Open-path Fourier transform infrared (OP/FTIR) spectrometry was used to measure the concentrations of ammonia, methane, and other atmospheric gasses around an integrated industrial swine production facility in eastern North Carolina. Several single-path measurements were made ove...
OPEN-PATH FTIR MEASUREMENTS OF NOX AND OTHER DIESEL EMISSIONS
The paper gives results of a demonstration of the feasibility of using an open-path Fourier transform infrared (OP-FTIR) monitoring technique to address the across-road characterization of diesel vehicle emissions of criteria pollutants and hazardous air pollutants. Four sets of ...
We have performed a series of experiments to determine the tradeoff in detection sensitivity for implementing design features for an Open-Path Fourier Transform Infrared (OP-FTIR) chemical analyzer that would be quick to deploy under emergency response conditions. The fast-deplo...
The paper describes a methodology developed to estimate emissions factors for a variety of different area sources in a rapid, accurate, and cost effective manner. he methodology involves using an open-path Fourier transform infrared (FTIR) spectrometer to measure concentrations o...
Open-path FTIR ozone measurements in Korea
NASA Astrophysics Data System (ADS)
Walter, William T.; Perry, Stephen H.; Han, Jin-Seok; Park, Chul-Jin
1999-02-01
In July 1997 the Republic of Korea became the 15th country to exceed 10-million registered motor vehicles. The number of cars has been increasing exponentially in Korea for the past 12 years opening an era of one car per household in this nation with a population of 44 million. The air quality effects of the growth of increasingly congested motor vehicle traffic in Seoul, home to more than one-fourth of the entire population, is of great concern to Korea's National Institute of Environmental Research (NIER). AIL's Open-Path FTIR air quality monitor, RAM 2000TM, has been used to quantify the ozone increase over the course of a warm summer day. The RAM 2000 instrument was setup on the roof of the 6-story NIER headquarters. The retroreflector was sited 180-m away across a major highway where it was tripod-mounted on top of the 6- story Korean National Institute of Health facility. During the Open-Path FTIR data taking, NIER Air Physics Division research team periodically tethered an airborne balloon containing pump and a potassium iodide solution to obtain absolute ozone concentration results which indicated that the ambient ozone level was 50 ppb when the Open-Path FTIR measurements began. Total ozone concentrations exceeded 120 ppb for five hours between 11:30 AM and 4:30 PM. The peak ozone concentration measured was 199 ppb at 12:56 PM. The averaged concentration for five and a half hours of data collection was 145 ppb. Ammonia concentrations were also measured.
ADAPTING FTIR MEASUREMENT TECHNOLOGY TO HOMELAND SECURITY APPLICATIONS
Open-path Fourier transform infrared (OP-FTIR) sensors have numerous advantages for measuring chemical plumes over wide areas compared to point detection sensors. Extractive FTIR sensors have been used for industrial stack monitoring and are attractive for building ventilation sy...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akagi, Sheryl; Burling, Ian R.; Mendoza, Albert
We report trace-gas emission factors from three pine-understory prescribed fires in South Carolina, U.S. measured during the fall of 2011. The fires were an attempt to simulate high-intensity burns and the fuels included mature pine stands not frequently subjected to prescribed fire that were lit following a sustained period of drought. In this work we focus on the emission factor measurements made using a fixed open-path gas analyzer Fourier transform infrared (FTIR) system. We compare these emission factors with those measured using a roving, point sampling, land-based FTIR and an airborne FTIR that were deployed on the same fires. Wemore » also compare to emission factors measured by a similar open-path FTIR system deployed on savanna fires in Africa. The data suggest that the method in which the smoke is sampled can strongly influence the relative abundance of the emissions that are observed. The airborne FTIR probed the bulk of the emissions, which were lofted in the convection column and the downwind chemistry while the roving ground-based point sampling FTIR measured the contribution of individual residual smoldering combustion fuel elements scattered throughout the burn site. The open-path FTIR provided a fixed path-integrated sample of emissions produced directly upwind mixed with emissions that were redirected by wind gusts, or right after ignition and before the adjacent plume achieved significant vertical development. It typically probed two distinct combustion regimes, “flaming-like” (immediately after adjacent ignition) and “smoldering-like”, denoted “early” and “late”, respectively. The calculated emission factors from open-path measurements were closer to the airborne than to the point measurements, but this could vary depending on the calculation method or from fire to fire given the changing MCE and dynamics over the duration of a typical burn. The emission factors for species whose emissions are not highly fuel dependent (e.g. CH4 and CH3OH) from all three systems can be plotted versus modified combustion efficiency and fit to a single consistent trend suggesting that differences between the systems for these species may be mainly due to the unique mix of flaming and smoldering that each system sampled. For other more fuel dependent species, the different fuels sampled also likely contributed to platform differences in emission factors. The path-integrated sample of the ground-level smoke layer adjacent to the fire provided by the open-path measurements is important for estimating fire-line exposure to smoke for wildland fire personnel. We provide a table of estimated fire-line exposures for numerous known air toxics based on synthesizing results from several studies. Our data suggest that peak exposures are more likely to challenge permissible exposure limits for wildland fire personnel than shift-average exposures.« less
Monitoring trace gases in downtown Toronto using open-path Fourier transform infrared spectroscopy
NASA Astrophysics Data System (ADS)
Byrne, B.; Strong, K.; Colebatch, O.; Fogal, P.; Mittermeier, R. L.; Wunch, D.; Jones, D. B. A.
2017-12-01
Emissions of greenhouse gases (GHGs) in urban environments can be highly heterogeneous. For example, vehicles produce point source emissions which can result in heterogeneous GHG concentrations on scales <10 m. The highly localized scale of these emissions can make it difficult to measure mean GHG concentrations on scales of 100-1000 m. Open-Path Fourier Transform Infrared Spectroscopy (OP-FTIR) measurements offer spatial averaging and continuous measurements of several trace gases simultaneously in the same airmass. We have set up an open-path system in downtown Toronto to monitor trace gases in the urban boundary layer. Concentrations of CO2, CO, CH4, and N2O are derived from atmospheric absorption spectra recorded over a two-way atmospheric open path of 320 m using non-linear least squares fitting. Using a simple box model and co-located boundary layer height measurements, we estimate surface fluxes of these gases in downtown Toronto from our OP-FTIR observations.
USING TUNABLE DIODE LASERS TO MEASURE EMISSIONS FROM ANIMAL HOUSING AND WASTE LAGOONS
Open-path optical spectroscopy has been applied to several fugitive sources by scientists at the EPA National Risk Management Research Laboratory for more than a decade. Open-path Fourier transform infrared (OP-FTIR) was used during the initial research phase because of the abil...
Emissions of ammonia and methane from an anaerobic lagoon at a swine animal feeding operation were evaluated five times over a period of two years. The plane-integrated (PI) open-path Fourier transform infrared spectrometry (OP-FTIR) methodology was used to transect the plume at ...
Sensitive detection of chemical agents and toxic industrial chemicals using active open-path FTIRs
NASA Astrophysics Data System (ADS)
Walter, William T.
2004-03-01
Active open-path FTIR sensors provide more sensitive detection of chemical agents than passive FTIRs, such as the M21 RSCAAL and JSLSCAD, and at the same time identify and quantify toxic industrial chemicals (TIC). Passive FTIRs are bistatic sensors relying on infrared sources of opportunity. Utilization of earth-based sources of opportunity limits the source temperatures available for passive chemical-agent FTIR sensors to 300° K. Active FTIR chemical-agent sensors utilize silicon carbide sources, which can be operated at 1500° K. The higher source temperature provides more than an 80-times increase in the infrared radiant flux emitted per unit area in the 7 to 14 micron spectral fingerprint region. Minimum detection limits are better than 5 μgm/m3 for GA, GB, GD, GF and VX. Active FTIR sensors can (1) assist first responders and emergency response teams in their assessment of and reaction to a terrorist threat, (2) provide information on the identification of the TIC present and their concentrations and (3) contribute to the understanding and prevention of debilitating disorders analogous to the Gulf War Syndrome for military and civilian personnel.
Open-path Fourier transform infrared (OP/FTIR) spectrometry was used to measure the concentrations of ammonia, methane, and other atmospheric gases at an integrated swine production facility. The concentration-pathlength products of the target gases at this site often exceeded th...
USDA-ARS?s Scientific Manuscript database
The choice of the type of background spectrum affects the credibility of open-path Fourier transform infrared (OP/FT-IR) spectroscopic data, and consequently the quality of data analysis. We systematically investigated several properties of the background spectrum. The results show that a short-pa...
FIELD EVALUATION OF A METHOD FOR ESTIMATING GASEOUS FLUXES FROM AREA SOURCES USING OPEN-PATH FTIR
The paper gives preliminary results from a field evaluation of a new approach for quantifying gaseous fugitive emissions of area air pollution sources. The approach combines path-integrated concentration data acquired with any path-integrated optical remote sensing (PI-ORS) ...
Imaging open-path Fourier transform infrared spectrometer for 3D cloud profiling
NASA Astrophysics Data System (ADS)
Rentz Dupuis, Julia; Mansur, David J.; Vaillancourt, Robert; Carlson, David; Evans, Thomas; Schundler, Elizabeth; Todd, Lori; Mottus, Kathleen
2009-05-01
OPTRA is developing an imaging open-path Fourier transform infrared (I-OP-FTIR) spectrometer for 3D profiling of chemical and biological agent simulant plumes released into test ranges and chambers. An array of I-OP-FTIR instruments positioned around the perimeter of the test site, in concert with advanced spectroscopic algorithms, enables real time tomographic reconstruction of the plume. The approach is intended as a referee measurement for test ranges and chambers. This Small Business Technology Transfer (STTR) effort combines the instrumentation and spectroscopic capabilities of OPTRA, Inc. with the computed tomographic expertise of the University of North Carolina, Chapel Hill.
Wang, Wei; Liu, Wen-Qing; Zhang, Tian-Shu
2013-08-01
The development of spectroscopic techniques has offered continuous measurement of stable isotopes in the ambient air. The method of measuring environmental stable isotopes based on Fourier transform infrared spectrometry (FTIR) is described. In order to verify the feasibility of the method for continuous measurement of the stable isotopes, an open-path FTIR system was used to measure stable isotopes of CO2 and H2O in ambient air directly in a seven-day field experiment, including 12CO2, 3CO2, H2 16O and HD16 O. Also, the time course of carbon isotopic ratio delta13 C and deuterium isotope composition deltaD was calculated. The measurement precision is about 1.08 per thousand for delta13 C and 1.32 per thousand for deltaD. The measured stable isotopes of CO2 and H2O were analyzed on different time scales by Keeling plot methods, and the deuterium isotopic ratios of evapotranspiration were determined. The results of the field experiment demonstrate the potential of the open-path FTIR system for continuous measurement of stable isotopes in the air.
Open-path FTIR data reduction algorithm with atmospheric absorption corrections: the NONLIN code
NASA Astrophysics Data System (ADS)
Phillips, William; Russwurm, George M.
1999-02-01
This paper describes the progress made to date in developing, testing, and refining a data reduction computer code, NONLIN, that alleviates many of the difficulties experienced in the analysis of open path FTIR data. Among the problems that currently effect FTIR open path data quality are: the inability to obtain a true I degree or background, spectral interferences of atmospheric gases such as water vapor and carbon dioxide, and matching the spectral resolution and shift of the reference spectra to a particular field instrument. This algorithm is based on a non-linear fitting scheme and is therefore not constrained by many of the assumptions required for the application of linear methods such as classical least squares (CLS). As a result, a more realistic mathematical model of the spectral absorption measurement process can be employed in the curve fitting process. Applications of the algorithm have proven successful in circumventing open path data reduction problems. However, recent studies, by one of the authors, of the temperature and pressure effects on atmospheric absorption indicate there exist temperature and water partial pressure effects that should be incorporated into the NONLIN algorithm for accurate quantification of gas concentrations. This paper investigates the sources of these phenomena. As a result of this study a partial pressure correction has been employed in NONLIN computer code. Two typical field spectra are examined to determine what effect the partial pressure correction has on gas quantification.
NASA Astrophysics Data System (ADS)
Steill, J. D.; Hager, J. S.; Compton, R. N.
2005-12-01
Air quality issues in the Knoxville and East Tennessee region are of great concern, particularly as regards the nearby Great Smoky Mountains National Park. Integration of a Bomem DA8 FT-IR spectrometer with rooftop sun-tracking optics and an open-path system provides a unique opportunity to analyze the local atmospheric chemical composition. Many trace atmospheric constituents are open to this analysis, such as O3, CO, CH4, and N2O. Boundary layer concentrations as well as total column abundances and vertical concentration profiles are derived. Vertical concentration profiles are determined by fitting solar absorbance lines with the SFIT2 algorithm. Improved fitting of solar spectra has been demonstrated by incorporating the tropospheric concentrations as determined by open-path measurements. In addition to providing a means to improve the analysis of solar spectra, the open-path data is useful for elucidation of diurnal trends in the trace gas concentrations. Anthropogenic influences are of special interest, and seasonal and daily trends in amounts of tropospheric pollutants such as ozone correlate with other sources such as the EPA. Although obviously limited by weather considerations, the technique is suited to the regional climate and a body of data of more than two years extent is available for analysis.
Imaging open-path Fourier transform infrared spectrometer for 3D cloud profiling
NASA Astrophysics Data System (ADS)
Rentz Dupuis, Julia; Mansur, David J.; Vaillancourt, Robert; Carlson, David; Evans, Thomas; Schundler, Elizabeth; Todd, Lori; Mottus, Kathleen
2010-04-01
OPTRA has developed an imaging open-path Fourier transform infrared (I-OP-FTIR) spectrometer for 3D profiling of chemical and biological agent simulant plumes released into test ranges and chambers. An array of I-OP-FTIR instruments positioned around the perimeter of the test site, in concert with advanced spectroscopic algorithms, enables real time tomographic reconstruction of the plume. The approach is intended as a referee measurement for test ranges and chambers. This Small Business Technology Transfer (STTR) effort combines the instrumentation and spectroscopic capabilities of OPTRA, Inc. with the computed tomographic expertise of the University of North Carolina, Chapel Hill. In this paper, we summarize the design and build and detail system characterization and test of a prototype I-OP-FTIR instrument. System characterization includes radiometric performance and spectral resolution. Results from a series of tomographic reconstructions of sulfur hexafluoride plumes in a laboratory setting are also presented.
Imaging open-path Fourier transform infrared spectrometer for 3D cloud profiling
NASA Astrophysics Data System (ADS)
Rentz Dupuis, Julia; Mansur, David J.; Engel, James R.; Vaillancourt, Robert; Todd, Lori; Mottus, Kathleen
2008-04-01
OPTRA and University of North Carolina are developing an imaging open-path Fourier transform infrared (I-OP-FTIR) spectrometer for 3D profiling of chemical and biological agent simulant plumes released into test ranges and chambers. An array of I-OP-FTIR instruments positioned around the perimeter of the test site, in concert with advanced spectroscopic algorithms, enables real time tomographic reconstruction of the plume. The approach will be considered as a candidate referee measurement for test ranges and chambers. This Small Business Technology Transfer (STTR) effort combines the instrumentation and spectroscopic capabilities of OPTRA, Inc. with the computed tomographic expertise of the University of North Carolina, Chapel Hill. In this paper, we summarize progress to date and overall system performance projections based on the instrument, spectroscopy, and tomographic reconstruction accuracy. We then present a preliminary optical design of the I-OP-FTIR.
NASA Astrophysics Data System (ADS)
Drescher, Anushka C.; Yost, Michael G.; Park, Doo Y.; Levine, Steven P.; Gadgil, Ashok J.; Fischer, Marc L.; Nazaroff, William W.
1995-05-01
Optical remote sensing and iterative computed tomography (CT) can be combined to measure the spatial distribution of gaseous pollutant concentrations in a plane. We have conducted chamber experiments to test this combination of techniques using an Open Path Fourier Transform Infrared Spectrometer (OP-FTIR) and a standard algebraic reconstruction technique (ART). ART was found to converge to solutions that showed excellent agreement with the ray integral concentrations measured by the FTIR but were inconsistent with simultaneously gathered point sample concentration measurements. A new CT method was developed based on (a) the superposition of bivariate Gaussians to model the concentration distribution and (b) a simulated annealing minimization routine to find the parameters of the Gaussians that resulted in the best fit to the ray integral concentration data. This new method, named smooth basis function minimization (SBFM) generated reconstructions that agreed well, both qualitatively and quantitatively, with the concentration profiles generated from point sampling. We present one set of illustrative experimental data to compare the performance of ART and SBFM.
Estimating drift of airborne pesticides during orchard spraying using active Open Path FTIR
NASA Astrophysics Data System (ADS)
Kira, Oz; Linker, Raphael; Dubowski, Yael
2016-10-01
The use of pesticides is important to ensure food security around the world. Unfortunately, exposure to pesticides is harmful to human health and the environment. This study suggests using active Open Path Fourier Transform Infra-Red (OP-FTIR) spectroscopy for monitoring and characterizing pesticide spray drift, which is one of the transfer mechanisms that lead to inhalation exposure to pesticides. Experiments were conducted in a research farm with two fungicides (Impulse and Bogiron), which were sprayed in the recommended concentration of ∼0.1%w in water, using a tractor-mounted air-assisted sprayer. The ability to detect and characterize the pesticide spray drift was tested in three types of environments: fallow field, young orchard, and mature orchard. During all spraying experiments the spectral signature of the organic phase of the pesticide solution was identified. Additionally, after estimating the droplets' size distribution using water sensitive papers, the OP-FTIR measurements enabled the estimation of the droplets load in the line of sight.
NASA Astrophysics Data System (ADS)
Bai, Mei; Suter, Helen; Lam, Shu Kee; Sun, Jianlei; Chen, Deli
2014-09-01
An open-path Fourier transform infrared (OP-FTIR) spectroscopic technique in combination with a backward Lagrangian stochastic (bLS) dispersion model (WindTrax) can be used to simultaneously measure gaseous emissions of N2O, NH3, CH4 and CO2. We assessed the capability of this technique for measuring NH3 and N2O emissions following the application of calcium nitrate (Ca(NO3)2), Nitrophoska (NPK) and chicken manure on a celery farm at Boneo, Victoria, during April and May 2013. We found that the OP-FTIR/WindTrax method was able to measure the diurnal variation in NH3 flux from the field site following application of chicken manure with measured emissions ranging from approximately 0.1-9.8 kg NH3-N ha-1 day-1. The OP-FTIR/WindTrax method also detected a diurnal variation in N2O flux of 1.5-6.2 kg N2O-N ha-1 day-1 and N2O flux increased in response to application of the Ca(NO3)2. We concluded that the OP-FTIR/WindTrax technique can quantify gaseous N loss from vegetable production systems.
Lin, Chitsan; Liou, Naiwei; Sun, Endy
2008-06-01
An open-path Fourier transform infrared spectroscopy (OP-FTIR) system was set up for 3-day continuous line-averaged volatile organic compound (VOC) monitoring in a paint manufacturing plant. Seven VOCs (toluene, m-xylene, p-xylene, styrene, methanol, acetone, and 2-butanone) were identified in the ambient environment. Daytime-only batch operation mode was well explained by the time-series concentration plots. Major sources of methanol, m-xylene, acetone, and 2-butanone were identified in the southeast direction where paint solvent manufacturing processes are located. However, an attempt to uncover sources of styrene was not successful because the method detection limit (MDL) of the OP-FTIR system was not sensitive enough to produce conclusive data. In the second scenario, the OP-FTIR system was set up in an industrial complex to distinguish the origins of several VOCs. Eight major VOCs were identified in the ambient environment. The pollutant detected wind-rose percentage plots that clearly showed that ethylene, propylene, 2-butanone, and toluene mainly originated from the tank storage area, whereas the source of n-butane was mainly from the butadiene manufacturing processes of the refinery plant, and ammonia was identified as an accompanying reduction product in the gasoline desulfuration process. Advantages of OP-FTIR include its ability to simultaneously and continuously analyze many compounds, and its long path length monitoring has also shown advantages in obtaining more comprehensive data than the traditional multiple, single-point monitoring methods.
NASA Astrophysics Data System (ADS)
Steill, J. D.; Hager, J. S.; Compton, R. N.
2006-05-01
Air quality issues in the Knoxville and East Tennessee region are of great concern, particularly as regards the nearby Great Smoky Mountains National Park. Infrared absorption spectroscopy of the atmosphere provides a unique opportunity to analyze the local chemical composition, since many trace atmospheric constituents are open to this analysis, such as O3, CO, CH4, and N2O. Integration of a Bomem DA8 FT-IR spectrometer with rooftop sun-tracking optics and an open-path system provide solar-sourced and boundary- layer atmospheric infrared spectra of these and other relevant atmospheric components. Boundary layer concentrations as well as total column abundances and vertical concentration profiles are derived. Vertical concentration profiles are determined by fitting solar-sourced absorbance lines with the SFIT2 algorithm. Improved fitting of solar spectra has been demonstrated by incorporating the tropospheric concentrations as determined by open-path measurements. A record of solar-sourced atmospheric spectra of greater than two years duration is under analysis to characterize experimental error and thus the limit of precision in the concentration determinations. Initial efforts using atmospheric O2 as a calibration indicate the solar- sourced spectra may not yet meet the precision required for accurate atmospheric CO2 quantification by such efforts as the OCO and NDSC. However, this variability is also indicative of local concentration fluxes pertinent to the regional atmospheric chemistry. In addition to providing a means to improve the analysis of solar spectra, the open-path data is useful for elucidation of seasonal and diurnal trends in the local trace gas concentrations.
Portable open-path chemical sensor using a quantum cascade laser
NASA Astrophysics Data System (ADS)
Corrigan, Paul; Lwin, Maung; Huntley, Reuven; Chhabra, Amandeep; Moshary, Fred; Gross, Barry; Ahmed, Samir
2009-05-01
Remote sensing of enemy installations or their movements by trace gas detection is a critical but challenging military objective. Open path measurements over ranges of a few meters to many kilometers with sensitivity in the parts per million or billion regime are crucial in anticipating the presence of a threat. Previous approaches to detect ground level chemical plumes, explosive constituents, or combustion have relied on low-resolution, short range Fourier transform infrared spectrometer (FTIR), or low-sensitivity near-infrared differential optical absorption spectroscopy (DOAS). As mid-infrared quantum cascade laser (QCL) sources have improved in cost and performance, systems based on QCL's that can be tailored to monitor multiple chemical species in real time are becoming a viable alternative. We present the design of a portable, high-resolution, multi-kilometer open path trace gas sensor based on QCL technology. Using a tunable (1045-1047cm-1) QCL, a modeled atmosphere and link-budget analysis with commercial component specifications, we show that with this approach, accuracy in parts per billion ozone or ammonia can be obtained in seconds at path lengths up to 10 km. We have assembled an open-path QCL sensor based on this theoretical approach at City College of New York, and we present preliminary results demonstrating the potential of QCLs in open-path sensing applications.
Chang, Pao-Erh Paul; Yang, Jen-Chih Rena; Den, Walter; Wu, Chang-Fu
2014-09-01
Emissions of volatile organic compounds (VOCs) are most frequent environmental nuisance complaints in urban areas, especially where industrial districts are nearby. Unfortunately, identifying the responsible emission sources of VOCs is essentially a difficult task. In this study, we proposed a dynamic approach to gradually confine the location of potential VOC emission sources in an industrial complex, by combining multi-path open-path Fourier transform infrared spectrometry (OP-FTIR) measurement and the statistical method of principal component analysis (PCA). Close-cell FTIR was further used to verify the VOC emission source by measuring emitted VOCs from selected exhaust stacks at factories in the confined areas. Multiple open-path monitoring lines were deployed during a 3-month monitoring campaign in a complex industrial district. The emission patterns were identified and locations of emissions were confined by the wind data collected simultaneously. N,N-Dimethyl formamide (DMF), 2-butanone, toluene, and ethyl acetate with mean concentrations of 80.0 ± 1.8, 34.5 ± 0.8, 103.7 ± 2.8, and 26.6 ± 0.7 ppbv, respectively, were identified as the major VOC mixture at all times of the day around the receptor site. As the toxic air pollutant, the concentrations of DMF in air samples were found exceeding the ambient standard despite the path-average effect of OP-FTIR upon concentration levels. The PCA data identified three major emission sources, including PU coating, chemical packaging, and lithographic printing industries. Applying instrumental measurement and statistical modeling, this study has established a systematic approach for locating emission sources. Statistical modeling (PCA) plays an important role in reducing dimensionality of a large measured dataset and identifying underlying emission sources. Instrumental measurement, however, helps verify the outcomes of the statistical modeling. The field study has demonstrated the feasibility of using multi-path OP-FTIR measurement. The wind data incorporating with the statistical modeling (PCA) may successfully identify the major emission source in a complex industrial district.
NASA Astrophysics Data System (ADS)
Hager, John; Steill, Jeff; Compton, Robert
2004-11-01
A high-resolution FTIR Bomem DA8 spectrometer has been installed at the University of Tennessee and has been successfully coupled with a suntracker and open path optics. Solar absorption spectra were recorded on 75 days in the last 18 months over a large spectral range. The high-resolution spectra provide information on the vertical concentration profiles of trace gases in the atmosphere. The HITRAN data base was used along with SFIT2 in order to retrieve concentration profiles of different trace gases. Many atmospheric constituents are open to this analysis. Tropospheric Ozone in the Knoxville area is rated as the worst in the nation by the American Lung Association. Sunlight, pollutants and hot weather cause ground-level ozone to form in harmful concentrations in the air. Seasonal and daily trends of ozone show correlation with other sources such as the EPA, and recent efforts to correlate solar spectra with open-path spectra will be discussed.
Measurements of aircraft emissions indices at airports passive remote sensing
NASA Astrophysics Data System (ADS)
Schaefer, Klaus; Jahn, Carsten; Sturm, Peter J.; Lechner, Bernhard; Bacher, Michael
2003-04-01
The emission indices of aircraft engine exhausts to calculate precisely the emissions inventories of airports are not available up to now from measurements taken under operating conditions. To determine these data no installations nearby or behind the aircraft are possible at airports. That's why measurements by FTIR emission spectrometry were performed by the IMK-IFU with a spectrometer installed in a van and with total measurement time at one thrust level of about 1 minute to determine CO, NO and CO2. The FTIR instrument telescope was aligned to the engine nozzle exit of standing aircraft. A DOAS and a FTIR spectrometer with globar were used for simultaneous open-path measurements of NO, NO2, CO, CO2 and speciated hydrocarbons behind the aircraft by the TUG-VKMB. Measurement results at the airports Frankfurt/Main, London-Heathrow and Vienna are presented. The methods are evaluated by comparing CO emission indices from passive measurements with open-path data. The measured emission indices of CO show slightly higher values than the International Civil Aviation Organisation data sheets but less values for NOx emissions. A fruitful co-operation with the airlines AUA, BA and DLH as well as the airport authorities in Vienna and London-Heathrow supported this work which is financed from EC.
NASA Astrophysics Data System (ADS)
Flores, E.; Grutter, M.; Galle, B.; Mellqvist, J.; Samuelsson, J.; Knighton, B.; Jobson, B. T.; Volkamer, R.; Molina, L. T.; Molina, M. J.
2004-12-01
Mobile sources are responsible for about 50% of VOC (volatile organic compounds) and about 70% of NOx emissions in the Mexico City Metropolitan Area (MCMA). A novel approach has been developed to derive emission factors for mobile sources that are representative of the overall vehicle fleet, using collocated open-path Differential Optical Absorption Spectroscopy (DOAS) and Fourier Transform Infrared (FTIR) spectroscopic measurements. Measurements were recorded at two sites within the MCMA: (1) research-grade DOAS and FTIR systems were operated at the Mexican National Research and Training Center (CENICA) in Iztapalapa, (2) a research grade FTIR was operated at La Merced. In addition, point-sampling with a proton transfer reaction mass spectrometer (PTR-MS) was performed on the same location and the calibration standards for the PTR-MS and the DOAS instruments were cross-calibrated. The DOAS measured speciated aromatic hydrocarbons, including benzene, toluene, m-xylene, p-xylene, ethylbenzene (and mono-substituted alkylbenzenes), benzaldehyde, phenol, and p-cresol. The DOAS detection of aromatic hydrocarbons in the UV/vis spectral range between 250 to 310 nm suffers from the interference of molecular oxygen, and a novel approach is being presented that enables measurement of absolute concentrations of the above species. Further, HONO, NO2, SO2 and HCHO were measured at longer wavelengths. In combination with FTIR measurements of CO, CO2, NO, HCHO, ethylene, ethene, and total alkane, average emission factors for NOx, SO2 and numerous hydrocarbons were derived and scaled with fuel sales data to estimate total emissions of the vehicle fleet in the MCMA. The advantages and limitations of this low-cost emission inventory for mobile sources are decsribed.
FT-IR remote sensing of atmospheric species: Application to global change and air pollution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vazquez, G.J.
1995-12-31
In this contribution, the author describes two applications of Fourier Transform Infrared Spectroscopy to the monitoring of atmospheric compounds. Firstly, the author reports FTIR solar spectroscopy measurements carried out at ground level at NCAR and on airplanes employing a spectrometer of 0.06 cm{sup -1} resolution. Sample atmospheric spectra and fitting examples are presented for key species relevant to stratospheric chemistry and global change: ozone (O{sub 3}), a chlorofluorocarbon (CF{sub 2}Cl{sub 2}), a greenhouse gas (N{sub 2}O), HCl, NO and HNO{sub 3}. Secondly, the author briefly describes urban air pollution measurements at an intersection with heavy traffic in Tucson, AZ. Twomore » FTIR spectrometers of 1 cm{sup -1} resolution were employed to carry out long-path open-path measurements of the CO/CO{sub 2} ratio and SF{sub 6}. Two FEAT and two LPUV instruments were employed for ancillary measurements of CO, CO{sub 2}, NO, and aromatic hydrocarbons. Measurements of CO at two heights and a comparison of CO/CO{sub 2} ratios obtained by FEAT exhaust emission and FTIR ambient air measurements are reported.« less
SEASONAL EMISSIONS OF AMMONIA AND METHANE FROM A HOG WASTE LAGOON WITH BIOACTIVE COVER
The paper discusses the use of plane-integrated (PI) open-path Fourier transform infrared spectrometry (OP-FTIR) to measure the flux of ammonia and methane from a hog waste lagoon before and after the installation of a bioactive cover. A computed tomography algorithm using a smoo...
Park, D Y; Fessler, J A; Yost, M G; Levine, S P
2000-03-01
Computed tomographic (CT) reconstructions of air contaminant concentration fields were conducted in a room-sized chamber employing a single open-path Fourier transform infrared (OP-FTIR) instrument and a combination of 52 flat mirrors and 4 retroreflectors. A total of 56 beam path data were repeatedly collected for around 1 hr while maintaining a stable concentration gradient. The plane of the room was divided into 195 pixels (13 x 15) for reconstruction. The algebraic reconstruction technique (ART) failed to reconstruct the original concentration gradient patterns for most cases. These poor results were caused by the "highly underdetermined condition" in which the number of unknown values (156 pixels) exceeds that of known data (56 path integral concentrations) in the experimental setting. A new CT algorithm, called the penalized weighted least-squares (PWLS), was applied to remedy this condition. The peak locations were correctly positioned in the PWLS-CT reconstructions. A notable feature of the PWLS-CT reconstructions was a significant reduction of highly irregular noise peaks found in the ART-CT reconstructions. However, the peak heights were slightly reduced in the PWLS-CT reconstructions due to the nature of the PWLS algorithm. PWLS could converge on the original concentration gradient even when a fairly high error was embedded into some experimentally measured path integral concentrations. It was also found in the simulation tests that the PWLS algorithm was very robust with respect to random errors in the path integral concentrations. This beam geometry and the use of a single OP-FTIR scanning system, in combination with the PWLS algorithm, is a system applicable to both environmental and industrial settings.
Park, Doo Y; Fessier, Jeffrey A; Yost, Michael G; Levine, Steven P
2000-03-01
Computed tomographic (CT) reconstructions of air contaminant concentration fields were conducted in a room-sized chamber employing a single open-path Fourier transform infrared (OP-FTIR) instrument and a combination of 52 flat mirrors and 4 retroreflectors. A total of 56 beam path data were repeatedly collected for around 1 hr while maintaining a stable concentration gradient. The plane of the room was divided into 195 pixels (13 × 15) for reconstruction. The algebraic reconstruction technique (ART) failed to reconstruct the original concentration gradient patterns for most cases. These poor results were caused by the "highly underdetermined condition" in which the number of unknown values (156 pixels) exceeds that of known data (56 path integral concentrations) in the experimental setting. A new CT algorithm, called the penalized weighted least-squares (PWLS), was applied to remedy this condition. The peak locations were correctly positioned in the PWLS-CT reconstructions. A notable feature of the PWLS-CT reconstructions was a significant reduction of highly irregular noise peaks found in the ART-CT reconstructions. However, the peak heights were slightly reduced in the PWLS-CT reconstructions due to the nature of the PWLS algorithm. PWLS could converge on the original concentration gradient even when a fairly high error was embedded into some experimentally measured path integral concentrations. It was also found in the simulation tests that the PWLS algorithm was very robust with respect to random errors in the path integral concentrations. This beam geometry and the use of a single OP-FTIR scanning system, in combination with the PWLS algorithm, is a system applicable to both environmental and industrial settings.
R. J. Yokelson; T. J. Christian; T. G. Karl; A. Guenther
2008-01-01
As part of the Tropical Forest and Fire Emissions Experiment (TROFFEE), tropical forest fuels were burned in a large, biomass-fire simulation facility and the smoke was characterized with open-path Fourier transform infrared spectroscopy (FTIR), proton-transfer reaction mass spectrometry (PTR-MS), gas chromatography (GC), GC/PTRMS, and filter sampling of the particles...
Vibrational spectroscopy standoff detection of threat chemicals
NASA Astrophysics Data System (ADS)
Ortiz-Rivera, William; Pacheco-Londoño, Leonardo C.; Castro-Suarez, John R.; Felix-Rivera, Hilsamar; Hernandez-Rivera, Samuel P.
2011-06-01
Spectroscopy based standoff detection systems: Raman and FTIR have been tested for detection of threat chemicals, including highly energetic materials, homemade explosives, explosives formulations and high explosives mixtures. Other threat chemicals studied included toxic industrial compounds (TIC) and chemical agent simulants. Microorganisms and biological threat agent simulants have also been detected at standoff distances. Open Path FTIR has been used to detect vapors and chemicals deposited on metal surfaces at μg/cm2 levels at distances as far as 30 m in active mode and 60 m in passive mode. In the case of Raman telescope, standoff distances for acetonitrile and ammonium nitrate were 140 m.
NASA Astrophysics Data System (ADS)
Hart, Brian K.; Griffiths, Peter R.
1998-06-01
Partial least squares (PLS) regression has been evaluated as a robust calibration technique for over 100 hazardous air pollutants (HAPs) measured by open path Fourier transform infrared (OP/FT-IR) spectrometry. PLS has the advantage over the current recommended calibration method of classical least squares (CLS), in that it can look at the whole useable spectrum (700-1300 cm-1, 2000-2150 cm-1, and 2400-3000 cm-1), and detect several analytes simultaneously. Up to one hundred HAPs synthetically added to OP/FT-IR backgrounds have been simultaneously calibrated and detected using PLS. PLS also has the advantage in requiring less preprocessing of spectra than that which is required in CLS calibration schemes, allowing PLS to provide user independent real-time analysis of OP/FT-IR spectra.
Sheryl K. Akagi; Ian R. Burling; A. Mendoza; Timothy J. Johnson; M. Cameron; David W. T. Griffith; C. Paton-Walsh; David R. Weise; James Reardon; Robert J. Yokelson
2014-01-01
We report trace-gas emission factors from three pine-understory prescribed fires in South Carolina, US measured during the fall of 2011. The fires were more intense than many prescribed burns because the fuels included mature pine stands not subjected to prescribed fire in decades that were lit following an extended drought. Emission factors were measured with a fixed...
S. K. Akagi; I. R. Burling; A. Mendoza; T. J. Johnson; M. Cameron; D. W. T. Griffith; C. Paton-Walsh; D. R. Weise; J. Reardon; R. J. Yokelson
2013-01-01
We report trace-gas emission factors from three pine-understory prescribed fires in South Carolina, US measured during the fall of 2011. The fires were more intense than many prescribed burns because the fuels included mature pine stands not subjected to prescribed fire in decades that were lit following an extended drought. The emission factors were measured...
Sample and data processing considerations for the NIST quantitative infrared database
NASA Astrophysics Data System (ADS)
Chu, Pamela M.; Guenther, Franklin R.; Rhoderick, George C.; Lafferty, Walter J.; Phillips, William
1999-02-01
Fourier-transform infrared (FT-IR) spectrometry has become a useful real-time in situ analytical technique for quantitative gas phase measurements. In fact, the U.S. Environmental Protection Agency (EPA) has recently approved open-path FT-IR monitoring for the determination of hazardous air pollutants (HAP) identified in EPA's Clean Air Act of 1990. To support infrared based sensing technologies, the National Institute of Standards and Technology (NIST) is currently developing a standard quantitative spectral database of the HAPs based on gravimetrically prepared standard samples. The procedures developed to ensure the quantitative accuracy of the reference data are discussed, including sample preparation, residual sample contaminants, data processing considerations, and estimates of error.
Long Open Path Fourier Transform Spectroscopy Measurements of Greenhouse Gases in the Near Infrared
NASA Astrophysics Data System (ADS)
Griffith, D. W. T.
2015-12-01
Atmospheric composition measurements are an important tool to quantify local and regional emissions and sinks of greenhouse gases. Most in situ measurements are made at a point, but how representative are such measurements in an inhomogeneous environment? Open path Fourier Transform Spectroscopy (FTS) measurements potentially offer spatial averaging and continuous measurements of several trace gases (including CO2, CH4, CO and N2O) simultaneously in the same airmass. Spatial averaging over kilometre scales is a better fit to the finest scale atmospheric models becoming available, and helps bridge the gap between models and in situ measurements. In this paper we assess the precision, accuracy and reliability of long open path measurements by Fourier Transform Spectroscopy in the near infrared from a 5-month continuous record of measurements over a 1.5 km pathlength. Direct open-atmosphere measurements of trace gases CO2, CH4, CO and N2O as well as O2 were retrieved from several absorption bands between 4000 and 8000 cm-1 (2.5 - 1.25 micron). At one end of the path an in situ FTIR analyser simultaneously collected well calibrated measurements of the same species for comparison with the open path-integrated measurements. The measurements ran continuously from June - November 2014. We introduce the open path FTS measurement system and present an analysis of the results, including assessment of precision, accuracy relative to co-incident in situ measurements, reliability. Short term precision of the open path measurement of CO2 was better than 1 ppm for 5 minute averages and thus sufficient for studies in urban and other non-background environments. Measurement bias relative to calibrated in situ measurements was stable across the measurement period. The system operated reliably with data losses mainly due to weather events such as rain and fog preventing transmission of the IR beam. In principle the system can be improved to provide longer pathlengths and higher precision, and we present recent progress in improving the original measurements.
Detection of emission sources using passive-remote Fourier transform infrared spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demirgian, J.C.; Macha, S.M.; Darby, S.M.
1995-12-31
The detection and identification of toxic chemicals released in the environment is important for public safety. Passive-remote Fourier transform infrared (FTIR) spectrometers can be used to detect these releases. Their primary advantages are their small size and ease of setup and use. Open-path FTIR spectrometers are used to detect concentrations of pollutants from a fixed frame of reference. These instruments detect plumes, but they are too large and difficult to aim to be used to track a plume to its source. Passive remote FTIR spectrometers contain an interferometer, optics, and a detector. They can be used on tripods and inmore » some cases can be hand-held. A telescope can be added to most units. The authors will discuss the capability of passive-remote FTIR spectrometers to detect the origin of plumes. Low concentration plumes were released using a custom-constructed vaporizer. These plumes were detected with different spectrometers from different distances. Passive-remote spectrometers were able to detect small 10 cm on a side chemical releases at concentration-pathlengths at the low parts per million-meter (ppm-m) level.« less
Detection of emission sources using passive-remote Fourier transform infrared spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demirgian, J.C.; Macha, S.M.; Darby, S.M.
1995-04-01
The detection and identification of toxic chemicals released in the environment is important for public safety. Passive-remote Fourier transform infrared (FTIR) spectrometers can be used to detect these releases. Their primary advantages are their small size and ease of setup and use. Open-path FTIR spectrometers are used to detect concentrations of pollutants from a fixed frame of reference. These instruments detect plumes, but they are too large and difficult to aim to be used to track a plume to its source. Passive remote FTIR spectrometers contain an interferometer, optics, and a detector. They can be used on tripods and inmore » some cases can be hand-held. A telescope can be added to most units. We will discuss the capability of passive-remote FTIR spectrometers to detect the origin of plumes. Low concentration plumes were released using a custom-constructed vaporizer. These plumes were detected with different spectrometers from different distances. Passive-remote spectrometers were able to detect small 10 cm on a side chemical releases at concentration-pathlengths at the low parts per million-meter (ppm-m) level.« less
NASA Astrophysics Data System (ADS)
Guérette, Elise-Andrée; Paton-Walsh, Clare; Desservettaz, Maximilien; Smith, Thomas E. L.; Volkova, Liubov; Weston, Christopher J.; Meyer, Carl P.
2018-03-01
We characterised trace gas emissions from Australian temperate forest fires through a mixture of open-path Fourier transform infrared (OP-FTIR) measurements and selective ion flow tube mass spectrometry (SIFT-MS) and White cell FTIR analysis of grab samples. We report emission factors for a total of 25 trace gas species measured in smoke from nine prescribed fires. We find significant dependence on modified combustion efficiency (MCE) for some species, although regional differences indicate that the use of MCE as a proxy may be limited. We also find that the fire-integrated MCE values derived from our in situ on-the-ground open-path measurements are not significantly different from those reported for airborne measurements of smoke from fires in the same ecosystem. We then compare our average emission factors to those measured for temperate forest fires elsewhere (North America) and for fires in another dominant Australian ecosystem (savanna) and find significant differences in both cases. Indeed, we find that although the emission factors of some species agree within 20 %, including those of hydrogen cyanide, ethene, methanol, formaldehyde and 1,3-butadiene, others, such as acetic acid, ethanol, monoterpenes, ammonia, acetonitrile and pyrrole, differ by a factor of 2 or more. This indicates that the use of ecosystem-specific emission factors is warranted for applications involving emissions from Australian forest fires.
NASA Astrophysics Data System (ADS)
Wooster, M. J.; Freeborn, P. H.; Archibald, S.; Oppenheimer, C.; Roberts, G. J.; Smith, T. E. L.; Govender, N.; Burton, M.; Palumbo, I.
2011-11-01
Biomass burning emissions factors are vital to quantifying trace gas release from vegetation fires. Here we evaluate emissions factors for a series of savannah fires in Kruger National Park (KNP), South Africa using ground-based open path Fourier transform infrared (FTIR) spectroscopy and an IR source separated by 150-250 m distance. Molecular abundances along the extended open path are retrieved using a spectral forward model coupled to a non-linear least squares fitting approach. We demonstrate derivation of trace gas column amounts for horizontal paths transecting the width of the advected plume, and find for example that CO mixing ratio changes of ~0.01 μmol mol-1 [10 ppbv] can be detected across the relatively long optical paths used here. Though FTIR spectroscopy can detect dozens of different chemical species present in vegetation fire smoke, we focus our analysis on five key combustion products released preferentially during the pyrolysis (CH2O), flaming (CO2) and smoldering (CO, CH4, NH3) processes. We demonstrate that well constrained emissions ratios for these gases to both CO2 and CO can be derived for the backfire, headfire and residual smouldering combustion (RSC) stages of these savannah fires, from which stage-specific emission factors can then be calculated. Headfires and backfires often show similar emission ratios and emission factors, but those of the RSC stage can differ substantially. The timing of each fire stage was identified via airborne optical and thermal IR imagery and ground-observer reports, with the airborne IR imagery also used to derive estimates of fire radiative energy (FRE), allowing the relative amount of fuel burned in each stage to be calculated and "fire averaged" emission ratios and emission factors to be determined. These "fire averaged" metrics are dominated by the headfire contribution, since the FRE data indicate that the vast majority of the fuel is burned in this stage. Our fire averaged emission ratios and factors for CO2 and CH4 agree well with those from prior studies conducted in the same area using e.g. airborne plume sampling. We also concur with past suggestions that emission factors for formaldehyde in this environment appear substantially underestimated in widely used databases, but see no evidence to support suggestions by Sinha et al. (2003) of a major overestimation in the emission factor of ammonia in works such as Andreae and Merlet (2001) and Akagi et al. (2011). We also measure somewhat higher CO and NH3 emission ratios and factors than are usually reported for this environment, which is interpreted to result from the OP-FTIR ground-based technique sampling a greater proportion of smoke from smouldering processes than is generally the case with methods such as airborne sampling. Finally, our results suggest that the contribution of burning animal (elephant) dung can be a significant factor in the emissions characteristics of certain KNP fires, and that the ability of remotely sensed fire temperatures to provide information useful in tailoring modified combustion efficiency (MCE) and emissions factor estimates maybe rather limited, at least until the generally available precision of such temperature estimates can be substantially improved. One limitation of the OP-FTIR method is its ability to sample only near-ground level smoke, which may limit application at more intense fires where the majority of smoke is released into a vertically rising convection column. Nevertheless, even in such cases the method potentially enables a much better assessment of the emissions contribution of the RSC stage than is typically conducted currently.
Schäfer, Klaus; Brockmann, Klaus; Heland, Jörg; Wiesen, Peter; Jahn, Carsten; Legras, Olivier
2005-04-10
The detection limits for NO and NO2 in turbine exhausts by nonintrusive monitoring have to be improved. Multipass mode Fourier-transform infrared (FTIR) absorption spectrometry and use of a White mirror system were found from a sensitivity study with spectra simulations in the mid-infrared to be essential for the retrieval of NO2 abundances. A new White mirror system with a parallel infrared beam was developed and tested successfully with a commercial FTIR spectrometer in different turbine test beds. The minimum detection limits for a typical turbine plume of 50 cm in diameter are approximately 6 parts per million (ppm) for NO and 9 ppm for NO2 (as well 100 ppm for CO2 and 4 ppm for CO).
NASA Astrophysics Data System (ADS)
Steill, J. D.; Compton, R. N.; Hager, J. S.
2006-12-01
Ground-based solar infrared absorption spectroscopy coupled with open-path spectroscopy provides a means for analysis of the highly variable contribution of the boundary layer to problems of radiative transfer and atmospheric chemistry. This is of particular importance in geographic regions of significant local anthropogenic influence and large tropospheric fluctuations in general. A Bomem DA8 FT-IR integrated with a sun-tracking and open-path system (~0.5 km) is located at The University of Tennessee, in downtown Knoxville and near The Great Smoky Mountains National Park, an area known for problematic air quality. From atmospheric absorption spectra, boundary layer concentrations as well as total column abundances and vertical concentration profiles are derived. A record of more than 1000 solar-sourced atmospheric spectra covering a period greater than three years in duration is under analysis to characterize the limit of precision in total column abundance determinations for many gases such as O3, CO, CH4, N2O, HF and CO2. Initial efforts using atmospheric O2 as a calibration indicate the solar-sourced spectra may not meet the precision required for the highly accurate atmospheric CO2 quantification by such global efforts as the OCO and NDSC. However, the determined variability of CO2 and other gas concentrations is statistically significant and is indicative of local concentration fluxes pertinent to the regional atmospheric chemistry. This is therefore an important data record in the southeastern United States, a somewhat under- sampled geographic region. In addition to providing a means to improve the analysis of solar spectra, the open-path data is useful for elucidation of seasonal and diurnal trends in the trace gas concentrations. This provides an urban air quality monitor in addition to improving the description of the total atmospheric composition, as the open-path system is stable and permanent.
Sauer, Uta; Borsdorf, H; Dietrich, P; Liebscher, A; Möller, I; Martens, S; Möller, F; Schlömer, S; Schütze, C
2018-02-03
During a controlled "back-production experiment" in October 2014 at the Ketzin pilot site, formerly injected CO 2 was retrieved from the storage formation and directly released to the atmosphere via a vent-off stack. Open-path Fourier transform infrared (OP FTIR) spectrometers, on-site meteorological parameter acquisition systems, and distributed CO 2 point sensors monitored gas dispersion processes in the near-surface part of the atmospheric boundary layer. The test site provides a complex and challenging mosaic-like surface setting for atmospheric monitoring which can also be found at other storage sites. The main aims of the atmospheric monitoring of this experiment were (1) to quantify temporal and spatial variations in atmospheric CO 2 concentrations around the emitting vent-off stack and (2) to test if and how atmospheric monitoring can cope with typical environmental and operational challenges. A low environmental risk was encountered during the whole CO 2 back-production experiment. The study confirms that turbulent wind conditions favor atmospheric mixing processes and are responsible for rapid dilution of the released CO 2 leading to decreased detectability at all sensors. In contrast, calm and extremely stable wind conditions (especially occurring during the night) caused an accumulation of gases in the near-ground atmospheric layer with the highest amplitudes in measured gas concentration. As an important benefit of OP FTIR spectroscopic measurements and their ability to detect multiple gas species simultaneously, emission sources could be identified to a much higher certainty. Moreover, even simulation models using simplified assumptions help to find suitable monitoring network designs and support data analysis for certain wind conditions in such a complex environment.
NASA Astrophysics Data System (ADS)
Schuetze, C.; Sauer, U.; Dietrich, P.
2015-12-01
Reliable detection and assessment of near-surface CO2 emissions from natural or anthropogenic sources require the application of various monitoring tools at different spatial scales. Especially, optical remote sensing tools for atmospheric monitoring have the potential to measure integrally CO2 emissions over larger scales (> 10.000m2). Within the framework of the MONACO project ("Monitoring approach for geological CO2 storage sites using a hierarchical observation concept"), an integrative hierarchical monitoring concept was developed and validated at different field sites with the aim to establish a modular observation strategy including investigations in the shallow subsurface, at ground surface level and the lower atmospheric boundary layer. The main aims of the atmospheric monitoring using optical remote sensing were the observation of the gas dispersion in to the near-surface atmosphere, the determination of maximum concentration values and identification of the main challenges associated with the monitoring of extended emission sources with the proposed methodological set up under typical environmental conditions. The presentation will give an overview about several case studies using the integrative approach of Open-Path Fourier Transform Infrared spectroscopy (OP FTIR) in combination with in situ measurements. As a main result, the method was validated as possible approach for continuous monitoring of the atmospheric composition, in terms of integral determination of GHG concentrations and to identify target areas which are needed to be investigated more in detail. Especially the data interpretation should closely consider the micrometeorological conditions. Technical aspects concerning robust equipment, experimental set up and fast data processing algorithms have to be taken into account for the enhanced automation of atmospheric monitoring.
Lin, Chitsan; Liou, Naiwei; Chang, Pao-Erh; Yang, Jen-Chin; Sun, Endy
2007-04-01
Although most coke oven research is focused on the emission of polycyclic aromatic hydrocarbons, well-known carcinogens, little has been done on the emission of volatile organic compounds, some of which are also thought to be hazardous to workers and the environment. To profile coke oven gas (COG) emissions, we set up an open-path Fourier transform infrared (OP-FTIR) system on top of a battery of coke ovens at a steel mill located in Southern Taiwan and monitored average emissions in a coke processing area for 16.5 hr. Nine COGs were identified, including ammonia, CO, methane, ethane, ethylene, acetylene, propylene, cyclohexane, and O-xylene. Time series plots indicated that the type of pollutants differed over time, suggesting that different emission sources (e.g., coke pushing, quench tower, etc.) were involved at different times over the study period. This observation was confirmed by the low cross-correlation coefficients of the COGs. It was also found that, with the help of meteorological analysis, the data collected by the OP-FTIR system could be analyzed effectively to characterize differences in the location of sources. Although the traditional single-point samplings of emissions involves sampling various sources in a coke processing area at several different times and is a credible profiling of emissions, our findings strongly suggest that they are not nearly as efficient or as cost-effective as the continuous line average method used in this study. This method would make it easier and cheaper for engineers and health risk assessors to identify and to control fugitive volatile organic compound emissions and to improve environmental health.
McGee, Kenneth A.; Elias, Tamar; Sutton, A. Jefferson; Doukas, Michael P.; Zemek, Peter G.; Gerlach, Terrence M.
2005-01-01
We report the results of a set of measurements of volcanic gases on two small ground level plumes in the vicinity of Pu`u `O`o cone on the middle East Rift Zone (ERZ) of Kilauea volcano, Hawai`i on 15 June 2001 using open-path Fourier transform infrared (FTIR) spectroscopy. The work was carried out as a reconnaissance survey to assess the monitoring and research value of FTIR measurements at this volcano. Despite representing emissions of residual volatiles from lava that has undergone prior degassing, the plumes contained detectable amounts of CO2, CO, SO2, HCl, HF and SiF4. Various processes, including subsurface cooling, condensation of water in the atmospheric plume, oxidation, dissolution in water, and reactions with wall rocks at plume vents affect the abundance of these gases. Low concentrations of volcanic CO2 measured against a high ambient background are not well constrained by FTIR spectroscopy. Although there appear to be some differences between these gases and Pu`u `O`o source gases, ratios of HCl/SO2, HF/SO2 and CO/SO2 determined by FTIR measurements of these two small plumes compare reasonably well with earlier published analyses of ERZ vent samples. The measurements yielded emission rate estimates of 4, 11 and 4 t d-1
ERIC Educational Resources Information Center
Medhurst, Laura L.
2005-01-01
An experiment developed from the Advanced Integrated Environmental Laboratory illustrates the differences in automobile exhaust before and after the engine is warmed, using gas-phase Fourier transform infrared spectroscopy (FTIR). The apparatus consists of an Avatar 360 FTIR spectrometer from Nicolet fitted with a variable path length gas cell,…
NASA Astrophysics Data System (ADS)
Wang, Wei; Liu, Wenqing; Zhang, Tianshu
2012-12-01
The stable isotopes in atmospheric water vapor contain rich information on the hydrologic cycles and gaseous exchange processes between biosphere and atmosphere. About one-week field experiment was conducted to continuously measure the isotope composition of water vapor in ambient air using an open-path FTIR system. Mixing ratios of H2 16O and HD16O were measured simultaneously. Analysis of water vapor isotopes revealed that the variations of H2 16O and HD16O were highly related. Mixing ratios of both isotopes varied considerably on a daily timescale or between days, with no obvious diurnal cycle, whereas the deuterium isotopic [delta]D showed clear diel cycle. The results illustrated that the correlation between [delta]D and H2O mixing ratio was relatively weak, which was also demonstrated by the Keeling plot analysis with the whole data. Yet the further Keeling analysis on a daily timescale displayed more obvious linear relationship between [delta]D and the total H2O concentration. All daily isotopic values of evapotranspiration source were obtained, with the range between -113.93±10.25‰ and -245.63±17.61‰ over the observation period.
Completely automated open-path FT-IR spectrometry.
Griffiths, Peter R; Shao, Limin; Leytem, April B
2009-01-01
Atmospheric analysis by open-path Fourier-transform infrared (OP/FT-IR) spectrometry has been possible for over two decades but has not been widely used because of the limitations of the software of commercial instruments. In this paper, we describe the current state-of-the-art of the hardware and software that constitutes a contemporary OP/FT-IR spectrometer. We then describe advances that have been made in our laboratory that have enabled many of the limitations of this type of instrument to be overcome. These include not having to acquire a single-beam background spectrum that compensates for absorption features in the spectra of atmospheric water vapor and carbon dioxide. Instead, an easily measured "short path-length" background spectrum is used for calculation of each absorbance spectrum that is measured over a long path-length. To accomplish this goal, the algorithm used to calculate the concentrations of trace atmospheric molecules was changed from classical least-squares regression (CLS) to partial least-squares regression (PLS). For calibration, OP/FT-IR spectra are measured in pristine air over a wide variety of path-lengths, temperatures, and humidities, ratioed against a short-path background, and converted to absorbance; the reference spectrum of each analyte is then multiplied by randomly selected coefficients and added to these background spectra. Automatic baseline correction for small molecules with resolved rotational fine structure, such as ammonia and methane, is effected using wavelet transforms. A novel method of correcting for the effect of the nonlinear response of mercury cadmium telluride detectors is also incorporated. Finally, target factor analysis may be used to detect the onset of a given pollutant when its concentration exceeds a certain threshold. In this way, the concentration of atmospheric species has been obtained from OP/FT-IR spectra measured at intervals of 1 min over a period of many hours with no operator intervention.
A new method for GPS-based wind speed determinations during airborne volcanic plume measurements
Doukas, Michael P.
2002-01-01
Begun nearly thirty years ago, the measurement of gases in volcanic plumes is today an accepted technique in volcano research. Volcanic plume measurements, whether baseline gas emissions from quiescent volcanoes or more substantial emissions from volcanoes undergoing unrest, provide important information on the amount of gaseous output of a volcano to the atmosphere. Measuring changes in gas emission rates also allows insight into eruptive behavior. Some of the earliest volcanic plume measurements of sulfur dioxide were made using a correlation spectrometer (COSPEC). The COSPEC, developed originally for industrial pollution studies, is an upward-looking optical spectrometer tuned to the ultraviolet absorption wavelength of sulfur dioxide (Millán and Hoff, 1978). In airborne mode, the COSPEC is mounted in a fixed-wing aircraft and flown back and forth just underneath a volcanic plume, perpendicular to the direction of plume travel (Casadevall and others, 1981; Stoiber and others, 1983). Similarly, for plumes close to the ground, the COSPEC can be mounted in an automobile and driven underneath a plume if a suitable road system is available (Elias and others, 1998). The COSPEC can also be mounted on a tripod and used to scan a volcanic plume from a fixed location on the ground, although the effectiveness of this configuration declines with distance from the plume (Kyle and others, 1990). In the 1990’s, newer airborne techniques involving direct sampling of volcanic plumes with infrared spectrometers and electrochemical sensors were developed in order to measure additional gases such as CO2 and H2S (Gerlach and others, 1997; Gerlach and others, 1999; McGee and others, 2001). These methods involve constructing a plume cross-section from several measurement traverses through the plume in a vertical plane. Newer instruments such as open-path Fourier transform infrared (FTIR) spectrometers are now being used to measure the gases in volcanic plumes mostly from fixed locations on the ground. Most FTIR studies to date measure only gas compositions or ratios of gas species (Love and others, 1998; Francis and others, 1998; Horrocks and others, 1999). What all of these methods have in common, however, is the necessity to know plume velocities if accurate gas emission rates are to be calculated. Even open-path FTIR studies done in tandem with a COSPEC require knowledge of plume velocity in order to compute emission rates.
Outdoor chamber measurements of biological aerosols with a passive FTIR spectrometer
NASA Astrophysics Data System (ADS)
D'Amico, Francis M.; Emge, Darren K.; Roelant, Geoffrey J.
2004-02-01
Outdoor measurements of dry bacillus subtilis (BG) spores were conducted with a passive Fourier transform infrared (FTIR) spectrometer using two types of chambers. One was a large open-ended cell, and the other was a canyon of similar dimensions. The canyon exposes the aerosol plume to downwelling sky radiance, while the open-ended cell does not. The goal of the experiments was to develop a suitable test methodology for evaluation of passive standoff detectors for open-air aerosol measurements. Dry BG aerosol particles were dispersed with a blower through an opening in the side of the chamber to create a pseudo-stationary plume, wind conditions permitting. Numerous trials were performed with the FTIR spectrometer positioned to view mountain, sky and mixed mountain-sky backgrounds. This paper will discuss the results of the FTIR measurements for BG and Kaolin dust releases.
Open-path FTIR spectroscopy of magma degassing processes during eight lava fountains on Mount Etna
NASA Astrophysics Data System (ADS)
La Spina, Alessandro; Burton, Mike; Allard, Patrick; Alparone, Salvatore; Murè, Filippo
2016-04-01
In June-July 2001 a series of 16 discrete lava fountain paroxysms occurred at the Southeast summit crater (SEC) of Mount Etna, preceding a 28-day long violent flank eruption. Each paroxysm was preceded by lava effusion, growing seismic tremor and a crescendo of Strombolian explosive activity culminating into powerful lava fountaining up to 500m in height. During 8 of these 16 events we could measure the chemical composition of the magmatic gas phase (H2O, CO2, SO2, HCl, HF and CO), using open-path Fourier transform infrared (OP-FTIR) spectrometry at ˜1-2km distance from SEC and absorption spectra of the radiation emitted by hot lava fragments. We show that each fountaining episode was characterized by increasingly CO2-rich gas release, with CO2/SO2and CO2/HCl ratios peaking in coincidence with maxima in seismic tremor and fountain height, whilst the SO2/HCl ratio showed a weak inverse relationship with respect to eruption intensity. Moreover, peak values in both CO2/SO2ratio and seismic tremor amplitude for each paroxysm were found to increase linearly in proportion with the repose interval (2-6 days) between lava fountains. These observations, together with a model of volatile degassing at Etna, support the following driving process. Prior to and during the June-July 2001 lava fountain sequence, the shallow (˜2km) magma reservoir feeding SEC received an increasing influx of deeply derived carbon dioxide, likely promoted by the deep ascent of volatile-rich primitive basalt that produced the subsequent flank eruption. This CO2-rich gas supply led to gas accumulation and overpressure in SEC reservoir, generating a bubble foam layer whose periodical collapse powered the successive fountaining events. The anti-correlation between SO2/HCl and eruption intensity is best explained by enhanced syn-eruptive degassing of chlorine from finer particles produced during more intense magma fragmentation.
NASA Astrophysics Data System (ADS)
Schuetze, C.; Barth, M.; Hehn, M.; Ziemann, A.
2016-12-01
The eddy-covariance (EC) method can provide information about turbulent fluxes of energy and greenhouse gases (GHG) accurately if all necessary corrections and conversions are applied to the measured raw data and all boundary conditions for the method are satisfied. Nevertheless and even in flat terrain, advection can occur leading to a closing gap of energy and matter balances. Without accounting for advection, annual estimates of CO2 sink strength are overestimated, because advection usually results in underestimation of nocturnal CO2 flux. Advection is produced by low-frequent exchange processes, which can occur due to the surface heterogeneity. To measure advective fluxes there is still and strongly a need for ground-based remote sensing techniques which provide the relevant GHG concentration together with wind components spatially resolved within the same voxel structure. The SQuAd-approach applies an integrated method combination of acoustic tomography and open-path optical remote sensing based on infrared spectroscopy with the aim to obtain spatially and temporally resolved information about wind components and GHG concentration. The monitoring approach focuses on the validation of the joint application of the two independent, non-intrusive methods concerning the ability to close the existent gap in GHG balance. The innovative combination of acoustic travel-time tomography (A-TOM) and open-path Fourier transform infrared spectroscopy (OP-FTIR) together with atmospheric modelling will enable an upscaling and enhancement of EC measurements. OP-FTIR instrumentation has the significant advantage of real-time simultaneous measurements of line-averaged concentrations for CO2 and other GHG with high precision. A-TOM is a scalable method to remotely resolve 3D wind and temperature fields. The presentation will give an overview about the proposed method combination and results of experimental validation tests at an ICOS site (flat grassland) in Eastern Germany.
A Controlled-Environment Chamber for Atmospheric Chemistry Studies Using FT-IR Spectroscopy
1990-06-01
necessary and identify by block number) FELD GROUP SUB-GROUP i >Chamber, controlled environment; long-path cell ; 07 04 FT-IR; Hydrazine decay...modification doubles the useable path length of the original multipass cell described by White (Reference 8). The pattern of images formed on the nesting...system is shown in Figure 13. 24 z C C02, Ibm, El4 944 C3 ta) caC E-4- 252 14 $4 41) 41) 0. 0 04 04 4 41) ~0 to 0.0 V-4 (A q14 0~ 1% 4-r4 $4 0 u P416 4 4
NASA Astrophysics Data System (ADS)
Zemek, Peter G.; Plowman, Steven V.
2010-04-01
Advances in hardware have miniaturized the emissions spectrometer and associated optics, rendering them easily deployed in the field. Such systems are also suitable for vehicle mounting, and can provide high quality data and concentration information in minutes. Advances in software have accompanied this hardware evolution, enabling the development of portable point-and-click OP-FTIR systems that weigh less than 16 lbs. These systems are ideal for first-responders, military, law enforcement, forensics, and screening applications using optical remote sensing (ORS) methodologies. With canned methods and interchangeable detectors, the new generation of OP-FTIR technology is coupled to the latest forward reference-type model software to provide point-and-click technology. These software models have been established for some time. However, refined user-friendly models that use active, passive, and solar occultation methodologies now allow the user to quickly field-screen and quantify plumes, fence-lines, and combustion incident scenarios in high-temporal-resolution. Synthetic background generation is now redundant as the models use highly accurate instrument line shape (ILS) convolutions and several other parameters, in conjunction with radiative transfer model databases to model a single calibration spectrum to collected sample spectra. Data retrievals are performed directly on single beam spectra using non-linear classical least squares (NLCLS). Typically, the Hitran line database is used to generate the initial calibration spectrum contained within the software.
Understanding and applying open-path optical sensing data
NASA Astrophysics Data System (ADS)
Virag, Peter; Kricks, Robert J.
1999-02-01
During the last 10 years, open-path air monitors have evolved to yield reliable and effective measurements of single and multiple compounds on a real-time basis. To many individuals within the optical remote sensing community, the attributes of open-path and its the potential uses seem unlimited. Then why has the market has been stagnant for the last few years? The reason may center on how open-path information is applied and how well the end user understands that information. We constantly try to compare open-path data to risk/health or safety levels that are based for use at a single point and for a specific averaging period often far longer than a typical open-path data point. Often this approach is perceived as putting a square peg in a round hole. This perception may be well founded, as open-path data at times may need to go through extensive data manipulation and assumptions before it can be applied. This paper will review pervious open-path monitoring programs and their success in applying the data collected. We will also look at how open-path data is being currently used, some previous pitfalls in data use, alternate methods of data interpretation, and how open-path data can be best practically applied to fit current needs.
Chen, M-J; Duh, J-M; Shie, R-H; Weng, J-H; Hsu, H-T
2016-06-01
This study used open-path Fourier transform infrared (OP-FTIR) spectroscopy to continuously assess the variation in chloroform concentrations in the air of an indoor swimming pool. Variables affecting the concentrations of chloroform in air were also monitored. The results showed that chloroform concentrations in air varied significantly during the time of operation of the swimming pool and that there were two peaks in chloroform concentration during the time of operation of the pool. The highest concentration was at 17:30, which is coincident with the time with the highest number of swimmers in the pool in a day. The swimmer load was one of the most important factors influencing the chloroform concentration in the air. When the number of swimmers surpassed 40, the concentrations of chloroform were on average 4.4 times higher than the concentration measured without swimmers in the pool. According to the results of this study, we suggest that those who swim regularly should avoid times with highest number of swimmers, in order to decrease the risk of exposure to high concentrations of chloroform. It is also recommended that an automatic mechanical ventilation system is installed to increase the ventilation rate during times of high swimmer load. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
The NIST Quantitative Infrared Database
Chu, P. M.; Guenther, F. R.; Rhoderick, G. C.; Lafferty, W. J.
1999-01-01
With the recent developments in Fourier transform infrared (FTIR) spectrometers it is becoming more feasible to place these instruments in field environments. As a result, there has been enormous increase in the use of FTIR techniques for a variety of qualitative and quantitative chemical measurements. These methods offer the possibility of fully automated real-time quantitation of many analytes; therefore FTIR has great potential as an analytical tool. Recently, the U.S. Environmental Protection Agency (U.S.EPA) has developed protocol methods for emissions monitoring using both extractive and open-path FTIR measurements. Depending upon the analyte, the experimental conditions and the analyte matrix, approximately 100 of the hazardous air pollutants (HAPs) listed in the 1990 U.S.EPA Clean Air Act amendment (CAAA) can be measured. The National Institute of Standards and Technology (NIST) has initiated a program to provide quality-assured infrared absorption coefficient data based on NIST prepared primary gas standards. Currently, absorption coefficient data has been acquired for approximately 20 of the HAPs. For each compound, the absorption coefficient spectrum was calculated using nine transmittance spectra at 0.12 cm−1 resolution and the Beer’s law relationship. The uncertainties in the absorption coefficient data were estimated from the linear regressions of the transmittance data and considerations of other error sources such as the nonlinear detector response. For absorption coefficient values greater than 1 × 10−4 μmol/mol)−1 m−1 the average relative expanded uncertainty is 2.2 %. This quantitative infrared database is currently an ongoing project at NIST. Additional spectra will be added to the database as they are acquired. Our current plans include continued data acquisition of the compounds listed in the CAAA, as well as the compounds that contribute to global warming and ozone depletion.
Laboratory Investigation of Trace Gas Emissions from Biomass Burning on DoD Bases
NASA Astrophysics Data System (ADS)
Burling, I. R.; Yokelson, R. J.; Griffith, D. W.; Roberts, J. M.; Veres, P. R.; Warneke, C.; Johnson, T. J.
2009-12-01
Vegetation representing fuels commonly managed with prescribed fires was collected from five DoD bases and burned under controlled conditions at the USFS Firelab in Missoula, MT. The smoke emissions were measured with a large suite of state-of-the-art instrumentation. Seventy-seven fires were conducted and the smoke composition data will improve DoD land managers’ ability to assess the impact of prescribed fires on local air quality. A key instrument used in the measurement of the gas phase species in smoke was an open-path FTIR (OP-FTIR) spectrometer, built and operated by the Universities of Montana and Wollongong. The OP-FTIR has to date detected and quantified 20 gas phase species - CO2, CO, H2O, N2O, NO2, NO, HONO, NH3, HCl, SO2, CH4, CH3OH, HCHO, HCOOH, C2H2, C2H4, CH3COOH, HCN, propylene and furan. The spectra were analyzed using a non-linear least squares fitting routine that included reference spectra recently acquired at the Pacific Northwest National Laboratories. Preliminary results from the OP-FTIR analysis are reported here. Of particular interest, gas-phase nitrous acid (HONO) was detected simultaneously by the OP-FTIR and negative-ion proton-transfer chemical ionization spectrometer (NI-PT-CIMS), with preliminary fire-integrated molar emission ratios (relative to NOx) ranging from approximately 0.03 to 0.20, depending on the vegetation type. HONO is an important precursor in the production of OH, the primary oxidizing species in the atmosphere. There existed little previous data documenting HONO emissions from either wild or prescribed fires. The non-methane organic emissions were dominated by oxygenated species, which can be further oxidized and thus involved in secondary aerosol formation. Elevated amounts of gas-phase HCl were also detected in the smoke, with the amounts varying depending on location and vegetation type.
NASA Astrophysics Data System (ADS)
Griffith, David W. T.; Pöhler, Denis; Schmitt, Stefan; Hammer, Samuel; Vardag, Sanam N.; Platt, Ulrich
2018-03-01
In complex and urban environments, atmospheric trace gas composition is highly variable in time and space. Point measurement techniques for trace gases with in situ instruments are well established and accurate, but do not provide spatial averaging to compare against developing high-resolution atmospheric models of composition and meteorology with resolutions of the order of a kilometre. Open-path measurement techniques provide path average concentrations and spatial averaging which, if sufficiently accurate, may be better suited to assessment and interpretation with such models. Open-path Fourier transform spectroscopy (FTS) in the mid-infrared region, and differential optical absorption spectroscopy (DOAS) in the UV and visible, have been used for many years for open-path spectroscopic measurements of selected species in both clean air and in polluted environments. Near infrared instrumentation allows measurements over longer paths than mid-infrared FTS for species such as greenhouse gases which are not easily accessible to DOAS.In this pilot study we present the first open-path near-infrared (4000-10 000 cm-1, 1.0-2.5 µm) FTS measurements of CO2, CH4, O2, H2O and HDO over a 1.5 km path in urban Heidelberg, Germany. We describe the construction of the open-path FTS system, the analysis of the collected spectra, several measures of precision and accuracy of the measurements, and the results a four-month trial measurement period in July-November 2014. The open-path measurements are compared to calibrated in situ measurements made at one end of the open path. We observe significant differences of the order of a few ppm for CO2 and a few tens of ppb for CH4 between the open-path and point measurements which are 2 to 4 times the measurement repeatability, but we cannot unequivocally assign the differences to specific local sources or sinks. We conclude that open-path FTS may provide a valuable new tool for investigations of atmospheric trace gas composition in complex, small-scale environments such as cities.
Measuring Breath Alcohol Concentrations with an FTIR Spectrometer
NASA Astrophysics Data System (ADS)
Kneisel, Adam; Bellamy, Michael K.
2003-12-01
An FTIR spectrometer equipped with a long-path gas cell can be used to measure breath alcohol concentrations in an instrumental analysis laboratory course. Students use aqueous ethanol solutions to make a calibration curve that relates absorbance signals of breath samples with blood alcohol concentrations. Students use their calibration curve to determine the time needed for their calculated blood alcohol levels to drop below the legal limit following use of a commercial mouthwash. They also calculate their blood alcohol levels immediately after chewing bread. The main goal of the experiment is to provide the students with an interesting laboratory exercise that teaches them about infrared spectrometers. While the results are meant to be only semiquantitative, they have compared well with results from other published studies. A reference is included that describes how to fabricate a long-path gas cell.
NASA Astrophysics Data System (ADS)
Polidori, A.; Tisopulos, L.; Pikelnaya, O.; Mellqvist, J.; Samuelsson, J.; Marianne, E.; Robinson, R. A.; Innocenti, F.; Finlayson, A.; Hashmonay, R.
2016-12-01
Despite great advances in reducing air pollution, the South Coast Air Basin (SCAB) still faces challenges to attain federal health standards for air quality. Refineries are large sources of ozone precursors and, hence contribute to the air quality problems of the region. Additionally, petrochemical facilities are also sources of other hazardous air pollutants (HAP) that adversely affect human health, for example aromatic hydrocarbons. In order to assure safe operation, decrease air pollution and minimize population exposure to HAP the South Coast Air Quality Management District (SCAQMD) has a number of regulations for petrochemical facilities. However, significant uncertainties still exist in emission estimates and traditional monitoring techniques often do not allow for real-time emission monitoring. In the fall of 2015 the SCAQMD, Fluxsense Inc., the National Physical Laboratory (NPL), and Atmosfir Optics Ltd. conducted a measurement study to characterize and quantify gaseous emissions from the tank farm of one of the largest oil refineries in the SCAB. Fluxsense used a vehicle equipped with Solar Occultation Flux (SOF), Differential Optical Absorption Spectroscopy (DOAS), and Extractive Fourier Transform Infrared (FTIR) spectroscopy instruments. Concurrently, NPL operated their Differential Absorption Lidar (DIAL) system. Both research groups quantified emissions from the entire tank farm and identified fugitive emission sources within the farm. At the same time, Atmosfir operated an Open Path FTIR (OP-FTIR) spectrometer along the fenceline of the tank farm. During this presentation we will discuss the results of the emission measurements from the tank farm of the petrochemical facility. Emission rates resulting from measurements by different ORS methods will be compared and discussed in detail.
Evaluation of adsorption effects on measurements of ammonia, acetic acid, and methanol
NASA Astrophysics Data System (ADS)
Yokelson, R. J.; Christian, T. J.; Bertschi, I. T.; Hao, W. M.
2003-10-01
We examined how adsorption and desorption of gases from inlets and a cell could affect the accuracy of closed-cell FTIR measurements of carbon dioxide (CO2), carbon monoxide (CO), methane (CH4), nitric oxide (NO), nitrogen dioxide (NO2), methanol (CH3OH), acetic acid (CH3COOH), and ammonia (NH3). When standards were delivered to the cell through a stainless steel inlet, temporarily reduced transmission was observed for CH3OH and NH3. However, a halocarbon wax coated inlet (normally used on the system) had excellent transmission (comparable to room temperature Teflon) for both CH3OH and NH3, even at temperatures as low as 5°C. Thus the wax is valuable for coating sampling system components that cannot be fashioned from Teflon. The instrument had a delayed response (˜10-40 s) for NH3 only, which was attributed to passivation of the Pyrex multipass cell. To determine sampling artifacts that could arise from the complex sample matrix presented by smoke, the closed-cell FTIR system was intercompared with an open-path FTIR system (which is immune to sampling artifacts) in well-mixed smoke. A similar cell passivation delay for NH3 was the only artifact found in this test. Overall, the results suggest that ˜10 s is sufficient to detect >80% of an NH3/CO ratio sampled by our fast-flow, closed-cell system. Longer sampling times or consecutive samples return better results. In field campaigns the closed-cell system sampling times were normally 10 to >100 s so NH3 was probably underestimated by 5-15%.
Rapid Contamination During Storage of Carbonaceous Chondrites Prepared for Micro FTIR Measurements
NASA Technical Reports Server (NTRS)
Kebukawa, Yoko; Nakashima, Satoru; Otsuka, Takahiro; Nakamura-Messenger, Keiko; Zolensky, ichael E.
2008-01-01
The carbonaceous chondrites Tagish Lake and Murchison, which contain abundant hydrous minerals, when pressed on aluminum plates and analyzed by micro FTIR, were found to have been contaminated during brief (24 hours) storage. This contamination occurred when the samples were stored within containers which included silicone rubber, silicone grease or adhesive tape. Long-path gas cell FTIR measurements for silicone rubber revealed the presence of contaminant volatile molecules having 2970 cm(sup -1) (CH3) and 1265 cm(sup -1) (Si-CH3) peaks. These organic contaminants are found to be desorbed by in-situ heating infrared measurements from room temperature to 200-300 C. Careful preparation and storage are therefore needed for precious astronomical samples such as meteorites, IDPs and mission returned samples from comets, asteroids and Mars, if useful for FTIR measurements are to be made.
APPLYING OPEN-PATH OPTICAL SPECTROSCOPY TO HEAVY-DUTY DIESEL EMISSIONS
Non-dispersive infrared absorption has been used to measure gaseous emissions for both stationary and mobile sources. Fourier transform infrared spectroscopy has been used for stationary sources as both extractive and open-path methods. We have applied the open-path method for bo...
Airborne volcanic plume measurements using a FTIR spectrometer, Kilauea volcano, Hawaii
McGee, K.A.; Gerlach, T.M.
1998-01-01
A prototype closed-path Fourier transform infrared spectrometer system (FTIK), operating from battery power and with a Stirling engine microcooler for detector cooling, was successfully used for airborne measurements of sulfur dioxide at Kilauea volcano. Airborne profiles of the volcanic plume emanating from the erupting Pu'u 'O'o vent on the East Rift of Kilauea revealed levels of nearly 3 ppm SO2 in the core of the plume. An emission rate of 2,160 metric tons per day of sulfur dioxide was calculated from the FTIR data, which agrees closely with simultaneous measurements by a correlation spectrometer (COSPEC). The rapid spatial sampling possible from an airborne platform distinguishes the methodology described here from previous FTIR measurements.
Integrated gas analyzer for complete monitoring of turbine engine test cells.
Markham, James R; Bush, Patrick M; Bonzani, Peter J; Scire, James J; Zaccardi, Vincent A; Jalbert, Paul A; Bryant, M Denise; Gardner, Donald G
2004-01-01
Fourier transform infrared (FT-IR) spectroscopy is proving to be reliable and economical for the quantification of many gas-phase species during testing and development of gas turbine engines in ground-based facilities such as sea-level test cells and altitude test cells. FT-IR measurement applications include engine-generated exhaust gases, facility air provided as input to engines, and ambient air in and around test cells. Potentially, the traditionally used assembly of many gas-specific single gas analyzers will be eliminated. However, the quest for a single instrument capable of complete gas-phase monitoring at turbine engine test cells has previously suffered since the FT-IR method cannot measure infrared-inactive oxygen molecules, a key operational gas to both air-breathing propulsion systems and test cell personnel. To further the quest, the FT-IR sensor used for the measurements presented in this article was modified by integration of a miniature, solid-state electrochemical oxygen sensor. Embedded in the FT-IR unit at a location near the long-effective-optical-path-length gas sampling cell, the amperometric oxygen sensor provides simultaneous, complementary information to the wealth of spectroscopic data provided by the FT-IR method.
Hyperconnectivity, Attribute-Space Connectivity and Path Openings: Theoretical Relationships
NASA Astrophysics Data System (ADS)
Wilkinson, Michael H. F.
In this paper the relationship of hyperconnected filters with path openings and attribute-space connected filters is studied. Using a recently developed axiomatic framework based on hyperconnectivity operators, which are the hyperconnected equivalents of connectivity openings, it is shown that path openings are a special case of hyperconnected area openings. The new axiomatics also yield insight into the relationship between hyperconnectivity and attribute-space connectivity. It is shown any hyperconnectivity is an attribute-space connectivity, but that the reverse is not true.
Measuring H2O and CO2 Emissions in the Mud Volcano region of Yellowstone using Open Path FTIR
NASA Astrophysics Data System (ADS)
Moyer, D. K.; Sealing, C. R.; Carn, S. A.; Vanderkluysen, L.
2017-12-01
Magma degassing is an important factor in many aspects of monitoring active volcanic zones and mitigating associated hazards. The monitoring of these emissions in concentration, flux, and species ratios is important for detecting signs of unrest as well as understanding the natural cycle and budget of volatile species. However, standard gas measurement methods suffer from either low temporal resolution (e.g., direct sampling of fumaroles) or are limited to measuring a small range of species (e.g., MiniDOAS, MultiGAS). In order to establish a carbon budget of active gas sources at a volcano with a dynamic hydrothermal system, we carried out a survey of mud pots and fumaroles at Yellowstone National Park using Open-Path Fourier Transform Infrared Spectroscopy, or OP-FTIR, which allows for a temporal resolution as low as one measurement every 10 seconds. We placed an active infrared (IR) source behind the target gas plume and identified gas species from the presence of their absorption feature in measured spectra in the 2.5 to 25 µm range. From these, we derived pathlength concentrations for a wide range of gases, including: water vapor, carbon dioxide, and methane. During our September 2016 campaign in the Mud Volcano thermal area, we measured CO2 concentrations of 400 ppm in emissions from the Churning Cauldron acid-sulfate mud pot, with an H2O/CO2 ratio of 8; at Sulphur Cauldron and One Hundred Springs Plain, CO2 concentrations reached 200 ppm above background atmospheric values. We derived a CO2 flux of 8.15 T/d, 0.43 T/d and .00025 T/d, respectively, at these three acid-sulfate sources, within range of gas channeling-based estimates from the late 1990s. Previous accumulation chamber studies estimate the CO2 soil diffuse degassing in the Mud Volcano thermal region at 283.15 T/d, indicating that mud pots are minor contributors of CO2 emissions in this area, representing 3% of diffuse emissions. Due to the high acquisition rate and the abundance of water droplets in the plume, spectra were too noisy to reliably detect methane at these locations. Future work will focus on the measurement of trace gases at these same locations by increasing the acquisition time.
Detto, Matteo; Verfaillie, Joseph; Anderson, Frank; Xu, Liukang; Baldocchi, Dennis
2011-01-01
Closed- and open-path methane gas analyzers are used in eddy covariance systems to compare three potential methane emitting ecosystems in the Sacramento-San Joaquin Delta (CA, USA): a rice field, a peatland pasture and a restored wetland. The study points out similarities and differences of the systems in field experiments and data processing. The closed-path system, despite a less intrusive placement with the sonic anemometer, required more care and power. In contrast, the open-path system appears more versatile for a remote and unattended experimental site. Overall, the two systems have comparable minimum detectable limits, but synchronization between wind speed and methane data, air density corrections and spectral losses have different impacts on the computed flux covariances. For the closed-path analyzer, air density effects are less important, but the synchronization and spectral losses may represent a problem when fluxes are small or when an undersized pump is used. For the open-path analyzer air density corrections are greater, due to spectroscopy effects and the classic Webb–Pearman–Leuning correction. Comparison between the 30-min fluxes reveals good agreement in terms of magnitudes between open-path and closed-path flux systems. However, the scatter is large, as consequence of the intensive data processing which both systems require.
NASA Astrophysics Data System (ADS)
Hupp, J. R.; Burba, G. G.; McDermitt, D. K.; Anderson, D. J.; Eckles, R. D.
2010-12-01
Open-path design of the high speed gas analyzers is a well-established configuration widely used for measurements of CO2 fluxes and concentrations. This configuration has advantages and deficiencies. Advantages include excellent frequency response, long-term stability, low sensitivity to window contamination, low-power pump-free operation, and infrequent calibration requirements. Deficiencies include susceptibility to precipitation and icing, and a potential need for instrument surface heating correction in extremely cold environments. In spite of the deficiencies, open-path measurements often provide data coverage that would not have been possible using traditional closed-path approach. Data loss from precipitation and icing may not always be prevented for the open-path instruments, while heating effect does not pose a problem for CO2 flux in warm environments. Even in cold environments, the impact of heating on CO2 flux is much smaller than other well-known effects, such as Webb-Pearman-Leuning terms, or frequency response corrections for closed-path analyzers. Nonetheless, instrument surface heating effect in cold environments could be addressed scientifically, via developing the theoretical corrections, and instrumentally, via measuring fast integrated air temperature in the optical path, or via enclosing the open-path instrument into a low-power short-intake design. Here we provide an alternative way to minimize or eliminate open-path heating effect, achieved by minimizing or eliminating the temperature gradient between the instrument surface and ambient air. Open-path low temperature controlled design is discussed in comparison with two other approaches (e.g., traditional open-path design and closed-path design) in terms of their field performance for Eddy Covariance flux measurements in the cold. This study presents field data from a new open-path CO2/H2O gas analyzer, LI-7500A, based on the LI-7500 model modified to produce substantially less heat during extremely cold conditions. Two regiments of the temperature control for internal electronics were examined across a wide range of temperatures: (i) the traditional control temperature of about 30oC, and (ii) new regiment controlling parts of internal electronics at 5oC. When new 5oC regiment was activated, the following changes were observed: heat dissipation from the surface reduced several folds, surface-to-air temperature gradients reduced 2-50 times; and the number of false uptake hours were reduced by 3.5 times, to the same level as a closed-path standard. Significant advantage of the new regiment was also observed in the magnitude of CO2 fluxes, especially in cold weather below -10oC. At such cold temperatures, CO2 fluxes from a 30oC controlled LI-7500 were 19% below those of the closed-path standard, while fluxes from a 5oC controlled LI-7500A were, on average, within 1% of the standard. These are strong experimental evidence that open-path instrument heating can be substantially reduced or eliminated via such simple hardware based solution. This allows continued and expanded use of this ultimately lowest-power remote solution for fast gas measurements.
System and method for multi-stage bypass, low operating temperature suppressor for automatic weapons
Moss, William C.; Anderson, Andrew T.
2015-06-09
The present disclosure relates to a suppressor for use with a weapon. The suppressor may be formed to have a body portion having a bore extending concentric with a bore axis of the weapon barrel. An opening in the bore extends at least substantially circumferentially around the bore. A flow path communicates with the opening and defines a channel for redirecting gasses flowing in the bore out from the bore, through the opening, into a rearward direction in the flow path. The flow path raises a pressure at the opening to generate a Mach disk within the bore at a location approximately coincident with the opening. The Mach disk forms as a virtual baffle to divert at least a portion of the gasses into the opening and into the flow path.
Chirped Laser Dispersion Spectroscopy for Remote Open-Path Trace-Gas Sensing
Nikodem, Michal; Wysocki, Gerard
2012-01-01
In this paper we present a prototype instrument for remote open-path detection of nitrous oxide. The sensor is based on a 4.53 μm quantum cascade laser and uses the chirped laser dispersion spectroscopy (CLaDS) technique for molecular concentration measurements. To the best of our knowledge this is the first demonstration of open-path laser-based trace-gas detection using a molecular dispersion measurement. The prototype sensor achieves a detection limit down to the single-ppbv level and exhibits excellent stability and robustness. The instrument characterization, field deployment performance, and the advantages of applying dispersion sensing to sensitive trace-gas detection in a remote open-path configuration are presented. PMID:23443389
Chirped laser dispersion spectroscopy for remote open-path trace-gas sensing.
Nikodem, Michal; Wysocki, Gerard
2012-11-28
In this paper we present a prototype instrument for remote open-path detection of nitrous oxide. The sensor is based on a 4.53 μm quantum cascade laser and uses the chirped laser dispersion spectroscopy (CLaDS) technique for molecular concentration measurements. To the best of our knowledge this is the first demonstration of open-path laser-based trace-gas detection using a molecular dispersion measurement. The prototype sensor achieves a detection limit down to the single-ppbv level and exhibits excellent stability and robustness. The instrument characterization, field deployment performance, and the advantages of applying dispersion sensing to sensitive trace-gas detection in a remote open-path configuration are presented.
Development of an open-path gas analyser for plume detection in security applications
NASA Astrophysics Data System (ADS)
Hay, Kenneth G.; Norberg, Ola; Normand, Erwan; Önnerud, Hans; Black, Paul
2017-04-01
We present here an open-path analyser, initially intended for security applications, specifically for the detection of gas plumes from illicit improvised explosive device (IED) manufacturing. Subsequently, the analysers were adapted for methane measurement and used to investigate its applicability for leak detection in different scenarios (e.g. unconventional gas extraction sites). Preliminary results showed consistent measurements of gas plumes in the open path.
Schwaighofer, Andreas; Montemurro, Milagros; Freitag, Stephan; Kristament, Christian; Culzoni, María J; Lendl, Bernhard
2018-05-24
In this work, we present a setup for mid-IR measurements of the protein amide I and amide II bands in aqueous solution. Employing a latest generation external cavity-quantum cascade laser (EC-QCL) at room temperature in pulsed operation mode allowed implementing a high optical path length of 31 μm that ensures robust sample handling. By application of a data processing routine, which removes occasionally deviating EC-QCL scans, the noise level could be lowered by a factor of 4. The thereby accomplished signal-to-noise ratio is better by a factor of approximately 2 compared to research-grade Fourier transform infrared (FT-IR) spectrometers at equal acquisition times. Employing this setup, characteristic spectral features of three representative proteins with different secondary structures could be measured at concentrations as low as 1 mg mL -1 . Mathematical evaluation of the spectral overlap confirms excellent agreement of the quantum cascade laser infrared spectroscropy (QCL-IR) transmission measurements with protein spectra acquired by FT-IR spectroscopy. The presented setup combines performance surpassing FT-IR spectroscopy with large applicable optical paths and coverage of the relevant spectral range for protein analysis. This holds high potential for future EC-QCL-based protein studies, including the investigation of dynamic secondary structure changes and chemometrics-based protein quantification in complex matrices.
NASA Astrophysics Data System (ADS)
Spina Alessandro, La; Mike, Burton; Filippo, Murè; Roberto, Maugeri
2014-05-01
In this paper we present the results and interpretation of gas composition data collected by a permanent OP-FTIR system (CERBERUS) installed at Stromboli summit. The instrument allows remote control observation and measurement of gas emissions from different points within volcano's crater terrace, using an integrated infrared camera / scanning mirror / FTIR system. Given that an OpenPath Fourier Transform InfraRed (FTIR) spectrometer allows the simultaneously measure all the major species contained in volcanic gas emissions, we could observe the different explosive styles fed by Stromboli volcano. Stromboli volcano, in the Aeolian island arc, is known as the "Lighthouse of the Mediterranean" for its regular (~every 10-20 min) explosive activity, launching crystal-rich black scoriae to 100-200 m height constituting a rich and impressive spectacle for both volcanologists and tourists from every part of the world. This ordinary activity has been classified in two types in relation to the their content of ash ejected. Type 1 is dominated melt ballistic particles whereas Type 2 consists of an ash-rich plume. On 18 July we recorded both explosive styles at the SW crater of Stromboli finding quite similar CO2/SO2 ratio, although we observed a higher value of SO2/HCl molar ratio for the Type 2. Moreover prior to both types of explosions the CO2 amount showed similar trend, whereas a different pattern in SO2 and in HCl gas content, was observed. In detail type 2 was preceded by decrease in SO2 and HCl amounts with respect to type 1. The decreasing trend observed before the onset of style 2 and the higher SO2/HCl ratio might be an indication of overpressure that might have induced the difference between the two types of explosions. In this context, the evidence of no change in the amount of CO2 and in CO2/SO2 ratio suggested us that this overpressure occurred in very shallow depths within the volcano feeding system. If our observations will be confirmed by other explosive event data, we will be able featuring the different source conditions triggering the ordinary explosive activity at Stromboli.
An anomalous CO2 uptake measured over asphalt surface by open-path eddy-covariance system
NASA Astrophysics Data System (ADS)
Bogoev, Ivan; Santos, Eduardo
2017-04-01
Measurements of net ecosystem exchange of CO2 in desert environments made by Wohlfahrt et al. (2008) and Ma (2014) indicate strong CO2 sink. The results of these studies have been challenged by Schlesinger (2016) because the rates of the CO2 uptake are incongruent with the increase of biomass in the vegetation and accumulation of organic and inorganic carbon in the soil. Consequently, the accuracy of the open-path eddy-covariance systems in arid and semi-arid ecosystems has been questioned. A new technology merging the sensing paths of the gas analyzer and the sonic anemometer has recently been developed. This integrated open-path system allows a direct measurement of CO2 mixing ratio in the open air and has the potential to improve the quality of the temperature related density and spectroscopic corrections by synchronously measuring the sensible heat flux in the optical path of the gas analyzer. We evaluate the performance and the accuracy of this new sensor over a large parking lot with an asphalt surface where the water vapor and CO2 fluxes are expected to be low and the interfering sensible heat fluxes are above 200 Wm-2. For independent CO2 flux reference measurements, we use a co-located closed-path analyzer with a short intake tube and a standalone sonic anemometer. We compare energy and carbon dioxide fluxes between the open- and the closed-path systems. During periods with sensible heat flux above 100 W m-2, the open-path system reports an apparent CO2 uptake of 0.02 mg m-2 s-1, while the closed-path system consistently measures a more acceptable upward flux of 0.015 mg m-2 s-1. We attribute this systematic bias to inadequate fast-response temperature compensation of absorption-line broadening effects. We demonstrate that this bias can be eliminated by using the humidity-corrected fast-response sonic temperature to compensate for the abovementioned spectroscopic effects in the open-path analyzer.
Assessment of Hydrogen Sulfide Minimum Detection Limits of an Open Path Tunable Diode Laser
During June 2007, U.S. EPA conducted a feasibility study to determine whether the EPA OTM 10 measurement approach, also known as radial plume mapping (RPM), was feasible. A Boreal open-path tunable diode laser (OP-TDL) to collect path-integrated hydrogen sulfide measurements alon...
NASA Astrophysics Data System (ADS)
Xin, Fengxin; Guo, Jinjia; Sun, Jiayun; Li, Jie; Zhao, Chaofang; Liu, Zhishen
2017-06-01
An open-path atmospheric CO2 measurement system was built based on tunable diode laser absorption spectroscopy (TDLAS). The CO2 absorption line near 2 μm was selected, measuring the atmospheric CO2 with direct absorption spectroscopy and carrying on the comparative experiment with multipoint measuring instruments of the open-path. The detection limit of the TDLAS system is 1.94×10-6. The calibration experiment of three AZ-7752 handheld CO2 measuring instruments was carried out with the Los Gatos Research gas analyzer. The consistency of the results was good, and the handheld instrument could be used in the TDLAS system after numerical calibration. With the contrast of three AZ-7752 and their averages, the correlation coefficients are 0.8828, 0.9004, 0.9079, and 0.9393 respectively, which shows that the open-path TDLAS has the best correlation with the average of three AZ-7752 and measures the concentration of atmospheric CO2 accurately. Multipoint measurement provides a convenient comparative method for open-path TDLAS.
Sun, Youmin; Wang, Yixuan
2017-01-01
To help understand the solid electrolyte interphase (SEI) formation facilitated by electrolyte additives of lithium-ion batteries (LIB) the supermolecular clusters [(ES)Li+(PC)m](PC)n (m=1–2; n=0, 6, and 9) were used to investigate the electroreductive decompositions of the electrolyte additive, ethylene sulfite (ES), as well as the solvent, propylene carbonate (PC) with density functional theory. The results show that ES can be reduced prior to PC, resulting in a reduction precursor that will then undergo a ring opening decomposition to yield a radical anion. A new concerted pathway (path B) was located for the ring opening of the reduced ES, which has much lower energy barrier than the previously reported stepwise pathway (path A). The transition state for the ring opening of PC induced by the reduced ES (path C, indirect path) is closer to that of path A than path B in energy. The direct ring opening of the reduced PC (path D) has lower energy barrier than those of paths A, B and C, yet it is less favorable than the latter paths in terms of thermodynamics (vertical electron affinity or the reduction potential dissociation energy). The overall rate constant including the initial reduction and the subsequent ring opening for path B is the largest among the four paths, followed by paths A>C>D, which further signifies the importance of the concerted new path in facilitating the SEI. The hybrid models, the supermolecular cluster augmented by polarized continuum model, PCM-[(ES)Li+(PC)2](PC)n (n=0,6, and 9), were used to further estimate the reduction potential by taking into account both explicit and implicit solvent effects. The second solvation shell of Li+ in [(ES)Li+(PC)2](PC)n (n=6, and 9) partially compensates the overestimation of solvent effects arising from the PCM model for the naked (ES)Li+(PC)2, and the theoretical reduction potential with PCM-[(ES)Li+(PC)2](PC)6 (1.90–1.93V) agrees very well with the experimental one (1.8–2.0V). PMID:28220165
Sun, Youmin; Wang, Yixuan
2017-03-01
To help understand the solid electrolyte interphase (SEI) formation facilitated by electrolyte additives of lithium-ion batteries (LIBs) the supermolecular clusters [(ES)Li + (PC) m ](PC) n (m = 1-2; n = 0, 6 and 9) were used to investigate the electroreductive decompositions of the electrolyte additive ethylene sulfite (ES) as well as the solvent propylene carbonate (PC) with density functional theory. The results show that ES can be reduced prior to PC, resulting in a reduction precursor that will then undergo a ring opening decomposition to yield a radical anion. A new concerted pathway (path B) was located for the ring opening of the reduced ES, which has a much lower energy barrier than the previously reported stepwise pathway (path A). The transition state for the ring opening of PC induced by the reduced ES (path C, indirect path) is closer to that of path A than path B in energy. The direct ring opening of the reduced PC (path D) has a lower energy barrier than paths A, B and C, yet it is less favorable than the latter paths in terms of thermodynamics (vertical electron affinity or reduction potential and dissociation energy). The overall rate constant including the initial reduction and the subsequent ring opening for path B is the largest among the four paths, followed by paths A > C > D, which further signifies the importance of the concerted new path in facilitating the SEI formation. The hybrid models, the supermolecular clusters augmented by a polarized continuum model, PCM-[(ES)Li + (PC) 2 ](PC) n (n = 0, 6 and 9), were used to further estimate the reduction potential by taking into account both explicit and implicit solvent effects. The second solvation shell of Li + in [(ES)Li + (PC) 2 ](PC) n (n = 6 and 9) partially compensates the overestimation of solvent effects arising from the PCM for the naked (ES)Li + (PC) 2 , and the theoretical reduction potential of PCM-[(ES)Li + (PC) 2 ](PC) 6 (1.90-1.93 V) agrees very well with the experimental one (1.8-2.0 V).
Intercomparison of open-path trace gas measurements with two dual-frequency-comb spectrometers
Waxman, Eleanor M.; Cossel, Kevin C.; Truong, Gar-Wing; ...
2017-09-11
We present the first quantitative intercomparison between two open-path dual-comb spectroscopy (DCS) instruments which were operated across adjacent 2 km open-air paths over a 2-week period. We used DCS to measure the atmospheric absorption spectrum in the near infrared from 6023 to 6376 cm −1 (1568 to 1660 nm), corresponding to a 355 cm −1 bandwidth, at 0.0067 cm −1 sample spacing. The measured absorption spectra agree with each other to within 5 × 10 −4 in absorbance without any external calibration of either instrument. The absorption spectra are fit to retrieve path-integrated concentrations for carbon dioxide (CO 2), methane (CH 4), water (H 2O), and deuteratedmore » water (HDO). The retrieved dry mole fractions agree to 0.14 % (0.57 ppm) for CO 2, 0.35 % (7 ppb) for CH 4, and 0.40 % (36 ppm) for H 2O at ∼ 30 s integration time over the 2-week measurement campaign, which included 24 °C outdoor temperature variations and periods of strong atmospheric turbulence. This agreement is at least an order of magnitude better than conventional active-source open-path instrument intercomparisons and is particularly relevant to future regional flux measurements as it allows accurate comparisons of open-path DCS data across locations and time. We additionally compare the open-path DCS retrievals to a World Meteorological Organization (WMO)-calibrated cavity ring-down point sensor located along the path with good agreement. Short-term and long-term differences between the open-path DCS and point sensor are attributed, respectively, to spatial sampling discrepancies and to inaccuracies in the current spectral database used to fit the DCS data. Finally, the 2-week measurement campaign yields diurnal cycles of CO 2 and CH 4 that are consistent with the presence of local sources of CO 2 and absence of local sources of CH 4.« less
Intercomparison of open-path trace gas measurements with two dual-frequency-comb spectrometers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waxman, Eleanor M.; Cossel, Kevin C.; Truong, Gar-Wing
We present the first quantitative intercomparison between two open-path dual-comb spectroscopy (DCS) instruments which were operated across adjacent 2 km open-air paths over a 2-week period. We used DCS to measure the atmospheric absorption spectrum in the near infrared from 6023 to 6376 cm −1 (1568 to 1660 nm), corresponding to a 355 cm −1 bandwidth, at 0.0067 cm −1 sample spacing. The measured absorption spectra agree with each other to within 5 × 10 −4 in absorbance without any external calibration of either instrument. The absorption spectra are fit to retrieve path-integrated concentrations for carbon dioxide (CO 2), methane (CH 4), water (H 2O), and deuteratedmore » water (HDO). The retrieved dry mole fractions agree to 0.14 % (0.57 ppm) for CO 2, 0.35 % (7 ppb) for CH 4, and 0.40 % (36 ppm) for H 2O at ∼ 30 s integration time over the 2-week measurement campaign, which included 24 °C outdoor temperature variations and periods of strong atmospheric turbulence. This agreement is at least an order of magnitude better than conventional active-source open-path instrument intercomparisons and is particularly relevant to future regional flux measurements as it allows accurate comparisons of open-path DCS data across locations and time. We additionally compare the open-path DCS retrievals to a World Meteorological Organization (WMO)-calibrated cavity ring-down point sensor located along the path with good agreement. Short-term and long-term differences between the open-path DCS and point sensor are attributed, respectively, to spatial sampling discrepancies and to inaccuracies in the current spectral database used to fit the DCS data. Finally, the 2-week measurement campaign yields diurnal cycles of CO 2 and CH 4 that are consistent with the presence of local sources of CO 2 and absence of local sources of CH 4.« less
Open-path Fourier transform infrared (OP/FT-IR) spectrometry was used to measure the concentrations of ammonia, methane, and other atmospheric eases at a concentrated swine production facility. A total of 2200 OP/FT-IR spectra were acquired along nine different monitoring paths d...
Mantle to surface degassing of alkalic magmas at Erebus volcano, Antarctica
Oppenheimer, C.; Moretti, R.; Kyle, P.R.; Eschenbacher, A.; Lowenstern, J. B.; Hervig, R.L.; Dunbar, N.W.
2011-01-01
Continental intraplate volcanoes, such as Erebus volcano, Antarctica, are associated with extensional tectonics, mantle upwelling and high heat flow. Typically, erupted magmas are alkaline and rich in volatiles (especially CO2), inherited from low degrees of partial melting of mantle sources. We examine the degassing of the magmatic system at Erebus volcano using melt inclusion data and high temporal resolution open-path Fourier transform infrared (FTIR) spectroscopic measurements of gas emissions from the active lava lake. Remarkably different gas signatures are associated with passive and explosive gas emissions, representative of volatile contents and redox conditions that reveal contrasting shallow and deep degassing sources. We show that this unexpected degassing signature provides a unique probe for magma differentiation and transfer of CO2-rich oxidised fluids from the mantle to the surface, and evaluate how these processes operate in time and space. Extensive crystallisation driven by CO2 fluxing is responsible for isobaric fractionation of parental basanite magmas close to their source depth. Magma deeper than 4kbar equilibrates under vapour-buffered conditions. At shallower depths, CO2-rich fluids accumulate and are then released either via convection-driven, open-system gas loss or as closed-system slugs that ascend and result in Strombolian eruptions in the lava lake. The open-system gases have a reduced state (below the QFM buffer) whereas the closed-system gases preserve their deep oxidised signatures (close to the NNO buffer). ?? 2011 Elsevier B.V.
NASA Astrophysics Data System (ADS)
Burling, I. R.; Yokelson, R. J.; Griffith, D. W. T.; Johnson, T. J.; Veres, P.; Roberts, J. M.; Warneke, C.; Urbanski, S. P.; Reardon, J.; Weise, D. R.; Hao, W. M.; de Gouw, J.
2010-11-01
Vegetation commonly managed by prescribed burning was collected from five southeastern and southwestern US military bases and burned under controlled conditions at the US Forest Service Fire Sciences Laboratory in Missoula, Montana. The smoke emissions were measured with a large suite of state-of-the-art instrumentation including an open-path Fourier transform infrared (OP-FTIR) spectrometer for measurement of gas-phase species. The OP-FTIR detected and quantified 19 gas-phase species in these fires: CO2, CO, CH4, C2H2, C2H4, C3H6, HCHO, HCOOH, CH3OH, CH3COOH, furan, H2O, NO, NO2, HONO, NH3, HCN, HCl, and SO2. Emission factors for these species are presented for each vegetation type burned. Gas-phase nitrous acid (HONO), an important OH precursor, was detected in the smoke from all fires. The HONO emission factors ranged from 0.15 to 0.60 g kg-1 and were higher for the southeastern fuels. The fire-integrated molar emission ratios of HONO (relative to NOx) ranged from approximately 0.03 to 0.20, with higher values also observed for the southeastern fuels. The majority of non-methane organic compound (NMOC) emissions detected by OP-FTIR were oxygenated volatile organic compounds (OVOCs) with the total identified OVOC emissions constituting 61 ± 12% of the total measured NMOC on a molar basis. These OVOC may undergo photolysis or further oxidation contributing to ozone formation. Elevated amounts of gas-phase HCl and SO2 were also detected during flaming combustion, with the amounts varying greatly depending on location and vegetation type. The fuels with the highest HCl emission factors were all located in the coastal regions, although HCl was also observed from fuels farther inland. Emission factors for HCl were generally higher for the southwestern fuels, particularly those found in the chaparral biome in the coastal regions of California.
NASA Astrophysics Data System (ADS)
Burling, I. R.; Yokelson, R. J.; Griffith, D. W. T.; Johnson, T. J.; Veres, P.; Roberts, J. M.; Warneke, C.; Urbanski, S. P.; Reardon, J.; Weise, D. R.; Hao, W. M.; de Gouw, J.
2010-07-01
Vegetation commonly managed by prescribed burning was collected from five southeastern and southwestern US military bases and burned under controlled conditions at the US Forest Service Fire Sciences Laboratory in Missoula, Montana. The smoke emissions were measured with a large suite of state-of-the-art instrumentation including an open-path Fourier transform infrared (OP-FTIR) spectrometer for measurement of gas-phase species. The OP-FTIR detected and quantified 19 gas-phase species in these fires: CO2, CO, CH4, C2H2, C2H4, C3H6, HCHO, HCOOH, CH3OH, CH3COOH, furan, H2O, NO, NO2, HONO, NH3, HCN, HCl, and SO2. Emission factors for these species are presented for each vegetation type burned. Gas-phase nitrous acid (HONO), an important OH precursor, was detected in the smoke from all fires. The HONO emission factors ranged from 0.15 to 0.60 g kg-1 and were higher for the southeastern fuels. The fire-integrated molar emission ratios of HONO (relative to NOx) ranged from approximately 0.03 to 0.20, with higher values also observed for the southeastern fuels. The majority of non-methane organic compound (NMOC) emissions detected by OP-FTIR were oxygenated volatile organic compounds (OVOCs) with the total identified OVOC emissions constituting 61±12% of the total measured NMOC on a molar basis. These OVOC may undergo photolysis or further oxidation contributing to ozone formation. Elevated amounts of gas-phase HCl and SO2 were also detected during flaming combustion, with the amounts varying greatly depending on location and vegetation type. The fuels with the highest HCl emission factors were all located in the coastal regions, although HCl was also observed from fuels farther inland. Emission factors for HCl were generally higher for the southwestern fuels, particularly those found in the chaparral biome in the coastal regions of California.
Multispectral Observations of Explosive Gas Emissions from Santiaguito, Guatemala
NASA Astrophysics Data System (ADS)
Carn, S. A.; Watson, M.; Thomas, H.; Rodriguez, L. A.; Campion, R.; Prata, F. J.
2016-12-01
Santiaguito volcano, Guatemala, has been persistently active for decades, producing frequent explosions from its actively growing lava dome. Repeated release of volcanic gases contains information about conduit processes during the cyclical explosions at Santiaguito, but the composition of the gas phase and the amount of volatiles released in each explosion remains poorly constrained. In addition to its persistent activity, Santiaguito offers an exceptional opportunity to investigate lava dome degassing processes since the upper surface of the active lava dome can be viewed from the summit of neighboring Santa Maria. In January 2016 we conducted multi-spectral observations of Santiaguito's explosive eruption plumes and passive degassing from multiple perspectives as part of the first NSF-sponsored `Workshop on Volcanoes' instrument deployment. Gas measurements included open-path Fourier-Transform infrared (OP-FTIR) spectroscopy from the Santa Maria summit, coincident with ultraviolet (UV) and infrared (IR) camera and UV Differential Optical Absorption Spectroscopy (DOAS) from the El Mirador site below Santiaguito's active Caliente lava dome. Using the OP-FTIR in passive mode with the Caliente lava dome as the source of IR radiation, we were able to collect IR spectra at high temporal resolution prior to and during two explosions of Santiaguito on 7-8 January, with volcanic SO2 and H2O emissions detected. UV and IR camera data provide constraints on the total SO2 burden in the emissions (and potentially the volcanic ash burden), which coupled with the FTIR gas ratios provides new constraints on the mass and composition of volatiles driving explosions at Santiaguito. All gas measurements indicate significant volatile release during explosions with limited degassing during repose periods. In this presentation we will present ongoing analysis of the unique Santiaguito gas dataset including estimation of the total volatile mass released in explosions and an intercomparison of SO2 amounts recorded by the UV and IR instruments.
Intercomparison of Open-Path Trace Gas Measurements with Two Dual Frequency Comb Spectrometers
Waxman, Eleanor M.; Cossel, Kevin C.; Truong, Gar-Wing; Giorgetta, Fabrizio R.; Swann, William C.; Coburn, Sean; Wright, Robert J.; Rieker, Gregory B.; Coddington, Ian; Newbury, Nathan R.
2017-01-01
We present the first quantitative intercomparison between two open-path dual comb spectroscopy (DCS) instruments which were operated across adjacent 2-km open-air paths over a two-week period. We used DCS to measure the atmospheric absorption spectrum in the near infrared from 6021 to 6388 cm−1 (1565 to 1661 nm), corresponding to a 367 cm−1 bandwidth, at 0.0067 cm−1 sample spacing. The measured absorption spectra agree with each other to within 5×10−4 without any external calibration of either instrument. The absorption spectra are fit to retrieve concentrations for carbon dioxide (CO2), methane (CH4), water (H2O), and deuterated water (HDO). The retrieved dry mole fractions agree to 0.14% (0.57 ppm) for CO2, 0.35% (7 ppb) for CH4, and 0.40% (36 ppm) for H2O over the two-week measurement campaign, which included 23 °C outdoor temperature variations and periods of strong atmospheric turbulence. This agreement is at least an order of magnitude better than conventional active-source open-path instrument intercomparisons and is particularly relevant to future regional flux measurements as it allows accurate comparisons of open-path DCS data across locations and time. We additionally compare the open-path DCS retrievals to a WMO-calibrated cavity ringdown point sensor located along the path with good agreement. Short-term and long-term differences between the two systems are attributed, respectively, to spatial sampling discrepancies and to inaccuracies in the current spectral database used to fit the DCS data. Finally, the two-week measurement campaign yields diurnal cycles of CO2 and CH4 that are consistent with the presence of local sources of CO2 and absence of local sources of CH4. PMID:29276547
Recent SO2 camera and OP-FTIR field measurements in Mexico and Guatemala
NASA Astrophysics Data System (ADS)
La Spina, Alessandro; Salerno, Giuseppe; Burton, Michael
2013-04-01
Between 22 and 30 November 2012 a field campaign was carried out at Mexico and Guatemala with the objectives of state the volcanic gas composition and flux fingerprints of Popocatepetl, Santiaguito, Fuego and Pacaya by exploiting simultaneously UV-camera and FTIR measurements. Gases were measured remotely using instruments sensitive to ultraviolet and infrared radiation (UV spectrometer, SO2-camera and OP-FTIR). Data collection depended on the requirements of the methodology, weather condition and eruptive stage of the volcanoes. OP-FTIR measurements were carried out using the MIDAC interferometer with 0.5 cm-1 resolution. Spectra were collected in solar occultation mode in which the Sun acts as an infrared source and the volcanic plume is interposed between the Sun and the spectrometer. At Santiaguito spectra were also collected in passive mode using the lava flow as a radiation source. The SO2-camera used for this study was a dual camera system consisting of two QS Imaging 640s cameras. Each of the two cameras was outfitted with two quartz 25mm lens, coupled with two band-pass filters centred at 310nm and at 330nm. The imaging system was managed by a custom-made software developed in LabView. The UV-camera system was coupled with a USB2000+ spectrometer connected to a QP1000-2-SR 1000 micron optical fiber with a 74-UV collimating lens. For calibration of plume imagery, images of five quartz cells containing known concentration path-lengths of SO2 were taken at the end of each sampling. Between 22 and 23 November 2012 UV-camera and FTIR observations were carried out at Popocatepetl. During the time of our observation, the volcano was characterised by pulsing degassing from the summit crater forming a whitish plume that dispersed rapidly in the atmosphere according to wind direction and speed. Data were collected from the Observatorio Atmosférico Altzomoni (Universidad Nacional Autónoma de México) at 4000 metre a.s.l. and at a distance of ~12 km from the volcano summit. SO2 camera observations were made for ~30 and 130 minutes on the 22 and 23 November, respectively, with a sampling rate of ~7 seconds. FTIR measurements were carried out for 20 and 15 minutes on 22 and 23 November. At Santiaguito volcano, we carried out volcanic gas measurements on 27 and 28 November 2012. During the period of our observations the volcano activity was characterised by lava flow extrusion on the S flank of dome edifice. Occasionally, incandescent blocks detached from the lava flow front rolling onto the dome flanks. During the time of our survey the explosive activity was low frequency (every ~5 - 6 hours). We observed a persistent and sustained degassing plume was observed occasionally polluted by ash. However, on 28 November at 5:25 local time, a violent pyroclastic flow occurred generating an ash-plume that rose ~5 km passing Santa Maria's summit and spreading ~30 km south. SO2 camera and FTIR data were simultaneously collected on 27 November from El Mirador at a distance of ~2 Km from the lava-dome. Data were collected for ~75 and ~90 minutes for SO2-camera and FTIR, respectively. On 28 November, due to the pyroclastic flow event, only distal solar occultation FTIR measurements and open-path UV spectra (using a USB spectrometer) were collected from the west flank of Santa Maria volcano. Both UV and IR spectra were recorded for ~60 minutes Ash released by the pyroclastic flow was sampled from a distance of 6.5 km from the volcano collecting the fallout products along a 60 minute time interval Data from the volcanic plumes of Pacaya and Fuego were collected on 29 and 30 November 2012. During our survey the eruptive activity of Pacaya consisted of weak puffing from the summit crater, while Fuego showed a weak outgassing occasionally interrupted by explosion from its summit crater. In both days, we carried out only SO2 camera measurements due to the poor weather conditions which prevented solar FTIR measurments. At both volcanoes, UV images were taken for a period of ~45 minutes from a distance of ~ 3 km and ~ 10 km, respectively. In this paper we summarise the results from the field campaign and interpret the gas observations in light of the current activity of each volcanic source.
2007-08-01
solely to the absorption by the calibration gas. By equating the path-integrated extinction to the total absorption, we have ε(1/m) = α(1/m), where 6 α...using a high-resolution (0.02 wave-number) Bomem MR Series FTIR spectrometer. A radiometrically stabilized IR Nernst glow-bar is used as the broadband
USDA-ARS?s Scientific Manuscript database
A technique of using multiple calibration sets in partial least squares regression (PLS) was proposed to improve the quantitative determination of ammonia from open-path Fourier transform infrared spectra. The spectra were measured near animal farms, and the path-integrated concentration of ammonia...
Rapid Swept-Wavelength External Cavity Quantum Cascade Laser for Open Path Sensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brumfield, Brian E.; Phillips, Mark C.
2015-07-01
A rapidly tunable external cavity quantum cascade laser system is used for open path sensing. The system permits acquisition of transient absorption spectra over a 125 cm-1 tuning range in less than 0.01 s.
NASA Astrophysics Data System (ADS)
Buchholz, Bernhard; Afchine, Armin; Klein, Alexander; Schiller, Cornelius; Krämer, Martina; Ebert, Volker
2017-01-01
The novel Hygrometer for Atmospheric Investigation (HAI) realizes a unique concept for simultaneous gas-phase and total (gas-phase + evaporated cloud particles) water measurements. It has been developed and successfully deployed for the first time on the German HALO research aircraft. This new instrument combines direct tunable diode laser absorption spectroscopy (dTDLAS) with a first-principle evaluation method to allow absolute water vapor measurements without any initial or repetitive sensor calibration using a reference gas or a reference humidity generator. HAI contains two completely independent dual-channel (closed-path, open-path) spectrometers, one at 1.4 and one at 2.6 µm, which together allow us to cover the entire atmospheric H2O range from 1 to 40 000 ppmv with a single instrument. Both spectrometers each comprise a separate, wavelength-individual extractive, closed-path cell for total water (ice and gas-phase) measurements. Additionally, both spectrometers couple light into a common open-path cell outside of the aircraft fuselage for a direct, sampling-free, and contactless determination of the gas-phase water content. This novel twin dual-channel setup allows for the first time multiple self-validation functions, in particular a reliable, direct, in-flight validation of the open-path channels. During the first field campaigns, the in-flight deviations between the independent and calibration-free channels (i.e., closed-path to closed-path and open-path to closed-path) were on average in the 2 % range. Further, the fully autonomous HAI hygrometer allows measurements up to 240 Hz with a minimal integration time of 1.4 ms. The best precision is achieved by the 1.4 µm closed-path cell at 3.8 Hz (0.18 ppmv) and by the 2.6 µm closed-path cell at 13 Hz (0.055 ppmv). The requirements, design, operation principle, and first in-flight performance of the hygrometer are described and discussed in this work.
Garg, Prabhat; Purohit, Ajay; Tak, Vijay K; Dubey, D K
2009-11-06
N,N-Dialkylamino alcohols, N-methyldiethanolamine, N-ethyldiethanolamine and triethanolamine are the precursors of VX type nerve agents and three different nitrogen mustards respectively. Their detection and identification is of paramount importance for verification analysis of chemical weapons convention. GC-FTIR is used as complimentary technique to GC-MS analysis for identification of these analytes. One constraint of GC-FTIR, its low sensitivity, was overcome by converting the analytes to their fluorinated derivatives. Owing to high absorptivity in IR region, these derivatives facilitated their detection by GC-FTIR analysis. Derivatizing reagents having trimethylsilyl, trifluoroacyl and heptafluorobutyryl groups on imidazole moiety were screened. Derivatives formed there were analyzed by GC-FTIR quantitatively. Of these reagents studied, heptafluorobutyrylimidazole (HFBI) produced the greatest increase in sensitivity by GC-FTIR detection. 60-125 folds of sensitivity enhancement were observed for the analytes by HFBI derivatization. Absorbance due to various functional groups responsible for enhanced sensitivity were compared by determining their corresponding relative molar extinction coefficients ( [Formula: see text] ) considering uniform optical path length. The RSDs for intraday repeatability and interday reproducibility for various derivatives were 0.2-1.1% and 0.3-1.8%. Limit of detection (LOD) was achieved up to 10-15ng and applicability of the method was tested with unknown samples obtained in international proficiency tests.
Collins, Melanie M; Johnson, Ian J M; Clifford, Elaine; Birchall, John P; O'Donoghue, Gerald M
2003-04-01
The objective was to evaluate the preoperative postural stability of acoustic neuroma patients using sway magnetometry. Prospective two-center study. Fifty-one patients (mean age, 53 years) diagnosed with unilateral acoustic neuroma on magnetic resonance imaging at two tertiary referral centers were studied. Preoperatively, each patient had sway patterns (with eyes open and with eyes closed, and standing on foam) recorded for 120 seconds by sway magnetometry. Path length for 30 seconds was calculated. The Romberg coefficient (path length with eyes open divided by path length with eyes closed) was calculated. Forty-four percent of patients had abnormal path lengths with eyes open, and 49% with eyes closed. The Romberg coefficients were significantly lower than normal (P <.001; 95% CI, 0.19-0.87). Mean Romberg coefficient was 0.59 (normal value = 0.73), and all patients had a coefficient of less than 1. Half of preoperative acoustic neuroma patients are unsteady, exhibiting abnormal sway patterns based on path length measurements. The increase in sway path length demonstrable in normal subjects with eyes closed was significantly exaggerated in patients with acoustic neuroma.
ERIC Educational Resources Information Center
Kelly, William E.
2010-01-01
The relation between reading for pleasure, night-sky watching interest, and openness to experience were examined in a sample of 129 college students. Results of a path analysis examining a mediation model indicated that the influence of night-sky interest on reading for pleasure was not mediated by the broad personality domain openness to…
Open-Path Hydrocarbon Laser Sensor for Oil and Gas Facility Monitoring
This poster reports on an experimental prototype open-path laser absorption sensor for measurement of unspeciated hydrocarbons for oil and gas production facility fence-line monitoring. Such measurements may be useful to meet certain state regulations, and enable advanced leak d...
PARTICULATE MATTER MEASUREMENTS USING OPEN-PATH FOURIER TRANSFORM INFRARED SPECTROSCOPY
Open-path Fourier transform infrared (OP-FT1R) spectroscopy is an accepted technology for measuring gaseous air contaminants. OP-FT1R absorbance spectra acquired during changing aerosols conditions reveal related changes in very broad baseline features. Usually, this shearing of ...
Automated enclosure and protection system for compact solar-tracking spectrometers
NASA Astrophysics Data System (ADS)
Heinle, Ludwig; Chen, Jia
2018-04-01
A novel automated enclosure for protecting solar-tracking atmospheric instruments was designed, constructed, and successfully tested under various weather conditions. A complete automated measurement system, consisting of a compact solar-tracking Fourier transform infrared (FTIR) spectrometer (EM27/SUN) and the enclosure, has been deployed in central Munich to monitor greenhouse gases since 2016 and withstood all critical weather conditions, including rain, storms, and snow. It provided ground-based measurements of column-averaged concentrations of CO2, CH4, O2, and H2O throughout this time.The enclosure protects the instrument from harmful environmental influences while allowing open-path measurements in sunny weather. The newly developed and patented cover, a key component of the enclosure, permits unblocked solar measurements while reliably protecting the instrument. This enables dynamic decision regarding taking measurements, and thus increases the number of data samples. This enclosure leads to a fully automated measurement system, which collects data whenever possible without any human interaction. In the long term, the enclosure will provide the foundation for a permanent greenhouse gas monitoring sensor network.
NASA Astrophysics Data System (ADS)
Yuen, W.; Du, K.; Rood, M. J.; Kemme, M. R.; Kim, B.; Hashmonay, R. A.
2010-12-01
A summary of the development of a novel optical remote sensing (ORS) method that determined fugitive dust emission factors for unique military activities is described for puff and mobile sources. Four field campaigns characterized artillery back blasts as puff sources (M549A1 and M107), and movement of military vehicles (M1A1, M113, Bradley Fighting Vehicle (BFV), M88, M270, M577, and HEMTT) and an airborne helicopter (Bell 210) as mobile sources. The ORS method includes a Micro-Pulse Lidar (MPL) and a reflective target that determines one-dimensional (1-D) light extinction coefficient profiles. The MPL was mounted on a positioner that allows the MPL to automatically scan vertically, which allowed 1-D extinction coefficient profiles to be measured at select angles from horizontal. Two-dimensional (2-D) light extinction coefficient profiles were then determined by interpolating the 1-D extinction profiles measured at select angles. Dust property, in the form of the mass extinction efficiency (MEE), was measured using Open Path- Fourier Transform Infrared Spectrometry (OP-FTIR) and Open Path- Laser Transmissometry (OP-LT) in the first three field campaigns and an OP-LT and DustTrak™ in the fourth field campaign. MEE was used to convert the 2-D light extinction coefficient profiles to 2-D dust mass concentration profiles. Emission factors were determined by integrating the 2-D mass concentration profiles with measured wind vectors. Results from these field campaigns show that: 1) artillery with stronger recoiling forces generates more fugitive dust; 2) the dust emission factors for tracked vehicles are correlated with vehicle momentum; 3) emission factor decreases with increasing speed for airborne helicopters; and 4) wheeled vehicles (HEMTT) generate more fugitive dust than tracked vehicles (M88, M270, M577).
Michel, Anna P M; Kapit, Jason; Witinski, Mark F; Blanchard, Romain
2017-04-10
Methane is a powerful greenhouse gas that has both natural and anthropogenic sources. The ability to measure methane using an integrated path length approach such as an open/long-path length sensor would be beneficial in several environments for examining anthropogenic and natural sources, including tundra landscapes, rivers, lakes, landfills, estuaries, fracking sites, pipelines, and agricultural sites. Here a broadband monolithic distributed feedback-quantum cascade laser array was utilized as the source for an open-path methane sensor. Two telescopes were utilized for the launch (laser source) and receiver (detector) in a bistatic configuration for methane sensing across a 50 m path length. Direct-absorption spectroscopy was utilized with intrapulse tuning. Ambient methane levels were detectable, and an instrument precision of 70 ppb with 100 s averaging and 90 ppb with 10 s averaging was achieved. The sensor system was designed to work "off the grid" and utilizes batteries that are rechargeable with solar panels and wind turbines.
Study of melanoma invasion by FTIR spectroscopy
NASA Astrophysics Data System (ADS)
Yang, Y.; Sulé-Suso, J.; Sockalingum, G. D.
2008-02-01
Compared to other forms of skin cancer, a malignant melanoma has a high risk of spreading to other parts of the body. Melanoma invasion is a complex process involving changes in cell-extracellular matrix (ECM) interaction and cell-cell interactions. To fully understand the factors which control the invasion process, a human skin model system was reconstructed. HBL (a commercially available cell line) melanoma cells were seeded on a skin model with and without the presence of keratinocytes and/or fibroblasts. After 14 days culture, the skin specimens were fixed, parafin embedded and cut into 7 µm sections. The de-parafinised sections were investigated by synchrotron Fourier transformed infrared (FTIR) microspectroscopy to study skin cell invasion behaviour. The advantage of using FTIR is its ability to obtain the fingerprint information of the invading cells in terms of protein secondary structure in comparison to non-invading cells and the concentration of the enzyme (matrix-metalloproteinase) which digests protein matrix, near the invading cells. With aid of the spectral mapping images, it is possible to pinpoint the cells in non-invasion and invasion area and analyse the respective spectra. It has been observed that the protein bands in cells and matrix shifted between non-invasive and invasive cells in the reconstructed skin model. We hypothesise that by careful analysis of the FTIR data and validation by other models, FTIR studies can reveal information on which type of cells and proteins are involved in melanoma invasion. Thus, it is possible to trace the cell invasion path by mapping the spectra along the interface of cell layer and matrix body by FTIR spectroscopy.
NASA Technical Reports Server (NTRS)
Chouinard, Caroline; Fisher, Forest; Estlin, Tara; Gaines, Daniel; Schaffer, Steven
2005-01-01
The Grid Visualization Tool (GVT) is a computer program for displaying the path of a mobile robotic explorer (rover) on a terrain map. The GVT reads a map-data file in either portable graymap (PGM) or portable pixmap (PPM) format, representing a gray-scale or color map image, respectively. The GVT also accepts input from path-planning and activity-planning software. From these inputs, the GVT generates a map overlaid with one or more rover path(s), waypoints, locations of targets to be explored, and/or target-status information (indicating success or failure in exploring each target). The display can also indicate different types of paths or path segments, such as the path actually traveled versus a planned path or the path traveled to the present position versus planned future movement along a path. The program provides for updating of the display in real time to facilitate visualization of progress. The size of the display and the map scale can be changed as desired by the user. The GVT was written in the C++ language using the Open Graphics Library (OpenGL) software. It has been compiled for both Sun Solaris and Linux operating systems.
OPEN PATH TUNABLE DIODE LASER ABSORPTION SPECTROSCOPY FOR ACQUISITION OF FUGITIVE EMISSION FLUX DATA
Air pollutant emission from unconfined sources is an increasingly important environmental issue. The U.S. EPA has developed a gorund-based optical remote sensing method that enables direct measurement of fugitive emission flux from large area sources. Open-path Fourier transfor...
OPEN PATH AMBIENT MEASUREMENTS OF POLLUTANTS WITH A DOAS SYSTEM
A differential optical absorption spectrometer (DOAS) has been in operation since August 1991 at the U.S. EPA in RTP, NC. he analyzer unit is located in an environmentally-controlled shelter in the EPA parking lot. our separate open optical paths have been established, ranging fr...
This project involves the real-time measurement of air quality using open-path IR spectroscopy. A prototype open-path tunable laser absorption spectroscopy instrument was designed, built, and successfully operated for several hundred hours between October and December 2000. The...
Methorst, Rob; Schepers, Paul; Kamminga, Jaap; Zeegers, Theo; Fishman, Elliot
2017-08-01
Many studies have found bicycle-motor vehicle crashes to be more likely on bidirectional cycle paths than on unidirectional cycle paths because drivers do not expect cyclists riding at the right side of the road. In this paper we discuss the hypothesis that opening all unidirectional cycle paths for cycle traffic in both directions prevent this lack of expectancy and accordingly improves cycling safety. A new national standard requires careful consideration because a reversal is difficult once cyclists are used to their new freedom of route choice. We therefore explored the hypothesis using available data, research, and theories. The results show that of the length of cycle paths along distributor roads in the Netherlands, 72% is bidirectional. If drivers would become used to cyclists riding at the left side of the road, this result raises the question of why bidirectional cycle paths in the Netherlands still have a poor safety record compared to unidirectional cycle paths. Moreover, our exploration suggested that bidirectional cycle paths have additional safety problems. It increases the complexity of unsignalized intersections because drivers have to scan more directions in a short period of time. Moreover, there are some indications that the likelihood of frontal crashes between cyclists increases. We reject the hypothesis that opening all unidirectional cycle paths for cycle traffic in both directions will improve cycle safety. We recommend more attention for mitigating measures given the widespread application of bidirectional cycle paths in the Netherlands. Copyright © 2016 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
In this study, we evaluated the accuracies of two relatively new micrometeorological methods using open-path tunable diode laser absorption spectrometers: vertical radial plume mapping method (US EPA OTM-10) and the backward Lagragian stochastic method (Wintrax®). We have evaluated the accuracy of t...
Field evaluation of open and closed-path CO2 flux systems over asphalt surface
NASA Astrophysics Data System (ADS)
Bogoev, I.; Santos, E.
2016-12-01
Eddy covariance (EC) is a widely used method for quantifying surface fluxes of heat, water vapor and carbon dioxide between ecosystems and the atmosphere. A typical EC system consists of an ultrasonic anemometer measuring the 3D wind vector and a fast-response infrared gas analyzer for sensing the water vapor and CO2 density in the air. When using an open-path analyzer that detects the constituent's density in situ a correction for concurrent air temperature and humidity fluctuations must be applied, Webb et al. (1980). In environments with small magnitudes of CO2 flux (<5µmol m-2 s-1) and in the presence of high sensible heat flux, like wintertime over boreal forest, open-path flux measurements have been challenging since the magnitude of the density corrections are as large as the uncorrected CO2 flux itself. A new technology merging the sensing paths of the gas analyzer and the sonic anemometer has been recently developed. This new integrated instrument allows a direct measurement of CO2 mixing ratio in the open air and has the potential to improve the quality of the temperature related density corrections by synchronously measuring the sensible heat flux in the optical path of the gas analyzer. We evaluate the performance and the accuracy of this new sensor over a large parking lot with an asphalt surface where the CO2 fluxes are considered low and the interfering sensible heat fluxes are above 200 Wm-2. A co-located closed-path EC system is used as a reference measurement to examine any systematic biases and apparent CO2 uptake observed with open-path sensors under high sensible heat flux regimes. Half-hour mean and variance of CO2 and water vapor concentrations are evaluated. The relative spectral responses, covariances and corrected turbulent fluxes using a common sonic anemometer are analyzed. The influence of sensor separation and frequency response attenuation on the density corrections is discussed.
In recent years, a new class of enclosed, closed-path gas analyzers suitable for eddy covariance applications has come to market, designed to combine the advantages of traditional closed-path systems (small density corrections, good performance in poor weather) and open-path syst...
NASA Astrophysics Data System (ADS)
Griffith, D. W.; Bryant, G. R.; Deutscher, N. M.; Wilson, S. R.; Kettlewell, G.; Riggenbach, M.
2007-12-01
We describe a portable Fourier Transform InfraRed (FTIR) analyser capable of simultaneous high precision analysis of CO2, CH4, N2O and CO in air, as well as δ13C in CO2 and δD in water vapour. The instrument is based on a commercial 1 cm-1 resolution FTIR spectrometer fitted with a mid-IR globar source, 26 m multipass White cell and thermoelectrically-cooled MCT detector operating between 2000 and 7500 cm-1. Air is passed through the cell and analysed in real time without any pre-treatment except for (optional) drying. An inlet selection manifold allows automated sequential analysis of samples from one or more inlet lines, with typical measurement times of 1-10 minutes per sample. The spectrometer, inlet sampling sequence, real-time quantitative spectrum analysis, data logging and display are all under the control of a single program running on a laptop PC, and can be left unattended for continuous measurements over periods of weeks to months. Selected spectral regions of typically 100-200 cm-1 width are analysed by a least squares fitting technique to retrieve concentrations of trace gases, 13CO2 and HDO. Typical precision is better than 0.1% without the need for calibration gases. Accuracy is similar if measurements are referenced to calibration standard gases. δ13C precision is typically around 0.1‰, and for δD it is 1‰. Applications of the analyser include clean and polluted air monitoring, tower-based flux measurements such as flux gradient or integrated horizontal flux measurements, automated soil chambers, and field-based measurements of isotopic fractionation in soil-plant-atmosphere systems. The simultaneous multi-component advantages can be exploited in tracer-type emission measurements, for example of CH4 from livestock using a co-released tracer gas and downwind measurement. We have also developed an open path variant especially suited to tracer release studies and measurements of NH3 emissions from agricultural sources. An illustrative selection of applications will be presented.
OVOC Emissions and Atmospheric Transformations.
NASA Astrophysics Data System (ADS)
Yokelson, R. J.; Christian, T. J.; Bertschi, I. T.; Ward, D. E.; Field, R. J.; Hobbs, P. V.; Goode, J.; Mason, S.; Susott, R.; Babbitt, R.; Hao, W. M.
2002-12-01
We quantified the main emissions from a few vegetation samples and many biomass fires using ground-based, open-path FTIR and airborne, closed-cell FTIR. The two instruments have been rigorously compared to each other and to PTR-MS and canister sampling. OVOC are major emissions from plants. OVOC account for about 70 percent of NMOC from savanna fires (the largest type of biomass burning) and 70-80 percent of NMOC from production and use of domestic biofuels (the second largest type of biomass burning). A table of average biofuel emissions is presented. Data from laboratory and free-burning fires, obtained from Alaska to South Africa, is used to develop equations that predict OVOC emissions from a wide variety of global fires. The impact of OVOC on smoke plume chemistry and the post-emission transformations of OVOC were investigated with two models. Addition of HCHO alone to the simple chemistry used in some global models dramatically reduces NOx lifetime and speeds up O3 formation rates in plumes. A detailed model verifies these effects and shows that OVOC profoundly affect formation of HOx, peroxide, and nitrogen reservoir species. The modeled photochemical transformations of OVOC are diverse, but some key pathways are unknown. We observed rapid production of both O3 and additional OVOC and OH of 1.7E7 in smoke plumes in Alaska and Africa; all reasonably consistent with model predictions. In addition, we found that cloud processing caused large post-emission changes in smoke trace gases including removal of nearly all methanol, a decrease in acetic acid, and a large increase in HCHO. These observations suggest that OVOC could react in cloud droplets and lead to production of modified aerosol. In addition, transport of OVOC by deep convection may be associated with large effects not explained by solubility alone.
A new method for estimating greenhouse gases and ammonia emissions from livestock buildings
NASA Astrophysics Data System (ADS)
Barrancos, José; Briz, Susana; Nolasco, Dácil; Melián, Gladys; Padilla, Germán; Padrón, Eleazar; Fernández, Isabel; Pérez, Nemesio; Hernández, Pedro A.
2013-08-01
It is widely known that carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) are the main greenhouse gases contributing to global climate change. Emission factors for the aforementioned gases have been proposed in order to calculate the contribution of livestock farming to global climate change. However, these emission factors depend on many additional factors such as the housing system, environmental conditions, etc., which implies some uncertainties in their estimation. Therefore, works that aim at improving experimental calculation of these emissions are crucial to provide reliable estimates of the emissions produced by livestock. The purpose of this work was to apply a new methodology inspired by the accumulation chamber method to estimate emission rates from livestock buildings. The work was based on measuring the increase of gas emissions inside the livestock building by means of the remote sensing technique Open-Path FTIR (OP-FTIR). Previously to the measurements, livestock building cattle was confined outside of the building. Utilization of fan ventilation system favoured the homogenization of air inside the building. This experiment proved that evolution of CH4 and CO2 concentrations inside the livestock building behaved like an accumulation chamber unlike the N2O which did not show such behaviour. Results showed CH4, CO2 and NH3 emissions of 167 ± 54,700 ± 200 and 1.3 ± 0.2 kg head-1 year-1, respectively. One of the main parameters affecting the estimated emission factors is the type of animal feeding. Therefore, it is essential to investigate the influence of food composition on CH4 and CO2 emission in a relative larger number of operating cattle buildings since the methodology herein proposed is an easy and cheap tool to study livestock emission factors and their variability.
Aerosol Optical Properties and Trace Gas Emissions From Laboratory-Simulated Western US Wildfires
NASA Astrophysics Data System (ADS)
Selimovic, V.; Yokelson, R. J.; Warneke, C.; Roberts, J. M.; De Gouw, J. A.; Reardon, J.; Griffith, D. W. T.
2017-12-01
Western wildfires have a major impact on air quality in the US. In the fall of 2016, 107 fires were burned in the large-scale combustion facility at the US Forest Service Missoula Fire Sciences Laboratory as part of the Fire Influence on Regional and Global Environments Experiment (FIREX). Canopy, litter, duff, dead wood, and other fuels from various widespread coniferous and chaparral ecosystems were burned in combinations to represent relevant configurations in the field and as pure components to investigate the effects of individual fuels. The smoke emissions were characterized by a large suite of state-of-the-art instruments. In this study we report emission factor (EF, g compound emitted per kg fuel burned) measurements in fresh smoke of a diverse suite of critically-important trace gases measured by open-path Fourier transform infrared spectroscopy (OP-FTIR). We also report aerosol optical properties (absorption EF, single scattering albedo (SSA) and Ångström absorption exponent (AAE)) as well as black carbon (BC) EF measured by photoacoustic extinctiometers (PAX) at 870 and 401 nm. A careful comparison with available field measurements of wildfires confirms that representative data can be extracted from the lab fire data. The OP-FTIR data show that ammonia (1.65 g kg-1), acetic acid (2.44 g kg-1), and other trace gases are significant emissions not previously measured for US wildfires. The PAX measurements show that brown carbon (BrC) absorption is most dominant for combustion of duff (AAE 7.13) and rotten wood (AAE 4.60): fuels that are consumed in greater amounts during wildfires than prescribed fires. We confirm that about 86% of the aerosol absorption at 401 nm in typical fresh wildfire smoke is due to BrC.
Open-path atmospheric transmission for a diode-pumped cesium laser.
Rice, Christopher A; Lott, Gordon E; Perram, Glen P
2012-12-01
A tunable diode laser absorption spectroscopy device was developed to study atmospheric propagation for emerging high-energy laser weapons. The cesium diode-pumped alkali laser operates near 895 nm in the vicinity of several water-vapor absorption lines. Temperature, pressure, and water vapor concentration were determined for 150 m and 1 km open paths with statistical errors of ∼0.2%. Comparison with meteorological instruments yields agreement for the 1 km path to within 0.6% for temperature, 3.7% for pressure, and 2.4% for concentration.
Systems and methods of manufacturing microchannel arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul, Brian K.; Brannon, Samuel T.
The present application relates to apparatus and methods of reducing the cost of microchannel array production and operation. In a representative embodiment, a microchannel array can comprise a first lamina having one or more flanges and a plurality of elongated bosses. The one or more flanges can extend along a perimeter of the first lamina, the plurality of elongated bosses can at least partially define a plurality of first flow paths, and the first lamina can define at least one opening. The microchannel array can also comprise a second lamina having a plurality of second flow paths, and can definemore » at least one opening. The second lamina can be disposed above the first lamina such that the second lamina encloses the first flow paths of the first lamina and the at least one opening of the first lamina is coaxial with the at least one opening of the second lamina.« less
Robust Flight Path Determination for Mars Precision Landing Using Genetic Algorithms
NASA Technical Reports Server (NTRS)
Bayard, David S.; Kohen, Hamid
1997-01-01
This paper documents the application of genetic algorithms (GAs) to the problem of robust flight path determination for Mars precision landing. The robust flight path problem is defined here as the determination of the flight path which delivers a low-lift open-loop controlled vehicle to its desired final landing location while minimizing the effect of perturbations due to uncertainty in the atmospheric model and entry conditions. The genetic algorithm was capable of finding solutions which reduced the landing error from 111 km RMS radial (open-loop optimal) to 43 km RMS radial (optimized with respect to perturbations) using 200 hours of computation on an Ultra-SPARC workstation. Further reduction in the landing error is possible by going to closed-loop control which can utilize the GA optimized paths as nominal trajectories for linearization.
Near-field photothermal microspectroscopy for adult stem-cell identification and characterization.
Grude, Olaug; Hammiche, Azzedine; Pollock, Hubert; Bentley, Adam J; Walsh, Michael J; Martin, Francis L; Fullwood, Nigel J
2007-12-01
The identification of stem cells in adult tissue is a challenging problem in biomedicine. Currently, stem cells are identified by individual epitopes, which are generally tissue specific. The discovery of a stem-cell marker common to other adult tissue types could open avenues in the development of therapeutic stem-cell strategies. We report the use of the novel technique of Fourier transform infrared near-field photothermal microspectroscopy (FTIR-PTMS) for the characterization of stem cells, transit amplifying (TA) cells and terminally differentiated (TD) cells in the corneal epithelium. Principal component analysis (PCA) data demonstrate excellent discrimination of cell type by spectra. PCA in combination with linear discriminant analysis (PCA-LDA) shows that FTIR-PTMS very effectively discriminates between the three cell populations. Statistically significant differences above the 99% confidence level between IR spectra from stem cells and TA cells suggest that nucleic acid conformational changes are an important component of the differences between spectral data from the two cell types. FTIR-PTMS is a new addition to existing spectroscopy methods based on the concept of interfacing a conventional FTIR spectrometer with an atomic force microscope equipped with a near-field thermal sensing probe. FTIR-PTMS spectroscopy currently has spatial resolution that is similar to that of diffraction-limited optical detection FTIR spectroscopy techniques, but as a near-field probing technique has considerable potential for further improvement. Our work also suggests that FTIR-PTMS is potentially more sensitive than synchrotron radiation FTIR spectroscopy for some applications. Microspectroscopy techniques like FTIR-PTMS provide information about the entire molecular composition of cells, in contrast to epitope recognition that only considers the presence or absence of individual molecules. Our results with FTIR-PTMS on corneal stem cells are promising for the potential development of an IR spectral fingerprint for stem cells.
High-quality eddy-covariance CO2 budgets under cold climate conditions
NASA Astrophysics Data System (ADS)
Kittler, Fanny; Eugster, Werner; Foken, Thomas; Heimann, Martin; Kolle, Olaf; Göckede, Mathias
2017-08-01
This study aimed at quantifying potential negative effects of instrument heating to improve eddy-covariance flux data quality in cold environments. Our overarching objective was to minimize heating-related bias in annual CO2 budgets from an Arctic permafrost system. We used continuous eddy-covariance measurements covering three full years within an Arctic permafrost ecosystem with parallel sonic anemometers operation with activated heating and without heating as well as parallel operation of open- and closed-path gas analyzers, the latter serving as a reference. Our results demonstrate that the sonic anemometer heating has a direct effect on temperature measurements while the turbulent wind field is not affected. As a consequence, fluxes of sensible heat are increased by an average 5 W m-2 with activated heating, while no direct effect on other scalar fluxes was observed. However, the biased measurements in sensible heat fluxes can have an indirect effect on the CO2 fluxes in case they are used as input for a density-flux WPL correction of an open-path gas analyzer. Evaluating the self-heating effect of the open-path gas analyzer by comparing CO2 flux measurements between open- and closed-path gas analyzers, we found systematically higher CO2 uptake recorded with the open-path sensor, leading to a cumulative annual offset of 96 gC m-2, which was not only the result of the cold winter season but also due to substantial self-heating effects during summer. With an inclined sensor mounting, only a fraction of the self-heating correction for vertically mounted instruments is required.
Ito, Shota; Kandori, Hideki; Lorenz-Fonfria, Victor A
2018-06-01
Fourier transform infrared (FT-IR) difference absorption spectroscopy is a common method for studying the structural and dynamical aspects behind protein function. In particular, the 2800-1800 cm -1 spectral range has been used to obtain information about internal (deuterated) water molecules, as well as site-specific details about cysteine residues and chemically modified and artificial amino acids. Here, we report on the presence of ghost bands in cryogenic light-induced FT-IR difference spectra of the protein bacteriorhodopsin. The presence of these ghost bands can be particularly problematic in the 2800-1900 cm -1 region, showing intensities similar to O-D vibrations from water molecules. We demonstrate that they arise from second harmonics from genuine chromophore bands located in the 1400-850 cm -1 region, generated by double-modulation artifacts caused from reflections of the IR beam at the sample and at the cryostat windows back to the interferometer (inter-reflections). The second-harmonic ghost bands can be physically removed by placing an optical filter of suitable cutoff in the beam path, but at the cost of losing part of the multiplexing advantage of FT-IR spectroscopy. We explored alternatives to the use of optical filters. Tilting the cryostat windows was effective in reducing the intensity of the second harmonic artifacts but tilting the sample windows was not, presumably by their close proximity to the focal point of the IR beam. We also introduce a simple numerical post-processing approach that can partially, but not fully, correct for second-harmonic ghost bands in FT-IR difference spectra.
NASA Astrophysics Data System (ADS)
Ziemann, Astrid; Starke, Manuela; Schütze, Claudia
2017-11-01
An imbalance of surface energy fluxes using the eddy covariance (EC) method is observed in global measurement networks although all necessary corrections and conversions are applied to the raw data. Mainly during nighttime, advection can occur, resulting in a closing gap that consequently should also affect the CO2 balances. There is the crucial need for representative concentration and wind data to measure advective fluxes. Ground-based remote sensing techniques are an ideal tool as they provide the spatially representative CO2 concentration together with wind components within the same voxel structure. For this purpose, the presented SQuAd (Spatially resolved Quantification of the Advection influence on the balance closure of greenhouse gases) approach applies an integrated method combination of acoustic and optical remote sensing. The innovative combination of acoustic travel-time tomography (A-TOM) and open-path Fourier-transform infrared spectroscopy (OP-FTIR) will enable an upscaling and enhancement of EC measurements. OP-FTIR instrumentation offers the significant advantage of real-time simultaneous measurements of line-averaged concentrations for CO2 and other greenhouse gases (GHGs). A-TOM is a scalable method to remotely resolve 3-D wind and temperature fields. The paper will give an overview about the proposed SQuAd approach and first results of experimental tests at the FLUXNET site Grillenburg in Germany. Preliminary results of the comprehensive experiments reveal a mean nighttime horizontal advection of CO2 of about 10 µmol m-2 s-1 estimated by the spatially integrating and representative SQuAd method. Additionally, uncertainties in determining CO2 concentrations using passive OP-FTIR and wind speed applying A-TOM are systematically quantified. The maximum uncertainty for CO2 concentration was estimated due to environmental parameters, instrumental characteristics, and retrieval procedure with a total amount of approximately 30 % for a single measurement. Instantaneous wind components can be derived with a maximum uncertainty of 0.3 m s-1 depending on sampling, signal analysis, and environmental influences on sound propagation. Averaging over a period of 30 min, the standard error of the mean values can be decreased by a factor of at least 0.5 for OP-FTIR and 0.1 for A-TOM depending on the required spatial resolution. The presented validation of the joint application of the two independent, nonintrusive methods is in the focus of attention concerning their ability to quantify advective fluxes.
Masticatory path pattern during mastication of chewing gum with regard to gender difference.
Kobayashi, Yoshinori; Shiga, Hiroshi; Arakawa, Ichiro; Yokoyama, Masaoki; Nakajima, Kunihisa
2009-01-01
To clarify the masticatory path patterns of the mandibular incisal point during mastication of softened chewing gum with regard to gender difference. One hundred healthy subjects (50 males and 50 females) were asked to chew softened chewing gum on one side at a time (right side and left side) and the movement of the mandibular incisal point was recorded using MKG K6I. After a catalog of path patterns was made, the movement path was classified into one of the pattern groups, and then the frequency of each pattern was investigated. A catalog of path patterns consisting of the three types of opening path (op1, linear or concave path; op2, path toward the chewing side after toward the non-working side; op3, convex path) and two types of closing path (cl1, convex path; cl2, concave path) was made. The movement path was classified into one of seven patterns, with six patterns being from the catalog and a final extra pattern in which the opening and closing paths crossed. The most common pattern among the subjects was Pattern I, followed by Patterns III, II, IV, V, VII, and VI, in that order. The majority of cases, 149 (74.5%) of 200 cases, showed either Pattern I (op1 and cl1) or Pattern III (op2 and cl1). There was no significant difference between the two genders in the frequency of each pattern. The movement path could be classified into seven patterns and no gender-related difference was found in the frequency of each pattern.
NASA Astrophysics Data System (ADS)
Lampert, Astrid; Hartmann, Jörg; Pätzold, Falk; Lobitz, Lennart; Hecker, Peter; Kohnert, Katrin; Larmanou, Eric; Serafimovich, Andrei; Sachs, Torsten
2018-05-01
To investigate if the LI-COR humidity sensor can be used as a replacement of the Lyman-alpha sensor for airborne applications, the measurement data of the Lyman-alpha and several LI-COR sensors are analysed in direct intercomparison flights on different airborne platforms. One vibration isolated closed-path and two non-isolated open-path LI-COR sensors were installed on a Dornier 128 twin engine turbo-prop aircraft. The closed-path sensor provided absolute values and fluctuations of the water vapour mixing ratio in good agreement with the Lyman-alpha. The signals of the two open-path sensors showed considerable high-frequency noise, and the absolute value of the mixing ratio was observed to drift with time in this vibrational environment. On the helicopter-towed sensor system Helipod, with very low vibration levels, the open-path LI-COR sensor agreed very well with the Lyman-alpha sensor over the entire frequency range up to 3 Hz. The results show that the LI-COR sensors are well suited for airborne measurements of humidity fluctuations, provided that a vibrationless environment is given, and this turns out to be more important than close sensor spacing.
Boiler using combustible fluid
Baumgartner, H.; Meier, J.G.
1974-07-03
A fluid fuel boiler is described comprising a combustion chamber, a cover on the combustion chamber having an opening for introducing a combustion-supporting gaseous fluid through said openings, means to impart rotation to the gaseous fluid about an axis of the combustion chamber, a burner for introducing a fluid fuel into the chamber mixed with the gaseous fluid for combustion thereof, the cover having a generally frustro-conical configuration diverging from the opening toward the interior of the chamber at an angle of between 15/sup 0/ and 55/sup 0/; means defining said combustion chamber having means defining a plurality of axial hot gas flow paths from a downstream portion of the combustion chamber to flow hot gases into an upstream portion of the combustion chamber, and means for diverting some of the hot gas flow along paths in a direction circumferentially of the combustion chamber, with the latter paths being immersed in the water flow path thereby to improve heat transfer and terminating in a gas outlet, the combustion chamber comprising at least one modular element, joined axially to the frustro-conical cover and coaxial therewith. The modular element comprises an inner ring and means of defining the circumferential, radial, and spiral flow paths of the hot gases.
Alcaráz, Mirta R; Schwaighofer, Andreas; Kristament, Christian; Ramer, Georg; Brandstetter, Markus; Goicoechea, Héctor; Lendl, Bernhard
2015-07-07
In this work, we report mid-IR transmission measurements of the protein amide I band in aqueous solution at large optical paths. A tunable external-cavity quantum cascade laser (EC-QCL) operated in pulsed mode at room temperature allowed one to apply a path length of up to 38 μm, which is four times larger than that applicable with conventional FT-IR spectrometers. To minimize temperature-induced variations caused by background absorption of the ν2-vibration of water (HOH-bending) overlapping with the amide I region, a highly stable temperature control unit with relative temperature stability within 0.005 °C was developed. An advanced data processing protocol was established to overcome fluctuations in the fine structure of the emission curve that are inherent to the employed EC-QCL due to its mechanical instabilities. To allow for wavenumber accuracy, a spectral calibration method has been elaborated to reference the acquired IR spectra to the absolute positions of the water vapor absorption bands. Employing this setup, characteristic spectral features of five well-studied proteins exhibiting different secondary structures could be measured at concentrations as low as 2.5 mg mL(-1). This concentration range could previously only be accessed by IR measurements in D2O. Mathematical evaluation of the spectral overlap and comparison of second derivative spectra confirm excellent agreement of the QCL transmission measurements with protein spectra acquired by FT-IR spectroscopy. This proves the potential of the applied setup to monitor secondary structure changes of proteins in aqueous solution at extended optical path lengths, which allow experiments in flow through configuration.
K. Novick; J. Walker; W.S. Chan; A. Schmidt; C. Sobek; J.M. Vose
2013-01-01
A new class of enclosed path gas analyzers suitable for eddy covariance applications combines the advantages of traditional closed-path systems (small density corrections, good performance in poor weather) and open-path systems (good spectral response, low power requirements), and permits estimates of instantaneous gas mixing ratio. Here, the extent to which these...
NASA Astrophysics Data System (ADS)
Drescher, A. C.; Gadgil, A. J.; Price, P. N.; Nazaroff, W. W.
Optical remote sensing and iterative computed tomography (CT) can be applied to measure the spatial distribution of gaseous pollutant concentrations. We conducted chamber experiments to test this combination of techniques using an open path Fourier transform infrared spectrometer (OP-FTIR) and a standard algebraic reconstruction technique (ART). Although ART converged to solutions that showed excellent agreement with the measured ray-integral concentrations, the solutions were inconsistent with simultaneously gathered point-sample concentration measurements. A new CT method was developed that combines (1) the superposition of bivariate Gaussians to represent the concentration distribution and (2) a simulated annealing minimization routine to find the parameters of the Gaussian basis functions that result in the best fit to the ray-integral concentration data. This method, named smooth basis function minimization (SBFM), generated reconstructions that agreed well, both qualitatively and quantitatively, with the concentration profiles generated from point sampling. We present an analysis of two sets of experimental data that compares the performance of ART and SBFM. We conclude that SBFM is a superior CT reconstruction method for practical indoor and outdoor air monitoring applications.
Methane and carbon dioxide emissions from Shan-Chu-Ku landfill site in northern Taiwan.
Hegde, Ullas; Chang, Tsan-Chang; Yang, Shang-Shyng
2003-09-01
To investigate the methane and carbon dioxide emissions from landfill, samples were taken of material up to 5 years old from Shan-Chu-Ku landfill located in the northern part of Taiwan. Atmospheric concentrations of carbon dioxide, methane and nitrous oxide ranged from 310 to 530, 2.64 to 20.16 and 0.358 to 1.516 ppmv with the measurement of gas-type open-path Fourier transform infra-red (FTIR) spectroscopy during February 1998 to March 2000, respectively. Average methane emission rate was 13.17, 65.27 and 0.99 mgm(-2)h(-1) measured by the gas chromatography chamber method in 1-2, 2-3 and 5 year-old landfill, respectively. Similarly, average carbon dioxide emission rate was 93.70, 314.60 and 48.46 mgm(-2)h(-1), respectively. About 2-3 year-old landfill had the highest methane and carbon dioxide emission rates among the tested areas, while 5 year-old landfill was the least. Methane emission rate at night in most tested locations was higher than that in the daytime. Total amount of methane and carbon dioxide emission from this landfill was around 171 and 828 ton in 1999, respectively.
Long-range open-path greenhouse gas monitoring using mid-infrared laser dispersion spectroscopy
NASA Astrophysics Data System (ADS)
Daghestani, Nart; Brownsword, Richard; Weidmann, Damien
2015-04-01
Accurate and sensitive methods of monitoring greenhouse gas (GHG) emission over large areas has become a pressing need to deliver improved estimates of both human-made and natural GHG budgets. These needs relate to a variety of sectors including environmental monitoring, energy, oil and gas industry, waste management, biogenic emission characterization, and leak detection. To address the needs, long-distance open-path laser spectroscopy methods offer significant advantages in terms of temporal resolution, sensitivity, compactness and cost effectiveness. Path-integrated mixing ratio measurements stemming from long open-path laser spectrometers can provide emission mapping when combined with meteorological data and/or through tomographic approaches. Laser absorption spectroscopy is the predominant method of detecting gasses over long integrated path lengths. The development of dispersion spectrometers measuring tiny refractive index changes, rather than optical power transmission, may offer a set of specific advantages1. These include greater immunity to laser power fluctuations, greater dynamic range due to the linearity of dispersion, and ideally a zero baseline signal easing quantitative retrievals of path integrated mixing ratios. Chirped laser dispersion spectrometers (CLaDS) developed for the monitoring of atmospheric methane and carbon dioxide will be presented. Using quantum cascade laser as the source, a minimalistic and compact system operating at 7.8 μm has been developed and demonstrated for the monitoring of atmospheric methane over a 90 meter open path2. Through full instrument modelling and error propagation analysis, precision of 3 ppm.m.Hz-0.5 has been established (one sigma precision for atmospheric methane normalized over a 1 m path and 1 s measurement duration). The system was fully functional in the rain, sleet, and moderate fog. The physical model and system concept of CLaDS can be adapted to any greenhouse gas species. Currently we are developing an in-lab instrument that can measure carbon dioxide using a quantum cascade laser operating in the 4 μm range. In this case, the dynamic range benefit of CLaDS is used to provide high precision even when peak absorbance in the CO2 spectrum gets greater than 2. Development for this deployable CO2 measurement system is still at an early stage. So far laboratory gas cell experiments have demonstrated a 9.3 ppm.m.Hz-0.5 for CO2 monitoring. This corresponds to about 0.02% relative precision in measuring CO2 atmospheric background over a 100 m open-path in one second. 1 G. Wysocki and D. Weidmann, "Molecular dispersion spectroscopy for chemical sensing using chirped mid-infrared quantum cascade laser," Opt. Express 18(25), 26123-26140 (2010). 2 N.S. Daghestani, R. Brownsword, D. Weidmann, 'Analysis and demonstration of atmospheric methane monitoring by mid-infrared open-path chirped dispersion spectroscopy' Opt. Express 22(25), A1731-A1743 (2014).
Mapping chemicals in air using an environmental CAT scanning system: evaluation of algorithms
NASA Astrophysics Data System (ADS)
Samanta, A.; Todd, L. A.
A new technique is being developed which creates near real-time maps of chemical concentrations in air for environmental and occupational environmental applications. This technique, we call Environmental CAT Scanning, combines the real-time measuring technique of open-path Fourier transform infrared spectroscopy with the mapping capabilitites of computed tomography to produce two-dimensional concentration maps. With this system, a network of open-path measurements is obtained over an area; measurements are then processed using a tomographic algorithm to reconstruct the concentrations. This research focussed on the process of evaluating and selecting appropriate reconstruction algorithms, for use in the field, by using test concentration data from both computer simultation and laboratory chamber studies. Four algorithms were tested using three types of data: (1) experimental open-path data from studies that used a prototype opne-path Fourier transform/computed tomography system in an exposure chamber; (2) synthetic open-path data generated from maps created by kriging point samples taken in the chamber studies (in 1), and; (3) synthetic open-path data generated using a chemical dispersion model to create time seires maps. The iterative algorithms used to reconstruct the concentration data were: Algebraic Reconstruction Technique without Weights (ART1), Algebraic Reconstruction Technique with Weights (ARTW), Maximum Likelihood with Expectation Maximization (MLEM) and Multiplicative Algebraic Reconstruction Technique (MART). Maps were evaluated quantitatively and qualitatively. In general, MART and MLEM performed best, followed by ARTW and ART1. However, algorithm performance varied under different contaminant scenarios. This study showed the importance of using a variety of maps, particulary those generated using dispersion models. The time series maps provided a more rigorous test of the algorithms and allowed distinctions to be made among the algorithms. A comprehensive evaluation of algorithms, for the environmental application of tomography, requires the use of a battery of test concentration data before field implementation, which models reality and tests the limits of the algorithms.
Characterisation of the magmatic signature in gas emissions from Turrialba Volcano, Costa Rica
NASA Astrophysics Data System (ADS)
Moussallam, Y.; Peters, N.; Ramírez, C.; Oppenheimer, C.; Aiuppa, A.; Giudice, G.
2014-12-01
The equilibrium composition of volcanic gases with their magma is often overprinted by interaction with a shallow hydrothermal system. Identifying the magmatic signature of volcanic gases is critical to relate their composition to properties of the magma (temperature, fO2, gas-melt segregation depth). We report measurements of the chemical composition and flux of the major gas species emitted from Turrialba Volcano during March 2013. Measurements were made of two vents in the summit region, one of which opened in 2010 and the other in 2012. We determined an average SO2 flux of 5.2 ± 1.9 kg s-1 using scanning ultraviolet spectroscopy, and molar proportions of H2O, CO2, SO2, HCl, CO and H2 gases of 94.16, 4.03, 1.56, 0.23, 0.003 and 0.009% respectively by open-path Fourier transform infrared (FTIR) spectrometry and a multi-species gas-sensing system. Together, these data imply fluxes of 88, 8, 0.44, 5 × 10-3 and 1 × 10-3 kg s-1 for H2O, CO2, HCl, CO and H2 respectively. Although H2S was detected, its concentration could not be resolved. HF was not detected. The chemical signature of the gas from both vents was found to be broadly similar. Following the opening of the 2010 and 2012 vents we found limited to negligible interaction of the magmatic gas with the hydrothermal system has occurred and the gas composition of the volcanic plume is broadly representative of equilibrium with the magma. The time evolution of the gas composition, the continuous emission of large quantities of SO2, and the physical evolution of the summit area with new vent openings and more frequent eruptions all point towards a continuous drying of the hydrothermal system at Turrialba's summit at an apparently increasing rate.
The paper describes preliminary results from a field experiment designed to evaluate a new approach to quantifying gaseous fugitive emissions from area air pollution sources. The new approach combines path-integrated concentration data acquired with any path-integrated optical re...
NASA Astrophysics Data System (ADS)
Jacq, Thomas S.; Lardizabal, Carlos F.
2017-11-01
In this work we consider open quantum random walks on the non-negative integers. By considering orthogonal matrix polynomials we are able to describe transition probability expressions for classes of walks via a matrix version of the Karlin-McGregor formula. We focus on absorbing boundary conditions and, for simpler classes of examples, we consider path counting and the corresponding combinatorial tools. A non-commutative version of the gambler's ruin is studied by obtaining the probability of reaching a certain fortune and the mean time to reach a fortune or ruin in terms of generating functions. In the case of the Hadamard coin, a counting technique for boundary restricted paths in a lattice is also presented. We discuss an open quantum version of Foster's Theorem for the expected return time together with applications.
NASA Astrophysics Data System (ADS)
Goodrich, J. P.; Zona, D.; Gioli, B.; Murphy, P.; Burba, G. G.; Oechel, W. C.
2015-12-01
Expanding eddy covariance measurements of CO2 and CH4 fluxes in the Arctic is critical for refining the global C budget. Continuous measurements are particularly challenging because of the remote locations, low power availability, and extreme weather conditions. The necessity for tailoring instrumentation at different sites further complicates the interpretation of results and may add uncertainty to estimates of annual CO2 budgets. We investigated the influence of different sensor combinations on FCO2, latent heat (LE), and FCH4, and assessed the differences in annual FCO2 estimated with different instrumentation at the same sites. Using data from four sites across the North Slope of Alaska, we resolved FCO2 and FCH4 to within 5% using different combinations of open- and closed-path gas analyzers and within 10% using heated and non-heated anemometers. A continuously heated anemometer increased data coverage relative to non-heated anemometers while resulting in comparable annual FCO2, despite over-estimating sensible heat fluxes by 15%. We also implemented an intermittent heating strategy whereby activation only when ice or snow blockage of the transducers was detected. This resulted in comparable data coverage (~ 60%) to the continuously heated anemometer, while avoiding potential over-estimation of sensible heat and gas fluxes. We found good agreement in FCO2 and FCH4 from two closed-path and one open-path gas analyzer, despite the need for large spectral corrections of closed-path fluxes and density and temperature corrections to open-path sensors. However, data coverage was generally greater when using closed-path, especially during cold seasons (36-40% vs 10-14% for the open path), when fluxes from Arctic regions are particularly uncertain and potentially critical to annual C budgets. Measurement of Arctic LE remains a challenge due to strong attenuation along sample tubes, even when heated, that could not be accounted for with spectral corrections.
NASA Astrophysics Data System (ADS)
Flassak, Thomas; de Witt, Helmut; Hahnfeld, Peter; Knaup, Andreas; Kramer, Lothar
1995-09-01
COMPAS is a decision support system designed to assist in the assessment of the consequences of accidental releases of toxic and flammable substances. One of the key elements of COMPAS is a feedback algorithm which allows us to calculate the source term with the aid of concentration measurements. Up to now the feedback technique is applied to concentration measurements done with test tubes or conventional point sensors. In this paper the extension of the actual method is presented which is the combination of COMPAS and an optical remote sensing system like the KAYSER-THREDE K300 FTIR system. Active remote sensing methods based on FTIR are, among other applications, ideal for the so-called fence line monitoring of the diffuse emissions and accidental releases from industrial facilities, since from the FTIR spectra averaged concentration levels along the measurement path can be achieved. The line-averaged concentrations are ideally suited as on-line input for COMPAS' feedback technique. Uncertainties in the assessment of the source term related with both shortcomings of the dispersion model itself and also problems of a feedback strategy based on point measurements are reduced.
The paper describes a new approach to quantify emissions from area air pollution sources. The approach combines path-integrated concentration data acquired with any path-integrated optical remote sensing (PI-ORS) technique and computed tomography (CT) technique. In this study, an...
Nonlinear optical characterization of graphite oxide thin film by open aperture Z-scan technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sreeja, V. G.; Reshmi, R.; Devasia, Sebin
In this paper we explore the structural characterization of graphite oxide powder prepared from graphite powder by oxidation via modified Hummers method. The nonlinear optical properties of the spin coated graphite oxide thin film is also explored by open aperture Z-Scan technique. Structural and physiochemical properties of the samples were investigated with the help of Fourier Transform Infrared Spectroscopy (FTIR) and Raman Spectroscopy (Raman).The results of FT-IR and Raman spectroscopy showed that the graphite is oxidized by strong oxidants and the oxygen atoms are introduced into the graphite layers forming C=C, O-H and –C-H groups. The synthesized sample has goodmore » crystalline nature with lesser defects. The nonlinear optical property of GO thin film was studied by open aperture Z-Scan technique using Q-switched Nd-Yag Laser at 532 nm. The Z-scan plot showed that the investigated GO thin film has saturable absorption behavior. The nonlinear absorption coefficient and saturation intensity were also estimated to explore its applications in Q switched mode locking laser systems.« less
cPath: open source software for collecting, storing, and querying biological pathways.
Cerami, Ethan G; Bader, Gary D; Gross, Benjamin E; Sander, Chris
2006-11-13
Biological pathways, including metabolic pathways, protein interaction networks, signal transduction pathways, and gene regulatory networks, are currently represented in over 220 diverse databases. These data are crucial for the study of specific biological processes, including human diseases. Standard exchange formats for pathway information, such as BioPAX, CellML, SBML and PSI-MI, enable convenient collection of this data for biological research, but mechanisms for common storage and communication are required. We have developed cPath, an open source database and web application for collecting, storing, and querying biological pathway data. cPath makes it easy to aggregate custom pathway data sets available in standard exchange formats from multiple databases, present pathway data to biologists via a customizable web interface, and export pathway data via a web service to third-party software, such as Cytoscape, for visualization and analysis. cPath is software only, and does not include new pathway information. Key features include: a built-in identifier mapping service for linking identical interactors and linking to external resources; built-in support for PSI-MI and BioPAX standard pathway exchange formats; a web service interface for searching and retrieving pathway data sets; and thorough documentation. The cPath software is freely available under the LGPL open source license for academic and commercial use. cPath is a robust, scalable, modular, professional-grade software platform for collecting, storing, and querying biological pathways. It can serve as the core data handling component in information systems for pathway visualization, analysis and modeling.
Evanescent-wave photoacoustic spectroscopy with optical micro/nano fibers.
Cao, Yingchun; Jin, Wei; Ho, Lut Hoi; Liu, Zhibo
2012-01-15
We demonstrate gas detection based on evanescent-wave photoacoustic (PA) spectroscopy with tapered optical fibers. Evanescent-field instead of open-path absorption is exploited for PA generation, and a quartz tuning fork is used for PA detection. A tapered optical fiber with a diameter down to the wavelength scale demonstrates detection sensitivity similar to an open-path system but with the advantages of easier optical alignment, smaller insertion loss, and multiplexing capability.
NASA Astrophysics Data System (ADS)
George, Midhun; Suhail, Suhail; Chandran, Satheesh; Chen, Jun; Lu, Keding; Ruth, Albert; Venables, Dean; Varma, Ravi
2016-04-01
We describe the application of an incoherent broadband cavity-enhanced absorption spectrometer in an open path configuration (OP-IBBCEAS) for in situ detection of nitrate radical (NO3) and aerosol extinction. The optical cavity was 3.35 m long with separate transmitter and receiver units, and the instrument was installed on top of a residential complex (elevation of 17 m) near the CAREBEIJING-NCP 2014 supersite in Wangdu, 200 km southwest of Beijing. Despite high aerosol loading, NO3 was detected on all nights when the instrument was operational (28-30 June, 2014). The maximum concentration measured was 170 pptv with a detection limit of 40 pptv for measurements. Preliminary quantification of the aerosol extinction is also described. The results presented here demonstrate the sensitivity and specificity that can be achieved from open path measurements and its application to polluted environments.
NASA Astrophysics Data System (ADS)
Stockwell, C. E.; Yokelson, R. J.; Kreidenweis, S. M.; Robinson, A. L.; DeMott, P. J.; Sullivan, R. C.; Reardon, J.; Ryan, K. C.; Griffith, D. W. T.; Stevens, L.
2014-09-01
During the fourth Fire Lab at Missoula Experiment (FLAME-4, October-November 2012) a large variety of regionally and globally significant biomass fuels was burned at the US Forest Service Fire Sciences Laboratory in Missoula, Montana. The particle emissions were characterized by an extensive suite of instrumentation that measured aerosol chemistry, size distribution, optical properties, and cloud-nucleating properties. The trace gas measurements included high-resolution mass spectrometry, one- and two-dimensional gas chromatography, and open-path Fourier transform infrared (OP-FTIR) spectroscopy. This paper summarizes the overall experimental design for FLAME-4 - including the fuel properties, the nature of the burn simulations, and the instrumentation employed - and then focuses on the OP-FTIR results. The OP-FTIR was used to measure the initial emissions of 20 trace gases: CO2, CO, CH4, C2H2, C2H4, C3H6, HCHO, HCOOH, CH3OH, CH3COOH, glycolaldehyde, furan, H2O, NO, NO2, HONO, NH3, HCN, HCl, and SO2. These species include most of the major trace gases emitted by biomass burning, and for several of these compounds, this is the first time their emissions are reported for important fuel types. The main fire types included African grasses, Asian rice straw, cooking fires (open (three-stone), rocket, and gasifier stoves), Indonesian and extratropical peat, temperate and boreal coniferous canopy fuels, US crop residue, shredded tires, and trash. Comparisons of the OP-FTIR emission factors (EFs) and emission ratios (ERs) to field measurements of biomass burning verify that the large body of FLAME-4 results can be used to enhance the understanding of global biomass burning and its representation in atmospheric chemistry models. Crop residue fires are widespread globally and account for the most burned area in the US, but their emissions were previously poorly characterized. Extensive results are presented for burning rice and wheat straw: two major global crop residues. Burning alfalfa produced the highest average NH3 EF observed in the study (6.63 ± 2.47 g kg-1), while sugar cane fires produced the highest EF for glycolaldehyde (6.92 g kg-1) and other reactive oxygenated organic gases such as HCHO, HCOOH, and CH3COOH. Due to the high sulfur and nitrogen content of tires, they produced the highest average SO2 emissions (26.2 ± 2.2 g kg-1) and high NOx and HONO emissions. High variability was observed for peat fire emissions, but they were consistently characterized by large EFs for NH3 (1.82 ± 0.60 g kg-1) and CH4 (10.8 ± 5.6 g kg-1). The variability observed in peat fire emissions, the fact that only one peat fire had previously been subject to detailed emissions characterization, and the abundant emissions from tropical peatlands all impart high value to our detailed measurements of the emissions from burning three Indonesian peat samples. This study also provides the first EFs for HONO and NO2 for Indonesian peat fires. Open cooking fire emissions of HONO and HCN are reported for the first time, and the first emissions data for HCN, NO, NO2, HONO, glycolaldehyde, furan, and SO2 are reported for "rocket" stoves: a common type of improved cookstove. The HCN / CO emission ratios for cooking fires (1.72 × 10-3 ± 4.08 × 10-4) and peat fires (1.45 × 10-2 ± 5.47 × 10-3) are well below and above the typical values for other types of biomass burning, respectively. This would affect the use of HCN / CO observations for source apportionment in some regions. Biomass burning EFs for HCl are rare and are reported for the first time for burning African savanna grasses. High emissions of HCl were also produced by burning many crop residues and two grasses from coastal ecosystems. HCl could be the main chlorine-containing gas in very fresh smoke, but rapid partitioning to aerosol followed by slower outgassing probably occurs.
Short-Path Statistics and the Diffusion Approximation
NASA Astrophysics Data System (ADS)
Blanco, Stéphane; Fournier, Richard
2006-12-01
In the field of first return time statistics in bounded domains, short paths may be defined as those paths for which the diffusion approximation is inappropriate. This is at the origin of numerous open questions concerning the characterization of residence time distributions. We show here how general integral constraints can be derived that make it possible to address short-path statistics indirectly by application of the diffusion approximation to long paths. Application to the moments of the distribution at the low-Knudsen limit leads to simple practical results and novel physical pictures.
Heping Liu; James T. Randerson; Jamie Lindfors; William J. Massman; Thomas Foken
2006-01-01
We present an approach for assessing the impact of systematic biases in measured energy fluxes on CO2 flux estimates obtained from open-path eddy-covariance systems. In our analysis, we present equations to analyse the propagation of errors through the Webb, Pearman, and Leuning (WPL) algorithm [Quart. J. Roy. Meteorol. Soc. 106, 85Â100, 1980] that is widely used to...
Gozalbo, Ana; Mestre, Sergio; Sanz, Vicente
2017-01-01
A polyester composite was prepared through the polymerization of an unsaturated ester resin with styrene and an open-cage oligomeric silsesquioxane with methacrylate groups. The effect of the open-cage oligomeric silsesquioxane on the thermal stability of the thermostable polyester was studied using both thermogravimetric analysis and differential thermal analysis. The results showed that the methacryl oligomeric silsesquioxane improved the thermal stability of the polyester. The decomposition mechanism of the polyester/oligomer silsesquioxane composite was proposed by Fourier transform infrared spectroscopy (FTIR) analysis of the volatiles. PMID:29295542
Kinematics of the human mandible for different head postures.
Visscher, C M; Huddleston Slater, J J; Lobbezoo, F; Naeije, M
2000-04-01
The influence of head posture on movement paths of the incisal point (IP) and of the mandibular condyles during free open-close movements was studied. Ten persons, without craniomandibular or cervical spine disorders, participated in the study. Open close mandibular movements were recorded with the head in five postures, viz., natural head posture, forward head posture, military posture, and lateroflexion to the right and to the left side, using the Oral Kinesiologic Analysis System (OKAS-3D). This study showed that in a military head posture, the opening movement path of the incisal point is shifted anteriorly relative to the path in a natural head posture. In a forward head posture, the movement path is shifted posteriorly whereas during lateroflexion, it deviates to the side the head has moved to. Moreover, the intra-articular distance in the temporomandibular joint during closing is smaller with the head in military posture and greater in forward head posture, as compared to the natural head posture. During lateroflexion, the intra-articular distance on the ipsilateral side is smaller. The influence of head posture upon the kinematics of the mandible is probably a manifestation of differences in mandibular loading in the different head postures.
Pal, Krishnendu; Gangopadhyay, Gautam
2016-01-01
ABSTRACT Inactivation path of voltage gated sodium channel has been studied here under various voltage protocols as it is the main governing factor for the periodic occurrence and shape of the action potential. These voltage protocols actually serve as non-equilibrium response spectroscopic tools to study the ion channel in non-equilibrium environment. In contrast to a lot of effort in finding the crystal structure based molecular mechanism of closed-state(CSI) and open-state inactivation(OSI); here our approach is to understand the dynamical characterization of inactivation. The kinetic flux as well as energetic contribution of the closed and open- state inactivation path is compared here for voltage protocols, namely constant, pulsed and oscillating. The non-equilibrium thermodynamic quantities used in response to these voltage protocols serve as improved characterization tools for theoretical understanding which not only agrees with the previously known kinetic measurements but also predict the energetically optimum processes to sustain the auto-regulatory mechanism of action potential and the consequent inactivation steps needed. The time dependent voltage pattern governs the population of the conformational states which when couple with characteristic rate parameters, the CSI and OSI selectivity arise dynamically to control the inactivation path. Using constant, pulsed and continuous oscillating voltage protocols we have shown that during depolarization the OSI path is more favored path of inactivation however, in the hyper-polarized situation the CSI is favored. It is also shown that the re-factorisation of inactivated sodium channel to resting state occurs via CSI path. Here we have shown how the subtle energetic and entropic cost due to the change in the depolarization magnitude determines the optimum path of inactivation. It is shown that an efficient CSI and OSI dynamical profile in principle can characterize the open-state drug blocking phenomena. PMID:27367642
cPath: open source software for collecting, storing, and querying biological pathways
Cerami, Ethan G; Bader, Gary D; Gross, Benjamin E; Sander, Chris
2006-01-01
Background Biological pathways, including metabolic pathways, protein interaction networks, signal transduction pathways, and gene regulatory networks, are currently represented in over 220 diverse databases. These data are crucial for the study of specific biological processes, including human diseases. Standard exchange formats for pathway information, such as BioPAX, CellML, SBML and PSI-MI, enable convenient collection of this data for biological research, but mechanisms for common storage and communication are required. Results We have developed cPath, an open source database and web application for collecting, storing, and querying biological pathway data. cPath makes it easy to aggregate custom pathway data sets available in standard exchange formats from multiple databases, present pathway data to biologists via a customizable web interface, and export pathway data via a web service to third-party software, such as Cytoscape, for visualization and analysis. cPath is software only, and does not include new pathway information. Key features include: a built-in identifier mapping service for linking identical interactors and linking to external resources; built-in support for PSI-MI and BioPAX standard pathway exchange formats; a web service interface for searching and retrieving pathway data sets; and thorough documentation. The cPath software is freely available under the LGPL open source license for academic and commercial use. Conclusion cPath is a robust, scalable, modular, professional-grade software platform for collecting, storing, and querying biological pathways. It can serve as the core data handling component in information systems for pathway visualization, analysis and modeling. PMID:17101041
NASA Astrophysics Data System (ADS)
Diaz, Adrian; Thomas, Benjamin; Castillo, Paulo; Gross, Barry; Moshary, Fred
2016-05-01
Fugitive gas emissions from agricultural or industrial plants and gas pipelines are an important environmental concern as they contribute to the global increase of greenhouse gas concentrations. Moreover, they are also a security and safety concern because of possible risk of fire/explosion or toxicity. This study presents standoff detection of CH4 and N2O leaks using a quantum cascade laser open-path system that retrieves path-averaged concentrations by collecting the backscattered light from a remote hard target. It is a true standoff system and differs from other open-path systems that are deployed as point samplers or long-path transmission systems that use retroreflectors. The measured absorption spectra are obtained using a thermal intra-pulse frequency chirped DFB quantum cascade laser at ~7.7 µm wavelength range with ~200 ns pulse width. Making fast time resolved observations, the system simultaneously realizes high spectral resolution and range to the target, resulting in path-averaged concentration retrieval. The system performs measurements at high speed ~15 Hz and sufficient range (up to 45 m, ~148 feet) achieving an uncertainty of 3.1 % and normalized sensitivity of 3.3 ppm m Hz-1/2 for N2O and 9.3 % and normalized sensitivity of 30 ppm m Hz-1/2 for CH4 with a 0.31 mW average power QCL. Given these characteristics, this system is promising for mobile or multidirectional search and remote detection of gas leaks.
NASA Astrophysics Data System (ADS)
Großerueschkamp, Frederik; Bracht, Thilo; Diehl, Hanna C.; Kuepper, Claus; Ahrens, Maike; Kallenbach-Thieltges, Angela; Mosig, Axel; Eisenacher, Martin; Marcus, Katrin; Behrens, Thomas; Brüning, Thomas; Theegarten, Dirk; Sitek, Barbara; Gerwert, Klaus
2017-03-01
Diffuse malignant mesothelioma (DMM) is a heterogeneous malignant neoplasia manifesting with three subtypes: epithelioid, sarcomatoid and biphasic. DMM exhibit a high degree of spatial heterogeneity that complicates a thorough understanding of the underlying different molecular processes in each subtype. We present a novel approach to spatially resolve the heterogeneity of a tumour in a label-free manner by integrating FTIR imaging and laser capture microdissection (LCM). Subsequent proteome analysis of the dissected homogenous samples provides in addition molecular resolution. FTIR imaging resolves tumour subtypes within tissue thin-sections in an automated and label-free manner with accuracy of about 85% for DMM subtypes. Even in highly heterogeneous tissue structures, our label-free approach can identify small regions of interest, which can be dissected as homogeneous samples using LCM. Subsequent proteome analysis provides a location specific molecular characterization. Applied to DMM subtypes, we identify 142 differentially expressed proteins, including five protein biomarkers commonly used in DMM immunohistochemistry panels. Thus, FTIR imaging resolves not only morphological alteration within tissue but it resolves even alterations at the level of single proteins in tumour subtypes. Our fully automated workflow FTIR-guided LCM opens new avenues collecting homogeneous samples for precise and predictive biomarkers from omics studies.
Großerueschkamp, Frederik; Bracht, Thilo; Diehl, Hanna C; Kuepper, Claus; Ahrens, Maike; Kallenbach-Thieltges, Angela; Mosig, Axel; Eisenacher, Martin; Marcus, Katrin; Behrens, Thomas; Brüning, Thomas; Theegarten, Dirk; Sitek, Barbara; Gerwert, Klaus
2017-03-30
Diffuse malignant mesothelioma (DMM) is a heterogeneous malignant neoplasia manifesting with three subtypes: epithelioid, sarcomatoid and biphasic. DMM exhibit a high degree of spatial heterogeneity that complicates a thorough understanding of the underlying different molecular processes in each subtype. We present a novel approach to spatially resolve the heterogeneity of a tumour in a label-free manner by integrating FTIR imaging and laser capture microdissection (LCM). Subsequent proteome analysis of the dissected homogenous samples provides in addition molecular resolution. FTIR imaging resolves tumour subtypes within tissue thin-sections in an automated and label-free manner with accuracy of about 85% for DMM subtypes. Even in highly heterogeneous tissue structures, our label-free approach can identify small regions of interest, which can be dissected as homogeneous samples using LCM. Subsequent proteome analysis provides a location specific molecular characterization. Applied to DMM subtypes, we identify 142 differentially expressed proteins, including five protein biomarkers commonly used in DMM immunohistochemistry panels. Thus, FTIR imaging resolves not only morphological alteration within tissue but it resolves even alterations at the level of single proteins in tumour subtypes. Our fully automated workflow FTIR-guided LCM opens new avenues collecting homogeneous samples for precise and predictive biomarkers from omics studies.
HAI: A new TDLAS hygrometer for the HALO research aircraft
NASA Astrophysics Data System (ADS)
Klostermann, Tim; Afchine, Armin; Barthel, Jochen; Höh, Matthias; Wagner, Steven; Witzel, Oliver; Saathoff, Harald; Schiller, Cornelius; Ebert, Volker
2010-05-01
Water vapor is the most important greenhouse gas in the Earth's atmosphere and a key component for several physical and chemical processes. Therefore it is a key parameter to be measured during most research campaigns. The Hygrometer for Atmospheric Investigations (HAI) is especially designed for operations on the research aircraft HALO (High Altitude and LOng range research aircraft). HAI permits both, the in-situ measurement of water vapor with an open-path cell and the measurement of total water with an extractive close-path absorption cell. We are using TDLAS (Tunable Diode Laser Absorption Spectroscopy) in two water absorption bands with different line strength to increase the dynamical range. With this concept it is possible to measure from the middle troposphere up to the stratosphere. The open-path cell outside of the fuselage consists of a robust, aerodynamically designed aluminum structure with a single integrated White-cell for both laser beams. Although the mirror separation is only 15cm the cell allows an open absorption path of 4.8m. The detection of higher H2O concentrations is realized with a fiber coupled 1.4µm DFB diode laser. Inside the UTLS layer were small concentrations in the low ppm range are common, we employ up to 20 times stronger fundamental ro-vibration lines of the water molecule near 2.6µm. To supply this, the fiber coupled 2.6µm laser setup was developed and is a part of the HAI. Both detection wavelengths are introduced in the same open path cell via glass fibers which provide water measurements with a minimum of parasitic absorption. We will present the spectrometer design for high-quality airborne water measurements. Furthermore, first laboratory measurements will be shown.
NASA Astrophysics Data System (ADS)
Cannata, Massimiliano; Colombo, Massimo; Antonovic, Milan; Cardoso, Mirko; Delucchi, Andrea; Gianocca, Giancarlo; Brovelli, Maria Antonia
2015-04-01
"I CAMMINI DELLA REGINA" (The Via Regina Paths) is an Interreg project funded within the transnational cooperation program between Italy and Switzerland 2007-2013. The aim of this project is the preservation and valorization of the cultural heritage linked to the walking historically paths crossing, connecting and serving the local territories. With the approach of leveraging the already existing tools, which generally consist of technical descriptions of the paths, the project uses the open source geospatial technologies to deploy innovative solutions which can fill some of the gaps in historical-cultural tourism offers. The Swiss part, and particularly the IST-SUPSI team, has been focusing its activities in the realization of two innovative solutions: a mobile application for the survey of historical paths and a storytelling system for immersive cultural exploration of the historical paths. The former, based on Android, allows to apply in a revised manner a consolidated and already successfully used methodology of survey focused on the conservation of the historical paths (Inventory of historical traffic routes in Switzerland). Up to now operators could rely only on hand work based on a combination of notes, pictures and GPS devices synthesized in manually drawn maps; this procedure is error prone and shows many problems both in data updating and extracting for elaborations. Thus it has been created an easy to use interface which allows to map, according to a newly developed spatially enabled data model, paths, morphological elements, and multimedia notes. When connected to the internet the application can send the data to a web service which, after applying linear referencing and further elaborating the data, makes them available using open standards. The storytelling system has been designed to provide users with cultural insights embedded in a multimedial and immersive geospatial portal. Whether the tourist is exploring physically or virtually the desired historical path, the system will provide notifications and immersive multimedia information that foster a new sight of the territory: award of the culture and history of the place thanks to attractive description of the geological, land use, historical and ethnographic contexts. The technologies used for these developments are: mongoDB, tornado, Android SDK, geoserver, bootstrap, OpenLayers, HTML5, CSS3, JQuery. The approach, methodologies and technical implementations will be discussed and presented.
Berasategui, Matias; Argüello, Gustavo A; Burgos Paci, Maxi A
2017-10-12
The products following Cl atom initiated reactions of FC(O)OOC(O)OCH 3 in 50-760 Torr of N 2 at 296 K were investigated using FTIR. Reaction of Cl atoms with methyl fluoroformyl peroxycarbonate proceeds mainly via attack at the methyl group, forming FC(O)OOC(O)OCH 2 • radicals. Further reaction of this kind of radical with Cl 2 forms three new compounds: FC(O)OOC(O)OCH 2 Cl, FC(O)OOC(O)OCHCl 2 , and FC(O)OOC(O)OCCl 3 , whose existence was characterized experimentally by FTIR spectroscopy assisted by ab initio calculations at the B3LYP/6-31++G(d,p) level. Relative rate techniques were used to measure k (Cl+FC(O)OOC(O)OCH3) = (4.0 ± 0.4) × 10 -14 cm 3 molecule -1 s -1 and k (Cl+FC(O)OOC(O)OCH2Cl) = (3.2 ± 0.3) × 10 -14 cm 3 molecule -1 s -1 . When the reaction is run in the presence of oxygen, the paths giving chlorinated peroxide formation are suppressed, and oxidation to (mainly) CO 2 and HCl takes place through highly oxidized intermediates with lifetimes long enough to be detected by FTIR spectroscopy.
NASA Astrophysics Data System (ADS)
Naganathan, Kiruthika; Thirunavukkarasu, Somanathan
2017-04-01
Green synthesis of silver nanoparticles (SNP) opens a new path to kill and prevent various infectious diseases and also tumor. In this study, we have synthesized silver nanoparticles using multiple fruit peel waste (pomegranate, orange, banana and apple (POBA)). The primarily nanoparticles formation has been confirmed by the color change. The synthesized SNP were analyzed by various physicochemical techniques such as UV- Visible spectroscopy, x-ray diffraction (XRD), fourier transform infra red (FT-IR) spectroscopy and transmission electron microscope (TEM). The formation of SNP was confirmed by its absorbance peak observed at 430 nm in UV-Visible spectrum. Further, the obtained SNP were identified by XRD and TEM, respectively to know the crystalline nature and size and shape of the particles. The activities of SNP were checked with human pathogens (Salmonella, E.coli and Pseudomonas), plant pathogen (Fusarium) and marine pathogen (Aeromonas hydrophila) and also studied the scavenging effect and anticancer properties against MCF-7 cell lines. This studies proves that the SNP prepared from fruit waste peel extract approach appears extremely fast, cost efficient, eco-friendly and alternative for conventional methods of SNP synthesis to promote the usage of these nanoparticles in medicinal application.
Cendagorta, Joseph R; Bačić, Zlatko; Tuckerman, Mark E
2018-03-14
We introduce a scheme for approximating quantum time correlation functions numerically within the Feynman path integral formulation. Starting with the symmetrized version of the correlation function expressed as a discretized path integral, we introduce a change of integration variables often used in the derivation of trajectory-based semiclassical methods. In particular, we transform to sum and difference variables between forward and backward complex-time propagation paths. Once the transformation is performed, the potential energy is expanded in powers of the difference variables, which allows us to perform the integrals over these variables analytically. The manner in which this procedure is carried out results in an open-chain path integral (in the remaining sum variables) with a modified potential that is evaluated using imaginary-time path-integral sampling rather than requiring the generation of a large ensemble of trajectories. Consequently, any number of path integral sampling schemes can be employed to compute the remaining path integral, including Monte Carlo, path-integral molecular dynamics, or enhanced path-integral molecular dynamics. We believe that this approach constitutes a different perspective in semiclassical-type approximations to quantum time correlation functions. Importantly, we argue that our approximation can be systematically improved within a cumulant expansion formalism. We test this approximation on a set of one-dimensional problems that are commonly used to benchmark approximate quantum dynamical schemes. We show that the method is at least as accurate as the popular ring-polymer molecular dynamics technique and linearized semiclassical initial value representation for correlation functions of linear operators in most of these examples and improves the accuracy of correlation functions of nonlinear operators.
NASA Astrophysics Data System (ADS)
Cendagorta, Joseph R.; Bačić, Zlatko; Tuckerman, Mark E.
2018-03-01
We introduce a scheme for approximating quantum time correlation functions numerically within the Feynman path integral formulation. Starting with the symmetrized version of the correlation function expressed as a discretized path integral, we introduce a change of integration variables often used in the derivation of trajectory-based semiclassical methods. In particular, we transform to sum and difference variables between forward and backward complex-time propagation paths. Once the transformation is performed, the potential energy is expanded in powers of the difference variables, which allows us to perform the integrals over these variables analytically. The manner in which this procedure is carried out results in an open-chain path integral (in the remaining sum variables) with a modified potential that is evaluated using imaginary-time path-integral sampling rather than requiring the generation of a large ensemble of trajectories. Consequently, any number of path integral sampling schemes can be employed to compute the remaining path integral, including Monte Carlo, path-integral molecular dynamics, or enhanced path-integral molecular dynamics. We believe that this approach constitutes a different perspective in semiclassical-type approximations to quantum time correlation functions. Importantly, we argue that our approximation can be systematically improved within a cumulant expansion formalism. We test this approximation on a set of one-dimensional problems that are commonly used to benchmark approximate quantum dynamical schemes. We show that the method is at least as accurate as the popular ring-polymer molecular dynamics technique and linearized semiclassical initial value representation for correlation functions of linear operators in most of these examples and improves the accuracy of correlation functions of nonlinear operators.
NASA Astrophysics Data System (ADS)
Fukuchi, Tetsuo; Nayuki, Takuya; Mori, Hideto; Goto, Naohiko; Fujii, Takashi; Nemoto, Koshichi
A differential optical absorption spectroscopy (DOAS) system for measurement of atmospheric NO2 was developed. The system uses a battery-operated, high luminance LED and a fiber-coupled spectrometer, and is portable. Laboratory experiments using a gas cell of length 0.22 m with varying NO2 concentrations were performed to evaluate the sensitivity of the DOAS system. The DOAS measurement results are in agreement with NO2 concentrations obtained simultaneously by a FT-IR (Fourier Transform Infrared) system for NO2 concentrations down to 20 ppm. Experiments with an optical path length of 93 m were also performed, and NO2 concentrations down to 0.20 ppm were measured. Since measurement of atmospheric NO2, which is in the order of several tens of ppb, requires optical path lengths of several hundred m, system improvements to improve the signal detection are necessary.
L-Lactide Ring-Opening Polymerization with Tris(acetylacetonate)Titanium(IV) for Renewable Material.
Kim, Da Hee; Yoo, Ji Yun; Ko, Young Soo
2016-05-01
A new Ti-type of catalyst for L-lactide polymerization was synthesized by reaction of titanium(IV) isopropoxide (TTIP) with acetylacetone (AA). Moreover, PLA was prepared by the bulk ring-opening polymerization using synthesized Ti catalyst. Polymerization behaviors were examined depending on monomer/catalyst molar ratio, polymerization temperature and time. The structure of synthesized catalysts was verified with FT-IR and 1H NMR and the properties of poly(L-lactide) (PLLA) were examined by GPC, DSC and FT-IR. There existed about 30 minutes of induction time at the monomer/catalyst molar ratio of 300. The molecular weight (MW) increased as monomer/catalyst molar ratio increased. The MW increased almost linearly as polymerization progressed. Increasing polymerization temperature increased the molecular weight of PLLA as well as monomer/catalyst molar ratio. The melting point (T(m)) of polymers was in the range of 142 to 167 degrees C. Lower T(m) was expected to be resulted from relatively lower molecular weight.
Open Path Trace Gas Laser Sensors for UAV Deployment
NASA Astrophysics Data System (ADS)
Shadman, S.; Mchale, L.; Rose, C.; Yalin, A.
2015-12-01
Novel trace gas sensors based on open-path Cavity Ring-down Spectroscopy (CRDS) are being developed to enable remote and mobile deployments including on small unmanned aerial systems (UAS). Relative to established closed-path CRDS instruments, the use of open-path configurations allows removal of the bulky and power hungry vacuum and flow system, potentially enabling lightweight and low power instruments with high sensitivity. However, open path operation introduces new challenges including the need to maintain mirror cleanliness, mitigation of particle optical effects, and the need to measure spectral features that are relatively broad. The present submission details open-path CRDS instruments for ammonia and methane and their planned use in UAS studies. The ammonia sensor uses a quantum cascade laser at 10.3 mm in a configuration in which the laser frequency is continuously swept and a trigger circuit and acousto-optic modulator (AOM) extinguish the light when the laser is resonant with the cavity. Ring-down signals are measured with a two-stage thermoelectrically cooled MCT photodetector. The cavity mirrors have reflectivity of 0.9995 and a noise equivalent absorption of 1.5 ppb Hz-1/2 was demonstrated. A first version of the methane sensor operated at 1.7um with a telecom diode laser while the current version operates at 3.6 um with an interband cascade laser (stronger absorption). We have performed validation measurements against known standards for both sensors. Compact optical assemblies are being developed for UAS deployment. For example, the methane sensor head will have target mass of <4 kg and power draw <40 W. A compact single board computer and DAQ system is being designed for sensor control and signal processing with target mass <1 kg and power draw <10 W. The sensor size and power parameters are suitable for UAS deployment on both fixed wing and rotor style UAS. We plan to deploy the methane sensor to measure leakage and emission of methane from natural gas infrastructure, and to deploy both sensors together to study emissions from dairies and feedlots. The latter measurement campaign will also examine ammonia deposition to the ground, and bi-directional ammonia fluxes, using methane as a conservative tracer and examining the change in the ratio of ammonia to methane as a function of downwind position.
NASA Astrophysics Data System (ADS)
Grinyok, A.; Boychuk, I.; Perelygin, D.; Dantsevich, I.
2018-03-01
A complex method of the simulation and production design of open rotor propellers was studied. An end-to-end diagram was proposed for the evaluating, designing and experimental testing the optimal geometry of the propeller surface, for the machine control path generation as well as for simulating the cutting zone force condition and its relationship with the treatment accuracy which was defined by the propeller elastic deformation. The simulation data provided the realization of the combined automated path control of the cutting tool.
Effects of AEA Cell-Bypass-Switch Closure on Charged EOS-Aqua NiH2 Cell
NASA Technical Reports Server (NTRS)
Keys, Denney; Rao, Gopalakrishna M.; Sullivan, David; Wannemacher, Harry
2001-01-01
The nominal performance of AEA CBPD under simulated EOS-Aqua/Aura flight hardware configuration has been demonstrated. There is no evidence of cell rupture or excessive heat production during or after CBPD switch activation under simulated high cell impedance (open-circuit cell failure mode). Inadvertent CBPD switch activation with a charged cell (low impedance path) intermittently closes and opens up the switch, therefore the device may or may not provide protection against future open-circuit cell failure. Further testing with switches F01 and F02 may provide clarification. The formation of a continuous low impedance path (a homogeneous low melting point alloy), has been confirmed - which is the expected mode of operation.
Eddy Covariance Measurements of Methane Flux Using an Open-Path Gas Analyzer
NASA Astrophysics Data System (ADS)
Burba, G.; Anderson, T.; Zona, D.; Schedlbauer, J.; Anderson, D.; Eckles, R.; Hastings, S.; Ikawa, H.; McDermitt, D.; Oberbauer, S.; Oechel, W.; Riensche, B.; Starr, G.; Sturtevant, C.; Xu, L.
2008-12-01
Methane is an important greenhouse gas with a warming potential of about 23 times that of carbon dioxide over a 100-year cycle (Houghton et al., 2001). Measurements of methane fluxes from the terrestrial biosphere have mostly been made using flux chambers, which have many advantages, but are discrete in time and space and may disturb surface integrity and air pressure. Open-path analyzers offer a number of advantages for measuring methane fluxes, including undisturbed in- situ flux measurements, spatial integration using the Eddy Covariance approach, zero frequency response errors due to tube attenuation, confident water and thermal density terms from co-located fast measurements of water and sonic temperature, and remote deployment due to lower power demands in the absence of a pump. The prototype open-path methane analyzer is a VCSEL (vertical-cavity surface-emitting laser)-based instrument. It employs an open Herriott cell and measures levels of methane with RMS noise below 6 ppb at 10 Hz sampling in controlled laboratory environment. Field maintenance is minimized by a self-cleaning mechanism to keep the lower mirror free of contamination. Eddy Covariance measurements of methane flux using the prototype open-path methane analyzer are presented for the period between 2006 and 2008 in three ecosystems with contrasting weather and moisture conditions: (1) Fluxes over a short-hydroperiod sawgrass wetland in the Florida Everglades were measured in a warm and humid environment with temperatures often exceeding 25oC, variable winds, and frequent heavy dew at night; (2) Fluxes over coastal wetlands in an Arctic tundra were measured in an environment with frequent sub-zero temperatures, moderate winds, and ocean mist; (3) Fluxes over pacific mangroves in Mexico were measured in an environment with moderate air temperatures high winds, and sea spray. Presented eddy covariance flux data were collected from a co-located prototype open-path methane analyzer, LI-7500, and sonic anemometer at a 10 Hz rate. Data were processed using EdiRe software following standard FluxNet methodology, including stationarity tests, frequency response, and Webb- Pearman-Leuning density terms. Further details are provided in the extended conference paper at: ftp://ftp.licor.com/public/GBurba/AGU LI- 7700 Paper-2008.pdf
NASA Astrophysics Data System (ADS)
Tao, L.; Sun, K.; Pan, D.; Golston, L.; Stanton, L. G.; Ham, J. M.; Shonkwiler, K. B.; Nash, C.; Zondlo, M. A.
2014-12-01
Ammonia (NH3) is the dominant alkaline species in the atmosphere and an important compound in the global nitrogen cycle. There is a large uncertainty in NH3 emission inventory from agriculture, which is the largest source of NH3, including livestock farming and fertilizer applications. In recent years, a quantum cascade laser (QCL)-based open-path sensor has been developed to provide high-resolution, fast-response and high-sensitivity NH3 measurements. It has a detection limit of 150 pptv with a sample rate up to 20 Hz. This sensor has been integrated into a mobile platform mounted on the roof of a car to perform measurement of multiple trace gases. We have also used the sensor for eddy covariance (EC) flux measurements. The mobile sensing method provides high spatial resolution and fast mapping of measured gases. Meanwhile, the EC flux method offers accurate flux measurements and resolves the diurnal variability of NH3emissions. During the DISCOVER-AQ and FRAPPÉ field campaigns in 2014, this mobile platform was used to study NH3 emissions from cattle feedlot near Fort Morgan, Colorado. This specific feedlot was mapped multiple times in different days to study the variability of its plume characteristics. At the same time, we set up another open-path NH3 sensor with LICOR open-path sensors to perform EC flux measurements of NH3, CH4 and CO2 simultaneously in the same cattle feedlot as shown in Fig. 1. NH3/CH4 emission flux ratio show a strong temperature dependence from EC flux measurements. The median value of measured NH3 and CH4 emission flux ratio is 0.60 ppmv/ppmv. In contrast, the median value of ΔNH3/ΔCH4 ratios measured from mobile platform is 0.53 ppmv/ppmv for the same farm. The combination of mobile mapping and EC flux measurements with the same open-path sensors greatly improves understanding of NH3 emissions both spatially and temporally.
A Design of a Novel Airborne Aerosol Spectrometer for Remote Sensing Validation
NASA Astrophysics Data System (ADS)
Adler, G. A.; Brock, C. A.; Dube, W. P.; Erdesz, F.; Gordon, T.; Law, D. C.; Manfred, K.; Mason, B. J.; McLaughlin, R. J.; Richardson, M.; Wagner, N. L.; Washenfelder, R. A.; Murphy, D. M.
2016-12-01
Aerosols and their effect on the radiative properties of clouds contribute one of the largest sources of uncertainty to the Earth's energy budget. Many current global assessments, of atmospheric aerosol radiative forcing rely heavily on remote sensing observation; therefore, in situ aircraft and ground-based measurements are essential for validation of remote sensing measurements. Cavity ringdown spectrometers (CRD) measure aerosol extinction and are commonly used to validate remote sensing observations. These instruments have been deployed on aircraft based platforms over the years thus providing the opportunity to measure these properties over large areas in various conditions. However, deployment of the CRD on an aircraft platform has drawbacks. Typically, aircraft based CRDs draw sampled aerosol into a cabin based instrument through long lengths of tubing. This limits the ability of the instrument to measure: 1) Course mode aerosols (e.g. dust) 2) Aerosols at high relative humidity (above 90%) Here we describe the design of a novel aircraft based open path CRD. The open path CRD is intended to be mounted external to the cabin and has no sample tubing for aerosol delivery, thus measuring optical properties of all aerosol at the ambient conditions. However, the design of an open path CRD for operation on a wing-mounted aircraft platform has certain design complexities. The instrument's special design features include 2 CRD channels, 2 airfoils around the open Path CRD and a configuration which could be easily aligned and rigid at the same time. This novel implementation of cavity ringdown spectroscopy will provide a better assessment of the accuracy of remote sensing satellite measurements
PathVisio-Faceted Search: an exploration tool for multi-dimensional navigation of large pathways
Fried, Jake Y.; Luna, Augustin
2013-01-01
Purpose: The PathVisio-Faceted Search plugin helps users explore and understand complex pathways by overlaying experimental data and data from webservices, such as Ensembl BioMart, onto diagrams drawn using formalized notations in PathVisio. The plugin then provides a filtering mechanism, known as a faceted search, to find and highlight diagram nodes (e.g. genes and proteins) of interest based on imported data. The tool additionally provides a flexible scripting mechanism to handle complex queries. Availability: The PathVisio-Faceted Search plugin is compatible with PathVisio 3.0 and above. PathVisio is compatible with Windows, Mac OS X and Linux. The plugin, documentation, example diagrams and Groovy scripts are available at http://PathVisio.org/wiki/PathVisioFacetedSearchHelp. The plugin is free, open-source and licensed by the Apache 2.0 License. Contact: augustin@mail.nih.gov or jakeyfried@gmail.com PMID:23547033
40 CFR 1033.525 - Smoke testing.
Code of Federal Regulations, 2011 CFR
2011-07-01
... measure smoke emissions using a full-flow, open path light extinction smokemeter. A light extinction meter... path length equal to the hydraulic diameter. The light extinction meter must meet the requirements of... apertures (or windows and lenses) and on the axis of the light beam. (8) You may use light extinction meters...
40 CFR 1033.525 - Smoke testing.
Code of Federal Regulations, 2014 CFR
2014-07-01
... measure smoke emissions using a full-flow, open path light extinction smokemeter. A light extinction meter... path length equal to the hydraulic diameter. The light extinction meter must meet the requirements of... apertures (or windows and lenses) and on the axis of the light beam. (8) You may use light extinction meters...
40 CFR 1033.525 - Smoke testing.
Code of Federal Regulations, 2013 CFR
2013-07-01
... measure smoke emissions using a full-flow, open path light extinction smokemeter. A light extinction meter... path length equal to the hydraulic diameter. The light extinction meter must meet the requirements of... apertures (or windows and lenses) and on the axis of the light beam. (8) You may use light extinction meters...
40 CFR 1033.525 - Smoke testing.
Code of Federal Regulations, 2012 CFR
2012-07-01
... measure smoke emissions using a full-flow, open path light extinction smokemeter. A light extinction meter... path length equal to the hydraulic diameter. The light extinction meter must meet the requirements of... apertures (or windows and lenses) and on the axis of the light beam. (8) You may use light extinction meters...
Pattern recognition and classification of vibrational spectra by artificial neural networks
NASA Astrophysics Data System (ADS)
Yang, Husheng
1999-10-01
A drawback of current open-path Fourier transform infrared (OP/FT-IR) systems is that they need a human expert to determine those compounds that may be quantified from a given spectrum. In this study, three types of artificial neural networks were used to alleviate this problem. Firstly, multi-layer feed-forward neural networks were used to automatically recognize compounds in an OP/FT-IR spectrum. Each neural network was trained to recognize one compound in the presence of up to ten interferents in an OP/FT-IR spectrum. The networks were successfully used to recognize five alcohols and two chlorinated compounds in field-measured controlled-release OP/FT-IR spectra of mixtures of these compounds. It has also been demonstrated that a neural network could correctly identify a spectrum in the presence of an interferent that was not included in the training set and could also reject interferents it has not seen before. Secondly, the possibility of using one- and two- dimensional Kohonen self-organizing maps (SOMs) to recognize similarities in low-resolution vapor-phase infrared spectra without any additional information has been investigated. Both full-range reference spectra and open-path window reference spectra were used to train the networks and the trained networks were then used to classify the reference spectra into several groups. The results showed that the SOMs obtained from the two different training sets were quite different, and it is more appropriate to use the second SOM in OP/FT-IR spectrometry. Thirdly, vapor-phase FT-IR reference spectra of five alcohols along with four baseline spectra were encoded as prototype vectors for a Hopfield network. Inclusion of the baseline spectra allowed the network to classify spectra as unknowns, when the reference spectra of these compounds were not stored as prototype vectors in the network. The network could identify each of the 5 alcohols correctly even in the presence of noise and interfering compounds. Finally, one- and two-dimensional Kohonen SOMs were also successfully used for the unsupervised differentiation of the Fourier transform Raman spectra of hardwoods from softwoods. A semi-quantitative method that is based on the Euclidean distances of the weight matrix has been developed to assist the automatic clustering of the neurons in a two-dimensional SOM.
Polymerization of euphorbia oil with Lewis acid in carbon dioxide media
USDA-ARS?s Scientific Manuscript database
Boron trifluoride diethyl etherate (BF3-OEt2) Lewis acid catalyzed ring-opening polymerization of euphorbia oil (EO), a natural epoxy oil, in liquid carbon dioxide was conducted in an effort to develop useful vegetable oil based polymers. The resulting polymers (RPEO) were characterized by FTIR, 1H-...
Polymerization of euphorbia oil in carbon dioxide media
USDA-ARS?s Scientific Manuscript database
Boron trifluoride diethyl etherate (BF3•OEt2), Lewis acid, catalyzed ring-opening polymerization of euphorbia oil (EO), a natural epoxy oil, was conducted in carbon dioxide. The resulting polymers (RPEO) were characterized by FTIR, 1H-NMR, 13C-NMR, solid state 13C-NMR spectroscopies, differential sc...
Acoustic transducer in system for gas temperature measurement in gas turbine engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeSilva, Upul P.; Claussen, Heiko
An apparatus for controlling operation of a gas turbine engine including at least one acoustic transmitter/receiver device located on a flow path boundary structure. The acoustic transmitter/receiver device includes an elongated sound passage defined by a surface of revolution having opposing first and second ends and a central axis extending between the first and second ends, an acoustic sound source located at the first end, and an acoustic receiver located within the sound passage between the first and second ends. The boundary structure includes an opening extending from outside the boundary structure to the flow path, and the second endmore » of the surface of revolution is affixed to the boundary structure at the opening for passage of acoustic signals between the sound passage and the flow path.« less
The Altimetric Wet Tropospheric Correction: Progress Since The ERS-1 Mission
NASA Astrophysics Data System (ADS)
Eymard, L.; Obligis, E.
2006-07-01
To correct for the path delay due to humidity in the troposphere, dedicated microwave radiometers have been added to altimeters on ESA and NASA/CNES missions. This paper presents the major issues with calibration and retrieval of the wet tropospheric path d elay s ince E RS1, a s w ell a s n ew developments for in-flight monitoring, retrieval of the path delay over the open ocean and in coastal regions.
An Open-path Laser Transmissometer for Atmospheric Extinction Measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandran, P. M. Satheesh; Krishnakumar, C. P.; Varma, Ravi
2011-10-20
A transmissometer is an optical instrument which measures transmitted intensity of monochromatic light over a fixed pathlength. Prototype of a simple laser transmissometer has been developed for transmission (or extinction) measurements through suspended absorbers and scatterers in the atmosphere over tens of meters. Instrument consists of a continuous green diode pumped solid state laser, transmission optics, photodiode detectors and A/D data acquisition components. A modulated laser beam is transmitted and subsequently reflected and returned to the unit by a retroreflecting mirror assembly placed several tens of meters away. Results from an open-path field measurement of the instrument are described.
Kitchen Table Discourse: Negotiating the "Tricky Ground" of Indigenous Research
ERIC Educational Resources Information Center
Johnson, Jay T.
2008-01-01
In this article, the author seeks a middle path through which to traverse the "tricky ground" of Indigenous research; a middle path that will hopefully find "in-between spaces" open to new epistemological pathways, through which new voices and ideas can be heard within the social sciences and, in particular, within geography.…
Tracking the Career Paths of Marketing and Business Education Graduates
ERIC Educational Resources Information Center
Mooney, Carol; Haltinner, Urs; Stanislawski, Debbie
2006-01-01
Marketing and business education faculty at the University of Wisconsin-Stout (UW-Stout) recently conducted a longitudinal study, spanning the entire 35 years of the program's existence, describing and analyzing its graduates' career paths. Data was collected through a questionnaire that utilized a combination of Likert-type responses, open-ended…
Peitzsch, Erich H.; Fagre, Daniel B.; Dundas, Mark
2010-01-01
Snow avalanche paths are key geomorphologic features in Glacier National Park, Montana, and an important component of mountain ecosystems: they are isolated within a larger ecosystem, they are continuously disturbed, and they contain unique physical characteristics (Malanson and Butler, 1984). Avalanches impact subalpine forest structure and function, as well as overall biodiversity (Bebi et al., 2009). Because avalanches are dynamic phenomena, avalanche path geometry and spatial extent depend upon climatic regimes. The USGS/GNP Avalanche Program formally began in 2003 as an avalanche forecasting program for the spring opening of the ever-popular Going-to-the-Sun Road (GTSR), which crosses through 37 identified avalanche paths. Avalanche safety and forecasting is a necessary part of the GTSR spring opening procedures. An avalanche atlas detailing topographic parameters and oblique photographs was completed for the GTSR corridor in response to a request from GNP personnel for planning and resource management. Using ArcMap 9.2 GIS software, polygons were created for every avalanche path affecting the GTSR using aerial imagery, field-based observations, and GPS measurements of sub-meter accuracy. Spatial attributes for each path were derived within the GIS. Resulting products include an avalanche atlas book for operational use, a geoPDF of the atlas, and a Google Earth flyover illustrating each path and associated photographs. The avalanche atlas aids park management in worker safety, infrastructure planning, and natural resource protection by identifying avalanche path patterns and location. The atlas was created for operational and planning purposes and is also used as a foundation for research such as avalanche ecology projects and avalanche path runout modeling.
Open problems in artificial life.
Bedau, M A; McCaskill, J S; Packard, N H; Rasmussen, S; Adami, C; Green, D G; Ikegami, T; Kaneko, K; Ray, T S
2000-01-01
This article lists fourteen open problems in artificial life, each of which is a grand challenge requiring a major advance on a fundamental issue for its solution. Each problem is briefly explained, and, where deemed helpful, some promising paths to its solution are indicated.
Triggered plasma opening switch
Mendel, Clifford W.
1988-01-01
A triggerable opening switch for a very high voltage and current pulse includes a transmission line extending from a source to a load and having an intermediate switch section including a plasma for conducting electrons between transmission line conductors and a magnetic field for breaking the plasma conduction path and magnetically insulating the electrons when it is desired to open the switch.
Enhancing forensic science with spectroscopic imaging
NASA Astrophysics Data System (ADS)
Ricci, Camilla; Kazarian, Sergei G.
2006-09-01
This presentation outlines the research we are developing in the area of Fourier Transform Infrared (FTIR) spectroscopic imaging with the focus on materials of forensic interest. FTIR spectroscopic imaging has recently emerged as a powerful tool for characterisation of heterogeneous materials. FTIR imaging relies on the ability of the military-developed infrared array detector to simultaneously measure spectra from thousands of different locations in a sample. Recently developed application of FTIR imaging using an ATR (Attenuated Total Reflection) mode has demonstrated the ability of this method to achieve spatial resolution beyond the diffraction limit of infrared light in air. Chemical visualisation with enhanced spatial resolution in micro-ATR mode broadens the range of materials studied with FTIR imaging with applications to pharmaceutical formulations or biological samples. Macro-ATR imaging has also been developed for chemical imaging analysis of large surface area samples and was applied to analyse the surface of human skin (e.g. finger), counterfeit tablets, textile materials (clothing), etc. This approach demonstrated the ability of this imaging method to detect trace materials attached to the surface of the skin. This may also prove as a valuable tool in detection of traces of explosives left or trapped on the surfaces of different materials. This FTIR imaging method is substantially superior to many of the other imaging methods due to inherent chemical specificity of infrared spectroscopy and fast acquisition times of this technique. Our preliminary data demonstrated that this methodology will provide the means to non-destructive detection method that could relate evidence to its source. This will be important in a wider crime prevention programme. In summary, intrinsic chemical specificity and enhanced visualising capability of FTIR spectroscopic imaging open a window of opportunities for counter-terrorism and crime-fighting, with applications ranging from analysis of trace evidence (e.g. in soil), tablets, drugs, fibres, tape explosives, biological samples to detection of gunshot residues and imaging of fingerprints.
Papliaka, Zoi Eirini; Vaccari, Lisa; Zanini, Franco; Sotiropoulou, Sophia
2015-07-01
Fourier transform infrared (FTIR) imaging in transmission mode, employing a bidimensional focal plane array (FPA) detector, was applied for the detection and spatially resolved chemical characterisation of organic compounds or their degradation products within the stratigraphy of a critical group of fragments, originating from prehistoric and roman wall paintings, containing a very low concentration of subsisted organic matter or its alteration products. Past analyses using attenuated total reflection (ATR) or reflection FTIR on polished cross sections failed to provide any evidence of any organic material assignable as binding medium of the original painting. In order to improve the method's performance, in the present study, a new method of sample preparation in thin section was developed. The procedure is based on the use of cyclododecane C12H24 as embedding material and a subsequent double-side polishing of the specimen. Such procedure provides samples to be studied in FTIR transmission mode without losing the information on the spatial distribution of the detected materials in the paint stratigraphy. For comparison purposes, the same samples were also studied after opening their stratigraphy with a diamond anvil cell. Both preparation techniques offered high-quality chemical imaging of the decay products of an organic substance, giving clues to the painting technique. In addition, the thin sections resulting from the cyclododecane pre-treatment offered more layer-specific data, as the layer thickness and order remained unaffected, whereas the samples resulting from compression within the diamond cell were slightly deformed; however, since thinner and more homogenous, they provided higher spectral quality in terms of S/N ratio. In summary, the present study illustrates the appropriateness of FTIR imaging in transmission mode associated with a new thin section preparation strategy to detect and localise very low-concentrated organic matter subjected to deterioration processes, when the application of FTIR in reflection mode or FTIR-ATR fails to give any relevant information.
Optical remote sensing of properties and concentrations of atmospheric trace constituents
NASA Astrophysics Data System (ADS)
Vladutescu, Daniela Viviana
The effect of human activities on the global climate may lead to large disturbances of the economic, social and political circumstances in the middle and long term. Understanding the dynamics of the Earth's climate is therefore of high importance and one of the major scientific challenges of our time. The estimation of the contribution of the Earth's climate system components needs observation and continuous monitoring of various atmospheric physical and chemical parameters. Temperature, water vapor and greenhouse gases concentration, aerosol and clouds loads, and atmospheric dynamics are parameters of particular importance in this respect. The quantification of the anthropogenic influence on the dynamics of these above-mentioned parameters is of crucial importance nowadays but still affected by significant uncertainties. In the present context of these huge uncertainties in our understanding of how these different atmospheric compounds contribute to the radiative forcing, a significant part of my research interest is related to the following topics: (1) Development of lidar (Light Detection and Ranging)-based remote sensing techniques for monitoring atmospheric compounds and processes; (2) Aerosols hygroscopic properties and atmospheric modeling; (3) Water vapor mixing ratio and relative humidity estimation in the troposphere; (4) Characterization of the long-range transported aerosols; (5) Ambient gases detection using Fourier Transform Interferometers (FTIR); (6) Design of inexpensive Fabry Perot Interferometer for visible and near infrared for land and ocean surface remote sensing applications. The lidar-based remote sensing measurement techniques for the monitoring of climate change parameters where implemented at the City College of the City University of New York (CCNY/CUNY) LIDAR station and are presented in the second section of the paper. The geographical location of the CCNY lidar station is 40.86N, -73.86W. Among the lidar retrievals one important application is the detection of water vapor in the atmosphere. Water vapor is an important greenhouse gas due to its high concentration in the atmosphere (parts per thousand), among the trace constituents, and its interaction with tropospheric aerosols particles. The upward convection of water vapor and aerosols due to intense heating of the ground lead to aggregation of water particles or ice on aerosols in the air forming different types of clouds at various altitudes. In this regard a reliable method of retrieving atmospheric water vapor profiles is presented in the third part of the paper. The proposed technique here is the Raman lidar procedure that is calibrated afterwards. The accuracy of the water vapor measurements is obtained by calibration techniques based on different techniques that where compared and validated. The calibration method is based on data fusion from different sources like: GPS (global positioning system) sunphotometer, radiosonde. The condensation of water vapor on aerosols is affecting their size, shape, refractive index and chemical composition. The warming or cooling effect of the clouds hence formed are both possible depending on the cloud location, cover, composition and structure. The effect of these clouds on radiative global forcing and therefore on the short and long term global climate is of high interest in the scientific world. In an effort to understand the hygroscopic properties of aerosols, a major interest is manifested in obtaining accurate vertical water vapor profiles simultaneously with aerosol extinction and backscatter profiles. A reliable method of retrieving atmospheric water vapor profiles and aerosols backscatter and extinction in the same atmospheric volume is presented in the fourth chapter of the paper. As mentioned above the determination of greenhouse gases and other molecular pollutants is important in process control as well as environmental monitoring. Since many molecular vibrational modes are in the infrared, molecules can absorb light from an infrared source (such as the sun or an artificial source such as a glow rod) and therefore, if the source spectrum is known, the absorption spectra of the sample can be measured. Therefore, any spectroscopy method needs a well characterized infrared source as well as an accurate high resolution spectrometer. In the fifth chapter of the paper is presented a standard technique for open-path detection of greenhouse gases which is based on Fourier Transform Infrared Spectroscopy (FTIR). A MIDAC open path FTIR instrument is presented along with measurements and analyses. In the group of spectrometers with a high spatial spectral resolution is found as well the Fabry Perot Interferometer that is presented in chapter 6. A visible-near infrared (VIS-NIR) scanning Fabry Perot Imager design is proposed based on combinations of Fabry Perot etalons and/or broadband interference filters that can in principle be used as a hyperspectral sensors from geostationary spaceborne platforms. Keywords. Lidar, Raman, Mie, water vapor mixing ratio, backscatter, extinction, relative humidity, aerosol hygroscopic properties, atmospheric model, FTIR, FPI, green house gases
Cooperative 3D Path Optimization (C3PO) Simulation
2015-11-10
is the starting point for the path. As branches are added, they are checked to make sure they meet the requirements that the unmanned vehicle (UV...tune the maximum branch size for the tree to get longer branches. It makes sense that in open space this would lead to smaller (by number of nodes...starting with very high maximum branch size and gradually make it smaller as suitable paths can’t be found. The authors would also like to try this
NASA Astrophysics Data System (ADS)
Chamberlain, Samuel D.; Verfaillie, Joseph; Eichelmann, Elke; Hemes, Kyle S.; Baldocchi, Dennis D.
2017-11-01
Corrections accounting for air density fluctuations due to heat and water vapour fluxes must be applied to the measurement of eddy-covariance fluxes when using open-path sensors. Experimental tests and ecosystem observations have demonstrated the important role density corrections play in accurately quantifying carbon dioxide (CO2) fluxes, but less attention has been paid to evaluating these corrections for methane (CH4) fluxes. We measured CH4 fluxes with open-path sensors over a suite of sites with contrasting CH4 emissions and energy partitioning, including a pavement airfield, two negligible-flux ecosystems (drained alfalfa and pasture), and two high-flux ecosystems (flooded wetland and rice). We found that density corrections successfully re-zeroed fluxes in negligible-flux sites; however, slight overcorrection was observed above pavement. The primary impact of density corrections varied over negligible- and high-flux ecosystems. For negligible-flux sites, corrections led to greater than 100% adjustment in daily budgets, while these adjustments were only 3-10% in high-flux ecosystems. The primary impact to high-flux ecosystems was a change in flux diel patterns, which may affect the evaluation of relationships between biophysical drivers and fluxes if correction bias exists. Additionally, accounting for density effects to high-frequency CH4 fluctuations led to large differences in observed CH4 flux cospectra above negligible-flux sites, demonstrating that similar adjustments should be made before interpreting CH4 cospectra for comparable ecosystems. These results give us confidence in CH4 fluxes measured by open-path sensors, and demonstrate that density corrections play an important role in adjusting flux budgets and diel patterns across a range of ecosystems.
NASA Astrophysics Data System (ADS)
Wang, Po-Jen; Keyawa, Nicholas R.; Euler, Craig
2012-01-01
In order to achieve highly accurate motion control and path planning for a mobile robot, an obstacle avoidance algorithm that provided a desired instantaneous turning radius and velocity was generated. This type of obstacle avoidance algorithm, which has been implemented in California State University Northridge's Intelligent Ground Vehicle (IGV), is known as Radial Polar Histogram (RPH). The RPH algorithm utilizes raw data in the form of a polar histogram that is read from a Laser Range Finder (LRF) and a camera. A desired open block is determined from the raw data utilizing a navigational heading and an elliptical approximation. The left and right most radii are determined from the calculated edges of the open block and provide the range of possible radial paths the IGV can travel through. In addition, the calculated obstacle edge positions allow the IGV to recognize complex obstacle arrangements and to slow down accordingly. A radial path optimization function calculates the best radial path between the left and right most radii and is sent to motion control for speed determination. Overall, the RPH algorithm allows the IGV to autonomously travel at average speeds of 3mph while avoiding all obstacles, with a processing time of approximately 10ms.
NASA Astrophysics Data System (ADS)
Mellqvist, J.; Samuelsson, J.; Marianne, E.; Brohede, S.; Andersson, P.; Johansson, J.; Isoz, O.; Tisopulos, L.; Polidori, A.; Pikelnaya, O.
2016-12-01
Industrial volatile organic compound (VOC) emissions may contribute significantly to ozone formation. In order to investigate how much small sources contribute to the VOC concentrations in the Los Angeles metropolitan area a comprehensive emission study has been carried out on behalf of the South Coast Air Quality Management District (SCAQMD). VOC emissions from major sources such as refineries, oil wells, petrol stations oil depots and oil platforms were measured during September and October 2015 using several unique optical methods, including the Solar Occultation Flux method (SOF) and tracer correlation technique based on extractive FTIR and DOAS combined with an open path multi reflection cell. In addition, measurements of ammonia emissions from farming in Chino were demonstrated. The measurements in this study were quality assured by carrying out a controlled source gas release study and side by side measurements with several other techniques. The results from the field campaign show that the emissions from the above mentioned sources are largely underestimated in inventories with potential impact on the air quality in the Los Angeles metropolitan area. The results show that oil and gas production is a very significant VOC emission source. In this presentation the techniques will be discussed together with the main results from the campaign including the quality assurance work.
Opening Furan for Tailoring Properties of Bio-based Poly(Furfuryl Alcohol) Thermoset.
Falco, Guillaume; Guigo, Nathanael; Vincent, Luc; Sbirrazzuoli, Nicolas
2018-06-11
This work shows how furan ring-opening reactions were controlled by polymerization conditions to tune the cross-link density in bio-based poly(furfuryl alcohol) (PFA). The influence of water and isopropyl alcohol (IPA) on the polymerization of furfuryl alcohol, and particularly on furan ring-opening, was investigated by means of 13 C NMR and FT-IR spectroscopy. Results indicated that formation of open structures were favored in the presence of solvents, thus leading to modification of the thermo-mechanical properties compared to PFA cross-linked without solvent. Dynamic mechanical analyses showed that when slightly more open structures were present in PFA it resulted in an important decrease of the cross-link density. Despite lower glass-transition temperature and lower elastic modulus for PFA polymerized with solvent, the thermal stability remains very high (>350 °C) even with more open structures in PFA. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Loutherback, Kevin; Birarda, Giovanni; Chen, Liang; Holman, Hoi-Ying N.
2016-01-01
A long-standing desire in biological and biomedical sciences is to be able to probe cellular chemistry as biological processes are happening inside living cells. Synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectral microscopy is a label-free and nondestructive analytical technique that can provide spatiotemporal distributions and relative abundances of biomolecules of a specimen by their characteristic vibrational modes. Despite great progress in recent years, SR-FTIR imaging of living biological systems remains challenging because of the demanding requirements on environmental control and strong infrared absorption of water. To meet this challenge, microfluidic devices have emerged as a method to control the water thickness while providing a hospitable environment to measure cellular processes and responses over many hours or days. This paper will provide an overview of microfluidic device development for SR-FTIR imaging of living biological systems, provide contrast between the various techniques including closed and open-channel designs, and discuss future directions of development within this area. Even as the fundamental science and technological demonstrations develop, other ongoing issues must be addressed; for example, choosing applications whose experimental requirements closely match device capabilities, and developing strategies to efficiently complete the cycle of development. These will require imagination, ingenuity and collaboration. PMID:26732243
Loutherback, Kevin; Birarda, Giovanni; Chen, Liang; ...
2016-02-15
A long-standing desire in biological and biomedical sciences is to be able to probe cellular chemistry as biological processes are happening inside living cells. Synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectral microscopy is a label-free and nondestructive analytical technique that can provide spatiotemporal distributions and relative abundances of biomolecules of a specimen by their characteristic vibrational modes. Despite great progress in recent years, SR-FTIR imaging of living biological systems remains challenging because of the demanding requirements on environmental control and strong infrared absorption of water. To meet this challenge, microfluidic devices have emerged as a method to control the watermore » thickness while providing a hospitable environment to measure cellular processes and responses over many hours or days. This paper will provide an overview of microfluidic device development for SR-FTIR imaging of living biological systems, provide contrast between the various techniques including closed and open-channel designs, and discuss future directions of development within this area. Even as the fundamental science and technological demonstrations develop, other ongoing issues must be addressed; for example, choosing applications whose experimental requirements closely match device capabilities, and developing strategies to efficiently complete the cycle of development. These will require imagination, ingenuity and collaboration.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loutherback, Kevin; Birarda, Giovanni; Chen, Liang
A long-standing desire in biological and biomedical sciences is to be able to probe cellular chemistry as biological processes are happening inside living cells. Synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectral microscopy is a label-free and nondestructive analytical technique that can provide spatiotemporal distributions and relative abundances of biomolecules of a specimen by their characteristic vibrational modes. Despite great progress in recent years, SR-FTIR imaging of living biological systems remains challenging because of the demanding requirements on environmental control and strong infrared absorption of water. To meet this challenge, microfluidic devices have emerged as a method to control the watermore » thickness while providing a hospitable environment to measure cellular processes and responses over many hours or days. This paper will provide an overview of microfluidic device development for SR-FTIR imaging of living biological systems, provide contrast between the various techniques including closed and open-channel designs, and discuss future directions of development within this area. Even as the fundamental science and technological demonstrations develop, other ongoing issues must be addressed; for example, choosing applications whose experimental requirements closely match device capabilities, and developing strategies to efficiently complete the cycle of development. These will require imagination, ingenuity and collaboration.« less
Hansen, A.D.
1988-01-25
An improved aethalometer having a single light source and a single light detector and two light paths from the light source to the light detector. A quartz fiber filter is inserted in the device, the filter having a collection area in one light path and a reference area in the other light path. A gas flow path through the aethalometer housing allows ambient air to flow through the collection area of the filter so that aerosol particles can be collected on the filter. A rotating disk with an opening therethrough allows light for the light source to pass alternately through the two light paths. The voltage output of the detector is applied to a VCO and the VCO pulses for light transmission separately through the two light paths, are counted and compared to determine the absorption coefficient of the collected aerosol particles. 5 figs.
The relationship between hippocampal volume and static postural sway: results from the GAIT study.
Beauchet, Olivier; Barden, John; Liu-Ambrose, Teresa; Chester, Victoria L; Szturm, Tony; Allali, Gilles
2016-02-01
The role of the hippocampus in postural control, in particular in maintaining upright stance, has not been fully examined in normal aging. This study aims to examine the association of postural sway with hippocampal volume while maintaining upright stance in healthy older individuals. Seventy healthy individuals (mean age 69.7 ± 3.4 years; 41.4 % women) were recruited in this study based on cross-sectional design. Hippocampal volume (quantified from a three-dimensional T1-weighted MRI using semi-automated software), three center of pressure (COP) motion parameters (sway area, path length of anterior-posterior (AP) and medial-lateral (ML) displacement) while maintaining upright stance (eyes open and closed), and the relative difference between open and closed eye conditions were used as outcome measures. Age, sex, body mass index, lower limb proprioception, distance vision, 15-item geriatric depression scale score, total cranial volume, and white matter abnormalities were used as covariates. The sway area decreased from open to closed eye condition but this variation was non-significant (P = 0.244), whereas path length of AP and ML displacement increased significantly (P < 0.003). Increase in sway area from open to closed eyes was associated with greater hippocampal volume (β -18.21; P = 0.044), and a trend for an association of increase in path length of AP displacement (P = 0.075 for open eyes and P = 0.071 for closed eyes) with greater hippocampal volume was reported. The hippocampus is involved in upright postural control in normal aging, such that an increase in sway area of COP motion from open to closed eyes is associated with greater hippocampal volume in healthy older adults.
NASA Astrophysics Data System (ADS)
Edwin, Bismi; Joe, I. Hubert
2013-10-01
Vibrational analysis of anti-epileptic drug vigabatrin, a structural GABA analog was carried out using NIR FT-Raman and FTIR spectroscopic techniques. The equilibrium geometry, various bonding features and harmonic vibrational wavenumbers were studied using density functional theory method. The detailed interpretation of the vibrational spectra has been carried out with the aid of VEDA.4 program. Vibrational spectra, natural bond orbital analysis and optimized molecular structure show clear evidence for the effect of electron charge transfer on the activity of the molecule. Predicted electronic absorption spectrum from TD-DFT calculation has been compared with the UV-vis spectrum. The Mulliken population analysis on atomic charges and the HOMO-LUMO energy were also calculated. Good consistency is found between the calculated results and experimental data for the electronic absorption as well as IR and Raman spectra. The blue-shifting of the Csbnd C stretching wavenumber reveals that the vinyl group is actively involved in the conjugation path. The NBO analysis confirms the occurrence of intramolecular hyperconjugative interactions resulting in ICT causing stabilization of the system.
Gas Measurement Using Static Fourier Transform Infrared Spectrometers.
Köhler, Michael H; Schardt, Michael; Rauscher, Markus S; Koch, Alexander W
2017-11-13
Online monitoring of gases in industrial processes is an ambitious task due to adverse conditions such as mechanical vibrations and temperature fluctuations. Whereas conventional Fourier transform infrared (FTIR) spectrometers use rather complex optical and mechanical designs to ensure stable operation, static FTIR spectrometers do not require moving parts and thus offer inherent stability at comparatively low costs. Therefore, we present a novel, compact gas measurement system using a static single-mirror Fourier transform spectrometer (sSMFTS). The system works in the mid-infrared range from 650 cm - 1 to 1250 cm - 1 and can be operated with a customized White cell, yielding optical path lengths of up to 120 cm for highly sensitive quantification of gas concentrations. To validate the system, we measure different concentrations of 1,1,1,2-Tetrafluoroethane (R134a) and perform a PLS regression analysis of the acquired infrared spectra. Thereby, the measured absorption spectra show good agreement with reference data. Since the system additionally permits measurement rates of up to 200 Hz and high signal-to-noise ratios, an application in process analysis appears promising.
Gas Measurement Using Static Fourier Transform Infrared Spectrometers
Schardt, Michael; Rauscher, Markus S.; Koch, Alexander W.
2017-01-01
Online monitoring of gases in industrial processes is an ambitious task due to adverse conditions such as mechanical vibrations and temperature fluctuations. Whereas conventional Fourier transform infrared (FTIR) spectrometers use rather complex optical and mechanical designs to ensure stable operation, static FTIR spectrometers do not require moving parts and thus offer inherent stability at comparatively low costs. Therefore, we present a novel, compact gas measurement system using a static single-mirror Fourier transform spectrometer (sSMFTS). The system works in the mid-infrared range from 650 cm−1 to 1250 cm−1 and can be operated with a customized White cell, yielding optical path lengths of up to 120 cm for highly sensitive quantification of gas concentrations. To validate the system, we measure different concentrations of 1,1,1,2-Tetrafluoroethane (R134a) and perform a PLS regression analysis of the acquired infrared spectra. Thereby, the measured absorption spectra show good agreement with reference data. Since the system additionally permits measurement rates of up to 200 Hz and high signal-to-noise ratios, an application in process analysis appears promising. PMID:29137193
Optical Remote Sensing Measurements of Air Pollution in Mexico City During MCMA- 2006
NASA Astrophysics Data System (ADS)
Galle, B.; Mellqvist, J.; Johansson, M.; Rivera, C.; Samuelsson, J.; Zhang, Y.
2007-05-01
During March 2006 the Optical Remote sensing group at Chalmers University of Technology participated in the MCMA-2006 field campaign in Mexico City, performing measurements of air pollution using a set of different optical remote sensing instruments. This poster gives an overview of the techniques applied and results obtained. The techniques applied were: Solar Occultation FTIR and UV spectroscopy from fixed locations throughout the MCMA area, yielding total columns of CO, CH2O, SO2 and NO2. Long Path FTIR measurements from site T0 located in the north part of central Mexico City. With this instrument line-averaged concentration measurements of CO and CO2 was obtained in parallel with DOAS measurements performed by other partners. MAX-DOAS measurements from site T0, yielding total column and spatial distributions of SO2 and NO2. Mobile DOAS scattered Sunlight measurements of total columns of SO2 and NO2 in and around the MCMA area. Mobile and stationary DOAS measurements in the vicinity of Tula and Popocatépetl in order to quantify emissions from industry and volcano.
NASA Technical Reports Server (NTRS)
Pryor, Richard Lee (Inventor)
1977-01-01
A line driver including a pair of complementary transistors having their conduction paths serially connected between an operating and a reference potential and their bases connected through a first switch to a signal input terminal. A second switch is connected between the common base connection and the common connection of the conduction paths. With the second switch open and the first closed, an output voltage, responsive to the input signal, corresponding to first or second binary values is obtained. When the second switch is closed and the first opened, the transistor pair is turned off, disconnecting the line driver from its load, thereby providing tri-state logic operation.
NASA Astrophysics Data System (ADS)
Zhang, Shen; Guo, Yuyu; Li, Xingying; Wu, Xu; Li, Zhe
2018-06-01
Physicochemical properties of Pd/Al2O3-TiO2 catalysts with different amounts of TiO2 contents were investigated by XRD, nitrogen adsorption-desorption, FTIR, NH3-TPD, H2-TPR and XPS techniques. Catalysts of different compositions were tested in the ethanol oxidation reaction to study the effects of TiO2 contents. Double peaks and symmetric path phenomena were observed at certain temperatures with the increase in TiO2 contents. The symmetric peak phenomena and the diverse activity fluctuations have been ascribed to the controlling factors such as temperature and compositions. With the increase in TiO2 content, the surface area, adsorbed oxygen contents and surface acid quantity decreased gradually. The large surface area and adsorbed oxygen contents were conducive to the performance, while increased acid amounts were not beneficial for ethanol oxidation. At 150 and 175 °C, Pd/AT(X1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miley, G.H.
Remarks made in the author{close_quote}s acceptance lecture for the 1995 Edward Teller Medal are presented and expanded. Topics covered include research on nuclear-pumped lasers, the first direct e-beam-pumped laser, direct energy conversion and advanced fuel fusion, plus recent work on inertial electrostatic confinement. {open_quote}{open_quote}Patience{close_quote}{close_quote} and {open_quote}{open_quote}optimism{close_quote}{close_quote} are viewed as essential elements needed by scientists following the {open_quote}{open_quote}zig-zag{close_quote}{close_quote} path to fusion energy production. {copyright} {ital 1996 American Institute of Physics.}
NASA Astrophysics Data System (ADS)
Foltynowicz, Aleksandra; Rutkowski, Lucile; Johanssson, Alexandra C.; Khodabakhsh, Amir; Maslowski, Piotr; Kowzan, Grzegorz; Lee, Kevin; Fermann, Martin
2015-06-01
Fourier transform spectrometers (FTS) based on optical frequency combs (OFC) allow detection of broadband molecular spectra with high signal-to-noise ratios within acquisition times orders of magnitude shorter than traditional FTIRs based on thermal sources. Due to the pulsed nature of OFCs the interferogram consists of a series of bursts rather than a single burst at zero optical path difference (OPD). The comb mode structure can be resolved by acquiring multiple bursts, in both mechanical FTS systems and dual-comb spectroscopy. However, in all existing demonstrations the resolution was ultimately limited either by the maximum available OPD between the interferometer arms or by the total acquisition time enabled by the storage memory. We present a method that provides spectral resolution exceeding the limit set by the maximum OPD using an interferogram containing only a single burst. The method allows measurements of absorption lines narrower than the OPD-limited resolution without any influence of the instrumental lineshape function. We demonstrate this by measuring undistorted CO2 and CO absorption lines with linewidth narrower than the OPD-limited resolution using OFC-based mechanical FTS in the near- and mid-infrared wavelength ranges. The near-infrared system is based on an Er:fiber femtosecond laser locked to a high finesse cavity, while the mid-infrared system is based on a Tm:fiber-laser-pumped optical parametric oscillator coupled to a multi-pass cell. We show that the method allows acquisition of high-resolution molecular spectra with interferometer length orders of magnitude shorter than traditional FTIR. Mandon, J., G. Guelachvili, and N. Picque, Nat. Phot., 2009. 3(2): p. 99-102. Zeitouny, M., et al., Ann. Phys., 2013. 525(6): p. 437-442. Zolot, A.M., et al., Opt. Lett., 2012. 37(4): p. 638-640.
Degradation Signatures of Open Ocean Microplastic Debris
NASA Astrophysics Data System (ADS)
Lavender Law, K. L.; Donohue, J. L.; Collins, T.; Proskurowsi, G.; Andrady, A. L.
2016-02-01
Microplastics collected from the open ocean offer few clues about their origin and history. There is currently no method to determine how long ocean plastic has undergone environmental weathering, how quickly fragmentation has occurred, or how small microplastic particles will ultimately become before (or if) they are fully degraded by microbial action. In the current absence of results from laboratory and field experiments designed to address these questions, we meticulously examined physical and chemical characteristics of open ocean microplastic particles collected over a 16-year period for clues about their weathering history. More than 1000 microplastic particles collected in the western North Atlantic between 1991 and 2007 were analyzed to determine polymer type, material density, mass and particle size, and were used to create a detailed catalogue of common microscopic surface features likely related to environmental exposure and weathering. Polyethylene and polypropylene, the two buoyant resins most commonly collected at the sea surface, can typically be distinguished by visual microscopy alone, and their particular characteristics lead us to hypothesize that these two resins weaken and fragment in different ways and on different time scales. A subset of resin pellets collected at sea were also analyzed using FTIR-ATR and/or FTIR microscopy for signatures of chemical degradation (e.g., carbonyl index) that are related to physical weathering characteristics such as color, quantified by the yellowness index.
FTIR instrumentation to monitor vapors from Shuttle tile waterproofing materials
NASA Technical Reports Server (NTRS)
Mattson, C. B.; Schwindt, C. J.
1995-01-01
The Space Shuttle Thermal Protection System (TPS) tiles and blankets are waterproofed using DimethylEthoxySilane (DMEX) in the Orbiter Processing Facilities (OPF). DMES has a Threshold Limit Value (TLV) for exposure of personnel to vapor concentration in air of 0.5 ppm. The OPF high bay cannot be opened for normal work after a waterproofing operation until the DMES concentration is verified by measurement to be below the TLV. On several occasions the high bay has been kept closed for up to 8 hours following waterproofing operations due to high DMES measurements. In addition, the Miran 203 and Miran 1 BX infrared analyzers calibrated at different wavelengths gave different readings under the same conditions. There was reason to believe that some of the high DMES concentration readings were caused by interference form water and ethanol vapors. The Toxic Vapor Detection Laboratory (TVDL) was asked to test the existing DMES instruments and identify the best qualified instrument. In addition the TVDL was requested to develop instrumentation to ensure the OPF high bay could be opened safely as soon as possible after a waterproofing operation. A Fourier Transform Infrared (FTIR) spectrophotometer instrument developed for an earlier project was reprogrammed to measure DMES vapor along with ethanol, water, and several common solvent vapors. The FTIR was then used to perform a series of laboratory and field tests to evaluate the performance of the single wavelength IR instruments in use. The results demonstrated that the single wavelength IR instruments did respond to ethanol and water vapors, more or less depending on the analytical IR wavelength selected. The FTIR was able to separate the responses to DMES, water and ethanol, and give consistent readings for the DMES vapor concentration. The FTIR was then deployed to the OPF to monitor real waterproofing operations. The FTIR was also used to measure the time for DMES to evaporate from TPS tile under a range of humidity conditions in controlled laboratory tests. The combination of laboratory and field tests with the FTIR instrument demonstrated superior sensitivity, ability to reject interference from water and ethanol vapors, ruggedness to be transported from the lab to the OPF and set up without special procedures or degradation of performance. The multiple component vapor analysis algorithm was developed at KSC and incorporates automatic baseline correction and shape fitting of the spectra. The analysis for DMES, TetraMethylDiSiloxane (TMDS), ethanol, methanol, isopropanol, and baseline parameters uses 161 points per sample at 4 cm(exp -1) resolution, and processes an eight scan sample every ten seconds. The standard deviation of the measurements is 0.013 ppm and the upper linear limit is 125 ppm DMES. Based on successful demonstration of capabilities we produced three mobile instrument carts to be used in each OPF to support future waterproofing operations. The design and building of the 'DMES Carts' were accomplished in Fiscal year 1995.
Rankine cycle load limiting through use of a recuperator bypass
Ernst, Timothy C.
2011-08-16
A system for converting heat from an engine into work includes a boiler coupled to a heat source for transferring heat to a working fluid, a turbine that transforms the heat into work, a condenser that transforms the working fluid into liquid, a recuperator with one flow path that routes working fluid from the turbine to the condenser, and another flow path that routes liquid working fluid from the condenser to the boiler, the recuperator being configured to transfer heat to the liquid working fluid, and a bypass valve in parallel with the second flow path. The bypass valve is movable between a closed position, permitting flow through the second flow path and an opened position, under high engine load conditions, bypassing the second flow path.
USDA-ARS?s Scientific Manuscript database
In an attempt to build up useful application of plant oil based polymers, natural epoxy oil (euphorbia oil-EuO) was polymerized in liquid carbon dioxide in the presence of Lewis acid catalyst [Boron trifluoride diethyl etherate (BF3•OEt2)]. The resulting polymers (RPEuO) were characterized by FTIR ...
Serrano León, Esteban; Coat, Rémy; Moutel, Benjamin; Pruvost, Jérémy; Legrand, Jack; Gonçalves, Olivier
2014-11-01
Absolute concentrations of total macromolecules (triglycerides, proteins and carbohydrates) in microorganisms can be rapidly measured by FTIR spectroscopy, but caution is needed to avoid non-specific experimental bias. Here, we assess the limits within which this approach can be used on model solutions of macromolecules of interest. We used the Bruker HTSXT-FTIR system. Our results show that the solid deposits obtained after the sampling procedure present physical and chemical properties that influence the quality of the absolute concentration prediction models (univariate and multivariate). The accuracy of the models was degraded by a factor of 2 or 3 outside the recommended concentration interval of 0.5-35 µg spot(-1). Change occurred notably in the sample hydrogen bond network, which could, however, be controlled using an internal probe (pseudohalide anion). We also demonstrate that for aqueous solutions, accurate prediction of total carbohydrate quantities (in glucose equivalent) could not be made unless a constant amount of protein was added to the model solution (BSA). The results of the prediction model for more complex solutions, here with two components: glucose and BSA, were very encouraging, suggesting that this FTIR approach could be used as a rapid quantification method for mixtures of molecules of interest, provided the limits of use of the HTSXT-FTIR method are precisely known and respected. This last finding opens the way to direct quantification of total molecules of interest in more complex matrices.
Safety drain system for fluid reservoir
NASA Technical Reports Server (NTRS)
England, John Dwight (Inventor); Kelley, Anthony R. (Inventor); Cronise, Raymond J. (Inventor)
2012-01-01
A safety drain system includes a plurality of drain sections, each of which defines distinct fluid flow paths. At least a portion of the fluid flow paths commence at a side of the drain section that is in fluid communication with a reservoir's fluid. Each fluid flow path at the side communicating with the reservoir's fluid defines an opening having a smallest dimension not to exceed approximately one centimeter. The drain sections are distributed over at least one surface of the reservoir. A manifold is coupled to the drain sections.
Path Planning Based on Ply Orientation Information for Automatic Fiber Placement on Mesh Surface
NASA Astrophysics Data System (ADS)
Pei, Jiazhi; Wang, Xiaoping; Pei, Jingyu; Yang, Yang
2018-03-01
This article introduces an investigation of path planning with ply orientation information for automatic fiber placement (AFP) on open-contoured mesh surface. The new method makes use of the ply orientation information generated by loading characteristics on surface, divides the surface into several zones according to the ply orientation information and then designs different fiber paths in different zones. This article also gives new idea of up-layer design in order to make up for defects between parts and improve product's strength.
NASA Technical Reports Server (NTRS)
Raofi, Behzad
2005-01-01
This paper describes the methods used to estimate the statistical deltaV requirements for the propulsive maneuvers that will deliver the spacecraft to its target landing site while satisfying planetary protection requirements. the paper presents flight path control analysis results for three different trajectories, open, middle, and close of launch period for the mission.
ERIC Educational Resources Information Center
Miller, Melvin E., Ed.; Cook-Greuter, Susanne R., Ed.
This book contains 11 papers on creativity, spirituality, and transcendence as paths to integrity and wisdom in the mature self. The book begins with the paper "Introduction--Creativity in Adulthood: Personal Maturity and Openness to Extraordinary Sources of Inspiration" (Susanne R. Cook-Greuter, Melvin E. Miller). The next four papers,…
USDA-ARS?s Scientific Manuscript database
Vegetative treatment systems (VTSs) are one type of control structure that has shown potential to control runoff from open feedlots. To achieve maximum performance, sheet-flow over the width of the vegetative treatment area (VTA) is required. Tools, such as maps of flow paths through the VTA, are ne...
2014-10-21
linear combinations of paths. This project featured research on two classes of routing problems , namely traveling salesman problems and multicommodity...flows. One highlight of this research was our discovery of a polynomial-time algorithm for the metric traveling salesman s-t path problem whose...metric TSP would resolve one of the most venerable open problems in the theory of approximation algorithms. Our research on traveling salesman
NASA Astrophysics Data System (ADS)
Kelly, P. J.; Sutton, A. J.; Elias, T.; Kern, C.; Clor, L. E.; Baer, D. S.
2017-12-01
Primary magmatic halogen-containing gases (HCl, HF, HBr, HI in characteristic order of abundance) are of great interest for volcano monitoring and research because, in general, they are more soluble in magma than other commonly-monitored volcanic volatiles (e.g. CO2, SO2, H2S) and thereby can offer unique insights into shallow magmatic processes. Nevertheless, difficulties in obtaining observations of primary volcanic halogens in gas plumes with traditional methods (e.g. direct sampling, Open-Path Fourier Transform Infrared spectroscopy, filter packs) have limited the number of observations reported worldwide, especially from explosive arc volcanoes. With this in mind, the USGS and Los Gatos Research, Inc. collaborated to adapt a commercially-available industrial in situ HCl-HF analyzer for use in airborne and ground-based measurements of volcanic gases. The new, portable instrument is based around two near-IR tunable diode lasers and uses a vibration-tolerant, enhanced-cavity approach that is well-suited for rugged field applications and yields fast (1 Hz) measurements with a wide dynamic range (0 -2 ppm) and sub-ppb precision (1σ: HCl: <0.4 ppb; HF: <0.1 ppb). In spring 2017 we conducted field tests at Kīlauea Volcano, Hawaii, to benchmark the performance of the new instrument and to compare it with an accepted method for halogen measurements (OP-FTIR). The HCl-HF instrument was run in parallel with a USGS Multi-GAS to obtain in situ H2O-CO2-SO2-H2S-HCl-HF plume compositions. The results were encouraging and quasi-direct comparisons of the in situ and remote sensing instruments showed good agreement (e.g. in situ SO2/HCl = 72 vs. OP-FTIR SO2/HCl = 88). Ground-based and helicopter-based measurements made 0 - 12 km downwind from the vent (plume age 0 - 29 minutes) show that plume SO2/HCl ratios increase rapidly from 60 to 300 around the plume edges, possibly due to uptake of HCl onto aerosols.
NASA Astrophysics Data System (ADS)
Che, Il-Young; Stump, Brian W.; Lee, Hee-Il
2011-04-01
The dependence of infrasound propagation on the season and path environment was quantified by the analysis of more than 1000 repetitive infrasonic ground-truth events at an active, open-pit mine over two years. Blast-associated infrasonic signals were analysed from two infrasound arrays (CHNAR and ULDAR) located at similar distances of 181 and 169 km, respectively, from the source but in different azimuthal directions and with different path environments. The CHNAR array is located to the NW of the source area with primarily a continental path, whereas the ULDAR is located East of the source with a path dominated by open ocean. As a result, CHNAR observations were dominated by stratospheric phases with characteristic celerities of 260-289 m s-1 and large seasonal variations in the traveltime, whereas data from ULDAR consisted primarily of tropospheric phases with larger celerities from 322 to 361 m s-1 and larger daily than seasonal variation in the traveltime. The interpretation of these observations is verified by ray tracing using atmospheric models incorporating daily weather balloon data that characterizes the shallow atmosphere for the two years of the study. Finally, experimental celerity models that included seasonal path effects were constructed from the long-term data set. These experimental celerity models were used to constrain traveltime variations in infrasonic location algorithms providing improved location estimates as illustrated with the empirical data set.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brumfield, Brian E.; Taubman, Matthew S.; Phillips, Mark C.
2016-02-13
A rapidly-swept external cavity quantum cascade laser (ECQCL) system for fast open-path quantification of multiple chemicals and mixtures is presented. The ECQCL system is swept over its entire tuning range (>100 cm-1) at frequencies up to 200 Hz. At 200 Hz the wavelength tuning rate and spectral resolution are 2x104 cm-1/sec and < 0.2 cm-1, respectively. The capability of the current system to quantify changes in chemical concentrations on millesecond timescales is demonstrated at atmospheric pressure using an open-path multi-pass cell. The detection limits for chemicals ranged from ppb to ppm levels depending on the absorption cross-section.
Optimal symmetric flight with an intermediate vehicle model
NASA Technical Reports Server (NTRS)
Menon, P. K. A.; Kelley, H. J.; Cliff, E. M.
1983-01-01
Optimal flight in the vertical plane with a vehicle model intermediate in complexity between the point-mass and energy models is studied. Flight-path angle takes on the role of a control variable. Range-open problems feature subarcs of vertical flight and singular subarcs. The class of altitude-speed-range-time optimization problems with fuel expenditure unspecified is investigated and some interesting phenomena uncovered. The maximum-lift-to-drag glide appears as part of the family, final-time-open, with appropriate initial and terminal transient exceeding level-flight drag, some members exhibiting oscillations. Oscillatory paths generally fail the Jacobi test for durations exceeding a period and furnish a minimum only for short-duration problems.
NASA Astrophysics Data System (ADS)
Simeonov, V.; van den Bergh, H.; Parlange, M. B.
2009-12-01
A new long-open-path instrument developed at EPFL for methane and water vapor observation will be presented. The instrument is developed and will be used within the GAW+ CH program and aims at long-term monitoring of background methane concentration at the High Altitude Research Station Jungfraujoch (3580 mASL). The instrument is built on the monostatic scheme (transceiver -distant retroreflector) using a 1.65 nm tunable diode laser (TDL) and a retroreflector at 1200 m from the transceiver. The data will be compared with in-situ measurements to evaluate the effect of the station on the in-situ data.
FTIR quantification of industrial hydraulic fluids in perchloroethylene
NASA Technical Reports Server (NTRS)
Mehta, Narinder K.
1993-01-01
The purpose of this summer research project was to investigate whether perchloroethylene can be used as a solvent for the quantitative analysis of industrial hydraulic fluids by infrared spectroscopy employing Beer's law. Standard calibration curves using carbon-hydrogen stretching (generic) and ester absorption peaks were prepared for a series of standard dilutions at low ppm levels of concentration of seven hydraulic fluids in perchloroethylene. The absorbance spectras were recorded with 1.5-10 mm fixed and variable path length sample cells made of potassium bromide. The results indicate that using ester infrared spectral peak, it is possible to detect about 20 ppm of the hydraulic fluid in perchloroethylene.
Kwon, Yong-Kook; Ahn, Myung Suk; Park, Jong Suk; Liu, Jang Ryol; In, Dong Su; Min, Byung Whan; Kim, Suk Weon
2013-01-01
To determine whether Fourier transform (FT)-IR spectral analysis combined with multivariate analysis of whole-cell extracts from ginseng leaves can be applied as a high-throughput discrimination system of cultivation ages and cultivars, a total of total 480 leaf samples belonging to 12 categories corresponding to four different cultivars (Yunpung, Kumpung, Chunpung, and an open-pollinated variety) and three different cultivation ages (1 yr, 2 yr, and 3 yr) were subjected to FT-IR. The spectral data were analyzed by principal component analysis and partial least squares-discriminant analysis. A dendrogram based on hierarchical clustering analysis of the FT-IR spectral data on ginseng leaves showed that leaf samples were initially segregated into three groups in a cultivation age-dependent manner. Then, within the same cultivation age group, leaf samples were clustered into four subgroups in a cultivar-dependent manner. The overall prediction accuracy for discrimination of cultivars and cultivation ages was 94.8% in a cross-validation test. These results clearly show that the FT-IR spectra combined with multivariate analysis from ginseng leaves can be applied as an alternative tool for discriminating of ginseng cultivars and cultivation ages. Therefore, we suggest that this result could be used as a rapid and reliable F1 hybrid seed-screening tool for accelerating the conventional breeding of ginseng. PMID:24558311
Li, Shou-Nan; Chang, Chin-Ta; Shih, Hui-Ya; Tang, Andy; Li, Alen; Chen, Yin-Yung
2003-01-01
A mobile extractive Fourier transform infrared (FTIR) spectrometer was successfully used to locate, identify, and quantify the "odor" sources inside the cleanroom of a semiconductor manufacturing plant. It was found that ozone (O(3)) gas with a peak concentration of 120 ppm was unexpectedly releasing from a headspace of a drain for transporting used ozonized water and that silicon tetrafluoride (SiF(4)) with a peak concentration of 3 ppm was off-gassed from silicon wafers after dry-etching processing. When the sources of the odors was pinpointed by the FTIR, engineering control measures were applied. For O(3) control, a water-sealed pipeline was added to prevent the O(3) gas (emitting from the ozonized water) from entering the mixing unit. A ventilation system also was applied to the mixing unit in case of O(3) release. For SiF(4) mitigation, before the wafer-out chamber was opened, N(2) gas with a flow rate of 150 L/min was used for 100 sec to purge the wafer-out chamber, and a vacuum system was simultaneously activated to pump away the purging N(2). The effectiveness of the control measures was assured by using the FTIR. In addition, the FTIR was used to monitor the potential hazardous gas emissions during preventative maintenance of the semiconductor manufacturing equipment.
Long open-path instrument for simultaneously monitoring of methane, CO2 and water vapor
NASA Astrophysics Data System (ADS)
Simeonov, Valentin; Parlange, Marc
2013-04-01
A new, long open-path instrument for monitoring of path-averaged methane, CO2 and water vapor concentrations will be presented. The instrument is built on the monostatic scheme (transceiver -distant retroreflector). A VCSEL with a central wavelength of 1654 nm is used as a light source. The receiver is built around a 20 cm Newtonian telescope. The design optical path length is 2000 m but can be further extended. To avoid distortions in the shape of the spectral lines caused by atmospheric turbulences they are scanned within 1 µs. The expected concentration resolution for the above mentioned path length is of the order of 2 ppb for methane, 100 ppb for CO2 and 100 ppm for water vapor. The instrument is developed at the Swiss Federal Institute of Technology - Lausanne (EPFL) Switzerland and will be used within the GAW+ CH program for long-term monitoring of background methane and CO2 concentrations in the Swiss Alps. The initial calibration validation tests at EPFL were completed in December 2012 and the instrument will be installed at the beginning of 2013 at the High Altitude Research Station Jungfraujoch (HARSJ). The HARSJ is located at 3580 m ASL and is one of the 24 global GAW stations. One of the goals of the project is to compare path-averaged to the ongoing point measurements of methane in order to identify possible influence of the station. Future deployments of a copy of the instrument include the Canadian arctic and Siberian wetlands. The instrument can be used for ground truthing of satellite observation as well.
Thermal control of low-pressure fractionation processes. [in basaltic magma solidification
NASA Technical Reports Server (NTRS)
Usselman, T. M.; Hodge, D. S.
1978-01-01
Thermal models detailing the solidification paths for shallow basaltic magma chambers (both open and closed systems) were calculated using finite-difference techniques. The total solidification time for closed chambers are comparable to previously published calculations; however, the temperature-time paths are not. These paths are dependent on the phase relations and the crystallinity of the system, because both affect the manner in which the latent heat of crystallization is distributed. In open systems, where a chamber would be periodically replenished with additional parental liquid, calculations indicate that the possibility is strong that a steady-state temperature interval is achieved near a major phase boundary. In these cases it is straightforward to analyze fractionation models of the basaltic liquid evolution and their corresponding cumulate sequences. This steady thermal fractionating state can be invoked to explain large amounts of erupted basalts of similar composition over long time periods from the same volcanic center and some rhythmically layered basic cumulate sequences.
A coaxial radial opening switch for a distributed-energy-store rail launcher
NASA Astrophysics Data System (ADS)
Upshaw, J. L.; Zowarka, R. C.
1984-03-01
The design, fabrication, and initial testing results for a coaxial radial opening switch for a distributed-energy-store rail launcher are presented. In this nonarcing switch, the voltage needed to transfer current to the rail launcher is generated in a fixed resistor sized to absorb the energy required to accomplish the switching. The coaxial geometry consisting of concentric rings allowed flexibility in defining the conductive and resistive portions of the switch, and also provided tight coupling by minimizing the inductance of the current path between the charging path and the load path to minimize the energy absorption requirements. The resistive portion of the switch is composed of a series of stacked circular steel ring laminations. Switching is completed in three intervals through radial actuation. The switch parts were machined from ETP 110 electrical tough pitch copper plate, 2000 series aluminum plate, and close-tolerance standed GFR epoxy. Current may be transferred at levels less than 20 kA.
Initiated Protocol Telephony Feasibility for the US Navy, Embedded Proof-of-Concept
2011-03-01
2.1 Generating Certificates Using Open SSL 1. OpenSSL can be used to generate certificates. There are a number of helper scripts written in Perl that...help with the creation and maintenance of the certificate and keys. OpenSSL is available from a number of sites, i.e., slproweb.com. The default...installation is adequate although it may be useful to add the OpenSSL \\bin directory to the system environment variable PATH. Perl is also available
Tao, Lei; Sun, Kang; Khan, M Amir; Miller, David J; Zondlo, Mark A
2012-12-17
A compact and portable open-path sensor for simultaneous detection of atmospheric N(2)O and CO has been developed with a 4.5 μm quantum cascade laser (QCL). An in-line acetylene (C(2)H(2)) gas reference cell allows for continuous monitoring of the sensor drift and calibration in rapidly changing field environments and thereby allows for open-path detection at high precision and stability. Wavelength modulation spectroscopy (WMS) is used to detect simultaneously both the second and fourth harmonic absorption spectra with an optimized dual modulation amplitude scheme. Multi-harmonic spectra containing atmospheric N(2)O, CO, and the reference C(2)H(2) signals are fit in real-time (10 Hz) by combining a software-based lock-in amplifier with a computationally fast numerical model for WMS. The sensor consumes ~50 W of power and has a mass of ~15 kg. Precision of 0.15 ppbv N(2)O and 0.36 ppbv CO at 10 Hz under laboratory conditions was demonstrated. The sensor has been deployed for extended periods in the field. Simultaneous N(2)O and CO measurements distinguished between natural and fossil fuel combustion sources of N(2)O, an important greenhouse gas with poorly quantified emissions in space and time.
ERIC Educational Resources Information Center
Adelman, Clifford
2005-01-01
Visitors to the FDR Memorial in Washington, D.C., enter the area through ceremonial openings: from the pathway around the reflecting pond of the Jefferson Memorial, or across a small shaded plaza reached from a roadway parallel to the Potomac River. The FDR Memorial itself cannot be seen at the start of either of these paths. It is out there…
Salih, Ashraf M; Ahmad, Mansor Bin; Ibrahim, Nor Azowa; Dahlan, Khairul Zaman Hj Mohd; Tajau, Rida; Mahmood, Mohd Hilmi; Yunus, Wan Md Zin Wan
2015-08-04
Over the past few decades, there has been an increasing demand for bio-based polymers and resins in industrial applications, due to their potential lower cost and environmental impact compared with petroleum-based counterparts. The present research concerns the synthesis of epoxidized palm oil acrylate (EPOLA) from an epoxidized palm oil product (EPOP) as environmentally friendly material. EPOP was acrylated by acrylic acid via a ring opening reaction. The kinetics of the acrylation reaction were monitored throughout the reaction course and the acid value of the reaction mixture reached 10 mg KOH/g after 16 h, indicating the consumption of the acrylic acid. The obtained epoxy acrylate was investigated intensively by means of FTIR and NMR spectroscopy, and the results revealed that the ring opening reaction was completed successfully with an acrylation yield about 82%. The UV free radical polymerization of EPOLA was carried out using two types of photoinitiators. The radiation curing behavior was determined by following the conversion of the acrylate groups. The cross-linking density and the hardness of the cured EPOLA films were measured to evaluate the effect of the photoinitiator on the solid film characteristics, besides, the thermal and mechanical properties were also evaluated.
Methane fluxes above the Hainich forest by True Eddy Accumulation and Eddy Covariance
NASA Astrophysics Data System (ADS)
Siebicke, Lukas; Gentsch, Lydia; Knohl, Alexander
2016-04-01
Understanding the role of forests for the global methane cycle requires quantifying vegetation-atmosphere exchange of methane, however observations of turbulent methane fluxes remain scarce. Here we measured turbulent fluxes of methane (CH4) above a beech-dominated old-growth forest in the Hainich National Park, Germany, and validated three different measurement approaches: True Eddy Accumulation (TEA, closed-path laser spectroscopy), and eddy covariance (EC, open-path and closed-path laser spectroscopy, respectively). The Hainich flux tower is a long-term Fluxnet and ICOS site with turbulent fluxes and ecosystem observations spanning more than 15 years. The current study is likely the first application of True Eddy Accumulation (TEA) for the measurement of turbulent exchange of methane and one of the very few studies comparing open-path and closed-path eddy covariance (EC) setups side-by-side. We observed uptake of methane by the forest during the day (a methane sink with a maximum rate of 0.03 μmol m-2 s-1 at noon) and no or small fluxes of methane from the forest to the atmosphere at night (a methane source of typically less than 0.01 μmol m-2 s-1) based on continuous True Eddy Accumulation measurements in September 2015. First results comparing TEA to EC CO2 fluxes suggest that True Eddy Accumulation is a valid option for turbulent flux quantifications using slow response gas analysers (here CRDS laser spectroscopy, other potential techniques include mass spectroscopy). The TEA system was one order of magnitude more energy efficient compared to closed-path eddy covariance. The open-path eddy covariance setup required the least amount of user interaction but is often constrained by low signal-to-noise ratios obtained when measuring methane fluxes over forests. Closed-path eddy covariance showed good signal-to-noise ratios in the lab, however in the field it required significant amounts of user intervention in addition to a high power consumption. We conclude, based on preliminary evidence, that the Hainich forest acted as a moderate net sink for methane during the investigation. This supports earlier findings from chamber measurements at the Hainich forest site and is similar to findings from other forest sites. Our observations will be continued through 2016 and beyond to provide longer-term methane flux time series spanning entire seasons. However, the current data set already provides a basis for further consolidating methods of measurements and analysis of turbulent methane fluxes using eddy covariance and true eddy accumulation.
Optical remote measurement of toxic gases
NASA Technical Reports Server (NTRS)
Grant, W. B.; Kagann, R. H.; McClenny, W. A.
1992-01-01
Enactment of the Clean Air Act Amendments (CAAA) of 1990 has resulted in increased ambient air monitoring needs for industry, some of which may be met efficiently using open-path optical remote sensing techniques. These techniques include Fourier transform spectroscopy, differential optical absorption spectroscopy, laser long-path absorption, differential absorption lidar, and gas cell correlation spectroscopy. With this regulatory impetus, it is an opportune time to consider applying these technologies to the remote and/or path-averaged measurement and monitoring of toxic gases covered by the CAAA. This article reviews the optical remote sensing technology and literature for that application.
ERIC Educational Resources Information Center
Kelly, Hope
2014-01-01
Open educational resources (OER) are making their way into a variety of educational contexts from formal lesson planning to just in time learning. Educators and training professionals have been recognized as an important audience for these materials. The concepts of "self-efficacy" and "outcome judgment" from social cognitive…
Open-path, closed-path and reconstructed aerosol extinction at a rural site.
Gordon, Timothy D; Prenni, Anthony J; Renfro, James R; McClure, Ethan; Hicks, Bill; Onasch, Timothy B; Freedman, Andrew; McMeeking, Gavin R; Chen, Ping
2018-04-09
The Handix Scientific Open-Path Cavity Ringdown Spectrometer (OPCRDS) was deployed during summer 2016 in Great Smoky Mountains National Park (GRSM). Extinction coefficients from the relatively new OPCRDS and from a more well-established extinction instrument agreed to within 7%. Aerosol hygroscopic growth (f(RH)) was calculated from the ratio of ambient extinction measured by the OPCRDS to dry extinction measured by a closed-path extinction monitor (Aerodyne's Cavity Attenuated Phase Shift Particulate Matter Extinction Monitor, CAPS PMex). Derived hygroscopicity (RH < 95%) from this campaign agreed with data from 1995 at the same site and time of year, which is noteworthy given the decreasing trend for organics and sulfate in the eastern U.S. However, maximum f(RH) values in 1995 were less than half as large as those recorded in 2016-possibly due to nephelometer truncation losses in 1995. Two hygroscopicity parameterizations were investigated using high time resolution OPCRDS+CAPS PMex data, and the K ext model was more accurate than the γ model. Data from the two ambient optical instruments, the OPCRDS and the open-path nephelometer, generally agreed; however, significant discrepancies between ambient scattering and extinction were observed, apparently driven by a combination of hygroscopic growth effects, which tend to increase nephelometer truncation losses and decrease sensitivity to the wavelength difference between the two instruments as a function of particle size. There was not a statistically significant difference in the mean reconstructed extinction values obtained from the original and the revised IMPROVE (Interagency Monitoring of Protected Visual Environments) equations. On average IMPROVE reconstructed extinction was ~25% lower than extinction measured by the OPCRDS, which suggests that the IMPROVE equations and 24-hr aerosol data are moderately successful in estimating current haze levels at GRSM. However, this conclusion is limited by the coarse temporal resolution and the low dynamic range of the IMPROVE reconstructed extinction.
Compensation of high order harmonic long quantum-path attosecond chirp
NASA Astrophysics Data System (ADS)
Guichard, R.; Caillat, J.; Lévêque, C.; Risoud, F.; Maquet, A.; Taïeb, R.; Zaïr, A.
2017-12-01
We propose a method to compensate for the extreme ultra violet (XUV) attosecond chirp associated with the long quantum-path in the high harmonic generation process. Our method employs an isolated attosecond pulse (IAP) issued from the short trajectory contribution in a primary target to assist the infrared driving field to produce high harmonics from the long trajectory in a secondary target. In our simulations based on the resolution of the time-dependent Schrödinger equation, the resulting high harmornics present a clear phase compensation of the long quantum-path contribution, near to Fourier transform limited attosecond XUV pulse. Employing time-frequency analysis of the high harmonic dipole, we found that the compensation is not a simple far-field photonic interference between the IAP and the long-path harmonic emission, but a coherent phase transfer from the weak IAP to the long quantum-path electronic wavepacket. Our approach opens the route to utilizing the long quantum-path for the production and applications of attosecond pulses.
Hansen, Anthony D.
1990-01-01
An improved aethalometer (10) having a single light source (18) and a single light detector (20) and two light paths (21, 22) from the light source (18) to the light detector (20). A quartz fiber filter (13) is inserted in the device, the filter (13) having a collection area (23) in one light path (21) and a reference area (24) in the other light path (22). A gas flow path (46) through the aethalometer housing (11) allows ambient air to flow through the collection area (23) of the filter (13) so that aerosol particles can be collected on the filter. A rotating disk (31) with an opening (33) therethrough allows light for the light source (18) to pass alternately through the two light paths (21, 22). The voltage output of the detector (20) is applied to a VCO (52) and the VCO pulses for light transmission separately through the two light paths (21, 22 ) are counted and compared to determine the absorption coefficient of the collected aerosol particles.
Kudi: A free open-source python library for the analysis of properties along reaction paths.
Vogt-Geisse, Stefan
2016-05-01
With increasing computational capabilities, an ever growing amount of data is generated in computational chemistry that contains a vast amount of chemically relevant information. It is therefore imperative to create new computational tools in order to process and extract this data in a sensible way. Kudi is an open source library that aids in the extraction of chemical properties from reaction paths. The straightforward structure of Kudi makes it easy to use for users and allows for effortless implementation of new capabilities, and extension to any quantum chemistry package. A use case for Kudi is shown for the tautomerization reaction of formic acid. Kudi is available free of charge at www.github.com/stvogt/kudi.
Detection of multiple chemicals based on external cavity quantum cascade laser spectroscopy
NASA Astrophysics Data System (ADS)
Sun, Juan; Ding, Junya; Liu, Ningwu; Yang, Guangxiang; Li, Jingsong
2018-02-01
A laser spectroscopy system based on a broadband tunable external cavity quantum cascade laser (ECQCL) and a mini quartz crystal tuning fork (QCTF) detector was developed for standoff detection of volatile organic compounds (VOCs). The self-established spectral analysis model based on multiple algorithms for quantitative and qualitative analysis of VOC components (i.e. ethanol and acetone) was detailedly investigated in both closed cell and open path configurations. A good agreement was obtained between the experimentally observed spectra and the standard reference spectra. For open path detection of VOCs, the sensor system was demonstrated at a distance of 30 m. The preliminary laboratory results show that standoff detection of VOCs at a distance of over 100 m is very promising.
Ro, Kyoung S; Johnson, Melvin H; Varma, Ravi M; Hashmonay, Ram A; Hunt, Patrick
2009-08-01
Improved characterization of distributed emission sources of greenhouse gases such as methane from concentrated animal feeding operations require more accurate methods. One promising method is recently used by the USEPA. It employs a vertical radial plume mapping (VRPM) algorithm using optical remote sensing techniques. We evaluated this method to estimate emission rates from simulated distributed methane sources. A scanning open-path tunable diode laser was used to collect path-integrated concentrations (PICs) along different optical paths on a vertical plane downwind of controlled methane releases. Each cycle consists of 3 ground-level PICs and 2 above ground PICs. Three- to 10-cycle moving averages were used to reconstruct mass equivalent concentration plum maps on the vertical plane. The VRPM algorithm estimated emission rates of methane along with meteorological and PIC data collected concomitantly under different atmospheric stability conditions. The derived emission rates compared well with actual released rates irrespective of atmospheric stability conditions. The maximum error was 22 percent when 3-cycle moving average PICs were used; however, it decreased to 11% when 10-cycle moving average PICs were used. Our validation results suggest that this new VRPM method may be used for improved estimations of greenhouse gas emission from a variety of agricultural sources.
Edwin, Bismi; Joe, I Hubert
2013-10-01
Vibrational analysis of anti-epileptic drug vigabatrin, a structural GABA analog was carried out using NIR FT-Raman and FTIR spectroscopic techniques. The equilibrium geometry, various bonding features and harmonic vibrational wavenumbers were studied using density functional theory method. The detailed interpretation of the vibrational spectra has been carried out with the aid of VEDA.4 program. Vibrational spectra, natural bond orbital analysis and optimized molecular structure show clear evidence for the effect of electron charge transfer on the activity of the molecule. Predicted electronic absorption spectrum from TD-DFT calculation has been compared with the UV-vis spectrum. The Mulliken population analysis on atomic charges and the HOMO-LUMO energy were also calculated. Good consistency is found between the calculated results and experimental data for the electronic absorption as well as IR and Raman spectra. The blue-shifting of the C-C stretching wavenumber reveals that the vinyl group is actively involved in the conjugation path. The NBO analysis confirms the occurrence of intramolecular hyperconjugative interactions resulting in ICT causing stabilization of the system. Copyright © 2013 Elsevier B.V. All rights reserved.
Trubyanov, Maxim M; Mochalov, Georgy M; Suvorov, Sergey S; Puzanov, Egor S; Petukhov, Anton N; Vorotyntsev, Ilya V; Vorotyntsev, Vladimir M
2018-07-27
The current study focuses on the processes involved during the flow conversion of water into acetylene in a calcium carbide reaction cell for the trace moisture analysis of ammonia by reaction gas chromatography. The factors negatively affecting the reproducibility and the accuracy of the measurements are suggested and discussed. The intramolecular reaction of the HOCaCCH intermediate was found to be a side reaction producing background acetylene during the contact of wet ammonia gas with calcium carbide. The presence of the HOCaCCH intermediate among the reaction products is confirmed by an FTIR spectral study of calcium carbide powder exposed to wet gas. The side reaction kinetics is evaluated experimentally and its influence on the results of the gas chromatographic measurements is discussed in relation to the determination of the optimal operating parameters for ammonia analysis. The reaction gas chromatography method for the trace moisture measurements in an ammonia matrix was experimentally compared to an FTIR long-path length gas cell technique to evaluate the accuracy limitations and the resource intensity. Copyright © 2018 Elsevier B.V. All rights reserved.
Diffractive paths for weak localization in quantum billiards
NASA Astrophysics Data System (ADS)
Březinová, Iva; Stampfer, Christoph; Wirtz, Ludger; Rotter, Stefan; Burgdörfer, Joachim
2008-04-01
We study the weak-localization effect in quantum transport through a clean ballistic cavity with regular classical dynamics. We address the question which paths account for the suppression of conductance through a system where disorder and chaos are absent. By exploiting both quantum and semiclassical methods, we unambiguously identify paths that are diffractively backscattered into the cavity (when approaching the lead mouths from the cavity interior) to play a key role. Diffractive scattering couples transmitted and reflected paths and is thus essential to reproduce the weak-localization peak in reflection and the corresponding antipeak in transmission. A comparison of semiclassical calculations featuring these diffractive paths yields good agreement with full quantum calculations and experimental data. Our theory provides system-specific predictions for the quantum regime of few open lead modes and can be expected to be relevant also for mixed as well as chaotic systems.
Pedestrian paths: why path-dependence theory leaves health policy analysis lost in space.
Brown, Lawrence D
2010-08-01
Path dependence, a model first advanced to explain puzzles in the diffusion of technology, has lately won allegiance among analysts of the politics of public policy, including health care policy. Though the central premise of the model--that past events and decisions shape options for innovation in the present and future--is indisputable (indeed path dependence is, so to speak, too shallow to be false), the approach, at least as applied to health policy, suffers from ambiguities that undercut its claims to illuminate policy projects such as managed care, on which this article focuses. Because path dependence adds little more than marginal value to familiar images of the politics of policy--incrementalism, for one--analysts might do well to put it on the back burner and pursue instead "thick descriptions" that help them to distinguish different degrees of openness to exogenous change among diverse policy arenas.
Su, Yen Hsun; Lai, Wei Hao; Chang, Shih-Hui; Hon, Min Hsiung
2007-09-01
We prepared gold nanoparticles (Au NPs) by only using trisodium citrate as the stabilizer. The detailed reaction mechanisms of S(N)1 and E1 reactions are examined and evidenced in this study by FTIR data. Citric acid is a kind of tertiary substrate. In aqueous solution, the substitution nucleophile path 1 (S(N)1) reaction and Elimination path 1 (E1) reaction usually occur simultaneously. Chloride ions, the substitution nucleophile, play a very important role to launch the mechanisms of S(N)1 and E1 reactions. Controlling the concentration of the chloride ions with the addition of HCl(aq) according to Le Chatelier theory, the average particle size of Au NPs (5.5 nm) was achieved to overcome the minimum limited size (approximately 10 nm). Two stages of the photoinduced method, aggregation into triangular conglomerates and growth into triangular particles, were determined form TEM observations. This preparation of Au NPs has potential in tuning the size, shape, and mechanism of Au NP formation by using only environmentally friendly trisodium citrate and the photoinduced method.
Long-path measurements of pollutants and micrometeorology over Highway 401 in Toronto
NASA Astrophysics Data System (ADS)
You, Yuan; Staebler, Ralf M.; Moussa, Samar G.; Su, Yushan; Munoz, Tony; Stroud, Craig; Zhang, Junhua; Moran, Michael D.
2017-11-01
Traffic emissions contribute significantly to urban air pollution. Measurements were conducted over Highway 401 in Toronto, Canada, with a long-path Fourier transform infrared (FTIR) spectrometer combined with a suite of micrometeorological instruments to identify and quantify a range of air pollutants. Results were compared with simultaneous in situ observations at a roadside monitoring station, and with output from a special version of the operational Canadian air quality forecast model (GEM-MACH). Elevated mixing ratios of ammonia (0-23 ppb) were observed, of which 76 % were associated with traffic emissions. Hydrogen cyanide was identified at mixing ratios between 0 and 4 ppb. Using a simple dispersion model, an integrated emission factor of on average 2.6 g km-1 carbon monoxide was calculated for this defined section of Highway 401, which agreed well with estimates based on vehicular emission factors and observed traffic volumes. Based on the same dispersion calculations, vehicular average emission factors of 0.04, 0.36, and 0.15 g km-1 were calculated for ammonia, nitrogen oxide, and methanol, respectively.
Motives and Tensions in the Release of Open Educational Resources: The UKOER Program
ERIC Educational Resources Information Center
Falconer, Isobel; Littlejohn, Allison; McGill, Lou; Beetham, Helen
2016-01-01
Open educational resources (OER) have been promoted as a path to universal education, supporting economic development and intercultural dialogue. However, to realise these benefits requires greater understanding of the factors that influence both OER supply and use. This paper examines an aspect of the supply side of the OER lifecycle--the motives…
NASA Astrophysics Data System (ADS)
Gordon, T. D.; Wagner, N. L.; Richardson, M.; Law, D. C.; Wolfe, D. E.; Brock, C. A.; Erdesz, F.; Murphy, D. M.
2014-12-01
The ability to frame effective climate change policy depends strongly on reducing the uncertainty in aerosol radiative forcing, which is currently nearly as great as best estimates of its magnitude. Achieving this goal will require significant progress in measuring aerosol properties, including aerosol optical depth, single scattering albedo and the effect of relative humidity on these properties for both fine and coarse particles. However both ground- and space-based instruments fail or are highly biased in the presence of clouds, severely limiting quantitative estimates of the radiative effects of aerosols where they are advected over low-level clouds. Moreover, many in situ aerosol measurements exclude the coarse fraction, which can be very important in and downwind of desert regions. By measuring the decay rate of a pulsed laser in an optically resonant cavity, cavity ringdown spectrometers (CRDSs) have been employed successfully in measuring aerosol extinction for particles in relative humidities below 90%. At very high humidities (as found in and near clouds), however, existing CRDSs perform poorly, diverging significantly from theoretical extinction values as humidities approach 100%. The new open-path aerosol extinction CRDS described in this poster measures extinction as aerosol is drawn through the sample cavity directly without inlets or tubing for channeling the flow, which cause particle losses, condensation at high RH and other artifacts. This poster presents the key elements of the new open-path CRDS design as well as comparisons with an earlier generation closed-path CRDS and preliminary data obtained during a field study at the 300 meter tower at NOAA's Boulder Atmospheric Observatory (BAO) in Colorado.
Postural imbalance and falls in PSP correlate with functional pathology of the thalamus.
Zwergal, A; la Fougère, C; Lorenzl, S; Rominger, A; Xiong, G; Deutschenbaur, L; Linn, J; Krafczyk, S; Dieterich, M; Brandt, T; Strupp, M; Bartenstein, P; Jahn, K
2011-07-12
To determine how postural imbalance and falls are related to regional cerebral glucose metabolism (PET) and functional activation of the cerebral postural network (fMRI) in patients with progressive supranuclear palsy (PSP). Sixteen patients with PSP, who had self-monitored their frequency of falls, underwent a standardized clinical assessment, posturographic measurement of balance during modified sensory input, and a resting [¹⁸F]FDG-PET. In addition, patients performed an fMRI paradigm using mental imagery of standing. Results were compared to healthy controls (n = 16). The frequency of falls/month in patients (range 1-40) correlated with total PSP rating score (r = 0.90). Total sway path in PSP significantly correlated with frequency of falls, especially during modulated sensory input (eyes open: r = 0.62, eyes closed: r = 0.67, eyes open/head extended: r = 0.84, eyes open/foam-padded platform: r = 0.87). Higher sway path values and frequency of falls were associated with decreased regional glucose metabolism (rCGM) in the thalamus (sway path: r = -0.80, falls: r = -0.64) and increased rCGM in the precentral gyrus (sway path: r = 0.79, falls: r = 0.64). Mental imagery of standing during fMRI revealed a reduced activation of the mesencephalic brainstem tegmentum and the thalamus in patients with postural imbalance and falls. The new and clinically relevant finding of this study is that imbalance and falls in PSP are closely associated with thalamic dysfunction. Deficits in thalamic postural control get most evident when balance is assessed during modified sensory input. The results are consistent with the hypothesis that reduced thalamic activation via the ascending brainstem projections may cause postural imbalance in PSP.
In vivo interstitial glucose characterization and monitoring in the skin by ATR-FTIR spectroscopy
NASA Astrophysics Data System (ADS)
Skrebova Eikje, Natalja
2011-03-01
Successful development of real-time non-invasive glucose monitoring would represent a major advancement not only in the treatment and management of patients with diabetes mellitus and carbohydrate metabolism disorders, but also for understanding in those biochemical, metabolic and (patho-)physiological processes of glucose at the molecular level in vivo. Here, ATR-FTIR spectroscopy technique has been challenged not only for in vivo measurement of interstitial glucose levels, but also for their non-invasive molecular qualitative and quantitative comparative characterization in the skin tissue. The results, based on calculated mean values of determined 5 glucose-specific peaks in the glucose-related 1000-1160 cm-1 region, showed intra- and inter-subject differences in interstitial glucose activity levels with their changes at different times and doses of OGTT, while raising questions about the relationships between interstitial and blood glucose levels. In conclusion, the introduction of ATR-FTIR spectroscopy technique has opened up an access to the interstitial fluid space in the skin tissue for interstitial glucose characterization and monitoring in vivo. Though interstitial versus blood glucose monitoring has different characteristics, it can be argued that accurate and precise measurements of interstitial glucose levels may be more important clinically.
Käppler, Andrea; Windrich, Frank; Löder, Martin G J; Malanin, Mikhail; Fischer, Dieter; Labrenz, Matthias; Eichhorn, Klaus-Jochen; Voit, Brigitte
2015-09-01
The presence of microplastics in aquatic ecosystems is a topical problem and leads to the need of appropriate and reliable analytical methods to distinctly identify and to quantify these particles in environmental samples. As an example transmission, Fourier transform infrared (FTIR) imaging can be used to analyze samples directly on filters without any visual presorting, when the environmental sample was afore extracted, purified, and filtered. However, this analytical approach is strongly restricted by the limited IR transparency of conventional filter materials. Within this study, we describe a novel silicon (Si) filter substrate produced by photolithographic microstructuring, which guarantees sufficient transparency for the broad mid-infrared region of 4000-600 cm(-1). This filter type features holes with a diameter of 10 μm and exhibits adequate mechanical stability. Furthermore, it will be shown that our Si filter substrate allows a distinct identification of the most common microplastics, polyethylene (PE), and polypropylene (PP), in the characteristic fingerprint region (1400-600 cm(-1)). Moreover, using the Si filter substrate, a differentiation of microparticles of polyesters having quite similar chemical structure, like polyethylene terephthalate (PET) and polybutylene terephthalate (PBT), is now possible, which facilitates a visualization of their distribution within a microplastic sample by FTIR imaging. Finally, this Si filter can also be used as substrate for Raman microscopy-a second complementary spectroscopic technique-to identify microplastic samples.
Mindfully Green and Healthy: An Indirect Path from Mindfulness to Ecological Behavior
Geiger, Sonja M.; Otto, Siegmar; Schrader, Ulf
2018-01-01
This paper examines the nature of the link between mindfulness and ecological behavior. Based on the notion that mindfulness incorporates heightened awareness of bodily sensations, we suggest an indirect path from mindfulness to ecological behavior that is mediated through individual health behavior, such as improved nutrition and increased exercise. This indirect path is corroborated with two online studies (n = 147/n = 239) where mindfulness, personal health behavior and ecological behavior were assessed. We conclude that increased mindful awareness of momentary experience indeed favors more healthy lifestyles, which in turn relate to increased ecological behavior beyond personal health benefits. The findings support an agreeableness of personal and planetary health behavior and open up a path for environmental educational interventions based on mindfulness practices and personal health gains. PMID:29403406
Accuracy of acoustic velocity metering systems for measurement of low velocity in open channels
Laenen, Antonius; Curtis, R. E.
1989-01-01
Acoustic velocity meter (AVM) accuracy depends on equipment limitations, the accuracy of acoustic-path length and angle determination, and the stability of the mean velocity to acoustic-path velocity relation. Equipment limitations depend on path length and angle, transducer frequency, timing oscillator frequency, and signal-detection scheme. Typically, the velocity error from this source is about +or-1 to +or-10 mms/sec. Error in acoustic-path angle or length will result in a proportional measurement bias. Typically, an angle error of one degree will result in a velocity error of 2%, and a path-length error of one meter in 100 meter will result in an error of 1%. Ray bending (signal refraction) depends on path length and density gradients present in the stream. Any deviation from a straight acoustic path between transducer will change the unique relation between path velocity and mean velocity. These deviations will then introduce error in the mean velocity computation. Typically, for a 200-meter path length, the resultant error is less than one percent, but for a 1,000 meter path length, the error can be greater than 10%. Recent laboratory and field tests have substantiated assumptions of equipment limitations. Tow-tank tests of an AVM system with a 4.69-meter path length yielded an average standard deviation error of 9.3 mms/sec, and the field tests of an AVM system with a 20.5-meter path length yielded an average standard deviation error of a 4 mms/sec. (USGS)
Quantitative infrared absorption cross sections of isoprene for atmospheric measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brauer, Carolyn S.; Blake, Thomas A.; Guenther, Alex B.
2014-11-19
The OH- and O 3- initiated oxidations of isoprene, which is one of the primary volatile organic compounds produced by vegetation, are a major source of atmospheric formaldehyde and other oxygenated organics, yet little quantitative IR data exists for isoprene. We thus report absorption coefficients and integrated band intensities for isoprene in the 600 - 6500 cm -1 region. The pressure-broadened (1 atmosphere N 2) spectra were recorded at 278, 298 and 323 K in a 19.96 cm path length cell at 0.112 cm -1 resolution, using a Bruker 66V FTIR. Composite spectra are derived from a minimum of sevenmore » pressures at each temperature.« less
Heat transfer head for a Stirling cycle machine
NASA Technical Reports Server (NTRS)
Emigh, Stuart G. (Inventor); Noble, Jack E. (Inventor); Lehmann, Gregory A. (Inventor)
1991-01-01
A common heat acceptor is provided between opposed displacers in a Stirling cycle machine. It includes two sets of open channels in separate fluid communications with the expansion spaces of the receptive cyclinders. The channels confine movement of working fluid in separate paths that extend between the expansion space of one cylinder and the compression space of the other. The method for operating the machine involves alternatively directing working fluid from the expansion space of each cylinder in a fluid path leading to the compression space of the other cylinder and from the compression space of each cylinder in a fluid path leading to the expansion space of the other cylinder.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) and its contractor, Rust Geotech, support the Kirtland Area Office by assisting Sandia National Laboratories/New Mexico (Sandia/NM) with remedial action, remedial design, and technical support of its Environmental Restoration Program. To aid in determining groundwater origins and flow paths, the GJPO was tasked to provide interpretation of groundwater geochemical data. The purpose of this investigation was to describe and analyze the groundwater geochemistry of the Sandia/NM Kirtland Air Force Base (KAFB). Interpretations of groundwater origins are made by using these data and the results of {open_quotes}mass balance{close_quotes} and {open_quotes}reactionmore » path{close_quote} modeling. Additional maps and plots were compiled to more fully comprehend the geochemical distributions. A more complete set of these data representations are provided in the appendices. Previous interpretations of groundwater-flow paths that were based on well-head, geologic, and geochemical data are presented in various reports and were used as the basis for developing the models presented in this investigation.« less
Spiraling Cracks in Thin Sheets
NASA Astrophysics Data System (ADS)
Romero, Victor; Roman, Benoit; Cerda, Enrique
2008-03-01
A wide kind of everyday-life industrial products come in a thin package that needs to be torn open by the user, and the opening is not always easy. We built a simple setup to study crack propagation in thin sheets coupled with large out-of-plane displacement : A cylindrical tool is inserted in a straight incision in a thin sheet, and is pushed against the sheet perpendicularly to that incision, eventually propagating a crack. When the blunt tool is continually pushed against the lip, we found that the crack follows a very robust spiraling path. Experiments may be interpreted in terms of ``Spira Mirabilis'' (logarithmic spiral). Starting with crack theory argument, we will show that the early behavior of the cut path follows a portion of a logathmic spiral, and that the path tends to another spiral with a different pitch as the crack adds more turns. Our crack experiment illustrates the fact that thin sheets mechanics is deeply connected to geometry, and finally spirals characteristics allow us to measure material crack properties of the thin layer used.
NASA Astrophysics Data System (ADS)
Nurulain, S.; Manap, H.
2017-09-01
This paper describes about a visible light transmission (VLT) measurement system using an optical method. VLT rate plays an important role in order to determine the visibility of a medium. Current instrument to measure visibility has a gigantic set up, costly and mostly fails to function at low light condition environment. This research focuses on the development of a VLT measurement system using a simple experimental set-up and at a low cost. An open path optical technique is used to measure a few series of known-VLT thin film that act as sample of different visibilities. This measurement system is able to measure the light intensity of these thin films within the visible light region (535-540 nm) and the response time is less than 1s.
Quantum cascade laser based sensor for open path measurement of atmospheric trace gases
NASA Astrophysics Data System (ADS)
Deng, Hao; Sun, Juan; Liu, Ningwu; Ding, Junya; Chao, Zhou; Zhang, Lei; Li, Jingsong
2017-02-01
A sensitive open-path gas sensor employing a continuous-wave (CW) distributed feedback (DFB) quantum cascade laser (QCL) and direct absorption spectroscopy (DAS) was demonstrated for simultaneously measurements of atmospheric CO and N2O. Two interference free absorption lines located at 2190.0175 cm-1 and 2190.3498 cm-1 were selected for CO and N2O concentration measurements, respectively. The Allan variance analysis technique was performed to investigate the long-term performance of the QCL sensor system. The results indicate that a detection limit of 9.92 ppb for CO and 7.7 ppb for N2O with 1-s integration time were achieved, which can be further improved to 1.5 ppb and 1.1 ppb by increasing the average time up to 80 s.
Qualitative Advances of China's Basic Education since Reform and Opening up: A Brief Overview
ERIC Educational Resources Information Center
Tao, Xin; Chunhua, Kang
2012-01-01
Basic education is universal education, which aims to improve the basic quality of a nation's people. In the three decades since reform and opening up, earth-shaking changes have taken place in the quality of China's basic education. This article describes the path of development and changes in China's basic education over the past thirty years…
Fretting Fatigue with Cylindrical-On-Flat Contact: Crack Nucleation, Crack Path and Fatigue Life
Noraphaiphipaksa, Nitikorn; Manonukul, Anchalee; Kanchanomai, Chaosuan
2017-01-01
Fretting fatigue experiments and finite element analysis were carried out to investigate the influence of cylindrical-on-flat contact on crack nucleation, crack path and fatigue life of medium-carbon steel. The location of crack nucleation was predicted using the maximum shear stress range criterion and the maximum relative slip amplitude criterion. The prediction using the maximum relative slip amplitude criterion gave the better agreement with the experimental result, and should be used for the prediction of the location of crack nucleation. Crack openings under compressive bulk stresses were found in the fretting fatigues with flat-on-flat contact and cylindrical-on-flat contacts, i.e., fretting-contact-induced crack openings. The crack opening stress of specimen with flat-on-flat contact was lower than those of specimens with cylindrical-on-flat contacts, while that of specimen with 60-mm radius contact pad was lower than that of specimen with 15-mm radius contact pad. The fretting fatigue lives were estimated by integrating the fatigue crack growth curve from an initial propagating crack length to a critical crack length. The predictions of fretting fatigue life with consideration of crack opening were in good agreement with the experimental results. PMID:28772522
[System design of open-path natural gas leakage detection based on Fresnel lens].
Xia, Hui; Liu, Wen-Qing; Zhang, Yu-Jun; Kan, Rui-Feng; Cui, Yi-Ben; Wang, Min; He, Ying; Cui, Xiao-Juan; Ruan, Jun; Geng, Hui
2009-03-01
Based on the technology of tunable diode laser absorption spectroscopy (TDLAS) in conjunction with second harmonic wave detection, a long open-path TDLAS system using a 1.65 microm InGaAsP distributed feedback laser was developed, which is used for detecting pipeline leakage. In this system, a high cost performance Fresnel lens is used as the receiving optical system, which receives the laser-beam reflected by a solid corner cube reflector, and focuses the receiving laser-beam to the InGaAs detector. At the same time, the influences of the concentration to the fluctuation of light intensity were taken into account in the process of measurement, and were eliminated by the method of normalized light intensity. As a result, the measurement error caused by the fluctuation of light intensity was made less than 1%. The experiment of natural gas leakage detection was simulated, and the detection sensitivity is 0.1 x 10(-6) (ratio by volume) with a total path of 320 m. According to the receiving light efficiency of the optical system and the detectable minimum light intensity of the detector, the detectable maximal optical path of the system was counted to be 2 000 m. The results of experiment show that it is a feasible design to use the Fresnel lens as the receiving optical system and can satisfy the demand of the leakage detection of natural gas.
Diverter/bop system and method for a bottom supported offshore drilling rig
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roche, J.R.; Alexander, G.G.; Carbaugh, W.L.
1986-07-01
A system is described adapted for alternative use as a diverter or a blowout preventer for a bottom supported drilling rig and adapted for connection to a permanent housing attached to rig structural members beneath a drilling rig rotary table, the permanent housing having an outlet connectable to a rig fluid system flow line. The system consists of: a fluid flow controller having a controller housing with a lower cylindrical opening and an upper cylindrical opening and a vertical path therebetween and a first outlet passage and a second outlet passage provided in its wall, a packing element disposed withinmore » the controller housing, and annular piston means adapted for moving from a first position to a second position, whereby in the first position the piston means wall prevents interior fluid from communicating with the outlet passages in the controller housing wall and in the second position the piston means wall allows fluid communication of interior fluid with the outlet passages and urges the annular packing element to close about an object extending through the bore of the controller housing or to close the vertical flow path through through the controller housing in the absence of any object in the vertical flow path, means for connecting a vent line to the outlet passage provided in the controller housing wall, a lower telescoping spool having a lower joining means at its lower end for joining alternatively to structural casing or to a mandrel connected to a conductor string cemented within the structural casing and an upper connection means at its upper end for connection to the lower cylindrical opening of the fluid flow controller, and an upper telescoping spool having a lower connection means for connection to the upper cylindrical opening of the fluid flow controller.« less
ERIC Educational Resources Information Center
Hartel, Hermann
2000-01-01
Finds that computer simulations can be used to visualize the processes involved with lunar tides. Technology adds value, thus opening new paths for a more distinct analysis and increased learning results. (Author/CCM)
Detection and differentiation of biological species using microcalorimetric spectroscopy.
Arakawa, E T; Lavrik, N V; Rajic, S; Datskos, P G
2003-01-01
We report on the application of infrared (IR) microcalorimetric spectroscopy ( micro -CalSpec) to the identification and detection of trace amounts of biological species. Our approach combines principles of photothermal IR spectroscopy with ultrasensitive microcantilever (MC) thermal detectors. We have obtained photothermal IR spectra for DNA and RNA bases and for Bacillus Cereus (an anthrax simulant) in the wavelength range of 2.5-14.5 micro m (4000-690 cm(-1)). The measurements are accomplished by absorbing biological materials directly on a MC thermal detector. The main advantage of the developed micro -CalSpec is its unprecedented sensitivity as compared to any of the previously explored IR techniques, including FTIR and photothermal FTIR methods. Our results demonstrate that <10(-9)g of a biological sample is sufficient to obtain its characteristic micro -CalSpec spectrum that contains information-rich chemical (vibrational) signatures. This opens up a new opportunity to create inexpensive high-throughput analytical systems for biochemical detection.
Optical properties of polyimides films treated by nanosecond pulsed electrical discharges in water
NASA Astrophysics Data System (ADS)
Sava, Ion; Kruth, Angela; Kolb, Juergen F.; Miron, Camelia
2018-01-01
Fluorinated polyimide films containing cobalt chloride based on hexafluoroisopropylidenediphthalic dianhydride and 4,4‧-diamino-3,3‧-dimethyl diphenylmethane were treated by nanosecond pulsed electrical discharges generated in distilled water. The polyimide films have been characterized by Fourier transform infrared (FTIR) spectra and contact angle measurements, optical transmission spectroscopy, and fluorescence spectroscopy. Significant changes in some intrinsic fluorescence features, such as the intensity and position of the emission peak, have been observed during exposure to water plasma. These effects have been considered to correlate with the development of specific chemical interactions between the liquid and the macromolecules, including the formation of hydrogen bridges. A slight increase in surface hydrophobicity was observed after plasma treatment. FTIR spectra showed a decrease in the intensity of the absorption band and an opening of the imide ring, depending on the treatment time.
NASA Technical Reports Server (NTRS)
Heverly, Matthew; Dougherty, Sean; Toon, Geoffrey; Soto, Alejandro; Blavier, Jean-Francois
2004-01-01
One of the key components of a Fourier Transform Infrared Spectrometer (FTIR) is the linear translation stage used to vary the optical path length between the two arms of the interferometer. This translation mechanism must produce extremely constant velocity motion across its entire range of travel to allow the instrument to attain high signal-to-noise ratio and spectral resolving power. A new spectrometer is being developed at the Jet Propulsion Laboratory under NASA s Planetary Instrument Definition and Development Program (PIDDP). The goal of this project is to build upon existing spaceborne FTIR spectrometer technology to produce a new instrument prototype that has drastically superior spectral resolution and substantially lower mass, making it feasible for planetary exploration. In order to achieve these goals, Alliance Spacesystems, Inc. (ASI) has developed a linear translation mechanism using a novel ultrasonic piezo linear motor in conjunction with a fully kinematic, fault tolerant linear rail system. The piezo motor provides extremely smooth motion, is inherently redundant, and is capable of producing unlimited travel. The kinematic rail uses spherical Vespel(R). rollers and bushings, which eliminates the need for wet lubrication, while providing a fault tolerant platform for smooth linear motion that will not bind under misalignment or structural deformation. This system can produce velocities from 10 - 100 mm/s with less than 1% velocity error over the entire 100-mm length of travel for a total mechanism mass of less than 850 grams. This system has performed over half a million strokes under vacuum without excessive wear or degradation in performance. This paper covers the design, development, and testing of this linear translation mechanism as part of the Planetary Atmosphere Occultation Spectrometer (PAOS) instrument prototype development program.
Tunable quantum interference in a 3D integrated circuit.
Chaboyer, Zachary; Meany, Thomas; Helt, L G; Withford, Michael J; Steel, M J
2015-04-27
Integrated photonics promises solutions to questions of stability, complexity, and size in quantum optics. Advances in tunable and non-planar integrated platforms, such as laser-inscribed photonics, continue to bring the realisation of quantum advantages in computation and metrology ever closer, perhaps most easily seen in multi-path interferometry. Here we demonstrate control of two-photon interference in a chip-scale 3D multi-path interferometer, showing a reduced periodicity and enhanced visibility compared to single photon measurements. Observed non-classical visibilities are widely tunable, and explained well by theoretical predictions based on classical measurements. With these predictions we extract Fisher information approaching a theoretical maximum. Our results open a path to quantum enhanced phase measurements.
Autonomous Robot Navigation in Human-Centered Environments Based on 3D Data Fusion
NASA Astrophysics Data System (ADS)
Steinhaus, Peter; Strand, Marcus; Dillmann, Rüdiger
2007-12-01
Efficient navigation of mobile platforms in dynamic human-centered environments is still an open research topic. We have already proposed an architecture (MEPHISTO) for a navigation system that is able to fulfill the main requirements of efficient navigation: fast and reliable sensor processing, extensive global world modeling, and distributed path planning. Our architecture uses a distributed system of sensor processing, world modeling, and path planning units. In this arcticle, we present implemented methods in the context of data fusion algorithms for 3D world modeling and real-time path planning. We also show results of the prototypic application of the system at the museum ZKM (center for art and media) in Karlsruhe.
NASA Technical Reports Server (NTRS)
Jacob, H. G.
1972-01-01
An optimization method has been developed that computes the optimal open loop inputs for a dynamical system by observing only its output. The method reduces to static optimization by expressing the inputs as series of functions with parameters to be optimized. Since the method is not concerned with the details of the dynamical system to be optimized, it works for both linear and nonlinear systems. The method and the application to optimizing longitudinal landing paths for a STOL aircraft with an augmented wing are discussed. Noise, fuel, time, and path deviation minimizations are considered with and without angle of attack, acceleration excursion, flight path, endpoint, and other constraints.
Traffic-engineering-aware shortest-path routing and its application in IP-over-WDM networks [Invited
NASA Astrophysics Data System (ADS)
Lee, Youngseok; Mukherjee, Biswanath
2004-03-01
Single shortest-path routing is known to perform poorly for Internet traffic engineering (TE) where the typical optimization objective is to minimize the maximum link load. Splitting traffic uniformly over equal-cost multiple shortest paths in open shortest path first and intermediate system-intermediate system protocols does not always minimize the maximum link load when multiple paths are not carefully selected for the global traffic demand matrix. However, a TE-aware shortest path among all the equal-cost multiple shortest paths between each ingress-egress pair can be selected such that the maximum link load is significantly reduced. IP routers can use the globally optimal TE-aware shortest path without any change to existing routing protocols and without any serious configuration overhead. While calculating TE-aware shortest paths, the destination-based forwarding constraint at a node should be satisfied, because an IP router will forward a packet to the next hop toward the destination by looking up the destination prefix. We present a mathematical problem formulation for finding a set of TE-aware shortest paths for the given network as an integer linear program, and we propose a simple heuristic for solving large instances of the problem. Then we explore the usage of our proposed algorithm for the integrated TE method in IP-over-WDM networks. The proposed algorithm is evaluated through simulations in IP networks as well as in IP-over-WDM networks.
A structural model of age, grey matter volumes, education, and personality traits.
Kitamura, Soichiro; Yasuno, Fumihiko; Yamamoto, Akihide; Kazui, Hiroaki; Kudo, Takashi; Matsuoka, Kiwamu; Kiuchi, Kuniaki; Kosaka, Jun; Nagatsuka, Kazuyuki; Iida, Hidehiro; Kishimoto, Toshifumi
2016-01-01
When the relationship between ageing and changes in personality traits is considered, it is important to know how they are influenced by biological and environmental factors. The present study examined the relationships between various factors associated with the effect of ageing on personality traits, including structural changes of the brain and environmental factors such as education. We recruited 41 healthy subjects. We administered the NEO Five-Factor Inventory to assess personality factors. Magnetic resonance imaging was performed, and regional grey matter (GM) volumes were obtained. We identified associations in the correlation analysis of age, cerebral GM volume, years of education, and the personality trait of openness. Path analysis was used to estimate the relationships among these factors. The path analysis model of age, GM volume, years of education, and the personality trait of openness revealed that age has an indirect negative association with openness through GM volume and years of education. Ageing was related to a decrease in GM volume, which was in turn related to a decrease in the openness score. Older subjects generally had fewer years of education, which was related to a lower openness score. Maintaining openness against the effects of ageing is desirable, and our results imply that interventions against age-related cerebral atrophy and the promotion of opportunities for higher education may contribute to the development and stability of a healthy personality during the adult life course. © 2015 The Authors. Psychogeriatrics © 2015 Japanese Psychogeriatric Society.
Open cycle ocean thermal energy conversion steam control and bypass system
Wittig, J. Michael; Jennings, Stephen J.
1980-01-01
Two sets of hinged control doors for regulating motive steam flow from an evaporator to a condenser alternatively through a set of turbine blades in a steam bypass around the turbine blades. The evaporator has a toroidal shaped casing situated about the turbine's vertical axis of rotation and an outlet opening therein for discharging motive steam into an annular steam flow path defined between the turbine's radially inner and outer casing structures. The turbine blades extend across the steam flow path intermediate the evaporator and condenser. The first set of control doors is arranged to prevent steam access to the upstream side of the turbine blades and the second set of control doors acts as a bypass around the blades so as to maintain equilibrium between the evaporator and condenser during non-rotation of the turbine. The first set of control doors preferably extend, when closed, between the evaporator casing and the turbine's outer casing and, when open, extend away from the axis of rotation. The second set of control doors preferably constitute a portion of the turbine's outer casing downstream from the blades when closed and extend, when open, toward the axis of rotation. The first and second sets of control doors are normally held in the open and closed positions respectively by locking pins which may be retracted upon detecting an abnormal operating condition respectively to permit their closing and opening and provide steam flow from the evaporator to the condenser.
Worcester 1 Inch Solenoid Actuated Gas Operated SCHe System Valves
DOE Office of Scientific and Technical Information (OSTI.GOV)
MISKA, C.R.
1 inch gas-operated full-port ball valves incorporate a solenoid and limit switches as integral parts of the actuator. These valves are normally open and fail safe to the open position (GOV-1*02 and 1*06 fail closed) to provide a flow path of helium gas to the MCO under helium purge and off-normal conditions when the MCO is isolated.
Worcester 1 Inch Solenoid Actuated Gas Operated SCHe System Valves
DOE Office of Scientific and Technical Information (OSTI.GOV)
VAN KATWIJK, C.
1 inch Gas-operated full-port ball valves incorporate a solenoid and limit switches as integral parts of the actuator. These valves are normally open and fail safe to the open position (GOV-1*02 and 1*06 fall closed) to provide a flow path of helium gas to the MCO under helium purge and off-normal conditions when the MCO is isolated.
Worcester 1 Inch Solenoid Actuated Gas Operated SCHe System Valves
DOE Office of Scientific and Technical Information (OSTI.GOV)
VAN KATWIJK, C.
1 inch Gas-operated full-port ball valves incorporate a solenoid and limit switches as integral parts of the actuator. These valves are normally open and fail safe to the open position (GOV-1*02 and 1*06 fail closed) to provide a flow path of helium gas to the MCO under helium purge and off-normal conditions when the MCO is isolated.
NASA Astrophysics Data System (ADS)
Kurosaki, Yuzuru; Artamonov, Maxim; Ho, Tak-San; Rabitz, Herschel
2009-07-01
Quantum wave packet optimal control simulations with intense laser pulses have been carried out for studying molecular isomerization dynamics of a one-dimensional (1D) reaction-path model involving a dominant competing dissociation channel. The 1D intrinsic reaction coordinate model mimics the ozone open→cyclic ring isomerization along the minimum energy path that successively connects the ozone cyclic ring minimum, the transition state (TS), the open (global) minimum, and the dissociative O2+O asymptote on the O3 ground-state A1' potential energy surface. Energetically, the cyclic ring isomer, the TS barrier, and the O2+O dissociation channel lie at ˜0.05, ˜0.086, and ˜0.037 hartree above the open isomer, respectively. The molecular orientation of the modeled ozone is held constant with respect to the laser-field polarization and several optimal fields are found that all produce nearly perfect isomerization. The optimal control fields are characterized by distinctive high temporal peaks as well as low frequency components, thereby enabling abrupt transfer of the time-dependent wave packet over the TS from the open minimum to the targeted ring minimum. The quick transition of the ozone wave packet avoids detrimental leakage into the competing O2+O channel. It is possible to obtain weaker optimal laser fields, resulting in slower transfer of the wave packets over the TS, when a reduced level of isomerization is satisfactory.
NASA Astrophysics Data System (ADS)
Zemek, P. G.
2017-12-01
Quantum Cascade Lasers (QCLs) are quickly replacing Tunable Diode Lasers (TDL) for multi-target species identification and quantification in both extractive and open-path (OP) Optical Remote Sensing (ORS) fence-line instrumentation. As was seen with TDL incorporation and pricing drops as the adoption by the telecommunications industry and its current scaling has improved robustness and pricing, the QCL is also, albiet more slowly, becoming a mature market. There are several advantages of QCLs over conventional TDLs such as improved brightness and beam density, high resolution, as well as the incorporation of external etalons or internal gratings to scan over wide spectral areas. QCLs typically operate in the Mid infra-red (MIR) as opposed to the Near-Infrared (NIR) region used with TDL. The MidIR is a target rich absorption band area where compounds have high absorbtivity coefficients resulting in better detection limits as compared to TDL instruments. The use of novel chemometrics and more sensitive non-cryo-cooled detectors has allowed some of the first QCL open-path instruments in both active and passive operation. Data and field studies of one of the newest QCL OP systems is presented that allows one system to measure multiple target compounds. Multiple QCL spectral regions may be stitched together to increase the capability of QCLs over TDL OP systems. A comparison of several ORS type systems will be presented.
Autonomous Control Modes and Optimized Path Guidance for Shipboard Landing in High Sea States
2015-11-16
a degraded visual environment, workload during the landing task begins to approach the limits of a human pilot’s capability. It is a similarly...Figure 2. Approach Trajectory ±4 ft landing error ±8 ft landing error ±12 ft landing error Flight Path -3000...heave and yaw axes. Figure 5. Open loop system generation ±4 ft landing error ±8 ft landing error ±12 ft landing error -10 -8 -6 -4 -2 0 2 4
Lingafelter, J.W.
1960-04-01
An apparatus is described in which a welding arc created between an annular electrode and a workpiece moves under the influence of an electromagnetic field about the electrode in a closed or annular path. This mode of welding is specially suited to the enclosing of nuclear-fuel slugs in a protective casing. For example, a uranium slug is placed in an aluminum can, and an aluminum closure is welded to the open end of the can along a closed or annular path conforming to the periphery of the end closure.
PathVisio 3: an extendable pathway analysis toolbox.
Kutmon, Martina; van Iersel, Martijn P; Bohler, Anwesha; Kelder, Thomas; Nunes, Nuno; Pico, Alexander R; Evelo, Chris T
2015-02-01
PathVisio is a commonly used pathway editor, visualization and analysis software. Biological pathways have been used by biologists for many years to describe the detailed steps in biological processes. Those powerful, visual representations help researchers to better understand, share and discuss knowledge. Since the first publication of PathVisio in 2008, the original paper was cited more than 170 times and PathVisio was used in many different biological studies. As an online editor PathVisio is also integrated in the community curated pathway database WikiPathways. Here we present the third version of PathVisio with the newest additions and improvements of the application. The core features of PathVisio are pathway drawing, advanced data visualization and pathway statistics. Additionally, PathVisio 3 introduces a new powerful extension systems that allows other developers to contribute additional functionality in form of plugins without changing the core application. PathVisio can be downloaded from http://www.pathvisio.org and in 2014 PathVisio 3 has been downloaded over 5,500 times. There are already more than 15 plugins available in the central plugin repository. PathVisio is a freely available, open-source tool published under the Apache 2.0 license (http://www.apache.org/licenses/LICENSE-2.0). It is implemented in Java and thus runs on all major operating systems. The code repository is available at http://svn.bigcat.unimaas.nl/pathvisio. The support mailing list for users is available on https://groups.google.com/forum/#!forum/wikipathways-discuss and for developers on https://groups.google.com/forum/#!forum/wikipathways-devel.
Ning, Ping; Liu, Sijian; Wang, Chi; Li, Kai; Sun, Xin; Tang, Lihong; Liu, Gui
2018-02-01
Walnut-shell activated carbon (WSAC) supported ferric oxide was modified by non-thermal plasma (NTP), and the removal efficiency for hydrogen sulfide over Fe/WSAC modified by dielectric barrier discharge (DBD) was significantly promoted. The sample modified for 10min and 6.8kV output (30V input voltage) maintained 100% H 2 S conversion over a long reaction time of 390min. The surface properties of adsorbents modified by NTP under different conditions were evaluated by the methods of X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET) analysis and in-situ Fourier transform infrared spectroscopy (FTIR), to help understand the effect of the NTP treatment. NTP treatment enhanced the adsorption capacity of Fe/WSAC, which could due to the formation of micro-pores with sizes of 0.4, 0.5 and 0.75nm. XPS revealed that chemisorbed oxygen changed into lattice oxygen after NTP treatment, and lattice oxygen is beneficial for H 2 S oxidation. From the in-situ FTIR result, transformation of the reaction path on Fe/WSAC was observed after NTP modification. The research results indicate that NTP is an effective method to improve the surface properties of the Fe/WSAC catalyst for H 2 S adsorption-oxidation. Copyright © 2017. Published by Elsevier B.V.
[Quantitative spectrum analysis of characteristic gases of spontaneous combustion coal].
Liang, Yun-Tao; Tang, Xiao-Jun; Luo, Hai-Zhu; Sun, Yong
2011-09-01
Aimed at the characteristics of spontaneous combustion gas such as a variety of gases, lou limit of detection, and critical requirement of safety, Fourier transform infrared (FTIR) spectral analysis is presented to analyze characteristic gases of spontaneous combustion In this paper, analysis method is introduced at first by combing characteristics of absorption spectra of analyte and analysis requirement. Parameter setting method, sample preparation, feature variable abstract and analysis model building are taken into consideration. The methods of sample preparation, feature abstraction and analysis model are introduced in detail. And then, eleven kinds of gases were tested with Tensor 27 spectrometer. CH4, C2H6, C3H8, iC4H10, nC4H10, C2 H4, C3 H6, C3 H2, SF6, CO and CO2 were included. The optical path length was 10 cm while the spectra resolution was set as 1 cm(-1). The testing results show that the detection limit of all analytes is less than 2 x 10(-6). All the detection limits fit the measurement requirement of spontaneous combustion gas, which means that FTIR may be an ideal instrument and the analysis method used in this paper is competent for spontaneous combustion gas measurement on line.
Gallignani, Máximo; Rondón, Rebeca A.; Ovalles, José F.; Brunetto, María R.
2014-01-01
A Fourier transform infrared derivative spectroscopy (FTIR-DS) method has been developed for determining furosemide (FUR) in pharmaceutical solid dosage form. The method involves the extraction of FUR from tablets with N,N-dimethylformamide by sonication and direct measurement in liquid phase mode using a reduced path length cell. In general, the spectra were measured in transmission mode and the equipment was configured to collect a spectrum at 4 cm−1 resolution and a 13 s collection time (10 scans co-added). The spectra were collected between 1400 cm−1 and 450 cm−1. Derivative spectroscopy was used for data processing and quantitative measurement using the peak area of the second order spectrum of the major spectral band found at 1165 cm−1 (SO2 stretching of FUR) with baseline correction. The method fulfilled most validation requirements in the 2 mg/mL and 20 mg/mL range, with a 0.9998 coefficient of determination obtained by simple calibration model, and a general coefficient of variation <2%. The mean recovery for the proposed assay method resulted within the (100±3)% over the 80%–120% range of the target concentration. The results agree with a pharmacopoeial method and, therefore, could be considered interchangeable. PMID:26579407
Tan, A. C. W.; Polo‐Cambronell, B. J.; Provaggi, E.; Ardila‐Suárez, C.; Ramirez‐Caballero, G. E.; Baldovino‐Medrano, V. G.
2017-01-01
Abstract In the current study, we present the synthesis of novel low cost bio‐polyurethane compositions with variable mechanical properties based on castor oil and glycerol for biomedical applications. A detailed investigation of the physicochemical properties of the polymer was carried out by using mechanical testing, ATR‐FTIR, and X‐ray photoelectron spectroscopy (XPS). Polymers were also tested in short term in‐vitro cell culture with human mesenchymal stem cells to evaluate their biocompatibility for potential applications as biomaterial. FTIR analysis confirmed the synthesis of castor oil and glycerol based PU polymers. FTIR also showed that the addition of glycerol as co‐polyol increases crosslinking within the polymer backbone hence enhancing the bulk mechanical properties of the polymer. XPS data showed that glycerol incorporation leads to an enrichment of oxidized organic species on the surface of the polymers. Preliminary investigation into in vitro biocompatibility showed that serum protein adsorption can be controlled by varying the glycerol content with polymer backbone. An alamar blue assay looking at the metabolic activity of the cells indicated that castor oil based PU and its variants containing glycerol are non‐toxic to the cells. This study opens an avenue for using low cost bio‐polyurethane based on castor oil and glycerol for biomedical applications. PMID:29159831
NASA Astrophysics Data System (ADS)
Hasenkopf, C. A.
2017-12-01
Increasingly, open data, open-source projects are unearthing rich datasets and tools, previously impossible for more traditional avenues to generate. These projects are possible, in part, because of the emergence of online collaborative and code-sharing tools, decreasing costs of cloud-based services to fetch, store, and serve data, and increasing interest of individuals to contribute their time and skills to 'open projects.' While such projects have generated palpable enthusiasm from many sectors, many of these projects face uncharted paths for sustainability, visibility, and acceptance. Our project, OpenAQ, is an example of an open-source, open data community that is currently forging its own uncharted path. OpenAQ is an open air quality data platform that aggregates and universally formats government and research-grade air quality data from 50 countries across the world. To date, we make available more than 76 million air quality (PM2.5, PM10, SO2, NO2, O3, CO and black carbon) data points through an open Application Programming Interface (API) and a user-customizable download interface at https://openaq.org. The goal of the platform is to enable an ecosystem of users to advance air pollution efforts from science to policy to the private sector. The platform is also an open-source project (https://github.com/openaq) and has only been made possible through the coding and data contributions of individuals around the world. In our first two years of existence, we have seen requests for data to our API skyrocket to more than 6 million datapoints per month, and use-cases as varied as ingesting data aggregated from our system into real-time models of wildfires to building open-source statistical packages (e.g. ropenaq and py-openaq) on top of the platform to creating public-friendly apps and chatbots. We will share a whirl-wind trip through our evolution and the many lessons learned so far related to platform structure, community engagement, organizational model type and sustainability.
NASA Astrophysics Data System (ADS)
Sargent, S.; Somers, J. M.
2015-12-01
Trace-gas eddy covariance flux measurement can be made with open-path or closed-path analyzers. Traditional closed-path trace-gas analyzers use multipass absorption cells that behave as mixing volumes, requiring high sample flow rates to achieve useful frequency response. The high sample flow rate and the need to keep the multipass cell extremely clean dictates the use of a fine-pore filter that may clog quickly. A large-capacity filter cannot be used because it would degrade the EC system frequency response. The high flow rate also requires a powerful vacuum pump, which will typically consume on the order of 1000 W. The analyzer must measure water vapor for spectroscopic and dilution corrections. Open-path analyzers are available for methane, but not for nitrous oxide. The currently available methane analyzers have low power consumption, but are very large. Their large size degrades frequency response and disturbs the air flow near the sonic anemometer. They require significant maintenance to keep the exposed multipass optical surfaces clean. Water vapor measurements for dilution and spectroscopic corrections require a separate water vapor analyzer. A new closed-path eddy covariance system for measuring nitrous oxide or methane fluxes provides an elegant solution. The analyzer (TGA200A, Campbell Scientific, Inc.) uses a thermoelectrically-cooled interband cascade laser. Its small sample-cell volume and unique sample-cell configuration (200 ml, 1.5 m single pass) provide excellent frequency response with a low-power scroll pump (240 W). A new single-tube Nafion® dryer removes most of the water vapor, and attenuates fluctuations in the residual water vapor. Finally, a vortex intake assembly eliminates the need for an intake filter without adding volume that would degrade system frequency response. Laboratory testing shows the system attenuates the water vapor dilution term by more than 99% and achieves a half-power band width of 3.5 Hz.
A Numerical Model of Exchange Chromatography Through 3D Lattice Structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salloum, Maher; Robinson, David B.
Rapid progress in the development of additive manufacturing technologies is opening new opportunities to fabricate structures that control mass transport in three dimensions across a broad range of length scales. We describe a structure that can be fabricated by newly available commercial 3D printers. It contains an array of regular three-dimensional flow paths that are in intimate contact with a solid phase, and thoroughly shuffle material among the paths. We implement a chemically reacting flow model to study its behavior as an exchange chromatography column, and compare it to an array of one-dimensional flow paths that resemble more traditional honeycombmore » monoliths. A reaction front moves through the columns and then elutes. Here, the front is sharper at all flow rates for the structure with three-dimensional flow paths, and this structure is more robust to channel width defects than the one-dimensional array.« less
A Numerical Model of Exchange Chromatography Through 3D Lattice Structures
Salloum, Maher; Robinson, David B.
2018-01-30
Rapid progress in the development of additive manufacturing technologies is opening new opportunities to fabricate structures that control mass transport in three dimensions across a broad range of length scales. We describe a structure that can be fabricated by newly available commercial 3D printers. It contains an array of regular three-dimensional flow paths that are in intimate contact with a solid phase, and thoroughly shuffle material among the paths. We implement a chemically reacting flow model to study its behavior as an exchange chromatography column, and compare it to an array of one-dimensional flow paths that resemble more traditional honeycombmore » monoliths. A reaction front moves through the columns and then elutes. Here, the front is sharper at all flow rates for the structure with three-dimensional flow paths, and this structure is more robust to channel width defects than the one-dimensional array.« less
NASA Astrophysics Data System (ADS)
Simeonov, Valentin; van den Bergh, Hubert; Parlange, Marc
2010-05-01
A new, long open-path instrument for monitoring of path-averaged methane and water vapor concentrations will be presented. The instrument is built on the monostatic scheme (transceiver - distant retroreflector). A VCSEL tunable diode laser (TDL) with a central wavelength of 1654 nm is used as a light source. A specially designed, single-cell, hollow-cube retroreflector with 150 mm aperture will be installed at 1200 m from the transceiver in the final deployment at Jungfraujjoch and 100 mm retroreflectors will be used in the other applications. The receiver is built around a 20 cm Newtonian telescope. To avoid distortions in the shape of a methane line, caused by atmospheric turbulences, the line is scanned within 1 µs. Fast InGaAs photodiodes and 200 MHz are used to achieve this scanning rate. The expected concentration resolution for the above mentioned path lengths is of the order of 2 ppb. The instrument is developed at the Swiss Federal Institute of Technology - Lausanne (EPFL) Switzerland and will be used within the GAW+ CH program for long-term monitoring of background methane concentration in the Swiss Alps. After completing the initial tests at EPFL the instrument will be installed in 2012 at the High Altitude Research Station Jungfraujoch (HARSJ) located at 3580 m ASL. The HARSJ is one of the 24 global GAW stations and carries on continuous observations of a number of trace gasses, including methane. One of the goals of the project is to compare path-averaged to ongoing point measurements of methane in order to identify possible influence of the station. Future deployments of a copy of the instrument include the Colombian part of Amazonia and Siberian wetlands.
Fluid lubricated bearing assembly
Boorse, Henry A.; Boeker, Gilbert F.; Menke, John R.
1976-01-01
1. A support for a loaded rotatable shaft comprising in combination on a housing having a fluid-tight cavity encasing an end portion of said shaft, a thrust bearing near the open end of said cavity for supporting the axial thrust of said shaft, said thrust bearing comprising a thrust plate mounted in said housing and a thrust collar mounted on said shaft, said thrust plate having a central opening the peripheral portion of which is hermetically sealed to said housing at the open end of said cavity, and means for supplying a fluid lubricant to said thrust bearing, said thrust bearing having a lubricant-conducting path connecting said lubricant supplying means with the space between said thrust plate and collar intermediate the peripheries thereof, the surfaces of said plate and collar being constructed and arranged to inhibit radial flow of lubricant and, on rotation of said thrust collar, to draw lubricant through said path between the bearing surfaces and to increase the pressure therebetween and in said cavity and thereby exert a supporting force on said end portion of said shaft.
NASA Astrophysics Data System (ADS)
Mieloch, Adam A.; Krecisz, Monika; Rybka, Jakub D.; Strugała, Aleksander; Krupiński, Michał; Urbanowicz, Anna; Kozak, Maciej; Skalski, Bohdan; Figlerowicz, Marek; Giersig, Michael
2018-03-01
Virus-like particles (VLPs) have sparked a great interest in the field of nanobiotechnology and nanomedicine. The introduction of superparamagnetic nanoparticles (SPIONs) as a core, provides potential use of VLPs in the hyperthermia therapy, MRI contrast agents and magnetically-powered delivery agents. Magnetite NPs also provide a significant improvement in terms of VLPs stability. Moreover employing viral structural proteins as self-assembling units has opened a new paths for targeted therapy, drug delivery systems, vaccines design, and many more. In many cases, the self-assembly of a virus strongly depends on electrostatic interactions between positively charged groups of the capsid proteins and negatively charged nucleic acid. This phenomenon imposes the negative net charge as a key requirement for the core nanoparticle. In our experiments, Brome mosaic virus (BMV) capsid proteins isolated from infected plants Hordeum vulgare were used. Superparamagnetic iron oxide nanoparticles (Fe3O4) with 15 nm in diameter were synthesized by thermal decomposition and functionalized with COOH-PEG-PL polymer or dihexadecylphosphate (DHP) in order to provide water solubility and negative charge required for the assembly. Nanoparticles were characterized by Transmission Electron Microscopy (TEM), Dynamic Light Scattering (DLS), Zeta Potential, Fourier Transformed Infrared Spectroscopy (FTIR) and Superconducting Quantum Interference Device (SQUID) magnetometry. TEM and DLS study were conducted to verify VLPs creation. This study demonstrates that the increase of negative surface charge is not a sufficient factor determining successful assembly. Additional steric interactions provided by longer ligands are crucial for the assembly of BMV SPION VLPs and may enhance the colloidal stability.
Mobile Optical Remote Sensing Measurements of VOC's to Quantify Emissions and to Map Impact
NASA Astrophysics Data System (ADS)
Mellqvist, J.; Samuelsson, J.; Marianne, E.; Brohede, S.; Andersson, P.; Johansson, J.; Izos, O.; Polidori, A.; Pikelnaya, O.
2017-12-01
Industrial volatile organic compound (VOC) emissions may cause direct health problems and contribute significantly to ozone formation. In order to investigate how small sources contribute to the VOC concentrations in the Los Angeles metropolitan area a comprehensive emission study has been carried out on behalf of the South Coast Air Quality Management District (SCAQMD). Emission measurements of alkanes, alkenes, aromatic VOCs and methane from major sources such as refineries, oil wells, petrol stations oil depots and oil platforms were measured in an intensive campaign during the fall of 2015 using several unique optical methods, including the Solar Occultation Flux method (SOF) and tracer correlation technique based on extractive FTIR and DOAS combined with an open path multi reflection cell. In 2017 these measurements have been continued during four shorter campaigns on several of the identified hot spot emission sites. The objective has been to study the time evolution and annual variation of the emission sources and their impact on the surroundings. The latter has been carried out by mobile mapping of VOC concentrations downwind of the sources and comparison to low cost portable PID sensors. The results from the field campaigns show that the emissions from the above mentioned sources are largely underestimated in inventories with potential impact on the air quality in the Los Angeles metropolitan area. In this presentation we will describe the optical techniques and describe recent standardization work carried out in Europe and the US. In addition, results from the measurements in the LA-basin will be shown and discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Love, S.P.; Goff, F.; Counce, D.
Volcanic gases provide important insights on the internal workings of volcanoes and changes in their composition and total flux can warn of impending changes in a volcano`s eruptive state. In addition, volcanoes are important contributors to the earth`s atmosphere, and understanding this volcanic contribution is crucial for unraveling the effect of anthropogenic gases on the global climate. Studies of volcanic gases have long relied upon direct in situ sampling, which requires volcanologists to work on-site within a volcanic crater. In recent years, spectroscopic techniques have increasingly been employed to obtain information on volcanic gases from greater distances and thus atmore » reduced risk. These techniques have included UV correlation spectroscopy (Cospec) for SO{sub 2} monitoring, the most widely-used technique, and infrared spectroscopy in a variety of configurations, both open- and closed-path. Francis et al. have demonstrated good results using the sun as the IR source. This solar occultation technique is quite useful, but puts rather strong restrictions on the location of instrument and is thus best suited to more accessible volcanoes. In order to maximize the flexibility and range of FTIR measurements at volcanoes, work over the last few years has emphasized techniques which utilize the strong radiance contrast between the volcanic gas plume and the sky. The authors have successfully employed these techniques at several volcanoes, including the White Island and Ruapehu volcanoes in New Zealand, the Kilauea volcano on Hawaii, and Mt. Etna in Italy. But Popocatepetl (5452 m), the recently re-awakened volcano 70 km southeast of downtown Mexico City, has provided perhaps the best examples to date of the usefulness of these techniques.« less
ESDAPT - APT PROGRAMMING EDITOR AND INTERPRETER
NASA Technical Reports Server (NTRS)
Premack, T.
1994-01-01
ESDAPT is a graphical programming environment for developing APT (Automatically Programmed Tool) programs for controlling numerically controlled machine tools. ESDAPT has a graphical user interface that provides the user with an APT syntax sensitive text editor and windows for displaying geometry and tool paths. APT geometry statement can also be created using menus and screen picks. ESDAPT interprets APT geometry statements and displays the results in its view windows. Tool paths are generated by batching the APT source to an APT processor (COSMIC P-APT recommended). The tool paths are then displayed in the view windows. Hardcopy output of the view windows is in color PostScript format. ESDAPT is written in C-language, yacc, lex, and XView for use on Sun4 series computers running SunOS. ESDAPT requires 4Mb of disk space, 7Mb of RAM, and MIT's X Window System, Version 11 Release 4, or OpenWindows version 3 for execution. Program documentation in PostScript format and an executable for OpenWindows version 3 are provided on the distribution media. The standard distribution medium for ESDAPT is a .25 inch streaming magnetic tape cartridge (Sun QIC-24) in UNIX tar format. This program was developed in 1992.
Practical method and device for enhancing pulse contrast ratio for lasers and electron accelerators
Zhang, Shukui; Wilson, Guy
2014-09-23
An apparatus and method for enhancing pulse contrast ratios for drive lasers and electron accelerators. The invention comprises a mechanical dual-shutter system wherein the shutters are placed sequentially in series in a laser beam path. Each shutter of the dual shutter system has an individually operated trigger for opening and closing the shutter. As the triggers are operated individually, the delay between opening and closing first shutter and opening and closing the second shutter is variable providing for variable differential time windows and enhancement of pulse contrast ratio.
An Application of Self-Organizing Map for Multirobot Multigoal Path Planning with Minmax Objective.
Faigl, Jan
2016-01-01
In this paper, Self-Organizing Map (SOM) for the Multiple Traveling Salesman Problem (MTSP) with minmax objective is applied to the robotic problem of multigoal path planning in the polygonal domain. The main difficulty of such SOM deployment is determination of collision-free paths among obstacles that is required to evaluate the neuron-city distances in the winner selection phase of unsupervised learning. Moreover, a collision-free path is also needed in the adaptation phase, where neurons are adapted towards the presented input signal (city) to the network. Simple approximations of the shortest path are utilized to address this issue and solve the robotic MTSP by SOM. Suitability of the proposed approximations is verified in the context of cooperative inspection, where cities represent sensing locations that guarantee to "see" the whole robots' workspace. The inspection task formulated as the MTSP-Minmax is solved by the proposed SOM approach and compared with the combinatorial heuristic GENIUS. The results indicate that the proposed approach provides competitive results to GENIUS and support applicability of SOM for robotic multigoal path planning with a group of cooperating mobile robots. The proposed combination of approximate shortest paths with unsupervised learning opens further applications of SOM in the field of robotic planning.
An Application of Self-Organizing Map for Multirobot Multigoal Path Planning with Minmax Objective
Faigl, Jan
2016-01-01
In this paper, Self-Organizing Map (SOM) for the Multiple Traveling Salesman Problem (MTSP) with minmax objective is applied to the robotic problem of multigoal path planning in the polygonal domain. The main difficulty of such SOM deployment is determination of collision-free paths among obstacles that is required to evaluate the neuron-city distances in the winner selection phase of unsupervised learning. Moreover, a collision-free path is also needed in the adaptation phase, where neurons are adapted towards the presented input signal (city) to the network. Simple approximations of the shortest path are utilized to address this issue and solve the robotic MTSP by SOM. Suitability of the proposed approximations is verified in the context of cooperative inspection, where cities represent sensing locations that guarantee to “see” the whole robots' workspace. The inspection task formulated as the MTSP-Minmax is solved by the proposed SOM approach and compared with the combinatorial heuristic GENIUS. The results indicate that the proposed approach provides competitive results to GENIUS and support applicability of SOM for robotic multigoal path planning with a group of cooperating mobile robots. The proposed combination of approximate shortest paths with unsupervised learning opens further applications of SOM in the field of robotic planning. PMID:27340395
2012-11-01
interactions in construct: An empirical validation using calibrated grounding. In 2007 BRIMS Conference Proceedings, Norfolk, VA. Simon, H. A...by the path name. Users should ensure that if they have opened any output files (e.g., in Excel to view the files), they should either close the file...stringvars to delimit string variables. Common Gotchas If Construct is unable to open an input file, it will exit and close. There are times when an
2012-11-01
validation using calibrated grounding. In 2007 BRIMS Conference Proceedings, Norfolk, VA. Simon, H. A. (1957). Administrative Behavior: A study of...Construct will write the output to the directory specified by the path name. Users should ensure that if they have opened any output files (e.g., in Excel... open an input file, it will exit and close. There are times when an error message is not present to the user in this situation! Users should ensure
High cleanliness globe valve with sine mechanism drive
NASA Astrophysics Data System (ADS)
Luo, Hu
2018-06-01
This paper gives a new type of quick-opening globe valve for life support pneumatic control system of the safety cabin at underground coal mine. The valve adopts the sine mechanism to transmit the rotating of the handle in the range of 90° to the reciprocating motion of the spool. The mechanism implements the quick-opening function of the valve through controlling the contact and separation between the O-ring and the end face of the valve. Since there is no relative sliding between the sealing interfaces, the valve solute uncontrollable disadvantage wear particles which produced by package ball valve, to ensure high cleanliness in flow path. Traditional transmission mechanism has a reinforcement effect and reduce handle open torque. By the finite element method, the relationship between the contact force and the compression of O-ring is analyzed to provide the boundary condition for the calculation of the rotational torque. Meanwhile the velocity field and pressure field along the flow path are simulated. The caliber size of the valve and the flow resistance coefficient are obtained. There is higher cleanliness, more reliable sealing, smaller handle open torque advantage compared with existing packing ball valve. The above work presents a new technical approach for the design of pneumatic control valve of the safety cabin.
NASA Astrophysics Data System (ADS)
Güler, Günnur; Džafić, Enela; Vorob'ev, Mikhail M.; Vogel, Vitali; Mäntele, Werner
2011-06-01
Fourier transform infrared (FT-IR)- and UV-circular dichroism (UV-CD) spectroscopy have been used to study real-time proteolytic digestion of β-lactoglobulin (β-LG) and β-casein (β-CN) by trypsin at various substrate/enzyme ratios in D 2O-buffer at 37 °C. Both techniques confirm that protein substrate looses its secondary structure upon conversion to the peptide fragments. This perturbation alters the backbone of the protein chain resulting in conformational changes and degrading of the intact protein. Precisely, the most significant spectral changes which arise from digestion take place in the amide I and amide II regions. The FT-IR spectra for the degraded β-LG show a decrease around 1634 cm -1, suggesting a decrease of β-sheet structure in the course of hydrolysis. Similarly, the intensity around the 1654 cm -1 band decreases for β-CN digested by trypsin, indicating a reduction in the α-helical part. On the other hand, the intensity around ˜1594 cm -1 and ˜1406 cm -1 increases upon enzymatic breakdown of both substrates, suggesting an increase in the antisymmetric and symmetric stretching modes of free carboxylates, respectively, as released digestion products. Observation of further H/D exchange in the course of digestion manifests the structural opening of the buried groups and accessibility to the core of the substrate. On the basis of the UV-CD spectra recorded for β-LG and β-CN digested by trypsin, the unordered structure increases concomitant with a decrease in the remaining structure, thus, revealing breakdown of the intact protein into smaller fragments. This model study in a closed reaction system may serve as a basis for the much more complex digestion processes in an open reaction system such as the stomach.
Micro FT-IR Characterization Of Human Lung Tumor Cells
NASA Astrophysics Data System (ADS)
Benedetti, Enzo; Teodori, L.; Vergamini, Piergiorgio; Trinca, M. L.; Mauro, F.; Salvati, F.; Spremolla, Giuliano
1989-12-01
FT-IR spectroscopy has opened up a new approach to the analytical study of cell transformation. Investigations carried out in normal and leukemic lymphocytes have evidenced an increase in DNA with respect to proteic components in neoplastic cells.(1) The evaluation of the ratio of the integrated areas(A) of the bands at 1080 cm-1 (mainly DNA) and at 1540 cm-1 (proteic components) has allowed us to establish a parameter which indicates, for values above 1.5, the neoplastic nature of cells. Recently, this approach has been applied to the study of human lung tumor cells. Several monocellular suspension procedures of the tissue fragment (mechanical and/or chemical) were tested to obtain reproducible and reliable spectra able to differentiate clearly between normal and patological cells. Chemical treatment (EDTA, Pepsin, Collagenase, etc.) produced additional bands in the spectra of the cells causing distortion of the profiles of some absorptions, and as a result, mechanical treatment was preferred. The normal and neoplastic cells homogeneously distributed by cytospin preparation on BaF2 windows were examined by means of FT-IR microscopy. An examination of several microareas of each sample yielded reproducible spectra, with values of the A 1080 cm-1 / A 1540 cm-1 parameter within a very narrow range for each sample, even if certain differences still remained among the different cases, in good agreement with the results obtained for leukemic cells.(1) The value of this parameter was found to be lower for cells isolated from the normal area of lung, than in the case of those corresponding to the tumoral area, meaning that an increase occurs in DNA with respect to the proteic components. These insights, which provide a basis to obtain indications at the molecular level, can open up new possibilities in clinical practice, in order to obtain diagnosis confirmation, to detect early stages of disease and to offer additional indications in cases of dubious interpretation.
Transition paths of Met-enkephalin from Markov state modeling of a molecular dynamics trajectory.
Banerjee, Rahul; Cukier, Robert I
2014-03-20
Conformational states and their interconversion pathways of the zwitterionic form of the pentapeptide Met-enkephalin (MetEnk) are identified. An explicit solvent molecular dynamics (MD) trajectory is used to construct a Markov state model (MSM) based on dihedral space clustering of the trajectory, and transition path theory (TPT) is applied to identify pathways between open and closed conformers. In the MD trajectory, only four of the eight backbone dihedrals exhibit bistable behavior. Defining a conformer as the string XXXX with X = "+" or "-" denoting, respectively, positive or negative values of a given dihedral angle and obtaining the populations of these conformers shows that only four conformers are highly populated, implying a strong correlation among these dihedrals. Clustering in dihedral space to construct the MSM finds the same four bistable dihedral angles. These state populations are very similar to those found directly from the MD trajectory. TPT is used to obtain pathways, parametrized by committor values, in dihedral state space that are followed in transitioning from closed to open states. Pathway costs are estimated by introducing a kinetics-based procedure that orders pathways from least (shortest) to greater cost paths. The least costly pathways in dihedral space are found to only involve the same XXXX set of dihedral angles, and the conformers accessed in the closed to open transition pathways are identified. For these major pathways, a correlation between reaction path progress (committors) and the end-to-end distance is identified. A dihedral space principal component analysis of the MD trajectory shows that the first three modes capture most of the overall fluctuation, and pick out the same four dihedrals having essentially all the weight in those modes. A MSM based on root-mean-square backbone clustering was also carried out, with good agreement found with dihedral clustering for the static information, but with results that differ significantly for the pathway analysis.
NASA Astrophysics Data System (ADS)
Bailey, D. M.; Miller, J. H. H.
2017-12-01
Beyond anthropogenic carbon emissions, the increase in atmospheric carbon from natural feedbacks such as thawing permafrost poses a risk to the global climate as global temperatures continue to increase. Permafrost is formally defined as soil that is continuously frozen for 24 consecutive months. These soils comprise nearly twenty-five percent of the Earth's terrestrial surface and possess twice the amount of carbon currently in the atmosphere. Continuous collection of carbon dioxide (CO2) and methane (CH4) concentrations is imperative in understanding seasonal and inter-annual variability of carbon feedbacks above thawing permafrost. A multi-year collaborative effort with the University of Alaska - Fairbanks, NASA Goddard Space Flight Center, and our group at George Washington University is underway to monitor these feedbacks near Fairbanks, Alaska. In June 2017, we deployed two open-path tunable diode laser sensors at the Bonanza Long Term Ecological Research Site for measurement of CO2 and CH4 concentrations. The open-path instrument (OPI) is an inexpensive, low-power sensor that collects spatially-integrated measurements of target molecules approximately 1.5 meters above ground level. With a total power burden of 18 W, the sensors ran exclusively on solar power for 15 days in a young thermokarst bog and 3.5 days at a rich fen site. Here we report on initial retrieval of diurnal cycles from each field site and compare our spatially-integrated measurements of CO2 and CH4. For CO2, the magnitude of the diurnal cycles show a strong dependence on daily weather at both field sites. These laser measurements are complemented by point measurements of CO2, temperature, pressure, and humidity made along the laser's optical path by non-dispersive infrared (NDIR) sensors.
NASA Astrophysics Data System (ADS)
Tao, L.; Sun, K.; Cavigelli, M. A.; Gelfand, I.; Zenone, T.; Cui, M.; Miller, D. J.; Khan, M. A.; Zondlo, M. A.
2012-12-01
The ambient concentration of nitrous oxide (N2O), the fourth most abundant greenhouse gas, is rapidly increasing with emissions from both natural and anthropogenic sources [1]. Soil and aquatic areas are important sources and sinks for N2O due to complicated biogenic processes. However, N2O emissions are poorly constrained in space and time, despite its importance to global climate change and ozone depletion. We report our recent N2O emission measurements with an open-path quantum cascade laser (QCL)-based sensor for ecological systems. The newly emergent QCLs have been used to build compact, sensitive trace gas sensors in the mid-IR spectral region. A compact open-path QCL based sensor was developed to detect atmospheric N2O and CO at ~ 4.5 μm using wavelength modulation spectroscopy (WMS) to achieve a sensitivity of 0.26 ppbv of N2O and 0.24 ppbv of CO in 1 s with a power consumption of ~50 W [2]. This portable sensor system has been used to perform N2O emission flux measurement both with a static flux chamber and on an eddy covariance (EC) flux tower. In the flux chamber measurements, custom chambers were used to host the laser sensor, while gas samples for gas chromatograph (GC) were collected at the same time in the same chamber for validation and comparison. Different soil treatments have been applied in different chambers to study the relationship between N2O emission and the amount of fertilizer (and water) addition. Measurements from two methods agreed with each other (95% or higher confidence interval) for emission flux results, while laser sensor gave measurements with a much high temporal resolution. We have also performed the first open-path eddy covariance N2O flux measurement at Kellogg research station, Michigan State University for a month in June, 2012. Our sensor was placed on a 4-meter tower in a corn field and powered by batteries (connected with solar panels). We have observed the diurnal cycle of N2O flux. During this deployment, an inter-comparison between our sensor and a commercial gas sensor was done to check the sensor's performance. Overall, our sensor showed a good performance with both static chamber measurement and EC flux measurement of N2O. Its open-path, compact and portable design with low power consumption provides lots of advantages for N2O emission flux measurement in the ecological systems. [1] S. A. Montzka, E. J. Dlugokencky, and J. H. Butler, "Non-CO2 greenhouse gases and climate change," Nature 476, 43-50 (2011). [2] L. Tao, K, Sun, D. J. Miller, M. A. Khan and M.A. Zondlo, "Optimizations for simultaneous detection of atmospheric N2O and CO with a quantum cascade laser," CLEO, 2012
LOW-POWER SOLUTION FOR EDDY COVARIANCE MEASUREMENTS OF METHANE FLUX
NASA Astrophysics Data System (ADS)
Anderson, T.; Burba, G. G.; Komissarov, A.; McDermitt, D. K.; Xu, L.; Zona, D.; Oechel, W. C.; Schedlbauer, J. L.; Oberbauer, S. F.; Riensche, B.; Allyn, D.
2009-12-01
Open-path analyzers offer a number of advantages for measuring methane fluxes, including undisturbed in-situ flux measurements, spatial integration using the Eddy Covariance approach, zero frequency response errors due to tube attenuation, confident water and thermal density terms from co-located fast measurements of water and sonic temperature, and possibility of remote and mobile solar-powered or small-generator-powered deployments due to lower power demands in the absence of a pump. The LI-7700 open-path methane analyzer is a VCSEL (vertical-cavity surface-emitting laser)-based instrument. It employs an open Herriott cell and measures levels of methane with RMS noise below 5 ppb at 10 Hz sampling in controlled laboratory conditions. The power consumption of the stand-alone LI-7700 in steady-state is about 8W, so it can be deployed in any methane-generating location of interest on a portable or mobile solar-powered tower, and it does not have to have grid power or permanent industrial generator. Eddy Covariance measurements of methane flux using the LI-7700 open-path methane analyzer were conducted in 2006-2009 in five ecosystems with contrasting weather and moisture conditions: (1) sawgrass wetland in the Florida Everglades; (2) coastal wetlands in an Arctic tundra; and (3) pacific mangroves in Mexico; (4) maize field and (5) ryegrass field in Nebraska. Methane co-spectra behaved in a manner similar to that of the co-spectra of carbon dioxide, water vapor, and air temperature, demonstrating that the LI-7700 adequately measured fluctuations in methane concentration across the whole spectrum of frequencies contributing to vertical atmospheric turbulent transport at the experimental sites. All co-spectra also closely followed the Kaimal model, and demonstrated good agreement with another methane co-spectrum obtained with a TDLS (Tunable Diode Laser Spectroscope; Unisearch Associates, Inc.) over a peatland. Overall, hourly methane fluxes ranged from near-zero at night to about 4 mg m-2 h-1 in midday in arctic tundra. Observed fluxes were within the ranges reported in the literature for a number of wetlands in North America, including the Everglades wetlands. Diurnal patterns were similar to those measured by closed-path sensors. The LI-7700 open-path analyzer is a valuable tool for measuring long-term eddy fluxes of methane due to the good frequency response and undisturbed in-situ sampling. It enables long-term deployment of permanent, portable or mobile CH4 flux stations at remote locations with high CH4 production, because it can be powered by a solar panels or a small generator. Authors appreciate help and support provided by the LI-COR Engineering Team, Barrow Arctic Science Consortium (BASC), and numerous colleagues involved in measurements, logistics, and maintenance of the experimental field sites. This project was supported by the Small Business Innovation Research (SBIR) and Small Business Technology Transfer Program (STTR) program of the Department of Energy (DOE), Grant Number DE-FG02-05ER84283.
Availability Improvement of Layer 2 Seamless Networks Using OpenFlow
Molina, Elias; Jacob, Eduardo; Matias, Jon; Moreira, Naiara; Astarloa, Armando
2015-01-01
The network robustness and reliability are strongly influenced by the implementation of redundancy and its ability of reacting to changes. In situations where packet loss or maximum latency requirements are critical, replication of resources and information may become the optimal technique. To this end, the IEC 62439-3 Parallel Redundancy Protocol (PRP) provides seamless recovery in layer 2 networks by delegating the redundancy management to the end-nodes. In this paper, we present a combination of the Software-Defined Networking (SDN) approach and PRP topologies to establish a higher level of redundancy and thereby, through several active paths provisioned via the OpenFlow protocol, the global reliability is increased, as well as data flows are managed efficiently. Hence, the experiments with multiple failure scenarios, which have been run over the Mininet network emulator, show the improvement in the availability and responsiveness over other traditional technologies based on a single active path. PMID:25759861
Availability improvement of layer 2 seamless networks using OpenFlow.
Molina, Elias; Jacob, Eduardo; Matias, Jon; Moreira, Naiara; Astarloa, Armando
2015-01-01
The network robustness and reliability are strongly influenced by the implementation of redundancy and its ability of reacting to changes. In situations where packet loss or maximum latency requirements are critical, replication of resources and information may become the optimal technique. To this end, the IEC 62439-3 Parallel Redundancy Protocol (PRP) provides seamless recovery in layer 2 networks by delegating the redundancy management to the end-nodes. In this paper, we present a combination of the Software-Defined Networking (SDN) approach and PRP topologies to establish a higher level of redundancy and thereby, through several active paths provisioned via the OpenFlow protocol, the global reliability is increased, as well as data flows are managed efficiently. Hence, the experiments with multiple failure scenarios, which have been run over the Mininet network emulator, show the improvement in the availability and responsiveness over other traditional technologies based on a single active path.
Miniature Tunable Laser Spectrometer for Detection of a Trace Gas
NASA Technical Reports Server (NTRS)
Christensen, Lance E. (Inventor)
2017-01-01
An open-path laser spectrometer (OPLS) for measuring a concentration of a trace gas, the OPLS including an open-path multi-pass analysis region including a first mirror, a second mirror at a distance and orientation from the first mirror, and a support structure for locating the mirrors, a laser coupled to the analysis region and configured to emit light of a wavelength range and to enable a plurality of reflections of the emitted light between the mirrors, a detector coupled to the analysis region and configured to detect a portion of the emitted light impinging on the detector and to generate a corresponding signal, and an electronic system coupled to the laser and the detector, and configured to adjust the wavelength range of the emitted light from the laser based on the generated signal, and to measure the concentration of the trace gas based on the generated signal.
[CO2 turbulent exchange in a broadleaved Korean pine forest in Changbai Mountains].
Wu, Jia-bing; Guan, De-xin; Sun, Xiao-min; Shi, Ting-ting; Han, Shi-jie; Jin, Chang-jie
2007-05-01
The measurement of CO2 turbulent exchange in a broadleaved Korean pine forest in Changbai Mountains by an open-path eddy covariance system showed that with near neutral atmospheric stratification, the CO2 and vertical wind components over canopy in inertial subrange followed the expected -2/3 power law, and the dominant vertical eddy scale was about 40 m. The frequency ranges of eddy contributions to CO2 fluxes were mostly within 0.01-2.0 Hz, and the eddy translated by low frequency over canopy contributed more of CO2 fluxes. The open-path eddy covariance system could satisfy the estimation of turbulent fluxes over canopy, but the CO2 fluxes between forest and atmosphere were generally underestimated at night because the increment of non turbulent processes, suggesting that the CO2 fluxes estimated under weak turbulence needed to revise correspondingly.
Teaching quantum physics by the sum over paths approach and GeoGebra simulations
NASA Astrophysics Data System (ADS)
Malgieri, M.; Onorato, P.; De Ambrosis, A.
2014-09-01
We present a research-based teaching sequence in introductory quantum physics using the Feynman sum over paths approach. Our reconstruction avoids the historical pathway, and starts by reconsidering optics from the standpoint of the quantum nature of light, analysing both traditional and modern experiments. The core of our educational path lies in the treatment of conceptual and epistemological themes, peculiar of quantum theory, based on evidence from quantum optics, such as the single photon Mach-Zehnder and Zhou-Wang-Mandel experiments. The sequence is supported by a collection of interactive simulations, realized in the open source GeoGebra environment, which we used to assist students in learning the basics of the method, and help them explore the proposed experimental situations as modeled in the sum over paths perspective. We tested our approach in the context of a post-graduate training course for pre-service physics teachers; according to the data we collected, student teachers displayed a greatly improved understanding of conceptual issues, and acquired significant abilities in using the sum over path method for problem solving.
Differentiation of Leishmania species by FT-IR spectroscopy
NASA Astrophysics Data System (ADS)
Aguiar, Josafá C.; Mittmann, Josane; Ferreira, Isabelle; Ferreira-Strixino, Juliana; Raniero, Leandro
2015-05-01
Leishmaniasis is a parasitic infectious disease caused by protozoa that belong to the genus Leishmania. It is transmitted by the bite of an infected female Sand fly. The disease is endemic in 88 countries Desjeux (2001) [1] (16 developed countries and 72 developing countries) on four continents. In Brazil, epidemiological data show the disease is present in all Brazilian regions, with the highest incidences in the North and Northeast. There are several methods used to diagnose leishmaniasis, but these procedures have many limitations, are time consuming, have low sensitivity, and are expensive. In this context, Fourier Transform Infrared Spectroscopy (FT-IR) analysis has the potential to provide rapid results and may be adapted for a clinical test with high sensitivity and specificity. In this work, FT-IR was used as a tool to investigate the promastigotes of Leishmaniaamazonensis, Leishmaniachagasi, and Leishmaniamajor species. The spectra were analyzed by cluster analysis and deconvolution procedure base on spectra second derivatives. Results: cluster analysis found four specific regions that are able to identify the Leishmania species. The dendrogram representation clearly indicates the heterogeneity among Leishmania species. The band deconvolution done by the curve fitting in these regions quantitatively differentiated the polysaccharides, amide III, phospholipids, proteins, and nucleic acids. L. chagasi and L. major showed a greater biochemistry similarity and have three bands that were not registered in L. amazonensis. The L. amazonensis presented three specific bands that were not recorded in the other two species. It is evident that the FT-IR method is an indispensable tool to discriminate these parasites. The high sensitivity and specificity of this technique opens up the possibilities for further studies about characterization of other microorganisms.
ERIC Educational Resources Information Center
Phillips, Leigh; Stuhldreher, Anne
2011-01-01
In the Spring of 2011, the City of San Francisco automatically opened college savings accounts for over 1,000 San Francisco Kindergartners. The City also "seeded" every account with an initial deposit of $50. The account openings marked the official launch of San Francisco's Kindergarten to College initiative, or "K2C." This initiative, the first…
Hatch Cover Slides Through Hatch
NASA Technical Reports Server (NTRS)
Alton, Charles; Okane, James H.
1989-01-01
Hatch cover for pressurized vessel provides tight seal but opened quickly from either side. In opening or closing, cover sweeps out relatively little volume within vessel, so it does not hinder movement of people or objects from vessel to outside or placement of people or objects near hatch. Cover uses internal pressure to create seal when closed. Design of cover eliminates leakage paths, and cover immune to hazards of sudden decompression or jamming when bolts and latches fail.
Evidence for open field lines in Jupiter's magnetosphere
NASA Technical Reports Server (NTRS)
Goertz, C. K.; Randall, B. A.; Thomsen, M. F.; Jones, D. E.; Smith, E. J.
1976-01-01
A model for the night-side Jovian magnetic field is derived partly on the basis of theoretical considerations and partly on the basis of the magnetic-field data obtained during the outbound leg of the path of Pioneer 10. This model can explain the observed sawtooth modulation of energetic particle fluxes in terms of closed and open field lines that cannot contain the particles. The model is applicable only to the Jovian magnetotail.
Army Communicator. Volume 33, Number 4, Fall 2008
2008-01-01
and Army LOS data pa.chgo’ (’imilar to tho MR C 142) woro ,ot up at tho,o locations. Tho WPPL, and MRC- 142’, ""’" tonninatod at oilhortho north or...bandwidth antonnao, allowing two 8 MB lino of ’ight path, to Al A"ad and Fallujah, which ""camo tho primary path out. Lo ..on. L.anI.d Tho mi"ion of Bravo...Multiband Satellite Terminal LOS - Iine-of-sight LSWAN - Logistics Support Wide Area Network NIPR - Non-secure Internet Routing Protocol OSPF - open
Apparatus for sampling and characterizing aerosols
Dunn, Patrick F.; Herceg, Joseph E.; Klocksieben, Robert H.
1986-01-01
Apparatus for sampling and characterizing aerosols having a wide particle size range at relatively low velocities may comprise a chamber having an inlet and an outlet, the chamber including: a plurality of vertically stacked, successive particle collection stages; each collection stage includes a separator plate and a channel guide mounted transverse to the separator plate, defining a labyrinthine flow path across the collection stage. An opening in each separator plate provides a path for the aerosols from one collection stage to the next. Mounted within each collection stage are one or more particle collection frames.
Mesoscopic Free Path of Nonthermalized Photogenerated Carriers in a Ferroelectric Insulator.
Gu, Zongquan; Imbrenda, Dominic; Bennett-Jackson, Andrew L; Falmbigl, Matthias; Podpirka, Adrian; Parker, Thomas C; Shreiber, Daniel; Ivill, Mathew P; Fridkin, Vladimir M; Spanier, Jonathan E
2017-03-03
We show how finite-size scaling of a bulk photovoltaic effect-generated electric field in epitaxial ferroelectric insulating BaTiO_{3}(001) films and a photo-Hall response involving the bulk photovoltaic current reveal a large room-temperature mean free path of photogenerated nonthermalized electrons. Experimental determination of mesoscopic ballistic optically generated carrier transport opens a new paradigm for hot electron-based solar energy conversion, and for facile control of ballistic transport distinct from existing low-dimensional semiconductor interfaces, surfaces, layers, or other structures.
OPEN PATH OPTICAL SENSING OF PARTICULATE MATTER
The paper discusses the concepts behind recent developments in optical remote sensing (ORS) and the results from experiments. Airborne fugitive and fine particulate matter (PM) from various sources contribute to exceedances of state and federal PM and visibility standards. Recent...
OPTICAL REMOTE SENSING FOR AIR QUALITY MONITORING
The paper outlines recent developments in using optical remote sensing (ORS) instruments for air quality monitoring both for gaseous pollutants and airborne particulate matter (PM). The U.S. Environmental Protection Agency (EPA) has been using open-path Fourier transform infrared...
76 FR 34230 - Sunshine Act Meeting; Deletion of Agenda Item from June 9, 2011 Open Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-13
... mitigate space path interference between the 17/24 GHz Broadcasting-Satellite Service (BSS) space stations and current and future Direct Broadcasting Service (DBS) space stations that operate in the same...
NASA Astrophysics Data System (ADS)
Burba, George; Sturtevant, Cove; Peltola, Olli; Schreiber, Peter; Zulueta, Rommel; Haapanala, Sami; Mammarella, Ivan; Rinne, Janne; Vesala, Timo; McDermitt, Dayle; Oechel, Walt
2013-04-01
The permafrost regions store significant amount of organic materials under anaerobic conditions, leading to large methane production and accumulation in the upper layers of bedrock, soil and ice. These regions are currently undergoing dramatic change in response to warming trends, and may become a significant potential source of global methane release under a warming climate over following decades and centuries. Present measurements of methane fluxes in permafrost regions have mostly been made with static chamber techniques, and very few were done with the eddy covariance approach using closed-path analyzers. Although chambers and closed-path analyzers have advantages, both techniques have significant limitations, especially for remote or portable research in cold regions. Static chamber measurements are discrete in time and space, and particularly difficult to use over polygonal tundra with highly non-uniform micro-topography and active water layer. They also may not capture the dynamics of methane fluxes on varying time scales (hourly to annual). In addition, placement of the chamber may disturb the surface integrity causing a significant over-estimation of the measured flux. Closed-path gas analyzers for measuring methane eddy fluxes employ advanced technologies such as TDLS (Tunable Diode Laser Spectroscopy), ICOS (Integrated Cavity Output Spectroscopy), WS-CRDS (wavelength scanned cavity ring-down spectroscopy), but require high flow rates at significantly reduced optical cell pressures to provide adequate response time and sharpen absorption features. Such methods, when used with the eddy covariance technique, require a vacuum pump and a total of 400-1500 Watts of grid power for the pump, climate control, and analyzer systems. The weight of such systems often exceeds 100-200 lbs, restricting practical applicability for remote or portable field studies. As a result, spatial coverage of eddy covariance methane flux measurements in cold regions remains limited. Remote permafrost wetlands of Arctic tundra, northern boreal peatlands of Canada and Siberia, and other highly methanogenic ecosystems have few eddy covariance methane measurement stations. Those existing are often located near grid power sources and roads rather than in the middle of the methane-producing ecosystem, while those that are placed appropriately may require extraordinary efforts to build and maintain them, with large investments into man-power and infrastructure. Alternatively, open-path instrumentation allows methane flux measurements at normal pressure without a need for a pump. As a result, the measurements can be done with very low-power (e.g., 7-10 Watts) light (5 .2 kg) instruments permitting solar- and wind- powered remote deployments in hard-to-reach sites from permanent, portable or mobile stations, and cost-effective additions of a methane measurement to the present array of CO2 and H2O measurements. The low-power operation and light weight of open-path eddy covariance station is important for number of ecosystems (rice fields, landfills, wetlands, cattle yards, etc.), but it is especially important for permafrost and other cold regions where grid power and access roads are generally not available, and logistics of running the experiment is particularly expensive. Emerging research using low-power laser-based instrumentation to measure CH4 emissions are presented from several permafrost ecosystems with contrasting setups, weather, and moisture conditions. Principles of open-path instrument operation, station characteristics and requirements are also discussed, as well as concurrent measurements of CO2 and H2O emissions using open-path and enclosed instrumentation.
Emergence and stability of intermediate open vesicles in disk-to-vesicle transitions.
Li, Jianfeng; Zhang, Hongdong; Qiu, Feng; Shi, An-Chang
2013-07-01
The transition between two basic structures, a disk and an enclosed vesicle, of a finite membrane is studied by examining the minimum energy path (MEP) connecting these two states. The MEP is constructed using the string method applied to continuum elastic membrane models. The results reveal that, besides the commonly observed disk and vesicle, open vesicles (bowl-shaped vesicles or vesicles with a pore) can become stable or metastable shapes. The emergence, stability, and probability distribution of these open vesicles are analyzed. It is demonstrated that open vesicles can be stabilized by higher-order elastic energies. The estimated probability distribution of the different structures is in good agreement with available experiments.
Sampling the kinetic pathways of a micelle fusion and fission transition.
Pool, René; Bolhuis, Peter G
2007-06-28
The mechanism and kinetics of micellar breakup and fusion in a dilute solution of a model surfactant are investigated by path sampling techniques. Analysis of the path ensemble gives insight in the mechanism of the transition. For larger, less stable micelles the fission/fusion occurs via a clear neck formation, while for smaller micelles the mechanism is more direct. In addition, path analysis yields an appropriate order parameter to evaluate the fusion and fission rate constants using stochastic transition interface sampling. For the small, stable micelle (50 surfactants) the computed fission rate constant is a factor of 10 lower than the fusion rate constant. The procedure opens the way for accurate calculation of free energy and kinetics for, e.g., membrane fusion, and wormlike micelle endcap formation.
Commentary: The Hash House Harriers and the winding path to materials discovery
Canfield, Paul C.
2015-04-07
Materials science research can be both very demanding and extremely rewarding. In this Commentary, in my own research of new electronic and magnetic materials, I give numerous exemplars of the path followed to materials discovery. I also highlight the parallels between my research experiences with the pastime of running. I hope that my thoughts will help guide junior researchers along the often tortuous and exciting path to new materials and that I can teach them to be open minded and persistent about following new lines of discovery. “No-pain, no-gain” applies to many things in life, running and scientific research beingmore » just two examples, but I hope in the case of scientific research that I can convince you the gain normally outweighs the pain.« less
NASA Astrophysics Data System (ADS)
Lavoie, Hugo; Thériault, Jean-Marc; Bouffard, François; Puckrin, Eldon; Turcotte, Caroline S.; Lacasse, Paul
2008-04-01
Defence Research and Development Canada (DRDC) - Valcartier is currently developing a ruggedized passive standoff sensor for the detection of chemical warfare agents (CWAs) based on differential Fourier-transform infrared (FTIR) radiometry. This system is referred to as the Compact ATmospheric Sounding Interferometer (CATSI) Engineering Development Model (EDM). The CATSI EDM sensor is based on the use of a double-beam FTIR spectrometer that is optimized for optical subtraction. A description of the customized sensor is given along with a discussion on the detection and identification approaches that have been developed. Preliminary results of validation from a number of laboratory measurements and open-air trials are analyzed to establish the capability of detection and identification of various toxic and non-toxic chemical vapor plumes. These results clearly demonstrate the capability of the passive differential radiometric approach for the standoff detection and identification of chemical vapors at distances up to a few kilometers from the sensor.
NASA Astrophysics Data System (ADS)
Freitas, Renato P.; Coelho, Filipe A.; Felix, Valter S.; Pereira, Marcelo O.; de Souza, Marcos André Torres; Anjos, Marcelino J.
2018-03-01
This study used Raman, FT-IR and XRF spectroscopy and SEM to analyze ceramic fragments dating from the 19th century, excavated from an old farm in the municipality of Pirenópolis, Goiás, Brazil. The results show that the samples were produced in an open oven at a firing temperature below 500 °C, using raw materials including kaolinite, hematite, magnetite, quartz, microcline, albite, anhydrite, calcite, illite, orthoclase and MnO2. Although the analyses showed similarities in the manufacturing process and the presence of many minerals was common in all samples, multivariate statistical methods (PCA) allowed a more detailed assessment of similarities and differences in the mineral composition of the samples. The results of the PCA showed that the samples excavated in one of the slave quarters (senzalas) group with those excavated at the farmhouse, where the landowner lived, which indicates a paternalistic attitude towards captives, including the sharing of ceramic materials of everyday use.
NASA Astrophysics Data System (ADS)
Li, Qian; Tang, Yongjiao; Yan, Zhiwei; Zhang, Pudun
2017-06-01
Although multivariate curve resolution (MCR) has been applied to the analysis of Fourier transform infrared (FTIR) imaging, it is still problematic to determine the number of components. The reported methods at present tend to cause the components of low concentration missed. In this paper a new idea was proposed to resolve this problem. First, MCR calculation was repeated by increasing the number of components sequentially, then each retrieved pure spectrum of as-resulted MCR component was directly compared with a real-world pixel spectrum of the local high concentration in the corresponding MCR map. One component was affirmed only if the characteristic bands of the MCR component had been included in its pixel spectrum. This idea was applied to attenuated total reflection (ATR)/FTIR mapping for identifying the trace additives in blind polymer materials and satisfactory results were acquired. The successful demonstration of this novel approach opens up new possibilities for analyzing additives in polymer materials.
Akbari, Ahmad; Sheshdeh, Farhad Jokari; Jabbari, Vahid
2012-01-01
Novel nanofibrous membrane was fabricated by using electrospinning of wastage fuzzes of mechanized carpet which was used to remove the dye of the textile wastewater. SEM images showed that nanofibers with average diameters of 200 nm were successfully fabricated by electrospinning technique. The physicochemical properties of electrospun nanofiberous membranes were studied by differential scanning calorimetry (DSC), energy-dispersive X-ray (EDX), and Fourier transform infrared (FTIR) spectroscopy. FTIR confirmed the presence of C≡N, C=N, and C‒N groups in the electrospun nanofibers which are the main functional groups of polyacrilonitrile (PAN). The resulting membrane showed dye retention of 96% of carpet dyeing wastewater, demonstrating the high separation potential of such membrane for wastewater treatment. We believe that simple approaches such as the present one would open up enormous possibilities in effective uses of wastage fuzzes of textile industry, considering the fact that electrospinning is a cost-effective method for the mass scale production of nanofibers.
Physical and mechanical properties of modified bacterial cellulose composite films
NASA Astrophysics Data System (ADS)
Indrarti, Lucia; Indriyati, Syampurwadi, Anung; Pujiastuti, Sri
2016-02-01
To open wide range application opportunities of Bacterial Cellulose (BC) such as for agricultural purposes and edible film, BC slurries were blended with Glycerol (Gly), Sorbitol (Sor) and Carboxymethyl Cellulose (CMC). The physical and mechanical properties of BC composites were investigated to gain a better understanding of the relationship between BC and the additive types. Addition of glycerol, sorbitol and CMC influenced the water solubility of BC composite films. FTIR analysis showed the characteristic bands of cellulose. Addition of CMC, glycerol, and sorbitol slightly changed the FTIR spectrum of the composites. Tensile test showed that CMC not only acted as cross-linking agent where the tensile strength doubled up to 180 MPa, but also acted as plasticizer with the elongation at break increased more than 100% compared to that of BC film. On the other hand, glycerol and sorbitol acted as plasticizers that decreased the tensile strength and increased the elongation. Addition of CMC can improve film transparency, which is quite important in consumer acceptance of edible films in food industry.
Spectroscopic evidence of β-turn in N-glycated peptidomimetics related to leucine-enkephalin
NASA Astrophysics Data System (ADS)
Vass, E.; Hollósi, M.; Kveder, M.; Kojić-Prodić, B.; Čudić, M.; Horvat, Š.
2000-11-01
The conformational differences caused by N-glycation of the amide bond in endogenous opioid pentapeptide leucine-enkephalin (Tyr-Gly-Gly-Phe-Leu) have been explored in solution using FTIR spectroscopy, NMR and molecular modelling. The compounds studied include protected and unprotected enkephalin analogues N-alkylated at the second (Gly 2) amino acid residue with a 6-deoxy- D-galactose moiety ( 1- 3). Comparison of the amide I component bands in the FTIR spectra, measured in trifluoroethanol (TFE), CHCl 3 and DMSO, revealed significant differences in the intensity as well as shifts in component band frequencies for glycopeptides 1- 3. We found that only the FTIR spectrum of the fully protected compound 1 indicated the presence of a higher population of β-turns, while the spectra of the partially protected and unprotected glycopeptides 2 and 3 reflected the dominance of unordered or open structures, with some low population of turns. The observed NOE connectivities in CDCl 3 for both isomers of the fully protected compound 1, the all-trans one and another with Tyr 1-Gly 2 peptide bond in cis conformation, indicate the presence of a β-like turn conformation. Molecular dynamics simulations of the glycopeptide 1 obtained by unconstrained energy minimization of trans- and cis- 1 shows that one of trans form conformations is consistent with β-turn whereas cis isomer has revealed less-compact turn.
Tan, A C W; Polo-Cambronell, B J; Provaggi, E; Ardila-Suárez, C; Ramirez-Caballero, G E; Baldovino-Medrano, V G; Kalaskar, D M
2018-02-01
In the current study, we present the synthesis of novel low cost bio-polyurethane compositions with variable mechanical properties based on castor oil and glycerol for biomedical applications. A detailed investigation of the physicochemical properties of the polymer was carried out by using mechanical testing, ATR-FTIR, and X-ray photoelectron spectroscopy (XPS). Polymers were also tested in short term in-vitro cell culture with human mesenchymal stem cells to evaluate their biocompatibility for potential applications as biomaterial. FTIR analysis confirmed the synthesis of castor oil and glycerol based PU polymers. FTIR also showed that the addition of glycerol as co-polyol increases crosslinking within the polymer backbone hence enhancing the bulk mechanical properties of the polymer. XPS data showed that glycerol incorporation leads to an enrichment of oxidized organic species on the surface of the polymers. Preliminary investigation into in vitro biocompatibility showed that serum protein adsorption can be controlled by varying the glycerol content with polymer backbone. An alamar blue assay looking at the metabolic activity of the cells indicated that castor oil based PU and its variants containing glycerol are non-toxic to the cells. This study opens an avenue for using low cost bio-polyurethane based on castor oil and glycerol for biomedical applications. © 2017 The Authors Biopolymers Published by Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Barthlott, Sabine; Schneider, Matthias; Hase, Frank; Blumenstock, Thomas; Kiel, Matthäus; Dubravica, Darko; García, Omaira E.; Sepúlveda, Eliezer; Mengistu Tsidu, Gizaw; Takele Kenea, Samuel; Grutter, Michel; Plaza-Medina, Eddy F.; Stremme, Wolfgang; Strong, Kim; Weaver, Dan; Palm, Mathias; Warneke, Thorsten; Notholt, Justus; Mahieu, Emmanuel; Servais, Christian; Jones, Nicholas; Griffith, David W. T.; Smale, Dan; Robinson, John
2017-01-01
We report on the ground-based FTIR (Fourier transform infrared) tropospheric water vapour isotopologue remote sensing data that have been recently made available via the database of NDACC (Network for the Detection of Atmospheric Composition Change; ftp://ftp.cpc.ncep.noaa.gov/ndacc/MUSICA/) and via doi:10.5281/zenodo.48902. Currently, data are available for 12 globally distributed stations. They have been centrally retrieved and quality-filtered in the framework of the MUSICA project (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water). We explain particularities of retrieving the water vapour isotopologue state (vertical distribution of H216O, H218O, and HD16O) and reveal the need for a new metadata template for archiving FTIR isotopologue data. We describe the format of different data components and give recommendations for correct data usage. Data are provided as two data types. The first type is best-suited for tropospheric water vapour distribution studies disregarding different isotopologues (comparison with radiosonde data, analyses of water vapour variability and trends, etc.). The second type is needed for analysing moisture pathways by means of
DOE Office of Scientific and Technical Information (OSTI.GOV)
Argo, P.E.; DeLapp, D.; Sutherland, C.D.
TRACKER is an extension of a three-dimensional Hamiltonian raytrace code developed some thirty years ago by R. Michael Jones. Subsequent modifications to this code, which is commonly called the {open_quotes}Jones Code,{close_quotes} were documented by Jones and Stephensen (1975). TRACKER incorporates an interactive user`s interface, modern differential equation integrators, graphical outputs, homing algorithms, and the Ionospheric Conductivity and Electron Density (ICED) ionosphere. TRACKER predicts the three-dimensional paths of radio waves through model ionospheres by numerically integrating Hamilton`s equations, which are a differential expression of Fermat`s principle of least time. By using continuous models, the Hamiltonian method avoids false caustics and discontinuousmore » raypath properties often encountered in other raytracing methods. In addition to computing the raypath, TRACKER also calculates the group path (or pulse travel time), the phase path, the geometrical (or {open_quotes}real{close_quotes}) pathlength, and the Doppler shift (if the time variation of the ionosphere is explicitly included). Computational speed can be traded for accuracy by specifying the maximum allowable integration error per step in the integration. Only geometrical optics are included in the main raytrace code; no partial reflections or diffraction effects are taken into account. In addition, TRACKER does not lend itself to statistical descriptions of propagation -- it requires a deterministic model of the ionosphere.« less
Ramos, A G; García-Garrido, V J; Mancho, A M; Wiggins, S; Coca, J; Glenn, S; Schofield, O; Kohut, J; Aragon, D; Kerfoot, J; Haskins, T; Miles, T; Haldeman, C; Strandskov, N; Allsup, B; Jones, C; Shapiro, J
2018-03-15
Transoceanic Gliders are Autonomous Underwater Vehicles (AUVs) for which there is a developing and expanding range of applications in open-seas research, technology and underwater clean transport. Mature glider autonomy, operating depth (0-1000 meters) and low energy consumption without a CO 2 footprint enable evolutionary access across ocean basins. Pursuant to the first successful transatlantic glider crossing in December 2009, the Challenger Mission has opened the door to long-term, long-distance routine transoceanic AUV missions. These vehicles, which glide through the water column between 0 and 1000 meters depth, are highly sensitive to the ocean current field. Consequently, it is essential to exploit the complex space-time structure of the ocean current field in order to plan a path that optimizes scientific payoff and navigation efficiency. This letter demonstrates the capability of dynamical system theory for achieving this goal by realizing the real-time navigation strategy for the transoceanic AUV named Silbo, which is a Slocum deep-glider (0-1000 m), that crossed the North Atlantic from April 2016 to March 2017. Path planning in real time based on this approach has facilitated an impressive speed up of the AUV to unprecedented velocities resulting in major battery savings on the mission, offering the potential for routine transoceanic long duration missions.
Reardon, Blase; Lundy, Chris
2004-01-01
The annual spring opening of the Going-to-the-Sun Road in Glacier National Park presents a unique avalanche forecasting challenge. The highway traverses dozens of avalanche paths mid-track in a 23-kilometer section that crosses the Continental Divide. Workers removing seasonal snow and avalanche debris are exposed to paths that can produce avalanches of destructive class 4. The starting zones for most slide paths are within proposed Wilderness, and explosive testing or control are not currently used. Spring weather along the Divide is highly variable; rain-on-snow events are common, storms can bring several feet of new snow as late as June, and temperature swings can be dramatic. Natural avalanches - dry and wet slab, dry and wet loose, and glide avalanches - present a wide range of hazards and forecasting issues. This paper summarizes the forecasting program instituted in 2002 for the annual snow removal operations. It focuses on tools and techniques for forecasting natural wet snow avalanches by incorporating two case studies, including a widespread climax wet slab cycle in 2003. We examine weather and snowpack conditions conducive to wet snow avalanches, indicators for instability, and suggest a conceptual model for wet snow stability in a northern intermountain snow climate.
Implant-supported mandibular splinting affects temporomandibular joint biomechanics.
Zaugg, Balthasar; Hämmerle, Christoph H F; Palla, Sandro; Gallo, Luigi M
2012-08-01
Mandibular functional movements lead to complex deformations of bony structures. The aim of this study was to test whether mandibular splinting influences condylar kinematics and temporomandibular joint (TMJ) loading patterns. Six subjects were analyzed by means of dynamic stereometry during jaw opening-closing with mandibles unconstrained as well as splinted transversally by a cast metal bar fixed bilaterally to two implant pairs in the (pre)molar region. Statistical analysis was performed by means of ANOVAs for repeated measurements (significance level α=0.05). Transversal splinting reduced mandibular deformation during jaw opening-closing as measured between two implants in the (pre)molar region on each side of the mandible significantly by 54%. Furthermore, splinting significantly reduced the distance between lateral condylar poles (average displacement vector magnitude of each pole: 0.84±0.36 mm; average mediolateral displacement component: 45±28% of the magnitude) and led to a medial displacement of their trajectories as well as a mediolateral displacement of stress-field paths. During jaw opening-closing, splinting of the mandible leads to a significant reduction of mandibular deformation and intercondylar distance and to altered stress-field paths, resulting in changed loading patterns of the TMJ structures. © 2011 John Wiley & Sons A/S.
Structural and optical modification in 4H-SiC following 30 keV silver ion irradiation
NASA Astrophysics Data System (ADS)
Kaushik, Priya Darshni; Aziz, Anver; Siddiqui, Azher M.; Lakshmi, G. B. V. S.; Syväjärvi, Mikael; Yakimova, Rositsa; Yazdi, G. Reza
2018-05-01
The market of high power, high frequency and high temperature based electronic devices is captured by SiC due to its superior properties like high thermal conductivity and high sublimation temperature and also due to the limitation of silicon based electronics in this area. There is a need to investigate effect of ion irradiation on SiC due to its application in outer space as outer space is surrounded both by low and high energy ion irradiations. In this work, effect of low energy ion irradiation on structural and optical property of 4H-SiC is investigated. ATR-FTIR is used to study structural modification and UV-Visible spectroscopy is used to study optical modifications in 4H-SiC following 30 keV Ag ion irradiation. FTIR showed decrease in bond density of SiC along the ion path (track) due to the creation of point defects. UV-Visible absorption spectra showed decrease in optical band gap from 3.26 eV to 2.9 eV. The study showed degradation of SiC crystallity and change in optical band gap following low energy ion irradiation and should be addressed while fabricationg devices based on SiC for outer space application. Additionally, this study provides a platform for introducing structural and optical modification in 4H-SiC using ion beam technology in a controlled manner.
NASA Astrophysics Data System (ADS)
Suharno; Soegijono, B.; Budiawanti, S.; Fadillah, L.
2017-04-01
Doping is one of the effective methods to modify the physical properties of ZnO material in order to extend its applications. An investigation on Zn1-xMxO (M = Gd, Mg and x = 0.00, 0.03) nanopowders that have been synthesized by sol-gel method and sintered at 600 °C for 2 hours was reported. The decomposition process of the dried gel system was investigated by thermal gravimetric analysis (TGA) and the nanopowders with different heating temperature were studied using FT-IR spectroscopy. The crystal structure of the nanopowders after sintering at 600 °C was obtained using X-ray diffraction (XRD). The TGA curves of the samples showed the various weight loss regions corresponding to the removal of starting materials and no weight loss was observed in the temperature range of 300 to 800 °C which corresponded to the phase-crystallization step. The FTIR spectra showed that ZnO band was assigned to the stretching frequency at 669 cm-1 while Gd/Mg doped ZnO was at 668 cm-1 and 666 cm-1. From the XRD studies, the crystal structure of the samples indicated single phase ZnO crystalline and confirmed hexagonal wurtzite structure (space group of P63mc).
Sonenshein, R.S.
1995-01-01
A hydrogeologic approach that integrates the use of hydrogeologic and spatial tools aids in the identification of land uses that overlie ground- water flow paths and permits a better understanding of ground-water flow systems. A mathematical model was used to simulate the ground-water flow system in Broward County, particle-tracking software was used to determine flow paths leading to the monitor wells in Broward County, and a Geographic Information System was used to identify which land uses overlie the flow paths. A procedure using a geographic information system to evaluate the output from a ground-water flow model has been documented. The ground-water flow model was used to represent steady-state conditions during selected wet- and dry-season months, and an advective flow particle- tracking program was used to simulate the direction of ground-water flow in the aquifer system. Digital spatial data layers were created from the particle pathlines that lead to the vicinity of the open interval of selected wells in the Broward County ground-water quality monitoring network. Buffer zone data layers were created, surrounding the particle pathlines to represent the area of contribution to the water sampled from the monitor wells. Spatial data layers, combined with a land-use data layer, were used to identify the land uses that overlie the ground-water flow paths leading to the monitor wells. The simulation analysis was performed on five Broward County wells with different hydraulic parameters to determine the source of ground-water stress, determine selected particle pathlines, and identify land use in buffer zones in the vicinity of the wells. The flow paths that lead to the grid cells containing wells G-2355, G-2373, and G-2373A did not vary between the wet- and dry-season conditions. Changes in the area of contribution for wells G-2345X and G-2369 were attributed to variations in rainfall patterns, well-field pumpage, and surface-water management practices. Additionally, using a different open interval at a site, such as for wells G-2373 and G-2373A, can result in a very different area that overlies the flow path leading to the monitor well.
Biodegradation of the chitin-protein complex in crustacean cuticle
Artur, Stankiewicz B.; Mastalerz, Maria; Hof, C.H.J.; Bierstedt, A.; Flannery, M.B.; Briggs, D.E.G.; Evershed, R.P.
1998-01-01
Arthropod cuticles consist predominantly of chitin cross-linked with proteins. While there is some experimental evidence that this chitin-protein complex may resist decay, the chemical changes that occur during degradation have not been investigated in detail. The stomatopod crustacean Neogonodactylus oerstedii was decayed in the laboratory under anoxic conditions. A combination of pyrolysis-gas chromatography/mass spectrometry and FTIR revealed extensive chemical changes after just 2 weeks that resulted in a cuticle composition dominated by chitin. Quantitative analysis of amino acids (by HPLC) and chitin showed that the major loss of proteins and chitin occurred between weeks 1 and 2. After 8 weeks tyrosine, tryptophan and valine are the most prominent amino acid moieties, showing their resistance to degradation. The presence of cyclic ketones in the pyrolysates indicates that mucopolysaccharides or other bound non-chitinous carbohydrates are also resistant to decay. There is no evidence of structural degradation of chitin prior to 8 weeks when FTIR revealed a reduction in chitin-specific bands. The chemical changes are paralleled by structural changes in the cuticle, which becomes an increasingly open structure consisting of loose chitinous fibres. The rapid rate of decay in the experiments suggests that where chitin and protein are preserved in fossil cuticles degradation must have been inhibited.Arthropod cuticles consist predominantly of chitin cross-linked with proteins. While there is some experimental evidence that this chitin-protein complex may resist decay, the chemical changes that occur during degradation have not been investigated in detail. The stomatopod crustacean Neogonodactylus oerstedii was decayed in the laboratory under anoxic conditions. A combination of pyrolysis-gas chromatography/mass spectrometry and FTIR revealed extensive chemical changes after just 2 weeks that resulted in a cuticle composition dominated by chitin. Quantitative analysis of amino acids (by HPLC) and chitin showed that the major loss of proteins and chitin occurred between weeks 1 and 2. After 8 weeks tyrosine, tryptophan and valine are the most prominent amino acid moieties, showing their resistance to degradation. The presence of cyclic ketones in the pyrolysates indicates that mucopolysaccharides or other bound non-chitinous carbohydrates are also resistant to decay. There is no evidence of structural degradation of chitin prior to 8 weeks when FTIR revealed a reduction in chitin-specific bands. The chemical changes are paralleled by structural changes in the cuticle, which becomes an increasingly open structure consisting of loose chitinous fibres. The rapid rate of decay in the experiments suggests, that where chitin and protein are preserved in fossil cuticles degradation must have been inhibited.
EVALUATION OF FUGITIVE EMISSIONS USING GROUND-BASED OPTICAL REMOTE SENSING TECHNOLOGY
EPA has developed and evaluated a method for characterizing fugitive emissions from large area sources. The method, known as radial plume mapping (RPM) uses multiple-beam, scanning, optical remote sensing (ORS) instrumentation such as open-path Fourier transform infrared spectro...
MEASUREMENT OF FUGITIVE EMISSIONS AT A BIOREACTOR LANDFILL
This report focuses on three field campaigns performed in 2002 and 2003 to measure fugitive emissions at a bioreactor landfill in Louisville, KY, using an open-path Fourier transform infrared spectrometer. The study uses optical remote sensing-radial plume mapping. The horizontal...
MEASUREMENT OF LOW LEVEL AIR TOXICS WITH MODIFIED UV DOAS
To further understand near source impacts, EPA is working to develop open-path optical techniques for spatiotemporal-resolved measurement of air pollutants. Of particular interest is near real time quantification of mobile-source generated CO, Nox and hydrocarbons measured in cl...
2014-04-22
NASA Administrator Charles Bolden delivers the opening keynote address at the Humans to Mars Summit on April 22, 2014 at George Washington University in Washington, DC. Administrator Bolden spoke of NASA's path to the human exploration of Mars during his remarks. Photo Credit: (NASA/Joel Kowsky)
Critical Velocities in Open Capillary Flow
NASA Technical Reports Server (NTRS)
Dreyer, Michael; Langbein, Dieter; Rath, Hans J.
1996-01-01
This paper describes the proposed research program on open capillary flow and the preliminary work performed theoretically and in drop tower experiments. The work focuses on the fundamental physical understanding of the flow through capillary bound geometries, where the circumference of the cross section of the flow path contains free surfaces. Examples for such a flow configuration are capillary vanes in surface tension tanks, flow along edges and corners and flow through liquid bridges. The geometries may be classified by their cross section areas, wetted circumferences and the radii of curvature of the free surfaces. In the streaming float zone the flow path is bound by a free surface only. The ribbon vane is a model for vane types used in surface tension tanks, where a structure in proximity to the tank wall forms a capillary gap. A groove is used in heat pipes for the transportation of the condensed working fluid to the heat source and a wedge may occur in a spaceborne experiment where fluid has to be transported by the means of surface tension. The research objectives are the determination of the maximum volume flux, the observation of the free surfaces and the liquid flow inside the flow path as well as the evaluation of the limiting capillary wave speed. The restriction of the maximum volume flux is due to convective forces (flow velocity exceeding the capillary wave speed) and/or viscous forces, i.e. the viscous head loss along the flow path must be compensated by the capillary pressure due to the curved free surface. Exceeding the maximum volume flux leads to the choking of the flow path, thus the free surface collapses and.gas ingestion occurs at the outlet. The means are ground-based experimental work with plateau tanks and in a drop tower, a sounding rocket flight, and theoretical analysis with integral balances as well as full three dimensional CFD solutions for flow with free surfaces.
Derbidge, Renatus; Feiten, Linus; Conradt, Oliver; Heusser, Peter; Baumgartner, Stephan
2013-01-01
Photographs of mistletoe (Viscum album L.) berries taken by a permanently fixed camera during their development in autumn were subjected to an outline shape analysis by fitting path curves using a mathematical algorithm from projective geometry. During growth and maturation processes the shape of mistletoe berries can be described by a set of such path curves, making it possible to extract changes of shape using one parameter called Lambda. Lambda describes the outline shape of a path curve. Here we present methods and software to capture and measure these changes of form over time. The present paper describes the software used to automatize a number of tasks including contour recognition, optimization of fitting the contour via hill-climbing, derivation of the path curves, computation of Lambda and blinding the pictures for the operator. The validity of the program is demonstrated by results from three independent measurements showing circadian rhythm in mistletoe berries. The program is available as open source and will be applied in a project to analyze the chronobiology of shape in mistletoe berries and the buds of their host trees. PMID:23565255
High-throughput syntheses of iron phosphite open frameworks in ionic liquids
NASA Astrophysics Data System (ADS)
Wang, Zhixiu; Mu, Ying; Wang, Yilin; Bing, Qiming; Su, Tan; Liu, Jingyao
2017-02-01
Three open-framework iron phosphites: Feп5(NH4)2(HPO3)6 (1), Feп2Fe♯(NH4)(HPO3)4 (2) and Fe♯2(HPO3)3 (3) have been synthesized under ionothermal conditions. How the different synthesis parameters, such as the gel concentrations, synthetic times, reaction temperatures and solvents affect the products have been monitored by using high-throughput approaches. Within each type of experiment, relevant products have been investigated. The optimal reaction conditions are obtained from a series of experiments by high-throughput approaches. All the structures are determined by single-crystal X-ray diffraction analysis and further characterized by PXRD, TGA and FTIR analyses. Magnetic study reveals that those three compounds show interesting magnetic behavior at low temperature.
NASA Astrophysics Data System (ADS)
Bailey, D. M.; Caine, K. M.; Miller, J. H. H.
2016-12-01
Continuous collection of carbon dioxide (CO2) concentrations is imperative in understanding seasonal and inter-annual variability of carbon feedbacks above thawing permafrost. Permafrost makes up one-quarter of the Earth's terrestrial surface and has the potential to release twice the amount of carbon than is currently in the atmosphere if global temperatures continue to increase. A collaborative effort with the University of Alaska - Fairbanks, NASA Goddard Space Flight Center, and our group at George Washington University is underway to monitor these feedbacks near Fairbanks, Alaska. In June 2016, we deployed an open-path tunable diode laser sensor along with a non-dispersive infrared (NDIR) sensor at the Bonanza Creek Long Term Ecological Research Site as an exploratory study for their use in collecting near-surface CO2 concentrations above thawing permafrost. The open-path instrument (OPI) collected spatially-integrated measurements approximately 1.5 meters above the surface of a young thermokarst bog over a 15-day period whereas the NDIR sensor collected localized measurements 1 meter above the surface for 16 days. Near-continuous measurements were achieved with the NDIR sensor which was limited only by the availability of solar-produced power. The OPI measurements were further limited by maintaining laser alignment under changing environmental conditions. However, the campaign achieved a nearly 80% duty cycle for the entire test period. Here we compare both the localized and spatially-integrated carbon dioxide measurements and their observed diurnal concentration cycles, whose magnitude showed a strong dependence on daily weather at the test site.
Relationship between masticatory performance using a gummy jelly and masticatory movement.
Uesugi, Hanako; Shiga, Hiroshi
2017-10-01
The purpose of this study was to clarify the relationship between masticatory performance using a gummy jelly and masticatory movement. Thirty healthy males were asked to chew a gummy jelly on their habitual chewing side for 20s, and the parameters of masticatory performance and masticatory movement were calculated as follows. For evaluating the masticatory performance, the amount of glucose extraction during chewing of a gummy jelly was measured. For evaluating the masticatory movement, the movement of the mandibular incisal point was recorded using the MKG K6-I, and ten parameters of the movement path (opening distance and masticatory width), movement rhythm (opening time, closing time, occluding time, and cycle time), stability of movement (stability of path and stability of rhythm), and movement velocity (opening maximum velocity and closing maximum velocity) were calculated from 10 cycles of chewing beginning with the fifth cycle. The relationship between the amount of glucose extraction and parameters representing masticatory movement was investigated and then stepwise multiple linear regression analysis was performed. The amount of glucose extraction was associated with 7 parameters representing the masticatory movement. Stepwise multiple linear regression analysis showed that the opening distance, closing time, stability of rhythm, and closing maximum velocity were the most important factors affecting the glucose extraction. From these results it was suggested that there was a close relation between masticatory performance and masticatory movement, and that the masticatory performance could be increased by rhythmic, rapid and stable mastication with a large opening distance. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
3D geospatial visualizations: Animation and motion effects on spatial objects
NASA Astrophysics Data System (ADS)
Evangelidis, Konstantinos; Papadopoulos, Theofilos; Papatheodorou, Konstantinos; Mastorokostas, Paris; Hilas, Constantinos
2018-02-01
Digital Elevation Models (DEMs), in combination with high quality raster graphics provide realistic three-dimensional (3D) representations of the globe (virtual globe) and amazing navigation experience over the terrain through earth browsers. In addition, the adoption of interoperable geospatial mark-up languages (e.g. KML) and open programming libraries (Javascript) makes it also possible to create 3D spatial objects and convey on them the sensation of any type of texture by utilizing open 3D representation models (e.g. Collada). One step beyond, by employing WebGL frameworks (e.g. Cesium.js, three.js) animation and motion effects are attributed on 3D models. However, major GIS-based functionalities in combination with all the above mentioned visualization capabilities such as for example animation effects on selected areas of the terrain texture (e.g. sea waves) as well as motion effects on 3D objects moving in dynamically defined georeferenced terrain paths (e.g. the motion of an animal over a hill, or of a big fish in an ocean etc.) are not widely supported at least by open geospatial applications or development frameworks. Towards this we developed and made available to the research community, an open geospatial software application prototype that provides high level capabilities for dynamically creating user defined virtual geospatial worlds populated by selected animated and moving 3D models on user specified locations, paths and areas. At the same time, the generated code may enhance existing open visualization frameworks and programming libraries dealing with 3D simulations, with the geospatial aspect of a virtual world.
Common Approach to Geoprocessing of Uav Data across Application Domains
NASA Astrophysics Data System (ADS)
Percivall, G. S.; Reichardt, M.; Taylor, T.
2015-08-01
UAVs are a disruptive technology bringing new geographic data and information to many application domains. UASs are similar to other geographic imagery systems so existing frameworks are applicable. But the diversity of UAVs as platforms along with the diversity of available sensors are presenting challenges in the processing and creation of geospatial products. Efficient processing and dissemination of the data is achieved using software and systems that implement open standards. The challenges identified point to the need for use of existing standards and extending standards. Results from the use of the OGC Sensor Web Enablement set of standards are presented. Next steps in the progress of UAVs and UASs may follow the path of open data, open source and open standards.
Underwater Acoustic Backscatter from a Model of Arctic Ice Open Leads and Pressure Ridges.
1987-06-01
25 1 " 0 .- i4 CID- ICID 000 0. E-4-M 0 U)) 04 H4 E-4 Q4 z r U2 ɜ .~ H 0 W4) 130CI E- H- IHQ 1 11 04 0- 0-’- 0Z E- I4a: w 9X 9 4 04 0 0 % o.5 0 0... td (usec) 911 - - - 825 821 Ri (m) 0.675 0.621 0.619 0.618 0.611 0.608 ri (m) 0.618 0.519 0.472 0.407 0.361 0.326 0 (deg) 23.7 33.3 40.3 48.8 53.8...Equations 6.10, 6.11, and 6.12: (Diffracted path) tD = 2Ri/cw (6.10) (Optimum path tc = [(hi + Ri)/cw] + [li/cp] (6.11) for compression) (Optimum path ts
Proposal of leak path passivation for InGaN solar cells to reduce the leakage current
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Ke, E-mail: ke.wang@chiba-u.jp; Imai, Daichi; Kusakabe, Kazuhide
2016-01-25
We propose some general ways to passivate the leak paths in InGaN solar cells and report some experimental evidences of its effectiveness. By adopting an AlOx passivation process, the photovoltaic performances of GaN pn-junctions and InGaN solar cells, grown by molecular beam epitaxy, have been significantly improved. The open circuit voltage under 1 sun illumination increases from 1.46 to 2.26 V for a GaN pn junction, and from 0.95 to 1.27 V for an InGaN solar cell, demonstrating evidence of leak path passivation (LPP) by AlOx. The proposed LPP is expected to be a realistic way to exploit the potential of thickmore » and relaxed but defective InGaN for solar cell applications.« less
Bil, A; Grzechnik, K; Sałdyka, M; Mielke, Z
2016-09-01
We studied the photochemistry of the carbon disulfide-nitrous acid system with the help of Fourier transform infrared (FTIR) matrix isolation spectroscopy and theoretical methods. The irradiation of the CS2···HONO complexes, isolated in solid argon, with the filtered output of the mercury lamp (λ > 345 nm) was found to produce OCS, SO2, and HNCS; HSCN was also tentatively identified. The (13)C, (15)N, and (2)H isotopic shifts as well as literature data were used for product identifications. The evolution of the measured FTIR spectra with irradiation time and the changes in the spectra after matrix annealing indicated that the identified molecules are the products of different reaction channels: OCS being a product of another reaction path than SO2 and HNCS or HSCN. The possible reaction channels between SC(OH)S/SCS(OH) radicals and NO were studied using DFT/B3LYP/aug-cc-pVTZ method. The SC(OH)S and/or SCS(OH) intermediates are formed when HONO attached to CS2 photodissociates into OH and NO. The calculations indicated that SC(OH)S radical can form with NO two stable adducts. The more stable SC(OH)S···NO structure is a reactant for a simple one-step process leading to OCS and HONS molecules. An alternative, less-stable complex formed between SC(OH)S and NO leads to formation of OCS and HSNO. The calculations predict only one stable complex between SCS(OH) radical and NO, which can dissociate along two channels leading to HNCS and SO2 or HSCN and SO2 as the end products. The identified photoproducts indicate that both SC(OH)S and SCS(OH) adducts are intermediates in the CS2 + OH + NO reaction leading to different reaction products.
Code of Federal Regulations, 2010 CFR
2010-07-01
... measurement data pairs. Administrator means the Administrator of the Environmental Protection Agency (EPA) or... storing and reporting of information relating to ambient air quality data. Approved regional method (ARM... of an open path analyzer in which a high-concentration test or audit standard gas contained in a...
CONTINUOUS FORMALDEHYDE MEASUREMENT SYSTEM BASED ON MODIFIED FOURIER TRANSFORM INFRARED SPECTROSCOPY
EPA is developing advanced open-path and cell-based optical techniques for time-resolved measurement of priority hazardous air pollutants such as formaldehyde (HCHO). Due to its high National Air Toxics Assessment risk factor, there is increasing interest in continuous measuremen...
Code of Federal Regulations, 2010 CFR
2010-10-01
... consisting of a set of transmission paths and associated signal generation, reception, and control equipment that is designed to provide cable service which includes video programming and which is provided to... complies with this part. (b) Open video system operator (operator). Any person or group of persons who...
Code of Federal Regulations, 2012 CFR
2012-10-01
... consisting of a set of transmission paths and associated signal generation, reception, and control equipment that is designed to provide cable service which includes video programming and which is provided to... complies with this part. (b) Open video system operator (operator). Any person or group of persons who...
Code of Federal Regulations, 2014 CFR
2014-10-01
... consisting of a set of transmission paths and associated signal generation, reception, and control equipment that is designed to provide cable service which includes video programming and which is provided to... complies with this part. (b) Open video system operator (operator). Any person or group of persons who...
Ammonia emissions from mechanically ventilated poultry operations are an important environmental concern. Open Path Tunable Diode Laser Absorption Spectroscopy has emerged as a robust real-time method for gas phase measurement of ammonia concentrations in agricultural settings. ...
NASA Astrophysics Data System (ADS)
Kosma, Kyriaki; Trushin, Sergei A.; Schmid, Wolfram E.; Fuß, Werner
2015-12-01
The main primary photoproducts of cycloocta-1,3,5-triene (COT) are a strained mono-E isomer, Z,Z-octatetraene (OT, from electrocyclic ring opening) and benzene + ethylene. We investigated the excited-state dynamics of COT by time-resolved mass spectroscopy, probing by near-IR photoionization. Unexpectedly, we found only one reaction channel. We assign it to the pericyclic reactions. Evidence for an early branching between this and the Z-E channel is taken from previous resonance Raman data. This channel confirms previously formulated rules on the excited states involved, the reaction path and driving forces and contributes to their rationalization. Bicyclo[4.2.0]octa-2,4-diene undergoes only two pericyclic reactions: ring opening to OT and cleavage to benzene + ethylene. We investigated it briefly in its equilibrium mixture with COT. The data are consistent with a common path on the excited surfaces. Suggestions are made for structures of conical intersections, and driving forces are considered. All processes were found to be barrierless.
NASA Astrophysics Data System (ADS)
Xu, Tiwen; Jia, Zhixin; Luo, Yuanfang; Jia, Demin; Peng, Zheng
2015-02-01
The epoxidized natural rubber (ENR) as an interfacial modifier was used to improve the mechanical and dynamical mechanical properties of NR/silica composites. In order to reveal the interaction mechanism between ENR and silica, the ENR/Silica model compound was prepared by using an open mill and the interfacial interaction of ENR with silica was investigated by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), X-ray diffraction (XRD) and stress-strain testing. The results indicated that the ring-opening reaction occurs between the epoxy groups of ENR chains and Si-OH groups on the silica surfaces and the covalent bonds are formed between two phases, which can improve the dispersion of silica in the rubber matrix and enhance the interfacial combination between rubber and silica. The ring-opening reaction occurs not only in vulcanization process but also in mixing process, meanwhile, the latter seems to be more important due to the simultaneous effects of mechanical force and temperature.
Open source Modeling and optimization tools for Planning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peles, S.
Open source modeling and optimization tools for planning The existing tools and software used for planning and analysis in California are either expensive, difficult to use, or not generally accessible to a large number of participants. These limitations restrict the availability of participants for larger scale energy and grid studies in the state. The proposed initiative would build upon federal and state investments in open source software, and create and improve open source tools for use in the state planning and analysis activities. Computational analysis and simulation frameworks in development at national labs and universities can be brought forward tomore » complement existing tools. An open source platform would provide a path for novel techniques and strategies to be brought into the larger community and reviewed by a broad set of stakeholders.« less
Heterogeneous compute in computer vision: OpenCL in OpenCV
NASA Astrophysics Data System (ADS)
Gasparakis, Harris
2014-02-01
We explore the relevance of Heterogeneous System Architecture (HSA) in Computer Vision, both as a long term vision, and as a near term emerging reality via the recently ratified OpenCL 2.0 Khronos standard. After a brief review of OpenCL 1.2 and 2.0, including HSA features such as Shared Virtual Memory (SVM) and platform atomics, we identify what genres of Computer Vision workloads stand to benefit by leveraging those features, and we suggest a new mental framework that replaces GPU compute with hybrid HSA APU compute. As a case in point, we discuss, in some detail, popular object recognition algorithms (part-based models), emphasizing the interplay and concurrent collaboration between the GPU and CPU. We conclude by describing how OpenCL has been incorporated in OpenCV, a popular open source computer vision library, emphasizing recent work on the Transparent API, to appear in OpenCV 3.0, which unifies the native CPU and OpenCL execution paths under a single API, allowing the same code to execute either on CPU or on a OpenCL enabled device, without even recompiling.
NASA Astrophysics Data System (ADS)
Werwein, Viktor; Li, Gang; Serdyukov, Anton; Brunzendorf, Jens; Werhahn, Olav; Ebert, Volker
2018-06-01
In the present study, we report highly accurate air-induced broadening and shift coefficients for the nitrous oxide (N2O) 0002-0000 band at 2.26 μm of the main isotopologue retrieved from high-resolution Fourier transform infrared (FTIR) measurements with metrologically determined pressure, temperature, absorption path length and chemical composition. Most of our retrieved air-broadening coefficients agree with previously generated datasets within the expanded (confidence interval of 95%) uncertainties. For the air-shift coefficients our results suggest a different rotational dependence compared to literature. The present study benefits from improved measurement conditions and a detailed metrological uncertainty description. Comparing to literature, the uncertainties of the previous broadening and shift coefficients are improved by a factor of up to 39 and up to 22, respectively.
Molpher: a software framework for systematic chemical space exploration
2014-01-01
Background Chemical space is virtual space occupied by all chemically meaningful organic compounds. It is an important concept in contemporary chemoinformatics research, and its systematic exploration is vital to the discovery of either novel drugs or new tools for chemical biology. Results In this paper, we describe Molpher, an open-source framework for the systematic exploration of chemical space. Through a process we term ‘molecular morphing’, Molpher produces a path of structurally-related compounds. This path is generated by the iterative application of so-called ‘morphing operators’ that represent simple structural changes, such as the addition or removal of an atom or a bond. Molpher incorporates an optimized parallel exploration algorithm, compound logging and a two-dimensional visualization of the exploration process. Its feature set can be easily extended by implementing additional morphing operators, chemical fingerprints, similarity measures and visualization methods. Molpher not only offers an intuitive graphical user interface, but also can be run in batch mode. This enables users to easily incorporate molecular morphing into their existing drug discovery pipelines. Conclusions Molpher is an open-source software framework for the design of virtual chemical libraries focused on a particular mechanistic class of compounds. These libraries, represented by a morphing path and its surroundings, provide valuable starting data for future in silico and in vitro experiments. Molpher is highly extensible and can be easily incorporated into any existing computational drug design pipeline. PMID:24655571
Molpher: a software framework for systematic chemical space exploration.
Hoksza, David; Skoda, Petr; Voršilák, Milan; Svozil, Daniel
2014-03-21
Chemical space is virtual space occupied by all chemically meaningful organic compounds. It is an important concept in contemporary chemoinformatics research, and its systematic exploration is vital to the discovery of either novel drugs or new tools for chemical biology. In this paper, we describe Molpher, an open-source framework for the systematic exploration of chemical space. Through a process we term 'molecular morphing', Molpher produces a path of structurally-related compounds. This path is generated by the iterative application of so-called 'morphing operators' that represent simple structural changes, such as the addition or removal of an atom or a bond. Molpher incorporates an optimized parallel exploration algorithm, compound logging and a two-dimensional visualization of the exploration process. Its feature set can be easily extended by implementing additional morphing operators, chemical fingerprints, similarity measures and visualization methods. Molpher not only offers an intuitive graphical user interface, but also can be run in batch mode. This enables users to easily incorporate molecular morphing into their existing drug discovery pipelines. Molpher is an open-source software framework for the design of virtual chemical libraries focused on a particular mechanistic class of compounds. These libraries, represented by a morphing path and its surroundings, provide valuable starting data for future in silico and in vitro experiments. Molpher is highly extensible and can be easily incorporated into any existing computational drug design pipeline.
Code of Federal Regulations, 2014 CFR
2014-04-01
... HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS PEDESTRIAN AND..., propelled solely by human power, upon which any person or persons may ride. (b) Bikeway. Any road, path, or... traffic by an open space or barrier and either within the highway right-of-way or within an independent...
Code of Federal Regulations, 2011 CFR
2011-04-01
... HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS PEDESTRIAN AND..., propelled solely by human power, upon which any person or persons may ride. (b) Bikeway. Any road, path, or... traffic by an open space or barrier and either within the highway right-of-way or within an independent...
Code of Federal Regulations, 2012 CFR
2012-04-01
... HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS PEDESTRIAN AND..., propelled solely by human power, upon which any person or persons may ride. (b) Bikeway. Any road, path, or... traffic by an open space or barrier and either within the highway right-of-way or within an independent...
Code of Federal Regulations, 2013 CFR
2013-04-01
... HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS PEDESTRIAN AND..., propelled solely by human power, upon which any person or persons may ride. (b) Bikeway. Any road, path, or... traffic by an open space or barrier and either within the highway right-of-way or within an independent...
Code of Federal Regulations, 2010 CFR
2010-04-01
... HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS PEDESTRIAN AND..., propelled solely by human power, upon which any person or persons may ride. (b) Bikeway. Any road, path, or... traffic by an open space or barrier and either within the highway right-of-way or within an independent...
The paper examines the quality assurance challenges associated with open path Fourier transform infrared (OPFTIR) measurements of large area pollution sources with plume reconstruction by computed tomography (CT) and how each challenge may be met. Traditionally, pollutant concent...
Development of cost-effective, time-resolved fenceline measurement methods that facilitate improved emissions mitigation strategies is of growing interest to both industry and regulators. Ground-based optical remote sensing (ORS) is a well-known class of technical approaches use...
Evaluation of shared lane markings in Miami Beach, Florida [summary].
DOT National Transportation Integrated Search
2012-01-01
On urban streets, bicyclists must often ride in the narrow gap between traffic and parked cars, where they may become victims of a "dooring" crash, in which the door of a parked car opens suddenly into the bicyclist's path. The bicyclist can be injur...
Development of cost-effective, time-resolved fenceline measurement methods that facilitate improved emissions mitigation strategies is of growing interest to both industry and regulators. Ground-based optical remote sensing (ORS) is a well-known class of technical approaches use...
Industrial facilities, energy production, and refining operations can be significant sources of gas-phase air pollutants. Some industrial emissions originate from fugitive sources (leaks) or process malfunctions and can be mitigated if identified. In recent amendments to the Nati...
NASA Astrophysics Data System (ADS)
Selimovic, Vanessa; Yokelson, Robert J.; Warneke, Carsten; Roberts, James M.; de Gouw, Joost; Reardon, James; Griffith, David W. T.
2018-03-01
Western wildfires have a major impact on air quality in the US. In the fall of 2016, 107 test fires were burned in the large-scale combustion facility at the US Forest Service Missoula Fire Sciences Laboratory as part of the Fire Influence on Regional and Global Environments Experiment (FIREX). Canopy, litter, duff, dead wood, and other fuel components were burned in combinations that represented realistic fuel complexes for several important western US coniferous and chaparral ecosystems including ponderosa pine, Douglas fir, Engelmann spruce, lodgepole pine, subalpine fir, chamise, and manzanita. In addition, dung, Indonesian peat, and individual coniferous ecosystem fuel components were burned alone to investigate the effects of individual components (e.g., duff
) and fuel chemistry on emissions. The smoke emissions were characterized by a large suite of state-of-the-art instruments. In this study we report emission factor (EF, grams of compound emitted per kilogram of fuel burned) measurements in fresh smoke of a diverse suite of critically important trace gases measured using open-path Fourier transform infrared spectroscopy (OP-FTIR). We also report aerosol optical properties (absorption EF; single-scattering albedo, SSA; and Ångström absorption exponent, AAE) as well as black carbon (BC) EF measured by photoacoustic extinctiometers (PAXs) at 870 and 401 nm. The average trace gas emissions were similar across the coniferous ecosystems tested and most of the variability observed in emissions could be attributed to differences in the consumption of components such as duff and litter, rather than the dominant tree species. Chaparral fuels produced lower EFs than mixed coniferous fuels for most trace gases except for NOx and acetylene. A careful comparison with available field measurements of wildfires confirms that several methods can be used to extract data representative of real wildfires from the FIREX laboratory fire data. This is especially valuable for species rarely or not yet measured in the field. For instance, the OP-FTIR data alone show that ammonia (1.62 g kg-1), acetic acid (2.41 g kg-1), nitrous acid (HONO, 0.61 g kg-1), and other trace gases such as glycolaldehyde (0.90 g kg-1) and formic acid (0.36 g kg-1) are significant emissions that were poorly characterized or not characterized for US wildfires in previous work. The PAX measurements show that the ratio of brown carbon (BrC) absorption to BC absorption is strongly dependent on modified combustion efficiency (MCE) and that BrC absorption is most dominant for combustion of duff (AAE 7.13) and rotten wood (AAE 4.60): fuels that are consumed in greater amounts during wildfires than prescribed fires. Coupling our laboratory data with field data suggests that fresh wildfire smoke typically has an EF for BC near 0.2 g kg-1, an SSA of ˜ 0.91, and an AAE of ˜ 3.50, with the latter implying that about 86 % of the aerosol absorption at 401 nm is due to BrC.
NASA Astrophysics Data System (ADS)
Michel, A. P.; Liu, P. Q.; Yeung, J. K.; Zhang, Y.; Baeck, M. L.; Pan, X.; Dong, H.; Wang, Z.; Smith, J. A.; Gmachl, C. F.
2009-05-01
The 2008 Olympic Games focused attention on the air quality of Beijing, China and served as an important test-bed for developing, deploying, and testing new technologies for analysis of air quality and regional climate in urban environments. Poor air quality in urban locations has a significant detrimental effect on the health of residents while also impacting both regional and global climate change. As a result, there exists a great need for highly sensitive trace gas sensors for studying the atmosphere of the urban environment. Open-path remote sensors are of particular interest as they can obtain data on spatial scales similar to those used in regional climate models. Quantum cascade lasers (QCLs) can be designed for operation in the mid-infrared (mid-IR) with a central wavelength anywhere between 3 to 24 μm and made tunable over a wavelength interval of over 0.1 μm. The Quantum Cascade Laser Open-Path System (QCLOPS) is a mid-infrared laser absorption spectrometer that uses a tunable, thermoelectrically cooled, pulsed Daylight Solutions Inc. QCL for measurement of trace gases. The system is aimed at applications with path lengths ranging from approximately 0.1 to 1.0 km. The system is designed to continuously monitor multiple trace gases [water vapor (H2O), ozone (O3), ammonia (NH3), and carbon dioxide (CO2)] in the lower atmosphere. A field campaign from July to September 2008 in Beijing used QCLOPS to study trace gas concentrations before, during, and after the Olympic Games in an effort to capture changes induced by emissions reduction methods. QCLOPS was deployed at the Institute of Atmospheric Physics - Chinese Academy of Sciences on the roof of a two-story building, at an approximate distance of 2 miles from the Olympic National Stadium ("The Bird's Nest.") QCLOPS operated with an open-path round trip distance of approximately 75 m. The system ran with minimal human interference, twenty-four hours per day for the full campaign period. In order to collect data over numerous absorption peaks belonging to the target gases of H2O, NH3, O3, and CO2, measurements were made at 317 different wavelengths within the full tuning range of the laser (1020 - 1070 cm-1). We present the design of this novel sensor which was successfully built, deployed, and operated with minimal operator intervention for the three month field campaign period. Furthermore, we present the results of the field campaign and the capabilities of the QCLOPS system to measure fluctuations of the trace gases at parts-per-billion levels. The time series data illustrate the changing levels of the trace gases over the campaign period. In addition, data from commercial sensors simultaneously deployed at the field site are presented as a validation of the capabilities of the QCLOPS system. This work was supported by MIRTHE (NSF-ERC #EEC-0540832).
NASA Astrophysics Data System (ADS)
Sauer, U.; Schuetze, C.; Dietrich, P.
2013-12-01
The MONACO project (Monitoring approach for geological CO2 storage sites using a hierarchic observation concept) aims to find reliable monitoring tools that work on different spatial and temporal scales at geological CO2 storage sites. This integrative hierarchical monitoring approach based on different levels of coverage and resolutions is proposed as a means of reliably detecting CO2 degassing areas at ground surface level and for identifying CO2 leakages from storage formations into the shallow subsurface, as well as CO2 releases into the atmosphere. As part of this integrative hierarchical monitoring concept, several methods and technologies from ground-based remote sensing (Open-path Fourier-transform infrared (OP-FTIR) spectroscopy), regional measurements (near-surface geophysics, chamber-based soil CO2 flux measurement) and local in-situ measurements (using shallow boreholes) will either be combined or used complementary to one another. The proposed combination is a suitable concept for investigating CO2 release sites. This also presents the possibility of adopting a modular monitoring concept whereby our monitoring approach can be expanded to incorporate other methods in various coverage scales at any temporal resolution. The link between information obtained from large-scale surveys and local in-situ monitoring can be realized by sufficient geophysical techniques for meso-scale monitoring, such as geoelectrical and self-potential (SP) surveys. These methods are useful for characterizing fluid flow and transport processes in permeable near-surface sedimentary layers and can yield important information concerning CO2-affected subsurface structures. Results of measurements carried out a natural analogue site in the Czech Republic indicate that the hierarchical monitoring approach represents a successful multidisciplinary modular concept that can be used to monitor both physical and chemical processes taking place during CO2 migration and seepage. The application of FTIR spectroscopy in combination with soil gas surveys and geophysical investigations results in a comprehensive site characterization, including atmospheric and near-surface CO2 distribution, as well as subsurface structural features. We observed a correlation of higher CO2 concentration and flux rates at the meso-scale that coincides with distinct geophysical anomalies. Here, we found prominent SP anomalies and zones of lower resistivity in the geoelectrical images compared to undisturbed regions nearby. This presentation will discuss the results we obtained and illustrate the influence of CO2 on electrical parameters measured under field conditions in relation to environmental parameters.
Gas-cell measurements for evaluating longwave-infrared passive-sensor performance
NASA Astrophysics Data System (ADS)
Cummings, Alan S.; Combs, Roger J.; Thomas, Mark J.; Curry, Timothy; Kroutil, Robert T.
2006-10-01
A longwave-infrared (LWIR) passive-spectrometer performance was evaluated with a short-pathlength gas cell. This cell was accurately positioned between the sensor and a NIST-traceable blackbody radiance source. Cell contents were varied over the Beer's Law absorbance range from the limit of detection to saturation for the gas analytes of sulfur hexafluoride and hexafluoroethane. The spectral impact of saturation on infrared absorbance was demonstrated for the passive sensor configuration. The gas-cell contents for all concentration-pathlength products was monitored with an active traditional-laboratory Fourier Transform Infrared (FTIR) spectrometer and was verified by comparison with the established PNNL/DOE vapor-phase infrared (IR) spectral database. For the passive FTIR measurements, the blackbody source employed a range of background temperatures from 5 °C to 50 °C. The passive measurements without the presence of a gas cell permitted a determination of the noise equivalent spectral noise (NESR) for each set of passive gas-cell measurements. In addition, the no-cell condition allowed the evaluation of the effect of gas cell window materials of low density poly(ethylene), potassium chloride, potassium bromide, and zinc selenide. The components of gas cell, different window materials, temperature differentials, and absorbances of target-analyte gases supplied the means of evaluating the LWIR performance of a passive FTIR spectrometer. The various LWIR-passive measurements were found to simulate those often encountered in open-air scenarios important to both industrial and environmental monitoring applications.
An Experimental Characterization System for Deep Ultra-Violet (UV) Photoresists
NASA Astrophysics Data System (ADS)
Drako, Dean M.; Partlo, William N.; Oldham, William G.; Neureuther, Andrew R.
1989-08-01
A versatile system designed specifically for experimental automated photoresist characterization has been constructed utilizing an excimer laser source for exposure at 248nm. The system was assembled, as much as possible, from commercially available components in order to facilitate its replication. The software and hardware are completely documented in a University of California-Berkeley Engineering Research Lab Memo. An IBM PC-AT compatible computer controls an excimer laser, operates a Fourier Transform Infrared (FTIR) Spectrometer, measures and records the energy of each laser pulse (incident, reflected, and transmitted), opens and closes shutters, and operates two linear stages for sample movement. All operations (except FTIR data reduction) are managed by a control program written in the "C" language. The system is capable of measuring total exposure dose, performing bleaching measurements, creating and recording exposure pulse sequences, and generating exposure patterns suitable for multiple channel monitoring of the development. The total exposure energy, energy per pulse, and pulse rate are selectable over a wide range. The system contains an in-situ Fourier Transform Infrared Spectrometer for qualitative and quantitative analysis of the photoresist baking and exposure processes (baking is not done in-situ). FIIR may be performed in transmission or reflection. The FTIR data will form the basis of comprehensive multi-state resist models. The system's versatility facilitates the development of new automated and repeatable experiments. Simple controlling software, utilizing the provided interface sub-routines, can be written to control new experiments and collect data.
NASA Technical Reports Server (NTRS)
Mcardle, Jack G.; Esker, Barbara S.
1993-01-01
A one-third-scale model of a generic tailpipe offtake system for an advanced short takeoff, vertical landing (ASTOVL) aircraft was tested at the NASA Lewis Research Center Powered Lift Facility. The basic model consisted of a tailpipe with a center body to form an annulus simulating turbine outflow with no swirl; twin offtake ducts with elbows at the ends to turn the flow to a downward direction; flow control nozzles at the ends of the elbows; and a blind flange at the end of the tailpipe to simulate a closed cruise nozzle. The offtake duct-to-tailpipe diameter ratio was 0.74. Modifications of a generic nature were then made to this basic configuration to measure the effects of flow-path changes on the flow and pressure-loss characteristics. The modifications included adding rounded entrances at the forward edges of the offtake openings, blocking the tailpipe just aft the openings instead of at the cruise nozzle, changing the location of the openings along the tailpipe, removing the center body, and varying the Mach number (flow rate) over a wide range in the tailpipe ahead of the openings by changing the size of the flow control nozzles. The tests were made with unheated air at tailpipe-to-ambient pressure ratios from 1.4 to 5. Results are presented and compared with performance graphs, total-pressure contour plots, paint streak flow visualization photographs, and a flow-angle probe traverse at the offtake entrance.
DOAS (differential optical absorption spectroscopy) urban pollution measurements
NASA Astrophysics Data System (ADS)
Stevens, Robert K.; Vossler, T. L.
1991-05-01
During July and August of 1990, a differential optical absorption spectrometer (DOAS) made by OPSIS Inc. was used to measure gaseous air pollutants over three separate open paths in Atlanta, GA. Over path 1 (1099 m) and path 2 (1824 m), ozone (03), sulfur dioxide (SO2) nitrogen dioxide (NO2), nitrous acid (HNO2) formaldehyde (HCHO), benzene, toluene, and o-xylene were measured. Nitric oxide (NO) and ammonia (NH3) were monitored over path 3 (143 m). The data quality and data capture depended on the compound being measured and the path over which it was measured. Data quality criteria for each compound were chosen such that the average relative standard deviation would be less than 25%. Data capture ranged from 43% for o-xylene for path 1 to 95% for ozone for path 2. Benzene, toluene, and o-xylene concentrations measured over path 2, which crossed over an interstate highway, were higher than concentrations measured over path 1, implicating emissions from vehicles on the highway as a significant source of these compounds. Federal Reference Method (FRN) instruments were located near the DOAS light receivers and measurements of 03, NO2, and NO were made concurrently with the DOAS. Correlation coefficients greater than 0.85 were obtained between the DOAS and FRM's; however, there was a difference between the mean values obtained by the two methods for 03 and NO. A gas chromatograph for measuring volatile organic compounds was operated next to the FRN's. Correlation coefficients of about 0.66 were obtained between the DOAS and GC measurements of benzene and o- xylene. However, the correlation coefficient between the DOAS and GC measurements of toluene averaged only 0.15 for the two DOAS measurement paths. The lack of correlation and other factors indicate the possibility of a localized source of toluene near the GC. In general, disagreements between the two measurement methods could be caused by atmospheric inhomogeneities or interferences in the DOAS and other methods.
Wong, Yu-Tung; Finley, Charles C; Giallo, Joseph F; Buckmire, Robert A
2011-08-01
To introduce a novel method of combining robotics and the CO(2) laser micromanipulator to provide excellent precision and performance repeatability designed for surgical applications. Pilot feasibility study. We developed a portable robotic controller that appends to a standard CO(2) laser micromanipulator. The robotic accuracy and laser beam path repeatability were compared to six experienced users of the industry standard micromanipulator performing the same simulated surgical tasks. Helium-neon laser beam video tracking techniques were employed. The robotic controller demonstrated superiority over experienced human manual micromanipulator control in accuracy (laser path within 1 mm of idealized centerline), 97.42% (standard deviation [SD] 2.65%), versus 85.11% (SD 14.51%), P = .018; and laser beam path repeatability (area of laser path divergence on successive trials), 21.42 mm(2) (SD 4.35 mm(2) ) versus 65.84 mm(2) (SD 11.93 mm(2) ), P = .006. Robotic micromanipulator control enhances accuracy and repeatability for specific laser tasks. Computerized control opens opportunity for alternative user interfaces and additional safety features. Copyright © 2011 The American Laryngological, Rhinological, and Otological Society, Inc.
Insights into vehicle trajectories at the handling limits: analysing open data from race car drivers
NASA Astrophysics Data System (ADS)
Kegelman, John C.; Harbott, Lene K.; Gerdes, J. Christian
2017-02-01
Race car drivers can offer insights into vehicle control during extreme manoeuvres; however, little data from race teams is publicly available for analysis. The Revs Program at Stanford has built a collection of vehicle dynamics data acquired from vintage race cars during live racing events with the intent of making this database publicly available for future analysis. This paper discusses the data acquisition, post-processing, and storage methods used to generate the database. An analysis of available data quantifies the repeatability of professional race car driver performance by examining the statistical dispersion of their driven paths. Certain map features, such as sections with high path curvature, consistently corresponded to local minima in path dispersion, quantifying the qualitative concept that drivers anchor their racing lines at specific locations around the track. A case study explores how two professional drivers employ distinct driving styles to achieve similar lap times, supporting the idea that driving at the limits allows a family of solutions in terms of paths and speed that can be adapted based on specific spatial, temporal, or other constraints and objectives.
Uncertainties of the Intensity of the 1130 nm Band of Water Vapor
NASA Technical Reports Server (NTRS)
Giver, L. P.; Pilewskie, P.; Gore, W. J.; Chackerian, C., Jr.; Varanasi, P.; Bergstrom, R.; Freedman, R. S.
2001-01-01
Belmiloud, et al have recently suggested that the HITRAN line intensities in the 1130 nm water vapor band are much too weak. Giver, et at corrected unit conversion errors to make the HITRAN intensities compatible with the original measurements of Mandin, et al, but Belmiloud, et al believe that many of those line intensity measurements were too weak, and they propose the total intensity of the 1130 nm water vapor band is 38% stronger than the sum of the HITRAN line intensities in this region. We have made independent assessments of this proposal using 2 spectra obtained with the Ames 25 meter base path White cell. The first was made using the moderate resolution (8 nm) solar spectral flux radiometer (SSFR) flight instrument with a White cell absorbing path of 506 meters and 10 torr water vapor pressure. Modeling this spectrum using the HITRAN linelist gives a reasonable match, and the model is not compatible when the HITRAN line intensities are increased by 38%. The second spectrum was obtained with a White cell path of 1106 meters and 12 torr water vapor pressure, using a Bomem FTIR with near Doppler width resolution. This spectrum is useful for measuring intensities of isolated weak lines to compare with the measurements of Mandin, et al. Unfortunately, as Belmiloud et al point out, at these conditions the strong lines are much too saturated for good intensity measurements. Our measurements of the weak lines are in reasonable agreement with those of Mandin, et al. Neither of our spectra supports the proposal of Belmiloud et al for a general 38% increase of the absorption intensity in the 1130 nm water vapor band.
Methane Line Intensities: Near and Far IR
NASA Astrophysics Data System (ADS)
Brown, Linda R.; Devi, V. Malathy; Wishnow, Edward H.; Sung, Keeyoon; Crawford, Timothy J.; Mantz, Arlan W.; Smith, Mary Ann H.; Predoi-Cross, Adriana; Benner, D. Chris
2014-11-01
Accurate knowledge of line intensities is crucial input for radiance calculations to interpret atmospheric observations of planets and moons. We have therefore undertaken extensive laboratory studies to measure the methane spectrum line-by-line in order to improve theoretical quantum mechanical modeling for molecular spectroscopy databases (e. g. HITRAN and GEISA) used by planetary astronomers. Preliminary results will be presented for selected ro-vibrational transitions in both the near-IR (1.66 and 2.2 - 2.4 microns) and the far-IR (80 - 120 microns) regions. For this, we have recorded high-resolution spectra (instrumental resolving power: 1,300,000 (NIR) and 10,000 (FIR)) with the Bruker 125HR Fourier transform spectrometer at JPL using isotopically-enriched 12CH4 and 13CH4, as well as normal methane samples. For the NIR wavelengths, three different absorption cells have been employed to achieve sample temperatures ranging from 78 K to 299 K: 1) a White cell set to a path length of 13.09 m for room temperature data, 2) a single-pass 0.2038 m cold cell and 3) a new coolable Herriott cell with a fixed 20.941 m optical path and configured for the first time to a FT-IR spectrometer. For the Far-IR, another coolable absorption chamber set to a 52 m optical path has been used. These new experiments and intensity measurements will be presented and discussed.Part of the research described in this paper was performed at the Jet Propulsion Laboratory, California Institute of Technology, the University of California, Berkeley, Connecticut College, and NASA Langley under contracts and grants with the National Aeronautics and Space Administration. A. Predoi-Cross and her research group have been supported by the National Science and Engineering Research Council of Canada.
Elastic constants of hcp 4He: Path-integral Monte Carlo results versus experiment
NASA Astrophysics Data System (ADS)
Ardila, Luis Aldemar Peña; Vitiello, Silvio A.; de Koning, Maurice
2011-09-01
The elastic constants of hcp 4He are computed using the path-integral Monte Carlo (PIMC) method. The stiffness coefficients are obtained by imposing different distortions to a periodic cell containing 180 atoms, followed by measurement of the elements of the corresponding stress tensor. For this purpose an appropriate path-integral expression for the stress tensor observable is derived and implemented into the pimc++ package. In addition to allowing the determination of the elastic stiffness constants, this development also opens the way to an explicit atomistic determination of the Peierls stress for dislocation motion using the PIMC technique. A comparison of the results to available experimental data shows an overall good agreement of the density dependence of the elastic constants, with the single exception of C13. Additional calculations for the bcc phase, on the other hand, show good agreement for all elastic constants.
Physics Careers: To the Bachelor's Degree and Beyond
NASA Astrophysics Data System (ADS)
Bailey, Crystal
2012-03-01
In our current era, society needs an increased representation of physicists in the workforce to help solve the growing number of societal and environment problems we collectively face. And even though a physics bachelor's degree opens the door to an incredible diversity of high-paying and rewarding careers, most undergraduates are only aware of academic career paths (having mostly encountered only physics professors during their lifetime). This talk will provide in-depth information about physics career paths outside of academia which available to those with a bachelor's degree in physics, and will discuss how these options change as one moves through an advanced degree in physics. The talk will include real-life examples of working physicists at all stages of the degree path, and salary and employment sector statistics for physics bachelors, masters, and PhD recipients. The talk will also include information on additional careers and professional development resources for students.
Torsvik, T.H.; Gaina, C.; Redfield, T.F.
2007-01-01
Neoproterozoic Rodinia reconstructions associate East Antarctica (EANT) with cratonic Western Australia. By further linking EANT to both Gondwana and Pangea with relative plate circuits, a Synthetic Apparent Polar Wander (SAPW) path for EANT is calculated. This path predicts that EANT was located at tropical to subtropical southerly latitudes from ca. 1 Ga to 420 Ma. Around 400 Ma and again at 320 Ma, EANT underwent southward drift. Ca. 250 Ma Antarctica voyaged briefly north but headed south again ca. 200 Ma. Since 75 Ma EANT became surrounded by spreading centers and has remained extremely stable. Although paleomagnetic data of the blocks that embrace West Antarctica are sparse, we attempt to model their complex kinematics since the Mesozoic. Together with the SAPW path and a revised circum-Antarctic seafloor spreading history we construct a series of new paleogeographic maps.
Broadband Phase Spectroscopy over Turbulent Air Paths
NASA Astrophysics Data System (ADS)
Giorgetta, Fabrizio R.; Rieker, Gregory B.; Baumann, Esther; Swann, William C.; Sinclair, Laura C.; Kofler, Jon; Coddington, Ian; Newbury, Nathan R.
2015-09-01
Broadband atmospheric phase spectra are acquired with a phase-sensitive dual-frequency-comb spectrometer by implementing adaptive compensation for the strong decoherence from atmospheric turbulence. The compensation is possible due to the pistonlike behavior of turbulence across a single spatial-mode path combined with the intrinsic frequency stability and high sampling speed associated with dual-comb spectroscopy. The atmospheric phase spectrum is measured across 2 km of air at each of the 70 000 comb teeth spanning 233 cm-1 across hundreds of near-infrared rovibrational resonances of CO2 , CH4 , and H2O with submilliradian uncertainty, corresponding to a 10-13 refractive index sensitivity. Trace gas concentrations extracted directly from the phase spectrum reach 0.7 ppm uncertainty, demonstrated here for CO2 . While conventional broadband spectroscopy only measures intensity absorption, this approach enables measurement of the full complex susceptibility even in practical open path sensing.
A quorum sensing-independent path to stumpy development in Trypanosoma brucei
Zimmermann, Henriette; Batram, Christopher; Kramer, Susanne; Janzen, Christian J.; Engstler, Markus
2017-01-01
For persistent infections of the mammalian host, African trypanosomes limit their population size by quorum sensing of the parasite-excreted stumpy induction factor (SIF), which induces development to the tsetse-infective stumpy stage. We found that besides this cell density-dependent mechanism, there exists a second path to the stumpy stage that is linked to antigenic variation, the main instrument of parasite virulence. The expression of a second variant surface glycoprotein (VSG) leads to transcriptional attenuation of the VSG expression site (ES) and immediate development to tsetse fly infective stumpy parasites. This path is independent of SIF and solely controlled by the transcriptional status of the ES. In pleomorphic trypanosomes varying degrees of ES-attenuation result in phenotypic plasticity. While full ES-attenuation causes irreversible stumpy development, milder attenuation may open a time window for rescuing an unsuccessful antigenic switch, a scenario that so far has not been considered as important for parasite survival. PMID:28394929
Lean in and Lift up: Female Superintendents Share Their Career Path Choices
ERIC Educational Resources Information Center
Kelsey, Cheryl; Allen, Kathy; Coke, Kelly; Ballard, Glenda
2014-01-01
The purpose of the research was to inform professional practice pertaining to the preparation of female administrators as future school superintendents. Twenty female superintendents in Texas were interviewed using a qualitative research approach. Strategies, career experiences and perception of barriers were identified using open-ended questions.…
Comparison of micrometeorological techniques in measuring gas emissions from waste lagoons
USDA-ARS?s Scientific Manuscript database
In this study, we evaluated and compared the accuracies of two micrometeorological methods using open-path tunable diode laser absorption spectrometers; vertical radial plume mapping method and the inverse dispersion model method. The accuracy of these two methods was evaluated using a 45m x 45m p...
Comparison of micrometeorological techniques in measuring gas emissions from waste lagoons
USDA-ARS?s Scientific Manuscript database
In this study, we evaluated and compared the accuracies of two micrometeorological methods using open-path tunable diode laser absorption spectrometers; vertical radial plume mapping method (US EPA OTM-10) and the inverse dispersion model method. The accuracy of these two methods was evaluated usin...
ERIC Educational Resources Information Center
Smutny, Joan Franklin
2011-01-01
While resources for the gifted are not abundant, many schools do offer classes, programs, services, and/or clubs that broaden student learning beyond the curriculum. What can educators do to expand the horizons of gifted children--to open their minds to new worlds of knowledge and understanding? Programs for gifted students, particularly those…
GED Revision Opens Path to Higher Ed.
ERIC Educational Resources Information Center
Gewertz, Catherine
2011-01-01
The General Educational Development program, or GED, is undergoing the biggest revamping in its 69-year history, driven by mounting recognition that young adults' future success depends on getting more than a high-school-level education. Potent forces have converged to stoke the GED's redesign. A labor market that increasingly seeks some…
Coordinated Autonomy for Persistent Presence in Harbor and Riverine Environments
2007-09-30
estimators, and methods designed to deal with real-world problems such as video transmission noise; • OpenCV for basic computer vision functionality as...awareness and forward surveillance of Rocky’s intended path. Aerial video was transmitted to the UAV ground station, where an operator using GIS
Achieving Better Buying Power through Acquisition of Open Architecture Software Systems: Volume 1
2016-01-06
supporting “Bring Your Own Devices” (BYOD)? 22 New business models for OA software components ● Franchising ● Enterprise licensing ● Metered usage...paths IP and cybersecurity requirements will need continuous attention! 35 New business models for OA software components ● Franchising ● Enterprise
Formation of furan fatty alkyl esters from their bis-epoxide fatty esters
USDA-ARS?s Scientific Manuscript database
Epoxidation of vegetable oils and consecutive epoxide ring-opening reaction is a widely investigated path for producing biobased lubricants and polymers. The reaction mechanism and products are considered well-studied and known. In the current study, the reactions of epoxidized alkyl soyate with fou...
2014-04-22
NASA Administrator Charles Bolden answers questions from the audience after giving the opening keynote address at the Humans to Mars Summit on April 22, 2014 at George Washington University in Washington, DC. Administrator Bolden spoke of NASA's path to the human exploration of Mars during his remarks. Photo Credit: (NASA/Joel Kowsky)
76 FR 32974 - Sunshine Act Meeting; Open Commission Meeting; Thursday, June 9, 2011
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-07
... a Second Report and Order adopting technical rules to mitigate space path interference between the 17/24 GHz Broadcasting- Satellite Service (BSS) space stations and current and future Direct Broadcasting Service (DBS) space stations that operate in the same frequency band. Reforms to certain of the...
New Paths of Learning and Knowledge
ERIC Educational Resources Information Center
Smutny, Joan Franklin
2010-01-01
While resources for the gifted are not abundant, many schools do offer classes, programs, services, and/or clubs that broaden student learning beyond the curriculum. What can educators do to expand the horizons of gifted children--to open their minds to new worlds of knowledge and understanding? Programs for gifted students, particularly those…
Ogren, John I.; Yi, Adrian; Mamaev, Sergey; Li, Hai; Spudich, John L.; Rothschild, Kenneth J.
2015-01-01
Channelrhodopsin-1 from the alga Chlamydomonas augustae (CaChR1) is a low-efficiency light-activated cation channel that exhibits properties useful for optogenetic applications such as a slow light inactivation and a red-shifted visible absorption maximum as compared with the more extensively studied channelrhodopsin-2 from Chlamydomonas reinhardtii (CrChR2). Previously, both resonance Raman and low-temperature FTIR difference spectroscopy revealed that unlike CrChR2, CaChR1 under our conditions exhibits an almost pure all-trans retinal composition in the unphotolyzed ground state and undergoes an all-trans to 13-cis isomerization during the primary phototransition typical of other microbial rhodopsins such as bacteriorhodopsin (BR). Here, we apply static and rapid-scan FTIR difference spectroscopy along with site-directed mutagenesis to characterize the proton transfer events occurring upon the formation of the long-lived conducting P2380 state of CaChR1. Assignment of carboxylic C=O stretch bands indicates that Asp-299 (homolog to Asp-212 in BR) becomes protonated and Asp-169 (homolog to Asp-85 in BR) undergoes a net change in hydrogen bonding relative to the unphotolyzed ground state of CaChR1. These data along with earlier FTIR measurements on the CaChR1 → P1 transition are consistent with a two-step proton relay mechanism that transfers a proton from Glu-169 to Asp-299 during the primary phototransition and from the Schiff base to Glu-169 during P2380 formation. The unusual charge neutrality of both Schiff base counterions in the P2380 conducting state suggests that these residues may function as part of a cation selective filter in the open channel state of CaChR1 as well as other low-efficiency ChRs. PMID:25802337
NASA Astrophysics Data System (ADS)
Benedetti, Enzo; Vergamini, Piergiorgio; Fornaciari, Gino; Spremolla, Giuliano
1989-12-01
During a recognition carried out by one of us on the S.Zita's body, preserved for seven hundred years in the S.Frediano's Basilica (Lucca, Tuscany-Italy) it has been possible to verify the good condition of many orgains and systems. In this comunication we report preliminary results of an analysis of the pulmonary tissue which to the histologic examination showed a typical aspect. It was observed the presence of a massive anthracosis. In order to obtain indication, at molecular level, FT-IR microspectroscopy measurements were carried out. The infrared spectra relative to different microareas allowed us to evidence regions of tissue decomposed, and others in which the infrared spectra showed absorptions characteristic of proteic components at 1650 cm-1 and 1540 cm-1 ascribed to the Amide I and Amide II vibrations respectively. In the 1350-950 cm-1 range bands due to nucleic acids were detected. Also in the CH stretching region bands due to methyl and methylene groups were observed, likely due to the presence of paraffinic segments of phospholipids of cellular membranes. Previous FT-IR studies carried out by us on biological systems such as normal and leukemic lymphocytes (1), on lymphoblast (2), and recently on cells isolated from neoplastic pulmonary tissues (3), represent a basis which allows us to perform a sufficiently complete assignment on the spectra obtained on this finding. These spectra are surprisingly very similar to those obtained by us on human lung tissue from surgical specimens. As far as we know, FT-IR microspectroscopy, which was first employed by our group in the study of human neoplasia at level of single cell (4) has been applied in the analysis of ancient pulmonary tissue, certainly not submitted to any conservative treatment. This kind of approach can open up new possibilities in obtaining indication, at molecular level, on findings of paleophanthology of different origin and age.
Ogren, John I; Yi, Adrian; Mamaev, Sergey; Li, Hai; Spudich, John L; Rothschild, Kenneth J
2015-05-15
Channelrhodopsin-1 from the alga Chlamydomonas augustae (CaChR1) is a low-efficiency light-activated cation channel that exhibits properties useful for optogenetic applications such as a slow light inactivation and a red-shifted visible absorption maximum as compared with the more extensively studied channelrhodopsin-2 from Chlamydomonas reinhardtii (CrChR2). Previously, both resonance Raman and low-temperature FTIR difference spectroscopy revealed that unlike CrChR2, CaChR1 under our conditions exhibits an almost pure all-trans retinal composition in the unphotolyzed ground state and undergoes an all-trans to 13-cis isomerization during the primary phototransition typical of other microbial rhodopsins such as bacteriorhodopsin (BR). Here, we apply static and rapid-scan FTIR difference spectroscopy along with site-directed mutagenesis to characterize the proton transfer events occurring upon the formation of the long-lived conducting P2 (380) state of CaChR1. Assignment of carboxylic C=O stretch bands indicates that Asp-299 (homolog to Asp-212 in BR) becomes protonated and Asp-169 (homolog to Asp-85 in BR) undergoes a net change in hydrogen bonding relative to the unphotolyzed ground state of CaChR1. These data along with earlier FTIR measurements on the CaChR1 → P1 transition are consistent with a two-step proton relay mechanism that transfers a proton from Glu-169 to Asp-299 during the primary phototransition and from the Schiff base to Glu-169 during P2 (380) formation. The unusual charge neutrality of both Schiff base counterions in the P2 (380) conducting state suggests that these residues may function as part of a cation selective filter in the open channel state of CaChR1 as well as other low-efficiency ChRs. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
NASA Astrophysics Data System (ADS)
Kozyra, J. U.; Liemohn, M. W.; Clauer, C. R.; Ridley, A. J.; Thomsen, M. F.; Borovsky, J. E.; Roeder, J. L.; Jordanova, V. K.; Gonzalez, W. D.
2002-08-01
The 4-6 June 1991 magnetic storm, which occurred during solar maximum conditions, is analyzed to investigate two observed features of magnetic storms that are not completely understood: (1) the mass-dependent decay of the ring current during the early recovery phase and (2) the role of preconditioning in multistep ring current development. A kinetic ring current drift-loss model, driven by dynamic fluxes at the nightside outer boundary, was used to simulate this storm interval. A strong partial ring current developed and persisted throughout the main and early recovery phases. The majority of ions in the partial ring current make one pass through the inner magnetosphere on open drift paths before encountering the dayside magnetopause. The ring current exhibited a three-phase decay in this storm. A short interval of charge-exchange loss constituted the first phase of the decay followed by a classical two-phase decay characterized by an abrupt transition between two very different decay timescales. The short interval dominated by charge-exchange loss occurred because an abrupt northward turning of the interplanetary magnetic field (IMF) trapped ring current ions on closed trajectories, and turned-off sources and ``flow-out'' losses. If this had been the end of the solar wind disturbance, decay timescales would have gradually lengthened as charge exchange preferentially removed the short-lived species; a distinctive two-phase decay would not have resulted. However, the IMF turned weakly southward, drift paths became open, and a standard two-phase decay ensued as the IMF rotated slowly northward again. As has been shown before, a two-phase decay is produced as open drift paths are converted to closed in a weakening convection electric field, driving a transition from the fast flow-out losses associated with the partial ring current to the slower charge-exchange losses associated with the trapped ring current. The open drift path geometry during the main phase and during phase 1 of the two-phase decay has important consequences for the evolution of ring current composition and for preconditioning issues. In this particular storm, ring current composition changes measured by the Combined Release and Radiation Effects Satellite (CRRES) during the main and recovery phase of the storm resulted largely from composition changes in the plasma sheet transmitted into the inner magnetosphere along open drift paths as the magnetic activity declined. Possible preconditioning elements were investigated during the multistep development of this storm, which was driven by the sequential arrival of three southward IMF Bz intervals of increasing peak strength. In each case, previous intensifications (preexisting ring currents) were swept out of the magnetosphere by the enhanced convection associated with the latest intensification and did not act as a significant preconditioning element. However, plasma sheet characteristics varied significantly between subsequent intensifications, altering the response of the magnetosphere to the sequential solar wind drivers. A denser plasma sheet (ring current source population) appeared during the second intensification, compensating for the weaker IMF Bz at this time and producing a minimum pressure-corrected Dst* value comparable to the third intensification (driven by stronger IMF Bz but a lower density plasma sheet source). The controlling influence of the plasma sheet dynamics on the ring current dynamics and its role in altering the inner magnetospheric response to solar wind drivers during magnetic storms adds a sense of urgency to understanding what processes produce time-dependent responses in the plasma sheet density, composition, and temperature.
Small plastic debris in sediments from the Central Adriatic Sea: Types, occurrence and distribution.
Mistri, Michele; Infantini, Vanessa; Scoponi, Marco; Granata, Tommaso; Moruzzi, Letizia; Massara, Francesca; De Donati, Miriam; Munari, Cristina
2017-11-15
This is the first survey to investigate the occurrence and extent of microplastic contamination in sediments collected along a coast-open sea 140km-long transect in the Central Adriatic Sea. Plastic debris extracted from 64 samples of sediments were counted, weighted and identified by Fourier-transform infrared spectroscopy (FT-IR). Several types of plastic particles were observed in 100% of the stations. Plastic particles ranged from 1 to 30mm in length. The primary shape types by number were filaments (69.3%), followed by fragments (16.4%), and film (14.3%). Microplastics (1-5mm) accounted for 65.1% of debris, mesoplastics (5-20mm) made up 30.3% of total amount, while macro debris (>20mm) accounted for 4.6% of total plastics collected. Identification through FT-IR spectroscopy evidenced the presence of 6 polymer types: the majority of plastic debris were nylon, polyethylene and ethylene vinyl alcohol copolymer. Our data are a baseline for microplastic research in the Adriatic Sea. Copyright © 2017 Elsevier Ltd. All rights reserved.
Long synthetic nanotubes from calix[4]arenes.
Organo, Voltaire G; Sgarlata, Valentina; Firouzbakht, Farhood; Rudkevich, Dmitry M
2007-01-01
We report the synthesis and encapsulation properties of long (up to 5 nm) molecular nanotubes 1-4, which are based on calix[4]arenes and can be filled with multiple nitrosonium (NO(+)) ions upon reaction with NO(2)/N(2)O(4) gases. These are among the largest nanoscale molecular containers prepared to date and can entrap up to five guests. The structure and properties of tubular complexes 1(NO(+))(2)-4(NO(+))(5) were studied by UV/Vis, FTIR, and (1)H NMR spectroscopy in solution, and also by molecular modeling. Entrapment of NO(+) in 1(NO(+))(2)-4(NO(+))(5) is reversible, and addition of [18]crown-6 quickly recovers starting tubes 1-4. The FTIR and titration data revealed enhanced binding of NO(+) in longer tubes, which may be due to cooperativity. The described nanotubes may serve as materials for storing and converting NO(x) and also offer a promise to further develop supramolecular chemistry of molecular containers. These findings also open wider perspectives towards applications of synthetic nanotubes as alternatives to carbon nanotubes.
Paths from socioemotional behavior in middle childhood to personality in middle adulthood.
Pulkkinen, Lea; Kokko, Katja; Rantanen, Johanna
2012-09-01
Continuity in individual differences from socioemotional behavior in middle childhood to personality characteristics in middle adulthood was examined on the assumption that they share certain temperament-related elements. Socioemotional characteristics were measured using teacher ratings at ages 8 (N = 369; 53% males) and 14 (95% of the initial sample). Personality was assessed at age 42 (63% of the initial sample; 50% males) using a shortened version of the NEO Personality Inventory (NEO-PI); the Karolinska Scales of Personality (KSP); and the Adult Temperament Questionnaire (ATQ). Three models were tested using structural equation modeling. The results confirmed paths (a) from behavioral activity to adult Extraversion and Openness (NEO-PI), sociability (KSP), and surgency (ATQ); (b) from well-controlled behavior to adult conformity (KSP) and Conscientiousness (NEO-PI); and (c) from negative emotionality to adult aggression (KSP). The paths were significant only for one gender, and more frequently for males than for females. The significant male paths from behavioral activity to all indicators of adult activity and from well-controlled behavior to adult conformity started at age 8, whereas significant female paths from behavioral activity to adult sociability and from well-controlled behavior to adult Conscientiousness started at age 14. PsycINFO Database Record (c) 2012 APA, all rights reserved.
Reusable Solid Rocket Motor Nozzle Joint-4 Thermal Analysis
NASA Technical Reports Server (NTRS)
Clayton, J. Louie
2001-01-01
This study provides for development and test verification of a thermal model used for prediction of joint heating environments, structural temperatures and seal erosions in the Space Shuttle Reusable Solid Rocket Motor (RSRM) Nozzle Joint-4. The heating environments are a result of rapid pressurization of the joint free volume assuming a leak path has occurred in the filler material used for assembly gap close out. Combustion gases flow along the leak path from nozzle environment to joint O-ring gland resulting in local heating to the metal housing and erosion of seal materials. Analysis of this condition was based on usage of the NASA Joint Pressurization Routine (JPR) for environment determination and the Systems Improved Numerical Differencing Analyzer (SINDA) for structural temperature prediction. Model generated temperatures, pressures and seal erosions are compared to hot fire test data for several different leak path situations. Investigated in the hot fire test program were nozzle joint-4 O-ring erosion sensitivities to leak path width in both open and confined joint geometries. Model predictions were in generally good agreement with the test data for the confined leak path cases. Worst case flight predictions are provided using the test-calibrated model. Analysis issues are discussed based on model calibration procedures.
Nakano, Masayoshi
2017-01-01
Open-shell character, e. g., diradical character, is a quantum chemically well-defined quantity in ground-state molecular systems, which is not an observable but can quantify the degree of effective bond weakness in the chemical sense or electron correlation strength in the physical sense. Because this quantity also correlates to specific excited states, physicochemical properties concerned with those states are expected to strongly correlate to the open-shell character. This feature enables us to open a new path to revealing the mechanism of these properties as well as to realizing new design principles for efficient functional molecular systems. This account explains the open-shell-character-based molecular design principles and introduces their applications to the rational design of highly efficient nonlinear optical and singlet fission molecular systems. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Low Cost and Flexible UAV Deployment of Sensors
Sørensen, Lars Yndal; Jacobsen, Lars Toft; Hansen, John Paulin
2017-01-01
This paper presents a platform for airborne sensor applications using low-cost, open-source components carried by an easy-to-fly unmanned aircraft vehicle (UAV). The system, available in open-source , is designed for researchers, students and makers for a broad range of exploration and data-collection needs. The main contribution is the extensible architecture for modularized airborne sensor deployment and real-time data visualisation. Our open-source Android application provides data collection, flight path definition and map tools. Total cost of the system is below 800 dollars. The flexibility of the system is illustrated by mapping the location of Bluetooth beacons (iBeacons) on a ground field and by measuring water temperature in a lake. PMID:28098819
Low Cost and Flexible UAV Deployment of Sensors.
Sørensen, Lars Yndal; Jacobsen, Lars Toft; Hansen, John Paulin
2017-01-14
This paper presents a platform for airborne sensor applications using low-cost, open-source components carried by an easy-to-fly unmanned aircraft vehicle (UAV). The system, available in open-source , is designed for researchers, students and makers for a broad range of exploration and data-collection needs. The main contribution is the extensible architecture for modularized airborne sensor deployment and real-time data visualisation. Our open-source Android application provides data collection, flight path definition and map tools. Total cost of the system is below 800 dollars. The flexibility of the system is illustrated by mapping the location of Bluetooth beacons (iBeacons) on a ground field and by measuring water temperature in a lake.
Thermal stability of LiPF 6 salt and Li-ion battery electrolytes containing LiPF 6
NASA Astrophysics Data System (ADS)
Yang, Hui; Zhuang, Guorong V.; Ross, Philip N.
The thermal stability of the neat lithium hexafluorophosphate (LiPF 6) salt and of 1 molal (m) solutions of LiPF 6 in prototypical Li-ion battery solvents was studied with thermogravimetric analysis (TGA) and on-line Fourier transform infrared (FTIR). Pure LiPF 6 salt is thermally stable up to 107 °C in a dry inert atmosphere, and its decomposition path is a simple dissociation producing lithium fluoride (LiF) as solid and PF 5 as gaseous products. In the presence of water (300 ppm) in the carrier gas, its decomposition onset temperature is lowered as a result of direct thermal reaction between LiPF 6 and water vapor to form phosphorous oxyfluoride (POF 3) and hydrofluoric acid (HF). No new products were observed in 1 m solutions of LiPF 6 in ethylene carbonate (EC), dimethyl carbonate (DMC) and ethyl methyl carbonate (EMC) by on-line TGA-FTIR analysis. The storage of the same solutions in sealed containers at 85 °C for 300-420 h did not produce any significant quantity of new products as well. In particular, no alkylflurophosphates were found in the solutions after storage at elevated temperature. In the absence of either an impurity like alcohol or cathode active material that may (or may not) act as a catalyst, there is no evidence of thermally induced reaction between LiPF 6 and the prototypical Li-ion battery solvents EC, PC, DMC or EMC.
Automatic laser beam alignment using blob detection for an environment monitoring spectroscopy
NASA Astrophysics Data System (ADS)
Khidir, Jarjees; Chen, Youhua; Anderson, Gary
2013-05-01
This paper describes a fully automated system to align an infra-red laser beam with a small retro-reflector over a wide range of distances. The component development and test were especially used for an open-path spectrometer gas detection system. Using blob detection under OpenCV library, an automatic alignment algorithm was designed to achieve fast and accurate target detection in a complex background environment. Test results are presented to show that the proposed algorithm has been successfully applied to various target distances and environment conditions.
Gaze behaviour during space perception and spatial decision making.
Wiener, Jan M; Hölscher, Christoph; Büchner, Simon; Konieczny, Lars
2012-11-01
A series of four experiments investigating gaze behavior and decision making in the context of wayfinding is reported. Participants were presented with screenshots of choice points taken in large virtual environments. Each screenshot depicted alternative path options. In Experiment 1, participants had to decide between them to find an object hidden in the environment. In Experiment 2, participants were first informed about which path option to take as if following a guided route. Subsequently, they were presented with the same images in random order and had to indicate which path option they chose during initial exposure. In Experiment 1, we demonstrate (1) that participants have a tendency to choose the path option that featured the longer line of sight, and (2) a robust gaze bias towards the eventually chosen path option. In Experiment 2, systematic differences in gaze behavior towards the alternative path options between encoding and decoding were observed. Based on data from Experiments 1 and 2 and two control experiments ensuring that fixation patterns were specific to the spatial tasks, we develop a tentative model of gaze behavior during wayfinding decision making suggesting that particular attention was paid to image areas depicting changes in the local geometry of the environments such as corners, openings, and occlusions. Together, the results suggest that gaze during a wayfinding tasks is directed toward, and can be predicted by, a subset of environmental features and that gaze bias effects are a general phenomenon of visual decision making.
Tensions between opening up and closing down moments in transdisciplinary water research
NASA Astrophysics Data System (ADS)
Krueger, Tobias; Maynard, Carly; Carr, Gemma; Bruns, Antje; Mueller, Eva; Lane, Stuart
2016-04-01
Research on water is carried out by many disciplines that do not really talk to each other much, despite critical interactions of multiple social and biophysical processes in shaping how much and what kind of water is where, at what time and for whom. What is more, water has meaning to more than those who are scientists. And scientists are not so removed from the things they study as one might commonly believe. All these observations call for a transdisciplinary research agenda that brings together different scientific disciplines with the knowledge that other groups in society hold and that tries to be aware of its own limitations. The transdisciplinary perspective is especially pertinent to the scientific decade 2013-2022 of the International Association of Hydrological Sciences (IAHS) on change in hydrology and society, 'Panta Rhei,' for a balanced conceptualization and study of human-water relations. Transdisciplinarity is inherently about opening up traditional modes of knowledge production; in terms of framing the research problem, the methodology and the knowledge that is considered permissible. This should open up the range of options for management intervention, too. While decisions on how to intervene will inevitably close down the issue periodically, the point here is to leave alternative routes of action open long enough, or reopen them again, so as to counter unsustainable and inequitable path-dependencies and lock-ins. However, opening up efforts are frequently in conflict with factors that work to close down knowledge production. Among those are framings, path-dependencies, vested interests, researchers' positionalities, power, and scale. In this presentation, based on Krueger et al. (2016), we will reflect on the tensions between opening up and closing down moments in transdisciplinary water research and draw important practical lessons. References Krueger, T., Maynard, C.M., Carr, G., Bruns, A., Mueller, E.N. and Lane, S.N. (forthcoming in 2016) A transdisciplinary account of water research. Wiley Interdisciplinary Reviews: Water.
Sullivan, Edith V; Rose, Jessica; Pfefferbaum, Adolf
2010-03-01
Excessive sway during quiet standing is a common sequela of chronic alcoholism even with prolonged sobriety. Whether alcoholic men and women who have remained abstinent from alcohol for weeks to months differ from each other in the degree of residual postural instability and biomechanical control mechanisms has not been directly tested. We used a force platform to characterize center-of-pressure biomechanical features of postural sway, with and without stabilizing conditions from touch, vision, and stance, in 34 alcoholic men, 15 alcoholic women, 22 control men, and 29 control women. Groups were matched in age (49.4 years), general intelligence, socioeconomic status, and handedness. Each alcoholic group was sober for an average of 75 days. Analysis of postural sway when using all 3 stabilizing conditions versus none revealed diagnosis and sex differences in ability to balance. Alcoholics had significantly longer sway paths, especially in the anterior-posterior direction, than controls when maintaining erect posture without balance aids. With stabilizing conditions the sway paths of all groups shortened significantly, especially those of alcoholic men, who demonstrated a 3.1-fold improvement in sway path difference between the easiest and most challenging conditions; the remaining 3 groups, each showed a approximately 2.4-fold improvement. Application of a mechanical model to partition sway paths into open-loop and closed-loop postural control systems revealed that the sway paths of the alcoholic men but not alcoholic women were characterized by greater short-term (open-loop) diffusion coefficients without aids, often associated with muscle stiffening response. With stabilizing factors, all 4 groups showed similar long-term (closed loop) postural control. Correlations between cognitive abilities and closed-loop sway indices were more robust in alcoholic men than alcoholic women. Reduction in sway and closed-loop activity during quiet standing with stabilizing factors shows some differential expression in men and women with histories of alcohol dependence. Nonetheless, enduring deficits in postural instability of both alcoholic men and alcoholic women suggest persisting liability for falling.
40 CFR 1060.801 - What definitions apply to this part?
Code of Federal Regulations, 2014 CFR
2014-07-01
... of the carbon canister's vapor path. Emission control system means any device, system, or element of... the tank with a certain orientation. Sealed fuel systems may have openings for emission controls or... 40 Protection of Environment 33 2014-07-01 2014-07-01 false What definitions apply to this part...
40 CFR 1060.801 - What definitions apply to this part?
Code of Federal Regulations, 2011 CFR
2011-07-01
... of the carbon canister's vapor path. Emission control system means any device, system, or element of... the tank with a certain orientation. Sealed fuel systems may have openings for emission controls or... 40 Protection of Environment 33 2011-07-01 2011-07-01 false What definitions apply to this part...
40 CFR 1060.801 - What definitions apply to this part?
Code of Federal Regulations, 2012 CFR
2012-07-01
... of the carbon canister's vapor path. Emission control system means any device, system, or element of... the tank with a certain orientation. Sealed fuel systems may have openings for emission controls or... 40 Protection of Environment 34 2012-07-01 2012-07-01 false What definitions apply to this part...
40 CFR 1060.801 - What definitions apply to this part?
Code of Federal Regulations, 2013 CFR
2013-07-01
... of the carbon canister's vapor path. Emission control system means any device, system, or element of... the tank with a certain orientation. Sealed fuel systems may have openings for emission controls or... 40 Protection of Environment 34 2013-07-01 2013-07-01 false What definitions apply to this part...
Charting Our Path with a Web Literacy Map
ERIC Educational Resources Information Center
Dalton, Bridget
2015-01-01
Being a literacy teacher today means being a teacher of Web literacies. This article features the "Web Literacy Map", an open source tool from Mozilla's Webmaker project. The map focuses on Exploring (Navigating the Web); Building (creating for the Web), and Connecting (Participating on the Web). Readers are invited to use resources,…
Developing and Deploying OERs in Sub-Saharan Africa: Building on the Present
ERIC Educational Resources Information Center
Wright, Clayton R.; Reju, Sunday A.
2012-01-01
Open educational resources (OERs) have the potential to reduce costs, improve quality, and increase access to educational opportunities. OER development and deployment is one path that could contribute to achieving education for all. This article builds on existing information and communication technology (ICT) implementation plans in Africa and…
This Path We Travel: Celebrations of Contemporary Native American Creativity.
ERIC Educational Resources Information Center
La Pena, Frank
1994-01-01
An exhibition at the opening of the George Gustav Heye Center in New York City presents the talents of 15 contemporary Native American artists who during the past several years met at four different locations representing the cardinal directions. The exhibit combines sculpture, performance, poetry, music, and video to portray Indian world views…
Emission of ammonia from concentrated animal feeding operations represents an increasingly important environmental issue. Determination of total ammonia mass emission flux from extended area sources such as waste lagoons and waste effluent spraying operations can be evaluated usi...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-14
... spent foraging and significant increase in overall time spent traveling when vessels were present within... 1988; Forest 2001; Morton and Symonds 2002; Courbis 2004; Bejder et al. 2006); altering travel patterns... swimming faster, adopting less predictable travel paths, making shorter or longer dives, moving into open...
Flying the Nest: How the Home Department Shapes Researchers' Career Paths
ERIC Educational Resources Information Center
Hottenrott, Hanna; Lawson, Cornelia
2017-01-01
This paper studies the importance of the socialization environment--nest--for the career destinations of early career researchers. In a sample of research groups in the fields of science and engineering at universities in Germany, we identify research orientation, output, funding as well as openness to industry and commercialization as relevant…
ERIC Educational Resources Information Center
DeSutter, Keri L.; Lemire, Steven Dale
2016-01-01
Persistent shortages of special education teachers, particularly in rural areas, exist across the country. This study assessed the openness of teacher candidates enrolled in an introductory education course at two rural Midwest universities to a special education career path. Survey findings confirmed that work or volunteer experience involving…
ERIC Educational Resources Information Center
Teuscher, Dawn; Reys, Robert E.
2012-01-01
This study examined Advanced Placement Calculus students' mathematical understanding of rate of change, after studying four years of college preparatory (integrated or single-subject) mathematics. Students completed the Precalculus Concept Assessment (PCA) and two open-ended tasks with questions about rates of change. After adjusting for prior…
Research Gaps in "Teaching English in the Two-Year College"
ERIC Educational Resources Information Center
Hassel, Holly
2013-01-01
In the midst of disciplinary and public debates about education at open-access institutions, it's more important than ever that institutions set a clear path for inquiry and scholarship that will meet the needs of the professional community. This essay provides an assessment of the research achievements in two-year college English, particularly…
Careerpreneurs: Lessons from Leading Women Entrepreneurs on Building a Career without Boundaries.
ERIC Educational Resources Information Center
Moore, Dorothy Perrin
This book provides lessons for the woman who wants to advance her career within a corporation or by opening or expanding a business venture of her own. Chapter One, "Careers" introduces the types and varied career paths of the women entrepreneurs who are followed in subsequent chapters. Chapter Two, "Organizational…
Religious Education and Religious Choice
ERIC Educational Resources Information Center
Hand, Michael
2015-01-01
According to the "religious choice case" for compulsory religious education, pupils have a right to be made aware of the religious and irreligious paths open to them and equipped with the wherewithal to choose between them. A familiar objection to this argument is that the idea of religious choice reduces religion to a matter of taste. I…
A Safe and Welcoming Place?: Workplace Progression for Women Staff.
ERIC Educational Resources Information Center
Gardiner, Jean; O'Rourke, Rebecca
1995-01-01
Interviews with seven women lecturers and five administrative/library staff at Leeds University uncovered the following: differential career paths for women and men; a link between the extent of career progression and working full or part time; and few opportunities for gender issues to be openly discussed in the academic workplace. (SK)
Backscatter nephelometer to calibrate scanning lidar
Cyle E. Wold; Vladmir A. Kovalev; Wei Min Hao
2008-01-01
The general concept of an open-path backscatter nephelometer, its design, principles of calibration and the operational use are discussed. The research-grade instrument, which operates at the wavelength 355 nm, will be co-located with a scanning-lidar at measurement sites near wildfires, and used for the lidar calibration. Such a near-end calibration has significant...
NASA Astrophysics Data System (ADS)
Gomez, A.; Silver, J.; Massick, S.; Ochoa, E.; Stanton, A. C.
2015-12-01
Nitrous oxide is the third most important greenhouse gas, with an atmospheric lifetime of ~114 years and a global warming impact ~300 times greater than that of CO2. The main cause of nitrous oxide's atmospheric increase is anthropogenic emissions, and over 80% of the current global anthropogenic flux is related to agriculture, including associated land-use change. An accurate assessment of N2O emissions from agriculture is vital not only for understanding the global N2O balance and its impact on climate and also for designing crop systems with lower GHG emissions. This work focuses on the early development of an open path N2O instrument for field deployment, based on quantum cascade laser absorption. With a targeted precision of 0.1 ppb at 10 Hz, this instrument will enable eddy covariance measurements to determine vertical fluxes of N2O. Details of the instrument design, which emphasizes ruggedness and high thermal stability, will be presented along with initial results from outdoor testing of the instrument.
Reduction of noise radiated from open pipe terminations
NASA Astrophysics Data System (ADS)
Davis, M. R.
1989-07-01
A modified Quincke tube has been tested to determine the extent to which sound radiation from an open tube end can be reduced by conversion of the monopole source into a dipole form. It has been found that directivity patterns of the dipole with approximately 20 dB variation can be achieved provided that the out-of-phase tube ends are not too closely spaced. Very large spacings also reduce the effectiveness of the arrangement in reducing radiated power since the source system does not then approximate a simple dipole. Consideration has been given to compact designs which achieve path length differentials by the use of four concentric tubes. The relative size of the two acoustic paths has to be adjusted to allow for the size effect on radiation, requiring a somewhat larger area for the smaller tube. Through flow would require an opposite adjustment of the smaller tube area in this case if the smaller tube presented a smaller resistance to flow, as is likely since it involves straight-through flow. Flow through the system would increase the tuned operating frequency.
Aerosol and trace gas flux measurements from a mobile car platform on the highway
NASA Astrophysics Data System (ADS)
Gordon, M.; Miller, S. J.; Staebler, R. M.; Taylor, P.
2016-12-01
Mobile flux measurements of aerosols and trace gases at the surface can provide valuable information about the vertical transport of these compounds from near-surface sources. These measurements can be complimentary to stationary tower measurements or elevated mobile measurements from aircraft and unmanned aerial systems (UAS). In July, 2016 a mobile platform (Toyota Highlander), outfitted with a sonic anemometer (ATI), an open path CO2/H2O analyzer (Licor), and an ultrafine particle sizer (DMT), was driven on highways as part of a chasing study to investigate vehicle-induced turbulence and mixing. The open path analyzer and particle sizer inlet were co-located with the anemometer in order to investigate the feasibility of making flux measurements of heat, momentum, water vapour, CO2, and sub-micron aerosols on the highway. These highway flux measurements are compared to stationary platform measurements made upwind and downwind of the highway. Statistical and spectral analyses are used to demonstrate the validity of the mobile measurements. Uncertainties due to flow distortion around the vehicle, under-sampling, and heterogeneity of the vertical temperature and concentrations are investigated and discussed.
Analysis of the Gulf of Mexico's Veracruz-Havana Route of La Flota de la Nueva España
NASA Astrophysics Data System (ADS)
Lugo-Fernández, A.; Ball, D. A.; Gravois, M.; Horrell, C.; Irion, J. B.
2007-06-01
During colonial times, an active maritime trade existed between Spain and the New World, with convoys sailing annually to and from Mexico and returning via Havana, Cuba, after wintering in America. A database constructed from secondary and open sources revealed that Spanish vessels were sailing over open waters along a northern path near Louisiana and a southern path across the central Gulf of Mexico. These routes were traversed in about one month and scheduling for the convoy was based on an understanding of the Americas’ meteorological and oceanographic climate. However, other factors may also have been involved in the directional layout of the routes. Today these ancient routes crisscross planning areas for oil and gas lease sales in the US Exclusive Economic Zone and the information presented in this article may aid in identifying areas where historic shipwrecks may lie. Maps and documents found during this study helped piece together the evolution of our understanding of the Gulf of Mexico surface circulation and how this knowledge influenced sailing during colonial times.
Markert, Ronald J.; Rodenhauser, Paul; El-Baghdadi, Mariam M.; Juskaite, Kornelija; Hillel, Alexander T.; Maron, Bradley A.
2008-01-01
Background To augment the availability of medical care for a population that is older and more ethnically diverse, the number of US medical schools is increasing and existing medical schools are enlarging their class sizes. Predictors of specialty choice, especially primary care careers, are helpful to medical school officials and faculty involved in medical school recruitment and counseling and to students planning their career paths. Objective The objective was to examine the association between personality characteristics and specialty choice. Methods The Neuroticism-Extraversion-Openness Personality Inventory Revised (NEO PI-R) was administered to 4 Tulane University School of Medicine (New Orleans, Louisiana) classes (2003–2006). The NEO PI-R is a measure of 5 personality characteristics (neuroticism, extraversion, openness, agreeableness, and conscientiousness), with each domain having 6 underlying facets. The specialty choice of graduates was obtained from the National Residency Matching Program. Results Starting in 1999, 595 students matriculated and by June 2006, 542 (91%) had matched to residency programs in 22 specialties. There were differences among specialties for neuroticism (P = .006), openness (P < .001), and agreeableness (P = .003), but not for extraversion (P = .173) or conscientiousness (P = .103). Various pairwise differences between specialty categories were found. Discussion Eleven specialty categories were compared using the NEO PI-R. Numerous specialty variations were identified for neuroticism, openness, and agreeableness. The findings may be useful to medical school officials and faculty who recruit and counsel students and to students themselves as they reflect on their personality characteristics on their path to making career choices. PMID:18382718
Atmospheric Ammonia Emissions From Operational Areas of a Dairy
NASA Astrophysics Data System (ADS)
Rumburg, B. P.; Mount, G. H.; Filipy, J.; Lamb, B.; Westberg, H.; Neger, M.; Yonge, D.; Johnson, K.; Kincaid, R.
2001-12-01
Ammonia gas is important in aerosol formation, soil acidification, aquatic eutrophication, acid rain and can damage human and animal respiratory systems. Anthropogenic emissions are approximately two-thirds of the global emissions of NH3 and agriculture is the dominant anthropogenic source. We are studying NH3 emissions from the WSU dairy located near Pullman, WA to provide a detailed emission inventory. The dairy has approximately 200 milking cows and 200 replacement heifers. The cows are housed in open air barns and the liquid waste is stored in four open air lagoons until it is applied to grass fields in the late summer. Agricultural emissions of NH3 have been measured in Europe but very few measurements have been made in the United States. Differences in feed and waste management practices between Europe and the U.S. could have a significant effect on NH3 emissions. Since NH3 is an aerosol precursor knowing emission levels is also important for the new U.S. EPA PM2.5 standard. NH3 was measured using an open short-path spectroscopic absorption near 200 nm. The instrument has a time resolution of about a second and a limiting sensitivity of a few ppb. The open path method has the benefit that it is fast, self-calibrating and does not have errors associated with NH3 adherance to inlet walls. As part of a detailed emission inventory, NH3 fluxes were determined from the milking cow stalls and of the main slurry lagoon using a SF6 tracer technique. Emissions from various parts of the dairy will be discussed.
Brumfield, Brian E.; Taubman, Matthew S.; Phillips, Mark C.
2016-05-23
A rapidly-swept external-cavity quantum cascade laser with an open-path Herriott cell is used to quantify gas-phase chemical mixtures of D 2O and HDO at a rate of 40 Hz (25-ms measurement time). The chemical mixtures were generated by evaporating D 2O liquid near the open-path Herriott cell, allowing the H/D exchange reaction with ambient H 2O to produce HDO. Fluctuations in the ratio of D 2O and HDO on timescales of <1 s due to the combined effects of plume transport and the H/D exchange chemical reaction are observed. Noise-equivalent concentrations (1σ) (NEC) of 147.0 ppbv and 151.6 ppbv inmore » a 25-ms measurement time are determined for D 2O and HDO, respectively, with a 127-m optical path. These NECs are improved to 23.0 and 24.0 ppbv with a 1-s averaging time for D 2O and HDO, respectively. NECs <200 ppbv are also estimated for N2O, 1,1,1,2–tetrafluoroethane (F134A), CH 4, acetone and SO 2 for a 25-ms measurement time. Finally, the isotopic precision for measurement of the [D 2O]/[HDO] concentration ratio of 33‰ and 5‰ is calculated for the current experimental conditions for measurement times of 25 ms and 1 s, respectively.« less
Aoun, Georges; Nasseh, Ibrahim; Sokhn, Sayde
2016-01-01
Aim: The aim of this study was to describe the morphology of the component, greater palatine canal-pterygopalatine fossa (GPC-PPF), in a Lebanese population using cone-beam computed tomography (CBCT) technology. Materials and Methods: CBCT images of 79 Lebanese adult patients (38 females and 41 males) were included in this study, and a total of 158 cases were evaluated bilaterally. The length and path of the GPCs-PPFs were determined, and the data obtained analyzed statistically. Results: In the sagittal plane, of all the GPCs-PPFs assessed, the average length was 35.02 mm on the right and 35.01 mm on the left. The most common anatomic path consisted in the presence of a curvature resulting in an internal narrowing whose average diameter was 2.4 mm on the right and 2.45 mm on the left. The mean diameter of the upper opening was 5.85 mm on the right and 5.82 mm on the left. As for the lower opening corresponding to the greater palatine foramen, the right and left average diameters were 6.39 mm and 6.42 mm, respectively. Conclusion: Within the limits of this study, we concluded that throughout the Lebanese population, the GPC-PPF path is variable with a predominance of curved one (77.21% [122/158] in both the right and left sides); however, the GPC-PPF length does not significantly vary according to gender and side. PMID:27833777
Surface properties of hydrogenated nanodiamonds: a chemical investigation.
Girard, H A; Petit, T; Perruchas, S; Gacoin, T; Gesset, C; Arnault, J C; Bergonzo, P
2011-06-28
Hydrogen terminations (C-H) confer to diamond layers specific surface properties such as a negative electron affinity and a superficial conductive layer, opening the way to specific functionalization routes. For example, efficient covalent bonding of diazonium salts or of alkene moieties can be performed on hydrogenated diamond thin films, owing to electronic exchanges at the interface. Here, we report on the chemical reactivity of fully hydrogenated High Pressure High Temperature (HPHT) nanodiamonds (H-NDs) towards such grafting, with respect to the reactivity of as-received NDs. Chemical characterizations such as FTIR, XPS analysis and Zeta potential measurements reveal a clear selectivity of such couplings on H-NDs, suggesting that C-H related surface properties remain dominant even on particles at the nanoscale. These results on hydrogenated NDs open up the route to a broad range of new functionalizations for innovative NDs applications development. This journal is © the Owner Societies 2011
Through the eyes of a bird: modelling visually guided obstacle flight
Lin, Huai-Ti; Ros, Ivo G.; Biewener, Andrew A.
2014-01-01
Various flight navigation strategies for birds have been identified at the large spatial scales of migratory and homing behaviours. However, relatively little is known about close-range obstacle negotiation through cluttered environments. To examine obstacle flight guidance, we tracked pigeons (Columba livia) flying through an artificial forest of vertical poles. Interestingly, pigeons adjusted their flight path only approximately 1.5 m from the forest entry, suggesting a reactive mode of path planning. Combining flight trajectories with obstacle pole positions, we reconstructed the visual experience of the pigeons throughout obstacle flights. Assuming proportional–derivative control with a constant delay, we searched the relevant parameter space of steering gains and visuomotor delays that best explained the observed steering. We found that a pigeon's steering resembles proportional control driven by the error angle between the flight direction and the desired opening, or gap, between obstacles. Using this pigeon steering controller, we simulated obstacle flights and showed that pigeons do not simply steer to the nearest opening in the direction of flight or destination. Pigeons bias their flight direction towards larger visual gaps when making fast steering decisions. The proposed behavioural modelling method converts the obstacle avoidance behaviour into a (piecewise) target-aiming behaviour, which is better defined and understood. This study demonstrates how such an approach decomposes open-loop free-flight behaviours into components that can be independently evaluated. PMID:24812052
Through the eyes of a bird: modelling visually guided obstacle flight.
Lin, Huai-Ti; Ros, Ivo G; Biewener, Andrew A
2014-07-06
Various flight navigation strategies for birds have been identified at the large spatial scales of migratory and homing behaviours. However, relatively little is known about close-range obstacle negotiation through cluttered environments. To examine obstacle flight guidance, we tracked pigeons (Columba livia) flying through an artificial forest of vertical poles. Interestingly, pigeons adjusted their flight path only approximately 1.5 m from the forest entry, suggesting a reactive mode of path planning. Combining flight trajectories with obstacle pole positions, we reconstructed the visual experience of the pigeons throughout obstacle flights. Assuming proportional-derivative control with a constant delay, we searched the relevant parameter space of steering gains and visuomotor delays that best explained the observed steering. We found that a pigeon's steering resembles proportional control driven by the error angle between the flight direction and the desired opening, or gap, between obstacles. Using this pigeon steering controller, we simulated obstacle flights and showed that pigeons do not simply steer to the nearest opening in the direction of flight or destination. Pigeons bias their flight direction towards larger visual gaps when making fast steering decisions. The proposed behavioural modelling method converts the obstacle avoidance behaviour into a (piecewise) target-aiming behaviour, which is better defined and understood. This study demonstrates how such an approach decomposes open-loop free-flight behaviours into components that can be independently evaluated.
NASA Astrophysics Data System (ADS)
Burba, George; Anderson, Tyler; Biraud, Sebastien; Caulton, Dana; von Fischer, Joe; Gioli, Beniamino; Hanson, Chad; Ham, Jay; Kohnert, Katrin; Larmanou, Eric; Levy, Peter; Polidori, Andrea; Pikelnaya, Olga; Sachs, Torsten; Serafimovich, Andrei; Zaldei, Alessandro; Zondlo, Mark; Zulueta, Rommel
2017-04-01
Methane plays a critical role in the radiation balance, chemistry of the atmosphere, and air quality. The major anthropogenic sources of methane include oil and gas development sites, natural gas distribution networks, landfill emissions, and agricultural production. The majority of oil and gas and urban methane emission occurs via variable-rate point sources or diffused spots in topographically challenging terrains (e.g., street tunnels, elevated locations at water treatment plants, vents, etc.). Locating and measuring such methane emissions is challenging when using traditional micrometeorological techniques, and requires development of novel approaches. Landfill methane emissions traditionally assessed at monthly or longer time intervals are subject to large uncertainties because of the snapshot nature of the measurements and the barometric pumping phenomenon. The majority of agricultural and natural methane production occurs in areas with little infrastructure or easily available grid power (e.g., rice fields, arctic and boreal wetlands, tropical mangroves, etc.). A lightweight, high-speed, high-resolution, open-path technology was recently developed for eddy covariance measurements of methane flux, with power consumption 30-150 times below other available technologies. It was designed to run on solar panels or a small generator and be placed in the middle of the methane-producing ecosystem without a need for grid power. Lately, this instrumentation has been utilized increasingly more frequently outside of the traditional use on stationary flux towers. These novel approaches include measurements from various moving platforms, such as cars, aircraft, and ships. Projects included mapping of concentrations and vertical profiles, leak detection and quantification, mobile emission detection from natural gas-powered cars, soil methane flux surveys, etc. This presentation will describe the latest state of the key projects utilizing the novel lightweight low-power high-resolution open-path technology, and will highlight several novel approaches where such instrumentation was used in mobile deployments in urban, agricultural and natural environments by academic institutions, regulatory agencies and industry.
Mobile Measurements of Methane Using High-Speed Open-Path Technology
NASA Astrophysics Data System (ADS)
Burba, G. G.; Anderson, T.; Ediger, K.; von Fischer, J.; Gioli, B.; Ham, J. M.; Hupp, J. R.; Kohnert, K.; Levy, P. E.; Polidori, A.; Pikelnaya, O.; Price, E.; Sachs, T.; Serafimovich, A.; Zondlo, M. A.; Zulueta, R. C.
2016-12-01
Methane plays a critical role in the radiation balance, chemistry of the atmosphere, and air quality. The major anthropogenic sources of CH4 include oil and gas development sites, natural gas distribution networks, landfill emissions, and agricultural production. The majority of oil and gas and urban CH4 emission occurs via variable-rate point sources or diffused spots in topographically challenging terrains (e.g., street tunnels, elevated locations at water treatment plants, vents, etc.). Locating and measuring such CH4 emissions is challenging when using traditional micrometeorological techniques, and requires development of novel approaches. Landfill CH4 emissions traditionally assessed at monthly or longer time intervals are subject to large uncertainties because of the snapshot nature of the measurements and the barometric pumping phenomenon. The majority of agricultural and natural CH4 production occurs in areas with little infrastructure or easily available grid power (e.g., rice fields, arctic and boreal wetlands, tropical mangroves, etc.). A lightweight, high-speed, high-resolution, open-path technology was recently developed for eddy covariance measurements of CH4 flux, with power consumption 30-150 times below other available technologies. It was designed to run on solar panels or a small generator and be placed in the middle of the methane-producing ecosystem without a need for grid power. Lately, this instrumentation has been utilized increasingly more frequently outside of the traditional use on stationary flux towers. These novel approaches include measurements from various moving platforms, such as cars, aircraft, and ships. Projects included mapping of concentrations and vertical profiles, leak detection and quantification, mobile emission detection from natural gas-powered cars, soil CH4 flux surveys, etc. This presentation will describe key projects utilizing the novel lightweight low-power high-resolution open-path technology, and will highlight several novel approaches where such instrumentation was used in mobile deployments in urban, agricultural and natural environments by academic institutions, regulatory agencies and industry.
Smart zwitterionic membranes with on/off behavior for protein transport.
Su, Yanlei; Zheng, Lili; Li, Chao; Jiang, Zhongyi
2008-09-25
Poly(acrylonitrile) (PAN)-based zwitterionic membranes, composed of PAN and poly( N, N-dimethyl- N-methacryloxyethyl- N-(3-sulfopropyl) copolymer, are electrolyte-sensitive smart membranes. The hydrophilicity was increased and protein adsorption was remarkably decreased for the membranes in response to environmental stimuli. FTIR spectroscopic analysis directly provided molecular-level observation of the enhanced dissociation and hydration of zwitterionic sulfobetaine dipoles at higher electrolyte concentrations. The smart PAN-based zwitterionic membranes can close or open channels for protein transport under different NaCl concentrations. The electrolyte-sensitive switch of on/off behavior for protein transport is reversible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tassi, Marco; Bartollini, Elena; Adriaensens, Peter
2015-12-07
In view of searching for efficient polymeric supports for organic bases to be used in environmentally friendly reaction conditions, novel gel-type cross-linked polystyrenes functionalized with diethylamine and 1,5,7-triazabicyclo[4.4.0]dec-5-ene, have been prepared. Moreover, the structural properties and morphology of these catalysts have been determined by extensive solid state NMR experiments, FTIR spectroscopy and SEM/TEM microscopy. SPACeR-supported bases were found to exhibit high catalytic activity in the epoxide ring opening by phenols. Finally, a range of β-substituted alcohols have been readily and regioselectively synthesized.
Terrain - Umbra Package v. 1.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oppel, Fred; Hart, Brian; Rigdon, James Brian
This library contains modules that read terrain files (e.g., OpenFlight, Open Scene Graph IVE, GeoTIFF Image) and to read and manage ESRI terrain datasets. All data is stored and managed in Open Scene Graph (OSG). Terrain system accesses OSG and provides elevation data, access to meta-data such as soil types and enables linears, areals and buildings to be placed in a terrain, These geometry objects include boxes, point, path, and polygon (region), and sector modules. Utilities have been made available for clamping objects to the terrain and accessing LOS information. This assertion includes a managed C++ wrapper code (TerrainWrapper) tomore » enable C# applications, such as OpShed and UTU, to incorporate this library.« less
NASA Technical Reports Server (NTRS)
Pearson, Richard (Inventor); Lynch, Dana H. (Inventor); Gunter, William D. (Inventor)
1995-01-01
A method and apparatus for passing light bundles through a multiple pass sampling cell is disclosed. The multiple pass sampling cell includes a sampling chamber having first and second ends positioned along a longitudinal axis of the sampling cell. The sampling cell further includes an entrance opening, located adjacent the first end of the sampling cell at a first azimuthal angular position. The entrance opening permits a light bundle to pass into the sampling cell. The sampling cell also includes an exit opening at a second azimuthal angular position. The light exit permits a light bundle to pass out of the sampling cell after the light bundle has followed a predetermined path.
NASA Astrophysics Data System (ADS)
Wichmann, Volker
2017-09-01
The Gravitational Process Path (GPP) model can be used to simulate the process path and run-out area of gravitational processes based on a digital terrain model (DTM). The conceptual model combines several components (process path, run-out length, sink filling and material deposition) to simulate the movement of a mass point from an initiation site to the deposition area. For each component several modeling approaches are provided, which makes the tool configurable for different processes such as rockfall, debris flows or snow avalanches. The tool can be applied to regional-scale studies such as natural hazard susceptibility mapping but also contains components for scenario-based modeling of single events. Both the modeling approaches and precursor implementations of the tool have proven their applicability in numerous studies, also including geomorphological research questions such as the delineation of sediment cascades or the study of process connectivity. This is the first open-source implementation, completely re-written, extended and improved in many ways. The tool has been committed to the main repository of the System for Automated Geoscientific Analyses (SAGA) and thus will be available with every SAGA release.
NASA Astrophysics Data System (ADS)
Waxman, E.; Cossel, K.; Truong, G. W.; Giorgetta, F.; Swann, W.; Coddington, I.; Newbury, N.
2017-12-01
Understanding emissions from cities is increasingly important as a growing fraction of the world's population moves to cities. Here we use a novel technology, dual frequency comb spectroscopy, to measure city emissions using a long outdoor open path. We simultaneously measured CO2, CH4, and H2O over the city of Boulder, Colorado and over a clean-air reference path for two months in the fall of 2016. Because of the spatial coverage of our measurements, the layout of the city and power plant locations, and the predominant wind direction, our measurements primarily pick up vehicle emissions. We choose two days with consistent CO2 enhancements over the city relative to the reference path and use a simple 0-D box model to calculate city emissions for these days. We scale these up to annual emissions and compare our measurements with the City of Boulder bottom-up vehicle emissions inventory based on total vehicle miles traveled, fuel efficiency, and vehicle type distribution. We find good agreement (within about a factor of two) between our top-down measurements and the city's bottom-up inventory value.
Pulsed Magnetic Field Driven Gas Core Reactors for Space Power & Propulsion Applications
NASA Technical Reports Server (NTRS)
Anghaie, Samim; Smith, Blair; Knight, Travis; Butler, Carey
2003-01-01
The present results indicated that: 1. A pulsed magnetic driven fission power concept, PMD-GCR is developed for closed (NER) and semi-open (NTR) operations. 2. In power mode, power is generated at alpha less than 1 for power levels of hundreds of KW or higher 3. IN semi open NTR mode, PMD-GCR generates thrust at I(sub sp) approx. 5,000 s and jet power approx. 5KW/Kg. 4. PMD-GCR is highly subcritical and is actively driven to critically. 5. Parallel path with fusion R&D needs in many areas including magnet and plasma.
JWST NIRSpec Cryogenic Light Shield Mechanism
NASA Technical Reports Server (NTRS)
Hale, Kathleen; Sharma, Rajeev
2006-01-01
The focal plane detectors for the Near-Infrared Spectrometer (NIRSpec) instrument on the James Webb Space Telescope (JWST) require a light tight cover for calibration along with an open field-of-view during ground performance testing within a cryogenic dewar. In order to meet the light attenuation requirements and provide open and closed fields of view without breaking vacuum, a light shield mechanism was designed. This paper describes the details of the light shield mechanism design and test results. Included is information on the labyrinth light path design, motor capability and performance, dry film lubrication, mechanism control, and mechanism cryogenic performance results.
Pelloni, S; Provasi, P F; Pagola, G I; Ferraro, M B; Lazzeretti, P
2017-12-07
The trace of tensors that account for chiroptical response of the H 2 O 2 molecule is a function of the HO-OH dihedral angle. It vanishes at 0° and 180°, due to the presence of molecular symmetry planes, but also for values in the range 90-100° of this angle, in which the molecule is unquestionably chiral. Such an atypical effect is caused by counterbalancing contributions of diagonal tensor components with nearly maximal magnitude but opposite sign, determined by electron flow in open or closed helical paths, and associated with induced electric and magnetic dipole moments and anapole moments. For values of dihedral angle external to the 90-100° interval, the helical paths become smaller in size, thus reducing the amount of cancellation among diagonal components. Shrinking of helical paths determines the appearance of extremum values of tensor traces approximately at 50° and 140° dihedral angles.
Report of the eRHIC Ring-Ring Working Group
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aschenauer, E. C.; Berg, S.; Blaskiewicz, M.
2015-10-13
This report evaluates the ring-ring option for eRHIC as a lower risk alternative to the linac-ring option. The reduced risk goes along with a reduced initial luminosity performance. However, a luminosity upgrade path is kept open. This upgrade path consists of two branches, with the ultimate upgrade being either a ring-ring or a linac-ring scheme. The linac-ring upgrade could be almost identical to the proposed linac-ring scheme, which is based on an ERL in the RHIC tunnel. This linac-ring version has been studied in great detail over the past ten years, and its significant risks are known. On the othermore » hand, no detailed work on an ultimate performance ring-ring scenario has been performed yet, other than the development of a consistent parameter set. Pursuing the ring-ring upgrade path introduces high risks and requires significant design work that is beyond the scope of this report.« less
Overestimation of Mach number due to probe shadow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gosselin, J. J.; Thakur, S. C.; Tynan, G. R.
2016-07-15
Comparisons of the plasma ion flow speed measurements from Mach probes and laser induced fluorescence were performed in the Controlled Shear Decorrelation Experiment. We show the presence of the probe causes a low density geometric shadow downstream of the probe that affects the current density collected by the probe in collisional plasmas if the ion-neutral mean free path is shorter than the probe shadow length, L{sub g} = w{sup 2} V{sub drift}/D{sub ⊥}, resulting in erroneous Mach numbers. We then present a simple correction term that provides the corrected Mach number from probe data when the sound speed, ion-neutral mean free path,more » and perpendicular diffusion coefficient of the plasma are known. The probe shadow effect must be taken into account whenever the ion-neutral mean free path is on the order of the probe shadow length in linear devices and the open-field line region of fusion devices.« less
NASA Astrophysics Data System (ADS)
Sha, Wei E. I.; Zhu, Hugh L.; Chen, Luzhou; Chew, Weng Cho; Choy, Wallace C. H.
2015-02-01
It is well known that transport paths of photocarriers (electrons and holes) before collected by electrodes strongly affect bulk recombination and thus electrical properties of solar cells, including open-circuit voltage and fill factor. For boosting device performance, a general design rule, tailored to arbitrary electron to hole mobility ratio, is proposed to decide the transport paths of photocarriers. Due to a unique ability to localize and concentrate light, plasmonics is explored to manipulate photocarrier transport through spatially redistributing light absorption at the active layer of devices. Without changing the active materials, we conceive a plasmonic-electrical concept, which tunes electrical properties of solar cells via the plasmon-modified optical field distribution, to realize the design rule. Incorporating spectrally and spatially configurable metallic nanostructures, thin-film solar cells are theoretically modelled and experimentally fabricated to validate the design rule and verify the plasmonic-tunable electrical properties. The general design rule, together with the plasmonic-electrical effect, contributes to the evolution of emerging photovoltaics.
Open-field behavior of house mice selectively bred for high voluntary wheel-running.
Bronikowski, A M; Carter, P A; Swallow, J G; Girard, I A; Rhodes, J S; Garland, T
2001-05-01
Open-field behavioral assays are commonly used to test both locomotor activity and emotionality in rodents. We performed open-field tests on house mice (Mus domesticus) from four replicate lines genetically selected for high voluntary wheel-running for 22 generations and from four replicate random-bred control lines. Individual mice were recorded by video camera for 3 min in a 1-m2 open-field arena on 2 consecutive days. Mice from selected lines showed no statistical differences from control mice with respect to distance traveled, defecation, time spent in the interior, or average distance from the center of the arena during the trial. Thus, we found little evidence that open-field behavior, as traditionally defined, is genetically correlated with wheel-running behavior. This result is a useful converse test of classical studies that report no increased wheel-running in mice selected for increased open-field activity. However, mice from selected lines turned less in their travel paths than did control-line mice, and females from selected lines had slower travel times (longer latencies) to reach the wall. We discuss these results in the context of the historical open-field test and newly defined measures of open-field activity.
Pedagogical Border Crossings: "Testimonio y Reflexiones de una Mexicana Académica"
ERIC Educational Resources Information Center
Flores Carmona, Judith
2018-01-01
I am an assistant professor at New Mexico State University; however, the path to getting to this position has been about crossing borders, about learning in and from the borderlands. The borderlands that my body has had to cross, physically and figuratively, have left many "heridas abiertas" (open wounds) but have also provided me with…
ERIC Educational Resources Information Center
Ooms, Alexander
2012-01-01
In conjunction with the Denver Plan instituted in 2005, Denver Public Schools (DPS) has embarked upon a consistent strategy of opening new schools in an effort to improve overall academic performance. DPS has pursued this strategy under several different paths: an annual request for proposals from charter school applicants; allowing current…
Atmospheric Effects on Radio Frequency (RF) Wave Propagation in a Humid, Near-Surface Environment
2010-03-01
additional IR temperature and Campbell water temperature probes, as well as a 3-D sonic anemometer, pyranometer , and LI-COR open path gas analyzer for...Zonen CNR-1 pyranometer . Lastly, the Campbell sonic anemometer (CSAT3) and LI- COR (CS7500) were extended 2.5 meters over the water from an
Cosmic ray astroparticle physics: current status and future perspectives
NASA Astrophysics Data System (ADS)
Donato, Fiorenza
2017-02-01
The data we are receiving from galactic cosmic rays are reaching an unprecedented precision, over very wide energy ranges. Nevertheless, many problems are still open, while new ones seem to appear when data happen to be redundant. We will discuss some paths to possible progress in the theoretical modeling and experimental exploration of the galactic cosmic radiation.
Opening up the Decision-Making Process through Shared Governance.
ERIC Educational Resources Information Center
Messina, Robert C., Jr.; And Others
A formal governance system was adopted by the Board of Trustees in April 1991 at Burlington County College in New Jersey after the Commission on Higher Education and the Middle States Association of Colleges and Schools observed that it was lacking. The policy defines the path for maintaining a governance structure which fosters clear and timely…
The Brightly Illuminated Path: Facilitating an OER Program at Community College
ERIC Educational Resources Information Center
Blick, William; Marcus, Sandra
2017-01-01
The use of Open Education Resources represents a noble cause, but the idea often remains elusive for many faculty members. In 2015, librarians at Queensborough Community College of the City University of New York, implemented a campaign to promote and facilitate the use and development of OERs. The primary objective was to reduce the growing…
USDA-ARS?s Scientific Manuscript database
Two micrometeorological techniques for measuring trace gas emission rates from distributed area sources were evaluated using a variety of synthetic area sources. The accuracy of the vertical radial plume mapping (VRPM) and the backward Lagrangian (bLS) techniques with an open-path optical spectrosco...
21st Century Skills, Education & Competitiveness: A Resource and Policy Guide
ERIC Educational Resources Information Center
Partnership for 21st Century Skills, 2008
2008-01-01
Americans are deeply concerned about their present and future prospects in a time of economic uncertainty. Policymakers have a make-or-break opening--and an obligation--to chart a new path for public education that will secure the nation's economic competitiveness. This guide summarizes the challenges and opportunities that, if left unaddressed,…
Chen, Jia; Mo, Zhi-Hong; Yang, Xiao; Zhou, Hai-Ling; Gao, Qin
2017-06-22
The organic-inorganic hybrid perovskites efficiently enhance the infrared absorption of small molecules. It is suggested that the quantum wells of perovskites enable the electrons of the perovskites to be excited by light in the infrared region. The exploration has opened a new path for chemical sensing through infrared spectroscopy.
Exploring the Meaning and Paths of Advocacy for Undocumented Students' Access to Education
ERIC Educational Resources Information Center
Crawford, Emily R.; Arnold, Noelle Witherspoon
2016-01-01
There is widespread national debate over how to address and advocate for undocumented immigrants in the United States. Education is key to the economic, occupational, and social mobility of young unauthorized immigrants, but policies and practices can hinder or open their access to education. Educators pursue a range of activities to support…
The Journey to the Top: Women's Paths to the University Presidency
ERIC Educational Resources Information Center
Klotz, Ann Marie
2014-01-01
The history of women in higher education reflects a constant battle for access and equity. Although the number of post-secondary institutions steadily increased after Harvard University opened its doors in 1636, almost two hundred years would pass before women students were allowed at some institutions. In the last 50 years, the number of women…
Ruan, D; Dong, P; Low, D; Sheng, K
2012-06-01
To develop and investigate a continuous path optimization methodology to traverse prescribed non-coplanar IMRT beams with variant SADs, by orchestrating the couch and gantry movement with zero-collision, minimal patient motion consequence and machine travel time. We convert the given collision zone definition and the prescribed beam location/angles to a tumor-centric coordinate, and represent the traversing path as a continuous open curve. We proceed to optimize a composite objective function consisting of (1) a strong attraction energy to ensure all prescribed beams are en-route, (2) a penalty for patient-motion inducing couch motion, and (3) a penalty for travel-time inducing overall path-length. Feasibility manifold is defined as complement to collision zone and the optimization is performed with a level set representation evolved with variational flows. The proposed method has been implemented and tested on clinically derived data. In the absence of any existing solutions for the same problem, we validate by: (1) visual inspecting the generated path rendered in the 3D tumor-centric coordinates, and (2) comparing with a traveling-salesman (TSP) solution obtained from relaxing the variant SADs and continuous collision-avoidance requirement. The proposed method has generated delivery paths that are smooth and intuitively appealing. Under relaxed settings, our results outperform the generic TSP solutions and agree with specially tuned versions. We have proposed a novel systematic approach that automatically determines the continuous path to cover non-coplanar, varying SAD IMRT beams. The proposed approach accommodates patient-specific collision zone definition and ensures its avoidance continuously. The differential penalty to couch and gantry motions allows customizable tradeoff between patient geometry stability and delivery efficiency. This development paves the path to achieve safe, accurate and efficient non-coplanar IMRT delivery with the advanced robotic controls in new-generation C-arm systems, enabling practical harvesting of the dose benefit offered by non-coplanar, variant SAD IMRT treatment. © 2012 American Association of Physicists in Medicine.
Miri, Mohammad Saleh; Abràmoff, Michael D; Kwon, Young H; Sonka, Milan; Garvin, Mona K
2017-07-01
Bruch's membrane opening-minimum rim width (BMO-MRW) is a recently proposed structural parameter which estimates the remaining nerve fiber bundles in the retina and is superior to other conventional structural parameters for diagnosing glaucoma. Measuring this structural parameter requires identification of BMO locations within spectral domain-optical coherence tomography (SD-OCT) volumes. While most automated approaches for segmentation of the BMO either segment the 2D projection of BMO points or identify BMO points in individual B-scans, in this work, we propose a machine-learning graph-based approach for true 3D segmentation of BMO from glaucomatous SD-OCT volumes. The problem is formulated as an optimization problem for finding a 3D path within the SD-OCT volume. In particular, the SD-OCT volumes are transferred to the radial domain where the closed loop BMO points in the original volume form a path within the radial volume. The estimated location of BMO points in 3D are identified by finding the projected location of BMO points using a graph-theoretic approach and mapping the projected locations onto the Bruch's membrane (BM) surface. Dynamic programming is employed in order to find the 3D BMO locations as the minimum-cost path within the volume. In order to compute the cost function needed for finding the minimum-cost path, a random forest classifier is utilized to learn a BMO model, obtained by extracting intensity features from the volumes in the training set, and computing the required 3D cost function. The proposed method is tested on 44 glaucoma patients and evaluated using manual delineations. Results show that the proposed method successfully identifies the 3D BMO locations and has significantly smaller errors compared to the existing 3D BMO identification approaches. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Reyes, F. M.; Jaczilevich, A.; Grutter, M. A.; Huerta, M. A.; Rincón, P.; Rincón, R.; González, R.
2004-12-01
In this contribution, a methodology to acquire valuable information on the chemical composition and evolution of vehicular emissions is presented. With this innovative experimental set-up, it is possible to obtain real-time emissions of the combustion products without the need of dilution or sample collection. Key pollutants such as CO, CO2, H2CO, CH4, NO, N2O, NH3, SO2, CH3OH, acetylene, ethylene, ethane and total hydrocarbons, most of which are not regulated nor measured by current emissions control programs, can be accurately monitored with a single instrument. An FTIR spectrometer is used for the analysis of a constant flow of sample gas from the tail-pipe into a stainless-steel cylindrical cell of constant volume.(1) The cell is heated to 185 °C to avoid condensation, the pressure is kept constant and a multi-pass optical arrangement(2)is used to transmit the modulated infrared beam several times to improve the sensitivity. The total flow from the exhaust used for calculating the emission can be continuously determined from the differential pressure measurements from a "Pitot" tube calibrated against a hot-wire devise. This simple methodology is proposed for performing state-of-the-art evaluations on the emission behavior of new technologies, reformulated fuels and emission control devices. The results presented here were performed on a dynamometer running FTP-75 and driving cycles typical for Mexico City.(3,4) References 1. Grutter M. "Multi-Gas Analysis using FTIR Spectroscopy over Mexico City." Atmosfera 16, 1-16 (2003). 2. White J.U. "Long optical paths of large aperture. J. Opt. Soc. Am., 32, 285-288 (1942). 3. Santiago Cruz L. and P.I. Rincón. "Instrumentation of the Emission Control Laboratory at the Engineering School of the National Autonomous University of Mexico." Instrumentation and Development 4, 19-24, (2000). 4. González Oropeza R. and A. Galván Zacarías. "Desarrollo de ciclos de manejo característicos de la Ciudad de México." Memorias del IX Congreso Anual, Soc. Mex. de Ing. Mec. 535-544 (2003).
Open innovation as a new paradigm for global collaborations in health.
Dandonoli, Patricia
2013-08-30
Open innovation, which refers to combining internal and external ideas and internal and external paths to market in order to achieve advances in processes or technologies, is an attractive paradigm for structuring collaborations between developed and developing country entities and people. Such open innovation collaborations can be designed to foster true co-creation among partners in rich and poor settings, thereby breaking down hierarchies and creating greater impact and value for each partner. Using an example from Concern Worldwide's Innovations for Maternal, Newborn &Child Health initiative, this commentary describes an early-stage pilot project built around open innovation in a low resource setting, which puts communities at the center of a process involving a wide range of partners and expertise, and considers how it could be adapted and make more impactful and sustainable by extending the collaboration to include developed country partners.
Torque characteristics of a 122-centimeter butterfly valve with a hydro/pneumatic actuator
NASA Technical Reports Server (NTRS)
Lin, F. N.; Moore, W. I.; Lundy, F. E.
1981-01-01
Actuating torque data from field testing of a 122-centimeter (48 in.) butterfly valve with a hydro/pneumatic actuator is presented. The hydraulic cylinder functions as either a forward or a reverse brake. Its resistance torque increases when the valve speeds up and decreases when the valve slows down. A reduction of flow resistance in the hydraulic flow path from one end of the hydraulic cylinder to the other will effectively reduce the hydraulic resistance torque and hence increase the actuating torque. The sum of hydrodynamic and friction torques (combined resistance torque) of a butterfly valve is a function of valve opening time. An increase in the pneumatic actuating pressure will result in a decrease in both the combined resistance torque and the actuator opening torque; however, it does shorten the valve opening time. As the pneumatic pressure increases, the valve opening time for a given configuration approaches an asymptotical value.
Oval gradient coils for an open magnetic resonance imaging system with a vertical magnetic field.
Matsuzawa, Koki; Abe, Mitsushi; Kose, Katsumi; Terada, Yasuhiko
2017-05-01
Existing open magnetic resonance imaging (MRI) systems use biplanar gradient coils for the spatial encoding of signals. We propose using novel oval gradient coils for an open vertical-field MRI. We designed oval gradients for a 0.3T open MRI system and showed that such a system could outperform a traditional biplanar gradient system while maintaining adequate gradient homogeneity and subject accessibility. Such oval gradient coils would exhibit high efficiency, low inductance and resistance, and high switching capability. Although the designed oval Y and Z coils showed more heat dissipation and less cooling capability than biplanar coils with the same gap, they showed an efficient heat-dissipation path to the surrounding air, which would alleviate the heat problem. The performance of the designed oval-coil system was demonstrated experimentally by imaging a human hand. Copyright © 2017 Elsevier Inc. All rights reserved.
Smisc - A collection of miscellaneous functions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Landon Sego, PNNL
2015-08-31
A collection of functions for statistical computing and data manipulation. These include routines for rapidly aggregating heterogeneous matrices, manipulating file names, loading R objects, sourcing multiple R files, formatting datetimes, multi-core parallel computing, stream editing, specialized plotting, etc. Smisc-package A collection of miscellaneous functions allMissing Identifies missing rows or columns in a data frame or matrix as.numericSilent Silent wrapper for coercing a vector to numeric comboList Produces all possible combinations of a set of linear model predictors cumMax Computes the maximum of the vector up to the current index cumsumNA Computes the cummulative sum of a vector without propogating NAsmore » d2binom Probability functions for the sum of two independent binomials dataIn A flexible way to import data into R. dbb The Beta-Binomial Distribution df2list Row-wise conversion of a data frame to a list dfplapply Parallelized single row processing of a data frame dframeEquiv Examines the equivalence of two dataframes or matrices dkbinom Probability functions for the sum of k independent binomials factor2character Converts all factor variables in a dataframe to character variables findDepMat Identify linearly dependent rows or columns in a matrix formatDT Converts date or datetime strings into alternate formats getExtension Filename manipulations: remove the extension or path, extract the extension or path getPath Filename manipulations: remove the extension or path, extract the extension or path grabLast Filename manipulations: remove the extension or path, extract the extension or path ifelse1 Non-vectorized version of ifelse integ Simple numerical integration routine interactionPlot Two-way Interaction Plot with Error Bar linearMap Linear mapping of a numerical vector or scalar list2df Convert a list to a data frame loadObject Loads and returns the object(s) in an ".Rdata" file more Display the contents of a file to the R terminal movAvg2 Calculate the moving average using a 2-sided window openDevice Opens a graphics device based on the filename extension p2binom Probability functions for the sum of two independent binomials padZero Pad a vector of numbers with zeros parseJob Parses a collection of elements into (almost) equal sized groups pbb The Beta-Binomial Distribution pcbinom A continuous version of the binomial cdf pkbinom Probability functions for the sum of k independent binomials plapply Simple parallelization of lapply plotFun Plot one or more functions on a single plot PowerData An example of power data pvar Prints the name and value of one or more objects qbb The Beta-Binomial Distribution rbb And numerous others (space limits reporting).« less
NASA Technical Reports Server (NTRS)
McNab, A. David; woo, Alex (Technical Monitor)
1999-01-01
Portals, an experimental feature of 4.4BSD, extend the file system name space by exporting certain open () requests to a user-space daemon. A portal daemon is mounted into the file name space as if it were a standard file system. When the kernel resolves a pathname and encounters a portal mount point, the remainder of the path is passed to the portal daemon. Depending on the portal "pathname" and the daemon's configuration, some type of open (2) is performed. The resulting file descriptor is passed back to the kernel which eventually returns it to the user, to whom it appears that a "normal" open has occurred. A proxy portalfs file system is responsible for kernel interaction with the daemon. The overall effect is that the portal daemon performs an open (2) on behalf of the kernel, possibly hiding substantial complexity from the calling process. One particularly useful application is implementing a connection service that allows simple scripts to open network sockets. This paper describes the implementation of portals for LINUX 2.0.
Space Subdivision in Indoor Mobile Laser Scanning Point Clouds Based on Scanline Analysis.
Zheng, Yi; Peter, Michael; Zhong, Ruofei; Oude Elberink, Sander; Zhou, Quan
2018-06-05
Indoor space subdivision is an important aspect of scene analysis that provides essential information for many applications, such as indoor navigation and evacuation route planning. Until now, most proposed scene understanding algorithms have been based on whole point clouds, which has led to complicated operations, high computational loads and low processing speed. This paper presents novel methods to efficiently extract the location of openings (e.g., doors and windows) and to subdivide space by analyzing scanlines. An opening detection method is demonstrated that analyses the local geometric regularity in scanlines to refine the extracted opening. Moreover, a space subdivision method based on the extracted openings and the scanning system trajectory is described. Finally, the opening detection and space subdivision results are saved as point cloud labels which will be used for further investigations. The method has been tested on a real dataset collected by ZEB-REVO. The experimental results validate the completeness and correctness of the proposed method for different indoor environment and scanning paths.
Path Similarity Analysis: A Method for Quantifying Macromolecular Pathways
Seyler, Sean L.; Kumar, Avishek; Thorpe, M. F.; Beckstein, Oliver
2015-01-01
Diverse classes of proteins function through large-scale conformational changes and various sophisticated computational algorithms have been proposed to enhance sampling of these macromolecular transition paths. Because such paths are curves in a high-dimensional space, it has been difficult to quantitatively compare multiple paths, a necessary prerequisite to, for instance, assess the quality of different algorithms. We introduce a method named Path Similarity Analysis (PSA) that enables us to quantify the similarity between two arbitrary paths and extract the atomic-scale determinants responsible for their differences. PSA utilizes the full information available in 3N-dimensional configuration space trajectories by employing the Hausdorff or Fréchet metrics (adopted from computational geometry) to quantify the degree of similarity between piecewise-linear curves. It thus completely avoids relying on projections into low dimensional spaces, as used in traditional approaches. To elucidate the principles of PSA, we quantified the effect of path roughness induced by thermal fluctuations using a toy model system. Using, as an example, the closed-to-open transitions of the enzyme adenylate kinase (AdK) in its substrate-free form, we compared a range of protein transition path-generating algorithms. Molecular dynamics-based dynamic importance sampling (DIMS) MD and targeted MD (TMD) and the purely geometric FRODA (Framework Rigidity Optimized Dynamics Algorithm) were tested along with seven other methods publicly available on servers, including several based on the popular elastic network model (ENM). PSA with clustering revealed that paths produced by a given method are more similar to each other than to those from another method and, for instance, that the ENM-based methods produced relatively similar paths. PSA applied to ensembles of DIMS MD and FRODA trajectories of the conformational transition of diphtheria toxin, a particularly challenging example, showed that the geometry-based FRODA occasionally sampled the pathway space of force field-based DIMS MD. For the AdK transition, the new concept of a Hausdorff-pair map enabled us to extract the molecular structural determinants responsible for differences in pathways, namely a set of conserved salt bridges whose charge-charge interactions are fully modelled in DIMS MD but not in FRODA. PSA has the potential to enhance our understanding of transition path sampling methods, validate them, and to provide a new approach to analyzing conformational transitions. PMID:26488417
Jaraíz, Martín; Enríquez, Lourdes; Pinacho, Ruth; Rubio, José E; Lesarri, Alberto; López-Pérez, José L
2017-04-07
A novel DFT-based Reaction Kinetics (DFT-RK) simulation approach, employed in combination with real-time data from reaction monitoring instrumentation (like UV-vis, FTIR, Raman, and 2D NMR benchtop spectrometers), is shown to provide a detailed methodology for the analysis and design of complex synthetic chemistry schemes. As an example, it is applied to the opening of epoxides by titanocene in THF, a catalytic system with abundant experimental data available. Through a DFT-RK analysis of real-time IR data, we have developed a comprehensive mechanistic model that opens new perspectives to understand previous experiments. Although derived specifically from the opening of epoxides, the prediction capabilities of the model, built on elementary reactions, together with its practical side (reaction kinetics simulations of real experimental conditions) make it a useful simulation tool for the design of new experiments, as well as for the conception and development of improved versions of the reagents. From the perspective of the methodology employed, because both the computational (DFT-RK) and the experimental (spectroscopic data) components can follow the time evolution of several species simultaneously, it is expected to provide a helpful tool for the study of complex systems in synthetic chemistry.
Blond, Pascale; Mattiuzzi, Alice; Valkenier, Hennie; Troian-Gautier, Ludovic; Bergamini, Jean-François; Doneux, Thomas; Goormaghtigh, Erik; Raussens, Vincent; Jabin, Ivan
2018-05-29
Biosensors that can determine protein concentration and structure are highly desired for biomedical applications. For the development of such biosensors, the use of Fourier transform infrared (FTIR) spectroscopy with the attenuated internal total reflection (ATR) configuration is particularly attractive, but it requires appropriate surface functionalization of the ATR optical element. Indeed, the surface has to specifically interact with a target protein in close contact with the optical element and must display antifouling properties to prevent nonspecific adsorption of other proteins. Here, we report robust monolayers of calix[4]arenes bearing oligo(ethylene glycol) (oEG) chains, which were grafted on germanium and gold surfaces via their tetradiazonium salts. The formation of monolayers of oEGylated calix[4]arenes was confirmed by AFM, IR, and contact angle measurements. The antifouling properties of these modified surfaces were studied by ATR-FTIR spectroscopy and fluorescence microscopy, and the nonspecific absorption of bovine serum albumin was found to be reduced by 85% compared to that of unmodified germanium. In other words, the organic coating by oEGylated calix[4]arenes provides remarkable antifouling properties, opening the way for the design of germanium- or gold-based biosensors.
Revisiting the formation of cyclic clusters in liquid ethanol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balanay, Mannix P.; Fan, Haiyan, E-mail: haiyan.fan@nu.edu.kz; Kim, Dong Hee
2016-04-21
The liquid phase of ethanol in pure and in non-polar solvents was studied at room temperature using Fourier transform infrared (FT-IR) and {sup 1}H nuclear magnetic resonance (NMR) spectroscopies together with theoretical approach. The FT-IR spectra for pure ethanol and solution in cyclohexane at different dilution stages are consistent with {sup 1}H NMR results. The results from both methods were best explained by the results of the density functional theory based on a multimeric model. It is suggested that cyclic trimers and tetramers are dominated in the solution of cyclohexane/hexane with the concentration greater than 0.5M at room temperature. Inmore » liquid ethanol, while the primary components at room temperature are cyclic trimers and tetramers, there is a certain amount (∼14%) of open hydroxide group representing the existence of chain like structures in the equilibria. The cyclic cluster model in the liquid and concentrated solution phase (>0.5M) can be used to explain the anomalously lower freezing point of ethanol (159 K) than that of water (273 K) at ambient conditions. In addition, {sup 1}H NMR at various dilution stages reveals the dynamics for the formation of cyclic clusters.« less
FT-IR Study Reveals Intrinsically Disordered Nature of Heat Shock Protein 90
NASA Astrophysics Data System (ADS)
Xie, Aihua; Neto, David; Balch, Maurie; Hendriks, Johnny; Causey, Oliver; Deng, Junpeng; Matts, Robert
Heat shock protein 90 (Hsp90) is a highly conserved chaperone protein that enables the proper folding of a large number of structurally diverse proteins (a.k.a., clients) in the crowded cytosolic environment and plays a key role in regulating the heat shock response. A long standing open question is how Hsp90 accommodates the structural diversity of a large cohort of client proteins? We report ATR FTIR study on structural properties of Hsp90 C-terminal domain (CTD) and their temperature dependences. Effects of temperature on Hsp90 structure are dissected into the C-terminal domain (CTD) and the N-terminal/middle domain (NTMD). One of our major findings reveals that within a narrow temperature window across the physiological temperatures (35 to 45 C), Hsp90CTD exhibits significant increases in protein aggregation and increases in unordered structures. Despite the intrinsically disordered nature of Hsp90CTD, it retains a protected hydrophobic core at 40 C. Implications of these results will be discussed in the light of the structural dynamics and client diversity of Hsp90. AX is grateful for Grant supports from OCAST HR10-078 and NSF MRI DBI1338097.
Biophysical characterization of gold nanoparticles-loaded liposomes.
Mady, Mohsen Mahmoud; Fathy, Mohamed Mahmoud; Youssef, Tareq; Khalil, Wafaa Mohamed
2012-10-01
Gold nanoparticles were prepared and loaded into the bilayer of dipalmitoylphosphatidylcholine (DPPC) liposomes, named as gold-loaded liposomes. Biophysical characterization of gold-loaded liposomes was studied by transmission electron microscopy (TEM) and Fourier transform infrared (FTIR) spectroscopy as well as turbidity and rheological measurements. FTIR measurements showed that gold nanoparticles made significant changes in the frequency of the CH(2) stretching bands, revealing that gold nanoparticles increased the number of gauche conformers and create a conformational change within the acyl chains of phospholipids. The transmission electron micrographs (TEM) revealed that gold nanoparticles were loaded in the liposomal bilayer. The zeta potential of DPPC liposomes had a more negative value after incorporating of Au NPs into liposomal membranes. Turbidity studies revealed that the loading of gold nanoparticles into DPPC liposomes results in shifting the temperature of the main phase transition to a lower value. The membrane fluidity of DPPC bilayer was increased by loading the gold nanoparticles as shown from rheological measurements. Knowledge gained in this study may open the door to pursuing liposomes as a viable strategy for Au NPs delivery in many diagnostic and therapeutic applications. Copyright © 2011 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Parameswaran, V; Nallamuthu, N; Devendran, P; Manikandan, A; Nagarajan, E R
2018-06-01
Biodegradable polymer blend electrolyte based on ammonium based salt in variation composition consisting of PVA:PVP were prepared by using solution casting technique. The obtained films have been analyzed by various technical methods like as XRD, FT-IR, TG-DSC, SEM analysis and impedance spectroscopy. The XRD and FT-IR analysis exposed the amorphous nature and structural properties of the complex formation between PVA/PVP/NH4Br. Impedance spectroscopy analysis revealed the ionic conductivity and the dielectric properties of PVA/PVP/NH4Br polymer blend electrolyte films. The maximum ionic conductivity was determined to be 6.14 × 10-5 Scm-1 for the composition of 50%PVA: 50%PVP: 10% NH4Br with low activation energy 0.3457 eV at room temperature. Solid state battery is fabricated using highest ionic conducting polymer blend as electrolyte with the configuration Zn/ZnSO4 · 7H2O (anode) ∥ 50%PVA: 50%PVP: 10% NH4Br ∥ Mn2O3 (cathode). The observed open circuit voltage is 1.2 V and its performance has been studied.
FTIR study of CO2 and H2O/CO2 nanoparticles and their temporal evolution at 80 K.
Taraschewski, M; Cammenga, H K; Tuckermann, R; Bauerecker, S
2005-04-21
Fourier transform infrared (FTIR) spectroscopy combined with a long-path collisional cooling cell was used to investigate the temporal evolution of CO2 nanoparticles and binary H2O/CO2 nanocomposites in the aerosol phase at 80 K. The experimental conditions for the formation of different CO2 particle shapes as slab, shell, sphere, cube, and needle have been studied by comparison with calculated data from the literature. The H2O/CO2 nanoparticles were generated with a newly developed multiple-pulse injection technique and with the simpler flow-in technique. The carbon dioxide nu3-vibration band at 2360 cm(-1) and the water ice OH-dangling band at 3700 cm(-1) were used to study the evolution of structure, shape, and contact area of the nanocomposites over 150 s. Different stages of binary nanocomposites with primary water ice cores were identified dependent on the injected CO2 portion: (a) disordered (amorphous) CO2 slabs on water particle surfaces, (b) globular crystalline CO2 humps sticking on the water cores, and (c) water cores being completely enclosed in bigger predominantly crystalline CO2 nanoparticles. However, regular CO2 shell structures on primary water particles showing both longitudinal (LO) and transverse (TO) optical mode features of the nu3-vibration band could not be observed. Experiments with reversed nucleation order indicate that H2O/CO2 composite particles with different initial structures evolve toward similar molecular nanocomposites with separated CO2 and H2O regions.
VACUUM TRAP AND VALVE COMBINATION
Milleron, N.; Levenson, L.
1963-02-19
This patent relates to a vacuum trap and valve combination suitable for use in large ultra-high vacuum systems. The vacuum trap is a chamber having an inlet and outlet opening which may be made to communicate with a chamber to be evacuated and a diffusion pump, respectively. A valve is designed to hermeticaliy seal with inlet opening and, when opened, block the line-of- sight'' between the inlet and outlet openings, while allowing a large flow path between the opened vaive and the side walls of the trap. The interior of the trap and the side of the valve facing the inlet opening are covered with an impurity absorbent, such as Zeolite or activated aluminum. Besides the advantage of combining two components of a vacuum system into one, the present invention removes the need for a baffle between the pump and the chamber to be evacuated. In one use of a specific embodiment of this invention, the transmission probability was 45 and the partial pressure of the pump fluid vapor in the vacuum chamber was at least 100 times lower than its vapor pressure. (AEC)
Vertical mass transfer in open channel flow
Jobson, Harvey E.
1968-01-01
The vertical mass transfer coefficient and particle fall velocity were determined in an open channel shear flow. Three dispersants, dye, fine sand and medium sand, were used with each of three flow conditions. The dispersant was injected as a continuous line source across the channel and downstream concentration profiles were measured. From these profiles along with the measured velocity distribution both the vertical mass transfer coefficient and the local particle fall velocity were determined.The effects of secondary currents on the vertical mixing process were discussed. Data was taken and analyzed in such a way as to largely eliminate the effects of these currents on the measured values. A procedure was developed by which the local value of the fall velocity of sand sized particles could be determined in an open channel flow. The fall velocity of the particles in the turbulent flow was always greater than their fall velocity in quiescent water. Reynolds analogy between the transfer of momentum and marked fluid particles was further substantiated. The turbulent Schmidt number was shown to be approximately 1.03 for an open channel flow with a rough boundary. Eulerian turbulence measurements were not sufficient to predict the vertical transfer coefficient. Vertical mixing of sediment is due to three semi-independent processes. These processes are: secondary currents, diffusion due to tangential velocity fluctuations and diffusion due to the curvature of the fluid particle path lines. The diffusion coefficient due to tangential velocity fluctuations is approximately proportional to the transfer coefficient of marked fluid particles. The proportionality constant is less than or equal to 1.0 and decreases with increasing particle size. The diffusion coefficient due to the curvature of the fluid particle path lines is not related to the diffusion coefficient for marked fluid particles and increases with particle size, at least for sediment particles in the sand size range. The total sediment transfer coefficient is equal to the sum of the coefficient due to tangential velocity fluctuations and the coefficient due to the curvature of the fluid particle path lines. A numerical solution to the conservation of mass equation is given. The effects of the transfer coefficient, fall velocity and bed conditions on the predicted concentration profiles are illustrated.
Openness to the unexpected: Our Pathways to Careers in a Federal Research Laboratory.
Newman, Kurt R.; Bunnell, David B.; Hondorp, Darryl W.; Taylor, William W.; Lynch, Abigail J.; Léonard, Nancy J.
2014-01-01
Many fisheries professionals may not be in the job they originally envisioned for themselves when they began their undergraduate studies. Rather, their current positions could be the result of unexpected, opportunistic, or perhaps even “lucky” open doors that led them down an unexpected path. In many cases, a mentor helped facilitate the unforeseen trajectory. We offer three unique stories about joining a federal fisheries research laboratory, from the perspective of a scientist, a joint manager-scientist, and a manager. We also use our various experiences to form recommendations that should help the next generation of fisheries professionals succeed in any stop along their journey, including being open to opportunities, setting high expectations, and finding a strong and supportive team environment to work in.
Volcanic hazards and remote sensing in Pacific Latin America
NASA Astrophysics Data System (ADS)
Lyons, John; Rose, Bill; Escobar, Rüdiger
2011-06-01
PASI Workshop on Open Vent Volcanoes; San José, Costa Rica, 10-24 January 2011 ; Open-vent volcanoes are a class of volcano that contain a relatively open path from the subsurface to the atmosphere without a major vent obstruction. Their persistent, low-level activity, which poses little danger to communities, may be punctuated by violent activity without warning. These complex systems challenge and provide opportunity for observatories and national and international investigators. Long-lived eruptions are also laboratories for students and scientists and a locus for developing collaborations and field testing new instrumentation and methods. Pacific Latin America hosts a high density of active volcanoes, and many are under-monitored and under-researched despite the efforts of local volcano observatories and their accessibility to U.S. and European scientists.