during the evolution of the loops. Conclusions: Although coronal holes seem to maintain their general shape during a few solar rotations, a closer look at their day-by-day and even hour-by-hour evolution demonstrates significant dynamics. The small-scale loops (10´´-40´´ and smaller) which are abundant along coronal hole boundaries contribute to the small-scale evolution of coronal holes. Continuous magnetic reconnection of the open magnetic field lines of the coronal hole and the closed field lines of the loops in the quiet Sun is more likely to take place. Movies are only available in electronic form at http://www.aanda.org
Wu, Fei; Shan, Yahan; Qiao, Jianhui; Zhong, Cheng; Wang, Rui; Song, Qunliang; Zhu, Linna
2017-10-09
Here, 2,2'- and 3,3'-bipyridine are introduced for the first time as the core structure to get two new hole transport materials (HTMs), namely F22 and F33. The electron-withdrawing nature of bipyridine lowers the HOMO level of the new compounds and enhances the open-circuit voltage of perovskite solar cells. Especially for F33, the better planarity leads to better conjugation in the whole molecule and the molecular interaction is enhanced. Hole-mobility tests, steady-state photoluminescence (PL) spectra as well as time-resolved PL decay results demonstrate that the new HTMs exhibit good hole extraction and hole-transporting property. Impressive power conversion efficiencies of 17.71 and 18.48 % are achieved in conventional planar perovskite (CH 3 NH 3 PbI 3-x Cl x ) solar cells containing F22 and F33 as HTMs, respectively. As far as we know, this is the first report on bypiridine-based HTMs with leading efficiencies, and the design motif in this work opens a new way for devising HTMs in the future. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Gilbert, Lisa A.; Salisbury, Matthew H.
2011-09-01
Drilling and logging of Integrated Ocean Drilling Program (IODP) Hole 1256D have provided a unique opportunity for systematically studying a fundamental problem in marine geophysics: What influences the seismic structure of oceanic crust, porosity or composition? Compressional wave velocities (Vp) logged in open hole or from regional refraction measurements integrate both the host rock and cracks in the crust. To determine the influence of cracks on Vp at several scales, we first need an accurate ground truth in the form of laboratory Vp on crack-free, or nearly crack-free samples. We measured Vp on 46 water-saturated samples at in situ pressures to determine the baseline velocities of the host rock. These new results match or exceed Vp logs throughout most of the hole, especially in the lower dikes and gabbros, where porosities are low. In contrast, samples measured at sea under ambient laboratory conditions, had consistently lower Vp than the Vp logs, even after correction to in situ pressures. Crack-free Vp calculated from simple models of logging and laboratory porosity data for different lithologies and facies suggest that crustal velocities in the lavas and upper dikes are controlled by porosity. In particular, the models demonstrate significant large-scale porosity in the lavas, especially in the sections identified as fractured flows and breccias. However, crustal velocities in the lower dikes and gabbros are increasingly controlled by petrology as the layer 2-3 boundary is approached.
Turbine nozzle positioning system
Norton, Paul F.; Shaffer, James E.
1996-01-30
A nozzle guide vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The nozzle guide vane assembly includes an outer shroud having a mounting leg with an opening defined therein, a tip shoe ring having a mounting member with an opening defined therein, a nozzle support ring having a plurality of holes therein and a pin positioned in the corresponding opening in the outer shroud, opening in the tip shoe ring and the hole in the nozzle support ring. A rolling joint is provided between metallic components of the gas turbine engine and the nozzle guide vane assembly. The nozzle guide vane assembly is positioned radially about a central axis of the gas turbine engine and axially aligned with a combustor of the gas turbine engine.
Turbine nozzle positioning system
Norton, P.F.; Shaffer, J.E.
1996-01-30
A nozzle guide vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The nozzle guide vane assembly includes an outer shroud having a mounting leg with an opening defined therein, a tip shoe ring having a mounting member with an opening defined therein, a nozzle support ring having a plurality of holes therein and a pin positioned in the corresponding opening in the outer shroud, opening in the tip shoe ring and the hole in the nozzle support ring. A rolling joint is provided between metallic components of the gas turbine engine and the nozzle guide vane assembly. The nozzle guide vane assembly is positioned radially about a central axis of the gas turbine engine and axially aligned with a combustor of the gas turbine engine. 9 figs.
30 CFR 75.1403-9 - Criteria-Shelter holes.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Criteria-Shelter holes. 75.1403-9 Section 75... Criteria—Shelter holes. (a) Shelter holes should be provided on track haulage roads at intervals of not... holes should be readily accessible and should be at least 5 feet in depth, not more than 4 feet in width...
30 CFR 75.1403-9 - Criteria-Shelter holes.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Criteria-Shelter holes. 75.1403-9 Section 75... Criteria—Shelter holes. (a) Shelter holes should be provided on track haulage roads at intervals of not... holes should be readily accessible and should be at least 5 feet in depth, not more than 4 feet in width...
30 CFR 75.1403-9 - Criteria-Shelter holes.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Criteria-Shelter holes. 75.1403-9 Section 75... Criteria—Shelter holes. (a) Shelter holes should be provided on track haulage roads at intervals of not... holes should be readily accessible and should be at least 5 feet in depth, not more than 4 feet in width...
30 CFR 75.1403-9 - Criteria-Shelter holes.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Criteria-Shelter holes. 75.1403-9 Section 75... Criteria—Shelter holes. (a) Shelter holes should be provided on track haulage roads at intervals of not... holes should be readily accessible and should be at least 5 feet in depth, not more than 4 feet in width...
30 CFR 75.1403-9 - Criteria-Shelter holes.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Criteria-Shelter holes. 75.1403-9 Section 75... Criteria—Shelter holes. (a) Shelter holes should be provided on track haulage roads at intervals of not... holes should be readily accessible and should be at least 5 feet in depth, not more than 4 feet in width...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oliveira, Ednilton S.; Crispino, Luis C. B.; Higuchi, Atsushi
2011-10-15
The absorption cross section of Reissner-Nordstroem black holes for the gravitational field is computed numerically, taking into account the coupling of the electromagnetic and gravitational perturbations. Our results are in excellent agreement with low- and high-frequency approximations. We find equality between gravitational and electromagnetic absorption cross sections of extreme Reissner-Nordstroem black holes for all frequencies, which we explain analytically. This gives the first example of objects in general relativity in four dimensions that absorb the electromagnetic and gravitational waves in exactly the same way.
Barausse, Enrico; Yunes, Nicolás; Chamberlain, Katie
2016-06-17
The aLIGO detection of the black-hole binary GW150914 opens a new era for probing extreme gravity. Many gravity theories predict the emission of dipole gravitational radiation by binaries. This is excluded to high accuracy in binary pulsars, but entire classes of theories predict this effect predominantly (or only) in binaries involving black holes. Joint observations of GW150914-like systems by aLIGO and eLISA will improve bounds on dipole emission from black-hole binaries by 6 orders of magnitude relative to current constraints, provided that eLISA is not dramatically descoped.
Thermodynamics sheds light on black hole dynamics
NASA Astrophysics Data System (ADS)
Cárdenas, Marcela; Julié, Félix-Louis; Deruelle, Nathalie
2018-06-01
We propose to unify two a priori distinct aspects of black hole physics: their thermodynamics, and their description as point particles, which is an essential starting point in the post-Newtonian approach to their dynamics. We will find that, when reducing a black hole to a point particle endowed with its specific effective mass, one in fact describes a black hole satisfying the first law of thermodynamics, such that its global charges, and hence its entropy, remain constant. This gives a thermodynamical interpretation of its effective mass, thus opening a promising synergy between black hole thermodynamics and the analytical approaches to the two-body problems in gravity theories. To illustrate this relationship, the Einstein-Maxwell-dilaton theory, which contains simple examples of asympotically flat, hairy black hole solutions, will serve as a laboratory.
Nuclear reactor fuel assembly duct-tube-to-handling-socket attachment system
Christiansen, David W.; Smith, Bob G.
1982-01-01
A reusable system for removably attaching the upper end 10of a nuclear reactor duct tube to the lower end 30 of a nuclear reactor fuel assembly handling socket. A transition ring 20, fixed to the duct tube's upper end 10, has an interior-threaded section 22 with a first locking hole segment 24. An adaptor ring 40, fixed to the handling socket's lower end 30 has an outside-threaded section 42 with a second locking hole segment 44. The inside 22 and outside 42 threaded sections match and can be joined so that the first 24 and second 44 locking hole segments can be aligned to form a locking hole. A locking ring 50, with a locking pin 52, slides over the adaptor ring 40 so that the locking pin 52 fits in the locking hole. A swage lock 60 or a cantilever finger lock 70 is formed from the locking cup collar 26 to fit in a matching groove 54 or 56 in the locking ring 50 to prevent the locking ring's locking pin 52 from backing out of the locking hole.
2018-04-16
For much of this week the sun featured three substantial coronal holes (Apr. 3-6, 2018). Coronal holes appear as large dark areas which are identified with arrows in the still image. These are areas of open magnetic field from which high speed solar wind rushes out into space. This wind, if it interacts with Earth's magnetosphere, can cause aurora to appear near the poles. They are not at all uncommon. Animations are available at https://photojournal.jpl.nasa.gov/catalog/PIA22414
Drilling and blasting parameters in sublevel caving in Sheregesh mine
NASA Astrophysics Data System (ADS)
Eremenko, AA; Filippov, VN; Konurin, AI; Khmelinin, AP; Baryshnikov, DV; Khristolyubov, EA
2018-03-01
The factors that influence geomechanical state of rock mass in Sheregesh Mine are determined. The authors discuss a variant of geotechnology with fan drilling. The drill-hole patterns and drilling-and-blasting parameters are presented. The revealed causes of low-quality fragmentation of rocks include the presence of closed and open fractures at different distances from drill-hole mouths, both in case of rings and fans, as well as the blocking of drill-holes with rocks.
1992-12-01
Augmentation Program (28) state that for filled hole tensile testing of MMCs the tolerance between the pin diameter and hole diameter must not exceed .0254...Acetate replication, metallography, and fractography will be used in conjunction with analytical methods to define the aforementioned material... fractography that this bi-linear response is due to the release of residual stresses and interfacial failures of the off-axis plies and not micro
"Open" Philosophy or Down the Rabbit Hole?
ERIC Educational Resources Information Center
Bowman, Wayne
2017-01-01
In this essay, I challenge the open-closed dualism at the heart of Allsup's project and question the very possibility of an "open" philosophy. I propose an account of music, musical instruction, and philosophy as ethically guided practices, discussing a number of practical and philosophical consequences that follow from such a view.
Internal impacted screw-locking pellet
NASA Technical Reports Server (NTRS)
MacMartin, Malcolm J. (Inventor)
1994-01-01
An elongate fastener having an engaging surface engageable with an engaging surface of a fastener's mate includes a hole extending through a portion of the fastener and having a top opening and a bottom floor, a locking pellet disposed near the bottom floor, a discharge channel communicating between the pellet and through the engaging surface of the fastener and opening out toward the engaging surface of the fastener's mate, and an impact pin in the hole having a top portion protruding through the top opening and a bottom portion near the locking pellet, whereby the pin drives the locking pellet through the discharge channel against the engaging surfaces of the fastener and the fastener's mate whereby to lock the fastener against the fastener's mate.
Poppe, Lawrence J.; Williams, S. Jeffress; Paskevich, Valerie F.
2006-01-01
Marine sediments off the eastern United States vary markedly in texture (i.e., the size, shape, composition, and arrangement of their grains) due to a complex geologic history. For descriptive purposes, however, it is typically most useful to classify these sediments according to their grain-size distributions. In 1962, the U.S. Geological Survey began a program to study the marine geology of the continental margin off the Atlantic coast of the United States. As part of this program and numerous subsequent projects, thousands of sediment grab samples and cores were collected and analyzed for grain size at the Woods Hole Science Center. USGS Open-File Report 2005-1001 (Poppe et al., 2005), available on DVD and online, describes the field methods used to collect marine sediment samples as well as the laboratory methods used to determine and characterize grain-size distributions, and presents these data in several formats that can be readily employed by interested parties. The report is divided into three sections. The first section discusses procedures and contains pictures of the equipment, analytical flow diagrams, video clips with voice commentary, classification schemes, useful forms and compiled and uncompiled versions of the data-acquisition and data-processing software with documentation. The second section contains the grain-size data for more than 23,000 analyses in two “flat-file” formats, a data dictionary, and color-coded browse maps. The third section provides a GIS data catalog of the available point, interpretive, and baseline data layers, with FGDC-compliant metadata to help users visualize the textural information in a geographic context.
Advances in Domain Connectivity for Overset Grids Using the X-Rays Approach
NASA Technical Reports Server (NTRS)
Chan, William M.; Kim, Noah; Pandya, Shishir A.
2012-01-01
Advances in automation and robustness of the X-rays approach to domain connectivity for overset grids are presented. Given the surface definition for each component that makes up a complex configuration, the determination of hole points with appropriate hole boundaries is automatically and efficiently performed. Improvements made to the original X-rays approach for identifying the minimum hole include an automated closure scheme for hole-cutters with open boundaries, automatic determination of grid points to be considered for blanking by each hole-cutter, and an adaptive X-ray map to economically handle components in close proximity. Furthermore, an automated spatially varying offset of the hole boundary from the minimum hole is achieved using a dual wall-distance function and an orphan point removal iteration process. Results using the new scheme are presented for a number of static and relative motion test cases on a variety of aerospace applications.
30 CFR 77.1011 - Drill holes; guarding.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drill holes; guarding. 77.1011 Section 77.1011 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... Control § 77.1011 Drill holes; guarding. Drill holes large enough to constitute a hazard shall be covered...
30 CFR 77.1505 - Auger holes; blocking.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Auger holes; blocking. 77.1505 Section 77.1505 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... § 77.1505 Auger holes; blocking. Auger holes shall be blocked with highwall spoil or other suitable...
30 CFR 77.1505 - Auger holes; blocking.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Auger holes; blocking. 77.1505 Section 77.1505 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... § 77.1505 Auger holes; blocking. Auger holes shall be blocked with highwall spoil or other suitable...
30 CFR 77.1505 - Auger holes; blocking.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Auger holes; blocking. 77.1505 Section 77.1505 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... § 77.1505 Auger holes; blocking. Auger holes shall be blocked with highwall spoil or other suitable...
30 CFR 77.1505 - Auger holes; blocking.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Auger holes; blocking. 77.1505 Section 77.1505 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... § 77.1505 Auger holes; blocking. Auger holes shall be blocked with highwall spoil or other suitable...
30 CFR 77.1011 - Drill holes; guarding.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drill holes; guarding. 77.1011 Section 77.1011 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... Control § 77.1011 Drill holes; guarding. Drill holes large enough to constitute a hazard shall be covered...
30 CFR 77.1011 - Drill holes; guarding.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drill holes; guarding. 77.1011 Section 77.1011 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... Control § 77.1011 Drill holes; guarding. Drill holes large enough to constitute a hazard shall be covered...
30 CFR 77.1011 - Drill holes; guarding.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drill holes; guarding. 77.1011 Section 77.1011 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... Control § 77.1011 Drill holes; guarding. Drill holes large enough to constitute a hazard shall be covered...
30 CFR 77.1011 - Drill holes; guarding.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drill holes; guarding. 77.1011 Section 77.1011 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... Control § 77.1011 Drill holes; guarding. Drill holes large enough to constitute a hazard shall be covered...
30 CFR 77.1505 - Auger holes; blocking.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Auger holes; blocking. 77.1505 Section 77.1505 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... § 77.1505 Auger holes; blocking. Auger holes shall be blocked with highwall spoil or other suitable...
Flow plug with length-to-hole size uniformity for use in flow conditioning and flow metering
NASA Technical Reports Server (NTRS)
England, John Dwight (Inventor); Kelley, Anthony R. (Inventor)
2012-01-01
A flow plug of varying thickness has a plurality of holes formed therethrough. The plug fits in a conduit such that a fluid flow in the conduit passes through the plug's holes. Each hole is defined by a parameter indicative of size in terms of the cross-sectional area thereof. A ratio of hole length-to-parameter is approximately the same for all of the holes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moon, Seoksu; Gao, Yuan; Park, Suhan
Despite the fact that all modern diesel engines use multi-hole injectors, single-hole injectors are frequently used to understand the fundamental properties of high-pressure diesel injections due to their axisymmetric design of the injector nozzles. A multi-hole injector accommodates many holes around the nozzle axis to deliver adequate amount of fuel with small orifices. The off-axis arrangement of the multi-hole injectors significantly alters the inter- and near-nozzle flow patterns compared to those of the single-hole injectors. This study compares the transient needle motion and near-nozzle flow characteristics of the single- and multi-hole (3-hole and 6-hole) diesel injectors to understand how themore » difference in hole arrangement and number affects the initial flow development of the diesel injectors. A propagation-based X-ray phase-contrast imaging technique was applied to compare the transient needle motion and near-nozzle flow characteristics of the single- and multi-hole injectors. The comparisons were made by dividing the entire injection process by three sub-stages: opening-transient, quasi-steady and closing-transient. (C) 2015 Elsevier Ltd. All rights reserved.« less
Kumar, Vinod; Yadav, Bhupendra
2017-08-08
To describe a novel intraoperative finding during pars plana vitrectomy for macular hole using operating microscope-integrated spectral domain optical coherence tomography that predicts the closure of macular hole. Twenty-five eyes of 25 patients with macular hole, who underwent 25-gauge pars plana vitrectomy over a period of 16 months at a tertiary eye care center by a single surgeon, were recruited in this retrospective interventional study. All eyes were assessed with intraoperative spectral domain optical coherence tomography before and after internal limiting membrane peeling. The patients were assessed in terms of best-corrected visual acuity, preoperative minimal hole diameter, and type of hole closure. After the internal limiting membrane was peeled, vertical pillars of tissue were seen at the edges of hole projecting into the vitreous cavity. This appearance was similar to that of an open door over the macular hole and was termed "hole-door sign." Hole-door sign was seen in 15 of 25 eyes (60%). All the eyes with hole-door sign had Type-1 closure of macular hole (100%), whereas only 6 of 10 eyes (60%) without hole-door sign had Type-1 closure of the macular hole. Hole-door sign is a novel intraoperative finding that predicts postoperative Type-1 closure of macular hole. This may add to the utility of intraoperative optical coherence tomography in clinical practice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lavinto, Mikko; Räsänen, Syksy, E-mail: mikko.lavinto@helsinki.fi, E-mail: syksy.rasanen@iki.fi
We consider a Swiss Cheese model with a random arrangement of Lemaȋtre-Tolman-Bondi holes in ΛCDM cheese. We study two kinds of holes with radius r{sub b}=50 h{sup −1} Mpc, with either an underdense or an overdense centre, called the open and closed case, respectively. We calculate the effect of the holes on the temperature, angular diameter distance and, for the first time in Swiss Cheese models, shear of the CMB . We quantify the systematic shift of the mean and the statistical scatter, and calculate the power spectra. In the open case, the temperature power spectrum is three orders of magnitude belowmore » the linear ISW spectrum. It is sensitive to the details of the hole, in the closed case the amplitude is two orders of magnitude smaller. In contrast, the power spectra of the distance and shear are more robust, and agree with perturbation theory and previous Swiss Cheese results. We do not find a statistically significant mean shift in the sky average of the angular diameter distance, and obtain the 95% limit |Δ D{sub A}/ D-bar {sub A}|∼< 10{sup −4}. We consider the argument that areas of spherical surfaces are nearly unaffected by perturbations, which is often invoked in light propagation calculations. The closed case is consistent with this at 1σ, whereas in the open case the probability is only 1.4%.« less
CMB seen through random Swiss Cheese
NASA Astrophysics Data System (ADS)
Lavinto, Mikko; Räsänen, Syksy
2015-10-01
We consider a Swiss Cheese model with a random arrangement of Lemaȋtre-Tolman-Bondi holes in ΛCDM cheese. We study two kinds of holes with radius rb=50 h-1 Mpc, with either an underdense or an overdense centre, called the open and closed case, respectively. We calculate the effect of the holes on the temperature, angular diameter distance and, for the first time in Swiss Cheese models, shear of the CMB . We quantify the systematic shift of the mean and the statistical scatter, and calculate the power spectra. In the open case, the temperature power spectrum is three orders of magnitude below the linear ISW spectrum. It is sensitive to the details of the hole, in the closed case the amplitude is two orders of magnitude smaller. In contrast, the power spectra of the distance and shear are more robust, and agree with perturbation theory and previous Swiss Cheese results. We do not find a statistically significant mean shift in the sky average of the angular diameter distance, and obtain the 95% limit |Δ DA/bar DA|lesssim 10-4. We consider the argument that areas of spherical surfaces are nearly unaffected by perturbations, which is often invoked in light propagation calculations. The closed case is consistent with this at 1σ, whereas in the open case the probability is only 1.4%.
Hall, David R.; Fox, Joe; Garner, Kory
2007-01-23
A drilling fluid filter for placement within a bore wall of a tubular drill string component comprises a perforated receptacle with an open end and a closed end. A hanger for engagement with the bore wall is mounted at the open end of the perforated receptacle. A mandrel is adjacent and attached to the open end of the perforated receptacle. A linkage connects the mandrel to the hanger. The linkage may be selected from the group consisting of struts, articulated struts and cams. The mandrel operates on the hanger through the linkage to engage and disengage the drilling fluid filter from the tubular drill string component. The mandrel may have a stationary portion comprising a first attachment to the open end of the perforated receptacle and a telescoping adjustable portion comprising a second attachment to the linkage. The mandrel may also comprise a top-hole interface for top-hole equipment.
NASA Astrophysics Data System (ADS)
Ildefonse, B.; Teagle, D. A.; Blum, P.; IODP Expedition 335 Scientists
2011-12-01
IODP Expedition 335 "Superfast Spreading Rate Crust 4" returned to ODP Hole 1256D with the intent of deepening this reference penetration of intact ocean crust several hundred meters into cumulate gabbros. This was the fourth cruise of the superfast campaign to understand the formation of oceanic crust accreted at fast spreading ridges, by exploiting the inverse relationship between spreading rate and the depth to low velocity zones seismically imaged at active mid-ocean zones, thought to be magma chambers. Site 1256 is located on 15-million-year-old crust formed at the East Pacific Rise during an episode of superfast ocean spreading (>200 mm/yr full rate). Three earlier cruises to Hole 1256D have drilled through the sediments, lavas and dikes and 100 m into a complex dike-gabbro transition zone. The specific objectives of IODP Expedition 335 were to: (1) test models of magmatic accretion at fast spreading ocean ridges; (2) quantify the vigor of hydrothermal cooling of the lower crust; (3) establish the geological meaning of the seismic Layer 2-3 boundary at Site 1256; and (4) estimate the contribution of lower crustal gabbros to marine magnetic anomalies. It was anticipated that even a shortened IODP Expedition could deepen Hole 1256D a significant distance (300 m) into cumulate gabbros. Operations on IODP Expedition 335 proved challenging from the outset with almost three weeks spent re-opening and securing unstable sections of the Hole. When coring commenced, the destruction of a hard-formation C9 rotary coring bit at the bottom of the hole required further remedial operations to remove junk and huge volumes of accumulated drill cuttings. Hole-cleaning operations using junk baskets returned large samples of a contact-metamorphic aureole between the sheeted dikes and a major heat source below. These large (up to 3.5 kg) irregular samples preserve magmatic, hydrothermal and structural relationships hitherto unseen because of the narrow diameter of drill core and previous poor core recovery. Including the ~60 m-thick zone of granoblastic dikes overlying the uppermost gabbro, the dike-gabbro transition zone at Site 1256 is over 170 m thick, of which more than 100 m are recrystallized granoblastic basalts. This zone records a dynamically evolving thermal boundary layer between the principally hydrothermal domain of the upper crust and a deeper zone of intrusive magmatism. The recovered samples document a sequence of evolving geological conditions and the intimate coupling between temporally and spatially intercalated intrusive, hydrothermal, contact-metamorphic, partial melting and retrogressive processes. Despite the operational challenges, we achieved a minor depth advance to 1522 m, but this was insufficient penetration to complete any of the primary objectives. However, Hole 1256D has been thoroughly cleared of junk and drill cuttings that have hampered operations during this and previous Expeditions. At the end of Expedition 335, we briefly resumed coring and stabilized problematic intervals with cement. Hole 1256D is open to its full depth and ready for further deepening in the near future.
The introduction of spurious models in a hole-coupled Fabry-Perot open resonator
NASA Technical Reports Server (NTRS)
Cook, Jerry D.; Long, Kenwyn J.; Heinen, Vernon O.; Stankiewicz, Norbert
1992-01-01
A hemispherical open resonator has previously been used to make relative comparisons of the surface resistivity of metallic thin-film samples in the submillimeter wavelength region. This resonator is fed from a far-infrared laser via a small coupling hole in the center of the concave spherical mirror. The experimental arrangement, while desirable as a coupling geometry for monitoring weak emissions from the cavity, can lead to the introduction of spurious modes into the cavity. Sources of these modes are identified, and a simple alteration of the experimental apparatus to eliminate such modes is suggested.
2018-05-15
An extensive equatorial coronal hole has rotated so that it is now facing Earth (May 2-4, 2018). The dark coronal hole extends about halfway across the solar disk. It was observed in a wavelength of extreme ultraviolet light. This magnetically open area is streaming solar wind (i.e., a stream of charged particles released from the sun) into space. When Earth enters a solar wind stream and the stream interacts with our magnetosphere, we often experience nice displays of aurora. https://photojournal.jpl.nasa.gov/catalog/PIA00577
Coronal Hole Rotating Towards Us
2018-05-22
A good-sized coronal hole came around to where it is just about facing Earth (May 16-18, 2018). Coronal holes are areas of open magnetic field from which solar wind (consisting of charged particles) streams into space. The video clip covers two days and was taken in a wavelength of extreme ultraviolet light. Such streams of particles take several days to reach Earth, but they can generate aurora, particularly nearer the poles. An animation is available at https://photojournal.jpl.nasa.gov/catalog/PIA00575
Black holes as critical point of quantum phase transition.
Dvali, Gia; Gomez, Cesar
We reformulate the quantum black hole portrait in the language of modern condensed matter physics. We show that black holes can be understood as a graviton Bose-Einstein condensate at the critical point of a quantum phase transition, identical to what has been observed in systems of cold atoms. The Bogoliubov modes that become degenerate and nearly gapless at this point are the holographic quantum degrees of freedom responsible for the black hole entropy and the information storage. They have no (semi)classical counterparts and become inaccessible in this limit. These findings indicate a deep connection between the seemingly remote systems and suggest a new quantum foundation of holography. They also open an intriguing possibility of simulating black hole information processing in table-top labs.
Middleweight black holes found at last
NASA Astrophysics Data System (ADS)
Clery, Daniel
2018-06-01
How did giant black holes grow so big? Astronomers have long had evidence of baby black holes with masses of no more than tens of suns, and of million- or billion-solar-mass behemoths lurking at the centers of galaxies. But middle-size ones, weighing thousands or tens of thousands of suns, seemed to be missing. Their absence forced theorists to propose that supermassive black holes didn't grow gradually by slowly consuming matter, but somehow emerged as ready-made giants. Now, astronomers appear to have located some missing middleweights. An international team has scoured an archive of galaxy spectra and found more than 300 small galaxies that have the signature of intermediate mass black holes in their cores, opening new questions for theorists.
49 CFR 177.837 - Class 3 materials.
Code of Federal Regulations, 2011 CFR
2011-10-01
... through an open filling hole, one end of a bond wire shall be connected to the stationary system piping or integrally connected steel framing, and the other end to the shell of the cargo tank to provide a continuous... after the last filling hole has been closed. Additional bond wires are not needed around All-Metal...
49 CFR 177.837 - Class 3 materials.
Code of Federal Regulations, 2010 CFR
2010-10-01
... through an open filling hole, one end of a bond wire shall be connected to the stationary system piping or integrally connected steel framing, and the other end to the shell of the cargo tank to provide a continuous... after the last filling hole has been closed. Additional bond wires are not needed around All-Metal...
Effect of Environment on Fatigue Behavior of a Nicalon(TM)/Si-N-C Ceramic Matrix Composite
NASA Technical Reports Server (NTRS)
Kalluri, Sreeramesh; Ojard, Greg C.; Verrilli, Michael J.; Kiraly, Louis J. (Technical Monitor)
2002-01-01
The effect of environmental exposure on the fatigue life of Nicalon(TM) /Si-N-C composite was investigated in this study. Test specimens with arrays of 1.8 mm diameter holes and two different open areas, 25 and 35%, were machined. Three environmental conditions were studied: 1) continuous fatigue cycling in air, 2) fatigue cycling in air alternating with humidity exposure, and 3) fatigue cycling in air alternating with exposure to a salt-fog environment. All fatigue testing on specimens with holes was performed with a load ratio, R = 0.05, and at a temperature of 910 C. In general, fatigue lives were shortest for specimens subjected to salt-fog exposure and longest for specimens subjected to continuous fatigue cycling in air. The fatigue data generated on the specimens with holes were compared with fatigue data generated in air on specimens with no holes. Fatigue strength reduction factors for different environmental conditions and open areas investigated in the study were calculated for the Nicalon(TM) /Si-N-C composite.
(Non-adiabatic) string creation on nice slices in Schwarzschild black holes
NASA Astrophysics Data System (ADS)
Puhm, Andrea; Rojas, Francisco; Ugajin, Tomonori
2017-04-01
Nice slices have played a pivotal role in the discussion of the black hole information paradox as they avoid regions of strong spacetime curvature and yet smoothly cut through the infalling matter and the outgoing Hawking radiation, thus, justifying the use of low energy field theory. To avoid information loss it has been argued recently, however, that local effective field theory has to break down at the horizon. To assess the extent of this breakdown in a UV complete framework we study string-theoretic effects on nice slices in Schwarzschild black holes. Our purpose is two-fold. First, we use nice slices to address various open questions and caveats of [1] where it was argued that boost-enhanced non-adiabatic string-theoretic effects at the horizon could provide a dynamical mechanism for the firewall. Second, we identify two non-adiabatic effects on nice slices in Schwarzschild black holes: pair production of open strings near the horizon enhanced by the presence of the infinite tower of highly excited string states and a late-time non-adiabatic effect intrinsic to nice slices.
(Non-adiabatic) string creation on nice slices in Schwarzschild black holes
Puhm, Andrea; Rojas, Francisco; Ugajin, Tomonori
2017-04-27
Nice slices have played a pivotal role in the discussion of the black hole information paradox as they avoid regions of strong spacetime curvature and yet smoothly cut through the infalling matter and the outgoing Hawking radiation, thus, justifying the use of low energy field theory. To avoid information loss it has been argued recently, however, that local effective field theory has to break down at the horizon. To assess the extent of this breakdown in a UV complete framework we study string-theoretic effects on nice slices in Schwarzschild black holes. Here, our purpose is two-fold. First, we use nicemore » slices to address various open questions and caveats of [1] where it was argued that boost-enhanced non-adiabatic string-theoretic effects at the horizon could provide a dynamical mechanism for the firewall. Second, we identify two non-adiabatic effects on nice slices in Schwarzschild black holes: pair production of open strings near the horizon enhanced by the presence of the infinite tower of highly excited string states and a late-time non-adiabatic effect intrinsic to nice slices.« less
(Non-adiabatic) string creation on nice slices in Schwarzschild black holes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Puhm, Andrea; Rojas, Francisco; Ugajin, Tomonori
Nice slices have played a pivotal role in the discussion of the black hole information paradox as they avoid regions of strong spacetime curvature and yet smoothly cut through the infalling matter and the outgoing Hawking radiation, thus, justifying the use of low energy field theory. To avoid information loss it has been argued recently, however, that local effective field theory has to break down at the horizon. To assess the extent of this breakdown in a UV complete framework we study string-theoretic effects on nice slices in Schwarzschild black holes. Here, our purpose is two-fold. First, we use nicemore » slices to address various open questions and caveats of [1] where it was argued that boost-enhanced non-adiabatic string-theoretic effects at the horizon could provide a dynamical mechanism for the firewall. Second, we identify two non-adiabatic effects on nice slices in Schwarzschild black holes: pair production of open strings near the horizon enhanced by the presence of the infinite tower of highly excited string states and a late-time non-adiabatic effect intrinsic to nice slices.« less
Johnson, Ronald C.
2014-01-01
This report presents two detailed cross sections of the Eocene Green River Formation in the Piceance Basin, northwestern Colorado, constructed from eight detailed measured sections, fourteen core holes, and two rotary holes. The Eocene Green River Formation in the Piceance Basin contains the world’s largest known oil shale deposit with more than 1.5 billion barrels of oil in place. It was deposited in Lake Uinta, a long-lived saline lake that once covered much of the Piceance Basin and the Uinta Basin to the west. The cross sections extend across the northern and eastern margins of the Piceance Basin and are intended to aid in correlating between surface sections and the subsurface in the basin.
49 CFR 230.38 - Telltale holes.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 4 2013-10-01 2013-10-01 false Telltale holes. 230.38 Section 230.38... Staybolts § 230.38 Telltale holes. (a) Staybolts less than 8 inches long. All staybolts shorter than 8 inches, except flexible bolts, shall have telltale holes 3/16 inch to 7/32 inch diameter and at least 11...
49 CFR 230.38 - Telltale holes.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Telltale holes. 230.38 Section 230.38... Staybolts § 230.38 Telltale holes. (a) Staybolts less than 8 inches long. All staybolts shorter than 8 inches, except flexible bolts, shall have telltale holes 3/16 inch to 7/32 inch diameter and at least 11...
49 CFR 230.38 - Telltale holes.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 4 2012-10-01 2012-10-01 false Telltale holes. 230.38 Section 230.38... Staybolts § 230.38 Telltale holes. (a) Staybolts less than 8 inches long. All staybolts shorter than 8 inches, except flexible bolts, shall have telltale holes 3/16 inch to 7/32 inch diameter and at least 11...
49 CFR 230.38 - Telltale holes.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 4 2014-10-01 2014-10-01 false Telltale holes. 230.38 Section 230.38... Staybolts § 230.38 Telltale holes. (a) Staybolts less than 8 inches long. All staybolts shorter than 8 inches, except flexible bolts, shall have telltale holes 3/16 inch to 7/32 inch diameter and at least 11...
49 CFR 230.38 - Telltale holes.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Telltale holes. 230.38 Section 230.38... Staybolts § 230.38 Telltale holes. (a) Staybolts less than 8 inches long. All staybolts shorter than 8 inches, except flexible bolts, shall have telltale holes 3/16 inch to 7/32 inch diameter and at least 11...
NASA Astrophysics Data System (ADS)
Berman, Marcelo Samuel
2007-10-01
Pathria (1972) has shown, for a pressureless closed Universe, that it is inside a black (or white) hole. We show now, that the Universe with a cosmic pressure obeying Einstein’s field equations, can be inside a white-hole. In the closed case, a positive cosmological constant does the job; for the flat and open cases, the condition we find is not verified for the very early Universe, but with the growth of the scale-factor, the condition will be certainly fulfilled for a positive cosmological constant, after some time. We associate the absolute temperature of the Universe, with the temperature of the corresponding white-hole.
Exploring Black Hole Accretion in Active Galactic Nuclei with Simbol-X
NASA Astrophysics Data System (ADS)
Goosmann, R. W.; Dovčiak, M.; Mouchet, M.; Czerny, B.; Karas, V.; Gonçalves, A.
2009-05-01
A major goal of the Simbol-X mission is to improve our knowledge about black hole accretion. By opening up the X-ray window above 10 keV with unprecedented sensitivity and resolution we obtain new constraints on the X-ray spectral and variability properties of active galactic nuclei. To interpret the future data, detailed X-ray modeling of the dynamics and radiation processes in the black hole vicinity is required. Relativistic effects must be taken into account, which then allow to constrain the fundamental black hole parameters and the emission pattern of the accretion disk from the spectra that will be obtained with Simbol-X.
Effect of mask dead space and occlusion of mask holes on delivery of nebulized albuterol.
Berlinski, Ariel
2014-08-01
Infants and children with respiratory conditions are often prescribed bronchodilators. Face masks are used to facilitate the administration of nebulized therapy in patients unable to use a mouthpiece. Masks incorporate holes into their design, and their occlusion during aerosol delivery has been a common practice. Masks are available in different sizes and different dead volumes. The aim of this study was to compare the effect of different degrees of occlusion of the mask holes and different mask dead space on the amount of nebulized albuterol available at the mouth opening in a model of a spontaneously breathing child. A breathing simulator mimicking infant (tidal volume [VT] = 50 mL, breathing frequency = 30 breaths/min, inspiratory-expiratory ratio [I:E] = 1:3), child (VT = 155 mL, breathing frequency = 25 breaths/min, I:E = 1:2), and adult (VT = 500 mL, breathing frequency = 15 breaths/min, I:E = 1:2) breathing patterns was connected to a collection filter hidden behind a face plate. A pediatric size mask and an adult size mask connected to a continuous output jet nebulizer were sealed to the face plate. Three nebulizers were loaded with albuterol sulfate (2.5 mg/3 mL) and operated with 6 L/min compressed air for 5 min. Experiments were repeated with different degrees of occlusion (0%, 50%, and 90%). Albuterol was extracted from the filter and measured with a spectrophotometer at 276 nm. Occlusion of the holes in the large mask did not increase the amount of albuterol in any of the breathing patterns. The amount of albuterol captured at the mouth opening did not change when the small mask was switched to the large mask, except with the breathing pattern of a child, and when the holes in the mask were 50% occluded (P = .02). Neither decreasing the dead space of the mask nor occluding the mask holes increased the amount of nebulized albuterol captured at the mouth opening.
Electrically induced spontaneous emission in open electronic system
NASA Astrophysics Data System (ADS)
Wang, Rulin; Zhang, Yu; Yam, Chiyung; Computation Algorithms Division (CSRC) Team; Theoretical; Computational Chemistry (HKU) Collaboration
A quantum mechanical approach is formulated for simulation of electroluminescence process in open electronic system. Based on nonequilibrium Green's function quantum transport equations and combining with photon-electron interaction, this method is used to describe electrically induced spontaneous emission caused by electron-hole recombination. The accuracy and reliability of simulation depends critically on correct description of the electronic band structure and the electron occupancy in the system. In this work, instead of considering electron-hole recombination in discrete states in the previous work, we take continuous states into account to simulate the spontaneous emission in open electronic system, and discover that the polarization of emitted photon is closely related to its propagation direction. Numerical studies have been performed to silicon nanowire-based P-N junction with different bias voltage.
Test methods for textile composites
NASA Technical Reports Server (NTRS)
Minguet, Pierre J.; Fedro, Mark J.; Gunther, Christian K.
1994-01-01
Various test methods commonly used for measuring properties of tape laminate composites were evaluated to determine their suitability for the testing of textile composites. Three different types of textile composites were utilized in this investigation: two-dimensional (2-D) triaxial braids, stitched uniweave fabric, and three-dimensional (3-D) interlock woven fabric. Four 2-D braid architectures, five stitched laminates, and six 3-D woven architectures were tested. All preforms used AS4 fibers and were resin-transfer-molded with Shell RSL-1895 epoxy resin. Ten categories of material properties were investigated: tension, open-hole tension, compression, open-hole compression, in-plane shear, filled-hole tension, bolt bearing, interlaminar tension, interlaminar shear, and interlaminar fracture toughness. Different test methods and specimen sizes were considered for each category of test. Strength and stiffness properties obtained with each of these methods are documented in this report for all the material systems mentioned above.
Preliminary report on Bureau of Mines Yellow Creek core hole No. 1, Rio Blanco County, Colorado
Carroll, R.D.; Coffin, D.L.; Ege, J.R.; Welder, F.A.
1967-01-01
Analysis of geologic, hydrologic , and geophysical data obtained in and around Yellow Creek core hole No. 1, Rio Blanco County, Colorado, indicate a 1,615-foot section of oil shale was penetrated by the hole. Geophysical log data indicate the presence of 25 gallons per ton shale for a thickness of 500 feet my be marginal. The richest section of oil shale is indicated to be centered around a depth of 2,260 feet. Within the oil shale the interval 1,182 to 1,737 feet is indicated to be relatively structurally incompetent and probably permeable. Extension of available regional hydrologic data indicate the oil shale section is probably water bearing and may yield as much as 1,000 gallons per minute. Hydrologic testing in the hole is recommended.
Open Screw Placement in a 1.5 mm LCP Over a Fracture Gap Decreases Fatigue Life
Alwen, Sarah G. J.; Kapatkin, Amy S.; Garcia, Tanya C.; Milgram, Joshua; Stover, Susan M.
2018-01-01
Objective To investigate the influence of plate and screw hole position on the stability of simulated radial fractures stabilized with a 1.5 mm condylar locking compression plate (LCP). Study Design In vitro mechanical testing of paired cadaveric limbs. Sample Population Paired radii (n = 7) stabilized with a 1.5 mm condylar LCP with an open screw hole positioned either proximal to (PG), or over (OG), a simulated small fracture gap. Methods Constructs were cycled in axial compression at a simulated trot load until failure or a maximum of 200,000 cycles. Specimens that sustained 200,000 cycles without failure were then loaded in axial compression in a single cycle to failure. Construct cyclic axial stiffness and gap strain, fatigue life, and residual strength were evaluated and compared between constructs using analysis of variance. Results Of pairs that had a failure during cyclic loading, OG constructs survived fewer cycles (54,700 ± 60,600) than PG (116,800 ± 49,300). OG constructs had significantly lower initial stiffness throughout cyclic loading and higher gap strain range within the first 1,000 cycles than PG constructs. Residual strength variables were not significantly different between constructs, however yield loads occurred at loads only marginally higher than approximated trot loads. Fatigue life decreased with increasing body weight. Conclusion Fracture fixation stability is compromised by an open screw hole directly over a fracture gap compared to the open screw hole being buttressed by bone in the model studied. The 1.5 mm condylar LCP may be insufficient stabilization in dogs with appropriate radial geometry but high body weights. PMID:29876361
Applications and Engineering Analysis of Lotus Roots under External Water Pressure
Wang, Chang Jiang; Mynors, Diane
2016-01-01
Engineers can learn from nature for inspirations to create new designs. The internal structure of lotus roots with several oval holes was studied in this paper for engineering inspirations. The structural performance of lotus roots under outside water pressure was simulated and compared with various cross-sectional areas. The distribution of stresses in the cross-sectional area of lotus roots was analysed and presented. It was found that the maximum compressive stresses in the cross-sectional area of lotus roots were occurring at the long axis ends of the holes. This was very different from that of circular holes. Further analysis on the triaxiality factors revealed that the cross-sectional area of the lotus root resulted in large areas of high triaxiality factors. The resulting hydrostatic stress in the cross-sectional area of lotus root ranges from zero to 2.7 times the applied outside pressure. In contrast, the hydrostatic stress in a cylindrical cross-sectional area is a fixed value. The study showed that the lotus root and the orientation of the oval holes could be mimicked in the design of new structures, for example, underwater pipes and vessels. PMID:28127228
NASA Astrophysics Data System (ADS)
O'Connor, Evan Patrick
Core-Collapse Supernovae are one of the most complex astrophysical systems in the universe. They deeply entwine aspects of physics and astrophysics that are rarely side by side in nature. To accurately model core-collapse supernovae one must self-consistently combine general relativity, nuclear physics, neutrino physics, and magneto-hydrodynamics in a symmetry-free computational environment. This is a challenging task, as each one of these aspects on its own is an area of great study. We take an open approach in an effort to encourage collaboration in the core-collapse supernovae community. In this thesis, we develop a new open-source general-relativistic spherically-symmetric Eulerian hydrodynamics code for studying stellar collapse, protoneutron star formation, and evolution until black hole formation. GR1D includes support for finite temperature equations of state and an efficient and qualitatively accurate treatment of neutrino leakage. GR1D implements spherically-symmetric rotation, allowing for the study of slowly rotating stellar collapse. GR1D is available at http://www.stellarcollapse.org. We use GR1D to perform an extensive study of black hole formation in failing core-collapse supernovae. Over 100 presupernova models from various sources are used in over 700 total simulations. We systematically explore the dependence of black hole formation on the input physics: initial zero-age main sequence (ZAMS) mass and metallicity, nuclear equation of state, rotation, and stellar mass loss rates. Assuming the core-collapse supernova mechanism fails and a black hole forms, we find that the outcome, for a given equation of state, can be estimated, to first order, by a single parameter, the compactness of the stellar core at bounce. By comparing the protoneutron star structure at the onset of gravitational instability with solutions of the Tolman-Oppenheimer-Volkof equations, we find that thermal pressure support in the outer protoneutron star core is responsible for raising the maximum protoneutron star mass by up to 25% above the cold neutron star value. By artificially increasing neutrino heating, we find the critical neutrino heating efficiency required for exploding a given progenitor structure and connect these findings with ZAMS conditions. This establishes, albeit approximately, for the first time based on actual collapse simulations, the mapping between ZAMS parameters and the outcome of core collapse. We also use GR1D to study proposed progenitors of long-duration gamma-ray bursts. We find that many of the proposed progenitors have core structures similar to garden-variety core-collapse supernovae. These are not expected to form black holes, a key ingredient of the collapsar model of long-duration gamma-ray bursts. The small fraction of proposed progenitors that are compact enough to form black holes have fast rotating iron cores, making them prone to a magneto-rotational explosion and the formation of a protomagnetar rather than a black hole. Finally, we present preliminary work on a fully general-relativistic neutrino transport code and neutrino-interaction library. Following along with the trends explored in our black hole formation study, we look at the dependence of the neutrino observables on the bounce compactness. We find clear relationships that will allow us to extract details of the core structure from the next galactic supernova. Following the open approach of GR1D, the neutrino transport code will be made open-source upon completion. The open-source neutrino-interaction library, NuLib, is already available at http://www.nulib.org.
Multiple burr hole surgery as a treatment modality for pediatric moyamoya disease
Kapu, Ravindranath; Symss, Nigel Peter; Cugati, Goutham; Pande, Anil; Vasudevan, Chakravarthy M.; Ramamurthi, Ravi
2010-01-01
Objective: To re-emphasize that indirect revascularization surgery alone, where multiple burr holes and arachnoid openings are made over both cerebral hemispheres, is beneficial in the treatment of moyamoya disease (MMD) in children. Clinical Presentation: We report a 10-year-old boy who presented with complaints of episodic headache for the last 5 years. At the peak of his headache he had visual disturbances and acute onset weakness of left-sided limbs, recovering within a few minutes. He had no focal neurological deficits. Radiological investigations revealed abnormal findings, demonstrating the features of MMD. Surgical Management: He underwent bilateral multiple burr holes, dural and arachnoid opening over the frontal, parietal and temporal regions of each hemisphere. The elevated periosteal flap was placed in contact with the exposed brain through each burr hole. Results: On 6-months follow-up he had only one episode of transient ischemic attack. Postoperative four vessel angiogram demonstrated excellent cerebral revascularization around the burr hole sites, and single photon emission computerized tomography imaging showed hypoperfusion in the right temporo-occipital area suggestive of an old infarct with no other perfusion defect in the rest of the brain parenchyma. Conclusion: In children with MMD this relatively simple surgical technique is effective and safe, and can be used as the only treatment without supplementary revascularization procedures. This procedure can be done in a single stage on both sides and the number of burr holes made over each hemisphere depends on the extent of the disease. PMID:21559155
Reconnection-Driven Coronal-Hole Jets with Gravity and Solar Wind
NASA Technical Reports Server (NTRS)
Karpen, J. T.; Devore, C. R.; Antiochos, S. K.; Pariat, E.
2017-01-01
Coronal-hole jets occur ubiquitously in the Sun's coronal holes, at EUV and X-ray bright points associated with intrusions of minority magnetic polarity. The embedded-bipole model for these jets posits that they are driven by explosive, fast reconnection between the stressed closed field of the embedded bipole and the open field of the surrounding coronal hole. Previous numerical studies in Cartesian geometry, assuming uniform ambient magnetic field and plasma while neglecting gravity and solar wind, demonstrated that the model is robust and can produce jet-like events in simple configurations. We have extended these investigations by including spherical geometry,gravity, and solar wind in a nonuniform, coronal hole-like ambient atmosphere. Our simulations confirm that the jet is initiated by the onset of a kink-like instability of the internal closed field, which induces a burst of reconnection between the closed and external open field, launching a helical jet. Our new results demonstrate that the jet propagation is sustained through the outer corona, in the form of a traveling nonlinear Alfven wave front trailed by slower-moving plasma density enhancements that are compressed and accelerated by the wave. This finding agrees well with observations of white-light coronal-hole jets, and can explain microstreams and torsional Alfven waves detected in situ in the solar wind. We also use our numerical results to deduce scaling relationships between properties of the coronal source region and the characteristics of the resulting jet, which can be tested against observations.
Weems, Robert E.; Schindler, J. Stephen; Lewis, William C.
2010-01-01
The Emporia 1:100,000-scale quadrangle straddles the Tidewater Fall Line in southern Virginia and includes a small part of northernmost North Carolina. Sediments of the coastal plain underlie the eastern three-fifths of this area. These sediments onlap crystalline basement rocks toward the west and dip gently to the east, reaching a maximum known thickness of 821 feet in the extreme southeastern part of the map area. The gentle eastward dip is disrupted in several areas due to faulting delineated during the course of mapping. In order to produce a new geologic map of the Emporia 1:100,000-scale quadrangle, the U.S. Geological Survey drilled one corehole to a depth of 223 feet and augered 192 shallow research test holes (maximum depth 135 feet) to supplement sparse outcrop data available from the coastal plain part of the map area. The recovered sediments were studied and data from them recorded to determine the lithologic characteristics, spatial distribution, and temporal framework of the represented coastal plain stratigraphic units. These test holes were critical for accurately determining the distribution of major geologic units and the position of unit boundaries that will be shown on the forthcoming Emporia geologic map, but much of the detailed subsurface data cannot be shown readily through this map product. Therefore, the locations and detailed descriptions of the auger test holes and one corehole are provided in this open-file report for geologists, hydrologists, engineers, and community planners in need of a detailed shallow-subsurface stratigraphic framework for much of the Emporia map region.
Photonic crystal fiber refractive-index sensor based on multimode interferometry
NASA Astrophysics Data System (ADS)
Gong, Zhenfeng; Zhang, Xinpu; Liu, Yun; Liu, Zigeng; Peng, Wei
2014-11-01
We report a type of multimode fiber interferometers (MMI) formed in photonic crystal fiber (PCF). To excite the cladding modes from the fundamental core mode of a PCF, a coupling point is formed. To form the coupling point, we used the method that is blowing compressed gas into the air-holes and discharging at one point, and the air-holes in this point will expand due to gas expansion in the discharge process. By placing two coupling points in series, a very simple all-fiber MMI can be implemented. The detailed fabrication process is that the one end of the PCF is tightly sealed by a short section of single mode fiber (SMF) spliced to the PCF. The other end of the PCF is sealed into a gas chamber and the opened air holes are pressurized. The PCF is then heated locally by the fusion splicer and the holes with higher gas pressure will expand locally where two bubbles formed. We tested the RI responses of fabricated sensors at room temperature by immersing the sensor into solutions with different NaCl concentration. Experimental results show that as refractive-index (RI) increases, the resonance wavelength of the MMI moves toward longer wavelengths. The sensitivity coefficients are estimated by the linear fitting line, which is 46nm/RIU, 154mn/RIU with the interferometer lengths (IL) of 3mm and 6mm. The interferometer with larger IL has higher RI sensitivity. The temperature cross-sensitivity of the sensor is also tested. The temperature sensitivity can be as low as -16.0pm/°C.
A Socially Inclusive A-Star Is Only Possible through the Understanding of Black Holes
ERIC Educational Resources Information Center
Draper, Ciara; Houghton, Jack; Read, Beth; Bird, Danny; Tatten, J. J.
2016-01-01
This article is written by young people who attend an open-access youth project in the city centre of Hull. Although they describe themselves as "educational failures" (the "black holes"), they argue that they have a significant contribution to make to discussions about how to develop socially just education in schools. In the…
The Misgav Ladach method for cesarean section: method description.
Holmgren, G; Sjöholm, L; Stark, M
1999-08-01
A method description is given for the Misgav Ladach method for cesarean section. This is based on the Joel-Cohen incision originally introduced for hysterectomy. The incision is a straight transverse incision somewhat higher than the Pfannenstiel incision. The subcutaneous tissue is left undisturbed apart from the midline. The rectus sheath is separated along its fibres. The rectus muscles are separated by pulling. The peritoneum is opened by stretching with index fingers. The uterus is opened with an index finger and the hole enlarged between the index finger of one hand and the thumb on the other. The uterus is closed with a one-layer continuous locking stitch. The visceral and parietal peritoneal layers are left open. The rectus muscle is not stitched. The rectus sheath is stitched with a continuous non-locking stitch. The skin is closed with two or three mattress sutures. The space in between is apposed with non-traumatic forceps for 5 minutes. The basic philosophy is to work in harmony with the body's anatomy and physiology and not against them. The method is restrictive in the use of sharp instruments, preferring manual manipulation. The method gives quicker recovery, less use of post-operative antibiotics, antifebrile medicines and analgesics. There is a shorter anesthetic and shorter working time for the operative team. It is suitable for both emergency and planned operations.
Hole-to-surface resistivity measurements at Gibson Dome (drill hole GD-1) Paradox basin, Utah
Daniels, J.J.
1984-01-01
Hole-to-surface resistivity measurements were made in a deep drill hole (GD-1), in San Juan County, Utah, which penetrated a sequence of sandstone, shale, and evaporite. These measurements were made as part of a larger investigation to study the suitability of an area centered around the Gibson Dome structure for nuclear waste disposal. The magnitude and direction of the total electric field resulting from a current source placed in a drill hole is calculated from potential difference measurements for a grid of closely-spaced stations. A contour map of these data provides a detailed map of the distribution of the electric field away from the drill hole. Computation of the apparent resistivity from the total electric field helps to interpret the data with respect to the ideal situation of a layered earth. Repeating the surface measurements for different source depths gives an indication of variations in the geoelectric section with depth. The quantitative interpretation of the field data at Gibson Dome was hindered by the pressure of a conductive borehole fluid. However, a qualitative interpretation of the field data indicates the geoelectric section around drill hole GD-1 is not perfectly layered. The geoelectric section appears to dip to the northwest, and contains anomalies in the resistivity distribution that may be representative of localized thickening or folding of the salt layers.
NASA Astrophysics Data System (ADS)
Choi, Jongchan; Lee, Kyeong-Hwan; Yang, Sung
2011-09-01
This note presents a simple fabrication process for patterning micro through-holes in a PDMS layer by a combination of the micromolding in capillaries (MIMIC) method and the surface treatment by atmospheric-pressure CH4/He RF plasma. The fabrication process is confirmed by forming micro through-holes with various shapes including circle, C-shape, open microfluidic channel and hemisphere. All micro through-holes of various shapes in a wide range of diameters and heights are well fabricated by the proposed method. Also, a 3D micromixer containing a PDMS micro through-hole layer formed by the proposed method is built and its performance is tested as another practical demonstration of the proposed fabrication method. Therefore, we believe that the proposed fabrication process will build a PDMS micro through-hole layer in a simple and easy way and will contribute to developing highly efficient multi-layered microfluidic systems, which may require PDMS micro through-hole layers.
Changes of the boot-shaped coronal hole boundary during Whole Sun Month near sunspot minimum
NASA Astrophysics Data System (ADS)
Zhao, X. P.; Hoeksema, J. T.; Scherrer, P. H.
1999-05-01
The August 27, 1996, boot-shaped coronal hole is shown to rotate nearly rigidly at a rate of 13.25°/day, greater than the equatorial rotation rate of bipolar magnetic regions such as active regions and plages. The day-to-day variation of the coronal hole border is determined by comparing the rigid rotation projection of the disk-center hole boundary to coronal hole boundaries observed in successive daily coronal images. To determine the influence of the changing photospheric field on the location of the coronal hole boundary, a better approximation of the instantaneous global magnetic field distribution is developed and used as input to a potential-field source-surface model to compute the foot-point areas of open field lines. Day-to-day variations of the coronal hole boundary may be caused by changes of the magnetic field and plasma properties in the corona, as well as by the changing photospheric field.
NASA Technical Reports Server (NTRS)
Adams, Donald F.
1999-01-01
The attached data summarizes the work performed by the Composite Materials Research Group at the University of Wyoming funded by the NASA LaRC Research Grant NAG-1-1294. The work consisted primarily of tension, compression, open-hole compression and double cantilever beam fracture toughness testing performed an a variety of NASA LaRC composite materials. Tests were performed at various environmental conditions and pre-conditioning requirements. The primary purpose of this work was to support the LaRC material development efforts. The data summaries are arranged in chronological order from oldest to newest.
NASA Astrophysics Data System (ADS)
Seifert, Karl E.; Chang, Cheng-Wen; Brunotte, Dale A.
1997-04-01
Leg 149 of the Ocean Drilling Program explored the ocean-continent transition (OCT) on the Iberia Abyssal Plain and its role in the opening of the Atlantic Ocean approximately 130 Ma. Mafic igneous rocks recovered from Holes 899B and 900A have Mid-Ocean Ridge Basalt (MORB) trace element and isotopic characteristics indicating that a spreading center was active during the opening of the Iberia Abyssal Plain OCT. The Hole 899B weathered basalt and diabase clasts have transitional to enriched MORB rare earth element characteristics, and the Hole 900A metamorphosed gabbros have MORB initial epsilon Nd values between +6 and +11. During the opening event the Iberia Abyssal Plain OCT is envisioned to have resembled the central and northern parts of the present Red Sea with localized spreading centers and magma chambers producing localized patches of MORB mafic rocks. The lack of a normal ocean floor magnetic anomaly pattern in the Iberia Abyssal Plain means that a continuous spreading center similar to that observed in the present southern Red Sea was not formed before spreading ceased in the Iberia Abyssal Plain OCT and jumped to the present Mid-Atlantic Ridge.
Characteristics of laminates with delamination control strips
NASA Technical Reports Server (NTRS)
Sun, C. T.; Goering, J. C.; Alper, J. M.; Gause, L. W.
1992-01-01
Tough resin is needed to resist delamination crack propagation. However, modulus often has to be compromised because it is difficult to retain both high modulus and toughness in a matrix material. A potential solution is to use a hybrid system in which tough resin strips are included within a conventional matrix composite. By adjusting the spacing of the tough resin strips, maximum delamination size can be controlled. Experimental results for impact damage and subsequent damage propagation in laminates containing tough resin strips are reported. Plain adhesive strips and fiber-reinforced tough resin composite strips were used in constructing the hybrid laminates. Test results indicated that size of delamination inflicted by impact was confined between the tough resin strips. As a result, significantly increased residual compressive strength was obtained. Impacted laminates containing tough resin strips were also fatigue tested. It was found that these strips reduced the growth of the impact damage area relative to the growth seen in coupons with no tough resin strips. Damage growth from an open hole under tension fatigue was evaluated using both tough resin strips and glass fiber reinforced tough resin strips. Unreinforced tough resin strips retarded delamination growth from the open hole, but did not stop matrix cracks growing in the fiber direction. Fiber reinforced tough resin strips did not contain axial delamination growth from the open hole. However, they did act as crack arresters, stopping the through-the-thickness tension crack originating from the hole.
Rapid-quench axially staged combustor
Feitelberg, Alan S.; Schmidt, Mark Christopher; Goebel, Steven George
1999-01-01
A combustor cooperating with a compressor in driving a gas turbine includes a cylindrical outer combustor casing. A combustion liner, having an upstream rich section, a quench section and a downstream lean section, is disposed within the outer combustor casing defining a combustion chamber having at least a core quench region and an outer quench region. A first plurality of quench holes are disposed within the liner at the quench section having a first diameter to provide cooling jet penetration to the core region of the quench section of the combustion chamber. A second plurality of quench holes are disposed within the liner at the quench section having a second diameter to provide cooling jet penetration to the outer region of the quench section of the combustion chamber. In an alternative embodiment, the combustion chamber quench section further includes at least one middle region and at least a third plurality of quench holes disposed within the liner at the quench section having a third diameter to provide cooling jet penetration to at least one middle region of the quench section of the combustion chamber.
Swirl, Expansion Ratio and Blockage Effects on Confined Turbulent Flow. M.S. Thesis
NASA Technical Reports Server (NTRS)
Scharrer, G. L.
1982-01-01
A confined jet test facility, a swirles, flow visualization equipment, five-hole pitot probe instrumentation; flow visualization; and effects of swirl on open-ended flows, of gradual expansion on open-ended flows, and blockages of flows are addressed.
Formation of Heliospheric Arcs of Slow Solar Wind
NASA Technical Reports Server (NTRS)
Higginson, A. K.; Antiochos, S. K.; Devore, C. R.; Wyper, P. F.; Zurbuchen, T. H.
2017-01-01
A major challenge in solar and heliospheric physics is understanding the origin and nature of the so-called slow solar wind. The Sun's atmosphere is divided into magnetically open regions, known as coronal holes, where the plasma streams out freely and fills the solar system, and closed regions, where the plasma is confined to coronal loops. The boundary between these regions extends outward as the heliospheric current sheet (HCS). Measurements of plasma composition strongly imply that much of the slow wind consists of plasma from the closed corona that escapes onto open field lines, presumably by field-line opening or by interchange reconnection. Both of these processes are expected to release closed-field plasma into the solar wind within and immediately adjacent to the HCS. Mysteriously, however, slow wind with closed-field plasma composition is often observed in situ far from the HCS. We use high-resolution, three-dimensional, magnetohydrodynamic simulations to calculate the dynamics of a coronal hole with a geometry that includes a narrow corridor flanked by closed field and is driven by supergranule-like flows at the coronal-hole boundary. These dynamics produce giant arcs of closed-field plasma that originate at the open-closed boundary in the corona, but extend far from the HCS and span tens of degrees in latitude and longitude at Earth. We conclude that such structures can account for the long-puzzling slow-wind observations.
Formation of Heliospheric Arcs of Slow Solar Wind
DOE Office of Scientific and Technical Information (OSTI.GOV)
Higginson, A. K.; Zurbuchen, T. H.; Antiochos, S. K.
A major challenge in solar and heliospheric physics is understanding the origin and nature of the so-called slow solar wind. The Sun’s atmosphere is divided into magnetically open regions, known as coronal holes, where the plasma streams out freely and fills the solar system, and closed regions, where the plasma is confined to coronal loops. The boundary between these regions extends outward as the heliospheric current sheet (HCS). Measurements of plasma composition strongly imply that much of the slow wind consists of plasma from the closed corona that escapes onto open field lines, presumably by field-line opening or by interchangemore » reconnection. Both of these processes are expected to release closed-field plasma into the solar wind within and immediately adjacent to the HCS. Mysteriously, however, slow wind with closed-field plasma composition is often observed in situ far from the HCS. We use high-resolution, three-dimensional, magnetohydrodynamic simulations to calculate the dynamics of a coronal hole with a geometry that includes a narrow corridor flanked by closed field and is driven by supergranule-like flows at the coronal-hole boundary. These dynamics produce giant arcs of closed-field plasma that originate at the open-closed boundary in the corona, but extend far from the HCS and span tens of degrees in latitude and longitude at Earth. We conclude that such structures can account for the long-puzzling slow-wind observations.« less
2018-05-08
An extensive equatorial coronal hole has rotated so that it is now facing Earth (May 2-4, 2018). The dark coronal hole extends about halfway across the solar disk. It was observed in a wavelength of extreme ultraviolet light. This magnetically open area is streaming solar wind (i.e., a stream of charged particles released from the sun) into space. When Earth enters a solar wind stream and the stream interacts with our magnetosphere, we often experience nice displays of aurora. Videos are available at https://photojournal.jpl.nasa.gov/catalog/PIA00624
2017-01-09
An elongated coronal hole rotated across the face of the sun this past week so that it is now streaming solar wind towards Earth (Jan. 2-5, 2017). Coronal holes are areas of open magnetic field from which solar wind particles stream into space. In this wavelength of extreme ultraviolet light it appears as a dark area near the center and lower portion of the sun. The particle stream will likely generate aurora here on Earth. Check spaceweather.com for updates on auroral activity. Movies are available at http://photojournal.jpl.nasa.gov/catalog/PIA14093
2012-03-01
understood simply from differences in the areas of the coronal holes , as opposed to differences in the surface fields within them. In this study, we...invoke smaller source surface radii in the potential-field source-surface (PFSS) model to construct a consistent picture of the observed coronal holes ...that the values of ≈1.9 R and ≈1.8 R for the cycles 22 and 23 minimum periods, respectively, produce the best results. The larger coronal holes
2016-11-09
Two good-sized coronal holes have rotated around to the center of the sun where they will be spewing solar wind towards Earth (Nov. 8-9, 2016). Coronal holes are areas of open magnetic field from which solar wind particles stream into space. In this wavelength of extreme ultraviolet light they appear as the two dark areas at the center and lower portion of the sun. The stream of particles should reach Earth in a few days and are likely to generate aurora. Videos are available at http://photojournal.jpl.nasa.gov/catalog/PIA16909
2018-03-19
Over the past week, the single, largest feature on the sun was a long coronal hole that stretched out across more than half the diameter of the sun (Mar. 13-15, 2018). Coronal holes appear dark in certain wavelengths of extreme ultraviolet light like the one you see here. They are areas of open magnetic fields from which solar wind rushes out into space. This area likely generated the beautiful aurora that were reportedly observed on March 14th in regions near Earth's poles. With the Earth set in the image to show scale, you get a good sense of just how extensive this hole is. Movies are available at https://photojournal.jpl.nasa.gov/catalog/PIA22345
Observing the dynamics of supermassive black hole binaries with pulsar timing arrays.
Mingarelli, C M F; Grover, K; Sidery, T; Smith, R J E; Vecchio, A
2012-08-24
Pulsar timing arrays are a prime tool to study unexplored astrophysical regimes with gravitational waves. Here, we show that the detection of gravitational radiation from individually resolvable supermassive black hole binary systems can yield direct information about the masses and spins of the black holes, provided that the gravitational-wave-induced timing fluctuations both at the pulsar and at Earth are detected. This in turn provides a map of the nonlinear dynamics of the gravitational field and a new avenue to tackle open problems in astrophysics connected to the formation and evolution of supermassive black holes. We discuss the potential, the challenges, and the limitations of these observations.
Electron holes in phase space: What they are and why they matter
NASA Astrophysics Data System (ADS)
Hutchinson, I. H.
2017-05-01
This is a tutorial and selective review explaining the fundamental concepts and some currently open questions concerning the plasma phenomenon of the electron hole. The widespread occurrence of electron holes in numerical simulations, space-craft observations, and laboratory experiments is illustrated. The elementary underlying theory is developed of a one-dimensional electron hole as a localized potential maximum, self-consistently sustained by a deficit of trapped electron phase-space density. The spatial extent of a hole is typically a few Debye lengths; what determines the minimum and maximum possible lengths is explained, addressing the key aspects of the as yet unsettled dispute between the integral and differential approaches to hole structure. In multiple dimensions, holes tend to form less readily; they generally require a magnetic field and distribution-function anisotropy. The mechanisms by which they break up are explained, noting that this transverse instability is not fully understood. Examples are given of plasma circumstances where holes play an important role, and of recent progress on understanding their holistic kinematics and self-acceleration.
Jones, R B
1982-03-01
Early environmental enrichment was evaluated by its effect on the behavior of 7-day-old male and female domestic chicks in an open field or novel environment and in a hole-in-the-wall test of timidity. The chicks were housed in same-sex groups of 10. The bare environments contained wood litter, food, and water, whereas the enriched boxes also contained various objects. In the open field, immobility was lower while feeding, walking, jumping and vocalization were higher in the enriched birds than in those reared in the bare environment. Enrichment also decreased emergence latencies in the hole-in-the-wall box. The increased stimulation provided by environmental enrichment may decrease fearfulness in subsequent fear-inducing situations and may enhance the ability of animals to adapt to novelty.
Justification of the Shape of a Non-Circular Cross-Section for Drilling With a Roller Cutter
NASA Astrophysics Data System (ADS)
Buyalich, Gennady; Husnutdinov, Mikhail
2017-11-01
The parameters of the shape of non-circular cross-section affect not only the process of blasting, but also the design of the tool and the process of drilling as well. In the conditions of open-pit mining, it is reasonable to use a roller cutter to produce a non-circular cross-section of blasting holes. With regard to the roller cutter, the impact of the cross-section shape on the oscillations of the axial force arising upon its rotation is determined. It is determined that a polygonal shape with rounded comers of the borehole walls connections and their convex shape, which ensures a smaller range of the total axial force and the torque deflecting the bit from the axis of its rotation is the rational form of the non-circular cross-section of the borehole in terms of bit design. It has been shown that the ratio of the number of cutters to the number of borehole corners must be taken into account when justifying the shape of the cross-section, both from the point of view of the effectiveness of the explosion action and from the point of view of the rational design of the bit.
Expansible apparatus for removing the surface layer from a concrete object
Allen, Charles H.
1979-01-01
A method and apparatus for removing the surface layer from a concrete object. The method consists of providing a hole having a circular wall in the surface layer of the object, the hole being at least as deep as the thickness of the surface layer to be removed, and applying an outward wedging pressure on the wall of the hole sufficient to spall the surface layer around the hole. By the proper spacing of an appropriate number of holes, it is possible to remove the entire surface layer from an object. The apparatus consists of an elongated tubular-shaped body having a relatively short handle with a solid wall at one end, the wall of the remainder of the body containing a plurality of evenly spaced longitudinal cuts to form a relatively long expandable section, the outer end of the expandable section having an expandable, wedge-shaped spalling edge extending from the outer surface of the wall, perpendicular to the longitudinal axis of the body, and expanding means in the body for outwardly expanding the expandable section and forcing the spalling edge into the wall of a hole with sufficient outward pressure to spall away the surface layer of concrete. The method and apparatus are particularly suitable for removing surface layers of concrete which are radioactively contaminated.
Caine, Jonathan S.; Manning, Andrew H.; Verplanck, Philip L.; Bove, Dana J.; Kahn, Katherine Gurley; Ge, Shemin
2006-01-01
Integrated, multidisciplinary studies of the Handcart Gulch alpine watershed provide a unique opportunity to study and characterize the geology and hydrology of an alpine watershed along the Continental Divide. The study area arose out of the donation of four abandoned, deep mineral exploration boreholes to the U.S. Geological Survey for research purposes by Mineral Systems Inc. These holes were supplemented with nine additional shallow holes drilled by the U.S. Geological Survey along the Handcart Gulch trunk stream. All of the holes were converted into observation wells, and a variety of data and samples were measured and collected from each. This open-file report contains: (1) An overview of the research conducted to date in Handcart Gulch; (2) well location, construction, lithologic log, and water level data from the research boreholes; and (3) a brief synopsis of preliminary results. The primary purpose of this report is to provide a research overview as well as raw data from the boreholes. Interpretation of the data will be reported in future publications. The drill hole data were tabulated into a spreadsheet included with this digital open-file report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dodson-Robinson, Sarah E.; Salyk, Colette, E-mail: sdr@astro.as.utexas.edu
Although there has yet been no undisputed discovery of a still-forming planet embedded in a gaseous protoplanetary disk, the cleared inner holes of transitional disks may be signposts of young planets. Here, we show that the subset of accreting transitional disks with wide, optically thin inner holes of 15 AU or more can only be sculpted by multiple planets orbiting inside each hole. Multiplanet systems provide two key ingredients for explaining the origins of transitional disks. First, multiple planets can clear wide inner holes where single planets open only narrow gaps. Second, the confined, non-axisymmetric accretion flows produced by multiplemore » planets provide a way for an arbitrary amount of mass transfer to occur through an apparently optically thin hole without overproducing infrared excess flux. Rather than assuming that the gas and dust in the hole are evenly and axisymmetrically distributed, one can construct an inner hole with apparently optically thin infrared fluxes by covering a macroscopic fraction of the hole's surface area with locally optically thick tidal tails. We also establish that other clearing mechanisms, such as photoevaporation, cannot explain our subset of accreting transitional disks with wide holes. Transitional disks are therefore high-value targets for observational searches for young planetary systems.« less
Ocriplasmin for treatment of stage 2 macular holes: early clinical results.
Miller, John B; Kim, Leo A; Wu, David M; Vavvas, Demetrios G; Eliott, Dean; Husain, Deeba
2014-01-01
To review clinical and structural outcomes of ocriplasmin for treatment of stage 2 macular holes. A retrospective review of the first patients with stage 2 macular holes to be treated with ocriplasmin at Massachusetts Eye and Ear Infirmary. All patients were imaged with spectral-domain optical coherence tomography (SD-OCT). Eight patients with stage 2 macular holes received a single injection of 125 μg of ocriplasmin. One patient (12.5%) demonstrated macular hole closure. The posterior hyaloid separated from the macula in six eyes (75%). All seven holes that remained open showed enlargement in hole diameters (narrowest, apical, and basal) at 1 week and 1 month. All seven were successfully closed with surgery. Ellipsoid zone disruptions were observed by OCT in four eyes (50%) and persisted throughout follow-up (more than 6 months on average). In early clinical results, the authors found a lower macular hole closure rate with ocriplasmin than previously reported. Enlargement was observed in all holes that failed to close with ocriplasmin. The authors found ellipsoid zone disruptions that persisted through 6 months of follow-up after ocriplasmin injection. Further work is needed to investigate the cause for these ellipsoid zone changes. Copyright 2014, SLACK Incorporated.
Songer, Jocelyn E.; Rosowski, John J.
2009-01-01
The recent discovery of superior semicircular canal (SC) dehiscence syndrome as a clinical entity affecting both the auditory and vestibular systems has led to the investigation of the impact of a SC opening on the mechanics of hearing. It is hypothesized that the hole in the SC acts as a “third window” in the inner ear which shunts sound-induced stapes volume velocity away from the cochlea through the opening in the SC. To test the hypothesis and to understand the third window mechanisms the middle-ear input admittance and sound-induced stapes velocity were measured in chinchilla before and after surgically introducing a SC opening and after patching the opening. The extent to which patching returned the system to the presurgical state is used as a control criterion. In eight chinchilla ears a statistically significant, reversible increase in low-frequency middle-ear input admittance magnitude occurred as a result of opening the SC. In six ears a statistically significant reversible increase in stapes velocity was observed. Both of these changes are consistent with the hole creating a shunt pathway that increases the cochlear input admittance. PMID:16875223
Songer, Jocelyn E; Rosowski, John J
2006-07-01
The recent discovery of superior semicircular canal (SC) dehiscence syndrome as a clinical entity affecting both the auditory and vestibular systems has led to the investigation of the impact of a SC opening on the mechanics of hearing. It is hypothesized that the hole in the SC acts as a "third window" in the inner ear which shunts sound-induced stapes volume velocity away from the cochlea through the opening in the SC. To test the hypothesis and to understand the third window mechanisms the middle-ear input admittance and sound-induced stapes velocity were measured in chinchilla before and after surgically introducing a SC opening and after patching the opening. The extent to which patching returned the system to the presurgical state is used as a control criterion. In eight chinchilla ears a statistically significant, reversible increase in low-frequency middle-ear input admittance magnitude occurred as a result of opening the SC. In six ears a statistically significant reversible increase in stapes velocity was observed. Both of these changes are consistent with the hole creating a shunt pathway that increases the cochlear input admittance.
NASA Astrophysics Data System (ADS)
Williams, T.; Morin, R. H.; Jarrard, R. D.; Jackolski, C. L.; Henrys, S. A.; Niessen, F.; Magens, D.; Kuhn, G.; Monien, D.; Powell, R. D.
2010-12-01
The ANDRILL McMurdo Ice Shelf (MIS) project drilled 1285 metres of sediment representing the last 14 million years of glacial history. Downhole geophysical logs were acquired to a depth of 1018 metres, and are complementary to data acquired from the core itself. We describe here the natural gamma radiation (NGR) and magnetic susceptibility logs, and their application to understanding lithological and paleoenvironmental change at ANDRILL McMurdo Ice Shelf Hole AND-1B. Natural gamma radiation logs cover the whole interval from the sea floor to 1018 metres, and magnetic susceptibility and other logs covered the open-hole intervals between 692-1018 and 237-342 metres. NGR logs were stacked and corrected for signal attenuation through the drill pipe, and magnetic susceptibility logs were corrected for drift. In the upper part of AND-1B, clear alternations between low and high NGR values distinguish between diatomite (lacking minerals containing naturally radioactive K, U, and Th) and diamict (containing K-bearing clays, K-feldspar, and heavy minerals). In the lower open-hole logged section, NGR and magnetic susceptibility can also distinguish claystones (rich in K-bearing clay minerals, relatively low in magnetite) and diamicts (relatively high in magnetite), while sandstones generally have high resistivity log values at AND-1B. On the basis of these three downhole logs, three sets of facies can be predicted correctly for 74% of the 692-1018m interval. The logs were then used to predict facies for the 7% of this interval that was unrecovered by coring. Similarly, the NGR log provides the best information on the lithology of the poorly recovered top 25m of AND-1B. Given the understanding of the physical property characteristics of different facies, it is also possible to identify subtle changes in lithology from the physical properties, and help refine parts of the lithostratigraphy (for example, the varying terrigenous content of diatomites).
21 CFR 882.5250 - Burr hole cover.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Burr hole cover. 882.5250 Section 882.5250 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Therapeutic Devices § 882.5250 Burr hole cover. (a...
21 CFR 882.5250 - Burr hole cover.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Burr hole cover. 882.5250 Section 882.5250 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Therapeutic Devices § 882.5250 Burr hole cover. (a...
Numerical Relativity Simulations of Compact Binary Populations in Dense Stellar Environments
NASA Astrophysics Data System (ADS)
Glennon, Derek Ray; Huerta, Eliu; Allen, Gabrielle; Haas, Roland; Seidel, Edward; NCSA Gravity Group
2018-01-01
We present a catalog of numerical relativity simulations that describe binary black hole mergers on eccentric orbits. These simulations have been obtained with the open source, Einstein Toolkit numerical relativity software, using the Blue Waters supercomputer. We use this catalog to quantify observables, such as the mass and spin of black holes formed by binary black hole mergers, as a function of eccentricity. This study is the first of its kind in the literature to quantify these astrophysical observables for binary black hole mergers with mass-ratios q<6, and eccentricities e<0.2. This study is an important step in understanding the properties of eccentric binary black hole mergers, and informs the use of gravitational wave observations to confirm or rule out the existence of compact binary populations in dense stellar environments.
RECONNECTION-DRIVEN CORONAL-HOLE JETS WITH GRAVITY AND SOLAR WIND
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karpen, J. T.; DeVore, C. R.; Antiochos, S. K.
Coronal-hole jets occur ubiquitously in the Sun's coronal holes, at EUV and X-ray bright points associated with intrusions of minority magnetic polarity. The embedded-bipole model for these jets posits that they are driven by explosive, fast reconnection between the stressed closed field of the embedded bipole and the open field of the surrounding coronal hole. Previous numerical studies in Cartesian geometry, assuming uniform ambient magnetic field and plasma while neglecting gravity and solar wind, demonstrated that the model is robust and can produce jet-like events in simple configurations. We have extended these investigations by including spherical geometry, gravity, and solarmore » wind in a nonuniform, coronal hole-like ambient atmosphere. Our simulations confirm that the jet is initiated by the onset of a kink-like instability of the internal closed field, which induces a burst of reconnection between the closed and external open field, launching a helical jet. Our new results demonstrate that the jet propagation is sustained through the outer corona, in the form of a traveling nonlinear Alfvén wave front trailed by slower-moving plasma density enhancements that are compressed and accelerated by the wave. This finding agrees well with observations of white-light coronal-hole jets, and can explain microstreams and torsional Alfvén waves detected in situ in the solar wind. We also use our numerical results to deduce scaling relationships between properties of the coronal source region and the characteristics of the resulting jet, which can be tested against observations.« less
Hidden conformal symmetry of rotating black holes in minimal five-dimensional gauged supergravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Setare, M. R.; Kamali, V.
2010-10-15
In the present paper we show that for a low frequency limit the wave equation of a massless scalar field in the background of nonextremal charged rotating black holes in five-dimensional minimal gauged and ungauged supergravity can be written as the Casimir of an SL(2,R) symmetry. Our result shows that the entropy of the black hole is reproduced by the Cardy formula. Also the absorption cross section is consistent with the finite temperature absorption cross section for a two-dimensional conformal field theory.
Anderson, B.I.; Collett, T.S.; Lewis, R.E.; Dubourg, I.
2008-01-01
Gas hydrates, which are naturally occurring ice-like combinations of gas and water, have the potential to provide vast amounts of natural gas from the world's oceans and polar regions. However, producing gas economically from hydrates entails major technical challenges. Proposed recovery methods such as dissociating or melting gas hydrates by heating or depressurization are currently being tested. One such test was conducted in northern Canada by the partners in the Mallik 2002 Gas Hydrate Production Research Well Program. This paper describes how resistivity logs were used to determine the size of the annular region of gas hydrate dissociation that occurred around the wellbore during the thermal test in the Mallik 5L-38 well. An open-hole logging suite, run prior to the thermal test, included array induction, array laterolog, nuclear magnetic resonance and 1.1-GHz electromagnetic propagation logs. The reservoir saturation tool was run both before and after the thermal test to monitor formation changes. A cased-hole formation resistivity log was run after the test.Baseline resistivity values in each formation layer (Rt) were established from the deep laterolog data. The resistivity in the region of gas hydrate dissociation near the wellbore (Rxo) was determined from electromagnetic propagation and reservoir saturation tool measurements. The radius of hydrate dissociation as a function of depth was then determined by means of iterative forward modeling of cased-hole formation resistivity tool response. The solution was obtained by varying the modeled dissociation radius until the modeled log overlaid the field log. Pretest gas hydrate production computer simulations had predicted that dissociation would take place at a uniform radius over the 13-ft test interval. However, the post-test resistivity modeling showed that this was not the case. The resistivity-derived dissociation radius was greatest near the outlet of the pipe that circulated hot water in the wellbore, where the highest temperatures were recorded. The radius was smallest near the center of the test interval, where a conglomerate section with low values of porosity and permeability inhibited dissociation. The free gas volume calculated from the resistivity-derived dissociation radii yielded a value within 20 per cent of surface gauge measurements. These results show that the inversion of resistivity measurements holds promise for use in future gas hydrate monitoring. ?? 2008 Society of Petrophysicists and Well Log Analysts. All rights reserved.
29 CFR 1926.850 - Preparatory operations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... wall openings, the opening shall be protected to a height of approximately 42 inches. (h) When debris..., shall be posted at each level. Removal shall not be permitted in this lower area until debris handling..., holes through which to drop materials, preparation of storage space, and similar necessary preparatory...
29 CFR 1926.850 - Preparatory operations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... wall openings, the opening shall be protected to a height of approximately 42 inches. (h) When debris..., shall be posted at each level. Removal shall not be permitted in this lower area until debris handling..., holes through which to drop materials, preparation of storage space, and similar necessary preparatory...
29 CFR 1926.850 - Preparatory operations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... wall openings, the opening shall be protected to a height of approximately 42 inches. (h) When debris..., shall be posted at each level. Removal shall not be permitted in this lower area until debris handling..., holes through which to drop materials, preparation of storage space, and similar necessary preparatory...
29 CFR 1926.850 - Preparatory operations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... wall openings, the opening shall be protected to a height of approximately 42 inches. (h) When debris..., shall be posted at each level. Removal shall not be permitted in this lower area until debris handling..., holes through which to drop materials, preparation of storage space, and similar necessary preparatory...
29 CFR 1926.850 - Preparatory operations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... wall openings, the opening shall be protected to a height of approximately 42 inches. (h) When debris..., shall be posted at each level. Removal shall not be permitted in this lower area until debris handling..., holes through which to drop materials, preparation of storage space, and similar necessary preparatory...
30 CFR 819.15 - Auger mining: Hydrologic balance.
Code of Federal Regulations, 2014 CFR
2014-07-01
... and 816.42 of this chapter. (b) All auger holes, except as provided in paragraph (c) of this section... the holes are discharging water containing acid-or toxic-forming material. If sealing is not possible... applicable effluent limitations and water-quality standards until the holes are sealed; and (2) Sealed with...
30 CFR 819.15 - Auger mining: Hydrologic balance.
Code of Federal Regulations, 2012 CFR
2012-07-01
... and 816.42 of this chapter. (b) All auger holes, except as provided in paragraph (c) of this section... the holes are discharging water containing acid-or toxic-forming material. If sealing is not possible... applicable effluent limitations and water-quality standards until the holes are sealed; and (2) Sealed with...
30 CFR 819.15 - Auger mining: Hydrologic balance.
Code of Federal Regulations, 2013 CFR
2013-07-01
... and 816.42 of this chapter. (b) All auger holes, except as provided in paragraph (c) of this section... the holes are discharging water containing acid-or toxic-forming material. If sealing is not possible... applicable effluent limitations and water-quality standards until the holes are sealed; and (2) Sealed with...
Escape for the Slow Solar Wind
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-05-01
Plasma from the Sun known as the slow solar wind has been observed far away from where scientists thought it was produced. Now new simulations may have resolved the puzzle of where the slow solar wind comes from and how it escapes the Sun to travel through our solar system.An Origin PuzzleA full view of a coronal hole (dark portion) from SDO. The edges of the coronal hole mark the boundary between open and closed magnetic field lines. [SDO; adapted from Higginson et al. 2017]The Suns atmosphere, known as the corona, is divided into two types of regions based on the behavior of magnetic field lines. In closed-field regions, the magnetic field is firmly anchored in the photosphere at both ends of field lines, so traveling plasma is confined to coronal loops and must return to the Suns surface. In open-field regions, only one end of each magnetic field line is anchored in the photosphere, so plasma is able to stream from the Suns surface out into the solar system.This second type of region known as a coronal hole is thought to be the origin of fast-moving plasma measured in our solar system and known as the fast solar wind. But we also observe a slow solar wind: plasma that moves at speeds of less than 500 km/s.The slow solar wind presents a conundrum. Its observational properties strongly suggest it originates in the hot, closed corona rather than the cooler, open regions. But if the slow solar wind plasma originates in closed-field regions of the Suns atmosphere, then how does it escape from the Sun?Slow Wind from Closed FieldsA team of scientists led by Aleida Higginson (University of Michigan) has now used high-resolution, three-dimensional magnetohydrodynamic simulations to show how the slow solar wind can be generated from plasma that starts outin closed-field parts of the Sun.A simulated heliospheric arc, composed of open magnetic field lines. [Higginson et al. 2017]Motions on the Suns surface near the boundary between open and closed-field regions the boundary that marks the edges of coronal holes and extends outward as the heliospheric current sheet are caused by supergranule-like convective flows. These motions drive magnetic reconnection that funnel plasma from the closed-field region onto enormous arcs that extend far away from the heliospheric current sheet, spanning tens of degrees in latitude and longitude.The simulations by Higginson and collaborators demonstrate that closed-field plasma from coronal-hole boundaries can be successfully channeled into the solar system. Due to the geometry and dynamics of the coronal holes, the plasma can travel far from the heliospheric current sheet, resulting in a slow solar wind of closed-field plasma consistent with our observations. These simulations therefore suggest aprocessthat resolves the long-standing puzzle of the slow solar wind.BonusCheck out the animation below, made from the results of the teams simulations. This video shows the location of a forming heliospheric arc at a distance of 12 solar radii. The arc forms as magnetic field lines at the boundary of a coronal hole change from closed to open, allowing closed-field flux to escape along them.http://aasnova.org/wp-content/uploads/2017/05/apjlaa6d72f4_video.mp4CitationA. K. Higginson et al 2017 ApJL 840 L10. doi:10.3847/2041-8213/aa6d72
Grau, Luis; Collon, Kevin; Alhandi, Ali; Kaimrajh, David; Varon, Maria; Latta, Loren; Vilella, Fernando
2018-06-01
The aim of this study is to evaluate the biomechanical effect of filling locking variable angle (VA) screw holes at the area of metaphyseal fracture comminution in a Sawbones® (Sawbones USA, Vashon, Washington) model (AO/OTA 33A-3 fracture) using a Synthes VA locking compression plate (LCP) (Depuy Synthes, Warsaw, Indiana). Seven Sawbones® femur models had a Synthes VA-LCP placed as indicated by the manufacturers technique. A 4cm osteotomy was then created to simulate an AO/OTA 33-A3 femoral fracture pattern with metaphyseal comminution. The control group consisted of four constructs in which the open screw holes at the area of comminution were left unfilled; the experimental group consisted of three constructs in which the VA screw holes were filled with locking screws. One of the control constructs was statically loaded to failure at a rate of 5mm/min. A value equal to 75% of the ultimate load to failure was used as the loading force for fatigue testing of 250,000 cycles at 3Hz. Cycles to failure was recorded for each construct and averages were compared between groups. The average number of cycles to failure in the control and experimental groups were 37524±8187 and 43304±23835, respectively (p=0.72). No significant difference was observed with respect to cycles to failure or mechanism of failure between groups. In all constructs in both the control and experimental groups, plate failure reproducibly occurred with cracks through the variable angle holes in the area of bridged comminution. The Synthes VA-LCP in a simulated AO/OTA 33-A3 comminuted metaphyseal femoral fracture fails in a reproducible manner at the area of comminution through the "honeycomb" VA screw holes. Filling open VA screw holes at the site of comminution with locking screws does not increase fatigue life of the Synthes VA-LCP in a simulated AO/OTA 33-A3 distal femoral fracture. Further studies are necessary to determine whether use of this particular plate is contraindicated when bridging distal femoral fractures with metaphyseal comminution.
Proto-jet configurations in RADs orbiting a Kerr SMBH: symmetries and limiting surfaces
NASA Astrophysics Data System (ADS)
Pugliese, D.; Stuchlík, Z.
2018-05-01
Ringed accretion disks (RADs) are agglomerations of perfect-fluid tori orbiting around a single central attractor that could arise during complex matter inflows in active galactic nuclei. We focus our analysis to axi-symmetric accretion tori orbiting in the equatorial plane of a supermassive Kerr black hole; equilibrium configurations, possible instabilities, and evolutionary sequences of RADs were discussed in our previous works. In the present work we discuss special instabilities related to open equipotential surfaces governing the material funnels emerging at various regions of the RADs, being located between two or more individual toroidal configurations of the agglomerate. These open structures could be associated to proto-jets. Boundary limiting surfaces are highlighted, connecting the emergency of the jet-like instabilities with the black hole dimensionless spin. These instabilities are observationally significant for active galactic nuclei, being related to outflows of matter in jets emerging from more than one torus of RADs orbiting around supermassive black holes.
Plasmonic Landau damping in active environments
NASA Astrophysics Data System (ADS)
Thakkar, Niket; Montoni, Nicholas P.; Cherqui, Charles; Masiello, David J.
2018-03-01
Optical manipulation of charge on the nanoscale is of fundamental importance to an array of proposed technologies from selective photocatalysis to nanophotonics. Open plasmonic systems where collective electron oscillations release energy and charge to their environments offer a potential means to this end as plasmons can rapidly decay into energetic electron-hole pairs; however, isolating this decay from other plasmon-environment interactions remains a challenge. Here we present an analytic theory of noble-metal nanoparticles that quantitatively models plasmon decay into electron-hole pairs, demonstrates that this decay depends significantly on the nanoparticle's dielectric environment, and disentangles this effect from competing decay pathways. Using our approach to incorporate embedding material and substrate effects on plasmon-electron interaction, we show that predictions from the model agree with four separate experiments. Finally, examination of coupled nanoparticle-emitter systems further shows that the hybridized in-phase mode more efficiently decays to photons whereas the out-of-phase mode more efficiently decays to electron-hole pairs, offering a strategy to tailor open plasmonic systems for charge manipulation.
Gravitational Wave Astrophysics: Opening the New Frontier
NASA Technical Reports Server (NTRS)
Centrella, Joan
2011-01-01
The gravitational wave window onto the universe is expected to open in 5 years, when ground-based detectors make the first detections in the high-frequency regime. Gravitational waves are ripples in spacetime produced by the motions of massive objects such as black holes and neutron stars. Since the universe is nearly transparent to gravitational waves, these signals carry direct information about their sources such as masses, spins, luminosity distances, and orbital parameters through dense, obscured regions across cosmic time. This article explores gravitational waves as cosmic messengers, highlighting key sources, detection methods, and the astrophysical payoffs across the gravitational wave spectrum. Keywords: Gravitational wave astrophysics; gravitational radiation; gravitational wave detectors; black holes.
Micromechanics of compression failures in open hole composite laminates
NASA Technical Reports Server (NTRS)
Guynn, E. Gail; Bradley, Walter L.
1987-01-01
The high strength-to-weight ratio of composite materials is ideally suited for aerospace applications where they already are used in commercial and military aircraft secondary structures and will soon be used for heavily loaded primary structures. One area impeding the widespread application of composites is their inherent weakness in compressive strength when compared to the tensile properties of the same material. Furthermore, these airframe designs typically contain many bolted or riveted joints, as well as electrical and hydraulic control lines. These applications produce areas of stress concentration, and thus, further complicate the compression failure problem. Open hole compression failures which represent a typical failure mode for composite materials are addressed.
Direct Observation of Accretion onto a Hypernova's Newly Formed Black Hole
NASA Astrophysics Data System (ADS)
Milisavljevic, Dan
2017-09-01
Models of energetic core-collapse supernovae and long-duration gamma-ray bursts often invoke engine-driven scenarios associated with the formation of compact objects that input energy into the explosion. To date, only indirect evidence of black holes or magnetars formed in these events exists from observations obtained when the explosions are most luminous. Here we request a modest 15 ks Chandra pilot observation of the exceptionally important nearby hypernova SN2002ap to test models that predict X-ray emission associated with its remnant black hole to be detectable after 15 yr of ejecta expansion. Direct observation a newly formed "baby" black hole would be a landmark discovery capable of opening up new ways to investigate fundamental aspects of the core collapse process.
NASA Technical Reports Server (NTRS)
Centrella, Joan
2012-01-01
The final merger of two black holes is expected to be the strongest source of gravitational waves for both ground-based detectors such as LIGO and VIRGO, as well as future. space-based detectors. Since the merger takes place in the regime of strong dynamical gravity, computing the resulting gravitational waveforms requires solving the full Einstein equations of general relativity on a computer. For many years, numerical codes designed to simulate black hole mergers were plagued by a host of instabilities. However, recent breakthroughs have conquered these instabilities and opened up this field dramatically. This talk will focus on.the resulting 'gold rush' of new results that is revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wave detection, testing general relativity, and astrophysics
NASA Technical Reports Server (NTRS)
Centrella, Joan
2010-01-01
The final merger of two black holes is expected to be the strongest source of gravitational waves for both ground-based detectors such as LIGO and VIRGO, as well as the space-based LISA. Since the merger takes place in the regime of strong dynamical gravity, computing the resulting gravitational waveforms requires solving the full Einstein equations of general relativity on a computer. For many years, numerical codes designed to simulate black hole mergers were plagued by a host of instabilities. However, recent breakthroughs have conquered these instabilities and opened up this field dramatically. This talk will focus on the resulting gold rush of new results that are revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wove detection, testing general relativity, and astrophysics.
NASA Technical Reports Server (NTRS)
Centrella, Joan
2010-01-01
The final merger of two black holes is expected to be the strongest source of gravitational waves for both ground-based detectors such as LIGO and VIRGO, as well as the space-based LISA. Since the merger takes place in the regime of strong dynamical gravity, computing the resulting gravitational waveforms requires solving the full Einstein equations of general relativity on a computer. For many years, numerical codes designed to simulate black hole mergers were plagued by a host of instabilities. However, recent breakthroughs have conquered these instabilities and opened up this field dramatically. This talk will focus on the resulting gold rush of new results that are revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wave detection, testing general relativity, and astrophysics.
Hawking radiation in a rotating Kaluza-Klein black hole with squashed horizons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen Songbai; Wang Bin; Su Rukeng
2008-01-15
We explore the signature of the extra dimension in the Hawking radiation in a rotating Kaluza-Klein black hole with squashed horizons. Comparing with the spherical case, we find that the rotating parameter brings richer physics. We obtain the appropriate size of the extra dimension which can enhance the Hawking radiation and may open a window to detect the extra dimensions.
ERIC Educational Resources Information Center
Cimpian, Andrei; Markman, Ellen M.
2009-01-01
Generic sentences (e.g., "Snakes have holes in their teeth") convey that a property (e.g., having holes in one's teeth) is true of a category (e.g., snakes). We test the hypothesis that, in addition to this basic aspect of their meaning, generic sentences also imply that the information they express is more conceptually central than the…
Intermediate mass black holes in AGN discs - I. Production and growth
NASA Astrophysics Data System (ADS)
McKernan, B.; Ford, K. E. S.; Lyra, W.; Perets, H. B.
2012-09-01
Here we propose a mechanism for efficiently growing intermediate mass black holes (IMBH) in discs around supermassive black holes. Stellar mass objects can efficiently agglomerate when facilitated by the gas disc. Stars, compact objects and binaries can migrate, accrete and merge within discs around supermassive black holes. While dynamical heating by cusp stars excites the velocity dispersion of nuclear cluster objects (NCOs) in the disc, gas in the disc damps NCO orbits. If gas damping dominates, NCOs remain in the disc with circularized orbits and large collision cross-sections. IMBH seeds can grow extremely rapidly by collisions with disc NCOs at low relative velocities, allowing for super-Eddington growth rates. Once an IMBH seed has cleared out its feeding zone of disc NCOs, growth of IMBH seeds can become dominated by gas accretion from the active galactic nucleus (AGN) disc. However, the IMBH can migrate in the disc and expand its feeding zone, permitting a super-Eddington accretion rate to continue. Growth of IMBH seeds via NCO collisions is enhanced by a pile-up of migrators. We highlight the remarkable parallel between the growth of IMBH in AGN discs with models of giant planet growth in protoplanetary discs. If an IMBH becomes massive enough it can open a gap in the AGN disc. IMBH migration in AGN discs may stall, allowing them to survive the end of the AGN phase and remain in galactic nuclei. Our proposed mechanisms should be more efficient at growing IMBH in AGN discs than the standard model of IMBH growth in stellar clusters. Dynamical heating of disc NCOs by cusp stars is transferred to the gas in an AGN disc helping to maintain the outer disc against gravitational instability. Model predictions, observational constraints and implications are discussed in a companion paper (Paper II).
Computational Analysis on Performance of Thermal Energy Storage (TES) Diffuser
NASA Astrophysics Data System (ADS)
Adib, M. A. H. M.; Adnan, F.; Ismail, A. R.; Kardigama, K.; Salaam, H. A.; Ahmad, Z.; Johari, N. H.; Anuar, Z.; Azmi, N. S. N.
2012-09-01
Application of thermal energy storage (TES) system reduces cost and energy consumption. The performance of the overall operation is affected by diffuser design. In this study, computational analysis is used to determine the thermocline thickness. Three dimensional simulations with different tank height-to-diameter ratio (HD), diffuser opening and the effect of difference number of diffuser holes are investigated. Medium HD tanks simulations with double ring octagonal diffuser show good thermocline behavior and clear distinction between warm and cold water. The result show, the best performance of thermocline thickness during 50% time charging occur in medium tank with height-to-diameter ratio of 4.0 and double ring octagonal diffuser with 48 holes (9mm opening ~ 60%) acceptable compared to diffuser with 6mm ~ 40% and 12mm ~ 80% opening. The conclusion is computational analysis method are very useful in the study on performance of thermal energy storage (TES).
Understanding Hawking radiation in the framework of open quantum systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu Hongwei; Zhang Jialin
2008-01-15
We study the Hawking radiation in the framework of open quantum systems by examining the time evolution of a detector (modeled by a two-level atom) interacting with vacuum massless scalar fields. The dynamics of the detector is governed by a master equation obtained by tracing over the field degrees of freedom from the complete system. The nonunitary effects are studied by analyzing the time behavior of a particular observable of the detector, i.e., its admissible state, in the Unruh, Hartle-Hawking, as well as Boulware vacua outside a Schwarzschild black hole. We find that the detector in both the Unruh andmore » Hartle-Hawking vacua would spontaneously excite with a nonvanishing probability the same as what one would obtain if there is thermal radiation at the Hawking temperature from the black hole, thus reproducing the basic results concerning the Hawking effect in the framework of open quantum systems.« less
Geometry and surface damage in micro electrical discharge machining of micro-holes
NASA Astrophysics Data System (ADS)
Ekmekci, Bülent; Sayar, Atakan; Tecelli Öpöz, Tahsin; Erden, Abdulkadir
2009-10-01
Geometry and subsurface damage of blind micro-holes produced by micro electrical discharge machining (micro-EDM) is investigated experimentally to explore the relational dependence with respect to pulse energy. For this purpose, micro-holes are machined with various pulse energies on plastic mold steel samples using a tungsten carbide tool electrode and a hydrocarbon-based dielectric liquid. Variations in the micro-hole geometry, micro-hole depth and over-cut in micro-hole diameter are measured. Then, unconventional etching agents are applied on the cross sections to examine micro structural alterations within the substrate. It is observed that the heat-damaged segment is composed of three distinctive layers, which have relatively high thicknesses and vary noticeably with respect to the drilling depth. Crack formation is identified on some sections of the micro-holes even by utilizing low pulse energies during machining. It is concluded that the cracking mechanism is different from cracks encountered on the surfaces when machining is performed by using the conventional EDM process. Moreover, an electrically conductive bridge between work material and debris particles is possible at the end tip during machining which leads to electric discharges between the piled segments of debris particles and the tool electrode during discharging.
Extended Study of Flaw Growth at Fastener Holes. Volume 1
1978-04-01
itmude Ioodi n’i kv~~ ~ I S ; t 01 I IS 1 OF F IGLIR I’S (Contit d) SinNo.___ 30) \\Giolvth Bel ikio- of Ilntvi medi kte Tim, Citick ho 10U4 n1tei tei enc ...compress each other. The effective stress intensity factor range equals tile differ- ence between curves 2 and 3. For a similar plate with an open hole...intei fel ence or cold workinl, the crack growth rate, in general, is significantly lower than that of a straight reomed hole without preconditioning. (4
2017-09-02
A large coronal hole has been spewing solar wind particles in the general direction of Earth over the past few days (Aug. 31- Sept. 1, 2017). It is the extensive dark area that stretches from the top of the sun and angles down to the right. Coronal holes are areas of open magnetic field, which allow charge particles to escape into space. They appear dark in certain wavelengths of extreme ultraviolet light such as shown here. These clouds of particles can cause aurora to appear, particularly in higher latitude regions. Movies are available at https://photojournal.jpl.nasa.gov/catalog/PIA21942
2017-11-16
This image from NASA's Solar Dynamics Observatory shows a broad coronal hole was the dominant feature this week on the sun (Nov. 7-9, 2017). It was easily recognizable as the dark expanse across the top of the sun and extending down in each side. Coronal holes are magnetically open areas on the sun that allow high-speed solar wind to gush out into space. They always appear darker in extreme ultraviolet. This one was likely the source of bright aurora that shimmered for numerous observers, with some reaching down even to Nebraska. Movies are available at https://photojournal.jpl.nasa.gov/catalog/PIA22113
NASA Astrophysics Data System (ADS)
Huang, S.; Sahraoui, F.; Yuan, Z.; He, J.; Zhao, J.; Du, J.; Le Contel, O.; Wang, X.; Deng, X.; Fu, H.; Zhou, M.; Shi, Q.; Breuillard, H.; Pang, Y.; Yu, X.; Wang, D.
2017-12-01
Magnetic hole is characterized by a magnetic depression, a density peak, a total electron temperature increase (with a parallel temperature decrease but a perpendicular temperature increase), and strong currents carried by the electrons. The current has a dip in the core region of the magnetic hole and a peak in the outer region of the magnetic hole. There is an enhancement in the perpendicular electron fluxes at 90° pitch angles inside the magnetic hole, implying that the electrons are trapped within it. The variations of the electron velocity components Vem and Ven suggest that an electron vortex is formed by trapping electrons inside the magnetic hole in the circular cross-section. These observations demonstrate the existence of a new type of coherent structures behaving as an electron vortex magnetic hole in turbulent space plasmas as predicted by recent kinetic simulations. We perform a statistically study using high time solution data from the MMS mission. The magnetic holes with short duration (i.e., < 0.5 s) have their cross section smaller than the ion gyro-radius. Superposed epoch analysis of all events reveals that an increase in the electron density and total temperature, significantly increase (resp. decrease) the electron perpendicular (resp. parallel) temperature, and an electron vortex inside the holes. Electron fluxes at 90° pitch angles with selective energies increase in the KSMHs, are trapped inside KSMHs and form the electron vortex due to their collective motion. All these features are consistent with the electron vortex magnetic holes obtained in 2D and 3D particle-in-cell simulations, indicating that the observed the magnetic holes seem to be best explained as electron vortex magnetic holes. It is furthermore shown that the magnetic holes are likely to heat and accelerate the electrons. We also investigate the coupling between whistler waves and electron vortex magnetic holes. These whistler waves can be locally generated inside electron vortex magnetic holes by electron temperature anisotropic instability.
9. INTERIOR OF LIVING ROOM SHOWING OPEN 6LIGHT FRONT ENTRY ...
9. INTERIOR OF LIVING ROOM SHOWING OPEN 6-LIGHT FRONT ENTRY DOOR, OPEN PANEL DOOR TO BEDROOM NUMBER ONE, AND 6-LIGHT OVER 1-LIGHT SASH WINDOW ON REAR WALL AT PHOTO LEFT CENTER. FIREPLACE ORIGINALLY OCCUPIED SPACE UNDER ROUND HEATER VENT HOLE AT PHOTO LEFT. VIEW TO WEST. - Rush Creek Hydroelectric System, Worker Cottage, Rush Creek, June Lake, Mono County, CA
Nam, Kweon-Ho; Paeng, Dong-Guk
2014-07-01
The "black hole," a hypo-echoic hole at the center of the bloodstream surrounded by a hyper-echoic zone in cross-sectional views, has been observed in ultrasound backscattering measurements of blood with red blood cell aggregation in in vitro studies. We investigated whether the phenomenon occurs in the in vivo arterial bloodstream of rats using a high-frequency ultrasound imaging system. Longitudinal and cross-sectional ultrasound images of the rat common carotid artery (CCA) and abdominal aorta were obtained using a 40-MHz ultrasound system. A high-frame-rate retrospective imaging mode was employed to precisely examine the dynamic changes in blood echogenicity in the arteries. When the imaging was performed with non-invasive scanning, blood echogenicity was very low in the CCA as compared with the surrounding tissues, exhibiting no hypo-echoic zone at the center of the vessel. Invasive imaging of the CCA by incising the skin and subcutaneous tissues at the imaging area provided clearer and brighter blood echo images, showing the "black hole" phenomenon near the center of the vessel in longitudinal view. The "black hole" was also observed in the abdominal aorta under direct imaging after laparotomy. The aortic "black hole" was clearly observed in both longitudinal and cross-sectional views. Although the "black hole" was always observed near the center of the arteries during the diastolic phase, it dissipated or was off-center along with the asymmetric arterial wall dilation at systole. In conclusion, we report the first in vivo observation of the hypo-echoic "black hole" caused by the radial variation of red blood cell aggregation in arterial bloodstream. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
X-ray constraints on the number of stellar mass black holes in the inner parsec
NASA Astrophysics Data System (ADS)
Deegan, Patrick; Nayakshin, Sergei
2006-12-01
Due to dynamical friction stellar mass black holes should form a cusp in the inner parsec. Calculations [5, 6] show that approximately 20 thousand black holes would be present in a sphere with radius of about a parsec around Sgr A*. The presence of these objects opens up the possibility that they might be accreting ''cool'' gas (i.e. the Minispiral) as discussed by Morris [6]. Here we calculate the X-ray emission expected from these black holes as a method to constrain their population. We find that the data limits the total number of such black holes to around 10 - 20 thousand. Even a much smaller number of such black holes, i.e. 5 thousand, is sufficient to produce several sources with X-ray luminosity above Lx ~ 1033 erg s-1 at any one time. We suggest that some of the discrete X-ray sources observed by Muno [7] with Chandra in the inner parsec may be such ''fake X-ray binaries''.
Searching for the QCD Axion with Black Holes and Gravitational Waves
NASA Astrophysics Data System (ADS)
Baryakhtar, Masha
2017-01-01
The LIGO detection of gravitational waves has opened a new window on the universe. I will discuss how the process of superradiance, combined with gravitational wave measurements, makes black holes into nature's laboratories to search for new light bosons. When a bosonic particle's Compton wavelength is comparable to the horizon size of a black hole, superradiance of these bosons into bound ``Bohr orbitals'' extracts energy and angular momentum from the black hole. The occupation number of the levels grows exponentially and the black hole spins down. For efficient superradiance of stellar black holes, the particle must be ultralight, with mass below 10-10 eV; one candidate for such an ultralight boson is the QCD axion with decay constant above the GUT scale. Measurements of BH spins in X-ray binaries and in mergers at Advanced LIGO can exclude or provide evidence for an ultralight axion. Axions transitioning between levels of the gravitational ``atom'' and annihilating to gravitons may produce thousands of monochromatic gravitational wave signals, turning LIGO into a particle detector.
NASA Astrophysics Data System (ADS)
Kinash, N.; Cook, A.; Sawyer, D.; Heber, R.
2017-12-01
In May 2017 the University of Texas led a drilling and pressure coring expedition in the northern Gulf of Mexico, UT-GOM2-01. The holes were located in Green Canyon Block 955, where the Gulf of Mexico Joint Industry Project Leg II identified an approximately 100m thick hydrate-filled course-grained levee unit in 2009. Two separate wells were drilled into this unit: Holes H002 and H005. In Hole H002, a cutting shoe drill bit was used to collect the pressure cores, and only 1 of the 8 cores collected was pressurized during recovery. The core recovery in Hole H002 was generally poor, about 34%, while the only pressurized core had 45% recovery. In Hole H005, a face bit was used during pressure coring where 13 cores were collected and 9 cores remained pressurized. Core recovery in Hole H005 was much higher, at about 75%. The type of bit was not the only difference between the holes, however. Drilling mud was used throughout the drilling and pressure coring of Hole H002, while only seawater was used during the first 80m of pressure cores collected in Hole H005. Herein we focus on lithologic analysis of Hole H002 with the goal of documenting and understanding core recovery in Hole H002 to compare with Hole H005. X-ray Computed Tomography (XCT) images were collected by Geotek on pressurized cores, mostly from Hole H005, and at Ohio State on unpressurized cores, mostly from Hole H002. The XCT images of unpressurized cores show minimal sedimentary structures and layering, unlike the XCT images acquired on the pressurized, hydrate-bearing cores. Only small sections of the unpressurized cores remained intact. The unpressurized cores appear to have two prominent facies: 1) silt that did not retain original sedimentary fabric and often was loose within the core barrel, and 2) dense mud sections with some sedimentary structures and layering present. On the XCT images, drilling mud appears to be concentrated on the sides of cores, but also appears in layers and fractures within intact core sections. On microscope images, the drilling mud also appears to saturate the pores in some silt intervals. Further analysis of the unpressurized cores is planned, including X-ray diffraction, grain size analysis and porosity measurements. These results will be compared to the pressurized cores to understand if further lithologic factors could have affected core recovery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babichev, Eugeny; Charmousis, Christos; Hassaine, Mokhtar, E-mail: eugeny.babichev@th.u-psud.fr, E-mail: christos.charmousis@th.u-psud.fr, E-mail: hassaine@inst-mat.utalca.cl
We consider an Abelian gauge field coupled to a particular truncation of Horndeski theory. The Galileon field has translation symmetry and couples non minimally both to the metric and the gauge field. When the gauge-scalar coupling is zero the gauge field reduces to a standard Maxwell field. By taking into account the symmetries of the action, we construct charged black hole solutions. Allowing the scalar field to softly break symmetries of spacetime we construct black holes where the scalar field is regular on the black hole event horizon. Some of these solutions can be interpreted as the equivalent of Reissner-Nordstrommore » black holes of scalar tensor theories with a non trivial scalar field. A self tuning black hole solution found previously is extended to the presence of dyonic charge without affecting whatsoever the self tuning of a large positive cosmological constant. Finally, for a general shift invariant scalar tensor theory we demonstrate that the scalar field Ansatz and method we employ are mathematically compatible with the field equations. This opens up the possibility for novel searches of hairy black holes in a far more general setting of Horndeski theory.« less
Thermodynamic properties of asymptotically Reissner–Nordström black holes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendi, S.H., E-mail: hendi@shirazu.ac.ir
2014-07-15
Motivated by possible relation between Born–Infeld type nonlinear electrodynamics and an effective low-energy action of open string theory, asymptotically Reissner–Nordström black holes whose electric field is described by a nonlinear electrodynamics (NLED) are studied. We take into account a four dimensional topological static black hole ansatz and solve the field equations, exactly, in terms of the NLED as a matter field. The main goal of this paper is investigation of thermodynamic properties of the obtained black holes. Moreover, we calculate the heat capacity and find that the nonlinearity affects the minimum size of stable black holes. We also use Legendre-invariantmore » metric proposed by Quevedo to obtain scalar curvature divergences. We find that the singularities of the Ricci scalar in Geometrothermodynamics (GTD) method take place at the Davies points. -- Highlights: •We examine the thermodynamical properties of black holes in Einstein gravity with nonlinear electrodynamics. •We investigate thermodynamic stability and discuss about the size of stable black holes. •We obtain analytical solutions of higher dimensional theory.« less
On the influence of additive and multiplicative noise on holes in dissipative systems.
Descalzi, Orazio; Cartes, Carlos; Brand, Helmut R
2017-05-01
We investigate the influence of noise on deterministically stable holes in the cubic-quintic complex Ginzburg-Landau equation. Inspired by experimental possibilities, we specifically study two types of noise: additive noise delta-correlated in space and spatially homogeneous multiplicative noise on the formation of π-holes and 2π-holes. Our results include the following main features. For large enough additive noise, we always find a transition to the noisy version of the spatially homogeneous finite amplitude solution, while for sufficiently large multiplicative noise, a collapse occurs to the zero amplitude solution. The latter type of behavior, while unexpected deterministically, can be traced back to a characteristic feature of multiplicative noise; the zero solution acts as the analogue of an absorbing boundary: once trapped at zero, the system cannot escape. For 2π-holes, which exist deterministically over a fairly small range of values of subcriticality, one can induce a transition to a π-hole (for additive noise) or to a noise-sustained pulse (for multiplicative noise). This observation opens the possibility of noise-induced switching back and forth from and to 2π-holes.
Code of Federal Regulations, 2012 CFR
2012-01-01
... inches in length, with a right-angle bend 1/2-inch from each end. This wire is placed snugly in holes... form a top when shield is open). The interior of the draft shield shall be painted a flat black...
Code of Federal Regulations, 2014 CFR
2014-01-01
... inches in length, with a right-angle bend 1/2-inch from each end. This wire is placed snugly in holes... form a top when shield is open). The interior of the draft shield shall be painted a flat black...
46 CFR 151.15-10 - Cargo gauging devices.
Code of Federal Regulations, 2010 CFR
2010-10-01
... contains definitions and requirements for types of gauging devices specified in Table 151.05. (a) Open... the cargo and its vapors. Examples of this type are gauge hatch, ullage hole. (b) Restricted. A... closure device in that opening. When not in use, this type gauging device is closed to maintain the...
A firefly algorithm for optimum design of new-generation beams
NASA Astrophysics Data System (ADS)
Erdal, F.
2017-06-01
This research addresses the minimum weight design of new-generation steel beams with sinusoidal openings using a metaheuristic search technique, namely the firefly method. The proposed algorithm is also used to compare the optimum design results of sinusoidal web-expanded beams with steel castellated and cellular beams. Optimum design problems of all beams are formulated according to the design limitations stipulated by the Steel Construction Institute. The design methods adopted in these publications are consistent with BS 5950 specifications. The formulation of the design problem considering the above-mentioned limitations turns out to be a discrete programming problem. The design algorithms based on the technique select the optimum universal beam sections, dimensional properties of sinusoidal, hexagonal and circular holes, and the total number of openings along the beam as design variables. Furthermore, this selection is also carried out such that the behavioural limitations are satisfied. Numerical examples are presented, where the suggested algorithm is implemented to achieve the minimum weight design of these beams subjected to loading combinations.
Caves in caves: Post depositional holes in stalagmites
NASA Astrophysics Data System (ADS)
Shtober Zisu, Nurit; Schwarcz, Henry P.; Chow, Tom; Konyer, Norman B.; Noseworthy, Michael D.
2010-05-01
Previous studies of speleothems for the purposes of isotopic analysis and U-series dating have resulted in preparation of stalagmites by sectioning longitudinally along the growth axis. We frequently observe holes in such sections, both along the growth axis, and laterally to it, ranging in size up to several mm in diameter. Our initial supposition was that these holes are produced during the growth of the stalagmite under constant dripping conditions, but it was found that two kinds of holes exist within the stalagmites. "Axial holes" were formed syngenetically as is shown by the depression of growth layers into the holes and the persistence of the axial hole over many cm of the growth history. Some cut the active growth surface of the stalagmite. "Off-axis holes" are seen in many stalagmites (as well as stalactites); they cut discordantly through growth layers, and never terminate at a growth surface. They range in size from a few mm to several cm in maximum dimension, and may not be coaxially oriented. They are lined with micron-sized, randomly oriented calcite crystals and under which lies an organic-rich coating. We used CT (Computed Tomography) and MRI (Magnetic Resonance Imaging) scanning in order to locate holes, and to search for water trapped in these macro-inclusions. These methods, allow us to visualize the holes without destruction of the stalagmite, the holes and the surrounding calcite. To our best knowledge, the present paper is the first to combine CT and MRI methods in the study of fluid inclusions in rocks, or in visualizing the distribution of holes in speleothems. CT scans reveal abundant off-axis holes in some speleothems, while most display at least a few holes. MRI scans shows that, in uncut speleothems, these holes never contain water (although Genty et al. [2002] found water-filled holes in some stalagmites). Off-axis holes may be a result of bioerosion, possibly bacterial, followed by partial refilling of the hole with calcite which is prevented from growing epitaxially on the host calcite.
On the gravitational wave background from black hole binaries after the first LIGO detections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cholis, Ilias, E-mail: icholis1@jhu.edu
The detection of gravitational waves from the merger of binary black holes by the LIGO Collaboration has opened a new window to astrophysics. With the sensitivities of ground based detectors in the coming years, we will principally detect local binary black hole mergers. The integrated merger rate can instead be probed by the gravitational-wave background, the incoherent superposition of the released energy in gravitational waves during binary-black-hole coalescence. Through that, the properties of the binary black holes can be studied. In this work we show that by measuring the energy density Ω{sub GW} (in units of the cosmic critical density)more » of the gravitational-wave background, we can search for the rare ∼ 100 M {sub ⊙} massive black holes formed in the Universe. In addition, we can answer how often the least massive BHs of mass ≳ 3 M {sub ⊙} form. Finally, if there are multiple channels for the formation of binary black holes and if any of them predicts a narrow mass range for the black holes, then the total Ω{sub GW} spectrum may have features that with the future Einstein Telescope can be detected.« less
Black-hole evaporation and ultrashort distances
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobson, T.
1991-09-15
The role played by ultrahigh frequencies of ultrashort distances in the usual derivations of the Hawking effect is discussed and criticized. The question would a blackhole radiate if there were a Planck scale cutoff in the rest frame of the hole '' is posed. Guidance is sought from Unruh's fluid-flow analogue of black-hole radiation, by taking into account the atomic nature of the fluid. Two arguments for black-hole radiation are given which assume a Planck length cutoff. One involves the response of static accelerated detectors outside the horizon, and the other involves conservation of the expectation value of the stressmore » tensor. Neither argument is conclusive, but they do strongly suggest that, in spite of reasonable doubt about the usual derivations of black-hole radiation, a safe'' derivation which avoids our ignorance of ultrashort-distance physics can likely be formulated. Remaining open questions are discussed.« less
Understanding the "antikick" in the merger of binary black holes.
Rezzolla, Luciano; Macedo, Rodrigo P; Jaramillo, José Luis
2010-06-04
The generation of a large recoil velocity from the inspiral and merger of binary black holes represents one of the most exciting results of numerical-relativity calculations. While many aspects of this process have been investigated and explained, the "antikick," namely, the sudden deceleration after the merger, has not yet found a simple explanation. We show that the antikick can be understood in terms of the radiation from a deformed black hole where the anisotropic curvature distribution on the horizon correlates with the direction and intensity of the recoil. Our analysis is focused on Robinson-Trautman spacetimes and allows us to measure both the energies and momenta radiated in a gauge-invariant manner. At the same time, this simpler setup provides the qualitative and quantitative features of merging black holes, opening the way to a deeper understanding of the nonlinear dynamics of black-hole spacetimes.
NASA Astrophysics Data System (ADS)
Shaari, Norazean; Jumahat, Aidah
2018-06-01
The paper presents the effects of hybridization and silica nanoparticles on unhole and open hole compressive behaviours of woven Kevlar/glass fibre hybrid composite laminates. Residual compressive strength and stiffness were determined from an open hole compression (OHC) test conducted according to ASTM D6484-09, whereas the fractured surface behaviour was observed under scanning electron microscope (SEM). Silica nanoparticles were mixed into the epoxy resins using vacuum mechanical stirrer. Then, composite laminates were prepared using vacuum bagging method. Three different silica nanoparticles contents (5 wt%, 13 wt% and 25 wt%) were incorporated into the resin system with three different hybrid system (20:80, 50:50 and 80:20 of Kevlar fibres to glass fibres ratio). Results showed that the lowest compressive strength was observed in Kevlar fibre reinforced polymer. Therefore, hybridization of glass fibres with Kevlar fibres reduced the compressive strength of hybrid composites. However, the incorporation of silica nanoparticles into the epoxy resins improved the compressive properties of the hybrid composites. From the observation of the fractured surface, different fracture behaviours were observed in both Kevlar fibre and glass fibre composites. Fibre barrelling and crimping was observed in Kevlar fibres while glass fibres showed a fibre fracture with serrated and rough surfaces.
30 CFR 77.1501 - Auger mining; inspections.
Code of Federal Regulations, 2013 CFR
2013-07-01
... be recorded as provided in paragraph (a) of this section. (c) When an auger hole penetrates an... the collar of the hole by a qualified person using devices approved by the Secretary to determine if... combustion engines shall not be operated in the vicinity of any auger hole in which tests for methane or...
Chemical analyses and K-Ar ages of samples from 13 drill holes, Medicine Lake volcano, California
Donnelly-Nolan, Julie M.
2006-01-01
Chemical analyses and K-Ar ages are presented for rocks sampled from drill holes at Medicine Lake volcano, northern California. A location map and a cross-section are included, as are separate tables for drill hole information, major and trace element data, and for K-Ar dates.
On the pattern of black hole information release
NASA Astrophysics Data System (ADS)
Park, I. Y.; James, F.
2014-03-01
We propose a step towards a resolution to black hole information paradox by analyzing scattering amplitudes of a complex scalar field around a Schwarzschild black hole. The scattering cross-section reveals much information on the incoming state but exhibits flux loss at the same time. The flux loss should be temporary, and indicate mass growth of the black hole. The black hole should Hawking-radiate subsequently, thereby, compensating for the flux loss. By examining the purity issue, we comment on the possibility that information bleaching may be the key to the paradox.
The Magnetic Structure of H-Alpha Macrospicules in Solar Coronal Holes
NASA Technical Reports Server (NTRS)
Yamauchi, Y.; Moore, R. L.; Suess, S. T.; Wang, H.; Sakuri, T.
2003-01-01
Measurements by Ulysses in the high-speed polar solar wind have shown the wind to carry some fine-scale structures in which the magnetic field reverses direction by having a switchback fold in it. The lateral span of these magnetic switchbacks, translated to the Sun, is of the scale of the lanes and cells of the magnetic network in which the open magnetic flux of the polar coronal hole and polar solar wind are rooted. This suggests that the magnetic switchbacks might be formed from network-scale magnetic loops that erupt into the corona and then undergo reconnection with the open field. This possibility motivated us to undertake the study reported here of the structure of H-alpha macrospicules observed at the limb in polar coronal holes, to determine whether a significant fraction of these eruptions appear to be erupting loops. From a search of the polar-coronal holes in 6 days of image-processed full-disk H-alpha movies from Big Bear Solar Observatory, we found a total of 35 macrospicules. Nearly all of these (32) were of one or the other of two different forms: 15 were in the form of an erupting loop, and 17 were in the form of a single-column spiked jet. The erupting-loop macrospicules are appropriate for producing the magnetic switchbacks in the polar wind. The spiked-jet macrospicules show the appropriate structure and evolution to be driven by reconnection between network-scale closed field (a network bipole) and the open field rooted against the closed field. This evidence for reconnection in a large fraction of our macrospicules (1) suggests that many spicules may be generated by similar but smaller reconnection events, and (2) supports the view that coronal heating and solar wind acceleration in coronal holes and in quiet regions and corona are driven by explosive reconnection events in the magnetic network.
The Magnetic Structure of H-alpha Macrospicules in Solar Coronal Holes
NASA Technical Reports Server (NTRS)
Yamauchi, Y.; Moore, R. L.; Suess, S. T.; Wang, H.; Sakurai, T.
2004-01-01
Measurements by Ulysses in the high-speed polar solar wind have shown the wind to carry some fine-scale structures in which the magnetic field reverses direction by having a switchback fold in it. The lateral span of these magnetic switchbacks, translated back to the Sun, is of the scale of the lanes and cells of the magnetic network in which the open magnetic field of the polar coronal hole and polar solar wind are rooted. This suggests that the magnetic switchbacks might be formed from network-scale magnetic loops that erupt into the corona and then undergo reconnection with the open field. This possibility motivated us to undertake the study reported here of the structure of Ha macrospicules observed at the limb in polar coronal holes, to determine whether a significant fraction of these eruptions appear to be erupting loops. From a search of the polar coronal holes in 6 days of image- processed full-disk Ha movies from Big Bear Solar Observatory, we found a total of 35 macrospicules. Nearly all of these (32) were of one or the other of two different forms: 15 were in the form of an erupting loop, and 17 were in the form of a single column spiked jet. The erupting-loop macrospicules are appropriate for producing the magnetic switchbacks in the polar wind. The spiked-jet macrospicules show the appropriate structure and evolution to be driven by reconnection between network-scale closed field (a network bipole) and the open field rooted against the closed field. This evidence for reconnection in a large fraction of our macrospicules (1) suggests that many spicules may be generated by similar but smaller reconnection events and (2) supports the view that coronal heating and solar wind acceleration in coronal holes and in quiet regions are driven by explosive reconnection events in the magnetic network.
Alizadeh Ashrafi, Sina; Miller, Peter W; Wandro, Kevin M; Kim, Dave
2016-10-13
Hole quality plays a crucial role in the production of close-tolerance holes utilized in aircraft assembly. Through drilling experiments of carbon fiber-reinforced plastic composites (CFRP), this study investigates the impact of varying drilling feed and speed conditions on fiber pull-out geometries and resulting hole quality parameters. For this study, hole quality parameters include hole size variance, hole roundness, and surface roughness. Fiber pull-out geometries are quantified by using scanning electron microscope (SEM) images of the mechanically-sectioned CFRP-machined holes, to measure pull-out length and depth. Fiber pull-out geometries and the hole quality parameter results are dependent on the drilling feed and spindle speed condition, which determines the forces and undeformed chip thickness during the process. Fiber pull-out geometries influence surface roughness parameters from a surface profilometer, while their effect on other hole quality parameters obtained from a coordinate measuring machine is minimal.
Numerical Treatment of Thin Accretion Disk Dynamics around Rotating Black Holes
NASA Astrophysics Data System (ADS)
Yildiran, Deniz; Donmez, Orhan
In the present study, we perform the numerical simulation of a relativistic thin accretion disk around the nonrotating and rapidly rotating black holes using the general relativistic hydrodynamic code with Kerr in Kerr-Schild coordinate that describes the central rotating black hole. Since the high energy X-rays are produced close to the event horizon resulting the black hole-disk interaction, this interaction should be modeled in the relativistic region. We have set up two different initial conditions depending on the values of thermodynamical variables around the black hole. In the first setup, the computational domain is filled with constant parameters without injecting gas from the outer boundary. In the second, the computational domain is filled with the matter which is then injected from the outer boundary. The matter is assumed to be at rest far from the black hole. Both cases are modeled over a wide range of initial parameters such as the black hole angular momentum, adiabatic index, Mach number and asymptotic velocity of the fluid. It has been found that initial values and setups play an important role in determining the types of the shock cone and in designating the events on the accretion disk. The continuing injection from the outer boundary presents a tail shock to the steady state accretion disk. The opening angle of shock cone grows as long as the rotation parameter becomes larger. A more compressible fluid (bigger adiabatic index) also presents a bigger opening angle, a spherical shock around the rotating black hole, and less accumulated gas in the computational domain. While results from [J. A. Font, J. M. A. Ibanez and P. Papadopoulos, Mon. Not. R. Astron. Soc. 305 (1999) 920] indicate that the tail shock is warped around for the rotating hole, our study shows that it is the case not only for the warped tail shock but also for the spherical and elliptical shocks around the rotating black hole. The warping around the rotating black hole in our case is much smaller than the one by [J. A. Font, J. M. A. Ibanez and P. Papadopoulos, Mon. Not. R. Astron. Soc. 305 (1999) 920], due to the representation of results at the different coordinates. Contrary to the nonrotating black hole, the tail shock is slightly warped around the rotating black hole. The filled computational domain without any injection leads to an unstable accretion disk. However much of it reaches a steady state for a short period of time and presents quasi-periodic oscillation (QPO). Furthermore, the disk tends to loose mass during the whole dynamical evolution. The time-variability of these types of accretion flowing close to the black hole may clarify the light curves in Sgr A*.
NASA Technical Reports Server (NTRS)
Burd, Steven W.; Simon, Terrence W.; Thurman, Douglas (Technical Monitor)
2000-01-01
Experimental measurements are presented in this report to document the sensitivity of film cooling performance to the hole length and coolant delivery plenum geometry. Measurements with hot-wire anemometry detail velocity, local turbulence, and spectral distributions over the exit plane of film cooling holes and downstream of injection in the coolant-freestream interaction zone. Measurements of discharge coefficients and adiabatic effectiveness are also provided. Coolant is supplied to the film cooling holes by means of a large, open plenum and through plenums which force the coolant to approach the holes either co-current or counter-current to the freestream. A single row of film cooling holes with 35 degree-inclined streamwise at two coolant-to-freestream velocity ratios, 0.5 and 1.0, is investigated. The coolant-to-freestream density ratio is maintained in the range 0.96 to 1.0. Measurements were taken under high-freestream (FSTI = 12%) and low-freestream turbulence intensity (FSTI = 0.5%) conditions. The results document the effects of the hole L/D, coolant supply plenum geometry, velocity ratio, and FSTI. In general, hole L/D and the supply plenum geometry play influential roles in the film cooling performance. Hole L/D effects, however, are more pronounced. Film cooling performance is also dependent upon the velocity ratio and FSTI.
NASA Technical Reports Server (NTRS)
Hippensteele, S. A.; Cochran, R. P.
1980-01-01
The effects of two design parameters, electrode diameter and hole angle, and two machine parameters, electrode current and current-on time, on air flow rates through small-diameter (0.257 to 0.462 mm) electric-discharge-machined holes were measured. The holes were machined individually in rows of 14 each through 1.6 mm thick IN-100 strips. The data showed linear increase in air flow rate with increases in electrode cross sectional area and current-on time and little change with changes in hole angle and electrode current. The average flow-rate deviation (from the mean flow rate for a given row) decreased linearly with electrode diameter and increased with hole angle. Burn time and finished hole diameter were also measured.
CME Interaction with Coronal Holes and Their Interplanetary Consequences
NASA Technical Reports Server (NTRS)
Gopalswamy, N.; Makela, P.; Xie, H.; Akiyama, S.; Yashiro, S.
2008-01-01
A significant number of interplanetary (IP) shocks (-17%) during cycle 23 were not followed by drivers. The number of such "driverless" shocks steadily increased with the solar cycle with 15%, 33%, and 52% occurring in the rise, maximum, and declining phase of the solar cycle. The solar sources of 15% of the driverless shocks were very close the central meridian of the Sun (within approx.15deg), which is quite unexpected. More interestingly, all the driverless shocks with their solar sources near the solar disk center occurred during the declining phase of solar cycle 23. When we investigated the coronal environment of the source regions of driverless shocks, we found that in each case there was at least one coronal hole nearby suggesting that the coronal holes might have deflected the associated coronal mass ejections (CMEs) away from the Sun-Earth line. The presence of abundant low-latitude coronal holes during the declining phase further explains why CMEs originating close to the disk center mimic the limb CMEs, which normally lead to driverless shocks due to purely geometrical reasons. We also examined the solar source regions of shocks with drivers. For these, the coronal holes were located such that they either had no influence on the CME trajectories. or they deflected the CMEs towards the Sun-Earth line. We also obtained the open magnetic field distribution on the Sun by performing a potential field source surface extrapolation to the corona. It was found that the CMEs generally move away from the open magnetic field regions. The CME-coronal hole interaction must be widespread in the declining phase, and may have a significant impact on the geoeffectiveness of CMEs.
Evaluation of Sedative and Hypnotic Activity of Ethanolic Extract of Scoparia dulcis Linn.
Moniruzzaman, Md.; Atikur Rahman, Md.; Ferdous, Afia
2015-01-01
Scoparia dulcis Linn. (SD) is a perennial herb that has been well studied for its antioxidant, anti-inflammatory, antidiabetic, and hepatoprotective effects. However, scientific information on SD regarding the neuropharmacological effect is limited. This study evaluated the sedative and hypnotic effect of the ethanolic extract of whole plants of Scoparia dulcis (EESD). For this purpose, the whole plants of S. dulcis were extracted with ethanol following maceration process and tested for the presence of phytochemical constituents. The sedative and hypnotic activity were then investigated using hole cross, open field, hole-board, rota-rod, and thiopental sodium-induced sleeping time determination tests in mice at the doses of 50, 100, and 200 mg/kg of EESD. Diazepam at the dose of 1 mg/kg was used as a reference drug in all the experiments. We found that EESD produced a significant dose-dependent inhibition of locomotor activity of mice both in hole cross and open field tests (P < 0.05). Besides, it also decreased rota-rod performances and the number of head dips in hole-board test. Furthermore, EESD significantly decreased the induction time to sleep and prolonged the duration of sleeping, induced by thiopental sodium. Taken together, our study suggests that EESD may possess sedative principles with potent hypnotic properties. PMID:25861372
Evaluation of Sedative and Hypnotic Activity of Ethanolic Extract of Scoparia dulcis Linn.
Moniruzzaman, Md; Atikur Rahman, Md; Ferdous, Afia
2015-01-01
Scoparia dulcis Linn. (SD) is a perennial herb that has been well studied for its antioxidant, anti-inflammatory, antidiabetic, and hepatoprotective effects. However, scientific information on SD regarding the neuropharmacological effect is limited. This study evaluated the sedative and hypnotic effect of the ethanolic extract of whole plants of Scoparia dulcis (EESD). For this purpose, the whole plants of S. dulcis were extracted with ethanol following maceration process and tested for the presence of phytochemical constituents. The sedative and hypnotic activity were then investigated using hole cross, open field, hole-board, rota-rod, and thiopental sodium-induced sleeping time determination tests in mice at the doses of 50, 100, and 200 mg/kg of EESD. Diazepam at the dose of 1 mg/kg was used as a reference drug in all the experiments. We found that EESD produced a significant dose-dependent inhibition of locomotor activity of mice both in hole cross and open field tests (P < 0.05). Besides, it also decreased rota-rod performances and the number of head dips in hole-board test. Furthermore, EESD significantly decreased the induction time to sleep and prolonged the duration of sleeping, induced by thiopental sodium. Taken together, our study suggests that EESD may possess sedative principles with potent hypnotic properties.
Pathway to a Phenocopy: Heat Stress Effects in Early Embryogenesis
Crews, Sarah M.; McCleery, W. Tyler; Hutson, M. Shane
2015-01-01
Background Heat shocks applied at the onset of gastrulation in early Drosophila embryos frequently lead to phenocopies of U-shaped mutants – having characteristic failures in the late morphogenetic processes of germband retraction and dorsal closure. The pathway from non-specific heat stress to phenocopied abnormalities is unknown. Results Drosophila embryos subjected to 30-min, 38-°C heat shocks at gastrulation appear to recover and restart morphogenesis. Post-heat-shock development appears normal, albeit slower, until a large fraction of embryos develop amnioserosa holes (diameters > 100 μm). These holes are positively correlated with terminal U-shaped phenocopies. They initiate between amnioserosa cells and open over tens of minutes by evading normal wound healing responses. They are not caused by tissue-wide increases in mechanical stress or decreases in cell-cell adhesion, but instead appear to initiate from isolated apoptosis of amnioserosa cells. Conclusions The pathway from heat shock to U-shaped phenocopies involves the opening of one or more large holes in the amnioserosa that compromise its structural integrity and lead to failures in morphogenetic processes that rely on amnioserosa-generated tensile forces. The proposed mechanism by which heat shock leads to hole initiation and expansion is heterochonicity – i.e., disruption of morphogenetic coordination between embryonic and extra-embryonic cell types. PMID:26498920
NASA Astrophysics Data System (ADS)
Li, Jiayu; Lin, Li; Huang, Guang-Yao; Kang, N.; Zhang, Jincan; Peng, Hailin; Liu, Zhongfan; Xu, H. Q.
2018-02-01
Graphene/hexagonal boron nitride (G/h-BN) heterostructures offer an excellent platform for developing nanoelectronic devices and for exploring correlated states in graphene under modulation by a periodic superlattice potential. Here, we report on transport measurements of nearly 0 ° -twisted G/h-BN heterostructures. The heterostructures investigated are prepared by dry transfer and thermally annealing processes and are in the low mobility regime (approximately 3000 cm2 V-1 s-1 at 1.9 K). The replica Dirac spectra and Hofstadter butterfly spectra are observed on the hole transport side, but not on the electron transport side, of the heterostructures. We associate the observed electron-hole asymmetry with the presence of a large difference between the opened gaps in the conduction and valence bands and a strong enhancement in the interband contribution to the conductivity on the electron transport side in the low-mobility G/h-BN heterostructures. We also show that the gaps opened at the central Dirac point and the hole-branch secondary Dirac point are large, suggesting the presence of strong graphene-substrate interaction and electron-electron interaction in our G/h-BN heterostructures. Our results provide additional helpful insight into the transport mechanism in G/h-BN heterostructures.
Coronal Holes and Magnetic Flux Ropes Interweaving Solar Cycles
NASA Astrophysics Data System (ADS)
Lowder, Chris; Yeates, Anthony; Leamon, Robert; Qiu, Jiong
2016-10-01
Coronal holes, dark patches observed in solar observations in extreme ultraviolet and x-ray wavelengths, provide an excellent proxy for regions of open magnetic field rooted near the photosphere. Through a multi-instrument approach, including SDO data, we are able to stitch together high resolution maps of coronal hole boundaries spanning the past two solar activity cycles. These observational results are used in conjunction with models of open magnetic field to probe physical solar parameters. Magnetic flux ropes are commonly defined as bundles of solar magnetic field lines, twisting around a common axis. Photospheric surface flows and magnetic reconnection work in conjunction to form these ropes, storing magnetic stresses until eruption. With an automated methodology to identify flux ropes within observationally driven magnetofrictional simulations, we can study their properties in detail. Of particular interest is a solar-cycle length statistical description of eruption rates, spatial distribution, magnetic orientation, flux, and helicity. Coronal hole observations can provide useful data about the distribution of the fast solar wind, with magnetic flux ropes yielding clues as to ejected magnetic field and the resulting space weather geo-effectiveness. With both of these cycle-spanning datasets, we can begin to form a more detailed picture of the evolution and consequences of both sets of solar magnetic features.
Harbison, Justin E; Metzger, Marco E; Allen, Vaikko; Hu, Renjie
2009-09-01
Belowground proprietary stormwater treatment devices can produce mosquitoes, including vectors of West Nile virus. Elimination of vertical entry points such as pick holes in manhole covers may reduce the number of mosquitoes entering and reproducing in these structures. Plastic manhole dish inserts were evaluated as structural barriers against mosquito entry through pick holes in a simulated stormwater treatment device. Inserts were 100% effective at preventing mosquito entry through covers when no other openings existed. In devices configured with an open lateral conveyance pipe, the addition of an insert under the cover reduced mosquito oviposition significantly. Subsequent trials to further elucidate mosquito entry through manhole covers found a significant positive correlation between increasing number of pick holes and mosquito oviposition. Results of the study suggest the potential for manhole dish inserts to decrease the number of mosquitoes entering belowground structures. The different available stormwater treatment systems and site-specific installations may, however, provide a much greater variety of possible alternate entry points for mosquitoes than was addressed in the current study. Further work is needed in field installations to quantify the significance of pick holes to mosquito entry and determine under what conditions, if any, manhole dish inserts would be most effective and appropriate.
A facile and efficient approach for pore-opening detection of anodic aluminum oxide membranes
NASA Astrophysics Data System (ADS)
Cui, Jiewu; Wu, Yucheng; Wang, Yan; Zheng, Hongmei; Xu, Guangqing; Zhang, Xinyi
2012-05-01
The well aligned porous anodic aluminum oxide (AAO) membrane is fabricated by a two-step anodization method. The oxide barrier layer of AAO membrane must be removed to get through-hole membrane for synthesizing nanowires and nanotubes of metals, semiconductors and conducting polymers. Removal of the barrier layer of oxide and pore-extending is of significant importance for the preparation of AAO membrane with through-hole pore morphology and desired pore diameter. The conventional method for pore opening is that AAO membrane after removing of aluminum substrate is immersed in chemical etching solution, which is completely empirical and results in catastrophic damage for AAO membrane frequently. A very simple and efficient approach based on capillary action for detecting pore opening of AAO membrane is introduced in this paper, this method can achieve the detection for pore opening visually and control the pore diameter precisely to get desired morphology and the pore diameter of AAO membrane. Two kinds of AAO membranes with different pore shape were obtained by different pore opening methods. In addition, one-dimensional gradient gold nanowires are also fabricated by electrodeposition based on AAO membranes.
A novel technique for micro-hole forming on skull with the assistance of ultrasonic vibration.
Li, Zhe; Yang, Daoguo; Hao, Weidong; Wu, Tiecheng; Wu, Song; Li, Xiaoping
2016-04-01
Micro-hole opening on skull is technically challenging and is hard to realize by micro-drilling. Low-stiffness of the drill bit is a serious drawback in micro-drilling. To deal with this problem, a novel ultrasonic vibration assisted micro-hole forming technique has been developed. Tip geometry and vibration amplitude are two key factors affecting the performance of this hole forming technique. To investigate their effects, experiment was carried out with 300μm diameter tools of three different tip geometries at three different vibration amplitudes. Hole forming performance was evaluated by the required thrust force, dimensional accuracy, exit burr and micro-structure of bone tissue around the generated hole. Based on the findings from current study, the 60° conically tipped tool helps generate a micro-hole of better quality at a smaller thrust force, and it is more suitable for hole forming than the 120° conically tipped tool and the blunt tipped tool. As for the vibration amplitude, when a larger amplitude is used, a micro-hole of better quality and higher dimensional accuracy can be formed at a smaller thrust force. Findings from this study would lay a technical foundation for accurately generating a high-quality micro-hole on skull, which enables minimally invasive insertion of a microelectrode into brain for neural activity measuring. Copyright © 2015 Elsevier Ltd. All rights reserved.
Lai, Tso-Ting; Chen, San-Ni; Yang, Chung-May
2016-04-01
To report the clinical findings and surgical outcomes of lamellar macular holes (LMH) with or without lamellar hole-associated epiretinal proliferation (LHEP), and those of full-thickness macular holes (FTMH) presenting with LHEP. From 2009 to 2013, consecutive cases of surgically treated LMH, and all FTMH cases with LHEP were reviewed, given a follow-up time over 1 year. In the LMH group (43 cases), those with LHEP (19 cases) had significantly thinner bases and larger openings than those without (24 cases). The rate of disrupted IS/OS line was higher in the LHEP subgroup preoperatively (68.4 % vs 37.5 %), but similar between subgroups postoperatively (36.8 % and 33.3 %). The preoperative and postoperative visual acuity showed no significant difference between two subgroups. In the FTMH group (13 cases), the average hole size was 219.2 ± 92.1 μm. Permanent or transient spontaneous hole closure was noted in 69.2 % of cases. An intact IS-OS line was found in only 23 % of cases at the final follow-up. In the LMH group, LHEP was associated with a more severe defect but didn't affect surgical outcomes. In the FTMH group, spontaneous hole closure was frequently noted. Despite small holes, disruption of IS-OS line was common after hole closure.
Tunable photoelectric response in NiO-based heterostructures by various orientations
NASA Astrophysics Data System (ADS)
Luo, Yidong; Qiao, Lina; Zhang, Qinghua; Xu, Haomin; Shen, Yang; Lin, Yuanhua; Nan, Cewen
2018-02-01
We engineered various orientations of NiO layers for NiO-based heterostructures (NiO/Au/STO) to investigate their effects on the generation of hot electrons and holes. Our calculation and experimental results suggested that bandgap engineering and the orientation of the hole transport layer (NiO) were crucial elements for the optimization of photoelectric responses. The (100)-orientated NiO/Au/STO achieved the highest photo-current density (˜30 μA/cm2) compared with (111) and (110)-orientated NiO films, which was attributed to the (100) films's lowest effective mass of photogenerated holes (˜1.82 m0) and the highest efficiency of separating and transferring electron-holes of the (100)-orientated sample. Our results opened a direction to design a high efficiency photoelectric solar cell.
Black Hole Mergers, Gravitational Waves, and Multi-Messenger Astronomy
NASA Technical Reports Server (NTRS)
Centrella, Joan M.
2010-01-01
The final merger of two black holes is expected to be the strongest source of gravitational waves for both ground-based detectors such as LIGO and VIRGO, as well as the space-based LISA. Since the merger takes place in the regime of strong dynamical gravity, computing the resulting gravitational waveforms requires solving the full Einstein equations of general relativity on a computer. Although numerical codes designed to simulate black hole mergers were plagued for many years by a host of instabilities, recent breakthroughs have conquered these problems and opened up this field dramatically. This talk will focus on the resulting gold rush of new results that is revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wave detection, astrophysics, and testing general relativity.
Electron-positron outflow from black holes.
van Putten, M H
2000-04-24
Cosmological gamma-ray bursts (GRBs) appear as the brightest transient phenomena in the Universe. The nature of their central engine is a missing link in the theory of fireballs to stellar mass progenitors, and may be associated with low mass black holes. In contact with an external magnetic field B, black hole spin produces a gravitational potential on the wave function of charged particles. We show that a rapidly rotating black hole of mass M produces outflow from initially electrostatic equilibrium with normalized isotropic emission approximately 10(48)(B/B(c))(2)(M/7M)(2)sin (2) theta erg/s, where B(c) = 4.4x10(13) G. The half-opening angle satisfies theta >or = square root[B(c)/3B]. The outflow proposed as input to GRB fireball models.
NASA Astrophysics Data System (ADS)
Yoon, Min-Seok; Jun, Naram; Lee, Sang Bae; Han, Young-Geun
2014-05-01
A reflective in-line modal interferometer based on a polarization-maintaining photonic crystal fiber (PM-PCF) with two exterior air holes is proposed for simultaneous measurement of chemical vapor and temperature. After fusion-splicing the PM-PCF with a standard single-mode fiber, we collapse all of air holes in the PM-PCF resulting in two types of interference patterns between the core and the cladding modes in the PM-PCF depending on two polarization states. Since two large air holes at the facet of the proposed modal interferometer are left open, a chemical vapor can be infiltrated into the voids. Different sensitivities corresponding to input polarization states are utilized for discrimination between chemical vapor and temperature sensitivities.
Detailed Sections from Auger Holes in the Roanoke Rapids 1:100,000 Map Sheet, North Carolina
Weems, Robert E.; Lewis, William C.
2007-01-01
Introduction The Roanoke Rapids 1:100,000 map sheet straddles the Coastal Plain / Piedmont boundary in northernmost North Carolina (Figure 1). Sediments of the Coastal Plain underlie the eastern three-fourths of this area, and patchy outliers of Coastal Plain units cap many of the higher hills in the western one-fourth of the area. Sediments dip gently to the east and reach a maximum known thickness in the extreme southeast part of the map area (Figure 2). The gentle eastward dip is disrupted in several areas due to faulting. The U.S. Geological Survey recovered one core and augered 97 research test holes within the Roanoke Rapids 1:100,000 map sheet to supplement sparse outcrop data available from the Coastal Plain portion of the map area. The recovered sediments were studied and data from them recorded to determine the lithologic characteristics, spatial distribution, and temporal framework of the represented Coastal Plain stratigraphic units. These test holes were critical for accurately determining the distribution of major geologic units and the position of unit boundaries that will be shown on the forthcoming Roanoke Rapids geologic map, but much of the detailed subsurface data cannot be shown readily through this map product. Therefore, detailed descriptions have been collected in this open-file report for geologists, hydrologists, engineers, and community planners to provide a detailed shallow-subsurface stratigraphic framework for much of the Roanoke Rapids map region.
A Novel Approach to Turbulence Stimulation for Ship-Model Testing
2010-05-11
surface. These holes were either part of the manufacturing of the plate or unused holes drilled for probes. To fill these holes, an epoxy -based...mixture was used, which was applied over a hole and the surrounding surfaces. Once the epoxy had cured, the model was wet sanded with several different...Suboff model is a generic submarine form developed by using two separate parabolic formulae for the bow and stern sections (Stettler, 2009). The 2-D
Forest Management Intensity Affects Aquatic Communities in Artificial Tree Holes.
Petermann, Jana S; Rohland, Anja; Sichardt, Nora; Lade, Peggy; Guidetti, Brenda; Weisser, Wolfgang W; Gossner, Martin M
2016-01-01
Forest management could potentially affect organisms in all forest habitats. However, aquatic communities in water-filled tree-holes may be especially sensitive because of small population sizes, the risk of drought and potential dispersal limitation. We set up artificial tree holes in forest stands subject to different management intensities in two regions in Germany and assessed the influence of local environmental properties (tree-hole opening type, tree diameter, water volume and water temperature) as well as regional drivers (forest management intensity, tree-hole density) on tree-hole insect communities (not considering other organisms such as nematodes or rotifers), detritus content, oxygen and nutrient concentrations. In addition, we compared data from artificial tree holes with data from natural tree holes in the same area to evaluate the methodological approach of using tree-hole analogues. We found that forest management had strong effects on communities in artificial tree holes in both regions and across the season. Abundance and species richness declined, community composition shifted and detritus content declined with increasing forest management intensity. Environmental variables, such as tree-hole density and tree diameter partly explained these changes. However, dispersal limitation, indicated by effects of tree-hole density, generally showed rather weak impacts on communities. Artificial tree holes had higher water temperatures (on average 2°C higher) and oxygen concentrations (on average 25% higher) than natural tree holes. The abundance of organisms was higher but species richness was lower in artificial tree holes. Community composition differed between artificial and natural tree holes. Negative management effects were detectable in both tree-hole systems, despite their abiotic and biotic differences. Our results indicate that forest management has substantial and pervasive effects on tree-hole communities and may alter their structure and functioning. We furthermore conclude that artificial tree-hole analogues represent a useful experimental alternative to test effects of changes in forest management on natural communities.
Forest Management Intensity Affects Aquatic Communities in Artificial Tree Holes
Petermann, Jana S.; Rohland, Anja; Sichardt, Nora; Lade, Peggy; Guidetti, Brenda; Weisser, Wolfgang W.; Gossner, Martin M.
2016-01-01
Forest management could potentially affect organisms in all forest habitats. However, aquatic communities in water-filled tree-holes may be especially sensitive because of small population sizes, the risk of drought and potential dispersal limitation. We set up artificial tree holes in forest stands subject to different management intensities in two regions in Germany and assessed the influence of local environmental properties (tree-hole opening type, tree diameter, water volume and water temperature) as well as regional drivers (forest management intensity, tree-hole density) on tree-hole insect communities (not considering other organisms such as nematodes or rotifers), detritus content, oxygen and nutrient concentrations. In addition, we compared data from artificial tree holes with data from natural tree holes in the same area to evaluate the methodological approach of using tree-hole analogues. We found that forest management had strong effects on communities in artificial tree holes in both regions and across the season. Abundance and species richness declined, community composition shifted and detritus content declined with increasing forest management intensity. Environmental variables, such as tree-hole density and tree diameter partly explained these changes. However, dispersal limitation, indicated by effects of tree-hole density, generally showed rather weak impacts on communities. Artificial tree holes had higher water temperatures (on average 2°C higher) and oxygen concentrations (on average 25% higher) than natural tree holes. The abundance of organisms was higher but species richness was lower in artificial tree holes. Community composition differed between artificial and natural tree holes. Negative management effects were detectable in both tree-hole systems, despite their abiotic and biotic differences. Our results indicate that forest management has substantial and pervasive effects on tree-hole communities and may alter their structure and functioning. We furthermore conclude that artificial tree-hole analogues represent a useful experimental alternative to test effects of changes in forest management on natural communities. PMID:27187741
49 CFR 192.187 - Vaults: Sealing, venting, and ventilation.
Code of Federal Regulations, 2010 CFR
2010-10-01
... vault or pit is sealed, each opening must have a tight fitting cover without open holes through which an... Components § 192.187 Vaults: Sealing, venting, and ventilation. Each underground vault or closed top pit....7 cubic meters): (1) The vault or pit must be ventilated with two ducts, each having at least the...
30 CFR 881.10 - Obligations of States or local authorities.
Code of Federal Regulations, 2010 CFR
2010-07-01
... coal measures as may be required to assure the stability and continued existence of the project and to... open shafts, slopes, air holes and other mine openings to underground workings where public safety... State shall have or acquire such right, title or interest in the lands as will assure the stability and...
40 CFR 63.1043 - Standards-Separator floating roof.
Code of Federal Regulations, 2010 CFR
2010-07-01
... secondary seal shall be mounted above the primary seal and cover the annular space between the floating roof... visible cracks, holes, gaps, or other open spaces in the closure device or between the perimeter of the... membrane fabric cover that covers at least 90 percent of the area of the opening or a flexible fabric...
40 CFR 63.1043 - Standards-Separator floating roof.
Code of Federal Regulations, 2011 CFR
2011-07-01
... secondary seal shall be mounted above the primary seal and cover the annular space between the floating roof... visible cracks, holes, gaps, or other open spaces in the closure device or between the perimeter of the... membrane fabric cover that covers at least 90 percent of the area of the opening or a flexible fabric...
29 CFR 1910.23 - Guarding floor and wall openings and holes.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Walking-Working Surfaces § 1910.23 Guarding... swinging gate or so offset that a person cannot walk directly into the opening. (3) Every hatchway and... accidentally walk shall be guarded by either: (i) A standard railing with standard toeboard on all exposed...
Production of black holes and their angular momentum distribution in models with split fermions
NASA Astrophysics Data System (ADS)
Dai, De-Chang; Starkman, Glenn D.; Stojkovic, Dejan
2006-05-01
In models with TeV-scale gravity it is expected that mini black holes will be produced in near-future accelerators. On the other hand, TeV-scale gravity is plagued with many problems like fast proton decay, unacceptably large n-n¯ oscillations, flavor changing neutral currents, large mixing between leptons, etc. Most of these problems can be solved if different fermions are localized at different points in the extra dimensions. We study the cross section for the production of black holes and their angular momentum distribution in these models with “split” fermions. We find that, for a fixed value of the fundamental mass scale, the total production cross section is reduced compared with models where all the fermions are localized at the same point in the extra dimensions. Fermion splitting also implies that the bulk component of the black hole angular momentum must be taken into account in studies of the black hole decay via Hawking radiation.
Hot/Wet Open Hole Compression Strength of Carbon/Epoxy Laminates for Launch Vehicle Applications
NASA Technical Reports Server (NTRS)
Nettles, Alan T.
2009-01-01
This Technical Memorandum examines the effects of heat and absorbed moisture on the open hole compression strength of carbon/epoxy laminates with the material and layup intended for the Ares I composite interstage. The knockdown due to temperature, amount of moisture absorbed, and the interaction between these two are examined. Results show that temperature is much more critical than the amount of moisture absorbed. The environmental knockdown factor was found to be low for this material and layup and thus obtaining a statistically significant number for this value needs to be weighed against a program s cost and schedule since basis values, damage tolerance, and safety factors all contribute much more to the overall knockdown factor.
2017-12-29
Oddly enough, an elongated coronal hole (the darker area near the center) seems to shape itself into a single, recognizable question mark over the period of one day (Dec. 21-22, 2017). Coronal holes are areas of open magnetic field that appear darker in extreme ultraviolet light, as is seen here. These holes are the source of streaming plasma that we call solar wind. While this exercise is akin to seeing shapes in clouds, it is fun to consider what the sun might be asking? Perhaps what the new year will bring? Guess what I am going to do next? Movies are available at https://photojournal.jpl.nasa.gov/catalog/PIA22197
Classification of Near-Horizon Geometries of Extremal Black Holes.
Kunduri, Hari K; Lucietti, James
2013-01-01
Any spacetime containing a degenerate Killing horizon, such as an extremal black hole, possesses a well-defined notion of a near-horizon geometry. We review such near-horizon geometry solutions in a variety of dimensions and theories in a unified manner. We discuss various general results including horizon topology and near-horizon symmetry enhancement. We also discuss the status of the classification of near-horizon geometries in theories ranging from vacuum gravity to Einstein-Maxwell theory and supergravity theories. Finally, we discuss applications to the classification of extremal black holes and various related topics. Several new results are presented and open problems are highlighted throughout.
A&M. TAN633. Hot cell floor plans, elevations, sections. Hole schedule ...
A&M. TAN-633. Hot cell floor plans, elevations, sections. Hole schedule (penetrations through concrete). Swing-door details. Ralph M. Parsons 1229-13-ANP/GE-3-633-A-3. Date: December 1956. Approved by INEEL Classification Office for public release. INNEL index code no. 034-0633-00-693-107317 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
NASA Astrophysics Data System (ADS)
Prevedel, P.,; Wohlgemuth, L.; Legarth, B.; Henninges, J.; Schütt, H.; Schmidt-Hattenberger, C.; Norden, B.; Förster, A.; Hurter, S.
2009-04-01
This paper reports the CO2SINK drilling and permanent monitoring completions, as well as the well testing techniques applied in Europe's first scientific carbon dioxide onshore storage test in a saline aquifer near the town of Ketzin, 40 km east of Berlin/Germany. Three boreholes, one injection and two observation wells have been drilled in 2007 to a total depth of about 800 m. The wells were completed as "smart" wells containing a variety of permanently installed down-hole sensors, which have successfully proven their functionality during over their first injection year and are the key instruments for the continuous monitoring of the CO2 inside the reservoir during the storage phase. Constructing three wells in close proximity of 50 to 100m distance to each other with a dense sensor and monitoring cable population requires detailed planning and employment of high-end project management tools. All wells were cased with stainless final casings equipped with pre-perforated sand filters in the pay-zone and wired on the outside with two fibre-optical, one multi-conductor copper, and a PU-heating cable to the surface. The reservoir casing section is externally coated with a fibre-glass-resin wrap for electrical insulation of the 15 geo-electrical toroid antennas in the open hole section. A staged cementation program was selected in combination with the application of a newly developed swellable rubber packer technology and specialized cementation down-hole tools. This technology was given preference over perforation work inside the final casing at the reservoir face, which would have created unmanageable risks of potential damage of the outside casing cables. Prior to the start of the injection phase, an extensive production and injection well test program as well as well-to-well interference tests were performed in order to determine the optimum CO2 injection regime.
2017-12-08
This Solar Dynamics Observatory image of the Sun taken on February 1, 2013 in extreme ultraviolet light captures a heart-shaped dark coronal hole. Coronal holes are areas of the Sun's surface that are the source of open magnetic field lines that head way out into space. They are also the source regions of the fast solar wind, which is characterized by a relatively steady speed of approximately 800 km/s (about 1.8 million mph).
Alizadeh Ashrafi, Sina; Miller, Peter W.; Wandro, Kevin M.; Kim, Dave
2016-01-01
Hole quality plays a crucial role in the production of close-tolerance holes utilized in aircraft assembly. Through drilling experiments of carbon fiber-reinforced plastic composites (CFRP), this study investigates the impact of varying drilling feed and speed conditions on fiber pull-out geometries and resulting hole quality parameters. For this study, hole quality parameters include hole size variance, hole roundness, and surface roughness. Fiber pull-out geometries are quantified by using scanning electron microscope (SEM) images of the mechanically-sectioned CFRP-machined holes, to measure pull-out length and depth. Fiber pull-out geometries and the hole quality parameter results are dependent on the drilling feed and spindle speed condition, which determines the forces and undeformed chip thickness during the process. Fiber pull-out geometries influence surface roughness parameters from a surface profilometer, while their effect on other hole quality parameters obtained from a coordinate measuring machine is minimal. PMID:28773950
Gravitational-wave localization alone can probe origin of stellar-mass black hole mergers.
Bartos, I; Haiman, Z; Marka, Z; Metzger, B D; Stone, N C; Marka, S
2017-10-10
The recent discovery of gravitational waves from stellar-mass binary black hole mergers by the Laser Interferometer Gravitational-wave Observatory opened the door to alternative probes of stellar and galactic evolution, cosmology and fundamental physics. Probing the origin of binary black hole mergers will be difficult due to the expected lack of electromagnetic emission and limited localization accuracy. Associations with rare host galaxy types-such as active galactic nuclei-can nevertheless be identified statistically through spatial correlation. Here we establish the feasibility of statistically proving the connection between binary black hole mergers and active galactic nuclei as hosts, even if only a sub-population of mergers originate from active galactic nuclei. Our results are the demonstration that the limited localization of gravitational waves, previously written off as not useful to distinguish progenitor channels, can in fact contribute key information, broadening the range of astrophysical questions probed by binary black hole observations.Binary black hole mergers have recently been observed through the detection of gravitational wave signatures. The authors demonstrate that their association with active galactic nuclei can be made through a statistical spatial correlation.
Ballistic Impact of Braided Composites with a Soft Projectile
NASA Technical Reports Server (NTRS)
Roberts, Gary D.; Pereira, J. Michael; Revilock, Duane M., Jr.; Binienda, Wieslaw K.; Xie, Ming; Braley, Mike
2002-01-01
Impact tests using a soft gelatin projectile were performed to identify failure modes that occur at high strain energy density during impact loading. Failure modes were identified for aluminum plates and for composites plates and half-rings made from triaxial carbon fiber braid having a 0/+/- 60deg architecture. For aluminum plates, a large hole formed as a result of crack propagation from the initiation site at the center of the plate. For composite plates, fiber tensile failure occurred in the back ply at the center of the plate. Cracks then propagated from this site along the +/-60deg fiber directions until triangular flaps opened to form a hole. For composite half-rings fabricated with 0deg fibers aligned circumferentially, fiber tensile failure also occurred in the back ply. Cracks first propagated from this site perpendicular the 0deg fibers. The cracks then turned to follow the +/-60deg fibers and 0deg fibers until rectangular flaps opened to form a hole. Damage in the composites was localized near the impact site, while cracks in the aluminum extended to the boundaries.
The Effects of Differential Rotation on the Magnetic Structure of the Solar Corona: MHD Simulations
NASA Technical Reports Server (NTRS)
Lionello, Roberto; Riley, Pete; Linker, Jon A.; Mikic, Zoran
2004-01-01
Coronal holes are magnetically open regions from which the solar wind streams. Magnetic reconnection has been invoked to reconcile the apparently rigid rotation of coronal holes with the differential rotation of magnetic flux in the photosphere. This mechanism might also be relevant to the formation of the slow solar wind, the properties of which seem to indicate an origin from the opening of closed magnetic field lines. We have developed a global MHD model to study the effect of differential rotation on the coronal magnetic field. Starting from a magnetic flux distribution similar to that of Wang et al., which consists of a bipolar magnetic region added to a background dipole field, we applied differential rotation over a period of 5 solar rotations. The evolution of the magnetic field and of the boundaries of coronal holes are in substantial agreement with the findings of Wang et al.. We identified examples of interchange reconnection and other changes of topology of the magnetic field. Possible consequences for the origin of the slow solar wind are also discussed.
Effects of excimer laser illumination on microdrilling into an oblique polymer surface
NASA Astrophysics Data System (ADS)
Wu, Chih-Yang; Shu, Chun-Wei; Yeh, Zhi-Chang
2006-08-01
In this work, we present the experimental results of micromachining into polymethy-methacrylate exposed to oblique KrF excimer laser beams. The results of low-aspect-ratio ablations show that the ablation rate decreases monotonously with the increase of incident angle for various fluences. The ablation rate of high-aspect-ratio drilling with opening center on the focal plane is almost independent of incident angles and is less than that of low-aspect-ratio ablation. The results of high-aspect-ratio ablations show that the openings of the holes at a distance from the focal plane are enlarged and their edges are blurred. Besides, the depth of a hole in the samples oblique to the laser beam at a distance from the focal plane decreases with the increase of the distance from the focal plane. The number of deep holes generated by oblique laser beams through a matrix of apertures decreases with the increase of incident angle. Those phenomena reveal the influence of the local light intensity on microdrilling into an oblique surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warpinski, N.R.
At present, the only viable technique for accurately measuring stresses at depth in a borehole is hydraulic fracturing. These have been termed microfracs because very small amounts of fluid are injected at low flow rates into the formation. When the well is shut in, the pressure immediately drops from the injection pressure to the instantaneous shut-in pressure (ISIP) which is approximately equal to sigma/sub min/. In general, the ISIP can be measured quite accurately in open holes. For most oil and gas applications, however, it is impossible or impractical to conduct these tests in an open-hole environment. The effects ofmore » the casing, cement annulus, explosive perforation damage, and random performation orientation are impossible to predict theoretically, and laboratory tests are usually conducted under nonrealistic conditions. A set of in situ experiments was conducted to evaluate the accuracy and reliability of this technique, to aid in the selection of an optimum perforation schedule, and to develop a diagnostic capability from the pressure response.« less
Spray flow structure from twin-hole diesel injector nozzles
Nguyen, D.; Duke, D.; Kastengren, A.; ...
2017-04-18
Two techniques were used to study non-evaporating diesel sprays from common rail injectors which were equipped with twin-hole and single-hole nozzles for comparison. To characterise the sprays, high speed optical imaging and x-ray radiography were used. The former was performed at the LTRAC laboratory at Monash University, while the latter was performed at the 7-BM beamline of the Advanced Photon Source at Argonne National Laboratory. The optical imaging made use of high temporal, high spatial resolution spray recordings on a digital camera from which peripheral parameters in the initial injection phase were investigated based on edge detection. The x-ray radiographymore » was used to explore quantitative mass distributions, which were measured on a point-wise basis at roughly similar sampling rate. Three twin-hole nozzles of different subtended angles and a single-hole nozzle were investigated at injection pressure of 1000 bar in environments of 20 bar back pressure. Evidence of strong cavitation was found for all nozzles examined with their C D ranging from 0.62 to 0.69. Penetration of the twin-hole nozzles was found to lag the single-hole nozzle, even before the sprays merged. Finally, switching in hole dominance was observed from one twin-hole nozzle, and this was accompanied by greater instability in mass flow during the transient opening phase of the injector.« less
Spray flow structure from twin-hole diesel injector nozzles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, D.; Duke, D.; Kastengren, A.
Two techniques were used to study non-evaporating diesel sprays from common rail injectors which were equipped with twin-hole and single-hole nozzles for comparison. To characterise the sprays, high speed optical imaging and x-ray radiography were used. The former was performed at the LTRAC laboratory at Monash University, while the latter was performed at the 7-BM beamline of the Advanced Photon Source at Argonne National Laboratory. The optical imaging made use of high temporal, high spatial resolution spray recordings on a digital camera from which peripheral parameters in the initial injection phase were investigated based on edge detection. The x-ray radiographymore » was used to explore quantitative mass distributions, which were measured on a point-wise basis at roughly similar sampling rate. Three twin-hole nozzles of different subtended angles and a single-hole nozzle were investigated at injection pressure of 1000 bar in environments of 20 bar back pressure. Evidence of strong cavitation was found for all nozzles examined with their C D ranging from 0.62 to 0.69. Penetration of the twin-hole nozzles was found to lag the single-hole nozzle, even before the sprays merged. Finally, switching in hole dominance was observed from one twin-hole nozzle, and this was accompanied by greater instability in mass flow during the transient opening phase of the injector.« less
Investigation of Spiral and Sweeping Holes
NASA Technical Reports Server (NTRS)
Thurman, Douglas; Poinsatte, Philip; Ameri, Ali; Culley, Dennis; Raghu, Surya; Shyam, Vikram
2015-01-01
Surface infrared thermography, hotwire anemometry, and thermocouple surveys were performed on two new film cooling hole geometries: spiral/rifled holes and fluidic sweeping holes. The spiral holes attempt to induce large-scale vorticity to the film cooling jet as it exits the hole to prevent the formation of the kidney shaped vortices commonly associated with film cooling jets. The fluidic sweeping hole uses a passive in-hole geometry to induce jet sweeping at frequencies that scale with blowing ratios. The spiral hole performance is compared to that of round holes with and without compound angles. The fluidic hole is of the diffusion class of holes and is therefore compared to a 777 hole and Square holes. A patent-pending spiral hole design showed the highest potential of the non-diffusion type hole configurations. Velocity contours and flow temperature were acquired at discreet cross-sections of the downstream flow field. The passive fluidic sweeping hole shows the most uniform cooling distribution but suffers from low span-averaged effectiveness levels due to enhanced mixing. The data was taken at a Reynolds number of 11,000 based on hole diameter and freestream velocity. Infrared thermography was taken for blowing rations of 1.0, 1.5, 2.0, and 2.5 at a density ration of 1.05. The flow inside the fluidic sweeping hole was studied using 3D unsteady RANS.
NASA Astrophysics Data System (ADS)
Gußmann, Alexander
2017-03-01
The existence of the classical black hole solutions of the Einstein-Yang-Mills-Higgs equations with non-Abelian Yang-Mills-Higgs hair implies that not all classical stationary magnetically charged black holes can be uniquely described by their asymptotic characteristics. In fact, in a certain domain of parameters, there exist different spherically-symmetric, non-rotating and asymptotically-flat classical black hole solutions of the Einstein-Yang-Mills-Higgs equations which have the same ADM mass and the same magnetic charge but significantly different geometries in the near-horizon regions. (These are black hole solutions which are described by a Reissner-Nordström metric on the one hand and the black hole solutions with non-Abelian Yang-Mills-Higgs hair which are described by a metric which is not of Reissner-Nordström form on the other hand). One can experimentally distinguish such black holes with the same asymptotic characteristics but different near-horizon geometries classically by probing the near-horizon regions of the black holes. We argue that one way to probe the near-horizon region of a black hole which allows one to distinguish magnetically charged black holes with the same asymptotic characteristics but different near-horizon geometries is by classical scattering of waves. Using the example of a minimally-coupled massless probe scalar field scattered by magnetically charged black holes which can be obtained as solutions of the Einstein-Yang-Mills-Higgs equations with a Higgs triplet and gauge group SU(2) in the limit of an infinite Higgs self-coupling constant we show how, in this case, the scattering cross sections differ for the magnetically charged black holes with different near-horizon geometries but the same asymptotic characteristics. We find in particular that the characteristic glory peaks in the cross sections are located at different scattering angles.
NASA Astrophysics Data System (ADS)
Argyilan, Erin P.; Avis, Peter G.; Krekeler, Mark P. S.; Morris, Charles C.
2015-12-01
Dune decomposition chimneys are collapse features formed when migrating dunes encroach on a forest and buried trees subsequently decay, leaving a temporarily stable open hole. The recent appearance of holes on the stoss slope of Mount Baldy at the Indiana Dunes National Lakeshore provided an opportunity for study of such features. Mount Baldy is a large parabolic dune that is rapidly migrating onshore over a late Holocene landscape with stabilized relict parabolic dunes that supported oak (Quercus spp.) trees visible on the 1939 aerial photo. Individual holes were mapped to locations on the dune surface that would directly overlie the arm of a buried relict parabolic dune. Analyses of buried trees and surrounding sediment indicated that saprotrophic wood decay fungi continue to actively decompose trees after burial and biomineralization of a calcium-carbonate-rich cement occurs at the contact between organic material and sands. Scanning electron microscopy of the cement showed neoformed authigenic minerals and organic structures consistent in morphology with fungal hyphae. We propose that, within the dune, portions of the decayed trees progressively collapse and infill, and open holes are temporarily stabilized by the calcium-carbonate-rich cement. Further, holes can exist undetected at the surface, covered by a thin veneer of sand. Migrating dune systems are observed in many coastal and inland areas. Ongoing work must address the relative contributions of individual environmental factors on the formation of dune decomposition chimneys, including the biomineralization of cement, sand mineralogy, rate of dune movement, tree species, climate, and the composition of fungal communities.
An Investigation of the Sources of Earth-directed Solar Wind during Carrington Rotation 2053
NASA Astrophysics Data System (ADS)
Fazakerley, A. N.; Harra, L. K.; van Driel-Gesztelyi, L.
2016-06-01
In this work we analyze multiple sources of solar wind through a full Carrington Rotation (CR 2053) by analyzing the solar data through spectroscopic observations of the plasma upflow regions and the in situ data of the wind itself. Following earlier authors, we link solar and in situ observations by a combination of ballistic backmapping and potential-field source-surface modeling. We find three sources of fast solar wind that are low-latitude coronal holes. The coronal holes do not produce a steady fast wind, but rather a wind with rapid fluctuations. The coronal spectroscopic data from Hinode’s Extreme Ultraviolet Imaging Spectrometer show a mixture of upflow and downflow regions highlighting the complexity of the coronal hole, with the upflows being dominant. There is a mix of open and multi-scale closed magnetic fields in this region whose (interchange) reconnections are consistent with the up- and downflows they generate being viewed through an optically thin corona, and with the strahl directions and freeze-in temperatures found in in situ data. At the boundary of slow and fast wind streams there are three short periods of enhanced-velocity solar wind, which we term intermediate based on their in situ characteristics. These are related to active regions that are located beside coronal holes. The active regions have different magnetic configurations, from bipolar through tripolar to quadrupolar, and we discuss the mechanisms to produce this intermediate wind, and the important role that the open field of coronal holes adjacent to closed-field active regions plays in the process.
NASA Astrophysics Data System (ADS)
Régnier, P.; Bifulco-Michon, C.; Poissonnet, S.; Martin, H.; Bonnaillie, P.; Giunchi, G.; Legendre, F.
2002-10-01
We review and comment on the various requirements that a metallic substrate has to meet to be a good candidate for the fabrication of electrodeposited BSCCO superconducting tapes. We conclude that, in the present state of the art, no metallic substrate is really ideal. Hence we have investigated in detail the use of silver-buffered nickel-based alloys that seem to be a viable alternative to pure silver tape, which is more expensive and less resistant to high temperature. The major difficulty encountered was the occurrence of holes and blisters induced in the silver layers by the oxidation of the nickel underlayer during the heat treatments performed at high temperature in open air, which according to our procedure are required to synthesize high-temperature superconducting tapes. It was found that the liquid phases, transiently present in the process during the synthesis of the precursor phases, infiltrate between the Ag layer and the substrate through these holes and strongly react with the substrate transferring the poisoned element to the superconducting film greatly reducing its superconducting properties. Hence, several routes have been explored to try and suppress hole formation. It was found that pre-oxidizing the substrate at 880 °C for 1 h in open air sufficiently lowers the hole and blister densities to allow us to synthesize good Bi-2212 tapes on pure nickel, but not on Ni80-Cr20 alloys. A much more interesting solution seems to be to pre-anneal the substrate in a hydrogenous atmosphere which permits us to remove blisters and holes.
Measurement of stimulated Hawking emission in an analogue system.
Weinfurtner, Silke; Tedford, Edmund W; Penrice, Matthew C J; Unruh, William G; Lawrence, Gregory A
2011-01-14
Hawking argued that black holes emit thermal radiation via a quantum spontaneous emission. To address this issue experimentally, we utilize the analogy between the propagation of fields around black holes and surface waves on moving water. By placing a streamlined obstacle into an open channel flow we create a region of high velocity over the obstacle that can include surface wave horizons. Long waves propagating upstream towards this region are blocked and converted into short (deep-water) waves. This is the analogue of the stimulated emission by a white hole (the time inverse of a black hole), and our measurements of the amplitudes of the converted waves demonstrate the thermal nature of the conversion process for this system. Given the close relationship between stimulated and spontaneous emission, our findings attest to the generality of the Hawking process.
Sputter-deposited WO x and MoO x for hole selective contacts
Bivour, Martin; Zähringer, Florian; Ndione, Paul F.; ...
2017-09-21
Here, reactive sputter deposited tungsten and molybdenum oxide (WO x, MoO x) thin films are tested for their ability to form a hole selective contact for Si wafer based solar cells. A characterization approach based on analyzing the band bending induced in the c-Si absorber and the external and implied open-circuit voltage of test structures was used. It is shown that the oxygen partial pressure allows to tailor the selectivity to some extent and that a direct correlation between induced band bending and hole selectivity exists. Although the selectivity of the sputtered films is inferior to the reference films depositedmore » by thermal evaporation, these results demonstrate a good starting point for further optimizations of sputtered WO x and MoO x towards higher work functions to improve the hole selectivity.« less
Sputter-deposited WO x and MoO x for hole selective contacts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bivour, Martin; Zähringer, Florian; Ndione, Paul F.
Here, reactive sputter deposited tungsten and molybdenum oxide (WO x, MoO x) thin films are tested for their ability to form a hole selective contact for Si wafer based solar cells. A characterization approach based on analyzing the band bending induced in the c-Si absorber and the external and implied open-circuit voltage of test structures was used. It is shown that the oxygen partial pressure allows to tailor the selectivity to some extent and that a direct correlation between induced band bending and hole selectivity exists. Although the selectivity of the sputtered films is inferior to the reference films depositedmore » by thermal evaporation, these results demonstrate a good starting point for further optimizations of sputtered WO x and MoO x towards higher work functions to improve the hole selectivity.« less
Zhang, Zemin; Hu, Weixia; Cui, Jianyu; He, Rongxing; Shen, Wei; Li, Ming
2017-09-20
Conjugated bifluorenylidene and naphthalene central cores are introduced into hole-transporting materials DT1 and DT2 to replace the spiro-core of the reported, highly efficient FDT. The effects of the conjugated core on the geometrics, electronic properties and hole transport properties are investigated by using density functional theory coupled with Marcus theory and the Einstein relation. The calculated results show that DT1 (-5.21 eV) and DT2 (-5.23 eV) have lower HOMO levels than FDT (-5.15 eV), which indicates that the perovskite solar cells with conjugated hole-transporting materials can have higher open-circuit voltages. The introduction of the conjugated core is beneficial to the more efficient face-to-face packing pattern of the dimer, resulting in a larger intermolecular electronic coupling. Importantly, it is found that DT1 (1.6 × 10 -3 cm 2 V -1 s -1 ) and DT2 (2.7 × 10 -2 cm 2 V -1 s -1 ) exhibit relatively higher hole mobilities than FDT (1.3 × 10 -4 cm 2 V -1 s -1 ) owing to the larger electronic coupling. Therefore, enhanced hole transport ability can be achieved by switching from the spiro-core to the conjugated core. The present work provides a new strategy to improve the hole transport properties of hole-transporting materials, which will contribute to the development of conjugated small molecules as hole-transporting materials in efficient perovskite solar cells.
Launching of Active Galactic Nuclei Jets
NASA Astrophysics Data System (ADS)
Tchekhovskoy, Alexander
As black holes accrete gas, they often produce relativistic, collimated outflows, or jets. Jets are expected to form in the vicinity of a black hole, making them powerful probes of strong-field gravity. However, how jet properties (e.g., jet power) connect to those of the accretion flow (e.g., mass accretion rate) and the black hole (e.g., black hole spin) remains an area of active research. This is because what determines a crucial parameter that controls jet properties—the strength of large-scale magnetic flux threading the black hole—remains largely unknown. First-principles computer simulations show that due to this, even if black hole spin and mass accretion rate are held constant, the simulated jet powers span a wide range, with no clear winner. This limits our ability to use jets as a quantitative diagnostic tool of accreting black holes. Recent advances in computer simulations demonstrated that accretion disks can accumulate large-scale magnetic flux on the black hole, until the magnetic flux becomes so strong that it obstructs gas infall and leads to a magnetically-arrested disk (MAD). Recent evidence suggests that central black holes in jetted active galactic nuclei and tidal disruptions are surrounded by MADs. Since in MADs both the black hole magnetic flux and the jet power are at their maximum, well-defined values, this opens up a new vista in the measurements of black hole masses and spins and quantitative tests of accretion and jet theory.
En face spectral domain optical coherence tomography analysis of lamellar macular holes.
Clamp, Michael F; Wilkes, Geoff; Leis, Laura S; McDonald, H Richard; Johnson, Robert N; Jumper, J Michael; Fu, Arthur D; Cunningham, Emmett T; Stewart, Paul J; Haug, Sara J; Lujan, Brandon J
2014-07-01
To analyze the anatomical characteristics of lamellar macular holes using cross-sectional and en face spectral domain optical coherence tomography. Forty-two lamellar macular holes were retrospectively identified for analysis. The location, cross-sectional length, and area of lamellar holes were measured using B-scans and en face imaging. The presence of photoreceptor inner segment/outer segment disruption and the presence or absence of epiretinal membrane formation were recorded. Forty-two lamellar macular holes were identified. Intraretinal splitting occurred within the outer plexiform layer in 97.6% of eyes. The area of intraretinal splitting in lamellar holes did not correlate with visual acuity. Eyes with inner segment/outer segment disruption had significantly worse mean logMAR visual acuity (0.363 ± 0.169; Snellen = 20/46) than in eyes without inner segment/outer segment disruption (0.203 ± 0.124; Snellen = 20/32) (analysis of variance, P = 0.004). Epiretinal membrane was present in 34 of 42 eyes (81.0%). En face imaging allowed for consistent detection and quantification of intraretinal splitting within the outer plexiform layer in patients with lamellar macular holes, supporting the notion that an area of anatomical weakness exists within Henle's fiber layer, presumably at the synaptic connection of these fibers within the outer plexiform layer. However, the en face area of intraretinal splitting did not correlate with visual acuity, disruption of the inner segment/outer segment junction was associated with significantly worse visual acuity in patients with lamellar macular holes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, S. Y.; Yuan, Z. G.; Wang, D. D.
We report on the observations of an electron vortex magnetic hole corresponding to a new type of coherent structure in the turbulent magnetosheath plasma using the Magnetospheric Multiscale mission data. The magnetic hole is characterized by a magnetic depression, a density peak, a total electron temperature increase (with a parallel temperature decrease but a perpendicular temperature increase), and strong currents carried by the electrons. The current has a dip in the core region and a peak in the outer region of the magnetic hole. The estimated size of the magnetic hole is about 0.23 ρ {sub i} (∼30 ρ {submore » e}) in the quasi-circular cross-section perpendicular to its axis, where ρ {sub i} and ρ {sub e} are respectively the proton and electron gyroradius. There are no clear enhancements seen in high-energy electron fluxes. However, there is an enhancement in the perpendicular electron fluxes at 90° pitch angle inside the magnetic hole, implying that the electrons are trapped within it. The variations of the electron velocity components V {sub em} and V {sub en} suggest that an electron vortex is formed by trapping electrons inside the magnetic hole in the cross-section in the M – N plane. These observations demonstrate the existence of a new type of coherent structures behaving as an electron vortex magnetic hole in turbulent space plasmas as predicted by recent kinetic simulations.« less
NASA Technical Reports Server (NTRS)
Baker, John
2010-01-01
Among the fascinating phenomena predicted by General Relativity, Einstein's theory of gravity, black holes and gravitational waves, are particularly important in astronomy. Though once viewed as a mathematical oddity, black holes are now recognized as the central engines of many of astronomy's most energetic cataclysms. Gravitational waves, though weakly interacting with ordinary matter, may be observed with new gravitational wave telescopes, opening a new window to the universe. These observations promise a direct view of the strong gravitational dynamics involving dense, often dark objects, such as black holes. The most powerful of these events may be merger of two colliding black holes. Though dark, these mergers may briefly release more energy that all the stars in the visible universe, in gravitational waves. General relativity makes precise predictions for the gravitational-wave signatures of these events, predictions which we can now calculate with the aid of supercomputer simulations. These results provide a foundation for interpreting expect observations in the emerging field of gravitational wave astronomy.
Semiclassical S-matrix for black holes
Bezrukov, Fedor; Levkov, Dmitry; Sibiryakov, Sergey
2015-12-01
In this study, we propose a semiclassical method to calculate S-matrix elements for two-stage gravitational transitions involving matter collapse into a black hole and evaporation of the latter. The method consistently incorporates back-reaction of the collapsing and emitted quanta on the metric. We illustrate the method in several toy models describing spherical self-gravitating shells in asymptotically flat and AdS space-times. We find that electrically neutral shells reflect via the above collapse-evaporation process with probability exp(–B), where B is the Bekenstein-Hawking entropy of the intermediate black hole. This is consistent with interpretation of exp(B) as the number of black hole states.more » The same expression for the probability is obtained in the case of charged shells if one takes into account instability of the Cauchy horizon of the intermediate Reissner-Nordström black hole. As a result, our semiclassical method opens a new systematic approach to the gravitational S-matrix in the non-perturbative regime.« less
Black holes in loop quantum gravity.
Perez, Alejandro
2017-12-01
This is a review of results on black hole physics in the context of loop quantum gravity. The key feature underlying these results is the discreteness of geometric quantities at the Planck scale predicted by this approach to quantum gravity. Quantum discreteness follows directly from the canonical quantization prescription when applied to the action of general relativity that is suitable for the coupling of gravity with gauge fields, and especially with fermions. Planckian discreteness and causal considerations provide the basic structure for the understanding of the thermal properties of black holes close to equilibrium. Discreteness also provides a fresh new look at more (at the moment) speculative issues, such as those concerning the fate of information in black hole evaporation. The hypothesis of discreteness leads, also, to interesting phenomenology with possible observational consequences. The theory of loop quantum gravity is a developing program; this review reports its achievements and open questions in a pedagogical manner, with an emphasis on quantum aspects of black hole physics.
‘Firewall’ phenomenology with astrophysical neutrinos
NASA Astrophysics Data System (ADS)
Afshordi, Niayesh; Yazdi, Yasaman K.
2016-12-01
One of the most fundamental features of a black hole in general relativity is its event horizon: a boundary from which nothing can escape. There has been a recent surge of interest in the nature of these event horizons and their local neighbourhoods. In an attempt to resolve black hole information paradox(es), and more generally, to better understand the path towards quantum gravity, ‘firewalls’ have been proposed as an alternative to black hole event horizons. In this paper, we explore the phenomenological implications of black holes possessing a surface or ‘firewall’, and predict a potentially detectable signature of these firewalls in the form of a high energy astrophysical neutrino flux. We compute the spectrum of this neutrino flux in different models and show that it is a possible candidate for the source of the PeV neutrinos recently detected by IceCube. This opens up a new area of research, bridging the non-perturbative physics of quantum gravity with the observational black hole and high energy astrophysics.
NASA Astrophysics Data System (ADS)
Yilbas, B. S.; Akhtar, S. S.; Karatas, C.
2017-11-01
A Kevlar laminate has negative thermal expansion coefficient, which makes it difficult to machine at room temperaures using the conventional cutting tools. Contararily, laser machining of a Kevlar laminate provides advantages over the conventional methods because of the non-mechanical contact between the cutting tool and the workpiece. In the present study, laser circular cutting of Kevlar laminate is considered. The experiment is carried out to examine and evaluate the cutting sections. Temperature and stress fields formed in the cutting section are simulated in line with the experimental study. The influence of hole diameters on temperature and stress fields are investigated incorporating two different hole diameters. It is found that the Kevlar laminate cutting section is free from large size asperities such as large scale sideways burnings and attachemnt of charred residues. The maximum temperature along the cutting circumference remains higher for the large diameter hole than that of the small diameter hole. Temperature decay is sharp around the cutting section in the region where the cutting terminates. This, in turn, results in high temperature gradients and the thermal strain in the cutting region. von Mises stress remains high in the region where temperature gradients are high. von Mises stress follows similar to the trend of temperature decay around the cutting edges.
Geologic Map and Cross Sections of the McGinness Hills Geothermal Area - GIS Data
Faulds, James E.
2013-12-31
Geologic map data in shapefile format that includes faults, unit contacts, unit polygons, attitudes of strata and faults, and surficial geothermal features. 5 cross‐sections in Adobe Illustrator format. Comprehensive catalogue of drill‐hole data in spreadsheet, shapefile, and Geosoft database formats. Includes XYZ locations of well heads, year drilled, type of well, operator, total depths, well path data (deviations), lithology logs, and temperature data. 3D model constructed with EarthVision using geologic map data, cross‐sections, drill‐hole data, and geophysics.
Land-use and hydroperiod affect kettle hole sediment carbon and nitrogen biogeochemistry.
Nitzsche, Kai Nils; Kalettka, Thomas; Premke, Katrin; Lischeid, Gunnar; Gessler, Arthur; Kayler, Zachary Eric
2017-01-01
Kettle holes are glaciofluvially created depressional wetlands that collect organic matter (OM) and nutrients from their surrounding catchment. Kettle holes mostly undergo pronounced wet-dry cycles. Fluctuations in water table, land-use, and management can affect sediment biogeochemical transformations and perhaps threaten the carbon stocks of these unique ecosystems. We investigated sediment and water of 51 kettle holes in NE Germany that differ in hydroperiod (i.e. the duration of the wet period of a kettle hole) and land-use. Our objectives were 1) to test if hydroperiod and land management were imprinted on the isotopic values (δ 13 C, δ 15 N) and C:N ratios of the sediment OM, and 2) to characterize water loss dynamics and kettle hole-groundwater connectivity by measuring the stable δ 18 O and δD isotope values of kettle hole water over several years. We found the uppermost sediment layer reflected recent OM inputs and short-term processes in the catchment, including land-use and management effects. Deeper sediments recorded the degree to which OM is processed within the kettle hole related to the hydroperiod. We see clear indications for the effects of wet-dry cycles for all kettle holes, which can lead to the encroachment of terrestrial plants. We found that the magnitude of evaporation depended on the year, season, and land-use type, that kettle holes are temporarily coupled to shallow ground water, and, as such, kettle holes are described best as partially-closed to open systems. Copyright © 2016 Elsevier B.V. All rights reserved.
Static Einstein-Maxwell Black Holes with No Spatial Isometries in AdS Space.
Herdeiro, Carlos A R; Radu, Eugen
2016-11-25
We explicitly construct static black hole solutions to the fully nonlinear, D=4, Einstein-Maxwell-anti-de Sitter (AdS) equations that have no continuous spatial symmetries. These black holes have a smooth, topologically spherical horizon (section), but without isometries, and approach, asymptotically, global AdS spacetime. They are interpreted as bound states of a horizon with the Einstein-Maxwell-AdS solitons recently discovered, for appropriate boundary data. In sharp contrast to the uniqueness results for a Minkowski electrovacuum, the existence of these black holes shows that single, equilibrium, black hole solutions in an AdS electrovacuum admit an arbitrary multipole structure.
Morrison, Barclay; Goletiani, Cezar; Yu, Zhe; Wagner, Sigurd
2013-01-01
A high resolution elastically stretchable microelectrode array (SMEA) to interface with neural tissue is described. The SMEA consists of an elastomeric substrate, such as poly(dimethylsiloxane) (PDMS), elastically stretchable gold conductors, and an electrically insulating encapsulating layer in which contact holes are opened. We demonstrate the feasibility of producing contact holes with 40 µm × 40 µm openings, show why the adhesion of the encapsulation layer to the underlying silicone substrate is weakened during contact hole fabrication, and provide remedies. These improvements result in greatly increased fabrication yield and reproducibility. An SMEA with 28 microelectrodes was fabricated. The contact holes (100 µm × 100 µm) in the encapsulation layer are only ~10% the size of the previous generation, allowing a larger number of microelectrodes per unit area, thus affording the capability to interface with a smaller neural population per electrode. This new SMEA is used to record spontaneous and evoked activity in organotypic hippocampal tissue slices at 0% strain before stretching, at 5 % and 10 % equibiaxial strain, and again at 0% strain after relaxation. The noise of the recordings increases with increasing strain. The frequency of spontaneous neural activity also increases when the SMEA is stretched. Upon relaxation, the noise returns to pre-stretch levels, while the frequency of neural activity remains elevated. Stimulus-response curves at each strain level are measured. The SMEA shows excellent biocompatibility for at least two weeks. PMID:24093006
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boccard, Mathieu; Holman, Zachary C.
Amorphous silicon enables the fabrication of very high-efficiency crystalline-silicon-based solar cells due to its combination of excellent passivation of the crystalline silicon surface and permeability to electrical charges. Yet, amongst other limitations, the passivation it provides degrades upon high-temperature processes, limiting possible post-deposition fabrication possibilities (e.g., forcing the use of low-temperature silver pastes). We investigate the potential use of intrinsic amorphous silicon carbide passivating layers to sidestep this issue. The passivation obtained using device-relevant stacks of intrinsic amorphous silicon carbide with various carbon contents and doped amorphous silicon are evaluated, and their stability upon annealing assessed, amorphous silicon carbide beingmore » shown to surpass amorphous silicon for temperatures above 300 °C. We demonstrate open-circuit voltage values over 700 mV for complete cells, and an improved temperature stability for the open-circuit voltage. Transport of electrons and holes across the hetero-interface is studied with complete cells having amorphous silicon carbide either on the hole-extracting side or on the electron-extracting side, and a better transport of holes than of electrons is shown. Also, due to slightly improved transparency, complete solar cells using an amorphous silicon carbide passivation layer on the hole-collecting side are demonstrated to show slightly better performances even prior to annealing than obtained with a standard amorphous silicon layer.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boccard, Mathieu; Holman, Zachary C.
With this study, amorphous silicon enables the fabrication of very high-efficiency crystalline-silicon-based solar cells due to its combination of excellent passivation of the crystalline silicon surface and permeability to electrical charges. Yet, amongst other limitations, the passivation it provides degrades upon high-temperature processes, limiting possible post-deposition fabrication possibilities (e.g., forcing the use of low-temperature silver pastes). We investigate the potential use of intrinsic amorphous silicon carbide passivating layers to sidestep this issue. The passivation obtained using device-relevant stacks of intrinsic amorphous silicon carbide with various carbon contents and doped amorphous silicon are evaluated, and their stability upon annealing assessed, amorphousmore » silicon carbide being shown to surpass amorphous silicon for temperatures above 300°C. We demonstrate open-circuit voltage values over 700 mV for complete cells, and an improved temperature stability for the open-circuit voltage. Transport of electrons and holes across the hetero-interface is studied with complete cells having amorphous silicon carbide either on the hole-extracting side or on the electron-extracting side, and a better transport of holes than of electrons is shown. Also, due to slightly improved transparency, complete solar cells using an amorphous silicon carbide passivation layer on the hole-collecting side are demonstrated to show slightly better performances even prior to annealing than obtained with a standard amorphous silicon layer.« less
Boccard, Mathieu; Holman, Zachary C.
2015-08-14
With this study, amorphous silicon enables the fabrication of very high-efficiency crystalline-silicon-based solar cells due to its combination of excellent passivation of the crystalline silicon surface and permeability to electrical charges. Yet, amongst other limitations, the passivation it provides degrades upon high-temperature processes, limiting possible post-deposition fabrication possibilities (e.g., forcing the use of low-temperature silver pastes). We investigate the potential use of intrinsic amorphous silicon carbide passivating layers to sidestep this issue. The passivation obtained using device-relevant stacks of intrinsic amorphous silicon carbide with various carbon contents and doped amorphous silicon are evaluated, and their stability upon annealing assessed, amorphousmore » silicon carbide being shown to surpass amorphous silicon for temperatures above 300°C. We demonstrate open-circuit voltage values over 700 mV for complete cells, and an improved temperature stability for the open-circuit voltage. Transport of electrons and holes across the hetero-interface is studied with complete cells having amorphous silicon carbide either on the hole-extracting side or on the electron-extracting side, and a better transport of holes than of electrons is shown. Also, due to slightly improved transparency, complete solar cells using an amorphous silicon carbide passivation layer on the hole-collecting side are demonstrated to show slightly better performances even prior to annealing than obtained with a standard amorphous silicon layer.« less
Harrison, Neil
2016-08-16
Here, we provide a potential solution to the longstanding problem relating Fermi surface reconstruction to the number of holes contained within the Fermi surface volume in underdoped high T c superconductors. On considering uniaxial and biaxial charge-density wave order, we show that there exists a relationship between the ordering wave vector, the hole doping, and the cross-sectional area of the reconstructed Fermi surface whose precise form depends on the volume of the starting Fermi surface. We consider a “large” starting Fermi surface comprising 1+p hole carriers, as predicted by band structure calculations, and a “small” starting Fermi surface comprising pmore » hole carriers, as proposed in models in which the Coulomb repulsion remains the dominant energy. Using the reconstructed Fermi surface cross-sectional area obtained in quantum oscillation experiments in YBa 2Cu 3O 6+x and HgBa 2CuO 4+x and the established methods for estimating the chemical hole doping, we find the ordering vectors obtained from x-ray scattering measurements to show a close correspondence with those expected for the small starting Fermi surface. We therefore show the quantum oscillation frequency and charge-density wave vectors provide accurate estimates for the number of holes contributing to the Fermi surface volume in the pseudogap regime.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrison, Neil
Here, we provide a potential solution to the longstanding problem relating Fermi surface reconstruction to the number of holes contained within the Fermi surface volume in underdoped high T c superconductors. On considering uniaxial and biaxial charge-density wave order, we show that there exists a relationship between the ordering wave vector, the hole doping, and the cross-sectional area of the reconstructed Fermi surface whose precise form depends on the volume of the starting Fermi surface. We consider a “large” starting Fermi surface comprising 1+p hole carriers, as predicted by band structure calculations, and a “small” starting Fermi surface comprising pmore » hole carriers, as proposed in models in which the Coulomb repulsion remains the dominant energy. Using the reconstructed Fermi surface cross-sectional area obtained in quantum oscillation experiments in YBa 2Cu 3O 6+x and HgBa 2CuO 4+x and the established methods for estimating the chemical hole doping, we find the ordering vectors obtained from x-ray scattering measurements to show a close correspondence with those expected for the small starting Fermi surface. We therefore show the quantum oscillation frequency and charge-density wave vectors provide accurate estimates for the number of holes contributing to the Fermi surface volume in the pseudogap regime.« less
An Integrated Finite Element-based Simulation Framework: From Hole Piercing to Hole Expansion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Xiaohua; Sun, Xin; Golovashchenko, Segey F.
An integrated finite element-based modeling framework is developed to predict the hole expansion ratio (HER) of AA6111-T4 sheet by considering the piercing-induced damages around the hole edge. Using damage models and parameters calibrated from previously reported tensile stretchability studies, the predicted HER correlates well with experimentally measured HER values for different hole piercing clearances. The hole piercing model shows burrs are not generated on the sheared surface for clearances less than 20%, which corresponds well with the experimental data on pierced holes cross-sections. Finite-element-calculated HER also is not especially sensitive to piercing clearances less than this value. However, as clearancesmore » increase to 30% and further to 40%, the HER values are predicted to be considerably smaller, also consistent with experimental measurements. Upon validation, the integrated modeling framework is used to examine the effects of different hole piercing and hole expansion conditions on the critical HERs for AA6111-T4.« less
View southeast of weldment assembly floor in structures shop, building ...
View southeast of weldment assembly floor in structures shop, building 57; the floor is fabricated of cast iron and features a grillwork of 1 1/2 square holes which are used as sockets for gripping positioning or lock down pins; a lock down pin is shown left and below the center of the photograph; the vertical section of the pin is placed into a hole in the cast steel floor while the angles section of the pin rests on the piece under construction; the pin is hammered into the hole and spring tension in the pin holds the work piece in position. - Naval Base Philadelphia-Philadelphia Naval Shipyard, Structure Shop, League Island, Philadelphia, Philadelphia County, PA
NASA Technical Reports Server (NTRS)
Thurman, Douglas; Poinsatte, Philip
2001-01-01
An experimental study was made to obtain heat transfer and air temperature data for a simple three-leg serpentine test section that simulates a turbine blade internal cooling passage with trip strips and bleed holes. The objectives were to investigate the interaction of ribs and various bleed conditions on internal cooling and to gain a better understanding of bulk air temperature in an internal passage. Steady-state heat transfer measurements were obtained using a transient technique with thermochromic liquid crystals. Trip strips were attached to one wall of the test section and were located either between or near the bleed holes. The bleed holes, used for film cooling, were metered to simulate the effect of external pressure on the turbine blade. Heat transfer enhancement was found to be greater for ribs near bleed holes compared to ribs between holes, and both configurations were affected slightly by bleed rates upstream. Air temperature measurements were taken at discrete locations along one leg of the model. Average bulk air temperatures were found to remain fairly constant along one leg of the model.
NASA Technical Reports Server (NTRS)
Thurman, Douglas; Poinsatte, Philip
2000-01-01
An experimental study was made to obtain heat transfer and air temperature data for a simple 3-leg serpentine test section that simulates a turbine blade internal cooling passage with trip strips and bleed holes. The objectives were to investigate the interaction of ribs and various bleed conditions on internal cooling and to gain a better understanding of bulk air temperature in an internal passage. Steady state heat transfer measurements were obtained using a transient technique with thermochromic liquid crystals. Trip strips were attached to one wall of the test section and were located either between or near the bleed holes. The bleed holes, used for film cooling, were metered to simulate the effect of external pressure on the turbine blade. Heat transfer enhancement was found to be greater for ribs near bleed holes compared to ribs between holes, and both configurations were affected slightly by bleed rates upstream. Air temperature measurements were taken at discreet locations along one leg of the model. Average bulk air temperatures were found to remain fairly constant along one leg of the model.
Garcia, Anthony R.; Johnston, Roger G.; Martinez, Ronald K.
1999-05-25
A fluid sampling tool for sampling fluid from a container. The tool has a fluid collecting portion which is drilled into the container wall, thereby affixing it to the wall. The tool may have a fluid extracting section which withdraws fluid collected by the fluid collecting section. The fluid collecting section has a fluted shank with an end configured to drill a hole into a container wall. The shank has a threaded portion for tapping the borehole. The shank is threadably engaged to a cylindrical housing having an inner axial passageway sealed at one end by a septum. A flexible member having a cylindrical portion and a bulbous portion is provided. The housing can be slid into an inner axial passageway in the cylindrical portion and sealed to the flexible member. The bulbous portion has an outer lip defining an opening. The housing is clamped into the chuck of a drill, the lip of the bulbous section is pressed against a container wall until the shank touches the wall, and the user operates the drill. Wall shavings (kerf) are confined in a chamber formed in the bulbous section as it folds when the shank advances inside the container. After sufficient advancement of the shank, an o-ring makes a seal with the container wall.
Garcia, A.R.; Johnston, R.G.; Martinez, R.K.
1999-05-25
A fluid sampling tool is described for sampling fluid from a container. The tool has a fluid collecting portion which is drilled into the container wall, thereby affixing it to the wall. The tool may have a fluid extracting section which withdraws fluid collected by the fluid collecting section. The fluid collecting section has a fluted shank with an end configured to drill a hole into a container wall. The shank has a threaded portion for tapping the borehole. The shank is threadably engaged to a cylindrical housing having an inner axial passageway sealed at one end by a septum. A flexible member having a cylindrical portion and a bulbous portion is provided. The housing can be slid into an inner axial passageway in the cylindrical portion and sealed to the flexible member. The bulbous portion has an outer lip defining an opening. The housing is clamped into the chuck of a drill, the lip of the bulbous section is pressed against a container wall until the shank touches the wall, and the user operates the drill. Wall shavings (kerf) are confined in a chamber formed in the bulbous section as it folds when the shank advances inside the container. After sufficient advancement of the shank, an o-ring makes a seal with the container wall. 6 figs.
Wang, Qi; Bi, Cheng; Huang, Jinsong
2015-05-06
We demonstrated the efficiency of a solution-processed planar heterojunction organometallic trihalide perovskite solar cell can be increased to 17.5% through doping the hole transporting layer for reducing the resistivity. Doped Poly(triaryl amine) (PTAA) by 2,3,5,6-Tetrafluoro-7,7,8,8-Tetracyanoquinodimethane (F4-TCNQ) reduced device series resistance by three-folds, increasing the device fill factor to 74%, open circuit voltage to 1.09 V without sacrificing the short circuit current. As a result, this study reveals that the high resistivity of currently broadly applied polymer hole transport layer limits the device efficiency, and points a new direction to improve the device efficiency.
Influence of the hole geometry on the flow distribution in ventricular catheters for hydrocephalus.
Giménez, Ángel; Galarza, Marcelo; Pellicer, Olga; Valero, José; Amigó, José M
2016-07-15
Hydrocephalus is a medical condition consisting of an abnormal accumulation of cerebrospinal fluid within the brain. A catheter is inserted in one of the brain ventricles and then connected to an external valve to drain the excess of cerebrospinal fluid. The main drawback of this technique is that, over time, the ventricular catheter ends up getting blocked by the cells and macromolecules present in the cerebrospinal fluid. A crucial factor influencing this obstruction is a non-uniform flow pattern through the catheter, since it facilitates adhesion of suspended particles to the walls. In this paper we focus on the effects that tilted holes as well as conical holes have on the flow distribution and shear stress. We have carried out 3D computational simulations to study the effect of the hole geometry on the cerebrospinal fluid flow through ventricular catheters. All the simulations were done with the OpenFOAM® toolbox. In particular, three different groups of models were investigated by varying (i) the tilt angles of the holes, (ii) the inner and outer diameters of the holes, and (iii) the distances between the so-called hole segments. The replacement of cylindrical holes by conical holes was found to have a strong influence on the flow distribution and to lower slightly the shear stress. Tilted holes did not involve flow distribution changes when the hole segments are sufficiently separated, but the mean shear stress was certainly reduced. The authors present new results about the behavior of the fluid flow through ventricular catheters. These results complete earlier work on this topic by adding the influence of the hole geometry. The overall objective pursued by this research is to provide guidelines to improve existing commercially available ventricular catheters.
Scattering and absorption of massless scalar waves by Born-Infeld black holes
NASA Astrophysics Data System (ADS)
Sanchez, Pablo Alejandro; Bretón, Nora; Bergliaffa, Santiago Esteban Perez
2018-06-01
We present the results of a study of the scattering of massless planar scalar waves by a Born-Infeld black hole. The scattering and absorption cross sections are calculated using partial-wave methods. The numerical results are checked by reproducing those of the Reissner-Nordstrom black hole, and also using several approximations, with which our results are in very good agreement. The dependence of these phenomena on the effective potential, the charge of the black hole, and the value of the Born-Infeld parameter is discussed.
Black holes in binary stellar systems and galactic nuclei
NASA Astrophysics Data System (ADS)
Cherepashchuk, A. M.
2014-04-01
In the last 40 years, following pioneering papers by Ya B Zeldovich and E E Salpeter, in which a powerful energy release from nonspherical accretion of matter onto a black hole (BH) was predicted, many observational studies of black holes in the Universe have been carried out. To date, the masses of several dozen stellar-mass black holes (M_BH = (4{-}20) M_\\odot) in X-ray binary systems and of several hundred supermassive black holes (M_BH = (10^{6}{-}10^{10}) M_\\odot) in galactic nuclei have been measured. The estimated radii of these massive and compact objects do not exceed several gravitational radii. For about ten stellar-mass black holes and several dozen supermassive black holes, the values of the dimensionless angular momentum a_* have been estimated, which, in agreement with theoretical predictions, do not exceed the limiting value a_* = 0.998. A new field of astrophysics, so-called black hole demography, which studies the birth and growth of black holes and their evolutionary connection to other objects in the Universe, namely stars, galaxies, etc., is rapidly developing. In addition to supermassive black holes, massive stellar clusters are observed in galactic nuclei, and their evolution is distinct from that of supermassive black holes. The evolutionary relations between supermassive black holes in galactic centers and spheroidal stellar components (bulges) of galaxies, as well as dark-matter galactic haloes are brought out. The launch into Earth's orbit of the space radio interferometer RadioAstron opened up the real possibility of finally proving that numerous discovered massive and highly compact objects with properties very similar to those of black holes make up real black holes in the sense of Albert Einstein's General Relativity. Similar proofs of the existence of black holes in the Universe can be obtained by intercontinental radio interferometry at short wavelengths \\lambda \\lesssim 1 mm (the international program, Event Horizon Telescope).
Core logs from five holes near Kramer, in the Mojave Desert, California
Benda, William K.; Erd, Richard C.; Smith, Ward C.
1958-01-01
In 1957, five test holes were drilled near Kramer, California, in =he western Mojave Desert. The drill sites are in topographic basins where gravimetric and geologic surveys indicated the presence, beneath alluvium, of a thick section of Quaternary and Tertiary sedimentary and volcanic rocks. Two holes which were deeper tests at sites drilled in 1954 cored only silts, sands and gravels: Four Corners test hole No. 1 was drilled in sec. 20, T. I0 N., R. 6 W., to a depth of 3,500 feet. Four Corners No. 2, in sec. 5, T. I0 N., R. 8 W., was drilled to 2,328 feet. Three holes which were drilled at new sites north of the intersection of U. S. Highways 395 and 466, locally known as Four Corners, encountered colemanite-bearing sediments. The locations and total depths of these holes are as follows: Four Corners No. 3, sec. T. 11 N., R. 6 W., depth 2,568 feet; Four Corners No. 4, near northern edge of sec. 30, T. ll N., R. 6 W., depth 3,500 feet; Four Corners No. 5, near southern edge of sec. 30, depth 1,604 feet. The sections of rocks encountered in these three holes are similar. In each, the colemanite is in fine-grained sediments that lie below sands and gravels, which are about 600 to 800 feet thick, and are underlain by sandstones and conglomerates. Colemanite is most abundant in the cores from Four Corners to hole No. 5, particularly in the 76 feet of core recovered between depths of 1,051 and 1,131 feet. Chemical analysis shows that in this section of core the average content of B203 is above 14 percent. In addition to colemanite, the cores contain sulfides of arsenic, an unusual iron sulfide, and zeolites. This mineralogy of the colemanite-bearing sediments north of Four Corners, together with the general lake bed lithology and the occurrence as a tilted section of beds below sands and gravels, supports correlation with the upper or marginal parts of the borate-bearin8 sediments at the Kramer borate mining district, which have similar features. There is, however, no evidence that any beds are exactly equivalent in age.
Asymptotically locally Euclidean/Kaluza-Klein stationary vacuum black holes in five dimensions
NASA Astrophysics Data System (ADS)
Khuri, Marcus; Weinstein, Gilbert; Yamada, Sumio
2018-05-01
We produce new examples, both explicit and analytical, of bi-axisymmetric stationary vacuum black holes in five dimensions. A novel feature of these solutions is that they are asymptotically locally Euclidean, in which spatial cross-sections at infinity have lens space L(p,q) topology, or asymptotically Kaluza-Klein so that spatial cross-sections at infinity are topologically S^1× S^2. These are nondegenerate black holes of cohomogeneity 2, with any number of horizon components, where the horizon cross-section topology is any one of the three admissible types: S^3, S^1× S^2, or L(p,q). Uniqueness of these solutions is also established. Our method is to solve the relevant harmonic map problem with prescribed singularities, having target symmetric space SL(3,{R})/SO(3). In addition, we analyze the possibility of conical singularities and find a large family for which geometric regularity is guaranteed.
,
2002-01-01
First and last occurrences of several Maastrichtian calcareous nannofossil species are shown to be diachronous across paleodepth and paleoenvironment using the graphic correlation method. Calcareous nannofossil assemblages examined from eleven cores from a deep- to shallow-water transect along the eastern United States Atlantic margin document that the first occurrence of Micula murus (Martini 1961) Bukry 1973 is diachronous, appearing 2.0 million years earlier in open ocean sites than in shallow marine sites. The first occurrence (FO) of Lithraphidites kennethii Perch-Nielsen 1984 is also nonsynchronous, appearing in the deep ocean before its FO in neritic waters. The last occurrence (LO) of L. praequadratus Roth 1978 is diachronous across paleodepth, going locally extinct first in deeper water. The LO of Watznaueria bybelliae Self-Trail 1999 is also diachronous, going locally extinct first in shallow-water settings. Ceratolithoides amplector Burnett 1997, C. pricei Burnett 1997, C. self-trailiae Burnett 1997, C. ultimus Burnett 1997, Cribrocorona gallica (Stradner 1963) Perch-Nielsen 1973. Micula praemurus (Bukry 1973) Stradner and Steinmetz 1984, Pseudomicula quadratus Perch-Nielsen et al. 1978, and Semihololithus spp. are present consistently in common to frequent abundances in ODP holes 1050C and 1052E on the Blake Nose, but they are rare or absent from neritic sections in Coastal Plain cores. It is apparent that these species flourished in an open ocean setting, suggesting that differences in assemblage abundance and diversity between deep ocean and nearshore areas were controlled by paleoceanographic factors. These species are not used for biostratigraphy, but may be useful indicators of open ocean conditions. The line of correlation (LOC) for nine Coastal Plain cores clearly defines the Cretaceous-Tertiary (K/T) boundary unconformity at the top of the Maastrichtian section (Peedee Formation) and the Campanian-Maastrichtian (C/M) unconformity at the base of the Maastrichtian section (Peedee/Donoho Creek formational contact). The K/T boundary unconformity is undulatory in nature; updip Maastrichtian sections have been stripped to a greater depth than the downdip sections. The uppermost Campanian, all of the lowermost Maastrichtian, and the basal upper Maastrichtian sediments are missing from the study area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, M.; Lynn, K.G.
1996-07-01
The positrons from {beta}{sup +} decaying sources loss energyat a much faster rate than they annihilate. As the energy of the positrons drops, core excitations, plasmon excitation, electron/hole pair creation, and phonon scattering are the dominant processes of further energy loss.
9. INTERIOR OF LIVING ROOM SHOWING OPEN PANEL DOOR TO ...
9. INTERIOR OF LIVING ROOM SHOWING OPEN PANEL DOOR TO BEDROOM NUMBER ONE AT PHOTO RIGHT, 6-LIGHT OVER 1 LIGHT SASH WINDOW ON REAR WALL AT PHOTO LEFT CENTER. FIREPLACE ORIGINALLY OCCUPIED SPACE UNDER ROUND HEATER VENT HOLE AT PHOTO LEFT. VIEW TO NORTHWEST. - Rush Creek Hydroelectric System, Worker Cottage, Rush Creek, June Lake, Mono County, CA
Determining the Coefficient of Discharge for a Draining Container
ERIC Educational Resources Information Center
Hicks, Ashley; Slaton, William
2014-01-01
The flow of fluids through open containers is a topic studied frequently in introductory physics classes. A fluid mechanics class delves deeper into the topic of fluid flow through open containers with holes or barriers. The flow of a fluid jet out of a sharp-edged orifice rarely has the same area as the orifice due to a fluid flow phenomenon…
Molnár, K
2005-01-01
Metacestodes of Neogryporhynchus cheilancristrotus (Wedl, 1855) were found in the gut of some gibel carp (Carassius gibelio) specimens from a Hungarian water reservoir. Location of metacestodes in the freshly opened gut was marked with disseminated, red-coloured, pinhead-sized nodules in the anterior part of the intestine. In histological sections, metacestodes were found in a hole inside the propria layer of the intestinal folds. The worms were in direct contact with the host tissue without being encapsulated as a result of host reaction. In some specimens with extruded rostellum the rostellar hooks were bored into the host tissue and suckers grabbed pieces of the surrounding connective tissue. Around the worms, congested capillaries and formation of macrophages were seen in the lysed connective tissue.
Nonviolent unitarization: basic postulates to soft quantum structure of black holes
NASA Astrophysics Data System (ADS)
Giddings, Steven B.
2017-12-01
A first-principles approach to the unitarity problem for black holes is systematically explored, based on the postulates of 1) quantum mechanics 2) the ability to approximately locally divide quantum gravitational systems into subsystems 3) correspondence with quantum field theory predictions for appropriate observers and (optionally) 4) universality of new gravitational effects. Unitarity requires interactions between the internal state of a black hole and its surroundings that have not been identified in the field theory description; correspondence with field theory indicates that these are soft. A conjectured information-theoretic result for information transfer between subsystems, partly motivated by a perturbative argument, then constrains the minimum coupling size of these interactions of the quantum atmosphere of a black hole. While large couplings are potentially astronomically observable, given this conjecture one finds that the new couplings can be exponentially small in the black hole entropy, yet achieve the information transfer rate needed for unitarization, due to the large number of black hole internal states. This provides a new possible alternative to arguments for large effects near the horizon. If universality is assumed, these couplings can be described as small, soft, state-dependent fluctuations of the metric near the black hole. Open questions include that of the more fundamental basis for such an effective picture.
Binary Black Hole Mergers and Recoil Kicks
NASA Technical Reports Server (NTRS)
Centrella, Joan; Baker, J.; Choi, D.; Koppitz, M.; vanMeter, J.; Miller, C.
2006-01-01
Recent developments in numerical relativity have made it possible to follow reliably the coalescence of two black holes from near the innermost stable circular orbit to final ringdown. This opens up a wide variety of exciting astrophysical applications of these simulations. Chief among these is the net kick received when two unequal mass or spinning black holes merge. The magnitude of this kick has bearing on the production and growth of supermassive black holes during the epoch of structure formation, and on the retention of black holes in stellar clusters. Here we report the first accurate numerical calculation of this kick, for two nonspinning black holes in a 1.5:1 mass ratio, which is expected based on analytic considerations to give a significant fraction of the maximum possible recoil. We have performed multiple runs with different initial separations, orbital angular momenta, resolutions, extraction radii, and gauges. The full range of our kick speeds is 86-116 kilometers per second, and the most reliable runs give kicks between 86 and 97 kilometers per second. This is intermediate between the estimates from two recent post-Newtonian analyses and suggests that at redshifts z greater than 10, halos with masses less than 10(exp 9) M(sub SUN) will have difficulty retaining coalesced black holes after major mergers.
Distinguishing spin-aligned and isotropic black hole populations with gravitational waves.
Farr, Will M; Stevenson, Simon; Miller, M Coleman; Mandel, Ilya; Farr, Ben; Vecchio, Alberto
2017-08-23
The direct detection of gravitational waves from merging binary black holes opens up a window into the environments in which binary black holes form. One signature of such environments is the angular distribution of the black hole spins. Binary systems that formed through dynamical interactions between already-compact objects are expected to have isotropic spin orientations (that is, the spins of the black holes are randomly oriented with respect to the orbit of the binary system), whereas those that formed from pairs of stars born together are more likely to have spins that are preferentially aligned with the orbit. The best-measured combination of spin parameters for each of the four likely binary black hole detections GW150914, LVT151012, GW151226 and GW170104 is the 'effective' spin. Here we report that, if the magnitudes of the black hole spins are allowed to extend to high values, the effective spins for these systems indicate a 0.015 odds ratio against an aligned angular distribution compared to an isotropic one. When considering the effect of ten additional detections, this odds ratio decreases to 2.9 × 10 -7 against alignment. The existing preference for either an isotropic spin distribution or low spin magnitudes for the observed systems will be confirmed (or overturned) confidently in the near future.
NASA Technical Reports Server (NTRS)
Hyer, M. W.; Rust, R. J.; Waters, W. A., Jr.
1994-01-01
As a means of improving structural design, the concept of fabricating flat plates containing holes by incorporating curvilinear fiber trajectories to transmit loads around the hole is studied. In the present discussion this concept is viewed from a structural level, where access holes, windows, doors, and other openings are of significant size. This is opposed to holes sized for mechanical fasteners. Instead of cutting the important load-bearing fibers at the hole edge, as a conventional straightline design does, the curvilinear design preserves the load-bearing fibers by orienting them in smooth trajectories around the holes, their loading not ending abruptly at the hole edge. Though the concept of curvilinear fiber trajectories has been studied before, attempts to manufacture and test such plates have been limited. This report describes a cooperative effort between Cincinnati Milacron Inc., NASA Langley Research Center, and Virginia Polytechnic Institute and State University to design, manufacture, and test plates using the curvilinear fiber trajectory concept. The paper discusses details of the plate design, details of the manufacturing, and a summary of results from testing the plates with inplane compressive buckling loads and tensile loads. Comparisons between the curvilinear and conventional straightline fiber designs based on measurements and observation are made. Failure modes, failure loads, strains, deflections, and other key responses are compared.
Stress intensity factors for part-elliptical cracks emanating from dimpled rivet holes
NASA Astrophysics Data System (ADS)
Wang, Ailun; She, Chongmin; Lin, Gang; Zhou, You; Guo, Wanlin
2014-11-01
Detailed investigations on the stress intensity factors (SIFs) for corner cracks emanated from interference fitted dimpled rivet holes are conducted using three-dimensional finite element method. The influences of the crack length a, elliptical shape factor t, far-end stress S and interference magnitude δ on the stress intensity factors are systematically studied. The SIFs for corner cracks emanated from open holes are also investigated for comparisons. An empirical formula of the normalized SIF is proposed by use of the least square method for convenience of the engineering application, which is a function of the crack length a, elliptical shape factor t, far-end stress S, interference magnitude δ and the normalized elliptical centrifugal angle φn. Based on the empirical formula, a crack growth simulation for a rivet filled hole is conducted, which shows a good agreement with the test data.
A Tortuous Process of Surgical Treatment for a Large Calcified Chronic Subdural Hematoma.
Li, Huan; Mao, Xiang; Tao, Xiao-Gang; Li, Jing-Sheng; Liu, Bai-Yun; Wu, Zhen
2017-12-01
Calcified chronic subdural hematoma (CCSDH) is a rare disease for which no standard approach to treatment has been established. Reports covering both burr hole trepanation and craniotomy for CCSDH are rare. Furthermore, infection of CCSDH after the burr hole trepanation has not been reported in the literature. A 61-year-old man presented with left frontotemporoparietal CCSDH demonstrated on computed tomography (CT) scan. The patient underwent 2 separate burr hole trepanations with intraoperative irrigation and postoperative drainage. These procedures led to infection of the CCSDH. The patient eventually underwent an open craniotomy to provide complete removal of the hematoma. Owing to the complex contents of a CCSDH, burr hole trepanation cannot adequately drain the hematoma or relieve the mass effect. Craniotomy is a much more reliable approach for achieving complete resection of a CCSDH. Copyright © 2017 Elsevier Inc. All rights reserved.
Energy-efficient skylight structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dame, J.V.
1988-03-29
This patent describes an energy-efficient skylight structure for attaching to a ceiling having a hole therein. The structure includes a roof membrane of light translucent material. The improvement comprises: a framework being larger in size than the hole in the ceiling, the framework adapted to receive a light-diffusing panel; means for attaching the framework over the hole in the ceiling to support beams for the ceiling; gasket means between the framework and the ceiling for sealing the framework to the ceiling around the hole; a light-diffusing panel held by the framework; sealing means between the light-diffusing panel and the frameworkmore » for sealing the perimeter of the light diffusing panel to the framework; and a light-channeling means attached at one end to the ceiling around the opening on the side opposite the framework and at the other end around the light translucent material of the roof membrane.« less
How well can ultracompact bodies imitate black hole ringdowns?
NASA Astrophysics Data System (ADS)
Glampedakis, Kostas; Pappas, George
2018-02-01
The ongoing observations of merging black holes by the instruments of the fledging gravitational wave astronomy has opened the way for testing the general-relativistic Kerr black hole metric and, at the same time, for probing the existence of more speculative horizonless ultracompact objects. In this paper we quantify the difference that these two classes of objects may exhibit in the post-merger ringdown signal. By considering rotating systems in general relativity and assuming an eikonal limit and a third-order Hartle-Thorne slow-rotation approximation, we provide the first calculation of the early ringdown frequency and damping time as a function of the body's multipolar structure. Using the example of a gravastar, we show that the main ringdown signal may differ by as much as a few percent with respect to that of a Kerr black hole, a deviation that could be probed by near-future Advanced LIGO/Virgo searches.
No hair theorem in quasi-dilaton massive gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, De-Jun; Zhou, Shuang-Yong
We investigate the static, spherically symmetric black hole solutions in the quasi-dilaton model and its generalizations, which are scalar extended dRGT massive gravity with a shift symmetry. We show that, unlike generic scalar extended massive gravity models, these theories do not admit static, spherically symmetric black hole solutions until the theory parameters in the dRGT potential are fine-tuned. When fine-tuned, the geometry of the static, spherically symmetric black hole is necessarily that of general relativity and the quasi-dilaton field is constant across the spacetime. The fine-tuning and the no hair theorem apply to black holes with flat, anti-de Sitter ormore » de Sitter asymptotics. (C) 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP(3).« less
Black Hole Mergers and Gravitational Waves: Opening the New Frontier
NASA Technical Reports Server (NTRS)
Centrella, Joan
2012-01-01
The final merger of two black holes produces a powerful burst of gravitational waves, emitting more energy than all the stars in the observable universe combined. Since these mergers take place in the regime of strong dynamical gravity, computing the gravitational waveforms requires solving the full Einstein equations of general relativity on a computer. For more than 30 years, scientists tried to simulate these mergers using the methods of numerical relativity. The resulting computer codes were plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. In the past several years, this situation has changed dramatically, with a series of remarkable breakthroughs. This talk will highlight these breakthroughs and the resulting 'gold rush' of new results that is revealing the dynamics of binary black hole mergers, and their applications in gravitational wave detection, testing general relativity, and astrophysics.
No hair theorem in quasi-dilaton massive gravity
Wu, De-Jun; Zhou, Shuang-Yong
2016-04-11
We investigate the static, spherically symmetric black hole solutions in the quasi-dilaton model and its generalizations, which are scalar extended dRGT massive gravity with a shift symmetry. We show that, unlike generic scalar extended massive gravity models, these theories do not admit static, spherically symmetric black hole solutions until the theory parameters in the dRGT potential are fine-tuned. When fine-tuned, the geometry of the static, spherically symmetric black hole is necessarily that of general relativity and the quasi-dilaton field is constant across the spacetime. The fine-tuning and the no hair theorem apply to black holes with flat, anti-de Sitter ormore » de Sitter asymptotics. (C) 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP(3).« less
Weak cosmic censorship: as strong as ever.
Hod, Shahar
2008-03-28
Spacetime singularities that arise in gravitational collapse are always hidden inside of black holes. This is the essence of the weak cosmic censorship conjecture. The hypothesis, put forward by Penrose 40 years ago, is still one of the most important open questions in general relativity. In this Letter, we reanalyze extreme situations which have been considered as counterexamples to the weak cosmic censorship conjecture. In particular, we consider the absorption of scalar particles with large angular momentum by a black hole. Ignoring back reaction effects may lead one to conclude that the incident wave may overspin the black hole, thereby exposing its inner singularity to distant observers. However, we show that when back reaction effects are properly taken into account, the stability of the black-hole event horizon is irrefutable. We therefore conclude that cosmic censorship is actually respected in this type of gedanken experiments.
Study of hole characteristics in Laser Trepan Drilling of ZTA
NASA Astrophysics Data System (ADS)
Saini, Surendra K.; Dubey, Avanish K.; Upadhyay, B. N.; Choubey, A.
2018-07-01
Zirconia Toughened Alumina ceramic is widely used for aerospace components, combustion chambers, heat exchangers, bearings and pumps mainly due to its improved mechanical and thermal properties. To make holes in thick section Zirconia Toughened Alumina ceramics is a major challenge due to its unfavorable machining characteristics. Recent researches have explored that laser machining can overcome the machining limitations of advanced materials having improved mechanical properties. In present research, authors have analyzed the effect of Laser Trepan Drilling on hole characteristics of 6.0 mm thick Zirconia Toughened Alumina. Effect of significant process parameters on hole characteristics such as hole circularity at top and bottom, hole taper, and spatter size have been studied. The optimum ranges of these parameters have been suggested on the basis of empirical modeling and optimization.
Fracture Strength of Single-Crystal Silicon Carbide Microspecimens at Room and Elevated Temperature
NASA Technical Reports Server (NTRS)
Nemeth, Noel N.; Sharpe, William N., Jr.; Beheim, Glenn M.; Evans, Laura J.; Jadaan, Osama M.
2007-01-01
Three shapes of tensile specimens were tested--curved with a very low stress concentration factor and straight with either a circular hole or an elliptical hole. The nominal thickness was 125 micron with a net section 100 micron wide; the overall length of these microspecimens was 3.1 mm. They were fabricated by an improved version of deep reactive ion etching, which produced specimens with smooth sidewalls and cross-sections having a slightly trapezoidal shape that was exaggerated inside the holes. The novel test setup used a vertical load train extending into a resistance furnace. The specimens had wedge-shaped ends which fit into ceramic grips. The fixed grip was mounted on a ceramic post, and the movable grip was connected to a load cell and actuator outside the furnace with a ceramic-encased nichrome wire. The same arrangement was used for tests at 24 and at 1000 C. The strengths of the curved specimens for two batches of material (made with slightly different processes) were 0.66+/-0.12 GPa and 0.45+/-0.20 GPa respectively at 24 C with identical values at 1000 C. The fracture strengths of the circular-hole and elliptical-hole specimens (computed from the stress concentration factors and measured loads at failure) were approximately 1.2 GPa with slight decreases at the higher temperature. Fractographic examinations showed failures initiating on the surface--primarily at corners. Weibull predictions of fracture strengths for the hole specimens based on the properties of the curved specimens were reasonably effective for the circular holes, but not for the elliptical holes.
Interpretation of well logs in a carbonate aquifer
MacCary, L.M.
1978-01-01
This report describes the log analysis of the Randolph and Sabial core holes in the Edwards aquifer in Texas, with particular attention to the principles that can be applied generally to any carbonate system. The geologic and hydrologic data were obtained during the drilling of the two holes, from extensive laboratory analysis of the cores, and from numerous geophysical logs run in the two holes. Some logging methods are inherently superiors to others for the analysis of limestone and dolomite aquifers. Three such systems are the dentistry, neutron, and acoustic-velocity (sonic) logs. Most of the log analysis described here is based on the interpretation of suites of logs from these three systems. In certain instances, deeply focused resistivity logs can be used to good advantage in carbonate rock studies; this technique is used to computer the water resistivity in the Randolph core hole. The rocks penetrated by the Randolph core hole are typical of those carbonates that have undergone very little solution by recent ground-water circulation. There are few large solutional openings; the water is saline; and the rocks are dark, dolomitic, have pore space that is interparticle or intercrystalline, and contain unoxidized organic material. The total porosity of rocks in the saline zone is higher than that of rocks in the fresh-water aquifer; however, the intrinsic permeability is much less in the saline zone because there are fewer large solutional openings. The Sabinal core hole penetrates a carbonate environment that has experienced much solution by ground water during recent geologic time. The rocks have high secondary porosities controlled by sedimentary structures within the rock; the water is fresh; and the dominant rock composition is limestone. The relative percentages of limestone and dolomite, the average matrix (grain) densities of the rock mixtures , and the porosity of the rock mass can be calculated from density, neutron, and acoustic logs. With supporting data from resistivity logs, the formation water quality can be estimated, as well as the relative cementation or tortuosity of the rock. Many of these properties calculated from logs can be verified by analysis of the core available from test holes drilled in the saline and fresh water zones.
Getting a Kick Out of Numerical Relativity
NASA Technical Reports Server (NTRS)
Baker, John G.; Centrella, Joan; Dale, Choi; Koppitz, Michael; vanMeter, James R.; Miller, M. Coleman
2005-01-01
Recent developments in numerical relativity have made it possible to follow reliably the coalescence of two black holes from near the innermost stable circular orbit to final ringdown. This opens up a wide variety of exciting astrophysical applications of these simulations. Chief among these is the net kick received when two unequal mass or spinning black holes merge. The magnitude of this kick has bearing on the production and growth of supermassive black holes during the epoch of structure formation; and on the retention of black holes in stellar clusters. Here we report the first accurate numerical calculation of this kick, for two nonspinning black holes in a 1.5:1 mass ratio, which is expected based on analytic considerations to give a significant fraction of the maximum possible recoil. Our estimated kick is 10(exp 5) km/s with an error of less than 10%. This is intermediate between the estimates from two recent post-Newtonian analyses and suggests that at redshifts z greater than or approx. equal to 10, halos with masses less than or approx. equal to 10(exp 9) Solar Mass will have difficulty retaining coalesced black holes after major mergers.
Gamma Ray Bursts and the Birth of Black Holes
NASA Technical Reports Server (NTRS)
Gehrels, Neil
2009-01-01
Black holes have been predicted since the 1940's from solutions of Einstein's general relativity field equation. There is strong evidence of their existence from astronomical observations, but their origin has remained an open question of great interest. Gamma-ray bursts may the clue. They are powerful explosions, visible to high redshift, and appear to be the birth cries of black holes. The Swift and Fermi missions are two powerful NASA observatories currently in orbit that are discovering how gamma-ray bursts work. Evidence is building that the long and short duration subcategories of GRBs have very different origins: massive star core collapse to a black hole for long bursts and binary neutron star coalescence to a black hole for short bursts. The similarity to Type II and Ia supernovae originating from young and old stellar progenitors is striking. Bursts are tremendously luminous and are providing a new tool to study the high redshift universe. One Swift burst at z=8.3 is the most distant object known in the universe. The talk will present the latest gamma-ray burst results from Swift and Fermi and will highlight what they are teaching us about black holes and jet outflows.
Colgate, Stirling A.
1984-01-01
Deep drilling is facilitated by the following steps practiced separately or in any combination: (1) Periodically and sequentially fracturing zones adjacent the bottom of the bore hole with a thixotropic fastsetting fluid that is accepted into the fracture to overstress the zone, such fracturing and injection being periodic as a function of the progression of the drill. (2) Casing the bore hole with ductile, pre-annealed casing sections, each of which is run down through the previously set casing and swaged in situ to a diameter large enough to allow the next section to run down through it. (3) Drilling the bore hole using a drill string of a low density alloy and a high density drilling mud so that the drill string is partially floated.
NASA Technical Reports Server (NTRS)
Haas, J. E.; Kofskey, M. G.
1976-01-01
The aerodynamic performance of a low aspect ratio turbine vane designed with coolant flow ejection holes on the vane surfaces was experimentally determined in a full-annular cascade with the coolant ejection holes plugged. The purpose was to establish a baseline for comparison with tests where flow is ejected from the vane surfaces. The vanes were tested over a mean-section ideal critical velocity ratio range of 0.64 to 0.98. This ideal critical velocity ratio corresponds to the vane inlet total to vane aftermixed static pressure ratio at the mean section. The variations in vane efficiency and aftermixed flow conditions with circumferential and radial position were obtained.
Vertex Operator Formulation of Scattering around Black-Hole
NASA Astrophysics Data System (ADS)
Park, I. Y.
We propose a full-fledged open string framework that seems suited to study the black hole information paradox. We set up a configuration to compute the scattering amplitude of a IIB open string around a D5-brane. The D5-brane is situated at the origin of a transverse D3-brane. A string perturbation theory is employed where the geometry of the D5-brane is treated as a potential. We reason that the setup is capable of reconciling the unitary evolution of states and information loss that is measured by an observer on the D3 brane. With the configurations of these kinds, the information loss is an apparent phenomenon: it is just a manifestation of the fact that the D3-observer does not have access to the "hair" of the D5 black brane.
NASA Technical Reports Server (NTRS)
Norman, Timothy L.; Anglin, Colin; Gaskin, David; Patrick, Mike
1995-01-01
The unnotched and notched (open hole) tensile strength and failure mechanisms of two-dimensional (2D) triaxial braided composites were examined. The effect of notch size and notch position were investigated. Damage initiation and propagation in notched and unnotched coupons were also examined. Theory developed to predict the normal stress distribution near an open hole and failure for tape laminated composites was evaluated for its applicability to triaxial braided textile composite materials. Four fiber architectures were considered with different combinations of braid angle, longitudinal and braider yam size, and percentage of longitudinal yarns. Tape laminates equivalent to textile composites were also constructed for comparison. Unnotched tape equivalents were stronger than braided textiles but exhibited greater notch sensitivity. Notched textiles and tape equivalents have roughly the same strength at large notch sizes. Two common damage mechanisms were found: braider yams cracking and near notch longitudinal yarn splitting. Cracking was found to initiate in braider yarns in unnotched and notched coupons, and propagate in the direction of the braider yarns until failure. Longitudinal yarn splitting occurred in three of four architectures that were longitudinally fiber dominated. Damage initiation stress decreased with increasing braid angle. No significant differences in prediction of near notch stress between measured and predicted stress were weak for textiles with large braid angle. Notch strength could not be predicted using existing anisotropic theory for braided textiles due to their insensitivity to notch.
Holographic anisotropic background with confinement-deconfinement phase transition
NASA Astrophysics Data System (ADS)
Aref'eva, Irina; Rannu, Kristina
2018-05-01
We present new anisotropic black brane solutions in 5D Einstein-dilaton-two-Maxwell system. The anisotropic background is specified by an arbitrary dynamical exponent ν, a nontrivial warp factor, a non-zero dilaton field, a non-zero time component of the first Maxwell field and a non-zero longitudinal magnetic component of the second Maxwell field. The blackening function supports the Van der Waals-like phase transition between small and large black holes for a suitable first Maxwell field charge. The isotropic case corresponding to ν = 1 and zero magnetic field reproduces previously known solutions. We investigate the anisotropy influence on the thermodynamic properties of our background, in particular, on the small/large black holes phase transition diagram. We discuss applications of the model to the bottom-up holographic QCD. The RG flow interpolates between the UV section with two suppressed transversal coordinates and the IR section with the suppressed time and longitudinal coordinates due to anisotropic character of our solution. We study the temporal Wilson loops, extended in longitudinal and transversal directions, by calculating the minimal surfaces of the corresponding probing open string world-sheet in anisotropic backgrounds with various temperatures and chemical potentials. We find that dynamical wall locations depend on the orientation of the quark pairs, that gives a crossover transition line between confinement/deconfinement phases in the dual gauge theory. Instability of the background leads to the appearance of the critical points ( μ ϑ,b , T ϑ,b ) depending on the orientation ϑ of quark-antiquark pairs in respect to the heavy ions collision line.
Threading on ADI Cast Iron, Developing Tools and Conditions
NASA Astrophysics Data System (ADS)
Elósegui, I.; de Lacalle, L. N. López
2011-01-01
The present work is focussed on the improvement of the design and performance of the taps used for making threaded holes in ADI (Austempered Ductile Iron). It is divided in two steps: a) The development of a method valid to compare the taps wear without reaching the end of their life, measuring the required torque to make one threaded hole, after having made previously a significant number of threaded holes. The tap wear causes some teeth geometrical changes, that supposes an increase in the required torque and axial force. b) The taps wear comparison method is open to apply on different PVD coated taps, AlTiN, AlCrSiN, AlTiSiN, , and to different geometries.
A coronal hole and its identification as the source of a high velocity solar wind stream
NASA Technical Reports Server (NTRS)
Krieger, A. S.; Timothy, A. F.; Roelof, E. C.
1973-01-01
X-ray images of the solar corona showed a magnetically open structure in the low corona which extended from N20W20 to the south pole. Analysis of the measured X-ray intensities shows the density scale heights within the structure to be typically a factor of two less than that in the surrounding large scale magnetically closed regions. The structure is identified as a coronal hole. Wind measurements for the appropriate period were traced back to the sun by the method of instantaneous ideal spirals. A striking agreement was found between the Carrington longitude of the solar source of a recurrent high velocity solar wind stream and the position of the hole.
ERIC Educational Resources Information Center
Swirski, Hani; Baram-Tsabari, Ayelet
2015-01-01
Can questions sent to Open-Educational-Resource (OER) websites such as Ask-An-Expert serve as indicators for students' interest in science? This issue was examined using an online questionnaire which included an equal number of questions about the topics "space" and "nutrition" randomly selected from three different sources: a…
NASA Astrophysics Data System (ADS)
Blau, P. J.; Howe, J. Y.; Coffey, D. W.; Trejo, R. M.; Kenik, E. D.; Jolly, B. C.; Yang, N.
2012-08-01
Fine holes in metal alloys are employed for many important technological purposes, including cooling and the precise atomization of liquids. For example, they play an important role in the metering and delivery of fuel to the combustion chambers in energy-efficient, low-emission diesel engines. Electro-discharge machining (EDM) is one process employed to produce such holes. Since the hole shape and bore morphology can affect fluid flow, and holes also represent structural discontinuities in the tips of the spray nozzles, it is important to understand the microstructures adjacent to these holes, the features of the hole walls, and the nanomechanical properties of the material that was in some manner altered by the EDM hole-making process. Several techniques were used to characterize the structure and properties of spray-holes in a commercial injector nozzle. These include scanning electron microscopy, cross sectioning and metallographic etching, bore surface roughness measurements by optical interferometry, scanning electron microscopy, and transmission electron microscopy of recast EDM layers extracted with the help of a focused ion beam.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jing; Qin, Minchao; Tao, Hong
2015-03-23
In this letter, we report perovskite solar cells with thin dense Mg-doped TiO{sub 2} as hole-blocking layers (HBLs), which outperform cells using TiO{sub 2} HBLs in several ways: higher open-circuit voltage (V{sub oc}) (1.08 V), power conversion efficiency (12.28%), short-circuit current, and fill factor. These properties improvements are attributed to the better properties of Mg-modulated TiO{sub 2} as compared to TiO{sub 2} such as better optical transmission properties, upshifted conduction band minimum (CBM) and downshifted valence band maximum (VBM), better hole-blocking effect, and higher electron life time. The higher-lying CBM due to the modulation with wider band gap MgO and themore » formation of magnesium oxide and magnesium hydroxides together resulted in an increment of V{sub oc}. In addition, the Mg-modulated TiO{sub 2} with lower VBM played a better role in the hole-blocking. The HBL with modulated band position provided better electron transport and hole blocking effects within the device.« less
Automated coronal hole identification via multi-thermal intensity segmentation
NASA Astrophysics Data System (ADS)
Garton, Tadhg M.; Gallagher, Peter T.; Murray, Sophie A.
2018-01-01
Coronal holes (CH) are regions of open magnetic fields that appear as dark areas in the solar corona due to their low density and temperature compared to the surrounding quiet corona. To date, accurate identification and segmentation of CHs has been a difficult task due to their comparable intensity to local quiet Sun regions. Current segmentation methods typically rely on the use of single Extreme Ultra-Violet passband and magnetogram images to extract CH information. Here, the coronal hole identification via multi-thermal emission recognition algorithm (CHIMERA) is described, which analyses multi-thermal images from the atmospheric image assembly (AIA) onboard the solar dynamics observatory (SDO) to segment coronal hole boundaries by their intensity ratio across three passbands (171 Å, 193 Å, and 211 Å). The algorithm allows accurate extraction of CH boundaries and many of their properties, such as area, position, latitudinal and longitudinal width, and magnetic polarity of segmented CHs. From these properties, a clear linear relationship was identified between the duration of geomagnetic storms and coronal hole areas. CHIMERA can therefore form the basis of more accurate forecasting of the start and duration of geomagnetic storms.
Electromagnetic power of merging and collapsing compact objects
NASA Astrophysics Data System (ADS)
Lyutikov, Maxim
2011-06-01
Understanding possible electromagnetic signatures of merging and collapsing compact objects is important for identifying possible sources of the LIGO signal. Electromagnetic emission can be produced as a precursor to the merger, as a prompt emission during the collapse of a neutron star and at the spin-down stage of the resulting Kerr-Newman black hole. For the neutron star-neutron star mergers, the precursor power scales as L≈BNS2GMNSRNS8/(Rorb7c), while for the neutron star-black hole mergers, it is (GM/(c2RNS))2 times smaller. We demonstrate that the time evolution of the axisymmetric force-free magnetic fields can be expressed in terms of the hyperbolic Grad-Shafranov equation, and we formulate the generalization of Ferraro’s law of isorotation to time-dependent angular velocity. We find an exact nonlinear time-dependent Michel-type (split-monopole) structure of magnetospheres driven by spinning and collapsing neutron stars in Schwarzschild geometry. Based on this solution, we argue that the collapse of a neutron star into a black hole happens smoothly, without the natural formation of current sheets or other dissipative structures on the open field lines; thus, it does not allow the magnetic field to become disconnected from the star and escape to infinity. Therefore, as long as an isolated Kerr black hole can produce plasma and currents, it does not lose its open magnetic field lines. Its magnetospheric structure evolves towards a split monopole, and the black hole spins down electromagnetically (the closed field lines get absorbed by the hole). The “no-hair theorem,” which assumes that the outside medium is a vacuum, is not applicable in this case: highly conducting plasma introduces a topological constraint forbidding the disconnection of the magnetic field lines from the black hole. Eventually, a single random large scale spontaneous reconnection event will lead to magnetic field release, shutting down the electromagnetic black hole engine forever. Overall, the electromagnetic power in all the above cases is expected to be relatively small. We also discuss the nature of short gamma-ray bursts and suggest that if the magnetic field is amplified to ˜1014G during the merger or the core collapse, the similarity of the early afterglow properties of long and short gamma-ray bursts can be related to the fact that in both cases a spinning black hole can retain a magnetic field for a sufficiently long time to extract a large fraction of its rotational energy and produce high energy emission via the internal dissipation in the wind.
Zeng, Qingsen; Zhang, Xiaoyu; Feng, Xiaolei; Lu, Siyu; Chen, Zhaolai; Yong, Xue; Redfern, Simon A T; Wei, Haotong; Wang, Haiyu; Shen, Huaizhong; Zhang, Wei; Zheng, Weitao; Zhang, Hao; Tse, John S; Yang, Bai
2018-03-01
Cesium-based trihalide perovskites have been demonstrated as promising light absorbers for photovoltaic applications due to their superb composition stability. However, the large energy losses (E loss ) observed in inorganic perovskite solar cells has become a major hindrance impairing the ultimate efficiency. Here, an effective and reproducible method of modifying the interface between a CsPbI 2 Br absorber and polythiophene hole-acceptor to minimize the E loss is reported. It is demonstrated that polythiophene, deposited on the top of CsPbI 2 Br, can significantly reduce electron-hole recombination within the perovskite, which is due to the electronic passivation of surface defect states. In addition, the interfacial properties are improved by a simple annealing process, leading to significantly reduced energy disorder in polythiophene and enhanced hole-injection into the hole-acceptor. Consequently, one of the highest power conversion efficiency (PCE) of 12.02% from a reverse scan in inorganic mixed-halide perovskite solar cells is obtained. Modifying the perovskite films with annealing polythiophene enables an open-circuit voltage (V OC ) of up to 1.32 V and E loss of down to 0.5 eV, which both are the optimal values reported among cesium-lead mixed-halide perovskite solar cells to date. This method provides a new route to further improve the efficiency of perovskite solar cells by minimizing the E loss . © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xusheng; Moon, Seoksu; Gao, Jian
Fuel atomization and vaporization process play a critical role in determining the engine combustion and emission. The primary near-nozzle breakup is the vital link between the fuel emerging from the nozzle and the fully atomized spray. In this study, the near-nozzle spray characteristics of diesel injector with different umbrella angle (UA) were investigated using high-speed X-ray phase-contrast imaging and quantitative image processing. A classic ‘dumbbell’ profile of spray width (SW) composed of three stages: opening stage, semisteady stage and closing stage. The SW peak of two-hole injectors was more than twice of that of single-hole injector at the opening andmore » closing stages, corresponding to the hollow-cone spray. This indicated the vortex flow was formed with the increase of the UA. The higher injection pressure had little influence on the SW while led to earlier breakup closer to the nozzle. Significant fuel effect on the SW at higher needle lift was found. However, this effect could be neglect at lower needle lift due to the leading role of internal flow and cavitation on the near-field spray characteristics. In addition, the morphology-based breakup process was observed, which highlighted the important effect of internal flow on the spray development. The possibility of using hollow-cone spray in diesel injector was also discussed.« less
What's the point? Hole-ography in Poincaré AdS
NASA Astrophysics Data System (ADS)
Espíndola, Ricardo; Güijosa, Alberto; Landetta, Alberto; Pedraza, Juan F.
2018-01-01
In the context of the AdS/CFT correspondence, we study bulk reconstruction of the Poincaré wedge of AdS_3 via hole-ography, i.e., in terms of differential entropy of the dual CFT_2. Previous work had considered the reconstruction of closed or open spacelike curves in global AdS, and of infinitely extended spacelike curves in Poincaré AdS that are subject to a periodicity condition at infinity. Working first at constant time, we find that a closed curve in Poincaré is described in the CFT by a family of intervals that covers the spatial axis at least twice. We also show how to reconstruct open curves, points and distances, and obtain a CFT action whose extremization leads to bulk points. We then generalize all of these results to the case of curves that vary in time, and discover that generic curves have segments that cannot be reconstructed using the standard hole-ographic construction. This happens because, for the nonreconstructible segments, the tangent geodesics fail to be fully contained within the Poincaré wedge. We show that a previously discovered variant of the hole-ographic method allows us to overcome this challenge, by reorienting the geodesics touching the bulk curve to ensure that they all remain within the wedge. Our conclusion is that all spacelike curves in Poincaré AdS can be completely reconstructed with CFT data, and each curve has in fact an infinite number of representations within the CFT.
Outlook and emerging semiconducting materials for ambipolar transistors.
Bisri, Satria Zulkarnaen; Piliego, Claudia; Gao, Jia; Loi, Maria Antonietta
2014-02-26
Ambipolar or bipolar transistors are transistors in which both holes and electrons are mobile inside the conducting channel. This device allows switching among several states: the hole-dominated on-state, the off-state, and the electron-dominated on-state. In the past year, it has attracted great interest in exotic semiconductors, such as organic semiconductors, nanostructured materials, and carbon nanotubes. The ability to utilize both holes and electrons inside one device opens new possibilities for the development of more compact complementary metal-oxide semiconductor (CMOS) circuits, and new kinds of optoelectronic device, namely, ambipolar light-emitting transistors. This progress report highlights the recent progresses in the field of ambipolar transistors, both from the fundamental physics and application viewpoints. Attention is devoted to the challenges that should be faced for the realization of ambipolar transistors with different material systems, beginning with the understanding of the importance of interface modification, which heavily affects injections and trapping of both holes and electrons. The recent development of advanced gating applications, including ionic liquid gating, that open up more possibility to realize ambipolar transport in materials in which one type of charge carrier is highly dominant is highlighted. Between the possible applications of ambipolar field-effect transistors, we focus on ambipolar light-emitting transistors. We put this new device in the framework of its prospective for general lightings, embedded displays, current-driven laser, as well as for photonics-electronics interconnection. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Ahmadi Nadooshan, Afshin; Kalbasi, Rasool; Afrand, Masoud
2018-04-01
Perforated fins effects on the heat transfer rate of a circular tube are examined experimentally. An experimental system is set up through the wind tunnel and equipped with necessary measurement tools. Hot water passes through the finned tube and heat transfers to the fin-side air created using the wind tunnel with different velocities. Two fin sets of identical weight are installed on a circular tube with different outer diameters of 22 and 26 mm. The experiments are conducted at two different mass flow rates of the hot water and six Reynolds number of external air flow. Considering the four finned tubes and one no finned tube, a total of 60 tests are conducted. Results showed that with increasing the internal or external flow rates, the effect of larger cross-sectional area is greater. By opening holes on the fins, in addition to weight loss, the maximum heat transfer rate for perforated fins increases by 8.78% and 9.23% respectively for mass flow rates of 0.05 and 0.1 kg/s at low external Reynolds number. While, at high external Reynolds number, the holes reduces heat transfer by 8.4% and 10.6% for mass flow rates of 0.05 and 0.1 kg/s, respectively.
Commercial geophysical well logs from the USW G-1 drill hole, Nevada Test Site, Nevada
Muller, D.C.; Kibler, J.E.
1983-01-01
Drill hole USW G-1 was drilled at Yucca Mountain, Nevada Test Site, Nevada, as part of the ongoing exploration program for the Nevada Nuclear Waste Storage Investigations. Contract geophysical well logs run at USW G-1 show only limited stratigraphic correlations, but correlate reasonably well with the welding of the ash-flow and ash-fall tuffs. Rocks in the upper part of the section have highly variable physical properties, but are more uniform and predictably lower in the section.
Photographic copy of photograph (original print in possession of William ...
Photographic copy of photograph (original print in possession of William Langer Jewel Bearing Plant, Rolla, North Dakota). LARGE HOLE-OPENING - Turtle Mountain Ordnance Plant, 213 First Street Northwest, Rolla, Rolette County, ND
50 CFR 665.245 - Gear restrictions.
Code of Federal Regulations, 2012 CFR
2012-10-01
...) Panels must have at least four unobstructed circular holes no smaller than 67 mm in diameter, with... until the NWHI lobster season opens on July 1. (8) A vessel whose owner has a limited access permit...
50 CFR 665.245 - Gear restrictions.
Code of Federal Regulations, 2013 CFR
2013-10-01
...) Panels must have at least four unobstructed circular holes no smaller than 67 mm in diameter, with... until the NWHI lobster season opens on July 1. (8) A vessel whose owner has a limited access permit...
50 CFR 665.245 - Gear restrictions.
Code of Federal Regulations, 2014 CFR
2014-10-01
...) Panels must have at least four unobstructed circular holes no smaller than 67 mm in diameter, with... until the NWHI lobster season opens on July 1. (8) A vessel whose owner has a limited access permit...
16 CFR 1511.3 - Guard or shield requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... seconds. Any pacifier which can be completely drawn through an opening with dimensions no greater than....20 inches (5 millimeters) in minor dimension. The edge of any hole shall be no closer than 0.20...
16 CFR 1511.3 - Guard or shield requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... seconds. Any pacifier which can be completely drawn through an opening with dimensions no greater than....20 inches (5 millimeters) in minor dimension. The edge of any hole shall be no closer than 0.20...
16 CFR 1511.3 - Guard or shield requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... seconds. Any pacifier which can be completely drawn through an opening with dimensions no greater than....20 inches (5 millimeters) in minor dimension. The edge of any hole shall be no closer than 0.20...
Black Holes Traveling Exhibition: This Time, It's Personal.
NASA Astrophysics Data System (ADS)
Dussault, Mary E.; Braswell, E. L.; Sunbury, S.; Wasser, M.; Gould, R. R.
2012-01-01
How can you make a topic as abstract as black holes seem relevant to the life of the average museum visitor? In 2009, the Harvard-Smithsonian Center for Astrophysics developed a 2500 square foot interactive museum exhibition, "Black Holes: Space Warps & Time Twists,” with funding from the National Science Foundation and NASA. The exhibition has been visited by more than a quarter million museum-goers, and is about to open in its sixth venue at the Reuben H. Fleet Science Center in San Diego, California. We have found that encouraging visitors to adopt a custom black hole explorer's identity can help to make the science of black holes more accessible and meaningful. The Black Holes exhibition uses networked exhibit technology that serves to personalize the visitor experience, to support learning over time including beyond the gallery, and to provide a rich quantitative source of embedded evaluation data. Visitors entering the exhibition create their own bar-coded "Black Holes Explorer's Card” which they use throughout the exhibition to collect and record images, movies, their own predictions and conclusions, and other black hole artifacts. This digital database of personal discoveries grows as visitors navigate through the gallery, and an automated web-content authoring system creates a personalized online journal of their experience that they can access once they get home. We report here on new intriguing results gathered from data generated by 112,000 visitors across five different venues. For example, an initial review of the data reveals correlations between visitors’ black hole explorer identity choices and their engagement with the exhibition. We will also discuss correlations between learning gains and personalization.
NASA Astrophysics Data System (ADS)
Quang Truong, Xuan; Luan Truong, Xuan; Nguyen, Tuan Anh; Nguyen, Dinh Tuan; Cong Nguyen, Chi
2017-12-01
The objective of this study is to design and implement a WebGIS Decision Support System (WDSS) for reducing uncertainty and supporting to improve the quality of exploration decisions in the Sin-Quyen copper mine, northern Vietnam. The main distinctive feature of the Sin-Quyen deposit is an unusual composition of ores. Computer and software applied to the exploration problem have had a significant impact on the exploration process over the past 25 years, but up until now, no online system has been undertaken. The system was completely built on open source technology and the Open Geospatial Consortium Web Services (OWS). The input data includes remote sensing (RS), Geographical Information System (GIS) and data from drillhole explorations, the drillhole exploration data sets were designed as a geodatabase and stored in PostgreSQL. The WDSS must be able to processed exploration data and support users to access 2-dimensional (2D) or 3-dimensional (3D) cross-sections and map of boreholles exploration data and drill holes. The interface was designed in order to interact with based maps (e.g., Digital Elevation Model, Google Map, OpenStreetMap) and thematic maps (e.g., land use and land cover, administrative map, drillholes exploration map), and to provide GIS functions (such as creating a new map, updating an existing map, querying and statistical charts). In addition, the system provides geological cross-sections of ore bodies based on Inverse Distance Weighting (IDW), nearest neighbour interpolation and Kriging methods (e.g., Simple Kriging, Ordinary Kriging, Indicator Kriging and CoKriging). The results based on data available indicate that the best estimation method (of 23 borehole exploration data sets) for estimating geological cross-sections of ore bodies in Sin-Quyen copper mine is Ordinary Kriging. The WDSS could provide useful information to improve drilling efficiency in mineral exploration and for management decision making.
Scalar Dyon Production In Near Extremal Kerr-Newman Black Holes
NASA Astrophysics Data System (ADS)
Chen, Chiang-Mei; Kim, Sang Pyo; Sun, Jia-Rui; Tang, Fu-Yi
2018-01-01
The pair production of charged scalar dyons is analytically studied in near-extremal Kerr-Newman (KN) dyonic black holes. The pair production rate and its thermal interpretation are given. Moreover, the absorption cross section ratio has been compared with the two-point function of the conformal field theories (CFTs) holographically dual to the near horizon geometry, namely warped AdS3, of the near extremal Kerr-Newman black holes to verify the threefold dyonic KN/CFTs correspondence.
NASA Astrophysics Data System (ADS)
Vairamuthu, G.; Sundarapandian, S.; Thangagiri, B.
2016-05-01
Improved thermal efficiency, reduction in fuel consumption and pollutant emissions from biodiesel fueled diesel engines are important issues in engine research. To achieve these, fast and perfect air-biodiesel mixing are the most important requirements. The mixing quality of biodiesel spray with air can be improved by better design of the injection system. The diesel engine tests were conducted on a 4-stroke tangentially vertical single cylinder (TV1) kirloskar 1500 rpm water cooled direct injection diesel engine with eddy current dynamometer. In this work, by varying different nozzles having spray holes of 3 (base, Ø = 0.280 mm), 4 (modified, Ø = 0.220 mm) and 5 (modified, Ø = 0.240 mm) holes, with standard static injection timing of 23° bTDC and nozzle opening pressure (NOP) of 250 bar maintained as constant throughout the experiment under steady state at full load condition of the engine. The effect of varying different nozzle configuration (number of holes), on the combustion, performance and exhaust emissions, using a blend of calophyllum inophyllum methyl ester by volume in diesel were evaluated. The test results showed that improvement in terms of brake thermal efficiency and specific fuel consumption for 4 holes and 5 holes nozzle operated at NOP 250 bar. Substantial improvements in the reduction of emissions levels were also observed for 5 holes nozzle operated at NOP 250 bar.
Supersymmetry production from a TeV scale black hole at CERN LHC
NASA Astrophysics Data System (ADS)
Chamblin, Andrew; Cooper, Fred; Nayak, Gouranga C.
2004-10-01
If the fundamental Planck scale is near a TeV, then we should expect to see TeV scale black holes at the CERN LHC. Similarly, if the scale of supersymmetry (SUSY) breaking is sufficiently low, then we might expect to see light supersymmetric particles in the next generation of colliders. If the mass of the supersymmetric particle is of order a TeV and is comparable to the temperature of a typical TeV scale black hole, then such sparticles will be copiously produced via Hawking radiation: The black hole will act as a resonance for sparticles, among other things. In this paper we compare various signatures for SUSY production at LHC, and we contrast the situation where the sparticles are produced directly via parton fusion processes with the situation where they are produced indirectly through black hole resonances. We found that black hole resonances provide a larger source for heavy mass SUSY (squark and gluino) production than the direct perturbative QCD-SUSY production via parton fusion processes depending on the values of the Planck mass and black hole mass. Hence black hole production at LHC may indirectly act as a dominant channel for SUSY production. We also found that the differential cross section dσ/dpt for SUSY production increases as a function of the pt (up to pt equal to about 1TeV or more) of the SUSY particles (squarks and gluinos), which is in sharp contrast with the pQCD predictions where the differential cross section dσ/dpt decreases as pt increases for high pt about 1TeV or higher. This is a feature for any particle emission from a TeV scale black hole as long as the temperature of the black hole is very high (˜TeV). Hence the measurement of increase of dσ/dpt with pt for pt up to about 1TeV or higher for final state particles might be a useful signature for black hole production at LHC.
Gravitational Waves and Multi-Messenger Astronomy
NASA Technical Reports Server (NTRS)
Centrella, Joan M.
2010-01-01
Gravitational waves are produced by a wide variety of sources throughout the cosmos, including the mergers of black hole and neutron star binaries/compact objects spiraling into central black holes in galactic nuclei, close compact binaries/and phase transitions and quantum fluctuations in the early universe. Observing these signals can bring new, and often very precise, information about their sources across vast stretches of cosmic time. In this talk we will focus on thee opening of this gravitational-wave window on the universe, highlighting new opportunities for discovery and multi-messenger astronomy.
NASA Astrophysics Data System (ADS)
Samardzija, Nikola
1995-01-01
A simple three dimensional physical model is proposed to qualitatively address a particular type of dynamics evolving on toroidal structures. In the phase space this dynamics creates appearance of a worm-hole through which a chaotic, quasiperiodic and periodic behaviors are formed. An intriguing topological property of such a system is that it possesses no steady state solutions. As such, it opens some interesting questions in the bifurcation theory. The model also offers a novel qualitative tool for explaining some recently reported experimental and simulation results observed in physics, chemistry and biology.
What can we learn about cosmic structure from gravitational waves?
NASA Technical Reports Server (NTRS)
Centrella, Joan M.
2003-01-01
Observations of low frequency gravitational waves by the space-based LISA mission will open a new observational window on the early universe and the emergence of structure. LISA will observe the dynamical coalescence of massive black hole binaries at high redshifts, giving an unprecedented look at the merger history of galaxies and the reionization epoch. LISA will also observe gravitational waves from the collapse of supermassive stars to form black holes, and will map the spacetime in the central regions of galaxy cusps at high precision.
30 CFR 18.29 - Access openings and covers, including unused lead-entrance holes.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT... in use shall be closed with metal plugs secured by spot welding, brazing, or equivalent. (See Figure...
Vaginal fistula Overview A vaginal fistula is an abnormal opening that connects your vagina to another organ, such as your bladder, colon or rectum. Your ... describe the condition as a hole in your vagina that allows stool or urine to pass through ...
NASA Technical Reports Server (NTRS)
Davidson, Paul; Pineda, Evan J.; Heinrich, Christian; Waas, Anthony M.
2013-01-01
The open hole tensile and compressive strengths are important design parameters in qualifying fiber reinforced laminates for a wide variety of structural applications in the aerospace industry. In this paper, we present a unified model that can be used for predicting both these strengths (tensile and compressive) using the same set of coupon level, material property data. As a prelude to the unified computational model that follows, simplified approaches, referred to as "zeroth order", "first order", etc. with increasing levels of fidelity are first presented. The results and methods presented are practical and validated against experimental data. They serve as an introductory step in establishing a virtual building block, bottom-up approach to designing future airframe structures with composite materials. The results are useful for aerospace design engineers, particularly those that deal with airframe design.
Evolution of Large-Scale Magnetic Fields and State Transitions in Black Hole X-Ray Binaries
NASA Astrophysics Data System (ADS)
Wang, Ding-Xiong; Huang, Chang-Yin; Wang, Jiu-Zhou
2010-04-01
The state transitions of black hole (BH) X-ray binaries are discussed based on the evolution of large-scale magnetic fields, in which the combination of three energy mechanisms are involved: (1) the Blandford-Znajek (BZ) process related to the open field lines connecting a rotating BH with remote astrophysical loads, (2) the magnetic coupling (MC) process related to the closed field lines connecting the BH with its surrounding accretion disk, and (3) the Blandford-Payne (BP) process related to the open field lines connecting the disk with remote astrophysical loads. It turns out that each spectral state of the BH binaries corresponds to each configuration of magnetic field in BH magnetosphere, and the main characteristics of low/hard (LH) state, hard intermediate (HIM) state and steep power law (SPL) state are roughly fitted based on the evolution of large-scale magnetic fields associated with disk accretion.
Social Cohesion, Structural Holes, and a Tale of Two Measures
NASA Astrophysics Data System (ADS)
Latora, V.; Nicosia, V.; Panzarasa, P.
2013-05-01
In the social sciences, the debate over the structural foundations of social capital has long vacillated between two positions on the relative benefits associated with two types of social structures: closed structures, rich in third-party relationships, and open structures, rich in structural holes and brokerage opportunities. In this paper, we engage with this debate by focusing on the measures typically used for formalising the two conceptions of social capital: clustering and effective size. We show that these two measures are simply two sides of the same coin, as they can be expressed one in terms of the other through a simple functional relation. Building on this relation, we then attempt to reconcile closed and open structures by proposing a new measure, Simmelian brokerage, that captures opportunities of brokerage between otherwise disconnected cohesive groups of contacts. Implications of our findings for research on social capital and complex networks are discussed.
Sectional device handling tool
Candee, Clark B.
1988-07-12
Apparatus for remotely handling a device in an irradiated underwater environment includes a plurality of tubular sections interconnected end-to-end to form a handling structure, the bottom section being adapted for connection to the device. A support section is connected to the top tubular section and is adapted to be suspended from an overhead crane. Each section is flanged at its opposite ends. Axially retractable bolts in each bottom flange are threadedly engageable with holes in the top flange of an adjacent section, each bolt being biased to its retracted position and retained in place on the bottom flange. Guide pins on each top flange cooperate with mating holes on adjacent bottom flanges to guide movement of the parts to the proper interconnection orientation. Each section carries two hydraulic line segments provided with quick-connect/disconnect fittings at their opposite ends for connection to the segments of adjacent tubular sections upon interconnection thereof to form control lines which are connectable to the device and to an associated control console.
Hole 504B reclaimed for future drilling
NASA Astrophysics Data System (ADS)
Leg 137 Scientific Drilling Party
Hole 504B, perhaps the most important in situ reference section for the structure and composition of the oceanic crust, has been reopened for future drilling and downhole measurements after remedial operations during Leg 137 of the Ocean Drilling Program. By far the deepest penetration into oceanic crust, Hole 504B had been feared lost when a large diamond bit and assorted hardware (“junk”) broke off in the bottom of the hole at the end of ODP Leg 111 in 1986. Since then ODP's drill ship, JOIDES Resolution, has circumnavigated the globe, with no opportunity to redress this situation. But the objective of deep penetration into the oceanic crust and the hole itself are considered so important by marine Earth scientists that remedial measures in Hole 504B were undertaken as soon as the drill ship returned to the eastern Pacific. These measures succeeded better than had been hoped. Hole 504B was reopened after less than a week of cleaning operations, which included grappling for the lost junk with tools to pull it from the hole (called “fishing”) and grinding or milling the junk away.
Brown, Gillian R.; Nemes, Christopher
2008-01-01
The exploratory behaviour of laboratory rodents is of interest within a number of areas of behavioural pharmacology. However, how best to measure exploratory behaviour in rodents remains a contentious issue. Many unconditioned tests, such as the open field, potentially confound general locomotor activity with exploration. The hole-board apparatus appears to avoid this confound, as head-dipping into holes in the floor is assumed to be a valid measure of the subject's attraction towards novelty (neophilia). This study aimed to investigate whether head-dipping should be considered a valid measure of neophilia by comparing performance of adult male and female Lister hooded rats on the hole-board task (a) over repeated sessions and (b) when novel objects were absent or present underneath the holes. The results show that head-dipping initially decreased across repeated exposures, while time spent in the aversive central area increased. No change in head-dipping was seen in response to objects being placed underneath the holes. Rather than being a measure of neophilia, these results support the hypothesis that head-dipping represents an escape response, which declines as the subject becomes less fearful. These results are compared with previous studies of repeated exposure to other novel environments. PMID:18406075
2011-07-06
biaxial compressive strain is known to split the light- and heavy-hole bands, reducing the interband scattering and causing the light hole band to move up...and heterostructure design are presented. In Section V, we use temperature- dependent measurements and pulsed I-V measurements to analyze the results...minimal in our devices. The temperature dependence of hole mobility was stud- ied for both the surface and buried channel devices, as plot- ted in Fig
Chaos in pseudo-Newtonian black holes with halos
NASA Astrophysics Data System (ADS)
Guéron, E.; Letelier, P. S.
2001-03-01
Newtonian as well as special relativistic dynamics are used to study the stability of orbits of a test particle moving around a black hole with a dipolar halo. The black hole is modeled by either the usual monopole potential or the Paczyńki-Wiita pseudo-Newtonian potential. The full general relativistic similar case is also considered. The Poincaré section method and the Lyapunov characteristic exponents show that the orbits for the pseudo-Newtonian potential models are more unstable than the corresponding general relativistic geodesics.
Predicting Binary Black Hole Collisions Using Numerical Methods in Collaboration with LIGO
NASA Astrophysics Data System (ADS)
Afshari, Nousha; Lovelace, Geoffrey
2015-04-01
Detecting astronomical gravitational waves will soon open a new window on the universe. The effects of gravitational waves have already been seen indirectly, but a direct observation of these waves will test Einstein's theory of general relativity under the most extreme conditions. The Laser Interferometer Gravitational-Wave Observatory, or LIGO, will soon begin searching for gravitational waves, and the first direct detections are likely in the next few years. To help LIGO detect as many gravitational waves as possible, a major research effort is underway to accurately predict the expected waves. In this presentation, I will discuss new supercomputer simulations of merging black holes--some of the brightest sources of gravitational waves--that I have completed using the Spectral Einstein Code (http://www.black-holes.org/SpEC.html).
Using Coronal Hole Maps to Constrain MHD Models
NASA Astrophysics Data System (ADS)
Caplan, Ronald M.; Downs, Cooper; Linker, Jon A.; Mikic, Zoran
2017-08-01
In this presentation, we explore the use of coronal hole maps (CHMs) as a constraint for thermodynamic MHD models of the solar corona. Using our EUV2CHM software suite (predsci.com/chd), we construct CHMs from SDO/AIA 193Å and STEREO-A/EUVI 195Å images for multiple Carrington rotations leading up to the August 21st, 2017 total solar eclipse. We then contruct synoptic CHMs from synthetic EUV images generated from global thermodynamic MHD simulations of the corona for each rotation. Comparisons of apparent coronal hole boundaries and estimates of the net open flux are used to benchmark and constrain our MHD model leading up to the eclipse. Specifically, the comparisons are used to find optimal parameterizations of our wave turbulence dissipation (WTD) coronal heating model.
2016-10-27
The difference in features that are visible in different wavelengths of extreme ultraviolet light can be stunning as we see when we compare very large coronal holes, easily seen in the AIA 171 image (colorized bronze) yet hardly perceptible in the AIA 304 image (colorized red). Both were taken at just about the same time (Oct. 27, 2016). Coronal holes are areas of open magnetic field that carry solar wind out into space. In fact, these holes are currently causing a lot of geomagnetic activity here on Earth. The bronze image wavelength captures material that is much hotter and further up in the corona than the red image. The comparison dramatizes the value of observing the sun in multiple wavelengths of light. Movies are available at http://photojournal.jpl.nasa.gov/catalog/PIA15377