Sample records for open ocean wave

  1. Quantifying the Role of Atmospheric Forcing in Ice Edge Retreat and Advance Including Wind-Wave Coupling

    DTIC Science & Technology

    2015-09-30

    Quantifying the Role of Atmospheric Forcing in Ice Edge Retreat and Advance Including Wind- Wave Coupling Peter S. Guest (NPS Technical Contact) Naval...surface fluxes and ocean waves in coupled models in the Beaufort and Chukchi Seas. 2. Understand the physics of heat and mass transfer from the ocean...to the atmosphere. 3. Improve forecasting of waves on the open ocean and in the marginal ice zone. 2 OBJECTIVES 1. Quantifying the open-ocean

  2. Turbulence Scaling Comparisons in the Ocean Surface Boundary Layer

    NASA Astrophysics Data System (ADS)

    Esters, L.; Breivik, Ø.; Landwehr, S.; ten Doeschate, A.; Sutherland, G.; Christensen, K. H.; Bidlot, J.-R.; Ward, B.

    2018-03-01

    Direct observations of the dissipation rate of turbulent kinetic energy, ɛ, under open ocean conditions are limited. Consequently, our understanding of what chiefly controls dissipation in the open ocean, and its functional form with depth, is poorly constrained. In this study, we report direct open ocean measurements of ɛ from the Air-Sea Interaction Profiler (ASIP) collected during five different cruises in the Atlantic Ocean. We then combine these data with ocean-atmosphere flux measurements and wave information in order to evaluate existing turbulence scaling theories under a diverse set of open ocean conditions. Our results do not support the presence of a "breaking" or a "transition layer," which has been previously suggested. Instead, ɛ decays as |z|-1.29 over the depth interval, which was previously defined as "transition layer," and as |z|-1.15 over the mixing layer. This depth dependency does not significantly vary between nonbreaking or breaking wave conditions. A scaling relationship based on the friction velocity, the wave age, and the significant wave height describes the observations best for daytime conditions. For conditions during which convection is important, it is necessary to take buoyancy forcing into account.

  3. Open Ocean Internal Waves, South China Sea

    NASA Technical Reports Server (NTRS)

    1989-01-01

    These open ocean internal waves were seen in the south China Sea (19.5N, 114.5E). These sets of internal waves most likely coincide with tidal periods about 12 hours apart. The wave length (distance from crest to crest) varies between 1.5 and 5.0 miles and the crest lengths stretch across and beyond this photo for over 75 miles. At lower right, the surface waves are moving at a 30% angle to the internal waves, with parallel low level clouds.

  4. Open ocean Internal Waves, Namibia Coast, Africa.

    NASA Image and Video Library

    1990-12-10

    These open ocean Internal Waves were seen off the Namibia Coast, Africa (23.0S, 14.0E). The periodic and regularly spaced sets of internal waves most likely coincide with tidal periods about 12 hours apart. The wave length (distance from crest to crest) varies between 1.5 and 5.0 miles and the crest lengths stretch across and beyond the distance of the photo. The waves are intersecting the Namibia coastline at about a 30 degree angle.

  5. Open ocean Internal Waves, Namibia Coast, Africa.

    NASA Technical Reports Server (NTRS)

    1990-01-01

    These open ocean Internal Waves were seen off the Namibia Coast, Africa (23.0S, 14.0E). The periodic and regularly spaced sets of internal waves most likely coincide with tidal periods about 12 hours apart. The wave length (distance from crest to crest) varies between 1.5 and 5.0 miles and the crest lengths stretch across and beyond the distance of the photo. The waves are intersecting the Namibia coastline at about a 30 degree angle.

  6. Open-Ocean and Coastal Properties of Recent Major Tsunamis

    NASA Astrophysics Data System (ADS)

    Rabinovich, A.; Thomson, R.; Zaytsev, O.

    2017-12-01

    The properties of six major tsunamis during the period 2009-2015 (2009 Samoa; 2010 Chile; 2011 Tohoku; 2012 Haida Gwaii; 2014 and 2015 Chile) were thoroughly examined using coastal data from British Columbia, the U.S. West Coast and Mexico, and offshore open-ocean DART and NEPTUNE stations. Based on joint spectral analyses of the tsunamis and background noise, we have developed a method to suppress the influence of local topography and to use coastal observations to determine the underlying spectra of tsunami waves in the deep ocean. The "reconstructed" open-ocean tsunami spectra were found to be in close agreement with the actual tsunami spectra evaluated from the analysis of directly measured open-ocean tsunami records. We have further used the spectral estimates to parameterize tsunamis based on their integral open-ocean spectral characteristics. Three key parameters are introduced to describe individual tsunami events: (1) Integral open-ocean energy; (2) Amplification factor (increase of the mean coastal tsunami variance relative to the open-ocean variance); and (3) Tsunami colour, the frequency composition of the open-ocean tsunami waves. In particular, we found that the strongest tsunamis, associated with large source areas (the 2010 Chile and 2011 Tohoku) are "reddish" (indicating the dominance of low-frequency motions), while small-source events (the 2009 Samoa and 2012 Haida Gwaii) are "bluish" (indicating strong prevalence of high-frequency motions).

  7. Open ocean Internal Waves, Namibia Coast, Africa.

    NASA Technical Reports Server (NTRS)

    1990-01-01

    These open ocean Internal Waves were seen off the Namibia Coast, Africa (19.5S, 11.5E). The periodic and regularly spaced sets of incoming internal appear to be diffracting against the coastline and recombining to form a network of interference patterns. They seem to coincide with tidal periods about 12 hours apart and wave length (distance from crest to crest) varies between 1.5 and 5.0 miles and the crest lengths stretch beyond the image.

  8. Open ocean Internal Waves, Namibia Coast, Africa.

    NASA Image and Video Library

    1990-12-10

    These open ocean Internal Waves were seen off the Namibia Coast, Africa (19.5S, 11.5E). The periodic and regularly spaced sets of incoming internal appear to be diffracting against the coastline and recombining to form a network of interference patterns. They seem to coincide with tidal periods about 12 hours apart and wave length (distance from crest to crest) varies between 1.5 and 5.0 miles and the crest lengths stretch beyond the image.

  9. Near-inertial waves and deep ocean mixing

    NASA Astrophysics Data System (ADS)

    Shrira, V. I.; Townsend, W. A.

    2013-07-01

    For the existing pattern of global oceanic circulation to exist, there should be sufficiently strong turbulent mixing in the abyssal ocean, the mechanisms of which are not well understood as yet. The review discusses a plausible mechanism of deep ocean mixing caused by near-inertial waves in the abyssal ocean. It is well known how winds in the atmosphere generate near-inertial waves in the upper ocean, which then propagate downwards losing their energy in the process; only a fraction of the energy at the surface reaches the abyssal ocean. An open question is whether and, if yes, how these weakened inertial motions could cause mixing in the deep. We review the progress in the mathematical description of a mechanism that results in an intense breaking of near-inertial waves near the bottom of the ocean and thus enhances the mixing. We give an overview of the present state of understanding of the problem covering both the published and the unpublished results; we also outline the key open questions. For typical ocean stratification, the account of the horizontal component of the Earth's rotation leads to the existence of near-bottom wide waveguides for near-inertial waves. Due to the β-effect these waveguides are narrowing in the poleward direction. Near-inertial waves propagating poleward get trapped in the waveguides; we describe how in the process these waves are focusing more and more in the vertical direction, while simultaneously their group velocity tends to zero and wave-induced vertical shear significantly increases. This causes the development of shear instability, which is interpreted as wave breaking. Remarkably, this mechanism of local intensification of turbulent mixing in the abyssal ocean can be adequately described within the framework of linear theory. The qualitative picture is similar to wind wave breaking on a beach: the abyssal ocean always acts as a surf zone for near-inertial waves.

  10. A baroclinic quasigeostrophic open ocean model

    NASA Technical Reports Server (NTRS)

    Miller, R. N.; Robinson, A. R.; Haidvogel, D. B.

    1983-01-01

    A baroclinic quasigeostrophic open ocean model is presented, calibrated by a series of test problems, and demonstrated to be feasible and efficient for application to realistic mid-oceanic mesoscale eddy flow regimes. Two methods of treating the depth dependence of the flow, a finite difference method and a collocation method, are tested and intercompared. Sample Rossby wave calculations with and without advection are performed with constant stratification and two levels of nonlinearity, one weaker than and one typical of real ocean flows. Using exact analytical solutions for comparison, the accuracy and efficiency of the model is tabulated as a function of the computational parameters and stability limits set; typically, errors were controlled between 1 percent and 10 percent RMS after two wave periods. Further Rossby wave tests with realistic stratification and wave parameters chosen to mimic real ocean conditions were performed to determine computational parameters for use with real and simulated data. Finally, a prototype calculation with quasiturbulent simulated data was performed successfully, which demonstrates the practicality of the model for scientific use.

  11. Topographic coupling of surface and internal Kelvin waves. [of ocean

    NASA Technical Reports Server (NTRS)

    Chao, S.-Y.

    1980-01-01

    An analysis is presented for computing the diffraction of barotropic Kelvin waves by a localized topographical irregularity on flat-bottom ocean with an arbitrary vertical stratification. It was shown that all baroclinic Kelvin waves will be generated downstream of the bump, with the first baroclinic mode having the largest amplitude. The Poincare waves predominate in the lowest modes, and are more directionally anisotropic. It was concluded that baroclinic Poincare waves radiating offshore from the bump topography could contribute to the internal wave field in the open ocean and provide an alternative mechanism to dissipate the barotropic tides.

  12. Real world ocean rogue waves explained without the modulational instability.

    PubMed

    Fedele, Francesco; Brennan, Joseph; Ponce de León, Sonia; Dudley, John; Dias, Frédéric

    2016-06-21

    Since the 1990s, the modulational instability has commonly been used to explain the occurrence of rogue waves that appear from nowhere in the open ocean. However, the importance of this instability in the context of ocean waves is not well established. This mechanism has been successfully studied in laboratory experiments and in mathematical studies, but there is no consensus on what actually takes place in the ocean. In this work, we question the oceanic relevance of this paradigm. In particular, we analyze several sets of field data in various European locations with various tools, and find that the main generation mechanism for rogue waves is the constructive interference of elementary waves enhanced by second-order bound nonlinearities and not the modulational instability. This implies that rogue waves are likely to be rare occurrences of weakly nonlinear random seas.

  13. Real world ocean rogue waves explained without the modulational instability

    PubMed Central

    Fedele, Francesco; Brennan, Joseph; Ponce de León, Sonia; Dudley, John; Dias, Frédéric

    2016-01-01

    Since the 1990s, the modulational instability has commonly been used to explain the occurrence of rogue waves that appear from nowhere in the open ocean. However, the importance of this instability in the context of ocean waves is not well established. This mechanism has been successfully studied in laboratory experiments and in mathematical studies, but there is no consensus on what actually takes place in the ocean. In this work, we question the oceanic relevance of this paradigm. In particular, we analyze several sets of field data in various European locations with various tools, and find that the main generation mechanism for rogue waves is the constructive interference of elementary waves enhanced by second-order bound nonlinearities and not the modulational instability. This implies that rogue waves are likely to be rare occurrences of weakly nonlinear random seas. PMID:27323897

  14. Gas exchange in the ice zone: the role of small waves and big animals

    NASA Astrophysics Data System (ADS)

    Loose, B.; Takahashi, A.; Bigdeli, A.

    2016-12-01

    The balance of air-sea gas exchange and net biological carbon fixation determine the transport and transformation of carbon dioxide and methane in the ocean. Air-sea gas exchange is mostly driven by upper ocean physics, but biology can also play a role. In the open ocean, gas exchange increases proportionate to the square of wind speed. When sea ice is present, this dependence breaks down in part because breaking waves and air bubble entrainment are damped out by interactions between sea ice and the wave field. At the same time, sea ice motions, formation, melt, and even sea ice-associated organisms can act to introduce turbulence and air bubbles into the upper ocean, thereby enhancing air-sea gas exchange. We take advantage of the knowledge advances of upper ocean physics including bubble dynamics to formulate a model for air-sea gas exchange in the sea ice zone. Here, we use the model to examine the role of small-scale waves and diving animals that trap air for insulation, including penguins, seals and polar bears. We compare these processes to existing parameterizations of wave and bubble dynamics in the open ocean, to observe how sea ice both mitigates and locally enhances air-sea gas transfer.

  15. Simulating Freak Waves in the Ocean with CFD Modeling

    NASA Astrophysics Data System (ADS)

    Manolidis, M.; Orzech, M.; Simeonov, J.

    2017-12-01

    Rogue, or freak, waves constitute an active topic of research within the world scientific community, as various maritime authorities around the globe seek to better understand and more accurately assess the risks that the occurrence of such phenomena entail. Several experimental studies have shed some light on the mechanics of rogue wave formation. In our work we numerically simulate the formation of such waves in oceanic conditions by means of Computational Fluid Dynamics (CFD) software. For this purpose we implement the NHWAVE and OpenFOAM software packages. Both are non-hydrostatic, turbulent flow solvers, but NHWAVE implements a shock-capturing scheme at the free surface-interface, while OpenFOAM utilizes the Volume Of Fluid (VOF) method. NHWAVE has been shown to accurately reproduce highly nonlinear surface wave phenomena, such as soliton propagation and wave shoaling. We conducted a range of tests simulating rogue wave formation and horizontally varying currents to evaluate and compare the capabilities of the two software packages. Then we used each model to investigate the effect of ocean currents and current gradients on the formation of rogue waves. We present preliminary results.

  16. Internal Waves, Indian Ocean

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This photograph, taken in sunglint conditions, captures open ocean internal waves which are diffracting around shoals south of the Seychelle islands (4.5S, 55.5E) and recombining to form interference patterns. The clouds to the north of the waves cover two of the Seychelle islands: Silhouette and Mahe. Mahe is the main island of the archipelago. The small rocky island surrounded by reef around which the waves diffract is Platte Island.

  17. Forecasting tsunamis in Poverty Bay, New Zealand, with deep-ocean gauges

    NASA Astrophysics Data System (ADS)

    Power, William; Tolkova, Elena

    2013-12-01

    The response/transfer function of a coastal site to a remote open-ocean point is introduced, with the intent to directly convert open-ocean measurements into the wave time history at the site. We show that the tsunami wave at the site can be predicted as the wave is measured in the open ocean as far as 1,000+ km away from the site, with a straightforward computation which can be performed almost instantaneously. The suggested formalism is demonstrated for the purpose of tsunami forecasting in Poverty Bay, in the Gisborne region of New Zealand. Directional sensitivity of the site response due to different conditions for the excitation of the shelf and the bay's normal modes is investigated and used to explain tsunami observations. The suggested response function formalism is validated with available records of the 2010 Chilean tsunami at Gisborne tide gauge and at the nearby deep-ocean assessment and reporting of tsunamis (DART) station 54401. The suggested technique is also demonstrated by hindcasting the 2011 Tohoku tsunami and 2012 Haida Gwaii tsunami at Monterey Bay, CA, using an offshore record of each tsunami at DART station 46411.

  18. Waves: Internal Tides

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.

    1999-01-01

    Oceanic internal tides are internal waves with tidal periodicities. They are ubiquitous throughout the ocean, although generally more pronounced near large bathymetric features such as mid-ocean ridges and continental slopes. The internal vertical displacements associated with these waves can be extraordinarily large. Near some shelf breaks where the surface tides are strong, internal displacements (e.g., of an isothermal surface) can exceed 200 meters. Displacements of 10 meters in the open ocean are not uncommon. The associated current velocities are usually comparable to or larger than the currents of the surface tide. On continental shelves internal tides can occasionally generate packets of internal solitons, which are detectable in remote sensing imagery. Other common nonlinear features are generation of higher harmonics (e.g., 6-hr waves) and wave breaking. Internal tides are known to be an important energy source for mixing of shelf waters. Recent research suggests that they may also be a significant energy source for deep-ocean mixing.

  19. The 2011 Tohoku Tsunami on the Coast of Mexico: A Case Study

    NASA Astrophysics Data System (ADS)

    Zaytsev, Oleg; Rabinovich, Alexander B.; Thomson, Richard E.

    2017-08-01

    The Tohoku (East Japan) earthquake of 11 March 2011 ( M w 9.0) generated a great trans-oceanic tsunami that spread throughout the Pacific Ocean, where it was measured by numerous coastal tide gauges and open-ocean DART (Deep-ocean Assessment and Reporting of Tsunamis) stations. Statistical and spectral analyses of the tsunami waves recorded along the Pacific coast of Mexico have enabled us to estimate the principal parameters of the waves along the coast and to compare statistical features of the tsunami with other tsunamis recorded on this coast. We identify coastal "hot spots"—Manzanillo, Zihuatanejo, Acapulco, and Ensenada—corresponding to sites having highest tsunami hazard potential, where wave heights during the 2011 event exceeded 1.5-2 m and tsunami-induced currents were strong enough to close port operations. Based on a joint spectral analysis of the tsunamis and background noise, we reconstructed the spectra of tsunami waves in the deep ocean and found that, with the exception of the high-frequency spectral band (>5 cph), the spectra are in close agreement with the "true" tsunami spectra determined from DART bottom pressure records. The departure of the high-frequency spectra in the coastal region from the deep-sea spectra is shown to be related to background infragravity waves generated in the coastal zone. The total energy and frequency content of the Tohoku tsunami is compared with the corresponding results for the 2010 Chilean tsunami. Our findings show that the integral open-ocean tsunami energy, I 0, was 2.30 cm2, or approximately 1.7 times larger than for the 2010 event. Comparison of this parameter with the mean coastal tsunami variance (451 cm2) indicates that tsunami waves propagating onshore from the open ocean amplified by 14 times; the same was observed for the 2010 tsunami. The "tsunami colour" (frequency content) for the 2011 Tohoku tsunami was "red", with about 65% of the total energy associated with low-frequency waves at frequencies <1.7 cph (periods >35 min). The "red colour" (i.e., the prevalence of low-frequency waves) in the 2011 Tohoku, as well as in the 2010 Chile tsunamis, is explained by the large extension of the source areas. In contrast, the 2014 and 2015 Chilean earthquakes had much smaller source areas and, consequently, induced "bluish" (high-frequency) tsunamis.

  20. Understanding the dimensional and mechanical properties of coastal Langmuir Circulations

    NASA Astrophysics Data System (ADS)

    Shrestha, Kalyan; Kuehl, Joseph; Anderson, William

    2017-11-01

    Non-linear interaction of surface waves and wind-driven shear instability in the upper ocean mixed layer form counter-rotating vortical structures called Langmuir Circulations. This oceanic microscale turbulence is one of the key contributors of mixing and vertical transport in the upper ocean mixed layer. Langmuir turbulence in the open (deep) ocean has already been the topic of a large research effort. However, coastal Langmuir cells are distinctly different from Langmuir cells in open-ocean regions, where additional bottom-boundary layer shear alters the kinematic properties of Langmuir cells. For this study, we have conducted a wide-ranging numerical study (solving the grid-filtered Craik-Leibovich equations) of coastal Langmuir turbulence, assessing which parameters affect Langmuir cells and defining the parametric hierarchy. The Stokes profile (aggregate velocity due to orbital wave motion) is functionally dependent on Stokes drift velocity and wavenumber of the surface waves. We explain that these parameters, which correspond to the environmental forcing variables, control the horizontal and vertical length scales of Langmuir cell respectively. This result is important in understanding the transport and dispersion of materials in the upper mixed layer of coastal ocean. We argue that wind stress is a parameter governing the strength of Langmuir cells.

  1. Small-scale open ocean currents have large effects on wind wave heights

    NASA Astrophysics Data System (ADS)

    Ardhuin, Fabrice; Gille, Sarah T.; Menemenlis, Dimitris; Rocha, Cesar B.; Rascle, Nicolas; Chapron, Bertrand; Gula, Jonathan; Molemaker, Jeroen

    2017-06-01

    Tidal currents and large-scale oceanic currents are known to modify ocean wave properties, causing extreme sea states that are a hazard to navigation. Recent advances in the understanding and modeling capability of open ocean currents have revealed the ubiquitous presence of eddies, fronts, and filaments at scales 10-100 km. Based on realistic numerical models, we show that these structures can be the main source of variability in significant wave heights at scales less than 200 km, including important variations down to 10 km. Model results are consistent with wave height variations along satellite altimeter tracks, resolved at scales larger than 50 km. The spectrum of significant wave heights is found to be of the order of 70>>2/>(g2>>2>) times the current spectrum, where >> is the spatially averaged significant wave height, >> is the energy-averaged period, and g is the gravity acceleration. This variability induced by currents has been largely overlooked in spite of its relevance for extreme wave heights and remote sensing.Plain Language SummaryWe show that the variations in currents at scales 10 to 100 km are the main source of variations in wave heights at the same scales. Our work uses a combination of realistic numerical models for currents and waves and data from the Jason-3 and SARAL/AltiKa satellites. This finding will be of interest for the investigation of extreme wave heights, remote sensing, and air-sea interactions. As an immediate application, the present results will help constrain the error budget of the up-coming satellite missions, in particular the Surface Water and Ocean Topography (SWOT) mission, and decide how the data will have to be processed to arrive at accurate sea level and wave measurements. It will also help in the analysis of wave measurements by the CFOSAT satellite.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017OcMod.113...22S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017OcMod.113...22S"><span>The viscous lee wave problem and its implications for ocean modelling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shakespeare, Callum J.; Hogg, Andrew McC.</p> <p>2017-05-01</p> <p>Ocean circulation models employ 'turbulent' viscosity and diffusivity to represent unresolved sub-gridscale processes such as breaking internal waves. Computational power has now advanced sufficiently to permit regional ocean circulation models to be run at sufficiently high (100 m-1 km) horizontal resolution to resolve a significant part of the internal wave spectrum. Here we develop theory for boundary generated internal waves in such models, and in particular, where the waves dissipate their energy. We focus specifically on the steady lee wave problem where stationary waves are generated by a large-scale flow acting across ocean bottom topography. We generalise the energy flux expressions of [Bell, T., 1975. Topographically generated internal waves in the open ocean. J. Geophys. Res. 80, 320-327] to include the effect of arbitrary viscosity and diffusivity. Applying these results for realistic parameter choices we show that in the present generation of models with O(1) m2s-1 horizontal viscosity/diffusivity boundary-generated waves will inevitably dissipate the majority of their energy within a few hundred metres of the boundary. This dissipation is a direct consequence of the artificially high viscosity/diffusivity, which is not always physically justified in numerical models. Hence, caution is necessary in comparing model results to ocean observations. Our theory further predicts that O(10-2) m2s-1 horizontal and O(10-4) m2s-1 vertical viscosity/diffusivity is required to achieve a qualitatively inviscid representation of internal wave dynamics in ocean models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016OcMod.103..161C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016OcMod.103..161C"><span>Ocean surface waves in Hurricane Ike (2008) and Superstorm Sandy (2012): Coupled model predictions and observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Shuyi S.; Curcic, Milan</p> <p>2016-07-01</p> <p>Forecasting hurricane impacts of extreme winds and flooding requires accurate prediction of hurricane structure and storm-induced ocean surface waves days in advance. The waves are complex, especially near landfall when the hurricane winds and water depth varies significantly and the surface waves refract, shoal and dissipate. In this study, we examine the spatial structure, magnitude, and directional spectrum of hurricane-induced ocean waves using a high resolution, fully coupled atmosphere-wave-ocean model and observations. The coupled model predictions of ocean surface waves in Hurricane Ike (2008) over the Gulf of Mexico and Superstorm Sandy (2012) in the northeastern Atlantic and coastal region are evaluated with the NDBC buoy and satellite altimeter observations. Although there are characteristics that are general to ocean waves in both hurricanes as documented in previous studies, wave fields in Ike and Sandy possess unique properties due mostly to the distinct wind fields and coastal bathymetry in the two storms. Several processes are found to significantly modulate hurricane surface waves near landfall. First, the phase speed and group velocities decrease as the waves become shorter and steeper in shallow water, effectively increasing surface roughness and wind stress. Second, the bottom-induced refraction acts to turn the waves toward the coast, increasing the misalignment between the wind and waves. Third, as the hurricane translates over land, the left side of the storm center is characterized by offshore winds over very short fetch, which opposes incoming swell. Landfalling hurricanes produce broader wave spectra overall than that of the open ocean. The front-left quadrant is most complex, where the combination of windsea, swell propagating against the wind, increasing wind-wave stress, and interaction with the coastal topography requires a fully coupled model to meet these challenges in hurricane wave and surge prediction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013GeoRL..40.3435A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013GeoRL..40.3435A"><span>Infragravity waves in the deep ocean: An upward revision</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aucan, J.; Ardhuin, F.</p> <p>2013-07-01</p> <p>Ocean infragravity waves are surface gravity waves with periods of several minutes and corresponding wavelengths of up to tens of kilometers. When propagating freely in the deep ocean, these waves are typically small, several centimeters at most, so they have been seldom studied. In the context of future wide-swath altimetry missions, these waves need to be better quantified as they have wavelengths that will be resolved by such instruments. Here, we analyze the global climatology and variability of infragravity waves in the deep ocean using data from over 40 open ocean locations, with depths larger than 2000 m. We show that typical infragravity wave heights are higher than previously estimated, with winter-averaged values up to 11 mm off the U.S. West Coast, and typically less than 6 mm in the tropics. The mid to high latitudes exhibit a strong seasonal cycle consistent with the local variability of the wind-waves, while the tropical Pacific has a higher energy level during the Austral winter that does not correlate well with the local wind-waves, suggesting a remote source for the recorded infragravity waves. These infragravity wave energies are expected to be a significant contribution to the error budget for possible measurements of sea level associated to sub-mesoscale currents at horizontal scales around 10 km. Hence, a global numerical model of infragravity waves will likely be necessary for the analysis of the planned Surface Water Ocean Topography mission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23977309','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23977309"><span>Using wind setdown and storm surge on Lake Erie to calibrate the air-sea drag coefficient.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Drews, Carl</p> <p>2013-01-01</p> <p>The air-sea drag coefficient controls the transfer of momentum from wind to water. In modeling storm surge, this coefficient is a crucial parameter for estimating the surge height. This study uses two strong wind events on Lake Erie to calibrate the drag coefficient using the Coupled Ocean Atmosphere Wave Sediment Transport (COAWST) modeling system and the the Regional Ocean Modeling System (ROMS). Simulated waves are generated on the lake with Simulating WAves Nearshore (SWAN). Wind setdown provides the opportunity to eliminate wave setup as a contributing factor, since waves are minimal at the upwind shore. The study finds that model results significantly underestimate wind setdown and storm surge when a typical open-ocean formulation without waves is used for the drag coefficient. The contribution of waves to wind setdown and storm surge is 34.7%. Scattered lake ice also increases the effective drag coefficient by a factor of 1.1.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.nrel.gov/research/michael-lawson.html','SCIGOVWS'); return false;" href="https://www.nrel.gov/research/michael-lawson.html"><span>Michael Lawson | NREL</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.science.gov/aboutsearch.html">Science.gov Websites</a></p> <p></p> <p></p> <p>NREL's Ocean Energy team, Dr. Michael Lawson focuses on the areas of <em>wave</em> and water current energy goal of developing an open source design and analysis tool for <em>wave</em> energy conversion (WEC) devices</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19810039080&hterms=staff&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dstaff','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19810039080&hterms=staff&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dstaff"><span>The damping of ocean surface waves by a monomolecular film measured by wave staffs and microwave radars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Huehnerfuss, H.; Alpers, W.; Jones, W. L.; Lange, P. A.; Richter, K.</p> <p>1981-01-01</p> <p>Open ocean and wave tank experiments were carried out with the aim of studying the damping of capillary and gravity waves by a monomolecular film. These films of biogenic origin influence air-sea interaction processes and thereby affect the use of remote sensing techniques in oceanography. Measurement was carried out by wave staffs, by a coherent X band microwave scatterometer mounted on a sea-based platform, and by an incoherent K band microwave scatterometer carried by an aircraft under moderate wind conditions. A wave attenuation of about 40-60% is observed in the frequency range between 3.2 and 16 Hz. Tank experiments show that a direct influence of oleyl alcohol surface films on wave damping is confined to frequencies equal to or greater than 2 Hz; a further indirect effect of films on the damping of ocean waves in the frequency range between 0.12 and 0.7 Hz (by modifying the wind input and wave-wave interaction mechanisms) is also indicated</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1810725H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1810725H"><span>The Coordinated Ocean Wave Climate Project</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hemer, Mark; Dobrynin, Mikhail; Erikson, Li; Lionello, Piero; Mori, Nobuhito; Semedo, Alvaro; Wang, Xiaolan</p> <p>2016-04-01</p> <p>Future 21st Century changes in wind-wave climate have broad implications for marine and coastal infrastructure and ecosystems. Atmosphere-ocean general circulation models (GCM) are now routinely used for assessing and providing future projections of climatological parameters such as temperature and precipitation, but generally these provide no information on ocean wind-waves. To fill this information gap a growing number of studies are using GCM outputs and independently producing global and regional scale wind-wave climate projections. Furthermore, additional studies are actively coupling wind-wave dependent atmosphere-ocean exchanges into GCMs, to improve physical representation and quantify the impact of waves in the coupled climate system, and can also deliver wave characteristics as another variable in the climate system. To consolidate these efforts, understand the sources of variance between projections generated by different methodologies and International groups, and ultimately provide a robust picture of the role of wind-waves in the climate system and their projected changes, we present outcomes of the JCOMM supported Coordinated Ocean Wave Climate Project (COWCLIP). The objective of COWCLIP is twofold: to make community based ensembles of wave climate projections openly accessible, to provide the necessary information to support diligent marine and coastal impacts of climate change studies; and to understand the effects and feedback influences of wind-waves in the coupled ocean-atmosphere climate system. We will present the current status of COWCLIP, providing an overview of the objectives, analysis and results of the initial phase - now complete - and the progress of ongoing phases of the project.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA474598','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA474598"><span>Internal Tide Generation by Steep Topography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2007-09-01</p> <p>acting on the barotropic tide ( Foda and Hill 1998) was incomplete. Kunze will put this work in the context of recent internal tide research and...Topographically generated internal waves in the open ocean. J. Geophys. Res., 80, 320-327. Foda , M.A., and D.F. Hill, 1998: Nonlinear energy...Bispectral analysis of energy transfer within the two-dimensional ocean internal wave field. . Phys. Oceanogr., 35, 2104-2109. Garrett, C., and E</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3747107','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3747107"><span>Using Wind Setdown and Storm Surge on Lake Erie to Calibrate the Air-Sea Drag Coefficient</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Drews, Carl</p> <p>2013-01-01</p> <p>The air-sea drag coefficient controls the transfer of momentum from wind to water. In modeling storm surge, this coefficient is a crucial parameter for estimating the surge height. This study uses two strong wind events on Lake Erie to calibrate the drag coefficient using the Coupled Ocean Atmosphere Wave Sediment Transport (COAWST) modeling system and the the Regional Ocean Modeling System (ROMS). Simulated waves are generated on the lake with Simulating WAves Nearshore (SWAN). Wind setdown provides the opportunity to eliminate wave setup as a contributing factor, since waves are minimal at the upwind shore. The study finds that model results significantly underestimate wind setdown and storm surge when a typical open-ocean formulation without waves is used for the drag coefficient. The contribution of waves to wind setdown and storm surge is 34.7%. Scattered lake ice also increases the effective drag coefficient by a factor of 1.1. PMID:23977309</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMNH51D..04R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMNH51D..04R"><span>The Great Chilean Tsunamis of 2010, 2014 and 2015 on the Coast and Offshore of Mexico: Comparative Features Based on Open-Ocean Energy Parameterization</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rabinovich, A.; Zaytsev, O.; Thomson, R.</p> <p>2016-12-01</p> <p>The three recent great earthquakes offshore of Chile on 27 February 2010 (Maule, Mw 8.8), 1 April 2014 (Iquique, Mw 8.2) and 16 September 2015 (Illapel, Mw 8.3) generated major trans-oceanic tsunamis that spread throughout the entire Pacific Ocean and were measured by numerous coastal tide gauges and open-ocean DART stations. Statistical and spectral analyses of the tsunami waves from the three events recorded on the Pacific coast of Mexico enabled us to compare the events and to identify coastal "hot spots", regions with maximum tsunami risk. Based on joint spectral analyses of tsunamis and background noise, we have developed a method for reconstructing the "true" tsunami spectra in the deep ocean. The "reconstructed" open-ocean tsunami spectra are in excellent agreement with the actual tsunami spectra evaluated from direct analysis of the DART records offshore of Mexico. We have further used the spectral estimates to parameterize the energy of the three Chilean tsunamis based on the total open-ocean tsunami energy and frequency content of the individual events.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title33-vol2/pdf/CFR-2011-title33-vol2-sec155-1020.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title33-vol2/pdf/CFR-2011-title33-vol2-sec155-1020.pdf"><span>33 CFR 155.1020 - Definitions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>... not limited to, significant wave height, ice, temperature, weather-related visibility, and currents.... Animal fat means a non-petroleum oil, fat, or grease derived from animals and not specifically identified...-based. It includes, but is not limited to, animal fats and vegetable oils. Ocean means the open ocean...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20000110129&hterms=3D+animation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3D3D%2Banimation','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20000110129&hterms=3D+animation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3D3D%2Banimation"><span>Hurricane Directional Wave Spectrum Spatial Variation in the Open Ocean and at Landfall</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Walsh, E. J.; Wright, C. W.; Vandemark, D.; Krabill, W. B.; Garcia, A. W.; Houston, S. H.; Powell, M. D.; Black, P. G.; Marks, F. D.; Busalacchi, Antonio J. (Technical Monitor)</p> <p>2000-01-01</p> <p>The sea surface directional wave spectrum was measured for the first time in all quadrants of a hurricane in open water using the NASA airborne scanning radar altimeter (SRA) carried aboard one of the NOAA WP-3D hurricane hunter aircraft at 1.5 km height. The SRA measures the energetic portion of the directional wave spectrum by generating a topographic map of the sea surface. At 8 Hz, the SRA sweeps a radar beam of 1 E half-power width (two-way) across the aircraft ground track over a swath equal to 0.8 of the aircraft height, simultaneously measuring the backscattered power at its 36 GHz (8.3 mm) operating frequency and the range to the sea surface at 64 positions. These slant ranges are multiplied by the cosine of the incidence angles to determine the vertical distances from the aircraft to the sea surface. Subtracting these distances from the aircraft height produces the sea surface elevation map. The sea surface topography is interpolated to a uniform grid, transformed by a two-dimensional FFT, and Doppler corrected. The open-ocean data were acquired on 24 August 1998 when hurricane Bonnie was east of the Bahamas and moving slowly to the north. Individual waves with heights up to 18 m were observed and the spatial variation of the wave field was dramatic. The dominant waves generally propagated at significant angles to the downwind direction. At some positions there were three different wave fields of comparable energy crossing each other. The NOAA aircraft spent over five hours within 180 km of the hurricane Bonnie eye, and made five eye penetrations. A 3-minute animation of the directional wave spectrum spatial variation over this period will be shown as well as summary plots of the wave field spatial variation. On 26 August 1998, the NOAA aircraft flew at 2.2 km height when hurricane Bonnie was making landfall near Wilmington, NC, documenting the directional wave spectrum in the region between Charleston, SC and Cape Hatteras, NC. The aircraft ground track included both segments along the shoreline and Pamlico Sound as well as far offshore. An animation of the directional wave spectrum spatial variation at landfall will be presented and contrasted with the spatial variation when Bonnie was in the open ocean on 24 August 1998.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA517432','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA517432"><span>Ocean Surface Wave Optical Roughness - Innovative Measurement and Modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2008-01-01</p> <p>Gemmrich et al., 2008) and microscale breaker crest length spectral density (e.g. Jessup and Phadnis , 2005) have been reported. Our effort seeks to...1986: Statistics of breaking waves observed as whitecaps in the open sea, Journal of Physical Oceanography, 16, 290-297. Jessup, A.T. and Phadnis</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA517435','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA517435"><span>Ocean Surface Wave Optical Roughness - Innovative Measurement and Modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2008-01-01</p> <p>e.g. Jessup and Phadnis , 2005) have been reported. Our effort seeks to provide a more comprehensive description of the physical and optical roughness...1986: Statistics of breaking waves observed as whitecaps in the open sea, Journal of Physical Oceanography, 16, 290-297. Jessup, A.T. and Phadnis</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA557181','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA557181"><span>Ocean Surface Wave Optical Roughness - Analysis of Innovative Measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2011-09-30</p> <p>Phillips et al, 2001, Gemmrich et al., 2008) and microscale breaker crest length spectral density (e.g. Jessup and Phadnis , 2005) have been reported...Statistics of breaking waves observed as whitecaps in the open sea, Journal of Physical Oceanography, 16, 290-297. Jessup, A.T. and Phadnis , K.R</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910044122&hterms=refraction&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Drefraction','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910044122&hterms=refraction&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Drefraction"><span>Observation of wave refraction at an ice edge by synthetic aperture radar</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Liu, Antony K.; Vachon, Paris W.; Peng, Chih Y.</p> <p>1991-01-01</p> <p>In this note the refraction of waves at the ice edge is studied by using aircraft synthesis aperture radar (SAR). Penetration of a dominant swell from open ocean into the ice cover was observed by SAR during the Labrador Ice Margin Experiment (LIMEX), conducted on the marginal ice zone (MIZ) off the east coast of Newfoundland, Canada, in March 1987. At an ice edge with a large curvature, the dominant swell component disappeared locally in the SAR imagery. Six subscenes of waves in the MIZ from the SAR image have been processed, revealing total reflection, refraction, and energy reduction of the ocean waves by the ice cover. The observed variations of wave spectra from SAR near the ice edge are consistent with the model prediction of wave refraction at the ice edge due to the change of wave dispersion relation in ice developed by Liu and Mollo-Christensen (1988).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EP%26S...69..117L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EP%26S...69..117L"><span>Should tsunami simulations include a nonzero initial horizontal velocity?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lotto, Gabriel C.; Nava, Gabriel; Dunham, Eric M.</p> <p>2017-08-01</p> <p>Tsunami propagation in the open ocean is most commonly modeled by solving the shallow water wave equations. These equations require initial conditions on sea surface height and depth-averaged horizontal particle velocity or, equivalently, horizontal momentum. While most modelers assume that initial velocity is zero, Y.T. Song and collaborators have argued for nonzero initial velocity, claiming that horizontal displacement of a sloping seafloor imparts significant horizontal momentum to the ocean. They show examples in which this effect increases the resulting tsunami height by a factor of two or more relative to models in which initial velocity is zero. We test this claim with a "full-physics" integrated dynamic rupture and tsunami model that couples the elastic response of the Earth to the linearized acoustic-gravitational response of a compressible ocean with gravity; the model self-consistently accounts for seismic waves in the solid Earth, acoustic waves in the ocean, and tsunamis (with dispersion at short wavelengths). Full-physics simulations of subduction zone megathrust ruptures and tsunamis in geometries with a sloping seafloor confirm that substantial horizontal momentum is imparted to the ocean. However, almost all of that initial momentum is carried away by ocean acoustic waves, with negligible momentum imparted to the tsunami. We also compare tsunami propagation in each simulation to that predicted by an equivalent shallow water wave simulation with varying assumptions regarding initial velocity. We find that the initial horizontal velocity conditions proposed by Song and collaborators consistently overestimate the tsunami amplitude and predict an inconsistent wave profile. Finally, we determine tsunami initial conditions that are rigorously consistent with our full-physics simulations by isolating the tsunami waves from ocean acoustic and seismic waves at some final time, and backpropagating the tsunami waves to their initial state by solving the adjoint problem. The resulting initial conditions have negligible horizontal velocity.[Figure not available: see fulltext.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMNH22A..03N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMNH22A..03N"><span>Should tsunami models use a nonzero initial condition for horizontal velocity?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nava, G.; Lotto, G. C.; Dunham, E. M.</p> <p>2017-12-01</p> <p>Tsunami propagation in the open ocean is most commonly modeled by solving the shallow water wave equations. These equations require two initial conditions: one on sea surface height and another on depth-averaged horizontal particle velocity or, equivalently, horizontal momentum. While most modelers assume that initial velocity is zero, Y.T. Song and collaborators have argued for nonzero initial velocity, claiming that horizontal displacement of a sloping seafloor imparts significant horizontal momentum to the ocean. They show examples in which this effect increases the resulting tsunami height by a factor of two or more relative to models in which initial velocity is zero. We test this claim with a "full-physics" integrated dynamic rupture and tsunami model that couples the elastic response of the Earth to the linearized acoustic-gravitational response of a compressible ocean with gravity; the model self-consistently accounts for seismic waves in the solid Earth, acoustic waves in the ocean, and tsunamis (with dispersion at short wavelengths). We run several full-physics simulations of subduction zone megathrust ruptures and tsunamis in geometries with a sloping seafloor, using both idealized structures and a more realistic Tohoku structure. Substantial horizontal momentum is imparted to the ocean, but almost all momentum is carried away in the form of ocean acoustic waves. We compare tsunami propagation in each full-physics simulation to that predicted by an equivalent shallow water wave simulation with varying assumptions regarding initial conditions. We find that the initial horizontal velocity conditions proposed by Song and collaborators consistently overestimate the tsunami amplitude and predict an inconsistent wave profile. Finally, we determine tsunami initial conditions that are rigorously consistent with our full-physics simulations by isolating the tsunami waves (from ocean acoustic and seismic waves) at some final time, and backpropagating the tsunami waves to their initial state by solving the adjoint problem. The resulting initial conditions have negligible horizontal velocity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1097595','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1097595"><span>WET-NZ Multi-Mode Wave Energy Converter Advancement Project</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kopf, Steven</p> <p>2013-10-15</p> <p>The overall objective of the project was to verify the ocean wavelength functionality of the WET-NZ through targeted hydrodynamic testing at wave tank scale and controlled open sea deployment of a 1/2 scale (1:2) experimental device. This objective was accomplished through a series of tasks designed to achieve four specific goals: Wave Tank Testing to Characterize Hydrodynamic Characteristics;  Open-Sea Testing of a New 1:2 Scale Experimental Model;  Synthesis and Analysis to Demonstrate and Confirm TRL5/6 Status;  Market Impact & Competitor Analysis, Business Plan and Commercialization Strategy.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_1");'>1</a></li> <li class="active"><span>2</span></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_2 --> <div id="page_3" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_1");'>1</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li class="active"><span>3</span></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="41"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSHE24A1440B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSHE24A1440B"><span>Altimeter Observations of Wave Climate in the Arctic Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Babanin, A. V.; Liu, Q.; Zieger, S.</p> <p>2016-02-01</p> <p>Wind waves are a new physical phenomenon to the Arctic Seas, which in the past were covered with ice. Now, over summer months, ice coverage retreats up to high latitudes and waves are generated. The marginal open seas provide new opportunities and new problems. Navigation and other maritime activities become possible, but wave heights, storm surges and coastal erosion will likely increase. Air-sea interactions enter a completely new regime, with momentum, energy, heat, gas and moisture fluxes being moderated or produced by the waves, and impacting on upper-ocean mixing. All these issues require knowledge of the wave climate. We will report results of investigation of wave climate and its trends by means of satellite altimetry. This is a challenging, but important topic. On one hand, no statistical approach is possible since in the past for most of the Arctic Ocean there was limited wave activity. Extrapolations of the current observations into the future are not feasible, because ice cover and wind patterns in the Arctic are changing. On the other hand, information on the mean and extreme wave properties, such as wave height, period, direction, on the frequency of occurrence and duration of the storms is of great importance for oceanographic, meteorological, climate, naval and maritime applications in the Arctic Seas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.2176G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.2176G"><span>Analysis of wind and wave events at the MIZ based on TerraSAR-X satellite images</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gebhardt, Claus; Bidlot, Jean-Raymond; Jacobsen, Sven; Lehner, Susanne; Pleskachevsky, Andrey; Singha, Suman</p> <p>2017-04-01</p> <p>The seasonal opening-up of large expanses of open water in the Beaufort/Chukchi Sea is a phenomenon observed in recent years. The diameter of the open-water area is on the order of 1000 km around the sea ice minimum in summer. Thus, wind events in the area are accompanied by the build-up of sea waves. Significant wave heights of few to several meters may be reached. Under low to moderate winds, the morphology of the MIZ is governed by oceanic forcing. As a result, the MIZ resembles ocean circulation features such as eddies, meanders, etc.. In the case of strong wind events, however, the wind forcing may gain control. We analyse effects related to wind and wave events at the MIZ using TerraSAR-X satellite imagery. Methods such as the retrieval of sea state and wind data by empirical algorithms and automatic sea ice classification are applied. This is facilitated by a series of TerraSAR-X images acquired in support of a cruise of the research vessel R/V Sikuliaq in the Beaufort/Chukchi Sea in autumn 2015. For selected images, the results are presented and compared to numerical model forecasts which were as well part of the cruise support.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JPhCS.753i2004G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JPhCS.753i2004G"><span>Breaking phase focused wave group loads on offshore wind turbine monopiles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ghadirian, A.; Bredmose, H.; Dixen, M.</p> <p>2016-09-01</p> <p>The current method for calculating extreme wave loads on offshore wind turbine structures is based on engineering models for non-breaking regular waves. The present article has the aim of validating previously developed models at DTU, namely the OceanWave3D potential flow wave model and a coupled OceanWave3D-OpenFOAM solver, against measurements of focused wave group impacts on a monopile. The focused 2D and 3D wave groups are reproduced and the free surface elevation and the in-line forces are compared to the experimental results. In addition, the pressure distribution on the monopile is examined at the time of maximum force and discussed in terms of shape and magnitude. Relative pressure time series are also compared between the simulations and experiments and detailed pressure fields for a 2D and 3D impact are discussed in terms of impact type. In general a good match for free surface elevation, in-line force and wave-induced pressures is found.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMNH41A1756M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMNH41A1756M"><span>The 2004 Sumatra tsunami in the southeastern Pacific: Coastal and offshore measurements and numerical modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moore, C. W.; Eble, M. C.; Rabinovich, A.; Titov, V. V.</p> <p>2016-12-01</p> <p>The Mw = 9.3 megathrust earthquake of December 26, 2004 off the coast of Sumatra generated a catastrophic tsunami that crossed the Indian Ocean and was widespread in the Pacific and Atlantic oceans being recorded by a great number of coastal tide gauges located in 15-25 thousand kilometers from the source area. The data from these instruments throughout the world oceans enabled estimates of various statistical parameters and energy decay of this event. However, only very few open-ocean records of this tsunami had been obtained. A unique high-resolution record of this tsunami from DART 32401 located offshore of northern Chile, combined with the South American mainland tide gauge measurements and the data from three island stations (San Felix, Juan Fernandez and Easter) enabled us to examine far-field characteristics of the event in the southeastern Pacific and to compare the results of global numerical simulations with observations. The maximum wave height measured at DART 32401 was only 1.8 cm but the signal was very clear and reliable. Despite their small heights, the waves demonstrated consistent spatial and temporal structure and good agreement with DART 46405/NeMO records in the NE Pacific. The travel time from the source area to DART 32401 was 25h 55min in good agreement with the computed travel time (25h 45min) and consistent with the times obtained from the nearby coastal tide gauges. This agreement was much better than it followed from the direct travel time estimation based classical kinematic theory that gave the travel time approximately 1.5 hrs shorter than observed. The later actual arrival of the 2004 tsunami waves corresponds to the most energetically economic path along the mid-ocean ridge wave-guides, which is distinctly reproduced by the numerical model. Also, the numerical model described well the frequency content, amplitudes and general structure of the observed waves at this DART and the three island stations. Maximum wave heights in this region were identified at Arica (72 cm) and Callao (65 cm). The open-ocean and coastal records indicate that the 2004 tsunami wave energy occupied the period band of 6 min to 3.7 hrs with the main energy concentrated at periods of 30 to 70 min and peak values at 40 min.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1014339','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1014339"><span>An Investigation of Fin and Blue Whales in the NE Pacific Ocean using Data from Cascadia Initiative Ocean Bottom Seismometers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2015-09-30</p> <p>environmental noise (principally from wind /waves), and then estimating the sound level in the fin whale band in the result. There was also a...Acoustic density estimation of leopard seals. Abstracts, Birds and Mammals Session, Open Science Conference of the Scientific Committee on Antarctic</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1911619L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1911619L"><span>Numerical simulation of wave-current interaction under strong wind conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Larrañaga, Marco; Osuna, Pedro; Ocampo-Torres, Francisco Javier</p> <p>2017-04-01</p> <p>Although ocean surface waves are known to play an important role in the momentum and other scalar transfer between the atmosphere and the ocean, most operational numerical models do not explicitly include the terms of wave-current interaction. In this work, a numerical analysis about the relative importance of the processes associated with the wave-current interaction under strong off-shore wind conditions in Gulf of Tehuantepec (the southern Mexican Pacific) was carried out. The numerical system includes the spectral wave model WAM and the 3D hydrodynamic model POLCOMS, with the vertical turbulent mixing parametrized by the kappa-epsilon closure model. The coupling methodology is based on the vortex-force formalism. The hydrodynamic model was forced at the open boundaries using the HYCOM database and the wave model was forced at the open boundaries by remote waves from the southern Pacific. The atmospheric forcing for both models was provided by a local implementation of the WRF model, forced at the open boundaries using the CFSR database. The preliminary analysis of the model results indicates an effect of currents on the propagation of the swell throughout the study area. The Stokes-Coriolis term have an impact on the transient Ekman transport by modifying the Ekman spiral, while the Stokes drift has an effect on the momentum advection and the production of TKE, where the later induces a deepening of the mixing layer. This study is carried out in the framework of the project CONACYT CB-2015-01 255377 and RugDiSMar Project (CONACYT 155793).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14.6621G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14.6621G"><span>Characteristics of inertial currents observed in offshore wave records</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gemmrich, J.; Garrett, C.</p> <p>2012-04-01</p> <p>It is well known that ambient currents can change the amplitude, direction and frequency of ocean surface waves. Regions with persistent strong currents, such as the Agulhas current off the east coast of South Africa, are known as areas of extreme waves, and wave height modulations of up to 50% observed in the shallow North Sea have been linked to tidal currents. In the open ocean, inertial currents, while intermittent, are typically the most energetic currents with speeds up to 0.5 m/s, and can interact with the surface wave field to create wave modulation, though this has not previously been reported. We use long records of significant wave heights from buoy observations in the northeast Pacific and show evidence of significant modulation at frequencies that are slightly higher than the local inertial frequency. Quite apart from the relevance to surface waves, this result can provide a consistent and independent measurement, over a wide range of latitudes, of the frequency blue-shift, the strength and intermittency of ocean surface inertial currents. Near-inertial waves constitute the most energetic portion of the internal wave band and play a significant role in deep ocean mixing. So far, observational data on near-surface inertial currents has tended to come from short records that do not permit the reliable determination of the frequency blue-shift, though this is an important factor affecting the energy flux from the surface into deeper waters. Long records from routine wave height observations are widely available and could help to shed new light globally on the blue-shift and on the characteristics of inertial currents.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C42A..08S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C42A..08S"><span>Geometric controls of the flexural gravity waves on the Ross Ice Shelf</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sergienko, O. V.</p> <p>2017-12-01</p> <p>Long-period ocean waves, formed locally or at distant sources, can reach sub-ice-shelf cavities and excite coupled motion in the cavity and the ice shelf - flexural gravity waves. Three-dimensional numerical simulations of the flexural gravity waves on the Ross Ice Shelf show that propagation of these waves is strongly controlled by the geometry of the system - the cavity shape, its water-column thickness and the ice-shelf thickness. The results of numerical simulations demonstrate that propagation of the waves is spatially organized in beams, whose orientation is determined by the direction of the of the open ocean waves incident on the ice-shelf front. As a result, depending on the beams orientation, parts of the Ross Ice Shelf experience significantly larger flexural stresses compared to other parts where the flexural gravity beams do not propagate. Very long-period waves can propagate farther away from the ice-shelf front exciting flexural stresses in the vicinity of the grounding line.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.5172S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.5172S"><span>Regional Wave Climates along Eastern Boundary Currents</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Semedo, Alvaro; Soares, Pedro</p> <p>2016-04-01</p> <p>Two types of wind-generated gravity waves coexist at the ocean surface: wind sea and swell. Wind sea waves are waves under growing process. These young growing waves receive energy from the overlaying wind and are strongly coupled to the local wind field. Waves that propagate away from their generation area and no longer receive energy input from the local wind are called swell. Swell waves can travel long distances across entire ocean basins. A qualitative study of the ocean waves from a locally vs. remotely generation perspective is important, since the air sea interaction processes is strongly modulated by waves and vary accordingly to the prevalence of wind sea or swell waves in the area. A detailed climatology of wind sea and swell waves along eastern boundary currents (EBC; California Current, Canary Current, in the Northern Hemisphere, and Humboldt Current, Benguela Current, and Western Australia Current, in the Southern Hemisphere), based on the ECMWF (European Centre for Medium-Range Weather Forecasts) ERA-Interim reanalysis will be presented. The wind regime along EBC varies significantly from winter to summer. The high summer wind speeds along EBC generate higher locally generated wind sea waves, whereas lower winter wind speeds in these areas, along with stronger winter extratropical storms far away, lead to a predominance of swell waves there. In summer, the coast parallel winds also interact with coastal headlands, increasing the wind speed through a process called "expansion fan", which leads to an increase in the height of locally generated waves downwind of capes and points. Hence the spatial patterns of the wind sea or swell regional wave fields are shown to be different from the open ocean along EBC, due to coastal geometry and fetch dimensions. Swell waves will be shown to be considerably more prevalent and to carry more energy in winter along EBC, while in summer locally generated wind sea waves are either more comparable to swell waves or, particularly in the lee of headlands, or even more prevalent and more energized than swell. This study is part of the WRCP-JCOMM COWCLIP (Coordinated Ocean Wave Climate Project) effort.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.8779S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.8779S"><span>The Effect of the South Asia Monsoon on the Wind Sea and Swell Patterns in the Arabian Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Semedo, Alvaro</p> <p>2015-04-01</p> <p>Ocean surface gravity waves have a considerable impact on coastal and offshore infrastructures, and are determinant on ship design and routing. But waves also play an important role on the coastal dynamics and beach erosion, and modulate the exchanges of momentum, and mass and other scalars between the atmosphere and the ocean. A constant quantitative and qualitative knowledge of the wave patterns is therefore needed. There are two types of waves at the ocean surface: wind-sea and swell. Wind-sea waves are growing waves under the direct influence of local winds; as these waves propagate away from their generation area, or when their phase speed overcomes the local wind speed, they are called swell. Swell waves can propagate thousands of kilometers across entire ocean basins. The qualitative analysis of ocean surface waves has been the focus of several recent studies, from the wave climate to the air-sea interaction community. The reason for this interest lies mostly in the fact that waves have an impact on the lower atmosphere, and that the air-sea coupling is different depending on the wave regime. Waves modulate the exchange of momentum, heat, and mass across the air-sea interface, and this modulation is different and dependent on the prevalence of one type of waves: wind sea or swell. For fully developed seas the coupling between the ocean-surface and the overlaying atmosphere can be seen as quasi-perfect, in a sense that the momentum transfer and energy dissipation at the ocean surface are in equilibrium. This can only occur in special areas of the Ocean, either in marginal seas, with limited fetch, or in Open Ocean, in areas with strong and persistent wind speed with little or no variation in direction. One of these areas is the Arabian Sea, along the coasts of Somalia, Yemen and Oman. The wind climate in the Arabian sea is under the direct influence of the South Asia monsoon, where the wind blows steady from the northeast during the boreal winter, and reverses direction to blow also steady but stronger from the southwest during the boreal summer months. During the summer monsoon the wind pattern in the north Arabian Sea is rather intricate, with a large scale synoptic forcing with a high pressure cell over the ocean and a thermal low pressure system in-land, but also with at least two low-level wind jets, the Finlater (or Somali) jet, and the Oman coastal jet. This wind pattern leads to a particular wave pattern and seasonal variability. The monsoon wind pattern has a direct influence in the wave climate in that area, The particular wind-sea and swell climates of the Arabian Sea are presented. The study is based on the ERA-Interim wave reanalysis from the European Centre for Medium-Range Weather Forecasts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.C21D..05W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.C21D..05W"><span>Two new ways of mapping sea ice thickness using ocean waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wadhams, P.</p> <p>2010-12-01</p> <p>TWO NEW METHODS OF MAPPING SEA ICE THICKNESS USING OCEAN WAVES. P. Wadhams (1,2), Martin Doble (1,2) and F. Parmiggiani (3) (1) Dept. of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK. (2) Laboratoire d’Océanographie de Villefranche, Université Pierre et Marie Curie, 06234 Villefranche-sur-Mer, France (2) ISAC-CNR, Bologna, Italy Two new methods of mapping ice thickness have been recently developed and tested, both making use of the dispersion relation of ocean waves in ice of radically different types. In frazil-pancake ice, a young ice type in which cakes less than 5 m across float in a suspension of individual ice crystals, the propagation of waves has been successfully modelled by treating the ice layer as a highly viscous fluid. The model predicts a shortening of wavelengths within the ice. Two-dimensional Fourier analysis of successive SAR subscenes to track the directional spectrum of a wave field as it enters an ice edge shows that waves do indeed shorten within the ice, and the change has been successfully used to predict the thickness of the frazil-pancake layer. Concurrent shipborne sampling in the Antarctic has shown that the method is accurate, and we now propose its use throughout the important frazil-pancake regimes in the world ocean (Antarctic circumpolar ice edge zone, Greenland Sea, Bering Sea and others). A radically different type of dispersion occurs when ocean waves enter the continuous icefields of the central Arctic, when they couple with the elastic ice cover to propagate as a flexural-gravity wave. A two-axis tiltmeter array has been used to measure the resulting change in the dispersion relation for long ocean swell (15-30 s) originating from storms in the Greenland Sea. The dispersion relation is slightly different from swell in the open ocean, so if two such arrays are placed a substantial distance (100s of km) apart and used to observe the changing wave period of arrivals from a given storm, the time delay between the arrival of the same frequency at two sites gives the dispersion, and hence the modal ice thickness along the great circle route connecting the arrays. The two quite different methods thus share the use of ocean wave dispersion to infer sea ice thickness.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017CG....107...28B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017CG....107...28B"><span>WASS: An open-source pipeline for 3D stereo reconstruction of ocean waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bergamasco, Filippo; Torsello, Andrea; Sclavo, Mauro; Barbariol, Francesco; Benetazzo, Alvise</p> <p>2017-10-01</p> <p>Stereo 3D reconstruction of ocean waves is gaining more and more popularity in the oceanographic community and industry. Indeed, recent advances of both computer vision algorithms and computer processing power now allow the study of the spatio-temporal wave field with unprecedented accuracy, especially at small scales. Even if simple in theory, multiple details are difficult to be mastered for a practitioner, so that the implementation of a sea-waves 3D reconstruction pipeline is in general considered a complex task. For instance, camera calibration, reliable stereo feature matching and mean sea-plane estimation are all factors for which a well designed implementation can make the difference to obtain valuable results. For this reason, we believe that the open availability of a well tested software package that automates the reconstruction process from stereo images to a 3D point cloud would be a valuable addition for future researches in this area. We present WASS (http://www.dais.unive.it/wass), an Open-Source stereo processing pipeline for sea waves 3D reconstruction. Our tool completely automates all the steps required to estimate dense point clouds from stereo images. Namely, it computes the extrinsic parameters of the stereo rig so that no delicate calibration has to be performed on the field. It implements a fast 3D dense stereo reconstruction procedure based on the consolidated OpenCV library and, lastly, it includes set of filtering techniques both on the disparity map and the produced point cloud to remove the vast majority of erroneous points that can naturally arise while analyzing the optically complex nature of the water surface. In this paper, we describe the architecture of WASS and the internal algorithms involved. The pipeline workflow is shown step-by-step and demonstrated on real datasets acquired at sea.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhDT........63W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhDT........63W"><span>On the coupled evolution of oceanic internal waves and quasi-geostrophic flow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wagner, Gregory LeClaire</p> <p></p> <p>Oceanic motion outside thin boundary layers is primarily a mixture of quasi-geostrophic flow and internal waves with either near-inertial frequencies or the frequency of the semidiurnal lunar tide. This dissertation seeks a deeper understanding of waves and flow through reduced models that isolate their nonlinear and coupled evolution from the Boussinesq equations. Three physical-space models are developed: an equation that describes quasi-geostrophic evolution in an arbitrary and prescribed field of hydrostatic internal waves; a three-component model that couples quasi-geostrophic flow to both near-inertial waves and the near-inertial second harmonic; and a model for the slow evolution of hydrostatic internal tides in quasi-geostrophic flow of near-arbitrary scale. This slow internal tide equation opens the path to a coupled model for the energetic interaction of quasi-geostrophic flow and oceanic internal tides. Four results emerge. First, the wave-averaged quasi-geostrophic equation reveals that finite-amplitude waves give rise to a mean flow that advects quasi-geostrophic potential vorticity. Second is the definition of a new material invariant: Available Potential Vorticity, or APV. APV isolates the part of Ertel potential vorticity available for balanced-flow evolution in Eulerian frames and proves necessary in the separating waves and quasi-geostrophic flow. The third result, hashed out for near-inertial waves and quasi-geostrophic flow, is that wave-flow interaction leads to energy exchange even under conditions of weak nonlinearity. For storm-forced oceanic near-inertial waves the interaction often energizes waves at the expense of flow. We call this extraction of balanced quasi-geostrophic energy 'stimulated generation' since it requires externally-forced rather than spontaneously-generated waves. The fourth result is that quasi-geostrophic flow can encourage or 'catalyze' a nonlinear interaction between a near-inertial wave field and its second harmonic that transfers energy to the small near-inertial vertical scales of wave breaking and mixing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24116520','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24116520"><span>A numerical model for ocean ultra-low frequency noise: wave-generated acoustic-gravity and Rayleigh modes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ardhuin, Fabrice; Lavanant, Thibaut; Obrebski, Mathias; Marié, Louis; Royer, Jean-Yves; d'Eu, Jean-François; Howe, Bruce M; Lukas, Roger; Aucan, Jerome</p> <p>2013-10-01</p> <p>The generation of ultra-low frequency acoustic noise (0.1 to 1 Hz) by the nonlinear interaction of ocean surface gravity waves is well established. More controversial are the quantitative theories that attempt to predict the recorded noise levels and their variability. Here a single theoretical framework is used to predict the noise level associated with propagating pseudo-Rayleigh modes and evanescent acoustic-gravity modes. The latter are dominant only within 200 m from the sea surface, in shallow or deep water. At depths larger than 500 m, the comparison of a numerical noise model with hydrophone records from two open-ocean sites near Hawaii and the Kerguelen islands reveal: (a) Deep ocean acoustic noise at frequencies 0.1 to 1 Hz is consistent with the Rayleigh wave theory, in which the presence of the ocean bottom amplifies the noise by 10 to 20 dB; (b) in agreement with previous results, the local maxima in the noise spectrum support the theoretical prediction for the vertical structure of acoustic modes; and (c) noise level and variability are well predicted for frequencies up to 0.4 Hz. Above 0.6 Hz, the model results are less accurate, probably due to the poor estimation of the directional properties of wind-waves with frequencies higher than 0.3 Hz.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015Natur.521...65A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015Natur.521...65A"><span>The formation and fate of internal waves in the South China Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Alford, Matthew H.; Peacock, Thomas; MacKinnon, Jennifer A.; Nash, Jonathan D.; Buijsman, Maarten C.; Centuroni, Luca R.; Chao, Shenn-Yu; Chang, Ming-Huei; Farmer, David M.; Fringer, Oliver B.; Fu, Ke-Hsien; Gallacher, Patrick C.; Graber, Hans C.; Helfrich, Karl R.; Jachec, Steven M.; Jackson, Christopher R.; Klymak, Jody M.; Ko, Dong S.; Jan, Sen; Johnston, T. M. Shaun; Legg, Sonya; Lee, I.-Huan; Lien, Ren-Chieh; Mercier, Matthieu J.; Moum, James N.; Musgrave, Ruth; Park, Jae-Hun; Pickering, Andrew I.; Pinkel, Robert; Rainville, Luc; Ramp, Steven R.; Rudnick, Daniel L.; Sarkar, Sutanu; Scotti, Alberto; Simmons, Harper L.; St Laurent, Louis C.; Venayagamoorthy, Subhas K.; Wang, Yu-Huai; Wang, Joe; Yang, Yiing J.; Paluszkiewicz, Theresa; (David) Tang, Tswen-Yung</p> <p>2015-05-01</p> <p>Internal gravity waves, the subsurface analogue of the familiar surface gravity waves that break on beaches, are ubiquitous in the ocean. Because of their strong vertical and horizontal currents, and the turbulent mixing caused by their breaking, they affect a panoply of ocean processes, such as the supply of nutrients for photosynthesis, sediment and pollutant transport and acoustic transmission; they also pose hazards for man-made structures in the ocean. Generated primarily by the wind and the tides, internal waves can travel thousands of kilometres from their sources before breaking, making it challenging to observe them and to include them in numerical climate models, which are sensitive to their effects. For over a decade, studies have targeted the South China Sea, where the oceans' most powerful known internal waves are generated in the Luzon Strait and steepen dramatically as they propagate west. Confusion has persisted regarding their mechanism of generation, variability and energy budget, however, owing to the lack of in situ data from the Luzon Strait, where extreme flow conditions make measurements difficult. Here we use new observations and numerical models to (1) show that the waves begin as sinusoidal disturbances rather than arising from sharp hydraulic phenomena, (2) reveal the existence of >200-metre-high breaking internal waves in the region of generation that give rise to turbulence levels >10,000 times that in the open ocean, (3) determine that the Kuroshio western boundary current noticeably refracts the internal wave field emanating from the Luzon Strait, and (4) demonstrate a factor-of-two agreement between modelled and observed energy fluxes, which allows us to produce an observationally supported energy budget of the region. Together, these findings give a cradle-to-grave picture of internal waves on a basin scale, which will support further improvements of their representation in numerical climate predictions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25951285','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25951285"><span>The formation and fate of internal waves in the South China Sea.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Alford, Matthew H; Peacock, Thomas; MacKinnon, Jennifer A; Nash, Jonathan D; Buijsman, Maarten C; Centurioni, Luca R; Centuroni, Luca R; Chao, Shenn-Yu; Chang, Ming-Huei; Farmer, David M; Fringer, Oliver B; Fu, Ke-Hsien; Gallacher, Patrick C; Graber, Hans C; Helfrich, Karl R; Jachec, Steven M; Jackson, Christopher R; Klymak, Jody M; Ko, Dong S; Jan, Sen; Johnston, T M Shaun; Legg, Sonya; Lee, I-Huan; Lien, Ren-Chieh; Mercier, Matthieu J; Moum, James N; Musgrave, Ruth; Park, Jae-Hun; Pickering, Andrew I; Pinkel, Robert; Rainville, Luc; Ramp, Steven R; Rudnick, Daniel L; Sarkar, Sutanu; Scotti, Alberto; Simmons, Harper L; St Laurent, Louis C; Venayagamoorthy, Subhas K; Wang, Yu-Huai; Wang, Joe; Yang, Yiing J; Paluszkiewicz, Theresa; Tang, Tswen-Yung David</p> <p>2015-05-07</p> <p>Internal gravity waves, the subsurface analogue of the familiar surface gravity waves that break on beaches, are ubiquitous in the ocean. Because of their strong vertical and horizontal currents, and the turbulent mixing caused by their breaking, they affect a panoply of ocean processes, such as the supply of nutrients for photosynthesis, sediment and pollutant transport and acoustic transmission; they also pose hazards for man-made structures in the ocean. Generated primarily by the wind and the tides, internal waves can travel thousands of kilometres from their sources before breaking, making it challenging to observe them and to include them in numerical climate models, which are sensitive to their effects. For over a decade, studies have targeted the South China Sea, where the oceans' most powerful known internal waves are generated in the Luzon Strait and steepen dramatically as they propagate west. Confusion has persisted regarding their mechanism of generation, variability and energy budget, however, owing to the lack of in situ data from the Luzon Strait, where extreme flow conditions make measurements difficult. Here we use new observations and numerical models to (1) show that the waves begin as sinusoidal disturbances rather than arising from sharp hydraulic phenomena, (2) reveal the existence of >200-metre-high breaking internal waves in the region of generation that give rise to turbulence levels >10,000 times that in the open ocean, (3) determine that the Kuroshio western boundary current noticeably refracts the internal wave field emanating from the Luzon Strait, and (4) demonstrate a factor-of-two agreement between modelled and observed energy fluxes, which allows us to produce an observationally supported energy budget of the region. Together, these findings give a cradle-to-grave picture of internal waves on a basin scale, which will support further improvements of their representation in numerical climate predictions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.9227L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.9227L"><span>Upper Ocean Evolution Across the Beaufort Sea Marginal Ice Zone from Autonomous Gliders</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, Craig; Rainville, Luc; Perry, Mary Jane</p> <p>2016-04-01</p> <p>The observed reduction of Arctic summertime sea ice extent and expansion of the marginal ice zone (MIZ) have profound impacts on the balance of processes controlling sea ice evolution, including the introduction of several positive feedback mechanisms that may act to accelerate melting. Examples of such feedbacks include increased upper ocean warming though absorption of solar radiation, elevated internal wave energy and mixing that may entrain heat stored in subsurface watermasses (e.g., the relatively warm Pacific Summer (PSW) and Atlantic (AW) waters), and elevated surface wave energy that acts to deform and fracture sea ice. Spatial and temporal variability in ice properties and open water fraction impact these processes. To investigate how upper ocean structure varies with changing ice cover, and how the balance of processes shift as a function of ice fraction and distance from open water, four long-endurance autonomous Seagliders occupied sections that extended from open water, through the marginal ice zone, deep into the pack during summer 2014 in the Beaufort Sea. Sections reveal strong fronts where cold, ice-covered waters meet waters that have been exposed to solar warming, and O(10 km) scale eddies near the ice edge. In the pack, Pacific Summer Water and a deep chlorophyll maximum form distinct layers at roughly 60 m and 80 m, respectively, which become increasingly diffuse as they progress through the MIZ and into open water. The isopynal layer between 1023 and 1024 kgm-3, just above the PSW, consistently thickens near the ice edge, likely due to mixing or energetic vertical exchange associated with strong lateral gradients in this region. This presentation will discuss the upper ocean variability, its relationship to sea ice extent, and evolution over the summer to the start of freeze up.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSHE21A..06L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSHE21A..06L"><span>Upper Ocean Evolution Across the Beaufort Sea Marginal Ice Zone from Autonomous Gliders</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, C.; Rainville, L.; Perry, M. J.</p> <p>2016-02-01</p> <p>The observed reduction of Arctic summertime sea ice extent and expansion of the marginal ice zone (MIZ) have profound impacts on the balance of processes controlling sea ice evolution, including the introduction of several positive feedback mechanisms that may act to accelerate melting. Examples of such feedbacks include increased upper ocean warming though absorption of solar radiation, elevated internal wave energy and mixing that may entrain heat stored in subsurface watermasses (e.g., the relatively warm Pacific Summer (PSW) and Atlantic (AW) waters), and elevated surface wave energy that acts to deform and fracture sea ice. Spatial and temporal variability in ice properties and open water fraction impact these processes. To investigate how upper ocean structure varies with changing ice cover, and how the balance of processes shift as a function of ice fraction and distance from open water, four long-endurance autonomous Seagliders occupied sections that extended from open water, through the marginal ice zone, deep into the pack during summer 2014 in the Beaufort Sea. Sections reveal strong fronts where cold, ice-covered waters meet waters that have been exposed to solar warming, and O(10 km) scale eddies near the ice edge. In the pack, Pacific Summer Water and a deep chlorophyll maximum form distinct layers at roughly 60 m and 80 m, respectively, which become increasingly diffuse as they progress through the MIZ and into open water. The isopynal layer between 1023 and 1024 kg m-3, just above the PSW, consistently thickens near the ice edge, likely due to mixing or energetic vertical exchange associated with strong lateral gradients in this region. This presentation will discuss the upper ocean variability, its relationship to sea ice extent, and evolution over the summer to the start of freeze up.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1917741J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1917741J"><span>Continental Affinities of the Alpha Ridge</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jackson, H. Ruth; Li, Qingmou; Shimeld, John; Chian, Deping</p> <p>2017-04-01</p> <p>Identifying the crustal attributes of the Alpha Ridge (AR) part of the High Arctic Large Igneous Province and tracing the spreading centre across the Amerasia Basin plays a key role in understanding the opening history of the Arctic Ocean. In this approach, we report the evidence for a continental influence on the development of the AR and reduced ocean crust in the Amerasia Basin. These points are inferred from a documented continental sedimentation source in the Amerasia Basin and calculated diagnostic compressional and shear refraction waves, and from the tracing of the distinct spreading centre using the potential field data. (1) The circum-Arctic geology of the small polar ocean provides compelling evidence of a long-lived continental landmass north of the Sverdrup Basin in the Canadian Arctic Islands and north of the Barents Sea continental margin. Based on sediment distribution patterns in the Sverdrup Basin a continental source is required from the Triassic to mid Jurassic. In addition, an extensive continental sediment source to the north of the Barents Sea is required until the Barremian. (2) Offshore data suggest a portion of continental crust in the Alpha and Mendeleev ridges including measured shear wave velocities, similarity of compressional wave velocities with large igneous province with continental fragments and magnetic patterns. Ocean bottom seismometers recorded shear waves velocities that are sensitive to the quartz content of rocks across the Chukchi Borderland and the Mendeleev Ridge that are diagnostic of both an upper and lower continental crust. On the Nautilus Spur of the Alpha Ridge expendable sonobuoys recorded clear converted shear waves also consistent with continental crust. The magnetic patterns (amplitude, frequency, and textures) on the Northwind Ridge and the Nautilus Spur also have similarities. In fact only limited portions of the deepest water portions of the Canada Basin and the Makarov Basin have typical oceanic layer 2 and 3 crustal velocities and lineated magnetic anomalies. (3) The gravity and magnetic anomalies associated with the spreading centre in the Canada Basin unveiled by multifractal singularity analysis of the potential field data can now be traced as far as the Lomonosov Ridge. In addition, linear magnetic features cutting across the spreading centres are identified as transform faults. The combination of the detected continental attributes of AR, the quantification of transform faults, and the outlined reduced extent of oceanic crust in the Amerasia Basin provide new insights into the opening history of the basin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010OcMod..35....1M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010OcMod..35....1M"><span>Procedures for offline grid nesting in regional ocean models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mason, Evan; Molemaker, Jeroen; Shchepetkin, Alexander F.; Colas, Francois; McWilliams, James C.; Sangrà, Pablo</p> <p></p> <p>One-way offline nesting of a primitive-equation regional ocean numerical model (ROMS) is investigated, with special attention to the boundary forcing file creation process. The model has a modified open boundary condition which minimises false wave reflections, and is optimised to utilise high-frequency boundary updates. The model configuration features a previously computed solution which supplies boundary forcing data to an interior domain with an increased grid resolution. At the open boundaries of the interior grid (the child) the topography is matched to that of the outer grid (the parent), over a narrow transition region. A correction is applied to the normal baroclinic and barotropic velocities at the open boundaries of the child to ensure volume conservation. It is shown that these steps, together with a carefully constructed interpolation of the parent data, lead to a high-quality child solution, with minimal artifacts such as persistent rim currents and wave reflections at the boundaries. Sensitivity experiments provide information about the robustness of the model open boundary condition to perturbations in the surface wind stress forcing field, to the perturbation of the volume conservation enforcement in the boundary forcing, and to perturbation of the vertical density structure in the boundary forcing. This knowledge is important when extending the nesting technique to include external data from alien sources, such as ocean models with physics and/or numerics different from ROMS, or from observed climatologies of temperature, salinity and sea level.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_1");'>1</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li class="active"><span>3</span></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_3 --> <div id="page_4" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li class="active"><span>4</span></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="61"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1991JGR....96.4531F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1991JGR....96.4531F"><span>Strain in shore fast ice due to incoming ocean waves and swell</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fox, Colin; Squire, Vernon A.</p> <p>1991-03-01</p> <p>Using a development from the theoretical model presented by Fox and Squire (1990), this paper investigates the strain field generated in shore fast ice by normally incident ocean waves and swell. After a brief description of the model and its convergence, normalized absolute strain (relative to a 1-m incident wave) is found as a function of distance from the ice edge for various wave periods, ice thicknesses, and water depths. The squared transfer function, giving the relative ability of incident waves of different periods to generate strain in the ice, is calculated, and its consequences are discussed. The ice is then forced with a Pierson-Moskowitz spectrum, and the consequent strain spectra are plotted as a function of penetration into the ice sheet. Finally, rms strain, computed as the incoherent sum of the strains resulting from energy in the open water spectrum, is found. The results have implications to the breakup of shore fast ice and hence to the floe size distribution of the marginal ice zone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70041533','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70041533"><span>The observed relationship between wave conditions and beach response, Ocean Beach, San Francisco, CA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hansen, J.E.; Barnard, P.L.</p> <p>2009-01-01</p> <p>Understanding how sandy beaches respond to storms is critical for effective sediment management and developing successful erosion mitigation efforts. However, only limited progress has been made in relating observed beach changes to wave conditions, with one of the major limiting factors being the lack of temporally dense beach topography and nearshore wave data in most studies. This study uses temporally dense beach topographic and offshore wave data to directly link beach response and wave forcing with generally good results. Ocean Beach is an open coast high-energy sandy beach located in San Francisco, CA, USA. From April 2004 through the end of 2008, 60 three-dimensional topographic beach surveys were conducted on approximately a monthly basis, with more frequent “short-term surveys during the winters of 2005-06 and 2006-07. Shoreline position data from the short-term surveys show good correlation with offshore wave height, period, and direction averaged over several days prior to the survey (mean R*=0.54 for entire beach). There is, however, considerable alongshore variation in model performance, with R- values ranging from 0.81 to 0.19 for individual sections of the beach. After wave height, the direction of wave approach was the most important factor in determining the response of the shoreline, followed by wave period. Our results indicate that an empirical predictive model of beach response to wave conditions at Ocean Beach is possible with frequent beach mapping and wave data, and that such a model could be useful to coastal managers. </p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018OcMod.125...80K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018OcMod.125...80K"><span>The numerics of hydrostatic structured-grid coastal ocean models: State of the art and future perspectives</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Klingbeil, Knut; Lemarié, Florian; Debreu, Laurent; Burchard, Hans</p> <p>2018-05-01</p> <p>The state of the art of the numerics of hydrostatic structured-grid coastal ocean models is reviewed here. First, some fundamental differences in the hydrodynamics of the coastal ocean, such as the large surface elevation variation compared to the mean water depth, are contrasted against large scale ocean dynamics. Then the hydrodynamic equations as they are used in coastal ocean models as well as in large scale ocean models are presented, including parameterisations for turbulent transports. As steps towards discretisation, coordinate transformations and spatial discretisations based on a finite-volume approach are discussed with focus on the specific requirements for coastal ocean models. As in large scale ocean models, splitting of internal and external modes is essential also for coastal ocean models, but specific care is needed when drying & flooding of intertidal flats is included. As one obvious characteristic of coastal ocean models, open boundaries occur and need to be treated in a way that correct model forcing from outside is transmitted to the model domain without reflecting waves from the inside. Here, also new developments in two-way nesting are presented. Single processes such as internal inertia-gravity waves, advection and turbulence closure models are discussed with focus on the coastal scales. Some overview on existing hydrostatic structured-grid coastal ocean models is given, including their extensions towards non-hydrostatic models. Finally, an outlook on future perspectives is made.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010SPIE.7728E..10S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010SPIE.7728E..10S"><span>Optical rogue waves and stimulated supercontinuum generation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Solli, Daniel R.; Ropers, Claus; Jalali, Bahram</p> <p>2010-06-01</p> <p>Nonlinear action is known for its ability to create unusual phenomena and unexpected events. Optical rogue waves-freak pulses of broadband light arising in nonlinear fiber-testify to the fact that optical nonlinearities are no less capable of generating anomalous events than those in other physical contexts. In this paper, we will review our work on optical rogue waves, an ultrafast phenomenon counterpart to the freak ocean waves known to roam the open oceans. We will discuss the experimental observation of these rare events in real time and the measurement of their heavytailed statistical properties-a probabilistic form known to appear in a wide variety of other complex systems from financial markets to genetics. The nonlinear Schrödinger equation predicts the existence of optical rogue waves, offering a means to study their origins with simulations. We will also discuss the type of initial conditions behind optical rogue waves. Because a subtle but specific fluctuation leads to extreme waves, the rogue wave instability can be harnessed to produce these events on demand. By exploiting this property, it is possible to produce a new type of optical switch as well as a supercontinuum source that operates in the long pulse regime but still achieves a stable, coherent output.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19950009433','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19950009433"><span>Validation of ERS-1 environmental data products</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Goodberlet, Mark A.; Swift, Calvin T.; Wilkerson, John C.</p> <p>1994-01-01</p> <p>Evaluation of the launch-version algorithms used by the European Space Agency (ESA) to derive wind field and ocean wave estimates from measurements of sensors aboard the European Remote Sensing satellite, ERS-1, has been accomplished through comparison of the derived parameters with coincident measurements made by 24 open ocean buoys maintained by the National Oceanic and Atmospheric Administration). During the period from November 1, 1991 through February 28, 1992, data bases with 577 and 485 pairs of coincident sensor/buoy wind and wave measurements were collected for the Active Microwave Instrument (AMI) and Radar Altimeter (RA) respectively. Based on these data, algorithm retrieval accuracy is estimated to be plus or minus 4 m/s for AMI wind speed, plus or minus 3 m/s for RA wind speed and plus or minus 0.6 m for RA wave height. After removing 180 degree ambiguity errors, the AMI wind direction retrieval accuracy was estimated at plus or minus 28 degrees. All of the ERS-1 wind and wave retrievals are relatively unbiased. These results should be viewed as interim since improved algorithms are under development. As final versions are implemented, additional assessments should be conducted to complete the validation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AcMSn..31....1Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AcMSn..31....1Z"><span>Modeling ocean wave propagation under sea ice covers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhao, Xin; Shen, Hayley H.; Cheng, Sukun</p> <p>2015-02-01</p> <p>Operational ocean wave models need to work globally, yet current ocean wave models can only treat ice-covered regions crudely. The purpose of this paper is to provide a brief overview of ice effects on wave propagation and different research methodology used in studying these effects. Based on its proximity to land or sea, sea ice can be classified as: landfast ice zone, shear zone, and the marginal ice zone. All ice covers attenuate wave energy. Only long swells can penetrate deep into an ice cover. Being closest to open water, wave propagation in the marginal ice zone is the most complex to model. The physical appearance of sea ice in the marginal ice zone varies. Grease ice, pancake ice, brash ice, floe aggregates, and continuous ice sheet may be found in this zone at different times and locations. These types of ice are formed under different thermal-mechanical forcing. There are three classic models that describe wave propagation through an idealized ice cover: mass loading, thin elastic plate, and viscous layer models. From physical arguments we may conjecture that mass loading model is suitable for disjoint aggregates of ice floes much smaller than the wavelength, thin elastic plate model is suitable for a continuous ice sheet, and the viscous layer model is suitable for grease ice. For different sea ice types we may need different wave ice interaction models. A recently proposed viscoelastic model is able to synthesize all three classic models into one. Under suitable limiting conditions it converges to the three previous models. The complete theoretical framework for evaluating wave propagation through various ice covers need to be implemented in the operational ocean wave models. In this review, we introduce the sea ice types, previous wave ice interaction models, wave attenuation mechanisms, the methods to calculate wave reflection and transmission between different ice covers, and the effect of ice floe breaking on shaping the sea ice morphology. Laboratory experiments, field measurements and numerical simulations supporting the fundamental research in wave-ice interaction models are discussed. We conclude with some outlook of future research needs in this field.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..12.5333T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..12.5333T"><span>Optical Rogue Waves: Theory and Experiments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Taki, M.; Mussot, A.; Kudlinski, A.; Louvergneaux, E.; Kolobov, M.</p> <p>2010-05-01</p> <p>In the ocean, giant waves (also called killer waves, freak or rogue waves) are extremely rare and strong events. They are not well understood yet and the conditions which favour their emergence are unclear. Very recently, it was shown that the governing equations [1] as well as the statistical properties of an optical pulse propagating inside an optical fibre [2] mimic very well these gigantic surface waves in the ocean. Here we generate both experimentally and numerically optical rogue waves in a photonic crystal fiber (microstructured fiber) with continuous wave (CW) pumps. This is relevant for establishing an analogy with rogue waves in an open ocean. After recalling fundamental rogue waves [3] known as Akhmediev breathers that are solutions of pure nonlinear Schrödinger (NLS) equation, we analytically demonstrate that a generalized NLS equation, which governs the propagation of light in the fiber, exhibits convective modulationnal instability [4]. The latter provides one of the main explanations of the optical rogue wave extreme sensitivity to noisy initial conditions at the linear stage of their formation [5]. In the highly nonlinear regime, we provide the evidence that optical rogue waves result from soliton collisions leading to the rapid appearance/disappearance of a powerful optical pulse [6]. REFERENCES [1] C. Kharif, E. Pelinovsky, and A. Slunyaev, "Rogue Waves in the ocean", Springer Berlin Heidelberg, 2009 [2] D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, "Optical rogue waves" Nature 450, 1054-1058, (2008). [3] N. Akhmediev, A. Ankiewicz, and M. Taki, "Waves that appear from nowhere and disappear without a trace", Phys. Lett. A 373, 675 (2009). [4] A. Mussot, E. Louvergneaux, N. Akhmediev, F. Reynaud, Delage, and M. Taki, "Optical fiber systems are convectively unstable", Phys. Rev. Lett. 101, 113904 (2008). [5] M. Taki, A. Mussot, A. Kudlinski, E. Louvergneaux, M. Kolobov, M. Douay, "Third-order dispersion for generating optical rogue solitons", Phys. Lett. A 374, 691-695 (2010). [6] A. Mussot, A. Kudlinski, M. Kolobov, E. Louvergneaux, M. Douay and M. Taki, "Observation of extreme temporal events in CW-pumped supercontinuum", Opt. Express 17 (19), 17010 (2009).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20000083900&hterms=3D+animation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3D3D%2Banimation','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20000083900&hterms=3D+animation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3D3D%2Banimation"><span>Hurricane Directional Wave Spectrum Spatial Variation in the Open Ocean and at Landfall</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Walsh, Edward J.; Wright, C. Wayne; Vandemark, Douglas C.; Krabill, William B.; Garcia, Andrew W.; Houston, Samuel H.; Powell, Mark D.; Black, Peter G.; Marks, Frank D.</p> <p>2000-01-01</p> <p>The sea surface directional wave spectrum was measured for the first time in all quadrants of a hurricane in open water using the NASA airborne scanning radar altimeter (SRA) carried aboard one of the NOAA WP-3D hurricane hunter aircraft at 1.5 km height. The SRA measures the energetic portion of the directional wave spectrum by generating a topographic map of the sea surface. At 8 Hz, the SRA sweeps a radar beam of 1' half-power width (two-way) across the aircraft ground track over a swath equal to 0.8 of the aircraft height, simultaneously measuring the backscattered power at its 36 GHz (8.3 mm) operating frequency and the range to the sea surface at 64 positions. These slant ranges are multiplied by the cosine of the off-nadir angles to determine the vertical distances from the aircraft to the sea surface. Subtracting these distances from the aircraft height produces the sea surface elevation map. The sea surface topography is interpolated to a uniform grid, transformed by a two dimensional FFT, and Doppler corrected. The open-ocean data were acquired on 24 August 1998 when hurricane Bonnie was east of the Bahamas and moving toward 330 deg at about 5 m/s. Individual waves up to 18 m height were observed and the spatial variation of the wave field was dramatic. The dominant waves generally propagated at significant angles to the downwind direction. At some positions there were three different wave fields of comparable energy crossing each other. The NOAA aircraft spent over five hours within 180 km of the eye, and made five eye penetrations. On 26 August 1998, the NOAA aircraft flew at 2.2 km height when hurricane Bonnie was making landfall near Wilmington, NC, documenting the directional wave spectrum in the region between Charleston, SC and Cape Hatteras, NC. The aircraft flight lines included segments near and along the shoreline as well as far offshore. Animations of the directional wave spectrum spatial variation along the aircraft tracks on the two flights will be presented using a 100: 1 time compression.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA573213','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA573213"><span>Ocean Surface Wave Optical Roughness - Innovative Measurement and Modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2007-09-30</p> <p>whitecap crest length spectral density (Phillips et al, 2001, Gemmrich, 2005) and microscale breaker crest length spectral density (Jessup and Phadnis ...open sea, Journal of Physical Oceanography, 16, 290-297. Jessup, A.T. & Phadnis , K.R. 2005 Measurement of the geometric and kinematic properties of</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA527025','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA527025"><span>Ocean Surface Wave Optical Roughness - Innovative Measurement and Modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2009-01-01</p> <p>length spectral density (e.g. Jessup and Phadnis , 2005) have been reported. Our effort seeks to provide a more comprehensive description of the...open sea, Journal of Physical Oceanography, 16, 290-297. Jessup, A.T. and Phadnis , K.R. 2005 Measurement of the geometric and kinematic</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015GeoRL..42.2317A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015GeoRL..42.2317A"><span>Estimates of ocean wave heights and attenuation in sea ice using the SAR wave mode on Sentinel-1A</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ardhuin, Fabrice; Collard, Fabrice; Chapron, Bertrand; Girard-Ardhuin, Fanny; Guitton, Gilles; Mouche, Alexis; Stopa, Justin E.</p> <p>2015-04-01</p> <p>Swell evolution from the open ocean into sea ice is poorly understood, in particular the amplitude attenuation expected from scattering and dissipation. New synthetic aperture radar (SAR) data from Sentinel-1A wave mode reveal intriguing patterns of bright oscillating lines shaped like instant noodles. We investigate cases in which the oscillations are in the azimuth direction, around a straight line in the range direction. This observation is interpreted as the distortion by the SAR processing of crests from a first swell, due to the presence of a second swell. Since deviations from a straight line should be proportional to the orbital velocity toward the satellite, swell height can be estimated, from 1.5 to 5 m in the present case. The evolution of this 13 s period swell across the ice pack is consistent with an exponential attenuation on a length scale of 200 km.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1714245A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1714245A"><span>Estimates of ocean wave heights and attenuation in sea ice using the SAR wave mode on Sentinel-1A</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ardhuin, Fabrice; Collard, Fabrice; Chapron, Bertrand; Girard-Ardhuin, Fanny; Guitton, Gilles; Mouche, Alexis; Stopa, Justin</p> <p>2015-04-01</p> <p>Swell evolution from the open ocean into sea ice is poorly understood, in particular the amplitude attenuation expected from scattering and dissipation. New synthetic aperture radar (SAR) data from Sentinel-1 wave mode reveal intriguing patterns of bright oscillating lines shaped like instant noodles. We investigate cases in which the oscillations are in the azimuth direction, around a straight line in the range direction. This observation is interpreted as the distortion by the SAR processing of crests from a first swell, due to the presence of a second swell. As deviations from a straight line should be proportional to the orbital velocity towards the satellite, swell height can be estimated, from 1.5 to 5 m in the present case. This evolution of this 13 s period swell across the ice pack is consistent with an exponential attenuation on a length scale of 200 km.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFM.B22C..08W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFM.B22C..08W"><span>Assessing the Feasibility and Risks of Using Wave-Driven Upwelling Pumps to Enhance the Biological Sequestration of Carbon in Open Oceans</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>White, A.; Bjorkman, K.; Grabowski, E.; Letelier, R. M.; Poulos, S.; Watkins, B.; Karl, D. M.</p> <p>2008-12-01</p> <p>In 1976, John D. Isaacs proposed to use wave energy to pump cold and nutrient-rich deep water into the sunlit surface layers. The motivation for this endeavor has taken many forms over the years, from energy production to fueling aquaculture to the more recent suggestion that artificial upwelling could be used to stimulate primary productivity and anthropogenic carbon sequestration in oligotrophic regions of the ocean. However, the potential for biological carbon sequestration in response to upwelling will depend on the concentration of nutrients relative to that of dissolved inorganic carbon in the water being upwelled and on the response of the marine microbial assemblage to this nutrient enrichment. In June 2008, we tested a commercially available wave pump in the vicinity of Station ALOHA, north of Oahu, Hawaii in order to assess the logistics of at-sea deployment and the survivability of the equipment in the open ocean. Our engineering test was also designed to evaluate a recently published hypothesis (Karl and Letelier, 2008, Marine Ecology Progress Series) that upwelling of water containing excess phosphate relative to nitrogen compared to the canonical "Redfield" molar ratio of 16N:1P, would generate a two-phased phytoplankton bloom and enhance carbon sequestration. In this presentation, we analyze the results of this field test within the context of pelagic biogeochemical cycles. Furthermore, we discuss the deployment of a 300m wave pump, efforts to sample a biochemical response, the engineering challenges faced and the practical and ethical implications of these results for future experiments aimed at stimulating the growth of phytoplankton in oligotrophic regions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSHE23A..06A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSHE23A..06A"><span>Observation and parametrization of wave attenuation through the MIZ</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ardhuin, F.; Stopa, J.; Dumont, D.; Sévigny, C.; Collard, F.; Boutin, G.</p> <p>2016-02-01</p> <p>Swell evolution from the open ocean into sea ice is poorly understood, in particular the amplitude attenuation expected from scattering and dissipation. New synthetic aperture radar (SAR) data from Sentinel-1 wave mode reveal intriguing patterns of bright oscillating lines shaped like instant noodles. We investigate cases in which the oscillations are in the azimuth direction, around a straight line in the range direction. This observation is interpreted as the distortion by the SAR processing of crests from a first swell, due to the presence of a second swell. Since deviations from a straight line should be proportional to the orbital velocity towards the satellite, swell height can be estimated. The intensity of the backscatter modulation with a single swell can also be used to retrieve swell height as it is found that the constructive velocity bunching is very sensitive to wave height. Using a novel algorithm to invert the wave directional spectrum, we investigate several cases of attenuation in the Arctic and southern ocean. On this basis we have adjusted an empirical wave-ice dissipation source term in the WAVEWATCH III model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-sts089-743-004.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-sts089-743-004.html"><span>Earth observations during STS-89</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>1998-01-26</p> <p>STS089-743-004 (22-31 Jan. 1998) --- This picture showing Auckland Island, New Zealand was photographed with a 70mm handheld camera from the Earth-orbiting space shuttle Endeavour. A spectacular occurrence of internal waves in the ocean is visible in the wake of the island. These waves can be generated by currents or, in some cases, wind across the island. In this case, the observation was that these waves were visible after the sunglint disappeared, suggesting current generated effects. If so, the circum-polar current that moves west-east around Antarctica would generate the scalloped appearance in the water east of the island. There is characteristically very little surface expression to these waves so they would not be noticed by a ship in this region. Fundamental processes of oceanic circulation and interaction are poorly understood. These shots help oceanographers model the dynamics of the open ocean and work out mixing models for ocean layer and ocean-air interaction (important for modeling CO2 budget, for example). The long linear valleys and bays have been excavated by glaciers cutting into this long-extinct volcano. This island is located on the submerged Campbell Plateau, which is an area almost as large as the exposed land of South Island, New Zealand. Scientists report that the plateau was submerged when New Zealand, Antarctica and Australia separated "around 75 million years ago." This could be viewed as one of the tallest mountains on the plateau. Usually the weather in this area is bad so this photo opportunity was considered a "great catch." Photo credit: NASA</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1031041','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1031041"><span>Indirect evidence for substantial damping of low-mode internal tides in the open ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2015-09-12</p> <p>see also Arbic et al., 2012; M€uller et al., 2012; Waterhouse et al., 2014] (C. B. Rocha, Mesoscale to submesoscale wavenumber spectra in Drake Passage...nominal horizontal resolution, at the equator , of 1/ 12.58. The simulations are forced by the M2 tide, the largest tidal constit- uent in the ocean, and by...2005] is given below. Thorough discussions on topographic wave drag and quadratic bottom friction and their appearance in the momentum equations can</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.9662H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.9662H"><span>Rogue waves in terms of multi-point statistics and nonequilibrium thermodynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hadjihosseini, Ali; Lind, Pedro; Mori, Nobuhito; Hoffmann, Norbert P.; Peinke, Joachim</p> <p>2017-04-01</p> <p>Ocean waves, which lead to rogue waves, are investigated on the background of complex systems. In contrast to deterministic approaches based on the nonlinear Schroedinger equation or focusing effects, we analyze this system in terms of a noisy stochastic system. In particular we present a statistical method that maps the complexity of multi-point data into the statistics of hierarchically ordered height increments for different time scales. We show that the stochastic cascade process with Markov properties is governed by a Fokker-Planck equation. Conditional probabilities as well as the Fokker-Planck equation itself can be estimated directly from the available observational data. This stochastic description enables us to show several new aspects of wave states. Surrogate data sets can in turn be generated allowing to work out different statistical features of the complex sea state in general and extreme rogue wave events in particular. The results also open up new perspectives for forecasting the occurrence probability of extreme rogue wave events, and even for forecasting the occurrence of individual rogue waves based on precursory dynamics. As a new outlook the ocean wave states will be considered in terms of nonequilibrium thermodynamics, for which the entropy production of different wave heights will be considered. We show evidence that rogue waves are characterized by negative entropy production. The statistics of the entropy production can be used to distinguish different wave states.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA603033','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA603033"><span>Ocean Surface Wave Optical Roughness - Innovative Measurement and Modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2009-09-30</p> <p>2001, Gemmrich et al., 2008) and microscale breaker crest length spectral density (e.g. Jessup and Phadnis , 2005) have been reported. Our effort...in the open sea, Journal of Physical Oceanography, 16, 290-297. Jessup, A.T. and Phadnis , K.R. 2005 Measurement of the geometric and kinematic</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA521700','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA521700"><span>Ocean Surface Wave Optical Roughness - Innovative Measurement and Modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2006-01-01</p> <p>spectral density (eg. Phillips et al, 2001, Gemmrich, 2005) and microscale breaker crest length spectral density (eg. Jessup and Phadnis , 2005) have...observed as whitecaps in the open sea, Journal of Physical Oceanography, 16, 290-297. Jessup, A.T. & Phadnis , K.R. 2005 Measurement of the geometric</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA541219','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA541219"><span>Ocean Surface Wave Optical Roughness: Innovative Polarization Measurement</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2010-09-30</p> <p>al, 2001, Gemmrich et al., 2008) and microscale breaker crest length spectral density (e.g. Jessup and Phadnis , 2005) have been reported. Our...observed as whitecaps in the open sea, Journal of Physical Oceanography, 16, 290-297. Jessup, A.T. and Phadnis , K.R. 2005 Measurement of the geometric</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li class="active"><span>4</span></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_4 --> <div id="page_5" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li class="active"><span>5</span></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="81"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA557103','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA557103"><span>Ocean Surface Wave Optical Roughness - Innovative Measurement and Modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2011-09-30</p> <p>18 2 2001, Gemmrich et al., 2008) and microscale breaker crest length spectral density (e.g. Jessup and Phadnis , 2005) have been reported. Our...open sea, J. Phys. Oceanogr., 16, 290-297. Jessup, A.T. and K.R. Phadnis , 2005: Measurement of the geometric and kinematic properties of microsacle</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA541296','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA541296"><span>Ocean Surface Wave Optical Roughness - Innovative Measurement and Modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2010-01-01</p> <p>e.g. Jessup and Phadnis , 2005) have been reported. Our effort seeks to provide a more comprehensive description of the physical and optical...the open sea, Journal of Physical Oceanography, 16, 290-297. Jessup, A.T. and Phadnis , K.R. 2005 Measurement of the geometric and kinematic</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA572611','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA572611"><span>Ocean Surface Wave Optical Roughness: Innovative Polarization Measurement</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2007-09-30</p> <p>Jessup and Phadnis , 2005) have been reported. 1 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of...the open sea, Journal of Physical Oceanography, 16, 290-297. Jessup, A.T. & Phadnis , K.R. 2005 Measurement of the geometric and kinematic properties</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA572651','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA572651"><span>Ocean Surface Wave Optical Roughness - Innovative Measurement and Modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2007-09-30</p> <p>microscale breaker crest length spectral density (eg. Jessup and Phadnis , 2005) have been reported. 1 Report Documentation Page Form ApprovedOMB No. 0704...whitecaps in the open sea, Journal of Physical Oceanography, 16, 290-297. Jessup, A.T. & Phadnis , K.R. 2005 Measurement of the geometric and</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA598163','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA598163"><span>Ocean Surface Wave Optical Roughness - Analysis of Innovative Measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2013-09-30</p> <p>Phillips et al., 2001] and microscale breaker crest length spectral density [e.g., Jessup and Phadnis , 2005] have been reported. Our effort seeks to...open sea, Journal of Physical Oceanography, 16, 290-297. Jessup, A. T., and K. R. Phadnis (2005), Measurement of the geometric and kinematic properties</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1237844','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1237844"><span>Wave Energy Research, Testing and Demonstration Center</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Batten, Belinda</p> <p>2014-09-30</p> <p>The purpose of this project was to build upon the research, development and testing experience of the Northwest National Marine Renewable Energy Center (NNMREC) to establish a non-grid connected open-ocean testing facility for wave energy converters (WECs) off the coast of Newport, Oregon. The test facility would serve as the first facility of its kind in the continental US with a fully energetic wave resource where WEC technologies could be proven for west coast US markets. The test facility would provide the opportunity for self-contained WEC testing or WEC testing connected via an umbilical cable to a mobile ocean testmore » berth (MOTB). The MOTB would act as a “grid surrogate” measuring energy produced by the WEC and the environmental conditions under which the energy was produced. In order to realize this vision, the ocean site would need to be identified through outreach to community stakeholders, and then regulatory and permitting processes would be undertaken. Part of those processes would require environmental baseline studies and site analysis, including benthic, acoustic and wave resource characterization. The MOTB and its myriad systems would need to be designed and constructed.The first WEC test at the facility with the MOTB was completed within this project with the WET-NZ device in summer 2012. In summer 2013, the MOTB was deployed with load cells on its mooring lines to characterize forces on mooring systems in a variety of sea states. Throughout both testing seasons, studies were done to analyze environmental effects during testing operations. Test protocols and best management practices for open ocean operations were developed. As a result of this project, the non-grid connected fully energetic WEC test facility is operational, and the MOTB system developed provides a portable concept for WEC testing. The permitting process used provides a model for other wave energy projects, especially those in the Pacific Northwest that have similar environmental considerations. While the non-grid connected testing facility provides an option for WEC developers to prove their technology in a fully-energetic wave environment, the absence of grid connection is somewhat of a limitation. To prove that their technology is commercially viable, developers seek a multi-year grid connected testing option. To address this need, NNMREC is developing a companion grid connected test facility in Newport, Oregon, where small arrays of WECs can be tested as well.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C41A0639L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C41A0639L"><span>Upper Ocean Evolution Across the Beaufort Sea Marginal Ice Zone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, C.; Rainville, L.; Gobat, J. I.; Perry, M. J.; Freitag, L. E.; Webster, S.</p> <p>2016-12-01</p> <p>The observed reduction of Arctic summertime sea ice extent and expansion of the marginal ice zone (MIZ) have profound impacts on the balance of processes controlling sea ice evolution, including the introduction of several positive feedback mechanisms that may act to accelerate melting. Examples of such feedbacks include increased upper ocean warming though absorption of solar radiation, elevated internal wave energy and mixing that may entrain heat stored in subsurface watermasses (e.g., the relatively warm Pacific Summer and Atlantic waters), and elevated surface wave energy that acts to deform and fracture sea ice. Spatial and temporal variability in ice properties and open water fraction impact these processes. To investigate how upper ocean structure varies with changing ice cover, how the balance of processes shift as a function of ice fraction and distance from open water, and how these processes impact sea ice evolution, a network of autonomous platforms sampled the atmosphere-ice-ocean system in the Beaufort, beginning in spring, well before the start of melt, and ending with the autumn freeze-up. Four long-endurance autonomous Seagliders occupied sections that extended from open water, through the marginal ice zone, deep into the pack during summer 2014 in the Beaufort Sea. Gliders penetrated up to 200 km into the ice pack, under complete ice cover for up to 10 consecutive days. Sections reveal strong fronts where cold, ice-covered waters meet waters that have been exposed to solar warming, and O(10 km) scale eddies near the ice edge. In the pack, Pacific Summer Water and a deep chlorophyll maximum form distinct layers at roughly 60 m and 80 m, respectively, which become increasingly diffuse late in the season as they progress through the MIZ and into open water. Stratification just above the Pacific Summer Water rapidly weakens near the ice edge and temperature variance increases, likely due to mixing or energetic vertical exchange associated with strong lateral gradients at the MIZ. This presentation will discuss the evolution of the Arctic upper ocean over the summer to the start of freeze up and the relationship of its variability to sea ice extent and atmospheric forcing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20000095083','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20000095083"><span>Hurricane Directional Wave Spectrum Spatial Variation at Landfall</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Walsh, Edward J.; Wright, C. Wayne; Vandemark, Douglas C.; Krabill, William B.; Garcia, Andrew W.; Houston, Samuel H.; Powell, Mark D.; Black, Peter G.; Marke, Frank D.; Busalacchi, Antonio J. (Technical Monitor)</p> <p>2000-01-01</p> <p>On 26 August 1998, hurricane Bonnie was making landfall near Wilmington, NC. The NASA airborne scanning radar altimeter (SRA) carried aboard one of the NOAA WP-3D hurricane hunter aircraft at 2.2 km height documented the sea surface directional wave spectrum in the region between Charleston, SC and Cape Hatteras, NC. The aircraft ground track included both segments along the shoreline and Pamlico Sound as well as far offshore. An animation of the directional wave spectrum spatial variation at landfall will be presented and contrasted with the spatial variation when Bonnie was in the open ocean on 24 August 1998.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20000013613&hterms=3D+animation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3D3D%2Banimation','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20000013613&hterms=3D+animation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3D3D%2Banimation"><span>Hurricane Directional Wave Spectrum Spatial Variation at Landfall</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Walsh, E. J.; Wright, C. W.; Vandemark, D.; Krabill, W. B.; Garcia, A. W.</p> <p>1999-01-01</p> <p>On 26 August 1998, hurricane Bonnie was making landfall near Wilmington, NC. The NASA airborne scanning radar altimeter (SRA) carried aboard one of the NOAA WP-3D hurricane hunter aircraft at 2.2 km height documented the sea surface directional wave spectrum in the region between Charleston, SC and Cape Hatteras, NC. The aircraft ground track included both segments along the shoreline and Pamlico Sound as well as far offshore. An animation of the directional wave spectrum spatial variation at landfall will be presented and contrasted with the spatial variation when Bonnie was in the open ocean on 24 August 1998.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOS.A54A2690K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOS.A54A2690K"><span>Observations and simulations of microplastic marine debris in the ocean surface boundary layer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kukulka, T.; Brunner, K.; Proskurowski, G. K.; Lavender Law, K. L.</p> <p>2016-02-01</p> <p>Motivated by observations of buoyant microplastic marine debris (MPMD) in the ocean surface boundary layer (OSBL), this study applies a large eddy simulation model and a parametric one-dimensional column model to examine vertical distributions of MPMD. MPMD is widely distributed in vast regions of the subtropical gyres and has emerged as a major open ocean pollutant whose distribution is subject to upper ocean turbulence. The models capture wind-driven turbulence, Langmuir turbulence (LT), and enhanced turbulent kinetic energy input due to breaking waves (BW). Model results are only consistent with MPMD observations if LT effects are included. Neither BW nor shear-driven turbulence is capable of deeply submerging MPMD, suggesting that the observed vertical MPMD distributions are a characteristic signature of wave-driven LT. Thus, this study demonstrates that LT substantially increases turbulent transport in the OSBL, resulting in deep submergence of buoyant tracers. The parametric model is applied to eleven years of observations in the North Atlantic and North Pacific subtropical gyres to show that surface measurements substantially underestimate MPMD concentrations by a factor of three to thirteen.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28559056','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28559056"><span>Fate of microplastics and mesoplastics carried by surface currents and wind waves: A numerical model approach in the Sea of Japan.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Iwasaki, Shinsuke; Isobe, Atsuhiko; Kako, Shin'ichiro; Uchida, Keiichi; Tokai, Tadashi</p> <p>2017-08-15</p> <p>A numerical model was established to reproduce the oceanic transport processes of microplastics and mesoplastics in the Sea of Japan. A particle tracking model, where surface ocean currents were given by a combination of a reanalysis ocean current product and Stokes drift computed separately by a wave model, simulated particle movement. The model results corresponded with the field survey. Modeled results indicated the micro- and mesoplastics are moved northeastward by the Tsushima Current. Subsequently, Stokes drift selectively moves mesoplastics during winter toward the Japanese coast, resulting in increased contributions of mesoplastics south of 39°N. Additionally, Stokes drift also transports micro- and mesoplastics out to the sea area south of the subpolar front where the northeastward Tsushima Current carries them into the open ocean via the Tsugaru and Soya straits. Average transit time of modeled particles in the Sea of Japan is drastically reduced when including Stokes drift in the model. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870051552&hterms=treatment+insulin&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dtreatment%2Binsulin','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870051552&hterms=treatment+insulin&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dtreatment%2Binsulin"><span>Measuring ocean waves from space; Proceedings of the Symposium, Johns Hopkins University, Laurel, MD, Apr. 15-17, 1986</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Beal, Robert C. (Editor)</p> <p>1987-01-01</p> <p>Papers are presented on ocean-wave prediction; the quasi-universal form of the spectra of wind-generated gravity waves at different stages of their development; the limitations of the spectral measurements and observations of the group structure of surface waves; the effect of swell on the growth of wind wave; operational wave forecasting; ocean-wave models, and seakeeping using directional wave spectra. Consideration is given to microwave measurements of the ocean-wave directional spectra; SIR research; estimating wave energy spectra from SAR imagery, with the radar ocean-wave spectrometer, and SIR-B; the wave-measurement capabilities of the surface contour radar and the airborne oceanographic lidar; and SIR-B ocean-wave enhancement with fast-Fourier transform techniques. Topics discussed include wave-current interaction; the design and applicability of Spectrasat; the need for a global wave monitoring system; the age and source of ocean swell observed in Hurricane Josephine; and the use of satellite technology for insulin treatment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA617865','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA617865"><span>Visible and Thermal Imaging of Sea Ice and Open Water from Coast Guard Arctic Domain Awareness Flights</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2014-09-30</p> <p>dropsondes, micro- aircraft), cloud top/base heights Arctic Ocean Surface Temperature project Steele Buoy drops for SLP , SST, SSS, & surface velocity...Colón & Vancas (NIC) Drop buoys for SLP , temperature and surface velocity Waves & Fetch in the MIZ Thompson SWIFTS buoys measuring wave energy...Expendable CTD, AXCP= Air Expendable Current Profiler, SLP = Sea Level atmospheric Pressure, SST= Seas Surface Temperature, A/C= aircraft, FSD= Floe Size Distribution, SIC=Sea Ice Concentration</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24687148','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24687148"><span>On Hokusai's Great wave off Kanagawa: localization, linearity and a rogue wave in sub-Antarctic waters.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dudley, J M; Sarano, V; Dias, F</p> <p>2013-06-20</p> <p>The Hokusai woodcut entitled The great wave off Kanagawa has been interpreted as an unusually large storm wave, likely to be classed as a rogue wave, and possibly generated from nonlinear wave dynamics (J. H. E. Cartwright and H. Nakamura, Notes Rec. R. Soc. 63 , 119-135 (2009)). In this paper, we present a complementary discussion of this hypothesis, discussing in particular how linear and nonlinear mechanisms can both contribute to the emergence of rogue wave events. By making reference to the Great wave 's simultaneous transverse and longitudinal localization, we show that the purely linear mechanism of directional focusing also predicts characteristics consistent with those of the Great wave . In addition, we discuss the properties of a particular rogue wave photographed on the open ocean in sub-Antarctic waters, which shows two-dimensional localization and breaking dynamics remarkably similar to Hokusai's depiction in the woodcut.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3645210','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3645210"><span>On Hokusai's Great wave off Kanagawa: localization, linearity and a rogue wave in sub-Antarctic waters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Dudley, J. M.; Sarano, V.; Dias, F.</p> <p>2013-01-01</p> <p>The Hokusai woodcut entitled The great wave off Kanagawa has been interpreted as an unusually large storm wave, likely to be classed as a rogue wave, and possibly generated from nonlinear wave dynamics (J. H. E. Cartwright and H. Nakamura, Notes Rec. R. Soc. 63, 119–135 (2009)). In this paper, we present a complementary discussion of this hypothesis, discussing in particular how linear and nonlinear mechanisms can both contribute to the emergence of rogue wave events. By making reference to the Great wave's simultaneous transverse and longitudinal localization, we show that the purely linear mechanism of directional focusing also predicts characteristics consistent with those of the Great wave. In addition, we discuss the properties of a particular rogue wave photographed on the open ocean in sub-Antarctic waters, which shows two-dimensional localization and breaking dynamics remarkably similar to Hokusai's depiction in the woodcut. PMID:24687148</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4726578','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4726578"><span>Ocean Wave Simulation Based on Wind Field</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2016-01-01</p> <p>Ocean wave simulation has a wide range of applications in movies, video games and training systems. Wind force is the main energy resource for generating ocean waves, which are the result of the interaction between wind and the ocean surface. While numerous methods to handle simulating oceans and other fluid phenomena have undergone rapid development during the past years in the field of computer graphic, few of them consider to construct ocean surface height field from the perspective of wind force driving ocean waves. We introduce wind force to the construction of the ocean surface height field through applying wind field data and wind-driven wave particles. Continual and realistic ocean waves result from the overlap of wind-driven wave particles, and a strategy was proposed to control these discrete wave particles and simulate an endless ocean surface. The results showed that the new method is capable of obtaining a realistic ocean scene under the influence of wind fields at real time rates. PMID:26808718</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26808718','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26808718"><span>Ocean Wave Simulation Based on Wind Field.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Zhongyi; Wang, Hao</p> <p>2016-01-01</p> <p>Ocean wave simulation has a wide range of applications in movies, video games and training systems. Wind force is the main energy resource for generating ocean waves, which are the result of the interaction between wind and the ocean surface. While numerous methods to handle simulating oceans and other fluid phenomena have undergone rapid development during the past years in the field of computer graphic, few of them consider to construct ocean surface height field from the perspective of wind force driving ocean waves. We introduce wind force to the construction of the ocean surface height field through applying wind field data and wind-driven wave particles. Continual and realistic ocean waves result from the overlap of wind-driven wave particles, and a strategy was proposed to control these discrete wave particles and simulate an endless ocean surface. The results showed that the new method is capable of obtaining a realistic ocean scene under the influence of wind fields at real time rates.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhDT.......203C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhDT.......203C"><span>Energy Harvesting from Surface River/Ocean Waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cai, Wenzheng</p> <p></p> <p>The renewable energy is an important subject especially today as the world is facing the results of the pollution and depletion of the conventional energy resources. Around 70% of the Earth's surface is covered by water where the energy of the waves/tides could be used as alternative source of energy that is sustainable and environmental friendly. Most of the research efforts are focused on the development of the large-scale technologies that can operate in the open Ocean. The potential of the low-frequency and small-amplitude wave condition in shallow rivers and lakes where most of the world wave energy exists has not been explored yet. The objective of the current study is to design and develop new concepts for wave energy extraction, which depend on oscillatory wave motion and have the ability to convert the small and medium waves. The proposed devices are self-generating without any external sources, which makes them lightweight and naturally floating on the surface of the water. Feasibility studies of both designs were performed using numerical modeling and field experiments. The final prototypes achieved power output of 5.0+/-0.6mW and 0.25+/-0.01mW, respectively. Array systems implementing both concepts were also introduced to improve the performance of the devices.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.S21A4426F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.S21A4426F"><span>Observations and Numerical Modelling of Strong Meteotsunami of 13 June 2013 on the East Coast of the USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fine, I.; Sepic, J.; Rabinovich, A.; Thomson, R.</p> <p>2014-12-01</p> <p>A strong "derecho" (rapidly moving lines of convectively induced intense thunderstorms) was generated over the Midwestern United States on 12-13 June 2013 and propagated across the Appalachian Mountains to the Atlantic Ocean. Three hours after the derecho crossed the Atlantic coast, a ~2-m high meteotsunami wave was reported to have hit the New Jersey coast. Significant tsunami-like oscillations, with wave heights of ~0.6 m, were also recorded by a number of tide-gauges located along the eastern seaboard from Nova Scotia to South Carolina, at Bermuda, and by open-ocean DART 44402. These observations triggered the tsunami-alert mode of the DART station. Intense air pressure disturbances (with pressure change of 3-6 hPa in 20 min) and strong winds were observed at a number of National Oceanic and Atmospheric Administration (NOAA) and Automated Surface Observing System (ASOS) stations to be propagating simultaneously with the derecho system, indicating that the pressure disturbances were the primary cause for the sea level oscillations in Chesapeake and Delaware bays. The air pressure disturbance continued to propagate seaward over the continental shelf, thereby generating long waves via Proudman resonance at those areas of the shelf where the propagation speed of the air pressure disturbance matched the long wave speed. Upon reaching the shelf break, the long-waves were partly transmitted (reaching Bermuda 5 hours later) and partly reflected (returning to the east coast of the US and Canada 3 to 6 hours later). A numerical barotropic ocean model forced with idealized air pressure and wind fields was used successfully to simulate the event. The meteotsunami arrival times and maximum wave heights obtained from the model closely match the measured values and confirm initial assumptions regarding the partitioning between transmitted and reflected meteotsunami waves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920067728&hterms=marginal&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dmarginal','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920067728&hterms=marginal&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dmarginal"><span>Wave attenuation in the marginal ice zone during LIMEX</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Liu, Antony K.; Vachon, Paris W.; Peng, Chih Y.; Bhogal, A. S.</p> <p>1992-01-01</p> <p>The effect of ice cover on ocean-wave attenuation is investigated for waves under flexure in the marginal ice zone (MIZ) with SAR image spectra and the results of models. Directional wavenumber spectra are taken from the SAR image data, and the wave-attenuation rate is evaluated with SAR image spectra and by means of the model by Liu and Mollo-Christensen (1988). Eddy viscosity is described by means of dimensional analysis as a function of ice roughness and wave-induced velocity, and comparisons are made with the remotely sensed data. The model corrects the open-water model by introducing the effects of a continuous ice sheet, and turbulent eddy viscosity is shown to depend on ice thickness, floe sizes, significant wave height, and wave period. SAR and wave-buoy data support the trends described in the model results, and a characteristic rollover is noted in the model and experimental wave-attenuation rates at high wavenumbers.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li class="active"><span>5</span></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_5 --> <div id="page_6" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="101"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..44.6735L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..44.6735L"><span>Mantle flow through a tear in the Nazca slab inferred from shear wave splitting</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lynner, Colton; Anderson, Megan L.; Portner, Daniel E.; Beck, Susan L.; Gilbert, Hersh</p> <p>2017-07-01</p> <p>A tear in the subducting Nazca slab is located between the end of the Pampean flat slab and normally subducting oceanic lithosphere. Tomographic studies suggest mantle material flows through this opening. The best way to probe this hypothesis is through observations of seismic anisotropy, such as shear wave splitting. We examine patterns of shear wave splitting using data from two seismic deployments in Argentina that lay updip of the slab tear. We observe a simple pattern of plate-motion-parallel fast splitting directions, indicative of plate-motion-parallel mantle flow, beneath the majority of the stations. Our observed splitting contrasts previous observations to the north and south of the flat slab region. Since plate-motion-parallel splitting occurs only coincidentally with the slab tear, we propose mantle material flows through the opening resulting in Nazca plate-motion-parallel flow in both the subslab mantle and mantle wedge.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.S33C2785S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.S33C2785S"><span>Spectral-Element Seismic Wave Propagation Codes for both Forward Modeling in Complex Media and Adjoint Tomography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Smith, J. A.; Peter, D. B.; Tromp, J.; Komatitsch, D.; Lefebvre, M. P.</p> <p>2015-12-01</p> <p>We present both SPECFEM3D_Cartesian and SPECFEM3D_GLOBE open-source codes, representing high-performance numerical wave solvers simulating seismic wave propagation for local-, regional-, and global-scale application. These codes are suitable for both forward propagation in complex media and tomographic imaging. Both solvers compute highly accurate seismic wave fields using the continuous Galerkin spectral-element method on unstructured meshes. Lateral variations in compressional- and shear-wave speeds, density, as well as 3D attenuation Q models, topography and fluid-solid coupling are all readily included in both codes. For global simulations, effects due to rotation, ellipticity, the oceans, 3D crustal models, and self-gravitation are additionally included. Both packages provide forward and adjoint functionality suitable for adjoint tomography on high-performance computing architectures. We highlight the most recent release of the global version which includes improved performance, simultaneous MPI runs, OpenCL and CUDA support via an automatic source-to-source transformation library (BOAST), parallel I/O readers and writers for databases using ADIOS and seismograms using the recently developed Adaptable Seismic Data Format (ASDF) with built-in provenance. This makes our spectral-element solvers current state-of-the-art, open-source community codes for high-performance seismic wave propagation on arbitrarily complex 3D models. Together with these solvers, we provide full-waveform inversion tools to image the Earth's interior at unprecedented resolution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1814128H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1814128H"><span>On the generation of internal wave modes by surface waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Harlander, Uwe; Kirschner, Ian; Maas, Christian; Zaussinger, Florian</p> <p>2016-04-01</p> <p>Internal gravity waves play an important role in the ocean since they transport energy and momentum and the can lead to mixing when they break. Surface waves and internal gravity waves can interact. On the one hand, long internal waves imply a slow varying shear current that modifies the propagation of surface waves. Surface waves generated by the atmosphere can, on the other hand, excite internal waves by nonlinear interaction. Thereby a surface wave packet consisting of two close frequencies can resonate with a low frequency internal wave (Phillips, 1966). From a theoretical point of view, the latter has been studied intensively by using a 2-layer model, i.e. a surface layer with a strong density contrast and an internal layer with a comparable weak density contrast (Ball, 1964; Craig et al., 2010). In the present work we analyse the wave coupling for a continuously stratified fluid using a fully non-linear 2D numerical model (OpenFoam) and compare this with laboratory experiments (see Lewis et al. 1974). Surface wave modes are used as initial condition and the time development of the dominant surface and internal waves are studied by spectral and harmonic analysis. For the simple geometry of a box, the results are compared with analytical spectra of surface and gravity waves. Ball, F.K. 1964: Energy transfer between external and internal gravity waves. J. Fluid Mech. 19, 465. Craig, W., Guyenne, P., Sulem, C. 2010: Coupling between internal and surface waves. Natural Hazards 57, 617-642. Lewis, J.E., Lake, B.M., Ko, D.R.S 1974: On the interaction of internal waves and surfacr gravity waves, J. Fluid Mech. 63, 773-800. Phillips, O.M. 1966: The dynamics of the upper ocean, Cambridge University Press, 336pp.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA118688','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA118688"><span>The Spectral Ocean Wave Model (SOWM), a Northern Hemisphere Computer Model for Specifying and Forecasting Ocean Wave Spectra</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1982-07-01</p> <p>directions. SIGNIFICANT WAVE HEIGHT A further sua-tion of (3) over the 15 frequency bands yields, within a linear model , the variance of a time history of...SPECTRAL Of.EAN WAVE MODEL (SOWM), A NORTHERN Final Report HEMtISPHEE COMPUTER MODELL Foyt SPECIFYING AND FORECASTING OCEAN WAVE .SftfTRA S EFRIGOG...Ocean Wave Model (SWM() In use at the Fleet Numerical Oceanography Center si.nce 1974 has been used to produce spectra for a 20- year ocean wave</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19800067236&hterms=function+wave&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dfunction%2Bwave','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19800067236&hterms=function+wave&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dfunction%2Bwave"><span>Ocean wave-radar modulation transfer functions from the West Coast experiment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wright, J. W.; Plant, W. J.; Keller, W. C.; Jones, W. L.</p> <p>1980-01-01</p> <p>Short gravity-capillary waves, the equilibrium, or the steady state excitations of the ocean surface are modulated by longer ocean waves. These short waves are the predominant microwave scatterers on the ocean surface under many viewing conditions so that the modulation is readily measured with CW Doppler radar used as a two-scale wave probe. Modulation transfer functions (the ratio of the cross spectrum of the line-of-sight orbital speed and backscattered microwave power to the autospectrum of the line-of-sight orbital speed) were measured at 9.375 and 1.5 GHz (Bragg wavelengths of 2.3 and 13 cm) for winds up to 10 m/s and ocean wave periods from 2-18 s. The measurements were compared with the relaxation-time model; the principal result is that a source of modulation other than straining by the horizontal component of orbital speed, possibly the wave-induced airflow, is responsible for most of the modulation by waves of typical ocean wave period (10 s). The modulations are large; for unit coherence, spectra of radar images of deep-water waves should be proportional to the quotient of the slope spectra of the ocean waves by the ocean wave frequency.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMOS21E..01A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMOS21E..01A"><span>Modeling High-Resolution Coastal Ocean Dynamics with COAMPS: System Overview, Applications and Future Directions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Allard, R. A.; Campbell, T. J.; Edwards, K. L.; Smith, T.; Martin, P.; Hebert, D. A.; Rogers, W.; Dykes, J. D.; Jacobs, G. A.; Spence, P. L.; Bartels, B.</p> <p>2014-12-01</p> <p>The Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS®) is an atmosphere-ocean-wave modeling system developed by the Naval Research Laboratory which can be configured to cycle regional forecasts/analysis models in single-model (atmosphere, ocean, and wave) or coupled-model (atmosphere-ocean, ocean-wave, and atmosphere-ocean-wave) modes. The model coupling is performed using the Earth System Modeling Framework (ESMF). The ocean component is the Navy Coastal Ocean Model (NCOM), and the wave components include Simulating WAves Nearshore (SWAN) and WaveWatch-III. NCOM has been modified to include wetting and drying, the effects of Stokes drift current, wave radiation stresses due to horizontal gradients of the momentum flux of surface waves, enhancement of bottom drag in shallow water, and enhanced vertical mixing due to Langmuir turbulence. An overview of the modeling system including ocean data assimilation and specification of boundary conditions will be presented. Results from a high-resolution (10-250m) modeling study from the Surfzone Coastal Oil Pathways Experiment (SCOPE) near Ft. Walton Beach, Florida in December 2013 will be presented. ®COAMPS is a registered trademark of the Naval Research Laboratory</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DFDQ32011R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DFDQ32011R"><span>Shoaling internal solitary waves of depression over gentle slopes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rivera, Gustavo; Diamessis, Peter</p> <p>2017-11-01</p> <p>The shoaling of an internal solitary wave (ISW) of depression over gentle slopes is explored through fully nonlinear and non-hydrostatic simulations using a high resolution/accuracy deformed spectral multidomain penalty method. During shoaling, the wave does not disintegrate as in the case of steeper slope but, instead, maintains its symmetric shape. At the core of the wave, an unstable region forms, characterized by the entrapment of heavier-over-light fluid. The formation of this convective instability is attributed to the vertical stretching by the ISW of the near-surface vorticity layer associated with the baroclinic background current. According to recent field observations in the South China Sea, the unstable region drives localized turbulent mixing within the wave, estimated to be up to four times larger than that in the open ocean, in the form of a recirculating trapped core. In this talk, emphasis is placed on the structure of the unstable region and the persistence of a possible recirculating core using simulations which capture 2D wave propagation combined with 3D representation of the transition to turbulence. As such, a preliminary understanding of the underlying fluid mechanics and the potential broader oceanic significance of ISWs with trapped cores is offered. Financial support gratefully acknowledged to NSF OCE Grant 1634257.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26291384','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26291384"><span>Ocean Research Enabled by Underwater Gliders.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rudnick, Daniel L</p> <p>2016-01-01</p> <p>Underwater gliders are autonomous underwater vehicles that profile vertically by changing their buoyancy and use wings to move horizontally. Gliders are useful for sustained observation at relatively fine horizontal scales, especially to connect the coastal and open ocean. In this review, research topics are grouped by time and length scales. Large-scale topics addressed include the eastern and western boundary currents and the regional effects of climate variability. The accessibility of horizontal length scales of order 1 km allows investigation of mesoscale and submesoscale features such as fronts and eddies. Because the submesoscales dominate vertical fluxes in the ocean, gliders have found application in studies of biogeochemical processes. At the finest scales, gliders have been used to measure internal waves and turbulent dissipation. The review summarizes gliders' achievements to date and assesses their future in ocean observation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFM.S53B1328M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFM.S53B1328M"><span>Wide-angle Marine Seismic Refraction Imaging of Vertical Faults: Pre-Stack Turning Wave Migrations of Synthetic Data and Implications for Survey Design</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Miller, N. C.; Lizarralde, D.; McGuire, J.; Hole, J. A.</p> <p>2006-12-01</p> <p>We consider methodologies, including survey design and processing algorithms, which are best suited to imaging vertical reflectors in oceanic crust using marine seismic techniques. The ability to image the reflectivity structure of transform faults as a function of depth, for example, may provide new insights into what controls seismicity along these plate boundaries. Turning-wave migration has been used with success to image vertical faults on land. With synthetic datasets we find that this approach has unique difficulties in the deep ocean. The fault-reflected crustal refraction phase (Pg-r) typically used in pre-stack migrations is difficult to isolate in marine seismic data. An "imagable" Pg-r is only observed in a time window between the first arrivals and arrivals from the sediments and the thick, slow water layer at offsets beyond ~25 km. Ocean- bottom seismometers (OBSs), as opposed to a long surface streamer, must be used to acquire data suitable for crustal-scale vertical imaging. The critical distance for Moho reflections (PmP) in oceanic crust is also ~25 km, thus Pg-r and PmP-r are observed with very little separation, and the fault-reflected mantle refraction (Pn-r) arrives prior to Pg-r as the observation window opens with increased OBS-to-fault distance. This situation presents difficulties for "first-arrival" based Kirchoff migration approaches and suggests that wave- equation approaches, which in theory can image all three phases simultaneously, may be more suitable for vertical imaging in oceanic crust. We will present a comparison of these approaches as applied to a synthetic dataset generated from realistic, stochastic velocity models. We will assess their suitability, the migration artifacts unique to the deep ocean, and the ideal instrument layout for such an experiment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1378880','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1378880"><span>Inclusion of Structural Flexibility in Design Load Analysis for Wave Energy Converters: Preprint</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Guo, Yi; Yu, Yi-Hsiang; van Rij, Jennifer A</p> <p>2017-08-14</p> <p>Hydroelastic interactions, caused by ocean wave loading on wave energy devices with deformable structures, are studied in the time domain. A midfidelity, hybrid modeling approach of rigid-body and flexible-body dynamics is developed and implemented in an open-source simulation tool for wave energy converters (WEC-Sim) to simulate the dynamic responses of wave energy converter component structural deformations under wave loading. A generalized coordinate system, including degrees of freedom associated with rigid bodies, structural modes, and constraints connecting multiple bodies, is utilized. A simplified method of calculating stress loads and sectional bending moments is implemented, with the purpose of sizing and designingmore » wave energy converters. Results calculated using the method presented are verified with those of high-fidelity fluid-structure interaction simulations, as well as low-fidelity, frequency-domain, boundary element method analysis.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26093440','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26093440"><span>Elastic parabolic equation solutions for oceanic T-wave generation and propagation from deep seismic sources.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Frank, Scott D; Collis, Jon M; Odom, Robert I</p> <p>2015-06-01</p> <p>Oceanic T-waves are earthquake signals that originate when elastic waves interact with the fluid-elastic interface at the ocean bottom and are converted to acoustic waves in the ocean. These waves propagate long distances in the Sound Fixing and Ranging (SOFAR) channel and tend to be the largest observed arrivals from seismic events. Thus, an understanding of their generation is important for event detection, localization, and source-type discrimination. Recently benchmarked seismic self-starting fields are used to generate elastic parabolic equation solutions that demonstrate generation and propagation of oceanic T-waves in range-dependent underwater acoustic environments. Both downward sloping and abyssal ocean range-dependent environments are considered, and results demonstrate conversion of elastic waves into water-borne oceanic T-waves. Examples demonstrating long-range broadband T-wave propagation in range-dependent environments are shown. These results confirm that elastic parabolic equation solutions are valuable for characterization of the relationships between T-wave propagation and variations in range-dependent bathymetry or elastic material parameters, as well as for modeling T-wave receptions at hydrophone arrays or coastal receiving stations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA617528','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA617528"><span>Elastic Bottom Propagation Mechanisms Investigated by Parabolic Equation Methods</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2014-09-30</p> <p>channel propagation of oceanic T waves from seismic sources in the presence of intervening seamounts or coral reef barriers is established using elastic PE...environments in the form of scattering at an elastic interface, oceanic T - waves , and Scholte waves . OBJECTIVES To implement explosive and earthquake...oceanic T - waves , which are acoustic waves that result from earthquake or buried explosive sources, and Rayleigh-type waves along the ocean floor, whose</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Tectp.726....1S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Tectp.726....1S"><span>Crustal characteristic variation in the central Yamato Basin, Japan Sea back-arc basin, deduced from seismic survey results</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sato, Takeshi; No, Tetsuo; Miura, Seiichi; Kodaira, Shuichi</p> <p>2018-02-01</p> <p>The crustal structure of the Yamato Bank, the central Yamato Basin, and the continental shelf in the southern Japan Sea back-arc basin is obtained based on a seismic survey using ocean bottom seismographs and seismic shot to elucidate the back-arc basin formation processes. The central Yamato Basin can be divided into three domains based on the crustal structure: the deep basin, the seamount, and the transition domains. In the deep basin domain, the crust without the sedimentary layer is about 12-13 km thick. Very few units have P-wave velocity of 5.4-6.0 km/s, which corresponds to the continental upper crust. In the seamount and transition domains, the crust without the sedimentary layer is about 12-16 km thick. The P-wave velocities of the upper and lower crusts differs among the deep basin, the seamount, and the transition domains. These results indicate that the central Yamato Basin displays crustal variability in different domains. The crust of the deep basin domain is oceanic in nature and suggests advanced back-arc basin development. The seamount domain might have been affected by volcanic activity after basin opening. In the transition domain, the crust comprises mixed characters of continental and oceanic crust. This crustal variation might represent the influence of different processes in the central Yamato Basin, suggesting that crustal development was influenced not only by back-arc opening processes but also by later volcanic activity. In the Yamato Bank and continental shelf, the upper crust has thickness of about 17-18 km and P-wave velocities of 3.3-4.1 to 6.6 km/s. The Yamato Bank and the continental shelf suggest a continental crustal character.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1990mri..reptT.....','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1990mri..reptT....."><span>Ocean energy program summary. Volume 2: Research summaries</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p></p> <p>1990-01-01</p> <p>The oceans are the world's largest solar energy collector and storage system. Covering 71 percent of the earth's surface, this stored energy is realized as waves, currents, and thermal salinity gradients. The purpose of the Federal Ocean Energy Technology (OET) Program is to develop techniques that harness this ocean energy in a cost effective and environmentally acceptable manner. The OET Program seeks to develop ocean energy technology to a point where the commercial sector can assess whether applications of the technology are viable energy conversion alternatives or supplements to systems. Past studies conducted by the U.S. Department of Energy (DOE) have identified ocean thermal energy conversion (OTEC) as the largest potential contributor to United States energy supplies from the ocean resource. As a result, the OET Program concentrates on research to advance OTEC technology. Current program emphasis has shifted to open-cycle OTEC power system research because the closed-cycle OTEC system is at a more advanced stage of development and has already attracted industrial interest. During FY 1989, the OET Program focused primarily on the technical uncertainties associated with near-shore open-cycle OTEC systems ranging in size from 2 to 15 MW(sub e). Activities were performed under three major program elements: thermodynamic research and analysis, experimental verification and testing, and materials and structures research. These efforts addressed a variety of technical problems whose resolution is crucial to demonstrating the viability of open-cycle OTEC technology. This publications is one of a series of documents on the Renewable Energy programs sponsored by the U.S. Department of Energy. An overview of all the programs is available, entitled Programs in Renewable Energy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFMOS44B..04O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFMOS44B..04O"><span>Predicting Waves in the Pacific Northwest of the US</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ozkan-Haller, H. T.; Oskamp, J. A.; Garcia, G.; Kassem, S.; McNutt, J.</p> <p>2010-12-01</p> <p>The Pacific Northwest region of the US is characterized by an energetic deep water wave climate with large swell and sea waves that can approach from multiple directions. As these waves propagate from the open ocean over the continental shelf towards shore, they are affected by the underwater topography (or bathymetry) of the shelf. The US West Coast shelf is characterized by complicated bathymetry with numerous canyons and large banks. Such features can at places focus wave energy and at others divert waves away. As a result the wave field near the coast (in 10-50m water depth) varies significantly along the coast. Although a comprehensive prediction and validation effort for waves exists for the California shoreline, it is currently lacking for the Pacific Northwest shorelines. Herein, we present comprehensive long-term wave model simulations for several regions within the Oregon coastline, show validation of the results with existing nearshore observations, and discuss the dominant dynamics responsible for the observed wave transformation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19890035213&hterms=models+linear&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dmodels%2Blinear','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19890035213&hterms=models+linear&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dmodels%2Blinear"><span>Comparison of Shuttle Imaging Radar-B ocean wave image spectra with linear model predictions based on aircraft measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Monaldo, Frank M.; Lyzenga, David R.</p> <p>1988-01-01</p> <p>During October 1984, coincident Shuttle Imaging Radar-B synthetic aperture radar (SAR) imagery and wave measurements from airborne instrumentation were acquired. The two-dimensional wave spectrum was measured by both a radar ocean-wave spectrometer and a surface-contour radar aboard the aircraft. In this paper, two-dimensional SAR image intensity variance spectra are compared with these independent measures of ocean wave spectra to verify previously proposed models of the relationship between such SAR image spectra and ocean wave spectra. The results illustrate both the functional relationship between SAR image spectra and ocean wave spectra and the limitations imposed on the imaging of short-wavelength, azimuth-traveling waves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMOS41C1737D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMOS41C1737D"><span>Towards a quantification of ocean wave heights off the west coast of Ireland using land based seismic data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Donne, S.; Bean, C. J.; Lokmer, I.; Lambkin, K.; Creamer, C.</p> <p>2012-12-01</p> <p>Ocean gravity waves are driven by atmospheric pressure systems. Their interactions with one another and reflection off coastlines generate pressure changes at the sea floor. These pressure fluctuations are the cause of continuous background seismic noise known as microseisms. The levels of microseism activity vary as a function of the sea state and increase during periods of intensive ocean wave activity. In 2011 a seismic network was deployed along the west coast of Ireland to continuously record microseisms generated in the Atlantic Ocean, as part of the Wave Observation (WaveObs) project based in University College Dublin. This project aims to determine the characteristics of the causative ocean gravity waves through calibration of the microseism data with ocean buoy data. In initial tests we are using a Backpropagation Feed-forward Artificial Neural Network (BP ANN) to establish the underlying relationships between microseisms and ocean waves. ANNs were originally inspired by studies of the mammalian brain and nervous system and are designed to learn by example. If successful these tools could then be used to estimate ocean wave heights and wave periods using a land-based seismic network and complement current wave observations being made offshore by marine buoys. Preliminary ANN results are promising with the network successfully able to reconstruct trends in ocean wave heights and periods. Microseisms can provide significant information about oceanic processes. With a deeper understanding of how these processes work there is potential for 1) locating and tracking the evolution of the largest waves in the Atlantic and 2) reconstructing the wave climate off the west coast of Ireland using legacy seismic data on a longer time scale than is currently available using marine based observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.G21A0976B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.G21A0976B"><span>Evaluating the performance of Sentinel-3 SRAL SAR Altimetry in the Coastal and Open Ocean, and developing improved retrieval methods - The ESA SCOOP Project.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Benveniste, J.; Cotton, D.; Moreau, T.; Varona, E.; Roca, M.; Cipollini, P.; Cancet, M.; Martin, F.; Fenoglio-Marc, L.; Naeije, M.; Fernandes, J.; Restano, M.; Ambrozio, A.</p> <p>2016-12-01</p> <p>The ESA Sentinel-3 satellite, launched in February 2016 as a part of the Copernicus programme, is the second satellite to operate a SAR mode altimeter. The Sentinel 3 Synthetic Aperture Radar Altimeter (SRAL) is based on the heritage from Cryosat-2, but this time complemented by a Microwave Radiometer (MWR) to provide a wet troposphere correction, and operating at Ku and C-Bands to provide an accurate along-track ionospheric correction. Together this instrument package, including both GPS and DORIS instruments for accurate positioning, allows accurate measurements of sea surface height over the ocean, as well as measurements of significant wave height and surface wind speed. SCOOP (SAR Altimetry Coastal & Open Ocean Performance) is a project funded under the ESA SEOM (Scientific Exploitation of Operational Missions) Programme Element, started in September 2015, to characterise the expected performance of Sentinel-3 SRAL SAR mode altimeter products, in the coastal zone and open-ocean, and then to develop and evaluate enhancements to the baseline processing scheme in terms of improvements to ocean measurements. There is also a work package to develop and evaluate an improved Wet Troposphere correction for Sentinel-3, based on the measurements from the on-board MWR, further enhanced mostly in the coastal and polar regions using third party data, and provide recommendations for use. At the end of the project recommendations for further developments and implementations will be provided through a scientific roadmap. In this presentation we provide an overview of the SCOOP project, highlighting the key deliverables and discussing the potential impact of the results in terms of the application of delay-Doppler (SAR) altimeter measurements over the open-ocean and coastal zone. We also present the initial results from the project, including: Key findings from a review of the current "state-of-the-art" for SAR altimetry, Specification of the initial "reference" delay-Doppler and echo modelling /retracking processing schemes, Evaluation of the initial Test Data Set in the Open Ocean and Coastal Zone Overview of modifications planned to the reference delay-Doppler and echo modelling/ re-tracking processing schemes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011GeoRL..38.7604H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011GeoRL..38.7604H"><span>Effects of surface wave breaking on the oceanic boundary layer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>He, Hailun; Chen, Dake</p> <p>2011-04-01</p> <p>Existing laboratory studies suggest that surface wave breaking may exert a significant impact on the formation and evolution of oceanic surface boundary layer, which plays an important role in the ocean-atmosphere coupled system. However, present climate models either neglect the effects of wave breaking or treat them implicitly through some crude parameterization. Here we use a one-dimensional ocean model (General Ocean Turbulence Model, GOTM) to investigate the effects of wave breaking on the oceanic boundary layer on diurnal to seasonal time scales. First a set of idealized experiments are carried out to demonstrate the basic physics and the necessity to include wave breaking. Then the model is applied to simulating observations at the northern North Sea and the Ocean Weather Station Papa, which shows that properly accounting for wave breaking effects can improve model performance and help it to successfully capture the observed upper ocean variability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.4226S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.4226S"><span>Research Centre for the Study of the Rogue Waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shamin, Roman</p> <p>2013-04-01</p> <p>In 2012, in Sakhalin (Russia) was established Research Center for the Study of the Rogue Waves. This center unites many known scientists, who study rogue waves. The center is founded by the following scientific organizations: - The Institute of Marine Geology and Geophysics of FEB RAS - The Far Eastern Federal University - Special Research Bureau for Automation of Marine Researches of FEB RAS - The Institute of Applied Physics of RAS - Shirshov Institute of Oceanology of RAS Heads this center Dr. Roman V. Shamin (Russia). Topics projects: - Probability of emergence of rogue waves - Finding of the sites of the Ocean most dangerous from the point of view of rogue waves - Assessment of risk of dangerous impact of rogue waves - and many others... Our Center is open for new participants from all countries. Our Centre have web-site: roguewaves.ru For contacts: center@roguewaves.ru (Dr. Roman Shamin)</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_6 --> <div id="page_7" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="121"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMOS23B2024M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMOS23B2024M"><span>Coastal Land Air Sea Interaction: "the" beach towers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>MacMahan, J. H.; Koscinski, J. S.; Ortiz-Suslow, D. G.; Haus, B. K.; Thornton, E. B.</p> <p>2016-12-01</p> <p>As part of the Coastal Land Air Sea Interaction (CLASI) experiment, an alongshore array of 6-m high towers instrumented with ultrasonic 3D anemometers and temperature-relative humidity sensors were deployed at five sandy beaches near the high-tide line in Monterey Bay, CA, in May-June 2016. A cross-shore array of towers was also deployed from within the active surfzone to the toe of the dune at one beach. In addition, waves and ocean temperature were obtained along the 10m isobath for each beach. The dissipative surfzone was O(80m) wide. The wave energy varies among the beaches owing to sheltering and refraction by the Monterey Canyon and headlands. The tides are semi-diurnal mixed, meso-tidal with a maximum tidal range of 2m. This results in a variable beach width from the tower to the tidal line. Footprint analysis for estimating the source region for the turbulent momentum fluxes, suggests that the observations represent three scenarios described as primarily ocean, mixed beach and ocean, and primarily beach. The direct-estimate of the atmospheric stability by the sonic anemometer suggest that all of the beaches are mostly unstable except for a few occurrences in the evening during low wind conditions. The onshore neutral drag coefficient (Cd) estimated at 10m heights is 3-5 times larger than open ocean estimates. Minimal variability was found in Cd based on the footprint analysis. Beach-specific spatial variability in Cd was found related to atmospheric stability and wave energy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19820020085','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19820020085"><span>A four-dimensional primitive equation model for coupled coastal-deep ocean studies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Haidvogel, D. B.</p> <p>1981-01-01</p> <p>A prototype four dimensional continental shelf/deep ocean model is described. In its present form, the model incorporates the effects of finite amplitude topography, advective nonlinearities, and variable stratification and rotation. The model can be forced either directly by imposed atmospheric windstress and surface pressure distributions, and energetic mean currents imposed by the exterior oceanic circulation; or indirectly by initial distributions of shoreward propagation mesoscale waves and eddies. To avoid concerns over the appropriate specification of 'open' boundary conditions on the cross-shelf and seaward model boundaries, a periodic channel geometry (oriented along-coast) is used. The model employs a traditional finite difference expansion in the cross-shelf direction, and a Fourier (periodic) representation in the long-shelf coordinate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.4244G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.4244G"><span>Numerical Investigations of Wave-Induced Mixing in Upper Ocean Layer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Guan, Changlong</p> <p>2017-04-01</p> <p>The upper ocean layer is playing an important role in ocean-atmosphere interaction. The typical characteristics depicting the upper ocean layer are the sea surface temperature (SST) and the mixed layer depth (MLD). So far, the existing ocean models tend to over-estimate SST and to under-estimate MLD, due to the inadequate mixing in the mixing layer, which is owing to that several processes related mixing in physics are ignored in these ocean models. The mixing induced by surface gravity wave is expected to be able to enhance the mixing in the upper ocean layer, and therefore the over-estimation of SST and the under-estimate of MLD could be improved by including wave-induced mixing. The wave-induced mixing could be accomplished by the physical mechanisms, such as wave breaking (WB), wave-induced Reynolds stress (WR), and wave-turbulence interaction (WT). The General Ocean Turbulence Model (GOTM) is employed to investigate the effects of the three mechanisms concerning wave-induced mixing. The numerical investigation is carried out for three turbulence closure schemes, say, k-epsilon, k-omega and Mellor-Yamada (1982), with the observational data from OSC Papa station and wave data from ECMWF. The mixing enhancement by various waved-induced mixing mechanisms is investigated and verified.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/ds/0960','USGSPUBS'); return false;" href="https://pubs.usgs.gov/ds/0960"><span>Back-Island and Open-Ocean Shorelines, and Sand Areas of the Undeveloped Areas of New Jersey Barrier Islands, March 9, 1991, to July 30, 2013</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Guy, Kristy K.</p> <p>2015-11-09</p> <p>This Data Series Report includes open-ocean shorelines, back-island shorelines, back-island shoreline points, sand polygons, and sand lines for the undeveloped areas of New Jersey barrier islands. These data were extracted from orthoimagery (aerial photography) taken between March 9, 1991, and July 30, 2013. The images used were 0.3–1-meter (m)-resolution U.S. Geological Survey Digital Orthophoto Quarter Quads (DOQQ), U.S. Department of Agriculture National Agriculture Imagery Program (NAIP) images, National Oceanic and Atmospheric Administration images, and New Jersey Geographic Information Network images. The back-island shorelines were hand-digitized at the intersects of the apparent back-island shoreline and transects spaced at 20-m intervals. The open-ocean shorelines were hand-digitized at the approximate still-water level, such as tide level, which was fit through the average position of waves and swash apparent on the beach. Hand-digitizing was done at a scale of approximately 1:2,000. The sand polygons were derived by an image-processing unsupervised classification technique that separates images into classes. The classes were then visually categorized as either sand or not sand. Sand lines were taken from the sand polygons. Also included in this report are 20-m-spaced transect lines and the transect base lines.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ECSS..195...16M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ECSS..195...16M"><span>Sea spray aerosol fluxes in the Baltic Sea region: Comparison of the WAM model with measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Markuszewski, Piotr; Kosecki, Szymon; Petelski, Tomasz</p> <p>2017-08-01</p> <p>Sea spray aerosol flux is an important element of sub-regional climate modeling. The majority of works related to this topic concentrate on open ocean research rather than on smaller, inland seas, e.g., the Baltic Sea. The Baltic Sea is one of the largest brackish inland seas by area, where major inflows of oceanic waters are rare. Furthermore, surface waves in the Baltic Sea have a relatively shorter lifespan in comparison with oceanic waves. Therefore, emission of sea spray aerosol may differ greatly from what is known from oceanic research and should be investigated. This article presents a comparison of sea spray aerosol measurements carried out on-board the s/y Oceania research ship with data calculated in accordance to the WAM model. The measurements were conducted in the southern region of the Baltic Sea during four scientific cruises. The gradient method was used to determinate aerosol fluxes. The fluxes were calculated for particles of diameter in range of 0.5-47 μm. The correlation between wind speed measured and simulated has a good agreement (correlation in range of 0.8). The comparison encompasses three different sea spray generation models. First, function proposed by Massel (2006) which is based only on wave parameters, such as significant wave height and peak frequency. Second, Callaghan (2013) which is based on Gong (2003) model (wind speed relation), and a thorough experimental analysis of whitecaps. Third, Petelski et al. (2014) which is based on in-situ gradient measurements with the function dependent on wind speed. The two first models which based on whitecaps analysis are insufficient. Moreover, the research shows strong relation between aerosol emission and wind speed history.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20060037227&hterms=Ripple+labs&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DRipple%2Blabs','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20060037227&hterms=Ripple+labs&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DRipple%2Blabs"><span>Scale-dependent Ocean Wave Turbulence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Glazman, R. E.</p> <p>1995-01-01</p> <p>Wave turbulence is a common feature of nonlinear wave motions observed when external forcing acts during a long period of time, resulting in developed spectral cascades of energy, momentum, and other conserved integrals. In the ocean, wave turbulence occurs on various scales from capillary ripples, and those of baroclinic inertia-gravity, to Rossby waves. Oceanic wave motions are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20030067764&hterms=Tidal+waves&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DTidal%2Bwaves','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20030067764&hterms=Tidal+waves&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DTidal%2Bwaves"><span>Significant Dissipation of Tidal Energy in the Deep Ocean Inferred from Satellite Altimeter Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Egbert, G. D.; Ray, R. D.</p> <p>2000-01-01</p> <p>How and where the ocean tides dissipate their energy are longstanding questions that have consequences ranging from the history of the Moon to the mixing of the oceans. Historically, the principal sink of tidal energy has been thought to be bottom friction in shallow seas. There has long been suggestive however, that tidal dissipation also occurs in the open ocean through the scattering by ocean-bottom topography of surface tides into internal waves, but estimates of the magnitude of this possible sink have varied widely. Here we use satellite altimeter data from Topex/Poseidon to map empirically the tidal energy dissipation. We show that approximately 10(exp 12) watts-that is, 1 TW, representing 25-30% of the total dissipation-occurs in the deep ocean, generally near areas of rough topography. Of the estimated 2 TW of mixing energy required to maintain the large-scale thermohaline circulation of the ocean, one-half could therefore be provided by the tides, with the other half coming from action on the surface of the ocean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhDT.......141S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhDT.......141S"><span>Breaking Waves on the Ocean Surface</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schwendeman, Michael S.</p> <p></p> <p>In the open ocean, breaking waves are a critical mechanism for the transfer of energy, momentum, and mass between the atmosphere and the ocean. Despite much study, fundamental questions about wave breaking, such as what determines whether a wave will break, remain unresolved. Measurements of oceanic breakers, or "whitecaps," are often used to validate the hypotheses derived in simplified theoretical, numerical, or experimental studies. Real-world measurements are also used to improve the parameterizations of wave-breaking in large global models, such as those forecasting climate change. Here, measurements of whitecaps are presented using ship-based cameras, from two experiments in the North Pacific Ocean. First, a method for georectifying the camera imagery is described using the distant horizon, without additional instrumentation. Over the course of the experiment, this algorithm correctly identifies the horizon in 92% of images in which it is visible. In such cases, the calculation of camera pitch and roll is accurate to within 1 degree. The main sources of error in the final georectification are from mislabeled horizons due to clouds, rain, or poor lighting, and from vertical "heave" motions of the camera, which cannot be calculated with the horizon method. This method is used for correcting the imagery from the first experiment, and synchronizing the imagery from the second experiment to an onboard inertial motion package. Next, measurements of the whitecap coverage, W, are shown from both experiments. Although W is often used in models to represent whitecapping, large uncertainty remains in the existing parameterizations. The data show good agreement with recent measurements using the wind speed. Although wave steepness and dissipation are hypothesized to be more robust predictors of W, this is shown to not always be the case. Wave steepness shows comparable success to the wind parameterizations only when using a mean-square slope variable calculated over the equilibrium range waves and normalizing by the wave directional spread. Meanwhile, correlation of W with turbulent dissipation measurements is significantly worse, which may be due to uncertainty in the measurements or bias related to micro-breaking waves. Finally, phase-resolved, three-dimensional, measurements of the whitecaps were made from a new ship-based stereo video system. Comparison with concurrent buoy measurements indicate that the stereo data accurately reproduces the wave statistics, including the frequency spectra. The whitecaps are characterized by transient and spatially localized regions of extreme surface gradients, rather than large crest-to-trough steepnesses. It was found that whitecaps were around 10 times more likely to have extreme slopes, and 50% of the observed extreme surface slopes were in the vicinity of the breaking waves. The maximum whitecap slopes show good agreement with the Stokes 120 degree limiting crest geometry, and the whitecap crest loses much of its maximum steepness shortly after the onset of breaking. The whitecap phase speeds are consistently less than the linear or weakly nonlinear predicted phase speed, which indicate the effect of narrow-band wave groups, despite the broad-band wave spectra.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70018706','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70018706"><span>Open-ocean boundary conditions from interior data: Local and remote forcing of Massachusetts Bay</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bogden, P.S.; Malanotte-Rizzoli, P.; Signell, R.</p> <p>1996-01-01</p> <p>Massachusetts and Cape Cod Bays form a semienclosed coastal basin that opens onto the much larger Gulf of Maine. Subtidal circulation in the bay is driven by local winds and remotely driven flows from the gulf. The local-wind forced flow is estimated with a regional shallow water model driven by wind measurements. The model uses a gravity wave radiation condition along the open-ocean boundary. Results compare reasonably well with observed currents near the coast. In some offshore regions however, modeled flows are an order of magnitude less energetic than the data. Strong flows are observed even during periods of weak local wind forcing. Poor model-data comparisons are attributable, at least in part, to open-ocean boundary conditions that neglect the effects of remote forcing. Velocity measurements from within Massachusetts Bay are used to estimate the remotely forced component of the flow. The data are combined with shallow water dynamics in an inverse-model formulation that follows the theory of Bennett and McIntosh [1982], who considered tides. We extend their analysis to consider the subtidal response to transient forcing. The inverse model adjusts the a priori open-ocean boundary condition, thereby minimizing a combined measure of model-data misfit and boundary condition adjustment. A "consistency criterion" determines the optimal trade-off between the two. The criterion is based on a measure of plausibility for the inverse solution. The "consistent" inverse solution reproduces 56% of the average squared variation in the data. The local-wind-driven flow alone accounts for half of the model skill. The other half is attributable to remotely forced flows from the Gulf of Maine. The unexplained 44% comes from measurement errors and model errors that are not accounted for in the analysis. </p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19820027667&hterms=Wave+filter&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DWave%2Bfilter','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19820027667&hterms=Wave+filter&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DWave%2Bfilter"><span>SAR imaging of ocean waves - Theory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jain, A.</p> <p>1981-01-01</p> <p>A SAR imaging integral for a rough surface is derived. Aspects of distributed target imaging and questions of ocean-wave imaging are considered. A description is presented of the results of analyses which are performed on aircraft and a spacecraft data in order to gain an understanding of the SAR imaging of ocean waves. The analyzed data illustrate the effect of radar resolution on the images of azimuthally traveling waves, the dependence of image distortion on the angle which the waves make with the radar flight path, and the dependence of the focusing parameter of the radar matched filter on the ocean wave period for azimuthally traveling waves. A dependence of ocean-wave modulation on significant wave height is also observed. The observed dependence of the modulations of azimuth waves on radar resolution is in contradiction to the hypothesis that these modulations are caused mainly by velocity bunching.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20981016','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20981016"><span>Evidence for infragravity wave-tide resonance in deep oceans.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sugioka, Hiroko; Fukao, Yoshio; Kanazawa, Toshihiko</p> <p>2010-10-05</p> <p>Ocean tides are the oscillatory motions of seawater forced by the gravitational attraction of the Moon and Sun with periods of a half to a day and wavelengths of the semi-Pacific to Pacific scale. Ocean infragravity (IG) waves are sea-surface gravity waves with periods of several minutes and wavelengths of several dozen kilometres. Here we report the first evidence of the resonance between these two ubiquitous phenomena, mutually very different in period and wavelength, in deep oceans. The evidence comes from long-term, large-scale observations with arrays of broadband ocean-bottom seismometers located at depths of more than 4,000 m in the Pacific Ocean. This observational evidence is substantiated by a theoretical argument that IG waves and the tide can resonantly couple and that such coupling occurs over unexpectedly wide areas of the Pacific Ocean. Through this resonant coupling, some of ocean tidal energy is transferred in deep oceans to IG wave energy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1919116A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1919116A"><span>The role of satellite directional wave spectra for the improvement of the ocean-waves coupling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aouf, Lotfi; Hauser, Danièle; Chapron, Bertrand</p> <p>2017-04-01</p> <p>Swell waves are well captured by the Synthetic Aperture Radar (SAR) which provides the directional wave spectra for waves roughly larger than 200 m. Since the launch of sentinel-1A and 1B SAR directional wave spectra are available to improve the swell wave forecasting and the coupling processes at the air-sea interface. Moreover next year CFOSAT mission will provide directional wave spectra for waves with wavelengths comprised between 70 to 500 m. This study aims to evaluate the assimilation of SAR and synthetic CFOSAT wave spectra on the coupling between the wave model MFWAM and the ocean model NEMO. Three coupling processes as described in Breivik et al. (2014) of Stokes-Coriolis forcing, the ocean side stress and the turbulence injected by the wave breaking in the ocean mixed layer have been used. a coupling run is performed with and without assimilation of directional wave spectra. the impact of SAR wave data on key parameters such as surface sea temperature, currents and salinity is investigated. Particular attention is carried out for ocean areas with swell dominant wave climate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMOS21E..06S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMOS21E..06S"><span>Observations of Surfzone Albedo</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sinnett, G.; Feddersen, F.</p> <p>2014-12-01</p> <p>The surfzone environment (where waves break) contains several unique and previously unconsidered processes that affect the heat budget. Entering short-wave radiation is a dominant term in both shelf and surfzone heat budgets. In contrast to the shelf, however, depth limited wave breaking in the surfzone generates spray, whitewater and suspended sediments, elevating the surface albedo (ratio of reflected to incident short-wave radiation). Elevated albedo reduces the level of solar short-wave radiation entering the water, potentially resulting in less heating. Additionally, surfzone water quality is often impacted by fecal bacteria contamination. As bacteria mortality is related to short-wave solar radiation, elevated surfzone albedo could reduce pathogen mortality, impacting human health. Albedo in the open ocean has been frequently studied and parameterizations often consider solar zenith angle, wind speed and ocean chlorophyll concentration, producing albedo values typically near 0.06. However, surfzone albedo observations have been extremely sparse, yet show depth limited wave breaking may increase the albedo by nearly a factor of 10 up to 0.5. Here, we present findings from a field study at the Scripps Institution of Oceanography pier to observe the affect of waves on surfzone albedo. Concurrent measurements were taken with a four-way radiometer (to measure both downwelling and upwelling short-wave and long wave radiation) mounted above the surfzone. A co-located GoPro camera was used to relate visual aspects of the surfzone to measured reflectance, and wave height and period were observed with a bottom mounted pressure sensor in 5 m water depth just outside the surfzone. Wind speed and direction were observed on the pier 10 m above the water surface. Here, we will examine the surfzone albedo dependence on surfzone parameters, such as wave height.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..DFDL14005V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..DFDL14005V"><span>Simulating wave-turbulence on thin elastic plates with arbitrary boundary conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>van Rees, Wim M.; Mahadevan, L.</p> <p>2016-11-01</p> <p>The statistical characteristics of interacting waves are described by the theory of wave turbulence, with the study of deep water gravity wave turbulence serving as a paradigmatic physical example. Here we consider the elastic analog of this problem in the context of flexural waves arising from vibrations of a thin elastic plate. Such flexural waves generate the unique sounds of so-called thunder machines used in orchestras - thin metal plates that make a thunder-like sound when forcefully shaken. Wave turbulence in elastic plates is typically investigated numerically using spectral simulations with periodic boundary conditions, which are not very realistic. We will present the results of numerical simulations of the dynamics of thin elastic plates in physical space, with arbitrary shapes, boundary conditions, anisotropy and inhomogeneity, and show first results on wave turbulence beyond the conventionally studied rectangular plates. Finally, motivated by a possible method to measure ice-sheet thicknesses in the open ocean, we will further discuss the behavior of a vibrating plate when floating on an inviscid fluid.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011PhDT........29H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011PhDT........29H"><span>Sea level hazards: Altimetric monitoring of tsunamis and sea level rise</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hamlington, Benjamin Dillon</p> <p></p> <p>Whether on the short timescale of an impending tsunami or the much longer timescale of climate change-driven sea level rise, the threat stemming from rising and inundating ocean waters is a great concern to coastal populations. Timely and accurate observations of potentially dangerous changes in sea level are vital in determining the precautionary steps that need to be taken in order to protect coastal communities. While instruments from the past have provided in situ measurements of sea level at specific locations across the globe, satellites can be used to provide improved spatial and temporal sampling of the ocean in addition to producing more accurate measurements. Since 1993, satellite altimetry has provided accurate measurements of sea surface height (SSH) with near-global coverage. Not only have these measurements led to the first definitive estimates of global mean sea level rise, satellite altimetry observations have also been used to detect tsunami waves in the open ocean where wave amplitudes are relatively small, a vital step in providing early warning to those potentially affected by the impending tsunami. The use of satellite altimetry to monitor two specific sea level hazards is examined in this thesis. The first section will focus on the detection of tsunamis in the open ocean for the purpose of providing early warning to coastal inhabitants. The second section will focus on estimating secular trends using satellite altimetry data with the hope of improving our understanding of future sea level change. Results presented here will show the utility of satellite altimetry for sea level monitoring and will lay the foundation for further advancement in the detection of the two sea level hazards considered.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015Icar..250..368B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015Icar..250..368B"><span>Winds, waves and shorelines from ancient martian seas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Banfield, Don; Donelan, Mark; Cavaleri, Luigi</p> <p>2015-04-01</p> <p>We consider under what environmental conditions water waves (and thus eventually shorelines) should be expected to be produced on hypothetical ancient martian seas and lakes. For winds and atmospheric pressures that are too small, no waves should be expected, and thus no shorelines. If the winds and atmospheric pressure are above some threshold, then waves can be formed, and shorelines are possible. We establish these criteria separating conditions under which waves will or will not form on an ancient martian open body of water. We consider not only atmospheric pressure and wind, but also temperature and salinity, but find these latter effects to be secondary. The normal criterion for the onset of water waves under terrestrial conditions is extended to recognize the greater atmospheric viscous boundary layer depth for low atmospheric pressures. We used terrestrial wave models to predict the wave environment expected for reasonable ranges of atmospheric pressure and wind for end-member cases of ocean salinity. These models were modified only to reflect the different fluids considered at Mars, the different martian surface gravity, and the varying atmospheric pressure, wind and fetch. The models were favorably validated against one another, and also against experiments conducted in a wave tank in a pressure controlled wind tunnel (NASA Ames MARSWIT). We conclude that if wave-cut shorelines can be confirmed on Mars, this can constrain the range of possible atmospheric pressures and wind speeds that could have existed when the open water was present on Mars.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.4219G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.4219G"><span>Ionospheric manifestations of earthquakes and tsunamis in a dynamic atmosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Godin, Oleg A.; Zabotin, Nikolay A.; Zabotina, Liudmila</p> <p>2015-04-01</p> <p>Observations of the ionosphere provide a new, promising modality for characterizing large-scale physical processes that occur on land and in the ocean. There is a large and rapidly growing body of evidence that a number of natural hazards, including large earthquakes, strong tsunamis, and powerful tornadoes, have pronounced ionospheric manifestations, which are reliably detected by ground-based and satellite-borne instruments. As the focus shifts from detecting the ionospheric features associated with the natural hazards to characterizing the hazards for the purposes of improving early warning systems and contributing to disaster recovery, it becomes imperative to relate quantitatively characteristics of the observed ionospheric disturbances and the underlying natural hazard. The relation between perturbations at the ground level and their ionospheric manifestations is strongly affected by parameters of the intervening atmosphere. In this paper, we employ the ray theory to model propagation of acoustic-gravity waves in three-dimensionally inhomogeneous atmosphere. Huygens' wavefront-tracing and Hamiltonian ray-tracing algorithms are used to simulate propagation of body waves from an earthquake hypocenter through the earth's crust and ocean to the upper atmosphere. We quantify the influence of temperature stratification and winds, including their seasonal variability, and air viscosity and thermal conductivity on the geometry and amplitude of ionospheric disturbances that are generated by seismic surface waves and tsunamis. Modeling results are verified by comparing observations of the velocity fluctuations at altitudes of 150-160 km by a coastal Dynasonde HF radar system with theoretical predictions of ionospheric manifestations of background infragravity waves in the ocean. Dynasonde radar systems are shown to be a promising means for monitoring acoustic-gravity wave activity and observing ionospheric perturbations due to earthquakes and tsunamis. We will discuss the effects of the background ionospheric disturbances and uncertainty in atmospheric parameters on the feasibility and accuracy of retrieval of the open-ocean tsunami heights from observations of the ionosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ChPhB..25f4101T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ChPhB..25f4101T"><span>Electromagnetic backscattering from one-dimensional drifting fractal sea surface I: Wave-current coupled model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tao, Xie; Shang-Zhuo, Zhao; William, Perrie; He, Fang; Wen-Jin, Yu; Yi-Jun, He</p> <p>2016-06-01</p> <p>To study the electromagnetic backscattering from a one-dimensional drifting fractal sea surface, a fractal sea surface wave-current model is derived, based on the mechanism of wave-current interactions. The numerical results show the effect of the ocean current on the wave. Wave amplitude decreases, wavelength and kurtosis of wave height increase, spectrum intensity decreases and shifts towards lower frequencies when the current occurs parallel to the direction of the ocean wave. By comparison, wave amplitude increases, wavelength and kurtosis of wave height decrease, spectrum intensity increases and shifts towards higher frequencies if the current is in the opposite direction to the direction of ocean wave. The wave-current interaction effect of the ocean current is much stronger than that of the nonlinear wave-wave interaction. The kurtosis of the nonlinear fractal ocean surface is larger than that of linear fractal ocean surface. The effect of the current on skewness of the probability distribution function is negligible. Therefore, the ocean wave spectrum is notably changed by the surface current and the change should be detectable in the electromagnetic backscattering signal. Project supported by the National Natural Science Foundation of China (Grant No. 41276187), the Global Change Research Program of China (Grant No. 2015CB953901), the Priority Academic Development Program of Jiangsu Higher Education Institutions (PAPD), Program for the Innovation Research and Entrepreneurship Team in Jiangsu Province, China, the Canadian Program on Energy Research and Development, and the Canadian World Class Tanker Safety Service.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AdAtS..35..469Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AdAtS..35..469Z"><span>Effects of Sea-Surface Waves and Ocean Spray on Air-Sea Momentum Fluxes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Ting; Song, Jinbao</p> <p>2018-04-01</p> <p>The effects of sea-surface waves and ocean spray on the marine atmospheric boundary layer (MABL) at different wind speeds and wave ages were investigated. An MABL model was developed that introduces a wave-induced component and spray force to the total surface stress. The theoretical model solution was determined assuming the eddy viscosity coefficient varied linearly with height above the sea surface. The wave-induced component was evaluated using a directional wave spectrum and growth rate. Spray force was described using interactions between ocean-spray droplets and wind-velocity shear. Wind profiles and sea-surface drag coefficients were calculated for low to high wind speeds for wind-generated sea at different wave ages to examine surface-wave and ocean-spray effects on MABL momentum distribution. The theoretical solutions were compared with model solutions neglecting wave-induced stress and/or spray stress. Surface waves strongly affected near-surface wind profiles and sea-surface drag coefficients at low to moderate wind speeds. Drag coefficients and near-surface wind speeds were lower for young than for old waves. At high wind speeds, ocean-spray droplets produced by wind-tearing breaking-wave crests affected the MABL strongly in comparison with surface waves, implying that wave age affects the MABL only negligibly. Low drag coefficients at high wind caused by ocean-spray production increased turbulent stress in the sea-spray generation layer, accelerating near-sea-surface wind. Comparing the analytical drag coefficient values with laboratory measurements and field observations indicated that surface waves and ocean spray significantly affect the MABL at different wind speeds and wave ages.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PApGe.171.3351F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PApGe.171.3351F"><span>Marshall Islands Fringing Reef and Atoll Lagoon Observations of the Tohoku Tsunami</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ford, Murray; Becker, Janet M.; Merrifield, Mark A.; Song, Y. Tony</p> <p>2014-12-01</p> <p>The magnitude 9.0 Tohoku earthquake on 11 March 2011 generated a tsunami which caused significant impacts throughout the Pacific Ocean. A description of the tsunami within the lagoons and on the surrounding fringing reefs of two mid-ocean atoll islands is presented using bottom pressure observations from the Majuro and Kwajalein atolls in the Marshall Islands, supplemented by tide gauge data in the lagoons and by numerical model simulations in the deep ocean. Although the initial wave arrival was not captured by the pressure sensors, subsequent oscillations on the reef face resemble the deep ocean tsunami signal simulated by two numerical models, suggesting that the tsunami amplitudes over the atoll outer reefs are similar to that in deep water. In contrast, tsunami oscillations in the lagoon are more energetic and long lasting than observed on the reefs or modelled in the deep ocean. The tsunami energy in the Majuro lagoon exhibits persistent peaks in the 30 and 60 min period bands that suggest the excitation of closed and open basin normal modes, while energy in the Kwajalein lagoon spans a broader range of frequencies with weaker, multiple peaks than observed at Majuro, which may be associated with the tsunami behavior within the more irregular geometry of the Kwajalein lagoon. The propagation of the tsunami across the reef flats is shown to be tidally dependent, with amplitudes increasing/decreasing shoreward at high/low tide. The impact of the tsunami on the Marshall Islands was reduced due to the coincidence of peak wave amplitudes with low tide; however, the observed wave amplitudes, particularly in the atoll lagoon, would have led to inundation at different tidal phases.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_7 --> <div id="page_8" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="141"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5713174','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5713174"><span>Ambient seismic wave field</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>NISHIDA, Kiwamu</p> <p>2017-01-01</p> <p>The ambient seismic wave field, also known as ambient noise, is excited by oceanic gravity waves primarily. This can be categorized as seismic hum (1–20 mHz), primary microseisms (0.02–0.1 Hz), and secondary microseisms (0.1–1 Hz). Below 20 mHz, pressure fluctuations of ocean infragravity waves reach the abyssal floor. Topographic coupling between seismic waves and ocean infragravity waves at the abyssal floor can explain the observed shear traction sources. Below 5 mHz, atmospheric disturbances may also contribute to this excitation. Excitation of primary microseisms can be attributed to topographic coupling between ocean swell and seismic waves on subtle undulation of continental shelves. Excitation of secondary microseisms can be attributed to non-linear forcing by standing ocean swell at the sea surface in both pelagic and coastal regions. Recent developments in source location based on body-wave microseisms enable us to estimate forcing quantitatively. For a comprehensive understanding, we must consider the solid Earth, the ocean, and the atmosphere as a coupled system. PMID:28769015</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMNH51C..04R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMNH51C..04R"><span>Atmospheric resonances of the Rayleigh and tsunami normal modes and its sensitivity to local time and geographical location.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rakoto, V.; Astafyeva, E.; Lognonne, P. H.</p> <p>2017-12-01</p> <p>It is known that natural hazard events, such as earthquakes, tsunamis, volcano eruptions, etc. can generate atmospheric/ionospheric perturbations. During earthquakes, vertical displacements of the ground or of the ocean floor generate acoustic-gravity waves that further propagate upward in the upper atmosphere and ionosphere. In turn, tsunamis propagating in the open sea, generate gravity waves which propagate obliquely and reach the ionosphere in 45-60 min. The properties of the atmospheric "channel" in the vertical and oblique propagation depend on a variety of factors such as solar and geomagnetic conditions, latitude, local time, season, and their influence on propagation and properties of co-seismic and co-tsunamic perturbations is not well understood yet. In this work, we use present a detailed study of the coupling efficiency between solid earth, ocean and atmosphere. For this purpose, we use the normal mode technique extended to the whole solid Earth-ocean-atmosphere system. In our study, we focus on the Rayleigh modes (solid modes) and tsunami modes (oceanic modes). As the normal modes amplitude are also depending on the spatial and temporal variation of the structure of the atmosphere, we also performed a sensitivity study location of the normal modes amplitude with local time and geographical position.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014APS..DFD.M5006G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014APS..DFD.M5006G"><span>Sensitivity of Rogue Waves Predictions to the Oceanic Stratification</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Guo, Qiuchen; Alam, Mohammad-Reza</p> <p>2014-11-01</p> <p>Oceanic rogue waves are short-lived very large amplitude waves (a giant crest typically followed or preceded by a deep trough) that appear and disappear suddenly in the ocean causing damages to ships and offshore structures. Assuming that the state of the ocean at the present time is perfectly known, then the upcoming rogue waves can be predicted via numerically solving the equations that govern the evolution of the waves. The state of the art radar technology can now provide accurate wave height measurement over large spatial domains and when combined with advanced wave-field reconstruction techniques together render deterministic details of the current state of the ocean (i.e. surface elevation and velocity field) at any given moment of the time with a very high accuracy. The ocean water density is, however, stratified (mainly due to the salinity and temperature differences). This density stratification, with today's technology, is very difficult to be measured accurately. As a result in most predictive schemes these density variations are neglected. While the overall effect of the stratification on the average state of the ocean may not be significant, here we show that these density variations can strongly affect the prediction of oceanic rogue waves. Specifically, we consider a broadband oceanic spectrum in a two-layer density stratified fluid, and study via extensive statistical analysis the effects of strength of the stratification (difference between densities) and the depth of the thermocline on the prediction of upcoming rogue waves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20030110765&hterms=tsunami&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dtsunami','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20030110765&hterms=tsunami&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dtsunami"><span>Impact Tsunami Calculations: Hydrodynamical Simulations vs. Linear Theory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Korycansky, E.; Asphaug, E.; Ward, S. N.</p> <p>2003-01-01</p> <p>Tsunamis generated by the impacts of asteroids and comets into the Earth oceans are widely recognized as a potential catastrophic hazard to the Earth s population. Our general conclusion is that linear theory is a reasonably accurate guide to behavior of tsunamis generated by impactors of moderate size, where the initial transient impact cavity is of moderate depth compared to the ocean depth. This is particularly the case for long wavelength waves that propagate fastest and would reach coastlines first. Such tsunamis would be generated in the open ocean by impactors of 300 meters in diameter, which might be expected to strike the Earth once every few thousand years, on the average. Larger impactors produce cavities deep enough to reach the ocean floor; even here, linear theory is applicable if the starting point is chosen at a later phase in the calculation when the impact crater has slumped back to produce a cavity of moderate depth and slope.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMOS33D..07S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMOS33D..07S"><span>Upper ocean fine-scale features in synthetic aperture radar imagery. Part I: Simultaneous satellite and in-situ measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Soloviev, A.; Maingot, C.; Matt, S.; Fenton, J.; Lehner, S.; Brusch, S.; Perrie, W. A.; Zhang, B.</p> <p>2011-12-01</p> <p>The new generation of synthetic aperture radar (SAR) satellites provides high resolution images that open new opportunities for identifying and studying fine features in the upper ocean. The problem is, however, that SAR images of the sea surface can be affected by atmospheric phenomena (rain cells, fronts, internal waves, etc.). Implementation of in-situ techniques in conjunction with SAR is instrumental for discerning the origin of features on the image. This work is aimed at the interpretation of natural and artificial features in SAR images. These features can include fresh water lenses, sharp frontal interfaces, internal wave signatures, as well as slicks of artificial and natural origin. We have conducted field experiments in the summer of 2008 and 2010 and in the spring of 2011 to collect in-situ measurements coordinated with overpasses of the TerraSAR-X, RADARSAT-2, ALOS PALSAR, and COSMO SkyMed satellites. The in-situ sensors deployed in the Straits of Florida included a vessel-mounted sonar and CTD system to record near-surface data on stratification and frontal boundaries, a bottom-mounted Nortek AWAC system to gather information on currents and directional wave spectra, an ADCP mooring at a 240 m isobath, and a meteorological station. A nearby NOAA NEXRAD Doppler radar station provided a record of rainfall in the area. Controlled releases of menhaden fish oil were performed from our vessel before several satellite overpasses in order to evaluate the effect of surface active materials on visibility of sea surface features in SAR imagery under different wind-wave conditions. We found evidence in the satellite images of rain cells, squall lines, internal waves of atmospheric and possibly oceanic origin, oceanic frontal interfaces and submesoscale eddies, as well as anthropogenic signatures of ships and their wakes, and near-shore surface slicks. The combination of satellite imagery and coordinated in-situ measurements was helpful in interpreting fine-scale features on the sea surface observed in the SAR images and, in some cases, linking them to thermohaline features in the upper ocean. Finally, we have been able to reproduce SAR signatures of freshwater plumes and sharp frontal interfaces interacting with wind stress, as well as internal waves by combining hydrodynamic simulations with a radar imaging algorithm. The modeling results are presented in a companion paper (Matt et al., 2011).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoJI.211.1640J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoJI.211.1640J"><span>Linking source region and ocean wave parameters with the observed primary microseismic noise</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Juretzek, C.; Hadziioannou, C.</p> <p>2017-12-01</p> <p>In previous studies, the contribution of Love waves to the primary microseismic noise field was found to be comparable to those of Rayleigh waves. However, so far only few studies analysed both wave types present in this microseismic noise band, which is known to be generated in shallow water and the theoretical understanding has mainly evolved for Rayleigh waves only. Here, we study the relevance of different source region parameters on the observed primary microseismic noise levels of Love and Rayleigh waves simultaneously. By means of beamforming and correlation of seismic noise amplitudes with ocean wave heights in the period band between 12 and 15 s, we analysed how source areas of both wave types compare with each other around Europe. The generation effectivity in different source regions was compared to ocean wave heights, peak ocean gravity wave propagation direction and bathymetry. Observed Love wave noise amplitudes correlate comparably well with near coastal ocean wave parameters as Rayleigh waves. Some coastal regions serve as especially effective sources for one or the other wave type. These coincide not only with locations of high wave heights but also with complex bathymetry. Further, Rayleigh and Love wave noise amplitudes seem to depend equally on the local ocean wave heights, which is an indication for a coupled variation with swell height during the generation of both wave types. However, the wave-type ratio varies directionally. This observation likely hints towards a spatially varying importance of different source mechanisms or structural influences. Further, the wave-type ratio is modulated depending on peak ocean wave propagation directions which could indicate a variation of different source mechanism strengths but also hints towards an imprint of an effective source radiation pattern. This emphasizes that the inclusion of both wave types may provide more constraints for the understanding of acting generation mechanisms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMNH13A0111T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMNH13A0111T"><span>Quantifying Coastal Hazard of Airburst-Generated Tsunamis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Titov, V. V.; Boslough, M.</p> <p>2017-12-01</p> <p>The effort to prevent or mitigate the effects of an impact on Earth is known as planetary defense. A significant component of planetary defense research involves risk assessment. Much of our understanding of the risk from near-Earth objects comes from the geologic record in the form of impact craters, but not all asteroid impacts are crater-forming events. Small asteroids explode before reaching the surface, generating an airburst, and most impacts into the ocean do not penetrate the water to form a crater in the sea floor. The risk from these non-crater-forming ocean impacts and airbursts is difficult to quantify and represents a significant uncertainty in our assessment of the overall threat. One of the suggested mechanisms for the production of asteroid-generated tsunami is by direct coupling of the pressure wave to the water, analogous to the means by which a moving weather front can generate a meteotsunami. To test this hypothesis, we have run a series of airburst simulations and provided time-resolved pressure and wind profiles for tsunami modelers to use as source functions. We used hydrocodes to model airburst scenarios and provide time dependent boundary conditions as input to shallow-water wave propagation codes. The strongest and most destructive meteotsunami are generated by atmospheric pressure oscillations with amplitudes of only a few hPa, corresponding to changes in sea level of a few cm. The resulting wave is strongest when there is a resonance between the ocean and the atmospheric forcing. The blast wave from an airburst propagates at a speed close to a tsunami speed only in the deepest part of the ocean, and a Proudman resonance cannot be usually achieved even though the overpressures are orders of magnitude greater. However, blast wave profiles are N-waves in which a sharp shock wave leading to overpressure is followed by a more gradual rarefaction to a much longer-duration underpressure phase. Even though the blast outruns the water wave it is forcing, the tsunami should continue to be driven by the out-of-resonance gradient associated with the suction phase, which may depend strongly on the details of the airburst scenario. The open question is whether there are any conditions under which such an airburst can generate tsunami with substantial coastal hazard to contribute to the overall impact risk.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1987EOSTr..68...11.','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1987EOSTr..68...11."><span>ONR Ocean Wave Dynamics Workshop</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p></p> <p></p> <p>In anticipation of the start (in Fiscal Year 1988) of a new Office of Naval Research (ONR) Accelerated Research Initiative (ARI) on Ocean Surface Wave Dynamics, a workshop was held August 5-7, 1986, at Woods Hole, Mass., to discuss new ideas and directions of research. This new ARI on Ocean Surface Wave Dynamics is a 5-year effort that is organized by the ONR Physical Oceanography Program in cooperation with the ONR Fluid Mechanics Program and the Physical Oceanography Branch at the Naval Ocean Research and Development Activity (NORDA). The central theme is improvement of our understanding of the basic physics and dynamics of surface wave phenomena, with emphasis on the following areas: precise air-sea coupling mechanisms,dynamics of nonlinear wave-wave interaction under realistic environmental conditions,wave breaking and dissipation of energy,interaction between surface waves and upper ocean boundary layer dynamics, andsurface statistical and boundary layer coherent structures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1818509O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1818509O"><span>Exploring the influence of surface waves in the carbon dioxide transfer velocity between the ocean and atmosphere in the coastal region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ocampo-Torres, Francisco Javier; Francisco Herrera, Carlos; Gutiérrez-Loza, Lucía; Osuna, Pedro</p> <p>2016-04-01</p> <p>Field measurements have been carried out in order to better understand the possible influence of ocean surface waves in the transfer of carbon dioxide between the ocean and atmosphere in the coastal zone. The CO2 fluxes are being analysed and results are shown in a contribution by Gutiérrez-Loza et al., in this session. Here we try to highlight the findings regarding the transfer velocity (kCO2) once we have incorporated direct measurements of carbon dioxide concentration in the water side. In this study direct measurements of CO2 fluxes were obtained with an eddy covariance tower located in the shoreline equipped with an infrared open-path gas analyzer (LI-7500, LI-COR) and a sonic anemometer (R3-100 Professional Anemometer, Gill Instruments), both at about 13 m above the mean sea level, and sampling at 20 Hz. For some period of time simultaneous information of waves was recorded with a sampling rate of 2 Hz using an Acoustic Doppler Current Profiler (Workhorse Sentinel, Teledyne RD Instruments) at 10 m depth and 350 m away from the tower. Besides, recently the concentration of CO2 in water has also been recorded making use of a SAMI-CO2 instrument. A subtle effect of the wave field is detected in the estimated kCO2. Looking into details of the surface currents being detected very near the air-sea interface through an ADPC, a certain association can be found with the gas transfer velocity. Furthermore, some of the possible effects of breaking wave induced turbulence in the coastal zone is to be addressed. This work represents a RugDiSMar Project (CONACYT 155793) contribution. The support from CB-2011-01-168173 CONACYT project is greatly acknowledged.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/ds/0928/ds928_abstract.html','USGSPUBS'); return false;" href="https://pubs.usgs.gov/ds/0928/ds928_abstract.html"><span>Back-island and open-ocean shorelines, and sand areas of Assateague Island, Maryland and Virginia, April 12, 1989, to September 5, 2013</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Guy, Kristy K.</p> <p>2015-01-01</p> <p>This Data Series Report includes several open-ocean shorelines, back-island shorelines, back-island shoreline points, sand area polygons, and sand lines for Assateague Island that were extracted from natural-color orthoimagery (aerial photography) dated from April 12, 1989, to September 5, 2013. The images used were 0.3–2-meter (m)-resolution U.S. Geological Survey Digital Orthophoto Quarter Quads (DOQQ), U.S. Department of Agriculture National Agriculture Imagery Program (NAIP) images, and Virginia Geographic Information Network Virginia Base Map Program (VBMP) images courtesy of the Commonwealth of Virginia. The back-island shorelines were hand-digitized at the intersect of the apparent back-island shoreline and transects spaced at 20-m intervals. The open-ocean shorelines were hand-digitized at the approximate still water level, such as tide level, which was fit through the average position of waves and swash apparent on the beach. Hand-digitizing was done at a scale of approximately 1:2,000. The sand polygons were derived by using an image-processing unsupervised classification technique that separates images into classes. The classes were then visually categorized as either sand or not sand. Also included in this report are 20-m-spaced transect lines and the transect base lines.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMSA53A..04Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMSA53A..04Z"><span>Tracing Acoustic-Gravity Waves from the Ocean into the Ionosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zabotin, N. A.; Godin, O. A.; Bullett, T. W.; Negrea, C.</p> <p>2013-12-01</p> <p>Ionospheric manifestations of tsunamis provide dramatic evidence of a connection between wave processes in the ocean and in the atmosphere. But tsunamis are only a transient feature of a more general phenomenon, infragravity waves (IGWs). IGWs are permanently present surface gravity waves in the ocean with periods longer than the longest periods (~30 s) of wind-generated waves. IGWs propagate transoceanic distances and, because of their long wavelengths (from ~1 km to hundreds of km), provide a mechanism for coupling wave processes in the ocean, atmosphere, and the solid Earth. The notion that tsunamis may generate waves in the upper atmosphere has existed for a long time but no quantitative coupling theory for the background waves has been proposed. We provide a strict physical justification for the influence of the background IGWs on the upper atmosphere. Taking into account both fluid compressibility and the gravity in a coupled atmosphere-ocean system, we show that there exist two distinct regimes of IGW penetration into the atmosphere. At higher frequencies, one has evanescent waves in the atmosphere propagating horizontally along the ocean surface. At lower frequencies, IGWs continuously radiate their energy into the upper atmosphere in the form of acoustic gravity waves (AGWs). The transition frequency depends on the ocean depth; it varies slowly near 3 mHz for typical depth values and drops to zero sharply only for extremely large depths. Using semi-empirical model of the IGW power spectrum, we derive an estimate of the flux of the mechanical energy and mechanical momentum from the deep ocean into the atmosphere due to background IGWs and predict specific forcing on the atmosphere in coastal regions. We compare spectra of wave processes in the ionosphere measured using Dynasonde technique over Wallops Island, VA and San Juan, PR and interpret the differences in terms of the oceanic effects. We conclude that AGWs of oceanic origin may have an observable impact on the upper atmosphere and describe techniques for experimental verification of this finding.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..44.4224R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..44.4224R"><span>Intraseasonal sea surface warming in the western Indian Ocean by oceanic equatorial Rossby waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rydbeck, Adam V.; Jensen, Tommy G.; Nyadjro, Ebenezer S.</p> <p>2017-05-01</p> <p>A novel process is identified whereby equatorial Rossby (ER) waves maintain warm sea surface temperature (SST) anomalies against cooling by processes related to atmospheric convection in the western Indian Ocean. As downwelling ER waves enter the western Indian Ocean, SST anomalies of +0.15°C develop near 60°E. These SST anomalies are hypothesized to stimulate convective onset of the Madden-Julian Oscillation. The upper ocean warming that manifests in response to downwelling ER waves is examined in a mixed layer heat budget using observational and reanalysis products, respectively. In the heat budget, horizontal advection is the leading contributor to warming, in part due to an equatorial westward jet of 80 cm s-1 associated with downwelling ER waves. When anomalous currents associated with ER waves are removed in the budget, the warm intraseasonal temperature anomaly in the western Indian Ocean is eliminated in observations and reduced by 55% in reanalysis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1014394','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1014394"><span>Generation and Evolution of Internal Waves in Luzon Strait</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2015-09-30</p> <p>1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Generation and Evolution of Internal Waves in Luzon...inertial waves , nonlinear internal waves (NLIWs), and turbulence mixing––in the ocean and thereby help develop improved parameterizations of mixing for...ocean models. Mixing within the stratified ocean is a particular focus as the complex interplay of internal waves from a variety of sources and</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1007273','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1007273"><span>Generation and Evolution of Internal Waves in Luzon Strait</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2016-03-01</p> <p>1 DISTRIBUTION STATEMENT A: Distribution approved for public release; distribution is unlimited. Generation and Evolution of Internal Waves in...internal tides, inertial waves , nonlinear internal waves (NLIWs), and turbulence mixing––in the ocean and thereby help develop improved parameterizations of...mixing for ocean models. Mixing within the stratified ocean is a particular focus as the complex interplay of internal waves from a variety of</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JGRC..120.2973B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JGRC..120.2973B"><span>Surface wave effects in the NEMO ocean model: Forced and coupled experiments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Breivik, Øyvind; Mogensen, Kristian; Bidlot, Jean-Raymond; Balmaseda, Magdalena Alonso; Janssen, Peter A. E. M.</p> <p>2015-04-01</p> <p>The NEMO general circulation ocean model is extended to incorporate three physical processes related to ocean surface waves, namely the surface stress (modified by growth and dissipation of the oceanic wavefield), the turbulent kinetic energy flux from breaking waves, and the Stokes-Coriolis force. Experiments are done with NEMO in ocean-only (forced) mode and coupled to the ECMWF atmospheric and wave models. Ocean-only integrations are forced with fields from the ERA-Interim reanalysis. All three effects are noticeable in the extratropics, but the sea-state-dependent turbulent kinetic energy flux yields by far the largest difference. This is partly because the control run has too vigorous deep mixing due to an empirical mixing term in NEMO. We investigate the relation between this ad hoc mixing and Langmuir turbulence and find that it is much more effective than the Langmuir parameterization used in NEMO. The biases in sea surface temperature as well as subsurface temperature are reduced, and the total ocean heat content exhibits a trend closer to that observed in a recent ocean reanalysis (ORAS4) when wave effects are included. Seasonal integrations of the coupled atmosphere-wave-ocean model consisting of NEMO, the wave model ECWAM, and the atmospheric model of ECMWF similarly show that the sea surface temperature biases are greatly reduced when the mixing is controlled by the sea state and properly weighted by the thickness of the uppermost level of the ocean model. These wave-related physical processes were recently implemented in the operational coupled ensemble forecast system of ECMWF.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOS.A23A..04C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOS.A23A..04C"><span>Air-Sea Momentum and Enthalpy Exchange in Coupled Atmosphere-Wave-Ocean Modeling of Tropical Cyclones</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Curcic, M.; Chen, S. S.</p> <p>2016-02-01</p> <p>The atmosphere and ocean are coupled through momentum, enthalpy, and mass fluxes. Accurate representation of these fluxes in a wide range of weather and climate conditions is one of major challenges in prediction models. Their current parameterizations are based on sparse observations in low-to-moderate winds and are not suited for high wind conditions such as tropical cyclones (TCs) and winter storms. In this study, we use the Unified Wave INterface - Coupled Model (UWIN-CM), a high resolution, fully-coupled atmosphere-wave-ocean model, to better understand the role of ocean surface waves in mediating air-sea momentum and enthalpy exchange in TCs. In particular, we focus on the explicit treatment of wave growth and dissipation for calculating atmospheric and oceanic stress, and its role in upper ocean mixing and surface cooling in the wake of the storm. Wind-wave misalignment and local wave disequilibrium result in difference between atmospheric and oceanic stress being largest on the left side of the storm. We find that explicit wave calculation in the coupled model reduces momentum transfer into the ocean by more than 10% on average, resulting in reduced cooling in TC's wake and subsequent weakening of the storm. We also investigate the impacts of sea surface temperature and upper ocean parameterization on air-sea enthalpy fluxes in the fully coupled model. High-resolution UWIN-CM simulations of TCs with various intensities and structure are conducted in this study to better understand the complex TC-ocean interaction and improve the representation of air-sea coupling processes in coupled prediction models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.2118Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.2118Z"><span>Infragravity waves in the ocean as a source of acoustic-gravity waves in the atmosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zabotin, Nikolay A.; Godin, Oleg A.</p> <p>2013-04-01</p> <p>Infragravity waves (IGWs) are surface gravity waves in the ocean with periods longer than the longest periods (~30s) of wind-generated waves. IGWs propagate transoceanic distances with very little attenuation in deep water and, because of their long wavelengths (from ~1 km to hundreds of km), provide a mechanism for coupling wave processes in the ocean, ice shelves, the atmosphere, and the solid Earth. Here, we build on recent advances in understanding spectral and spatial variability of background infragravity waves in deep ocean to evaluate the IGW manifestations in the atmosphere. Water compressibility has a minor effect on IGWs. On the contrary, much larger compressibility and vertical extent of the atmosphere makes it necessary to treat IGW extension into the atmosphere as acoustic-gravity waves. There exist two distinct regimes of IGW penetration into the atmosphere. At higher frequencies, one has surface waves in the atmosphere propagating horizontally along the ocean surface and prominent up to heights of the order of the wavelength. At lower frequencies, IGWs are leaky waves, which continuously radiate their energy into the upper atmosphere. The transition between the two regimes occurs at a frequency of the order of 3 mHz, with the exact value of the transition frequency being a function of the ocean depth, the direction of IGW propagation and the vertical profiles of temperature and wind velocity. The transition frequency decreases with increasing ocean depth. Using recently obtained semi-empirical model of power spectra the IGWs over varying bathymetry [Godin O. A., Zabotin N. A., Sheehan A. F., Yang Z., and Collins J. A. Power spectra of infragravity waves in a deep ocean, Geophys. Res. Lett., under review (2012)], we derive an estimate of the flux of the mechanical energy from the deep ocean into the atmosphere due to IGWs. Significance will be discussed of the IGW contributions into the field of acoustic-gravity waves in the atmosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.7282D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.7282D"><span>OpenDrift - an open source framework for ocean trajectory modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dagestad, Knut-Frode; Breivik, Øyvind; Ådlandsvik, Bjørn</p> <p>2016-04-01</p> <p>We will present a new, open source tool for modeling the trajectories and fate of particles or substances (Lagrangian Elements) drifting in the ocean, or even in the atmosphere. The software is named OpenDrift, and has been developed at Norwegian Meteorological Institute in cooperation with Institute of Marine Research. OpenDrift is a generic framework written in Python, and is openly available at https://github.com/knutfrode/opendrift/. The framework is modular with respect to three aspects: (1) obtaining input data, (2) the transport/morphological processes, and (3) exporting of results to file. Modularity is achieved through well defined interfaces between components, and use of a consistent vocabulary (CF conventions) for naming of variables. Modular input implies that it is not necessary to preprocess input data (e.g. currents, wind and waves from Eulerian models) to a particular file format. Instead "reader modules" can be written/used to obtain data directly from any original source, including files or through web based protocols (e.g. OPeNDAP/Thredds). Modularity of processes implies that a model developer may focus on the geophysical processes relevant for the application of interest, without needing to consider technical tasks such as reading, reprojecting, and colocating input data, rotation and scaling of vectors and model output. We will show a few example applications of using OpenDrift for predicting drifters, oil spills, and search and rescue objects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUFMED53A0323L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUFMED53A0323L"><span>The Waves and Tsunamis Project</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lavin, M.; Strohschneider, D.; Maichle, R.; Frashure, K.; Micozzi, N.; Stephen, R. A.</p> <p>2005-12-01</p> <p>The goals of the Waves and Tsunamis Project are "to make waves real" to middle school students and to teach them some fundamental concepts of waves. The curriculum was designed in Fall 2004 (before the Sumatra Tsunami) and involves an ocean scientist classroom visit, hands-on demonstrations, and an interactive website designed to explain ocean wave properties. The website is called 'The Plymouth Wave Lab' and it has had more than 40,000 hits since the Sumatra event. One inexpensive and interesting demonstration is based on a string composed of alternating elastic bands and paper clips. Washers can be added to the paper clips to construct strings with varying mass. For example, a tapered string with mass decreasing in the wave propagation direction is an analog of tsunami waves propagating from deep to shallow water. The Waves and Tsunamis Project evolved as a collaborative effort involving an ocean science researcher and middle school science teachers. It was carried out through the direction of the Centers of Ocean Science Education Excellence New England (COSEE-NE) Ocean Science Education Institute (OSEI). COSEE-NE is involved in developing models for sustainable involvement of ocean science researchers in K-12 education ( http://necosee.net ). This work is supported by the National Science Foundation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1026816','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1026816"><span>A Seakeeping Performance and Affordability Tradeoff Study for the Coast Guard Offshore Patrol Cutter</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2016-06-01</p> <p>Index Polar Plot for Sea State 4, All Headings Are Relative to the Wave Motion and Velocity is Given in Meters per Second...40 Figure 15. Probability and Cumulative Density Functions of Annual Sea State Occurrences in the Open Ocean, North Pacific...criteria at a given sea state. Probability distribution functions are available that describe the likelihood that an operational area will experience</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_8 --> <div id="page_9" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="161"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ESASP.740E.429D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ESASP.740E.429D"><span>A Preliminary Assessment of the S-3A SRAL Performances in SAR Mode</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dinardo, Salvatore; Scharroo, Remko; Bonekamp, Hans; Lucas, Bruno; Loddo, Carolina; Benveniste, Jerome</p> <p>2016-08-01</p> <p>The present work aims to assess and characterize the S3-A SRAL Altimeter performance in closed-loop tracking mode and in open ocean conditions. We have processed the Sentinel-3 SAR data products from L0 until L2 using an adaptation of the ESRIN GPOD CryoSat-2 Processor SARvatore.During the Delay-Doppler processing, we have chosen to activate the range zero-padding option.The L2 altimetric geophysical parameters, that are to be validated, are the sea surface height above the ellipsoid (SSH), sea level anomaly (SLA), the significant wave height (SWH) and wind speed (U10), all estimated at 20 Hz.The orbit files are the POD MOE, while the geo- corrections are extracted from the RADS database.In order to assess the accuracy of the wave&wind products, we have been using an ocean wave&wind speed model output (wind speed at 10 meter high above the sea surface) from the ECMWF.We have made a first order approximation of the sea state bias as -4.7% of the SWH.In order to assess the precision performance of SRAL SAR mode, we compute the level of instrumental noise (range, wave height and wind speed) for different conditions of sea state.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870051565&hterms=Wave+Energy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DWave%2BEnergy','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870051565&hterms=Wave+Energy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DWave%2BEnergy"><span>The physical basis for estimating wave-energy spectra with the radar ocean-wave spectrometer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jackson, Frederick C.</p> <p>1987-01-01</p> <p>The derivation of the reflectivity modulation spectrum of the sea surface for near-nadir-viewing microwave radars using geometrical optics is described. The equations required for the derivation are presented. The derived reflectivity modulation spectrum provides data on the physical basis of the radar ocean-wave spectrometer measurements of ocean-wave directional spectra.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMOS11B1649M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMOS11B1649M"><span>Evolution of a Directional Wave Spectrum in a 3D Marginal Ice Zone with Random Floe Size Distribution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Montiel, F.; Squire, V. A.</p> <p>2013-12-01</p> <p>A new ocean wave/sea-ice interaction model is proposed that simulates how a directional wave spectrum evolves as it travels through a realistic marginal ice zone (MIZ), where wave/ice dynamics are entirely governed by coherent conservative wave scattering effects. Field experiments conducted by Wadhams et al. (1986) in the Greenland Sea generated important data on wave attenuation in the MIZ and, particularly, on whether the wave spectrum spreads directionally or collimates with distance from the ice edge. The data suggest that angular isotropy, arising from multiple scattering by ice floes, occurs close to the edge and thenceforth dominates wave propagation throughout the MIZ. Although several attempts have been made to replicate this finding theoretically, including by the use of numerical models, none have confronted this problem in a 3D MIZ with fully randomised floe distribution properties. We construct such a model by subdividing the discontinuous ice cover into adjacent infinite slabs of finite width parallel to the ice edge. Each slab contains an arbitrary (but finite) number of circular ice floes with randomly distributed properties. Ice floes are modeled as thin elastic plates with uniform thickness and finite draught. We consider a directional wave spectrum with harmonic time dependence incident on the MIZ from the open ocean, defined as a continuous superposition of plane waves traveling at different angles. The scattering problem within each slab is then solved using Graf's interaction theory for an arbitrary incident directional plane wave spectrum. Using an appropriate integral representation of the Hankel function of the first kind (see Cincotti et al., 1993), we map the outgoing circular wave field from each floe on the slab boundaries into a directional spectrum of plane waves, which characterizes the slab reflected and transmitted fields. Discretizing the angular spectrum, we can obtain a scattering matrix for each slab. Standard recursive techniques are then used to solve the problem for the full MIZ. Wave attenuation data are obtained using ensemble averaging and preliminary comparisons with field experiment data will be given in the presentation. The model also offers important insights in regards to the spreading of the directional wave spectrum as it penetrates deeper into the MIZ. Cincotti, G., Gori, F., Santarsiero, M., Frezza, F., Furno, F., and Schettini, G. (1993). Plane wave expansion of cylindrical functions. Opt. Commun., 95(4):192-198. Wadhams, P., Squire, V. A., Ewing, J. A., and Pascal, R. W. (1986). The effect of the marginal ice zone on the directional wave spectrum of the ocean. J. Phys. Oceanogr., 16:358-376.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMOS33B1773T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMOS33B1773T"><span>Developing a low-cost open-source CTD for research and outreach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thaler, A. D.; Sturdivant, K.</p> <p>2013-12-01</p> <p>Developing a low-cost open-source CTD for research and outreach Andrew David Thaler and Kersey Sturdivant Conductivity, temperature, and depth (CTD). With these three measurements, marine scientists can unlock ocean patterns hidden beneath the waves. The ocean is not uniform, it its filled with swirling eddies, temperature boundaries, layers of high and low salinity, changing densities, and many other physical characteristics. To reveal these patterns, oceanographers use a tool called the CTD. A CTD is found on almost every major research vessel. Rare is the scientific expedition-whether it be coastal work in shallow estuaries or journeys to the deepest ocean trenches-that doesn't begin with the humble CTD cast. The CTD is not cheap. Commercial CTD's start at more the 5,000 and can climb as high as 25,000 or more. We believe that the prohibitive cost of a CTD is an unacceptable barrier to open science. The price tag excludes individuals and groups who lack research grants or significant private funds from conducting oceanographic research. We want to make this tool-the workhorse of oceanographic research-available to anyone with an interest in the oceans. The OpenCTD is a low-cost, open-source CTD suitable for both educators and scientists. The platform is built using readily available parts and is powered by an Arduino-based microcontroller. Our goal is to create a device that is accurate enough to be used for scientific research and can be constructed for less than $200. Source codes, circuit diagrams, and building plans will be freely available. The final instrument will be effective to 200 meters depth. Why 200 meters? For many coastal regions, 200 meters of water depth covers the majority of the ocean that is accessible by small boat. The OpenCTD is targeted to people working in this niche, where entire research projects can be conducted for less than the cost of a commercial CTD. However, the Open CTD is scalable, and anyone with the inclination can adapt our plans to operate in deeper waters. Through a crowdfunding initiative and collaboration with numerous interested scientists, researchers, educators, and developers, we developed the framework for a low-cost, open-source, CTD that is appropriate for both scientific research and public outreach. We envision a network or researchers and educators using the OpenCTD to contribute to local and region scientific programs through open-source databases.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA192058','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA192058"><span>The Effects of Better Environmental Inputs in Estimating Sea Clutter</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1988-01-01</p> <p>3.2 A Spectral Ocean Wave Model: DWAVE 11 3.3 Limitations of DWAVE 11 4. HYBRID MODEL DEVELOPMENT 12 4.1 Overall Plan 12 4.2 High Resolution...intensive. 10 3.2 A Spectral Ocean Wave Model: DWAVE Most of the spectral ocean wave models give essentially the same type of outputs, for example, the...sea clutter estimation. A deep ocean wave model DWAVE by Offshore & Coastal Technologies, Inc. (OCTI) has been chosen because it can be run on a</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMOS43A1400S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMOS43A1400S"><span>Validation of the Fully-Coupled Air-Sea-Wave COAMPS System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Smith, T.; Campbell, T. J.; Chen, S.; Gabersek, S.; Tsu, J.; Allard, R. A.</p> <p>2017-12-01</p> <p>A fully-coupled, air-sea-wave numerical model, COAMPS®, has been developed by the Naval Research Laboratory to further enhance understanding of oceanic, atmospheric, and wave interactions. The fully-coupled air-sea-wave system consists of an atmospheric component with full physics parameterizations, an ocean model, NCOM (Navy Coastal Ocean Model), and two wave components, SWAN (Simulating Waves Nearshore) and WaveWatch III. Air-sea interactions between the atmosphere and ocean components are accomplished through bulk flux formulations of wind stress and sensible and latent heat fluxes. Wave interactions with the ocean include the Stokes' drift, surface radiation stresses, and enhancement of the bottom drag coefficient in shallow water due to the wave orbital velocities at the bottom. In addition, NCOM surface currents are provided to SWAN and WaveWatch III to simulate wave-current interaction. The fully-coupled COAMPS system was executed for several regions at both regional and coastal scales for the entire year of 2015, including the U.S. East Coast, Western Pacific, and Hawaii. Validation of COAMPS® includes observational data comparisons and evaluating operational performance on the High Performance Computing (HPC) system for each of these regions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..DPPJO7011K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..DPPJO7011K"><span>Freak waves in negative-ion plasmas: an experiment revisited</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kourakis, Ioannis; Elkamash, Ibrahem; Reville, Brian</p> <p>2016-10-01</p> <p>Extreme events in the form of rogue waves (freak waves) occur widely in the open sea. These are space- and time-localised excitations, which appear unexpectedly and are characterised by a significant amplitude. Beyond ocean dynamics, the mechanisms underlying rogue wave formation are now being investigated in various physical contexts, including materials science, nonlinear optics and plasma physics, to mention but a few. We have undertaken an investigation, from first principles, of the occurrence of rogue waves associated with the propagation of electrostatic wavepackets in plasmas. Motivated by recent experimental considerations involving freak waves in negative-ion plasmas (NIP), we have addresed the occurrence of freak waves in NIP from first principles. An extended range of plasma parameter values was identified, where freak wave formation is possible, in terms of relevant plasma parameters. Our results extend -and partly contradict- the underlying assumptions in the interpretation of the aforementioned experiment, where a critical plasma configuration was considered and a Gardner equation approach was adopted. This work was supported from CPP/QUB funding. One of us (I. Elkamash) acknowledges financial support by an Egyptian Government fellowship.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4134826','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4134826"><span>An Optimal Control Method for Maximizing the Efficiency of Direct Drive Ocean Wave Energy Extraction System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Chen, Zhongxian; Yu, Haitao; Wen, Cheng</p> <p>2014-01-01</p> <p>The goal of direct drive ocean wave energy extraction system is to convert ocean wave energy into electricity. The problem explored in this paper is the design and optimal control for the direct drive ocean wave energy extraction system. An optimal control method based on internal model proportion integration differentiation (IM-PID) is proposed in this paper though most of ocean wave energy extraction systems are optimized by the structure, weight, and material. With this control method, the heavy speed of outer heavy buoy of the energy extraction system is in resonance with incident wave, and the system efficiency is largely improved. Validity of the proposed optimal control method is verified in both regular and irregular ocean waves, and it is shown that IM-PID control method is optimal in that it maximizes the energy conversion efficiency. In addition, the anti-interference ability of IM-PID control method has been assessed, and the results show that the IM-PID control method has good robustness, high precision, and strong anti-interference ability. PMID:25152913</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25152913','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25152913"><span>An optimal control method for maximizing the efficiency of direct drive ocean wave energy extraction system.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chen, Zhongxian; Yu, Haitao; Wen, Cheng</p> <p>2014-01-01</p> <p>The goal of direct drive ocean wave energy extraction system is to convert ocean wave energy into electricity. The problem explored in this paper is the design and optimal control for the direct drive ocean wave energy extraction system. An optimal control method based on internal model proportion integration differentiation (IM-PID) is proposed in this paper though most of ocean wave energy extraction systems are optimized by the structure, weight, and material. With this control method, the heavy speed of outer heavy buoy of the energy extraction system is in resonance with incident wave, and the system efficiency is largely improved. Validity of the proposed optimal control method is verified in both regular and irregular ocean waves, and it is shown that IM-PID control method is optimal in that it maximizes the energy conversion efficiency. In addition, the anti-interference ability of IM-PID control method has been assessed, and the results show that the IM-PID control method has good robustness, high precision, and strong anti-interference ability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2012-08-20/pdf/2012-20348.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2012-08-20/pdf/2012-20348.pdf"><span>77 FR 50062 - Safety Zone; Embry-Riddle Wings and Waves, Atlantic Ocean; Daytona Beach, FL</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2012-08-20</p> <p>... 1625-AA00 Safety Zone; Embry-Riddle Wings and Waves, Atlantic Ocean; Daytona Beach, FL AGENCY: Coast...-Riddle Wings and Waves air show. The event is scheduled to take place from Thursday, October 11, 2012...: Sec. 165.T07-0653 Safety Zone; Embry Riddle Wings and Waves, Atlantic Ocean, Daytona Beach, FL. (a...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910006313','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910006313"><span>Visualizing characteristics of ocean data collected during the Shuttle Imaging Radar-B experiment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tilley, David G.</p> <p>1991-01-01</p> <p>Topographic measurements of sea surface elevation collected by the Surface Contour Radar (SCR) during NASA's Shuttle Imaging Radar (SIR-B) experiment are plotted as three dimensional surface plots to observe wave height variance along the track of a P-3 aircraft. Ocean wave spectra were computed from rotating altimeter measurements acquired by the Radar Ocean Wave Spectrometer (ROWS). Fourier power spectra computed from SIR-B synthetic aperture radar (SAR) images of the ocean are compared to ROWS surface wave spectra. Fourier inversion of SAR spectra, after subtraction of spectral noise and modeling of wave height modulation, yields topography similar to direct measurements made by SCR. Visual perspectives on the SCR and SAR ocean data are compared. Threshold distinctions between surface elevation and texture modulations of SAR data are considered within the context of a dynamic statistical model of rough surface scattering. The result of these endeavors is insight as to the physical mechanism governing the imaging of ocean waves with SAR.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015OcMod..92..149P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015OcMod..92..149P"><span>Spectral wave conditions in the Colombian Pacific Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Portilla, Jesús; Caicedo, Ana Lucía; Padilla-Hernández, Roberto; Cavaleri, Luigi</p> <p>2015-08-01</p> <p>A comprehensive characterization of the wave conditions in the Colombian Pacific based on wave spectra is presented. The spectral approach offers a detailed description of the different wave regimes, their associated meteorological conditions and their variation in time and geographical space. To this end, two complementary data sources are used, the first is representative for the near-shore zone and comes from observations of the local monitoring network. The second comes from numerical wave model results that cover the open ocean. The measured data used are the first systematically collected spectral wave data in the Eastern Equatorial Pacific. Modelled spectra correspond to the ERA-Interim database of the European Centre for Medium-Range Weather Forecasts that spans 35 years. An indicator for statistical analysis of the wave spectra has been introduced which basically consists of the occurrence probability of spectral partitions. This indicator has proved to be skilful for the task of defining spectral wave systems of both model and, the more challenging, measured spectra. Following the spectral approach and using this new indicator, six main wave regimes are found in the study area. Two of these systems have well defined swell characteristics that are originated outside the study area in the northern and southern hemispheres. Other three wave systems are to a certain extent associated to the local winds, and in general may be classified as old wind-seas. These are found to flow northeastwards, westwards, and southwards. The sixth system is composed of locally generated wind waves of relatively low magnitude that propagate in several directions. The time variability of these wave systems is highly dependent on the boreal and austral winter storms and on the tropical conditions, in such a way that the wave energy propagation to the region is rather constant along the year, but their origin and characteristics vary significantly.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1996EOSTr..77..101C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1996EOSTr..77..101C"><span>Detailed ocean current maps may lie over the horizon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carlowicz, Michael</p> <p></p> <p>In another case of military swords being turned into scientific plowshares, two American researchers have used radar systems once designed to detect Soviet planes during the Cold War to map open-ocean currents instead.In the name of science, Thomas Georges and Jack Harlan of NOAA's Environmental Technology Laboratory borrowed some time last summer on the U.S. Navy's over-the-horizon (OTH) radar systems in both Virginia and Texas. Training the radars on the waters off of the southern coast of Florida, the researchers gathered enough data to deduce the surface motion of two 70,000 km2 swatches of the Caribbean Sea and Gulf of Mexico. By bouncing 5-28 MHz radio waves off the ionosphere down to the sea surface and back, the researchers were able to derive the characteristics of the ocean surface from Bragg backscatter resonance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ClDy...50.2783M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ClDy...50.2783M"><span>Understanding Rossby wave trains forced by the Indian Ocean Dipole</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McIntosh, Peter C.; Hendon, Harry H.</p> <p>2018-04-01</p> <p>Convective variations over the tropical Indian Ocean associated with ENSO and the Indian Ocean Dipole force a Rossby wave train that appears to emanate poleward and eastward to the south of Australia and which causes climate variations across southern Australia and more generally throughout the Southern Hemisphere extratropics. However, during austral winter, the subtropical jet that extends from the eastern Indian Ocean into the western Pacific at Australian latitudes should effectively prohibit continuous propagation of a stationary Rossby wave from the tropics into the extratropics because the meridional gradient of mean absolute vorticity goes to zero on its poleward flank. The observed wave train indeed exhibits strong convergence of wave activity flux upon encountering this region of vanishing vorticity gradient and with some indication of reflection back into the tropics, indicating the continuous propagation of the stationary Rossby wave train from low to high latitudes is inhibited across the south of Australia. However, another Rossby wave train appears to emanate upstream of Australia on the poleward side of the subtropical jet and propagates eastward along the waveguide of the eddy-driven (sub-polar) jet into the Pacific sector of the Southern Ocean. This combination of evanescent wave train from the tropics and eastward propagating wave train emanating from higher latitudes upstream of Australia gives the appearance of a continuous Rossby wave train propagating from the tropical Indian Ocean into higher southern latitudes. The extratropical Rossby wave source on the poleward side of the subtropical jet stems from induced changes in transient eddy activity in the main storm track of the Southern Hemisphere. During austral spring, when the subtropical jet weakens, the Rossby wave train emanating from Indian Ocean convection is explained more traditionally by direct dispersion from divergence forcing at low latitudes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26ES..139a2025R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26ES..139a2025R"><span>Ocean wave characteristic in the Sunda Strait using Wave Spectrum Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rachmayani, R.; Ningsih, N. S.; Adiprabowo, S. R.; Nurfitri, S.</p> <p>2018-03-01</p> <p>The wave characteristics including significant wave height and direction, seas and swell in the Sunda Strait are analyzed seasonally to provide marine weather information. This is crucial for establishing secured marine activities between islands of Sumatera and Java. Ocean wave characteristics in the Sunda Strait are simulated for one year (July 1996–June 1977) by using SWAN numerical model. The ocean wave characteristics in the Sunda Strait are divided into three areas of interest; southern, centre and northern part of the Sunda Strait. Despite a weaker local wind, the maximum significant wave height is captured at the southern part with its height of 2.6 m in November compared to other seasonally months. This is associated with the dominated swell from the Indian Ocean contributes on wave energy toward the Sunda Strait. The 2D spectrum analysis exhibits the monthly wave characteristic at southern part that is dominated by seas along the year and swell propagating from the Indian Ocean to the Sunda Strait during December to February (northwest monsoon), May, and November. Seas and swell at northern part of the Sunda Strait are apprehended weaker compared to other parts of the Sunda Strait due to its location is farther from the Indian Ocean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..1210571P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..1210571P"><span>Gravity wave generation from jets and fronts: idealized and real-case simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Plougonven, Riwal; Arsac, Antonin; Hertzog, Albert; Guez, Lionel; Vial, François</p> <p>2010-05-01</p> <p>The generation of gravity waves from jets and fronts remains an outstanding issue in the dynamics of the atmosphere. It is important to explain and quantify this emission because of the several impacts of these waves, in particular the induced momentum fluxes towards the middle atmosphere, and their contribution to turbulence and mixing, e.g. in the region of the tropopause. Yet, the mechanisms at the origin of these waves have been difficult to identify, the fundamental reason for this being the separation between the time scales of balanced motions and gravity waves. Recent simulations of idealized baroclinic life cycles and of dipoles have provided insights into the mechanisms determining the characteristics and the amplitude of gravity waves emitted by jets. It has been shown in particular that the environmental strain and shear play a crucial role in determining the characteristics and location of the emitted waves, emphasizing jet exit regions for the appearance of coherent low-frequency waves. It has also been shown how advection of relatively small-scales allow to overcome the separation of time scales alluded to above. Recent results, remaining open questions and ongoing work on these idealized simulations will be briefly summarized. Nevertheless, unavoidable shortcomings of such idealized simulations include the sensitivity of the emitted waves to model setup (resolution, diffusion, parameterizations) and uncertainty regarding the realism of this aspect of the simulations. Hence, it is necessary to compare simulations with observations in order to assess their relevance. Such comparison has been undertaken using the dataset from the Vorcore campaign (Sept. 2005 - Feb. 2006, Hertzog, J. Atmos. Ocean. Techno. 2007) during which 27 superpressure balloons drifted as quasi-Lagrangian tracers in the lower stratosphere above Antarctica and the Southern Ocean. High-resolution simulations (dx = 20 km) have been carried out using the Weather Research and Forecast model for nearly two months. The realism of the simulated gravity waves is established based on systematic comparison with the observations and on case studies. The simulations are then used to quantify the importance and characteristics of gravity waves emitted from jets and fronts above the Southern Ocean. In particular, application of results from the idealized simulations to real cases, with a check provided by observations, will be discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18..275S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18..275S"><span>El Nino as an element of a global-scale wave in the atmosphere-ocean system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Serykh, Ilya; Sonechkin, Dmitry</p> <p>2016-04-01</p> <p>The analyses of the real meteorological and oceanographical data, and long runs of the coupled atmosphere-ocean hydro- thermodynamical models identify a spatial-temporal structure of the main mode of the interannual to decadal climatic variations. This mode looks like a global-scale wave that extends from West to East around the Earth, and varies rhythmically. In fact, the establishment of this wave is a generalization and development of the well-known structures of the so-called "teleconnections" in the ocean-atmosphere system. The known regional structures like ENSO, IOD, PDO, IPO, PNA, NAO, AO, ACW and other can be considered as parts of this global-scale wave. Moving eastward around the Earth, this wave triggers El Nino - Southern oscillation events. An index of this wave is proposed as a sum of normalized anomalies of the sea level pressure and the near-surface temperature in 20 locations around the globe. It is proven that the power spectrum of this index is not continuous but discrete in its character. Thus, one can suppose that the dynamics of the global-scale wave is nonchaotic, and so predictable with no limit in principle. The index power spectrum reveals statistically significant peaks at the same periods that are inherent to the power spectra of the traditional ENSO indices. The main peaks are at the sub-harmonics of the well-known Chandler wobble (of the ~1.2 year period) in the Earth's pole motion: 3.6; 4.8; 2.4 years. Some other statistically significant peaks also are seen at the super-harmonics of the Luni-Solar nutation (of the ~18.6 year period), and combinational harmonics of the Schwabe's and Hale's solar activity cycles. Based on the eastward propagation of the global-scale wave, a predictor of ENSO events was suggested. It has high correlation (about 0.7) with Nino indices but leads them on about 12 months. The use of this predictor opens a possibility to overcome the Spring Predictability Barrier in ENSO forecasting.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1395480-ocean-power-technology-design-optimization','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1395480-ocean-power-technology-design-optimization"><span>Ocean power technology design optimization</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>van Rij, Jennifer; Yu, Yi -Hsiang; Edwards, Kathleen; ...</p> <p>2017-07-18</p> <p>For this study, the National Renewable Energy Laboratory and Ocean Power Technologies (OPT) conducted a collaborative code validation and design optimization study for OPT's PowerBuoy wave energy converter (WEC). NREL utilized WEC-Sim, an open-source WEC simulator, to compare four design variations of OPT's PowerBuoy. As an input to the WEC-Sim models, viscous drag coefficients for the PowerBuoy floats were first evaluated using computational fluid dynamics. The resulting WEC-Sim PowerBuoy models were then validated with experimental power output and fatigue load data provided by OPT. The validated WEC-Sim models were then used to simulate the power performance and loads for operationalmore » conditions, extreme conditions, and directional waves, for each of the four PowerBuoy design variations, assuming the wave environment of Humboldt Bay, California. And finally, ratios of power-to-weight, power-to-fatigue-load, power-to-maximum-extreme-load, power-to-water-plane-area, and power-to-wetted-surface-area were used to make a final comparison of the potential PowerBuoy WEC designs. Lastly, the design comparison methodologies developed and presented in this study are applicable to other WEC devices and may be useful as a framework for future WEC design development projects.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1395480-ocean-power-technology-design-optimization','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1395480-ocean-power-technology-design-optimization"><span>Ocean power technology design optimization</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>van Rij, Jennifer; Yu, Yi -Hsiang; Edwards, Kathleen</p> <p></p> <p>For this study, the National Renewable Energy Laboratory and Ocean Power Technologies (OPT) conducted a collaborative code validation and design optimization study for OPT's PowerBuoy wave energy converter (WEC). NREL utilized WEC-Sim, an open-source WEC simulator, to compare four design variations of OPT's PowerBuoy. As an input to the WEC-Sim models, viscous drag coefficients for the PowerBuoy floats were first evaluated using computational fluid dynamics. The resulting WEC-Sim PowerBuoy models were then validated with experimental power output and fatigue load data provided by OPT. The validated WEC-Sim models were then used to simulate the power performance and loads for operationalmore » conditions, extreme conditions, and directional waves, for each of the four PowerBuoy design variations, assuming the wave environment of Humboldt Bay, California. And finally, ratios of power-to-weight, power-to-fatigue-load, power-to-maximum-extreme-load, power-to-water-plane-area, and power-to-wetted-surface-area were used to make a final comparison of the potential PowerBuoy WEC designs. Lastly, the design comparison methodologies developed and presented in this study are applicable to other WEC devices and may be useful as a framework for future WEC design development projects.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24964297','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24964297"><span>Harvesting broadband kinetic impact energy from mechanical triggering/vibration and water waves.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wen, Xiaonan; Yang, Weiqing; Jing, Qingshen; Wang, Zhong Lin</p> <p>2014-07-22</p> <p>We invented a triboelectric nanogenerator (TENG) that is based on a wavy-structured Cu-Kapton-Cu film sandwiched between two flat nanostructured PTFE films for harvesting energy due to mechanical vibration/impacting/compressing using the triboelectrification effect. This structure design allows the TENG to be self-restorable after impact without the use of extra springs and converts direct impact into lateral sliding, which is proved to be a much more efficient friction mode for energy harvesting. The working mechanism has been elaborated using the capacitor model and finite-element simulation. Vibrational energy from 5 to 500 Hz has been harvested, and the generator's resonance frequency was determined to be ∼100 Hz at a broad full width at half-maximum of over 100 Hz, producing an open-circuit voltage of up to 72 V, a short-circuit current of up to 32 μA, and a peak power density of 0.4 W/m(2). Most importantly, the wavy structure of the TENG can be easily packaged for harvesting the impact energy from water waves, clearly establishing the principle for ocean wave energy harvesting. Considering the advantages of TENGs, such as cost-effectiveness, light weight, and easy scalability, this approach might open the possibility for obtaining green and sustainable energy from the ocean using nanostructured materials. Lastly, different ways of agitating water were studied to trigger the packaged TENG. By analyzing the output signals and their corresponding fast Fourier transform spectra, three ways of agitation were evidently distinguished from each other, demonstrating the potential of the TENG for hydrological analysis.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_9 --> <div id="page_10" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="181"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19730024604','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19730024604"><span>Kennedy Space Center ocean beach erosion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mehta, A. J.; Obrien, M. P.</p> <p>1973-01-01</p> <p>Dune barrier erosion and possible breakthrough due to storm and hurricane wave activity is studied near Mosquito Lagoon, in Kennedy Space Center property. The results of a geological as well as hydrodynamic appraisal of the problem area indicate that no inlet has existed across the dune barrier since 500 A.D., and that there is little likelihood of a possible breakthrough inlet remaining open permanently, primarily because the relatively shallow lagoon does not contain enough volume of water to maintain an inlet between the ocean and the lagoon. It is therefore recommended that only minimal measures, such as closing up the man-made passes across the dunes, be carried out to ensure continuation of the action of natural beach maintaining processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014SPIE.9111E..14B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014SPIE.9111E..14B"><span>Regional vicarious gain adjustment for coastal VIIRS products</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bowers, Jennifer; Arnone, Robert; Ladner, Sherwin; Fargion, Giulietta S.; Lawson, Adam; Martinolich, Paul; Vandermeulen, Ryan</p> <p>2014-05-01</p> <p>As part of the Joint Polar Satellite System (JPSS) Ocean Cal/Val Team, Naval Research Lab - Stennis Space Center (NRL-SSC) has been working to facilitate calibration and validation of the Visible Infrared Imaging Radiometer Suite (VIIRS) ocean color products. By relaxing the constraints of the NASA Ocean Biology Processing Group (OBPG) methodology for vicarious calibration of ocean color satellites and utilizing the Aerosol Robotic Network Ocean Color (AERONET-OC) system to provide in situ data, we investigated differences between remotely sensed water leaving radiance and the expected in situ response in coastal areas and compare the results to traditional Marine Optical Buoy (MOBY) calibration/validation activities. An evaluation of the Suomi National Polar-Orbiting Partnership (SNPP)-VIIRS ocean color products was performed in coastal waters using the time series data obtained from the Northern Gulf of Mexico AERONET-OC site, WaveCIS. The coastal site provides different water types with varying complexity of CDOM, sedimentary, and chlorophyll components. Time series data sets were used to develop a vicarious gain adjustment (VGA) at this site, which provides a regional top of the atmospheric (TOA) spectral offset to compare the standard MOBY spectral calibration gain in open ocean waters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA601293','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA601293"><span>Coupling of Waves, Turbulence and Thermodynamics Across the Marginal Ice Zone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2013-09-30</p> <p>ice . The albedo of sea ice is large compared to open water, and most of the incoming solar radiation...ocean and the ice pack where the seasonal retreat of the main ice pack takes place. It is a highly variable sea ice environment, usually comprised of...many individual floes of variable shape and size and made of mixed ice types, from young forming ice to fragmented multiyear ice . The presence of sea</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA578497','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA578497"><span>A Non-Equilibrium Sediment Transport Model for Coastal Inlets and Navigation Channels</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2011-01-01</p> <p>exchange of water , sediment, and nutrients between estuaries and the ocean. Because of the multiple interacting forces (waves, wind, tide, river...in parallel using OpenMP. The CMS takes advantage of the Surface- water Modeling System (SMS) interface for grid generation and model setup, as well...as for plotting and post- processing (Zundel, 2000). The circulation model in the CMS (called CMS-Flow) computes the unsteady water level and</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002EGSGA..27.4664L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002EGSGA..27.4664L"><span>Freak Waves In The Ocean A~é­ We Need Continuous Measurements!</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, P.; Teng, C.; Mori, N.</p> <p></p> <p>Freak waves, sometimes also known as rogue waves, are a particular kind of ocean waves that displays a singular, unexpected, and unusually high wave profile with an extraordinarily large and steep trough or crest. The existence of freak waves has be- come widely accepted while it always poses severe hazard to the navy fleets, merchant marines, offshore structures, and virtually all oceanic ventures. Multitudes of seagoing vessels and mariners have encountered freak waves over the years, many had resulted in disasters. The emerging interest in freak waves and the quest to grasp an understand- ing of the phenomenon have inspired numerous theoretical conjectures in recent years. But the practical void of actual field observation on freak waves renders even the well- developed theories remain unverified. Furthermore, the present wave measurement systems, which have been in practice for the last 5 decades, are not at all designed to capture freak waves. We wish therefore to propose and petition to all oceanic scientist and engineers to consider undertaking an unprecedented but technologically feasible practice of making continuous and uninterrupted wave measurements. As freak waves can happen anywhere in the ocean and at anytime, the continuous and uninterrupted measurements at a fixed station would certainly be warranted to document the occur- rence of freak waves, if present, and thus lead to basic realizations of the underlying driving mechanisms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.5167S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.5167S"><span>Climatology of Global Swell-Atmosphere Interaction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Semedo, Alvaro</p> <p>2016-04-01</p> <p>At the ocean surface wind sea and swell waves coexist. Wind sea waves are locally generated growing waves strongly linked to the overlaying wind field. Waves that propagate away from their generation area, throughout entire ocean basins, are called swell. Swell waves do not receive energy from local wind. Ocean wind waves can be seen as the "gearbox" between the atmosphere and the ocean, and are of critical importance to the coupled atmosphere-ocean system, since they modulate most of the air-sea interaction processes and exchanges, particularly the exchange of momentum. This modulation is most of the times sea-state dependent, i.e., it is a function of the prevalence of one type of waves over the other. The wave age parameter, defined as the relative speed between the peak wave and the wind (c_p⁄U_10), has been largely used in different aspects of the air-sea interaction theory and in practical modeling solutions of wave-atmosphere coupled model systems. The wave age can be used to assess the development of the sea state but also the prevalence (domination) of wind sea or swell waves at the ocean surface. The presence of fast-running waves (swell) during light winds (at high wave age regimes) induces an upward momentum flux, directed from the water surface to the atmosphere. This upward directed momentum has an impact in the lower marine atmospheric boundary layer (MABL): on the one hand it changes the vertical wind speed profile by accelerating the flow at the first few meters (inducing the so called "wave-driven wind"), and on the other hand it changes the overall MABL turbulence structure by limiting the wind shear - in some observed and modeled situations the turbulence is said to have "collapse". The swell interaction with the lower MABL is a function of the wave age but also of the swell steepness, since steeper waves loose more energy into the atmosphere as their energy attenuates. This interaction can be seen as highest in areas where swells are steepest, but also where the wind speed is lowest and consequently the wave age is high. A detailed global climatology of the wave age and swell steepness parameters, based on the ECMWF (European Centre for Medium-Range Weather Forecasts) ERA-Interim reanalysis is presented. It will be shown, in line with previous studies, that the global climatological patterns of the wave age confirm the global dominance of the World Ocean by swell waves. The areas of the ocean where the highest interaction of swell waves and the lower atmosphere can be expected are also presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOS.A24B2578V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOS.A24B2578V"><span>Characterization of the surface wave variability in the California Current region from satellite altimetry.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Villas Boas, A. B.; Gille, S. T.; Mazloff, M. R.</p> <p>2016-02-01</p> <p>Surface gravity waves play a crucial role in upper-ocean dynamics, and they are an important mechanism by which the ocean exchanges energy with the overlying atmosphere. Surface waves are largely wind forced and can also be modulated by ocean currents via nonlinear wave-current interactions, leading to either an amplification or attenuation of the wave amplitude. Even though individual waves cannot be detected by present satellite altimeters, surface waves have the potential to produce a sea-state bias in altimeter measurements and can impact the sea-surface-height spectrum at high wavenumbers or frequencies. Knowing the wave climatology is relevant for the success of future altimeter missions, such as the Surface Water and Ocean Topography (SWOT). We analyse the seasonal, intra-annual and interannual variability of significant wave heights retrieved from over two decades of satellite altimeter data and assess the extent to which the variability of the surface wave field in the California Current region is modulated by the local wind and current fields.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011EOSTr..92...63O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011EOSTr..92...63O"><span>Owen Martin Phillips (1930-2010)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Olson, Peter</p> <p>2011-02-01</p> <p>Owen Martin Phillips, a pioneer in geophysical fluid dynamics, died at home on 13 October 2010 in Chestertown, Md., at the age of 79. To his many friends and colleagues, Phillips was an inspirational and gracious person who combined a deep intellect, a lively spirit, and a generous heart that matched his passionate interest in the geophysical sciences. Phillips was born on 30 December 1930 in Parramatta, N. S. W., Australia. In 1948 he enrolled in the University of Sydney, where he earned a B.S. in applied mathematics in 1952. That same year, he joined the Cavendish Laboratory at Cambridge University as a research student, where he began to apply to the ocean concepts in turbulent flow recently developed by Andrei Kolmogorov, G. I. Taylor, and George Batchelor. While attending the 1956 celebration of Taylor's seventieth birthday, Phillips heard Fritz Ursell declare that “the process by which ocean waves are generated by the wind cannot be regarded as known.” In 1957 the Journal of Fluid Mechanics contained two remarkable papers offering contrasting theories for ocean wave generation. One paper, by the applied mathematician John Miles (J. Fluid Mech., 2(5), 417-445, 1957), proposed that energy transfer from the air to the sea occurs at a critical layer in the atmosphere boundary layer. The other paper, by Phillips, then 26 years old (J. Fluid Mech., 3(2), 185-204, 1957), proposed that turbulent pressure fluctuations in the wind resonate with propagating ocean waves, forcing them to grow. Together these became known as the Phillips-Miles process, and it was the opening salvo in Phillips's 50-year career of innovative contributions to geophysics through fluid mechanics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMNH51B0120R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMNH51B0120R"><span>Signals in the ionosphere generated by tsunami earthquakes: observations and modeling suppor</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rolland, L.; Sladen, A.; Mikesell, D.; Larmat, C. S.; Rakoto, V.; Remillieux, M.; Lee, R.; Khelfi, K.; Lognonne, P. H.; Astafyeva, E.</p> <p>2017-12-01</p> <p>Forecasting systems failed to predict the magnitude of the 2011 great tsunami in Japan due to the difficulty and cost of instrumenting the ocean with high-quality and dense networks. Melgar et al. (2013) show that using all of the conventional data (inland seismic, geodetic, and tsunami gauges) with the best inversion method still fails to predict the correct height of the tsunami before it breaks onto a coast near the epicenter (< 500 km). On the other hand, in the last decade, scientists have gathered convincing evidence of transient signals in the ionosphere Total Electron Content (TEC) observations that are associated to open ocean tsunami waves. Even though typical tsunami waves are only a few centimeters high, they are powerful enough to create atmospheric vibrations extending all the way to the ionosphere, 300 kilometers up in the atmosphere. Therefore, we are proposing to incorporate the ionospheric signals into tsunami early-warning systems. We anticipate that the method could be decisive for mitigating "tsunami earthquakes" which trigger tsunamis larger than expected from their short-period magnitude. These events are challenging to characterize as they rupture the near-trench subduction interface, in a distant region less constrained by onshore data. As a couple of devastating tsunami earthquakes happens per decade, they represent a real threat for onshore populations and a challenge for tsunami early-warning systems. We will present the TEC observations of the recent Java 2006 and Mentawaii 2010 tsunami earthquakes and base our analysis on acoustic ray tracing, normal modes summation and the simulation code SPECFEM, which solves the wave equation in coupled acoustic (ocean, atmosphere) and elastic (solid earth) domains. Rupture histories are entered as finite source models, which will allow us to evaluate the effect of a relatively slow rupture on the surrounding ocean and atmosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.1337K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.1337K"><span>Acoustic-gravity waves, theory and application</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kadri, Usama; Farrell, William E.; Munk, Walter</p> <p>2015-04-01</p> <p>Acoustic-gravity waves (AGW) propagate in the ocean under the influence of both the compressibility of sea water and the restoring force of gravity. The gravity dependence vanishes if the wave vector is normal to the ocean surface, but becomes increasingly important as the wave vector acquires a horizontal tilt. They are excited by many sources, including non-linear surface wave interactions, disturbances of the ocean bottom (submarine earthquakes and landslides) and underwater explosions. In this introductory lecture on acoustic-gravity waves, we describe their properties, and their relation to organ pipe modes, to microseisms, and to deep ocean signatures by short surface waves. We discuss the generation of AGW by underwater earthquakes; knowledge of their behaviour with water depth can be applied for the early detection of tsunamis. We also discuss their generation by the non-linear interaction of surface gravity waves, which explains the major role they play in transforming energy from the ocean surface to the crust, as part of the microseisms phenomenon. Finally, they contribute to horizontal water transport at depth, which might affect benthic life.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016NJPh...18a3017H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016NJPh...18a3017H"><span>Capturing rogue waves by multi-point statistics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hadjihosseini, A.; Wächter, Matthias; Hoffmann, N. P.; Peinke, J.</p> <p>2016-01-01</p> <p>As an example of a complex system with extreme events, we investigate ocean wave states exhibiting rogue waves. We present a statistical method of data analysis based on multi-point statistics which for the first time allows the grasping of extreme rogue wave events in a highly satisfactory statistical manner. The key to the success of the approach is mapping the complexity of multi-point data onto the statistics of hierarchically ordered height increments for different time scales, for which we can show that a stochastic cascade process with Markov properties is governed by a Fokker-Planck equation. Conditional probabilities as well as the Fokker-Planck equation itself can be estimated directly from the available observational data. With this stochastic description surrogate data sets can in turn be generated, which makes it possible to work out arbitrary statistical features of the complex sea state in general, and extreme rogue wave events in particular. The results also open up new perspectives for forecasting the occurrence probability of extreme rogue wave events, and even for forecasting the occurrence of individual rogue waves based on precursory dynamics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1167455','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1167455"><span>Ocean floor mounting of wave energy converters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Siegel, Stefan G</p> <p>2015-01-20</p> <p>A system for mounting a set of wave energy converters in the ocean includes a pole attached to a floor of an ocean and a slider mounted on the pole in a manner that permits the slider to move vertically along the pole and rotate about the pole. The wave energy converters can then be mounted on the slider to allow adjustment of the depth and orientation of the wave energy converters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012OcDyn..62.1335P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012OcDyn..62.1335P"><span>Storm observations by remote sensing and influences of gustiness on ocean waves and on generation of rogue waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pleskachevsky, Andrey L.; Lehner, Susanne; Rosenthal, Wolfgang</p> <p>2012-09-01</p> <p>The impact of the gustiness on surface waves under storm conditions is investigated with focus on the appearance of wave groups with extreme high amplitude and wavelength in the North Sea. During many storms characterized by extremely high individual waves measured near the German coast, especially in cold air outbreaks, the moving atmospheric open cells are observed by optical and radar satellites. According to measurements, the footprint of the cell produces a local increase in the wind field at sea surface, moving as a consistent system with a propagation speed near to swell wave-traveling speed. The optical and microwave satellite data are used to connect mesoscale atmospheric turbulences and the extreme waves measured. The parameters of open cells observed are used for numerical spectral wave modeling. The North Sea with horizontal resolution of 2.5 km and with focus on the German Bight was simulated. The wind field "storm in storm," including moving organized mesoscale eddies with increased wind speed, was generated. To take into account the rapid moving gust structure, the input wind field was updated each 5 min. The test cases idealized with one, two, and four open individual cells and, respectively, with groups of open cells, with and without preexisting sea state, as well the real storm conditions, are simulated. The model results confirm that an individual-moving open cell can cause the local significant wave height increase in order of meters within the cell area and especially in a narrow area of 1-2 km at the footprint center of a cell (the cell's diameter is 40-90 km). In a case of a traveling individual open cell with 15 m·s-1 over a sea surface with a preexisting wind sea of and swell, a local significant wave height increase of 3.5 m is produced. A group of cells for a real storm condition produces a local increase of significant wave height of more than 6 m during a short time window of 10-20 min (cell passing). The sea surface simulation from modeled wave spectra points out the appearance of wave groups including extreme individual waves with a period of about 25 s and a wavelength of more than 350 m under the cell's footprint. This corresponds well with measurement of a rogue wave group with length of about 400 m and a period of near 25 s. This has been registered at FiNO-1 research platform in the North Sea during Britta storm on November 1, 2006 at 04:00 UTC. The results can explain the appearance of rogue waves in the German Bight and can be used for ship safety and coastal protection. Presently, the considered mesoscale gustiness cannot be incorporated in present operational wave forecasting systems, since it needs an update of the wind field at spatial and temporal scales, which is still not available for such applications. However, the scenario simulations for cell structures with appropriate travel speed, observed by optical and radar satellites, can be done and applied for warning messages.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008PhDT........17T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008PhDT........17T"><span>Numerical simulations of the stratified oceanic bottom boundary layer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Taylor, John R.</p> <p></p> <p>Numerical simulations are used to consider several problems relevant to the turbulent oceanic bottom boundary layer. In the first study, stratified open channel flow is considered with thermal boundary conditions chosen to approximate a shallow sea. Specifically, a constant heat flux is applied at the free surface and the lower wall is assumed to be adiabatic. When the surface heat flux is strong, turbulent upwellings of low speed fluid from near the lower wall are inhibited by the stable stratification. Subsequent studies consider a stratified bottom Ekman layer over a non-sloping lower wall. The influence of the free surface is removed by using an open boundary condition at the top of the computational domain. Particular attention is paid to the influence of the outer layer stratification on the boundary layer structure. When the density field is initialized with a linear profile, a turbulent mixed layer forms near the wall, which is separated from the outer layer by a strongly stable pycnocline. It is found that the bottom stress is not strongly affected by the outer layer stratification. However, stratification reduces turbulent transport to the outer layer and strongly limits the boundary layer height. The mean shear at the top of the boundary layer is enhanced when the outer layer is stratified, and this shear is strong enough to cause intermittent instabilities above the pycnocline. Turbulence-generated internal gravity waves are observed in the outer layer with a relatively narrow frequency range. An explanation for frequency content of these waves is proposed, starting with an observed broad-banded turbulent spectrum and invoking linear viscous decay to explain the preferential damping of low and high frequency waves. During the course of this work, an open-source computational fluid dynamics code has been developed with a number of advanced features including scalar advection, subgrid-scale models for large-eddy simulation, and distributed memory parallelism.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GMD....11.1405D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GMD....11.1405D"><span>OpenDrift v1.0: a generic framework for trajectory modelling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dagestad, Knut-Frode; Röhrs, Johannes; Breivik, Øyvind; Ådlandsvik, Bjørn</p> <p>2018-04-01</p> <p>OpenDrift is an open-source Python-based framework for Lagrangian particle modelling under development at the Norwegian Meteorological Institute with contributions from the wider scientific community. The framework is highly generic and modular, and is designed to be used for any type of drift calculations in the ocean or atmosphere. A specific module within the OpenDrift framework corresponds to a Lagrangian particle model in the traditional sense. A number of modules have already been developed, including an oil drift module, a stochastic search-and-rescue module, a pelagic egg module, and a basic module for atmospheric drift. The framework allows for the ingestion of an unspecified number of forcing fields (scalar and vectorial) from various sources, including Eulerian ocean, atmosphere and wave models, but also measurements or a priori values for the same variables. A basic backtracking mechanism is inherent, using sign reversal of the total displacement vector and negative time stepping. OpenDrift is fast and simple to set up and use on Linux, Mac and Windows environments, and can be used with minimal or no Python experience. It is designed for flexibility, and researchers may easily adapt or write modules for their specific purpose. OpenDrift is also designed for performance, and simulations with millions of particles may be performed on a laptop. Further, OpenDrift is designed for robustness and is in daily operational use for emergency preparedness modelling (oil drift, search and rescue, and drifting ships) at the Norwegian Meteorological Institute.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70146327','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70146327"><span>Book review: Nonlinear ocean waves and the inverse scattering transform</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Geist, Eric L.</p> <p>2011-01-01</p> <p>Nonlinear Ocean Waves and the Inverse Scattering Transform is a comprehensive examination of ocean waves built upon the theory of nonlinear Fourier analysis. The renowned author, Alfred R. Osborne, is perhaps best known for the discovery of internal solitons in the Andaman Sea during the 1970s. In this book, he provides an extensive treatment of nonlinear water waves based on a nonlinear spectral theory known as the inverse scattering transform. The writing is exceptional throughout the book, which is particularly useful in explaining some of the more difficult mathematical concepts.  Review info: Nonlinear Ocean Waves and the Inverse Scattering Transform. By Alfred R. Osborne, 2010. ISBN: 978-125286299, 917 pp.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20060041879&hterms=level+topical&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dlevel%2Btopical','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20060041879&hterms=level+topical&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dlevel%2Btopical"><span>A high-resolution OGCM simulation of the Tropical Pacific Ocean during the 1985-1994 TOGA period. Part I: Long equatorial waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Boulanger, J. P.; Delecluse, F.; Maes, C.; Levy, C.</p> <p>1995-01-01</p> <p>A high resolution oceanic general circulation model of the three topical oceans is used to investigate long equatorial wave activity in the Pacific Ocean during the 1985-1994 TOGA period. Zonal wind stress forcing and simulated dynamic height are interpreted using techniques previously applied to data. Kelvin and first Rossby waves are observed propagating during all the period. A seasonal cycle and interannual anomalies are computed for each long equatorial wave. The east Pacific basin is mainly dominated by seasonal cycle variations while strong interannual anomalies are observed west of the dateline. Long wave interannual anomalies are then compared to wave coefficients simulated by a simple wind-forced model. Our results outline the major role played by wind forcing on interannual time scales in generating long equatorial waves. However, near both eastern and western boundaries, some differences can be attributed to long wave reflections. A comparison to wave coefficients calculated from GEOSAT sea-level data gives some insight of the model behavior.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26262620','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26262620"><span>Ocean Wave Separation Using CEEMD-Wavelet in GPS Wave Measurement.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Junjie; He, Xiufeng; Ferreira, Vagner G</p> <p>2015-08-07</p> <p>Monitoring ocean waves plays a crucial role in, for example, coastal environmental and protection studies. Traditional methods for measuring ocean waves are based on ultrasonic sensors and accelerometers. However, the Global Positioning System (GPS) has been introduced recently and has the advantage of being smaller, less expensive, and not requiring calibration in comparison with the traditional methods. Therefore, for accurately measuring ocean waves using GPS, further research on the separation of the wave signals from the vertical GPS-mounted carrier displacements is still necessary. In order to contribute to this topic, we present a novel method that combines complementary ensemble empirical mode decomposition (CEEMD) with a wavelet threshold denoising model (i.e., CEEMD-Wavelet). This method seeks to extract wave signals with less residual noise and without losing useful information. Compared with the wave parameters derived from the moving average skill, high pass filter and wave gauge, the results show that the accuracy of the wave parameters for the proposed method was improved with errors of about 2 cm and 0.2 s for mean wave height and mean period, respectively, verifying the validity of the proposed method.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMEP23F..04M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMEP23F..04M"><span>Why Do Some Estuaries Close: A Model of Estuary Entrance Morphodynamics.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McSweeney, S. L.; Kennedy, D. M.; Rutherfurd, I.</p> <p>2014-12-01</p> <p>Intermittently Closed/Open Coastal Lakes/Lagoons (ICOLLs) are a form of wave-dominated, microtidal estuary that experience periodic closure in times of low river flow. ICOLL entrance morphodynamics are complex due to the interaction between wave, tidal and fluvial processes. Managers invest substantial funds to artificially open ICOLLs as they flood surrounding property and infrastructure, and have poor water quality. Existing studies examine broad scale processes but do not identify the main drivers of entrance condition. In this research, the changes in entrance geomorphology were surveyed before and after artificial entrance openings in three ICOLLs in Victoria, Australia. Changes in morphology were related to continuous measures of sediment volume, water level, tide and wave energy. A six-stage quantitative phase model of entrance geomorphology and hydrodynamics is presented to illustrate the spatio-temporal variability in ICOLL entrance morphodynamics. Phases include: breakout; channel expansion with rapid outflow; open with tidal exchange; initial berm rebuilding with tidal attenuation; partial berm recovery with rising water levels; closed with perched water levels. Entrance breakout initiates incision of a pilot channel to the ocean, whereby basin water levels then decline and channel expansion as the headcut migrates landwards. Peak outflow velocities of 5 m/s-3 were recorded and channel dimensions increased over 6 hrs to 3.5 m deep and 140 m wide. When tidal, a clear semi-diurnal signal is superimposed upon an otherwise stable water level. Deep-water wave energy was transferred 1.8 km upstream of the rivermouth with bores present in the basin. Berm rebuilding occurred by littoral drift and cross-shore transport once outflow ceased and microscale bedform features, particularly antidunes, contributed to sediment progradation. Phase duration is dependant on how high the estuary was perched above mean sea level, tidal prism extent, and onshore sediment supply. High offshore wave height and frequency, in addition to littoral drift magnitude, were main drivers of closure. This study presents a predictive model of entrance morphodynamics whereby managers can determine proximity to natural closure or opening, and as a result identify whether implementing an artificial opening is worthwhile.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017OcDyn..67..621G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017OcDyn..67..621G"><span>Impacts of climate changes on ocean surface gravity waves over the eastern Canadian shelf</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Guo, Lanli; Sheng, Jinyu</p> <p>2017-05-01</p> <p>A numerical study is conducted to investigate the impact of climate changes on ocean surface gravity waves over the eastern Canadian shelf (ECS). The "business-as-usual" climate scenario known as Representative Concentration Pathway RCP8.5 is considered in this study. Changes in the ocean surface gravity waves over the study region for the period 1979-2100 are examined based on 3 hourly ocean waves simulated by the third-generation ocean wave model known as WAVEWATCHIII. The wave model is driven by surface winds and ice conditions produced by the Canadian Regional Climate Model (CanRCM4). The whole study period is divided into the present (1979-2008), near future (2021-2050) and far future (2071-2100) periods to quantify possible future changes of ocean waves over the ECS. In comparison with the present ocean wave conditions, the time-mean significant wave heights ( H s ) are expected to increase over most of the ECS in the near future and decrease over this region in the far future period. The time-means of the annual 5% largest H s are projected to increase over the ECS in both near and far future periods due mainly to the changes in surface winds. The future changes in the time-means of the annual 5% largest H s and 10-m wind speeds are projected to be twice as strong as the changes in annual means. An analysis of inverse wave ages suggests that the occurrence of wind seas is projected to increase over the southern Labrador and central Newfoundland Shelves in the near future period, and occurrence of swells is projected to increase over other areas of the ECS in both the near and far future periods.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_10 --> <div id="page_11" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="201"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMOS11B1642W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMOS11B1642W"><span>Development and applications of a Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) Modeling System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Warner, J. C.; Armstrong, B. N.; He, R.; Zambon, J. B.; Olabarrieta, M.; Voulgaris, G.; Kumar, N.; Haas, K. A.</p> <p>2012-12-01</p> <p>Understanding processes responsible for coastal change is important for managing both our natural and economic coastal resources. Coastal processes respond from both local scale and larger regional scale forcings. Understanding these processes can lead to significant insight into how the coastal zone evolves. Storms are one of the primary driving forces causing coastal change from a coupling of wave and wind driven flows. Here we utilize a numerical modeling approach to investigate these dynamics of coastal storm impacts. We use the Coupled Ocean - Atmosphere - Wave - Sediment Transport (COAWST) Modeling System that utilizes the Model Coupling Toolkit to exchange prognostic variables between the ocean model ROMS, atmosphere model WRF, wave model SWAN, and the Community Sediment Transport Modeling System (CSTMS) sediment routines. The models exchange fields of sea-surface temperature, ocean currents, water levels, bathymetry, wave heights, lengths, periods, bottom orbital velocities, and atmospheric surface heat and momentum fluxes, atmospheric pressure, precipitation, and evaporation. Data fields are exchanged using regridded flux conservative sparse matrix interpolation weights computed from the SCRIP spherical coordinate remapping interpolation package. We describe the modeling components and the model field exchange methods. As part of the system, the wave and ocean models run with cascading, refined, spatial grids to provide increased resolution, scaling down to resolve nearshore wave driven flows simulated by the vortex force formulation, all within selected regions of a larger, coarser-scale coastal modeling system. The ocean and wave models are driven by the atmospheric component, which is affected by wave dependent ocean-surface roughness and sea surface temperature which modify the heat and momentum fluxes at the ocean-atmosphere interface. We describe the application of the modeling system to several regions of multi-scale complexity to identify the significance of larger scale forcing cascading down to smaller scales and to investigate the interactions of the coupled system with increasing degree of model-model interactions. Three examples include the impact of Hurricane Ivan in 2004 in the Gulf of Mexico, Hurricane Ida in 2009 that evolved into a tropical storm on the US East coast, and passage of strong cold fronts across the US southeast. Results identify that hurricane intensity is extremely sensitive to sea-surface temperature, with a reduction in intensity when the atmosphere is coupled to the ocean model due to rapid cooling of the ocean from the surface through the mixed layer. Coupling of the ocean to the atmosphere also results in decreased boundary layer stress and coupling of the waves to the atmosphere results in increased sea-surface stress. Wave results are sensitive to both ocean and atmospheric coupling due to wave-current interactions with the ocean and wave-growth from the atmospheric wind stress. Sediment resuspension at regional scale during the hurricane is controlled by shelf width and wave propagation during hurricane approach. Results from simulation of passage of cold fronts suggest that synoptic meteorological systems can strongly impact surf zone and inner shelf response, therefore act as a strong driver for long term littoral sediment transport. We will also present some of the challenges faced to develop the modeling system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.S51E..02S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.S51E..02S"><span>Seismic noise frequency dependent P and S wave sources</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stutzmann, E.; Schimmel, M.; Gualtieri, L.; Farra, V.; Ardhuin, F.</p> <p>2013-12-01</p> <p>Seismic noise in the period band 3-10 sec is generated in the oceans by the interaction of ocean waves. Noise signal is dominated by Rayleigh waves but body waves can be extracted using a beamforming approach. We select the TAPAS array deployed in South Spain between June 2008 and September 2009 and we use the vertical and horizontal components to extract noise P and S waves, respectively. Data are filtered in narrow frequency bands and we select beam azimuths and slownesses that correspond to the largest continuous sources per day. Our procedure automatically discard earthquakes which are localized during short time durations. Using this approach, we detect many more noise P-waves than S-waves. Source locations are determined by back-projecting the detected slowness/azimuth. P and S waves are generated in nearby areas and both source locations are frequency dependent. Long period sources are dominantly in the South Atlantic and Indian Ocean whereas shorter period sources are rather in the North Atlantic Ocean. We further show that the detected S-waves are dominantly Sv-waves. We model the observed body waves using an ocean wave model that takes into account all possible wave interactions including coastal reflection. We use the wave model to separate direct and multiply reflected phases for P and S waves respectively. We show that in the South Atlantic the complex source pattern can be explained by the existence of both coastal and pelagic sources whereas in the North Atlantic most body wave sources are pelagic. For each detected source, we determine the equivalent source magnitude which is compared to the model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A31E2244L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A31E2244L"><span>Investigation of tropical diurnal convection biases in a climate model using TWP-ICE observations and convection-permitting simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lin, W.; Xie, S.; Jackson, R. C.; Endo, S.; Vogelmann, A. M.; Collis, S. M.; Golaz, J. C.</p> <p>2017-12-01</p> <p>Climate models are known to have difficulty in simulating tropical diurnal convections that exhibit distinct characteristics over land and open ocean. While the causes are rooted in deficiencies in convective parameterization in general, lack of representations of mesoscale dynamics in terms of land-sea breeze, convective organization, and propagation of convection-induced gravity waves also play critical roles. In this study, the problem is investigated at the process-level with the U.S. Department of Energy Accelerated Climate Modeling for Energy (ACME) model in short-term hindcast mode using the Cloud Associated Parameterization Testbed (CAPT) framework. Convective-scale radar retrievals and observation-driven convection-permitting simulations for the Tropical Warm Pool-International Cloud Experiment (TWP-ICE) cases are used to guide the analysis of the underlying processes. The emphasis will be on linking deficiencies in representation of detailed process elements to the model biases in diurnal convective properties and their contrast among inland, coastal and open ocean conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19770046429&hterms=Tidal+waves&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DTidal%2Bwaves','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19770046429&hterms=Tidal+waves&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DTidal%2Bwaves"><span>Laser probe for measuring 2-D wave slope spectra of ocean capillary waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Palm, C. S.; Anderson, R. C.; Reece, A. M.</p> <p>1977-01-01</p> <p>A laser-optical instrument for use in determining the two-dimensional wave-slope spectrum of ocean capillary waves is described. The instrument measures up to a 35-deg tip angle of the surface normal by measuring the position of a refracted laser beam directed vertically upward through a water surface. A telescope, a continuous two-dimensional Schottky barrier photodiode, and a pair of analog dividers render the signals independent of water height and insensitive to laser-beam intensity fluctuations. Calibration is performed entirely in the laboratory before field use. Sample records and wave-slope spectra are shown for one-dimensional wave-tank tests and for two-dimensional ocean tests. These are presented along with comparison spectra for calm and choppy water conditions. A mechanical wave follower was used to adjust the instrument position in the presence of large ocean swell and tides.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1014361','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1014361"><span>Refined Source Terms in WAVEWATCH III with Wave Breaking and Sea Spray Forecasts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2015-09-30</p> <p>young wind seas reported by Schwendeman et al. (2014) and for the open ocean cases reported by Sutherland and Melville (2015). These verifications...modeled Λ(c) distributions shown in Figure 3 follow a very similar dependence to the Sutherland and Melville observations to about 1-2 m/s. The...and 11) as well as Sutherland and Melville (2015) which show beff ~ O(10-3). Figure 4. Modeled behavior of spectrally-integrated breaking</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1916800R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1916800R"><span>Impact of wave mixing on the sea ice cover</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rynders, Stefanie; Aksenov, Yevgeny; Madec, Gurvan; Nurser, George; Feltham, Daniel</p> <p>2017-04-01</p> <p>As information on surface waves in ice-covered regions becomes available in ice-ocean models, there is an opportunity to model wave-related processes more accurate. Breaking waves cause mixing of the upper water column and present mixing schemes in ocean models take this into account through surface roughness. A commonly used approach is to calculate surface roughness from significant wave height, parameterised from wind speed. We present results from simulations using modelled significant wave height instead, which accounts for the presence of sea ice and the effect of swell. The simulations use the NEMO ocean model coupled to the CICE sea ice model, with wave information from the ECWAM model of the European Centre for Medium-Range Weather Forecasts (ECMWF). The new waves-in-ice module allows waves to propagate in sea ice and attenuates waves according to multiple scattering and non-elastic losses. It is found that in the simulations with wave mixing the mixed layer depth (MLD) under ice cover is reduced, since the parameterisation from wind speed overestimates wave height in the ice-covered regions. The MLD change, in turn, affects sea ice concentration and ice thickness. In the Arctic, reduced MLD in winter translates into increased ice thicknesses overall, with higher increases in the Western Arctic and decreases along the Siberian coast. In summer, shallowing of the mixed layer results in more heat accumulating in the surface ocean, increasing ice melting. In the Southern Ocean the meridional gradient in ice thickness and concentration is increased. We argue that coupling waves with sea ice - ocean models can reduce negative biases in sea ice cover, affecting the distribution of nutrients and, thus, biological productivity and ecosystems. This coupling will become more important in the future, when wave heights in a large part of the Arctic are expected to increase due to sea ice retreat and a larger wave fetch. Therefore, wave mixing constitutes a possible positive feedback mechanism.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014OcDyn..64.1247P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014OcDyn..64.1247P"><span>Assessing wave climate trends in the Bay of Biscay through an intercomparison of wave hindcasts and reanalyses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Paris, F.; Lecacheux, S.; Idier, D.; Charles, E.</p> <p>2014-09-01</p> <p>The Bay of Biscay, located in the Northeast Atlantic Ocean, is exposed to energetic waves coming from the open ocean that have crucial effects on the coast. Knowledge of the wave climate and trends in this region are critical to better understand the last decade's evolution of coastal hazards and morphology and to anticipate their potential future changes. This study aims to characterize the long-term trends of the present wave climate over the second half of the twentieth century in the Bay of Biscay through a robust and homogeneous intercomparison of five-wave datasets (Corrected ERA-40 (C-ERA-40), ECMWF Reanalysis Interim (ERA-Interim), Bay Of Biscay Wave Atlas (BOBWA-10kH), ANEMOC, and Bertin and Dodet 2010)). The comparison of the quality of the datasets against offshore and nearshore measurements reveals that at offshore locations, global reanalyses slightly underestimate wave heights, while regional hindcasts overestimate wave heights, especially for the highest quantiles. At coastal locations, BOBWA-10kH is the dataset that compares the best with observations. Concerning long time-scale features, the comparison highlights that the main significant trends are similarly present in the five datasets, especially during summer for which there is an increase of significant wave heights and mean wave periods (up to +15 cm and +0.6 s over the period 1970-2001) as well as a southerly shift of wave directions (around -0.4° year-1). Over the same period, an increase of high quantiles of wave heights during the autumn season (around 3 cm year-1 for 90th quantile of significant wave heights (SWH90)) is also apparent. During winter, significant trends are much lower than during summer and autumn despite a slight increase of wave heights and periods during 1958-2001. These trends can be related to modifications in the wave-type occurrence. Finally, the trends common to the five datasets are discussed by analyzing the similarities with centennial trends issued from longer time-scale studies and exploring the various factors that could explain them.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSEC14E1052C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSEC14E1052C"><span>Spatio-temporal variability of internal waves in the northern Gulf of Mexico studied with the Navy Coastal Ocean Model, NCOM</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cambazoglu, M. K.; Jacobs, G. A.; Howden, S. D.; Book, J. W.; Arnone, R.; Soto Ramos, I. M.; Vandermeulen, R. A.; Greer, A. T.; Miles, T. N.</p> <p>2016-02-01</p> <p>Internal waves enhance mixing in the upper ocean, transport nutrients and plankton over the water column and across the shelf from deeper waters to shallower coastal areas, and could also transport pollutants such as hydrocarbons onshore during an oil spill event. This study aims to characterize internal waves in the northern Gulf of Mexico (nGoM) and investigate the possible generation and dissipation mechanisms using a high-resolution (1-km) application of the Navy Coastal Ocean Model (NCOM). Three dimensional model products are used to detect the propagation patterns of internal waves. The vertical structure of internal waves is studied and the role of stratification is analyzed by looking at the temperature, salinity and velocity variations along the water column. The model predictions suggest the generation of internal waves on the continental shelf, therefore the role of ocean bottom topography interacting with tides and general circulation features such as the Loop Current Eddy front, on the internal wave generation will be discussed. The time periods of internal wave occurrences are identified from model predictions and compared to satellite ocean color imagery. Further data analysis, e.g. Fourier analysis, is implemented to determine internal wavelengths and frequencies and to determine if the response of internal waves are at tidal periods or at different frequencies. The atmospheric forcing provided to NCOM and meteorological data records are analyzed to define the interaction between wind forcing and internal wave generation. Wavelet analysis characterizes the ocean response to atmospheric events with periodic frequencies. Ocean color satellite imagery was used to visualize the location of the Mississippi river plume (and other oceanic features) and compared to the model predictions because the enhanced stratification from freshwater plumes which propagate across the Mississippi Bight can provide favorable conditions in coastal waters for internal wave generation and propagation. The findings of this study will provide insight about the internal wave dynamics in the Gulf of Mexico and their potential impact on the marine ecosystem.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20090034242&hterms=sss&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dsss','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20090034242&hterms=sss&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dsss"><span>Detection of Rossby Waves in Multi-Parameters in Multi-Mission Satellite Observations and HYCOM Simulations in the Indian Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Subrahmanyam, Bulusu; Heffner, David M.; Cromwell, David; Shriver, Jay F.</p> <p>2009-01-01</p> <p>Rossby waves are difficult to detect with in situ methods. However, as we show in this paper, they can be clearly identified in multi-parameters in multi-mission satellite observations of sea surface height (SSH), sea surface temperature (SST) and ocean color observations of chlorophyll-a (chl-a), as well as 1/12-deg global HYbrid Coordinate Ocean Model (HYCOM) simulations of SSH, SST and sea surface salinity (SSS) in the Indian Ocean. While the surface structure of Rossby waves can be elucidated from comparisons of the signal in different sea surface parameters, models are needed to gain direct information about how these waves affect the ocean at depth. The first three baroclinic modes of the Rossby waves are inferred from the Fast Fourier Transform (FFT), and two-dimensional Radon Transform (2D RT). At many latitudes the first and second baroclinic mode Rossby wave phase speeds from satellite observations and model parameters are identified.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4766533','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4766533"><span>Compressive Spectral Method for the Simulation of the Nonlinear Gravity Waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Bayındır, Cihan</p> <p>2016-01-01</p> <p>In this paper an approach for decreasing the computational effort required for the spectral simulations of the fully nonlinear ocean waves is introduced. The proposed approach utilizes the compressive sampling algorithm and depends on the idea of using a smaller number of spectral components compared to the classical spectral method. After performing the time integration with a smaller number of spectral components and using the compressive sampling technique, it is shown that the ocean wave field can be reconstructed with a significantly better efficiency compared to the classical spectral method. For the sparse ocean wave model in the frequency domain the fully nonlinear ocean waves with Jonswap spectrum is considered. By implementation of a high-order spectral method it is shown that the proposed methodology can simulate the linear and the fully nonlinear ocean waves with negligible difference in the accuracy and with a great efficiency by reducing the computation time significantly especially for large time evolutions. PMID:26911357</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70129011','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70129011"><span>Investigation of hurricane Ivan using the coupled ocean-atmosphere-wave-sediment transport (COAWST) model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Zambon, Joseph B.; He, Ruoying; Warner, John C.</p> <p>2014-01-01</p> <p>The coupled ocean–atmosphere–wave–sediment transport (COAWST) model is used to hindcast Hurricane Ivan (2004), an extremely intense tropical cyclone (TC) translating through the Gulf of Mexico. Sensitivity experiments with increasing complexity in ocean–atmosphere–wave coupled exchange processes are performed to assess the impacts of coupling on the predictions of the atmosphere, ocean, and wave environments during the occurrence of a TC. Modest improvement in track but significant improvement in intensity are found when using the fully atmosphere–ocean-wave coupled configuration versus uncoupled (e.g., standalone atmosphere, ocean, or wave) model simulations. Surface wave fields generated in the fully coupled configuration also demonstrates good agreement with in situ buoy measurements. Coupled and uncoupled model-simulated sea surface temperature (SST) fields are compared with both in situ and remote observations. Detailed heat budget analysis reveals that the mixed layer temperature cooling in the deep ocean (on the shelf) is caused primarily by advection (equally by advection and diffusion).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PrOce.161...19H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PrOce.161...19H"><span>A window on the deep ocean: The special value of ocean bottom pressure for monitoring the large-scale, deep-ocean circulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hughes, Chris W.; Williams, Joanne; Blaker, Adam; Coward, Andrew; Stepanov, Vladimir</p> <p>2018-02-01</p> <p>We show how, by focusing on bottom pressure measurements particularly on the global continental slope, it is possible to avoid the "fog" of mesoscale variability which dominates most observables in the deep ocean. This makes it possible to monitor those aspects of the ocean circulation which are most important for global scale ocean variability and climate. We therefore argue that such measurements should be considered an important future component of the Global Ocean Observing System, to complement the present open-ocean and coastal elements. Our conclusions are founded on both theoretical arguments, and diagnostics from a fine-resolution ocean model that has realistic amplitudes and spectra of mesoscale variability. These show that boundary pressure variations are coherent over along-slope distances of tens of thousands of kilometres, for several vertical modes. We illustrate the value of this in the model Atlantic, by determining the time for boundary and equatorial waves to complete a circuit of the northern basin (115 and 205 days for the first and second vertical modes), showing how the boundary features compare with basin-scale theoretical models, and demonstrating the ability to monitor the meridional overturning circulation using these boundary measurements. Finally, we discuss applicability to the real ocean and make recommendations on how to make such measurements without contamination from instrumental drift.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19860015629','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19860015629"><span>Studies related to ocean dynamics. Task 3.2: Aircraft Field Test Program to investigate the ability of remote sensing methods to measure current/wind-wave interactions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Huang, N. E.; Flood, W. A.; Brown, G. S.</p> <p>1975-01-01</p> <p>The feasibility of remote sensing of current flows in the ocean and the remote sensing of ocean currents by backscattering cross section techniques was studied. It was established that for capillary waves, small scale currents could be accurately measured through observation of wave kinematics. Drastic modifications of waves by changing currents were noted. The development of new methods for the measurement of capillary waves are discussed. Improvement methods to resolve data processing problems are suggested.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFMOS21E1548O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFMOS21E1548O"><span>Ocean-Wave Dynamics Analysis during Hurricane Ida and Norida Using a Fully Coupled Modeling System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Olabarrieta, M.; Warner, J. C.; Armstrong, B. N.</p> <p>2010-12-01</p> <p>Extreme storms, such as hurricanes and extratropical storms play a dominant role in shaping the beaches of the East and Gulf Coasts of the United States. Future tropical depressions will be more intense than in the present climate (Assessment Report of IPCC, 2007) and therefore coastal areas are likely to become more susceptible to their effects. The major damage caused by these extreme events is associated with the duration of the storm, storm intensity, waves, and the total water levels reached during the storm. Numerical models provide a useful approach to study the spatial and temporal distribution of these parameters. However, the correct estimation of the total water levels and wind wave heights through numerical modeling requires accurate representation of the air-sea interface dynamics. These processes are highly complex due to the variable interactions between winds, ocean waves and currents near the sea surface. In the present research we use the COAWST (Coupled Ocean-Atmosphere-Wave-Sediment Transport) modeling system (Warner et al., 2010) to address the key role of the atmosphere-ocean-wave interactions during Hurricane Ida and its posterior evolution to NorIda, November 2009. This northeastern storm was one of the most costly in the past two decades and likely in the top five of the past century. One interesting aspect of the considered period is that it includes two very different atmospheric extreme conditions, a hurricane and a northeastern storm, developed in regions with very different oceanographic characteristics. By performing a suite of numerical runs we are able to isolate the effect of the interaction terms between the atmosphere (WRF model), the ocean (ROMS model) and the wave propagation and generation model (SWAN). Special attention is given to the role of the ocean surface roughness and high resolution SST fields on the atmospheric boundary layers dynamics and consequently these effects on the wind wave generation, surface currents and storm surge. The effects of ocean currents on wind wave generation and propagations are also analyzed. The model results are compared to different data sources, including GOES satellite infrared data, JASON-1 and JASON-2 altimeter data, CODAR measurements, and wave and tidal information from the NDBC and the National Tidal Database respectively. The results identified that the inclusion of the ocean roughness on the atmospheric module greatly improves the wind intensity estimation and therefore also the wind waves and the storm surge amplitude. For example, during the passage of Ida through the Gulf of Mexico the wind speeds are reduced due to the wave induced ocean roughness, resulting in better agreement with the measured winds. During NorIda, the effect of the surface roughness changed the form and dimension of the main low pressure cell, affecting the intensity and direction of the winds. Three different ocean roughness closure models are analyzed, with the wave-age based closure model providing the best results. Ocean currents are also shown to affect wave spectral characteristics through the generation and propagation processes. Changes within 15% on the significant wave height are detected in areas affected by the main oceanic currents: the Gulf Stream and the Loop Current.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70032604','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70032604"><span>Ocean-atmosphere dynamics during Hurricane Ida and Nor'Ida: An application of the coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Olabarrieta, Maitane; Warner, John C.; Armstrong, Brandy N.; Zambon, Joseph B.; He, Ruoying</p> <p>2012-01-01</p> <p>The coupled ocean–atmosphere–wave–sediment transport (COAWST) modeling system was used to investigate atmosphere–ocean–wave interactions in November 2009 during Hurricane Ida and its subsequent evolution to Nor’Ida, which was one of the most costly storm systems of the past two decades. One interesting aspect of this event is that it included two unique atmospheric extreme conditions, a hurricane and a nor’easter storm, which developed in regions with different oceanographic characteristics. Our modeled results were compared with several data sources, including GOES satellite infrared data, JASON-1 and JASON-2 altimeter data, CODAR measurements, and wave and tidal information from the National Data Buoy Center (NDBC) and the National Tidal Database. By performing a series of numerical runs, we were able to isolate the effect of the interaction terms between the atmosphere (modeled with Weather Research and Forecasting, the WRF model), the ocean (modeled with Regional Ocean Modeling System (ROMS)), and the wave propagation and generation model (modeled with Simulating Waves Nearshore (SWAN)). Special attention was given to the role of the ocean surface roughness. Three different ocean roughness closure models were analyzed: DGHQ (which is based on wave age), TY2001 (which is based on wave steepness), and OOST (which considers both the effects of wave age and steepness). Including the ocean roughness in the atmospheric module improved the wind intensity estimation and therefore also the wind waves, surface currents, and storm surge amplitude. For example, during the passage of Hurricane Ida through the Gulf of Mexico, the wind speeds were reduced due to wave-induced ocean roughness, resulting in better agreement with the measured winds. During Nor’Ida, including the wave-induced surface roughness changed the form and dimension of the main low pressure cell, affecting the intensity and direction of the winds. The combined wave age- and wave steepness-based parameterization (OOST) provided the best results for wind and wave growth prediction. However, the best agreement between the measured (CODAR) and computed surface currents and storm surge values was obtained with the wave steepness-based roughness parameterization (TY2001), although the differences obtained with respect to DGHQ were not significant. The influence of sea surface temperature (SST) fields on the atmospheric boundary layer dynamics was examined; in particular, we evaluated how the SST affects wind wave generation, surface currents and storm surges. The integrated hydrograph and integrated wave height, parameters that are highly correlated with the storm damage potential, were found to be highly sensitive to the ocean surface roughness parameterization.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.C11A0352L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.C11A0352L"><span>Radon and radium in the ice-covered Arctic Ocean, and what they reveal about gas exchange in the sea ice zone.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Loose, B.; Kelly, R. P.; Bigdeli, A.; Moran, S. B.</p> <p>2014-12-01</p> <p>The polar sea ice zones are regions of high primary productivity and interior water mass formation. Consequently, the seasonal sea ice cycle appears important to both the solubility and biological carbon pumps. To estimate net CO2 transfer in the sea ice zone, we require accurate estimates of the air-sea gas transfer velocity. In the open ocean, the gas transfer velocity is driven by wind, waves and bubbles - all of which are strongly altered by the presence of sea ice, making it difficult to translate open ocean estimates of gas transfer to the ice zone. In this study, we present profiles of 222Rn and 226Ra throughout the mixed-layer and euphotic zone. Profiles were collected spanning a range of sea ice cover conditions from 40 to 100%. The profiles of Rn/Ra can be used to estimate the gas transfer velocity, but the 3.8 day half-life of 222Rn implies that mixed layer radon will have a memory of the past ~20 days of gas exchange forcing, which may include a range of sea ice cover conditions. Here, we compare individual estimates of the gas transfer velocity to the turbulent forcing conditions constrained from shipboard and regional reanalysis data to more appropriately capture the time history upper ocean Rn/Ra.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ClDy...50.1533W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ClDy...50.1533W"><span>The response of the southwest Western Australian wave climate to Indian Ocean climate variability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wandres, Moritz; Pattiaratchi, Charitha; Hetzel, Yasha; Wijeratne, E. M. S.</p> <p>2018-03-01</p> <p>Knowledge of regional wave climates is critical for coastal planning, management, and protection. In order to develop a regional wave climate, it is important to understand the atmospheric systems responsible for wave generation. This study examines the variability of the southwest Western Australian (SWWA) shelf and nearshore wind wave climate and its relationship to southern hemisphere climate variability represented by various atmospheric indices: the southern oscillation index (SOI), the Southern Annular Mode (SAM), the Indian Ocean Dipole Mode Index (DMI), the Indian Ocean Subtropical Dipole (IOSD), the latitudinal position of the subtropical high-pressure ridge (STRP), and the corresponding intensity of the subtropical ridge (STRI). A 21-year wave hindcast (1994-2014) of the SWWA continental shelf was created using the third generation wave model Simulating WAves Nearshore (SWAN), to analyse the seasonal and inter-annual wave climate variability and its relationship to the atmospheric regime. Strong relationships between wave heights and the STRP and the STRI, a moderate correlation between the wave climate and the SAM, and no significant correlation between SOI, DMI, and IOSD and the wave climate were found. Strong spatial, seasonal, and inter-annual variability, as well as seasonal longer-term trends in the mean wave climate were studied and linked to the latitudinal changes in the subtropical high-pressure ridge and the Southern Ocean storm belt. As the Southern Ocean storm belt and the subtropical high-pressure ridge shifted southward (northward) wave heights on the SWWA shelf region decreased (increased). The wave height anomalies appear to be driven by the same atmospheric conditions that influence rainfall variability in SWWA.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGRC..121..410H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGRC..121..410H"><span>The impact of wave-induced Coriolis-Stokes forcing on satellite-derived ocean surface currents</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hui, Zhenli; Xu, Yongsheng</p> <p>2016-01-01</p> <p>Ocean surface currents estimated from the satellite data consist of two terms: Ekman currents from the wind stress and geostrophic currents from the sea surface height (SSH). But the classical Ekman model does not consider the wave effects. By taking the wave-induced Coriolis-Stokes forcing into account, the impact of waves (primarily the Stokes drift) on ocean surface currents is investigated and the wave-modified currents are formed. The products are validated by comparing with OSCAR currents and Lagrangian drifter velocity. The result shows that our products with the Stokes drift are better adapted to the in situ Lagrangian drifter currents. Especially in the Southern Ocean region (40°S-65°S), 90% (91%) of the zonal (meridional) currents have been improved compared with currents that do not include Stokes drift. The correlation (RMSE) in the Southern Ocean has also increased (decreased) from 0.78 (13) to 0.81 (10.99) for the zonal component and 0.76 (10.87) to 0.79 (10.09) for the meridional component. This finding provides the evidence that waves indeed play an important role in the ocean circulation, and need to be represented in numerical simulations of the global ocean circulation. This article was corrected on 10 FEB 2016. See the end of the full text for details.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ESASP.739E..17Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ESASP.739E..17Y"><span>Recent Progresses of Microwave Marine Remote Sensing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yang, Jingsong; Ren, Lin; Zheng, Gang; Wang, He; He, Shuangyan; Wang, Juan; Li, Xiaohui</p> <p>2016-08-01</p> <p>It is presented in this paper the recent progresses of Dragon 3 Program (ID. 10412) in the field of microwave marine remote sensing including (1) ocean surface wind fields from full polarization synthetic aperture radars (SAR), (2) joint retrieval of directional ocean wave spectra from SAR and wave spectrometer, (3) error analysis on ENVISAT ASAR wave mode significant wave height (SWH) retrievals using triple collocation model, (4) typhoon observation from SAR and optical sensors, (5) ocean internal wave observation from SAR and optical sensors, (6) ocean eddy observation from SAR and optical sensors, (7) retrieval models of water vapor and wet tropospheric path delay for the HY-2A calibration microwave radiometer, (8) calibration of SWH from HY-2A satellite altimeter.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFMNH43C1352O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFMNH43C1352O"><span>Earthquakes & Tsunamis flirting with the Ionosphere: the Sumatra gossip !!</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Occhipinti, G.; Coïsson, P.; Rolland, L. M.; Lognonne, P.</p> <p>2009-12-01</p> <p>The December 26, 2004 Sumatra Earthquake and the related Indian Ocean Tsunami generated the largest remote sensing data-set observing natural hazards. The observations showed both, ground motion and ocean sea surface displacement, as well as the related strong ionospheric anomalies. Total electron content (TEC) perturbations have been observed on a global scale, using ground-based GPS receivers [DasGupta et al., 2006, Liu et al., 2006b] and dual-frequency altimeters (e.g., Jason-1 and Topex/Poseidon [Artru et al., 2005]); plasma velocity perturbation has been observed by Doppler soundings [Liu et al., 2006b, Occhipinti et al., 2009]. The observed perturbations may be characterized as two different waves: the first one is an atmospheric wave in the acoustic domain induced by propagation of Rayleigh waves on the Earth surface; the second one is a slower atmospheric wave in the gravity domain strongly coupled with the generated tsunami. Both waves are reproduced by our accurate modeling taking into account the earthquake/tsunami-neutral atmosphere coupling at the base of the atmosphere, as well as the neutral-plasma coupling in the overlying ionosphere [Occhipinti et al., 2006, 2006, 2009]. Here we present a review of the ionospheric observations related to the Sumatra event in the light of modeling to deeply investigate the coupling mechanism between Solid-Earth/Ocean/Atmosphere/Ionosphere. The matching between data and modeling opens new perspectives in the solid earth research as well as in the tsunami detection providing a new insight into the role of the remote sensing in the monitoring of natural hazard. [Artru et al., 2005] Geophys. J. Int., 160, 2005 [DasGupta et al., 2006] Earth Planet. Space, 35, 929-959. [Liu et al., 2006a] Geophys. Res. Lett., 33, L02103, 2006. [Liu et al., 2006b] J. Geophys. Res., 111, A05303. [Occhipinti et al., 2006] Geophys. Res. Lett., 33, L20104, 2006 [Occhipinti et al., 2008] Geophys. J. Int., 173, 3, 753-1135, 2008. [Occhipinti et al., 2009] Geophys. Res. Lett., under review</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_11 --> <div id="page_12" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="221"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29784779','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29784779"><span>Strong and highly variable push of ocean waves on Southern Ocean sea ice.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Stopa, Justin E; Sutherland, Peter; Ardhuin, Fabrice</p> <p>2018-06-05</p> <p>Sea ice in the Southern Ocean has expanded over most of the past 20 y, but the decline in sea ice since 2016 has taken experts by surprise. This recent evolution highlights the poor performance of numerical models for predicting extent and thickness, which is due to our poor understanding of ice dynamics. Ocean waves are known to play an important role in ice break-up and formation. In addition, as ocean waves decay, they cause a stress that pushes the ice in the direction of wave propagation. This wave stress could not previously be quantified due to insufficient observations at large scales. Sentinel-1 synthetic aperture radars (SARs) provide high-resolution imagery from which wave height is measured year round encompassing Antarctica since 2014. Our estimates give an average wave stress that is comparable to the average wind stress acting over 50 km of sea ice. We further reveal highly variable half-decay distances ranging from 400 m to 700 km, and wave stresses from 0.01 to 1 Pa. We expect that this variability is related to ice properties and possibly different floe sizes and ice thicknesses. A strong feedback of waves on sea ice, via break-up and rafting, may be the cause of highly variable sea-ice properties.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008DSRII..55..582P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008DSRII..55..582P"><span>Internal tides and vertical mixing over the Kerguelen Plateau</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Park, Young-Hyang; Fuda, Jean-Luc; Durand, Isabelle; Naveira Garabato, Alberto C.</p> <p>2008-03-01</p> <p>Within the context of the natural iron-fertilization study KEOPS, time series measurements of CTD and LADCP profiles at a site (50.6°S, 72°E; 528 m) coinciding with an annual phytoplankton bloom over the Kerguelen Plateau were made during the January-February 2005 KEOPS cruise. An important activity of highly nonlinear semidiurnal internal tides having peak-to-peak isopycnal displacements of up to 80 m is identified. These internal tides appear to be a principal agent for promoting elevated vertical mixing indispensable for upward transfer of iron within the seasonal thermocline. We estimate local vertical eddy diffusivities of the order of 4×10 -4 m 2 s -1 using a Thorpe scale analysis. Although this estimate is higher by an order of magnitude than the canonical value O (0.1×10 -4 m 2 s -1) in the open ocean away from boundaries, it is consistent with nonlinear internal wave/wave interaction theories, as verified by independent diffusivity estimates using the vertical wavenumber spectral methods for shear and strain. It is also suggested that the general ocean circulation may play an important role in preconditioning the bloom in that the relatively sluggish circulation over the shallow plateau (compared to the much more dynamic neighbouring deep ocean) may foster the bloom's observed annual recurrence over the plateau.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://dx.doi.org/10.1016/j.ocemod.2011.12.008','USGSPUBS'); return false;" href="http://dx.doi.org/10.1016/j.ocemod.2011.12.008"><span>Ocean-atmosphere dynamics during Hurricane Ida and Nor'Ida: An application of the coupled ocean-;atmosphere–wave–sediment transport (COAWST) modeling system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Olabarrieta, Maitane; Warner, John C.; Armstrong, Brandy N.; Zambon, Joseph B.; He, Ruoying</p> <p>2012-01-01</p> <p>The coupled ocean–atmosphere–wave–sediment transport (COAWST) modeling system was used to investigate atmosphere–ocean–wave interactions in November 2009 during Hurricane Ida and its subsequent evolution to Nor'Ida, which was one of the most costly storm systems of the past two decades. One interesting aspect of this event is that it included two unique atmospheric extreme conditions, a hurricane and a nor'easter storm, which developed in regions with different oceanographic characteristics. Our modeled results were compared with several data sources, including GOES satellite infrared data, JASON-1 and JASON-2 altimeter data, CODAR measurements, and wave and tidal information from the National Data Buoy Center (NDBC) and the National Tidal Database. By performing a series of numerical runs, we were able to isolate the effect of the interaction terms between the atmosphere (modeled with Weather Research and Forecasting, the WRF model), the ocean (modeled with Regional Ocean Modeling System (ROMS)), and the wave propagation and generation model (modeled with Simulating Waves Nearshore (SWAN)). Special attention was given to the role of the ocean surface roughness. Three different ocean roughness closure models were analyzed: DGHQ (which is based on wave age), TY2001 (which is based on wave steepness), and OOST (which considers both the effects of wave age and steepness). Including the ocean roughness in the atmospheric module improved the wind intensity estimation and therefore also the wind waves, surface currents, and storm surge amplitude. For example, during the passage of Hurricane Ida through the Gulf of Mexico, the wind speeds were reduced due to wave-induced ocean roughness, resulting in better agreement with the measured winds. During Nor'Ida, including the wave-induced surface roughness changed the form and dimension of the main low pressure cell, affecting the intensity and direction of the winds. The combined wave age- and wave steepness-based parameterization (OOST) provided the best results for wind and wave growth prediction. However, the best agreement between the measured (CODAR) and computed surface currents and storm surge values was obtained with the wave steepness-based roughness parameterization (TY2001), although the differences obtained with respect to DGHQ were not significant. The influence of sea surface temperature (SST) fields on the atmospheric boundary layer dynamics was examined; in particular, we evaluated how the SST affects wind wave generation, surface currents and storm surges. The integrated hydrograph and integrated wave height, parameters that are highly correlated with the storm damage potential, were found to be highly sensitive to the ocean surface roughness parameterization.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018OcDyn.tmp...34F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018OcDyn.tmp...34F"><span>The relationship between significant wave height and Indian Ocean Dipole in the equatorial North Indian Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fu, Chen; Wang, Dongxiao; Yang, Lei; Luo, Yao; Zhou, Fenghua; Priyadarshana, Tilak; Yao, Jinglong</p> <p>2018-05-01</p> <p>Based on reanalysis data, we find that the Indian Ocean Dipole (IOD) plays an important role in the variability of wave climate in the equatorial Northern Indian Ocean (NIO). Significant wave height (SWH) in the equatorial NIO, especially over the waters southeast to Sri Lanka, exhibits strong interannual variations. SWH anomalies in the waters southeast to Sri Lanka correlate well with dipole mode index (DMI) during both summer and autumn. Negative SWH anomalies occur over the oceanic area southeast to Sri Lanka during positive IOD events and vary with different types of IOD. During positive prolonged (unseasonable) IOD, the SWH anomalies are the strongest in autumn (summer); while during positive normal IOD, the SWH anomalies are weak in both summer and autumn. Strong easterly wind anomalies over the southeast oceanic area of Sri Lanka during positive IOD events weaken the original equatorial westerly wind stress, which leads to the decrease in wind-sea waves. The longer wave period during positive IOD events further confirms less wind-sea waves. The SWH anomaly pattern during negative IOD events is nearly opposite to that during positive IOD events.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018OcDyn..68..689F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018OcDyn..68..689F"><span>The relationship between significant wave height and Indian Ocean Dipole in the equatorial North Indian Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fu, Chen; Wang, Dongxiao; Yang, Lei; Luo, Yao; Zhou, Fenghua; Priyadarshana, Tilak; Yao, Jinglong</p> <p>2018-06-01</p> <p>Based on reanalysis data, we find that the Indian Ocean Dipole (IOD) plays an important role in the variability of wave climate in the equatorial Northern Indian Ocean (NIO). Significant wave height (SWH) in the equatorial NIO, especially over the waters southeast to Sri Lanka, exhibits strong interannual variations. SWH anomalies in the waters southeast to Sri Lanka correlate well with dipole mode index (DMI) during both summer and autumn. Negative SWH anomalies occur over the oceanic area southeast to Sri Lanka during positive IOD events and vary with different types of IOD. During positive prolonged (unseasonable) IOD, the SWH anomalies are the strongest in autumn (summer); while during positive normal IOD, the SWH anomalies are weak in both summer and autumn. Strong easterly wind anomalies over the southeast oceanic area of Sri Lanka during positive IOD events weaken the original equatorial westerly wind stress, which leads to the decrease in wind-sea waves. The longer wave period during positive IOD events further confirms less wind-sea waves. The SWH anomaly pattern during negative IOD events is nearly opposite to that during positive IOD events.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4570377','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4570377"><span>Ocean Wave Separation Using CEEMD-Wavelet in GPS Wave Measurement</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Wang, Junjie; He, Xiufeng; Ferreira, Vagner G.</p> <p>2015-01-01</p> <p>Monitoring ocean waves plays a crucial role in, for example, coastal environmental and protection studies. Traditional methods for measuring ocean waves are based on ultrasonic sensors and accelerometers. However, the Global Positioning System (GPS) has been introduced recently and has the advantage of being smaller, less expensive, and not requiring calibration in comparison with the traditional methods. Therefore, for accurately measuring ocean waves using GPS, further research on the separation of the wave signals from the vertical GPS-mounted carrier displacements is still necessary. In order to contribute to this topic, we present a novel method that combines complementary ensemble empirical mode decomposition (CEEMD) with a wavelet threshold denoising model (i.e., CEEMD-Wavelet). This method seeks to extract wave signals with less residual noise and without losing useful information. Compared with the wave parameters derived from the moving average skill, high pass filter and wave gauge, the results show that the accuracy of the wave parameters for the proposed method was improved with errors of about 2 cm and 0.2 s for mean wave height and mean period, respectively, verifying the validity of the proposed method. PMID:26262620</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.S43A2807L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.S43A2807L"><span>Ocean waves monitor system by inland microseisms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lin, L. C.; Bouchette, F.; Chang, E. T. Y.</p> <p>2016-12-01</p> <p>Microseisms are continuous ground oscillations which have been wildly introduced for decades. It is well known that the microseismicity in the frequency band from 0.05 to about 1 Hz partly results from ocean waves, which has been first explained by Longuet-Higgins [1950]. The generation mechanism for such a microseismicity is based on nonlinear wave-wave interactions which drive pressure pulses within the seafloor. The resulting ground pressure fluctuations yield ground oscillations at a double frequency (DF) with respect to that of current ocean waves. In order to understand the characteristics of DF microseisms associated with different wave sources, we aim to analyze and interpret the spectra of DF microseisms by using the simple spectrum method [Rabinovich, 1997] at various inland seismometer along the Taiwan coast. This is the first monitoring system of ocean waves observed by inland seismometers in Taiwan. The method is applied to identify wave sources by estimating the spectral ratios of wave induced microseisms associated with local winds and typhoons to background spectra. Microseism amplitudes above 0.2 Hz show a good correlation with wind-driven waves near the coast. Comparison of microseism band between 0.1 and 0.2 Hz with buoys in the deep sea shows a strong correlation of seismic amplitude with storm generated waves, implying that such energy portion originates in remote regions. Results indicate that microseisms observed at inland sites can be a potential tool for the tracking of typhoon displacements and the monitoring of extreme ocean waves in real time. Real- time Microseism-Ocean Waves Monitoring Website (http://mwave.droppages.com/) Reference Rabinovich, A. B. (1997) "Spectral analysis of tsunami waves: Separation of source and topography effects," J. Geophys. Res., Vol. 102, p. 12,663-12,676. Longuet-Higgins, M.S. (1950) "A theory of origin of microseisms," Philos. Trans. R. Soc., A. 243, pp. 1-35.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.S43A2814D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.S43A2814D"><span>An Investigation Into the Range of Sea State Conditions Necessary for the Generation of Seafloor Pressures and Secondary Microseisms in the Northeast Atlantic, West of Ireland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Donne, S. E.; Bean, C. J.; Dias, F.; Christodoulides, P.</p> <p>2016-12-01</p> <p>Ocean generated microseisms propagate mainly as Rayleigh and Love waves and are a result of the mechanical coupling between the ocean and the solid earth. There are two types of microseism, primary and secondary. Primary microseisms are generated when a travelling ocean wave enters shallow water or coastal regions and the associated pressure profile, which decays exponentially with depth, is non zero at the seafloor. Secondary microseisms on the other hand are generated by the second order non linear effect associated with a standing wave, through ocean wave- wave interactions. Secondary microseisms can therefore be generated in any water depth. The conditions required to generate secondary microseisms through wave- wave interactions are presented in Longuet-Higgins (1950) through the interaction of two travelling waves with the same wave period at an angle of 180 degrees. Equivalent surface pressure density (p2l) is modelled within the numerical ocean wave model, Wavewatch III and is the microseism source term. This work investigates the theoretical pressures associated with the interaction of two travelling waves with varying wave periods and wave amplitude at a range of incident angles. Theoretical seafloor pressures are calculated off the Southwest coast of Ireland and are compared with terrestrially recorded microseism data as well as oceanographic parameters and measured seafloor pressures. The results indicate that a broad range of sea state conditions can generate second order pressures at the seafloor which are consistent with measured seafloor measurements in the same location. While secondary microseism amplitudes may be used to infer ocean wave parameters this work has implications for doing so and these will be presented. Local seismic arrays in Ireland allow us to monitor and track the spatiotemporal evolution of these microseism source regions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1616134G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1616134G"><span>Offshore remote sensing of the ocean by stereo vision systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gallego, Guillermo; Shih, Ping-Chang; Benetazzo, Alvise; Yezzi, Anthony; Fedele, Francesco</p> <p>2014-05-01</p> <p>In recent years, remote sensing imaging systems for the measurement of oceanic sea states have attracted renovated attention. Imaging technology is economical, non-invasive and enables a better understanding of the space-time dynamics of ocean waves over an area rather than at selected point locations of previous monitoring methods (buoys, wave gauges, etc.). We present recent progress in space-time measurement of ocean waves using stereo vision systems on offshore platforms, which focus on sea states with wavelengths in the range of 0.01 m to 1 m. Both traditional disparity-based systems and modern elevation-based ones are presented in a variational optimization framework: the main idea is to pose the stereoscopic reconstruction problem of the surface of the ocean in a variational setting and design an energy functional whose minimizer is the desired temporal sequence of wave heights. The functional combines photometric observations as well as spatial and temporal smoothness priors. Disparity methods estimate the disparity between images as an intermediate step toward retrieving the depth of the waves with respect to the cameras, whereas elevation methods estimate the ocean surface displacements directly in 3-D space. Both techniques are used to measure ocean waves from real data collected at offshore platforms in the Black Sea (Crimean Peninsula, Ukraine) and the Northern Adriatic Sea (Venice coast, Italy). Then, the statistical and spectral properties of the resulting oberved waves are analyzed. We show the advantages and disadvantages of the presented stereo vision systems and discuss furure lines of research to improve their performance in critical issues such as the robustness of the camera calibration in spite of undesired variations of the camera parameters or the processing time that it takes to retrieve ocean wave measurements from the stereo videos, which are very large datasets that need to be processed efficiently to be of practical usage. Multiresolution and short-time approaches would improve efficiency and scalability of the techniques so that wave displacements are obtained in feasible times.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRF..122..153A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRF..122..153A"><span>Links between atmosphere, ocean, and cryosphere from two decades of microseism observations on the Antarctic Peninsula</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Anthony, Robert E.; Aster, Richard C.; McGrath, Daniel</p> <p>2017-01-01</p> <p>The lack of landmasses, climatological low pressure, and strong circumpolar westerly winds between the latitudes of 50°S to 65°S produce exceptional storm-driven wave conditions in the Southern Ocean. This combination makes the Antarctic Peninsula one of Earth's most notable regions of high-amplitude wave activity and thus, ocean-swell-driven microseism noise in both the primary (direct wave-coastal region interactions) and secondary (direct ocean floor forcing due to interacting wave trains) period bands. Microseism observations are examined across 23 years (1993-2015) from Palmer Station (PMSA), on the west coast of the Antarctic Peninsula, and from East Falkland Island (EFI). These records provide a spatially integrative measure of both Southern Ocean wave amplitudes and the interactions between ocean waves and the solid Earth in the presence of sea ice, which can reduce wave coupling with the continental shelf. We utilize a spatiotemporal correlation-based approach to illuminate how the distribution of sea ice influences seasonal microseism power. We characterize primary and secondary microseism power due to variations in sea ice and find that primary microseism energy is both more sensitive to sea ice and more capable of propagating across ocean basins than secondary microseism energy. During positive phases of the Southern Annular Mode, sea ice is reduced in the Bellingshausen Sea and overall storm activity in the Drake Passage increases, thus strongly increasing microseism power levels.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20154940','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20154940"><span>Radiative transfer in the earth's atmosphere and ocean: influence of ocean waves.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Plass, G N; Kattawar, G W; Guinn, J A</p> <p>1975-08-01</p> <p>The radiance in the earth's atmosphere and ocean is calculated for a realistic model including an ocean surface with waves. Individual photons are followed in a Monte Carlo calculation. In the atmosphere, both Rayleigh scattering by the molecules and Mie scattering by the aerosols as well as molecular and aerosol absorption are taken into account. Similarly, in the ocean, both Rayleigh scattering by the water molecules and Mie scattering by the hydrosols as well as absorption by the water molecules and hydrosols are considered. Separate single-scattering functions are used which are calculated separately for the aerosols and the hydrosols from the Mie theory with appropriate and different size distributions in each case. The scattering angles are determined from the appropriate scattering function including the strong forwardscattering peak when there is aerosol or hydrosol scattering. Both the reflected and refracted rays, as well as the rays that undergo total internal reflection, are followed at the oceanc surface. The wave slope is chosen from the Cox-Munk distribution. Graphs show the influence of the waves on the upward radiance at the top of the atmosphere and just above the ocean surface and on the downward radiance just below the ocean surface as well as deeper within the ocean. The radiance changes are sufficient at the top of the atmosphere to determine the sea state from satellite measurements. Within the ocean the waves smooth out the abrupt transition that occurs at the edge of the allowed cone for radiation entering a calm ocean. The influence of the waves on the contrast between the sky and sea at the horizon is discussed. It is shown that the downward flux just below the surface increases with wind speed at all solar angles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017DSRII.143....1W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017DSRII.143....1W"><span>Long-term trend of satellite-observed significant wave height and impact on ecosystem in the East/Japan Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Woo, Hye-Jin; Park, Kyung-Ae</p> <p>2017-09-01</p> <p>Significant wave height (SWH) data of nine satellite altimeters were validated with in-situ SWH measurements from buoy stations in the East/Japan Sea (EJS) and the Northwest Pacific Ocean. The spatial and temporal variability of extreme SWHs was investigated by defining the 90th, 95th, and 99th percentiles based on percentile analysis. The annual mean of extreme SWHs was dramatically increased by 3.45 m in the EJS, which is significantly higher than the normal mean of about 1.44 m. The spatial distributions of SWHs showed significantly higher values in the eastern region of the EJS than those in the western part. Characteristic seasonality was found from the time-series SWHs with high SWHs (>2.5 m) in winter but low values (<1 m) in summer. The trends of the normal and extreme (99th percentile) SWHs in the EJS had a positive value of 0.0056 m year-1 and 0.0125 m year-1, respectively. The long-term trend demonstrated that higher SWH values were more extreme with time during the past decades. The predominant spatial distinctions between the coastal regions in the marginal seas of the Northwest Pacific Ocean and open ocean regions were presented. In spring, both normal and extreme SWHs showed substantially increasing trends in the EJS. Finally, we first presented the impact of the long-term trend of extreme SWHs on the marine ecosystem through vertical mixing enhancement in the upper ocean of the EJS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015ISPArXL24...91N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015ISPArXL24...91N"><span>Ocean Wave Energy Estimation Using Active Satellite Imagery as a Solution of Energy Scarce in Indonesia Case Study: Poteran Island's Water, Madura</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nadzir, Z. A.; Karondia, L. A.; Jaelani, L. M.; Sulaiman, A.; Pamungkas, A.; Koenhardono, E. S.; Sulisetyono, A.</p> <p>2015-10-01</p> <p>Ocean wave energy is one of the ORE (Ocean Renewable Energies) sources, which potential, in which this energy has several advantages over fossil energy and being one of the most researched energy in developed countries nowadays. One of the efforts for mapping ORE potential is by computing energy potential generated from ocean wave, symbolized by Watt per area unit using various methods of observation. SAR (Synthetic Aperture Radar) is one of the hyped and most developed Remote Sensing method used to monitor and map the ocean wave energy potential effectively and fast. SAR imagery processing can be accomplished not only in remote sensing data applications, but using Matrices processing application as well such as MATLAB that utilizing Fast Fourier Transform and Band-Pass Filtering methods undergoing Pre-Processing stage. In this research, the processing and energy estimation from ALOSPALSAR satellite imagery acquired on the 5/12/2009 was accomplished using 2 methods (i.e Magnitude and Wavelength). This resulted in 9 potential locations of ocean wave energy between 0-228 W/m2, and 7 potential locations with ranged value between 182-1317 W/m2. After getting through buffering process with value of 2 km (to facilitate the construction of power plant installation), 9 sites of location were estimated to be the most potential location of ocean wave energy generation in the ocean with average depth of 8.058 m and annual wind speed of 6.553 knot.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018OcMod.123...66C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018OcMod.123...66C"><span>CMIP5-based global wave climate projections including the entire Arctic Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Casas-Prat, M.; Wang, X. L.; Swart, N.</p> <p>2018-03-01</p> <p>This study presents simulations of the global ocean wave climate corresponding to the surface winds and sea ice concentrations as simulated by five CMIP5 (Coupled Model Intercomparison Project Phase 5) climate models for the historical (1979-2005) and RCP8.5 scenario future (2081-2100) periods. To tackle the numerical complexities associated with the inclusion of the North Pole, the WAVEWATCH III (WW3) wave model was used with a customized unstructured Spherical Multi-Cell grid of ∼100 km offshore and ∼50 km along coastlines. The climate model simulated wind and sea ice data, and the corresponding WW3 simulated wave data, were evaluated against reanalysis and hindcast data. The results show that all the five sets of wave simulations projected lower waves in the North Atlantic, corresponding to decreased surface wind speeds there in the warmer climate. The selected CMIP5 models also consistently projected an increase in the surface wind speed in the Southern Hemisphere (SH) mid-high latitudes, which translates in an increase in the WW3 simulated significant wave height (Hs) there. The higher waves are accompanied with increased peak wave period and increased wave age in the East Pacific and Indian Oceans, and a significant counterclockwise rotation in the mean wave direction in the Southern Oceans. The latter is caused by more intense waves from the SH traveling equatorward and developing into swells. Future wave climate in the Arctic Ocean in summer is projected to be predominantly of mixed sea states, with the climatological mean of September maximum Hs ranging mostly 3-4 m. The new waves approaching Arctic coasts will be less fetch-limited as ice retreats since a predominantly southwards mean wave direction is projected in the surrounding seas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=Wave+AND+Energy+AND+Environmental+AND+impacts&id=EJ215024','ERIC'); return false;" href="https://eric.ed.gov/?q=Wave+AND+Energy+AND+Environmental+AND+impacts&id=EJ215024"><span>Power from Ocean Waves.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Newman, J. N.</p> <p>1979-01-01</p> <p>Discussed is the utilization of surface ocean waves as a potential source of power. Simple and large-scale wave power devices and conversion systems are described. Alternative utilizations, environmental impacts, and future prospects of this alternative energy source are detailed. (BT)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.S23A1733L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.S23A1733L"><span>Seasonal variation of seismic ambient noise level at King Sejong Station, Antarctica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, W.; Sheen, D.; Seo, K.; Yun, S.</p> <p>2009-12-01</p> <p>The generation of the secondary- or double-frequency (DF) microseisms with dominant frequencies between 0.1 and 0.5 Hz has been explained by nonlinear second-order pressure perturbations on the ocean bottom due to the interference of two ocean waves of equal wavelengths traveling in opposite directions. Korea Polar Research Institute (KOPRI) has been operating a broadband seismic station (KSJ1) at King George Island (KGI), Antarctica, since 2001. Examining the ambient seismic noise level for the period from 2006 to 2008 at KSJ1, we found a significant seasonal variation in the frequency range 0.1-0.5 Hz. Correlation of the DF peaks with significant ocean wave height and peak wave period models indicates that the oceanic infragravity waves in the Drake Passage is a possible source to excite the DF microseisms at KGI. Location of King Sejong Station, Antarctica Seasonal variations of DF peak, significant wave height, and peak wave period</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA206212','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA206212"><span>Climatic Atlas of the Outer Continental Shelf Waters and Coastal Regions of Alaska. Volume 2. Bering Sea. Revision</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1988-01-01</p> <p>Joe D. Elms , for their editorial evaluation of the vironmental Assessmant Program. Additional depends to a large extent on weather condi- isopleth...waves, icing rates are open waters and coastal sectionsofAlaska.The temperatures less than 8°C, winds of 25 knots lower. icing causes slippery decks...thereby bias the oceanic climatology towards fair weather. A recent study by Elms (1986), in which he compared the Volunteer Observing Ship (VOS) data</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA479627','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA479627"><span>Measurements of Ocean Surface Turbulence and Wave-Turbulence Interactions (PREPRINT)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2008-02-19</p> <p>measurements described here were obtained from a Þeld experiment conducted from R /P 1In the case of gas transfer, these molecular layers can also be at the...ßux data. The eddy covariance sys- tem included a three-axis anemometer/thermometer (Campbell CSAT 3), an open path infrared hygrometer/CO2 sensor...boom of R /P FLIP approximately 18 m from the hull at an elevation of 13 m above mean sea level (MSL). The infrared optical system was set-up with the</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20060022601&hterms=earth+science+discoveries&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dearth%2Bscience%2Bdiscoveries','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20060022601&hterms=earth+science+discoveries&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dearth%2Bscience%2Bdiscoveries"><span>The Ebb and Flow of Tidal Science, and the Impact of Satellite Altimetry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ray, Richard; Egbert, Gary</p> <p>2006-01-01</p> <p>In the years immediately preceding the launches of Geosat and Topex/Poseidon, tidal science had lapsed into a period of uncertainty and discouragement, brought about by the failure of once-exciting new ideas that eventually proved overly optimistic. A long list of outstanding problems presented themselves, but progress had reached a "low water mark". What was lacking was a high-quality global dataset of tidal measurements, which satellite altimetry -- and especially Topex/Poseidon -- provided. With these data in hand, a "flood tide" of marked progress resulted. In this paper we review some of that progress. An important area of progress, with potentially important implications for other areas of physical oceanography, falls under the topic of "energy dissipation." With precise global constraints provided by altimetry -- combined with precise laser tracking of the altimeter, other geodetic satellites like Lageos, as well as the moon -- the planetary energy budgets of both Earth and ocean tides are now well determined. Moreover, the local energy balances, and thus local estimates of tidal dissipation, have now been mapped, although somewhat coarsely, throughout the ocean. This work has pointed to internal-tide generation in the deep ocean as the once missing sink of tidal energy, and has led to a plethora of new observational and theoretical studies of internal tides, and their role in vertical mixing of the deep ocean. The discovery that internal tides, or some part of them, can be directly mapped with an altimeter opens new lines of research on this topic. Low-mode internal tides have been found, at least in some regions, to propagate several thousand kilometers across open ocean. The study of such waves with altimetry gives us a global view heretofore unattainable, allowing strong observational constraints to be placed on possible ocean mixing processes, such as subharmonic instabilities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006JGRC..111.9028Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006JGRC..111.9028Z"><span>SAR imaging and hydrodynamic analysis of ocean bottom topographic waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zheng, Quanan; Li, Li; Guo, Xiaogang; Ge, Yong; Zhu, Dayong; Li, Chunyan</p> <p>2006-09-01</p> <p>The satellite synthetic aperture radar (SAR) images display wave-like patterns of the ocean bottom topographic features at the south outlet of Taiwan Strait (TS). Field measurements indicate that the most TS water body is vertically stratified. However, SAR imaging models available were developed for homogeneous waters. Hence explaining SAR imaging mechanisms of bottom features in a stratified ocean is beyond the scope of those models. In order to explore these mechanisms and to determine the quantitative relations between the SAR imagery and the bottom features, a two-dimensional, three-layer ocean model with sinusoidal bottom topographic features is developed. Analytical solutions and inferences of the momentum equations of the ocean model lead to the following conditions. (1) In the lower layer, the topography-induced waves (topographic waves hereafter) exist in the form of stationary waves, which satisfy a lower boundary resonance condition σ = kC0, here σ is an angular frequency of the stationary waves, k is a wavenumber of bottom topographic corrugation, and C0 is a background current speed. (2) As internal waves, the topographic waves may propagate vertically to the upper layer with an unchanged wavenumber k, if a frequency relation N3 < σ < N2 is satisfied, here N2 and N3 are the Brunt-Wäisälä frequencies of middle layer and upper layer, respectively. (3) The topographic waves are extremely amplified if an upper layer resonance condition is satisfied. The SAR image of topographic waves is derived on the basis of current-modulated small wave spectra. The results indicate that the topographic waves on SAR images have the same wavelength of bottom topographic corrugation, and the imagery brightness peaks are either inphase or antiphase with respect to the topographic corrugation, depending on a sign of a coupling factor. These theoretical predictions are verified by field observations. The results of this study provide a physical basis for quantitative interpretation of SAR images of bottom topographic waves in the stratified ocean.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950034734&hterms=marginal&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dmarginal','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950034734&hterms=marginal&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dmarginal"><span>Ocean-ice interaction in the marginal ice zone using synthetic aperture radar imagery</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Liu, Antony K.; Peng, Chich Y.; Weingartner, Thomas J.</p> <p>1994-01-01</p> <p>Ocean-ice interaction processes in the marginal ice zone (MIZ) by wind, waves, and mesoscale features, such as up/downwelling and eddies are studied using Earth Remote-Sensing Satellite (ERS) 1 synthetic aperture radar (SAR) images and an ocean-ice interaction model. A sequence of seven SAR images of the MIZ in the Chukchi Sea with 3 or 6 days interval are investigated for ice edge advance/retreat. Simultaneous current measurements from the northeast Chukchi Sea, as well as the Barrow wind record, are used to interpret the MIZ dynamics. SAR spectra of waves in ice and ocean waves in the Bering and Chukchi Sea are compared for the study of wave propagation and dominant SAR imaging mechanism. By using the SAR-observed ice edge configuration and wind and wave field in the Chukchi Sea as inputs, a numerical simulation has been performed with the ocean-ice interaction model. After 3 days of wind and wave forcing the resulting ice edge configuration, eddy formation, and flow velocity field are shown to be consistent with SAR observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20000013567&hterms=3D+animation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3D3D%2Banimation','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20000013567&hterms=3D+animation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3D3D%2Banimation"><span>Hurricane Directional Wave Spectrum Spatial Variation in the Open Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wright, C. W.; Walsh, E. J.; Vandemark, D.; Krabill, W. B.; Garcia, A. W.</p> <p>1999-01-01</p> <p>The sea surface directional wave spectrum was measured for the first time in all quadrants of a hurricane in open water using the NASA airborne scanning radar altimeter (SRA) carried aboard one of the NOAA WP-3D hurricane hunter aircraft at 1.5 km height. The SRA measures the energetic portion of the directional wave spectrum by generating a topographic map of the sea surface. At 8 Hz, the SRA sweeps a radar beam of 1 deg half-power width (two-way) across the aircraft ground track over a swath equal to 0. 8 of the aircraft height, simultaneously measuring the backscattered power at its 36 GHz (8.3 mm) operating frequency and the range to the sea surface at 64 positions. These slant ranges are multiplied by the cosine of the incidence angles to determine the vertical distances from the aircraft to the sea surface. Subtracting these distances from the aircraft height produces the sea surface elevation map. The sea surface topography is interpolated to a uniform grid, transformed by a two-dimensional FFT, and Doppler corrected. The data presented were acquired on 24 August 1998 when hurricane Bonnie was east of the Bahamas and moving slowly to the north. Wave heights up to 18 m were observed and the spatial variation of the wave field was dramatic. The dominant waves generally propagated at significant angles to the downwind direction and at times there were wave fields traveling at right angles to each other. The NOAA aircraft spent over five hours within 180 km of the hurricane Bonnie eye, and made five eye penetrations. A 2-minute animation of the directional wave spectrum spatial variation over this period will be shown.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A14C..04C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A14C..04C"><span>Atmosphere-Wave-Ocean Coupling from Regional to Global Earth System Models for High-Impact Extreme Weather Prediction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, S. S.; Curcic, M.</p> <p>2017-12-01</p> <p>The need for acurrate and integrated impact forecasts of extreme wind, rain, waves, and storm surge is growing as coastal population and built environment expand worldwide. A key limiting factor in forecasting impacts of extreme weather events associated with tropical cycle and winter storms is fully coupled atmosphere-wave-ocean model interface with explicit momentum and energy exchange. It is not only critical for accurate prediction of storm intensity, but also provides coherent wind, rian, ocean waves and currents forecasts for forcing for storm surge. The Unified Wave INterface (UWIN) has been developed for coupling of the atmosphere-wave-ocean models. UWIN couples the atmosphere, wave, and ocean models using the Earth System Modeling Framework (ESMF). It is a physically based and computationally efficient coupling sytem that is flexible to use in a multi-model system and portable for transition to the next generation global Earth system prediction mdoels. This standardized coupling framework allows researchers to develop and test air-sea coupling parameterizations and coupled data assimilation, and to better facilitate research-to-operation activities. It has been used and extensively tested and verified in regional coupled model forecasts of tropical cycles and winter storms (Chen and Curcic 2016, Curcic et al. 2016, and Judt et al. 2016). We will present 1) an overview of UWIN and its applications in fully coupled atmosphere-wave-ocean model predictions of hurricanes and coastal winter storms, and 2) implenmentation of UWIN in the NASA GMAO GEOS-5.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.4525W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.4525W"><span>Complete synthetic seismograms based on a spherical self-gravitating Earth model with an atmosphere-ocean-mantle-core structure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Rongjiang; Heimann, Sebastian; Zhang, Yong; Wang, Hansheng; Dahm, Torsten</p> <p>2017-04-01</p> <p>A hybrid method is proposed to calculate complete synthetic seismograms based on a spherically symmetric and self-gravitating Earth with a multi-layered structure of atmosphere, ocean, mantle, liquid core and solid core. For large wavelengths, a numerical scheme is used to solve the geodynamic boundary-value problem without any approximation on the deformation and gravity coupling. With the decreasing wavelength, the gravity effect on the deformation becomes negligible and the analytical propagator scheme can be used. Many useful approaches are used to overcome the numerical problems that may arise in both analytical and numerical schemes. Some of these approaches have been established in the seismological community and the others are developed for the first time. Based on the stable and efficient hybrid algorithm, an all-in-one code QSSP is implemented to cover the complete spectrum of seismological interests. The performance of the code is demonstrated by various tests including the curvature effect on teleseismic body and surface waves, the appearance of multiple reflected, teleseismic core phases, the gravity effect on long period surface waves and free oscillations, the simulation of near-field displacement seismograms with the static offset, the coupling of tsunami and infrasound waves, and free oscillations of the solid Earth, the atmosphere and the ocean. QSSP is open source software that can be used as a stand-alone FORTRAN code or may be applied in combination with a Python toolbox to calculate and handle Green's function databases for efficient coding of source inversion problems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoJI.210.1739W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoJI.210.1739W"><span>Complete synthetic seismograms based on a spherical self-gravitating Earth model with an atmosphere-ocean-mantle-core structure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Rongjiang; Heimann, Sebastian; Zhang, Yong; Wang, Hansheng; Dahm, Torsten</p> <p>2017-09-01</p> <p>A hybrid method is proposed to calculate complete synthetic seismograms based on a spherically symmetric and self-gravitating Earth with a multilayered structure of atmosphere, ocean, mantle, liquid core and solid core. For large wavelengths, a numerical scheme is used to solve the geodynamic boundary-value problem without any approximation on the deformation and gravity coupling. With decreasing wavelength, the gravity effect on the deformation becomes negligible and the analytical propagator scheme can be used. Many useful approaches are used to overcome the numerical problems that may arise in both analytical and numerical schemes. Some of these approaches have been established in the seismological community and the others are developed for the first time. Based on the stable and efficient hybrid algorithm, an all-in-one code QSSP is implemented to cover the complete spectrum of seismological interests. The performance of the code is demonstrated by various tests including the curvature effect on teleseismic body and surface waves, the appearance of multiple reflected, teleseismic core phases, the gravity effect on long period surface waves and free oscillations, the simulation of near-field displacement seismograms with the static offset, the coupling of tsunami and infrasound waves, and free oscillations of the solid Earth, the atmosphere and the ocean. QSSP is open source software that can be used as a stand-alone FORTRAN code or may be applied in combination with a Python toolbox to calculate and handle Green's function databases for efficient coding of source inversion problems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920052049&hterms=Rogue&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DRogue','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920052049&hterms=Rogue&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DRogue"><span>The local properties of ocean surface waves by the phase-time method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Huang, Norden E.; Long, Steven R.; Tung, Chi-Chao; Donelan, Mark A.; Yuan, Yeli; Lai, Ronald J.</p> <p>1992-01-01</p> <p>A new approach using phase information to view and study the properties of frequency modulation, wave group structures, and wave breaking is presented. The method is applied to ocean wave time series data and a new type of wave group (containing the large 'rogue' waves) is identified. The method also has the capability of broad applications in the analysis of time series data in general.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012GPC....80..215S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012GPC....80..215S"><span>Influence of El Niño and Indian Ocean Dipole on sea level variability in the Bay of Bengal</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sreenivas, P.; Gnanaseelan, C.; Prasad, K. V. S. R.</p> <p>2012-01-01</p> <p>Zonally oscillating seasonal equatorial winds generate pairs of upwelling and downwelling Kelvin waves in the Equatorial Indian Ocean, which then advance in to the coastal Bay of Bengal. The first (second) equatorial upwelling Kelvin wave has its origin in the western (eastern) basin, whereas the downwelling Kelvin waves originate in the central basin. The observed interannual variability of these Kelvin waves is highly governed by the associated zonal wind changes in the central and eastern equatorial Indian Ocean during the anomalous years. The second downwelling (upwelling) Kelvin wave is absent (weak) during El Niño (La Niña) years, whereas the second upwelling Kelvin wave strengthened during El Niño years both in the equatorial Indian Ocean and Bay of Bengal. The large scale off equatorial Rossby waves occasionally feedback the equatorial Kelvin waves, which then strengthen the Bay of Bengal coastal Kelvin waves. The coastal Kelvin waves and the associated radiated Rossby waves from east play a dominant role in the mesoscale eddy generation in Bay of Bengal. The analysis of cyclogenesis characteristics in the bay over the past 65 years revealed that the active (suppressed) phases of cyclogenesis are coinciding with the downwelling (upwelling) planetary waves which influence the cyclone heat potential by altering the thermocline depth.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.S44A..01A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.S44A..01A"><span>numerical broadband modelling of ocean waves, from 1 to 300 s: implications for seismic wave sources and wave climate studies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ardhuin, F.; Stutzmann, E.; Gualtieri, L.</p> <p>2014-12-01</p> <p>Ocean waves provide most of the energy that feeds the continuous vertical oscillations of the solid Earth. Three period bands are usually identified. The hum contains periods longer than 30 s, and the primary and secondary peaks are usually centered around 15 and 5 s, respectively. Motions in all three bands are recorded everywhere on our planet and can provide information on both the solid Earth structure and the ocean wave climate over the past century. Here we describe recent efforts to extend the range of validity of ocean wave models to cover periods from 1 to 300 s (Ardhuin et al., Ocean Modelling 2014), and the resulting public database of ocean wave spectra (http://tinyurl.com/iowagaftp/HINDCAST/ ). We particularly discuss the sources of uncertainty for building a numerical model of acoustic and seismic noise on this knowledge of ocean wave spectra. For acoustic periods shorter than 3 seconds, the main uncertainties are the directional distributions of wave energy (Ardhuin et al., J. Acoust. Soc. Amer. 2013). For intermediate periods (3 to 25 s), the propagation properties of seismic waves are probably the main source of error when producing synthetic spectra of Rayleigh waves (Ardhuin et al. JGR 2011, Stutzmann et al. GJI 2012). For the longer periods (25 to 300 s), the poor knowledge of the bottom topography details may be the limiting factor for estimating hum spectra or inverting hum measurements in properties of the infragravity wave field. All in all, the space and time variability of recorded seismic and acoustic spectra is generally well reproduced in the band 3 to 300 s, and work on shorter periods is under way. This direct model can be used to search for missing noise sources, such as wave scattering in the marginal ice zone, find events relevant for solid earth studies (e.g. Obrebski et al. JGR 2013) or invert wave climate properties from microseismic records. The figure shows measured spectra of the vertical ground acceleration, and modeled result for the primary and secondary mechanisms using our numerical wave model. (a) Median ground acceleration power spectra (LHZ channel) at the SSB seismic station (Geoscope Network), for the month of January 2008. (b) Spectrogram of modeled ground displacement and (c) measured spectrogram.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..12.6024D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..12.6024D"><span>Rogue Waves and Extreme Events in Optics - Challenges and Questions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dudley, John; Lacourt, Pierre-Ambroise; Genty, Goery; Dias, Frederic; Akhmediev, Nail</p> <p>2010-05-01</p> <p>A central challenge in understanding extreme events in physics is to develop rigorous models linking the complex generation dynamics and the associated statistical behavior. Quantitative studies of extreme phenomena, however, are often hampered in two ways: (i) the intrinsic scarcity of the events under study and (ii) the fact that such events often appear in environments where measurements are difficult. A particular case of interest concerns the infamous oceanic rogue waves that have been associated with many catastrophic maritime disasters. Studying rogue waves under controlled conditions is problematic, and the phenomenon remains a subject of intensive research. On the other hand, there are many qualitative and quantitative links between wave propagation in optics and in hydrodynamics, and it is thus natural to consider to what degree (if any) insights from studying instability phenomena in optics can be applied to other systems. In this context, significant experiments were reported by Solli et al. in late 2007 ["Optical rogue waves," Nature 450, 1054 (2007)], where a wavelength-to-time detection technique allowed the direct characterization of shot-to-shot instabilities in the extreme nonlinear optical spectral broadening process of supercontinuum generation. Specifically, although the process of supercontinuum generation is well-known to exhibit fluctuations in both the time and frequency domains, Solli et al. have shown that these fluctuations contain a small number of statistically-rare "rogue" events associated with a greatly enhanced spectral bandwidth and the generation of localized temporal solitons with greatly increased intensity. Crucially, because these experiments were performed in a regime where modulation instability (MI) plays a key role in the dynamics, an analogy was drawn with hydrodynamic rogue waves, whose origin and dynamics has also been discussed in terms of MI or, as it often referred to in hydrodynamics, the Benjamin-Feir instability. The analogy between the appearance of localized structures in optics and the rogue waves on the ocean's surface is both intriguing and attractive, as it opens up possibilities to explore the extreme value dynamics in a convenient benchtop optical environment. In addition to the proposed links with solitons suggested by Solli et al., other recent studies motivated from an optical context have experimentally demonstrated links with nonlinear breather propagation. The purpose of this paper will be to discuss these results that have been obtained in optics, and to consider possible similarities and differences with oceanic rogue wave counterparts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005PhDT........22V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005PhDT........22V"><span>On the role of high frequency waves in ocean altimetry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vandemark, Douglas C.</p> <p></p> <p>This work mines a coastal and open ocean air-sea interaction field experiment data set where the goals are to refine satellite retrieval of wind, wind stress, and sea level using a microwave radar altimeter. The data were collected from a low-flying aircraft using a sensor suite designed to measure the surface waves, radar backscatter, the atmospheric flow, and turbulent fluxes within the marine boundary layer. This uncommon ensemble provides the means to address several specific altimeter-related topics. First, we examine and document the impact that non wind-driven gravity wave variability, e.g. swell, has upon the commonly-invoked direct relationship between altimeter backscatter and near surface wind speed. The demonstrated impact is larger in magnitude and more direct than previously suggested. The study also isolates the wind-dependence of short-scale slope variance and suggests its magnitude is somewhat lower than shown elsewhere while a second-order dependence on long waves is also evident. A second study assesses the hypothesis that wind-aligned swell interacts with the atmospheric boundary flow leading to a depressed level of turbulence. Cases of reduced drag coefficient at moderate wind speeds were in evidence within the data set, and buoy observations indicate that swell was present and a likely control during these events. Coincidentally, short-scale wave roughness was also depressed suggesting decreased wind stress. Attempts to confirm the theory failed, however, due to numerous limitations in the quantity and quality of the data in hand. A lesson learned is that decoupling atmospheric stability and wave impacts in field campaigns requires both a very large amount of data as well as vertical resolution of fluxes within the first 10--20 m of the surface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMNG21A0131P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMNG21A0131P"><span>The Stability of Outcropping Ocean Eddies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Paldor, N.; Cohen, Y.; Dvorkin, Y.</p> <p>2017-12-01</p> <p>In the end of the last century numerous ship-borne observations and linear instability studies have addressed the long life span of meso-scale ocean eddies. These eddies are observed to persist in the ocean for periods of 2-3 years with little deformation. As eddy instabilities occur because Rossby waves in the surrounding (assumed motionless) ocean interact with various waves in the eddy itself, the stability was attributed to some eddy structure that hinders such wave-wave interactions. However, instabilities with growthrates of the order of the inertial period were found in various multilayer models including hypothesized structures and several observed eddy structures. A solution to the difference between instability theory and observed stability was ultimately suggested by relaxing the assumption of a motionless ocean that surrounds the eddy and prescribing the mean flow in the ocean such that it counterbalances the depth changes imposed by the eddy while maintaining a constant PV-ocean. This hypothesis was successfully applied to Gaussian eddies for mathematical simplicity. Yet, the Gaussian eddy has no surface front - thus avoiding instabilities that involve frontal waves - and it disagrees with observation that clearly show that most eddies have surface fronts. Here the constant PV ocean hypothesis is applied to two frontal eddies: constant PV-eddies and solidly rotating eddy. A complete account of the mean flow of the coupled eddy-ocean system is analyzed using a canonical formulation of the gradient balance. The phase speeds of waves in the eddy-ocean system are computed by a shooting method. Both eddies are found to be unstable in motionless ocean, yet in a constant PV-ocean no instabilities are found using the exact same numerical search. While many eddy structures can be hypothesized there are only a handful of physical mechanisms for instability and in these eddies the assumed constant PV-ocean negates many of these physical mechanisms for instability. This implies that meso-scale eddies should be stable in a constant PV ocean, regardless to their structure, which is not precisely one of the above mentioned. This theory stimulates observations of the ocean under the eddies. To maintain the uniform PV value, relative vorticity must develop in the ocean under the eddy as it moves in the ocean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015OcDyn..65..223S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015OcDyn..65..223S"><span>The wind sea and swell waves climate in the Nordic seas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Semedo, Alvaro; Vettor, Roberto; Breivik, Øyvind; Sterl, Andreas; Reistad, Magnar; Soares, Carlos Guedes; Lima, Daniela</p> <p>2015-02-01</p> <p>A detailed climatology of wind sea and swell waves in the Nordic Seas (North Sea, Norwegian Sea, and Barents Sea), based on the high-resolution reanalysis NORA10, developed by the Norwegian Meteorological Institute, is presented. The higher resolution of the wind forcing fields, and the wave model (10 km in both cases), along with the inclusion of the bottom effect, allowed a better description of the wind sea and swell features, compared to previous global studies. The spatial patterns of the swell-dominated regional wave fields are shown to be different from the open ocean, due to coastal geometry, fetch dimensions, and island sheltering. Nevertheless, swell waves are still more prevalent and carry more energy in the Nordic Seas, with the exception of the North Sea. The influence of the North Atlantic Oscillation on the winter regional wind sea and swell patterns is also presented. The analysis of the decadal trends of wind sea and swell heights during the NORA10 period (1958-2001) shows that the long-term trends of the total significant wave height (SWH) in the Nordic Seas are mostly due to swell and to the wave propagation effect.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EPJST.185..125D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EPJST.185..125D"><span>Extreme events in optics: Challenges of the MANUREVA project</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dudley, J. M.; Finot, C.; Millot, G.; Garnier, J.; Genty, G.; Agafontsev, D.; Dias, F.</p> <p>2010-07-01</p> <p>In this contribution we describe and discuss a series of challenges and questions relating to understanding extreme wave phenomena in optics. Many aspects of these questions are being studied in the framework of the MANUREVA project: a multidisciplinary consortium aiming to carry out mathematical, numerical and experimental studies in this field. The central motivation of this work is the 2007 results from optical physics [D. Solli et al., Nature 450, 1054 (2007)] that showed how a fibre-optical system can generate large amplitude extreme wave events with similar statistical properties to the infamous hydrodynamic rogue waves on the surface of the ocean. We review our recent work in this area, and discuss how this observation may open the possibility for an optical system to be used to directly study both the dynamics and statistics of extreme-value processes, a potential advance comparable to the introduction of optical systems to study chaos in the 1970s.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1201553-simulation-asteroid-impact-ocean-surfaces-subsequent-wave-generation-effect-us-shorelines','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1201553-simulation-asteroid-impact-ocean-surfaces-subsequent-wave-generation-effect-us-shorelines"><span>Simulation of asteroid impact on ocean surfaces, subsequent wave generation and the effect on US shorelines</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Ezzedine, Souheil M.; Lomov, Ilya; Miller, Paul L.; ...</p> <p>2015-05-19</p> <p>As part of a larger effort involving members of several other organizations, we have conducted numerical simulations in support of emergency-response exercises of postulated asteroid ocean impacts. We have addressed the problem from source (asteroid entry) to ocean impact (splash) to wave generation, propagation and interaction with the U.S. shoreline. We simulated three impact sites. The first site is located off the east coast by Maryland's shoreline. The second site is located off of the West coast, the San Francisco bay. The third set of sites are situated in the Gulf of Mexico. Asteroid impacts on the ocean surface aremore » conducted using LLNL's hydrocode GEODYN to create the impact wave source for the shallow water wave propagation code, SWWP, a shallow depth averaged water wave code.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1201553','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1201553"><span>Simulation of asteroid impact on ocean surfaces, subsequent wave generation and the effect on US shorelines</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ezzedine, Souheil M.; Lomov, Ilya; Miller, Paul L.</p> <p></p> <p>As part of a larger effort involving members of several other organizations, we have conducted numerical simulations in support of emergency-response exercises of postulated asteroid ocean impacts. We have addressed the problem from source (asteroid entry) to ocean impact (splash) to wave generation, propagation and interaction with the U.S. shoreline. We simulated three impact sites. The first site is located off the east coast by Maryland's shoreline. The second site is located off of the West coast, the San Francisco bay. The third set of sites are situated in the Gulf of Mexico. Asteroid impacts on the ocean surface aremore » conducted using LLNL's hydrocode GEODYN to create the impact wave source for the shallow water wave propagation code, SWWP, a shallow depth averaged water wave code.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930061882&hterms=marginal&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dmarginal','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930061882&hterms=marginal&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dmarginal"><span>Wave effects on ocean-ice interaction in the marginal ice zone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Liu, Antony K.; Hakkinen, Sirpa; Peng, Chih Y.</p> <p>1993-01-01</p> <p>The effects of wave train on ice-ocean interaction in the marginal ice zone are studied through numerical modeling. A coupled two-dimensional ice-ocean model has been developed to include wave effects and wind stress for the predictions of ice edge dynamics. The sea ice model is coupled to the reduced-gravity ocean model through interfacial stresses. The main dynamic balance in the ice momentum is between water-ice stress, wind stress, and wave radiation stresses. By considering the exchange of momentum between waves and ice pack through radiation stress for decaying waves, a parametric study of the effects of wave stress and wind stress on ice edge dynamics has been performed. The numerical results show significant effects from wave action. The ice edge is sharper, and ice edge meanders form in the marginal ice zone owing to forcing by wave action and refraction of swell system after a couple of days. Upwelling at the ice edge and eddy formation can be enhanced by the nonlinear effects of wave action; wave action sharpens the ice edge and can produce ice meandering, which enhances local Ekman pumping and pycnocline anomalies. The resulting ice concentration, pycnocline changes, and flow velocity field are shown to be consistent with previous observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23031011','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23031011"><span>Nonlinear shallow ocean-wave soliton interactions on flat beaches.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ablowitz, Mark J; Baldwin, Douglas E</p> <p>2012-09-01</p> <p>Ocean waves are complex and often turbulent. While most ocean-wave interactions are essentially linear, sometimes two or more waves interact in a nonlinear way. For example, two or more waves can interact and yield waves that are much taller than the sum of the original wave heights. Most of these shallow-water nonlinear interactions look like an X or a Y or two connected Ys; at other times, several lines appear on each side of the interaction region. It was thought that such nonlinear interactions are rare events: they are not. Here we report that such nonlinear interactions occur every day, close to low tide, on two flat beaches that are about 2000 km apart. These interactions are closely related to the analytic, soliton solutions of a widely studied multidimensional nonlinear wave equation. On a much larger scale, tsunami waves can merge in similar ways.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19840019215','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19840019215"><span>Some case studies of ocean wave physical processes utilizing the GSFC airborne radar ocean wave spectrometer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jackson, F. C.</p> <p>1984-01-01</p> <p>The NASA K sub u band Radar Ocean Wave Spectrometer (ROWS) is an experimental prototype of a possible future satellite instrument for low data rate global waves measurements. The ROWS technique, which utilizes short pulse radar altimeters in a conical scan mode near vertical incidence to map the directional slope spectrum in wave number and azimuth, is briefly described. The potential of the technique is illustrated by some specific case studies of wave physical processes utilizing the aircraft ROWS data. These include: (1) an evaluation of numerical hindcast model performance in storm sea conditions, (2) a study of fetch limited wave growth, and (3) a study of the fully developed sea state. Results of these studies, which are briefly summarized, show how directional wave spectral observations from a mobile platform can contribute enormously to our understanding of wave physical processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..12..202P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..12..202P"><span>Rogue waves in the ocean - review and progress</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pelinovsky, Efim; Kharif, Christian; Slunyaev, Alexey</p> <p>2010-05-01</p> <p>Rogue waves in the ocean and physical mechanisms of their appearance are discussed. Theyse waves are among waves naturally observed by people on the sea surface that represent inseparable feature of the Ocean. Rogue waves appear from nowhere, cause danger and disappear at once. They may occur at the surface of a relatively calm sea, reach not very high amplitudes, but be fatal for ships and crew due to their unexpectedness and abnormal features. The billows appear suddenly exceeding the surrounding waves twice and more, and obtained many names: abnormal, exceptional, extreme, giant, huge, sudden, episodic, freak, monster, rogue, vicious, killer, mad- or rabid-dog waves; cape rollers, holes in the sea, walls of water, three sisters… Freak monsters, though living for seconds, were able to arouse superstitious fear of the crew, cause damage, death of heedless sailors or the whole ship. All these epithets are full of human fear and feebleness. The serious studies of the phenomenon started about 20-30 years ago and have been intensified during the recent decade. The research is being conducted in different fields: in physics (search of physical mechanisms and adequate models of wave enhancement and statistics), in geoscience (determining the regions and weather conditions when rogue waves are most probable), and in ocean and coastal engineering (estimations of the wave loads on fixed and drifting floating structures). Thus, scientists and engineers specializing in different subject areas are involved in the solution of the problem. The state-of-art of the rogue wave study is summarized in our book [Kharif, Ch., Pelinovsky, E., and Slunyaev, A. Rogue Waves in the Ocean. Springer, 2009] and presented in given review. Firstly, we start with a brief introduction to the problem of freak waves aiming at formulating what is understood as rogue or freak waves, what consequences their existence imply in our life, why people are so worried about them. Then we discuss existing observations and measurements of freak waves. Two approaches to the rogue wave description (deterministic and statistical) are presented. Briefly, the physical mechanisms that have been already suggested as possible explanations of the freak wave phenomenon are: i) wave-current interaction; ii) geometrical (spatial) focusing; iii) focusing due to dispersion (spatio-temporal focusing); iv) focusing due to modulational instability; v) soliton collision; vi) atmospheric action. In conclusion we emphasize that most of the developed theories are applicable to other physical phenomena starting from ocean waves of different nature and ending with nonlinear optics (for instance optical rogue waves in fibers) and astrophysical plasma processes. The recent trends in study of the oceanic rogue waves are discussed as well.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFMOS41B1220Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFMOS41B1220Y"><span>Preliminary Study on Coupling Wave-Tide-Storm Surges Prediction System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>You, S.; Park, S.; Seo, J.; Kim, K.</p> <p>2008-12-01</p> <p>The Korean Peninsula is surrounded by the Yellow Sea, East China Sea, and East Sea. This complex oceanographic system includes large tides in the Yellow Sea and seasonally varying monsoon and typhoon events. For Korea's coastal regions, floods caused by wave and storm surges are among the most serious threats. To predict more accurate wave and storm surge, the development of coupling wave-tide-storm surges prediction system is essential. For the time being, wave and storm surges predictions are still made separately in KMA (Korea Meteorological Administration) and most operational institute. However, many researchers have emphasized the effects of tides and storm surges on wind waves and recommended further investigations into the effects of wave-tide-storm surges interactions and coupling module on wave heights. However, tidal height and current give a great effect on the wave prediction in the Yellow sea where is very high tide and related research is not enough. At present, KMA has operated the wave (RWAM : Regional Wave Model) and storm surges/tide prediction system (RTSM : Regional Tide/Storm Surges Model) for ocean forecasting. The RWAM is WAVEWATCH III which is a third generation wave model developed by Tolman (1989). The RTSM is based on POM (Princeton Ocean Model, Blumberg and Mellor, 1987). The RWAM and RTSM cover the northwestern Pacific Ocean from 115°E to 150°E and from 20°N to 52°N. The horizontal grid intervals are 1/12° in both latitudinal and longitudinal directions. The development, testing and application of a coupling module in which wave-tide-storm surges are incorporated within the frame of KMA Ocean prediction system, has been considered as a step forward in respect of ocean forecasting. In addition, advanced wave prediction model will be applicable to the effect of ocean in the weather forecasting system. The main purpose of this study is to show how the coupling module developed and to report on a series of experiments dealing with the sensitivities and real case prediction of coupling wave-tide-storm surges prediction system.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27713662','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27713662"><span>Decadal variability of extreme wave height representing storm severity in the northeast Atlantic and North Sea since the foundation of the Royal Society.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Santo, H; Taylor, P H; Gibson, R</p> <p>2016-09-01</p> <p>Long-term estimation of extreme wave height remains a key challenge because of the short duration of available wave data, and also because of the possible impact of climate variability on ocean waves. Here, we analyse storm-based statistics to obtain estimates of extreme wave height at locations in the northeast Atlantic and North Sea using the NORA10 wave hindcast (1958-2011), and use a 5 year sliding window to examine temporal variability. The decadal variability is correlated to the North Atlantic oscillation and other atmospheric modes, using a six-term predictor model incorporating the climate indices and their Hilbert transforms. This allows reconstruction of the historic extreme climate back to 1661, using a combination of known and proxy climate indices. Significant decadal variability primarily driven by the North Atlantic oscillation is observed, and this should be considered for the long-term survivability of offshore structures and marine renewable energy devices. The analysis on wave climate reconstruction reveals that the variation of the mean, 99th percentile and extreme wave climates over decadal time scales for locations close to the dominant storm tracks in the open North Atlantic are comparable, whereas the wave climates for the rest of the locations including the North Sea are rather different.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016RSPSA.47260376S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016RSPSA.47260376S"><span>Decadal variability of extreme wave height representing storm severity in the northeast Atlantic and North Sea since the foundation of the Royal Society</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Santo, H.; Taylor, P. H.; Gibson, R.</p> <p>2016-09-01</p> <p>Long-term estimation of extreme wave height remains a key challenge because of the short duration of available wave data, and also because of the possible impact of climate variability on ocean waves. Here, we analyse storm-based statistics to obtain estimates of extreme wave height at locations in the northeast Atlantic and North Sea using the NORA10 wave hindcast (1958-2011), and use a 5 year sliding window to examine temporal variability. The decadal variability is correlated to the North Atlantic oscillation and other atmospheric modes, using a six-term predictor model incorporating the climate indices and their Hilbert transforms. This allows reconstruction of the historic extreme climate back to 1661, using a combination of known and proxy climate indices. Significant decadal variability primarily driven by the North Atlantic oscillation is observed, and this should be considered for the long-term survivability of offshore structures and marine renewable energy devices. The analysis on wave climate reconstruction reveals that the variation of the mean, 99th percentile and extreme wave climates over decadal time scales for locations close to the dominant storm tracks in the open North Atlantic are comparable, whereas the wave climates for the rest of the locations including the North Sea are rather different.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMOS33D1867D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMOS33D1867D"><span>Did Irving Langmuir Observe Langmuir Circulations?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>D'Asaro, E. A.; Harcourt, R. R.; Shcherbina, A.; Thomson, J. M.; Fox-Kemper, B.</p> <p>2012-12-01</p> <p>Although surface waves are known to play an important role in mixing the upper ocean, the current generation of upper ocean boundary layer parameterizations does not include the explicit effects of surface waves. Detailed simulations using LES models which include the Craik-Leibovich wave-current interactions, now provide quantitative predictions of the enhancement of boundary layer mixing by waves. Here, using parallel experiments in Lake Washington and at Ocean Station Papa, we show a clear enhancement of vertical kinetic energy across the entire upper ocean boundary layer which can be attributed to surface wave effects. The magnitude of this effect is close to that predicted by LES models, but is not large, less than a factor of 2 on average, and increased by large Stokes drift and shallow mixed layers. Global estimates show the largest wave enhancements occur on the equatorial side of the westerlies in late Spring, due to the combination of large waves, shallow mixed layers and weak winds. In Lakes, however, the waves and the Craik-Leibovich interactions are weak, making it likely that the counter-rotating vortices famously observed by Irving Langmuir in Lake George were not driven by wave-current interactions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOS.A33A..06D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOS.A33A..06D"><span>-> Air entrainment and bubble statistics in three-dimensional breaking waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Deike, L.; Popinet, S.; Melville, W. K.</p> <p>2016-02-01</p> <p>Wave breaking in the ocean is of fundamental importance for quantifying wave dissipation and air-sea interaction, including gas and momentum exchange, and for improving air-sea flux parametrizations for weather and climate models. Here we investigate air entrainment and bubble statistics in three-dimensional breaking waves through direct numerical simulations of the two-phase air-water flow using the Open Source solver Gerris. As in previous 2D simulations, the dissipation due to breaking is found to be in good agreement with previous experimental observations and inertial-scaling arguments. For radii larger than the Hinze scale, the bubble size distribution is found to follow a power law of the radius, r-10/3 and to scale linearly with the time dependent turbulent dissipation rate during the active breaking stage. The time-averaged bubble size distribution is found to follow the same power law of the radius and to scale linearly with the wave dissipation rate per unit length of breaking crest. We propose a phenomenological turbulent bubble break-up model that describes the numerical results and existing experimental results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016GGG....17.4973C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016GGG....17.4973C"><span>Physical properties and seismic structure of Izu-Bonin-Mariana fore-arc crust: Results from IODP Expedition 352 and comparison with oceanic crust</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Christeson, G. L.; Morgan, S.; Kodaira, S.; Yamashita, M.; Almeev, R. R.; Michibayashi, K.; Sakuyama, T.; Ferré, E. C.; Kurz, W.</p> <p>2016-12-01</p> <p>Most of the well-preserved ophiolite complexes are believed to form in suprasubduction zone (SSZ) settings. We compare physical properties and seismic structure of SSZ crust at the Izu-Bonin-Mariana (IBM) fore arc with oceanic crust drilled at Holes 504B and 1256D to evaluate the similarities of SSZ and oceanic crust. Expedition 352 basement consists of fore-arc basalt (FAB) and boninite lavas and dikes. P-wave sonic log velocities are substantially lower for the IBM fore arc (mean values 3.1-3.4 km/s) compared to Holes 504B and 1256D (mean values 5.0-5.2 km/s) at depths of 0-300 m below the sediment-basement interface. For similar porosities, lower P-wave sonic log velocities are observed at the IBM fore arc than at Holes 504B and 1256D. We use a theoretical asperity compression model to calculate the fractional area of asperity contact Af across cracks. Af values are 0.021-0.025 at the IBM fore arc and 0.074-0.080 at Holes 504B and 1256D for similar depth intervals (0-300 m within basement). The Af values indicate more open (but not necessarily wider) cracks in the IBM fore arc than for the oceanic crust at Holes 504B and 1256D, which is consistent with observations of fracturing and alteration at the Expedition 352 sites. Seismic refraction data constrain a crustal thickness of 10-15 km along the IBM fore arc. Implications and inferences are that crust-composing ophiolites formed at SSZ settings could be thick and modified after accretion, and these processes should be considered when using ophiolites as an analog for oceanic crust.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1999PhDT.......169M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1999PhDT.......169M"><span>Application of nonlinear deterministic decomposition to the prediction and energy dissipation of long-crested irregular ocean surface waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Meza Conde, Eustorgio</p> <p></p> <p>The Hybrid Wave Model (HWM) is a deterministic nonlinear wave model developed for the computation of wave properties in the vicinity of ocean wave measurements. The HWM employs both Mode-Coupling and Phase Modulation Methods to model the wave-wave interactions in an ocean wave field. Different from other nonlinear wave models, the HWM decouples the nonlinear wave interactions from ocean wave field measurements and decomposes the wave field into a set of free-wave components. In this dissertation the HWM is applied to the prediction of wave elevation from pressure measurements and to the quantification of energy during breaking of long-crested irregular surface waves. 1.A transient wave train was formed in a two-dimensional wave flume by sequentially generating a series of waves from high to low frequencies that superposed at a downstream location. The predicted wave elevation using the HWM based on the pressure measurement of a very steep transient wave train is in excellent agreement with the corresponding elevation measurement, while that using Linear Wave Theory (LWT) has relatively large discrepancies. Furthermore, the predicted elevation using the HWM is not sensitive to the choice of the cutoff frequency, while that using LWT is very sensitive. 2.Several transient wave trains containing an isolated plunging or spilling breaker at a prescribed location were generated in a two-dimensional wave flume using the same superposition technique. Surface elevation measurements of each transient wave train were made at locations before and after breaking. Applying the HWM nonlinear deterministic decomposition to the measured elevation, the free-wave components comprising the transient wave train were derived. By comparing the free-wave spectra before and after breaking it is found that energy loss was almost exclusively from wave components at frequencies higher than the spectral peak frequency. Even though the wave components near the peak frequency are the largest, they do not significantly gain or lose energy after breaking. It was also observed that wave components of frequencies significantly below or near the peak frequency gain a small portion of energy lost by the high-frequency waves. These findings may have important implications to the ocean wave energy budget.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016cosp...41E2007V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016cosp...41E2007V"><span>A review of satellite radar altimetry applied to coastal ocean studies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vignudelli, Stefano</p> <p>2016-07-01</p> <p>Satellite radar altimetry is today considered a mature technique in open ocean. The data stream from the various satellite missions are routinely used for a number of applications. In the last decade, significant research has been carried out into overcoming the problems to extend the capabilities of radar altimeters to the coastal zone, with the aim to integrate the altimeter-derived measurements of sea level, wind speed and significant wave height into coastal ocean observing systems. More/better (and new) datasets are being produced. Moreover, the advent of new satellite missions, both nadir-viewing (e.g., Sentinel-3) and wide-swath (e.g. SWOT), should globally improve both quantity and quality of coastal altimetry data. In this talk, after a brief review of the challenges in coastal altimetry and description of the new products, we showcase some application examples how the new products can be exploited, and we discuss directions for a global coastal altimetry dataset as an asset for long term monitoring of sea level and sea state in the coastal ocean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUFM.T31C..06D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUFM.T31C..06D"><span>Historic Tsunami in the Indian Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dominey-Howes, D.; Cummins, P. R.; Burbidge, D.</p> <p>2005-12-01</p> <p>The 2004 Boxing Day Tsunami dramatically highlighted the need for a better understanding of the tsunami hazard in the Indian Ocean. One of the most important foundations on which to base such an assessment is knowledge of tsunami that have affected the region in the historical past. We present a summary of the previously published catalog of Indian Ocean tsunami and the results of a preliminary search of archival material held at the India Records Office at the British Library in London. We demonstrate that in some cases, normal tidal movements and floods associated with tropical cyclones have been erroneously listed as tsunami. We summarise interesting archival material for tsunami that occurred in 1945, 1941, 1881, 1819, 1762 and a tsunami in 1843 not previously identified or reported. We also note the recent discovery, by a Canadian team during a post-tsunami survey following the 2004 Boxing Day Tsunami, of archival evidence that the Great Sumatra Earthquake of 1833 generated a teletsunami. Open ocean wave heights are calculated for some of the historical tsunami and compared with those of the Boxing Day Tsunami.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhDT........35T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhDT........35T"><span>Ambient Noise Tomography and Microseism Directionalities across the Juan de Fuca Plate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tian, Ye</p> <p></p> <p>Ambient noise tomography has been well developed over the past decade and proven to be effective in studying the crust and upper mantle structure beneath the Earth’s continents. With new seismic array deployments beginning in the oceans, the application of the tomographic methods based on ambient noise observed at ocean bottom seismometers (OBSs) has become an important topic for research. In this thesis, I investigate the application of ambient noise tomography to oceanic bottom seismic data recorded by the Cascadia Initiative experiment across the Juan de Fuca plate. With higher local noise levels recorded by OBSs, I find that traditional data processing procedures used in ambient noise tomography produce measurable Rayleigh wave Green’s functions between deep ocean stations, whereas the shallow water stations are severely contaminated by both tilt noise and compliance noise and require new methods of processing. Because the local noise level varies across the study region, four semi-independent studies are conducted to both utilize the quieter deep-water stations and to address the problem posed by noisy shallow water stations. First, I construct an age-dependent shear wave speed model of the crust and uppermost mantle with 18 deep-water stations near the Juan de Fuca Ridge. The model possess a shallow low shear velocity zone near the ridge and has its sedimentary thickness, lithospheric thickness, and mantle shear wave speeds increase systematically with age Second, I investigate the locations and mechanisms of microseism generation using ambient noise cross-correlations constructed between 61 OBSs and 42 continental stations near the western US coast and find that the primary and secondary microseisms are generated at different locations and possibly have different physical mechanisms. Third, I show that tilt and compliance noise on the vertical components of the OBSs can be reduced substantially using the horizontal components and the differential pressure gauge records. Removal of these types of noise improves the signal-to-noise ratio of ambient noise cross-correlations significantly at beyond 10 sec period. Lastly, I present a new single-station method to estimate the microseism Rayleigh wave strength and directionality based on the horizontal-to-vertical transfer function. The high spatial and temporal resolution of this method may open up the microseism Rayleigh waves for a wider range of studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003AGUFM.A42B0762K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003AGUFM.A42B0762K"><span>Parallel Computation of Ocean-Atmosphere-Wave Coupled Storm Surge Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kim, K.; Yamashita, T.</p> <p>2003-12-01</p> <p>Ocean-atmosphere interactions are very important in the formation and development of tropical storms. These interactions are dominant in exchanging heat, momentum, and moisture fluxes. Heat flux is usually computed using a bulk equation. In this equation air-sea interface supplies heat energy to the atmosphere and to the storm. Dynamical interaction is most often one way in which it is the atmosphere that drives the ocean. The winds transfer momentum to both ocean surface waves and ocean current. The wind wave makes an important role in the exchange of the quantities of motion, heat and a substance between the atmosphere and the ocean. Storm surges can be considered as the phenomena of mean sea-level changes, which are the result of the frictional stresses of strong winds blowing toward the land and causing the set level and the low atmospheric pressure at the centre of the cyclone can additionally raise the sea level. In addition to the rise in water level itself, another wave factor must be considered. A rise of mean sea level due to white-cap wave dissipation should be considered. In bounded bodies of water, such as small seas, wind driven sea level set up is much serious than inverted barometer effects, in which the effects of wind waves on wind-driven current play an important role. It is necessary to develop the coupled system of the full spectral third-generation wind-wave model (WAM or WAVEWATCH III), the meso-scale atmosphere model (MM5) and the coastal ocean model (POM) for simulating these physical interactions. As the component of coupled system is so heavy for personal usage, the parallel computing system should be developed. In this study, first, we developed the coupling system of the atmosphere model, ocean wave model and the coastal ocean model, in the Beowulf System, for the simulation of the storm surge. It was applied to the storm surge simulation caused by Typhoon Bart (T9918) in the Yatsushiro Sea. The atmosphere model and the ocean model have been made the parallel codes by SPMD methods. The wave-current interface model was developed by defining the wave breaking stresses. And we developed the coupling program to collect and distribute the exchanging data with the parallel system. Every models and coupler are executed at same time, and they calculate own jobs and pass data with organic system. MPMD method programming was performed to couple the models. The coupler and each models united by the separated group, and they calculated by the group unit. Also they passed message when exchanging data by global unit. The data are exchanged every 60-second model time that is the least common multiple time of the atmosphere model, the wave model and the ocean model. The model was applied to the storm surge simulation in the Yatsushiro Sea, in which we could not simulated the observed maximum surge height with the numerical model that did not include the wave breaking stress. It is confirmed that the simulation which includes the wave breaking stress effects can produce the observed maximum height, 450 cm, at Matsuai.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900054865&hterms=InSAR&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DInSAR','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900054865&hterms=InSAR&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DInSAR"><span>Remote sensing of ocean wave spectra by interferometric synthetic aperture radar</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Marom, M.; Thornton, E. B.; Goldstein, R. M.; Shemer, L.</p> <p>1990-01-01</p> <p>Ocean surface waves can be clearly observed by SAR in the interferometric configuration (INSAR) due to the ability of INSAR to provide images of the local surface velocity field. It is shown here that INSAR can be used to obtain wavenumber spectra that are in agreement with power spectra measured in situ. This new method has considerable potential to provide instantaneous spatial information about the structure of ocean wave fields.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.C53F..05P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.C53F..05P"><span>Accurate numerical forward model for optimal retracking of SIRAL2 SAR echoes over open ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Phalippou, L.; Demeestere, F.</p> <p>2011-12-01</p> <p>The SAR mode of SIRAL-2 on board Cryosat-2 has been designed to measure primarily sea-ice and continental ice (Wingham et al. 2005). In 2005, K. Raney (KR, 2005) pointed out the improvements brought by SAR altimeter for open ocean. KR results were mostly based on 'rule of thumb' considerations on speckle noise reduction due to the higher PRF and to speckle decorrelation after SAR processing. In 2007, Phalippou and Enjolras (PE,2007) provided the theoretical background for optimal retracking of SAR echoes over ocean with a focus on the forward modelling of the power-waveforms. The accuracies of geophysical parameters (range, significant wave heights, and backscattering coefficient) retrieved from SAR altimeter data were derived accounting for SAR echo shape and speckle noise accurate modelling. The step forward to optimal retracking using numerical forward model (NFM) was also pointed out. NFM of the power waveform avoids analytical approximation, a warranty to minimise the geophysical dependent biases in the retrieval. NFM have been used for many years, in operational meteorology in particular, for retrieving temperature and humidity profiles from IR and microwave radiometers as the radiative transfer function is complex (Eyre, 1989). So far this technique was not used in the field of ocean conventional altimetry as analytical models (e.g. Brown's model for instance) were found to give sufficient accuracy. However, although NFM seems desirable even for conventional nadir altimetry, it becomes inevitable if one wish to process SAR altimeter data as the transfer function is too complex to be approximated by a simple analytical function. This was clearly demonstrated in PE 2007. The paper describes the background to SAR data retracking over open ocean. Since PE 2007 improvements have been brought to the forward model and it is shown that the altimeter on-ground and in flight characterisation (e.g antenna pattern range impulse response, azimuth impulse response, altimeter transfer function) can be accurately accounted for, in order to minimise the systematic errors in the retrieval. The paper presents the retrieval of range and SWH for several Cryosat 2 orbits arcs, spanning different sea state conditions. The retrieval results are found to be in excellent agreement with the noise expectations derived from the Cramer-Rao bounds (see PE 2007.). The improvement upon conventional Low Resolution mode is about a factor of two in range. Improvements in SWH accuracy is also discussed. Comparisons with the MSL and conventional LRM-like retracking is also shown. Finally, the paper will give some insights for future oceanic altimetry missions. References : Wingham et al., 2005 : CryoSat: A mission to determine the fluctuations in Earth's land and marine ice fields. Advances in Space Research 37 (2006) 841-871 Raney, R.K. 2005 : Resolution and precision ofa delayDoppler Radar Altimeter, Proc IEEE OCEANS 2005. Phalippou L, V. Enjolras 2007 : Re-tracking of SAR altimeter ocean power waveforms and related accuracies of Sea surface Height, significant wave height and wind speed. Proc IEEE IGARSS 2007. Eyre, J. 1989 : Inversion of cloudy satellite radiances by non linear estimation : Theory and simulation for TOVS. Quaterly Journal of the Royal Meteorological Society, 115, pp1001-1026.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1441465-upper-atmosphere-heating-from-ocean-generated-acoustic-wave-energy','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1441465-upper-atmosphere-heating-from-ocean-generated-acoustic-wave-energy"><span>Upper Atmosphere Heating From Ocean-Generated Acoustic Wave Energy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Bowman, D. C.; Lees, J. M.</p> <p>2018-04-27</p> <p>We present that colliding sea surface waves generate the ocean microbarom, an acoustic signal that may transmit significant energy to the upper atmosphere. Previous estimates of acoustic energy flux from the ocean microbarom and mountain-wind interactions are on the order of 0.01 to 1 mW/m 2, heating the thermosphere by tens of Kelvins per day. We captured upgoing ocean microbarom waves with a balloon-borne infrasound microphone; the maximum acoustic energy flux was approximately 0.05 mW/m 2. This is about half the average value reported in previous ground-based microbarom observations spanning 8 years. The acoustic flux from the microbarom episode describedmore » here may have heated the thermosphere by several Kelvins per day while the source persisted. Lastly, we suggest that ocean wave models could be used to parameterize acoustically generated heating of the upper atmosphere based on sea state.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26392614','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26392614"><span>The meteorite impact-induced tsunami hazard.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wünnemann, K; Weiss, R</p> <p>2015-10-28</p> <p>When a cosmic object strikes the Earth, it most probably falls into an ocean. Depending on the impact energy and the depth of the ocean, a large amount of water is displaced, forming a temporary crater in the water column. Large tsunami-like waves originate from the collapse of the cavity in the water and the ejecta splash. Because of the far-reaching destructive consequences of such waves, an oceanic impact has been suggested to be more severe than a similar-sized impact on land; in other words, oceanic impacts may punch over their weight. This review paper summarizes the process of impact-induced wave generation and subsequent propagation, whether the wave characteristic differs from tsunamis generated by other classical mechanisms, and what methods have been applied to quantify the consequences of an oceanic impact. Finally, the impact-induced tsunami hazard will be evaluated by means of the Eltanin impact event. © 2015 The Author(s).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1441465-upper-atmosphere-heating-from-ocean-generated-acoustic-wave-energy','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1441465-upper-atmosphere-heating-from-ocean-generated-acoustic-wave-energy"><span>Upper Atmosphere Heating From Ocean-Generated Acoustic Wave Energy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Bowman, D. C.; Lees, J. M.</p> <p></p> <p>We present that colliding sea surface waves generate the ocean microbarom, an acoustic signal that may transmit significant energy to the upper atmosphere. Previous estimates of acoustic energy flux from the ocean microbarom and mountain-wind interactions are on the order of 0.01 to 1 mW/m 2, heating the thermosphere by tens of Kelvins per day. We captured upgoing ocean microbarom waves with a balloon-borne infrasound microphone; the maximum acoustic energy flux was approximately 0.05 mW/m 2. This is about half the average value reported in previous ground-based microbarom observations spanning 8 years. The acoustic flux from the microbarom episode describedmore » here may have heated the thermosphere by several Kelvins per day while the source persisted. Lastly, we suggest that ocean wave models could be used to parameterize acoustically generated heating of the upper atmosphere based on sea state.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45.2424C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45.2424C"><span>Abyssal Upwelling in Mid-Ocean Ridge Fracture Zones</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Clément, Louis; Thurnherr, Andreas M.</p> <p>2018-03-01</p> <p>Turbulence in the abyssal ocean plays a fundamental role in the climate system by sustaining the deepest branch of the overturning circulation. Over the western flank of the Mid-Atlantic Ridge in the South Atlantic, previously observed bottom-intensified and tidally modulated mixing of abyssal waters appears to imply a counterintuitive densification of deep and bottom waters. Here we show that inside fracture zones, however, turbulence is elevated away from the seafloor because of intensified downward propagating near-inertial wave energy, which decays below a subinertial shear maximum. Ray-tracing simulations predict a decay of wave energy subsequent to wave-mean flow interactions. The hypothesized wave-mean flow interactions drive a deep flow toward lighter densities of up to 0.6 Sv over the mid-ocean ridge flank in the Brazil Basin, and the same process may also cause upwelling of abyssal waters in other ocean basins with mid-ocean ridges with fracture zones.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017BoLMe.tmp....5T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017BoLMe.tmp....5T"><span>Influence of the Surf Zone on the Marine Aerosol Concentration in a Coastal Area</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tedeschi, Gilles; van Eijk, Alexander M. J.; Piazzola, Jacques; Kusmierczyk-Michulec, Jolanta T.</p> <p>2017-01-01</p> <p>Sea-salt aerosol concentrations in the coastal zone are assessed with the numerical aerosol-transport model MACMod that applies separate aerosol source functions for open ocean and the surf zone near the sea-land transition. Numerical simulations of the aerosol concentration as a function of offshore distance from the surf zone compare favourably with experimental data obtained during a surf-zone aerosol experiment in Duck, North Carolina in autumn 2007. Based on numerical simulations, the effect of variations in aerosol production (source strength) and transport conditions (wind speed, air-sea temperature difference), we show that the surf-zone aerosols are replaced by aerosols generated over the open ocean as the airmass advects out to sea. The contribution from the surf-generated aerosol is significant during high wind speeds and high wave events, and is significant up to 30 km away from the production zone. At low wind speeds, the oceanic component dominates, except within 1-5 km of the surf zone. Similar results are obtained for onshore flow, where no further sea-salt aerosol production occurs as the airmass advects out over land. The oceanic aerosols that are well-mixed throughout the boundary layer are then more efficiently transported inland than are the surf-generated aerosols, which are confined to the first few tens of metres above the surface, and are therefore also more susceptible to the type of surface (trees or grass) that determines the deposition velocity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C51B0970C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C51B0970C"><span>Ocean Wave-to-Ice Energy Transfer Determined from Seafloor Pressure and Ice Shelf Seismic Observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Z.; Bromirski, P. D.; Gerstoft, P.; Stephen, R. A.; Wiens, D.; Aster, R. C.; Nyblade, A.</p> <p>2017-12-01</p> <p>Ice shelves play an important role in buttressing land ice from reaching the sea, thus restraining the rate of sea level rise. Long-period gravity wave impacts excite vibrations in ice shelves that may trigger tabular iceberg calving and/or ice shelf collapse events. Three kinds of seismic plate waves were continuously observed by broadband seismic arrays on the Ross Ice Shelf (RIS) and on the Pine Island Glacier (PIG) ice shelf: (1) flexural-gravity waves, (2) flexural waves, and (3) extensional Lamb waves, suggesting that all West Antarctic ice shelves are subjected to similar gravity wave excitation. Ocean gravity wave heights were estimated from pressure perturbations recorded by an ocean bottom differential pressure gauge at the RIS front, water depth 741 m, about 8 km north of an on-ice seismic station that is 2 km from the shelf front. Combining the plate wave spectrum, the frequency-dependent energy transmission and reflection at the ice-water interface were determined. In addition, Young's modulus and Poisson's ratio of the RIS are estimated from the plate wave motions, and compared with the widely used values. Quantifying these ice shelf parameters from observations will improve modeling of ice shelf response to ocean forcing, and ice shelf evolution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/49319-directional-ocean-wave-measurements-coastal-setting-using-focused-array-imaging-radar','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/49319-directional-ocean-wave-measurements-coastal-setting-using-focused-array-imaging-radar"><span>Directional ocean wave measurements in a coastal setting using a focused array imaging radar</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Frasier, S.J.; Liu, Y.; Moller, D.</p> <p>1995-03-01</p> <p>A unique focused array imaging Doppler radar was used to measure directional spectra of ocean surface waves in a nearshore experiment performed on the North Carolina Outer Banks. Radar images of the ocean surface`s Doppler velocity were used to generate two dimensional spectra of the radial component of the ocean surface velocity field. These are compared to simultaneous in-situ measurements made by a nearby array of submerged pressure sensors. Analysis of the resulting two-dimensional spectra include comparisons of dominant wave lengths, wave directions, and wave energy accounting for relative differences in water depth at the measurement locations. Limited estimates ofmore » the two-dimensional surface displacement spectrum are derived from the radar data. The radar measurements are analogous to those of interferometric synthetic aperture radars (INSAR), and the equivalent INSAR parameters are shown. The agreement between the remote and in-situ measurements suggests that an imaging Doppler radar is effective for these wave measurements at near grazing incidence angles.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018OcSci..14..337A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018OcSci..14..337A"><span>Measuring currents, ice drift, and waves from space: the Sea surface KInematics Multiscale monitoring (SKIM) concept</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ardhuin, Fabrice; Aksenov, Yevgueny; Benetazzo, Alvise; Bertino, Laurent; Brandt, Peter; Caubet, Eric; Chapron, Bertrand; Collard, Fabrice; Cravatte, Sophie; Delouis, Jean-Marc; Dias, Frederic; Dibarboure, Gérald; Gaultier, Lucile; Johannessen, Johnny; Korosov, Anton; Manucharyan, Georgy; Menemenlis, Dimitris; Menendez, Melisa; Monnier, Goulven; Mouche, Alexis; Nouguier, Frédéric; Nurser, George; Rampal, Pierre; Reniers, Ad; Rodriguez, Ernesto; Stopa, Justin; Tison, Céline; Ubelmann, Clément; van Sebille, Erik; Xie, Jiping</p> <p>2018-05-01</p> <p>We propose a satellite mission that uses a near-nadir Ka-band Doppler radar to measure surface currents, ice drift and ocean waves at spatial scales of 40 km and more, with snapshots at least every day for latitudes 75 to 82°, and every few days for other latitudes. The use of incidence angles of 6 and 12° allows for measurement of the directional wave spectrum, which yields accurate corrections of the wave-induced bias in the current measurements. The instrument's design, an algorithm for current vector retrieval and the expected mission performance are presented here. The instrument proposed can reveal features of tropical ocean and marginal ice zone (MIZ) dynamics that are inaccessible to other measurement systems, and providing global monitoring of the ocean mesoscale that surpasses the capability of today's nadir altimeters. Measuring ocean wave properties has many applications, including examining wave-current interactions, air-sea fluxes, the transport and convergence of marine plastic debris and assessment of marine and coastal hazards.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.9169A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.9169A"><span>Improvement of the free-surface tension model in shallow water basin by using in-situ bottom-friction measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Alekseenko, Elena; Kuznetsov, Konstantin; Roux, Bernard</p> <p>2016-04-01</p> <p>Wind stress on the free surface is the main driving force behind the circulation of the upper part of the ocean, which in hydrodynamic models are usually defined in terms of the coefficient of surface tension (Zhang et al., 2009, Davies et al., 2003). Moreover, wave motion impacts local currents and changes sea level, impacts the transport and the stratification of the entire water column. Influence of surface waves at the bottom currents is particularly pronounced in the shallow coastal systems. However, existing methods of parameterization of the surface tension have significant limits, especially in strong wind waves (Young et al., 2001, Jones et al., 2004) due to the difficulties of measuring the characteristics of surface waves in stormy conditions. Thus, the formula for calculating the coefficient of surface tension in our day is the actual problem in modeling fluid dynamics, particularly in the context of strong surface waves. In the hydrodynamic models usually a coefficient of surface tension is calculated once at the beginning of computation as a constant that depends on the averaged wind waves characteristic. Usually cases of strongly nonlinear wind waves are not taken into account, what significantly reduces the accuracy of the calculation of the flow structures and further calculation of the other processes in water basins, such as the spread of suspended matter and pollutants. Thus, wave motion influencing the pressure on the free surface and at the bottom must be considered in hydrodynamic models particularly in shallow coastal systems. A method of reconstruction of a free-surface drag coefficient based on the measured in-situ bottom pressure fluctuations is developed and applied in a three-dimensional hydrodynamic model MARS3D, developed by the French laboratory of IFREMER (IFREMER - French Research Institute for Marine Dynamics). MARS3D solves the Navier-Stokes equations for incompressible fluid in the Boussinesq approximation and with the hydrostatic assumption (Lazure and Dumas, 2008, Blumberg et al., 1986). Precisely, we introduce a formulation of the surface drag coefficient as a logarithmic function of the sea surface roughness (Zhang et al., 2009), which in turn can be predicted from the height and steepness of the waves (Taylor and Yelland, 2000), measured by the bottom pressure sensors. Using numerous field data, Taylor and Yelland (2000) showed that the surface drag coefficient values in lakes and sheltered waters are typically significantly higher than is observed in the open ocean. In particular, the effect of limited water depth is very significant in the case of the strong wind forcing. Wind waves propagating into shoaling water begin to be limited by bottom friction and become "younger". This kind of approach is used to predict a more relevant surface drag coefficient for the coastal areas of the Mediterranean Berre lagoon (France) for which experimental data of pressure measurements under storm conditions are available (Paquier, 2014). This is important to better understand the development problematics of the nearshore submerged aquatic vegetation (Alekseenko et al., 2013). *This work is supported by grant of Russian Foundation for Basic Research (RFBR) n°16-35-00526 and by the French Water Agency (Agence de l'Eau-RMC - convention n°2010-0042). References 1. E. Alekseenko E., Roux B., Sukhinov A., Kotarba R., Fougere D.: Near shoreline hydrodynamics in a Mediterranean lagoon. Nonlinear Processes in Geophysics, 20, 189-198, 2013. 2. Blumberg A.F. and Mellor G.L.: A description of a Tree-Dimensional Coastal Ocean Circulation Model, Geophysical Fluid Dynamics Program, Princeton Univ., Princeton, New Jersey, 1-16, 1986. 3. Davies A., Xing M., Jiuxing I.: Processes influencing wind-induced current profiles in near coastal stratified regions. Continental Shelf Research 23 (14-15): 1379-1400, 2003. 4. Jones, I.S.F. and Toba Y. (Eds.): Wind Stress over the Ocean. Cambridge Univ. Press, 307pp, 2001. 5. Lazure P. and Dumas F.: An external-internal mode coupling for a 3D hydrodynamical model for applications at regional scale (MARS). Adv. Wat. Res. 31: 233-250, 2008. 6. Paquier A-E.: - Interactions de la dynamique hydro-sédimentaire avec les herbiers de phanérogames, Étang de Berre ; PhD thesis Aix-Marseille University; 27 Nov. 2014. 7. Taylor P. and Yelland M.: The Dependence of Sea Surface Roughness on the Height and Steepness of the Waves, Physical Oceanography, 2000. 8. Young I.R., Banner M.L., Donelan M.A., Babanin A.V., Melville W.K., Veron F., and McCormic C.: An Integrated Study of the Wind Wave Source Term Balance in Finite Depth Water, J. Atmos. Oceanic Technol. 22: 814-831, 2004. 9. Zhang H, Sannasiraj S.A., and Chan E.S.: Wind Wave Effects on Hydrodynamic Modeling of Ocean Circulation in the South China Sea, The Open Civil Engineering Journal, 3, 48-61, 2009.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOS.A24A2561T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOS.A24A2561T"><span>Impact of Ocean Surface Waves on Air-Sea Momentum Flux</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tamura, H.; Drennan, W. M.; Collins, C. O., III; Graber, H. C.</p> <p>2016-02-01</p> <p>In this study, we investigated the structure of turbulent air flow over ocean waves. Observations of wind and waves were retrieved by air-sea interaction spar (ASIS) buoys during the shoaling waves experiment (SHOWEX) in Duck, NC in 1999. It is shown that the turbulent velocity spectra and co-spectra for pure wind sea conditions follow the universal forms estimated by Miyake et al [1970]. In the presence of strong swells, the wave boundary layer was extended and the universal spectral scaling of u'w' broke down [Drennan et al, 1999]. On the other hand, the use of the peak wave frequency (fp) to reproduce the "universal spectra" succeeded at explaining the spectral structure of turbulent flow field. The u'w' co-spectra become negative near the fp, which suggests the upward momentum transport (i.e., negative wind stress) induced by ocean waves. Finally, we propose three turbulent flow structures for different wind-wave regimes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.S43A2809A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.S43A2809A"><span>Near Field Ocean Surface Waves Acoustic Radiation Observation and Modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ardhuin, F.; Peureux, C.; Royer, J. Y.</p> <p>2016-12-01</p> <p>The acoustic noise generation by nonlinearly interacting surface gravity waves has been studied for a long time both theoretically and experimentally [Longuet-Higgins 1951]. The associated far field noise is continuously measured by a vast network of seismometers at the ocean bottom and on the continents. It can especially be used to infer the time variability of short ocean waves statistics [Peureux and Ardhuin 2016]. However, better quantitative estimates of the latter are made difficult due to a poor knowledge of the Earth's crust characteristics, whose coupling with acoustic modes can affect large uncertainties to the frequency response at the bottom of the ocean.The pressure field at depths less than an acoustic wave length to the surface is made of evanescent modes which vanish away from their sources (near field) [Cox and Jacobs 1989]. For this reason, they are less affected by the ocean bottom composition. This near field is recorded and analyzed in the frequency range 0.1 to 0.5 Hz approximately, at two locations : at a shallow site in the North-East Atlantic continental shelf and a deep water site in the Southern Indian ocean, where pressure measurements are performed at the ocean bottom (ca. 100 m) and at 300 m water depth respectively. Evanescent and propagating Rayleigh modes are compared against theoretical predictions. Comparisons against surface waves hindcast based on WAVEWATCH(R) III modeling framework help assessing its performances and can be used to help future model improvements.References Longuet-Higgins, M. S., A Theory of the Origin of Microseisms, Philos. Trans. Royal Soc. A, 1950, 243, 1-3. Peureux, C. and Ardhuin, F., Ocean bottom pressure records from the Cascadia array and short surface gravity waves, J. Geophys. Res. Oceans, 2016, 121, 2862-2873. Cox, C. S. & Jacobs, D. C., Cartesian diver observations of double frequency pressure fluctuations in the upper levels of the ocean, Geophys. Res. Lett., 1989, 16, 807-810.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMOS11C1659R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMOS11C1659R"><span>The influence of spatially and temporally high-resolution wind forcing on the power input to near-inertial waves in the ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rimac, A.; Eden, C.; von Storch, J.</p> <p>2012-12-01</p> <p>Coexistence of stable stratification, the meridional overturning circulation and meso-scale eddies and their influence on the ocean's circulation still raise complex questions concerning the ocean energetics. Oceanic general circulation is mainly forced by the wind field and deep water tides. Its essential energetics are the conversion of kinetic energy of the winds and tides into oceanic potential and kinetic energy. Energy needed for the circulation is bound to internal wave fields. Direct internal wave generation by the wind at the sea surface is one of the sources of this energy. Previous studies using mixed-layer type of models and low frequency wind forcings (six-hourly and daily) left room for improvement. Using mixed-layer models it is not possible to assess the distribution of near-inertial energy into the deep ocean. Also, coarse temporal resolution of wind forcing strongly underestimates the near-inertial wave energy. To overcome this difficulty we use a high resolution ocean model with high frequency wind forcings. We establish the following model setup: We use the Max Planck Institute Ocean Model (MPIOM) on a tripolar grid with 45km horizontal resolution and 40 vertical levels. We run the model with wind forcings that vary in horizontal (250km versus 40km) and temporal resolution (six versus one-hourly). In our study we answer the following questions: How big is the wind kinetic energy input to the near-inertial waves? Is the kinetic energy of the near-inertial waves enhanced when high-frequency wind forcings are used? If so, by how much and why, due to higher level of temporal wind variability or due to better spatial representation of the near-inertial waves? How big is the total power of near-inertial waves generated by the wind at the surface of the ocean? We run the model for one year. Our model results show that the near-inertial waves are excited both using wind forcings of high and low horizontal and temporal resolution. Near-inertial energy is almost two times higher when we force the model with high frequency wind forcings. The influence on the energy mostly depends on the time difference between two forcing fields while the spatial difference has little influence.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27731411','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27731411"><span>Ocean rogue waves and their phase space dynamics in the limit of a linear interference model.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Birkholz, Simon; Brée, Carsten; Veselić, Ivan; Demircan, Ayhan; Steinmeyer, Günter</p> <p>2016-10-12</p> <p>We reanalyse the probability for formation of extreme waves using the simple model of linear interference of a finite number of elementary waves with fixed amplitude and random phase fluctuations. Under these model assumptions no rogue waves appear when less than 10 elementary waves interfere with each other. Above this threshold rogue wave formation becomes increasingly likely, with appearance frequencies that may even exceed long-term observations by an order of magnitude. For estimation of the effective number of interfering waves, we suggest the Grassberger-Procaccia dimensional analysis of individual time series. For the ocean system, it is further shown that the resulting phase space dimension may vary, such that the threshold for rogue wave formation is not always reached. Time series analysis as well as the appearance of particular focusing wind conditions may enable an effective forecast of such rogue-wave prone situations. In particular, extracting the dimension from ocean time series allows much more specific estimation of the rogue wave probability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5059714','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5059714"><span>Ocean rogue waves and their phase space dynamics in the limit of a linear interference model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Birkholz, Simon; Brée, Carsten; Veselić, Ivan; Demircan, Ayhan; Steinmeyer, Günter</p> <p>2016-01-01</p> <p>We reanalyse the probability for formation of extreme waves using the simple model of linear interference of a finite number of elementary waves with fixed amplitude and random phase fluctuations. Under these model assumptions no rogue waves appear when less than 10 elementary waves interfere with each other. Above this threshold rogue wave formation becomes increasingly likely, with appearance frequencies that may even exceed long-term observations by an order of magnitude. For estimation of the effective number of interfering waves, we suggest the Grassberger-Procaccia dimensional analysis of individual time series. For the ocean system, it is further shown that the resulting phase space dimension may vary, such that the threshold for rogue wave formation is not always reached. Time series analysis as well as the appearance of particular focusing wind conditions may enable an effective forecast of such rogue-wave prone situations. In particular, extracting the dimension from ocean time series allows much more specific estimation of the rogue wave probability. PMID:27731411</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFMOS51B1311F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFMOS51B1311F"><span>A unified spectral,parameterization for wave breaking: from the deep ocean to the surf zone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Filipot, J.</p> <p>2010-12-01</p> <p>A new wave-breaking dissipation parameterization designed for spectral wave models is presented. It combines wave breaking basic physical quantities, namely, the breaking probability and the dissipation rate per unit area. The energy lost by waves is fi[|#12#|]rst calculated in the physical space before being distributed over the relevant spectral components. This parameterization allows a seamless numerical model from the deep ocean into the surf zone. This transition from deep to shallow water is made possible by a dissipation rate per unit area of breaking waves that varies with the wave height, wavelength and water depth.The parameterization is further tested in the WAVEWATCH III TM code, from the global ocean to the beach scale. Model errors are smaller than with most specialized deep or shallow water parameterizations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26723303','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26723303"><span>Ocean acoustic reverberation tomography.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dunn, Robert A</p> <p>2015-12-01</p> <p>Seismic wide-angle imaging using ship-towed acoustic sources and networks of ocean bottom seismographs is a common technique for exploring earth structure beneath the oceans. In these studies, the recorded data are dominated by acoustic waves propagating as reverberations in the water column. For surveys with a small receiver spacing (e.g., <10 km), the acoustic wave field densely samples properties of the water column over the width of the receiver array. A method, referred to as ocean acoustic reverberation tomography, is developed that uses the travel times of direct and reflected waves to image ocean acoustic structure. Reverberation tomography offers an alternative approach for determining the structure of the oceans and advancing the understanding of ocean heat content and mixing processes. The technique has the potential for revealing small-scale ocean thermal structure over the entire vertical height of the water column and along long survey profiles or across three-dimensional volumes of the ocean. For realistic experimental geometries and data noise levels, the method can produce images of ocean sound speed on a smaller scale than traditional acoustic tomography.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018OcSci..14..259P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018OcSci..14..259P"><span>Estimation of oceanic subsurface mixing under a severe cyclonic storm using a coupled atmosphere-ocean-wave model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Prakash, Kumar Ravi; Nigam, Tanuja; Pant, Vimlesh</p> <p>2018-04-01</p> <p>A coupled atmosphere-ocean-wave model was used to examine mixing in the upper-oceanic layers under the influence of a very severe cyclonic storm Phailin over the Bay of Bengal (BoB) during 10-14 October 2013. The coupled model was found to improve the sea surface temperature over the uncoupled model. Model simulations highlight the prominent role of cyclone-induced near-inertial oscillations in subsurface mixing up to the thermocline depth. The inertial mixing introduced by the cyclone played a central role in the deepening of the thermocline and mixed layer depth by 40 and 15 m, respectively. For the first time over the BoB, a detailed analysis of inertial oscillation kinetic energy generation, propagation, and dissipation was carried out using an atmosphere-ocean-wave coupled model during a cyclone. A quantitative estimate of kinetic energy in the oceanic water column, its propagation, and its dissipation mechanisms were explained using the coupled atmosphere-ocean-wave model. The large shear generated by the inertial oscillations was found to overcome the stratification and initiate mixing at the base of the mixed layer. Greater mixing was found at the depths where the eddy kinetic diffusivity was large. The baroclinic current, holding a larger fraction of kinetic energy than the barotropic current, weakened rapidly after the passage of the cyclone. The shear induced by inertial oscillations was found to decrease rapidly with increasing depth below the thermocline. The dampening of the mixing process below the thermocline was explained through the enhanced dissipation rate of turbulent kinetic energy upon approaching the thermocline layer. The wave-current interaction and nonlinear wave-wave interaction were found to affect the process of downward mixing and cause the dissipation of inertial oscillations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1711176C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1711176C"><span>A climate-based multivariate extreme emulator of met-ocean-hydrological events for coastal flooding</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Camus, Paula; Rueda, Ana; Mendez, Fernando J.; Tomas, Antonio; Del Jesus, Manuel; Losada, Iñigo J.</p> <p>2015-04-01</p> <p>Atmosphere-ocean general circulation models (AOGCMs) are useful to analyze large-scale climate variability (long-term historical periods, future climate projections). However, applications such as coastal flood modeling require climate information at finer scale. Besides, flooding events depend on multiple climate conditions: waves, surge levels from the open-ocean and river discharge caused by precipitation. Therefore, a multivariate statistical downscaling approach is adopted to reproduce relationships between variables and due to its low computational cost. The proposed method can be considered as a hybrid approach which combines a probabilistic weather type downscaling model with a stochastic weather generator component. Predictand distributions are reproduced modeling the relationship with AOGCM predictors based on a physical division in weather types (Camus et al., 2012). The multivariate dependence structure of the predictand (extreme events) is introduced linking the independent marginal distributions of the variables by a probabilistic copula regression (Ben Ayala et al., 2014). This hybrid approach is applied for the downscaling of AOGCM data to daily precipitation and maximum significant wave height and storm-surge in different locations along the Spanish coast. Reanalysis data is used to assess the proposed method. A commonly predictor for the three variables involved is classified using a regression-guided clustering algorithm. The most appropriate statistical model (general extreme value distribution, pareto distribution) for daily conditions is fitted. Stochastic simulation of the present climate is performed obtaining the set of hydraulic boundary conditions needed for high resolution coastal flood modeling. References: Camus, P., Menéndez, M., Méndez, F.J., Izaguirre, C., Espejo, A., Cánovas, V., Pérez, J., Rueda, A., Losada, I.J., Medina, R. (2014b). A weather-type statistical downscaling framework for ocean wave climate. Journal of Geophysical Research, doi: 10.1002/2014JC010141. Ben Ayala, M.A., Chebana, F., Ouarda, T.B.M.J. (2014). Probabilistic Gaussian Copula Regression Model for Multisite and Multivariable Downscaling, Journal of Climate, 27, 3331-3347.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMOS13D1559T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMOS13D1559T"><span>The Wave Glider°: A New Autonomous Surface Vehicle to Augment MBARI's Growing Fleet of Ocean Observing Systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tougher, B. B.</p> <p>2011-12-01</p> <p>Monterey Bay Aquarium Research Institute's (MBARI) evolving fleet of ocean observing systems has made it possible to collect information and data about a wide variety of ocean parameters, enabling researchers to better understand marine ecosystems. In collaboration with Liquid Robotics Inc, the designer of the Wave Glider autonomous surface vehicle (ASV), MBARI is adding a new capability to its suite of ocean observing tools. This new technology will augment MBARI research programs that use satellites, ships, moorings, drifters, autonomous underwater vehicles (AUVs) and remotely operated vehicles (ROVs) to improve data collection of temporally and spatially variable oceanographic features. The Wave Glider ASV derives its propulsion from wave energy, while sensors and communications are powered through the use of two solar panels and batteries, enabling it to remain at sea indefinitely. Wave Gliders are remotely controlled via real-time Iridium burst communications, which also permit real-time data telemetry. MBARI has developed Ocean Acidification (OA) moorings to continuously monitor the chemical and physical changes occurring in the ocean as a result of increased levels of atmospheric carbon dioxide (CO2). The moorings are spatially restricted by being anchored to the seafloor, so during the summer of 2011 the ocean acidification sensor suite designed for moorings was integrated into a Wave Glider ASV to increase both temporal and spatial ocean observation capabilities. The OA sensor package enables the measurement of parameters essential to better understanding the changing acidity of the ocean, specifically pCO2, pH, oxygen, salinity and temperature. The Wave Glider will also be equipped with a meteorological sensor suite that will measure air temperature, air pressure, and wind speed and direction. The OA sensor integration into a Wave Glider was part of MBARI's 2011 summer internship program. This project involved designing a new layout for the OA sensors within a Wave Glider aft payload dry box. The Wave Glider OA sensor suite includes the addition of a pCO2 standard tank not included within the current OA moorings. Communication links between MBARI electronics and Liquid Robotics Control and Communications were successfully established in the laboratory, however further steps to fully integrate and test the OA system into a Wave Glider ASV are still needed. In the future these ASVs will provide platforms for additional surface and subsurface instrumentation, particularly with MBARI's upcoming Controlled, Agile, and Novel, Observing Network (CANON) projects. The integration of the OA sensor package into a Wave Glider ASV will make it possible to continuously monitor the marine environment during adverse weather conditions which are often difficult to document but scientifically important.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16..634C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16..634C"><span>A laboratory experiment assessing the effect of sea ice on wave dumping</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cavaliere, Claudio; Alberello, Alberto; Bennetts, Luke; Meylan, Mike; Babanin, Alexander; Malavasi, Stefano; Toffoli, Alessandro</p> <p>2014-05-01</p> <p>Wave-ice interaction is a critical factor in the dynamics of the marginal ice zone (MIZ), the region between open ocean and an expanse of ice floes of varying size and shape. This interaction works both ways: while waves cause the fractures of ice floes, the presence of ice floes affects waves through scattering and various dissipative processes. In order to assess the latter, a laboratory experiment has been carried out in the coastal directional basin at Plymouth University. Sea ice has been simulated with two deformable plates: 1mX1m plastic sheet with variable thickness of polypropylene, which holds the same density (~0.9 g/cm3) of ice, and PVC Forex, which hold the same mechanical property of ice. Experiments have been conducted using monochromatic as well as random wave fields with different steepness and wavelengths (both shorter and larger than the floe). The wave field has been monitored before and after the simulated ice floe with a number of wave probes deployed along the basin, including a 6-probe array to track directional properties. On the whole, results show a substantial scattering and dissipation of the wave field, which appears to be dependent on the amount of overwash on the ice floe.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003EAEJA.....4216M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003EAEJA.....4216M"><span>Correcting wave predictions with artificial neural networks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Makarynskyy, O.; Makarynska, D.</p> <p>2003-04-01</p> <p>The predictions of wind waves with different lead times are necessary in a large scope of coastal and open ocean activities. Numerical wave models, which usually provide this information, are based on deterministic equations that do not entirely account for the complexity and uncertainty of the wave generation and dissipation processes. An attempt to improve wave parameters short-term forecasts based on artificial neural networks is reported. In recent years, artificial neural networks have been used in a number of coastal engineering applications due to their ability to approximate the nonlinear mathematical behavior without a priori knowledge of interrelations among the elements within a system. The common multilayer feed-forward networks, with a nonlinear transfer functions in the hidden layers, were developed and employed to forecast the wave characteristics over one hour intervals starting from one up to 24 hours, and to correct these predictions. Three non-overlapping data sets of wave characteristics, both from a buoy, moored roughly 60 miles west of the Aran Islands, west coast of Ireland, were used to train and validate the neural nets involved. The networks were trained with error back propagation algorithm. Time series plots and scatterplots of the wave characteristics as well as tables with statistics show an improvement of the results achieved due to the correction procedure employed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19750012893','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19750012893"><span>Project GEOS-C. [designed to measure the topography of ocean surface and the sea state</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1975-01-01</p> <p>An oceanographic-geodetic satellite, designated Geodynamics Experimental Ocean Satellite-C (GEOS-C), an earth-orbiting spacecraft designed to measure precisely the topography of the ocean surface and the sea state (wave height, wave period, wave propagation direction) is described. Launch operations, spacecraft description, and mission objectives are included along with a brief flight history of the NASA satellite geodesy program. Principal investigations to be performed by the GEOS-C mission are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70028957','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70028957"><span>Integrating field research, modeling and remote sensing to quantify morphodynamics in a high-energy coastal setting, ocean beach, San Francisco, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Barnard, P.L.; Hanes, D.M.</p> <p>2006-01-01</p> <p>Wave and coastal circulation modeling are combined with multibeam bathymetry, high-resolution beach surveys, cross-shore Personal Water Craft surveys, digital bed sediment camera surveys, and real-time video monitoring to quantify morphological change and nearshore processes at Ocean Beach, San Francisco. Initial SWAN (Simulating Waves Nearshore) wave modeling results show a focusing of wave energy at the location of an erosion hot spot on the southern end of Ocean Beach during prevailing northwest swell conditions. During El Nin??o winters, swell out of the west and southwest dominates the region, and although the wave energy is focused further to the north on Ocean Beach, the oblique wave approach sets up a strong northerly littoral drift, thereby starving the southern end of sediment, leaving it increasingly vulnerable to wave attack when the persistent northwest swell returns. An accurate assessment of the interaction between wave and tidal processes is crucial for evaluating coastal management options in an area that includes the annual dredging and disposal of ship channel sediment and an erosion hot spot that is posing a threat to local infrastructure. Copyright ASCE 2006.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19870009264','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19870009264"><span>Shuttle imaging radar-C science plan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1986-01-01</p> <p>The Shuttle Imaging Radar-C (SIR-C) mission will yield new and advanced scientific studies of the Earth. SIR-C will be the first instrument to simultaneously acquire images at L-band and C-band with HH, VV, HV, or VH polarizations, as well as images of the phase difference between HH and VV polarizations. These data will be digitally encoded and recorded using onboard high-density digital tape recorders and will later be digitally processed into images using the JPL Advanced Digital SAR Processor. SIR-C geologic studies include cold-region geomorphology, fluvial geomorphology, rock weathering and erosional processes, tectonics and geologic boundaries, geobotany, and radar stereogrammetry. Hydrology investigations cover arid, humid, wetland, snow-covered, and high-latitude regions. Additionally, SIR-C will provide the data to identify and map vegetation types, interpret landscape patterns and processes, assess the biophysical properties of plant canopies, and determine the degree of radar penetration of plant canopies. In oceanography, SIR-C will provide the information necessary to: forecast ocean directional wave spectra; better understand internal wave-current interactions; study the relationship of ocean-bottom features to surface expressions and the correlation of wind signatures to radar backscatter; and detect current-system boundaries, oceanic fronts, and mesoscale eddies. And, as the first spaceborne SAR with multi-frequency, multipolarization imaging capabilities, whole new areas of glaciology will be opened for study when SIR-C is flown in a polar orbit.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1982JGR....87.3397V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1982JGR....87.3397V"><span>The observation of ocean surface phenomena using imagery from the SEASAT synthetic aperture radar: An assessment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vesecky, John F.; Stewart, Robert H.</p> <p>1982-04-01</p> <p>Over the period July 4 to October 10, 1978, the SEASAT synthetic aperture radar (SAR) gathered 23 cm wavelength radar images of some 108 km2 of the earth's surface, mainly of ocean areas, at 25-40 m resolution. Our assessment is in terms of oceanographic and ocean monitoring objectives and is directed toward discovering the proper role of SAR imagery in these areas of interest. In general, SAR appears to have two major and somewhat overlapping roles: first, quantitative measurement of ocean phenomena, like long gravity waves and wind fields, as well as measurement of ships; second, exploratory observations of large-scale ocean phenomena, such as the Gulf Stream and its eddies, internal waves, and ocean fronts. These roles are greatly enhanced by the ability of 23 cm SAR to operate day or night and through clouds. To begin we review some basics of synthetic aperture radar and its implementation on the SEASAT spacecraft. SEASAT SAR imagery of the ocean is fundamentally a map of the radar scattering characteristics of ˜30 cm wavelength ocean waves, distorted in some cases by ocean surface motion. We discuss how wind stress, surface currents, long gravity waves, and surface films modulate the scattering properties of these resonant waves with particular emphasis on the mechanisms that could produce images of long gravity waves. Doppler effects by ocean motion are also briefly described. Measurements of long (wavelength ≳100 m) gravity waves, using SEASAT SAR imagery, are compared with surface measurements during several experiments. Combining these results we find that dominant wavelength and direction are measured by SEASAT SAR within ±12% and ±15°, respectively. However, we note that ocean waves are not always visible in SAR images and discuss detection criteria in terms of wave height, length, and direction. SAR estimates of omnidirectional wave height spectra made by assuming that SAR image intensity is proportional to surface height fluctuations are more similar to corresponding surface measurements of wave height spectra than to wave slope spectra. Because SEASAT SAR images show the radar cross section σ° of ˜30 cm waves (neglecting doppler effects), and because these waves are raised by wind stress on the ocean surface, wind measurements are possible. Comparison between wind speeds estimated from SEASAT SAR imagery and from the SEASAT satellite scatterometer (SASS) agreed to within ±0.7 m s- over a 350-km comparison track and for wind speeds from 2 to 15 m s-. The great potential of SAR wind measurements lies in studying the spatial structure of the wind field over a range of spatial scales of from ≲1 km to ≳100 km. At present, the spatial and temporal structure of ocean wind fields is largely unknown. Because SAR responds to short waves whose energy density is a function of wind stress at the surface rather than wind speed at some distance above the surface, variations in image intensity may also reflect changes in air-sea temperature difference (thus complicating wind measurements by SAR). Because SAR images show the effects of surface current shear, air-sea temperature difference, and surface films through their modulation of the ˜30 cm waves, SEASAT images can be used to locate and study the Gulf Stream and related warm water rings, tidal flows at inlets, internal waves, and slicks resulting from surface films. In many of these applications, SAR provides a remote sensing capability that is complementary to infrared imagery because the two techniques sense largely different properties, namely, surface roughness and temperature. Both stationary ships and moving ships with their attendant wakes are often seen in SAR images. Ship images can be used to estimate ship size, heading, and speed. However, ships known to be in areas imaged by SAR are not always detectable. Clearly, a variety of factors, such as image resolution, ship size, sea state, and winds could affect ship detection. Overall, the role of SAR imagery in oceanography is definitely evolving at this time, but its ultimate role is unclear. We have assessed the ability of SEASAT SAR to measure a variety of ocean phenomena and have commented briefly on applications. In the end, oceanographers and others will have to judge from these capabilities the proper place for SAR in oceanography and remote sensing of the ocean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Geomo.306..314K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Geomo.306..314K"><span>Barrier spit recovery following the 2004 Indian Ocean tsunami at Pakarang Cape, southwest Thailand</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Koiwa, Naoto; Takahashi, Mio; Sugisawa, Shuhei; Ito, Akifumi; Matsumoto, Hide-aki; Tanavud, Charlchai; Goto, Kazuhisa</p> <p>2018-04-01</p> <p>The 2004 Indian Ocean tsunami had notable impacts on coastal landforms. Temporal change in topography by coastal erosion and subsequent formation of a new barrier spit on the nearshore of Pakrang Cape, southeastern Thailand, had been monitored for 10 years since 2005 based on field measurement using satellite images, high-resolution differential GPS, and/or handy GPS. Monitored topography data show that a barrier island was formed offshore from the cape several months after the tsunami event through progradation of multiple elongated gravelly beach ridges and washover fan composed of coral gravels. Subsequently, the barrier spit expanded to the open sea. The progradation and expansion were supported by supply of a large amount of coral debris produced by the tsunami waves. These observations provide useful data to elucidate processes of change in coastal landforms after a tsunami event. The 2004 Indian Ocean tsunami played an important role in barrier spit evolution over a period of at least a decade.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..44.5599R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..44.5599R"><span>Intense deformation field at oceanic front inferred from directional sea surface roughness observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rascle, Nicolas; Molemaker, Jeroen; Marié, Louis; Nouguier, Frédéric; Chapron, Bertrand; Lund, Björn; Mouche, Alexis</p> <p>2017-06-01</p> <p>Fine-scale current gradients at the ocean surface can be observed by sea surface roughness. More specifically, directional surface roughness anomalies are related to the different horizontal current gradient components. This paper reports results from a dedicated experiment during the Lagrangian Submesoscale Experiment (LASER) drifter deployment. A very sharp front, 50 m wide, is detected simultaneously in drifter trajectories, sea surface temperature, and sea surface roughness. A new observational method is applied, using Sun glitter reflections during multiple airplane passes to reconstruct the multiangle roughness anomaly. This multiangle anomaly is consistent with wave-current interactions over a front, including both cross-front convergence and along-front shear with cyclonic vorticity. Qualitatively, results agree with drifters and X-band radar observations. Quantitatively, the sharpness of roughness anomaly suggests intense current gradients, 0.3 m s-1 over the 50 m wide front. This work opens new perspectives for monitoring intense oceanic fronts using drones or satellite constellations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JGRC..118.6759Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JGRC..118.6759Z"><span>Low-frequency western Pacific Ocean sea level and circulation changes due to the connectivity of the Philippine Archipelago</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhuang, Wei; Qiu, Bo; Du, Yan</p> <p>2013-12-01</p> <p>Interannual-to-decadal sea level and circulation changes associated with the oceanic connectivity around the Philippine Archipelago are studied using satellite altimeter sea surface height (SSH) data and a reduced gravity ocean model. SSHs in the tropical North Pacific, the Sulu Sea and the eastern South China Sea (ESCS) display very similar low-frequency oscillations that are highly correlated with El Niño and Southern Oscillation. Model experiments reveal that these variations are mainly forced by the low-frequency winds over the North Pacific tropical gyre and affected little by the winds over the marginal seas and the North Pacific subtropical gyre. The wind-driven baroclinic Rossby waves impinge on the eastern Philippine coast and excite coastal Kelvin waves, conveying the SSH signals through the Sibutu Passage-Mindoro Strait pathway into the Sulu Sea and the ESCS. Closures of the Luzon Strait, Karimata Strait, and ITF passages have little impacts on the low-frequency sea level changes in the Sulu Sea and the ESCS. The oceanic pathway west of the Philippine Archipelago modulates the western boundary current system in the tropical North Pacific. Opening of this pathway weakens the time-varying amplitudes of the North Equatorial Current bifurcation latitude and Kuroshio transport. Changes of the amplitudes can be explained by the conceptual framework of island rule that allows for baroclinic adjustment. Although it fails to capture the interannual changes in the strongly nonlinear Mindanao Current, the time-dependent island rule is nevertheless helpful in clarifying the role of the archipelago in regulating its multidecadal variations.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19940007285&hterms=marginal&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dmarginal','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19940007285&hterms=marginal&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dmarginal"><span>Waves and mesoscale features in the marginal ice zone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Liu, Antony K.; Peng, Chih Y.</p> <p>1993-01-01</p> <p>Ocean-ice interaction processes in the Marginal Ice Zone (MIZ) by waves and mesoscale features, such as upwelling and eddies, are studied using ERS-1 Synthetic Aperture Radar (SAR) imagery and wave-ice interaction models. Satellite observations of mesoscale features can play a crucial role in ocean-ice interaction study.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMOS31A1385K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMOS31A1385K"><span>The Occurrence of Tidal Hybrid Kelvin-Edge Waves in the Global Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kaur, H.; Buijsman, M. C.; Yankovsky, A. E.; Zhang, T.; Jeon, C. H.</p> <p>2017-12-01</p> <p>This study presents the analysis of hybrid Kelvin-edge waves on the continental shelves in a global ocean model. Our objective is to find areas where the transition occurs from Kelvin waves to hybrid Kelvin-edge waves. The change in continental shelf width may convert a Kelvin wave into a hybrid Kelvin-edge wave. In this process the group velocity reaches a minimum and tidal energy is radiated on and/or offshore [Zhang 2016]. We extract M2 SSH (Sea Surface Height) and velocity from the Hybrid Coordinate Ocean Model (HYCOM) and calculate barotropic energy fluxes. We analyze these three areas: the Bay of Biscay, the Amazon Shelf and North West Africa. In these three regions, the continental shelf widens in the propagation direction and the alongshore flux changes its direction towards the coast. A transect is taken at different points in these areas to compute the dispersion relations of the waves on the continental shelf. In model simulations, we change the bathymetry of the Bay of Biscay to study the behavior of the hybrid Kelvin-edge waves. BibliographyZhang, T., and A. E Yankovsky. (2016), On the nature of cross-isobath energy fluxes in topographically modified barotropic semidiurnal Kelvin waves, J. Geophys. Res. Oceans, 121, 3058-3074, doi:10.1002/2015JC011617.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMEP43C1902C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMEP43C1902C"><span>Towards high fidelity numerical wave tanks for modelling coastal and ocean engineering processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cozzuto, G.; Dimakopoulos, A.; de Lataillade, T.; Kees, C. E.</p> <p>2017-12-01</p> <p>With the increasing availability of computational resources, the engineering and research community is gradually moving towards using high fidelity Comutational Fluid Mechanics (CFD) models to perform numerical tests for improving the understanding of physical processes pertaining to wave propapagation and interaction with the coastal environment and morphology, either physical or man-made. It is therefore important to be able to reproduce in these models the conditions that drive these processes. So far, in CFD models the norm is to use regular (linear or nonlinear) waves for performing numerical tests, however, only random waves exist in nature. In this work, we will initially present the verification and validation of numerical wave tanks based on Proteus, an open-soruce computational toolkit based on finite element analysis, with respect to the generation, propagation and absorption of random sea states comprising of long non-repeating wave sequences. Statistical and spectral processing of results demonstrate that the methodologies employed (including relaxation zone methods and moving wave paddles) are capable of producing results of similar quality to the wave tanks used in laboratories (Figure 1). Subsequently cases studies of modelling complex process relevant to coastal defences and floating structures such as sliding and overturning of composite breakwaters, heave and roll response of floating caissons are presented. Figure 1: Wave spectra in the numerical wave tank (coloured symbols), compared against the JONSWAP distribution</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70034812','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70034812"><span>Coherence of river and ocean conditions along the US West Coast during storms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Kniskern, T.A.; Warrick, J.A.; Farnsworth, K.L.; Wheatcroft, R.A.; Goni, M.A.</p> <p>2011-01-01</p> <p>The majority of water and sediment discharge from the small, mountainous watersheds of the US West Coast occurs during and immediately following winter storms. The physical conditions (waves, currents, and winds) within and acting upon the proximal coastal ocean during these winter storms strongly influence dispersal patterns. We examined this river-ocean temporal coherence for four coastal river-shelf systems of the US West Coast (Umpqua, Eel, Salinas, and Santa Clara) to evaluate whether specific ocean conditions occur during floods that may influence coastal dispersal of sediment. Eleven years of corresponding river discharge, wind, and wave data were obtained for each river-shelf system from USGS and NOAA historical records, and each record was evaluated for seasonal and event-based patterns. Because near-bed shear stresses due to waves influence sediment resuspension and transport, we used spectral wave data to compute and evaluate wave-generated bottom-orbital velocities. The highest values of wave energy and discharge for all four systems were consistently observed between October 15 and March 15, and there were strong latitudinal patterns observed in these data with lower discharge and wave energies in the southernmost systems. During floods we observed patterns of river-ocean coherence that differed from the overall seasonal patterns. For example, downwelling winds generally prevailed during floods in the northern two systems (Umpqua and Eel), whereas winds in the southern systems (Salinas and Santa Clara) were generally downwelling before peak discharge and upwelling after peak discharge. Winds not associated with floods were generally upwelling on all four river-shelf systems. Although there are seasonal variations in river-ocean coherence, waves generally led floods in the three northern systems, while they lagged floods in the Santa Clara. Combined, these observations suggest that there are consistent river-ocean coherence patterns along the US West Coast during winter storms and that these patterns vary substantially with latitude. These results should assist with future evaluations of flood plume formation and sediment fate along this coast. ?? 2011 Elsevier Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.8542C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.8542C"><span>Improved satellite observations in coastal areas from altimetry and SAR</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cipollini, Paolo; Martin, Adrien; Gommenginger, Christine; Calafat, Francisco</p> <p>2017-04-01</p> <p>The coastal environment is under constant pressure by natural forces and anthropogenic activities and is very sensitive to climate change. Observations of many physical and biological parameters are critical for its monitoring and management. Satellite observations constitute an efficient way to observe the global coastal environment, but ocean satellite observations have often been designed and optimised for the open ocean: algorithms and processing techniques need to be revisited and adapted for application in the coastal zone. A case in point is that of satellite altimetry, which over the oceans is regarded as one of the most successful remote sensing techniques, as it has allowed an unprecedented mapping of the ocean surface dynamics at the large- and meso-scale. With the improvements in orbit models, radar processing, atmospheric and geophysical effect corrections that have emerged over the years, altimetry gives today also a very accurate estimation of the rate of sea level rise and its geographical variability. However, altimetric data in the near-land strip (0 to 50 km from the coastline) are often flagged as bad and left unused, essentially owing to 1) difficulties with the corrections; and/or 2) the modification of the radar returns due to the presence of land in the footprint, which makes the fitting of the altimetric echoes with a waveform model (the so-called "retracking") problematic. Techniques to recover meaningful estimates of the altimeter-derived parameters (height, significant wave height and wind) in the coastal zone have been developed and lead to a number of new applications, which will be presented here. The new observation from coastal altimetry are highly synergistic with Synthetic Aperture Radar (SAR). SAR imagers measure the backscattered signal from the ocean surface at spatial resolution better than 100m. This backscattered signal gives knowledge on the sea surface roughness, which is related to wind and waves. The very high resolution enabled by this instrument makes it very promising for coastal application, but interpretation depends of information from numerical weather models that often lack accuracy and resolution in the coastal zone. A new technique, measuring the Doppler shift of the backscattered signal, permits to sense the motion of the ocean surface. Together with the water displacement associated with ocean currents, the SAR measurements are also affected by a Wind-wave induced Artefact Surface Velocity (WASV) caused by the velocity of Bragg scatterers and the orbital velocity of ocean surface gravity waves which can be of the order of 1m/s. By using the additional SAR Doppler information, it is possible either to improve wind retrieval by loosing the prior information on wind from numerical weather model, or to retrieve the surface current if the wind is well known. We will discuss how this information can be compared with the height and wind retrieval from coastal altimetry in the framework of the H2020 CEASELESS project.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSPO13B..02N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSPO13B..02N"><span>A Comparison Between Internal Waves Observed in the Southern Ocean and Lee Wave Generation Theory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nikurashin, M.; Benthuysen, J.; Naveira Garabato, A.; Polzin, K. L.</p> <p>2016-02-01</p> <p>Direct observations in the Southern Ocean report enhanced internal wave activity and turbulence in a few kilometers above rough bottom topography. The enhancement is co-located with the deep-reaching fronts of the Antarctic Circumpolar Current, suggesting that the internal waves and turbulence are sustained by near-bottom flows interacting with rough topography. Recent numerical simulations confirm that oceanic flows impinging on rough small-scale topography are very effective generators of internal gravity waves and predict vigorous wave radiation, breaking, and turbulence within a kilometer above bottom. However, a linear lee wave generation theory applied to the observed bottom topography and mean flow characteristics has been shown to overestimate the observed rates of the turbulent energy dissipation. In this study, we compare the linear lee wave theory with the internal wave kinetic energy estimated from finestructure data collected as part of the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES). We show that the observed internal wave kinetic energy levels are generally in agreement with the theory. Consistent with the lee wave theory, the observed internal wave kinetic energy scales quadratically with the mean flow speed, stratification, and topographic roughness. The correlation coefficient between the observed internal wave kinetic energy and mean flow and topography parameters reaches 0.6-0.8 for the 100-800 m vertical wavelengths, consistent with the dominant lee wave wavelengths, and drops to 0.2-0.5 for wavelengths outside this range. A better agreement between the lee wave theory and the observed internal wave kinetic energy than the observed turbulent energy dissipation suggests remote breaking of internal waves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMED41A0827B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMED41A0827B"><span>Slowing Ocean Acidification</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bravo, A.</p> <p>2016-12-01</p> <p>Currently our ocean's pH is 8.1, a decrease from 8.2 in the past 200 years since the beginning of the industrial revolution. The ocean absorbs about a third of the carbon dioxide (CO2) from the atmosphere, which is helpful to us, since reducing the amount of CO2 in the atmosphere shows global warming. However, what is the impact of all that CO2 on the ocean? I evaluated the effect of acidic water on bivalves, and found that the shells were broken down with exposure to increased acidity. I am concerned that continued ocean acidification will impact organisms that are unable to adapt to the changing ocean chemistry. While the US currently invests in alternative forms of energy including solar and wind, approximately 66% of our energy comes from sources that are releasing CO2 into the atmosphere. I want to explore the potential of wave energy as another form of renewable energy. When wind blows over the surface of the ocean, it creates a wave. Could this wave energy be a consistent clean energy source? Could a strategy to slow and reverse ocean acidification be found in the ocean?</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26ES..108e2013C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26ES..108e2013C"><span>A Wave Power Device with Pendulum Based on Ocean Monitoring Buoy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chai, Hui; Guan, Wanchun; Wan, Xiaozheng; Li, Xuanqun; Zhao, Qiang; Liu, Shixuan</p> <p>2018-01-01</p> <p>The ocean monitoring buoy usually exploits solar energy for power supply. In order to improve power supply capacity, this paper proposes a wave power device according to the structure and moving character of buoy. The wave power device composes of pendulum mechanism that converts wave energy into mechanical energy and energy storage mechanism where the mechanical energy is transferred quantitatively to generator. The hydrodynamic equation for the motion of buoy system with generator devise is established based on the potential flow theory, and then the characteristics of pendulum motion and energy conversion properties are analysed. The results of this research show that the proposed wave power devise is able to efficiently and periodically convert wave energy into power, and increasing the stiffness of energy storage spring is benefit for enhancing the power supply capacity of the buoy. This study provides a theory reference for the development of technology on wave power generator for ocean monitoring buoy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20000072434','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20000072434"><span>Arctic Climate and Atmospheric Planetary Waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cavalieri, D. J.; Haekkinen, S.</p> <p>2000-01-01</p> <p>Analysis of a fifty-year record (1946-1995) of monthly-averaged sea level pressure data provides a link between the phases of planetary-scale sea level pressure waves and Arctic Ocean and ice variability. Results of this analysis show: (1) a breakdown of the dominant wave I pattern in the late 1960's, (2) shifts in the mean phase of waves 1 and 2 since this breakdown, (3) an eastward shift in the phases of both waves 1 and 2 during the years of simulated cyclonic Arctic Ocean circulation relative to their phases during the years of anticyclonic circulation, (4) a strong decadal variability of wave phase associated with simulated Arctic Ocean circulation changes. Finally, the Arctic atmospheric circulation patterns that emerge when waves 1 and 2 are in their extreme eastern and western positions suggest an alternative approach to determine significant forcing patterns of sea ice and high-latitude variability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008APS..DFD.LU008W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008APS..DFD.LU008W"><span>Ocean Renewable Energy Research at U. New Hampshire</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wosnik, M.; Baldwin, K.; White, C.; Carter, M.; Gress, D.; Swift, R.; Tsukrov, I.; Kraft, G.; Celikkol, B.</p> <p>2008-11-01</p> <p>The University of New Hampshire (UNH) is strategically positioned to develop and evaluate wave and tidal energy extraction technologies, with much of the required test site infrastructure in place already. Laboratory facilities (wave/tow tanks, flumes, water tunnels) are used to test concept validation models (scale 1:25--100) and design models (scale 1:10--30). The UNH Open Ocean Aquaculture (OOA) site located 1.6 km south of the Isles of Shoals (10 km off shore) and the General Sullivan Bridge testing facility in the Great Bay Estuary are used to test process models (scale 1:3--15) and prototype/demonstration models (scale 1:1-- 4) of wave energy and tidal energy extraction devices, respectively. Both test sites are easily accessible and in close proximity of UNH, with off-the-shelf availability. The Great Bay Estuary system is one of the most energetic tidally driven estuaries on the East Coast of the U.S. The current at the General Sullivan bridge test facility reliably exceeds four knots over part of the tidal cycle. The OOA site is a ten year old, well established offshore test facility, and is continually serviced by a dedicated research vessel and operations/diving crew. In addition to an overview of the physical resources, results of recent field testing of half- and full-scale hydrokinetic turbines, and an analysis of recent acoustic Doppler surveys of the tidal estuary will be presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19940030691&hterms=performance+banks&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dperformance%2Bbanks','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19940030691&hterms=performance+banks&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dperformance%2Bbanks"><span>Observations with the ROWS instrument during the Grand Banks calibration/validation experiments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Vandemark, D.; Chapron, B.</p> <p>1994-01-01</p> <p>As part of a global program to validate the ocean surface sensors on board ERS-1, a joint experiment on the Grand Banks of Newfoundland was carried out in Nov. 1991. The principal objective was to provide a field validation of ERS-1 Synthetic Aperture Radar (SAR) measurement of ocean surface structure. The NASA-P3 aircraft measurements made during this experiment provide independent measurements of the ocean surface along the validation swath. The Radar Ocean Wave Spectrometer (ROWS) is a radar sensor designed to measure direction of the long wave components using spectral analysis of the tilt induced radar backscatter modulation. This technique greatly differs from SAR and thus, provides a unique set of measurements for use in evaluating SAR performance. Also, an altimeter channel in the ROWS gives simultaneous information on the surface wave height and radar mean square slope parameter. The sets of geophysical parameters (wind speed, significant wave height, directional spectrum) are used to study the SAR's ability to accurately measure ocean gravity waves. The known distortion imposed on the true directional spectrum by the SAR imaging mechanism is discussed in light of the direct comparisons between ERS-1 SAR, airborne Canadian Center for Remote Sensing (CCRS) SAR, and ROWS spectra and the use of the nonlinear ocean SAR transform.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.6373A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.6373A"><span>Advanced Geospatial Hydrodynamic Signals Analysis for Tsunami Event Detection and Warning</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Arbab-Zavar, Banafshe; Sabeur, Zoheir</p> <p>2013-04-01</p> <p>Current early tsunami warning can be issued upon the detection of a seismic event which may occur at a given location offshore. This also provides an opportunity to predict the tsunami wave propagation and run-ups at potentially affected coastal zones by selecting the best matching seismic event from a database of pre-computed tsunami scenarios. Nevertheless, it remains difficult and challenging to obtain the rupture parameters of the tsunamigenic earthquakes in real time and simulate the tsunami propagation with high accuracy. In this study, we propose a supporting approach, in which the hydrodynamic signal is systematically analysed for traces of a tsunamigenic signal. The combination of relatively low amplitudes of a tsunami signal at deep waters and the frequent occurrence of background signals and noise contributes to a generally low signal to noise ratio for the tsunami signal; which in turn makes the detection of this signal difficult. In order to improve the accuracy and confidence of detection, a re-identification framework in which a tsunamigenic signal is detected via the scan of a network of hydrodynamic stations with water level sensing is performed. The aim is to attempt the re-identification of the same signatures as the tsunami wave spatially propagates through the hydrodynamic stations sensing network. The re-identification of the tsunamigenic signal is technically possible since the tsunami signal at the open ocean itself conserves its birthmarks relating it to the source event. As well as supporting the initial detection and improving the confidence of detection, a re-identified signal is indicative of the spatial range of the signal, and thereby it can be used to facilitate the identification of certain background signals such as wind waves which do not have as large a spatial reach as tsunamis. In this paper, the proposed methodology for the automatic detection of tsunamigenic signals has been achieved using open data from NOAA with a recorded tsunami event in the Pacific Ocean. The new approach will be tested in the future on other oceanic regions including the Mediteranean Sea and North East Atlantic Ocean zones. Both authors acknowledge that the current research is currently conducted under the TRIDEC IP FP7 project[1] which involves the development of a system of systems for collaborative, complex and critical decision-support in evolving crises. [1] TRIDEC IP ICT-2009.4.3 Intelligent Information Management Project Reference: 258723. http://www.tridec-online.eu/home</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870007903&hterms=1043&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3D%2526%25231043','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870007903&hterms=1043&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3D%2526%25231043"><span>Deriving Two-Dimensional Ocean Wave Spectra and Surface Height Maps from the Shuttle Imaging Radar (SIR-B)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tilley, D. G.</p> <p>1986-01-01</p> <p>Directional ocean wave spectra were derived from Shuttle Imaging Radar (SIR-B) imagery in regions where nearly simultaneous aircraft-based measurements of the wave spectra were also available as part of the NASA Shuttle Mission 41G experiments. The SIR-B response to a coherently speckled scene is used to estimate the stationary system transfer function in the 15 even terms of an eighth-order two-dimensional polynomial. Surface elevation contours are assigned to SIR-B ocean scenes Fourier filtered using a empirical model of the modulation transfer function calibrated with independent measurements of wave height. The empirical measurements of the wave height distribution are illustrated for a variety of sea states.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.S54A..07W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.S54A..07W"><span>Teleseismic P wave coda from oceanic trench and other bathymetric features</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, W.; Ni, S.</p> <p>2012-12-01</p> <p>Teleseismic P waves are essential for studying rupture processes of great earthquakes, either in the back projection method or in finite fault inversion method involving of quantitative waveform modeling. In these studies, P waves are assumed to be direct P waves generated by localized patches of the ruptured fault. However, for some oceanic earthquakes happening near the subductiontrenches or mid-ocean ridges, we observed strong signals between P and PP are often observed on theat telseseismic networkdistances. These P wave coda signals show strong coherence and their amplitudes are sometimes comparable with those of the direct P wave or even higher for some special frequenciesfrequency band. With array analysis, we find that the coda's slowness is very close to that of the direct P wave, suggesting that they are generated near the source region. As the earthquakes occur near the trenches or mid-ocean ridges which are both featured by rapid variation of bathymetry, the coda waves are very probably generated by the scattered surface wave or S wave at the irregular bathymetry. Then, we apply the realistic bathymetry data to calculate the 3D synthetics and the coda can be well predicted by the synthetics. So the topography/bathymetry is confirmed to be the main source of the coda. The coda waves are so strong that it may affect the imaging rupture processes of ocean earthquakes, so the topography/bathymetry effect should be taken into account. However, these strong coda waves can also be used utilized to locate the oceanic earthquakes. The 3D synthetics demonstrate that the coda waves are dependent on both the specific bathymetry and the location of the earthquake. Given the determined bathymetry, the earthquake location can be constrained by the coda, e.g. the distance between trench and the earthquake can be determine from the relative arrival between the P wave and its coda which is generated by the trench. In order to locate the earthquakes using the bathymetry, it is indispensible to get all the 3D synthetics with possible different horizontal locations and depths of the earthquakes. However, the computation will be very expensive if using the numerical simulation in the whole medium. Considering that the complicated structure is only near the source region, we apply ray theory to interface full wave field from spectral-element simulation to get the teleseismic P waves. With this approach, computation efficiency is greatly improved and the relocation of the earthquake can be completed more efficiently. As for the relocation accuracy, it can be as high as 10km for the earthquakes near the trench. So it provides us another, sometimes most favorable, method to locate the ocean earthquakes with ground-truth accuracy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20000070367&hterms=temperature+variability&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dtemperature%2Bvariability','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20000070367&hterms=temperature+variability&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dtemperature%2Bvariability"><span>Seasonal-to-Interannual Variability in Antarctic Sea-Ice Dynamics, and Its Impact on Surface Fluxes and Water Mass Production</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Drinkwater, Mark R.</p> <p>1999-01-01</p> <p>Strong seasonal and interannual signals in Antarctic bottom-water outflow remain unexplained yet are highly correlated with anomalies in net sea-ice growth in coastal polynyas. The mechanisms responsible for driving salination and replenishment and rejuvenation of the dense shelf "source" waters likely also generate pulses of bottom water outflow. The objective of this research is to investigate time-scales of variability in the dynamics of sea-ice in the Southern Ocean in order to determine the primary sites for production of dense shelf waters. We are using a merged satellite/buoy sea-ice motion data set for the period 1978-present day to compute the dynamics of opening and closing of coastal polynyas over the continental shelf. The Ocean Circulation and Climate Advanced Model (OCCAM) ocean general circulation model with coupled sea-ice dynamics is presently forced using National Center for Environmental Prediction (NCEP) data to simulate fluxes and the salination impact of the ocean shelf regions. This work is relevant in the context of measuring the influence of polar sea-ice dynamics upon polar ocean characteristics, and thereby upon global thermohaline ocean circulation. Interannual variability in simulated net freezing rate in the Southern Weddell Sea is shown for the period 1986-1993. There is a pronounced maximum of ice production in 1988 and minimum in 1991 in response to anomalies in equatorward meridional wind velocity. This follows a similar approximate 8-year interannual cycle in Sea Surface Temperature (SST) and satellite-derived ice-edge anomalies reported elsewhere as the "Antarctic Circumpolar Wave." The amplitude of interannual fluctuations in annual net ice production are about 40% of the mean value, implying significant interannual variance in brine rejection and upper ocean heat loss. Southward anomalies in wind stress induce negative anomalies in open water production, which are observed in passive microwave satellite images. Thus, cycles of enhanced poleward wind stress reduce ice growth by compacting the ice along the coastline and closing open water in leads and polynyas. Model simulations confirm that years of low ice production, such as 1991, coincide with years of lower than normal bottom water outflow. Future plans include the assimilation of satellite ice concentrations and ice drift dynamics to more accurately constrain boundary conditions in the model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title50-vol10/pdf/CFR-2011-title50-vol10-sec648-15.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title50-vol10/pdf/CFR-2011-title50-vol10-sec648-15.pdf"><span>50 CFR 648.15 - Facilitation of enforcement.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-10-01</p> <p>... surfclam and ocean quahog vessel owners and operators. (1) Surfclam and ocean quahog open access permitted vessels. Vessel owners or operators issued an open access surfclam or ocean quahog open access permit for.../or an Open Access Herring Permit that fished with midwater trawl gear pursuant to § 648.80(d). Such...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOS.A34C2665B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOS.A34C2665B"><span>Approximate Stokes Drift Profiles and their use in Ocean Modelling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Breivik, O.; Biblot, J.; Janssen, P. A. E. M.</p> <p>2016-02-01</p> <p>Deep-water approximations to the Stokes drift velocity profile are explored as alternatives to the monochromatic profile. The alternative profiles investigated rely on the same two quantities required for the monochromatic profile, viz the Stokes transport and the surface Stokes drift velocity. Comparisons with parametric spectra and profiles under wave spectra from the ERA-Interim reanalysis and buoy observations reveal much better agreement than the monochromatic profile even for complex sea states. That the profiles give a closer match and a more correct shear has implications for ocean circulation models since the Coriolis-Stokes force depends on the magnitude and direction of the Stokes drift profile and Langmuir turbulence parameterizations depend sensitively on the shear of the profile. The NEMO general circulation ocean model was recently extended to incorporate the Stokes-Coriolis force along with two other wave-related effects. I will show some results from the coupled atmosphere-wave-ocean ensemble forecast system of ECMWF where these wave effects are now included in the ocean model component.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFM.S12A..04E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFM.S12A..04E"><span>Wide Angle Converted Shear Wave Analysis of North Atlantic Volcanic Rifted Continental Margins</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Eccles, J. D.; White, R. S.; Christie, P. A.</p> <p>2007-12-01</p> <p>High-quality, wide-angle, ocean bottom seismometer (OBS) data have been acquired with a low frequency (9 Hz) seismic source across the Faroes and Hatton Bank volcanic rifted continental margins in the North Atlantic. In these regions thick Tertiary flood basalt sequences provide a challenge to deep seismic imaging. S-wave arrivals, which are dominantly converted from P- to S-waves at the sediment-top basalt interface, were recorded at 170 4-component OBS locations. Variation in the conversion efficiency was observed along the profiles. Tomographic inversion of over 70,000 converted S-wave crustal diving waves and Moho reflections was performed to produce S-wave velocity models and hence, when combined with pre-existing P-wave velocity models, a measure of the Vp/Vs ratio structure of the crust. Resolution testing shows the structure of the oceanic crust and continent-ocean transition is generally well resolved on both profiles. Lateral and vertical changes in Vp/Vs resolves changing crustal composition within, and between, oceanic and continental crust, including regions in the lower crust at the continent-ocean transition with high P-wave velocities of up to 7.5 km/s and low Vp/Vs ratios of ~ 1.75 associated with intense high-temperature intrusion at the time of break-up. Vp/Vs ratios of 1.75-1.80 at the base of the thickened oceanic crust are also lower than generally reported in normal oceanic crust. The P-wave travel-time tomography revealed a low velocity zone (LVZ) beneath the basalt on the Faroes margin and additional constraint on the Vp/Vs of the LVZ beneath the Fugloy Ridge has been gained by analysing the relative travel-time delays between basalt and basement refractions for P- and S-waves. This approach is less subject to the velocity-depth ambiguity associated with velocity inversions than is the determination of P- or S- wave velocity alone. Comparison of the calculated Vp/Vs ratio and P-wave velocity with measurements from relevant lithologies reveals that the LVZ is likely to contain sill-intruded Paleocene sedimentary rock rather than igneous hyaloclastites similar to those found beneath the basalt in a nearby well. Immediately beneath the LVZ, a unit with Vp/Vs ratios of 1.80-1.85 and P-wave velocities of 5.5-6.0 km/s is interpreted as sill-intruded sedimentary rock of a pre-breakup Mesozoic basin. We thank C.J. Parkin, A.W. Roberts and L.K. Smith for their contributions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA527179','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA527179"><span>Excitation and Propagation of Short-Period Surface Waves in Young Seafloor</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2000-09-01</p> <p>These waves are essentially the equivalent of Lg in continental settings, although because there is no granite in the oceanic crust, they might better...attenuated, they stand out above the noise level as one of the most prominent signals on ocean -bottom seismometers (OBS). In the MELT Experiment, 51 ocean ... ocean -bottom seismometers Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of information is</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1912649P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1912649P"><span>Acoustic gravity microseismic pressure signal at shallow stations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Peureux, Charles; Ardhuin, Fabrice; Royer, Jean-Yves</p> <p>2017-04-01</p> <p>It has been known for decades that the background permanent seismic noise, the so-called microseimic signal, is generated by the nonlinear interaction of oppositely travelling ocean surface waves [Longuet-Higgins 1951]. It can especially be used to infer the time variability of short ocean waves statistics [Peureux and Ardhuin 2016]. However, better quantitative estimates of the latter are made difficult due to a poor knowledge of the Earth's crust characteristics, whose coupling with acoustic modes can affect large uncertainties to the frequency response at the bottom of the ocean. The pressure field at depths less than an acoustic wave length to the surface is made of evanescent acoustic-gravity modes [Cox and Jacobs 1989]. For this reason, they are less affected by the ocean bottom composition. This near field is recorded and analyzed in the frequency range 0.1 to 0.5 Hz approximately, at two locations : at a shallow site in the North-East Atlantic continental shelf and a deep water site in the Southern Indian ocean, at the ocean bottom and 100 m below sea-surface and in the upper part of the water column respectively. Evanescent and propagating Rayleigh modes are compared against theoretical predictions. Comparisons against surface waves hindcast based on WAVEWATCH(R) III modelling framework help assessing its performances and can be used to help future model improvements. References Longuet-Higgins, M. S., A Theory of the Origin of Microseisms, Philos. Trans. Royal Soc. A, The Royal Society, 1950, 243, 1-3. Peureux, C. and Ardhuin, F., Ocean bottom pressure records from the Cascadia array and short surface gravity waves, J. Geophys. Res. Oceans, 2016, 121, 2862-2873. Cox, C. S. & Jacobs, D. C., Cartesian diver observations of double frequency pressure fluctuations in the upper levels of the ocean, Geophys. Res. Lett., 1989, 16, 807-810.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014APS..DFDK14001P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014APS..DFDK14001P"><span>In Pursuit of Internal Waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Peacock, Thomas</p> <p>2014-11-01</p> <p>Orders of magnitude larger than surface waves, and so powerful that their generation impacts the lunar orbit, internal waves, propagating disturbances of a density-stratified fluid, are ubiquitous throughout the ocean and atmosphere. Following the discovery of the phenomenon of ``dead water'' by early Arctic explorers and the classic laboratory visualizations of the curious St. Andrew's Cross internal wave pattern, there has been a resurgence of interest in internal waves, inspired by their pivotal roles in local environmental and global climate processes, and their profound impact on ocean and aerospace engineering. We detail our widespread pursuit of internal waves through theoretical modeling, laboratory experiments and field studies, from the Pacific Ocean one thousand miles north and south of Hawaii, to the South China Sea, and on to the Arctic Ocean. We also describe our recent expedition to surf the most striking internal wave phenomenon of them all: the Morning Glory cloud in remote Northwest Australia. This work was supported by the National Science Foundation through a CAREER Grant OCE-064559 and through Grants OCE-1129757 and OCE-1357434, and by the Office of Naval Research through Grants N00014-09-1-0282, N00014-08-1-0390 and N00014-05-1-0575.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70146314','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70146314"><span>Book review: Rogue waves in the ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Geist, Eric L.</p> <p>2011-01-01</p> <p>Review info: Rogue Waves in the Ocean. Advances in Geophysical and Environmental Mechanics and Mathematics. By Christian Kharif, Efim Pelinovsky and Alexey Slunyaev, 2009. ISBN: 978-3540884187, xiii, 216 pp.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26963021','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26963021"><span>Spinal Cord Injuries in Wave-Riding Sports: The Influence of Environmental and Sport-Specific Factors.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Falconi, Audrey; Flick, David; Ferguson, Jason; Glorioso, John E</p> <p>2016-01-01</p> <p>Spinal cord injury is a nonfatal, catastrophic consequence of wave-riding sports. With surfing at the core, a multitude of activities have evolved that attempt to harness the power of ocean waves. The unique qualities of each wave-riding sport, in combination with the environmental factors of the ocean, define the risk for potential injuries. As wave-riding sports have become more advanced, athletes continue to push physical barriers. Taller waves are attempted while incorporating aerial maneuvers, all without protective equipment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11415369','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11415369"><span>Freak waves in random oceanic sea states.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Onorato, M; Osborne, A R; Serio, M; Bertone, S</p> <p>2001-06-18</p> <p>Freak waves are very large, rare events in a random ocean wave train. Here we study their generation in a random sea state characterized by the Joint North Sea Wave Project spectrum. We assume, to cubic order in nonlinearity, that the wave dynamics are governed by the nonlinear Schrödinger (NLS) equation. We show from extensive numerical simulations of the NLS equation how freak waves in a random sea state are more likely to occur for large values of the Phillips parameter alpha and the enhancement coefficient gamma. Comparison with linear simulations is also reported.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19940015965&hterms=gaussian&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dgaussian','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19940015965&hterms=gaussian&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dgaussian"><span>Near grazing scattering from non-Gaussian ocean surfaces</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kim, Yunjin; Rodriguez, Ernesto</p> <p>1993-01-01</p> <p>We investigate the behavior of the scattered electromagnetic waves from non-Gaussian ocean surfaces at near grazing incidence. Even though the scattering mechanisms at moderate incidence angles are relatively well understood, the same is not true for near grazing rough surface scattering. However, from the experimental ocean scattering data, it has been observed that the backscattering cross section of a horizontally polarized wave can be as large as the vertical counterpart at near grazing incidence. In addition, these returns are highly intermittent in time. There have been some suggestions that these unexpected effects may come from shadowing or feature scattering. Using numerical scattering simulations, it can be shown that the horizontal backscattering cannot be larger than the vertical one for the Gaussian surfaces. Our main objective of this study is to gain a clear understanding of scattering mechanisms underlying the near grazing ocean scattering. In order to evaluate the backscattering cross section from ocean surfaces at near grazing incidence, both the hydrodynamic modeling of ocean surfaces and an accurate near grazing scattering theory are required. For the surface modeling, we generate Gaussian surfaces from the ocean surface power spectrum which is derived using several experimental data. Then, weakly nonlinear large scale ocean surfaces are generated following Longuet-Higgins. In addition, the modulation of small waves by large waves is included using the conservation of wave action. For surface scattering, we use MOM (Method of Moments) to calculate the backscattering from scattering patches with the two scale shadowing approximation. The differences between Gaussian and non-Gaussian surface scattering at near grazing incidence are presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5046986','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5046986"><span>Decadal variability of extreme wave height representing storm severity in the northeast Atlantic and North Sea since the foundation of the Royal Society</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Taylor, P. H.; Gibson, R.</p> <p>2016-01-01</p> <p>Long-term estimation of extreme wave height remains a key challenge because of the short duration of available wave data, and also because of the possible impact of climate variability on ocean waves. Here, we analyse storm-based statistics to obtain estimates of extreme wave height at locations in the northeast Atlantic and North Sea using the NORA10 wave hindcast (1958–2011), and use a 5 year sliding window to examine temporal variability. The decadal variability is correlated to the North Atlantic oscillation and other atmospheric modes, using a six-term predictor model incorporating the climate indices and their Hilbert transforms. This allows reconstruction of the historic extreme climate back to 1661, using a combination of known and proxy climate indices. Significant decadal variability primarily driven by the North Atlantic oscillation is observed, and this should be considered for the long-term survivability of offshore structures and marine renewable energy devices. The analysis on wave climate reconstruction reveals that the variation of the mean, 99th percentile and extreme wave climates over decadal time scales for locations close to the dominant storm tracks in the open North Atlantic are comparable, whereas the wave climates for the rest of the locations including the North Sea are rather different. PMID:27713662</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..1513879H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..1513879H"><span>Physical measurements of breaking wave impact on a floating wave energy converter</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hann, Martyn R.; Greaves, Deborah M.; Raby, Alison</p> <p>2013-04-01</p> <p>Marine energy converter must both efficiently extract energy in small to moderate seas and also successfully survive storms and potential collisions. Extreme loads on devices are therefore an important consideration in their design process. X-MED is a SuperGen UKCMER project and is a collaboration between the Universities of Manchester, Edinburgh and Plymouth and the Scottish Association for Marine Sciences. Its objective is to extend the knowledge of extreme loads due to waves, currents, flotsam and mammal impacts. Plymouth Universities contribution to the X-MED project involves measuring the loading and response of a taut moored floating body due to steep and breaking wave impacts, in both long crested and directional sea states. These measurements are then to be reproduced in STAR-CCM+, a commercial volume of fluid CFD solver, so as to develop techniques to predict the wave loading on wave energy converters. The measurements presented here were conducted in Plymouth Universities newly opened COAST laboratories 35m long, 15.5m wide and 3m deep ocean basin. A 0.5m diameter taut moored hemispherical buoy was used to represent a floating wave energy device or support structure. The changes in the buoys 6 degree of freedom motion and mooring loads are presented due to focused breaking wave impacts, with the breaking point of the wave changed relative to the buoy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950057099&hterms=wave+oscillation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dwave%2Boscillation','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950057099&hterms=wave+oscillation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dwave%2Boscillation"><span>On a generating mechanism for Yanai waves and the 25-day oscillation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kelly, Brian G.; Meyers, Steven D.; O'Brien, James J.</p> <p>1995-01-01</p> <p>A spectral Chebyshev-collocation method applied to the linear, 1.5 layer reduced-gravity ocean model equations is used to study the dynamics of Yanai (or mixed Rossby-gravity) wave packets. These are of interest because of the observations of equatorial instability waves (which have the characteristics of Yanai waves) and their role in the momentum and heat budgets in the tropics. A series of experiments is performed to investigate the generation of the waves by simple cross-equatorial wind stress forcings in various configurations and the influence of a western boundary on the waves. They may be generated in the interior ocean as well as from a western boundary. The observations from all the oceans indicate that the waves have a preferential period and wavelength of around 25 days and 1000 km respectively. These properties are also seen in the model results and a plausible explanation is provided as being due to the dispersive properties of Yanai waves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19780016832','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19780016832"><span>Verification results for the Spectral Ocean Wave Model (SOWM) by means of significant wave height measurements made by the GEOS-3 spacecraft</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Pierson, W. J.; Salfi, R. E.</p> <p>1978-01-01</p> <p>Significant wave heights estimated from the shape of the return pulse wave form of the altimeter on GEOS-3 for forty-four orbit segments obtained during 1975 and 1976 are compared with the significant wave heights specified by the spectral ocean wave model (SOWM), which is the presently operational numerical wave forecasting model at the Fleet Numerical Weather Central. Except for a number of orbit segments with poor agreement and larger errors, the SOWM specifications tended to be biased from 0.5 to 1.0 meters too low and to have RMS errors of 1.0 to 1.4 meters. The much fewer larger errors can be attributed to poor wind data for some parts of the Northern Hemisphere oceans. The bias can be attributed to the somewhat too light winds used to generate the waves in the model. Other sources of error are identified in the equatorial and trade wind areas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012JGRC..117.0J08F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012JGRC..117.0J08F"><span>A unified spectral parameterization for wave breaking: From the deep ocean to the surf zone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Filipot, J.-F.; Ardhuin, F.</p> <p>2012-11-01</p> <p>A new wave-breaking dissipation parameterization designed for phase-averaged spectral wave models is presented. It combines wave breaking basic physical quantities, namely, the breaking probability and the dissipation rate per unit area. The energy lost by waves is first explicitly calculated in physical space before being distributed over the relevant spectral components. The transition from deep to shallow water is made possible by using a dissipation rate per unit area of breaking waves that varies with the wave height, wavelength and water depth. This parameterization is implemented in the WAVEWATCH III modeling framework, which is applied to a wide range of conditions and scales, from the global ocean to the beach scale. Wave height, peak and mean periods, and spectral data are validated using in situ and remote sensing data. Model errors are comparable to those of other specialized deep or shallow water parameterizations. This work shows that it is possible to have a seamless parameterization from the deep ocean to the surf zone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26067197','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26067197"><span>Time-Domain Simulation of Along-Track Interferometric SAR for Moving Ocean Surfaces.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yoshida, Takero; Rheem, Chang-Kyu</p> <p>2015-06-10</p> <p>A time-domain simulation of along-track interferometric synthetic aperture radar (AT-InSAR) has been developed to support ocean observations. The simulation is in the time domain and based on Bragg scattering to be applicable for moving ocean surfaces. The time-domain simulation is suitable for examining velocities of moving objects. The simulation obtains the time series of microwave backscattering as raw signals for movements of ocean surfaces. In terms of realizing Bragg scattering, the computational grid elements for generating the numerical ocean surface are set to be smaller than the wavelength of the Bragg resonant wave. In this paper, the simulation was conducted for a Bragg resonant wave and irregular waves with currents. As a result, the phases of the received signals from two antennas differ due to the movement of the numerical ocean surfaces. The phase differences shifted by currents were in good agreement with the theoretical values. Therefore, the adaptability of the simulation to observe velocities of ocean surfaces with AT-InSAR was confirmed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4507666','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4507666"><span>Time-Domain Simulation of Along-Track Interferometric SAR for Moving Ocean Surfaces</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Yoshida, Takero; Rheem, Chang-Kyu</p> <p>2015-01-01</p> <p>A time-domain simulation of along-track interferometric synthetic aperture radar (AT-InSAR) has been developed to support ocean observations. The simulation is in the time domain and based on Bragg scattering to be applicable for moving ocean surfaces. The time-domain simulation is suitable for examining velocities of moving objects. The simulation obtains the time series of microwave backscattering as raw signals for movements of ocean surfaces. In terms of realizing Bragg scattering, the computational grid elements for generating the numerical ocean surface are set to be smaller than the wavelength of the Bragg resonant wave. In this paper, the simulation was conducted for a Bragg resonant wave and irregular waves with currents. As a result, the phases of the received signals from two antennas differ due to the movement of the numerical ocean surfaces. The phase differences shifted by currents were in good agreement with the theoretical values. Therefore, the adaptability of the simulation to observe velocities of ocean surfaces with AT-InSAR was confirmed. PMID:26067197</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.8753V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.8753V"><span>Characterization of the Deep Water Surface Wave Variability in the California Current Region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Villas Bôas, Ana B.; Gille, Sarah T.; Mazloff, Matthew R.; Cornuelle, Bruce D.</p> <p>2017-11-01</p> <p>Surface waves are crucial for the dynamics of the upper ocean not only because they mediate exchanges of momentum, heat, energy, and gases between the ocean and the atmosphere, but also because they determine the sea state. The surface wave field in a given region is set by the combination of local and remote forcing. The present work characterizes the seasonal variability of the deep water surface wave field in the California Current region, as retrieved from over two decades of satellite altimetry data combined with wave buoys and wave model hindcast (WaveWatch III). In particular, the extent to which the local wind modulates the variability of the significant wave height, peak period, and peak direction is assessed. During spring/summer, regional-scale wind events of up to 10 m/s are the dominant forcing for waves off the California coast, leading to relatively short-period waves (8-10 s) that come predominantly from the north-northwest. The wave climatology throughout the California Current region shows average significant wave heights exceeding 2 m during most of the year, which may have implications for the planning and retrieval methods of the Surface Water and Ocean Topography (SWOT) satellite mission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.8810R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.8810R"><span>The influence of spatially and temporally high-resolution wind forcing on the power input to near-inertial waves in the ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rimac, Antonija; von Storch, Jin-Song; Eden, Carsten</p> <p>2013-04-01</p> <p>The estimated power required to sustain global general circulation in the ocean is about 2 TW. This power is supplied with wind stress and tides. Energy spectrum shows pronounced maxima at near-inertial frequency. Near-inertial waves excited by high-frequency winds represent an important source for deep ocean mixing since they can propagate into the deep ocean and dissipate far away from the generation sites. The energy input by winds to near-inertial waves has been studied mostly using slab ocean models and wind stress forcing with coarse temporal resolution (e.g. 6-hourly). Slab ocean models lack the ability to reproduce fundamental aspects of kinetic energy balance and systematically overestimate the wind work. Also, slab ocean models do not account the energy used for the mixed layer deepening or the energy radiating downward into the deep ocean. Coarse temporal resolution of the wind forcing strongly underestimates the near-inertial energy. To overcome this difficulty we use an eddy permitting ocean model with high-frequency wind forcing. We establish the following model setup: We use the Max Planck Institute Ocean Model (MPIOM) on a tripolar grid with 45 km horizontal resolution and 40 vertical levels. We run the model with wind forcings that vary in horizontal and temporal resolution. We use high-resolution (1-hourly with 35 km horizontal resolution) and low-resolution winds (6-hourly with 250 km horizontal resolution). We address the following questions: Is the kinetic energy of near-inertial waves enhanced when high-resolution wind forcings are used? If so, is this due to higher level of overall wind variability or higher spatial or temporal resolution of wind forcing? How large is the power of near-inertial waves generated by winds? Our results show that near-inertial waves are enhanced and the near-inertial kinetic energy is two times higher (in the storm track regions 3.5 times higher) when high-resolution winds are used. Filtering high-resolution winds in space and time, the near-inertial kinetic energy reduces. The reduction is faster when a temporal filter is used suggesting that the high-frequency wind forcing is more efficient in generating near-inertial wave energy than the small-scale wind forcing. Using low-resolution wind forcing the wind generated power to near-inertial waves is 0.55 TW. When we use high-resolution wind forcing the result is 1.6 TW meaning that the result increases by 300%.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70112515','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70112515"><span>Understanding processes controlling sediment transports at the mouth of a highly energetic inlet system (San Francisco Bay, CA)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Elias, Edwin P.L.; Hansen, Jeff E.; Barnard, P.L.; Jaffee, B.E.; Schoellhamer, D.H.</p> <p>2013-01-01</p> <p>San Francisco Bay is one of the largest estuaries along the U.S. West Coast and is linked to the Pacific Ocean through the Golden Gate, a 100 m deep bedrock inlet. A coupled wave, flow and sediment transport model is used to quantify the sediment linkages between San Francisco Bay, the Golden Gate, and the adjacent open coast. Flow and sediment transport processes are investigated using an ensemble average of 24 climatologically derived wave cases and a 24.8 h representative tidal cycle. The model simulations show that within the inlet, flow and sediment transport is tidally dominated and driven by asymmetry of the ebb and flood tides. Peak ebb velocities exceed the peak flood velocities in the narrow Golden Gate channel as a result of flow convergence and acceleration. Persistent flow and sediment gyres at the headland tips are formed that limit sediment transfer from the ebb-tidal delta to the inlet and into the bay. The residual transport pattern in the inlet is dominated by a lateral segregation with a large ebb-dominant sediment transport (and flow) prevailing along the deeper north side of the Golden Gate channel, and smaller flood dominant transports along the shallow southern margin. The seaward edge of the ebb-tidal delta largely corresponds to the seaward extent of strong tidal flows. On the ebb-tidal delta, both waves and tidal forcing govern flow and sediment transport. Wave focusing by the ebb-tidal delta leads to strong patterns of sediment convergence and divergence along the adjacent Ocean Beach.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.5592B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.5592B"><span>Approximate Stokes Drift Profiles and their use in Ocean Modelling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Breivik, Oyvind; Bidlot, Jea-Raymond; Janssen, Peter A. E. M.; Mogensen, Kristian</p> <p>2016-04-01</p> <p>Deep-water approximations to the Stokes drift velocity profile are explored as alternatives to the monochromatic profile. The alternative profiles investigated rely on the same two quantities required for the monochromatic profile, viz the Stokes transport and the surface Stokes drift velocity. Comparisons against parametric spectra and profiles under wave spectra from the ERA-Interim reanalysis and buoy observations reveal much better agreement than the monochromatic profile even for complex sea states. That the profiles give a closer match and a more correct shear has implications for ocean circulation models since the Coriolis-Stokes force depends on the magnitude and direction of the Stokes drift profile and Langmuir turbulence parameterizations depend sensitively on the shear of the profile. Of the two Stokes drift profiles explored here, the profile based on the Phillips spectrum is by far the best. In particular, the shear near the surface is almost identical to that influenced by the f-5 tail of spectral wave models. The NEMO general circulation ocean model was recently extended to incorporate the Stokes-Coriolis force along with two other wave-related effects. The ECWMF coupled atmosphere-wave-ocean ensemble forecast system now includes these wave effects in the ocean model component (NEMO).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.T11B2622P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.T11B2622P"><span>Differences in the lithosphere seismic structure along the Brazilian continental margin in the South Atlantic from travel time seismic tomography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Peres Rocha, M.; Azevedo, P. A. D.; Assumpcao, M.; Franca, G. S.; Marotta, G. S.</p> <p>2016-12-01</p> <p>Results of the P-wave travel-time seismic tomography method allowed observing differences in the seismic behavior of the lithosphere along the Brazilian continental margin in the South Atlantic. High velocity anomalies have predominance in the northern portion, which extends from the Rio de Janeiro to Alagoas States (between latitudes -22.5 and -8.5), and low velocity anomalies in the southern portion, which extends from Rio de Janeiro to Rio Grande do Sul States (between latitudes -30 and -22.5). Low velocities coincide spatially with the offshore high seismicity areas, as indicated by Assumpção (1998) and at the high velocities with low seismicity regions. The high velocity anomalies at northern portion are related to the cratonic and low-stretched lithosphere of San Francisco block that was connected to the Congo block before the opening of the Atlantic Ocean. Low velocities can be assigned to more weakened lithosphere, where it started the South Atlantic Ocean opening process. The oldest lithosphere in the South Atlantic, indicated by the magnetic anomalies of the oceanic floor, is higher in the southern part than in the northern part, suggesting that the continents in this region were separating, while the northern region was still connected to Africa, which could explain the lithospheric stretching process.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..11.4343Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..11.4343Y"><span>Development of Operational Wave-Tide-Storm surges Coupling Prediction System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>You, S. H.; Park, S. W.; Kim, J. S.; Kim, K. L.</p> <p>2009-04-01</p> <p>The Korean Peninsula is surrounded by the Yellow Sea, East China Sea, and East Sea. This complex oceanographic system includes large tides in the Yellow Sea and seasonally varying monsoon and typhoon events. For Korea's coastal regions, floods caused by wave and storm surges are among the most serious threats. To predict more accurate wave and storm surges, the development of coupling wave-tide-storm surges prediction system is essential. For the time being, wave and storm surges predictions are still made separately in KMA (Korea Meteorological Administration) and most operational institute. However, many researchers have emphasized the effects of tides and storm surges on wind waves and recommended further investigations into the effects of wave-tide-storm surges interactions and coupling module. In Korea, especially, tidal height and current give a great effect on the wave prediction in the Yellow sea where is very high tide and related research is not enough. At present, KMA has operated the wave (RWAM : Regional Wave Model) and storm surges/tide prediction system (STORM : Storm Surges/Tide Operational Model) for ocean forecasting. The RWAM is WAVEWATCH III which is a third generation wave model developed by Tolman (1989). The STORM is based on POM (Princeton Ocean Model, Blumberg and Mellor, 1987). The RWAM and STORM cover the northwestern Pacific Ocean from 115°E to 150°E and from 20°N to 52°N. The horizontal grid intervals are 1/12° in both latitudinal and longitudinal directions. These two operational models are coupled to simulate wave heights for typhoon case. The sea level and current simulated by storm surge model are used for the input of wave model with 3 hour interval. The coupling simulation between wave and storm surge model carried out for Typhoon Nabi (0514), Shanshan(0613) and Nari (0711) which were effected on Korea directly. We simulated significant wave height simulated by wave model and coupling model and compared difference between uncoupling and coupling cases for each typhoon. When the typhoon Nabi hit at southern coast of Kyushu, predicted significant wave height reached over 10 m. The difference of significant wave height between wave and wave-tide-storm surges model represents large variation at the southwestern coast of Korea with about 0.5 m. Other typhoon cases also show similar results with typhoon Nabi case. For typhoon Shanshan case the difference of significant wave height reached up to 0.3 m. When the typhoon Nari was affected in the southern coast of Korea, predicted significant wave height was about 5m. The typhoon Nari case also shows the difference of significant wave height similar with other typhoon cases. Using the observation from ocean buoy operated by KMA, we compared wave information simulated by wave and wave-storm surges coupling model. The significant wave height simulated by wave-tide-storm surges model shows the tidal modulation features in the western and southern coast of Korea. And the difference of significant wave height between two models reached up to 0.5 m. The coupling effect also can be identified in the wave direction, wave period and wave length. In addition, wave spectrum is also changeable due to coupling effect of wave-tide-storm surges model. The development, testing and application of a coupling module in which wave-tide-storm surges are incorporated within the frame of KMA Ocean prediction system, has been considered as a step forward in respect of ocean forecasting. In addition, advanced wave prediction model will be applicable to the effect of ocean in the weather forecasting system. The main purpose of this study is to show how the coupling module developed and to report on a series of experiments dealing with the sensitivities and real case prediction of coupling wave-tide-storm surges prediction system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1911801A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1911801A"><span>Small scale currents and ocean wave heights: from today's models to future satellite observations with CFOSAT and SKIM</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ardhuin, Fabrice; Gille, Sarah; Menemenlis, Dimitris; Rocha, Cesar; Rascle, Nicolas; Gula, Jonathan; Chapron, Bertrand</p> <p>2017-04-01</p> <p>Tidal currents and large oceanic currents, such as the Agulhas, Gulf Stream and Kuroshio, are known to modify ocean wave properties, causing extreme sea states that are a hazard to navigation. Recent advances in the understanding and modeling capability of ocean currents at scales of 10 km or less have revealed the ubiquitous presence of fronts and filaments. Based on realistic numerical models, we show that these structures can be the main source of variability in significant wave heights at scales less than 200 km, including important variations at 10 km. This current-induced variability creates gradients in wave heights that were previously overlooked and are relevant for extreme wave heights and remote sensing. The spectrum of significant wave heights is found to be of the order of 70⟨Hs ⟩2/(g2⟨Tm0,-1⟩2) times the current spectrum, where ⟨Hs ⟩ is the spatially-averaged significant wave height, ⟨Tm0,-1⟩ is the average energy period, and g is the gravity acceleration. This small scale variability is consistent with Jason-3 and SARAL along-track variability. We will discuss how future satellite mission with wave spectrometers can help observe these wave-current interactions. CFOSAT is due for launch in 2018, and SKIM is a proposal for ESA Earth Explorer 9.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..1412947R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..1412947R"><span>An operational coupled wave-current forecasting system for the northern Adriatic Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Russo, A.; Coluccelli, A.; Deserti, M.; Valentini, A.; Benetazzo, A.; Carniel, S.</p> <p>2012-04-01</p> <p>Since 2005 an Adriatic implementation of the Regional Ocean Modeling System (AdriaROMS) is being producing operational short-term forecasts (72 hours) of some hydrodynamic properties (currents, sea level, temperature, salinity) of the Adriatic Sea at 2 km horizontal resolution and 20 vertical s-levels, on a daily basis. The main objective of AdriaROMS, which is managed by the Hydro-Meteo-Clima Service (SIMC) of ARPA Emilia Romagna, is to provide useful products for civil protection purposes (sea level forecasts, outputs to run other forecasting models as for saline wedge, oil spills and coastal erosion). In order to improve the forecasts in the coastal area, where most of the attention is focused, a higher resolution model (0.5 km, again with 20 vertical s-levels) has been implemented for the northern Adriatic domain. The new implementation is based on the Coupled-Ocean-Atmosphere-Wave-Sediment Transport Modeling System (COAWST)and adopts ROMS for the hydrodynamic and Simulating WAve Nearshore (SWAN) for the wave module, respectively. Air-sea fluxes are computed using forecasts produced by the COSMO-I7 operational atmospheric model. At the open boundary of the high resolution model, temperature, salinity and velocity fields are provided by AdriaROMS while the wave characteristics are provided by an operational SWAN implementation (also managed by SIMC). Main tidal components are imposed as well, derived from a tidal model. Work in progress is oriented now on the validation of model results by means of extensive comparisons with acquired hydrographic measurements (such as CTDs or XBTs from sea-truth campaigns), currents and waves acquired at observational sites (including those of SIMC, CNR-ISMAR network and its oceanographic tower, located off the Venice littoral) and satellite-derived wave-heights data. Preliminary results on the forecast waves denote how, especially during intense storms, the effect of coupling can lead to significant variations in the wave heights. Part of the activity has been funded by the EU FP VII program (project "MICORE", contract n. 202798) and by the Regione Veneto regional law 15/2007 (Progetto "MARINA").</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhDT.......210M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhDT.......210M"><span>Development and application of gravity-capillary wave fourier analysis for the study of air-sea interaction physics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>MacKenzie Laxague, Nathan Jean</p> <p></p> <p>Short ocean waves play a crucial role in the physical coupling between the ocean and the atmosphere. This is particularly true for gravity-capillary waves, waves of a scale (O(0.01-0.1) m) such that they are similarly restored to equilibrium by gravitational and interfacial tension (capillary) effects. These waves are inextricably linked to the turbulent boundary layer processes which characterize near-interfacial flows, acting as mediators of the momentum, gas, and heat fluxes which bear greatly on surface material transport, tropical storms, and climatic processes. The observation of these waves and the fluid mechanical phenomena which govern their behavior has long posed challenges to the would-be observer. This is due in no small part to the delicacy of centimeter-scale waves and the sensitivity of their properties to disruption via tactile measurement. With the ever-growing interest in satellite remote sensing, direct observations of short wave characteristics are needed along coastal margins. These zones are characterized by a diversity of physical processes which can affect the short-scale sea surface topography that is directly sensed via radar backscatter. In a related vein, these observations are needed to more fully understand the specific hydrodynamic relationship between young, wind-generated gravity-capillary waves and longer gravity waves. Furthermore, understanding of the full oceanic current profile is hampered by a lack of observations in the near-surface domain (z = O(0.01-0.1) m), where flows can differ greatly from those at depth. Here I present the development of analytical techniques for describing gravity-capillary ocean surface waves in order to better understand their role in the mechanical coupling between the atmosphere and ocean. This is divided amongst a number of research topics, each connecting short ocean surface waves to a physical forcing process via the transfer of momentum. One involves the examination of the sensitivity of short ocean surface waves to atmospheric forcing. Another is the exploration of long wave-short wave interactions and their effects on air-sea interaction vis-a-vis hydrodynamic modulation. The third and final topic is the characterization of the gravity-capillary regime of the wavenumber-frequency spectrum for the purpose of retrieving near-surface, wind-driven current. All of these fit as part of the desire to more fully describe the mechanism by which momentum is transferred across the air-sea interface and to discuss the consequences of this flux in the very near-surface layer of the ocean. Gravity-capillary waves are found to have an outsize share of ocean surface roughness, with short wave spectral peaks showing a connection to turbulent atmospheric stress. Short wave modulation is found to occur strongest at high wavenumbers at the lowest wind speeds, with peak modulation occurring immediately downwind of the long wave crest. Furthermore, short scale roughness enhancement is found to occur upwind of the long wave crest for increasing wind forcing magnitude. Observations of the near-surface current profile show that flows retrieved via this method agree well with the results of camera-tracked dye. Application of this method to data collected in the mouth of the Columbia River (MCR) indicates the presence of a near-surface current component that departs considerably from the tidal flow and orients into the wind stress direction. These observations demonstrate that wind speed-based parameterizations may not be sufficient to estimate wind drift and hold implications for the way in which surface material (e.g., debris or spilled oil) transport is estimated when atmospheric stress is of relatively high magnitude or is steered off the mean wind direction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19840018114','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19840018114"><span>Anisotropic models of the upper mantle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Regan, J.; Anderson, D. L.</p> <p>1983-01-01</p> <p>Long period Rayleigh wave and Love wave dispersion data, particularly for oceanic areas, were not simultaneously satisfied by an isotropic structure. Available phase and group velocity data are inverted by a procedure which includes the effects of transverse anisotropy, an elastic dispersion, sphericity, and gravity. The resulting models, for the average Earth, average ocean and oceanic regions divided according to the age of the ocean floor, are quite different from previous results which ignore the above effects. The models show a low velocity zone with age dependent anisotropy and velocities higher than derived in previous surface wave studies. The correspondence between the anisotropy variation with age and a physical model based on flow aligned olivine is suggested.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013OcMod..70..152B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013OcMod..70..152B"><span>Wave-current interaction: Effect on the wave field in a semi-enclosed basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Benetazzo, A.; Carniel, S.; Sclavo, M.; Bergamasco, A.</p> <p>2013-10-01</p> <p>The effect on waves of the Wave-Current Interaction (WCI) process in the semi-enclosed Gulf of Venice (northern region of the Adriatic Sea) was investigated using the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system. COAWST relies on the ocean model ROMS (Regional Ocean Modeling System), the wave model SWAN (Simulating WAves Nearshore), and the CSTMS (Community Sediment Transport Modeling System) routines. The two-way data transfer between circulation and wave models was synchronous via MCT (Model Coupling Toolkit), with ROMS providing: current field, free surface elevation, and bathymetry to SWAN. For coupling, the 3-D current profiles were averaged using a formulation which integrated the near-surface velocity over a depth controlled by the spectral mean wavenumber. COAWST system was implemented on a parent grid (with horizontal resolution of 2.0 km) covering the whole Adriatic Sea with one-way nesting to a child grid resolving the northern area (Gulf of Venice) at a resolution of 0.5 km. The meteorological forcings provided by the operational meteorological model COSMO-I7 (a mesoscale model developed in the framework of the COSMO Consortium) were used to drive the modeling system in the period bracketing September 2010-August 2011. The adopted winds and the simulated waves were compared with observations at the CNR-ISMAR Acqua Alta oceanographic tower, located off the Venice littoral. Wave heights and sea surface winds were also compared with satellite-derived data. The analysis of WCI was performed on the child grid over the winter season (January-March 2011) with particular focus on the waves generated by prevailing and dominant winds blowing on the Adriatic Sea: Bora and Sirocco. Due to the variable wind direction with respect to the ocean current direction different effects on WCI were depicted, showing that within the northern Adriatic Sea the ocean-wave interactions are strongly dependent on the wind forcing direction. Further investigations reveal that, when applied to intense storms, the effect of coupling on waves results in variations of significant wave height up to 0.6 m, with some areas experiencing significant increase/decrease of wave spectral energy for opposite/following currents respectively.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002EGSGA..27..229K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002EGSGA..27..229K"><span>Earth: Physico-mathematical Meaning of "primary" and "secondary" Oceans Conception</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kochemasov, G.</p> <p></p> <p>Geologists term the Pacific ocean "primary" and Atlantic and Indian oceans "sec- ondary" meaning that the first is larger, deeper, older (?) and plays more fundamental role in the Earth's tectonics. The wave planetology as hierarchically higher than geol- ogy (Earth is only one of planets and of many celestial bodies), states that all celestial bodies are dichotomic ( "Pacific" as a tectonic feature is found in any celestial body) and sectoral (i.g., the Arctic-Antarctic symptom is also in any body) (Theorems 1, 2 [1]). The tectonic dichotomy and sectoring are related to the first and second harmon- ica (wave1 and wave2) of warping standing waves appearing in any body just because they move in non-circular (elliptic, parabolic) orbits and hence inertia forces tend to distort original shapes. This disfiguring of a rotating body is not just a superficial fea- ture, it involves fundamental changes in the entire vertical section above and below surface rises and falls (Theorem 4 [1]). Here acts the law of angular momentum equi- libration. Thus, under the Pacific basin hollow -the deepest hollow produced by wave1 - mantle is denser than under the Atlantic and Indian oceanic basins - basins produced by wave2. We know it because squeezed out of mantle tholeiites in the mid-oceanic ridges are Fe-richer in Pacific than in other oceans. The "primary" ocean is thus a fundamental or "wave1" or 2pR-structure. The "secondary" oceans are "wave2" or pR-structures. pR-structures represented by continents, secondary oceans and basins and the "superswell" (Darwin rise) in the Pacific, i.e. by most important terrestrial lithospheric tectonic blocks, are distributed on the Earth's surface not randomly. As must be expected of the standing wave interference picture, the pR-structure pattern shows regular grouping around certain centres. There are 6 centres - vertices of an oc- tahedron occurring at equator (1, 2), tropics (3, 4) and polar circles (5, 6). They are: 1. New Guinea, 2. Equatorial Atlantic, 3. Easter Isl., 4. the Pamirs-Hindukush, 5. Bering Strait, 6. Bouvet Isl. There is expected antipodality between 1-2, 3-4, 5-6. The vertices of the structural octahedron combine around them sectors by a similar algorithm: there always converge two opposite differently uplifted sectors separated by two differently 1 subsided sectors. I.g., around the Pamirs-Hindukush there are two uplifted sectors: African (++) Asian (+), and two separating them subsided ones: Eurasian (-) Indo- ceanic (- -). The cosmically oriented structural octahedron and other regularities show that the wave induced structurization is a real predominant factor in planetology. Ref. [1] Kochemasov G.G.(1999) Geophys.Res.Abstr., v.1, 3, 700. 2</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003AGUFM.C32A0434S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003AGUFM.C32A0434S"><span>Preliminary Examination of Pulse Shapes From GLAS Ocean Returns</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Swift, T. P.; Minster, B.</p> <p>2003-12-01</p> <p>We have examined GLAS data collected over the Pacific ocean during the commission phase of the ICESat mission, in an area where sea state is well documented. The data used for this preliminary analysis were acquired during two passes along track 95, on March 18 and 26 of 2003, along the stretch offshore southern California. These dates were chosen for their lack of cloud cover; large (4.0 m) and small (0.7 m) significant wave heights, respectively; and the presence of waves emanating from single distant Pacific storms. Cloud cover may be investigated using MODIS images (http://acdisx.gsfc.nasa.gov/data/dataset/MODIS/), while models of significant wave heights and wave vectors for offshore California are archived by the Coastal Data Information Program (http://cdip.ucsd.edu/cdip_htmls/models.shtml). We find that the shape of deep-ocean GLAS pulse returns is diagnostic of the state of the ocean surface. A calm surface produces near-Gaussian, single-peaked shot returns. In contrast, a rough surface produces blurred shot returns which often feature multiple peaks; these peaks are typically separated by total path lengths on the order of one meter. Gaussian curves fit to rough-water returns are therefore less reliable and lead to greater measurement error; outliers in the ocean surface elevation product are mostly the result of poorly fit low-energy shot returns. Additionally, beat patterns and aliasing artifacts may arise from the sampling of deep-ocean wave trains by GLAS footprints separated by 140m. The apparent wavelength of such patterns depends not only on the wave frequency, but also on the angle between the ICESat ground track and the azimuth of the wave crests. We present a preliminary analysis of such patterns which appears to be consistent with a simple geometrical model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JGRC..119.2327A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JGRC..119.2327A"><span>Implications of fractured Arctic perennial ice cover on thermodynamic and dynamic sea ice processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Asplin, Matthew G.; Scharien, Randall; Else, Brent; Howell, Stephen; Barber, David G.; Papakyriakou, Tim; Prinsenberg, Simon</p> <p>2014-04-01</p> <p>Decline of the Arctic summer minimum sea ice extent is characterized by large expanses of open water in the Siberian, Laptev, Chukchi, and Beaufort Seas, and introduces large fetch distances in the Arctic Ocean. Long waves can propagate deep into the pack ice, thereby causing flexural swell and failure of the sea ice. This process shifts the floe size diameter distribution smaller, increases floe surface area, and thereby affects sea ice dynamic and thermodynamic processes. The results of Radarsat-2 imagery analysis show that a flexural fracture event which occurred in the Beaufort Sea region on 6 September 2009 affected ˜40,000 km2. Open water fractional area in the area affected initially decreased from 3.7% to 2.7%, but later increased to ˜20% following wind-forced divergence of the ice pack. Energy available for lateral melting was assessed by estimating the change in energy entrainment from longwave and shortwave radiation in the mixed-layer of the ocean following flexural fracture. 11.54 MJ m-2 of additional energy for lateral melting of ice floes was identified in affected areas. The impact of this process in future Arctic sea ice melt seasons was assessed using estimations of earlier occurrences of fracture during the melt season, and is discussed in context with ocean heat fluxes, atmospheric mixing of the ocean mixed layer, and declining sea ice cover. We conclude that this process is an important positive feedback to Arctic sea ice loss, and timing of initiation is critical in how it affects sea ice thermodynamic and dynamic processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2010-02-04/pdf/2010-2395.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2010-02-04/pdf/2010-2395.pdf"><span>75 FR 5708 - Ocean Dumping; Designation of Ocean Dredged Material Disposal Sites Offshore of the Siuslaw River...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2010-02-04</p> <p>... suspended by wave action near the bottom, and are moved by bottom currents or directly as bedload. Tidal, wind and wave forces contribute to generating bottom currents, which act in relation to the sediment... littoral zone, limit wave effects due to mounding, and keep material from reentering the navigation channel...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA601654','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA601654"><span>Proving and Improving Wave Models in the Arctic Ocean and its MIZ</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2013-09-30</p> <p>wave buoy was deployed in the ocean near the berg throughout the experiment, and recorded a persistent swell from the SE. An array of tiltmeters and GPS...vertical movement sensors was placed on the berg near the edge. These recorded the berg response to the waves, and on one occasion a calving event</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=STS007-05-245&hterms=turbidity+coast&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dturbidity%2Bcoast','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=STS007-05-245&hterms=turbidity+coast&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dturbidity%2Bcoast"><span>Internal Waves, South China Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1983-01-01</p> <p>Subsurface ocean currents, frequently referred to as internal waves, are frequently seen from space under the right lighting conditions when depth penetration can be achieved. These internal waves observed in the South China Sea off the SE coast of the island of Hainan (18.5N, 110.5E) visibly demonstrate turbidity in the ocean's depths at the confluence of conflicting currents.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010RvGeo..48.4006W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010RvGeo..48.4006W"><span>Impact of a Cosmic Body into Earth's Ocean and the Generation of Large Tsunami Waves: Insight from Numerical Modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wünnemann, K.; Collins, G. S.; Weiss, R.</p> <p>2010-12-01</p> <p>The strike of a cosmic body into a marine environment differs in several respects from impact on land. Oceans cover approximately 70% of the Earth's surface, implying not only that oceanic impact is a very likely scenario for future impacts but also that most impacts in Earth's history must have happened in marine environments. Therefore, the study of oceanic impact is imperative in two respects: (1) to quantify the hazard posed by future oceanic impacts, including the potential threat of large impact-generated tsunami-like waves, and (2) to reconstruct Earth's impact record by accounting for the large number of potentially undiscovered crater structures in the ocean crust. Reconstruction of the impact record is of crucial importance both for assessing the frequency of collision events in the past and for better predicting the probability of future impact. We summarize the advances in the study of oceanic impact over the last decades and focus in particular on how numerical models have improved our understanding of cratering in the oceanic environment and the generation of waves by impact. We focus on insight gleaned from numerical modeling studies into the deceleration of the projectile by the water, cratering of the ocean floor, the late stage modification of the crater due to gravitational collapse, and water resurge. Furthermore, we discuss the generation and propagation of large tsunami-like waves as a result of a strike of a cosmic body in marine environments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003AGUFM.T41C0228H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003AGUFM.T41C0228H"><span>The Cooling Oceanic Lithosphere as Constrained by Surface Wave Dispersion Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hogg, C.; Laske, G.</p> <p>2003-12-01</p> <p>The tremendous improvement in resolution capabilities of global surface wave phase velocity maps now encourage us to search for anomalies that are caused by mantle plumes. On the other hand, the implications of even large--scale anomalies in such maps are still not well understood. One such anomaly is caused by the cooling oceanic lithosphere. Some studies investigate the cooling effects by fitting thermal models to the 3--dimensional mantle models resulting from tomographic inversions. The inversion of surface wave data for structure at depth is nonunique and the model often depends on the techniques applied. We prefer to compare the dispersion data directly with predictions from thermal models. Simple cooling models produce a signal that is roughly proportional to the square root of age. This signal is typically much smaller than the one caused by other lateral heterogeneity within the Earth's crust and upper mantle. In a careful analysis we are able to extract clear, roughly linear trends, in all major oceans. We explore the parameter space by fitting cooling half space as well as cooling plate models to the data. In the Pacific ocean, our data are inconsistent with standard parameters that are used to fit the observed bathymetry, and perhaps surface heat flux data. Instead of an initial temperature of 1350~deg C in the cooling half space model our data require a lower temperature (around 1200~deg C) to be well fit, especially the Love wave data. Regarding the cooling plate model, our data seem to require a thicker lithosphere to be well fit (135~km instead of the 'standard' 100 ~m). We observe similar trends for the other oceans investigated: the Indian ocean, the South and the North Atlantic oceans. For the Indian ocean in particular, a crust correction (removing the predictions caused by crustal structure including water depth and sediment thickness) is crucial to obtain an internally consistent dataset. For the Atlantic ocean, a large signal remains unexplained. An age--dependent signal is also apparent in the SS-S and PP-P body wave datasets. However, a comprehensive analysis is somewhat hampered for two reasons: 1) the uneven sampling of the data does not allow us to analyze trends in some oceans (e.g. South Atlantic Ocean); 2) the signal in the oldest parts of the oceans appear ''too fast''. We suspect that we observe effects that are deeper--rooted than the lithosphere--asthenosphere system (e.g. subducting slabs). The surface wave dispersion maps contain an intriguing oscillating signal that is particularly strong for Rayleigh waves in the Pacific ocean. This signal is symmetric to the EPR and we speculate that this is caused by current convective processes or by processes at the time when the plates were formed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005NCimC..28...33C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005NCimC..28...33C"><span>Langmuir cells and mixing in the upper ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carniel, S.; Sclavo, M.; Kantha, L. H.; Clayson, C. A.</p> <p>2005-01-01</p> <p>The presence of surface gravity waves at the ocean surface has two important effects on turbulence in the oceanic mixed layer (ML): the wave breaking and the Langmuir cells (LC). Both these effects act as additional sources of turbulent kinetic energy (TKE) in the oceanic ML, and hence are important to mixing in the upper ocean. The breaking of high wave-number components of the wind wave spectrum provides an intense but sporadic source of turbulence in the upper surface; turbulence thus injected diffuses downward, while decaying rapidly, modifying oceanic near-surface properties which in turn could affect the air-sea transfer of heat and dissolved gases. LC provide another source of additional turbulence in the water column; they are counter-rotating cells inside the ML, with their axes roughly aligned in the direction of the wind (Langmuir I., Science871938119). These structures are usually made evident by the presence of debris and foam in the convergence area of the cells, and are generated by the interaction of the wave-field-induced Stokes drift with the wind-induced shear stress. LC have long been thought to have a substantial influence on mixing in the upper ocean, but the difficulty in their parameterization have made ML modelers consistently ignore them in the past. However, recent Large Eddy Simulations (LES) studies suggest that it is possible to include their effect on mixing by simply adding additional production terms in the turbulence equations, thus enabling even 1D models to incorporate LC-driven turbulence. Since LC also modify the Coriolis terms in the mean momentum equations by the addition of a term involving the Stokes drift, their effect on the velocity structure in the ML is also quite significant and could have a major impact on the drift of objects and spilled oil in the upper ocean. In this paper we examine the effect of surface gravity waves on mixing in the upper ocean, focusing on Langmuir circulations, which is by far the dominant part of the surface wave contribution to mixing. Oceanic ML models incorporating these effects are applied to an observation station in the Northern Adriatic Sea to see what the extent of these effects might be. It is shown that the surface wave effects can indeed be significant; in particular, the modification of the velocity profile due to LC-generated turbulence can be large under certain conditions. However, the surface wave effects on the bulk properties of the ML, such as the associated temperature, while significant, are generally speaking well within the errors introduced by uncertainties in the external forcing of the models. This seems to be the reason why ML models, though pretty much ignoring surface wave effects until recently, have been reasonably successful in depicting the evolution of the mixed layer temperature (MLT) at various timescales.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSPO21A..04S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSPO21A..04S"><span>Spontaneous Wave Generation from Submesoscale Fronts and Filaments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shakespeare, C. J.; Hogg, A.</p> <p>2016-02-01</p> <p>Submesoscale features such as eddies, fronts, jets and filaments can be significant sources of spontaneous wave generation at the ocean surface. Unlike near-inertial waves forced by winds, these spontaneous waves are typically of higher frequency and can propagate through the thermocline, whereupon they break and drive mixing in the ocean interior. Here we investigate the spontaneous generation, propagation and subsequent breaking of these waves using a combination of theory and submesoscale resolving numerical models. The mechanism of generation is nearly identical to that of lee waves where flow is deflected over a rigid obstacle on the sea floor. Here, very sharp fronts and filaments of order 100m width moving in the submesoscale surface flow generate "surface lee waves" by presenting an obstacle to the surrounding stratified fluid. Using our numerical model we quantify the net downward wave energy flux from the surface, and where it is dissipated in the water column. Our results suggest an alternative to the classical paradigm where the energy associated with mixing in the ocean interior is sourced from bottom-generated lee waves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850037278&hterms=dangerous&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Ddangerous','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850037278&hterms=dangerous&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Ddangerous"><span>Predicting dangerous ocean waves with spaceborne synthetic aperture radar</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Beal, R. C.</p> <p>1984-01-01</p> <p>It is pointed out that catastrophes, related to the occurrence of strong winds and large ocean waves, can consume more lives and property than most naval battles. The generation of waves by wind are considered, Pierson et al. (1955) have incorporated statistical concepts into a wave forecast model. The concept of an 'ocean wave spectrum' was introduced, with the wind acting independently on each Fourier component. However, even after 30 years of research and debate, the generation, propagation, and dissipation of the spectrum under arbitrary conditions continue to be controversial. It has now been found that spaceborne SAR has a surprising ability to precisely monitor spatially evolving wind and wave fields. Approaches to overcome certain weaknesses of the SAR method are discussed, taking into account the second Shuttle Imaging Radar experiment, and a possible long-term solution provided by Spectrasat. Spectrasat should be a low-altitude (200 to 250 km) satellite with active drag compensation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1994PApGe.142..319C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1994PApGe.142..319C"><span>Excitation of T waves in the Indian Ocean between Srilanka and southern India</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chadha, R. K.</p> <p>1994-06-01</p> <p>T phases of three earthquakes from the Indian Ocean region, recorded by a short-period vertical-component seismic station network located in the vicinity of Kanyakumari on the southernmost tip of India, are studied. Two of these earthquakes are located west of 90°E ridge and one in the Nicobar Island region. However, seven other earthquakes which occurred 150 200 km south of Kanyakumari in the ocean did not produce T phases. An analysis of T-waves (tertiary waves) travel time reveals the zone of P-wave to T-wave conversion (i.e., PT phase) region to coincide with the western continental slope of Srilanka. Further, it is observed that the disposition of the bathymetry between Srilanka and southern India strongly favours the downslope propagation mechanism of T-wave travel to the southern coast of India through SOFAR channel. These observations are reported for the first time from India.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1325402','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1325402"><span>Characterization of U.S. Wave Energy Converter (WEC) Test Sites: A Catalogue of Met-Ocean Data, 2nd Edition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ann R. Dallman; Neary, Vincent S.</p> <p></p> <p>This report presents met-ocean data and wave energy characteristics at eight U.S. wave energy converter (WEC) test and potential deployment sites. Its purpose is to enable the comparison of wave resource characteristics among sites as well as the selection of test sites that are most suitable for a developer's device and that best meet their testing needs and objectives. It also provides essential inputs for the design of WEC test devices and planning WEC tests, including the planning of deployment, and operations and maintenance. For each site, this report catalogues wave statistics recommended in the International Electrotechnical Commission Technical Specimore » cation (IEC 62600-101 TS) on Wave Energy Characterization, as well as the frequency of occurrence of weather windows and extreme sea states, and statistics on wind and ocean currents. It also provides useful information on test site infrastructure and services.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23144824','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23144824"><span>Catching the right wave: evaluating wave energy resources and potential compatibility with existing marine and coastal uses.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kim, Choong-Ki; Toft, Jodie E; Papenfus, Michael; Verutes, Gregory; Guerry, Anne D; Ruckelshaus, Marry H; Arkema, Katie K; Guannel, Gregory; Wood, Spencer A; Bernhardt, Joanna R; Tallis, Heather; Plummer, Mark L; Halpern, Benjamin S; Pinsky, Malin L; Beck, Michael W; Chan, Francis; Chan, Kai M A; Levin, Phil S; Polasky, Stephen</p> <p>2012-01-01</p> <p>Many hope that ocean waves will be a source for clean, safe, reliable and affordable energy, yet wave energy conversion facilities may affect marine ecosystems through a variety of mechanisms, including competition with other human uses. We developed a decision-support tool to assist siting wave energy facilities, which allows the user to balance the need for profitability of the facilities with the need to minimize conflicts with other ocean uses. Our wave energy model quantifies harvestable wave energy and evaluates the net present value (NPV) of a wave energy facility based on a capital investment analysis. The model has a flexible framework and can be easily applied to wave energy projects at local, regional, and global scales. We applied the model and compatibility analysis on the west coast of Vancouver Island, British Columbia, Canada to provide information for ongoing marine spatial planning, including potential wave energy projects. In particular, we conducted a spatial overlap analysis with a variety of existing uses and ecological characteristics, and a quantitative compatibility analysis with commercial fisheries data. We found that wave power and harvestable wave energy gradually increase offshore as wave conditions intensify. However, areas with high economic potential for wave energy facilities were closer to cable landing points because of the cost of bringing energy ashore and thus in nearshore areas that support a number of different human uses. We show that the maximum combined economic benefit from wave energy and other uses is likely to be realized if wave energy facilities are sited in areas that maximize wave energy NPV and minimize conflict with existing ocean uses. Our tools will help decision-makers explore alternative locations for wave energy facilities by mapping expected wave energy NPV and helping to identify sites that provide maximal returns yet avoid spatial competition with existing ocean uses.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3492388','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3492388"><span>Catching the Right Wave: Evaluating Wave Energy Resources and Potential Compatibility with Existing Marine and Coastal Uses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Kim, Choong-Ki; Toft, Jodie E.; Papenfus, Michael; Verutes, Gregory; Guerry, Anne D.; Ruckelshaus, Marry H.; Arkema, Katie K.; Guannel, Gregory; Wood, Spencer A.; Bernhardt, Joanna R.; Tallis, Heather; Plummer, Mark L.; Halpern, Benjamin S.; Pinsky, Malin L.; Beck, Michael W.; Chan, Francis; Chan, Kai M. A.; Levin, Phil S.; Polasky, Stephen</p> <p>2012-01-01</p> <p>Many hope that ocean waves will be a source for clean, safe, reliable and affordable energy, yet wave energy conversion facilities may affect marine ecosystems through a variety of mechanisms, including competition with other human uses. We developed a decision-support tool to assist siting wave energy facilities, which allows the user to balance the need for profitability of the facilities with the need to minimize conflicts with other ocean uses. Our wave energy model quantifies harvestable wave energy and evaluates the net present value (NPV) of a wave energy facility based on a capital investment analysis. The model has a flexible framework and can be easily applied to wave energy projects at local, regional, and global scales. We applied the model and compatibility analysis on the west coast of Vancouver Island, British Columbia, Canada to provide information for ongoing marine spatial planning, including potential wave energy projects. In particular, we conducted a spatial overlap analysis with a variety of existing uses and ecological characteristics, and a quantitative compatibility analysis with commercial fisheries data. We found that wave power and harvestable wave energy gradually increase offshore as wave conditions intensify. However, areas with high economic potential for wave energy facilities were closer to cable landing points because of the cost of bringing energy ashore and thus in nearshore areas that support a number of different human uses. We show that the maximum combined economic benefit from wave energy and other uses is likely to be realized if wave energy facilities are sited in areas that maximize wave energy NPV and minimize conflict with existing ocean uses. Our tools will help decision-makers explore alternative locations for wave energy facilities by mapping expected wave energy NPV and helping to identify sites that provide maximal returns yet avoid spatial competition with existing ocean uses. PMID:23144824</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA598917','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA598917"><span>Scattering of Acoustic Waves from Ocean Boundaries</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2013-09-30</p> <p>of predictive models that can account for the all of the physical processes and variability of acoustic propagation and scattering in ocean...collaboration with Dr. Nicholas Chotiros, particularly for theoretical development of bulk acoustic /sediment modeling and laser roughness measurements...G. Potty and J. Miller. Measurement and modeling of Scholte wave dispersion in coastal waters. In Proc. of Third Int. Conf. on Ocean Acoustics</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25968187','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25968187"><span>Underwater optical communication performance for laser beam propagation through weak oceanic turbulence.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yi, Xiang; Li, Zan; Liu, Zengji</p> <p>2015-02-20</p> <p>In clean ocean water, the performance of a underwater optical communication system is limited mainly by oceanic turbulence, which is defined as the fluctuations in the index of refraction resulting from temperature and salinity fluctuations. In this paper, using the refractive index spectrum of oceanic turbulence under weak turbulence conditions, we carry out, for a horizontally propagating plane wave and spherical wave, analysis of the aperture-averaged scintillation index, the associated probability of fade, mean signal-to-noise ratio, and mean bit error rate. Our theoretical results show that for various values of the rate of dissipation of mean squared temperature and the temperature-salinity balance parameter, the large-aperture receiver leads to a remarkable decrease of scintillation and consequently a significant improvement on the system performance. Such an effect is more noticeable in the plane wave case than in the spherical wave case.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.S51B2419K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.S51B2419K"><span>Importance of large-scale bathymetry features on 2011 Tohoku tsunami waveforms through comparison of simulations with the spatially dense ALBACORE OBS array data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kohler, M. D.; Lynett, P. J.; Legg, M. R.; Weeraratne, D. S.</p> <p>2012-12-01</p> <p>In March 2011, a deployment of ocean bottom seismometers (OBSs) off the coast of Southern California recorded the tsunami resulting from the Mw=9.0 Tohoku, Japan earthquake with very high spatial resolution. The ALBACORE (Asthenosphere and Lithosphere Broadband Architecture from the California Offshore Region Experiment) OBS array spanned a region that was 150 km north-south by 400 km east-west, extending into deep open ocean west of the Patton escarpment. In that array, 22 stations with a spacing of 75 km had differential pressure gauges (DPGs) that recorded water pressure waveform data continuously at 50 samples/second. The DPG tsunami records across the entire array show multiple large-amplitude, coherent phases arriving one hour to more than 36 hours after the initial tsunami phase. To determine the source of the large-amplitude coherent phases, gravity ocean wave propagation calculations were carried out for the Pacific Ocean. Simulated pressure waveforms were compared with data for the ALBACORE stations, as well as for the NOAA DART buoys. The linear, non-dispersive shallow-water simulations include bottom frictional effects, and use the USGS NEIC Tohoku slip model and ETOPO2 (two-minute spatial resolution) bathymetry. The predicted travel times of the initial arrivals are found to be less than 1% different from the observed travel times in the southern California ALBACORE DPG data. In order to gauge the effects of large-scale features in Pacific Ocean bathymetry, several large-scale features were individually removed, and simulations were carried out for the modified bathymetry. The removed features include the Emperor Seamount chain, Hawaiian Islands, Oceania, French Polynesia, and the South American coastline. The results show that the removal of these features has an effect on the arrival time of the phases that depends on the feature proximity to the direct path, but their removal does not have a significant effect on the frequency content or phase amplitudes of the waves. The direct paths recorded in Southern California indicate that the tsunami wave did not interfere with distant above-water features such as the Aleutians, but was diffracted around Point Conception in the California coastline and around southern California islands. It is more likely that the scattered phases are the result of wave reflections off the western Japan coastline, or interactions with local structures such as the central-southern California coastline, plateaus beneath the Channel Islands, and the Patton Escarpment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A13I..05O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A13I..05O"><span>Measuring Ocean Surface Waves using Signal Reflections from Geostationary Satellites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ouellette, J. D.; Dowgiallo, D. J.; Hwang, P. A.; Toporkov, J. V.</p> <p>2017-12-01</p> <p>The delay-Doppler response of communications signals (such as GNSS) reflected off the ocean surface is well-known to have properties which strongly correlate with surface wind conditions and ocean surface roughness. This study extends reflectometry techniques currently applied to the GNSS constellation to include geostationary communications satellites such as XM Radio. In this study, ocean wind conditions and significant wave height will be characterized using the delay-Doppler response of XM Radio signals reflected off of ocean surface waves. Using geostationary satellites for reflectometry-based remote sensing of oceans presents two primary advantages. First, longer coherent integration times can be achieved, which boosts signal processing gain and allows for finer Doppler resolution. Second, being designed for wide-area broadcast communications, the ground-received power of these geostationary satellite signals tends to be many orders of magnitude stronger than e.g. GNSS signals. Reflections of such signals from the ocean are strong enough to be received well outside of the specular region. This flexibility of viewing geometry allows signal processing to be performed on data received from multiple incidence/reception angles, which can provide a more complete characterization of ocean surface roughness and surface wind vectors. This work will include studies of simulated and measured delay-Doppler behavior of XM Radio signals reflected from dynamic ocean surfaces. Simulation studies will include inter-comparison between a number of hydrodynamic and electromagnetic models. Results from simulations will be presented as delay-Doppler plots and will be compared with delay-Doppler behavior observed in measured data. Measured data will include field campaign results from early- to mid-2017 in which the US Naval Research Laboratory's in-house XM reflectometer-receiver was deployed near the coasts of Virginia and North Carolina to observe reflections from wind-driven ocean waves. Preliminary results from a significant wave height retrieval algorithm will also be presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140010389','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140010389"><span>Spatially Resolving Ocean Color and Sediment Dispersion in River Plumes, Coastal Systems, and Continental Shelf Waters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Aurin, Dirk Alexander; Mannino, Antonio; Franz, Bryan</p> <p>2013-01-01</p> <p>Satellite remote sensing of ocean color in dynamic coastal, inland, and nearshorewaters is impeded by high variability in optical constituents, demands specialized atmospheric correction, and is limited by instrument sensitivity. To accurately detect dispersion of bio-optical properties, remote sensors require ample signal-to-noise ratio (SNR) to sense small variations in ocean color without saturating over bright pixels, an atmospheric correction that can accommodate significantwater-leaving radiance in the near infrared (NIR), and spatial and temporal resolution that coincides with the scales of variability in the environment. Several current and historic space-borne sensors have met these requirements with success in the open ocean, but are not optimized for highly red-reflective and heterogeneous waters such as those found near river outflows or in the presence of sediment resuspension. Here we apply analytical approaches for determining optimal spatial resolution, dominant spatial scales of variability ("patches"), and proportions of patch variability that can be resolved from four river plumes around the world between 2008 and 2011. An offshore region in the Sargasso Sea is analyzed for comparison. A method is presented for processing Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua and Terra imagery including cloud detection, stray lightmasking, faulty detector avoidance, and dynamic aerosol correction using short-wave- and near-infrared wavebands in extremely turbid regions which pose distinct optical and technical challenges. Results showthat a pixel size of approx. 520 mor smaller is generally required to resolve spatial heterogeneity in ocean color and total suspended materials in river plumes. Optimal pixel size increases with distance from shore to approx. 630 m in nearshore regions, approx 750 m on the continental shelf, and approx. 1350 m in the open ocean. Greater than 90% of the optical variability within plume regions is resolvable with 500 m resolution, and small, but significant, differences were found between peak and nadir river flow periods in terms of optimal resolution and resolvable proportion of variability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20000070371&hterms=Mathematical+modeling&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DMathematical%2Bmodeling','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20000070371&hterms=Mathematical+modeling&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DMathematical%2Bmodeling"><span>Ocean Wave Studies with Applications to Ocean Modeling and Improvement of Satellite Altimeter Measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Glazman, Roman E.</p> <p>1999-01-01</p> <p>Combining analysis of satellite data (altimeter, scatterometer, high-resolution visible and infrared images, etc.) with mathematical modeling of non-linear wave processes, we investigate various ocean wave fields (on scales from capillary to planetary), their role in ocean dynamics and turbulent transport (of heat and biogeochemical quantities), and their effects on satellite altimeter measuring accuracy. In 1998 my attention was focused on long internal gravity waves (10 to 1000 km), known also as baroclinic inertia-gravity (BIG) waves. We found these waves to be a major factor of altimeter measurements "noise," resulting in a greater uncertainty [up to 10 cm in terms of sea surface height (SSH) amplitude] in the measured SSH signal than that caused by the sea state bias variations (up to 5 cm or so). This effect still remains largely overlooked by the satellite altimeter community. Our studies of BIG waves address not only their influence on altimeter measurements but also their role in global ocean dynamics and in transport and turbulent diffusion of biogeochemical quantities. In particular, in collaboration with Prof Peter Weichman, Caltech, we developed a theory of turbulent diffusion caused by wave motions of most general nature. Applied to the problem of horizontal turbulent diffusion in the ocean, the theory yielded the effective diffusion coefficient as a function of BIG wave parameters obtainable from satellite altimeter data. This effort, begun in 1997, has been successfully completed in 1998. We also developed a theory that relates spatial fluctuations of scalar fields (such as sea surface temperature, chlorophyll concentration, drifting ice concentration, etc.) to statistical characteristics of BIG waves obtainable from altimeter measurements. A manuscript is in the final stages of preparation. In order to verify the theoretical predictions and apply them to observations, we are now analyzing Sea-viewing Wide Field of view Sensor (SeaWiFS) and Field of view Sensor (SeaWiFS) and Advanced Very High-Resolution Radiometer (AVHRR) data on sea surface temperature (SST) and chlorophyll concentration jointly with TOPEX/POSEIDON data on SSH variations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70018602','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70018602"><span>Southern Ocean monthly wave fields for austral winters 1985-1988 by Geosat radar altimeter</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Josberger, E.G.; Mognard, N.M.</p> <p>1996-01-01</p> <p>Four years of monthly averaged wave height fields for the austral winters 19851988 derived from the Geosat altimeter data show a spatial variability of the scale of 500-1000 km that varies monthly and annually. This variability is superimposed on the zonal patterns surrounding the Antarctic continent and characteristic of the climatology derived from the U.S. Navy [1992] Marine Climatic Atlas of the World. The location and the intensity of these large-scale features, which are not found in the climatological fields, exhibit strong monthly and yearly variations. A global underestimation of the climatological mean wave heights by more than l m is also found over large regions of the Southern Ocean. The largest monthly averaged significant wave heights are above 5 m and are found during August of every year in the Indian Ocean, south of 40??S. The monthly wave fields show more variability in the Atlantic and Pacific Oceans than in the Indian Ocean. The Seasat data from 1978 and the Geosat data from 1985 and 1988 show an eastward rotation of the largest wave heights. However, this rotation is absent in 1986 and 1987; the former was a year of unusually low sea states, and the latter was a year of unusually high sea states, which suggests a link to the El Nin??o-Southern Oscillation event of 1986. Copyright 1996 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017OcDyn..67.1553S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017OcDyn..67.1553S"><span>On the interaction between ocean surface waves and seamounts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sosa, Jeison; Cavaleri, Luigi; Portilla-Yandún, Jesús</p> <p>2017-12-01</p> <p>Of the many topographic features, more specifically seamounts, that are ubiquitous in the ocean floor, we focus our attention on those with relatively shallow summits that can interact with wind-generated surface waves. Among these, especially relatively long waves crossing the oceans (swells) and stormy seas are able to affect the water column up to a considerable depth and therefore interact with these deep-sea features. We quantify this interaction through numerical experiments using a numerical wave model (SWAN), in which a simply shaped seamount is exposed to waves of different length. The results show a strong interaction that leads to significant changes in the wave field, creating wake zones and regions of large wave amplification. This is then exemplified in a practical case where we analyze the interaction of more realistic sea conditions with a very shallow rock in the Yellow Sea. Potentially important for navigation and erosion processes, mutatis mutandis, these results are also indicative of possible interactions with emerged islands and sand banks in shelf seas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70039994','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70039994"><span>Coupled atmosphere-ocean-wave simulations of a storm event over the Gulf of Lion and Balearic Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Renault, Lionel; Chiggiato, Jacopo; Warner, John C.; Gomez, Marta; Vizoso, Guillermo; Tintore, Joaquin</p> <p>2012-01-01</p> <p>The coastal areas of the North-Western Mediterranean Sea are one of the most challenging places for ocean forecasting. This region is exposed to severe storms events that are of short duration. During these events, significant air-sea interactions, strong winds and large sea-state can have catastrophic consequences in the coastal areas. To investigate these air-sea interactions and the oceanic response to such events, we implemented the Coupled Ocean-Atmosphere-Wave-Sediment Transport Modeling System simulating a severe storm in the Mediterranean Sea that occurred in May 2010. During this event, wind speed reached up to 25 m.s-1 inducing significant sea surface cooling (up to 2°C) over the Gulf of Lion (GoL) and along the storm track, and generating surface waves with a significant height of 6 m. It is shown that the event, associated with a cyclogenesis between the Balearic Islands and the GoL, is relatively well reproduced by the coupled system. A surface heat budget analysis showed that ocean vertical mixing was a major contributor to the cooling tendency along the storm track and in the GoL where turbulent heat fluxes also played an important role. Sensitivity experiments on the ocean-atmosphere coupling suggested that the coupled system is sensitive to the momentum flux parameterization as well as air-sea and air-wave coupling. Comparisons with available atmospheric and oceanic observations showed that the use of the fully coupled system provides the most skillful simulation, illustrating the benefit of using a fully coupled ocean-atmosphere-wave model for the assessment of these storm events.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA586450','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA586450"><span>Impact of Parameterized Lee Wave Drag on the Energy Budget of an Eddying Global Ocean Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2013-08-26</p> <p>Teixeira, J., Peng, M., Hogan, T.F., Pauley, R., 2002. Navy Operational Global Atmospheric Prediction System (NOGAPS): Forcing for ocean models...Impact of parameterized lee wave drag on the energy budget of an eddying global ocean model David S. Trossman a,⇑, Brian K. Arbic a, Stephen T...input and output terms in the total mechanical energy budget of a hybrid coordinate high-resolution global ocean general circulation model forced by winds</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA01799.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA01799.html"><span>Space Radar Image of North Atlantic Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>1999-04-15</p> <p>This is a radar image showing surface features on the open ocean in the northeast Atlantic Ocean. There is no land mass in this image. The purple line in the lower left of the image is the stern wake of a ship. The ship creating the wake is the bright white spot on the middle, left side of the image. The ship's wake is about 28 kilometers (17 miles) long in this image and investigators believe that is because the ship may be discharging oil. The oil makes the wake last longer and causes it to stand out in this radar image. A fairly sharp boundary or front extends from the lower left to the upper right corner of the image and separates two distinct water masses that have different temperatures. The different water temperature affects the wind patterns on the ocean. In this image, the light green area depicts rougher water with more wind, while the purple area is calmer water with less wind. The dark patches are smooth areas of low wind, probably related to clouds along the front, and the bright green patches are likely due to ice crystals in the clouds that scatter the radar waves. The overall "fuzzy" look of this image is caused by long ocean waves, also called swells. Ocean radar imagery allows the fine detail of ocean features and interactions to be seen, such as the wake, swell, ocean front and cloud effects, which can then be used to enhance the understanding of ocean dynamics on smaller and smaller scales. The image is centered at 42.8 degrees north latitude, 26.2 degrees west longitude and shows an area approximately 35 kilometers by 65 kilometers (22 by 40 miles). The colors in the image are assigned to different frequencies and polarizations of the radar as follows: red is L-band horizontally transmitted, horizontally received; green is C-band horizontally transmitted, horizontally received; blue is L-band vertically transmitted, vertically received. This image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) imaging radar when it flew aboard the space shuttle Endeavour on April 11, 1994. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's Mission to Planet Earth. http://photojournal.jpl.nasa.gov/catalog/PIA01799</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMNH23E2795Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMNH23E2795Z"><span>Satellite Remote Sensing of Ocean Winds, Surface Waves and Surface Currents during the Hurricanes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, G.; Perrie, W. A.; Liu, G.; Zhang, L.</p> <p>2017-12-01</p> <p>Hurricanes over the ocean have been observed by spaceborne aperture radar (SAR) since the first SAR images were available in 1978. SAR has high spatial resolution (about 1 km), relatively large coverage and capability for observations during almost all-weather, day-and-night conditions. In this study, seven C-band RADARSAT-2 dual-polarized (VV and VH) ScanSAR wide images from the Canadian Space Agency (CSA) Hurricane Watch Program in 2017 are collected over five hurricanes: Harvey, Irma, Maria, Nate, and Ophelia. We retrieve the ocean winds by applying our C-band Cross-Polarization Coupled-Parameters Ocean (C-3PO) wind retrieval model [Zhang et al., 2017, IEEE TGRS] to the SAR images. Ocean waves are estimated by applying a relationship based on the fetch- and duration-limited nature of wave growth inside hurricanes [Hwang et al., 2016; 2017, J. Phys. Ocean.]. We estimate the ocean surface currents using the Doppler Shift extracted from VV-polarized SAR images [Kang et al., 2016, IEEE TGRS]. C-3PO model is based on theoretical analysis of ocean surface waves and SAR microwave backscatter. Based on the retrieved ocean winds, we estimate the hurricane center locations, maxima wind speeds, and radii of the five hurricanes by adopting the SHEW model (Symmetric Hurricane Estimates for Wind) by Zhang et al. [2017, IEEE TGRS]. Thus, we investigate possible relations between hurricane structures and intensities, and especially some possible effects of the asymmetrical characteristics on changes in the hurricane intensities, such as the eyewall replacement cycle. The three SAR images of Ophelia include the north coast of Ireland and east coast of Scotland allowing study of ocean surface currents respond to the hurricane. A system of methods capable of observing marine winds, surface waves, and surface currents from satellites is of value, even if these data are only available in near real-time or from SAR-related satellite images. Insight into high resolution ocean winds, waves and currents in hurricanes can be useful for intensity prediction, which has had relatively few improvements in the past 25 years. In 2018 RADARSAT Constellation Mission will be launched, increasing SAR coverage by 10×, allowing increased observations during the next hurricane season.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMNH43B1648D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMNH43B1648D"><span>2011 Tohoku, Japan tsunami data available from the National Oceanic and Atmospheric Administration/National Geophysical Data Center</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dunbar, P. K.; Mccullough, H. L.; Mungov, G.; Harris, E.</p> <p>2012-12-01</p> <p>The U.S. National Oceanic and Atmospheric Administration (NOAA) has primary responsibility for providing tsunami warnings to the Nation, and a leadership role in tsunami observations and research. A key component of this effort is easy access to authoritative data on past tsunamis, a responsibility of the National Geophysical Data Center (NGDC) and collocated World Service for Geophysics. Archive responsibilities include the global historical tsunami database, coastal tide-gauge data from US/NOAA operated stations, the Deep-ocean Assessment and Reporting of Tsunami (DART®) data, damage photos, as well as other related hazards data. Taken together, this integrated archive supports tsunami forecast, warning, research, mitigation and education efforts of NOAA and the Nation. Understanding the severity and timing of tsunami effects is important for tsunami hazard mitigation and warning. The global historical tsunami database includes the date, time, and location of the source event, magnitude of the source, event validity, maximum wave height, the total number of fatalities and dollar damage. The database contains additional information on run-ups (locations where tsunami waves were observed by eyewitnesses, field reconnaissance surveys, tide gauges, or deep ocean sensors). The run-up table includes arrival times, distance from the source, measurement type, maximum wave height, and the number of fatalities and damage for the specific run-up location. Tide gauge data are required for modeling the interaction of tsunami waves with the coast and for verifying propagation and inundation models. NGDC is the long-term archive for all NOAA coastal tide gauge data and is currently archiving 15-second to 1-minute water level data from the NOAA Center for Operational Oceanographic Products and Services (CO-OPS) and the NOAA Tsunami Warning Centers. DART® buoys, which are essential components of tsunami warning systems, are now deployed in all oceans, giving coastal communities faster and more accurate tsunami warnings. NOAA's National Data Buoy Center disseminates real-time DART® data and NGDC processes and archives post-event 15-second high-resolution bottom pressure time series data. An event-specific archive of DART® observations recorded during recent significant tsunamis, including the March 2011 Tohoku, Japan event, are now available through new tsunami event pages integrated with the NGDC global historical tsunami database. These pages are developed to deliver comprehensive summaries of each tsunami event, including socio-economic impacts, tsunami travel time maps, raw observations, de-tided residuals, spectra of the tsunami signal compared to the energy of the background noise, and wavelets. These data are invaluable to tsunami researchers and educators as they are essential to providing a more thorough understanding of tsunamis and their propagation in the open ocean and subsequent inundation of coastal communities. NGDC has collected 289 tide gauge observations, 34 Deep-ocean Assessment and Reporting of Tsunami (DART®) and bottom pressure recorder (BPR) station observations, and over 5,000 eyewitness reports and post-tsunami field survey measurements for the 2011 Tohoku event.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70034533','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70034533"><span>Waves and tides responsible for the intermittent closure of the entrance of a small, sheltered tidal wetland at San Francisco, CA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hanes, D.M.; Ward, K.; Erikson, L.H.</p> <p>2011-01-01</p> <p>Crissy Field Marsh (CFM; http://www.nps.gov/prsf/planyourvisit/crissy-field-marsh-and-beach.htm) is a small, restored tidal wetland located in the entrance to San Francisco Bay just east of the Golden Gate. The marsh is small but otherwise fairly typical of many such restored wetlands worldwide. The marsh is hydraulically connected to the bay and the adjacent Pacific Ocean by a narrow sandy channel. The channel often migrates and sometimes closes completely, which effectively blocks the tidal connection to the ocean and disrupts the hydraulics and ecology of the marsh. Field measurements of waves and tides have been examined in order to evaluate the conditions responsible for the intermittent closure of the marsh entrance. The most important factor found to bring about the entrance channel closure is the occurrence of large ocean waves. However, there were also a few closure events during times with relatively small offshore waves. Examination of the deep-water directional wave spectra during these times indicates the presence of a small secondary peak corresponding to long period swell from the southern hemisphere, indicating that CFM and San Francisco Bay in general may be more susceptible to long period ocean swell emanating from the south or southwest than the more common ocean waves coming from the northwest. The tidal records during closure events show no strong relationship between closures and tides, other than that closures tend to occur during multi-day periods with successively increasing high tides. It can be inferred from these findings that the most important process to the intermittent closure of the entrance to CFM is littoral sediment transport driven by the influence of ocean swell waves breaking along the CFM shoreline at oblique angles. During periods of large, oblique waves the littoral transport of sand likely overwhelms the scour potential of the tidal flow in the entrance channel. ?? 2011.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMED41A0240B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMED41A0240B"><span>Harnessing Alternative Energy Sources to Enhance the Design of a Wave Generator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bravo, A.</p> <p>2017-12-01</p> <p>Wave energy has the power to replace a non-renewable source of electricity for a home near the ocean. I built a small-scale wave generator capable of producing approximately 5 volts of electricity. The generator is an array of 16 small generators, each consisting of 200 feet of copper wire, 12 magnets, and a buoy. I tested my design in the Pacific Ocean and was able to power a string of lights I had attached to the generator. While the waves in the ocean moved my buoys, my design was powered by the vertical motion of the waves. My generator was hit with significant horizontal wave motion, and I realized I wasn't taking advantage of that direction of motion. To make my generator produce more electricity, I experimented with capturing the energy of the horizontal motion of water and incorporated that into my generator design. My generator, installed in the ocean, is also exposed to sun and wind, and I am exploring the potential of solar and wind energy collection in my design to increase the electricity output. Once I have maximized my electricity output, I would like to explore scaling up my design.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..DFD.A5004C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..DFD.A5004C"><span>Observations of Equatorial Kelvin Waves and their Convective Coupling with the Atmosphere/Ocean Surface Layer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Conry, Patrick; Fernando, H. J. S.; Leo, Laura; Blomquist, Byron; Amelie, Vincent; Lalande, Nelson; Creegan, Ed; Hocut, Chris; MacCall, Ben; Wang, Yansen; Jinadasa, S. U. P.; Wang, Chien; Yeo, Lik-Khian</p> <p>2016-11-01</p> <p>Intraseasonal disturbances with their genesis in the equatorial Indian Ocean (IO) are an important component of global climate. The disturbances, which include Madden-Julian Oscillation and equatorial Kelvin and Rossby waves in the atmosphere and ocean, carry energy which affects El Niño, cyclogenesis, and monsoons. A recent field experiment in IO (ASIRI-RAWI) observed disturbances at three sites across IO with arrays of instruments probing from surface layer to lower stratosphere. During the field campaign the most pronounced planetary-scale disturbances were Kelvin waves in tropical tropopause layer. In Seychelles, quasi-biweekly westerly wind bursts were documented and linked to the Kelvin waves aloft, which breakdown in the upper troposphere due to internal shear instabilities. Convective coupling between waves' phase in upper troposphere and surface initiates rapid (turbulent) vertical transport and resultant wind bursts at surface. Such phenomena reveal linkages between planetary-scale waves and small-scale turbulence in the surface layer that can affect air-sea property exchanges and should be parameterized in atmosphere-ocean general circulation models. Funded by ONR Grants N00014-14-1-0279 and N00014-13-1-0199.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1013732','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1013732"><span>Wave-Ice and Air-Ice-Ocean Interaction During the Chukchi Sea Ice Edge Advance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2015-09-30</p> <p>1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Wave -Ice and Air-Ice-Ocean Interaction During the...Chukchi Sea in the late summer have potentially changed the impact of fall storms by creating wave fields in the vicinity of the advancing ice edge. A...first) wave -ice interaction field experiment that adequately documents the relationship of a growing pancake ice cover with a time and space varying</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1013723','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1013723"><span>Wave-Ice interaction in the Marginal Ice Zone: Toward a Wave-Ocean-Ice Coupled Modeling System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2015-09-30</p> <p>MIZ using WW3 (3 frequency bins, ice retreat in August and ice advance in October); Blue (solid): Based on observations near Antarctica by Meylan...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Wave- Ice interaction in the Marginal Ice Zone: Toward a...Wave-Ocean- Ice Coupled Modeling System W. E. Rogers Naval Research Laboratory, Code 7322 Stennis Space Center, MS 39529 phone: (228) 688-4727</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ESSD...10..131L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ESSD...10..131L"><span>Wind and wave dataset for Matara, Sri Lanka</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Luo, Yao; Wang, Dongxiao; Priyadarshana Gamage, Tilak; Zhou, Fenghua; Madusanka Widanage, Charith; Liu, Taiwei</p> <p>2018-01-01</p> <p>We present a continuous in situ hydro-meteorology observational dataset from a set of instruments first deployed in December 2012 in the south of Sri Lanka, facing toward the north Indian Ocean. In these waters, simultaneous records of wind and wave data are sparse due to difficulties in deploying measurement instruments, although the area hosts one of the busiest shipping lanes in the world. This study describes the survey, deployment, and measurements of wind and waves, with the aim of offering future users of the dataset the most comprehensive and as much information as possible. This dataset advances our understanding of the nearshore hydrodynamic processes and wave climate, including sea waves and swells, in the north Indian Ocean. Moreover, it is a valuable resource for ocean model parameterization and validation. The archived dataset (Table 1) is examined in detail, including wave data at two locations with water depths of 20 and 10 m comprising synchronous time series of wind, ocean astronomical tide, air pressure, etc. In addition, we use these wave observations to evaluate the ERA-Interim reanalysis product. Based on Buoy 2 data, the swells are the main component of waves year-round, although monsoons can markedly alter the proportion between swell and wind sea. The dataset (Luo et al., 2017) is publicly available from Science Data Bank (<a href="https://doi.org/10.11922/sciencedb.447" target="_blank">https://doi.org/10.11922/sciencedb.447</a>).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950030498&hterms=Plot+analysis&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DPlot%2Banalysis','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950030498&hterms=Plot+analysis&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DPlot%2Banalysis"><span>Analysis and prediction of ocean swell using instrumented buoys</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mettlach, Theodore; Wang, David; Wittmann, Paul</p> <p>1994-01-01</p> <p>During the period 20-23 September 1990, the remnants of Supertyphoon Flo moved into the central North Pacific Ocean with sustained wind speeds of 28 m/s. The strong wind and large fetch area associated with this storm generated long-period swell that propagated to the west coast of North America. National Data Buoy Center moored-buoy stations, located in a network that ranged from the Gulf of Alaska to the California Bight, provided wave spectral estimates of the swell from this storm. The greatest dominant wave periods measured were approximately 20-25 s, and significant wave heights measured ranged from 3 to 8 m. Wave spectra from an array of three nondirectional buoys are used to find the source of the long-period swell. Directional wave spectra from a heave-pitch-roll buoy are also used to make an independent estimate of the source of the swell. The ridge-line method, using time-frequency contour plots of wave spectral energy density, is used to determine the time of swell generation, which is used with the appropriate surface pressure analysis to infer the swell generation area. The diagnosed sources of the swell are also compared with nowcasts from the Global Spectral Ocean Wave Model of the Fleet Numerical Oceanography Center. A simple method of predicting the propagation of ocean swell, by applying a simple kinematic model of wave propagation to the estimated point and time source, is demonstrated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002CG.....28..537W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002CG.....28..537W"><span>Teaching ocean wave forecasting using computer-generated visualization and animation—Part 1: sea forecasting</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Whitford, Dennis J.</p> <p>2002-05-01</p> <p>Ocean waves are the most recognized phenomena in oceanography. Unfortunately, undergraduate study of ocean wave dynamics and forecasting involves mathematics and physics and therefore can pose difficulties with some students because of the subject's interrelated dependence on time and space. Verbal descriptions and two-dimensional illustrations are often insufficient for student comprehension. Computer-generated visualization and animation offer a visually intuitive and pedagogically sound medium to present geoscience, yet there are very few oceanographic examples. A two-part article series is offered to explain ocean wave forecasting using computer-generated visualization and animation. This paper, Part 1, addresses forecasting of sea wave conditions and serves as the basis for the more difficult topic of swell wave forecasting addressed in Part 2. Computer-aided visualization and animation, accompanied by oral explanation, are a welcome pedagogical supplement to more traditional methods of instruction. In this article, several MATLAB ® software programs have been written to visualize and animate development and comparison of wave spectra, wave interference, and forecasting of sea conditions. These programs also set the stage for the more advanced and difficult animation topics in Part 2. The programs are user-friendly, interactive, easy to modify, and developed as instructional tools. By using these software programs, teachers can enhance their instruction of these topics with colorful visualizations and animation without requiring an extensive background in computer programming.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014APS..DFDL35002W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014APS..DFDL35002W"><span>Effects of Offshore Wind Turbines on Ocean Waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wimer, Nicholas; Churchfield, Matthew; Hamlington, Peter</p> <p>2014-11-01</p> <p>Wakes from horizontal axis wind turbines create large downstream velocity deficits, thus reducing the available energy for downstream turbines while simultaneously increasing turbulent loading. Along with this deficit, however, comes a local increase in the velocity around the turbine rotor, resulting in increased surface wind speeds. For offshore turbines, these increased speeds can result in changes to the properties of wind-induced waves at the ocean surface. In this study, the characteristics and implications of such waves are explored by coupling a wave simulation code to the Simulator for Offshore Wind Farm Applications (SOWFA) developed by the National Renewable Energy Laboratory. The wave simulator and SOWFA are bi-directionally coupled using the surface wind field produced by an offshore wind farm to drive an ocean wave field, which is used to calculate a wave-dependent surface roughness that is fed back into SOWFA. The details of this combined framework are outlined. The potential for using the wave field created at offshore wind farms as an additional energy resource through the installation of on-site wave converters is discussed. Potential negative impacts of the turbine-induced wave field are also discussed, including increased oscillation of floating turbines.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Sci...358.1593T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Sci...358.1593T"><span>Determination of intrinsic attenuation in the oceanic lithosphere-asthenosphere system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Takeuchi, Nozomu; Kawakatsu, Hitoshi; Shiobara, Hajime; Isse, Takehi; Sugioka, Hiroko; Ito, Aki; Utada, Hisashi</p> <p>2017-12-01</p> <p>We recorded P and S waves traveling through the oceanic lithosphere-asthenosphere system (LAS) using broadband ocean-bottom seismometers in the northwest Pacific, and we quantitatively separated the intrinsic (anelastic) and extrinsic (scattering) attenuation effects on seismic wave propagation to directly infer the thermomechanical properties of the oceanic LAS. The strong intrinsic attenuation in the asthenosphere obtained at higher frequency (~3 hertz) is comparable to that constrained at lower frequency (~100 seconds) by surface waves and suggests frequency-independent anelasticity, whereas the intrinsic attenuation in the lithosphere is frequency dependent. This difference in frequency dependence indicates that the strong and broad peak dissipation recently observed in the laboratory exists only in the asthenosphere and provides new insight into what distinguishes the asthenosphere from the lithosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA627282','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA627282"><span>Electrokinetic Transduction of Acoustic Waves In Ocean Sediments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2002-09-30</p> <p>acoustic —motion in ocean sediments. The Biot theory of poroelastic media captures much of the sediment physics left out by other models [2]. It fits...in subsurface acoustical imaging, Mine Counter- Measures, and Anti-Submarine Warfare. To obtain essential experimental data to support the modeling ...Electrokinetic Transduction of Acoustic Waves In Ocean Sediments Gareth I. Block Applied Research Laboratories, U.T. Austin P.O. Box 8029</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28811494','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28811494"><span>On the shape and likelihood of oceanic rogue waves.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Benetazzo, Alvise; Ardhuin, Fabrice; Bergamasco, Filippo; Cavaleri, Luigi; Guimarães, Pedro Veras; Schwendeman, Michael; Sclavo, Mauro; Thomson, Jim; Torsello, Andrea</p> <p>2017-08-15</p> <p>We consider the observation and analysis of oceanic rogue waves collected within spatio-temporal (ST) records of 3D wave fields. This class of records, allowing a sea surface region to be retrieved, is appropriate for the observation of rogue waves, which come up as a random phenomenon that can occur at any time and location of the sea surface. To verify this aspect, we used three stereo wave imaging systems to gather ST records of the sea surface elevation, which were collected in different sea conditions. The wave with the ST maximum elevation (happening to be larger than the rogue threshold 1.25H s ) was then isolated within each record, along with its temporal profile. The rogue waves show similar profiles, in agreement with the theory of extreme wave groups. We analyze the rogue wave probability of occurrence, also in the context of ST extreme value distributions, and we conclude that rogue waves are more likely than previously reported; the key point is coming across them, in space as well as in time. The dependence of the rogue wave profile and likelihood on the sea state conditions is also investigated. Results may prove useful in predicting extreme wave occurrence probability and strength during oceanic storms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24711719','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24711719"><span>Modelling rogue waves through exact dynamical lump soliton controlled by ocean currents.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kundu, Anjan; Mukherjee, Abhik; Naskar, Tapan</p> <p>2014-04-08</p> <p>Rogue waves are extraordinarily high and steep isolated waves, which appear suddenly in a calm sea and disappear equally fast. However, though the rogue waves are localized surface waves, their theoretical models and experimental observations are available mostly in one dimension, with the majority of them admitting only limited and fixed amplitude and modular inclination of the wave. We propose two dimensions, exactly solvable nonlinear Schrödinger (NLS) equation derivable from the basic hydrodynamic equations and endowed with integrable structures. The proposed two-dimensional equation exhibits modulation instability and frequency correction induced by the nonlinear effect, with a directional preference, all of which can be determined through precise analytic result. The two-dimensional NLS equation allows also an exact lump soliton which can model a full-grown surface rogue wave with adjustable height and modular inclination. The lump soliton under the influence of an ocean current appears and disappears preceded by a hole state, with its dynamics controlled by the current term. These desirable properties make our exact model promising for describing ocean rogue waves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3928955','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3928955"><span>Modelling rogue waves through exact dynamical lump soliton controlled by ocean currents</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Kundu, Anjan; Mukherjee, Abhik; Naskar, Tapan</p> <p>2014-01-01</p> <p>Rogue waves are extraordinarily high and steep isolated waves, which appear suddenly in a calm sea and disappear equally fast. However, though the rogue waves are localized surface waves, their theoretical models and experimental observations are available mostly in one dimension, with the majority of them admitting only limited and fixed amplitude and modular inclination of the wave. We propose two dimensions, exactly solvable nonlinear Schrödinger (NLS) equation derivable from the basic hydrodynamic equations and endowed with integrable structures. The proposed two-dimensional equation exhibits modulation instability and frequency correction induced by the nonlinear effect, with a directional preference, all of which can be determined through precise analytic result. The two-dimensional NLS equation allows also an exact lump soliton which can model a full-grown surface rogue wave with adjustable height and modular inclination. The lump soliton under the influence of an ocean current appears and disappears preceded by a hole state, with its dynamics controlled by the current term. These desirable properties make our exact model promising for describing ocean rogue waves. PMID:24711719</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12736682','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12736682"><span>Redistribution of energy available for ocean mixing by long-range propagation of internal waves.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Alford, Matthew H</p> <p>2003-05-08</p> <p>Ocean mixing, which affects pollutant dispersal, marine productivity and global climate, largely results from the breaking of internal gravity waves--disturbances propagating along the ocean's internal stratification. A global map of internal-wave dissipation would be useful in improving climate models, but would require knowledge of the sources of internal gravity waves and their propagation. Towards this goal, I present here computations of horizontal internal-wave propagation from 60 historical moorings and relate them to the source terms of internal waves as computed previously. Analysis of the two most energetic frequency ranges--near-inertial frequencies and semidiurnal tidal frequencies--reveals that the fluxes in both frequency bands are of the order of 1 kW x m(-1) (that is, 15-50% of the energy input) and are directed away from their respective source regions. However, the energy flux due to near-inertial waves is stronger in winter, whereas the tidal fluxes are uniform throughout the year. Both varieties of internal waves can thus significantly affect the space-time distribution of energy available for global mixing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMOS41B..06F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMOS41B..06F"><span>New observations of Yanai waves and equatorial inertia-gravity waves in the Pacific Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Farrar, J. T.; Durland, T.</p> <p>2011-12-01</p> <p>In the 1970's and 1980's, there was a great deal of research activity on near-equatorial variability at periods of days to weeks associated with oceanic equatorial inertia-gravity waves and Yanai waves. At that time, the measurements available for studying these waves were much more limited than today: most of the available observations were from island tide gauges and a handful of short mooring records. We use more than a decade of the extensive modern data record from the TAO/TRITON mooring array in the Pacific Ocean to re-examine the internal-wave climate in the equatorial Pacific, with a focus on interpretation of the zonal-wavenumber/frequency spectrum of surface dynamic height relative to 500-m depth. Many equatorial-wave meridional modes can be identified, for both the first and second baroclinic mode. We also estimated zonal-wavenumber/frequency spectra for the zonal and meridional wind stress components. The location and extent of spectral peaks in dynamic height is readily rationalized using basic, linear theory of forced equatorial waves and the observed wind stress spectrum.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1811987D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1811987D"><span>A Comparison between Oceanographic Parameters and Seafloor Pressures; Measured, Theoretical and Modelled, and Terrestrial Seismic Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Donne, Sarah; Bean, Christopher; Craig, David; Dias, Frederic; Christodoulides, Paul</p> <p>2016-04-01</p> <p>Microseisms are continuous seismic vibrations which propagate mainly as surface Rayleigh and Love waves. They are generated by the Earth's oceans and there are two main types; primary and secondary microseisms. Primary microseisms are generated through the interaction of travelling surface gravity ocean waves with the seafloor in shallow waters relative to the wavelength of the ocean wave. Secondary microseisms, on the other hand are generated when two opposing wave trains interact and a non-linear second order effect produces a pressure fluctuation which is depth independent. The conditions necessary to produce secondary microseisms are presented in Longuet-Higgins (1950) through the interaction of two travelling waves with the same wave period and which interact at an angle of 180 degrees. Equivalent surface pressure density (p2l) is modelled using the numerical ocean wave model Wavewatch III and this term is considered as the microseism source term. This work presents an investigation of the theoretical second order pressures generated through the interaction of travelling waves with varying wave amplitude, period and angle of incidence. Predicted seafloor pressures calculated off the Southwest coast of Ireland are compared with terrestrially recorded microseism records, measured seafloor pressures and oceanographic parameters. The work presented in this study suggests that a broad set of sea states can generate second order seafloor pressures that are consistent with seafloor pressure measurements. Local seismic arrays throughout Ireland allow us to investigate the temporal covariance of these seafloor pressures with microseism source locations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1097460','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1097460"><span>Wave Power Demonstration Project at Reedsport, Oregon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Mekhiche, Mike; Downie, Bruce</p> <p>2013-10-21</p> <p>Ocean wave power can be a significant source of large‐scale, renewable energy for the US electrical grid. The Electrical Power Research Institute (EPRI) conservatively estimated that 20% of all US electricity could be generated by wave energy. Ocean Power Technologies, Inc. (OPT), with funding from private sources and the US Navy, developed the PowerBuoy to generate renewable energy from the readily available power in ocean waves. OPT's PowerBuoy converts the energy in ocean waves to electricity using the rise and fall of waves to move the buoy up and down (mechanical stroking) which drives an electric generator. This electricity ismore » then conditioned and transmitted ashore as high‐voltage power via underwater cable. OPT's wave power generation system includes sophisticated techniques to automatically tune the system for efficient conversion of random wave energy into low cost green electricity, for disconnecting the system in large waves for hardware safety and protection, and for automatically restoring operation when wave conditions normalize. As the first utility scale wave power project in the US, the Wave Power Demonstration Project at Reedsport, OR, will consist of 10 PowerBuoys located 2.5 miles off the coast. This U.S. Department of Energy Grant funding along with funding from PNGC Power, an Oregon‐based electric power cooperative, was utilized for the design completion, fabrication, assembly and factory testing of the first PowerBuoy for the Reedsport project. At this time, the design and fabrication of this first PowerBuoy and factory testing of the power take‐off subsystem are complete; additionally the power take‐off subsystem has been successfully integrated into the spar.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1710218B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1710218B"><span>Phase locking of convectively coupled equatorial atmospheric Kelvin waves over Indian Ocean basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Baranowski, Dariusz; Flatau, Maria; Flatau, Piotr; Matthews, Adrian</p> <p>2015-04-01</p> <p>The properties of convectively coupled Kelvin waves in the Indian Ocean and their propagation over the Maritime Continent are studied. It is shown that Kelvin waves are longitude - diurnal cycle phase locked over the Maritime Continent, Africa and the Indian Ocean. Thus, it is shown that they tend to propagate over definite areas during specific times of the day. Over the Maritime Continent, longitude-diurnal cycle phase locking is such that it agrees with mean, local diurnal cycle of convection. The strength of the longitude-diurnal cycle phase locking differs between 'non-blocked' Kelvin waves, which make successful transition over the Maritime Continent, and 'blocked' waves that terminated within it. It is shown that a specific combination of Kelvin wave phase speed and time of the day at which a wave approaches the Maritime Continent influence the chance of successful transition into the Western Pacific. Kelvin waves that maintain phase speed of 10 to 11 degrees per day over the central-eastern Indian Ocean and arrive at 90E between 9UTC and 18UTC have the highest chance of being 'non-blocked' by the Maritime Continent. The distance between the islands of Sumatra and Borneo agrees with the distance travelled by an average convectively coupled Kelvin wave in one day. This suggests that the Maritime Continent may act as a 'filter' for Kelvin waves favoring successful propagation of those waves for which propagation is in phase with the local diurnal cycle of precipitation. The AmPm index, a simple measure of local diurnal cycle for propagating disturbances, is introduced and shown to be useful metric depicting key characteristics of the convection associated with propagating Kelvin waves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19940033982&hterms=oceans+tide&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Doceans%2Btide','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19940033982&hterms=oceans+tide&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Doceans%2Btide"><span>Diurnal tides in the Arctic Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kowalik, Z.; Proshutinsky, A. Y.</p> <p>1993-01-01</p> <p>A 2D numerical model with a space grid of about 14 km is applied to calculate diurnal tidal constituents K(1) and O(1) in the Arctic Ocean. Calculated corange and cotidal charts show that along the continental slope, local regions of increased sea level amplitude, highly variable phase and enhanced currents occur. It is shown that in these local regions, shelf waves (topographic waves) of tidal origin are generated. In the Arctic Ocean and Northern Atlantic Ocean more than 30 regions of enhanced currents are identified. To prove the near-resonant interaction of the diurnal tides with the local bottom topography, the natural periods of oscillations for all regions have been calculated. The flux of energy averaged over the tidal period depicts the gyres of semitrapped energy, suggesting that the shelf waves are partially trapped over the irregularities of the bottom topography. It is shown that the occurrence of near-resonance phenomenon changes the energy flow in the tidal waves. First, the flux of energy from the astronomical sources is amplified in the shelf wave regions, and afterwards the tidal energy is strongly dissipated in the same regions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002CG.....28..547W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002CG.....28..547W"><span>Teaching ocean wave forecasting using computer-generated visualization and animation—Part 2: swell forecasting</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Whitford, Dennis J.</p> <p>2002-05-01</p> <p>This paper, the second of a two-part series, introduces undergraduate students to ocean wave forecasting using interactive computer-generated visualization and animation. Verbal descriptions and two-dimensional illustrations are often insufficient for student comprehension. Fortunately, the introduction of computers in the geosciences provides a tool for addressing this problem. Computer-generated visualization and animation, accompanied by oral explanation, have been shown to be a pedagogical improvement to more traditional methods of instruction. Cartographic science and other disciplines using geographical information systems have been especially aggressive in pioneering the use of visualization and animation, whereas oceanography has not. This paper will focus on the teaching of ocean swell wave forecasting, often considered a difficult oceanographic topic due to the mathematics and physics required, as well as its interdependence on time and space. Several MATLAB ® software programs are described and offered to visualize and animate group speed, frequency dispersion, angular dispersion, propagation, and wave height forecasting of deep water ocean swell waves. Teachers may use these interactive visualizations and animations without requiring an extensive background in computer programming.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016GeoRL..4311304R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016GeoRL..4311304R"><span>Seasonality of submesoscale dynamics in the Kuroshio Extension</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rocha, Cesar B.; Gille, Sarah T.; Chereskin, Teresa K.; Menemenlis, Dimitris</p> <p>2016-11-01</p> <p>Recent studies show that the vigorous seasonal cycle of the mixed layer modulates upper ocean submesoscale turbulence. Here we provide model-based evidence that the seasonally changing upper ocean stratification in the Kuroshio Extension also modulates submesoscale (here 10-100 km) inertia-gravity waves. Summertime restratification weakens submesoscale turbulence but enhances inertia-gravity waves near the surface. Thus, submesoscale turbulence and inertia-gravity waves undergo vigorous out-of-phase seasonal cycles. These results imply a strong seasonal modulation of the accuracy of geostrophic velocity diagnosed from submesoscale sea surface height delivered by the Surface Water and Ocean Topography satellite mission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19960008285&hterms=data+coding&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Ddata%2Bcoding','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19960008285&hterms=data+coding&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Ddata%2Bcoding"><span>Reduction and coding of synthetic aperture radar data with Fourier transforms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tilley, David G.</p> <p>1995-01-01</p> <p>Recently, aboard the Space Radar Laboratory (SRL), the two roles of Fourier Transforms for ocean image synthesis and surface wave analysis have been implemented with a dedicated radar processor to significantly reduce Synthetic Aperture Radar (SAR) ocean data before transmission to the ground. The object was to archive the SAR image spectrum, rather than the SAR image itself, to reduce data volume and capture the essential descriptors of the surface wave field. SAR signal data are usually sampled and coded in the time domain for transmission to the ground where Fourier Transforms are applied both to individual radar pulses and to long sequences of radar pulses to form two-dimensional images. High resolution images of the ocean often contain no striking features and subtle image modulations by wind generated surface waves are only apparent when large ocean regions are studied, with Fourier transforms, to reveal periodic patterns created by wind stress over the surface wave field. Major ocean currents and atmospheric instability in coastal environments are apparent as large scale modulations of SAR imagery. This paper explores the possibility of computing complex Fourier spectrum codes representing SAR images, transmitting the coded spectra to Earth for data archives and creating scenes of surface wave signatures and air-sea interactions via inverse Fourier transformations with ground station processors.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.2968S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.2968S"><span>Particle transport model sensitivity on wave-induced processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Staneva, Joanna; Ricker, Marcel; Krüger, Oliver; Breivik, Oyvind; Stanev, Emil; Schrum, Corinna</p> <p>2017-04-01</p> <p>Different effects of wind waves on the hydrodynamics in the North Sea are investigated using a coupled wave (WAM) and circulation (NEMO) model system. The terms accounting for the wave-current interaction are: the Stokes-Coriolis force, the sea-state dependent momentum and energy flux. The role of the different Stokes drift parameterizations is investigated using a particle-drift model. Those particles can be considered as simple representations of either oil fractions, or fish larvae. In the ocean circulation models the momentum flux from the atmosphere, which is related to the wind speed, is passed directly to the ocean and this is controlled by the drag coefficient. However, in the real ocean, the waves play also the role of a reservoir for momentum and energy because different amounts of the momentum flux from the atmosphere is taken up by the waves. In the coupled model system the momentum transferred into the ocean model is estimated as the fraction of the total flux that goes directly to the currents plus the momentum lost from wave dissipation. Additionally, we demonstrate that the wave-induced Stokes-Coriolis force leads to a deflection of the current. During the extreme events the Stokes velocity is comparable in magnitude to the current velocity. The resulting wave-induced drift is crucial for the transport of particles in the upper ocean. The performed sensitivity analyses demonstrate that the model skill depends on the chosen processes. The results are validated using surface drifters, ADCP, HF radar data and other in-situ measurements in different regions of the North Sea with a focus on the coastal areas. The using of a coupled model system reveals that the newly introduced wave effects are important for the drift-model performance, especially during extremes. Those effects cannot be neglected by search and rescue, oil-spill, transport of biological material, or larva drift modelling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19840019213','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19840019213"><span>An improved dual-frequency technique for the remote sensing of ocean currents and wave spectra</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schuler, D. L.; Eng, W. P.</p> <p>1984-01-01</p> <p>A two frequency microwave radar technique for the remote sensing of directional ocean wave spectra and surface currents is investigated. This technique is conceptually attractive because its operational physical principle involves a spatial electromagnetic scattering resonance with a single, but selectable, long gravity wave. Multiplexing of signals having different spacing of the two transmitted frequencies allows measurements of the entire long wave ocean spectrum to be carried out. A new scatterometer is developed and experimentally tested which is capable of making measurements having much larger signal/background values than previously possible. This instrument couples the resonance technique with coherent, frequency agility radar capabilities. This scatterometer is presently configured for supporting a program of surface current measurements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1177368','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1177368"><span>Evaluating Effects of Stressors from Marine and Hydrokinetic Energy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Copping, Andrea E.; Blake, Kara M.; Hanna, Luke A.</p> <p>2012-09-30</p> <p>Potential environmental effects of marine and hydrokinetic (MHK) energy development are not well understood, yet regulatory agencies are required to make decisions in spite of substantial uncertainty about environmental impacts and their long-term consequences. An understanding of risks associated with interactions between MHK installations and aquatic receptors, including animals, habitats, and ecosystems, can help define key uncertainties and focus regulatory actions and scientific studies on interactions of most concern. During FY 2012, Pacific Northwest National Laboratory (PNNL) continued to follow project developments on the two marine and hydrokinetic projects reviewed for Environmental Risk Evaluation System (ERES) screening analysis in FYmore » 2011: a tidal project in the Gulf of Maine using Ocean Renewable Power Company TidGenTM turbines and a wave project planned for the coast of Oregon using Aquamarine Oyster surge devices. The ERES project in FY 2012 also examined two stressor–receptor interactions previously identified through the screening process as being of high importance: 1) the toxicity effects of antifouling coatings on MHK devices on aquatic resources and 2) the risk of a physical strike encounter between an adult killer whale and an OpenHydro turbine blade. The screening-level assessment of antifouling paints and coatings was conducted for two case studies: the Snohomish County Public Utility District No. 1 (SnoPUD) tidal turbine energy project in Admiralty Inlet, Puget Sound, Washington, and the Ocean Power Technologies (OPT) wave buoy project in Reedsport, Oregon. Results suggest minimal risk to aquatic biota from antifouling coatings used on MHK devices deployed in large estuaries or open ocean environments. For the strike assessment of a Southern Resident Killer Whale (SRKW) encountering an OpenHydro tidal turbine blade, PNNL teamed with colleagues from Sandia National Laboratories (SNL) to carry out an analysis of the mechanics and biological consequences of different blade strike scenarios. Results of these analyses found the following: 1) a SRKW is not likely to experience significant tissue injury from impact by an OpenHydro turbine blade; and 2) if whale skin behaves similarly to the materials considered as surrogates for the upper dermal layers of whale skin, it would not be torn by an OpenHydro blade strike. The PNNL/SNL analyses could not provide insight into the potential for more subtle changes to SRKWs from an encounter with a turbine, such as changes in behavior, or inform turbine interactions for other whales or other turbines. These analyses were limited by the available time frame in which results were needed and focused on the mechanical response of whale tissues and bone to blade strike. PNNL proposes that analyses of additional turbine designs and interactions with other marine mammals that differ in size, body conformation, and mass be performed.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26ES..149a2054U','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26ES..149a2054U"><span>Response of near-surface currents in the Indian Ocean to the anomalous atmospheric condition in 2015</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Utari, P. A.; Nurkhakim, M. Y.; Setiabudidaya, D.; Iskandar, I.</p> <p>2018-05-01</p> <p>Anomalous ocean-atmosphere conditions were detected in the tropical Indian Ocean during boreal spring to boreal winter 2015. It was suggested that the anomalous conditions were characteristics of the positive Indian Ocean Dipole (pIOD) event. The purpose of this investigation was to investigate the response of near-surface currents in the tropical Indian Ocean to the anomalous atmospheric condition in 2015. Near-surface current from OSCAR (Ocean Surface Current Analyses Real Time) reanalysis data combined with the sea surface temperature (SST) data from OISST – NOAA, sea surface height (SSH) and surface winds from the ECMWF were used in this investigation. The analysis showed that the evolution of 2015 pIOD started in June/July, peaked in the September and terminated in late November 2015. Correlated with the evolution of the pIOD, easterly winds anomalies were detected along the equator. As the oceanic response to these easterly wind anomalies, the surface currents anomalously westward during the peak of the pIOD. It was interesting to note that the evolution of 2015 pIOD event was closely related to the ocean wave dynamics as revealed by the SSH data. Downwelling westward propagating Rossby waves were detected in the southwestern tropical Indian Ocean. Once reached the western boundary of the Indian Ocean, they were redirected back into interior Indian Ocean and propagating eastward as the downwelling Kelvin waves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMIN41D..07B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMIN41D..07B"><span>A Deep-Ocean Observatory with Near Real-time Telemetry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Berger, J.; Orcutt, J. A.; Laske, G.</p> <p>2014-12-01</p> <p>We describe an autonomously deployable, deep-ocean observatory designed to provide long term and near-real-time observations from sites far offshore. The key feature of this new system is its ability to telemeter sensor data from the seafloor to shore without a cable or moored surface buoy. In the future the observatory will be deployable without a ship. The first application of this system is seismology. While permanent ocean seismic stations on the seafloor have long been a goal of global seismology, today there are still no ocean bottom stations in the Global Seismographic Network, mostly for reasons of life-cycle costs. Yet real-time data from stations in oceanic areas are critical for both national and international agencies in monitoring and characterizing earthquakes, tsunamis, and nuclear explosions. The system comprises an ocean bottom instrumentation package and a free-floating surface communications gateway, which uses a Liquid Robotics wave glider. The glider consists of a surfboard-sized float propelled by a tethered, submerged glider, which converts wave motion into thrust. For navigation, the wave gliders are equipped with a small computer, a GPS receiver, a rudder, solar panels and batteries, and an Iridium satellite modem. Wave gliders have demonstrated trans-oceanic range combined with long-term station holding. The 'communications gateway,' which provides the means of communicating between the ocean bottom package and land comprises a wave glider and a towed acoustic communications 'tow body'. Acoustic communications connect the subsea instruments and the surface gateway while communications between the gateway and land is provided by the Iridium satellite constellation. Tests of the surface gateway in 4350 m of water demonstrated the ability to send four channels of compressed 24-bit, 1 sample per second data from the ocean bottom to the gateway with an average power draw of approximately 0.2 W.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1615386W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1615386W"><span>Investigating the generation of Love waves in secondary microseisms using 3D numerical simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wenk, Stefan; Hadziioannou, Celine; Pelties, Christian; Igel, Heiner</p> <p>2014-05-01</p> <p>Longuet-Higgins (1950) proposed that secondary microseismic noise can be attributed to oceanic disturbances by surface gravity wave interference causing non-linear, second-order pressure perturbations at the ocean bottom. As a first approximation, this source mechanism can be considered as a force acting normal to the ocean bottom. In an isotropic, layered, elastic Earth model with plain interfaces, vertical forces generate P-SV motions in the vertical plane of source and receiver. In turn, only Rayleigh waves are excited at the free surface. However, several authors report on significant Love wave contributions in the secondary microseismic frequency band of real data measurements. The reason is still insufficiently analysed and several hypothesis are under debate: - The source mechanism has strongest influence on the excitation of shear motions, whereas the source direction dominates the effect of Love wave generation in case of point force sources. Darbyshire and Okeke (1969) proposed the topographic coupling effect of pressure loads acting on a sloping sea-floor to generate the shear tractions required for Love wave excitation. - Rayleigh waves can be converted into Love waves by scattering. Therefore, geometric scattering at topographic features or internal scattering by heterogeneous material distributions can cause Love wave generation. - Oceanic disturbances act on large regions of the ocean bottom, and extended sources have to be considered. In combination with topographic coupling and internal scattering, the extent of the source region and the timing of an extended source should effect Love wave excitation. We try to elaborate the contribution of different source mechanisms and scattering effects on Love to Rayleigh wave energy ratios by 3D numerical simulations. In particular, we estimate the amount of Love wave energy generated by point and extended sources acting on the free surface. Simulated point forces are modified in their incident angle, whereas extended sources are adapted in their spatial extent, magnitude and timing. Further, the effect of variations in the correlation length and perturbation magnitude of a random free surface topography as well as an internal random material distribution are studied.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19770032925&hterms=Tidal+waves&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DTidal%2Bwaves','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19770032925&hterms=Tidal+waves&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DTidal%2Bwaves"><span>Internal wave observations made with an airborne synthetic aperture imaging radar</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Elachi, C.; Apel, J. R.</p> <p>1976-01-01</p> <p>Synthetic aperture L-band radar flown aboard the NASA CV-990 has observed periodic striations on the ocean surface off the coast of Alaska which have been interpreted as tidally excited oceanic internal waves of less than 500 m length. These radar images are compared to photographic imagery of similar waves taken from Landsat 1. Both the radar and Landsat images reveal variations in reflectivity across each wave in a packet that range from low to high to normal. The variations point to the simultaneous existence of two mechanisms for the surface signatures of internal waves: roughening due to wave-current interactions, and smoothing due to slick formation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ESASP.740E..60D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ESASP.740E..60D"><span>Partitioning Ocean Wave Spectra Obtained from Radar Observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Delaye, Lauriane; Vergely, Jean-Luc; Hauser, Daniele; Guitton, Gilles; Mouche, Alexis; Tison, Celine</p> <p>2016-08-01</p> <p>2D wave spectra of ocean waves can be partitioned into several wave components to better characterize the scene. We present here two methods of component detection: one based on watershed algorithm and the other based on a Bayesian approach. We tested both methods on a set of simulated SWIM data, the Ku-band real aperture radar embarked on the CFOSAT (China- France Oceanography Satellite) mission which launch is planned mid-2018. We present the results and the limits of both approaches and show that Bayesian method can also be applied to other kind of wave spectra observations as those obtained with the radar KuROS, an airborne radar wave spectrometer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70104616','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70104616"><span>The significance of ultra-refracted surface gravity waves on sheltered coasts, with application to San Francisco Bay</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hanes, D.M.; Erikson, L.H.</p> <p>2013-01-01</p> <p>Ocean surface gravity waves propagating over shallow bathymetry undergo spatial modification of propagation direction and energy density, commonly due to refraction and shoaling. If the bathymetric variations are significant the waves can undergo changes in their direction of propagation (relative to deepwater) greater than 90° over relatively short spatial scales. We refer to this phenomenon as ultra-refraction. Ultra-refracted swell waves can have a powerful influence on coastal areas that otherwise appear to be sheltered from ocean waves. Through a numerical modeling investigation it is shown that San Francisco Bay, one of the earth's largest and most protected natural harbors, is vulnerable to ultra-refracted ocean waves, particularly southwest incident swell. The flux of wave energy into San Francisco Bay results from wave transformation due to the bathymetry and orientation of the large ebb tidal delta, and deep, narrow channel through the Golden Gate. For example, ultra-refracted swell waves play a critical role in the intermittent closure of the entrance to Crissy Field Marsh, a small restored tidal wetland located on the sheltered north-facing coast approximately 1.5 km east of the Golden Gate Bridge.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.S21A4392H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.S21A4392H"><span>Open Source Seismic Software in NOAA's Next Generation Tsunami Warning System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hellman, S. B.; Baker, B. I.; Hagerty, M. T.; Leifer, J. M.; Lisowski, S.; Thies, D. A.; Donnelly, B. K.; Griffith, F. P.</p> <p>2014-12-01</p> <p>The Tsunami Information technology Modernization (TIM) is a project spearheaded by National Oceanic and Atmospheric Administration to update the United States' Tsunami Warning System software currently employed at the Pacific Tsunami Warning Center (Eva Beach, Hawaii) and the National Tsunami Warning Center (Palmer, Alaska). This entirely open source software project will integrate various seismic processing utilities with the National Weather Service Weather Forecast Office's core software, AWIPS2. For the real-time and near real-time seismic processing aspect of this project, NOAA has elected to integrate the open source portions of GFZ's SeisComP 3 (SC3) processing system into AWIPS2. To provide for better tsunami threat assessments we are developing open source tools for magnitude estimations (e.g., moment magnitude, energy magnitude, surface wave magnitude), detection of slow earthquakes with the Theta discriminant, moment tensor inversions (e.g. W-phase and teleseismic body waves), finite fault inversions, and array processing. With our reliance on common data formats such as QuakeML and seismic community standard messaging systems, all new facilities introduced into AWIPS2 and SC3 will be available as stand-alone tools or could be easily integrated into other real time seismic monitoring systems such as Earthworm, Antelope, etc. Additionally, we have developed a template based design paradigm so that the developer or scientist can efficiently create upgrades, replacements, and/or new metrics to the seismic data processing with only a cursory knowledge of the underlying SC3.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20150005800&hterms=Ripple+labs&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DRipple%2Blabs','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20150005800&hterms=Ripple+labs&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DRipple%2Blabs"><span>Sea Surface Salinity and Wind Retrieval Algorithm Using Combined Passive-Active L-Band Microwave Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Yueh, Simon H.; Chaubell, Mario J.</p> <p>2011-01-01</p> <p>Aquarius is a combined passive/active L-band microwave instrument developed to map the salinity field at the surface of the ocean from space. The data will support studies of the coupling between ocean circulation, the global water cycle, and climate. The primary science objective of this mission is to monitor the seasonal and interannual variation of the large scale features of the surface salinity field in the open ocean with a spatial resolution of 150 kilometers and a retrieval accuracy of 0.2 practical salinity units globally on a monthly basis. The measurement principle is based on the response of the L-band (1.413 gigahertz) sea surface brightness temperatures (T (sub B)) to sea surface salinity. To achieve the required 0.2 practical salinity units accuracy, the impact of sea surface roughness (e.g. wind-generated ripples and waves) along with several factors on the observed brightness temperature has to be corrected to better than a few tenths of a degree Kelvin. To the end, Aquarius includes a scatterometer to help correct for this surface roughness effect.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA575530','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA575530"><span>The Influence of Atmosphere-Ocean Interaction on MJO Development and Propagation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2012-09-30</p> <p>atmosphere-ocean feedbacks and their influence on MJO development, and for forecasting of air sea interaction in the Indian Ocean basin and its influence...black line indicating precipitation maximum over the DYNAMO area and the red line indicating the precipitation anomaly west of Sumatra . The... basin in December. Similar EOF decomposition of the precipitation associated with Kelvin waves (not shown here) indicates strong Kelvin wave anomaly</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3812634','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3812634"><span>Continuous Wavelet Transform Analysis of Acceleration Signals Measured from a Wave Buoy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Chuang, Laurence Zsu-Hsin; Wu, Li-Chung; Wang, Jong-Hao</p> <p>2013-01-01</p> <p>Accelerometers, which can be installed inside a floating platform on the sea, are among the most commonly used sensors for operational ocean wave measurements. To examine the non-stationary features of ocean waves, this study was conducted to derive a wavelet spectrum of ocean waves and to synthesize sea surface elevations from vertical acceleration signals of a wave buoy through the continuous wavelet transform theory. The short-time wave features can be revealed by simultaneously examining the wavelet spectrum and the synthetic sea surface elevations. The in situ wave signals were applied to verify the practicality of the wavelet-based algorithm. We confirm that the spectral leakage and the noise at very-low-frequency bins influenced the accuracies of the estimated wavelet spectrum and the synthetic sea surface elevations. The appropriate thresholds of these two factors were explored. To study the short-time wave features from the wave records, the acceleration signals recorded from an accelerometer inside a discus wave buoy are analysed. The results from the wavelet spectrum show the evidence of short-time nonlinear wave events. Our study also reveals that more surface profiles with higher vertical asymmetry can be found from short-time nonlinear wave with stronger harmonic spectral peak. Finally, we conclude that the algorithms of continuous wavelet transform are practical for revealing the short-time wave features of the buoy acceleration signals. PMID:23966188</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-S44-79-077.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-S44-79-077.html"><span>Internal Waves, Western Indian Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>1991-12-01</p> <p>STS044-79-077 (24 Nov.-1 Dec. 1991) --- This photograph, captured from the Earth-orbiting Space Shuttle Atlantis, shows sunglint pattern in the western tropical Indian Ocean. Several large internal waves reflect around a shallow area on the sea floor. NASA scientists studying the STS-44 photography believe the shallow area to be a sediment (a submerged mountain) on top of the Mascarene Plateau, located northeast of Madagascar at approximately 5.6 degrees south latitude and 55.7 degrees east longitude. Internal waves are similar to surface ocean waves, except that they travel inside the water column along the boundary between water layers of different density. At the surface, their passage is marked on the sea surface by bands of smooth and rough water. These bands appear in the sunglint pattern as areas of brighter or darker water. NASA scientists point out that, when the waves encounter an obstacle, such as a near-surface seamount, they bend or refract around the obstacle in the same manner as surface waves bend around an island or headland.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhDT........17O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhDT........17O"><span>Observations and Modeling of Turbulent Air-Sea Coupling in Coastal and Strongly Forced Condition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ortiz-Suslow, David G.</p> <p></p> <p>The turbulent fluxes of momentum, mass, and energy across the ocean-atmosphere boundary are fundamental to our understanding of a myriad of geophysical processes, such as wind-wave generation, oceanic circulation, and air-sea gas transfer. In order to better understand these fluxes, empirical relationships were developed to quantify the interfacial exchange rates in terms of easily observed parameters (e.g., wind speed). However, mounting evidence suggests that these empirical formulae are only valid over the relatively narrow parametric space, i.e. open ocean conditions in light to moderate winds. Several near-surface processes have been observed to cause significant variance in the air-sea fluxes not predicted by the conventional functions, such as a heterogeneous surfaces, swell waves, and wave breaking. Further study is needed to fully characterize how these types of processes can modulate the interfacial exchange; in order to achieve this, a broad investigation into air-sea coupling was undertaken. The primary focus of this work was to use a combination of field and laboratory observations and numerical modeling, in regimes where conventional theories would be expected to breakdown, namely: the nearshore and in very high winds. These seemingly disparate environments represent the marine atmospheric boundary layer at its physical limit. In the nearshore, the convergence of land, air, and sea in a depth-limited domain marks the transition from a marine to a terrestrial boundary layer. Under extreme winds, the physical nature of the boundary layer remains unknown as an intermediate substrate layer, sea spray, develops between the atmosphere and ocean surface. At these ends of the MABL physical spectrum, direct measurements of the near-surface processes were made and directly related to local sources of variance. Our results suggest that the conventional treatment of air-sea fluxes in terms of empirical relationships developed from a relatively narrow set of environmental conditions do not generalize to the coastal and extreme wind environments. This body of work represents a multi-faceted approach to understanding physical air-sea interactions in varied regimes and using a wide array of investigatory methods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=169140&Lab=NCER&keyword=technology+AND+educational&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=169140&Lab=NCER&keyword=technology+AND+educational&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>HARNESSING OCEAN WAVE ENERGY TO GENERATE ELECTRICITY</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p><p>A technical challenge to sustainability is finding an energy source that is abundant enough to meet global demands without producing greenhouse gases or radioactive waste. Energy from ocean surface waves can provide the people of this planet a clean, endless power source to me...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/18657','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/18657"><span>Development of methods for improving levels 1 and 2 met/ocean parameter predictions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2011-02-01</p> <p>The prediction of storm surge and wave forces and moments on bridges requires knowledge of design (100-year) water levels and wave heights and periods (met/ocean conditions) as well as bridge dimensions, elevation, orientation, etc. The American Asso...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29670936','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29670936"><span>Submesoscale Rossby waves on the Antarctic circumpolar current.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Taylor, John R; Bachman, Scott; Stamper, Megan; Hosegood, Phil; Adams, Katherine; Sallee, Jean-Baptiste; Torres, Ricardo</p> <p>2018-03-01</p> <p>The eastward-flowing Antarctic circumpolar current (ACC) plays a central role in the global ocean overturning circulation and facilitates the exchange of water between the ocean surface and interior. Submesoscale eddies and fronts with scales between 1 and 10 km are regularly observed in the upper ocean and are associated with strong vertical circulations and enhanced stratification. Despite their importance in other locations, comparatively little is known about submesoscales in the Southern Ocean. We present results from new observations, models, and theories showing that submesoscales are qualitatively changed by the strong jet associated with the ACC in the Scotia Sea, east of Drake Passage. Growing submesoscale disturbances develop along a dense filament and are transformed into submesoscale Rossby waves, which propagate upstream relative to the eastward jet. Unlike their counterparts in slower currents, the submesoscale Rossby waves do not destroy the underlying frontal structure. The development of submesoscale instabilities leads to strong net subduction of water associated with a dense outcropping filament, and later, the submesoscale Rossby waves are associated with intense vertical circulations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70179088','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70179088"><span>A multimodal wave spectrum-based approach for statistical downscaling of local wave climate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hegermiller, Christie; Antolinez, Jose A A; Rueda, Ana C.; Camus, Paula; Perez, Jorge; Erikson, Li; Barnard, Patrick; Mendez, Fernando J.</p> <p>2017-01-01</p> <p>Characterization of wave climate by bulk wave parameters is insufficient for many coastal studies, including those focused on assessing coastal hazards and long-term wave climate influences on coastal evolution. This issue is particularly relevant for studies using statistical downscaling of atmospheric fields to local wave conditions, which are often multimodal in large ocean basins (e.g. the Pacific). Swell may be generated in vastly different wave generation regions, yielding complex wave spectra that are inadequately represented by a single set of bulk wave parameters. Furthermore, the relationship between atmospheric systems and local wave conditions is complicated by variations in arrival time of wave groups from different parts of the basin. Here, we address these two challenges by improving upon the spatiotemporal definition of the atmospheric predictor used in statistical downscaling of local wave climate. The improved methodology separates the local wave spectrum into “wave families,” defined by spectral peaks and discrete generation regions, and relates atmospheric conditions in distant regions of the ocean basin to local wave conditions by incorporating travel times computed from effective energy flux across the ocean basin. When applied to locations with multimodal wave spectra, including Southern California and Trujillo, Peru, the new methodology improves the ability of the statistical model to project significant wave height, peak period, and direction for each wave family, retaining more information from the full wave spectrum. This work is the base of statistical downscaling by weather types, which has recently been applied to coastal flooding and morphodynamic applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.9105B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.9105B"><span>North Sea Storm Driving of Extreme Wave Heights</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bell, Ray; Gray, Suzanne; Jones, Oliver</p> <p>2017-04-01</p> <p>The relationship between storms and extreme ocean waves in the North sea is assessed using a long-period wave dataset and storms identified in the Interim ECMWF Re-Analysis (ERA-Interim). An ensemble sensitivity analysis is used to provide information on the spatial and temporal forcing from mean sea-level pressure and surface wind associated with extreme ocean wave height responses. Extreme ocean waves in the central North Sea arise due to either the winds in the cold conveyor belt (northerly-wind events) or winds in the warm conveyor belt (southerly-wind events) of extratropical cyclones. The largest wave heights are associated with northerly-wind events which tend to have stronger wind speeds and occur as the cold conveyor belt wraps rearwards round the cyclone to the cold side of the warm front. The northerly-wind events also provide a larger fetch to the central North Sea. Southerly-wind events are associated with the warm conveyor belts of intense extratropical storms developing in the right upper-tropospheric jet exit region. There is predictability in the extreme ocean wave events up to two days before the event associated with a strengthening of a high pressure system to the west (northerly-wind events) and south-west (southerly-wind events) of the British Isles. This acts to increase the pressure gradient over the British Isles and therefore drive stronger wind speeds in the central North sea.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015ClDy...45..989M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015ClDy...45..989M"><span>The ocean-atmosphere response to wind-induced thermocline changes in the tropical South Western Indian Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Manola, Iris; Selten, F. M.; de Ruijter, W. P. M.; Hazeleger, W.</p> <p>2015-08-01</p> <p>In the Indian Ocean basin the sea surface temperatures (SSTs) are most sensitive to changes in the oceanic depth of the thermocline in the region of the Seychelles Dome. Observational studies have suggested that the strong SST variations in this region influence the atmospheric evolution around the basin, while its impact could extend far into the Pacific and the extra-tropics. Here we study the adjustments of the coupled atmosphere-ocean system to a winter shallow doming event using dedicated ensemble simulations with the state-of-the-art EC-Earth climate model. The doming creates an equatorial Kelvin wave and a pair of westward moving Rossby waves, leading to higher SST 1-2 months later in the Western equatorial Indian Ocean. Atmospheric convection is strengthened and the Walker circulation responds with reduced convection over Indonesia and cooling of the SST in that region. The Pacific warm pool convection shifts eastward and an oceanic Kelvin wave is triggered at thermocline depth. The wave leads to an SST warming in the East Equatorial Pacific 5-6 months after the initiation of the Seychelles Dome event. The atmosphere responds to this warming with weak anomalous atmospheric convection. The changes in the upper tropospheric divergence in this sequence of events create large-scale Rossby waves that propagate away from the tropics along the atmospheric waveguides. We suggest to repeat these types of experiments with other models to test the robustness of the results. We also suggest to create the doming event in June so that the East-Pacific warming occurs in November when the atmosphere is most sensitive to SST anomalies and El Niño could possibly be triggered by the doming event under suitable conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6075366-ocean-wave-electric-generators','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6075366-ocean-wave-electric-generators"><span>Ocean wave electric generators</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Rosenberg, H.R.</p> <p></p> <p>This patent describes an apparatus for generating electricity from ocean waves. It consists of: 1.) a hollow buoyant duck positioned in the path of waves including a core about the center axis of which the duck rotates, a lower chamber portion having liquid therein and an upper chamber portion having air therein. The air is alternately compressed and expanded by the liquid in the chamber during the rotational motion of the duck caused by waves. A turbine mounted in the upper portion of the duck is driven by the compressed and expanded air. A generator is coupled to the turbinemore » and operated to produce electrical energy and an air bulb; 2.) a spine having a transverse axial shaft anchoring the spine to the ocean floor. The upper portion of the spine engages the duck to maintain the duck in position. The spine has a curved configuration to concentrate and direct wave energy. The spine configuration acts as a scoop to increase the height of wave peaks and as a foil to increase the depth of wave troughs.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1911977F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1911977F"><span>Towards the Operational Ensemble-based Data Assimilation System for the Wave Field at the National Weather Service</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Flampouris, Stylianos; Penny, Steve; Alves, Henrique</p> <p>2017-04-01</p> <p>The National Centers for Environmental Prediction (NCEP) of the National Oceanic and Atmospheric Administration (NOAA) provides the operational wave forecast for the US National Weather Service (NWS). Given the continuous efforts to improve forecast, NCEP is developing an ensemble-based data assimilation system, based on the local ensemble transform Kalman filter (LETKF), the existing operational global wave ensemble system (GWES) and on satellite and in-situ observations. While the LETKF was designed for atmospheric applications (Hunt et al 2007), and has been adapted for several ocean models (e.g. Penny 2016), this is the first time applied for oceanic waves assimilation. This new wave assimilation system provides a global estimation of the surface sea state and its approximate uncertainty. It achieves this by analyzing the 21-member ensemble of the significant wave height provided by GWES every 6h. Observations from four altimeters and all the available in-situ measurements are used in this analysis. The analysis of the significant wave height is used for initializing the next forecasting cycle; the data assimilation system is currently being tested for operational use.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70034727','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70034727"><span>Pressure-gradient-driven nearshore circulation on a beach influenced by a large inlet-tidal shoal system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Shi, F.; Hanes, D.M.; Kirby, J.T.; Erikson, L.; Barnard, P.; Eshleman, J.</p> <p>2011-01-01</p> <p>The nearshore circulation induced by a focused pattern of surface gravity waves is studied at a beach adjacent to a major inlet with a large ebb tidal shoal. Using a coupled wave and wave-averaged nearshore circulation model, it is found that the nearshore circulation is significantly affected by the heterogeneous wave patterns caused by wave refraction over the ebb tidal shoal. The model is used to predict waves and currents during field experiments conducted near the mouth of San Francisco Bay and nearby Ocean Beach. The field measurements indicate strong spatial variations in current magnitude and direction and in wave height and direction along Ocean Beach and across the ebb tidal shoal. Numerical simulations suggest that wave refraction over the ebb tidal shoal causes wave focusing toward a narrow region at Ocean Beach. Due to the resulting spatial variation in nearshore wave height, wave-induced setup exhibits a strong alongshore nonuniformity, resulting in a dramatic change in the pressure field compared to a simulation with only tidal forcing. The analysis of momentum balances inside the surf zone shows that, under wave conditions with intensive wave focusing, the alongshore pressure gradient associated with alongshore nonuniform wave setup can be a dominant force driving circulation, inducing heterogeneous alongshore currents. Pressure-gradient- forced alongshore currents can exhibit flow reversals and flow convergence or divergence, in contrast to the uniform alongshore currents typically caused by tides or homogeneous waves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1985DyAtO...9...85G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1985DyAtO...9...85G"><span>The reflection and diffraction of internal waves from the junction of a slit and a half-space, with application to submarine canyons</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Grimshaw, R. H. J.; Baines, P. G.; Bell, R. C.</p> <p>1985-07-01</p> <p>We consider the three-dimensional reflection and diffraction properties of internal waves in a continuously stratified rotating fluid which are incident on the junction of a vertical slit and a half-space. This geometry is a model for submarine canyons on continental slopes in the ocean, where various physical phenomena embodying reflection and diffraction effects have been observed. Three types of incident wave are considered: (1) Kelvin waves in the slit (canyon); (2) Kelvin waves on the slope; and (3) plane internal waves incident from the half-space (ocean). These are scattered into Kelvin and Poincaré waves in the slit, a Kelvin wave on the slope and Poincaré waves in the half-space. Most of the discussion is centered around case (1). Various properties of the wave field are calculated for ranges of the parameters c/ cot θ, γα and ƒ/ω where cot θ is the topographic slope, c is the internal wave ray slope, α is the canyon half-width, γ is the down-slope wave-number, ƒ is the Coriolis parameter and ω is the wave frequency. Analytical results are obtained for small γα and some approximate results for larger values of γα. The results show that significant wave trapping may occur in oceanic situations, and that submarine canyons may act as source regions for internal Kelvin waves on the continental slope.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoJI.213.1832W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoJI.213.1832W"><span>Seasonality of P wave microseisms from NCF-based beamforming using ChinArray</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Weitao; Gerstoft, Peter; Wang, Baoshan</p> <p>2018-06-01</p> <p>Teleseismic P wave microseisms produce interference signals with high apparent velocity in noise cross-correlation functions (NCFs). Sources of P wave microseisms can be located with NCFs from seismic arrays. Using the vertical-vertical component NCFs from a large-aperture array in southwestern China (ChinArray), we studied the P wave source locations and their seasonality of microseisms at two period bands (8-12 and 4-8 s) with an NCF-based beamforming method. The sources of P, PP and PKPbc waves are located. The ambiguity between P and PP source locations is analysed using averaged significant ocean wave height and sea surface pressure as constraints. The results indicate that the persistent P wave sources are mainly located in the deep oceans such as the North Atlantic, North Pacific and Southern Ocean, in agreement with previous studies. The Gulf of Alaska is found to generate P waves favouring the 8-12 s period band. The seasonality of P wave sources is consistent with the hemispheric storm pattern, which is stronger in local winter. Using the identified sources, arrival times of the interference signals are predicted and agree well with observations. The interference signals exhibit seasonal variation, indicating that body wave microseisms in southwestern China are from multiple seasonal sources.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.S41C0813D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.S41C0813D"><span>Seismic Wave Velocity in the Subducted Oceanic Crust from Autocorrelation of Tectonic Tremor Signals</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ducellier, A.; Creager, K.</p> <p>2017-12-01</p> <p>Hydration and dehydration of minerals in subduction zones play a key role in the geodynamic processes that generate seismicity and that allow tectonic plates to subduct. Detecting the presence of water in the subducted plate is thus crucial to better understand the seismogenesis and the consequent seismic hazard. A landward dipping, low velocity layer has been detected in most subduction zones. In Cascadia, this low velocity zone is characterized by a low S-wave velocity and a very high Poisson's ratio, which has been interpreted as high pore-fluid pressure in the upper half part of the subducted oceanic crust. Most previous studies were based on seismic reflection imaging, receiver function analysis, or body wave tomography, with seismic sources located far from the low velocity zone. In contrast, the sources of the tectonic tremors generated during Episodic Tremor and Slip (ETS) events are located on the plate boundary. As the sources of the tremors are much closer to the low velocity zone, seismic waves recorded during ETS events should illuminate the area with greater precision. Most methods to detect and locate tectonic tremors and low-frequency earthquakes are based on the cross correlation of seismic signals; either signals at the same station for different events, or the same event at different stations. We use the autocorrelation of the seismic signal recorded by eight arrays of stations, located in the Olympic Peninsula, Washington. Each tremor, assumed to be on the plate boundary, generates a direct wave and reflected and converted waves from both the strong shear-wave velocity contrast in the mid-oceanic crust, and from the Moho of the subducted oceanic crust. The time lag between the arrivals of these different waves at a seismic station corresponds to a peak of amplitude on the autocorrelation signals. Using the time lags observed for different locations of the tremor source, we intend to invert for the seismic wave velocity of the subducted oceanic crust under the arrays. Identifying zones with lower S-wave velocity and a high Poisson's ratio will then help detecting the presence of water in the subducted oceanic crust. Our ultimate goal is contributing to a better understanding of the mechanism of ETS and subduction zone processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1910542K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1910542K"><span>Tsunami mitigation - redistribution of energy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kadri, Usama</p> <p>2017-04-01</p> <p>Tsunamis are water waves caused by the displacement of a large volume of water, in the deep ocean or a large lake, following an earthquake, landslide, underwater explosion, meteorite impacts, or other violent geological events. On the coastline, the resulting waves evolve from unnoticeable to devastating, reaching heights of tens of meters and causing destruction of property and loss of life. Over 225,000 people were killed in the 2004 Indian Ocean tsunami alone. For many decades, scientists have been studying tsunami, and progress has been widely reported in connection with the causes (1), forecasting (2), and recovery (3). However, none of the studies ratifies the approach of a direct mitigation of tsunamis, with the exception of mitigation using submarine barriers (e.g. see Ref. (4)). In an attempt to open a discussion on direct mitigation, I examine the feasibility of redistributing the total energy of a very long surface ocean (gravity) wave over a larger space through nonlinear resonant interaction with two finely tuned acoustic-gravity waves (see Refs. (5-8)). Theoretically, while the energy input in the acoustic-gravity waves required for an effective interaction is comparable to that in a tsunami (i.e. impractically large), employing the proposed mitigation technique the initial tsunami amplitude could be reduced substantially resulting in a much milder impact at the coastline. Moreover, such a technique would allow for the harnessing of the tsunami's own energy. Practically, this mitigation technique requires the design of highly accurate acoustic-gravity wave frequency transmitters or modulators, which is a rather challenging ongoing engineering problem. References 1. E. Bryant, 2014. Tsunami: the underrated hazard. Springer, doi:10.1007/978-3-319- 06133-7. 2. V. V. Titov, F. I. Gonza`lez, E. N. Bernard, M. C. Eble, H. O. Mofjeld, J. C. Newman, A. J. Venturato, 2005. Real-Time Tsunami Forecasting: Challenges and Solutions. Nat. Hazards 35:41-58, doi:10.1007/1-4020-3607-8 3 3. E. Check, 2005. Natural disasters: Roots of recovery. Nature 438, 910-911, doi:10.1038/438910a. 4. A. M. Fridman, L. S. Alperovich, L. Shemer, L. Pustil'nik, D. Shtivelman, A. G. Marchuk, D. Liberzon, 2010. Tsunami wave suppression using submarine barriers. Phys. Usp. 53 809-816, doi:10.3367/UFNe.0180.201008d.0843. 5. U. Kadri, M. Stiassnie, 2013. Generation of an acoustic-gravity wave by two gravity waves, and their mutual interaction. J. Fluid Mech. 735, R6, doi:10.1017/jfm.2013.539. 6. U. Kadri, 2015. Wave motion in a heavy compressible fluid: revisited. European Journal of Mechanics - B/Fluids, 49(A), 50-57, doi:10.1016/j.euromechflu.2014.07.008 7. U. Kadri, T.R. Akylas, 2016. On resonant triad interactions of acoustic-gravity waves. J. Fluid Mech., 788, R1(12 pages), doi:10.1017/jfm.2015.721. 8. U. Kadri, 2016. Triad resonance between a surface-gravity wave and two high frequency hydro-acoustic waves. Eur. J. Mech. B/Fluid, 55(1), 157-161, doi:10.1016/j.euromechflu.2015.09.008.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1174230','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1174230"><span>Analysis of dust samples collected from spent nuclear fuel interim storage containers at Hope Creek, Delaware, and Diablo Canyon, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Bryan, Charles R.; Enos, David George</p> <p>2014-07-01</p> <p>Potentially corrosive environments may form on the surface of spent nuclear fuel dry storage canisters by deliquescence of deposited dusts. To assess this, samples of dust were collected from in-service dry storage canisters at two near-marine sites, the Hope Creek and Diablo Canyon storage installations, and have been characterized with respect to mineralogy, chemistry, and texture. At both sites, terrestrially-derived silicate minerals, including quartz, feldspars, micas, and clays, comprise the largest fraction of the dust. Also significant at both sites were particles of iron and iron-chromium metal and oxides generated by the manufacturing process. Soluble salt phases were minor componentmore » of the Hope Creek dusts, and were compositionally similar to inland salt aerosols, rich in calcium, sulfate, and nitrate. At Diablo Canyon, however, sea-salt aerosols, occurring as aggregates of NaCl and Mg-sulfate, were a major component of the dust samples. The seasalt aerosols commonly occurred as hollow spheres, which may have formed by evaporation of suspended aerosol seawater droplets, possibly while rising through the heated annulus between the canister and the overpack. The differences in salt composition and abundance for the two sites are attributed to differences in proximity to the open ocean and wave action. The Diablo Canyon facility is on the shores of the Pacific Ocean, while the Hope Creek facility is on the shores of the Delaware River, several miles from the open ocean.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003AGUFMOS22B1156B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003AGUFMOS22B1156B"><span>Far-field tsunami magnitude determined from ocean-bottom pressure gauge data around Japan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Baba, T.; Hirata, K.; Kaneda, Y.</p> <p>2003-12-01</p> <p>\\hspace*{3mm}Tsunami magnitude is the most fundamental parameter to scale tsunamigenic earthquakes. According to Abe (1979), the tsunami magnitude, Mt, is empirically related to the crest to trough amplitude, H, of the far-field tsunami wave in meters (Mt = logH + 9.1). Here we investigate the far-field tsunami magnitude using ocean-bottom pressure gauge data. The recent ocean-bottom pressure measurements provide more precise tsunami data with a high signal-to-noise ratio. \\hspace*{3mm}Japan Marine Science and Technology Center is monitoring ocean bottom pressure fluctuations using two submarine cables of depths of 1500 - 2400 m. These geophysical observatory systems are located off Cape Muroto, Southwest Japan, and off Hokkaido, Northern Japan. The ocean-bottom pressure data recorded with the Muroto and Hokkaido systems have been collected continuously since March, 1997 and October, 1999, respectively. \\hspace*{3mm}Over the period from March 1997 to June 2003, we have observed four far-field tsunami signals, generated by earthquakes, on ocean-bottom pressure records. These far-field tsunamis were generated by the 1998 Papua New Guinea eq. (Mw 7.0), 1999 Vanuatu eq. (Mw 7.2), 2001 Peru eq. (Mw 8.4) and 2002 Papua New Guinea eq. (Mw 7.6). Maximum amplitude of about 30 mm was recorded by the tsunami from the 2001 Peru earthquake. \\hspace*{3mm}Direct application of the Abe's empirical relation to ocean-bottom pressure gauge data underestimates tsunami magnitudes by about an order of magnitude. This is because the Abe's empirical relation was derived only from tsunami amplitudes with coastal tide gauges where tsunami is amplified by the shoaling of topography and the reflection at the coastline. However, these effects do not work for offshore tsunami in deep oceans. In general, amplification due to shoaling near the coastline is governed by the Green's Law, in which the tsunami amplitude is proportional to h-1/4, where h is the water depth. Wave amplitude also is doubled by reflection at the fixed edge (coastline). Hence, we introduce a water-depth term and a reflection coefficient of 2 in the original Abe_fs empirical relation to correct tsunami amplitude for open oceans and obtain Mt = log(2H/h-1/4) + 9.1, where h is the depth of the ocean bottom pressure gage. The modified empirical relation produces tsunami magnitudes close to those determined using tide gauges.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMIN33C1810O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMIN33C1810O"><span>A Robotic Communications Gateway for Ocean Observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Orcutt, J. A.; Berger, J.; Laske, G.; Babcock, J.</p> <p>2015-12-01</p> <p>We describe a new technology that can provide real-time telemetry of sensor data from the ocean bottom. The breakthrough technology that makes this system possible is an autonomous surface vehicle called the Wave Glider developed by Liquid Robotics, Inc. of Sunnyvale, CA., which harvests wave and solar energy for motive and electrical power. The free-floating surface communications gateway uses a Liquid Robotics wave glider comprising a surfboard-sized float towed by a tethered, submerged glider, which converts wave motion into thrust. For navigation, the wave glider is equipped with a small computer, a GPS receiver, a rudder, solar panels and batteries, and an Iridium satellite modem. Acoustic communications connect the subsea instruments and the surface gateway while communications between the gateway and land are provided by the Iridium satellite constellation. Wave gliders have demonstrated trans-oceanic range and long-term station keeping capabilities. The topside acoustics communications package is mounted in a shallow tow body, which uses a WHOI micro modem and a Benthos low frequency, directional transducer. A matching bottom side modem and transducer are mounted on the ocean bottom package. Tests of the surface gateway in 4000 m of water demonstrated an acoustic efficiency of approximately 256 bits/J. For example, it has the ability to send four channels of compressed, one sample per second data from the ocean bottom to the gateway with an average power draw of approximately 0.36 W and a latency of about three minutes. This gateway is used to send near-real-time data from a broadband ocean bottom seismic observatory; we are presently designing and constructing a seafloor package with a two-year operational life. We have found that for frequencies f where f<10mHz, 35mHz < f < 120mHz and f>~3Hz, the vertical component, seafloor system noise characteristics are generally superior to similar observatories on land. Increasing the density of these stations over the majority of the surface of Earth; that is, the oceans will greatly enhance the resolution of deep Earth structure and serve civil needs including tsunami warning. The robotic technology is readily applicable for other ocean observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA460546','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA460546"><span>Ambient Noise in the Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1984-01-01</p> <p>the 14 to 222 Hz band. In a tank, the echolocation signals made by dolphins were found (167) to be directional, with peak energies above 100 kHz...17. Daniels, F. B., Mechanisms of Generation of Infrasound by Ocean Waves, JASA 24, 83, 1952. 18. Daniels, F. B., Generation of Infrasound by Ocean...in the Ocean by Surface Waves, J. Sound and Vibration 37, 185, 1974. 58. Hughes, B., Estimates of Underwater Sound (and Infrasound ) Produced by Non</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19840019207','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19840019207"><span>Synthetic aperture radar images of ocean waves, theories of imaging physics and experimental tests</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Vesecky, J. F.; Durden, S. L.; Smith, M. P.; Napolitano, D. A.</p> <p>1984-01-01</p> <p>The physical mechanism for the synthetic Aperture Radar (SAR) imaging of ocean waves is investigated through the use of analytical models. The models are tested by comparison with data sets from the SEASAT mission and airborne SAR's. Dominant ocean wavelengths from SAR estimates are biased towards longer wavelengths. The quasispecular scattering mechanism agrees with experimental data. The Doppler shift for ship wakes is that of the mean sea surface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70034106','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70034106"><span>Anthropogenic influences on shoreline and nearshore evolution in the San Francisco Bay coastal system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Dallas, K.L.; Barnard, P.L.</p> <p>2011-01-01</p> <p>Analysis of four historical bathymetric surveys over a 132-year period has revealed significant changes to the morphology of the San Francisco Bar, an ebb-tidal delta at the mouth of San Francisco Bay estuary. From 1873 to 2005 the San Francisco Bar vertically-eroded an average of 80 cm over a 125 km2 area, which equates to a total volume loss of 100 ± 52 million m3 of fine- to coarse-grained sand. Comparison of the surveys indicates the entire ebb-tidal delta contracted radially, with the crest moving landward an average of 1 km. Long-term erosion of the ebb-tidal delta is hypothesized to be due to a reduction in the tidal prism of San Francisco Bay and a decrease in coastal sediment supply, both as a result of anthropogenic activities. Prior research indicates that the tidal prism of the estuary was reduced by 9% from filling, diking, and sedimentation. Compilation of historical records dating back to 1900 reveals that a minimum of 200 million m3 of sediment has been permanently removed from the San Francisco Bay coastal system through dredging, aggregate mining, and borrow pit mining. Of this total, ~54 million m3 of sand-sized or coarser sediment was removed from central San Francisco Bay. With grain sizes comparable to the ebb-tidal delta, and its direct connection to the bay mouth, removal of sediments from central San Francisco Bay may limit the sand supply to the delta and open coast beaches. SWAN wave modeling illustrates that changes to the morphology of the San Francisco Bar have altered the alongshore wave energy distribution at adjacent Ocean Beach, and thus may be a significant factor in a persistent beach erosion ‘hot spot’ occurring in the area. Shoreline change analyses show that the sandy shoreline in the shadow of the ebb-tidal delta experienced long-term (1850s/1890s to 2002) and short-term (1960s/1980s to 2002) accretion while the adjacent sandy shoreline exposed to open-ocean waves experienced long-term and short-term erosion. Therefore, the recently observed accelerating rates of bay sediment removal, ebb-tidal delta erosion, and open coast beach erosion are all correlated temporally.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20070032962&hterms=temperature+variability&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dtemperature%2Bvariability','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20070032962&hterms=temperature+variability&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dtemperature%2Bvariability"><span>Intraseasonal Variability of the Equatorial Indian Ocean Observed from Sea Surface Height, Wind, and Temperature Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fu, Lee-Lueng</p> <p>2007-01-01</p> <p>The forcing of the equatorial Indian Ocean by the highly periodic monsoon wind cycle creates many interesting intraseasonal variabilities. The frequency spectrum of the wind stress observations from the European Remote Sensing Satellite scatterometers reveals peaks at the seasonal cycle and its higher harmonics at 180, 120, 90, and 75 days. The observations of sea surface height (SSH) from the Jason and Ocean Topography Experiment (TOPEX)/Poseidon radar altimeters are analyzed to study the ocean's response. The focus of the study is on the intraseasonal periods shorter than the annual period. The semiannual SSH variability is characterized by a basin mode involving Rossby waves and Kelvin waves traveling back and forth in the equatorial Indian Ocean between 10(deg)S and 10(deg)N. However, the interference of these waves with each other masks the appearance of individual Kelvin and Rossby waves, leading to a nodal point (amphidrome) of phase propagation on the equator at the center of the basin. The characteristics of the mode correspond to a resonance of the basin according to theoretical models. The theory also calls for similar modes at 90 and 60 days.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010004270','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010004270"><span>Waves in Radial Gravity Using Magnetic Fluid</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ohlsen, D. R.; Hart, J. E.; Weidman, P. D.</p> <p>1999-01-01</p> <p>Terrestrial laboratory experiments studying various fluid dynamical processes are constrained, by being in an Earth laboratory, to have a gravitational body force which is uniform and unidirectional. Therefore fluid free-surfaces are horizontal and flat. Such free surfaces must have a vertical solid boundary to keep the fluid from spreading horizontally along a gravitational potential surface. In atmospheric, oceanic, or stellar fluid flows that have a horizontal scale of about one-tenth the body radius or larger, sphericity is important in the dynamics. Further, fluids in spherical geometry can cover an entire domain without any sidewall effects, i.e. have truly periodic boundary conditions. We describe spherical body-force laboratory experiments using ferrofluid. Ferrofluids are dilute suspensions of magnetic dipoles, for example magnetite particles of order 10 nm diameter, suspended in a carrier fluid. Ferrofluids are subject to an additional body force in the presence of an applied magnetic field gradient. We use this body force to conduct laboratory experiments in spherical geometry. The present study is a laboratory technique improvement. The apparatus is cylindrically axisymmetric. A cylindrical ceramic magnet is embedded in a smooth, solid, spherical PVC ball. The geopotential field and its gradient, the body force, were made nearly spherical by careful choice of magnet height-to-diameter ratio and magnet size relative to the PVC ball size. Terrestrial gravity is eliminated from the dynamics by immersing the "planet" and its ferrofluid "ocean" in an immiscible silicone oil/freon mixture of the same density. Thus the earth gravity is removed from the dynamics of the ferrofluid/oil interface and the only dynamically active force there is the radial magnetic gravity. The entire apparatus can rotate, and waves are forced on the ferrofluid surface by exterior magnets. The biggest improvement in technique is in the wave visualization. Fluorescing dye is added to the oil/freon mixture and an argon ion laser generates a horizontal light that can be scanned vertically. Viewed from above, the experiment is a black circle with wave deformations surrounded by a light background. A contour of the image intensity at any light sheet position gives the surface of the ferrofluid "ocean" at that "latitude". Radial displacements of the waves as a function of longitude are obtained by subtracting the contour line positions from a no-motion contour at that laser sheet latitude. The experiments are run by traversing the forcing magnet with the laser sheet height fixed and images are frame grabbed to obtain a time-series at one latitude. The experiment is then re-run with another laser-sheet height to generate a full picture of the three-dimensional wave structure in the upper hemisphere of the ball as a function of time. We concentrate here on results of laboratory studies of waves that are important in Earth's atmosphere and especially the ocean. To get oceanic scaling in the laboratory, the experiment must rotate rapidly (4-second rotation period) so that the wave speed is slow compared to the planetary rotation speed as in the ocean. In the Pacific Ocean, eastward propagating Kelvin waves eventually run into the South American coast. Theory predicts that some of the wave energy should scatter into coastal-trapped Kelvin waves that propagate north and south along the coast. Some of this coastal wave energy might then scatter into mid-latitude Rossby waves that propagate back westward. Satellite observations of the Pacific Ocean sea-surface temperature and height seem to show signatures of westward propagating mid-latitude Rossby waves, 5 to 10 years after the 1982-83 El Nino. The observational data is difficult to interpret unambiguously owing to the large range of motions that fill the ocean at shorter timescales. This series of reflections giving eastward, north- ward, and then westward traveling waves is observed cleanly in the laboratory experiments, confirming the theoretical expectations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AdSR...13...75G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AdSR...13...75G"><span>Twenty-first century wave climate projections for Ireland and surface winds in the North Atlantic Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gallagher, Sarah; Gleeson, Emily; Tiron, Roxana; McGrath, Ray; Dias, Frédéric</p> <p>2016-04-01</p> <p>Ireland has a highly energetic wave and wind climate, and is therefore uniquely placed in terms of its ocean renewable energy resource. The socio-economic importance of the marine resource to Ireland makes it critical to quantify how the wave and wind climate may change in the future due to global climate change. Projected changes in winds, ocean waves and the frequency and severity of extreme weather events should be carefully assessed for long-term marine and coastal planning. We derived an ensemble of future wave climate projections for Ireland using the EC-Earth global climate model and the WAVEWATCH III® wave model, by comparing the future 30-year period 2070-2099 to the period 1980-2009 for the RCP4.5 and the RCP8.5 forcing scenarios. This dataset is currently the highest resolution wave projection dataset available for Ireland. The EC-Earth ensemble predicts decreases in mean (up to 2 % for RCP4.5 and up to 3.5 % for RCP8.5) 10 m wind speeds over the North Atlantic Ocean (5-75° N, 0-80° W) by the end of the century, which will consequently affect swell generation for the Irish wave climate. The WAVEWATCH III® model predicts an overall decrease in annual and seasonal mean significant wave heights around Ireland, with the largest decreases in summer (up to 15 %) and winter (up to 10 %) for RCP8.5. Projected decreases in mean significant wave heights for spring and autumn were found to be small for both forcing scenarios (less than 5 %), with no significant decrease found for RCP4.5 off the west coast in those seasons.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AcO....72..120B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AcO....72..120B"><span>Monitoring austral and cyclonic swells in the "Iles Eparses" (Mozambique channel) from microseismic noise</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barruol, Guilhem; Davy, Céline; Fontaine, Fabrice R.; Schlindwein, V.; Sigloch, K.</p> <p>2016-04-01</p> <p>We deployed five broadband three-components seismic stations in the Iles Eparses in the south-west Indian Ocean and on Mayotte Island, between April 2011 and January 2014. These small and remote oceanic islands suffer the effects of strong ocean swells that affect their coastal environments but most islands are not instrumented by wave gauges to characterize the swells. However, wave action on the coast causes high levels of ground vibrations in the solid earth, so-called microseismic noise. We use this link between the solid earth and ocean wave activity to quantify the swells locally. Spectral analyses of the continuous seismic data show clear peaks in the 0.05-0.10 Hz frequency band (periods between 10 and 20 s), corresponding to the ocean wave periods of the local swells. We analyze an example of austral swell occurring in August 2013 and a cyclonic event (Felleng) that developed in January 2013, and quantify the ground motion at each station induced by these events. In both cases, we find a linear polarization in the horizontal plane with microseismic amplitude directly correlated to the swell height (as predicted by the global swell model WaveWatchIII), and a direction of polarization close to the predicted swell propagation direction. Although this analysis has not been performed in real time, it demonstrates that terrestrial seismic stations can be efficiently used as wave gauges, and are particularly well suited for quantifying extreme swell events. This approach may therefore provide useful and cheaper alternatives to wave buoys for monitoring swells and the related environmental processes such as beach erosion or coral reef damages.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010Ocgy...50..113S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010Ocgy...50..113S"><span>Peculiarities of the tectonic and magma evolution of the southwestern Indian middle-ocean crust within the range of 51°-67° eastern longitude</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shreider, A. A.; Kashintsev, G. L.</p> <p>2010-02-01</p> <p>The comparative estimation of the parameters of the lithosphere of the Mid-Ocean Southwestern Indian range in the areas westwards and eastwards of the Atlantis II transform fault zone shows that, within this zone, an alteration in the basalt composition occurred. Eastwards of this zone, a decrease of the anomaly of the magnetic field occurred and increased average depths of the axial part (4.7 km) and thinning (up to 4-5 km) of the ocean crust with increased rates of seismic waves in the upper mantle were observed. This, first of all, indicates an anomalously cold mantle below the oceanic crust. The changes that occurred in the location of the Euler pole within the last millions of years resulted in slanting spreading in the area of the investigation with rates of opening lower than 1.8 cm/year probably accompanied by the phenomena of transtension in the active parts of the transform faults. The interaction between the Landly and Somali lithosphere plates occurred along the diffusion boundary and was accompanied by problems with tracing the chrones between the neighboring profiles of geomagnetic observations. Consequently, the more detailed investigation of the configuration of the diffusion boundary will contribute to the more accurate reconstruction of the paleogeodynamics of the central part of the Indian Ocean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JAMES..10..801P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JAMES..10..801P"><span>A New Coupled Ocean-Waves-Atmosphere Model Designed for Tropical Storm Studies: Example of Tropical Cyclone Bejisa (2013-2014) in the South-West Indian Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pianezze, J.; Barthe, C.; Bielli, S.; Tulet, P.; Jullien, S.; Cambon, G.; Bousquet, O.; Claeys, M.; Cordier, E.</p> <p>2018-03-01</p> <p>Ocean-Waves-Atmosphere (OWA) exchanges are not well represented in current Numerical Weather Prediction (NWP) systems, which can lead to large uncertainties in tropical cyclone track and intensity forecasts. In order to explore and better understand the impact of OWA interactions on tropical cyclone modeling, a fully coupled OWA system based on the atmospheric model Meso-NH, the oceanic model CROCO, and the wave model WW3 and called MSWC was designed and applied to the case of tropical cyclone Bejisa (2013-2014). The fully coupled OWA simulation shows good agreement with the literature and available observations. In particular, simulated significant wave height is within 30 cm of measurements made with buoys and altimeters. Short-term (< 2 days) sensitivity experiments used to highlight the effect of oceanic waves coupling show limited impact on the track, the intensity evolution, and the turbulent surface fluxes of the tropical cyclone. However, it is also shown that using a fully coupled OWA system is essential to obtain consistent sea salt emissions. Spatial and temporal coherence of the sea state with the 10 m wind speed are necessary to produce sea salt aerosol emissions in the right place (in the eyewall of the tropical cyclone) and with the right size distribution, which is critical for cloud microphysics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1998JGR...10318649L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1998JGR...10318649L"><span>Effects of subsurface ocean dynamics on instability waves in the tropical Pacific</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lawrence, Sean P.; Allen, Myles R.; Anderson, David L. T.; Llewellyn-Jones, David T.</p> <p>1998-08-01</p> <p>Tropical instability waves in a primitive equation model of the tropical Pacific Ocean, forced with analyzed wind stresses updated daily, show unexpectedly close phase correspondence with observation through the latter half of 1992. This suggests that these waves are not pure instabilities developing from infinitesimal disturbances, but that their phases and phase speeds are at least partially determined by the wind stress forcing. To quantify and explain this observation, we perfomed several numerical experiments, which indicate that remotely forced Rossby waves can influence both the phase and phase speed of tropical instability waves. We suggest that a remote wind forcing determines the high model/observation phase correspondence of tropical instability waves through a relatively realistic simulation of equatorial Kelvin and Rossby wave activity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.1004R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.1004R"><span>Modelling MIZ dynamics in a global model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rynders, Stefanie; Aksenov, Yevgeny; Feltham, Daniel; Nurser, George; Naveira Garabato, Alberto</p> <p>2016-04-01</p> <p>Exposure of large, previously ice-covered areas of the Arctic Ocean to the wind and surface ocean waves results in the Arctic pack ice cover becoming more fragmented and mobile, with large regions of ice cover evolving into the Marginal Ice Zone (MIZ). The need for better climate predictions, along with growing economic activity in the Polar Oceans, necessitates climate and forecasting models that can simulate fragmented sea ice with a greater fidelity. Current models are not fully fit for the purpose, since they neither model surface ocean waves in the MIZ, nor account for the effect of floe fragmentation on drag, nor include sea ice rheology that represents both the now thinner pack ice and MIZ ice dynamics. All these processes affect the momentum transfer to the ocean. We present initial results from a global ocean model NEMO (Nucleus for European Modelling of the Ocean) coupled to the Los Alamos sea ice model CICE. The model setup implements a novel rheological formulation for sea ice dynamics, accounting for ice floe collisions, thus offering a seamless framework for pack ice and MIZ simulations. The effect of surface waves on ice motion is included through wave pressure and the turbulent kinetic energy of ice floes. In the multidecadal model integrations we examine MIZ and basin scale sea ice and oceanic responses to the changes in ice dynamics. We analyse model sensitivities and attribute them to key sea ice and ocean dynamical mechanisms. The results suggest that the effect of the new ice rheology is confined to the MIZ. However with the current increase in summer MIZ area, which is projected to continue and may become the dominant type of sea ice in the Arctic, we argue that the effects of the combined sea ice rheology will be noticeable in large areas of the Arctic Ocean, affecting sea ice and ocean. With this study we assert that to make more accurate sea ice predictions in the changing Arctic, models need to include MIZ dynamics and physics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23405086','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23405086"><span>Rogue waves: from nonlinear Schrödinger breather solutions to sea-keeping test.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Onorato, Miguel; Proment, Davide; Clauss, Günther; Klein, Marco</p> <p>2013-01-01</p> <p>Under suitable assumptions, the nonlinear dynamics of surface gravity waves can be modeled by the one-dimensional nonlinear Schrödinger equation. Besides traveling wave solutions like solitons, this model admits also breather solutions that are now considered as prototypes of rogue waves in ocean. We propose a novel technique to study the interaction between waves and ships/structures during extreme ocean conditions using such breather solutions. In particular, we discuss a state of the art sea-keeping test in a 90-meter long wave tank by creating a Peregrine breather solution hitting a scaled chemical tanker and we discuss its potential devastating effects on the ship.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3566097','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3566097"><span>Rogue Waves: From Nonlinear Schrödinger Breather Solutions to Sea-Keeping Test</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Onorato, Miguel; Proment, Davide; Clauss, Günther; Klein, Marco</p> <p>2013-01-01</p> <p>Under suitable assumptions, the nonlinear dynamics of surface gravity waves can be modeled by the one-dimensional nonlinear Schrödinger equation. Besides traveling wave solutions like solitons, this model admits also breather solutions that are now considered as prototypes of rogue waves in ocean. We propose a novel technique to study the interaction between waves and ships/structures during extreme ocean conditions using such breather solutions. In particular, we discuss a state of the art sea-keeping test in a 90-meter long wave tank by creating a Peregrine breather solution hitting a scaled chemical tanker and we discuss its potential devastating effects on the ship. PMID:23405086</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19840008346&hterms=displacement+internal&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Ddisplacement%2Binternal','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19840008346&hterms=displacement+internal&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Ddisplacement%2Binternal"><span>Observations of internal waves in the Gulf of California by SEASAT SAR</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fu, L. L.; Holt, B.</p> <p>1983-01-01</p> <p>Internal waves which are among the most commonly observed oceanic phenomena in the SEASAT SAR imagery are discussed. These waves are associated with the vertical displacements of constant water density surfaces in the ocean. Their amplitudes are maximum at depths where the water density changes most rapidly usually at depths from 50 to 100 m, whereas the horizontal currents associated with these waves are maximum at the sea surface where the resulting oscillatory currents modulate the sea surface roughness and produce the signatures detected by SAR.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1983sbir.symp..118F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1983sbir.symp..118F"><span>Observations of internal waves in the Gulf of California by SEASAT SAR</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fu, L. L.; Holt, B.</p> <p>1983-07-01</p> <p>Internal waves which are among the most commonly observed oceanic phenomena in the SEASAT SAR imagery are discussed. These waves are associated with the vertical displacements of constant water density surfaces in the ocean. Their amplitudes are maximum at depths where the water density changes most rapidly usually at depths from 50 to 100 m, whereas the horizontal currents associated with these waves are maximum at the sea surface where the resulting oscillatory currents modulate the sea surface roughness and produce the signatures detected by SAR.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1987JGR....92.3541S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1987JGR....92.3541S"><span>Synthetic Pn and Sn phases and the frequency dependence of Q of oceanic lithosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sereno, Thomas J., Jr.; Orcutt, John A.</p> <p>1987-04-01</p> <p>The oceanic lithosphere is an extremely efficient waveguide for high-frequency seismic energy. In particular, the propagation of the regional to teleseismic oceanic Pn and Sn phases is largely controlled by properties of the oceanic plates. The shallow velocity gradient in the sub-Moho lithosphere results in a nearly linear travel time curve for these oceanic phases and an onset velocity near the material velocity of the uppermost mantle. The confinement of Pn/Sn to the lithosphere imposes a constraint on the maximum range that a normally refracted wave can be observed. The rapid disappearance of Sn and the discontinuous drop in Pn/Sn group velocity beyond a critical distance, dependent upon the local thickness of the lithosphere, are interpreted as a shadowing effect of the low Q asthenosphere. Wave number integration was used to compute complete synthetic seismograms for a model of oceanic lithosphere. The results were compared to data collected during the 1983 Ngendei Seismic Experiment in the southwest Pacific. The Pn/Sn coda is successfully modeled as a sum of leaky organ-pipe modes in the sediment layer and oceanic water column. While scattering is present to some degree, it is not required to explain the long duration and complicated nature of the Pn/Sn wave trains. The presence of extremely high frequencies in Pn/Sn phases and the greater efficiency of Sn than Pn propagation are interpreted in terms of an absorption band rheology. A shorter high-frequency relaxation time for P waves than for S waves results in a rheology with the property that Qα > Qβ at low frequency while Qβ > Qα at high frequency, consistent with the teleseismic Pn/Sn observations. The absorption band model is to viewed as only an approximation to the true frequency dependence of Q in the oceanic lithosphere for which analytic expressions for the material dispersion have been developed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012OcScD...9....1F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012OcScD...9....1F"><span>Interannual coherent variability of SSTA and SSHA in the Tropical Indian Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Feng, J. Q.</p> <p>2012-01-01</p> <p>Sea surface height derived from the multiple ocean satellite altimeter missions (TOPEX/Poseidon, Jason-1, ERS, Envisat et al.) and sea surface temperature from National Centers for Environmental Prediction (NCEP) over 1993-2008 are analyzed to investigate the coherent patterns between the interannual variability of the sea surface and subsurface in the Tropical Indian Ocean, by jointly adopting Singular Value Decomposition (SVD) and Extended Associate Pattern Analysis (EAPA) methods. Results show that there are two dominant coherent modes with the nearly same main period of about 3-5 yr, accounting for 86 % of the total covariance in all, but 90° phase difference between them. The primary pattern is characterized by a east-west dipole mode associated with the mature phase of ENSO, and the second presents a sandwich mode having one sign anomalies along Sumatra-Java coast and northeast of Madagascar, whilst an opposite sign between the two regions. The robust correlations of the sea surface height anomaly (SSHA) with sea surface temperature anomaly (SSTA) in the leading modes indicate a strong interaction between them, though the highest correlation coefficient appears with a time lag. And there may be some physical significance with respect to ocean dynamics implied in SSHA variability. Analyzing results show that the features of oceanic waves with basin scale, of which the Rossby wave is prominent, are apparent in the dominant modes. It is further demonstrated from the EAPA that the equatorial eastward Kelvin wave and off-equatorial westward Rossby wave as well as their reflection in the east and west boundary, respectively, are important dynamic mechanisms in the evolution of the two leading coherent patterns. Results of the present study suggest that the upper ocean thermal variations on the timescale of interannual coherent with the ocean dynamics in spatial structure and temporal evolution are mainly attributed to the ocean waves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMNH33A1643C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMNH33A1643C"><span>Validation of NEOWAVE with Measurements from the 2011 Tohoku Tsunami</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cheung, K.; Yamazaki, Y.</p> <p>2012-12-01</p> <p>An accurate and reliable numerical model is essential in mapping tsunami hazards for mitigation and preparedness. The model NEOWAVE (Non-hydrostatic Evolution of Ocean WAVEs) is being used for tsunami inundation mapping in Hawaii, American Samoa, the Gulf coast states, and Puerto Rico. In addition to the benchmarks established by the National Tsunami Hazard Mitigation Program, we have been conducting a thorough investigation of NEOWAVE's capability in reproducing the 2011 Tohoku tsunami and its impact across the Pacific. The shock-capturing non-hydrostatic model is well suited to handle tsunami conditions in a variety of coastal environments in the near and far field. It describes dispersive waves through non-hydrostatic pressure and vertical velocity, which also account for tsunami generation from time histories of seafloor deformation. The semi-implicit, staggered finite difference model captures flow discontinuities associated with bores or hydraulic jumps through a momentum conservation scheme. The model supports up to five levels of two-way nested grids in spherical coordinates to describe tsunami processes of varying time and spatial scales from the open ocean to the coast. We first define the source mechanism through forward modeling of the near-field tsunami recorded by coastal and deep-ocean buoys. A finite-fault solution based on teleseismic P-wave inversion serves as the starting point of the iterative process, in which the source parameters are systematically adjusted to achieve convergence of the computed tsunami with the near-field records. The capability of NEOWAVE in modeling propagation of the tsunami is evaluated with DART data across the Pacific as well as water-level and current measurements in Hawaii. These far-field water-level records, which are not considered in the forward modeling, also provide an independently assessment of the source model. The computed runup and inundation are compared with measurements along Northeastern Japan coasts and the Hawaiian Island chain. These coastlines include shallow embayments with open plains, narrow estuaries with steep cliffs, and volcanic insular slopes with fringing reefs for full validation of the model in a single event. The Tohoku tsunami caused persistent oscillations and hazardous currents in coastal waters around Hawaii. Analysis of the computed surface elevation reveals complex resonance modes along the Hawaiian Island chain. Standing waves with period 16 min or shorter are able to form a series of nodes and antinodes over the reefs that results in strong currents and large drawdown responsible for the damage in harbors and marinas. The results provide insights into effects of fringing reefs, which are present along 70% of Hawaii's coastlines, on tsunami transformation and runup processes. The case study improves our understanding on tsunamis in tropical island environments and validates the modeling capability to predict their impacts for hazard mitigation and emergency management.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19840019214','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19840019214"><span>Measurements of ocean wave spectra and modulation transfer function with the airborne two frequency scatterometer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Weissman, D. E.; Johnson, J. W.</p> <p>1984-01-01</p> <p>The directional spectrum and the microwave modulation transfer function of ocean waves can be measured with the airborne two frequency scatterometer technique. Similar to tower based observations, the aircraft measurements of the Modulation Transfer Function (MTF) show that it is strongly affected by both wind speed and sea state. Also detected are small differences in the magnitudes of the MTF between downwind and upwind radar look directions, and variations with ocean wavenumber. The MTF inferred from the two frequency radar is larger than that measured using single frequency, wave orbital velocity techniques such as tower based radars or ROWS measurements from low altitude aircraft. Possible reasons for this are discussed. The ability to measure the ocean directional spectrum with the two frequency scatterometer, with supporting MTF data, is demonstrated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19860043880&hterms=function+wave&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dfunction%2Bwave','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19860043880&hterms=function+wave&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dfunction%2Bwave"><span>Measurements of ocean wave spectra and modulation transfer function with the airborne two-frequency scatterometer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Weissman, D. E.; Johnson, J. W.</p> <p>1986-01-01</p> <p>The directional spectrum and the microwave modulation transfer function of ocean waves can be measured with the airborne two frequency scatterometer technique. Similar to tower based observations, the aircraft measurements of the Modulation Transfer Function (MTF) show that it is strongly affected by both wind speed and sea state. Also detected are small differences in the magnitudes of the MTF between downwind and upwind radar look directions, and variations with ocean wavenumber. The MTF inferred from the two frequency radar is larger than that measured using single frequency, wave orbital velocity techniques such as tower based radars or ROWS measurements from low altitude aircraft. Possible reasons for this are discussed. The ability to measure the ocean directional spectrum with the two frequency scatterometer, with supporting MTF data, is demonstrated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26586762','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26586762"><span>Open-ocean fish reveal an omnidirectional solution to camouflage in polarized environments.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Brady, Parrish C; Gilerson, Alexander A; Kattawar, George W; Sullivan, James M; Twardowski, Michael S; Dierssen, Heidi M; Gao, Meng; Travis, Kort; Etheredge, Robert Ian; Tonizzo, Alberto; Ibrahim, Amir; Carrizo, Carlos; Gu, Yalong; Russell, Brandon J; Mislinski, Kathryn; Zhao, Shulei; Cummings, Molly E</p> <p>2015-11-20</p> <p>Despite appearing featureless to our eyes, the open ocean is a highly variable environment for polarization-sensitive viewers. Dynamic visual backgrounds coupled with predator encounters from all possible directions make this habitat one of the most challenging for camouflage. We tested open-ocean crypsis in nature by collecting more than 1500 videopolarimetry measurements from live fish from distinct habitats under a variety of viewing conditions. Open-ocean fish species exhibited camouflage that was superior to that of both nearshore fish and mirrorlike surfaces, with significantly higher crypsis at angles associated with predator detection and pursuit. Histological measurements revealed that specific arrangements of reflective guanine platelets in the fish's skin produce angle-dependent polarization modifications for polarocrypsis in the open ocean, suggesting a mechanism for natural selection to shape reflectance properties in this complex environment. Copyright © 2015, American Association for the Advancement of Science.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA542499','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA542499"><span>Physics, Nonlinear Time Series Analysis, Data Assimilation and Hyperfast Modeling of Nonlinear Ocean Waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2010-09-30</p> <p>Hyperfast Modeling of Nonlinear Ocean Waves A. R. Osborne Dipartimento di Fisica Generale, Università di Torino Via Pietro Giuria 1, 10125...PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Universit?i Torino,Dipartimento di Fisica Generale,Via Pietro Giuria 1,10125 Torino, Italy, 8. PERFORMING</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA115188','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA115188"><span>The Utility of SAR to Monitor Ocean Processes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1981-11-01</p> <p>echo received from ocean waves include the motion of the a horizontally polarized wave will have its E vector parallel to scattering surfaces, the so...radiation is defined by the direction of the electric field intensity, E, vector . For example, a horizontally polarized wave will have its E vector ...Oil Spill Off the East Coast of the United States ................ .... 55 19. L-band Parallel and Cross Polarized SAR Imagery of Ice in the Beaufort</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA531847','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA531847"><span>Near-inertial Wave Studies Using Historical Mooring Records and a High-Resolution General Circulation Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2009-09-30</p> <p>Mooring Records and a High- Resolution General Circulation Model Harper Simmons School of Fisheries and Ocean Sciences 903 Koyukuk Drive Fairbanks AK...oceanographic community has been to develop a global internal wave prediction system analogous to those already in place for surface waves. Early steps have... Fisheries and Ocean Sciences,903 Koyukuk Drive,Fairbanks,AK,99775 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA608731','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA608731"><span>The US Navy Coupled Ocean-Wave Prediction System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2014-09-01</p> <p>Stokes drift to be the dominant wave effect and that it increased surface drift speeds by 35% and veered the current in the direction of the wind...ocean model has been modified to incorporate the effect of the Stokes drift current, wave radiation stresses due to horizontal gradients of the momentum...for fourth-order differences for horizontal baroclinic pressure gradients and for interpolation of Coriolis terms. There is an option to use the</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19830005273','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19830005273"><span>Aircraft and satellite measurement of ocean wave directional spectra using scanning-beam microwave radars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jackson, F. C.; Walton, W. T.; Baker, P. L.</p> <p>1982-01-01</p> <p>A microwave radar technique for remotely measuring the vector wave number spectrum of the ocean surface is described. The technique, which employs short-pulse, noncoherent radars in a conical scan mode near vertical incidence, is shown to be suitable for both aircraft and satellite application, the technique was validated at 10 km aircraft altitude, where we have found excellent agreement between buoy and radar-inferred absolute wave height spectra.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016GeoRL..43.2773C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016GeoRL..43.2773C"><span>Hurricane-induced ocean waves and stokes drift and their impacts on surface transport and dispersion in the Gulf of Mexico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Curcic, Milan; Chen, Shuyi S.; Özgökmen, Tamay M.</p> <p>2016-03-01</p> <p>Hurricane Isaac induced large surface waves and a significant change in upper ocean circulation in the Gulf of Mexico before making landfall at the Louisiana coast on 29 August 2012. Isaac was observed by 194 surface drifters during the Grand Lagrangian Deployment (GLAD). A coupled atmosphere-wave-ocean model was used to forecast hurricane impacts during GLAD. The coupled model and drifter observations provide an unprecedented opportunity to study the impacts of hurricane-induced Stokes drift on ocean surface currents. The Stokes drift induced a cyclonic (anticyclonic) rotational flow on the left (right) side of the hurricane and accounted for up to 20% of the average Lagrangian velocity. In a significant deviation from drifter measurements prior to Isaac, the scale-dependent relative diffusivity is estimated to be 6 times larger during the hurricane, which represents a deviation from Okubo's (1971) canonical results for lateral dispersion in nonhurricane conditions at the ocean surface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19890029611&hterms=tran&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dtran%2Bh','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19890029611&hterms=tran&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dtran%2Bh"><span>Directional measurement of short ocean waves with stereophotography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Shemdin, Omar H.; Tran, H. Minh; Wu, S. C.</p> <p>1988-01-01</p> <p>Stereophotographs of the sea surface, acquired during the Tower Ocean Wave and Radar Dependence experiment are analyzed to yield directional wave height spectra of short surface waves in the 6-80-cm range. The omnidirectional wave height spectra are found to deviate from the k exp -4 distribution, where k is the wave number. The stereo data processing errors are found to be within + or - 5 percent. The omnidirectional spectra yield 514 deg of freedom for 30-cm-long waves. The directional distribution of short waves is processed with a directional resolution of 30 deg, so as to yield 72 deg of freedom for 30-cm-long waves. The directional distributions show peaks that are aligned with the wind and swell directions. It is found that dynamically relevant measurements can be obtained with stereophotography, after removal of the mean surface associated with long waves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ARMS...10..421W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ARMS...10..421W"><span>The Fate and Impact of Internal Waves in Nearshore Ecosystems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Woodson, C. B.</p> <p>2018-01-01</p> <p>Internal waves are widespread features of global oceans that play critical roles in mixing and thermohaline circulation. Similarly to surface waves, internal waves can travel long distances, ultimately breaking along continental margins. These breaking waves can transport deep ocean water and associated constituents (nutrients, larvae, and acidic low-oxygen waters) onto the shelf and locally enhance turbulence and mixing, with important effects on nearshore ecosystems. We are only beginning to understand the role internal waves play in shaping nearshore ecosystems. Here, I review the physics of internal waves in shallow waters and identify two commonalities among internal waves in the nearshore: exposure to deep offshore waters and enhanced turbulence and mixing. I relate these phenomena to important ecosystem processes ranging from extreme events to fertilization success to draw general conclusions about the influence of internal waves on ecosystems and the effects of internal waves in a changing climate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28796571','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28796571"><span>The Fate and Impact of Internal Waves in Nearshore Ecosystems.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Woodson, C B</p> <p>2018-01-03</p> <p>Internal waves are widespread features of global oceans that play critical roles in mixing and thermohaline circulation. Similarly to surface waves, internal waves can travel long distances, ultimately breaking along continental margins. These breaking waves can transport deep ocean water and associated constituents (nutrients, larvae, and acidic low-oxygen waters) onto the shelf and locally enhance turbulence and mixing, with important effects on nearshore ecosystems. We are only beginning to understand the role internal waves play in shaping nearshore ecosystems. Here, I review the physics of internal waves in shallow waters and identify two commonalities among internal waves in the nearshore: exposure to deep offshore waters and enhanced turbulence and mixing. I relate these phenomena to important ecosystem processes ranging from extreme events to fertilization success to draw general conclusions about the influence of internal waves on ecosystems and the effects of internal waves in a changing climate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70181803','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70181803"><span>Book review: Extreme ocean waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Geist, Eric L.</p> <p>2017-01-01</p> <p>“Extreme Ocean Waves”, edited by E. Pelinovsky and C. Kharif, second edition, Springer International Publishing, 2016; ISBN: 978-3-319-21574-7, ISBN (eBook): 978-3-319-21575-4The second edition of “Extreme Ocean Waves” published by Springer is an update of a collection of 12 papers edited by Efim Pelinovsky and Christian Kharif following the April 2007 meeting of the General Assembly of the European Geosciences Union. In this edition, three new papers have been added and three more have been substantially revised. Color figures are now included, which greatly aids in reading several of the papers, and is especially helpful in visualizing graphs as in the paper on symbolic computation of nonlinear wave resonance (Tobisch et al.). A note on terminology: extreme waves in this volume broadly encompass different types of waves, including deep-water and shallow-water rogue waves (which are alternatively termed freak waves), and internal waves. One new paper on tsunamis (Viroulet et al.) is now included in the second edition of this volume. Throughout the book, the reader will find a combination of laboratory, theoretical, and statistical/empirical treatment necessary for the complete examination of this subject. In the Introduction, the editors underscore the importance of studying extreme waves, documenting a dramatic instance of damaging extreme waves that recently occurred in 2014.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMGC24A..04P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMGC24A..04P"><span>Spatial and Temporal Variability of Surface Energy Fluxes During Autumn Ice Advance: Observations and Model Validation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Persson, O. P. G.; Blomquist, B.; Grachev, A. A.; Guest, P. S.; Stammerjohn, S. E.; Solomon, A.; Cox, C. J.; Capotondi, A.; Fairall, C. W.; Intrieri, J. M.</p> <p>2016-12-01</p> <p>From Oct 4 to Nov 5, 2015, the Office of Naval Research - sponsored Sea State cruise in the Beaufort Sea with the new National Science Foundation R/V Sikuliaq obtained extensive in-situ and remote sensing observations of the lower troposphere, the advancing sea ice, wave state, and upper ocean conditions. In addition, a coupled atmosphere, sea ice, upper-ocean model, based on the RASM model, was run at NOAA/PSD in a hindcast mode for this same time period, providing a 10-day simulation of the atmosphere/ice/ocean evolution. Surface energy fluxes quantitatively represent the air-ice, air-ocean, and ice-ocean interaction processes, determining the cooling (warming) rate of the upper ocean and the growth (melting) rate of sea ice. These fluxes also impact the stratification of the lower troposphere and the upper ocean. In this presentation, both direct and indirect measurements of the energy fluxes during Sea State will be used to explore the spatial and temporal variability of these fluxes and the impacts of this variability on the upper ocean, ice, and lower atmosphere during the autumn ice advance. Analyses have suggested that these fluxes are impacted by atmospheric synoptic evolution, proximity to existing ice, ice-relative wind direction, ice thickness and snow depth. In turn, these fluxes impact upper-ocean heat loss and timing of ice formation, as well as stability in the lower troposphere and upper ocean, and hence heat transport to the free troposphere and ocean mixed-layer. Therefore, the atmospheric structure over the advancing first-year ice differs from that over the nearby open water. Finally, these observational analyses will be used to provide a preliminary validation of the spatial and temporal variability of the surface energy fluxes and the associated lower-tropospheric and upper-ocean structures in the simulations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA470198','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA470198"><span>Tropical Wave-Induced Oceanic Eddies at Cabo Corrientes and the Maria Islands, Mexico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2007-05-30</p> <p>Waves Induce Oceanic Eddies at Cabo Corrientes and the Maria Islands, Mexico 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 0601153N 6. AUTHOR(S) 5d...Research Laboratory (NRL) Layered Ocean Model (NLOM) show the existence of anticyclonic eddies in the Cabo Corrientes - Maria Islands region off the...Mexican West Coast. Analysis of the results demonstrates that: (1) The Cabo Corrientes - Maria Islands region is characterized by mean poleward coastal</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ECSS..199..117V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ECSS..199..117V"><span>Are Sea Surface Temperature satellite measurements reliable proxies of lagoon temperature in the South Pacific?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Van Wynsberge, Simon; Menkes, Christophe; Le Gendre, Romain; Passfield, Teuru; Andréfouët, Serge</p> <p>2017-12-01</p> <p>In remote coral reef environments, lagoon and reef in situ measurements of temperature are scarce. Sea Surface Temperature (SST) measured by satellite has been frequently used as a proxy of the lagoon temperature experienced by coral reef organisms (TL) especially during coral bleaching events. However, the link between SST and TL is poorly characterized. First, we compared the correlation between various SST series and TL from 2012 to 2016 in three atolls and one island in the Central South Pacific Ocean. Simple linear correlation between SST and TL ranged between 0.44 and 0.97 depending on lagoons, localities of sensors, and type of SST data. High-resolution-satellite-measurements of SST inside the lagoons did not outperform oceanic SST series, suggesting that SST products are not adapted for small lagoons. Second, we modelled the difference between oceanic SST and TL as a function of the drivers of lagoon water renewal and mixing, namely waves, tide, wind, and season. The multivariate models reduced significantly the bias between oceanic SST and TL. In atoll lagoons, and probably in other hydrodynamically semi-open systems, a correction taking into account these factors is necessary when SST are used to characterize organisms' thermal stress thresholds.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24658053','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24658053"><span>A comparison of the Pac-X trans-Pacific Wave Glider data and satellite data (MODIS, Aquarius, TRMM and VIIRS).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Villareal, Tracy A; Wilson, Cara</p> <p>2014-01-01</p> <p>Four wave-propelled autonomous vehicles (Wave Gliders) instrumented with a variety of oceanographic and meteorological sensors were launched from San Francisco, CA in November 2011 for a trans-Pacific (Pac-X) voyage to test platform endurance. Two arrived in Australia, one in Dec 2012 and one in February 2013, while the two destined for Japan both ran into technical difficulties and did not arrive at their destination. The gliders were all equipped with sensors to measure temperature, salinity, turbidity, oxygen, and both chlorophyll and oil fluorescence. Here we conduct an initial assessment of the data set, noting necessary quality control steps and instrument utility. We conduct a validation of the Pac-X dataset by comparing the glider data to equivalent, or near-equivalent, satellite measurements. Sea surface temperature and salinity compared well to satellite measurements. Chl fluorescence from the gliders was more poorly correlated, with substantial between glider variability. Both turbidity and oil CDOM sensors were compromised to some degree by interfering processes. The well-known diel cycle in chlorophyll fluorescence was observed suggesting that mapping physiological data over large scales is possible. The gliders captured the Pacific Ocean's major oceanographic features including the increased chlorophyll biomass of the California Current and equatorial upwelling. A comparison of satellite sea surface salinity (Aquarius) and glider-measured salinity revealed thin low salinity lenses in the southwestern Pacific Ocean. One glider survived a direct passage through a tropical cyclone. Two gliders traversed an open ocean phytoplankton bloom; extensive spiking in the chlorophyll fluorescence data is consistent with aggregation and highlights another potential future use for the gliders. On long missions, redundant instrumentation would aid in interpreting unusual data streams, as well as a means to periodically image the sensor heads. Instrument placement is critical to minimize bubble-related problems in the data.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1817275C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1817275C"><span>Mediterranea Forecasting System: a focus on wave-current coupling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Clementi, Emanuela; Delrosso, Damiano; Pistoia, Jenny; Drudi, Massimiliano; Fratianni, Claudia; Grandi, Alessandro; Pinardi, Nadia; Oddo, Paolo; Tonani, Marina</p> <p>2016-04-01</p> <p>The Mediterranean Forecasting System (MFS) is a numerical ocean prediction system that produces analyses, reanalyses and short term forecasts for the entire Mediterranean Sea and its Atlantic Ocean adjacent areas. MFS became operational in the late 90's and has been developed and continuously improved in the framework of a series of EU and National funded programs and is now part of the Copernicus Marine Service. The MFS is composed by the hydrodynamic model NEMO (Nucleus for European Modelling of the Ocean) 2-way coupled with the third generation wave model WW3 (WaveWatchIII) implemented in the Mediterranean Sea with 1/16 horizontal resolution and forced by ECMWF atmospheric fields. The model solutions are corrected by the data assimilation system (3D variational scheme adapted to the oceanic assimilation problem) with a daily assimilation cycle, using a background error correlation matrix varying seasonally and in different sub-regions of the Mediterranean Sea. The focus of this work is to present the latest modelling system upgrades and the related achieved improvements. In order to evaluate the performance of the coupled system a set of experiments has been built by coupling the wave and circulation models that hourly exchange the following fields: the sea surface currents and air-sea temperature difference are transferred from NEMO model to WW3 model modifying respectively the mean momentum transfer of waves and the wind speed stability parameter; while the neutral drag coefficient computed by WW3 model is passed to NEMO that computes the turbulent component. In order to validate the modelling system, numerical results have been compared with in-situ and remote sensing data. This work suggests that a coupled model might be capable of a better description of wave-current interactions, in particular feedback from the ocean to the waves might assess an improvement on the prediction capability of wave characteristics, while suggests to proceed toward a fully coupled modelling system in order to achieve stronger enhancements of the hydrodynamic fields.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMOS23C1228L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMOS23C1228L"><span>In Pursuit of Nearshore Wave Characteristics- Implementation and Validation of a Shallow Water Correction for High Frequency Radars along the New Jersey Coast</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Livermont, E. A.</p> <p>2014-12-01</p> <p>Within the U.S., coastal ocean current mapping with HF radar has matured to the point where it is now considered an essential component of regional ocean observing systems. A Mid-Atlantic HF radar network now provides high-resolution coverage within five localized networks, which are linked together to cover the full range of the Mid-Atlantic coast. While the primary focus of these networks has been on offshore current mapping observations, a long-term objective has been to develop and evaluate nearshore waves and currents. Of particular interest is the height of ocean waves that play a crucial role in engineering projects, ship navigation and design, vessel traffic control as well as shoreline protection, beach erosion, and mitigation of oil spills and ocean pollution. The radars owned by Rutgers University cover the coastline of New Jersey at multiple frequencies from 4.5 to 25 MHz. Their echoes contain information on both currents and waves from deep water up into the shallow coastal zone, providing an excellent archive for this study. Radar sea-echo spectra consist of dominant first-order peaks surrounded with lower-energy second-order structures. Present analysis methods assume that the waves do not interact with the ocean floor. The assumption of deep water is often invalid close to the coast and for broad continental shelves, and is particularly inadequate to describe the second-order sea-echo used to give information on ocean waves. Additionally, second-order echo is often only visible above the noise floor at close ranges. In this paper, a shallow water spectral theory is implemented at four locations on the New Jersey coast- Strathmere, Wildwood, Brant Beach, and Sea Bright. The corrected wave characteristics extracted from the HF radars were then compared to several in situ wave measurements. The first three sites—Strathmere, Wildwood and Brant Beach—were validated against two long-term (1999-2007) wave gauges deployed by Stevens Institute of Technology in 5 meters of water. Based on this initial comparison, several additional corrections to the radar processing were implemented. The site at Sea Bright was used for independent verification and validated against an ADCP deployed for three weeks in March 2012.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFM.H23I..06P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFM.H23I..06P"><span>Routine Ocean Monitoring With Synthetic Aperture Radar Imagery Obtained From the Alaska Satellite Facility</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pichel, W. G.; Clemente-Colon, P.; Li, X.; Friedman, K.; Monaldo, F.; Thompson, D.; Wackerman, C.; Scott, C.; Jackson, C.; Beal, R.; McGuire, J.; Nicoll, J.</p> <p>2006-12-01</p> <p>The Alaska Satellite Facility (ASF) has been processing synthetic aperture radar (SAR) data for research and for near-real-time applications demonstrations since shortly after the launch of the European Space Agency's ERS-1 satellite in 1991. The long coastline of Alaska, the vast extent of ocean adjacent to Alaska, a scarcity of in-situ observations, and the persistence of cloud cover all contribute to the need for all-weather ocean observations in the Alaska region. Extensive experience with SAR product processing algorithms and SAR data analysis techniques, and a growing sophistication on the part of SAR data and product users have amply demonstrated the value of SAR instruments in providing this all-weather ocean observation capability. The National Oceanic and Atmospheric Administration (NOAA) has been conducting a near-real-time applications demonstration of SAR ocean and hydrologic products in Alaska since September 1999. This Alaska SAR Demonstration (AKDEMO) has shown the value of SAR-derived, high-resolution (sub kilometer) ocean surface winds to coastal weather forecasting and the understanding of coastal wind phenomena such as gap winds, barrier jets, vortex streets, and lee waves. Vessel positions and ice information derived from SAR imagery have been used for management of fisheries, protection of the fishing fleet, enforcement of fisheries regulations, and protection of endangered marine mammals. Other ocean measurements, with potentially valuable applications, include measurement of wave state (significant wave height, dominant wave direction and wavelength, and wave spectra), mapping of oil spills, and detection of shallow-water bathymetric features. In addition to the AKDEMO, ASF-processed SAR imagery is being used: (1) in the Gulf of Mexico for hurricane wind studies, and post-hurricane oil-spill and oil-platform analyses (the latter employing ship-detection algorithms for detection of changes in oil-platform locations); (2) in the North Pacific to help locate convergence zones for marine debris detection (i.e., the GhostNet project); (3) in marine sanctuaries for internal wave climatology in support of marine ecosystem studies, and vessel detection for sanctuary protection; and (4) in coastal areas for ocean feature mapping (eddies, river plumes, upwelling, fronts). These applications demonstrations have added to our understanding of ocean and atmospheric processes and their interaction, particularly in the coastal environment. A much improved knowledge of the highly variable nature of coastal winds such as gap winds and barrier jets is a good example of the contribution that SAR imagery and derived products have made to our understanding of coastal processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15..462R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15..462R"><span>Internal waves and Equatorial dynamics: an observational study in the West Atlantic Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rabitti, Anna; Maas, Leo R. M.; van Haren, Hans; Gerkema, Theo</p> <p>2013-04-01</p> <p>Internal waves present several fascinating aspects of great relevance for geo- and astro-physical fluid dynamics. These waves are supported by all kinds of stratified and rotating fluids, such as, for example, our ocean, atmosphere, a planet fluid core or a star. In a non linear regime, because of their oblique propagation, they are thought to play a key role in diapycnal mixing, as well as in angular momentum mixing. Unfortunately, a complete analytical description of internal waves in arbitrarily shaped enclosed domains is still an ongoing challenge. On the other hand, internal wave energy is observed travelling along rays, whose behaviour can be traced and whose reflections off the container's boundaries appears crucial in producing phenomena such as focussing of wave energy onto specific trajectories (attractors), and in triggering localized instabilities. Ray tracing studies have shown that equatorial regions of stratified and/or rotating spherical shells are likely affected by these features, being the place where the simplest shaped and most energetic attractors occur. In this study we aim to investigate the possible presence and role of internal wave attractors in determining the equatorial ocean dynamics. Internal wave attractors, observed in laboratory and numerical experiments, have not been observed in Nature, yet. A unique set of observations, collected in the deep Equatorial West Atlantic Ocean, will be used here in order to explore this possibility, the dataset consisting of 1.5 year long time series of current measured acoustically and with current meters moored between 0°and 2°N, at 37°W, off the Brazilian coast. In particular, angular momentum mixing due to internal wave focussing, is explored as a possible mechanism for maintaining the Equatorial Deep Jets. These jets are stacked alternating zonal currents that are ubiquitously observed in all the oceans and whose nature is still largely unknown. Remarkably, jet like structures are also observed in the equatorial regions of fluid planets, suggesting that their existence could be related to general properties of the system such as shape, stratification and rotation. The equatorial ocean shows a different dynamics compared to off-equatorial regions, in terms of mean flow, internal wave and mixing properties. Despite the crucial role it plays in the global circulation and in our climate, this region is still poorly understood. We propose that the use of a new framework of interpretation, together with long term, in situ measurements can shed some light on the processes taking place in this peculiar region, and constitutes a key step towards a better understanding of energy fluxes in the ocean, as well as in other stratified, rotating fluid domains.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMDI11A2177T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMDI11A2177T"><span>Preliminary analysis of seismic anisotropy in the uppermost mantle beneath NW Pacific reveled by the Normal Oceanic Mantle project</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Takeo, A.; Isse, T.; Nishida, K.; Kawakatsu, H.; Shiobara, H.; Sugioka, H.; Ito, A.; Utada, H.</p> <p>2013-12-01</p> <p>Seismic structure including anisotropy in the oceanic uppermost mantle is essential for understanding deformation related to plate tectonics. Recent reports of a sharp discontinuity between the high velocity LID and the low velocity zone (LVZ) especially emphasize the importance of observation in oceanic basins apart from ridges and hotspots for determining the structure including LID and LVZ. In this study, we analyzed records of four broadband ocean bottom seismometers (BBOBSs) deployed in the northwest of Shatsky Rise by the pilot observation of the Normal Oceanic Mantle (NOMan) project in 2010-2011. We first measured average phase velocities of surface waves at periods of 5-30 s by the ambient-noise cross correlation method. Based on the method of Takeo et al. (in prep. GJI), we analyzed fundamental- and first higher- mode Rayleigh waves and fundamental-mode Love wave simultaneously by waveform fitting after the correction of clock delay. At periods of 25-100 s, we measured phase velocities of fundamental-mode surface waves by the array analysis of teleseismic waveforms. We then determined one-dimensional radially anisotropic structure beneath the array by the method of Takeo et al. (2013, JGR). The obtained structure shows transition from LID to LVZ at depths of 50-80km, which is marginally consistent with the depth of ~80 km estimated by a receiver function analysis at WP2 station situated at east of the studies area (Kawakatsu et al., 2009). The velocity gradient in the LID is almost zero and inconsistent with the simple cooling model of homogeneous oceanic plate. The average intensity of S-wave radial anisotropy at depths of ~10-220 km is ~3% (VSH>VSV). We further estimated S-wave azimuthal anisotropy at depths of ~30-100 km by analyzing teleseismic fundamental-mode Rayleigh waves at periods of 25-50 s. The intensity of anisotropy is 2-3%. The fastest direction is about N35W, close to that of Sn-wave velocity around WP2 station obtained by a refraction survey (Shinohara et al., 2008), and indicates the presence of past mantle flow almost perpendicular to the ancient mid ocean ridge or the presence of current mantle flow parallel to the plate motion at depths of 30-100 km. We will further analyze new records after the recovery of 13 BBOBSs in August 2013 and will present more detailed structure around Shatsky Rise. BBOBS stations of pilot observation of NOMan project (white crosses), WP2 station (circle), isochrons (white lines). Black bars show the fastest directions of Rayleigh wave at periods of 25-50 s and the fastest direction of Sn-wave velocity (Shinohara et al. 2008).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19840019248','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19840019248"><span>The importance of altimeter and scatterometer data for ocean prediction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hurlburt, H. E.</p> <p>1984-01-01</p> <p>The prediction of ocean circulation using satellite altimeter data is discussed. Three classes of oceanic response to atmospheric forcing are outlined and examined. Storms, surface waves, eddies, and ocean currents were evaluated in terms of forecasting time requirements. Scatterometer and radiometer applications to ocean prediction are briefly reviewed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMEP23B0962P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMEP23B0962P"><span>Linking North Atlantic Teleconnections to Latitudinal Variability of Wave Climate Along the North American Atlantic Coast</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Provancha, C.; Adams, P. N.; Hegermiller, C.; Storlazzi, C. D.</p> <p>2015-12-01</p> <p>Shoreline change via coastal erosion and accretion is largely influenced by variations in ocean wave climate. Identifying the sources of these variations is challenging because the timing of wave energy delivery varies over multiple timescales within ocean basins. We present the results of an investigation of USACE Wave Information Studies hindcast hourly wave heights, periods, and directions along the North American Atlantic coast from 1980-2012, designed to explore links between wave climate and teleconnection patterns. Trends in median and extreme significant wave heights (SWHs) demonstrate that mean monthly SWHs increased from 1 to 5 cm/yr along the roughly 3000 km reach of study area, with changes in hurricane season waves appearing to be most influential in producing the overall trends. Distributions of SWHs categorized by North Atlantic Oscillation (NAO) phase, show that positive-period NAO SWHs are greater than negative-period NAO SWHs along the entire eastern seaboard (25°N to 45°N). The most prominent wave direction off Cape Cod, MA during positive-period NAO is approximately 105°, as compared to approximately 75° during negative-period NAO. Prominent wave directions between Cape Canaveral, FL, and Savannah, GA exhibit a similar shift but during opposite phases of the NAO. The results of this analysis suggest that the atmosphere-ocean interactions associated with contrasting NAO phases can significantly change the wave climate observed offshore along the North American Atlantic coast, altering alongshore wave energy fluxes and sediment transport patterns along the coast.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=oceans+AND+tide&pg=2&id=EJ376771','ERIC'); return false;" href="https://eric.ed.gov/?q=oceans+AND+tide&pg=2&id=EJ376771"><span>The Physical Ocean.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>NatureScope, 1988</p> <p>1988-01-01</p> <p>Examines the physical properties of the ocean (including the composition of seawater; waves, currents, and tides) and the topography of the ocean floor. Included are (1) activities on oceans, saltwater, and the sea floor; and (2) questions, and a puzzle which can be copied. (Author/RT)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JCoPh.355..144C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JCoPh.355..144C"><span>Fluid-structure interaction simulation of floating structures interacting with complex, large-scale ocean waves and atmospheric turbulence with application to floating offshore wind turbines</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Calderer, Antoni; Guo, Xin; Shen, Lian; Sotiropoulos, Fotis</p> <p>2018-02-01</p> <p>We develop a numerical method for simulating coupled interactions of complex floating structures with large-scale ocean waves and atmospheric turbulence. We employ an efficient large-scale model to develop offshore wind and wave environmental conditions, which are then incorporated into a high resolution two-phase flow solver with fluid-structure interaction (FSI). The large-scale wind-wave interaction model is based on a two-fluid dynamically-coupled approach that employs a high-order spectral method for simulating the water motion and a viscous solver with undulatory boundaries for the air motion. The two-phase flow FSI solver is based on the level set method and is capable of simulating the coupled dynamic interaction of arbitrarily complex bodies with airflow and waves. The large-scale wave field solver is coupled with the near-field FSI solver with a one-way coupling approach by feeding into the latter waves via a pressure-forcing method combined with the level set method. We validate the model for both simple wave trains and three-dimensional directional waves and compare the results with experimental and theoretical solutions. Finally, we demonstrate the capabilities of the new computational framework by carrying out large-eddy simulation of a floating offshore wind turbine interacting with realistic ocean wind and waves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA502759','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA502759"><span>Secretary of the Navy, Processor of Oceanography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2009-07-20</p> <p>earliest days of SOFAR transmissions. We proposed that scattering from internal waves could account for the penetration, and this has now been confirmed...related to change in obliquity (C2). D. Acoustic Noise generated by Ocean Waves . Farrell and I have found that the acoustic noise background in the...deep ocean down to 5 km is associated with short surface waves . There is some evidence for a noise minimum centered at 27 Hz (Dl, D2). This might be</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA609500','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA609500"><span>The Generation and Propagation of Internal Solitary Waves in the South China Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2013-12-05</p> <p>ISWs) have been frequently observed in the world oceans by satellite remote sensing [e.g., Apel et al., 1975; Osborne and Burch, 1980; Klemas, 2012...Kaartvedt et al., 2012], sedi- ment resuspension [Quaresma et al., 2007; Pomar et al., 2012], acoustic wave propagation [ Williams et al., 2001...073.1. Apel , J. R., H. M. Byrne, J. R. Proni, and R. L. Charnell (1975), Observa- tions of oceanic internal and surface-waves from earth resources</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4104848','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4104848"><span>Plastic debris in the open ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Cózar, Andrés; Echevarría, Fidel; González-Gordillo, J. Ignacio; Irigoien, Xabier; Úbeda, Bárbara; Hernández-León, Santiago; Palma, Álvaro T.; Navarro, Sandra; García-de-Lomas, Juan; Ruiz, Andrea; Fernández-de-Puelles, María L.; Duarte, Carlos M.</p> <p>2014-01-01</p> <p>There is a rising concern regarding the accumulation of floating plastic debris in the open ocean. However, the magnitude and the fate of this pollution are still open questions. Using data from the Malaspina 2010 circumnavigation, regional surveys, and previously published reports, we show a worldwide distribution of plastic on the surface of the open ocean, mostly accumulating in the convergence zones of each of the five subtropical gyres with comparable density. However, the global load of plastic on the open ocean surface was estimated to be on the order of tens of thousands of tons, far less than expected. Our observations of the size distribution of floating plastic debris point at important size-selective sinks removing millimeter-sized fragments of floating plastic on a large scale. This sink may involve a combination of fast nano-fragmentation of the microplastic into particles of microns or smaller, their transference to the ocean interior by food webs and ballasting processes, and processes yet to be discovered. Resolving the fate of the missing plastic debris is of fundamental importance to determine the nature and significance of the impacts of plastic pollution in the ocean. PMID:24982135</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24982135','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24982135"><span>Plastic debris in the open ocean.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cózar, Andrés; Echevarría, Fidel; González-Gordillo, J Ignacio; Irigoien, Xabier; Ubeda, Bárbara; Hernández-León, Santiago; Palma, Alvaro T; Navarro, Sandra; García-de-Lomas, Juan; Ruiz, Andrea; Fernández-de-Puelles, María L; Duarte, Carlos M</p> <p>2014-07-15</p> <p>There is a rising concern regarding the accumulation of floating plastic debris in the open ocean. However, the magnitude and the fate of this pollution are still open questions. Using data from the Malaspina 2010 circumnavigation, regional surveys, and previously published reports, we show a worldwide distribution of plastic on the surface of the open ocean, mostly accumulating in the convergence zones of each of the five subtropical gyres with comparable density. However, the global load of plastic on the open ocean surface was estimated to be on the order of tens of thousands of tons, far less than expected. Our observations of the size distribution of floating plastic debris point at important size-selective sinks removing millimeter-sized fragments of floating plastic on a large scale. This sink may involve a combination of fast nano-fragmentation of the microplastic into particles of microns or smaller, their transference to the ocean interior by food webs and ballasting processes, and processes yet to be discovered. Resolving the fate of the missing plastic debris is of fundamental importance to determine the nature and significance of the impacts of plastic pollution in the ocean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008TellA..60..742P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008TellA..60..742P"><span>Trapped waves on the mid-latitude β-plane</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Paldor, Nathan; Sigalov, Andrey</p> <p>2008-08-01</p> <p>A new type of approximate solutions of the Linearized Shallow Water Equations (LSWE) on the mid-latitude β-plane, zonally propagating trapped waves with Airy-like latitude-dependent amplitude, is constructed in this work, for sufficiently small radius of deformation. In contrast to harmonic Poincare and Rossby waves, these newly found trapped waves vanish fast in the positive half-axis, and their zonal phase speed is larger than that of the corresponding harmonic waves for sufficiently large meridional domains. Our analysis implies that due to the smaller radius of deformation in the ocean compared with that in the atmosphere, the trapped waves are relevant to observations in the ocean whereas harmonic waves typify atmospheric observations. The increase in the zonal phase speed of trapped Rossby waves compared with that of harmonic ones is consistent with recent observations that showed that Sea Surface Height features propagated westwards faster than the phase speed of harmonic Rossby waves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27922007','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27922007"><span>Generation of internal solitary waves by frontally forced intrusions in geophysical flows.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bourgault, Daniel; Galbraith, Peter S; Chavanne, Cédric</p> <p>2016-12-06</p> <p>Internal solitary waves are hump-shaped, large-amplitude waves that are physically analogous to surface waves except that they propagate within the fluid, along density steps that typically characterize the layered vertical structure of lakes, oceans and the atmosphere. As do surface waves, internal solitary waves may overturn and break, and the process is thought to provide a globally significant source of turbulent mixing and energy dissipation. Although commonly observed in geophysical fluids, the origins of internal solitary waves remain unclear. Here we report a rarely observed natural case of the birth of internal solitary waves from a frontally forced interfacial gravity current intruding into a two-layer and vertically sheared background environment. The results of the analysis carried out suggest that fronts may represent additional and unexpected sources of internal solitary waves in regions of lakes, oceans and atmospheres that are dynamically similar to the situation examined here in the Saguenay Fjord, Canada.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA629945','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA629945"><span>Satellite Synthetic Aperture Radar Detection of Ocean Internal Waves in the South China Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2006-09-30</p> <p>waves will occur and what effects they will have on the hydrodynamic and acoustic environment. This project focuses on the use of remotely sensed...variability of the ITF and its associated heat and freshwater flux exported into the Indian Ocean. REFERENCES Boyer, T., and S. Levites , Quality</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20100027385&hterms=joan&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Djoan','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20100027385&hterms=joan&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Djoan"><span>Momentum Flux Estimates for South Georgia Island Mountain Waves in the Stratosphere Observed via Satellite</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Alexander, M. Joan; Eckermann, Stephen D.; Broutman, Dave; Ma, Jun</p> <p>2009-01-01</p> <p>We show high-resolution satellite observations of mountain wave events in the stratosphere above South Georgia Island in the remote southern Atlantic Ocean and compute the wave momentum fluxes for these events. The fluxes are large, and they imply important drag forces on the circulation. Small island orography is generally neglected in mountain wave parameterizations used in global climate models because limited model resolution treats the grid cell containing the island as ocean rather than land. Our results show that satellite observations can be used to quantitatively constrain mountain wave momentum fluxes, and they suggest that mountain waves from island topography may be an important missing source of drag on the atmospheric circulation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19790019465','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19790019465"><span>Directional spectra of ocean waves from microwave backscatter: A physical optics solution with application to the short-pulse and two-frequency measurement techniques</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jackson, F. C.</p> <p>1979-01-01</p> <p>Two simple microwave radar techniques that are potentially capable of providing routine satellite measurements of the directional spectrum of ocean waves were developed. One technique, the short pulse technique, makes use of very short pulses to resolve ocean surface wave contrast features in the range direction; the other technique, the two frequency correlation technique makes use of coherency in the transmitted waveform to detect the large ocean wave contrast modulation as a beat or mixing frequency in the power backscattered at two closely separated microwave frequencies. A frequency domain analysis of the short pulse and two frequency systems shows that the two measurement systems are essentially duals; they each operate on the generalized (three frequency) fourth-order statistical moment of the surface transfer function in different, but symmetrical ways, and they both measure the same directional contrast modulation spectrum. A three dimensional physical optics solution for the fourth-order moment was obtained for backscatter in the near vertical, specular regime, assuming Gaussian surface statistics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSPO11A..03S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSPO11A..03S"><span>Verification and Validation of COAMPS: Results from a Fully-Coupled Air/Sea/Wave Modeling System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Smith, T.; Allard, R. A.; Campbell, T. J.; Chu, Y. P.; Dykes, J.; Zamudio, L.; Chen, S.; Gabersek, S.</p> <p>2016-02-01</p> <p>The Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS) is a state-of-the art, fully-coupled air/sea/wave modeling system that is currently being validated for operational transition to both the Naval Oceanographic Office (NAVO) and to the Fleet Numerical Meteorology and Oceanography Center (FNMOC). COAMPS is run at the Department of Defense Supercomputing Resource Center (DSRC) operated by the DoD High Performance Computing Modernization Program (HPCMP). A total of four models including the Naval Coastal Ocean Model (NCOM), Simulating Waves Nearshore (SWAN), WaveWatch III, and the COAMPS atmospheric model are coupled through both the Earth System Modeling Framework (ESMF). Results from regions of naval operational interests, including the Western Atlantic (U.S. East Coast), RIMPAC (Hawaii), and DYNAMO (Indian Ocean), will show the advantages of utilizing a coupled modeling system versus an uncoupled or stand alone model. Statistical analyses, which include model/observation comparisons, will be presented in the form of operationally approved scorecards for both the atmospheric and oceanic output. Also, computational logistics involving the HPC resources for the COAMPS simulations will be shown.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5903883','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5903883"><span>Submesoscale Rossby waves on the Antarctic circumpolar current</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Bachman, Scott; Sallee, Jean-Baptiste</p> <p>2018-01-01</p> <p>The eastward-flowing Antarctic circumpolar current (ACC) plays a central role in the global ocean overturning circulation and facilitates the exchange of water between the ocean surface and interior. Submesoscale eddies and fronts with scales between 1 and 10 km are regularly observed in the upper ocean and are associated with strong vertical circulations and enhanced stratification. Despite their importance in other locations, comparatively little is known about submesoscales in the Southern Ocean. We present results from new observations, models, and theories showing that submesoscales are qualitatively changed by the strong jet associated with the ACC in the Scotia Sea, east of Drake Passage. Growing submesoscale disturbances develop along a dense filament and are transformed into submesoscale Rossby waves, which propagate upstream relative to the eastward jet. Unlike their counterparts in slower currents, the submesoscale Rossby waves do not destroy the underlying frontal structure. The development of submesoscale instabilities leads to strong net subduction of water associated with a dense outcropping filament, and later, the submesoscale Rossby waves are associated with intense vertical circulations. PMID:29670936</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EP%26S...69...44O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EP%26S...69...44O"><span>Effects of shallow-layer reverberation on measurement of teleseismic P-wave travel times for ocean bottom seismograph data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Obayashi, Masayuki; Ishihara, Yasushi; Suetsugu, Daisuke</p> <p>2017-03-01</p> <p>We conducted synthetic experiments to evaluate the effects of shallow-layer reverberation in oceanic regions on P-wave travel times measured by waveform cross-correlation. Time shift due to waveform distortion by the reverberation was estimated as a function of period. Reverberations in the crystalline crust advance the P-waves by a frequency-independent time shift of about 0.3 s in oceans. Sediment does not affect the time shifts in the mid-ocean regions, but effects as large as -0.8 s or more occur where sediment thickness is greater than 600 m for periods longer than 15 s. The water layer causes time delays (+0.3 s) in the relatively shallow (<3500 m) water region for periods longer than 20 s. The time shift may influence mantle images obtained if the reverberation effects are not accounted for in seismic tomography. We propose a simple method to correct relative P-wave travel times at two sites for shallow-layer reverberation by the cross-convolution of the crustal responses at the two sites. [Figure not available: see fulltext. Caption: .</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19800063310&hterms=1082&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3D%2526%25231082','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19800063310&hterms=1082&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3D%2526%25231082"><span>Spaceborne imaging radar - Geologic and oceanographic applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Elachi, C.</p> <p>1980-01-01</p> <p>Synoptic, large-area radar images of the earth's land and ocean surface, obtained from the Seasat orbiting spacecraft, show the potential for geologic mapping and for monitoring of ocean surface patterns. Structural and topographic features such as lineaments, anticlines, folds and domes, drainage patterns, stratification, and roughness units can be mapped. Ocean surface waves, internal waves, current boundaries, and large-scale eddies have been observed in numerous images taken by the Seasat imaging radar. This article gives an illustrated overview of these applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100022126','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100022126"><span>Improving NOAA's NWLON Through Enhanced Data Inputs from NASA's Ocean Surface Topography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Guest, DeNeice C.</p> <p>2010-01-01</p> <p>This report assesses the benefit of incorporating NASA's OSTM (Ocean Surface Topography Mission) altimeter data (C- and Ku-band) into NOAA's (National Oceanic and Atmospheric Administration) NWLON (National Water Level Observation Network) DSS (Decision Support System). This data will enhance the NWLON DSS by providing additional inforrnation because not all stations collect all meteorological parameters (sea-surface height, ocean tides, wave height, and wind speed over waves). OSTM will also provide data where NWLON stations are not present. OSTM will provide data on seasurface heights for determining sea-level rise and ocean circulation. Researchers and operational users currently use satellite altimeter data products with the GSFCOO NASA data model to obtain sea-surface height and ocean circulation inforrnation. Accurate and tirnely inforrnation concerning sea-level height, tide, and ocean currents is needed to irnprove coastal tidal predictions, tsunarni and storm surge warnings, and wetland restoration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70179130','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70179130"><span>Barrier island breach evolution: Alongshore transport and bay-ocean pressure gradient interactions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Safak, Ilgar; Warner, John C.; List, Jeffrey</p> <p>2016-01-01</p> <p>Physical processes controlling repeated openings and closures of a barrier island breach between a bay and the open ocean are studied using aerial photographs and atmospheric and hydrodynamic observations. The breach site is located on Pea Island along the Outer Banks, separating Pamlico Sound from the Atlantic Ocean. Wind direction was a major control on the pressure gradients between the bay and the ocean to drive flows that initiate or maintain the breach opening. Alongshore sediment flux was found to be a major contributor to breach closure. During the analysis period from 2011 to 2016, three hurricanes had major impacts on the breach. First, Hurricane Irene opened the breach with wind-driven flow from bay to ocean in August 2011. Hurricane Sandy in October 2012 quadrupled the channel width from pressure gradient flows due to water levels that were first higher on the ocean side and then higher on the bay side. The breach closed sometime in Spring 2013, most likely due to an event associated with strong alongshore sediment flux but minimal ocean-bay pressure gradients. Then, in July 2014, Hurricane Arthur briefly opened the breach again from the bay side, in a similar fashion to Irene. In summary, opening and closure of breaches are shown to follow a dynamic and episodic balance between along-channel pressure gradient driven flows and alongshore sediment fluxes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006GeoRL..3313601C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006GeoRL..3313601C"><span>Distribution of runup heights of the December 26, 2004 tsunami in the Indian Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Choi, Byung Ho; Hong, Sung Jin; Pelinovsky, Efim</p> <p>2006-07-01</p> <p>A massive earthquake with magnitude 9.3 occurred on December 26, 2004 off the northern Sumatra generated huge tsunami waves affected many coastal countries in the Indian Ocean. A number of field surveys have been performed after this tsunami event; in particular, several surveys in the south/east coast of India, Andaman and Nicobar Islands, Sri Lanka, Sumatra, Malaysia, and Thailand have been organized by the Korean Society of Coastal and Ocean Engineers from January to August 2005. Spatial distribution of the tsunami runup is used to analyze the distribution function of the wave heights on different coasts. Theoretical interpretation of this distribution is associated with random coastal bathymetry and coastline led to the log-normal functions. Observed data also are in a very good agreement with log-normal distribution confirming the important role of the variable ocean bathymetry in the formation of the irregular wave height distribution along the coasts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23807444','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23807444"><span>Variational stereo imaging of oceanic waves with statistical constraints.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gallego, Guillermo; Yezzi, Anthony; Fedele, Francesco; Benetazzo, Alvise</p> <p>2013-11-01</p> <p>An image processing observational technique for the stereoscopic reconstruction of the waveform of oceanic sea states is developed. The technique incorporates the enforcement of any given statistical wave law modeling the quasi-Gaussianity of oceanic waves observed in nature. The problem is posed in a variational optimization framework, where the desired waveform is obtained as the minimizer of a cost functional that combines image observations, smoothness priors and a weak statistical constraint. The minimizer is obtained by combining gradient descent and multigrid methods on the necessary optimality equations of the cost functional. Robust photometric error criteria and a spatial intensity compensation model are also developed to improve the performance of the presented image matching strategy. The weak statistical constraint is thoroughly evaluated in combination with other elements presented to reconstruct and enforce constraints on experimental stereo data, demonstrating the improvement in the estimation of the observed ocean surface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19820044061&hterms=function+wave&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dfunction%2Bwave','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19820044061&hterms=function+wave&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dfunction%2Bwave"><span>Optimal spatial filtering and transfer function for SAR ocean wave spectra</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Goldfinger, A. D.; Beal, R. C.; Tilley, D. G.</p> <p>1981-01-01</p> <p>The Seasat Synthetic Aperture Radar (SAR) has proved to be an instrument of great utility in the sensing of ocean conditions on a global scale. An analysis of oceanographic and atmospheric aspects of Seasat data has shown that the features observed in the imagery are linked to ocean phenomena such as storm sources and their resulting swell systems. However, there remains one central problem which has not been satisfactorily solved to date. This problem is related to the accurate measurement of wind-generated ocean wave spectra. Investigations addressing this problem are currently being conducted. The problem has two parts, including the accurate measurement of the image spectra and the inference of actual surface wave spectra from these measurements. A description is presented of the progress made towards solving the first part of the problem, taking into account a digital rather than optical computation of the image transforms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMSA21B..01M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMSA21B..01M"><span>Imaging, radio, and modeling results pertaining to the ionospheric signature of the 11 March 2011 tsunami over the Pacific Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Makela, J. J.; Lognonne, P.; Occhipinti, G.; Hebert, H.; Gehrels, T.; Coisson, P.; Rolland, L. M.; Allgeyer, S.; Kherani, A.</p> <p>2011-12-01</p> <p>The Mw=9.0 earthquake that occurred off the east coast of Honshu, Japan on 11 March 2011 launched a tsunami that traveled across the Pacific Ocean, in turn launching vertically propagating atmospheric gravity waves. Upon reaching 250-350 km in altitude, these waves impressed their signature on the thermosphere/ionosphere system. We present observations of this signature obtained using a variety of radio instruments and an imaging system located on the islands of Hawaii. These measurements represent the first optical images recorded of the airglow signature resulting from the passage of a tsunami. Results from these instruments clearly show wave structure propagating in the upper atmosphere with the same velocity as the ocean tsunami, emphasizing the coupled nature of the ocean, atmosphere, and ionosphere. Modeling results are also presented to highlight current understandings of this coupling process.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.T21B0558T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.T21B0558T"><span>Seismic Interferometry of Gulf of Mexico Basin Opening (GUMBO) Data: Extraction of Body and Surface Waves with a Mixed-Mode Array</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thangraj, J. S.; Quiros, D.; Pulliam, J.</p> <p>2017-12-01</p> <p>The Gulf of Mexico (GoM) is a relative small oceanic basin that formed by rifting between the continental blocks of North America and Yucatan in the Middle to Late Jurassic. Following the breakup, seafloor spreading continued until the Early Cretaceous. Since then, subsidence and sedimentation have shaped the GoM margin that we see today. To better understand the opening of the GoM, a long-offset (307 km) seismic refraction line was acquired in 2010. The transect was located on the northwest GoM margin, and consisted of several types of instruments. This mixed-mode array combined 31 ocean bottom seismographs (OBS), 412 high-frequency instruments (4.5 Hz geophones with RefTek 125A "Texan" digitizers) and 12 broadband stations. The R/V Iron Cat provided the airgun source used in the refraction experiment. The airgun generated 2028 shots in a period of 2.5 days which were recorded by the entire array. The airgun-generated seismic energy was clearly visible on the OBS recordings, however its amplitude was too low to be discerned on most of the onshore stations. In fact, this energy was only visible on Texan stations 1-50 (station 1 is located at the coast), extending 18 km inland, limiting the extend of the velocity model that can be obtained. Here, we apply seismic interferometry techniques to the 2.5 days of continuous data recorded by the Texan array with the goal of extending the spatial range for which the airgun-generated seismic energy can be observed. Preliminary results show that by treating the 2.5 days of continuously recorded airgun data as ambient noise, and applying time-domain cross-correlation, we can observe energy propagating 50 to 70 km inland with apparent velocities of 1800 - 2200 ms-1. These velocities agree with the compressional seismic velocity for the top 5 km of sediments under the GoM obtained from the OBS records, suggesting that we are observing compressional energy in the virtual source gathers (VSG). We also observe arrivals in the VSG that exhibit dispersive behavior, which we interpret to be Rayleigh waves. Current efforts are focused on extending the spatial range of the airgun-generated seismic energy further inland (> 70 km) by creating more VSG, to obtain a body wave velocity model along the transect. Similarly, we are inverting the Rayleigh waves in the VSG to obtain a shear wave velocity model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017CSR...146..102W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017CSR...146..102W"><span>Assessing the performance of formulations for nonlinear feedback of surface gravity waves on ocean currents over coastal waters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Pengcheng; Sheng, Jinyu; Hannah, Charles</p> <p>2017-08-01</p> <p>This study presents applications of a two-way coupled wave-circulation modelling system over coastal waters, with a special emphasis of performance assessments of two different methods for nonlinear feedback of ocean surface gravity waves on three-dimensional (3D) ocean currents. These two methods are the vortex force (VF) formulation suggested by Bennis et al. (2011) and the latest version of radiation stress (RS) formulation suggested by Mellor (2015). The coupled modelling system is first applied to two idealized test cases of surf-zone scales to validate implementations of these two methods in the coupled wave-circulation system. Model results show that the latest version of RS has difficulties in producing the undertow over the surf zone. The coupled system is then applied to Lunenburg Bay (LB) of Nova Scotia during Hurricane Juan in 2003. The coupled system using both the VF and RS formulations generates much stronger and more realistic 3D circulation in the Bay during Hurricane Juan than the circulation-only model, demonstrating the importance of surface wave forces to the 3D ocean circulation over coastal waters. However, the RS formulation generates some weak unphysical currents outside the wave breaking zone due to a less reasonable representation for the vertical distribution of the RS gradients over a slopping bottom. These weak unphysical currents are significantly magnified in a two-way coupled system when interacting with large surface waves, degrading the model performance in simulating currents at one observation site. Our results demonstrate that the VF formulation with an appropriate parameterization of wave breaking effects is able to produce reasonable results for applications over coastal waters during extreme weather events. The RS formulation requires a complex wave theory rather than the linear wave theory for the approximation of a vertical RS term to improve its performance under both breaking and non-breaking wave conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AGUFM.C11A..04A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AGUFM.C11A..04A"><span>Ocean Wave Energy Regimes of the Circumpolar Coastal Zones</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Atkinson, D. E.</p> <p>2004-12-01</p> <p>Ocean wave activity is a major enviromental forcing agent of the ice-rich sediments that comprise large sections of the arctic coastal margins. While it is instructive to possess information about the wind regimes in these regions, direct application to geomorphological and engineering needs requires knowledge of the resultant wave-energy regimes. Wave energy information has been calculated at the regional scale using adjusted reanalysis model windfield data. Calculations at this scale are not designed to account for local-scale coastline/bathymetric irregularities and variability. Results will be presented for the circumpolar zones specified by the Arctic Coastal Dynamics Project.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PhDT.......276H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PhDT.......276H"><span>Investigation on the possibility of extracting wave energy from the Texas coast</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Haces-Fernandez, Francisco</p> <p></p> <p>Due to the great and growing demand of energy consumption in the Texas Coast area, the generation of electricity from ocean waves is considered very important. The combination of the wave energy with offshore wind power is explored as a way to increase power output, obtain synergies, maximize the utilization of assigned marine zones and reduce variability. Previously literature has assessed the wave energy generation, combined with wind in different geographic locations such as California, Ireland and the Azores Island. In this research project, the electric power generation from ocean waves on the Texas Coast was investigated, assessing its potential from the meteorological data provided by five buoys from National Data Buoy Center of the National Oceanic and Atmospheric Administration, considering the Pelamis 750 kW Wave Energy Converter (WEC) and the Vesta V90 3 MW Wind Turbine. The power output from wave energy was calculated for the year 2006 using Matlab, and the results in several locations were considered acceptable in terms of total power output, but with a high temporal variability. To reduce its variability, wave energy was combined with wind energy, obtaining a significant reduction on the coefficient of variation on the power output. A Matlab based interface was created to calculate power output and its variability considering data from longer periods of time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018OcDyn..68..391J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018OcDyn..68..391J"><span>Submesoscale features and their interaction with fronts and internal tides in a high-resolution coupled atmosphere-ocean-wave model of the Bay of Bengal</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jensen, Tommy G.; Shulman, Igor; Wijesekera, Hemantha W.; Anderson, Stephanie; Ladner, Sherwin</p> <p>2018-03-01</p> <p>Large freshwater fluxes into the Bay of Bengal by rainfall and river discharges result in strong salinity fronts in the bay. In this study, a high-resolution coupled atmosphere-ocean-wave model with comprehensive physics is used to model the weather, ocean circulation, and wave field in the Bay of Bengal. Our objective is to explore the submesoscale activity that occurs in a realistic coupled model that resolves mesoscales and allows part of the submesoscale field. Horizontal resolution in the atmosphere varies from 2 to 6 km and is 13 km for surface waves, while the ocean model is submesoscale permitting with resolutions as high as 1.5 km and a vertical resolution of 0.5 m in the upper 10 m. In this paper, three different cases of oceanic submesoscale features are discussed. In the first case, heavy rainfall and intense downdrafts produced by atmospheric convection are found to force submesoscale currents, temperature, and salinity anomalies in the oceanic mixed layer and impact the mesoscale flow. In a second case, strong solitary-like waves are generated by semidiurnal tides in the Andaman Sea and interact with mesoscale flows and fronts and affect submesoscale features generated along fronts. A third source of submesoscale variability is found further north in the Bay of Bengal where river outflows help maintain strong salinity gradients throughout the year. For that case, a comparison with satellite observations of sea surface height anomalies, sea surface temperature, and chlorophyll shows that the model captures the observed mesoscale eddy features of the flow field, but in addition, submesoscale upwelling and downwelling patterns associated with ageostrophic secondary circulations along density fronts are also captured by the model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSPO14B2758E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSPO14B2758E"><span>NOAA Propagation Database Value in Tsunami Forecast Guidance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Eble, M. C.; Wright, L. M.</p> <p>2016-02-01</p> <p>The National Oceanic and Atmospheric Administration (NOAA) Center for Tsunami Research (NCTR) has developed a tsunami forecasting capability that combines a graphical user interface with data ingestion and numerical models to produce estimates of tsunami wave arrival times, amplitudes, current or water flow rates, and flooding at specific coastal communities. The capability integrates several key components: deep-ocean observations of tsunamis in real-time, a basin-wide pre-computed propagation database of water level and flow velocities based on potential pre-defined seismic unit sources, an inversion or fitting algorithm to refine the tsunami source based on the observations during an event, and tsunami forecast models. As tsunami waves propagate across the ocean, observations from the deep ocean are automatically ingested into the application in real-time to better define the source of the tsunami itself. Since passage of tsunami waves over a deep ocean reporting site is not immediate, we explore the value of the NOAA propagation database in providing placeholder forecasts in advance of deep ocean observations. The propagation database consists of water elevations and flow velocities pre-computed for 50 x 100 [km] unit sources in a continuous series along all known ocean subduction zones. The 2011 Japan Tohoku tsunami is presented as the case study</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA01803&hterms=offshore+drilling&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Doffshore%2Bdrilling','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA01803&hterms=offshore+drilling&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Doffshore%2Bdrilling"><span>Space Radar Image of Oil Slicks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1994-01-01</p> <p>This is a radar image of an offshore drilling field about 150 km (93 miles) west of Bombay, India, in the Arabian Sea. The dark streaks are extensive oil slicks surrounding many of the drilling platforms, which appear as bright white spots. Radar images are useful for detecting and measuring the extent of oil seepages on the ocean surface, from both natural and industrial sources. The long, thin streaks extending from many of the platforms are spreading across the sea surface, pushed by local winds. The larger dark patches are dispersed slicks that were likely discharged earlier than the longer streaks, when the winds were probably from a different direction. The dispersed oil will eventually spread out over the more dense water and become a layer which is a single molecule thick. Many forms of oil, both from biological and from petroleum sources, smooth out the ocean surface, causing the area to appear dark in radar images. There are also two forms of ocean waves shown in this image. The dominant group of large waves (upper center) are called internal waves. These waves are formed below the ocean surface at the boundary between layers of warm and cold water and they appear in the radar image because of the way they change the ocean surface. Ocean swells, which are waves generated by winds, are shown throughout the image but are most distinct in the blue area adjacent to the internal waves. Identification of waves provide oceanographers with information about the smaller scale dynamic processes of the ocean. This image was acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on October 9, 1994. The colors are assigned to different frequencies and polarizations of the radar as follows: Red is L-band vertically transmitted, vertically received; green is the average of L-band vertically transmitted, vertically received and C-band vertically transmitted, vertically received; blue is C-band vertically transmitted, vertically received. The image is located at 19.25 degrees north latitude and 71.34 degrees east longitude and covers an area 20 km by 45 km (12.4 miles by 27.9 miles). SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's Mission to Planet Earth.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A13I..04Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A13I..04Y"><span>Ocean Remote Sensing from Chinese Spaceborne Microwave Sensors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yang, J.</p> <p>2017-12-01</p> <p>GF-3 (GF stands for GaoFen, which means High Resolution in Chinese) is the China's first C band multi-polarization high resolution microwave remote sensing satellite. It was successfully launched on Aug. 10, 2016 in Taiyuan satellite launch center. The synthetic aperture radar (SAR) on board GF-3 works at incidence angles ranging from 20 to 50 degree with several polarization modes including single-polarization, dual-polarization and quad-polarization. GF-3 SAR is also the world's most imaging modes SAR satellite, with 12 imaging modes consisting of some traditional ones like stripmap and scanSAR modes and some new ones like spotlight, wave and global modes. GF-3 SAR is thus a multi-functional satellite for both land and ocean observation by switching the different imaging modes. TG-2 (TG stands for TianGong, which means Heavenly Palace in Chinese) is a Chinese space laboratory which was launched on 15 Sep. 2016 from Jiuquan Satellite Launch Centre aboard a Long March 2F rocket. The onboard Interferometric Imaging Radar Altimeter (InIRA) is a new generation radar altimeter developed by China and also the first on orbit wide swath imaging radar altimeter, which integrates interferometry, synthetic aperture, and height tracking techniques at small incidence angles and a swath of 30 km. The InIRA was switch on to acquire data during this mission on 22 September. This paper gives some preliminary results for the quantitative remote sensing of ocean winds and waves from the GF-3 SAR and the TG-2 InIRA. The quantitative analysis and ocean wave spectra retrieval have been given from the SAR imagery. The image spectra which contain ocean wave information are first estimated from image's modulation using fast Fourier transform. Then, the wave spectra are retrieved from image spectra based on Hasselmann's classical quasi-linear SAR-ocean wave mapping model and the estimation of three modulation transfer functions (MTFs) including tilt, hydrodynamic and velocity bunching modulation. The wind speed is retrieved from InIRA data using a Ku-band low incidence backscatter model (KuLMOD), which relates the backscattering coefficients to the wind speeds and incidence angles. The ocean wave spectra are retrieved linearly from image spectra which extracted first from InIRA data, using a similar procedure for GF-3 SAR data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.4994B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.4994B"><span>Performance of an autonomously deployable telemetered deep ocean seismic observatory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Berger, Jonathan; Laske, Gabe; Orcutt, John; Babcock, Jeffrey</p> <p>2016-04-01</p> <p>We describe a transformative technology that can provide near real-time telemetry of sensor data from the ocean bottom without a moored buoy or a cable to shore. The breakthrough technology that makes this system possible is an autonomous surface vehicle called a Wave Glider developed by Liquid Robotics, which harvests wave and solar energy for motive and electrical power. For navigation, the wave glider is equipped with a small computer, a GPS receiver, a rudder, solar panels and batteries, AIS ship detection receiver, weather station, and an Iridium satellite modem. Wave gliders have demonstrated trans-oceanic range and long-term station keeping capabilities. We present results from several deployments of a prototype system that demonstrate the feasibility of this concept. The system comprises ocean bottom package (OBP) and an ocean surface gateway (OSG). Acoustic communications connect the OBP instruments with OSG while communications between the gateway and land are provided by the Iridium satellite constellation. The most recent deployment of the OBP was off the edge of the Patton Escarpment some 300 km west of San Diego in 4000 m of water. The OSG was launched about 30 km west of San Diego harbor and programmed to navigate to the site of the ocean bottom package. Arriving after 161 hours, the OSG then commenced holding station at the site for the next 68 days. Speeds over-the-ground varied with wind, wave, and surface current conditions but averaged 0.5 m/s while winds varied between 0 m/s and 17 m/s and wave heights between 0.2 m and 5.9 m. Over this period the median total data latency was 260 s and the data loss less that 0.2% when the wave glider was within 1.5 km of the central point. We have also tested a full-scale model of a towable ocean bottom package, which demonstrated that a wave glider could tow and navigate an autonomously deployable ocean bottom package. Taken together, these tests have demonstrated that the concept is viable for long-term deployment as a high-seas seismographic station. The next generation will incorporate a towable OBP and a keel mounted rather than towed acoustic modem on the OSG. The longevity of the bottom package will be limited by its energy supply but at least two years is feasible while telemetering 1 sps data streams continuously plus an average of 1 hour /day of 40 sps data-on-demand. Biofouling is likely to be the limiting factor on the length of operation of a single OSG but a relief unit can be dispatched from a convenient port to take over operations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhDT........61F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhDT........61F"><span>Extracting physical parameters from marine seismic data: New methods in seismic oceanography and velocity inversion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fortin, Will F. J.</p> <p></p> <p>The utility and meaning of a geophysical dataset is dependent on good interpretation informed by high-quality data, processing, and attribute examination via technical methodologies. Active source marine seismic reflection data contains a great deal of information in the location, phase, and amplitude of both pre- and post-stack seismic reflections. Using pre- and post-stack data, this work has extracted useful information from marine reflection seismic data in novel ways in both the oceanic water column and the sub-seafloor geology. In chapter 1 we develop a new method for estimating oceanic turbulence from a seismic image. This method is tested on synthetic seismic data to show the method's ability to accurately recover both distribution and levels of turbulent diffusivity. Then we apply the method to real data offshore Costa Rica where we observe lee waves. Our results find elevated diffusivities near the seafloor as well as above the lee waves five times greater than surrounding waters and 50 times greater than open ocean diffusivities. Chapter 2 investigates subsurface geology in the Cascadia Subduction Zone and outlines a workflow for using pre-stack waveform inversion to produce highly detailed velocity models and seismic images. Using a newly developed inversion code, we achieve better imaging results as compared to the product of a standard, user-intensive method for building a velocity model. Our results image the subduction interface ~30 km farther landward than previous work and better images faults and sedimentary structures above the oceanic plate as well as in the accretionary prism. The resultant velocity model is highly detailed, inverted every 6.25 m with ~20 m vertical resolution, and will be used to examine the role of fluids in the subduction system. These results help us to better understand the natural hazards risks associated with the Cascadia Subduction Zone. Chapter 3 returns to seismic oceanography and examines the dynamics of nonlinear internal wave pulses in the South China Sea. Coupling observations from the seismic images with turbulent patterns, we find no evidence for hydraulic jumps in the Luzon passage. Our data suggests geometric resonance may be the underlying physics behind large amplitude nonlinear internal wave pulses seen in the region. We find increased levels of turbulent diffusivity in deep water below 1000 m, associated with internal tide pulses, and near the steep slopes of both the Heng-Chun and Lan-Yu ridges.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JGRC..120.2147P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JGRC..120.2147P"><span>Short wind waves on the ocean: Wavenumber-frequency spectra</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Plant, William J.</p> <p>2015-03-01</p> <p>Dominant surface waves on the ocean exhibit a dispersion relation that confines their energy to a curve in a wavenumber-frequency spectrum. Short wind waves on the ocean, on the other hand, are advected by these dominant waves so that they do not exhibit a well-defined dispersion relation over many realizations of the surface. Here we show that the short-wave analog to the dispersion relation is a distributed spectrum in the wavenumber-frequency plane that collapses to the standard dispersion relation in the absence of long waves. We compute probability distributions of short-wave wavenumber given a (frequency, direction) pair and of short-wave frequency given a (wavenumber, direction) pair. These two probability distributions must yield a single spectrum of surface displacements as a function of wavenumber and frequency, F(k,f). We show that the folded, azimuthally averaged version of this spectrum has a "butterfly" pattern in the wavenumber-frequency plane if significant long waves are present. Integration of this spectrum over frequency yields the well-known k-3 wavenumber spectrum. When integrated over wavenumber, the spectrum yields an f-4 form that agrees with measurement. We also show that a cut through the unfolded F(k,f) at constant k produces the well-known form of moderate-incidence-angle Doppler spectra for electromagnetic scattering from the sea. This development points out the dependence of the short-wave spectrum on the amplitude of the long waves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170000319','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170000319"><span>Tsunami Generation from Asteroid Airburst and Ocean Impact and Van Dorn Effect</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Robertson, Darrel</p> <p>2016-01-01</p> <p>Airburst - In the simulations explored energy from the airburst couples very weakly with the water making tsunami dangerous over a shorter distance than the blast for asteroid sizes up to the maximum expected size that will still airburst (approx.250MT). Future areas of investigation: - Low entry angle airbursts create more cylindrical blasts and might couple more efficiently - Bursts very close to the ground will increase coupling - Inclusion of thermosphere (>80km altitude) may show some plume collapse effects over a large area although with much less pressure center dot Ocean Impact - Asteroid creates large cavity in ocean. Cavity backfills creating central jet. Oscillation between the cavity and jet sends out tsunami wave packet. - For deep ocean impact waves are deep water waves (Phase speed = 2x Group speed) - If the tsunami propagation and inundation calculations are correct for the small (<250MT) asteroids in these simulations where they impact deep ocean basins, the resulting tsunami is not a significant hazard unless particularly close to vulnerable communities. Future work: - Shallow ocean impact. - Effect of continental shelf and beach profiles - Tsunami vs. blast damage radii for impacts close to populated areas - Larger asteroids below presumed threshold of global effects (Ø200 - 800m).</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>