Science.gov

Sample records for open star clusters

  1. Rotation periods of open-cluster stars, 3

    NASA Technical Reports Server (NTRS)

    Prosser, Charles F.; Shetrone, Matthew D.; Dasgupta, Amil; Backman, Dana E.; Laaksonen, Bentley D.; Baker, Shawn W.; Marschall, Laurence A.; Whitney, Barbara A.; Kuijken, Konrad; Stauffer, John R.

    1995-01-01

    We present the results from a photometric monitoring program of 15 open cluster stars and one weak-lined T Tauri star during late 1993/early 1994. Several show rotators which are members of the Alpha Persei, Pleiades, and Hyades open clusters have been monitored and period estimates derived. Using all available Pleiades stars with photometric periods together with current X-ray flux measurements, we illustrate the X-ray activity/rotation relation among Pleiades late-G/K dwarfs. The data show a clear break in the rotation-activity relation around P approximately 6-7 days -- in general accordance with previous results using more heterogeneous samples of G/K stars.

  2. VARIABLE STARS IN THE OPEN CLUSTER NGC 7142

    SciTech Connect

    Sandquist, Eric L.; Serio, Andrew W.; Shetrone, Matthew E-mail: aserio@gemini.edu

    2011-12-15

    We present new discoveries of variable stars near the turnoff of the old open cluster NGC 7142. Contrary to previous studies, we detect eight contact or near-contact eclipsing binaries (including three near the cluster turnoff), and most of these have good probability of being cluster members. We also identified one long-period variable that resides far to the red of the cluster giant branch, and four new detached eclipsing binaries. We have re-examined the question of distance and reddening for the cluster and find that the distance is larger and the reddening lower than in most previous studies. In turn this implies that NGC 7142 is probably slightly younger than M67, and is about 3 Gyr old. With an age of this size, NGC 7142 would be one of a small group of clusters with main-sequence turnoff stars at the transition between convective and radiative cores.

  3. Rotation periods of open-cluster stars, 2

    NASA Technical Reports Server (NTRS)

    Prosser, Charles F.; Shetrone, Matthew D.; Marilli, Ettore; Catalano, Santo; Williams, Scott D.; Backman, Dana E.; Laaksonen, Bentley D.; Adige, Vikram; Marschall, Laurence A.; Stauffer, John R.

    1993-01-01

    We present the results from a photometric monitoring program of 21 stars observed during 1992 in the Pleiades and Alpha Persei open clusters. Period determinations for 16 stars are given, 13 of which are the first periods reported for these stars. Brightness variations for an additional five cluster stars are also given. One K dwarf member of the alpha Per cluster is observed to have a period of rotation of only 4.39 hr. perhaps the shortest period currently known among BY Draconis variables. The individual photometric measurements have been deposited with the NSSDC. Combining current X-ray flux determinations with known photometric periods, we illustrate the X-ray activity/rotation relation among Pleiades K dwarfs based on available data.

  4. Two populations of open star clusters in the Galaxy

    NASA Astrophysics Data System (ADS)

    Gozha, M. L.; Koval', V. V.; Marsakov, V. A.

    2012-08-01

    Based on our compiled catalogue of fundamental astrophysical parameters for 593 open clusters, we analyze the relations between the chemical composition, spatial positions, Galactic orbital elements, age, and other physical parameters of open star clusters. We show that the population of open clusters is heterogeneous and is divided into two groups differing by their mean parameters, properties, and origin. One group includes the Galactic clusters formed mainly from the interstellar matter of the thin disk with nearly solarmetallicities ([Fe/H] > -0.2) and having almost circular orbits a short distance away from the Galactic plane, i.e., typical of the field stars of the Galactic thin disk. The second group includes the peculiar clusters formed through the interaction of extragalactic objects (such as high-velocity clouds, globular clusters, or dwarf galaxies) with the interstellar matter of the thin disk, which, as a result, derived abnormally low (for field thin-disk stars) metallicities and/or Galactic orbits typical of objects of the older Galactic subsystems. About 70% of the clusters older than 1Gyr have been found to be peculiar, suggesting a slower disruption of clusters with noncircular high orbits. Analysis of orbital elements has shown that the bulk of the clusters from both groups were formed within a Galactocentric radius of ≈10.5 kpc and closer than ≈180 pc from the Galactic plane, but owing to their high initial velocities, the peculiar clusters gradually took up the volumes occupied by the objects of the thick disk, the halo, and even the accreted halo of the Galaxy. Analysis of the relative abundances of magnesium (a representative of the α-elements) in clusters that, according to their kinematical parameters, belong to different Galactic subsystems has shown that all clusters are composed of matter incorporating the interstellar matter of a single protogalactic cloud in different proportions, i.e., reprocessed in genetically related stars of

  5. Population of Be Stars in Young Open Clusters

    NASA Astrophysics Data System (ADS)

    Malchenko, S. L.; Tarasov, A. E.

    2008-12-01

    Both high and medium resolution spectroscopy of Be stars and binary stellar systems in young open clusters (e.g., NGC 869 And 884, NGC 6913, NGC 6871, NGC 7160 and NGC 7419) were carried out. The high resolution spectroscopy of 100 stars in Hα region and medium resolution one of 42 stars in 4400 - 4960 Å range were obtained. From them 52 B stars and 48 Be stars spectra were studied. T_{eff}, log g and V sin i were determined from the medium resolution spectra. One new Be star was found. One another star showed a complex variability of Hα. It characterizes the star as a close binary system. Some of stars demonstrate a long - term V/R variability of the emission peaks that can be easy described by one arm oscillations in theirs envelopes. Our clusters survey approved that classical Be stars mostly appear at age of 10 Myr, and their concentration reaches the maximum at the age of 12-20 Myr.

  6. Searching for Be stars in the open cluster NGC 663

    SciTech Connect

    Yu, P. C.; Lin, C. C.; Chen, W. P.; Lee, C. D.; Ip, W. H.; Ngeow, C. C.; Laher, Russ; Surace, Jason

    2015-02-01

    We present Be star candidates in the open cluster NGC 663, identified by Hα imaging photometry with the Palomar Transient Factory Survey, as a pilot program to investigate how the Be star phenomena, the emission spectra, extended circumstellar envelopes, and fast rotation, correlate with massive stellar evolution. Stellar membership of the candidates was verified by 2MASS magnitudes and colors and by proper motions (PMs). We discover four new Be stars and exclude one known Be star from being a member due to its inconsistent PMs. The fraction of Be stars to member stars [N(Be)/N(members)] in NGC 663 is 3.5%. The spectral type of the 34 Be stars in NGC 663 shows bimodal peaks at B0–B2 and B5–B7, which is consistent with the statistics in most star clusters. Additionally, we also discover 23 emission-line stars of different types, including non-member Be stars, dwarfs, and giants.

  7. Investigation of the open star cluster NGC 6800

    NASA Astrophysics Data System (ADS)

    Ananjevskaja, Yu. K.; Frolov, V. N.; Polyakov, E. V.

    2015-07-01

    The results of a comprehensive study of the Galactic open cluster NGC 6800 are presented. The positions of stars to a limiting magnitude B ≃ 16{./ m }5 in an 80' × 80' field centered at the cluster were measured on eight plates from the Pulkovo normal astrograph with a maximum epoch difference of 57 years. The measurements were performed with the Pulkovo "Fantasy" automated measuring system. The corresponding field from the 2MASS catalogue was used as an additional plate. As a result, the relative proper motions of stars were obtained with a root-mean-square error of 3.0 mas yr-1. A catalogue of BV and JHK magnitudes for objects in the investigated region was compiled from available published resources. The astrometric selection of cluster members was made by the maximum likelihood method. An individual cluster membership probability of a star P ≥ 60% served as the first selection criterion. The position of a star on the photometric color-magnitude ( V ~ B - V, J ~ J - K s ) diagrams was considered as the second selection criterion. On the basis of these criteria, it was established that 109 stars are members of NGC 6800, These data were used to refine the physical parameters of the cluster: the mean reddening E( B - V) = 0 m . 40, the true distance modulus ( V - M V )0 = 10{./ m }05, and the cluster age ~250 Myr. The luminosity and mass functions were constructed. The position of the center of the cluster NGC 6800 was improved: α = 19h27m11{./s}2 and δ = +25°07'24〃(2000). The catalogue of relative proper motions for stars in the field is available in electronic form only.

  8. TWO BARIUM STARS IN THE OPEN CLUSTER NGC 5822

    SciTech Connect

    Katime Santrich, O. J.; Pereira, C. B.; De Castro, D. B. E-mail: claudio@on.br

    2013-08-01

    Open clusters are very useful examples to explain the constraint of the nucleosynthesis process with the luminosities of stars because the distances of the clusters are better known than those of field stars. We carried out a detailed spectroscopic analysis to derive the chemical composition of two red giants in the young open cluster NGC 5822, NGC 5822-2, and NGC 5822-201. We obtained abundances of C, N, O, Na, Mg, Al, Ca, Si, Ti, Ni, Cr, Y, Zr, La, Ce, and Nd. The atmospheric parameters of the studied stars and their chemical abundances were determined using high-resolution optical spectroscopy. We employed the local thermodynamic equilibrium model atmospheres of Kurucz and the spectral analysis code MOOG. The abundances of the light elements were derived using the spectral synthesis technique. We found that NGC 5822-2 and -201 have, respectively, a mean overabundance of the elements created by the s-process, ''s'', with the notation [s/Fe] of 0.77 {+-} 0.12 and 0.83 {+-} 0.05. These values are higher than those for field giants of similar metallicity. We also found that NGC 5822-2 and -201 have, respectively, luminosities of 140 L{sub Sun} and 76 L{sub Sun }, which are much lower than the luminosity of an asymptotic giant branch star. We conclude that NGC 5822-2 and NGC 5822-201 are two new barium stars first identified in the open cluster NGC 5822. The mass transfer hypothesis is the best scenario to explain the observed overabundances.

  9. Be Stars in the Open Cluster NGC 6830

    NASA Astrophysics Data System (ADS)

    Yu, Po-Chieh; Lin, Chien-Cheng; Lin, Hsing-Wen; Lee, Chien-De; Konidaris, Nick; Ngeow, Chow-Choong; Ip, Wing-Huen; Chen, Wen-Ping; Chen, Hui-Chen; Malkan, Matthew A.; Chang, Chan-Kao; Laher, Russ; Huang, Li-Ching; Cheng, Yu-Chi; Edelson, Rick; Ritter, Andreas; Quimby, Robert; Ben-Ami, Sagi; Ofek, Eran. O.; Surace, Jason; Kulkarni, Shrinivas R.

    2016-05-01

    We report the discovery of two new Be stars, and re-identify one known Be star in the open cluster NGC 6830. Eleven Hα emitters were discovered using the Hα imaging photometry of the Palomar Transient Factory Survey. Stellar membership of the candidates was verified with photometric and kinematic information using 2MASS data and proper motions. The spectroscopic confirmation was carried out by using the Shane 3 m telescope at the Lick observatory. Based on their spectral types, three Hα emitters were confirmed as Be stars with Hα equivalent widths greater than -10 Å. Two objects were also observed by the new spectrograph spectral energy distribution-machine (SED-machine) on the Palomar 60-inch Telescope. The SED-machine results show strong Hα emission lines, which are consistent with the results of the Lick observations. The high efficiency of the SED-machine can provide rapid observations for Be stars in a comprehensive survey in the future.

  10. Development of a database for stars in open clusters.

    NASA Astrophysics Data System (ADS)

    Mermilliod, J.-C.

    Data for stars in 395 open clusters, including photometry in several systems, spectral classification, radial and rotational velocities, membership probabilities, remarks, references, bibliography, positions and cross-identifications have been organised in a database on a Sun 3/50 workstation. UNIX-style commands have been developed to handle the data and interrogate the database. Software is being written to analyse the data, compute mean values of photometric parameters and also to plot on the display various photometric diagrams, as well as cluster maps.

  11. Galactic rotation parameters from data on open star clusters

    NASA Astrophysics Data System (ADS)

    Bobylev, V. V.; Bajkova, A. T.; Lebedeva, S. V.

    2007-11-01

    Currently available data on the field of velocities V r , V l , V b for open star clusters are used to perform a kinematic analysis of various samples that differ by heliocentric distance, age, and membership in individual structures (the Orion, Carina-Sagittarius, and Perseus arms). Based on 375 clusters located within 5 kpc of the Sun with ages up to 1 Gyr, we have determined the Galactic rotation parameters ω 0 = -26.0 ± 0.3 km s-1 kpc-1, ω'0 = 4.18 ± 0.17 km s-1 kpc-2, ω″0 = -0.45 ± 0.06 km s-1 kpc-3, the system contraction parameter K = -2.4 ± 0.1 km s-1 kpc-1, and the parameters of the kinematic center R 0 = 7.4 ± 0.3 kpc and l 0 = 0° ± 1°. The Galactocentric distance R 0 in the model used has been found to depend significantly on the sample age. Thus, for example, it is 9.5 ± 0.7 and 5.6 ± 0.3 kpc for the samples of young (≤50 Myr) and old (>50 Myr) clusters, respectively. Our study of the kinematics of young open star clusters in various spiral arms has shown that the kinematic parameters are similar to the parameters obtained from the entire sample for the Carina-Sagittarius and Perseus arms and differ significantly from them for the Orion arm. The contraction effect is shown to be typical of star clusters with various ages. It is most pronounced for clusters with a mean age of ≈100 Myr, with the contraction velocity being Kr = -4.3 ± 1.0 km s-1.

  12. Variable stars in the open cluster NGC 2141

    NASA Astrophysics Data System (ADS)

    Luo, Yang-Ping

    2015-05-01

    We report the results of a search for variable stars in the open cluster NGC 2141. Ten variable stars are detected, among which nine are new variable stars and they are classified as three short-period W UMa-type eclipsing binaries, two EA-type eclipsing binaries, one EB-type eclipsing binary, one very short-period RS CVn-type eclipsing binary, one d-type RR Lyrae variable star, and one unknown type of variable star. The membership and physical properties are discussed, based on their light curves, positions in the color magnitude diagrams, spatial locations and periods. A known EB-type eclipsing binary is also identified as a blue straggler candidate in the cluster. Furthermore, we find that all eclipsing contact binaries have prominent asymmetric eclipses and display the O'Connell effect, which increases with a decrease in orbital periods. This suggests that the O'Connell effect is probably related to the evolution of the orbital period in short period eclipsing binary systems. Supported by the National Natural Science Foundation of China.

  13. Massive open star clusters using the VVV survey. II. Discovery of six clusters with Wolf-Rayet stars

    NASA Astrophysics Data System (ADS)

    Chené, A.-N.; Borissova, J.; Bonatto, C.; Majaess, D. J.; Baume, G.; Clarke, J. R. A.; Kurtev, R.; Schnurr, O.; Bouret, J.-C.; Catelan, M.; Emerson, J. P.; Feinstein, C.; Geisler, D.; de Grijs, R.; Hervé, A.; Ivanov, V. D.; Kumar, M. S. N.; Lucas, P.; Mahy, L.; Martins, F.; Mauro, F.; Minniti, D.; Moni Bidin, C.

    2013-01-01

    Context. The ESO Public Survey "VISTA Variables in the Vía Láctea" (VVV) provides deep multi-epoch infrared observations for an unprecedented 562 sq. degrees of the Galactic bulge, and adjacent regions of the disk. Nearly 150 new open clusters and cluster candidates have been discovered in this survey. Aims: This is the second in a series of papers about young, massive open clusters observed using the VVV survey. We present the first study of six recently discovered clusters. These clusters contain at least one newly discovered Wolf-Rayet (WR) star. Methods: Following the methodology presented in the first paper of the series, wide-field, deep JHKs VVV observations, combined with new infrared spectroscopy, are employed to constrain fundamental parameters for a subset of clusters. Results: We find that the six studied stellar groups are real young (2-7 Myr) and massive (between 0.8 and 2.2 × 103 M⊙) clusters. They are highly obscured (AV ~ 5-24 mag) and compact (1-2 pc). In addition to WR stars, two of the six clusters also contain at least one red supergiant star, and one of these two clusters also contains a blue supergiant. We claim the discovery of 8 new WR stars, and 3 stars showing WR-like emission lines which could be classified WR or OIf. Preliminary analysis provides initial masses of ~30-50 M⊙ for the WR stars. Finally, we discuss the spiral structure of the Galaxy using the six new clusters as tracers, together with the previously studied VVV clusters. Based on observations with ISAAC, VLT, ESO (programme 087.D-0341A), New Technology Telescope at ESO's La Silla Observatory (programme 087.D-0490A) and with the Clay telescope at the Las Campanas Observatory (programme CN2011A-086). Also based on data from the VVV survey (programme 172.B-2002).

  14. New variable stars in open clusters. I. Methods and results for 20 open clusters

    NASA Astrophysics Data System (ADS)

    Paunzen, E.; Zwintz, K.; Maitzen, H. M.; Pintado, O. I.; Rode-Paunzen, M.

    2004-04-01

    We present high precision CCD photometry of 1791 objects in 20 open clusters with an age of 10 Myr to 1 Gyr. These observations were performed within the Δ a photometric system which is primarily used to detect chemically peculiar stars of the upper main sequence. Time bases range from 30 min up to 60 days with data from several nights. We describe the time series analysis reaching a detection limit of down to 0.006 mag for apparent variability. In total, we have detected 35 variable objects of which four are not members of their corresponding clusters. The variables cover the entire Hertzsprung-Russell diagram, hence they are interesting targets for follow-up observations. Based on observations obtained at Complejo Astronómico el Leoncito (CASLEO), operated under the agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba y San Juan; ESO-La Silla and UTSO-Las Campanas.

  15. Do open star clusters evolve towards energy equipartition?

    NASA Astrophysics Data System (ADS)

    Spera, Mario; Mapelli, Michela; Jeffries, Robin D.

    2016-07-01

    We investigate whether open clusters (OCs) tend to energy equipartition, by means of direct N-body simulations with a broken power-law mass function. We find that the simulated OCs become strongly mass segregated, but the local velocity dispersion does not depend on the stellar mass for most of the mass range: the curve of the velocity dispersion as a function of mass is nearly flat even after several half-mass relaxation times, regardless of the adopted stellar evolution recipes and Galactic tidal field model. This result holds both if we start from virialized King models and if we use clumpy sub-virial initial conditions. The velocity dispersion of the most massive stars and stellar remnants tends to be higher than the velocity dispersion of the lighter stars. This trend is particularly evident in simulations without stellar evolution. We interpret this result as a consequence of the strong mass segregation, which leads to Spitzer's instability. Stellar winds delay the onset of the instability. Our simulations strongly support the result that OCs do not attain equipartition, for a wide range of initial conditions.

  16. The same frequency of planets inside and outside open clusters of stars.

    PubMed

    Meibom, Søren; Torres, Guillermo; Fressin, Francois; Latham, David W; Rowe, Jason F; Ciardi, David R; Bryson, Steven T; Rogers, Leslie A; Henze, Christopher E; Janes, Kenneth; Barnes, Sydney A; Marcy, Geoffrey W; Isaacson, Howard; Fischer, Debra A; Howell, Steve B; Horch, Elliott P; Jenkins, Jon M; Schuler, Simon C; Crepp, Justin

    2013-07-01

    Most stars and their planets form in open clusters. Over 95 per cent of such clusters have stellar densities too low (less than a hundred stars per cubic parsec) to withstand internal and external dynamical stresses and fall apart within a few hundred million years. Older open clusters have survived by virtue of being richer and denser in stars (1,000 to 10,000 per cubic parsec) when they formed. Such clusters represent a stellar environment very different from the birthplace of the Sun and other planet-hosting field stars. So far more than 800 planets have been found around Sun-like stars in the field. The field planets are usually the size of Neptune or smaller. In contrast, only four planets have been found orbiting stars in open clusters, all with masses similar to or greater than that of Jupiter. Here we report observations of the transits of two Sun-like stars by planets smaller than Neptune in the billion-year-old open cluster NGC6811. This demonstrates that small planets can form and survive in a dense cluster environment, and implies that the frequency and properties of planets in open clusters are consistent with those of planets around field stars in the Galaxy.

  17. Open Clusters as Laboratories: The Angular Momentum Evolution of Young Stars

    NASA Technical Reports Server (NTRS)

    Stauffer, John R.

    1998-01-01

    The core group concentrated on three primary research topics: (1) ROSAT observation of the coronal activity of low mass stars in young open clusters; (2) the determination of stellar ages and the determination of the timescale for dissipation of circumstellar disks around young stars; and (3) the determination of rotation velocities of low mass stars in young open cluster and the inferred angular momentum evolution of low mass stars. With accurate ages for the clusters, we can then derive an independent estimate of the timescale for debris disks to dissipate. As the second half of that project, we are using the Caltech/UC/NASA Keck telescopes to obtain spectra of brown dwarf candidates in a number of nearby, young open clusters, from which we can determine new and accurate cluster ages. The final primary program that we have addressed was the determination of rotational velocities for low mass stars in our target open clusters. Our group has obtained rotational velocities for a large number of stars in several open clusters during this LTSA program, and we have published the results in several papers. One particularly time-consuming aspect of our program was the development of a database of the photometry and rotational velocities for nearby open clusters, which we have made available to the community.

  18. Dynamical Interactions Make Hot Jupiters in Open Star Clusters

    NASA Astrophysics Data System (ADS)

    Shara, Michael M.; Hurley, Jarrod R.; Mardling, Rosemary A.

    2016-01-01

    Explaining the origin and evolution of exoplanetary hot Jupiters remains a significant challenge. One possible mechanism for the production of hot Jupiters is planet-planet interactions, which produce them from planets born far from their host stars but near their dynamical stability limits. In the much more likely case of planets born far from their dynamical stability limits, can hot Jupiters be formed in star clusters? Our N-body simulations answer this question in the affirmative, and show that hot Jupiter formation is not a rare event, occurring in ˜1% of star cluster planetary systems. We detail three case studies of the dynamics-induced births of hot Jupiters on highly eccentric orbits that can only occur inside star clusters. The hot Jupiters’ orbits bear remarkable similarities to those of some of the most extreme exoplanets known: HAT-P-32b, HAT-P-2b, HD 80606b, and GJ 876d. If stellar perturbations formed these hot Jupiters, then our simulations predict that these very hot inner planets are often accompanied by much more distant gas giants in highly eccentric orbits.

  19. Early turbulent mixing as the origin of chemical homogeneity in open star clusters.

    PubMed

    Feng, Yi; Krumholz, Mark R

    2014-09-25

    The abundances of elements in stars are critical clues to stars' origins. Observed star-to-star variations in logarithmic abundance within an open star cluster--a gravitationally bound ensemble of stars in the Galactic plane--are typically only about 0.01 to 0.05 over many elements, which is noticeably smaller than the variation of about 0.06 to 0.3 seen in the interstellar medium from which the stars form. It is unknown why star clusters are so homogenous, and whether homogeneity should also prevail in regions of lower star formation efficiency that do not produce bound clusters. Here we report simulations that trace the mixing of chemical elements as star-forming clouds assemble and collapse. We show that turbulent mixing during cloud assembly naturally produces a stellar abundance scatter at least five times smaller than that in the gas, which is sufficient to explain the observed chemical homogeneity of stars. Moreover, mixing occurs very early, so that regions with star formation efficiencies of about 10 per cent are nearly as well mixed as those with formation efficiencies of about 50 per cent. This implies that even regions that do not form bound clusters are likely to be well mixed, and improves the prospects of using 'chemical tagging' to reconstruct (via their unique chemical signatures, or tags) star clusters whose constituent stars have become unbound from one another and spread across the Galactic disk. PMID:25174709

  20. Early turbulent mixing as the origin of chemical homogeneity in open star clusters.

    PubMed

    Feng, Yi; Krumholz, Mark R

    2014-09-25

    The abundances of elements in stars are critical clues to stars' origins. Observed star-to-star variations in logarithmic abundance within an open star cluster--a gravitationally bound ensemble of stars in the Galactic plane--are typically only about 0.01 to 0.05 over many elements, which is noticeably smaller than the variation of about 0.06 to 0.3 seen in the interstellar medium from which the stars form. It is unknown why star clusters are so homogenous, and whether homogeneity should also prevail in regions of lower star formation efficiency that do not produce bound clusters. Here we report simulations that trace the mixing of chemical elements as star-forming clouds assemble and collapse. We show that turbulent mixing during cloud assembly naturally produces a stellar abundance scatter at least five times smaller than that in the gas, which is sufficient to explain the observed chemical homogeneity of stars. Moreover, mixing occurs very early, so that regions with star formation efficiencies of about 10 per cent are nearly as well mixed as those with formation efficiencies of about 50 per cent. This implies that even regions that do not form bound clusters are likely to be well mixed, and improves the prospects of using 'chemical tagging' to reconstruct (via their unique chemical signatures, or tags) star clusters whose constituent stars have become unbound from one another and spread across the Galactic disk.

  1. PULSATING B-TYPE STARS IN THE OPEN CLUSTER NGC 884: FREQUENCIES, MODE IDENTIFICATION, AND ASTEROSEISMOLOGY

    SciTech Connect

    Saesen, S.; Briquet, M.; Aerts, C.; Carrier, F.; Miglio, A.

    2013-10-01

    Recent progress in the seismic interpretation of field β Cep stars has resulted in improvements of the physical description in the stellar structure and evolution model computations of massive stars. Further asteroseismic constraints can be obtained from studying ensembles of stars in a young open cluster, which all have similar age, distance, and chemical composition. We present an observational asteroseismology study based on the discovery of numerous multi-periodic and mono-periodic B stars in the open cluster NGC 884. We describe a thorough investigation of the pulsational properties of all B-type stars in the cluster. Overall, our detailed frequency analysis resulted in 115 detected frequencies in 65 stars. We found 36 mono-periodic, 16 bi-periodic, 10 tri-periodic, and 2 quadru-periodic stars and one star with nine independent frequencies. We also derived the amplitudes and phases of all detected frequencies in the U, B, V, and I filter, if available. We achieved unambiguous identifications of the mode degree for 12 of the detected frequencies in nine of the pulsators. Imposing the identified degrees and measured frequencies of the radial, dipole, and quadrupole modes of five pulsators led to a seismic cluster age estimate of log (age/yr) = 7.12-7.28 from a comparison with stellar models. Our study is a proof-of-concept for and illustrates the current status of ensemble asteroseismology of a young open cluster.

  2. New Wolf-Rayet stars in Galactic open clusters - Sher 1 and the giant H II region core Westerlund 2

    NASA Technical Reports Server (NTRS)

    Moffat, Anthony F. J.; Shara, Michael M.; Potter, Michael

    1991-01-01

    Two new Galactic Wolf-Rayet stars were found in open clusters: a WN4 star in the O9 cluster Sher 1 and a WN7 star in the O7 cluster Westerlund 2. This confirms a previous trend, namely that fainter, hotter WN stars tend to be older than brighter, cooler WN stars. This may be a consequence of evolution via extreme mass loss.

  3. DISCOVERY OF 14 NEW SLOWLY PULSATING B STARS IN THE OPEN CLUSTER NGC 7654

    SciTech Connect

    Luo, Y. P.; Han, Z. W.

    2012-02-10

    We carried out time-series BV CCD photometric observations of the open cluster NGC 7654 (Messier 52) to search for variable stars. Eighteen slowly pulsating B (SPB) stars have been detected, among which 14 candidates are newly discovered, three known ones are confirmed, and a previously found {delta} Scuti star is also identified as an SPB candidate. Twelve SPBs are probable cluster members based on membership analysis. This makes NGC 7654 the richest galactic open cluster in terms of SPB star content. It is also a new discovery that NGC 7654 hosts three {gamma} Dor star candidates. We found that all these stars (18 SPB and 3 {gamma} Dor stars) have periods longer than their corresponding fundamental radial mode. With such a big sample of g-mode pulsators in a single cluster, it is clear that multi-mode pulsation is more common in the upper part of the main sequence than in the lower part. All the stars span a narrow strip on the period-luminosity plane, which also includes the {gamma} Dor stars at the low-luminosity extension. This result implies that there may be a single period-luminosity relation applicable to all g-mode main-sequence pulsators. As a by-product, three EA-type eclipsing binaries and an EW-type eclipsing binary are also discovered.

  4. Chemical Abundances of Member Stars in the Open Cluster NGC 2632 (Praesepe)

    NASA Astrophysics Data System (ADS)

    Yang, X. L.; Chen, Y. Q.; Zhao, G.

    2015-11-01

    Based on high-resolution, high signal-to-noise ratio spectra, we present abundances of 17 elements (Fe, O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Co, Ni, Y, Zr, Ba, La) for six stars (one Am star, one F dwarf star, and four GK giant stars) and radial velocities for 18 proper-motion selected member stars in the open cluster NGC 2632. In the Am star, s-process elements Y and Ba are clearly overabundant, which may be considered as an indicator of a peculiar Am star. The average [Fe/H] is 0.16 ± 0.06 from four GK giant member stars, which is similar to that of solar-type stars in the literature. As compared with dwarf stars, significant overabundances are found for Na, Mg, and Ba elements in our giant stars, which can be explained by the evolutionary effect. We also detect a star-to-star scatter of [Na/Fe] ratios among four giants which locate approximately at the same position in the CMD. Finally, we perform an analysis on the possible connection between the abundance and spatial structure of NGC 2632, but we find no inhomogeneous abundance among different clumps of stars in this cluster based on our limited sample.

  5. CHEMICAL ABUNDANCES OF MEMBER STARS IN THE OPEN CLUSTER NGC 2632 (PRAESEPE)

    SciTech Connect

    Yang, X. L.; Chen, Y. Q.; Zhao, G.

    2015-11-15

    Based on high-resolution, high signal-to-noise ratio spectra, we present abundances of 17 elements (Fe, O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Co, Ni, Y, Zr, Ba, La) for six stars (one Am star, one F dwarf star, and four GK giant stars) and radial velocities for 18 proper-motion selected member stars in the open cluster NGC 2632. In the Am star, s-process elements Y and Ba are clearly overabundant, which may be considered as an indicator of a peculiar Am star. The average [Fe/H] is 0.16 ± 0.06 from four GK giant member stars, which is similar to that of solar-type stars in the literature. As compared with dwarf stars, significant overabundances are found for Na, Mg, and Ba elements in our giant stars, which can be explained by the evolutionary effect. We also detect a star-to-star scatter of [Na/Fe] ratios among four giants which locate approximately at the same position in the CMD. Finally, we perform an analysis on the possible connection between the abundance and spatial structure of NGC 2632, but we find no inhomogeneous abundance among different clumps of stars in this cluster based on our limited sample.

  6. A study of variable stars in the open cluster NGC 1582 and its surrounding field

    NASA Astrophysics Data System (ADS)

    Song, Fang-Fang; Esamdin, Ali; Ma, Lu; Liu, Jin-Zhong; Zhang, Yu; Niu, Hu-Biao; Yang, Tao-Zhi

    2016-10-01

    This paper presents Charge-Coupled Device time-series photometric observations of the open cluster NGC 1582 and its surrounding field with Johnson B, V and R filters by using the Nanshan 1 m telescope administered by Xinjiang Astronomical Observatory. 19 variable stars and three variable candidates were detected in a 45‧ × 48.75‧ field around the cluster. 12 of the variable stars are newly-discovered variable objects. The physical properties, classifications and memberships of these 22 objects are studied through their light curves, their positions on the color-magnitude diagram and with archival data from the Naval Observatory Merged Astrometric Dataset. Among these objects, five are eclipsing binary systems, six are pulsating variable stars including one known δ Scuti star and one newly-discovered RR Lyrae star. The distance to the RR Lyrae star is estimated to be 7.9 ± 0.3 kpc, indicating that the star is located far behind the cluster. Four variable stars are probable members of the cluster, and 13 of the 22 objects are confirmed to be field stars.

  7. Distance moduli of open cluster NGC 6819 from Red Giant Clump stars

    NASA Astrophysics Data System (ADS)

    Abedigamba, O. P.; Balona, L. A.; Medupe, R.

    2016-07-01

    In this paper we study Kepler open cluster NGC 6819 using Kepler data of Red Giant Clump (RGC) single member (SM) stars. The Kepler data spans a period of 4 years starting in 2009. In particular, we derive distance moduli for each individual RGC star, from which we get the mean distance modulus of μ0 = 11.520 ± 0.105 mag for the cluster when we use reddening from the Kepler Input Catalogue (KIC) for each RGC star. A value of μ0 = 11.747 ± 0.086 mag is obtained when uniform reddening value E(B - V) = 0.15 is used for the cluster. The values of μ0 obtained with RGC stars are in agreement with the values in the literature with other methods. We report for the case of Kepler open cluster NGC 6819 that RGC stars can be used as 'distance candles' as has been done in the literature with other open clusters.

  8. Variable Stars in the 50BiN Open Cluster Survey. I. NGC 2301

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Deng, Licai; Zhang, Xiaobin; Xin, Yu; Yan, Zhengzhou; Tian, Jianfeng; Luo, Yangping; Luo, Changqing; Zhang, Chunguang; Peng, Yingjiang; Pan, Yang; Sun, Jinjiang; Luo, Zhiquan

    2015-11-01

    The current work is the first contribution from the 50 cm Binocular Network, whose primary goal is to systematically detect and characterize variable stars in Galactic open clusters. In this paper, we report the results of a search for variables in the open cluster NGC 2301. Eighteen variable stars including 12 new objects were detected in a 20‧ × 20‧ field around the cluster. The physical properties, classifications, and memberships are discussed using the behaviors of the light curves, the positions on the color–magnitude diagram, and the archival proper-motion data. Among the 12 new objects, 5 are low-amplitude δ Scuti stars, 4 of which are probable members of the cluster. One of them is discovered to be a δ Scuti star in an eclipsing binary system. One γ Doradus candidate is identified as a cluster member, but is apparently located very close to the blue edge of the γ Doradus instability strip and therefore can be used to pin down the blue edge of the instability strip. The remaining five new variables are classified as an EW-type eclipsing binary with an orbital period of 0.5785 days and four unknown type variable stars. In addition, revised basic data for the six known variables are given according to our observations.

  9. VizieR Online Data Catalog: CCD UBVRI photometry of 7 open star clusters (Sagar+, 2001)

    NASA Astrophysics Data System (ADS)

    Sagar, R.; Munari, U.; de Boer, K. S.

    2002-01-01

    We derive cluster parameters and mass functions from new UBVRI CCD photometric observations of ~3500 stars reaching down to V~20mag for the distant southern open star clusters NGC 3105, NGC 3603, Melotte 105, Hogg 15, NGC 4815, Pismis 20 and NGC 6253. For NGC 3105 and Hogg 15, CCD data are presented for the first time. The observations were carried out in 1992 between February 28 and March 8, June 5 and 9, and July 9 and 12 in the Cousins U, B, V, R and I photometric bands using CCD detector at the 1.0-m Elizabeth Telescope at the South African Astronomical Observatory (SAAO), Sutherland. (8 data files).

  10. Isochrone Fittings for the Open Star Clusters NGC 3680 and Melotte 66

    NASA Astrophysics Data System (ADS)

    Guillemaud, Nikolas; Frinchaboy, P. M.; Thompson, B. A.

    2013-01-01

    I will be displaying the results from isochrone fittings on two open star clusters. The stellar evolution models used to generate the isochrones are from Dartmouth (Dotter et al. 2007) and Padova (Mango et al. 2008). Both of the models were applied to two star clusters: NGC 3680 and Melotte 66. The analysis is performed by utilizing infrared observations from the CPAPIR instrument; which is operated in conjunction with CTIO’s 1.5m telescope. This research was made possible by the NSF’s REU grant; award number 0851558.

  11. Estimating ages of open star clusters using stellar lumionosity and colour

    NASA Astrophysics Data System (ADS)

    Williams, Chris

    2004-12-01

    This paper was designed for the 'armchair' astronomer who is interested in 'amateur research' by utilising the vast amount of images placed on the Internet from various places. Open star clusters are groups of stars that are physically related, bound by mutual gravitational attraction, populate a limited region of space and are all roughly at the same distance from us. We believe they originate from large cosmic gas and dust clouds within the Milky Way and the process of formation takes only a short time, so therefore all members of the cluster are of similar age. Also, as all the stars in a cluster formed from the same cloud, they are all of similar (initial) chemical composition. This 'family' of stars may be of similar birth age but their evolutionary ages differ due to the variation in their masses. High mass stars evolve much quicker than low mass stars they consume their fuel faster, have higher luminosities and die in a very short time (astronomical speaking) compared to a fractional solar mass star.

  12. KIC 8263801: A clump star in the Kepler open cluster NGC 6866 field?

    NASA Astrophysics Data System (ADS)

    Abedigamba, O. P.

    2016-07-01

    In this paper we study the field of Kepler open cluster NGC 6866 using the data obtained from Kepler mission collected for a period of 4 years. We search for the red clump (RC) stars amongst the red giant (RG) stars showing solar-like oscillations using median gravity-mode period spacings (ΔP). We find a RG star KIC 8263801 having median gravity-mode period spacing 173.7 ± 6.4 s. We claim based on the median gravity-mode period spacing that KIC 8263801 is a secondary red clump (SRC) star which is massive enough to have ignited Helium burning in a non degenerate core. In the literature, no classification for KIC 8263801 has been provided. This is the first time that a star located in the field of NGC 6866 is classified in this manner.

  13. Two MASS photometry of open star clusters: King 13 and Berkeley 53

    NASA Astrophysics Data System (ADS)

    Haroon, A. A.; Ismail, H. A.; Alnagahy, F. Y.

    2014-08-01

    In the present work, we used the near-infrared JHKs photometric data from the 2-Micron All Sky Survey (2MASS) to determine the morphological and photometric parameters for two rarely studied open star clusters; King 13 and Berkeley 53. Luminosity function, mass function and dynamical relaxation time have been determined for the two clusters. We estimated the distances of 2.11±0.25 Kpc and 3.51±0.21 Kpc for King 13 and Berkeley 53 respectively, and both clusters have the same age 1.00±0.12 Gyr at solar metallicity; z=0.019.

  14. Young open clusters in the Galactic star forming region NGC 6357

    NASA Astrophysics Data System (ADS)

    Massi, F.; Giannetti, A.; Di Carlo, E.; Brand, J.; Beltrán, M. T.; Marconi, G.

    2015-01-01

    Context. NGC 6357 is an active star forming region with very young massive open clusters. These clusters contain some of the most massive stars in the Galaxy and strongly interact with nearby giant molecular clouds. Aims: We study the young stellar populations of the region and of the open cluster Pismis 24, focusing on their relationship with the nearby giant molecular clouds. We seek evidence of triggered star formation "propagating" from the clusters. Methods: We used new deep JHKs photometry, along with unpublished deep Spitzer/IRAC mid-infrared photometry, complemented with optical HST/WFPC2 high spatial resolution photometry and X-ray Chandra observations, to constrain age, initial mass function, and star formation modes in progress. We carefully examine and discuss all sources of bias (saturation, confusion, different sensitivities, extinction). Results: NGC 6357 hosts three large young stellar clusters, of which Pismis 24 is the most prominent. We found that Pismis 24 is a very young (~1-3 Myr) open cluster with a Salpeter-like initial mass function and a few thousand members. A comparison between optical and infrared photometry indicates that the fraction of members with a near-infrared excess (i.e., with a circumstellar disk) is in the range 0.3-0.6, consistent with its photometrically derived age. We also find that Pismis 24 is likely subdivided into a few different subclusters, one of which contains almost all the massive members. There are indications of current star formation triggered by these massive stars, but clear age trends could not be derived (although the fraction of stars with a near-infrared excess does increase towards the Hii region associated with the cluster). The gas out of which Pismis 24 formed must have been distributed in dense clumps within a cloud of less dense gas ~1 pc in radius. Conclusions: Our findings provide some new insight into how young stellar populations and massive stars emerge, and evolve in the first few Myr after

  15. CCD Washington photometry of three highly field star contaminated open clusters in the third Galactic quadrant

    NASA Astrophysics Data System (ADS)

    Piatti, A. E.; Clariá, J. J.; Parisi, M. C.; Ahumada, A. V.

    2009-01-01

    We present CCD photometry in the Washington system C and T1 passbands down to T1 ˜ 19.5 magnitudes in the fields of Czernik 26, Czernik 30, and Haffner 11, three poorly studied open clusters located in the third Galactic quadrant. We measured T1 magnitudes and C - T1 colors for a total of 6472 stars distributed throughout cluster areas of 13.6' × 13.6' each. Cluster radii were estimated from star counts in appropriate-sized boxes distributed throughout the entire observed fields. Based on the best fits of isochrones computed by the Padova group to the ( C - T1, T1) color-magnitude diagrams (CMDs), we derived color excesses, heliocentric distances and ages for the three clusters. These are characterized by a relatively small angular size and by a high field star contamination. We performed a firm analysis of the field star contamination of the CMDs and examined different relationships between the position in the Galaxy of known open clusters located within 1 kpc around the three studied ones, their age and their interstellar visual absorption. We confirm previous results in the sense that the closer the cluster birthplace to the Galactic plane, the higher the interstellar visual absorption. We also found that the space velocity dispersion perpendicular to the Galactic plane diminishes as the clusters are younger. The positions, interstellar visual absorptions, ages, and metallicities of the three studied clusters favor the hypothesis that they were not born in the recently discovered Canis major (CMa) dwarf galaxy before it was accreted by the Milky Way.

  16. ACCRETION RATES ON PRE-MAIN-SEQUENCE STARS IN THE YOUNG OPEN CLUSTER NGC 6530

    SciTech Connect

    Gallardo, Jose; Del Valle, Luciano; Ruiz, Maria Teresa E-mail: ldelvall@das.uchile.cl

    2012-01-15

    It is well accepted that during the star formation process, material from a protoplanetary disk is accreted onto the central object during the first {approx}1-5 Myr. Different authors have published measurements of accretion rates for young low- and intermediate-mass stars in several nearby star-forming regions (SFRs). Due to its somewhat larger distance, the SFR M8 (the Lagoon Nebula) has not been studied to the same extent, despite its abundant population of young stellar objects. We have obtained optical band low-resolution spectra of a sample of pre-main-sequence stars in the open cluster NGC 6530 located in the aforementioned nebulae using the Gemini Multi Object Spectrograph at Gemini-South in multi-object mode. Spectra cover the H{sub {alpha}} emission line used to measure the accretion rate, following the method presented by Natta et al. The observed spectral characteristics are fully consistent with pre-main-sequence stars, showing lithium absorption lines, which are very common in young stellar objects, as well as prominent and broad H{sub {alpha}} emission lines, indicating a T Tauri evolutionary stage. This work presents the first determinations of mass accretion rates of young stellar objects in the open cluster NGC 6530, confirming that they are classical T Tauri stars going through the accretion phase. These observations contribute to a better understanding of the stellar content and evolutionary phase of the very active Lagoon Nebula SFR.

  17. A super lithium-rich red-clump star in the open cluster Trumpler 5

    NASA Astrophysics Data System (ADS)

    Monaco, L.; Boffin, H. M. J.; Bonifacio, P.; Villanova, S.; Carraro, G.; Caffau, E.; Steffen, M.; Ahumada, J. A.; Beletsky, Y.; Beccari, G.

    2014-04-01

    Context. The existence of lithium-rich low-mass red giant stars still represents a challenge for stellar evolution models. Stellar clusters are privileged environments for this kind of investigation. Aims: To investigate the chemical abundance pattern of the old open cluster Trumpler 5, we observed a sample of four red-clump stars with high-resolution optical spectrographs. One of them (#3416) reveals extremely strong lithium lines in its spectrum. Methods: One-dimensional, local thermodynamic equilibrium analysis was performed on the spectra of the observed stars. A 3D-NLTE analysis was performed to derive the lithium abundance of star #3416. Results: Star #3416 is super Li-rich with A(Li) = 3.75 dex. The lack of 6Li enrichment (6Li/7Li < 2%), the low carbon isotopic ratio (12C/13C = 14 ± 3), and the lack of evidence for radial velocity variation or enhanced rotational velocity (vsini = 2.8 km s-1) all suggest that lithium production has occurred in this star through the Cameron & Fowler mechanism. Conclusions: We identified a super Li-rich core helium-burning, red-clump star in an open cluster. Internal production is the most likely cause of the observed enrichment. Given the expected short duration of a star's Li-rich phase, enrichment is likely to have occurred at the red clump or in the immediately preceding phases, namely during the He-flash at the tip of the red giant branch (RGB) or while ascending the brightest portion of the RGB. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under program ID 088.D-0045(A).Appendix A is available in electronic form at http://www.aanda.org

  18. Determination of abundances of chemical elements in open star clusters of the Galaxy

    NASA Astrophysics Data System (ADS)

    Gozha, M. L.; Koval', V. V.; Marsakov, V. A.

    Spectroscopic determinations of the relative abundances of chemical elements produced in different nuclear-synthesis processes, [el/Fe], are collected for 90 open star clusters of the Galaxy using data from 109 papers published between 1991 and 2015. Information is gathered on the abundances of α -elements (O, Mg, Si, Ca, and Ti), iron-peak element (Fe), slow neutron capture elements (Y, Ba, La, Ce, Nd, and Zr), rapid neutron capture element (Eu), and elements with an odd number of protons (Na, Al). The weighted averages are calculated for the clusters with more than one determination of the abundances of each studied chemical element. Estimates of metallicities are found for 346 clusters. A compiled catalog of the open cluster parameters contains metallicities, positions, ages, velocities, elements of Galactic orbits, and relative abundances of fourteen chemical elements.

  19. Basic parameters of open star clusters DOLIDZE 14 and NGC 110 in infrared bands

    NASA Astrophysics Data System (ADS)

    Joshi, Gireesh C.; Joshi, Y. C.; Joshi, S.; Tyagi, R. K.

    2015-10-01

    The basic physical parameters of a poorly studied open cluster NGC 110 and an unstudied open cluster DOLIDZE 14 are estimated in the present study using the archival PPMXL and WISE catalogues. The radius of both the clusters are estimated by fitting the modified King's empirical model on their stellar density profiles. The other basic parameters of the clusters such as distance, reddening, and age are obtained by visual fitting of the Marigo's solar metallicity isochrone on their IR colour-magnitude diagrams (CMDs). The mean-proper motion of the clusters are estimated through the individual proper motion of probable members identified through the dynamical and statistical methods. The archival catalogues (JHKW1W2) are constructed for both the clusters by compiling the extracted data from the PPMXL and WISE catalogues. The various colour-excesses, such as E (J - H), E (H - K) and E (W1 -W2) , are estimated using the best fit theoretical isochrone on the (J - H) - H, (H - K) - H and (W1 -W2) - H CMDs, respectively. The ratios of various infrared colours of the clusters are obtained through their two-colour diagrams. We also identify the most probable members in these clusters by estimating spatial, kinematic and spatio-kinematic probabilities of stars within the cluster. A correlation between the E (H - K) and E (W1 -W2) is also established.

  20. Mass function study of open star clusters Haffner 11 and Czernik 31

    NASA Astrophysics Data System (ADS)

    Bisht, D.; Yadav, R. K. S.; Durgapal, A. K.

    2016-08-01

    We analysis VI CCD data of two open clusters Haffner 11 and Czernik 31 in order to determine their luminosity function, mass function and mass-segregation for the first time. The observed luminosity function is corrected for both data incompleteness and field star contamination. Theoretical stellar evolutionary isochrones are used to convert luminosity function into mass function. The Mass function slopes are derived as 1.22 ± 0.42 and 1.55 ± 0.38 for Haffner 11 and Czernik 31 respectively. They agree with the Salpeter value (x = 1.35) within the errors. The effect of mass segregation are observed in both the clusters. The estimated dynamical relaxation time is less than age of the clusters. This indicates that they are dynamically relaxed. The cause of relaxation may be due to the dynamical evolution or imprint of star formation or both.

  1. Observation Of New Variable Stars In The Field Of Open Cluster M23

    NASA Astrophysics Data System (ADS)

    Wilkerson, Jeffrey A.; Brown, T. S.; Frank, K. A.; Joshi, U.; Lacoul, B. K.; Rengstorf, N. P.; Schiefelbein, A. M.

    2007-05-01

    In 2002 a program of surveying regions containing bright open star clusters was initiated using the observing facilities at Luther College. As part of this program the half degree square field containing open cluster M23 was observed in 2003, 2005 and 2006, resulting in approximately 45,000 2.5-second images, 45,000 3.5-second images and 65,000 5.0-second images. The data set contains images from 94 nights spanning a time range from JD 2452810 to JD 2454005. We have searched for stellar variability on timescales from seconds to years in approximately 1600 stars in this field. Unambiguous variability is apparent in 30 stars ranging in magnitude from about 10 to 17. Twenty-eight of these stars have not been previously reported as variable. Seven of the stars are eclipsing binaries, including two apparent W UMa-type contact binaries and one additional eclipsing binary with a period shorter than 0.6 days. The remaining 23 variables are red pulsating stars with long periods. Most of these stars have amplitudes smaller than two magnitudes and periods between 200 and 400 days. Thus, they are likely Semi-Regular variables. We present celestial coordinates, estimated amplitude and estimated period for each of these stars, as well as several selected light curves. Finally, we have performed low-precision BVRI photometry of the field and have placed most of the observed variables on color magnitude diagrams. We are grateful for support from the Roy J. Carver Charitable Trust and the R. J. McElroy Trust.

  2. A probable pre-main sequence chemically peculiar star in the open cluster Stock 16

    NASA Astrophysics Data System (ADS)

    Netopil, M.; Fossati, L.; Paunzen, E.; Zwintz, K.; Pintado, O. I.; Bagnulo, S.

    2014-08-01

    We used the Ultraviolet and Visual Echelle Spectrograph of the ESO-Very Large Telescope to obtain a high resolution and high signal-to-noise ratio spectrum of Stock 16-12, an early-type star which previous Δa photometric observations suggest being a chemically peculiar (CP) star. We used spectral synthesis to perform a detailed abundance analysis obtaining an effective temperature of 8400 ± 400 K, a surface gravity of 4.1 ± 0.4, a microturbulence velocity of 3.4^{+0.7}_{-0.3} km s-1, and a projected rotational velocity of 68 ± 4 km s-1. We provide photometric and spectroscopic evidence showing the star is most likely a member of the young Stock 16 open cluster (age 3-8 Myr). The probable cluster membership, the star's position in the Hertzsprung-Russell diagram, and the found infrared excess strongly suggest the star is still in the pre-main-sequence (PMS) phase. We used PMS evolutionary tracks to determine the stellar mass, which ranges between 1.95 and 2.3 M⊙, depending upon the adopted spectroscopic or photometric data results. Similarly, we obtained a stellar age ranging between 4 and 6 Myr, in agreement with that of the cluster. Because the star's chemical abundance pattern resembles well that known of main sequence CP metallic line (Am) stars, the object sets important constraints to the diffusion theory. Additional spectroscopic and spectropolarimetric data allowed us to conclude that the object is probably a single non-magnetic star.

  3. Chemical analysis of giant stars in the young open cluster NGC 3114

    NASA Astrophysics Data System (ADS)

    Santrich, O. J. Katime; Pereira, C. B.; Drake, N. A.

    2013-06-01

    Context. Open clusters are very useful targets for examining possible trends in galactocentric distance and age, especially when young and old open clusters are compared. Aims: We carried out a detailed spectroscopic analysis to derive the chemical composition of seven red giants in the young open cluster NGC 3114. Abundances of C, N, O, Li, Na, Mg, Al, Ca, Si, Ti, Ni, Cr, Y, Zr, La, Ce, and Nd were obtained, as well as the carbon isotopic ratio. Methods: The atmospheric parameters of the studied stars and their chemical abundances were determined using high-resolution optical spectroscopy. We employed the local-thermodynamic-equilibrium model atmospheres of Kurucz and the spectral analysis code MOOG. The abundances of the light elements were derived using the spectral synthesis technique. Results: We found that NGC 3114 has a mean metallicity of [Fe/H] = -0.01 ± 0.03. The isochrone fit yielded a turn-off mass of 4.2 M⊙. The [N/C] ratio is in good agreement with the models predicted by first dredge-up. We found that two stars, HD 87479 and HD 304864, have high rotational velocities of 15.0 km s-1 and 11.0 km s-1; HD 87526 is a halo star and is not a member of NGC 3114. Conclusions: The carbon and nitrogen abundance in NGC 3114 agree with the field and cluster giants. The oxygen abundance in NGC 3114 is lower compared to the field giants. The [O/Fe] ratio is similar to the giants in young clusters. We detected sodium enrichment in the analyzed cluster giants. As far as the other elements are concerned, their [X/Fe] ratios follow the same trend seen in giants with the same metallicity. Based on observations made with the 2.2 m telescope at the European Southern Observatory (La Silla, Chile).Tables 2 and 5 are available in electronic form at http://www.aanda.org

  4. Global survey of star clusters in the Milky Way. IV. 63 new open clusters detected by proper motions

    NASA Astrophysics Data System (ADS)

    Scholz, R.-D.; Kharchenko, N. V.; Piskunov, A. E.; Röser, S.; Schilbach, E.

    2015-09-01

    Context. The global Milky Way Star Clusters (MWSC) survey provided new cluster membership lists and mean cluster parameters for nearly 80% of all previously known Galactic clusters. The MWSC data reduction pipeline involved the catalogue of positions and proper motions (PPMXL) on the International Celestial Reference System (ICRS) and near-infrared photometry from the Two Micron All Sky Survey (2MASS). Aims: In the first extension to the MWSC, photometric filters were applied to the 2MASS catalogue to find new cluster candidates that were subsequently confirmed or rejected by the MWSC pipeline. To further extend the MWSC census, particularly of nearby clusters, we aimed at discovering new clusters by conducting an almost global search in proper motion catalogues as a starting point. Methods: We first selected high-quality samples from the PPMXL and the Fourth US Naval Observatory CCD Astrograph Catalog (UCAC4) for comparison and verification of the proper motions. For 441 circular proper motion bins (radius 15 mas/yr) within ±50 mas/yr, the sky outside a thin Galactic plane zone (| b | < 5°) was binned in small areas ("sky pixels") of 0.25 × 0.25 deg2. Sky pixels with enhanced numbers of stars with a certain common proper motion in both catalogues were considered as cluster candidates. After visual inspection of the sky images, we built an automated procedure that combined these representations of the sky for neighbouring proper motion subsamples after a background correction. The 692 compact cluster candidates detected above a threshold that was equivalent to a minimum of 12 to 130 cluster stars in dependence on the Galactic latitude were then cross-checked with known star clusters and clusters of galaxies. New candidates served as input for the MWSC pipeline. Results: About half of our candidates overlapped with known clusters (46 globular and 68 open clusters in the Galaxy, about 150 known clusters of galaxies) or the Magellanic Clouds. About 10% of our

  5. Multiplexed High-Precision Radial Velocities: Searching for Hot Jupiters in Southern Open Star Clusters

    NASA Astrophysics Data System (ADS)

    Bailey, John Ira, III

    The Michigan/Magellan Fiber System enables a multiplexed, precision radial velocity (pRV) survey of open star clusters for warm- and hot-Jupiter exoplanetary companions while simultaneously allowing detailed study of stellar properties. To accomplish this, I created an automated control system that enables users to rapidly reconfigure M2FS for different scientific programs and developed a novel mechanism to improve its maximum resolving power from ˜20,000 to ˜60,000. I report the results of a survey of 126 photometric members of the young (141 Myr), nearby (346 pc) open star cluster NGC 2516 and 100 photometric members plus 25 candidate members of the young (72 Myr), nearby (491 pc) open cluster NGC 2422 (M 47). I developed a prescription to spectroscopically measure Teff (+/-30 K), [Fe/H] and [alpha/Fe] (+/-0.02 dex), and vr sin(i) (+/-0.3 km/s). Observations of a reference star show my approach with M2FS can achieve RV precisions of 20¨C60 m/s for up to 128 stars simultaneously. RV measurements enabled memberships lists to be confirmed; 41 claimed members were rejected in NGC 2516 and 52 in NGC 2422. Twelve new members of NGC 2422 are identified, as is a separate RV clustering of 11 giant-like stars in the field of NGC 2422. I propose these giant-like stars are members of a background Milky Way halo stream. I report the discovery of 8 double-lined spectroscopic binaries (SBs) and used pRV measurements spanning 386 days to identify 54 single-lined SBs, 44 of which are new discoveries (16 and 9 as members in NGC 2516 or NGC 2422). I also identify 53 stars which exhibit significant low-amplitude variability after accounting for average levels of stellar jitter. Finally, I identify 8 low-amplitude RV variable stars as candidate hot-Jupiter hosts worth follow-up investigation.

  6. Chemical Composition of Intermediate-mass Star Members of the M6 (NGC 6405) Open Cluster

    NASA Astrophysics Data System (ADS)

    Kılıçoğlu, T.; Monier, R.; Richer, J.; Fossati, L.; Albayrak, B.

    2016-03-01

    We present here the first abundance analysis of 44 late B-, A-, and F-type members of the young open cluster M6 (NGC 6405, age about 75 Myr). Low- and medium-resolution spectra, covering the 4500-5840 Å wavelength range, were obtained using the FLAMES/GIRAFFE spectrograph attached to the ESO Very Large Telescopes. We determined the atmospheric parameters using calibrations of the Geneva photometry and by adjusting the Hβ profiles to synthetic ones. The abundances of up to 20 chemical elements, from helium to mercury, were derived for 19 late B, 16 A, and 9 F stars by iteratively adjusting synthetic spectra to the observations. We also derived a mean cluster metallicity of [Fe/H] = 0.07 ± 0.03 dex from the iron abundances of the F-type stars. We find that for most chemical elements, the normal late B- and A-type stars exhibit larger star-to-star abundance variations than the F-type stars probably because of the faster rotation of the B and A stars. The abundances of C, O, Mg, Si, and Sc appear to be anticorrelated with that of Fe, while the opposite holds for the abundances of Ca, Ti, Cr, Mn, Ni, Y, and Ba as expected if radiative diffusion is efficient in the envelopes of these stars. In the course of this analysis, we discovered five new peculiar stars: one mild Am, one Am, and one Fm star (HD 318091, CD-32 13109, GSC 07380-01211, CP1), one HgMn star (HD 318126, CP3), and one He-weak P-rich (HD 318101, CP4) star. We also discovered a new spectroscopic binary, most likely a SB2. We performed a detailed modeling of HD 318101, the new He-weak P-rich CP star, using the Montréal stellar evolution code XEVOL which self-consistently treats all particle transport processes. Although the overall abundance pattern of this star is properly reproduced, we find that detailed abundances (in particular the high P excess) resisted modeling attempts even when a range of turbulence profiles and mass-loss rates were considered. Solutions are proposed which are still under

  7. Variable stars in the field of the open cluster NGC 6939

    NASA Astrophysics Data System (ADS)

    Maciejewski, G.; Georgiev, Ts.; Niedzielski, A.

    2008-05-01

    The results of CCD photometric survey performed with the 90/180 cm Schmidt-Cassegrain Telescope of the Nicolaus Copernicus University Astronomical Observatory in Piwnice (Poland) and the 70/172 cm Schmidt Telescope of the National Astronomical Observatory (NAO) at Rozhen (Bulgaria) of the field of the 1 Gyr old open cluster NGC 6939 are presented. Twenty two variable stars were detected, four of them previously known. Four eclipsing systems (3 detached and 1 contact binary) were found to be members of the cluster. Analysis of the brightness of the contact binary V20 strongly supports the distance to the cluster of 1.74 ± 0.20 kpc. The small population of contact binaries in NGC 6939 confirms also the relatively young age of the cluster.

  8. Search for transiting exoplanets and variable stars in the open cluster NGC 7243

    NASA Astrophysics Data System (ADS)

    Garai, Z.; Pribulla, T.; Hambálek, Ľ.; Errmann, R.; Adam, Ch.; Buder, S.; Butterley, T.; Dhillon, V. S.; Dincel, B.; Gilbert, H.; Ginski, Ch.; Hardy, L. K.; Kellerer, A.; Kitze, M.; Kundra, E.; Littlefair, S. P.; Mugrauer, M.; Nedoroščík, J.; Neuhäuser, R.; Pannicke, A.; Raetz, S.; Schmidt, J. G.; Schmidt, T. O. B.; Seeliger, M.; Vaňko, M.; Wilson, R. W.

    2016-03-01

    We report results of the first five observing campaigns for the open stellar cluster NGC 7243 in the frame of project Young Exoplanet Transit Initiative (YETI). The project focuses on the monitoring of young and nearby stellar clusters, with the aim to detect young transiting exoplanets and to study other variability phenomena on time-scales from minutes to years. After five observing campaigns and additional observations during 2013 and 2014, a clear and repeating transit-like signal was detected in the light curve of J221550.6+495611. Furthermore, we detected and analysed 37 new eclipsing binary stars in the studied region. The best fit parameters and light curves of all systems are given. Finally, we detected and analysed 26 new, presumably pulsating variable stars in the studied region. The follow-up investigation of these objects, including spectroscopic measurements of the exoplanet candidate, is currently planned.

  9. Target Selection for SETI. II. Tycho-2 Dwarfs, Old Open Clusters, and the Nearest 100 Stars

    NASA Astrophysics Data System (ADS)

    Turnbull, Margaret C.; Tarter, Jill C.

    2003-12-01

    We present the full target list and prioritization algorithm developed for use by the microwave search for technological signals at the SETI Institute. We have included the Catalog of Nearby Habitable Stellar Systems (HabCat, described in Paper I), all of the nearest 100 stars and 14 old open clusters. This is further augmented by a subset of the Tycho-2 catalog based on reduced proper motions, and this larger catalog should routinely provide at least three target stars within the large primary field of view of the Allen Telescope Array. The algorithm for prioritizing objects in the full target list includes scoring based on the subset category of each target (i.e., HabCat, cluster, Tycho-2, or nearest 100), its distance (if known), and its proximity to the Sun on the color-magnitude diagram.

  10. Accretion Rates on Pre-main-sequence Stars in the Young Open Cluster NGC 6530

    NASA Astrophysics Data System (ADS)

    Gallardo, José; del Valle, Luciano; Ruiz, María Teresa

    2012-01-01

    It is well accepted that during the star formation process, material from a protoplanetary disk is accreted onto the central object during the first ~1-5 Myr. Different authors have published measurements of accretion rates for young low- and intermediate-mass stars in several nearby star-forming regions (SFRs). Due to its somewhat larger distance, the SFR M8 (the Lagoon Nebula) has not been studied to the same extent, despite its abundant population of young stellar objects. We have obtained optical band low-resolution spectra of a sample of pre-main-sequence stars in the open cluster NGC 6530 located in the aforementioned nebulae using the Gemini Multi Object Spectrograph at Gemini-South in multi-object mode. Spectra cover the Hα emission line used to measure the accretion rate, following the method presented by Natta et al. The observed spectral characteristics are fully consistent with pre-main-sequence stars, showing lithium absorption lines, which are very common in young stellar objects, as well as prominent and broad Hα emission lines, indicating a T Tauri evolutionary stage. This work presents the first determinations of mass accretion rates of young stellar objects in the open cluster NGC 6530, confirming that they are classical T Tauri stars going through the accretion phase. These observations contribute to a better understanding of the stellar content and evolutionary phase of the very active Lagoon Nebula SFR. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciencia e Tecnologia (Brazil), and Ministerio de Ciencia, Tecnología e Innovación Productiva

  11. Stellar variability in open clusters. I. A new class of variable stars in NGC 3766

    NASA Astrophysics Data System (ADS)

    Mowlavi, N.; Barblan, F.; Saesen, S.; Eyer, L.

    2013-06-01

    Aims: We analyze the population of periodic variable stars in the open cluster NGC 3766 based on a 7-year multiband monitoring campaign conducted on the 1.2 m Swiss Euler telescope at La Silla, Chili. Methods: The data reduction, light curve cleaning, and period search procedures, combined with the long observation time line, allowed us to detect variability amplitudes down to the millimagnitude (mmag) level. The variability properties were complemented with the positions in the color-magnitude and color-color diagrams to classify periodic variable stars into distinct variability types. Results: We find a large population (36 stars) of new variable stars between the red edge of slowly pulsating B (SPB) stars and the blue edge of δ Sct stars, a region in the Hertzsprung-Russell (HR) diagram where no pulsation is predicted to occur based on standard stellar models. The bulk of their periods ranges from 0.1 to 0.7 d, with amplitudes between 1 and 4 mmag for the majority of them. About 20% of stars in that region of the HR diagram are found to be variable, but the number of members of this new group is expected to be higher, with amplitudes below our mmag detection limit. The properties of this new group of variable stars are summarized and arguments set forth in favor of a pulsation origin of the variability, with g-modes sustained by stellar rotation. Potential members of this new class of low-amplitude periodic (most probably pulsating) A and late-B variables in the literature are discussed. We additionally identify 16 eclipsing binary, 13 SPB, 14 δ Sct, and 12 γ Dor candidates, as well as 72 fainter periodic variables. All are new discoveries. Conclusions: We encourage searching for this new class of variables in other young open clusters, especially in those hosting a rich population of Be stars. Appendices are available in electronic form at http://www.aanda.orgReduced photometry of the variable stars is only available at the CDS via anonymous ftp to http

  12. UBVI photometric study of open star clusters Ruprecht 25 and Czernik 6

    NASA Astrophysics Data System (ADS)

    Bisht, D.; Yadav, R. K. S.; Durgapal, A. K.

    2016-11-01

    We present a UBVI CCD photometric study of two open star clusters Ruprecht 25 and Czernik 6 using the data taken with 104-cm Sampurnanand telescope, ARIES, Nainital, India. The optical CCD data for these clusters are obtained for the first time. The clusters radii are found to be 2‧.4 and 1‧.5. Using two colour (U - B) versus (B - V) diagram we have estimated the reddening as E(B - V) = 0.55 ± 0.05 mag for Ruprecht 25 and 0.48 ± 0.05 mag for Czernik 6, while the corresponding distances are 5.8 ± 0.5 and 5.0 ± 0.3 kpc. Ages of 800 ± 80 Myr for Ruprecht 25 and 40 ± 10 Myr for Czernik 6 are determined using the stellar isochrones of metallicity Z = 0.019 . We have also determined the relaxation time for the clusters Ruprecht 25 and Czernik 6. Our analysis indicates that both clusters are dynamically relaxed. This may be due to the dynamical evolution or imprint of star formation itself or both.

  13. A LONG-PERIOD TOTALLY ECLIPSING BINARY STAR AT THE TURNOFF OF THE OPEN CLUSTER NGC 6819 DISCOVERED WITH KEPLER

    SciTech Connect

    Sandquist, Eric L.; Orosz, Jerome A.; Jeffries, Mark W. Jr.; Brewer, Lauren N. E-mail: orosz@sciences.sdsu.edu; and others

    2013-01-01

    We present the discovery of the totally eclipsing long-period (P = 771.8 days) binary system WOCS 23009 in the old open cluster NGC 6819 that contains both an evolved star near central hydrogen exhaustion and a low-mass (0.45 M {sub Sun }) star. This system was previously known to be a single-lined spectroscopic binary, but the discovery of an eclipse near apastron using data from the Kepler space telescope makes it clear that the system has an inclination that is very close to 90 Degree-Sign . Although the secondary star has not been identified in spectra, the mass of the primary star can be constrained using other eclipsing binaries in the cluster. The combination of the total eclipses and a mass constraint for the primary star allows us to determine a reliable mass for the secondary star and radii for both stars, and to constrain the cluster age. Unlike well-measured stars of similar mass in field binaries, the low-mass secondary is not significantly inflated in radius compared to model predictions. The primary star characteristics, in combination with cluster photometry and masses from other cluster binaries, indicate a best age of 2.62 {+-} 0.25 Gyr, although stellar model physics may introduce systematic uncertainties at the {approx}10% level. We find preliminary evidence that the asteroseismic predictions for red giant masses in this cluster are systematically too high by as much as 8%.

  14. Photometry and Spectroscopy of Short-Period Binary Stars in Four Old Open Clusters

    NASA Astrophysics Data System (ADS)

    Blake, R. M.; Rucinski, S. M.

    2004-12-01

    We have performed a spectroscopic and photometric study of six contact binary stars in four old open clusters, M67, Praesepe, NGC 6791 and NGC 752, in order to evaluate their suitability for measuring the distance to their respective clusters. The technique being tested uses the cosine Fourier coefficients of the light curves of the binary stars, and the mass ratios obtained spectroscopically, to provide distances to the binaries. The contact binary TX Cnc was used to obtain the distance to Praesepe, which we find to be (V - MV}){o = 6.30 ± 0.08, which is in good agreement with the values of V - MV = 6.20 - 6.35 found in color-magnitude diagram (CMD) studies. Our spectroscopic study of QX And in NGC 752 provided a distance modulus of (V - MV}){o = 8.30± 0.07 for this cluster. This compares to a value of (V - MV}){o = 7.9 ± 0.1 obtained by Milone et al. (1995) using the same star, but is in good agreement with V - MV = 8.25 ± 0.10 obtained by Daniel et al. (1994) from the CMD. We obtained a distance modulus of (V - MV}){o = 12.71 ± 0.44 for V7 in NGC 6791, the oldest cluster in our survey. This agrees within ˜ 1σ the values of 13.3 ≤ (V - MV) ≤ 13.42 obtained by isochrone fitting of the cluster CMD. EV Cnc in M67 did not yield a distance to the cluster from our procedure because of faintness of the system resulting in poor spectroscopic data. The distances to the clusters as determined from the contact binaries using our procedure do not seem to give systematically smaller or larger distances as compared to CMD fitting. However, we have measured the distances to only three clusters, and only one object per cluster, and so establishing any systematic differences may require a larger survey. R. M. Blake acknowledges the support of the Natural Science and Engineering Research Council of Canada through grants to S. M. Rucinski and C. T. Bolton.

  15. Detection of a new phosphorus rich star in the open cluster M6

    NASA Astrophysics Data System (ADS)

    Kiliçoğlu, T.; Monier, R.; Fossati, L.

    2012-12-01

    We present the first spectroscopic analysis of HD318101, a member of the M6 (NGC 6405, age 100 Myr) open cluster, using low and high resolution (R˜7500, R˜25000) spectra stretching from 4500 to 5840 Å. The atmospheric parameters of the star were determined from Geneva photometry and hydrogen line modeling (T_e = 15400 ± 500 K, log g = 4.0 ± 0.25). The abundances of 8 elements were determined by fitting synthetic spectral lines to the observed ones. We derived a strong overabundance of phosphorus (+1.69 dex, relative to the Sun) from several P II lines. We also found helium to be underabundant (-0.37 dex). These abundance anomalies suggest that HD318101 could be a He-weak PGa type star (CP4).

  16. Stars approaching the substellar limit in the α Persei open cluster.

    NASA Astrophysics Data System (ADS)

    Zapatero Osorio, M. R.; Rebolo, R.; Martin, E. L.; Garcia Lopez, R. J.

    1996-01-01

    We present intermediate dispersion optical spectroscopy for seven very low-mass stars in the α Per open cluster with spectral types between M3 and M6, including the brown dwarf candidate of Rebolo et al. (1992). Our radial velocity measurements are found to be generally consistent with the mean cluster velocity to within the measurement errors. Hα equivalent widths have been measured and compared to previous published data for other known members of the cluster. A turnover in chromospheric activity around spectral type M3-M4 is observed. The brown dwarf candidate, located in the cool side of the turnover, is confirmed to exhibit a strong Hα variability. It is the coolest α Per candidate member for which spectra are available and for which chromospheric activity has been measured. Using the LiI doublet at λ6707.8A, we derive upper limits to the atmospheric Li abundance in the sample and discuss them in the context of the most recent stellar evolutionary tracks. The non-detection of the Lii line in the spectrum of the brown dwarf candidate implies a mass greater than 0.08Msun_, and therefore it is not a substellar object. However, its position in the HR diagram implies that this star is indeed very close to the substellar limit.

  17. BRIGHT VARIABLE STARS IN NGC 6819: AN OPEN CLUSTER IN THE KEPLER FIELD

    SciTech Connect

    Talamantes, Antonio; Sandquist, Eric L.; Clem, James L.; Robb, Russell M.; Balam, David D.; Shetrone, Matthew E-mail: erics@mintaka.sdsu.ed E-mail: robb@uvic.c E-mail: shetrone@astro.as.utexas.ed

    2010-11-15

    We describe a variability study of the moderately old open cluster NGC 6819. We have detected four new detached eclipsing binaries near the cluster turnoff (one of which may be in a triple system). Several of these systems should be able to provide mass and radius information, and can therefore constrain the age of the cluster. We have also newly detected one possible detached binary member about 3.5 mag below the turnoff. One EW-type binary (probably not a cluster member) shows unusually strong night-to-night light curve variations in sets of observations separated by eight years. According to the best current information, the three brightest variables we detected (two of them new) are cluster members, making them blue stragglers. The first one is a {delta} Scu pulsating variable, the second one is a close but detached binary, and the third one contains a detached short-period binary that shows total eclipses. In each case, however, there is evidence hinting that the system may have been produced through the interaction of more than two stars.

  18. Massive open star clusters using the VVV survey. IV. WR 62-2, a new very massive star in the core of the VVV CL041 cluster

    NASA Astrophysics Data System (ADS)

    Chené, A.-N.; Ramírez Alegría, S.; Borissova, J.; O'Leary, E.; Martins, F.; Hervé, A.; Kuhn, M.; Kurtev, R.; Consuelo Amigo Fuentes, P.; Bonatto, C.; Minniti, D.

    2015-12-01

    Context. The ESO Public Survey VISTA Variables in the Vía Láctea (VVV) provides deep multi-epoch infrared observations for an unprecedented 562 sq. deg of the Galactic bulge and adjacent regions of the disk. Nearly 150 new open clusters and cluster candidates have been discovered in this survey. Aims: We present the fourth article in a series of papers focussed on young and massive clusters discovered in the VVV survey. This article is dedicated to the cluster VVV CL041, which contains a new very massive star candidate, WR 62-2. Methods: Following the methodology presented in the first paper of the series, wide-field, deep JHKs VVV observations, combined with new infrared spectroscopy, are employed to constrain fundamental parameters (distance, reddening, mass, age) of VVV CL041. Results: We confirm that the cluster VVV CL041 is a young (less than 4 Myr) and massive (3 ± 2 × 103 M⊙) cluster, and not a simple asterism. It is located at a distance of 4.2 ± 0.9 kpc, and its reddening is AV = 8.0 ± 0.2 mag, which is slightly lower than the average for the young clusters towards the centre of the Galaxy. Spectral analysis shows that the most luminous star of the cluster, of the WN8h spectral type, is a candidate to have an initial mass larger than 100 M⊙. Based on observations taken within the ESO VISTA Public Survey VVV, Programme ID 179.B-2002, and on observations with VLT/ISAAC at ESO (programme 087.D.0341A) and Flamingos-2 at Gemini (programme GS-2014A-Q-72).The photometric catalogue is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/584/A31

  19. THE INTERNAL PROPER MOTIONS OF STARS IN THE OPEN CLUSTER M35

    SciTech Connect

    McNamara, Bernard J.; Harrison, Thomas E.; McArthur, Barbara E.; Fritz Benedict, G.

    2011-08-15

    Relative proper motions, based on 108 orbits of Hubble Space Telescope Fine Guidance Sensor data extending from 1992 to 2006, are reported for 74 stars in the open cluster M35 (NGC 2168). A subset of 22 of these objects are then used to compute the cluster's internal proper motion dispersions in both right ascension and declination. We find that these dispersions are equal to within their measurement errors. The average one-dimensional dispersion is 0.018 {+-} 0.002 arcsec century{sup -1}. When combined with the M35 radial velocity dispersion of 0.65 {+-} 0.10 km s{sup -1} found by Geller et al., this produces a cluster distance of 762 {+-} 145 pc. Using isochrone fits to the cluster main sequence, this distance suggests that M35 has an age of about 133 Myr. Although this age is consistent with that typically found for M35, the formal error in the dynamical distance of {+-}19% can accommodate ages between 65 Myr and 201 Myr.

  20. New variable stars discovered in the fields of three Galactic open clusters using the VVV survey

    NASA Astrophysics Data System (ADS)

    Palma, T.; Minniti, D.; Dékány, I.; Clariá, J. J.; Alonso-García, J.; Gramajo, L. V.; Ramírez Alegría, S.; Bonatto, C.

    2016-11-01

    This project is a massive near-infrared (NIR) search for variable stars in highly reddened and obscured open cluster (OC) fields projected on regions of the Galactic bulge and disk. The search is performed using photometric NIR data in the J-, H- and Ks- bands obtained from the Vista Variables in the Vía Láctea (VVV) Survey. We performed in each cluster field a variability search using Stetson's variability statistics to select the variable candidates. Later, those candidates were subjected to a frequency analysis using the Generalized Lomb-Scargle and the Phase Dispersion Minimization algorithms. The number of independent observations range between 63 and 73. The newly discovered variables in this study, 157 in total in three different known OCs, are classified based on their light curve shapes, periods, amplitudes and their location in the corresponding color-magnitude (J -Ks ,Ks) and color-color (H -Ks , J - H) diagrams. We found 5 possible Cepheid stars which, based on the period-luminosity relation, are very likely type II Cepheids located behind the bulge. Among the newly discovered variables, there are eclipsing binaries, δ Scuti, as well as background RR Lyrae stars. Using the new version of the Wilson & Devinney code as well as the "Physics Of Eclipsing Binaries" (PHOEBE) code, we analyzed some of the best eclipsing binaries we discovered. Our results show that these studied systems turn out to be ranging from detached to double-contact binaries, with low eccentricities and high inclinations of approximately 80°. Their surface temperatures range between 3500 K and 8000 K.

  1. Chemical composition of evolved stars in the young open clusters NGC 4609 and NGC 5316

    NASA Astrophysics Data System (ADS)

    Drazdauskas, Arnas; Tautvaišienė, Gražina; Smiljanic, Rodolfo; Bagdonas, Vilius; Chorniy, Yuriy

    2016-10-01

    High-resolution spectral analysis is performed for the first time in evolved stars of two young open clusters: NGC 4609 and NGC 5316, of about 80 and 100 Myr in age, respectively, and turn-off masses above 5 M⊙. Stellar evolution models predict an extra-mixing event in evolved stars, which follows the first dredge-up and happens later on the red giant branch. However, it is still not understood how this process affects stars of different masses. In this study, we determine abundances of the mixing sensitive elements carbon and nitrogen, carbon isotope 12C/13C ratios, as well as 20 other elements produced by different nucleosynthetic processes (O, Na, Mg, Al, Si, Ca, Sc, Ti, Cr, Mn, Co, Ni, Y, Zr, Ba, La, Ce, Pr, Nd, and Eu). We compared our results with the latest theoretical models of evolutionary mixing processes. We find that the obtained 12C/13C and C/N ratios and [Na/Fe] agree quite well with the model which takes into account thermohaline- and rotation-induced mixing but within error limits also agree with the standard first dredge-up model. Comparison of oxygen, magnesium, and other α-elements with theoretical models of Galactic chemical evolution revealed that both clusters follow the thin disc α-element trends. Neutron-capture element abundances in NGC 4609 are apparently reflecting its birthplace in the thin disc, while NGC 5316 has marginally higher abundances, which would indicate its birthplace in an environment more enriched with neutron-capture elements.

  2. Massive open star clusters using the VVV survey. V. Young clusters with an OB stellar population

    NASA Astrophysics Data System (ADS)

    Ramírez Alegría, S.; Borissova, J.; Chené, A.-N.; Bonatto, C.; Kurtev, R.; Amigo, P.; Kuhn, M.; Gromadzki, M.; Carballo-Bello, J. A.

    2016-04-01

    Context. The ESO public survey VISTA Variables in the Vía Láctea (VVV) has contributed with deep multi-epoch photometry of the Galactic bulge and the adjacent part of the disk over 526 sq. deg. More than a hundred cluster candidates have been reported thanks to this survey. Aims: We present the fifth article in a series of papers focused on young and massive clusters discovered in the VVV survey. In this paper, we present the physical characterization of five clusters with a spectroscopically confirmed OB-type stellar population. Methods: To characterize the clusters, we used near-infrared photometry (J, H, and KS) from the VVV survey and near-infrared K-band spectroscopy from ISAAC at VLT, following the methodology presented in the previous articles of the series. Results: All clusters in our sample are very young (ages between 1-20 Myr), and their total mass are between (1.07+0.40-0.30)×102 M⊙ and (4.17+4.15-2.08)×103 M⊙. We observed a relation between the clusters total mass Mecl and the mass of their most massive stellar member mmax, for clusters with an age <10 Myr. Based on observations taken within the ESO VISTA Public Survey VVV (programme ID 179.B-2002), and with ISAAC/VLT (programme 087.D-0341(A)).

  3. Multicolour photometry and Coravel observations of stars in the southern open cluster IC 2488

    NASA Astrophysics Data System (ADS)

    Clariá, J. J.; Piatti, A. E.; Lapasset, E.; Mermilliod, J.-C.

    2003-02-01

    We present new UBV photoelectric observations of 119 stars in the field of the southern open cluster IC 2488, supplemented by DDO and Washington photometry and Coravel radial velocities for a sample of red giant candidates. Nearly 50% of the stars sampled - including three red giants and one blue straggler - are found to be probable cluster members. Photometric membership probabilities of the red giant candidates show good agreement with those obtained from Coravel data. A mean radial velocity of (-2.63 +/- 0.06) km s-1 is derived for the cluster giants. The reddening across the cluster is found to be uniform, the mean value being E(B-V) = 0.24 +/- 0.04. IC 2488, located at a distance of (1250 +/- 120) pc from the Sun and 96 pc below the Galactic plane, is most probably not related to the planetary nebula ESO 166-PN21. A metal abundance [Fe/H] = 0.10 +/- 0.06 relative to the Sun is determined from DDO data of the red giant members, in good agreement with the [Fe/H] values derived from five independent Washington abundance indices. An age of 180 Myr is determined from the fitting of isochrones computed with convective overshooting for Z = 0.019. The isochrone for log t = 8.25 reproduces remarkably well not only the morphology of the upper main sequence but also the observed red giant pattern. Based on observations made at Las Campanas Observatory (Chile) and Cerro Tololo Inter-American Observatory (Chile), National Optical Astronomy Observatories, operated by the Association of the Universities for Research in Astronomy, Inc., under contract with the National Science Foundation and on observations collected with the Danish 1.54-m telescope at the European Southern Observatory, La Silla (Chile). Tables 1 and 4b are only available in electronic from at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/399/543

  4. CCD photometric search for peculiar stars in open clusters. I. NGC 2169, Melotte 105 and NGC 6250

    NASA Astrophysics Data System (ADS)

    Bayer, C.; Maitzen, H. M.; Paunzen, E.; Rode-Paunzen, M.; Sperl, M.

    2000-11-01

    The search for chemically peculiar (CP) stars in open clusters using photoelectric photometry sampling the presence of the characteristic flux depression feature at 5200 Å,via the Delta a-system (Maitzen \\cite{M76}) has so far delivered data for objects usually no more distant than 1000 pc from the Sun. A series of fourteen papers (first: Maitzen & Hensberge \\cite{M81}; for the time being last: Maitzen \\cite{M93}) were devoted to 1240 stars in 38 open cluster fields. If one intends to study the presence of CP stars at larger distances from the Sun, classical photometry has to be replaced by CCD photometry. We have therefore initialized in 1995 a new survey in open clusters and the Large Magellanic Cloud using the CCD technology. As a first step, we have presented new Delta a-photometry of 22 CP2 stars in the galactic field to prove the capability of CCD photometry for our aim (Maitzen et al. \\cite{M97}). In the first paper of a new series devoted to CCD photometry, we present data on NGC 2169 (13 stars investigated), Melotte 105 (114 stars), and NGC 6250 (48 stars). NGC 2169 was used to test our results with those of classical photometry which yields excellent agreement. For NGC 6250 we find two new definite CP2 (according to the definition by Preston \\cite{P74}) stars (Delta a = 0.065 and 0.026 mag) and two lambda Bootis candidates. Twelve objects with only marginally peculiar Delta a-values for Melotte 105 were detected. Additional spectroscopic and photometric evidence is needed to substantiate their peculiarity. Based on observations at ESO-La Silla, UTSO-Las Campanas and L.~Figl Observatory, Mt. Schöpfl, Austria.

  5. Lithium Inventory of 2 M ⊙ Red Clump Stars in Open Clusters: A Test of the Helium Flash Mechanism

    NASA Astrophysics Data System (ADS)

    Carlberg, Joleen K.; Cunha, Katia; Smith, Verne V.

    2016-08-01

    The temperature distribution of field Li-rich red giants suggests the presence of a population of Li-rich red clump (RC) stars. One proposed explanation for this population is that all stars with masses near 2 M ⊙ experience a short-lived phase of Li-richness at the onset of core He-burning. Many of these stars have low 12C/13C, a signature of deep mixing that is presumably associated with the Li regeneration. To test this purported mechanism of Li enrichment, we measured abundances in 38 RC stars and 6 red giant branch (RGB) stars in four open clusters selected to have RC masses near 2 M ⊙. We find six Li-rich stars (A(Li) ≥ 1.50 dex) of which only two may be RC stars. None of the RC stars have Li exceeding the levels observed in the RGB stars, but given the brevity of the suggested Li-rich phase and the modest sample size, it is probable that stars with larger Li-enrichments were missed simply by chance. However, we find very few stars in our sample with low 12C/13C. Such low 12C/13C, seen in many field Li-rich stars, should persist even after lithium has returned to normal low levels. Thus, if Li synthesis during the He flash occurs, it is a rare, but potentially long-lived occurrence rather than a short-lived phase for all stars. We estimate a conservative upper limit of the fraction of stars going through a Li-rich phase to be \\lt 47 % , based on stars that have low 12C/13C for their observed A(Li).

  6. Lithium Inventory of 2 Solar Mass Red Clump Stars in Open Clusters: A Test of the Helium Flash Mechanism

    NASA Technical Reports Server (NTRS)

    Carlberg, Joleen K.; Cunha, Katia; Smith, Verne V.

    2016-01-01

    The temperature distribution of field Li-rich red giants suggests the presence of a population of Li-rich red clump (RC) stars. One proposed explanation for this population is that all stars with masses near 2 solar mass experience a shortlived phase of Li-richness at the onset of core He-burning. Many of these stars have low C-12/C-13, a signature of deep mixing that is presumably associated with the Li regeneration. To test this purported mechanism of Li enrichment, we measured abundances in 38 RC stars and 6 red giant branch (RGB) stars in four open clusters selected to have RC masses near 2 solar mass. We find six Li-rich stars (A(Li) greater than or equal to 1.50 dex) of which only two may be RC stars. None of the RC stars have Li exceeding the levels observed in the RGB stars, but given the brevity of the suggested Li-rich phase and the modest sample size, it is probable that stars with larger Li-enrichments were missed simply by chance. However, we find very few stars in our sample with low C-12/C-13. Such low C-12/C-13, seen in many field Li-rich stars, should persist even after lithium has returned to normal low levels. Thus, if Li synthesis during the He flash occurs, it is a rare, but potentially long-lived occurrence rather than a short-lived phase for all stars. We estimate a conservative upper limit of the fraction of stars going through a Li-rich phase to be less than 47%, based on stars that have low C-12/C-13 for their observed A(Li).

  7. Photometric monitoring of open clusters: Low-mass eclipsing binary stars and the stellar mass-luminosity-radius relation

    NASA Astrophysics Data System (ADS)

    Hebb, Leslie

    2006-06-01

    This thesis describes a photometric monitoring survey of Galactic star clusters designed to detect low-mass eclipsing binary star systems through variations in their relative lightcurves. The aim is to use cluster eclipsing binaries to measure the masses and radii of M-dwarf stars with ages and metallicities known from studies of brighter cluster stars. This information will provide an improved calibration of the mass-luminosity-radius relation for low-mass stars, be used to test stellar structure and evolution models, and help quantify the contribution of low-mass stars to the global mass census in the Galaxy. The survey is designed to detect eclipse events in stars of ~0.3 M_sun and consists of 600 Gbytes of raw imaging data on six open clusters with a range of ages (~ 0.15 - 4 Gyr) and metallicites (~ -0.2 - 0.0 dex). The clusters NGC 1647 and M 35 contain excellent candidate systems showing eclipse like variations in brightness and photometry consistent with cluster membership. The analysis of these clusters and the eclipsing M-dwarf stars detected in them are presented. Analysis of the candidate system in NGC 1647 confirms the object as a newly discovered M-dwarf eclipsing binary in the cluster with compenent masses of M 1 = 0.47 ± 0.05[Special characters omitted.] and M 2 = 0.19 ± 0.02[Special characters omitted.] . The small mass ratio ( M 2 / M 1 ) and low secondary mass of this object provide an unprecedented opportunity to test stellar models. We find that no stellar evolution models are consistent with all the properties of both M-dwarf stars in the eclipsing binary. The candidate in M 35 has been confirmed as an M-dwarf eclipsing binary, and the masses of the individual components are estimated to be M 1 ~ 0.25 M_sun and M 2 ~ 0.15 M_sun . Additional high resolution spectroscopic and photometric observations, for which we have applied and been awarded time, are necessary to accurately derive the intrinsic properties of the individual stellar

  8. Star cluster dynamics.

    PubMed

    Vesperini, Enrico

    2010-02-28

    Dynamical evolution plays a key role in shaping the current properties of star clusters and star cluster systems. A detailed understanding of the effects of evolutionary processes is essential to be able to disentangle the properties that result from dynamical evolution from those imprinted at the time of cluster formation. In this review, I focus my attention on globular clusters, and review the main physical ingredients driving their early and long-term evolution, describe the possible evolutionary routes and show how cluster structure and stellar content are affected by dynamical evolution.

  9. Single stars in the Hyades open cluster. Fiducial sequence for testing stellar and atmospheric models

    NASA Astrophysics Data System (ADS)

    Kopytova, Taisiya G.; Brandner, Wolfgang; Tognelli, Emanuele; Prada Moroni, Pier Giorgio; Da Rio, Nicola; Röser, Siegfried; Schilbach, Elena

    2016-01-01

    Context. Age and mass determinations for isolated stellar objects remain model-dependent. While stellar interior and atmospheric theoretical models are rapidly evolving, we need a powerful tool to test them. Open clusters are good candidates for this role. Aims: We aim to create a fiducial sequence of stellar objects for testing stellar and atmospheric models. Methods: We complement previous studies on the Hyades multiplicity by Lucky Imaging observations with the AstraLux Norte camera. This allows us to exclude possible binary and multiple systems with companions outside a 2-7 AU separation and to create a single-star sequence for the Hyades. The sequence encompasses 250 main-sequence stars ranging from A5V to M6V. Using the Tool for Astrophysical Data Analysis (TA-DA), we create various theoretical isochrones applying different combinations of interior and atmospheric models. We compare the isochrones with the observed Hyades single-star sequence on J vs. J-Ks, J vs. J-H, and Ks vs. H-Ks color-magnitude diagrams. As a reference we also compute absolute fluxes and magnitudes for all stars from X-ray to mid-infrared based on photometric measurements available in the literature(ROSAT X-ray, GALEX UV, APASS gri, 2MASS JHKs, and WISE W1 to W4). Results: We find that combinations of both PISA and DARTMOUTH stellar interior models with BT-Settl 2010 atmospheric models describe the observed sequence well. We use PISA in combination with BT-Settl 2010 models to derive theoretical predictions for physical parameters (Teff, mass, log g) of 250 single stars in the Hyades. The full sequence covers the mass range of 0.13-2.30 M⊙, and effective temperatures between 3060 K and 8200 K. Conclusions: Within the measurement uncertainties, the current generation of models agree well with the single-star sequence. The primary limitations are the uncertainties in the measurement of the distances to individual Hyades members, and uncertainties in the photometry. Gaia parallaxes

  10. ELEMENTAL ABUNDANCE RATIOS IN STARS OF THE OUTER GALACTIC DISK. IV. A NEW SAMPLE OF OPEN CLUSTERS

    SciTech Connect

    Yong, David; Carney, Bruce W.; Friel, Eileen D. E-mail: bruce@physics.unc.edu

    2012-10-01

    We present radial velocities and chemical abundances for nine stars in the old, distant open clusters Be18, Be21, Be22, Be32, and PWM4. For Be18 and PWM4, these are the first chemical abundance measurements. Combining our data with literature results produces a compilation of some 68 chemical abundance measurements in 49 unique clusters. For this combined sample, we study the chemical abundances of open clusters as a function of distance, age, and metallicity. We confirm that the metallicity gradient in the outer disk is flatter than the gradient in the vicinity of the solar neighborhood. We also confirm that the open clusters in the outer disk are metal-poor with enhancements in the ratios [{alpha}/Fe] and perhaps [Eu/Fe]. All elements show negligible or small trends between [X/Fe] and distance (<0.02 dex kpc{sup -1}), but for some elements, there is a hint that the local (R{sub GC} < 13 kpc) and distant (R{sub GC} > 13 kpc) samples may have different trends with distance. There is no evidence for significant abundance trends versus age (<0.04 dex Gyr{sup -1}). We measure the linear relation between [X/Fe] and metallicity, [Fe/H], and find that the scatter about the mean trend is comparable to the measurement uncertainties. Comparison with solar neighborhood field giants shows that the open clusters share similar abundance ratios [X/Fe] at a given metallicity. While the flattening of the metallicity gradient and enhanced [{alpha}/Fe] ratios in the outer disk suggest a chemical enrichment history different from that of the solar neighborhood, we echo the sentiments expressed by Friel et al. that definitive conclusions await homogeneous analyses of larger samples of stars in larger numbers of clusters. Arguably, our understanding of the evolution of the outer disk from open clusters is currently limited by systematic abundance differences between various studies.

  11. Open clusters as laboratories: The angular momentum evolution of young stars

    NASA Technical Reports Server (NTRS)

    Stauffer, John R.

    1994-01-01

    This is the annual status report for the third year of our LTSA grant 'Open Clusters as Laboratories.' Because we have now had a few years to work on the project, we have started to produce and publish a large number of papers. We have been extremely successful in obtaining ROSAT observations of open clusters. With the demise of the PSPC on ROSAT, our main data source has come to an end and we will be able to concentrate on analyzing those data.

  12. A preliminary systematic search for red-clump stars in Galactic open clusters based on 2mass data

    NASA Astrophysics Data System (ADS)

    Zhang, Xi; Chen, Li; Li, Zhongmu

    2013-02-01

    Red-clump (RC) giants are intermediate-age, core-helium-burning stars. The RC can be used as a standard candle. In particular, the small variance of the RC's K-band intrinsic luminosity and its weak dependence on chemical composition and age make it an extremely useful distance indicator. In this paper, we use 2mass data to search for RC stars in a sample of 60 Galactic open clusters with known reddening, ages, and distances, and obtain an average value for the RC's absolute K s-band magnitude, M K s = -1.72 +/- 0.17 mag.

  13. Globular and Open Clusters Observed by SDSS/SEGUE: the Giant Stars

    SciTech Connect

    Morrison, Heather L.; Ma, Zhibo; Clem, James L.; An, Deokkeun; Connor, Thomas; Schechtman-Rook, Andrew; Casagrande, Luca; Rockosi, Constance; Yanny, Brian; Harding, Paul; Beers, Timothy C.; Johnson, Jennifer A.; Schneider, Donald P.

    2015-12-18

    We present griz observations for the clusters M92, M13 and NGC 6791 and gr photometry for M71, Be 29 and NGC 7789. In addition we present new membership identifications for all these clusters, which have been observed spectroscopically as calibrators for the SDSS/SEGUE survey; this paper focuses in particular on the red giant branch stars in the clusters. In a number of cases, these giants were too bright to be observed in the normal SDSS survey operations, and we describe the procedure used to obtain spectra for these stars. For M71, also present a new variable reddening map and a new fiducial for the gr giant branch. For NGC 7789, we derived a transformation from Teff to g-r for giants of near solar abundance, using IRFM Teff measures of stars with good ugriz and 2MASS photometry and SEGUE spectra. The result of our analysis is a robust list of known cluster members with correctly dereddened and (if needed) transformed gr photometry for crucial calibration efforts for SDSS and SEGUE.

  14. Globular and Open Clusters Observed by SDSS/SEGUE: the Giant Stars

    DOE PAGES

    Morrison, Heather L.; Ma, Zhibo; Clem, James L.; An, Deokkeun; Connor, Thomas; Schechtman-Rook, Andrew; Casagrande, Luca; Rockosi, Constance; Yanny, Brian; Harding, Paul; et al

    2015-12-18

    We present griz observations for the clusters M92, M13 and NGC 6791 and gr photometry for M71, Be 29 and NGC 7789. In addition we present new membership identifications for all these clusters, which have been observed spectroscopically as calibrators for the SDSS/SEGUE survey; this paper focuses in particular on the red giant branch stars in the clusters. In a number of cases, these giants were too bright to be observed in the normal SDSS survey operations, and we describe the procedure used to obtain spectra for these stars. For M71, also present a new variable reddening map and amore » new fiducial for the gr giant branch. For NGC 7789, we derived a transformation from Teff to g-r for giants of near solar abundance, using IRFM Teff measures of stars with good ugriz and 2MASS photometry and SEGUE spectra. The result of our analysis is a robust list of known cluster members with correctly dereddened and (if needed) transformed gr photometry for crucial calibration efforts for SDSS and SEGUE.« less

  15. Globular and Open Clusters Observed by SDSS/SEGUE: The Giant Stars

    NASA Astrophysics Data System (ADS)

    Morrison, Heather L.; Ma, Zhibo; Clem, James L.; An, Deokkeun; Connor, Thomas; Schechtman-Rook, Andrew; Casagrande, Luca; Rockosi, Constance; Yanny, Brian; Harding, Paul; Beers, Timothy C.; Johnson, Jennifer A.; Schneider, Donald P.

    2016-01-01

    We present griz observations for the clusters M92, M13 and NGC 6791 and gr photometry for M71, Be 29 and NGC 7789. In addition we present new membership identifications for all these clusters, which have been observed spectroscopically as calibrators for the Sloan Digital Sky Survey (SDSS)/SEGUE survey; this paper focuses in particular on the red giant branch stars in the clusters. In a number of cases, these giants were too bright to be observed in the normal SDSS survey operations, and we describe the procedure used to obtain spectra for these stars. For M71, we also present a new variable reddening map and a new fiducial for the gr giant branch. For NGC 7789, we derived a transformation from Teff to g–r for giants of near solar abundance, using IRFM Teff measures of stars with good ugriz and 2MASS photometry and SEGUE spectra. The result of our analysis is a robust list of known cluster members with correctly dereddened and (if needed) transformed gr photometry for crucial calibration efforts for SDSS and SEGUE.

  16. The Problem of Hipparcos Distances to Open Clusters. II. Constraints from Nearby Field Theory. Report 2; ClustersConstraints from nearly Field Stars

    NASA Technical Reports Server (NTRS)

    Soderblom, David R.; King, Jeremy R.; Hanson, Robert B.; Jones, Burton F.; Fischer, Debra; Stauffer, John R.; Pinsonneault, Marc H.

    1998-01-01

    This paper examines the discrepancy between distances to nearby open clusters as determined by parallaxes from Hipparcos compared to traditional main-sequence fitting. The biggest difference is seen for the Pleiades, and our hypothesis is that if the Hipparcos distance to the Pleiades is correct, then similar subluminous zero-age main-sequence (ZAMS) stars should exist elsewhere, including in the immediate solar neighborhood. We examine a color-magnitude diagram of very young and nearby solar-type stars and show that none of them lie below the traditional ZAMS, despite the fact that the Hipparcos Pleiades parallax would place its members 0.3 mag below that ZAMS. We also present analyses and observations of solar-type stars that do lie below the ZAMS, and we show that they are subluminous because of low metallicity and that they have the kinematics of old stars.

  17. H-cluster stars

    NASA Astrophysics Data System (ADS)

    Lai, X. Y.; Gao, C. Y.; Xu, R. X.

    2013-06-01

    The study of dense matter at ultrahigh density has a very long history, which is meaningful for us to understand not only cosmic events in extreme circumstances but also fundamental laws of physics. It is well known that the state of cold matter at supranuclear density depends on the non-perturbative nature of quantum chromodynamics (QCD) and is essential for modelling pulsars. A so-called H-cluster matter is proposed in this paper as the nature of dense matter in reality. In compact stars at only a few nuclear densities but low temperature, quarks could be interacting strongly with each other there. That might render quarks grouped in clusters, although the hypothetical quark clusters in cold dense matter have not been confirmed due to the lack of both theoretical and experimental evidence. Motivated by recent lattice QCD simulations of the H-dibaryons (with structure uuddss), we therefore consider here a possible kind of quark clusters, H-clusters, that could emerge inside compact stars during their initial cooling as the dominant components inside (the degree of freedom could then be H-clusters there). Taking into account the in-medium stiffening effect, we find that at baryon densities of compact stars H-cluster matter could be more stable than nuclear matter. We also find that for the H-cluster matter with lattice structure, the equation of state could be so stiff that it would seem to be `superluminal' in the most dense region. However, the real sound speed for H-cluster matter is in fact difficult to calculate, so at this stage we do not put constraints on our model from the usual requirement of causality. We study the stars composed of H-clusters, i.e. H-cluster stars, and derive the dependence of their maximum mass on the in-medium stiffening effect, showing that the maximum mass could be well above 2 M⊙ as observed and that the resultant mass-radius relation fits the measurement of the rapid burster under reasonable parameters. Besides a general

  18. Determining the Age of the Kepler Open Cluster NGC 6819 With a New Triple System and Other Eclipsing Binary Stars

    NASA Astrophysics Data System (ADS)

    Brewer, Lauren N.; Sandquist, Eric L.; Mathieu, Robert D.; Milliman, Katelyn; Geller, Aaron M.; Jeffries, Mark W., Jr.; Orosz, Jerome A.; Brogaard, Karsten; Platais, Imants; Bruntt, Hans; Grundahl, Frank; Stello, Dennis; Frandsen, Søren

    2016-03-01

    As part of our study of the old (˜2.5 Gyr) open cluster NGC 6819 in the Kepler field, we present photometric (Kepler and ground-based BVRCIC) and spectroscopic observations of the detached eclipsing binary WOCS 24009 (Auner 665; KIC 5023948) with a short orbital period of 3.6 days. WOCS 24009 is a triple-lined system, and we verify that the brightest star is physically orbiting the eclipsing binary using radial velocities and eclipse timing variations. The eclipsing binary components have masses MB = 1.090 ± 0.010 M⊙ and MC = 1.075 ± 0.013 M⊙, and radii RB = 1.099 ± 0.006 ± 0.005 R⊙ and RC = 1.069 ± 0.006 ± 0.013 R⊙. The bright non-eclipsing star resides at the cluster turnoff, and ultimately its mass will directly constrain the turnoff mass: our preliminary determination is MA = 1.251 ± 0.057 M⊙. A careful examination of the light curves indicates that the fainter star in the eclipsing binary undergoes a very brief period of total eclipse, which enables us to precisely decompose the light of the three stars and place them in the color-magnitude diagram (CMD). We also present improved analysis of two previously discussed detached eclipsing stars in NGC 6819 (WOCS 40007 and WOCS 23009) en route to a combined determination of the cluster’s distance modulus (m - M)V = 12.38 ± 0.04. Because this paper significantly increases the number of measured stars in the cluster, we can better constrain the age of the CMD to be 2.21 ± 0.10 ± 0.20 Gyr. Additionally, using all measured eclipsing binary star masses and radii, we constrain the age to 2.38 ± 0.05 ± 0.22 Gyr. The quoted uncertainties are estimates of measurement and systematic uncertainties (due to model physics differences and metal content), respectively. This is paper 57 of the WIYN Open Cluster Study (WOCS).

  19. Binary Systems Within Star Clusters

    NASA Astrophysics Data System (ADS)

    Paunzen, Ernst; Stütz, Christian; Baumann, Bernhard

    2012-04-01

    WEBDA (http://www.univie.ac.at/webda) is a site devoted to observational data of stellar clusters in the Milky Way and the Small Magellanic Cloud. It is intended to provide a reliable presentation of the available data and knowledge about these objects. The success of WEBDA is documented by its worldwide usage and the related acknowledgements in the literature: more than 650 refereed publications within the last twelve years acknowledged its use. It collects all published data for stars in open clusters that may be useful either to determine membership, or to study the stellar content and properties of the clusters. The database content includes astrometric data in the form of coordinates, rectangular positions, and proper motions, photometric data in the major systems in which star clusters have been observed, but also spectroscopic data like spectral classification, radial velocities, and rotational velocities. It also contains miscellaneous types of supplementary data like membership probabilities, orbital elements of spectroscopic binaries, and periods for different kinds of variable stars as well as an extensive bibliography. Several powerful tools help to plot, query and extract the data, which can be directly retrieved via http. At the time of writing, about four million individual measurements have been included in the database. The Star Clusters Young & Old Newsletter (SCYON), a bi-monthly newsletter devoted to star cluster research with about 600 subscribers, is hosted in parallel with the database. We present the current and upcoming new interface and tools, which are needed to visualize and analyze the increasing amount of data from all-sky surveys, and deeper investigations of binary systems, low mass dwarfs, as well as planet-hosting stars.

  20. Sejong Open Cluster Survey (SOS) - V. The Active Star Forming Region SH 2-255-257

    NASA Astrophysics Data System (ADS)

    Lim, Beomdu; Sung, Hwankyung; Hur, Hyeonoh; Lee, Byeong-Cheol; Bessell, Michael S.; Kim, Jinyoung S.; Lee, Kang Hwan; Park, Byeong-Gon; Jeong, Gwanghui

    2015-12-01

    There is much observational evidence that active star formation is taking place in the H II regions Sh 2-255-257. We present a photometric study of this star forming region (SFR) using imaging data obtained in passbands from the optical to the mid-infrared, in order to study the star formation process. A total of 218 members were identified using various selection criteria based on their observational properties. The SFR is reddened by at least E(B-V) = 0.8 mag, and the reddening law toward the region is normal (R_V = 3.1). From the zero-age main sequence fitting method it is confirmed that the SFR is 2.1 ± 0.3 kpc from the Sun. The median age of the identified members is estimated to be about 1.3 Myr from a comparison of the Hertzsprung-Russell diagram (HRD) with stellar evolutionary models. The initial mass function (IMF) is derived from the HRD and the near-infrared (J, J-H) color-magnitude diagram. The slope of the IMF is about Γ = -1.6 ± 0.1, which is slightly steeper than that of the Salpeter/Kroupa IMF. It implies that low-mass star formation is dominant in the SFR. The sum of the masses of all the identified members provides the lower limit of the cluster mass (169 M_{⊙}). We also analyzed the spectral energy distribution (SED) of pre-main sequence stars using the SED fitting tool of Robitaille et al., and confirm that there is a significant discrepancy between stellar mass and age obtained from two different methods based on the SED fitting tool and the HRD.

  1. High-resolution spectroscopic observations of binary stars and yellow stragglers in three open clusters: NGC 2360, NGC 3680, and NGC 5822

    SciTech Connect

    Sales Silva, J. V.; Peña Suárez, V. J.; Katime Santrich, O. J.; Pereira, C. B.; Drake, N. A.; Roig, F. E-mail: jearim@on.br E-mail: claudio@on.br E-mail: froig@on.br

    2014-11-01

    Binary stars in open clusters are very useful targets in constraining the nucleosynthesis process. The luminosities of the stars are known because the distances of the clusters are also known, so chemical peculiarities can be linked directly to the evolutionary status of a star. In addition, binary stars offer the opportunity to verify a relationship between them and the straggler population in both globular and open clusters. We carried out a detailed spectroscopic analysis to derive the atmospheric parameters for 16 red giants in binary systems and the chemical composition of 11 of them in the open clusters NGC 2360, NGC 3680, and NGC 5822. We obtained abundances of C, N, O, Na, Mg, Al, Ca, Si, Ti, Ni, Cr, Y, Zr, La, Ce, and Nd. The atmospheric parameters of the studied stars and their chemical abundances were determined using high-resolution optical spectroscopy. We employ the local thermodynamic equilibrium model atmospheres of Kurucz and the spectral analysis code MOOG. The abundances of the light elements were derived using the spectral synthesis technique. We found that the stars NGC 2360-92 and 96, NGC 3680-34, and NGC 5822-4 and 312 are yellow straggler stars. We show that the spectra of NGC 5822-4 and 312 present evidence of contamination by an A-type star as a secondary star. For the other yellow stragglers, evidence of contamination is given by the broad wings of the Hα. Detection of yellow straggler stars is important because the observed number can be compared with the number predicted by simulations of binary stellar evolution in open clusters. We also found that the other binary stars are not s-process enriched, which may suggest that in these binaries the secondary star is probably a faint main-sequence object. The lack of any s-process enrichment is very useful in setting constraints for the number of white dwarfs in the open cluster, a subject that is related to the birthrate of these kinds of stars in open clusters and also to the age of a

  2. The massive star binary fraction in young open clusters - II. NGC6611 (Eagle Nebula)

    NASA Astrophysics Data System (ADS)

    Sana, H.; Gosset, E.; Evans, C. J.

    2009-12-01

    Based on a set of over 100 medium- to high-resolution optical spectra collected from 2003 to 2009, we investigate the properties of the O-type star population in NGC6611 in the core of the Eagle Nebula (M16). Using a much more extended data set than previously available, we revise the spectral classification and multiplicity status of the nine O-type stars in our sample. We confirm two suspected binaries and derive the first SB2 orbital solutions for two systems. We further report that two other objects are displaying a composite spectrum, suggesting possible long-period binaries. Our analysis is supported by a set of Monte Carlo simulations, allowing us to estimate the detection biases of our campaign and showing that the latter do not affect our conclusions. The absolute minimal binary fraction in our sample is fmin = 0.44 but could be as high as 0.67 if all the binary candidates are confirmed. As in NGC6231 (see Paper I), up to 75 per cent of the O star population in NGC6611 are found in an O+OB system, thus implicitly excluding random pairing from a classical IMF as a process to describe the companion association in massive binaries. No statistical difference could be further identified in the binary fraction, mass-ratio and period distributions between NGC6231 and NGC 6611, despite the difference in age and environment of the two clusters.

  3. CNO abundances and carbon isotope ratios in evolved stars of the open clusters NGC 2324, NGC 2477, and NGC 3960

    NASA Astrophysics Data System (ADS)

    Tautvaišienė, Gražina; Drazdauskas, Arnas; Bragaglia, Angela; Randich, Sofia; Ženovienė, Renata

    2016-10-01

    Aims: Our main aim is to determine carbon-to-nitrogen and carbon isotope ratios for evolved giants in the open clusters NGC 2324, NGC 2477, and NGC 3960, which have turn-off masses of about 2 M⊙, and to compare them with predictions of theoretical models. Methods: High-resolution spectra were analysed using a differential synthetic spectrum method. Abundances of carbon were derived using the C2 Swan (0, 1) band heads at 5135 and 5635.5 Å. The wavelength interval 7940-8130 Å with strong CN features was analysed to determine nitrogen abundances and carbon isotope ratios. The oxygen abundances were determined from the [O i] line at 6300 Å. Results: The mean values of the CNO abundances are [C/Fe] = -0.35 ± 0.06 (s.d.), [N/Fe] = 0.28 ± 0.05, and [O/Fe] = -0.02 ± 0.10 in seven stars of NGC 2324; [C/Fe] = -0.26 ± 0.02, [N/Fe] = 0.39 ± 0.04, and [O/Fe] = -0.11 ± 0.06 in six stars of NGC 2477; and [C/Fe] = -0.39 ± 0.04, [N/Fe] = 0.32 ± 0.05, and [O/Fe] = -0.19 ± 0.06 in six stars of NGC 3960. The mean C/N ratio is equal to 0.92 ± 0.12, 0.91 ± 0.09, and 0.80 ± 0.13, respectively. The mean 12C /13C ratio is equal to 21 ± 1, 20 ± 1, and 16 ± 4, respectively. The 12C /13C and C/N ratios of stars in the investigated open clusters were compared with the ratios predicted by stellar evolution models. Conclusions: The mean values of the 12C /13C and C/N ratios in NGC 2324 and NGC 2477 agree well with the first dredge-up and thermohaline-induced extra-mixing models, which are similar for intermediate turn-off mass stars. The 12C /13C ratios in the investigated clump stars of NGC 3960 span from 10 to 20. The mean carbon isotope and C/N ratios in NGC 3960 are close to predictions of the model in which the thermohaline- and rotation-induced (if rotation velocity at the zero-age main sequence was 30% of the critical velocity) extra-mixing act together. Based on observations collected at ESO telescopes under programmes 072.D-0550 and 074.D-0571.

  4. Variable stars in one open cluster within the Kepler/K2-Campaign-5 field: M 67 (NGC 2682)

    NASA Astrophysics Data System (ADS)

    Nardiello, D.; Libralato, M.; Bedin, L. R.; Piotto, G.; Ochner, P.; Cunial, A.; Borsato, L.; Granata, V.

    2016-01-01

    In this paper, we continue the release of high-level data products from the multiyear photometric survey collected at the 67/92 cm Schmidt Telescope in Asiago. The primary goal of the survey is to discover and to characterize variable objects and exoplanetary transits in four fields containing five nearby open clusters spanning a broad range of ages. This second paper releases a photometric catalogue, in five photometric bands, of the solar-age, solar-metallicity open cluster M 67 (NGC 2682). Proper motions are derived comparing the positions observed in 2013 at the Asiago's Schmidt Telescope with those extracted from Wide Field Imager@2.2 m Max-Planck-Gesellschaft/European Southern Obseratory images in 2000. We also analyse the variable sources within M 67. We detected 68 variables, 43 of which are new detection. Variable periods and proper-motion memberships of a large majority of sources in our catalogue are improved with respect to previous releases. The entire catalogue will be available in electronic format. Besides the general interest on an improved catalogue, this work will be particularly useful because of: (1) the imminent release of Kepler/K2 Campaign-5 data of this clusters, for which our catalogue will provide an excellent, high spatial resolution input list, and (2) characterization of the M 67 stars which are targets of intense High Accuracy Radial velocity Planet Searcher and High Accuracy Radial velocity Planet Searcher for the Northern hemisphere radial-velocity surveys for planet search.

  5. Massive star clusters in galaxies.

    PubMed

    Harris, William E

    2010-02-28

    The ensemble of all star clusters in a galaxy constitutes its star cluster system. In this review, the focus of the discussion is on the ability of star clusters, particularly the systems of old massive globular clusters (GCs), to mark the early evolutionary history of galaxies. I review current themes and key findings in GC research, and highlight some of the outstanding questions that are emerging from recent work.

  6. The Orion nebula star cluster

    NASA Technical Reports Server (NTRS)

    Panek, R. J.

    1982-01-01

    Photography through filters which suppress nebular light reveal a clustering of faint red stars centered on the Trapezium, this evidences a distinct cluster within the larger OB1 association. Stars within about 20 ft of trapezium comprise the Orion Nebula star cluster are considered. Topics discussed re: (1) extinction by dust grains; (2) photometric peculiarities; (3) spectroscopic peculiarities; (4) young variables; (5) the distribution and motion of gas within the cluster.

  7. Mass Determinations of Star Clusters

    NASA Astrophysics Data System (ADS)

    Meylan, Georges

    Mass determinations are difficult to obtain and still frequently characterised by deceptively large uncertainties. We review below the various mass estimators used for star clusters of all ages and luminosities. We highlight a few recent results related to (i) very massive old star clusters, (ii) the differences and similarities between star clusters and cores of dwarf elliptical galaxies, and (iii) the possible strong biases on mass determination induced by tidal effects.

  8. INTERRUPTED STELLAR ENCOUNTERS IN STAR CLUSTERS

    SciTech Connect

    Geller, Aaron M.; Leigh, Nathan W. C. E-mail: nleigh@amnh.org

    2015-07-20

    Strong encounters between single stars and binaries play a pivotal role in the evolution of star clusters. Such encounters can also dramatically modify the orbital parameters of binaries, exchange partners in and out of binaries, and are a primary contributor to the rate of physical stellar collisions in star clusters. Often, these encounters are studied under the approximation that they happen quickly enough and within a small enough volume to be considered isolated from the rest of the cluster. In this paper, we study the validity of this assumption through the analysis of a large grid of single–binary and binary–binary scattering experiments. For each encounter we evaluate the encounter duration, and compare this with the expected time until another single or binary star will join the encounter. We find that for lower-mass clusters, similar to typical open clusters in our Galaxy, the percent of encounters that will be “interrupted” by an interloping star or binary may be 20%–40% (or higher) in the core, though for typical globular clusters we expect ≲1% of encounters to be interrupted. Thus, the assumption that strong encounters occur in relative isolation breaks down for certain clusters. Instead, many strong encounters develop into more complex “mini-clusters,” which must be accounted for in studying, for example, the internal dynamics of star clusters, and the physical stellar collision rate.

  9. New slowly pulsating B stars in the field of the young open cluster NGC 2244 discovered by the MOST photometric satellite

    NASA Astrophysics Data System (ADS)

    Gruber, D.; Saio, H.; Kuschnig, R.; Fossati, L.; Handler, G.; Zwintz, K.; Weiss, W. W.; Matthews, J. M.; Guenther, D. B.; Moffat, A. F. J.; Rucinski, S. M.; Sasselov, D.

    2012-02-01

    During two weeks of nearly continuous optical photometry of the young open cluster NGC 2244 obtained by the Microvariability and Oscillations of STars (MOST) satellite, we discovered two new slowly pulsating B (SPB) stars, GSC 00154-00785 and GSC 00154-01871. We present frequency analyses of the MOST light curves of these stars, which reveal two oscillation frequencies (0.61 and 0.71 cycle d-1) in GSC 00154-00785 and two (0.40 and 0.51 cycle d-1) in GSC 00154-01871. These frequency ranges are consistent with g modes of ℓ≤ 2 excited in models of main-sequence or pre-main-sequence (PMS) stars of masses 4.5-5 M⊙ and solar composition (X, Z) = (0.7, 0.02). Published proper motion measurements and radial velocities are insufficient to establish unambiguously cluster membership for these two stars. However, the PMS models which fit best their eigenspectra have ages consistent with NGC 2244. If cluster membership can be confirmed, these would be the first known PMS SPB stars, and would open a new window on testing asteroseismically the interior structures of PMS stars. Based on data from MOST, a Canadian Space Agency mission operated by Microsat Systems Canada Inc. (formerly the space division of Dynacon, Inc.) and the University of Toronto Institute for Aerospace Studies and the University of British Columbia, with the assistance of the University of Vienna.

  10. Ruprecht 3: An old star cluster remnant?

    NASA Astrophysics Data System (ADS)

    Pavani, D. B.; Bica, E.; Ahumada, A. V.; Clariá, J. J.

    2003-02-01

    2MASS J and H photometry and integrated spectroscopy are employed to study the nature of the poorly populated compact concentration of stars Ruprecht 3, which was previously catalogued as an open cluster. The integrated spectrum remarkably resembles that of a moderately metal-rich globular cluster. The distribution of the object stars in the colour-magnitude diagram is compatible with that of a 1.5 +/- 0.5 Gyr open cluster or older, depending on whether the bluer stars are interpreted as turnoff stars or blue stragglers, respectively. We derive for the object a distance from the Sun dsun = 0.72 +0.04-0.03 kpc and a colour excess E(B-V) = 0.04. Although a globular cluster remnant cannot be ruled out, the integrated spectrum resemblance to that of a globular cluster probably reflects a stochastic effect owing to the few brighter stars. The structural and photometric properties of Ruprecht 3 are compatible with what would be expected for an intermediate-age open cluster remnant. Based on observations made at Complejo Astronómico El Leoncito, which is operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba and San Juan, Argentina.

  11. Formation and Assembly of Massive Star Clusters

    NASA Astrophysics Data System (ADS)

    McMillan, Stephen

    open access to state-of- the-art simulation techniques within a modern, modular software environment. We will follow the gravitational collapse of 0.1-10 million-solar mass gas clouds through star formation and coalescence into a star cluster, modeling in detail the coupling of the gas and the newborn stars. We will study the effects of star formation by detecting accreting regions of gas in self-gravitating, turbulent, MHD, FLASH models that we will translate into collisional dynamical systems of stars modeled with an N-body code, coupled together in the AMUSE framework. Our FLASH models will include treatments of radiative transfer from the newly formed stars, including heating and radiative acceleration of the surrounding gas. Specific questions to be addressed are: (1) How efficiently does the gas in a star forming region form stars, how does this depend on mass, metallicity, and other parameters, and what terminates star formation? What observational predictions can be made to constrain our models? (2) How important are different mechanisms for driving turbulence and removing gas from a cluster: accretion, radiative feedback, and mechanical feedback? (3) How does the infant mortality rate of young clusters depend on the initial properties of the parent cloud? (4) What are the characteristic formation timescales of massive star clusters, and what observable imprints does the assembly process leave on their structure at an age of 10-20 Myr, when formation is essentially complete and many clusters can be observed? These studies are directly relevant to NASA missions at many electromagnetic wavelengths, including Chandra, GALEX, Hubble, and Spitzer. Each traces different aspects of cluster formation and evolution: X-rays trace supernovae, ultraviolet traces young stars, visible colors can distinguish between young blue stars and older red stars, and the infrared directly shows young embedded star clusters.

  12. The Gaia-ESO Survey: pre-main-sequence stars in the young open cluster NGC 3293

    NASA Astrophysics Data System (ADS)

    Delgado, A. J.; Sampedro, L.; Alfaro, E. J.; Costado, M. T.; Yun, J. L.; Frasca, A.; Lanzafame, A. C.; Drew, J. E.; Eislöffel, J.; Blomme, R.; Morel, T.; Lobel, A.; Semaan, T.; Randich, S.; Jeffries, R. D.; Micela, G.; Vallenari, A.; Kalari, V.; Gilmore, G.; Flaccomio, E.; Carraro, G.; Lardo, C.; Monaco, L.; Prisinzano, L.; Sousa, S. G.; Morbidelli, L.; Lewis, J.; Koposov, S.; Hourihane, A.; Worley, C.; Casey, A.; Franciosini, E.; Sacco, G.; Magrini, L.

    2016-08-01

    The young open cluster NGC3293 is included in the observing program of the Gaia-ESO survey (GES). The radial velocity values provided have been used to assign cluster membership probabilities by means of a single-variable parametric analysis. These membership probabilities are compared to the results of the photometric membership assignment of NGC3293, based on UBVRI photometry. The agreement of the photometric and kinematic member samples amounts to 65 per cent, and could increase to 70 per cent as suggested by the analysis of the differences between both samples. A number of photometric PMS candidate members of spectral type F are found, which are confirmed by the results from VPHAS photometry and SED fitting for the stars in common with VPHAS and GES data sets. Excesses at mid- and near-infrared wavelengths, and signs of Hα emission, are investigated for them. Marginal presence of Hα emission or infilling is detected for the candidate members. Several of them exhibit moderate signs of U excess and weak excesses at mid-IR wavelengths. We suggest that these features originate from accretion discs in their last stages of evolution.

  13. Binary Stars in Globular Clusters

    NASA Astrophysics Data System (ADS)

    Mateo, M.; Murdin, P.

    2000-11-01

    Globular clusters have long been known to be among the richest stellar groupings within our Galaxy, but for many years they were believed to be largely devoid of the most minimal stellar group: binary stars (see BINARY STARS: OVERVIEW). For many years, the only evidence that any binaries existed in these clusters came from the presence of BLUE STRAGGLERS—stars that appear to be significantly you...

  14. Searching for Li-rich giants in a sample of 12 open clusters. Li enhancement in two stars with substellar companions

    NASA Astrophysics Data System (ADS)

    Delgado Mena, E.; Tsantaki, M.; Sousa, S. G.; Kunitomo, M.; Adibekyan, V.; Zaworska, P.; Santos, N. C.; Israelian, G.; Lovis, C.

    2016-03-01

    Aims: The aim of this work is to search for Li-rich giants in a sample of clusters where planets have been searched, thus we can study the planet engulfment scenario to explain Li replenishment using a proper comparison sample of stars without detected giant planets. Methods: We derived Li abundances for a sample of 67 red giant stars in 12 different open clusters using standard spectral synthesis techniques and high-resolution spectra (from HARPS and UVES). We also determined masses, ages, and radius from PARSEC stellar isochrones to constrain the evolutionary stage of these stars. Results: We found three stars in different clusters with clearly enhanced Li abundances compared to other stars within the cluster. Interestingly, the only two stars with a detected substellar companion in our sample belong to that group. One of the planet hosts, NGC 2423 No. 3, might lie close to the luminosity bump on the HR diagram, a phase where Li production by the Cameron-Fowler process is supported by extra-mixing to bring fresh Li up to the surface. On the other hand, NGC 4349 No. 127 is a more massive and more evolved giant that does not seem to be in the evolutionary phase where other Li-rich stars are found. We discuss the possibility that the Li enhancement of this star is triggered by the engulfment of a planet, considering that close-in planets hardly survive the RGB tip and the early AGB phases. Based on observations collected at the La Silla Observatory, ESO (Chile), with HARPS/3.6 m (runs ID 075.C-0140, 076.C-0429, 077.C-0088, and 078.C-0133) and with UVES/VLT at the Cerro Paranal Observatory (run 079.C-0131).

  15. Massive open star clusters using the VVV survey. III. A young massive cluster at the far edge of the Galactic bar

    NASA Astrophysics Data System (ADS)

    Ramírez Alegría, S.; Borissova, J.; Chené, A. N.; O'Leary, E.; Amigo, P.; Minniti, D.; Saito, R. K.; Geisler, D.; Kurtev, R.; Hempel, M.; Gromadzki, M.; Clarke, J. R. A.; Negueruela, I.; Marco, A.; Fierro, C.; Bonatto, C.; Catelan, M.

    2014-04-01

    Context. Young massive clusters are key to map the Milky Way's structure, and near-infrared large area sky surveys have contributed strongly to the discovery of new obscured massive stellar clusters. Aims: We present the third article in a series of papers focused on young and massive clusters discovered in the VVV survey. This article is dedicated to the physical characterization of VVV CL086, using part of its OB-stellar population. Methods: We physically characterized the cluster using JHKS near-infrared photometry from ESO public survey VVV images, using the VVV-SkZ pipeline, and near-infrared K-band spectroscopy, following the methodology presented in the first article of the series. Results: Individual distances for two observed stars indicate that the cluster is located at the far edge of the Galactic bar. These stars, which are probable cluster members from the statistically field-star decontaminated CMD, have spectral types between O9 and B0 V. According to our analysis, this young cluster (1.0 Myr < age < 5.0 Myr) is located at a distance of 11+5-6 kpc, and we estimate a lower limit for the cluster total mass of (2.8+1.6-1.4) · 103 M⊙. It is likely that the cluster contains even earlier and more massive stars. Based on observations taken within the ESO VISTA Public Survey VVV (programme ID 179.B-2002), and with ISAAC, VLT, ESO (programme 087.D-0341A).Near-IR photometry of the most probable cluster members is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/564/L9

  16. The Mass-Transfer Formation Frequency of Blue Straggler Stars in the Old Open Cluster NGC 188

    NASA Astrophysics Data System (ADS)

    Gosnell, Natalie M.; Mathieu, Robert D.; Sills, Alison; Geller, Aaron M.; Leigh, Nathan; Knigge, Christian

    2015-01-01

    The formation of blue straggler stars (BSSs), commonly categorized as stars bluer and brighter than the main sequence turnoff, has puzzled astronomers since their first detection over sixty years ago. The well-studied BSS population of the old (7 Gyr) open cluster NGC 188 has the potential to settle outstanding issues surrounding the frequency of different BSS formation mechanisms. NGC 188 contains 21 BSSs: 15 long-period single-lined binaries, two short-period double-lined binaries, and four non-velocity variables. We present results of the Hubble Space Telescope far-ultraviolet (FUV) ACS/SBC survey of the NGC 188 BSS population. This survey aims to detect white dwarf (WD) companions of BSSs that are indicative of a mass-transfer formation history. We directly detect FUV excesses consistent with four hot WD companions (Teff ≥ 12,000 K). We infer the presence of three additional WD companions with temperatures between 11,000-12,000 K. Since WDs cool as they age, these results indicate that seven BSSs formed through mass transfer within the past 400 Myr. These WD detections set a lower limit mass-transfer formation frequency of 33%. After taking into account other potential formation mechanisms we conclude that 14 long-period binary BSSs likely formed through mass transfer, setting a total NGC 188 BSS mass-transfer formation frequency of 67%. Comparing these results to a sophisticated N-body model of NGC 188 implies that binary population synthesis models underproduce mass transfer products, and the parameterization of stable mass transfer may need to be revisited. Finally, when comparing the optical CMD position of young BSSs to the zero-age main sequence (ZAMS), we find that distance from the ZAMS is not necessarily equivalent to BSS age. One must use caution before using standard single-star isochrones to age luminous BSSs.Support for Program number 12492 was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the

  17. CCD photometric search for peculiar stars in open clusters. VIII. King 21, NGC 3293, NGC 5999, NGC 6802, NGC 6830, Ruprecht 44, Ruprecht 115, and Ruprecht 120

    NASA Astrophysics Data System (ADS)

    Netopil, M.; Paunzen, E.; Maitzen, H. M.; Pintado, O. I.; Claret, A.; Miranda, L. F.; Iliev, I. Kh.; Casanova, V.

    2007-02-01

    Context: We continue our survey of magnetic chemically peculiar (CP2) stars in galactic open clusters to shed more light on their origin and evolution. Aims: To study the group of CP2 stars, it is essential to find these objects in different galactic environments and at a wide range of evolutionary stages. The knowledge of open cluster ages and metallicities can help for finding a correlation between these parameters and the (non-)presence of peculiarities, which has to be taken into account in stellar evolution models. Methods: The intermediate band Δ a photometric system samples the depth of the 5200 Å flux depression by comparing the flux at the centre with the adjacent regions with bandwidths of 110 Å to 230 Å. It is capable of detecting magnetic CP2 and CP4 stars with high efficiency, but also the groups of (metal-weak) λ Bootis and classical Be/shell stars can be successfully investigated. In addition, it allows the age, reddening, and distance modulus to be determined with appropriate accuracy by fitting isochrones. Results: From the 1677 observed members of the eight open clusters, one Ae and twenty-five CP2 stars were identified. Furthermore nineteen deviating stars are designated as questionable for several reasons. The estimated age, reddening, and distance for the programme clusters were compared with published values of the literature and discussed in this context. Conclusions: .The current paper shows that CP2 stars are continuously present in very young (7 Myr) to intermediate age (500 Myr) open clusters at distances greater than 2 kpc from the Sun. Based on observations at CASLEO, CTIO (Proposal 2003A-0057), and OSN. The Observatorio de Sierra Nevada is operated by the Consejo Superior de Investigaciones Científicas through the Instituto de Astrofísica de Andalucía (Granada, Spain). Photometric data are only avaialable in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb

  18. Stellar variability in open clusters . II. Discovery of a new period-luminosity relation in a class of fast-rotating pulsating stars in NGC 3766

    NASA Astrophysics Data System (ADS)

    Mowlavi, N.; Saesen, S.; Semaan, T.; Eggenberger, P.; Barblan, F.; Eyer, L.; Ekström, S.; Georgy, C.

    2016-10-01

    Context. Pulsating stars are windows to the physics of stars enabling us to see glimpses of their interior. Not all stars pulsate, however. On the main sequence, pulsating stars form an almost continuous sequence in brightness, except for a magnitude range between δ Scuti and slowly pulsating B stars. Against all expectations, 36 periodic variables were discovered in 2013 in this luminosity range in the open cluster NGC 3766, the origins of which was a mystery. Aims: We investigate the properties of those new variability class candidates in relation to their stellar rotation rates and stellar multiplicity. Methods: We took multi-epoch spectra over three consecutive nights using ESO's Very Large Telescope. Results: We find that the majority of the new variability class candidates are fast-rotating pulsators that obey a new period-luminosity relation. We argue that the new relation discovered here has a different physical origin to the period-luminosity relations observed for Cepheids. Conclusions: We anticipate that our discovery will boost the relatively new field of stellar pulsation in fast-rotating stars, will open new doors for asteroseismology, and will potentially offer a new tool to estimate stellar ages or cosmic distances. Based on observations made with the FLAMES instruments on the VLT/UT2 telescope at the Paranal Observatory, Chile, under the program ID 69.A-0123(A).

  19. The Age and Distance of the Kepler Open Cluster NGC 6811 from an Eclipsing Binary, Turnoff Star Pulsation, and Giant Asteroseismology

    NASA Astrophysics Data System (ADS)

    Sandquist, Eric L.; Jessen-Hansen, J.; Shetrone, Matthew D.; Brogaard, Karsten; Meibom, Søren; Leitner, Marika; Stello, Dennis; Bruntt, Hans; Antoci, Victoria; Orosz, Jerome A.; Grundahl, Frank; Frandsen, Søren

    2016-11-01

    We present the analysis of an eccentric, partially eclipsing long-period (P = 19.23 days) binary system KIC 9777062 that contains main-sequence stars near the turnoff of the intermediate-age open cluster NGC 6811. The primary is a metal-lined Am star with a possible convective blueshift to its radial velocities, and one star (probably the secondary) is likely to be a γ Dor pulsator. The component masses are 1.603 ± 0.006(stat.) ± 0.016(sys.) and 1.419 ± 0.003 ± 0.008 {M}ȯ , and the radii are 1.744 ± 0.004 ± 0.002 and 1.544 ± 0.002 ± 0.002 {R}ȯ . The isochrone ages of the stars are mildly inconsistent: the age from the mass–radius combination for the primary (1.05 ± 0.05 ± 0.09 Gyr, where the last quote was systematic uncertainty from models and metallicity) is smaller than that from the secondary (1.21 ± 0.05 ± 0.15 Gyr) and is consistent with the inference from the color–magnitude diagram (1.00 ± 0.05 Gyr). We have improved the measurements of the asteroseismic parameters Δν and ν max for helium-burning stars in the cluster. The masses of the stars appear to be larger (or alternately, the radii appear to be smaller) than predicted from isochrones using the ages derived from the eclipsing stars. The majority of stars near the cluster turnoff are pulsating stars: we identify a sample of 28 δ Sct, 15 γ Dor, and 5 hybrid types. We used the period–luminosity relation for high-amplitude δ Sct stars to fit the ensemble of the strongest frequencies for the cluster members, finding {(m-M)}V=10.37+/- 0.03. This is larger than most previous determinations, but smaller than values derived from the eclipsing binary (10.47 ± 0.05). Based on observations made with the Hobby–Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen, and with the Nordic Optical Telescope, operated by the

  20. VVV Galactic Star Clusters: VVV CL059

    NASA Astrophysics Data System (ADS)

    Agurto Gangas, C.; Borissova, J.; Ramirez Alegria, S.; Kurtev, R.; VVV star cluster Team

    2015-10-01

    The VISTA variables in the Vía Láctea (VVV) maps the inner disk and bulge area of our galaxy, and one of the principal objectives is to search for new star clusters in 5 different infrared bands with the aim of building a statistically significant sample. The new open clusters allows us not only to estimate their distance and age, but also provide important information about formation, evolution and dynamical theories of these systems in the Galactic environment. We present some recent results of photometric and spectroscopic investigations of VVV young cluster CL059, we derived fundamental parameters such as reddening, distance and age by fitting isochrones to the color magnitude diagram. In addition we obtained preliminary proper motions for the cluster stars.

  1. The formation of star clusters

    NASA Astrophysics Data System (ADS)

    Whitmore, Bradley C.

    The ability of HST to resolve objects ten times smaller than possible from the ground has re-juvenated the study of young star clusters. A recurrent morphological theme found in nearby resolved systems is the observation of young (typically 1-10 Myr), massive (103 - 104 Msolar), compact (ρ≍105 Msolar pc-3) clusters which have evacuated the gas and dust from a spherical region around themselves. New stars are being triggered into formation along the edges of the envelopes, with pillars (similar to the Eagle Nebula) of molecular gas streaming away from the regions of star formation. The prototype for these objects is 30 Doradus. Another major theme has been the discovery of large numbers of young (typically 1-500 Myr), massive (103 - 108 Msolar), compact star clusters in merging, starbursting, and even some barred and spiral galaxies. The brightest of these clusters have all the attributes expected of protoglobular clusters, hence allowing us to study the formation of globular clusters in the local universe rather than trying to ascertain how they formed ≍14 Gyr ago. The prototype is the Antennae Galaxy.

  2. THE OLD, SUPER-METAL-RICH OPEN CLUSTER, NGC 6791—ELEMENTAL ABUNDANCES IN TURN-OFF STARS FROM KECK/HIRES SPECTRA

    SciTech Connect

    Merchant Boesgaard, Ann; Lum, Michael G.; Deliyannis, Constantine P. E-mail: mikelum@ifa.hawaii.edu

    2015-02-01

    The study of star clusters has advanced our understanding of stellar evolution, Galactic chemical evolution, and nucleosynthesis. Here we investigate the composition of turn-off stars in the intriguing open cluster, NGC 6791, which is old, but super-metal-rich with high-resolution (R = 46,000) Keck/HIRES spectra. We find [Fe/H] = +0.30 ± 0.02 from measurements of some 40 unblended, unsaturated lines of both Fe I and Fe II in eight turn-off stars. Our O abundances come from the O I triplet near 7774 Å and we perform a differential analysis relative to the Sun from our Lunar spectrum also obtained with Keck/HIRES. The O results are corrected for small nLTE effects. We find consistent ratios of [O/Fe]{sub n} with a mean of –0.06 ± 0.02. This is low with respect to field stars that are also both old and metal-rich and continue the trend of decreasing [O/Fe] with increasing [Fe/H]. The small range in our oxygen abundances is consistent with a single population of stars. Our results for the alpha elements [Mg/Fe], [Si/Fe], [Ca/Fe], and [Ti/Fe] are near solar and compare well with those of the old, metal-rich field stars. The two Fe-peak elements, Cr and Ni, are consistent with Fe. These turn-off-star abundances provide benchmark abundances to investigate whether there are any observable abundance differences with the giants that might arise from nuclear-burning and dredge-up processes. Determinations of upper limits were found for Li by spectrum synthesis and are consistent with the upper limits in similar stars in the relatively old, super-metal-rich cluster NGC 6253. Our results support the prediction from standard theory that higher-metallicity stars deplete more Li. Probably no stars in NGC 6791 have retained their initial Li.

  3. The Old, Super-metal-rich Open Cluster, NGC 6791—Elemental Abundances in Turn-off Stars from Keck/HIRES Spectra

    NASA Astrophysics Data System (ADS)

    Boesgaard, Ann Merchant; Lum, Michael G.; Deliyannis, Constantine P.

    2015-02-01

    The study of star clusters has advanced our understanding of stellar evolution, Galactic chemical evolution, and nucleosynthesis. Here we investigate the composition of turn-off stars in the intriguing open cluster, NGC 6791, which is old, but super-metal-rich with high-resolution (R = 46,000) Keck/HIRES spectra. We find [Fe/H] = +0.30 ± 0.02 from measurements of some 40 unblended, unsaturated lines of both Fe I and Fe II in eight turn-off stars. Our O abundances come from the O I triplet near 7774 Å and we perform a differential analysis relative to the Sun from our Lunar spectrum also obtained with Keck/HIRES. The O results are corrected for small nLTE effects. We find consistent ratios of [O/Fe]n with a mean of -0.06 ± 0.02. This is low with respect to field stars that are also both old and metal-rich and continue the trend of decreasing [O/Fe] with increasing [Fe/H]. The small range in our oxygen abundances is consistent with a single population of stars. Our results for the alpha elements [Mg/Fe], [Si/Fe], [Ca/Fe], and [Ti/Fe] are near solar and compare well with those of the old, metal-rich field stars. The two Fe-peak elements, Cr and Ni, are consistent with Fe. These turn-off-star abundances provide benchmark abundances to investigate whether there are any observable abundance differences with the giants that might arise from nuclear-burning and dredge-up processes. Determinations of upper limits were found for Li by spectrum synthesis and are consistent with the upper limits in similar stars in the relatively old, super-metal-rich cluster NGC 6253. Our results support the prediction from standard theory that higher-metallicity stars deplete more Li. Probably no stars in NGC 6791 have retained their initial Li.

  4. The Distances to Open Clusters from Main-sequence Fitting. V. Extension of Color Calibration and Test Using Cool and Metal-rich Stars in NGC 6791

    NASA Astrophysics Data System (ADS)

    An, Deokkeun; Terndrup, Donald M.; Pinsonneault, Marc H.; Lee, Jae-Woo

    2015-09-01

    We extend our effort to calibrate stellar isochrones in the Johnson-Cousins ({{BVI}}C) and the 2MASS ({{JHK}}s) filter systems based on observations of well-studied open clusters. Using cool main-sequence (MS) stars in Praesepe, we define empirical corrections to the Lejeune et al. color-effective temperature ({T}{eff}) relations down to {T}{eff}˜ 3600 {{K}}, complementing our previous work based on the Hyades and the Pleiades. We apply empirically corrected isochrones to existing optical and near-infrared photometry of cool ({T}{eff}≲ 5500 {{K}}) and metal-rich ([{Fe}/{{H}}]= +0.37) MS stars in NGC 6791. The current methodology relies on an assumption that color-{T}{eff} corrections are independent of metallicity, but we find that estimates of color excess and distance from color-magnitude diagrams with different color indices converge on each other at the precisely known metallicity of the cluster. Along with a satisfactory agreement with eclipsing binary data in the cluster, we view the improved internal consistency as a validation of our calibrated isochrones at super-solar metallicities. For very cool stars ({T}{eff}≲ 4800 {{K}}), however, we find that B - V colors of our models are systematically redder than the cluster photometry by ˜0.02 mag. We use color-{T}{eff} transformations from the infrared flux method and alternative photometry to examine a potential color-scale error in the input cluster photometry. After excluding B - V photometry of these cool MS stars, we derive E(B\\-\\V)=0.105+/- 0.014, [M/H]\\=\\+0.42+/- 0.07, {(m\\-\\M)}0=13.04+/- 0.08, and the age of 9.5 ± 0.3 Gyr for NGC 6791.

  5. CCD photometric search for peculiar stars in open clusters. IV. Collinder 272, Pismis 20, Lyng\\aa 14, NGC 6396 and NGC 6611

    NASA Astrophysics Data System (ADS)

    Paunzen, E.; Pintado, O. I.; Maitzen, H. M.

    2002-12-01

    The time scale on which chemical peculiarity in upper main sequence stars begins is unknown. Results from the Hipparcos measurements indicate that the classical chemically peculiar (CP) stars occupy the whole area from the zero age main sequence to the terminal age main sequence (Gómez et al. \\cite{Gom98}). However, Hubrig et al. (\\cite{Hub00}) reported that the magnetic fields appear only in stars that have already completed at least approximately 30% of their main sequence life time. Previous observations in the very young Orion OB1 and Scorpio-Centaurus associations (Joncas & Borra 1981; Borra et al. 1982) reveal a percentage of chemically peculiar stars that is significantly smaller (less than 5%) than that of the galactic field (up to 25%). This already indicates that the phenomenon needs at least several 106 yr to appear. Since no further observations have been published since then, we have observed the five very young (1 Myr <= age <= 25 Myr) open clusters Collinder 272, Pismis 20, Lyng\\aa 14, NGC 6396 and NGC 6611. Photometry from 250 CCD frames in the three filter Delta a-system results in very low detection limits (0.008 to 0.015 mag). We find no single photometrically chemically peculiar candidate in approximately 460 observed cluster members in the five program clusters. From the number of observed objects we deduce upper limits between 0.6% and 2.4% for the incidence of CP stars for the four observed aggregates. Based on observations obtained at Complejo Astronómico el Leoncito (CASLEO), operated under the agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba y San Juan; ESO-La Silla and UTSO-Las Campanas.

  6. Star clusters as laboratories for stellar and dynamical evolution.

    PubMed

    Kalirai, Jason S; Richer, Harvey B

    2010-02-28

    Open and globular star clusters have served as benchmarks for the study of stellar evolution owing to their supposed nature as simple stellar populations of the same age and metallicity. After a brief review of some of the pioneering work that established the importance of imaging stars in these systems, we focus on several recent studies that have challenged our fundamental picture of star clusters. These new studies indicate that star clusters can very well harbour multiple stellar populations, possibly formed through self-enrichment processes from the first-generation stars that evolved through post-main-sequence evolutionary phases. Correctly interpreting stellar evolution in such systems is tied to our understanding of both chemical-enrichment mechanisms, including stellar mass loss along the giant branches, and the dynamical state of the cluster. We illustrate recent imaging, spectroscopic and theoretical studies that have begun to shed new light on the evolutionary processes that occur within star clusters.

  7. Variable stars in two open clusters within the Kepler/K2-Campaign-0 field: M35 and NGC 2158

    NASA Astrophysics Data System (ADS)

    Nardiello, D.; Bedin, L. R.; Nascimbeni, V.; Libralato, M.; Cunial, A.; Piotto, G.; Bellini, A.; Borsato, L.; Brogaard, K.; Granata, V.; Malavolta, L.; Marino, A. F.; Milone, A. P.; Ochner, P.; Ortolani, S.; Tomasella, L.; Clemens, M.; Salaris, M.

    2015-03-01

    We present a multiyear survey aimed at collecting (1) high-precision (˜5 milli-mag), (2) fast-cadence (˜3 min), and (3) relatively long duration (˜10 d) multiband photometric series. The goal of the survey is to discover and characterize efficiently variable objects and exoplanetary transits in four fields containing five nearby open clusters spanning a broad range of ages. More in detail, our project will (1) constitute a preparatory survey for the High Accuracy Radial velocity Planet Searcher for the Northern hemisphere (HARPS-N) mounted at the Telescopio Nazionale Galileo (TNG), which will be used for spectroscopic follow-up of any target of interest that this survey discovers or characterizes, (2) measure rotational periods and estimate the activity level of targets we are already monitoring with HARPS and HARPS-N for exoplanet transit search, and (3) long-term characterization of selected targets of interest in open clusters within the planned K2 fields. In this first paper, we give an overview of the project, and report on the variability of objects within the first of our selected fields, which contains two open clusters: M35 and NGC 2158. We detect 519 variable objects, 273 of which are new discoveries, while the periods of most of the previously known variables are considerably improved.

  8. Star Cluster Buzzing With Pulsars

    NASA Astrophysics Data System (ADS)

    2005-01-01

    A dense globular star cluster near the center of our Milky Way Galaxy holds a buzzing beehive of rapidly-spinning millisecond pulsars, according to astronomers who discovered 21 new pulsars in the cluster using the National Science Foundation's 100-meter Robert C. Byrd Green Bank Telescope (GBT) in West Virginia. The cluster, called Terzan 5, now holds the record for pulsars, with 24, including three known before the GBT observations. Pulsar Diagram Pulsar Diagram: Click on image for more detail. "We hit the jackpot when we looked at this cluster," said Scott Ransom, an astronomer at the National Radio Astronomy Observatory in Charlottesville, VA. "Not only does this cluster have a lot of pulsars -- and we still expect to find more in it -- but the pulsars in it are very interesting. They include at least 13 in binary systems, two of which are eclipsing, and the four fastest-rotating pulsars known in any globular cluster, with the fastest two rotating nearly 600 times per second, roughly as fast as a household blender," Ransom added. Ransom and his colleagues reported their findings to the American Astronomical Society's meeting in San Diego, CA, and in the online journal Science Express. The star cluster's numerous pulsars are expected to yield a bonanza of new information about not only the pulsars themselves, but also about the dense stellar environment in which they reside and probably even about nuclear physics, according to the scientists. For example, preliminary measurements indicate that two of the pulsars are more massive than some theoretical models would allow. "All these exotic pulsars will keep us busy for years to come," said Jason Hessels, a Ph.D student at McGill University in Montreal. Globular clusters are dense agglomerations of up to millions of stars, all of which formed at about the same time. Pulsars are spinning, superdense neutron stars that whirl "lighthouse beams" of radio waves or light around as they spin. A neutron star is what is

  9. Photometric distances to young stars in the inner Galactic disk. II. The region towards the open cluster Trumpler 27 at L = 355°

    NASA Astrophysics Data System (ADS)

    Perren, G.; Vázquez, R. A.; Carraro, G.

    2012-12-01

    Context. The spiral structure of the Milky Way inside the solar circle is still poorly known because of the high density of the material that causes strong extinction towards the Galactic center. Aims: We present results of the first extensive and deep color-color diagram (CCD) photometric survey carried out in the field of the open cluster Trumpler 27, an object immersed in a region of extremely high visual absorption in the constellation of Sagittarius not far from the Galaxy center. The survey covers almost a quarter of square degree. Methods: We look for young stars clumps that might plausibly be associated with spiral structure. Wide-field UBVI photometry combined with infrared information allows us to reconstruct the distribution in the reddening and distance of young stars in the field using the CCD and color-magnitude diagrams (CMD). Results: The analysis of our data, combined with extensive spectroscopy taken from the literature, shows that the real entity of Trumpler 27 as an open cluster is far from being firmly stated. In fact, instead of finding a relatively compact group of stars confined to a small distance range, we found that stars associated with Trumpler 27 are, indeed, a superposition of early-type stars seen along the line of sight extending over several kiloparsecs beyond even the center of the Galaxy. We demonstrate that at each distance range it becomes possible to generate a CMD resembling that of an open cluster. This way, our analysis indicates that what was considered an open cluster characterized by a significant age spread is a stellar continuum that reaches its maximum number of stars at approximately 3.5 kpc from the Sun, the distance of the Scutum-Crux arm approximately. After analyzing the way early-type stars distribute with distance, we found that some of these stellar groups may be linked, within the distance errors, with other inner spiral arms of our Galaxy, including the Near 3 kpc arm at approximately 5 kpc from the Sun

  10. THE YOUNG OPEN CLUSTER BERKELEY 55

    SciTech Connect

    Negueruela, Ignacio; Marco, Amparo E-mail: amparo.marco@ua.es

    2012-02-15

    We present UBV photometry of the highly reddened and poorly studied open cluster Berkeley 55, revealing an important population of B-type stars and several evolved stars of high luminosity. Intermediate-resolution far-red spectra of several candidate members confirm the presence of one F-type supergiant and six late supergiants or bright giants. The brightest blue stars are mid-B giants. Spectroscopic and photometric analyses indicate an age 50 {+-} 10 Myr. The cluster is located at a distance d Almost-Equal-To 4 kpc, consistent with other tracers of the Perseus Arm in this direction. Berkeley 55 is thus a moderately young open cluster with a sizable population of candidate red (super)giant members, which can provide valuable information about the evolution of intermediate-mass stars.

  11. STAR cluster-finder ASIC

    SciTech Connect

    Botlo, M.; LeVine, M.J.; Scheetz, R.A.

    1997-12-31

    The STAR experiment reads out a TPC and an SVT (silicon vertex tracker), both of which require in-line pedestal subtraction, compression of ADC values from 10-bit to 8-bit, and location of time sequences representing responses to charged-particle tracks. The STAR cluster finder ASIC responds to all of these needs. Pedestal subtraction and compression are performed using lookup tables in attached RAM. We describe its design and implementation, as well as testing methodology and results of tests performed on foundry prototypes.

  12. Two spotted and magnetic early B-type stars in the young open cluster NGC 2264 discovered by MOST and ESPaDOnS

    NASA Astrophysics Data System (ADS)

    Fossati, L.; Zwintz, K.; Castro, N.; Langer, N.; Lorenz, D.; Schneider, F. R. N.; Kuschnig, R.; Matthews, J. M.; Alecian, E.; Wade, G. A.; Barnes, T. G.; Thoul, A. A.

    2014-02-01

    Star clusters are known as superb tools for understanding stellar evolution. In a quest for understanding the physical origin of magnetism and chemical peculiarity in about 7% of the massive main-sequence stars, we analysed two of the ten brightest members of the ~10 Myr old Galactic open cluster NGC 2264, the early B-dwarfs HD 47887 and HD 47777. We find accurate rotation periods of 1.95 and 2.64 days, respectively, from MOST photometry. We obtained ESPaDOnS spectropolarimetric observations, through which we determined stellar parameters, detailed chemical surface abundances, projected rotational velocities, and the inclination angles of the rotation axis. Because we found only small (<5 km s-1) radial velocity variations, most likely caused by spots, we can rule out that HD 47887 and HD 47777 are close binaries. Finally, using the least-squares deconvolution technique, we found that both stars possess a large-scale magnetic field with an average longitudinal field strength of about 400 G. From a simultaneous fit of the stellar parameters we determine the evolutionary masses of HD 47887 and HD 47777 to be 9.4+0.6-0.7 M⊙ and 7.6+0.5-0.5 M⊙. Interestingly, HD 47777 shows a remarkable helium underabundance, typical of helium-weak chemically peculiar stars, while the abundances of HD 47887 are normal, which might imply that diffusion is operating in the lower mass star but not in the slightly more massive one. Furthermore, we argue that the rather slow rotation, as well as the lack of nitrogen enrichment in both stars, can be consistent with both the fossil and the binary hypothesis for the origin of the magnetic field. However, the presence of two magnetic and apparently single stars near the top of the cluster mass-function may speak in favour of the latter. Based on data from the MOST satellite, a Canadian Space Agency mission, jointly operated by Microsatellite Systems Canada Inc. (MSCI), formerly part of Dynacon, Inc., the University of Toronto Institute for

  13. Messier's nebulae and star clusters.

    NASA Astrophysics Data System (ADS)

    Jones, K. G.

    Charles Messier's Catalogue of nebulae and star clusters, published in 1784, marked the start of a new era of deep sky astronomy. Today, this tradition of observing galaxies and clusters is kept alive by serious amateur astronomers who study the objects of the deep sky. Nearly all the objects are visible in a small telescope. The author has revised his definitive version of Messier's Catalogue. His own observations and drawings, together with maps and diagrams, make this a valuable introduction to deep sky observing. Historical and astrophysical notes bring the science of these nebulae right up to date.

  14. CCD photometric search for peculiar stars in open clusters. V. NGC 2099, NGC 3114, NGC 6204, NGC 6705 and NGC 6756

    NASA Astrophysics Data System (ADS)

    Paunzen, E.; Pintado, O. I.; Maitzen, H. M.

    2003-12-01

    We have investigated 1008 objects in the area of five intermediate age open clusters (NGC 2099, NGC 3114, NGC 6204, NGC 6705 and NGC 6756) via the narrow band Δ a-system. The detection limit for photometric peculiarity is very low (always less than 0.009 mag) due to the high number of individual frames used (193 in total). We have detected six peculiar objects in NGC 6705 and NGC 6756 from which one in the latter is almost certainly an unreddened late type foreground star. The remaining five stars are probably cluster members and bona fide chemically peculiar objects (two are łambda Bootis type candidates). Furthermore, we have investigated NGC 3114, a cluster for which already photoelectric Δ a-measurements exist. A comparison of the CCD and photoelectric values shows very good agreement. Again, the high capability of our CCD Δ a-photometric system to sort out true peculiar objects together with additional measurements from broad or intermediate band photometry is demonstrated. Based on observations obtained at Complejo Astronómico el Leoncito (CASLEO), operated under the agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba y San Juan; ESO-La Silla, UTSO-Las Campanas and L. Figl Observatory, Mt. Schöpfl (Austria). Figure 1 and Table 2 are only available in electronic form at http://www.edpsciences.org

  15. Observer's Guide to Star Clusters

    NASA Astrophysics Data System (ADS)

    Inglis, Mike

    Star clusters are among the most intriguing, amazing, and beautiful objects in the night sky. They can be young or old, large or small, bright or faint, and so on. But what is important, as they relate to this guide, is that seen in a telescope (or binoculars, or even the naked eye), they can be glorious, with a dazzling array of colors, brightnesses, and even shapes with arcs and streams, wisps of nebulosity, and dark dust lanes, making them literally breathtaking.

  16. Open clusters in Auriga OB2

    NASA Astrophysics Data System (ADS)

    Marco, Amparo; Negueruela, Ignacio

    2016-06-01

    We study the area around the H II region Sh 2-234, including the young open cluster Stock 8, to investigate the extent and definition of the association Aur OB2 and the possible role of triggering in massive cluster formation. We obtained Strömgren and J, H, KS photometry for Stock 8 and Strömgren photometry for two other cluster candidates in the area, which we confirm as young open clusters and name Alicante 11 and Alicante 12. We took spectroscopy of ˜33 early-type stars in the area, including the brightest cluster members. We calculate a common distance of 2.80^{+0.27}_{-0.24} kpc for the three open clusters and surrounding association. We derive an age 4-6 Ma for Stock 8, and do not find a significantly different age for the other clusters or the association. The star LS V +34°23, with spectral type O8 II(f), is likely the main source of ionization of Sh 2-234. We observe an important population of pre-main-sequence stars, some of them with discs, associated with the B-type members lying on the main sequence. We interpret the region as an area of recent star formation with some residual and very localized ongoing star formation. We do not find evidence for sequential star formation on a large scale. The classical definition of Aur OB2 has to be reconsidered, because its two main open clusters, Stock 8 and NGC 1893, are not at the same distance. Stock 8 is probably located in the Perseus arm, but other nearby H II regions whose distances also place them in this arm show quite different distances and radial velocities and, therefore, are not connected.

  17. Hidden Milky Way star clusters hosting Wolf-Rayet stars

    NASA Astrophysics Data System (ADS)

    Kurtev, R.; Borissova, J.; Ivanov, V. D.; Georgiev, L.

    2009-05-01

    A noticeable fraction of the hidden young star clusters contain WR and O stars providing us with unique laboratories to study the evolution of these rare objects and their maternity places. We are reporting the reddening, the distance and age of two new members of the family of massive young Galactic clusters, hosting WR stars - Glimpse 23 and Glimpse 30.

  18. Properties of Massive Stars in VVV Clusters

    NASA Astrophysics Data System (ADS)

    Hervé, A.; Martins, F.; Chené, A.-N.; Bouret, J.-C.; Borrissova, J.

    2015-12-01

    The evolution of massive stars is only partly understood. Observational constraints can be obtained from the study of massive stars located in young massive clusters. The ESO Public Survey VISTA Variables in the Via Lactea (VVV) discovered several new clusters hosting massive stars (Borrissova et al. [1]). We derive the stellar parameters of all targets as well as surface abundances for a subset of them. For the cluster with the largest number of objects, we establish firmly that the WN and WC stars were initially more massive than the O stars still present in the cluster.

  19. A revolution in star cluster research: setting the scene.

    PubMed

    de Grijs, Richard

    2010-02-28

    Star clusters and their stellar populations play a significant role in the context of galaxy evolution, across space (from local to high redshift) and time (from currently forming to fossil remnants). We are now within reach of answering a number of fundamental questions that will have a significant impact on our understanding of key open issues in contemporary astrophysics, ranging from the formation, assembly and evolution of galaxies to the details of the star-formation process. Our improved understanding of the physics driving star cluster formation and evolution has led to the emergence of crucial new open questions that will most probably be tackled in a systematic way in the next decade.

  20. DYNAMICS OF PLANETARY SYSTEMS IN STAR CLUSTERS

    SciTech Connect

    Spurzem, R.; Giersz, M.; Heggie, D. C.; Lin, D. N. C.

    2009-05-20

    At least 10%-15% of nearby Sunlike stars have known Jupiter-mass planets. In contrast, very few planets are found in mature open and globular clusters such as the Hyades and 47 Tuc. We explore here the possibility that this dichotomy is due to the postformation disruption of planetary systems associated with the stellar encounters in long-lived clusters. One supporting piece of evidence for this scenario is the discovery of freely floating low-mass objects in star forming regions. We use two independent numerical approaches, a hybrid Monte Carlo and a direct N-body method, to simulate the impact of the encounters. We show that the results of numerical simulations are in reasonable agreement with analytical determinations in the adiabatic and impulsive limits. They indicate that distant stellar encounters generally do not significantly modify the compact and nearly circular orbits. However, moderately close stellar encounters, which are likely to occur in dense clusters, can excite planets' orbital eccentricity and induce dynamical instability in systems that are closely packed with multiple planets. The disruption of planetary systems occurs primarily through occasional nearly parabolic, nonadiabatic encounters, though eccentricity of the planets evolves through repeated hyperbolic adiabatic encounters that accumulate small-amplitude changes. The detached planets are generally retained by the potential of their host clusters as free floaters in young stellar clusters such as {sigma} Orionis. We compute effective cross sections for the dissolution of planetary systems and show that, for all initial eccentricities, dissolution occurs on timescales that are longer than the dispersion of small stellar associations, but shorter than the age of typical open and globular clusters. Although it is much more difficult to disrupt short-period planets, close encounters can excite modest eccentricity among them, such that subsequent tidal dissipation leads to orbital decay

  1. The life and death of star clusters

    NASA Astrophysics Data System (ADS)

    Whitmore, B. C.

    It is generally believed that most stars are born in groups and clusters, rather than in the field. In recent years it has been demonstrated that merging galaxies produce large numbers of young massive star clusters, sometimes called super star clusters. Understanding what triggers the formation of these young massive clusters provides important information about the formation of stars in general. In recent years it has also become apparent that most clusters do not survive more than ~ 10 Myr (i.e., "infant mortality"). Hence, it is just as important to understand the disruption of star clusters as it is to to understand their formation if we want to understand the demographics of both star clusters and field stars. This talk will first discuss what triggers star cluster formation in merging galaxies (primarily in the Antennae galaxies) and will then outline a general framework designed to empirically fit observations of both star clusters and field stars in a wide variety of galaxies from mergers to quiescent spirals.

  2. VizieR Online Data Catalog: LAMOST DR2 star clusters candidate members (Zhang+, 2015)

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Chen, X.-Y.; Liu, C.; Chen, L.; Deng, L.-C.; Hou, J.-L.; Shao, Z.-Y.; Yang, F.; Wu, Y.; Yang, M.; Zhang, Y.; Hou, Y.-H.; Wang, Y.-F.

    2015-11-01

    We adopt the Milky Way Star Cluster (MWSC) catalog (Kharchenko et al. 2012, Cat. J/A+A/543/A156; 2013, Cat. J/A+A/558/A53) as the list of target star clusters since it provides homogeneous parameters of Milky Way star clusters and is complete in the volume observed by LAMOST. Thus we use the MWSC radius parameters for star clusters, i.e., r0 in the MWSC is the angular radius of the core of the cluster, and r2 (hereafter rewritten as rc) stands for the angular radius of the cluster. A star cluster is covered by the LAMOST footprint if the number of stars located within 2rc of the cluster is larger than zero. In total, 457 star clusters, including open clusters, globular clusters, stellar associations and moving groups, are included in LAMOST DR2. (2 data files).

  3. Orbit and physical characteristics of the components of the massive Algol V622 Per, a member of the open star cluster χ Per

    NASA Astrophysics Data System (ADS)

    Tarasov, A. E.; Malchenko, S. L.; Yakut, K.

    2016-10-01

    Analysis of the radial velocities based on spectra of high (near the H α line) and moderate (4420-4960 Å) resolutions supplemented by the published radial velocities has revealed the binarity of a bright member of the young open star cluster χ Per, the star V622 Per. The derived orbital elements of the binary show that the lines of both components are seen in its spectrum, the orbital period is 5.2 days, and the binary is in the phase of active mass exchange. The photometric variability of the star is caused by the ellipsoidal shape of its components. Analysis of the spectroscopic and photometric variabilities has allowed the absolute parameters of the binary's orbit and its components to be found. V622 Per is shown to be a classical Algol with moderate mass exchange in the binary. Mass transfer occurs from the less massive ({M_1} = 9.1 ± 2.7{M_⊙}) but brighter (log {L_1} = 4.52 ± 0.10{L_⊙}) component onto the more massive ({M_2} = 13.0 ± 3.5{M_⊙}) and less bright (log {L_2} = 3.96 ± 0.10{L_⊙}) component. Analysis of the spectra has confirmed an appreciable overabundance of CNO-cycle products in the atmosphere of the primary component. Comparison of the positions of the binary's components on the T eff-log g diagram with the age of the cluster χ Per points to a possible delay in the evolution of the primary component due to mass loss by no more than 1-2Myr.

  4. Shape parameters of Galactic open clusters

    NASA Astrophysics Data System (ADS)

    Kharchenko, N. V.; Berczik, P.; Petrov, M. I.; Piskunov, A. E.; Röser, S.; Schilbach, E.; Scholz, R.-D.

    2009-03-01

    Context: Ellipticities have been determined for only a few tens of open clusters. Aims: We derive the observed and modelled shape parameters (apparent ellipticity and orientation of the ellipse) of 650 Galactic open clusters identified in the ASCC-2.5 catalogue. Methods: We compute the observed shape parameters of Galactic open clusters with a multi-component analysis. For the vast majority of clusters, these parameters are determined for the first time. High resolution (“star by star”) N-body simulations are carried out with a specially developed φGRAPE code providing models of clusters of different initial masses, Galactocentric distances, and rotation velocities. Results: By comparing models and observations for about 150 clusters, we find that the ellipticities of observed clusters are too low (0.2 vs. 0.3), and take a first step in identifying the main reason for this discrepancy. After ≈50 Myr, the models predict that clusters exhibit an oblate shape with an axis ratio of 1.65{:}1.35{:}1, and a major axis tilt by an angle of qXY ≈ 30° with respect to the Galactocentric radius due to the differential rotation of the Galaxy. Conclusions: Unbiased estimates of cluster shape parameters require reliable membership determination in large cluster areas out to 2-3 tidal radii, where the density of cluster stars is considerably lower than the background. Although dynamically bound stars beyond the tidal radius contribute insignificantly to the cluster mass, knowledge of their distribution is essential for a correct determination of cluster shape parameters. In contrast, a restricted mass range of cluster stars does not play such a dramatic role, although deep surveys allow us to identify more cluster members and, therefore, to increase the accuracy of the observed shape parameters. The determined shape parameters for 650 clusters are listed in a table that is available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or

  5. THE SIZE SCALE OF STAR CLUSTERS

    SciTech Connect

    Madrid, Juan P.; Hurley, Jarrod R.; Sippel, Anna C.

    2012-09-10

    Direct N-body simulations of star clusters in a realistic Milky-Way-like potential are carried out using the code NBODY6. Based on these simulations, a new relationship between scale size and galactocentric distance is derived: the scale size of star clusters is proportional to the hyperbolic tangent of the galactocentric distance. The half-mass radius of star clusters increases systematically with galactocentric distance but levels off when star clusters orbit the galaxy beyond {approx}40 kpc. These simulations show that the half-mass radius of individual star clusters varies significantly as they evolve over a Hubble time, more so for clusters with shorter relaxation times, and remains constant through several relaxation times only in certain situations when expansion driven by the internal dynamics of the star cluster and the influence of the host galaxy tidal field balance each other. Indeed, the radius of a star cluster evolving within the inner 20 kpc of a realistic galactic gravitational potential is severely truncated by tidal interactions and does not remain constant over a Hubble time. Furthermore, the half-mass radius of star clusters measured with present-day observations bears no memory of the original cluster size. Stellar evolution and tidal stripping are the two competing physical mechanisms that determine the present-day size of globular clusters. These simulations also show that extended star clusters can form at large galactocentric distances while remaining fully bound to the host galaxy. There is thus no need to invoke accretion from an external galaxy to explain the presence of extended clusters at large galactocentric distances in a Milky-Way-type galaxy.

  6. Simulating the Birth of Massive Star Clusters: Is Destruction Inevitable?

    NASA Astrophysics Data System (ADS)

    Rosen, Anna

    2013-10-01

    Very early in its operation, the Hubble Space Telescope {HST} opened an entirely new frontier: study of the demographics and properties of star clusters far beyond the Milky Way. However, interpretation of HST's observations has proven difficult, and has led to the development of two conflicting models. One view is that most massive star clusters are disrupted during their infancy by feedback from newly formed stars {i.e., "infant mortality"}, independent of cluster mass or environment. The other model is that most star clusters survive their infancy and are disrupted later by mass-dependent dynamical processes. Since observations at present have failed to discriminate between these views, we propose a theoretical investigation to provide new insight. We will perform radiation-hydrodynamic simulations of the formation of massive star clusters, including for the first time a realistic treatment of the most important stellar feedback processes. These simulations will elucidate the physics of stellar feedback, and allow us to determine whether cluster disruption is mass-dependent or -independent. We will also use our simulations to search for observational diagnostics that can distinguish bound from unbound clusters, and to predict how cluster disruption affects the cluster luminosity function in a variety of galactic environments.

  7. Massive Stars in the Quintuplet Cluster

    NASA Astrophysics Data System (ADS)

    Figer, Donald F.; McLean, Ian S.; Morris, Mark

    1999-03-01

    We present near-infrared photometry and K-band spectra of newly identified massive stars in the Quintuplet cluster, one of the three massive clusters projected within 50 pc of the Galactic center. We find that the cluster contains a variety of massive stars, including more unambiguously identified Wolf-Rayet stars than any cluster in the Galaxy, and over a dozen stars in earlier stages of evolution, i.e., luminous blue variables (LBVs), Ofpe/WN9, and OB supergiants. One newly identified star is the second luminous blue variable in the cluster, after the ``Pistol star.'' Although we are unable to provide certain spectral classifications for the five enigmatic Quintuplet-proper members, we tentatively propose that they are extremely dusty versions of the WC stars found elsewhere in the cluster and similar to the dozen or so known examples in the Galaxy. Although the cluster parameters are uncertain because of photometric errors and uncertainties in stellar models, i.e., extrapolating initial masses and estimating ionizing fluxes, we have the following conclusions. Given the evolutionary stages of the identified stars, the cluster appears to be about 4+/-1 Myr old, assuming coeval formation. The total mass in observed stars is ~103 Msolar, and the implied mass is ~104 Msolar, assuming a lower mass cutoff of 1 Msolar and a Salpeter initial mass function. The implied mass density in stars is greater than or similar to a few thousand Msolar pc-3. The newly identified stars increase the estimated ionizing flux from this cluster by about an order of magnitude with respect to earlier estimates, to 1050.9 photons s-1, or roughly what is required to ionize the nearby ``Sickle'' H II region (G0.18-0.04). The total luminosity from the massive cluster stars is ~107.5 Lsolar, enough to account for the heating of the nearby molecular cloud, M0.20-0.033. We propose a picture that integrates most of the major features in this part of the sky, excepting the nonthermal filaments. We

  8. Star clusters as simple stellar populations.

    PubMed

    Bruzual A, Gustavo

    2010-02-28

    In this paper, I review to what extent we can understand the photometric properties of star clusters, and of low-mass, unresolved galaxies, in terms of population-synthesis models designed to describe 'simple stellar populations' (SSPs), i.e. groups of stars born at the same time, in the same volume of space and from a gas cloud of homogeneous chemical composition. The photometric properties predicted by these models do not readily match the observations of most star clusters, unless we properly take into account the expected variation in the number of stars occupying sparsely populated evolutionary stages, owing to stochastic fluctuations in the stellar initial mass function. In this case, population-synthesis models reproduce remarkably well the full ranges of observed integrated colours and absolute magnitudes of star clusters of various ages and metallicities. The disagreement between the model predictions and observations of cluster colours and magnitudes may indicate problems with or deficiencies in the modelling, and does not necessarily tell us that star clusters do not behave like SSPs. Matching the photometric properties of star clusters using SSP models is a necessary (but not sufficient) condition for clusters to be considered SSPs. Composite models, characterized by complex star-formation histories, also match the observed cluster colours.

  9. The Formation and Dynamical Evolution of Young Star Clusters

    NASA Astrophysics Data System (ADS)

    Fujii, M. S.; Portegies Zwart, S.

    2016-01-01

    Recent observations have revealed a variety of young star clusters, including embedded systems, young massive clusters, and associations. We study the formation and dynamical evolution of these clusters using a combination of simulations and theoretical models. Our simulations start with a turbulent molecular cloud that collapses under its own gravity. The stars are assumed to form in the densest regions in the collapsing cloud after an initial free-fall time of the molecular cloud. The dynamical evolution of these stellar distributions is continued by means of direct N-body simulations. The molecular clouds typical of the Milky Way Galaxy tend to form embedded clusters that evolve to resemble open clusters. The associations were initially considerably more clumpy, but they lost their irregularity in about a dynamical timescale, due to the relaxation process. The densest molecular clouds, which are absent in the Milky Way but are typical in starburst galaxies, form massive, young star clusters. They indeed are rare in the Milky Way. Our models indicate a distinct evolutionary path from molecular clouds to open clusters and associations or to massive star clusters. The mass-radius relation for both types of evolutionary tracks excellently matches the observations. According to our calculations, the time evolution of the half-mass-radius relation for open clusters and associations follows {r}{{h}}/{{pc}}=2.7{({t}{{age}}/{{pc}})}2/3, whereas for massive star clusters {r}{{h}}/{{pc}}=0.34{({t}{{age}}/{{Myr}})}2/3. Both trends are consistent with the observed age-mass-radius relation for clusters in the Milky Way.

  10. Magnetic Stars in Young Clusters and Associations

    NASA Astrophysics Data System (ADS)

    Romanyuk, I. I.; Semenko, E. A.; Yakunin, I. A.

    2015-04-01

    We present a review of the current state of the problem. The spatial distribution of magnetic CP stars in the Galaxy corresponds to the distribution of normal A and B stars of the same temperature. Most magnetic Bp stars observed (61%) are the cluster stars, while most of Ap stars (75%) are the field stars. Evolution of magnetic fields of CP stars is preferably to be studied with the use of Bp stars in clusters of different age. A total of 85 CP stars of various types are identified among 814 members of the Ori OB1 association. The fraction of CP stars decreases with age for different cluster subgroups: from 21.4% in the youngest subgroup (d) to 7.7% in the oldest one (a). The association contains 33 magnetic stars, 11 of them were found as magnetic using the 6-m telescope. A strong field (the longitudinal component Be>3 kG) more often occurs in the hot Bp stars-members of the Ori OB1 association and among the members of the Scorpio-Centaurus cluster. What is not a general law—two cool magnetic Ap stars (HD 154708 and HD 178892) with a 7-8 kG longitudinal field Be have been found. The Babcock's (1960) star HD 215441 is the record dipolar surface field (Bs =34 kG) star yet. The chemical composition of weak- and strong-field stars does not differ, but strong-field CP stars have essentially larger continuum depressions.

  11. Constraining massive star evolution from massive clusters

    NASA Astrophysics Data System (ADS)

    Chene, Andre-Nicolas; Herve, Anthony; Martins, Fabrice; Bouret, Jean-Claude; Borissova, Jordanka; Ramirez, Sebastian; Kurtev, Radostin; Kumar, Nanda; Amigo, Pia; Fierro, Celia

    2013-06-01

    The exact evolution of massive stars is not accurately known at present. The general trend is that stars with masses above 40 - 60 Mo go from O-type stars to H-rich WN stars, and Luminous Blue Variables (?), before turning into H-poor WN stars and finally WC stars. At lower masses, the H-rich WN and LBV phases are replaced by a blue and a red supergiant phases, respectively. However, what are the details of such evolutionary sequences? The study of massive clusters is a golden opportunity to establish this. Indeed, the turn-off mass of massive clusters can be directly translated into the mass, and hence the nature, of the progenitors of their evolved objects contents. So far, only the Arches, Quintuplet, NGC3603, NGC2244 and central clusters have been studied this way. But 6 newly discovered heavily-obscured clusters in the large survey â"VISTA Variables in the Via Lactea" (VVV) have been found to have Wolf-Rayet stars as well as blue and/or red supergiants, together with many main sequence OB stars. This poster presents our efforts to model the massive star components of these clusters using CMFGEN, bringing new blocks to the pavement of massive stellar evolution and more than doubling the number of clusters in which such evolutionary sequence are established.

  12. Properties and Formation of Star Clusters

    NASA Astrophysics Data System (ADS)

    Sharina, M. E.

    2016-03-01

    Many key problems in astrophysics involve research on the properties of star clusters, for example: stellar evolution and nucleosynthesis, the history of star formation in galaxies, formation dynamics of galaxies and their subsystems, the calibration of the fundamental distance scale in the universe, and the luminosity functions of stars and star clusters. This review is intended to familiarize the reader with modern observational and theoretical data on the formation and evolution of star clusters in our galaxy and others. Unsolved problems in this area are formulated and research on ways to solve them is discussed. In particular, some of the most important current observational and theoretical problems include: (1) a more complete explanation of the physical processes in molecular clouds leading to the formation and evolution of massive star clusters; (2) observation of these objects in different stages of evolution, including protoclusters, at wavelengths where interstellar absorption is minimal; and, (3) comparison of the properties of massive star clusters in different galaxies and of galaxies during the most active star formation phase at different red shifts. The main goal in solving these problems is to explain the variations in the abundance of chemical elements and in the multiple populations of stars in clusters discovered at the end of the twentieth century.

  13. Probing Massive Star Cluster Formation with ALMA

    NASA Astrophysics Data System (ADS)

    Johnson, Kelsey

    2015-08-01

    Observationally constraining the physical conditions that give rise to massive star clusters has been a long-standing challenge. Now with the ALMA Observatory coming on-line, we can finally begin to probe the birth environments of massive clusters in a variety of galaxies with sufficient angular resolution. In this talk I will give an overview of ALMA observations of galaxies in which candidate proto-super star cluster molecular clouds have been identified. These new data probe the physical conditions that give rise to super star clusters, providing information on their densities, pressures, and temperatures. In particular, the observations indicate that these clouds may be subject to external pressures of P/k > 108 K cm-3, which is consistent with the prevalence of optically observed adolescent super star clusters in interacting galaxy systems and other high pressure environments. ALMA observations also enable an assessement of the molecular cloud chemical abundances in the regions surrounding super star clusters. Molecular clouds associated with existing super star clusters are strongly correlated with HCO+ emission, but appear to have relatively low ratio of CO/HCO+ emission compared to other clouds, indicating that the super star clusters are impacting the molecular abundances in their vicinity.

  14. Close binary stars in globular clusters

    NASA Technical Reports Server (NTRS)

    Margon, Bruce

    1991-01-01

    Although close binary stars are thought theoretically to play a major role in globular cluster dynamics, virtually no non-degenerate close binaries are known in clusters. We review the status of observations in this area, and report on two new programs which are finally yielding candidate systems suitable for further study. One of the objects, a close eclipsing system in omega Cen, is also a big straggler, thus finally proving firm evidence that globular cluster blue stragglers really are binary stars.

  15. Giant Planets in Open Clusters

    NASA Astrophysics Data System (ADS)

    Quinn, S. N.; White, R. J.; Latham, D. W.

    2015-10-01

    Two decades after the discovery of 51 Peg b, more than 200 hot Jupiters have now been confirmed, but the details of their inward migration remain uncertain. While it is widely accepted that short period giant planets could not have formed in situ, several different mechanisms (e.g., Type II migration, planet-planet scattering, Kozai-Lidov cycles) may contribute to shrinking planetary orbits, and the relative importance of each is not well-constrained. Migration through the gas disk is expected to preserve circular, coplanar orbits and must occur quickly (within ˜ 10 Myr), whereas multi-body processes should initially excite eccentricities and inclinations and may take hundreds of millions of years. Subsequent evolution of the system (e.g., orbital circularization and inclination damping via tidal interaction with the host star) may obscure these differences, so observing hot Jupiters soon after migration occurs can constrain the importance of each mechanism. Fortunately, the well-characterized stars in young and adolescent open clusters (with known ages and compositions) provide natural laboratories for such studies, and recent surveys have begun to take advantage of this opportunity. We present a review of the discoveries in this emerging realm of exoplanet science, discuss the constraints they provide for giant planet formation and migration, and reflect on the future direction of the field.

  16. Mass-losing red giants in open clusters

    NASA Technical Reports Server (NTRS)

    Jura, M.

    1987-01-01

    Mass-losing stars in open clusters with main-sequence turn-offs at intermediate mass have been searched for by using the IRAS data base. The absence of many strong 60 micron sources in open clusters implies that intermediate-mass stars lose much of their mass during an intense wind phase of rather short duration. For stars of about seven solar masses, this phase, if it exists at all, lasts for not much more than 100,000 yr. For stars of about four solar masses, the intense wind phase appears to last considerably less than 10 million yr; it may well last for less than a million yr.

  17. Photometry of the young open cluster Trumpler 37

    SciTech Connect

    Marschall, L.A.; Karshner, G.B.; Comins, N.F. Main, Univ., Orono )

    1990-05-01

    Photoelectric UBV observations of 120 stars in the young open cluster Trumpler 37 are presented, primarily in the magnitude range 10.0 - 13.5. An analysis of the color-magnitude diagram of the cluster yields an age of 6.7 million yr and reveals the presence of a number of possible pre-main-sequence stars in the cluster. 24 refs.

  18. Young and intermediate-age massive star clusters.

    PubMed

    Larsen, Søren S

    2010-02-28

    An overview of our current understanding of the formation and evolution of star clusters is given, with the main emphasis on high-mass clusters. Clusters form deeply embedded within dense clouds of molecular gas. Left-over gas is cleared within a few million years and, depending on the efficiency of star formation, the clusters may disperse almost immediately or remain gravitationally bound. Current evidence suggests that a small percentage of star formation occurs in clusters that remain bound, although it is not yet clear whether this fraction is truly universal. Internal two-body relaxation and external shocks will lead to further, gradual dissolution on time scales of up to a few hundred million years for low-mass open clusters in the Milky Way, while the most massive clusters (>10(5) M(o)) have lifetimes comparable to or exceeding the age of the Universe. The low-mass end of the initial cluster mass function is well approximated by a power-law distribution, dN/dM proportional to M(-2), but there is mounting evidence that quiescent spiral discs form relatively few clusters with masses M > 2 x 10(5) M(o). In starburst galaxies and old globular cluster systems, this limit appears to be higher, at least several x10(6) M(o). The difference is likely related to the higher gas densities and pressures in starburst galaxies, which allow denser, more massive giant molecular clouds to form. Low-mass clusters may thus trace star formation quite universally, while the more long-lived, massive clusters appear to form preferentially in the context of violent star formation.

  19. Young and intermediate-age massive star clusters.

    PubMed

    Larsen, Søren S

    2010-02-28

    An overview of our current understanding of the formation and evolution of star clusters is given, with the main emphasis on high-mass clusters. Clusters form deeply embedded within dense clouds of molecular gas. Left-over gas is cleared within a few million years and, depending on the efficiency of star formation, the clusters may disperse almost immediately or remain gravitationally bound. Current evidence suggests that a small percentage of star formation occurs in clusters that remain bound, although it is not yet clear whether this fraction is truly universal. Internal two-body relaxation and external shocks will lead to further, gradual dissolution on time scales of up to a few hundred million years for low-mass open clusters in the Milky Way, while the most massive clusters (>10(5) M(o)) have lifetimes comparable to or exceeding the age of the Universe. The low-mass end of the initial cluster mass function is well approximated by a power-law distribution, dN/dM proportional to M(-2), but there is mounting evidence that quiescent spiral discs form relatively few clusters with masses M > 2 x 10(5) M(o). In starburst galaxies and old globular cluster systems, this limit appears to be higher, at least several x10(6) M(o). The difference is likely related to the higher gas densities and pressures in starburst galaxies, which allow denser, more massive giant molecular clouds to form. Low-mass clusters may thus trace star formation quite universally, while the more long-lived, massive clusters appear to form preferentially in the context of violent star formation. PMID:20083510

  20. Comets, interstellar clouds and star clusters

    NASA Technical Reports Server (NTRS)

    Donn, B.

    1976-01-01

    The association of comets with star formation in clusters is elaborated. This hypothesis is also used to explain origin and evaluation of the Oort cloud, the composition of comets, and relationships between cometary and interstellar molecules.

  1. Effect of tidal fields on star clusters

    NASA Technical Reports Server (NTRS)

    Chernoff, David; Weinberg, Martin

    1991-01-01

    We follow the dynamical evolution of a star cluster in a galactic tidal field using a restricted N-body code. We find large asymmetric distortions in the outer profile of the cluster in the first 10 or so crossing times as material is lost. Prograde stars escape preferentially and establish a potentially observable retrograde rotation in the halo. We present the rate of particle loss and compare with the prescription proposed by Lee and Ostriker (1987).

  2. Star formation and substructure in galaxy clusters

    SciTech Connect

    Cohen, Seth A.; Hickox, Ryan C.; Wegner, Gary A.; Einasto, Maret; Vennik, Jaan

    2014-03-10

    We investigate the relationship between star formation (SF) and substructure in a sample of 107 nearby galaxy clusters using data from the Sloan Digital Sky Survey. Several past studies of individual galaxy clusters have suggested that cluster mergers enhance cluster SF, while others find no such relationship. The SF fraction in multi-component clusters (0.228 ± 0.007) is higher than that in single-component clusters (0.175 ± 0.016) for galaxies with M{sub r}{sup 0.1}<−20.5. In both single- and multi-component clusters, the fraction of star-forming galaxies increases with clustercentric distance and decreases with local galaxy number density, and multi-component clusters show a higher SF fraction than single-component clusters at almost all clustercentric distances and local densities. Comparing the SF fraction in individual clusters to several statistical measures of substructure, we find weak, but in most cases significant at greater than 2σ, correlations between substructure and SF fraction. These results could indicate that cluster mergers may cause weak but significant SF enhancement in clusters, or unrelaxed clusters exhibit slightly stronger SF due to their less evolved states relative to relaxed clusters.

  3. Applying Machine Learning to Star Cluster Classification

    NASA Astrophysics Data System (ADS)

    Fedorenko, Kristina; Grasha, Kathryn; Calzetti, Daniela; Mahadevan, Sridhar

    2016-01-01

    Catalogs describing populations of star clusters are essential in investigating a range of important issues, from star formation to galaxy evolution. Star cluster catalogs are typically created in a two-step process: in the first step, a catalog of sources is automatically produced; in the second step, each of the extracted sources is visually inspected by 3-to-5 human classifiers and assigned a category. Classification by humans is labor-intensive and time consuming, thus it creates a bottleneck, and substantially slows down progress in star cluster research.We seek to automate the process of labeling star clusters (the second step) through applying supervised machine learning techniques. This will provide a fast, objective, and reproducible classification. Our data is HST (WFC3 and ACS) images of galaxies in the distance range of 3.5-12 Mpc, with a few thousand star clusters already classified by humans as a part of the LEGUS (Legacy ExtraGalactic UV Survey) project. The classification is based on 4 labels (Class 1 - symmetric, compact cluster; Class 2 - concentrated object with some degree of asymmetry; Class 3 - multiple peak system, diffuse; and Class 4 - spurious detection). We start by looking at basic machine learning methods such as decision trees. We then proceed to evaluate performance of more advanced techniques, focusing on convolutional neural networks and other Deep Learning methods. We analyze the results, and suggest several directions for further improvement.

  4. Probing the Birth of Super Star Clusters

    NASA Astrophysics Data System (ADS)

    Johnson, Kelsey

    2009-05-01

    Super star clusters are among the most extreme star formation environments known; they have incredible stellar densities, and each can harbor thousands of massive stars within radii of only a few parsecs. The most robust of these clusters may even be precursors to the ancient globular clusters ubiquitous around massive galaxies in the local universe today. Understanding the formation and feedback of super star clusters has the potential to provide us with insight into the evolution of starburst episodes throughout the universe. At present the relationship between the local physical conditions and the voracity of star formation is not well-constrained. Some progress has been made: over the last decade, a number of natal super star clusters have been discovered, providing us with a glimpse into their early evolution. However, the set of existing observations is anemic, and our current physical model for these natal clusters in simplistic. I will overview what we think we know about these objects based on existing observations and outline some of the most significant gaps in our current understanding.

  5. Towards Realistic Modeling of Massive Star Clusters

    NASA Astrophysics Data System (ADS)

    Gnedin, O.; Li, H.

    2016-06-01

    Cosmological simulations of galaxy formation are rapidly advancing towards smaller scales. Current models can now resolve giant molecular clouds in galaxies and predict basic properties of star clusters forming within them. I will describe new theoretical simulations of the formation of the Milky Way throughout cosmic time, with the adaptive mesh refinement code ART. However, many challenges - physical and numerical - still remain. I will discuss how observations of massive star clusters and star forming regions can help us overcome some of them. Video of the talk is available at https://goo.gl/ZoZOfX

  6. Open-cluster density profiles derived using a kernel estimator

    NASA Astrophysics Data System (ADS)

    Seleznev, Anton F.

    2016-03-01

    Surface and spatial radial density profiles in open clusters are derived using a kernel estimator method. Formulae are obtained for the contribution of every star into the spatial density profile. The evaluation of spatial density profiles is tested against open-cluster models from N-body experiments with N = 500. Surface density profiles are derived for seven open clusters (NGC 1502, 1960, 2287, 2516, 2682, 6819 and 6939) using Two-Micron All-Sky Survey data and for different limiting magnitudes. The selection of an optimal kernel half-width is discussed. It is shown that open-cluster radius estimates hardly depend on the kernel half-width. Hints of stellar mass segregation and structural features indicating cluster non-stationarity in the regular force field are found. A comparison with other investigations shows that the data on open-cluster sizes are often underestimated. The existence of an extended corona around the open cluster NGC 6939 was confirmed. A combined function composed of the King density profile for the cluster core and the uniform sphere for the cluster corona is shown to be a better approximation of the surface radial density profile.The King function alone does not reproduce surface density profiles of sample clusters properly. The number of stars, the cluster masses and the tidal radii in the Galactic gravitational field for the sample clusters are estimated. It is shown that NGC 6819 and 6939 are extended beyond their tidal surfaces.

  7. GRAPE-6 Simulations of Dense Star Clusters

    NASA Astrophysics Data System (ADS)

    Slavin, Shawn D.; Maxwell, J. E.; Cohn, H. N.; Lugger, P. M.

    2007-12-01

    We report on recent results from a long-term program of N-body simulations of dense star cluster evolution which is being done with GRAPE-6 systems at Indiana University and Purdue University Calumet. We have been simulating cases of star cluster evolution with a particular focus on the dynamical evolution of hard binary populations of varying size. Initial models with a range of mass spectra, both with and without primordial binary populations, are being investigated to points well beyond core collapse. Our goal is to better understand the evoultion of compact binary populations in collapsed-core globular clusters. Observations of collapsed-core clusters with HST and Chandra have revealed populations of hard, X-ray binaries well outside the cluster core. Our work is focused on understanding the diffusion of these dynamically hardened binaries to regions in the cluster halo and the robustness of this process in models with mass spectra versus single-mass models.

  8. Ages of Extragalactic Intermediate-Age Star Clusters

    NASA Technical Reports Server (NTRS)

    Flower, P. J.

    1983-01-01

    A dating technique for faint, distant star clusters observable in the local group of galaxies with the space telescope is discussed. Color-magnitude diagrams of Magellanic Cloud clusters are mentioned along with the metallicity of star clusters.

  9. Featured Image: Star Clusters in M51

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-06-01

    This beautiful mosaic of images of the Whirlpool galaxy (M51) and its companion was taken with the Advanced Camera for Surveys on the Hubble Space Telescope. This nearby, grand-design spiral galaxy has a rich population of star clusters, making it both a stunning target for imagery and an excellent resource for learning about stellar formation and evolution. In a recent study, Rupali Chandar (University of Toledo) and collaborators cataloged over 3,800 compact star clusters within this galaxy. They then used this catalog to determine the distributions for the clusters ages, masses, and sizes, which can provide important clues as to how star clusters form, evolve, and are eventually disrupted. You can read more about their study and what they discovered in the paper below.CitationRupali Chandar et al 2016 ApJ 824 71. doi:10.3847/0004-637X/824/2/71

  10. The age-mass-metallicity-activity relation for solar-type stars: comparisons with asteroseismology and the NGC 188 open cluster

    NASA Astrophysics Data System (ADS)

    Lorenzo-Oliveira, D.; Porto de Mello, G. F.; Schiavon, R. P.

    2016-10-01

    Context. The Mount Wilson Ca ii index log(R'_HK) is the accepted standard metric of calibration for the chromospheric activity versus age relation for FGK stars. Recent results claim its inability to discern activity levels, and thus ages, for stars older than ~2 Gyr, which would severely hamper its application to date disk stars older than the Sun. Aims: We present a new activity-age calibration of the Mt. Wilson index that explicitly takes mass and [Fe/H] biases into account; these biases are implicit in samples of stars selected to have precise ages, which have so far not been appreciated. Methods: We show that these selection biases tend to blur the activity-age relation for large age ranges. We calibrate the Mt. Wilson index for a sample of field FGK stars with precise ages, covering a wide range of mass and [Fe/H] , augmented with data from the Pleiades, Hyades, M 67 clusters, and the Ursa Major moving group. Results: We further test the calibration with extensive new Gemini/GMOS log ()R'HK) data of the old, solar [Fe/H] clusters, M 67 and NGC 188. The observed NGC 188 activity level is clearly lower than M 67. We correctly recover the isochronal age of both clusters and establish the viability of deriving usable chromospheric ages for solar-type stars up to at least ~6 Gyr, where average errors are ~0.14 dex provided that we explicitly account for the mass and [Fe/H] dimensions. We test our calibration against asteroseismological ages, finding excellent correlation (ρ = + 0.89). We show that our calibration improves the chromospheric age determination for a wide range of ages, masses, and metallicities in comparison to previous age-activity relations.

  11. The dynamical fate of planetary systems in young star clusters

    NASA Astrophysics Data System (ADS)

    Zheng, Xiaochen; Kouwenhoven, M. B. N.; Wang, Long

    2015-11-01

    We carry out N-body simulations to examine the effects of dynamical interactions on planetary systems in young open star clusters. We explore how the planetary populations in these star clusters evolve, and how this evolution depends on the initial amount of substructure, the virial ratio, the cluster mass and density, and the initial semi-major axis of the planetary systems. The fraction of planetary systems that remains intact as a cluster member, fBPS, is generally well-described by the functional form fBPS = f0(1 + [a/a0]c)-1, where (1 - f0) is the fraction of stars that escapes from the cluster, a0 the critical semi-major axis for survival, and c a measure for the width of the transition region. The effect of the initial amount of substructure over time t can be quantified as fBPS = A(t) + B(D), where A(t) decreases nearly linearly with time, and B(D) decreases when the clusters are initially more substructured. Provided that the orbital separation of planetary systems is smaller than the critical value a0, those in clusters with a higher initial stellar density (but identical mass) have a larger probability of escaping the cluster intact. These results help us to obtain a better understanding of the difference between the observed fractions of exoplanets-hosting stars in star clusters and in the Galactic field. It also allows us to make predictions about the free-floating planet population over time in different stellar environments.

  12. PHAT Star Clusters in M31: Insight on Environmental Dependence of Star & Cluster Formation

    NASA Astrophysics Data System (ADS)

    Johnson, Lent C.; Dalcanton, Julianne; Seth, Anil; Beerman, Lori; Lewis, Alexia; Fouesneau, Morgan; Weisz, Daniel R.; Andromeda Project Team, PHAT Team

    2015-01-01

    Theoretical studies of star cluster formation suggest that the star formation efficiency (SFE) of a cluster's progenitor cloud dictates whether or not a gravitationally bound grouping will emerge from an embedded region after gas expulsion. I measure the fraction of stars formed in long-lived clusters relative to unbound field stars on a spatial resolved basis in the Andromeda galaxy. These observations test theoretical predictions that star clusters are formed within a hierarchical interstellar medium at peaks in the gas density where local SFEs are enhanced and regions become stellar dominated. Using data from the Panchromatic Hubble Andromeda Treasury (PHAT) survey and ancillary observations of M31's gas phase, I investigate how cluster formation correlates with galactic environment and galaxy-scale properties of the star formation. We construct a sample of >2700 star clusters through a crowd-sourced visual search of the high spatial resolution HST imaging data. Our catalog uses ~2 million image classifications collected by the Andromeda Project citizen science website to provide an unparalleled census of clusters that spans ~4 orders of magnitude in mass (50% completeness at ~500 M⊙ at <100 Myr) and increases the number of known clusters within the PHAT survey footprint by a factor of ~6. Cluster ages and masses are obtained by fitting to color-magnitude diagrams (CMDs) of individually resolved stars within each cluster. Furthermore, we insure our ability to accurately interpret cluster age and mass distributions through careful catalog completeness characterization, made possible by thousands of synthetic cluster tests included during catalog construction work. We combine our high quality cluster sample with spatially resolved star formation histories, derived from CMD fitting of PHAT's photometry of ~117 million resolved field stars. We derived the fraction of stars formed in long-lived clusters and show that only a few percent of coeval stars are found in

  13. Radiative Feedback in Star Cluster Formation

    NASA Astrophysics Data System (ADS)

    Dale, J. E.

    2002-12-01

    We present the results of simulations of star cluster formation including for the first time radiative feedback from massive young stars. We use a new fast algorithm able to perform simple radiative transfer in three dimensions in highly inhomogeneous environments, characteristic of star-forming regions such as the Orion Molecular Cloud. Taking as our initial conditions the end result of a simulation performed by Bonnell and Bate (Bonnell and Bate, 2002) of the formation of a star cluster from a molecular cloud containing 1000 Jeans masses of gas, we study the effects of the photoionising radiation emitted by the first massive star to form within the cloud. We find that, if the gas density in the immediate vicinity of the star is insufficient to absorb the stellar radiation, photoionisation heating is an efficient mechanism for expelling gas from the cluster. For the sake of simplicity, we have only modelled the feedback of a single star, but in principle, the code can simulate the action of an arbitrary number of radiation sources. The simulations were performed in the context of the smoothed particle hydrodynamics (SPH) code of Bate et al (Bate, 1995). This work was sponsored by the UK Particle Physics and Astronomy Research Council, and simulations were performed on the United Kingdom Astrophysical Fluids Facility SGI Origin 3800 at Leicester University, UK.

  14. Open cluster membership probability based on K-means clustering algorithm

    NASA Astrophysics Data System (ADS)

    El Aziz, Mohamed Abd; Selim, I. M.; Essam, A.

    2016-08-01

    In the field of galaxies images, the relative coordinate positions of each star with respect to all the other stars are adapted. Therefore the membership of star cluster will be adapted by two basic criterions, one for geometric membership and other for physical (photometric) membership. So in this paper, we presented a new method for the determination of open cluster membership based on K-means clustering algorithm. This algorithm allows us to efficiently discriminate the cluster membership from the field stars. To validate the method we applied it on NGC 188 and NGC 2266, membership stars in these clusters have been obtained. The color-magnitude diagram of the membership stars is significantly clearer and shows a well-defined main sequence and a red giant branch in NGC 188, which allows us to better constrain the cluster members and estimate their physical parameters. The membership probabilities have been calculated and compared to those obtained by the other methods. The results show that the K-means clustering algorithm can effectively select probable member stars in space without any assumption about the spatial distribution of stars in cluster or field. The similarity of our results is in a good agreement with results derived by previous works.

  15. STAR CLUSTERS IN PSEUDOBULGES OF SPIRAL GALAXIES

    SciTech Connect

    Di Nino, Daiana; Trenti, Michele; Stiavelli, Massimo; Carollo, C. Marcella; Scarlata, Claudia; Wyse, Rosemary F. G.

    2009-11-15

    We present a study of the properties of the star-cluster systems around pseudobulges of late-type spiral galaxies using a sample of 11 galaxies with distances from 17 Mpc to 37 Mpc. Star clusters are identified from multiband Hubble Space Telescope ACS and WFPC2 imaging data by combining detections in three bands (F435W and F814W with ACS and F606W with WFPC2). The photometric data are then compared to population synthesis models to infer the masses and ages of the star clusters. Photometric errors and completeness are estimated by means of artificial source Monte Carlo simulations. Dust extinction is estimated by considering F160W NICMOS observations of the central regions of the galaxies, augmenting our wavelength coverage. In all galaxies we identify star clusters with a wide range of ages, from young (age {approx}< 8 Myr) blue clusters, with typical mass of 10{sup 3} M {sub sun} to older (age >100-250 Myr), more massive, red clusters. Some of the latter might likely evolve into objects similar to the Milky Way's globular clusters. We compute the specific frequencies for the older clusters with respect to the galaxy and bulge luminosities. Specific frequencies relative to the galaxy light appear consistent with the globular cluster specific frequencies of early-type spirals. We compare the specific frequencies relative to the bulge light with the globular cluster specific frequencies of dwarf galaxies, which have a surface brightness profile that is similar to that of the pseudobulges in our sample. The specific frequencies we derive for our sample galaxies are higher than those of the dwarf galaxies, supporting an evolutionary scenario in which some of the dwarf galaxies might be the remnants of harassed late-type spiral galaxies that hosted a pseudobulge.

  16. Al-Sufi's Investigation of Stars, Star Clusters and Nebulae

    NASA Astrophysics Data System (ADS)

    Hafez, Ihsan; Stephenson, F. R.; Orchiston, W.

    2011-01-01

    The distinguished Arabic astronomer, Al-Sufi (AD 903-986) is justly famous for his Book of the Fixed Stars, an outstanding Medieval treatise on astronomy that was assembled in 964. Developed from Ptolemy's Algamest, but based upon al-Sufi's own stellar observations, the Book of the Fixed Stars has been copied down through the ages, and currently 35 copies are known to exist in various archival repositories around the world. Among other things, this major work contains 55 astronomical tables, plus star charts for 48 constellations. For the first time a long-overdue English translation of this important early work is in active preparation. In this paper we provide biographical material about Al-Sufi and the contents of his Book of the Fixed Stars, before examining his novel stellar magnitude system, and his listing of star clusters and nebulae (including the first-ever mention of the Great Nebula in Andromeda).

  17. Galactic Star Cluster mass evolution. High performance star by star simulations. Observations vs. modeling.

    NASA Astrophysics Data System (ADS)

    Berczik, Peter; Just, Andreas; Ernst, Andreas; Spurzem, Rainer

    2015-08-01

    We carry out the large set of Galactic Star Cluster simulations (from 1e2 up to 5e5 Msol initial masses) using our high performance parallel direct N-body code phi-GRAPE+GPU with the maximum possible numerical resolution (one particle one star) on the largest astrophysical GPU clusters (in Germany and China). Our main goal was to investigate the cluster initial volume "filling" factor to the process of the cluster mass loss as well us the cluster whole lifetime. We also investigate the evolution of the present day Cluster Mass Function in solar cylinder depending on the initial parameters of the star formation, Initial Cluster Mass Function and the star clusters masses and initial "filling" factors.

  18. The Membership and Distance of the Open Cluster Collinder 419

    NASA Technical Reports Server (NTRS)

    Roberts, Lewis C., Jr.; Gies, Douglas R.; Parks, J. Robert; Grundstrom, Erika D.; McSwain, M. Virginia; Berger, David H.; Mason, Brian D.; tenBrummelaar, Theo A.; Turner, Nils H.

    2010-01-01

    The young open cluster Collinder 419 surrounds the massive O star, HD 193322, that is itself a remarkable multiple star system containing at least four components. Here we present a discussion of the cluster distance based upon new spectral classifications of the brighter members, UBV photometry, and an analysis of astrometric and photometric data from the third U. S. Naval Observatory CCD Astrograph Catalog and Two Micron All Sky Survey Catalog. We determine an average cluster reddening of E(B - V) = 0.37 +/-.05 mag and a cluster distance of 741 plus or minus 36 pc. The cluster probably contains some very young stars that may include a reddened M3 III star, IRAS 20161+4035.

  19. Gravothermal Star Clusters - Theory and Computer Modelling

    NASA Astrophysics Data System (ADS)

    Spurzem, Rainer

    2010-11-01

    In the George Darwin lecture, delivered to the British Royal Astronomical Society in 1960 by Viktor A. Ambartsumian he wrote on the evolution of stellar systems that it can be described by the "dynamic evolution of a gravitating gas" complemented by "a statistical description of the changes in the physical states of stars". This talk will show how this physical concept has inspired theoretical modeling of star clusters in the following decades up to the present day. The application of principles of thermodynamics shows, as Ambartsumian argued in his 1960 lecture, that there is no stable state of equilibrium of a gravitating star cluster. The trend to local thermodynamic equilibrium is always disturbed by escaping stars (Ambartsumian), as well as by gravothermal and gravogyro instabilities, as it was detected later. Here the state-of-the-art of modeling the evolution of dense stellar systems based on principles of thermodynamics and statistical mechanics (Fokker-Planck approximation) will be reviewed. Recent progress including rotation and internal correlations (primordial binaries) is presented. The models have also very successfully been used to study dense star clusters around massive black holes in galactic nuclei and even (in a few cases) relativistic supermassive dense objects in centres of galaxies (here again briefly touching one of the many research fields of V.A. Ambartsumian). For the modern present time of high-speed supercomputing, where we are tackling direct N-body simulations of star clusters, we will show that such direct modeling supports and proves the concept of the statistical models based on the Fokker-Planck theory, and that both theoretical concepts and direct computer simulations are necessary to support each other and make scientific progress in the study of star cluster evolution.

  20. UV-bright stars in globular clusters

    NASA Technical Reports Server (NTRS)

    Landsman, Wayne B.

    1994-01-01

    This paper highlights globular cluster studies with Ultraviolet Imaging Telescope (UIT) in three areas: the discrepancy between observed ultraviolet HB magnitudes and predictions of theoretical HB models; the discovery of two hot subdwarfs in NGC 1851, a globular not previously known to contain such stars; and spectroscopic follow up of newly identified UV-bright stars in M79 and w Cen. I also present results of a recent observation of NGC 6397 with the Voyager ultraviolet spectrometer.

  1. Phase Mixing of Popped Star Clusters

    NASA Astrophysics Data System (ADS)

    Candlish, G. N.; Smith, R.; Fellhauer, M.; Gibson, B. K.; Kroupa, P.; Assmann, P.

    2014-10-01

    As star clusters are expected to form with low star formation efficiencies, the gas in the cluster is expelled quickly and early in their development: the star cluster pops. This leads to an unbound stellar system. Previous N-body simulations have demonstrated the existence of a stepped number density distribution of cluster stars after popping, both in vertical position and vertical velocity, with a passing resemblance to a Christmas tree. Using numerical and analytical methods, we investigate the source of this structure, which arises due to the phase mixing of the out-of-equilibrium stellar system as it evolves in a background analytical potential. Considering only the vertical motions, we construct a theoretical model to describe the time evolution of the phase space distribution of stars in a Miyamoto-Nagai disk potential and a full Milky-Way type potential comprising bulge, halo and disk components, which is then compared with N- body simulations. Using our theoretical model, we investigate the possible observational signatures and the feasibility of detection.

  2. Local-density-driven clustered star formation

    NASA Astrophysics Data System (ADS)

    Parmentier, G.; Pfalzner, S.

    2013-01-01

    Context. A positive power-law trend between the local surface densities of molecular gas, Σgas, and young stellar objects, Σ ⋆ , in molecular clouds of the solar neighbourhood has recently been identified. How it relates to the properties of embedded clusters, in particular to the recently established radius-density relation, has so far not been investigated. Aims: We model the development of the stellar component of molecular clumps as a function of time and initial local volume density. Our study provides a coherent framework able to explain both the molecular-cloud and embedded-cluster relations quoted above. Methods: We associate the observed volume density gradient of molecular clumps to a density-dependent free-fall time. The molecular clump star formation history is obtained by applying a constant star formation efficiency per free-fall time, ɛff. Results: For the volume density profiles typical of observed molecular clumps (i.e. power-law slope ≃ -1.7), our model gives a star-gas surface-density relation of the form Σ⋆ ∝ Σgas2, which agrees very well with the observations. Taking the case of a molecular clump of mass M0 ≃ 104 M⊙ and radius R ≃ 6 pc experiencing star formation during 2 Myr, we derive what star formation efficiency per free-fall time matches the normalizations of the observed and predicted (Σ ⋆ , Σgas) relations best. We find ɛff ≃ 0.1. We show that the observed growth of embedded clusters, embodied by their radius-density relation, corresponds to a surface density threshold being applied to developing star-forming regions. The consequences of our model in terms of cluster survivability after residual star-forming gas expulsion are that, owing to the locally high star formation efficiency in the inner part of star-forming regions, global star formation efficiency as low as 10% can lead to the formation of bound gas-free star clusters.

  3. The structure of young star clusters

    NASA Astrophysics Data System (ADS)

    Gladwin, P. P.; Kitsionas, S.; Boffin, H. M. J.; Whitworth, A. P.

    1999-01-01

    In this paper we analyse and compare the clustering of young stars in Chamaeleon I and Taurus. We compute the mean surface density of companion stars N as a function of angular displacement theta from each star. We then fit N theta) with two simultaneous power laws, i.e. N(theta) ~ K_bintheta^-beta_bin + K_clutheta^-beta_clu. For Chamaeleon I, we obtain beta_bin= 1.97 +/- and beta_clu= 0.28 +/- 0.06, with the elbow at theta_elb~ 0 011 +/- 0 004. For Taurus, we obtain beta_bin= 2.02 +/- 0.04 and beta _clu= 0.87 +/- 0.01, with the elbow at theta _elb~ 0 013 +/- 0 003. For both star clusters the observational data make large (~ 5 sigma) systematic excursions from the best-fitting curve in the binary regime (theta < theta_elb). These excursions are visible also in the data used by Larson and Simon, and may be attributable to evolutionary effects of the types discussed recently by Nakajima et al. and Bate et al. In the clustering regime (theta > theta_elb) the data conform to the best-fitting curve very well, but the beta_clu values we obtain differ significantly from those obtained by other workers. These differences are due partly to the use of different samples, and partly to different methods of analysis. We also calculate the box dimensions for the two star clusters: for Chamaeleon I we obtain D_box~=1.51+/-0.12, and for Taurus D_box~=1.39+/-0.01. However, the limited dynamic range makes these estimates simply descriptors of the large-scale clustering, and not admissible evidence for fractality. We propose two algorithms for objectively generating maps of constant stellar surface density in young star clusters. Such maps are useful for comparison with molecular-line and dust-continuum maps of star-forming clouds, and with the results of numerical simulations of star formation. They are also useful because they retain information that is suppressed in the evaluation of N(theta). Algorithm I (SCATTER) uses a universal smoothing length, and therefore has a restricted

  4. The STAR cluster-finder ASIC

    SciTech Connect

    Botlo, M.; LeVine, M.J.; Scheetz, R.A.; Schulz, M.W.; Short, P.; Woods, J.; Crosetto, D.

    1997-12-01

    STAR is a large TPC-based experiment at RHIC, the relativistic heavy ion collider at Brookhaven National Laboratory. The STAR experiment reads out a TPC and an SVT (silicon vertex tracker), both of which require in-line pedestal subtraction, compression of ADC values from 10-bit to 8-bit, and location of time sequences representing responses to charged-particle tracks. The STAR cluster finder ASIC responds to all of these needs. Pedestal subtraction and compression are performed using lookup tables in attached RAM. The authors describe its design and implementation, as well as testing methodology and results of tests performed on foundry prototypes.

  5. Photometry using Kepler ``superstamps'' of open clusters NGC 6791 & NGC 6819

    NASA Astrophysics Data System (ADS)

    Kuehn, Charles A.; Drury, Jason; Stello, Dennis; Bedding, Timothy R.

    2014-02-01

    The Kepler space telescope has proven to be a gold mine for the study of variable stars. Unfortunately, Kepler only returns a handful of pixels surrounding each star on the target list, which omits a large number of stars in the Kepler field. For the open clusters NGC 6791 and NGC 6819, Kepler also reads out larger superstamps which contain complete images of the central region of each cluster. These cluster images can potentially be used to study additional stars in the open clusters. We present preliminary results from using traditional photometric techniques to identify and analyze additional variable stars from these images.

  6. Speckle Interferometry of Massive and Cluster Stars

    NASA Astrophysics Data System (ADS)

    Mason, Brian; Hartkopf, William I.; Gies, Douglas R.; Henry, Todd J.; Torres, Guillermo

    2005-08-01

    Conducted on NOAO 4-m telescopes in 1994, the first speckle survey of O stars (Mason et al. 1998) had success far in excess of our expectations. In addition to the frequently cited multiplicity analysis, many of the new systems which were first resolved in this paper are of significant astrophysical importance. To date, this paper has resulted in 86 citations in the refereed literature. Now, some ten years after the original survey, we propose to re-investigate all systems analyzed before (N=98) as well as make a first high-resolution inspection of the additional O stars (N=62) in the recent Galactic O Star Catalog of Maiz-Apellaniz & Walborn (2004). In addition, we propose to investigate several additional samples of interesting objects, including 10 accessible Galactic WR stars from the speckle survey of Hartkopf et al. (1999), 16 massive, hot stars with separations which would indicate their applicability for mass determinations (for fully detached O stars, we have only twelve mass determinations), 92 members of the Hyades and Pleiades clusters to complement RV studies of these clusters, and 197 Hyades & Pleiades stars, reobserved from the 1991 lists (Mason et al. 1993a,b).

  7. NGC 1252: a high altitude, metal poor open cluster remnant

    NASA Astrophysics Data System (ADS)

    de la Fuente Marcos, R.; de la Fuente Marcos, C.; Moni Bidin, C.; Carraro, G.; Costa, E.

    2013-09-01

    If stars form in clusters but most stars belong to the field, understanding the details of the transition from the former to the latter is imperative to explain the observational properties of the field. Aging open clusters are one of the sources of field stars. The disruption rate of open clusters slows down with age but, as an object gets older, the distinction between the remaining cluster or open cluster remnant (OCR) and the surrounding field becomes less and less obvious. As a result, finding good OCR candidates or confirming the OCR nature of some of the best candidates still remain elusive. One of these objects is NGC 1252, a scattered group of about 20 stars in Horologium. Here we use new wide-field photometry in the UBVI passbands, proper motions from the Yale/San Juan SPM 4.0 catalogue and high-resolution spectroscopy concurrently with results from N-body simulations to decipher NGC 1252's enigmatic character. Spectroscopy shows that most of the brightest stars in the studied area are chemically, kinematically and spatially unrelated to each other. However, after analysing proper motions, we find one relevant kinematic group. This sparse object is relatively close (˜1 kpc), metal poor and is probably not only one of the oldest clusters (3 Gyr) within 1.5 kpc from the Sun but also one of the clusters located farthest from the disc, at an altitude of nearly -900 pc. That makes NGC 1252 the first open cluster that can be truly considered a high Galactic altitude OCR: an unusual object that may hint at a star formation event induced on a high Galactic altitude gas cloud. We also conclude that the variable TW Horologii and the blue straggler candidate HD 20286 are unlikely to be part of NGC 1252. NGC 1252 17 is identified as an unrelated, Population II cannonball star moving at about 400 km s-1.

  8. A Swift/UVOT Study of Open Clusters

    NASA Astrophysics Data System (ADS)

    LaPorte, Samuel; Siegel, Michael

    2016-01-01

    Star clusters, due to being coeval populations of similar stars, provide a convenient snapshot of a stellar population to study and compare to theoretical models of stellar evolution. They also serve as the empirical baseline for studies of distant unresolved stellar populations. However, few studies have been performed of detailed color-magnitude diagrams (CMDs) of young open clusters in the near ultraviolet. We present a sample of 92 open clusters compiled using Swift's Ultra-Violet and Optical Telescope (UVOT). We construct CMDs and perform isochrone fitting for the most luminous clusters to determine how well the theoretical models reproduce the salient features of the CMDs. We find that the isochrones provide excellent fits to the primary color-magnitude loci, lending confidence to models of unresolved stellar populations and providing, in the future, an opportunity to use open clusters to probe the UV properties of foreground dust.

  9. Mass distributions of star clusters for different star formation histories in a galaxy cluster environment

    NASA Astrophysics Data System (ADS)

    Schulz, C.; Pflamm-Altenburg, J.; Kroupa, P.

    2015-10-01

    Clusters of galaxies usually contain rich populations of globular clusters (GCs). We investigate how different star formation histories (SFHs) shape the final mass distribution of star clusters. We assumed that every star cluster population forms during a formation epoch of length δt at a constant star-formation rate (SFR). The mass distribution of such a population is described by the embedded cluster mass function (ECMF), which is a pure power law extending to an upper limit Mmax. Since the SFR determines Mmax, the ECMF implicitly depends on the SFR. Starting with different SFHs, the time-evolution of the SFR, each SFH is divided into formation epochs of length δt at different SFRs. The requested mass function arises from the superposition of the star clusters of all formation epochs. An improved optimal sampling technique is introduced that allows generating number and mass distributions, both of which accurately agree with the ECMF. Moreover, for each SFH the distribution function of all involved SFRs, F(SFR), is computed. For monotonically decreasing SFHs, we found that F(SFR) always follows a power law. With F(SFR), we developed the theory of the integrated galactic embedded cluster mass function (IGECMF). The latter describes the distribution function of birth stellar masses of star clusters that accumulated over a formation episode much longer than δt. The IGECMF indeed reproduces the mass distribution of star clusters created according to the superposition principle. Interestingly, all considered SFHs lead to a turn-down with increasing star cluster mass in their respective IGECMFs in a similar way as is observed for GC systems in different galaxy clusters, which offers the possibility of determining the conditions under which a GC system was assembled. Although assuming a pure power-law ECMF, a Schechter-like IGECMF emerges from the superposition principle. In the past decade, a turn-down at the high-mass end has been observed in the cluster initial

  10. Star Clusters in the Magellanic Clouds-1: Parameterisation and Classification of 1072 Clusters in the LMC

    NASA Astrophysics Data System (ADS)

    Nayak, P. K.; Subramaniam, A.; Choudhury, S.; Indu, G.; Sagar, Ram

    2016-08-01

    We have introduced a semi-automated quantitative method to estimate the age and reddening of 1072 star clusters in the Large Magellanic Cloud (LMC) using the Optical Gravitational Lensing Experiment (OGLE) III survey data. This study brings out 308 newly parameterised clusters. In a first of its kind, the LMC clusters are classified into groups based on richness/mass as very poor, poor, moderate and rich clusters, similar to the classification scheme of open clusters in the Galaxy. A major cluster formation episode is found to happen at 125±25 Myr in the inner LMC. The bar region of the LMC appears prominently in the age range 60 - 250 Myr and is found to have a relatively higher concentration of poor and moderate clusters. The eastern and the western ends of the bar are found to form clusters initially, which later propagates to the central part. We demonstrate that there is a significant difference in the distribution of clusters as a function of mass, using a movie based on the propagation (in space and time) of cluster formation in various groups. The importance of including the low mass clusters in the cluster formation history is demonstrated. The catalog with parameters, classification, and cleaned and isochrone fitted CMDs of 1072 clusters, which are available as online material, can be further used to understand the hierarchical formation of clusters in selected regions of the LMC.

  11. A DYING STAR IN GLOBULAR CLUSTER

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A DYING STAR IN GLOBULAR CLUSTER M15 The globular cluster Messier 15 is shown in this color image obtained with the NASA Hubble Space Telescope's Wide Field Planetary Camera 2 (WFPC2). Lying some 40,000 light-years from Earth in the direction of the constellation Pegasus, M15 is one of nearly 150 known globular clusters that form a vast halo surrounding our Milky Way galaxy. Each of these clusters is a spherical association of hundreds of thousands of ancient stars. The image, prepared by the Hubble Heritage team, attempts to show the stars in M15 in their true colors. The brightest cluster stars are red giants, with an orange color due to surface temperatures lower than our Sun's. Most of the fainter stars are hotter, giving them a bluish-white color. If we lived in the core of M15, our sky would blaze with tens of thousands of brilliant stars both day and night! Nestled among the myriads of stars visible in the Hubble image is an astronomical oddity. The pinkish object to the upper left of the cluster's core is a gas cloud surrounding a dying star. Known as Kuestner 648, this was the first planetary nebula to be identified in a globular cluster. In 1928, F. G. Pease, working at the 100-inch telescope of California's Mount Wilson Observatory, photographed the spectrum of K 648 and discovered the telltale bright emission of a nebular gas cloud rather than a normal star. In the ensuing 70 years, only three more planetary nebulae have been discovered in globular clusters. The stars in M15 and other globular clusters are estimated to be about 12 billion years old. They were among the first generations of stars to form in the Milky Way. Our Sun, by comparison, is a youthful 4.6 billion years old. As a star like the Sun ages, it exhausts the hydrogen that fuels its nuclear fusion, and increases in size to become a red giant. Then it ejects its outer layers into space, producing a planetary nebula. The remnant star at the center of the nebula gradually dies away as a

  12. A DYING STAR IN GLOBULAR CLUSTER

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A DYING STAR IN GLOBULAR CLUSTER M15 The globular cluster Messier 15 is shown in this color image obtained with the NASA Hubble Space Telescope's Wide Field Planetary Camera 2 (WFPC2). Lying some 40,000 light-years from Earth in the direction of the constellation Pegasus, M15 is one of nearly 150 known globular clusters that form a vast halo surrounding our Milky Way galaxy. Each of these clusters is a spherical association of hundreds of thousands of ancient stars. The image, prepared by the Hubble Heritage team, attempts to show the stars in M15 in their true colors. The brightest cluster stars are red giants, with an orange color due to surface temperatures lower than our Sun's. Most of the fainter stars are hotter, giving them a bluish-white color. If we lived in the core of M15, our sky would blaze with tens of thousands of brilliant stars both day and night! Nestled among the myriads of stars visible in the Hubble image is an astronomical oddity. The pinkish object to the upper left of the cluster's core is a gas cloud surrounding a dying star. Known as Kuestner 648, this was the first planetary nebula to be identified in a globular cluster. In 1928, F. G. Pease, working at the 100-inch telescope of California's Mount Wilson Observatory, photographed the spectrum of K 648 and discovered the telltale bright emission of a nebular gas cloud rather than a normal star. In the ensuing 70 years, only three more planetary nebulae have been discovered in globular clusters. The stars in M15 and other globular clusters are estimated to be about 12 billion years old. They were among the first generations of stars to form in the Milky Way. Our Sun, by comparison, is a youthful 4.6 billion years old. As a star like the Sun ages, it exhausts the hydrogen that fuels its nuclear fusion, and increases in size to become a red giant. Then it ejects its outer layers into space, producing a planetary nebula. The remnant star at the center of the nebula gradually dies away as a

  13. Formation of Massive Stars in Massive Young Clusters

    NASA Astrophysics Data System (ADS)

    Zinnecker, H.

    2004-12-01

    There are two scenarios for the formation of massive stars: the ``accretion'' and the ``coalescence'' scenario. Here we discuss the conditions for coalescence (mergers) to occur in very dense young star clusters. We also ask whether the observed multiplicity of tight massive stars in young clusters is consistent with failed mergers and tidal capture. Finally, we propose some ideas for the origin of many massive stars in the heart of the 30 Doradus cluster and other extragalactic starburst clusters. We believe that all massive star formation is triggered and propose a 4-stage process of massive star birth in dense clusters.

  14. Probing the faintest stars in a globular star cluster.

    PubMed

    Richer, Harvey B; Anderson, Jay; Brewer, James; Davis, Saul; Fahlman, Gregory G; Hansen, Brad M S; Hurley, Jarrod; Kalirai, Jasonjot S; King, Ivan R; Reitzel, David; Rich, R Michael; Shara, Michael M; Stetson, Peter B

    2006-08-18

    NGC 6397 is the second closest globular star cluster to the Sun. Using 5 days of time on the Hubble Space Telescope, we have constructed an ultradeep color-magnitude diagram for this cluster. We see a clear truncation in each of its two major stellar sequences. Faint red main-sequence stars run out well above our observational limit and near to the theoretical prediction for the lowest mass stars capable of stable hydrogen burning in their cores. We also see a truncation in the number counts of faint blue stars, namely white dwarfs. This reflects the limit to which the bulk of the white dwarfs can cool over the lifetime of the cluster. There is also a turn toward bluer colors in the least luminous of these objects. This was predicted for the very coolest white dwarfs with hydrogen-rich atmospheres as the formation of H(2) and the resultant collision-induced absorption cause their atmospheres to become largely opaque to infrared radiation.

  15. Probing the faintest stars in a globular star cluster.

    PubMed

    Richer, Harvey B; Anderson, Jay; Brewer, James; Davis, Saul; Fahlman, Gregory G; Hansen, Brad M S; Hurley, Jarrod; Kalirai, Jasonjot S; King, Ivan R; Reitzel, David; Rich, R Michael; Shara, Michael M; Stetson, Peter B

    2006-08-18

    NGC 6397 is the second closest globular star cluster to the Sun. Using 5 days of time on the Hubble Space Telescope, we have constructed an ultradeep color-magnitude diagram for this cluster. We see a clear truncation in each of its two major stellar sequences. Faint red main-sequence stars run out well above our observational limit and near to the theoretical prediction for the lowest mass stars capable of stable hydrogen burning in their cores. We also see a truncation in the number counts of faint blue stars, namely white dwarfs. This reflects the limit to which the bulk of the white dwarfs can cool over the lifetime of the cluster. There is also a turn toward bluer colors in the least luminous of these objects. This was predicted for the very coolest white dwarfs with hydrogen-rich atmospheres as the formation of H(2) and the resultant collision-induced absorption cause their atmospheres to become largely opaque to infrared radiation. PMID:16917054

  16. Quenching star formation in cluster galaxies

    NASA Astrophysics Data System (ADS)

    Taranu, Dan S.; Hudson, Michael J.; Balogh, Michael L.; Smith, Russell J.; Power, Chris; Oman, Kyle A.; Krane, Brad

    2014-05-01

    In order to understand the processes that quench star formation in cluster galaxies, we construct a library of subhalo orbits drawn from Λ cold dark matter cosmological N-body simulations of four rich clusters. We combine these orbits with models of star formation followed by environmental quenching, comparing model predictions with observed bulge and disc colours and stellar absorption line-strength indices of luminous cluster galaxies. Models in which the bulge stellar populations depend only on the galaxy subhalo mass while the disc is quenched upon infall are acceptable fits to the data. An exponential disc quenching time-scale of 3-3.5 Gyr is preferred. Quenching in lower mass groups prior to infall (`pre-processing') provides better fits, with similar quenching time-scales. Models with short (≲1 Gyr) quenching time-scales yield excessively steep cluster-centric gradients in disc colours and Balmer line indices, even if quenching is delayed for several Gyr. The data slightly prefer models where quenching occurs only for galaxies falling within ˜0.5r200. These results imply that the environments of rich clusters must impact star formation rates of infalling galaxies on relatively long time-scales, indicative of gentler quenching mechanisms such as slow `strangulation' over more rapid ram-pressure stripping.

  17. Massive Star Clusters in Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Larsen, Soeren

    2015-08-01

    Dwarf galaxies are often characterized by very high globular cluster specific frequencies, in some cases exceeding that of the Milky Way by a factor of 100 or more. Moreover, the GCs are typically much more metal-poor than the bulk of the field stars, so that a substantial fraction (up to 20-25% or more) of all metal-poor stars in some dwarf galaxies are associated with GCs. The metal-poor components of these galaxies thus represent an extreme case of the "specific frequency problem". In this talk I will review the current status of our understanding of GC systems in dwarf galaxies. Particular emphasis will be placed on the implications of the high GC specific frequencies for the amount of mass loss the clusters could have experienced and the constraints this provides on theories for the origin of multiple populations in globular clusters.

  18. Hydrodynamic stellar interactions in dense star clusters

    NASA Technical Reports Server (NTRS)

    Rasio, Frederic A.

    1993-01-01

    Highly detailed HST observations of globular-cluster cores and galactic nuclei motivate new theoretical studies of the violent dynamical processes which govern the evolution of these very dense stellar systems. These processes include close stellar encounters and direct physical collisions between stars. Such hydrodynamic stellar interactions are thought to explain the large populations of blue stragglers, millisecond pulsars, X-ray binaries, and other peculiar sources observed in globular clusters. Three-dimensional hydrodynamics techniques now make it possible to perform realistic numerical simulations of these interactions. The results, when combined with those of N-body simulations of stellar dynamics, should provide for the first time a realistic description of dense star clusters. Here I review briefly current theoretical work on hydrodynamic stellar interactions, emphasizing its relevance to recent observations.

  19. The Hyades open cluster is chemically inhomogeneous

    NASA Astrophysics Data System (ADS)

    Liu, F.; Yong, D.; Asplund, M.; Ramírez, I.; Meléndez, J.

    2016-04-01

    We present a high-precision differential abundance analysis of 16 solar-type stars in the Hyades open cluster based on high-resolution, high signal-to-noise ratio (S/N ≈ 350-400) spectra obtained from the McDonald 2.7-m telescope. We derived stellar parameters and differential chemical abundances for 19 elements (C, O, Na, Mg, Al, Si, S, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn and Ba) with uncertainties as low as ˜0.01-0.02 dex. Our main results include: (1) there is no clear chemical signature of planet formation detected among the sample stars, i.e. no correlations in abundances versus condensation temperature; (2) the observed abundance dispersions are a factor of ≈1.5-2 larger than the average measurement errors for most elements; (3) there are positive correlations, of high statistical significance, between the abundances of at least 90 per cent of pairs of elements. We demonstrate that none of these findings can be explained by errors due to the stellar parameters. Our results reveal that the Hyades is chemically inhomogeneous at the 0.02 dex level. Possible explanations for the abundance variations include (1) inhomogeneous chemical evolution in the proto-cluster environment, (2) supernova ejection in the proto-cluster cloud and (3) pollution of metal-poor gas before complete mixing of the proto-cluster cloud. Our results provide significant new constraints on the chemical composition of open clusters and a challenge to the current view of Galactic archaeology.

  20. A search for new open clusters hosting cepheids

    NASA Astrophysics Data System (ADS)

    Glushkova, E. V.; Zabolotskikh, M. V.; Rastorguev, A. S.; Grudskaya, A. V.; Koposov, S. E.

    We analyze yet-unknown genetic links between open star clusters (OSC) and galactic Cepheids and report the results of the new search for Cepheids -- probable OSC members. A sample of 25% of the stars from a new catalog by Berdnikov (published in Melnik et al. 2015) which lists 674 Cepheids with reliable parameters was investigated. Based on photometric and kinematic data, we selected 17 Cepheids that are likely to be related to star clusters, four of which being new OSCs discovered by us.

  1. STAR CLUSTERS, GALAXIES, AND THE FUNDAMENTAL MANIFOLD

    SciTech Connect

    Zaritsky, Dennis; Zabludoff, Ann I.; Gonzalez, Anthony H. E-mail: azabludoff@as.arizona.edu

    2011-02-01

    We explore whether global observed properties, specifically half-light radii, mean surface brightness, and integrated stellar kinematics, suffice to unambiguously differentiate galaxies from star clusters, which presumably formed differently and lack dark matter halos. We find that star clusters lie on the galaxy scaling relationship referred to as the fundamental manifold (FM), on the extension of a sequence of compact galaxies, and so conclude that there is no simple way to differentiate star clusters from ultracompact galaxies. By extending the validity of the FM over a larger range of parameter space and a wider set of objects, we demonstrate that the physics that constrains the resulting baryon and dark matter distributions in stellar systems is more general than previously appreciated. The generality of the FM implies (1) that the stellar spatial distribution and kinematics of one type of stellar system do not arise solely from a process particular to that set of systems, such as violent relaxation for elliptical galaxies, but are instead the result of an interplay of all processes responsible for the generic settling of baryons in gravitational potential wells, (2) that the physics of how baryons settle is independent of whether the system is embedded within a dark matter halo, and (3) that peculiar initial conditions at formation or stochastic events during evolution do not ultimately disturb the overall regularity of baryonic settling. We also utilize the relatively simple nature of star clusters to relate deviations from the FM to the age of the stellar population and find that stellar population models systematically and significantly overpredict the mass-to-light ratios of old, metal-rich clusters. We present an empirical calibration of stellar population mass-to-light ratios with age and color. Finally, we use the FM to estimate velocity dispersions for the low surface brightness, outer halo clusters that lack such measurements.

  2. Gemini spectroscopy of the outer disk star cluster BH176

    NASA Astrophysics Data System (ADS)

    Sharina, M. E.; Donzelli, C. J.; Davoust, E.; Shimansky, V. V.; Charbonnel, C.

    2014-10-01

    Context. BH176 is an old metal-rich star cluster. It is spatially and kinematically consistent with belonging to the Monoceros Ring. It is larger in size and more distant from the Galactic plane than typical open clusters, and it does not belong to the Galactic bulge. Aims: Our aim is to determine the origin of this unique object by accurately determining its distance, metallicity, and age. The best way to reach this goal is to combine spectroscopic and photometric methods. Methods: We present medium-resolution observations of red clump and red giant branch stars in BH176 obtained with the Gemini South Multi-Object Spectrograph. We derive radial velocities, metallicities, effective temperatures, and surface gravities of the observed stars and use these parameters to distinguish member stars from field objects. Results: We determine the following parameters for BH176: Vh = 0 ± 15 km s-1, [Fe/H] = -0.1 ± 0.1, age 7 ± 0.5 Gyr, E(V - I) = 0.79 ± 0.03, distance 15.2 ± 0.2 kpc, α-element abundance [α/Fe] ~ 0.25 dex (the mean of [Mg/Fe], and [Ca/Fe]). Conclusions: BH176 is a member of old Galactic open clusters that presumably belong to the thick disk. It may have originated as a massive star cluster after the encounter of the forming thin disk with a high-velocity gas cloud or as a satellite dwarf galaxy. Appendix A is available in electronic form at http://www.aanda.org

  3. Extragalactic Star Clusters: Speculations on the Future

    NASA Astrophysics Data System (ADS)

    Gallagher, J. S.; Grebel, E. K.

    We discuss the future possibilities for extragalactic star cluster research with the expected new ground-based and space-based telescopes and instrumentation. Significant gains are expected due to improved angular resolution, sensitivity, and area coverage particularly in the infrared and radio, accompanied by progress in evolutionary and dynamical modelling. Improvements in angular resolution are anticipated, especially through new adaptive optics systems (e.g., Keck, Gemini, VLT), and interferometry (e.g., Keck, VLT, LBT, ALMA, SMA, SkA), and space instrumentation (e.g., Chandra, NGST), enabling studies even of deeply embedded, forming extragalactic star clusters. Tidal disruption of Galactic clusters becomes observable through wide-area surveys such as the SDSS, VISTA, PRIME, including proper motion measurements through high-resolution imaging (e.g., HST, LBT, SIM, GAIA). Sensitive new optical and infrared spectrographs (e.g., HET, SALT, GranTeCan, Magellan, Keck, VLT, CELT, OWL, NGST) will push kinematic and abundance studies to new limits, allowing us detailed comparisons with model predictions. One important wavelength range for the study of young, massive star clusters, the far UV, appears to be neglected by future planned instrumentation.

  4. New Galactic star clusters discovered in the VVV survey

    NASA Astrophysics Data System (ADS)

    Borissova, J.; Bonatto, C.; Kurtev, R.; Clarke, J. R. A.; Peñaloza, F.; Sale, S. E.; Minniti, D.; Alonso-García, J.; Artigau, E.; Barbá, R.; Bica, E.; Baume, G. L.; Catelan, M.; Chenè, A. N.; Dias, B.; Folkes, S. L.; Froebrich, D.; Geisler, D.; de Grijs, R.; Hanson, M. M.; Hempel, M.; Ivanov, V. D.; Kumar, M. S. N.; Lucas, P.; Mauro, F.; Moni Bidin, C.; Rejkuba, M.; Saito, R. K.; Tamura, M.; Toledo, I.

    2011-08-01

    Context. VISTA Variables in the Vía Láctea (VVV) is one of the six ESO Public Surveys operating on the new 4-m Visible and Infrared Survey Telescope for Astronomy (VISTA). VVV is scanning the Milky Way bulge and an adjacent section of the disk, where star formation activity is high. One of the principal goals of the VVV Survey is to find new star clusters of differentages. Aims: In order to trace the early epochs of star cluster formation we concentrated our search in the directions to those of known star formation regions, masers, radio, and infrared sources. Methods: The disk area covered by VVV was visually inspected using the pipeline processed and calibrated KS-band tile images for stellar overdensities. Subsequently, we examined the composite JHKS and ZJKS color images of each candidate. PSF photometry of 15 × 15 arcmin fields centered on the candidates was then performed on the Cambridge Astronomy Survey Unit reduced images. After statistical field-star decontamination, color-magnitude and color-color diagrams were constructed and analyzed. Results: We report the discovery of 96 new infrared open clusters and stellar groups. Most of the new cluster candidates are faint and compact (with small angular sizes), highly reddened, and younger than 5 Myr. For relatively well populated cluster candidates we derived their fundamental parameters such as reddening, distance, and age by fitting the solar-metallicity Padova isochrones to the color-magnitude diagrams. Based on observations gathered with VIRCAM, VISTA of the ESO as part of observing programs 172.B-2002Appendix A is available in electronic form at http://www.aanda.orgTable 1 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/532/A131

  5. Caloric curve of star clusters.

    PubMed

    Casetti, Lapo; Nardini, Cesare

    2012-06-01

    Self-gravitating systems, such as globular clusters or elliptical galaxies, are the prototypes of many-body systems with long-range interactions, and should be the natural arena in which to test theoretical predictions on the statistical behavior of long-range-interacting systems. Systems of classical self-gravitating particles can be studied with the standard tools of equilibrium statistical mechanics, provided the potential is regularized at small length scales and the system is confined in a box. The confinement condition looks rather unphysical in general, so that it is natural to ask whether what we learn with these studies is relevant to real self-gravitating systems. In order to provide an answer to this question, we consider a basic, simple, yet effective model of globular clusters: the King model. This model describes a self-consistently confined system, without the need of any external box, but the stationary state is a nonthermal one. In particular, we consider the King model with a short-distance cutoff on the interactions, and we discuss how such a cutoff affects the caloric curve, i.e., the relation between temperature and energy. We find that the cutoff stabilizes a low-energy phase, which is absent in the King model without cutoff; the caloric curve of the model with cutoff turns out to be very similar to that of previously studied confined and regularized models, but for the absence of a high-energy gaslike phase. We briefly discuss the possible phenomenological as well as theoretical implications of these results. PMID:23005049

  6. Caloric curve of star clusters.

    PubMed

    Casetti, Lapo; Nardini, Cesare

    2012-06-01

    Self-gravitating systems, such as globular clusters or elliptical galaxies, are the prototypes of many-body systems with long-range interactions, and should be the natural arena in which to test theoretical predictions on the statistical behavior of long-range-interacting systems. Systems of classical self-gravitating particles can be studied with the standard tools of equilibrium statistical mechanics, provided the potential is regularized at small length scales and the system is confined in a box. The confinement condition looks rather unphysical in general, so that it is natural to ask whether what we learn with these studies is relevant to real self-gravitating systems. In order to provide an answer to this question, we consider a basic, simple, yet effective model of globular clusters: the King model. This model describes a self-consistently confined system, without the need of any external box, but the stationary state is a nonthermal one. In particular, we consider the King model with a short-distance cutoff on the interactions, and we discuss how such a cutoff affects the caloric curve, i.e., the relation between temperature and energy. We find that the cutoff stabilizes a low-energy phase, which is absent in the King model without cutoff; the caloric curve of the model with cutoff turns out to be very similar to that of previously studied confined and regularized models, but for the absence of a high-energy gaslike phase. We briefly discuss the possible phenomenological as well as theoretical implications of these results.

  7. Panchromatic Hubble Andromeda Treasury. XVI. Star Cluster Formation Efficiency and the Clustered Fraction of Young Stars

    NASA Astrophysics Data System (ADS)

    Johnson, L. Clifton; Seth, Anil C.; Dalcanton, Julianne J.; Beerman, Lori C.; Fouesneau, Morgan; Lewis, Alexia R.; Weisz, Daniel R.; Williams, Benjamin F.; Bell, Eric F.; Dolphin, Andrew E.; Larsen, Søren S.; Sandstrom, Karin; Skillman, Evan D.

    2016-08-01

    We use the Panchromatic Hubble Andromeda Treasury survey data set to perform spatially resolved measurements of star cluster formation efficiency (Γ), the fraction of stellar mass formed in long-lived star clusters. We use robust star formation history and cluster parameter constraints, obtained through color–magnitude diagram analysis of resolved stellar populations, to study Andromeda’s cluster and field populations over the last ˜300 Myr. We measure Γ of 4%–8% for young, 10–100 Myr-old populations in M31. We find that cluster formation efficiency varies systematically across the M31 disk, consistent with variations in mid-plane pressure. These Γ measurements expand the range of well-studied galactic environments, providing precise constraints in an H i-dominated, low-intensity star formation environment. Spatially resolved results from M31 are broadly consistent with previous trends observed on galaxy-integrated scales, where Γ increases with increasing star formation rate surface density (ΣSFR). However, we can explain observed scatter in the relation and attain better agreement between observations and theoretical models if we account for environmental variations in gas depletion time (τ dep) when modeling Γ, accounting for the qualitative shift in star formation behavior when transitioning from a H2-dominated to a H i-dominated interstellar medium. We also demonstrate that Γ measurements in high ΣSFR starburst systems are well-explained by τ dep-dependent fiducial Γ models.

  8. Panchromatic Hubble Andromeda Treasury. XVI. Star Cluster Formation Efficiency and the Clustered Fraction of Young Stars

    NASA Astrophysics Data System (ADS)

    Johnson, L. Clifton; Seth, Anil C.; Dalcanton, Julianne J.; Beerman, Lori C.; Fouesneau, Morgan; Lewis, Alexia R.; Weisz, Daniel R.; Williams, Benjamin F.; Bell, Eric F.; Dolphin, Andrew E.; Larsen, Søren S.; Sandstrom, Karin; Skillman, Evan D.

    2016-08-01

    We use the Panchromatic Hubble Andromeda Treasury survey data set to perform spatially resolved measurements of star cluster formation efficiency (Γ), the fraction of stellar mass formed in long-lived star clusters. We use robust star formation history and cluster parameter constraints, obtained through color-magnitude diagram analysis of resolved stellar populations, to study Andromeda’s cluster and field populations over the last ˜300 Myr. We measure Γ of 4%-8% for young, 10-100 Myr-old populations in M31. We find that cluster formation efficiency varies systematically across the M31 disk, consistent with variations in mid-plane pressure. These Γ measurements expand the range of well-studied galactic environments, providing precise constraints in an H i-dominated, low-intensity star formation environment. Spatially resolved results from M31 are broadly consistent with previous trends observed on galaxy-integrated scales, where Γ increases with increasing star formation rate surface density (ΣSFR). However, we can explain observed scatter in the relation and attain better agreement between observations and theoretical models if we account for environmental variations in gas depletion time (τ dep) when modeling Γ, accounting for the qualitative shift in star formation behavior when transitioning from a H2-dominated to a H i-dominated interstellar medium. We also demonstrate that Γ measurements in high ΣSFR starburst systems are well-explained by τ dep-dependent fiducial Γ models.

  9. N-body simulations of star clusters

    NASA Astrophysics Data System (ADS)

    Engle, Kimberly Anne

    1999-10-01

    We investigate the structure and evolution of underfilling (i.e. non-Roche-lobe-filling) King model globular star clusters using N-body simulations. We model clusters with various underfilling factors and mass distributions to determine their evolutionary tracks and lifetimes. These models include a self-consistent galactic tidal field, mass loss due to stellar evolution, ejection, and evaporation, and binary evolution. We find that a star cluster that initially does not fill its Roche lobe can live many times longer than one that does initially fill its Roche lobe. After a few relaxation times, the cluster expands to fill its Roche lobe. We also find that the choice of initial mass function significantly affects the lifetime of the cluster. These simulations were performed on the GRAPE-4 (GRAvity PipE) special-purpose hardware with the stellar dynamics package ``Starlab.'' The GRAPE-4 system is a massively-parallel computer designed to calculate the force (and its first time derivative) due to N particles. Starlab's integrator ``kira'' employs a 4th- order Hermite scheme with hierarchical (block) time steps to evolve the stellar system. We discuss, in some detail, the design of the GRAPE-4 system and the manner in which the Hermite integration scheme with block time steps is implemented in the hardware.

  10. The origin of the mass function of star clusters: the simulation of star cluster formation

    NASA Astrophysics Data System (ADS)

    Fujii, Michiko

    2015-08-01

    The mass functions of star clusters have been observed in the Milky Way and nearby galaxies, but the origin of the cluster mass function is still unclear. We simulate the formation of star clusters using the combination of smoothed-particle hydrodynamics (SPH) and direct N-body methods. We start by performing SPH simulations of the giant molecular cloud with a turbulent velocity field. We continue the SPH simulations for a free-fall time scale, and analyze the resulting structure of the collapsed cloud. We subsequently replace a density-selected subset of SPH particles with stars by adopting a local star-formation efficiency proportional to the square root of the local density. As a consequence, the local star formation efficiency exceeds 30 per cent, whereas globally only a few per cent of the gas is converted to stars. The stellar distribution is very clumpy with typically a dozen bound conglomerates that consist of 100 to 10000 stars. We continue to evolve the stars dynamically using the collisional N-body method, which accurately treats all pairwise interactions, stellar collisions and stellar evolution. We analyze the results of the N-body simulations at 2 Myr and 10 Myr. The shape of the cluster mass function that originates from an individual molecular cloud is consistent with a Schechter function with a power-law slope of beta = -1.73 at 2 Myr and beta = -1.67 at 10 Myr, which fits to observed cluster mass function of the Carina region. The superposition of mass functions have a power-law slope of < -2, which fits the observed mass function of star clusters in the Milky Way, M31 and M83. We further find that the mass of the most massive cluster formed in a single molecular cloud with a mass of M_g scales with 6.1 M_g^0.51 which also agrees with recent observation in M51. Furthermore, this relation connects to the observed relation between the mass of the most massive star in a cluster and the total mass of the cluster.

  11. UBV Photometry of the young open cluster Berkely 87

    NASA Astrophysics Data System (ADS)

    Akinyemi, Abolaji; Eskridge, Paul B.

    2015-01-01

    We obtained UBV imaging of a field in the young open cluster Berkeley 87. From these images, we measured the brightness of ~180 stars in the cluster. Our photometry was calibrated using published photometry (Turner & Forbes 1982 PASP 94, 789) of a subset of stars in our field. The cluster is in a region of the sky with strongly varying extinction. Therefore we made a (U-B)-(B-V) color-color diagram of the field and used this to de-redden the stars on a case by case basis. We de-reddened the stars using the unreddened supergiant and main sequence colors from Astrophysical Quantities (Cox 2000).The color-magnitude diagrams of the de-reddened stars are compared to the Padova isochrones(Marigo et al 2008 A&A 482 883). The isochrones are generated for a range of ages, with solar metalicity and no α enhancement. The best fit for the isochrones was the main sequence de-reddened stars from which the age of the cluster is estimated to be 20 million years. This is older than previous age estimates (1-5 million years) from earlier studies of the cluster. This may indicate age variation in the cluster.We acknowledge the support of the Physics and Astronomy department, and the College of Science and Engineering, Minnesota State University, Mankato.

  12. How a Star Cluster Ruled Out MACHOs

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-08-01

    Are massive black holes hiding in the halos of galaxies, making up the majority of the universes mysterious dark matter? This possibility may have been ruled out by a star cluster in a small galaxy recently discovered orbiting the Milky Way.Dark Matter CandidatesThe relative amounts of the different constituents of the universe. Dark matter makes up ~27%. [ESA/Planck]Roughly 27% of the mass and energy in the observable universe is made up of dark matter matter invisible to us, which is neither accounted for by observable baryonic matter nor dark energy.What makes up this dark matter? Among the many proposed candidates, one of the least exotic is that of massive compact halo objects, or MACHOs. MACHOs are hypothesized to be black holes that formed in the early universe and now hide in galactic halos. We cant detect light from these objects but their mass adds to the gravitational pull of galaxies.So far, MACHOs prospects arent looking great. They have not been detected in gravitational lensing surveys, ruling out MACHOs between 10-7 and 30 solar masses as the dominant component of dark matter in our galaxy. MACHOs over 100 solar masses have also been ruled out, due to the existence of fragile wide halo binaries that would have been disrupted by the presence of such large black holes.But what about MACHOs between 30 and 100 solar masses? In a new study, Timothy Brandt (NASA Sagan Postdoctoral Fellow at the Institute for Advanced Study, in Princeton, NJ) uses a recently discovered faint galaxy, Eridanus II, to place constraints on MACHOs in this mass range.MACHO constraints from the survival of a star cluster in Eri II, assuming a cluster age of 3 Gyr (a lower bound; constraints increase when assuming an age of 12 Gyr). [Adapted from Brandt 2016]A Star Cluster in Eri IIEridanus II is an ultra-faint dwarf galaxy that lies roughly 1.2 million light-years away from us. This dim object is a satellite galaxy of the Milky Way, discovered as part of the Dark Energy Survey

  13. UVIS CTE Monitor: Star Clusters

    NASA Astrophysics Data System (ADS)

    Noeske, Kai

    2010-09-01

    *** NOTE 2: 2ND CHANGE MAR 26 2011: VISIT 13 HAD FAILED. APPROVED FOR REPETITION. ****** NEW VISIT 14 IS IDENTICAL TO FORMER VISIT 13, WITH EXCEPTIONS THAT SOME SUBEXPOSURES ARE REMOVED. ****** SEE OBSERVING DESCRIPTION FOR DETAILS. ****** NOTE: THIS IS A CHANGED PHASE II PROPOSAL AFTER VISITS 1,2,7 HAD BEEN EXECUTED ****** CHANGES BECAME NECESSARY AFTER ANALYSIS OF INCOMING CALIBRATION DATA FROM 12379 AND 12348 ****** THIS REVISED PHASE II {submission 14FEB2011} ADDS THE EVALUATION OF CHARGE INJECTION***The changes amount to:1} dropping the 3rd epoch {August 2011} of external CTE monitoring {3 orbits}2} simplifying the CTE monitor observations in the second epoch {March 2011}, freeing up 1 orbit3} using the freed up orbits from 1} and 2}, together with two additional external orbits that we were granted, to thoroughly assess the data quality of charge - injected data under realistic observing setups.These charge-injected observations will be obtained during the 2nd epoch of the CTE monitor program, in the March 2011 window.------ Original Text prior to 14 Feb 2011 below this line -----------This program extends the Cycle 17 external CTE calibration {CAL/WFC3 ID 11924} program for WFC3/UVIS over Cycle 18. Targets are {i} the sparse cluster NGC 6791 observed in Cycle 17, to continue a consistent set of observations that allows to isolate the time evolution of the CTE, and {ii} a denser field in 47 Tuc {NGC 104}. The latter will provide data to measure the dependence of the CTE on field crowding. It will also provide a consistent comparison between the CTE evolution of WFC3/UVIS and that of ACS/WFC at the same time into the flight {1 year}, because ACS/WFC CTE data were based on 47 Tuc observations. Additional observations of 47 Tuc in the CVZ will provide a wide range of background levels to measure the background dependence of the UVIS CTE.Goals are {i} the continued monitoring of the time evolution of the WFC3/UVIS CTE, {ii} establishing the detector X

  14. Evolution of star clusters in a cosmological tidal field

    NASA Astrophysics Data System (ADS)

    Rieder, Steven; Ishiyama, Tomoaki; Langelaan, Paul; Makino, Junichiro; McMillan, Stephen L. W.; Portegies Zwart, Simon

    2013-12-01

    We present a method to couple N-body star cluster simulations to a cosmological tidal field, using AMUSE (Astrophysical Multipurpose Software Environment). We apply this method to star clusters embedded in the CosmoGrid dark matter only Lambda cold dark matter simulation. Our star clusters are born at z = 10 (corresponding to an age of the universe of about 500 Myr) by selecting a dark matter particle and initializing a star cluster with 32 000 stars on its location. We then follow the dynamical evolution of the star cluster within the cosmological environment. We compare the evolution of star clusters in two Milky Way size haloes with a different accretion history. The mass-loss of the star clusters is continuous irrespective of the tidal history of the host halo, but major merger events tend to increase the rate of mass-loss. From the selected two dark matter haloes, the halo that experienced the larger number of mergers tends to drive a smaller mass-loss rate from the embedded star clusters, even though the final masses of both haloes are similar. We identify two families of star clusters: native clusters, which become part of the main halo before its final major merger event, and the immigrant clusters, which are accreted upon or after this event; native clusters tend to evaporate more quickly than immigrant clusters. Accounting for the evolution of the dark matter halo causes immigrant star clusters to retain more mass than when the z = 0 tidal field is taken as a static potential. The reason for this is the weaker tidal field experienced by immigrant star clusters before merging with the larger dark matter halo.

  15. Search for variables in the open cluster King 12

    NASA Astrophysics Data System (ADS)

    Paunzen, E.; Netopil, M.; Rode-Paunzen, M.; Bozic, H.

    2015-06-01

    We present the time series analysis of CCD photometry from the 1 m telescope at the Hvar Observatory (Croatia) for 54 stars in the area of the young open clusters King 12. We found no new variable but list upper detection limits.

  16. A WISE VIEW OF STAR FORMATION IN LOCAL GALAXY CLUSTERS

    SciTech Connect

    Chung, Sun Mi; Gonzalez, Anthony H.; Eisenhardt, Peter R.; Stern, Daniel; Stanford, Spencer A.; Brodwin, Mark; Jarrett, Thomas

    2011-12-10

    We present results from a systematic study of star formation in local galaxy clusters using 22 {mu}m data from the Wide-field Infrared Survey Explorer (WISE). The 69 systems in our sample are drawn from the Cluster Infall Regions Survey, and all have robust mass determinations. The all-sky WISE data enable us to quantify the amount of star formation, as traced by 22 {mu}m, as a function of radius well beyond R{sub 200}, and investigate the dependence of total star formation rate upon cluster mass. We find that the fraction of star-forming galaxies increases with cluster radius but remains below the field value even at 3R{sub 200}. We also find that there is no strong correlation between the mass-normalized total specific star formation rate and cluster mass, indicating that the mass of the host cluster does not strongly influence the total star formation rate of cluster members.

  17. Velocity anisotropy in tidally limited star clusters

    NASA Astrophysics Data System (ADS)

    Tiongco, Maria A.; Vesperini, Enrico; Varri, Anna Lisa

    2016-02-01

    We explore the long-term evolution of the anisotropy in the velocity space of star clusters starting with different structural and kinematical properties. We show that the evolution of the radial anisotropy strength and its radial variation within a cluster contain distinct imprints of the cluster initial structural properties, dynamical history, and of the external tidal field of its host galaxy. Initially isotropic and compact clusters with small initial values of the ratio of the half-mass to Jacobi radius, rh/rJ, develop a strong radial anisotropy during their long-term dynamical evolution. Many clusters, if formed with small values of rh/rJ, should now be characterized by a significant radial anisotropy increasing with the distance from the cluster centre, reaching its maximum at a distance between 0.2 rJ and 0.4 rJ, and then becoming more isotropic or mildly tangentially anisotropic in the outermost regions. A similar radial variation of the anisotropy can also result from an early violent relaxation phase. In both cases, as a cluster continues its evolution and loses mass, the anisotropy eventually starts to decrease and the system evolves towards an isotropic velocity distribution. However, in order to completely erase the strong anisotropy developed by these compact systems during their evolution, they must be in the advanced stages of their evolution and lose a large fraction of their initial mass. Clusters that are initially isotropic and characterized by larger initial values of rh/rJ, on the other hand, never develop a significant radial anisotropy.

  18. ALE OF TWO CLUSTERS YIELDS SECRETS OF STAR BIRTH IN THE EARLY UNIVERSE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This NASA Hubble Space Telescope (HST) image shows rich detail, previously only seen in neighboring star birth regions, in a pair of star clusters 166,000 light-years away in the Large Magellanic Cloud (LMC), in the southern constellation Doradus. The field of view is 130 light-years across and was taken with the Wide Field Planetary Camera 2. HST's unique capabilities -- ultraviolet sensitivity, ability to see faint stars, and high resolution -- have been utilized fully to identify three separate populations in this concentration of nearly 10,000 stars down to the 25th magnitude (more that twice as many as can be seen over the entire sky with the naked eye on a clear night on Earth). The field of view is only 130 light-years across. Previous observations with ground-based telescopes resolve less than 1,000 stars in the same region. About 60 percent of the stars belong to the dominant yellow cluster called NGC 1850, which is estimated to be 50 million years old. A scattering of white stars in the image are massive stars that are only about 4 million years old and represent about 20 percent of the stars in the image. (The remainder are field stars in the LMC.) Besides being much younger, the white stars are much more loosely distributed than the yellow cluster. The significant difference between the two cluster ages suggests these are two separate star groups that lie along the same line of sight. The younger, more open cluster probably lies 200 light-years beyond the older cluster. If it were in the foreground, then dust contained in the white cluster would obscure stars in the older yellow cluster. To observe two well-defined star populations separated by such a small gap of space is unusual. This juxtaposition suggests that supernova explosions in the older cluster might have triggered the birth of the younger cluster. This color composite image is assembled from exposures taken in ultraviolet, visible, and near-infrared light. Yellow stars correspond to Main

  19. DEBRIS DISKS OF MEMBERS OF THE BLANCO 1 OPEN CLUSTER

    SciTech Connect

    Stauffer, John R.; Noriega-Crespo, Alberto; Rebull, Luisa M.; James, David; Strom, Steven; Wolk, Scott; Carpenter, John M.; Barrado y Navascues, David; Backman, Dana; Cargile, P. A.

    2010-08-20

    We have used the Spitzer Space Telescope to obtain Multiband Imaging Photometer for Spitzer (MIPS) 24 {mu}m photometry for 37 members of the {approx}100 Myr old open cluster Blanco 1. For the brightest 25 of these stars (where we have 3{sigma} uncertainties less than 15%), we find significant mid-IR excesses for eight stars, corresponding to a debris disk detection frequency of about 32%. The stars with excesses include two A stars, four F dwarfs, and two G dwarfs. The most significant linkage between 24 {mu}m excess and any other stellar property for our Blanco 1 sample of stars is with binarity. Blanco 1 members that are photometric binaries show few or no detected 24 {mu}m excesses whereas a quarter of the apparently single Blanco 1 members do have excesses. We have examined the MIPS data for two other clusters of similar age to Blanco 1-NGC 2547 and the Pleiades. The AFGK photometric binary star members of both of these clusters also show a much lower frequency of 24 {mu}m excesses compared to stars that lie near the single-star main sequence. We provide a new determination of the relation between the V - K {sub s} color and K {sub s} - [24] color for main sequence photospheres based on Hyades members observed with MIPS. As a result of our analysis of the Hyades data, we identify three low mass Hyades members as candidates for having debris disks near the MIPS detection limit.

  20. A New Method of Open Cluster Membership Determination

    NASA Astrophysics Data System (ADS)

    Gao, Xin-hua; Chen, Li; Hou, Zhen-jie

    2014-07-01

    Membership determination is the key-important step to study open clusters, which can directly influence on the estimation of open clusters’ physical parameters. DBSCAN (Density Based Spatial Clustering of Applications with Noise) is a density-based clustering algorithm in data mining techniques. In this paper the DBSCAN algorithm has been used for the first time to make the membership determination of the open clusters NGC 6791 and M 67 (NGC 2682). Our results indicate that the DBSCAN algorithm can effectively eliminate the contamination of field stars. The obtained member stars of NGC 6791 exhibit clearly a doubled main-sequence structure in the color-magnitude diagram, implying that NGC 6791 may have a more complicated history of star formation and evolution. The clustering analysis of M67 indicates the presence of mass segregation, and the distinct relative motion between the central part and the outer part of the cluster. These results demonstrate that the DBSCAN algorithm is an effective method of membership determination, and that it has some advantages superior to the conventional kinematic method.

  1. ZIRCONIUM, BARIUM, LANTHANUM, AND EUROPIUM ABUNDANCES IN OPEN CLUSTERS

    SciTech Connect

    Jacobson, Heather R.; Friel, Eileen D. E-mail: efriel@indiana.edu

    2013-04-15

    We present an analysis of the s-process elements Zr, Ba, and La and the r-process element Eu in a sample of 50 stars in 19 open clusters. Stellar abundances of each element are based on measures of a minimum of two lines per species via both equivalent width and spectrum synthesis techniques. We investigate cluster mean neutron-capture abundance trends as a function of cluster age and location in the Milky Way disk and compare them to results found in other studies in the literature. We find a statistically significant trend of increasing cluster [Ba/Fe] as a function of decreasing cluster age, in agreement with recent findings for other open cluster samples, supporting the increased importance of low-mass asymptotic giant branch stars to the generation of s-process elements. However, the other s-process elements, [La/Fe] and [Zr/Fe], do not show similar dependences, in contrast to theoretical expectations and the limited observational data from other studies. Conversely, cluster [Eu/Fe] ratios show a slight increase with increasing cluster age, although with marginal statistical significance. Ratios of [s/r]-process abundances, [Ba/Eu] and [La/Eu], however, show more clearly the increasing efficiency of s-process relative to r-process enrichment in open cluster chemical evolution, with significant increases among younger clusters. Last, cluster neutron-capture element abundances appear to be independent of Galactocentric distance. We conclude that a homogeneous analysis of a larger sample of open clusters is needed to resolve the apparent discrepant conclusions between different studies regarding s-process element abundance trends with age to better inform models of galactic chemical evolution.

  2. On the metallicity of open clusters. III. Homogenised sample

    NASA Astrophysics Data System (ADS)

    Netopil, M.; Paunzen, E.; Heiter, U.; Soubiran, C.

    2016-01-01

    treatment of the Galactic cluster population, or evolutionary studies of individual star groups in open clusters.

  3. A comprehensive study of the open cluster NGC 6866

    NASA Astrophysics Data System (ADS)

    Bostancı, Z. F.; Ak, T.; Yontan, T.; Bilir, S.; Güver, T.; Ak, S.; Çakırlı, Ö.; Özdarcan, O.; Paunzen, E.; De Cat, P.; Fu, J. N.; Zhang, Y.; Hou, Y.; Li, G.; Wang, Y.; Zhang, W.; Shi, J.; Wu, Y.

    2015-10-01

    We present CCD UBVRI photometry of the field of the open cluster NGC 6866. Structural parameters of the cluster are determined utilizing the stellar density profile of the stars in the field. We calculate the probabilities of the stars being physical members of the cluster, using their astrometric data, and perform further analyses using only the most probable members. The reddening and metallicity of the cluster were determined by independent methods. The LAMOST spectra and the ultraviolet excess of the F- and G-type main-sequence stars in the cluster indicate that the metallicity of the cluster is about the solar value. We estimated the reddening E(B - V) = 0.074 ± 0.050 mag using the U - B versus B - V two-colour diagram. The distance modula, the distance and the age of NGC 6866 were derived as μ = 10.60 ± 0.10 mag, d = 1189 ± 75 pc and t = 813 ± 50 Myr, respectively, by fitting colour-magnitude diagrams of the cluster with the PARSEC isochrones. The Galactic orbit of NGC 6866 indicates that the cluster is orbiting in a slightly eccentric orbit with e = 0.12. The mass function slope x = 1.35 ± 0.08 was derived by using the most probable members of the cluster.

  4. Lithopanspermia in star-forming clusters.

    PubMed

    Adams, Fred C; Spergel, David N

    2005-08-01

    This paper considers the lithopanspermia hypothesis in star-forming groups and clusters, where the chances of biological material spreading from one solar system to another is greatly enhanced (relative to action in the field) because of the close proximity of the systems and lower relative velocities. These effects more than compensate for the reduced time spent in such crowded environments. This paper uses approximately 300,000 Monte Carlo scattering calculations to determine the cross sections for rocks to be captured by binaries and provides fitting formulae for other applications. We assess the odds of transfer as a function of the ejection speed v (eject) and number N(.) of members in the birth aggregate. The odds of any given ejected meteoroid being recaptured by another solar system are relatively low, about 1:10(3)-10(6) over the expected range of ejection speeds and cluster sizes. Because the number of ejected rocks (with mass m > 10 kg) per system can be large, N (R) approximately 10(16), virtually all solar systems are likely to share rocky ejecta with all of the other solar systems in their birth cluster. The number of ejected rocks that carry living microorganisms is much smaller and less certain, but we estimate that N (B) approximately 10(7) rocks can be ejected from a biologically active solar system. For typical birth environments, the capture of life-bearing rocks is expected to occur N (bio) asymptotically equal to 10-16,000 times (per cluster), depending on the ejection speeds. Only a small fraction (f (imp) approximately 10(4)) of the captured rocks impact the surfaces of terrestrial planets, so that N (lps) asymptotically equal to 10(3)-1.6 lithopanspermia events are expected per cluster (under favorable conditions). Finally, we discuss the question of internal versus external seeding of clusters and the possibility of Earth seeding young clusters over its biologically active lifetime.

  5. Lithopanspermia in star-forming clusters.

    PubMed

    Adams, Fred C; Spergel, David N

    2005-08-01

    This paper considers the lithopanspermia hypothesis in star-forming groups and clusters, where the chances of biological material spreading from one solar system to another is greatly enhanced (relative to action in the field) because of the close proximity of the systems and lower relative velocities. These effects more than compensate for the reduced time spent in such crowded environments. This paper uses approximately 300,000 Monte Carlo scattering calculations to determine the cross sections for rocks to be captured by binaries and provides fitting formulae for other applications. We assess the odds of transfer as a function of the ejection speed v (eject) and number N(.) of members in the birth aggregate. The odds of any given ejected meteoroid being recaptured by another solar system are relatively low, about 1:10(3)-10(6) over the expected range of ejection speeds and cluster sizes. Because the number of ejected rocks (with mass m > 10 kg) per system can be large, N (R) approximately 10(16), virtually all solar systems are likely to share rocky ejecta with all of the other solar systems in their birth cluster. The number of ejected rocks that carry living microorganisms is much smaller and less certain, but we estimate that N (B) approximately 10(7) rocks can be ejected from a biologically active solar system. For typical birth environments, the capture of life-bearing rocks is expected to occur N (bio) asymptotically equal to 10-16,000 times (per cluster), depending on the ejection speeds. Only a small fraction (f (imp) approximately 10(4)) of the captured rocks impact the surfaces of terrestrial planets, so that N (lps) asymptotically equal to 10(3)-1.6 lithopanspermia events are expected per cluster (under favorable conditions). Finally, we discuss the question of internal versus external seeding of clusters and the possibility of Earth seeding young clusters over its biologically active lifetime. PMID:16078868

  6. Multiple Stellar Populations in Star Clusters

    NASA Astrophysics Data System (ADS)

    Piotto, G.

    2013-09-01

    For half a century it had been astronomical dogma that a globular cluster (GC) consists of stars born at the same time out of the same material, and this doctrine has borne rich fruits. In recent years, high resolution spectroscopy and high precision photometry (from space and ground-based observations) have shattered this paradigm, and the study of GC populations has acquired a new life that is now moving it in new directions. Evidence of multiple stellar populations have been identified in the color-magnitude diagrams of several Galactic and Magellanic Cloud GCs where they had never been imagined before.

  7. Massive Stars and Their Possible Impacts in Globular Clusters

    NASA Astrophysics Data System (ADS)

    Decressin, Thibaut

    2012-05-01

    Globular clusters exhibit peculiar chemical patterns where Fe and heavy elements abundances stay constant inside a given cluster while light elements (Li to Al) show strong star-to-star variations. This peculiar chemical pattern can be explained by self-pollution of the intracluster gas occurring in the early evolution of clusters. Here I present the possible strong impact of fast rotating massive stars on clusters evolution. First providing they rotate initially fast enough, these stars can reach the break-up velocity during the main sequence and matter will be ejected from the equator at low velocity. Rotation-induced mixing will also bring matter from the convective core to the surface. From this ejected matter loaded in H-burning material a second generation of stars will born. The chemical pattern of these second generation stars are similar to the one observed for stars in globular cluster with abundance anomalies in light elements. Then during the explosion as supernovae the massive stars will also clear the cluster of the remaining gas. One important feature of globular clusters observed today is that 50 to 80% of the low mass stars still evolving in the cluster are second generation starts whereas, with a standard IMF, these stars should be at most 10% of the cluster stars. This strong discrepancy can be solved if the proto-globular clusters were more massive (up to a factor 20-30) and mass-segregated during their formation. In this case a strong loss of first generation stars occupying the outer part of the cluster is possible through the dynamical history of the cluster.

  8. The Sejong Open Cluster Survey (SOS). IV. the Young Open Clusters NGC 1624 and NGC 1931

    NASA Astrophysics Data System (ADS)

    Lim, Beomdu; Sung, Hwankyung; Bessell, Michael S.; Kim, Jinyoung S.; Hur, Hyeonoh; Park, Byeong-Gon

    2015-04-01

    Young open clusters located in the outer Galaxy provide us with an opportunity to study star formation activity in a different environment from the solar neighborhood. We present a UBVI and Hα photometric study of the young open clusters NGC 1624 and NGC 1931 that are situated toward the Galactic anticenter. Various photometric diagrams are used to select the members of the clusters and to determine the fundamental parameters. NGC 1624 and NGC 1931 are, on average, reddened by < E(B-V)> = 0.92 ± 0.05 and 0.74 ± 0.17 mag, respectively. The properties of the reddening toward NGC 1931 indicate an abnormal reddening law ({{R}V,cl} = 5.2 ± 0.3). Using the zero-age main sequence fitting method we confirm that NGC 1624 is 6.0 ± 0.6 kpc away from the Sun, whereas NGC 1931 is at a distance of 2.3 ± 0.2 kpc. The results from isochrone fitting in the Hertzsprung-Russell diagram indicate the ages of NGC 1624 and NGC 1931 to be less than 4 and 1.5-2.0 Myr, respectively. We derived the initial mass function (IMF) of the clusters. The slope of the IMF ({{{Γ }}NGC 1624} = -2.0 ± 0.2 and {{{Γ }}NGC 1931} = -2.0 ± 0.1) appears to be steeper than that of the Salpeter/Kroupa IMF. We discuss the implication of the derived IMF based on simple Monte-Carlo simulations and conclude that the property of star formation in the clusters does not seem to be significantly different from that in the solar neighborhood.

  9. A PSF-based approach to Kepler/K2 data - III. Search for exoplanets and variable stars within the open cluster M 67 (NGC 2682)

    NASA Astrophysics Data System (ADS)

    Nardiello, D.; Libralato, M.; Bedin, L. R.; Piotto, G.; Borsato, L.; Granata, V.; Malavolta, L.; Nascimbeni, V.

    2016-08-01

    In the third paper of this series we continue the exploitation of Kepler/K2 data in dense stellar fields using our PSF-based method. This work is focused on a ˜720-arcmin2 region centred on the Solar-metallicity and Solar-age open cluster M 67. We extracted light curves for all detectable sources in the Kepler channels 13 and 14, adopting our technique based on the usage of a high-angular-resolution input catalogue and target-neighbour subtraction. We detrended light curves for systematic errors, and searched for variables and exoplanets using several tools. We found 451 variables, of which 299 are new detection. Three planetary candidates were detected by our pipeline in this field. Raw and detrended light curves, catalogues, and K2 stacked images used in this work will be released to the community.

  10. Nine new open clusters within 500 pc from the Sun

    NASA Astrophysics Data System (ADS)

    Röser, Siegfried; Schilbach, Elena; Goldman, Bertrand

    2016-10-01

    Aims: One of the results of the Milky Way Star Clusters (MWSC) survey was the detection of a slight under-density of old (ca. 1 Gyr) clusters within the nearest kilo-parsec from the Sun. This under-density may be due to an ineffectiveness in the detection of larger structures with lower surface brightness. We report on our attempts to reveal such clusters. Methods: We derived proper motions from a combination of Tycho-2 with URAT1, and obtained a mean precision of about 1.4 mas/yr per co-ordinate for 1.3 million stars north of -20° declination. We cut the sky into narrow proper motion slices and searched for spatial over-densities of stars in each slice. We then examined stars from over-densities in optical and near-infrared colour-magnitude diagrams to determine if they are compatible with isochrones of a cluster. We estimated the field star contamination using our data and the Besançon Galactic model. Results: We detected nine hitherto unknown open clusters in the vicinity of the Sun with ages between 70 Myr and 1 Gyr, and distances between 200 and 500 pc.

  11. Radial velocities of three poorly studied clusters and the kinematics of open clusters

    SciTech Connect

    Hayes, Christian R.; Friel, Eileen D. E-mail: efriel@indiana.edu

    2014-04-01

    We present radial velocities for stars in the field of the open star clusters Berkeley 44, Berkeley 81, and NGC 6802 from spectra obtained using the Wisconsin-Indiana-Yale-NOAO (WIYN) 3.5 m telescope. These clusters are of intermediate age (1-3 Gyr), located within the solar Galactocentric radius, and have no previous radial velocity measurements. We find mean radial velocities of –9.6 ± 3.0 km s{sup –1}, 48.1 ± 2.0 km s{sup –1}, and 12.4 ± 2.8 km s{sup –1} for Be 44, Be 81, and NGC 6802, respectively. We present an analysis of radial velocities of 134 open clusters of a wide range of ages using data obtained in this study and the literature. Assuming the system of clusters rotates about the Galactic center with a constant velocity, we find older clusters exhibit a slower rotation and larger line-of-sight (LOS) velocity dispersion than younger clusters. The gradual decrease in rotational velocity of the cluster system with age is accompanied by a smooth increase in LOS velocity dispersion, which we interpret as the effect of heating on the open cluster system over time.

  12. Probing Multiple Stellar Populations In The Open Cluster Trumpler 20

    NASA Astrophysics Data System (ADS)

    Platais, Imants; Melo, C. H. F.; Fulbright, J. P.; Clem, J. L.; Kozhurina-Platais, V.; Barnes, S.; Bedin, L. R.; Bellini, A.; Figueira, P.

    2010-01-01

    Ignoring the globular clusters, multiple stellar populations have been discovered in some intermediate-age LMC star clusters but not yet in any Galactic open cluster. However, a recently-unveiled rich, 1.3-Gyr old Galactic open cluster Trumpler 20 appears to offer propitious clues about the bimodality of its main sequence. We present new BVI observations obtained with the CTIO 1-m telescope. We also present comprehensive VLT/FLAMES high-resolution spectroscopic observations obtained at the ESO/Paranal. Kinematic membership in Trumpler 20 is derived from a single epoch radial velocities for more than 900 stars. The color-magnitude diagram of Trumpler 20 indicates a double main sequence turn-off and a considerable extension of the red clump. The distribution of [Fe/H] values for 87 red giants is consistent with Trumpler 20 having a single metallicity. The cluster is conspicuously rich with fast rotators (vsin i > 100 km/s), many of whom are located near the main sequence turn-off, thus lending support to the suggestion by Bastian & de Mink that for intermediate age (1-2 Gyr) clusters the effects of stellar rotation have direct implications on the structure of main sequence near the turn-off. Trumpler 20 is the first known Galactic open cluster to show this phenomenon. This work is supported in part by a NSF grant 09-08114 to JHU.

  13. Stellar and Binary Evolution in Star Clusters

    NASA Technical Reports Server (NTRS)

    McMillan, Stephen L. W.

    2001-01-01

    This paper presents a final report on research activities covered on Stellar and Binary Evolution in Star Clusters. Substantial progress was made in the development and dissemination of the "Starlab" software environment. Significant improvements were made to "kira," an N-body simulation program tailored to the study of dense stellar systems such as star clusters and galactic nuclei. Key advances include (1) the inclusion of stellar and binary evolution in a self-consistent manner, (2) proper treatment of the anisotropic Galactic tidal field, (3) numerous technical enhancements in the treatment of binary dynamics and interactions, and (4) full support for the special-purpose GRAPE-4 hardware, boosting the program's performance by a factor of 10-100 over the accelerated version. The data-reduction and analysis tools in Starlab were also substantially expanded. A Starlab Web site (http://www.sns.ias.edu/-starlab) was created and developed. The site contains detailed information on the structure and function of the various tools that comprise the package, as well as download information, "how to" tips and examples of common operations, demonstration programs, animations, etc. All versions of the software are freely distributed to all interested users, along with detailed installation instructions.

  14. HUBBLE SPIES HUGE CLUSTERS OF STARS FORMED

    NASA Technical Reports Server (NTRS)

    2002-01-01

    BY ANCIENT ENCOUNTER This stunningly beautiful image [right] taken with the NASA Hubble Space Telescope shows the heart of the prototypical starburst galaxy M82. The ongoing violent star formation due to an ancient encounter with its large galactic neighbor, M81, gives this galaxy its disturbed appearance. The smaller picture at upper left shows the entire galaxy. The image was taken in December 1994 by the Kitt Peak National Observatory's 0.9-meter telescope. Hubble's view is represented by the white outline in the center. In the Hubble image, taken by the Wide Field and Planetary Camera 2, the huge lanes of dust that crisscross M82's disk are another telltale sign of the flurry of star formation. Below the center and to the right, a strong galactic wind is spewing knotty filaments of hydrogen and nitrogen gas. More than 100 super star clusters -- very bright, compact groupings of about 100,000 stars -- are seen in this detailed Hubble picture as white dots sprinkled throughout M82's central region. The dark region just above the center of the picture is a huge dust cloud. A collaboration of European and American scientists used these clusters to date the ancient interaction between M82 and M81. About 600 million years ago, a region called 'M82 B' (the bright area just below and to the left of the central dust cloud) exploded with new stars. Scientists have discovered that this ancient starburst was triggered by the violent encounter with M81. M82 is a bright (eighth magnitude), nearby (12 million light-years from Earth) galaxy in the constellation Ursa Major (the Great Bear). The Hubble picture was taken Sept. 15, 1997. The natural-color composite was constructed from three Wide Field and Planetary Camera 2 exposures, which were combined in chromatic order: 4,250 seconds through a blue filter (428 nm); 2,800 seconds through a green filter (520 nm); and 2,200 seconds through a red (820 nm) filter. Credits for Hubble image: NASA, ESA, R. de Grijs (Institute of

  15. The Prevalence and Impact of Wolf-Rayet Stars in Emerging Massive Star Clusters

    NASA Astrophysics Data System (ADS)

    Sokal, Kimberly R.; Johnson, Kelsey E.; Indebetouw, Rémy; Massey, Philip

    2016-08-01

    We investigate Wolf-Rayet (WR) stars as a source of feedback contributing to the removal of natal material in the early evolution of massive star clusters. Despite previous work suggesting that massive star clusters clear out their natal material before the massive stars evolve into the WR phase, WR stars have been detected in several emerging massive star clusters. These detections suggest that the timescale for clusters to emerge can be at least as long as the time required to produce WR stars (a few million years), and could also indicate that WR stars may be providing the tipping point in the combined feedback processes that drive a massive star cluster to emerge. We explore the potential overlap between the emerging phase and the WR phase with an observational survey to search for WR stars in emerging massive star clusters hosting WR stars. We select candidate emerging massive star clusters from known radio continuum sources with thermal emission and obtain optical spectra with the 4 m Mayall Telescope at Kitt Peak National Observatory and the 6.5 m MMT.4 We identify 21 sources with significantly detected WR signatures, which we term “emerging WR clusters.” WR features are detected in ˜50% of the radio-selected sample, and thus we find that WR stars are commonly present in currently emerging massive star clusters. The observed extinctions and ages suggest that clusters without WR detections remain embedded for longer periods of time, and may indicate that WR stars can aid, and therefore accelerate, the emergence process.

  16. The Prevalence and Impact of Wolf–Rayet Stars in Emerging Massive Star Clusters

    NASA Astrophysics Data System (ADS)

    Sokal, Kimberly R.; Johnson, Kelsey E.; Indebetouw, Rémy; Massey, Philip

    2016-08-01

    We investigate Wolf–Rayet (WR) stars as a source of feedback contributing to the removal of natal material in the early evolution of massive star clusters. Despite previous work suggesting that massive star clusters clear out their natal material before the massive stars evolve into the WR phase, WR stars have been detected in several emerging massive star clusters. These detections suggest that the timescale for clusters to emerge can be at least as long as the time required to produce WR stars (a few million years), and could also indicate that WR stars may be providing the tipping point in the combined feedback processes that drive a massive star cluster to emerge. We explore the potential overlap between the emerging phase and the WR phase with an observational survey to search for WR stars in emerging massive star clusters hosting WR stars. We select candidate emerging massive star clusters from known radio continuum sources with thermal emission and obtain optical spectra with the 4 m Mayall Telescope at Kitt Peak National Observatory and the 6.5 m MMT.4 We identify 21 sources with significantly detected WR signatures, which we term “emerging WR clusters.” WR features are detected in ˜50% of the radio-selected sample, and thus we find that WR stars are commonly present in currently emerging massive star clusters. The observed extinctions and ages suggest that clusters without WR detections remain embedded for longer periods of time, and may indicate that WR stars can aid, and therefore accelerate, the emergence process.

  17. The evolutionary tracks of young massive star clusters

    SciTech Connect

    Pfalzner, S.; Steinhausen, M.; Vincke, K.; Menten, K.; Parmentier, G.

    2014-10-20

    Stars mostly form in groups consisting of a few dozen to several ten thousand members. For 30 years, theoretical models have provided a basic concept of how such star clusters form and develop: they originate from the gas and dust of collapsing molecular clouds. The conversion from gas to stars being incomplete, the leftover gas is expelled, leading to cluster expansion and stars becoming unbound. Observationally, a direct confirmation of this process has proved elusive, which is attributed to the diversity of the properties of forming clusters. Here we take into account that the true cluster masses and sizes are masked, initially by the surface density of the background and later by the still present unbound stars. Based on the recent observational finding that in a given star-forming region the star formation efficiency depends on the local density of the gas, we use an analytical approach combined with N-body simulations to reveal evolutionary tracks for young massive clusters covering the first 10 Myr. Just like the Hertzsprung-Russell diagram is a measure for the evolution of stars, these tracks provide equivalent information for clusters. Like stars, massive clusters form and develop faster than their lower-mass counterparts, explaining why so few massive cluster progenitors are found.

  18. Spectral Types of Field and Cluster O-Type Stars

    NASA Astrophysics Data System (ADS)

    van den Bergh, Sidney

    2004-10-01

    The recent catalog of spectral types of Galactic O-type stars by Maíz-Apellániz et al. is used to study the differences between the frequencies of various subtypes of O-type stars in the field, in OB associations, and among runaway stars. At a high level of statistical significance, the data show that O stars in clusters and associations have earlier types (and, hence, presumably larger masses or younger ages) than those that are situated in the general field. Furthermore, it is found that the distribution of spectral subtypes among runaway O stars is indistinguishable from that among field stars and differs significantly from that of the O-type stars that are situated in clusters and associations. The difference is in the sense that runaway O stars, on average, have later subtypes than do those that are still located in clusters and associations.

  19. The swift UVOT stars survey. I. Methods and test clusters

    SciTech Connect

    Siegel, Michael H.; Porterfield, Blair L.; Linevsky, Jacquelyn S.; Bond, Howard E.; Hoversten, Erik A.; Berrier, Joshua L.; Gronwall, Caryl A.; Holland, Stephen T.; Breeveld, Alice A.; Brown, Peter J. E-mail: blp14@psu.edu E-mail: caryl@astro.psu.edu E-mail: aab@mssl.ucl.ac.uk

    2014-12-01

    We describe the motivations and background of a large survey of nearby stellar populations using the Ultraviolet Optical Telescope (UVOT) on board the Swift Gamma-Ray Burst Mission. UVOT, with its wide field, near-UV sensitivity, and 2.″3 spatial resolution, is uniquely suited to studying nearby stellar populations and providing insight into the near-UV properties of hot stars and the contribution of those stars to the integrated light of more distant stellar populations. We review the state of UV stellar photometry, outline the survey, and address problems specific to wide- and crowded-field UVOT photometry. We present color–magnitude diagrams of the nearby open clusters M67, NGC 188, and NGC 2539, and the globular cluster M79. We demonstrate that UVOT can easily discern the young- and intermediate-age main sequences, blue stragglers, and hot white dwarfs, producing results consistent with previous studies. We also find that it characterizes the blue horizontal branch of M79 and easily identifies a known post-asymptotic giant branch star.

  20. X-RAY STAR CLUSTERS IN THE CARINA COMPLEX

    SciTech Connect

    Feigelson, Eric D.; Getman, Konstantin V.; Townsley, Leisa K.; Broos, Patrick S.; Povich, Matthew S.; Garmire, Gordon P.; King, Robert R.; Montmerle, Thierry; Preibisch, Thomas; Smith, Nathan; Stassun, Keivan G.; Wang Junfeng; Wolk, Scott; Zinnecker, Hans

    2011-05-01

    The distribution of young stars found in the Chandra Carina Complex Project (CCCP) is examined for clustering structure. X-ray surveys are advantageous for identifying young stellar populations compared to optical and infrared surveys in suffering less contamination from nebular emission and Galactic field stars. The analysis is based on smoothed maps of a spatially complete subsample of {approx}3000 brighter X-ray sources classified as Carina members and {approx}10,000 stars from the full CCCP sample. The principal known clusters are recovered, and some additional smaller groups are identified. No rich embedded clusters are present, although a number of sparse groups are found. The CCCP reveals considerable complexity in clustering properties. The Trumpler 14 and 15 clusters have rich stellar populations in unimodal, centrally concentrated structures several parsecs across. Non-spherical internal structure is seen, and large-scale low surface density distributions surround these rich clusters. Trumpler 16, in contrast, is comprised of several smaller clusters within a circular boundary. Collinder 228 is a third type of cluster which extends over tens of parsecs with many sparse compact groups likely arising from triggered star formation processes. A widely dispersed, but highly populous, distribution of X-ray stars across the {approx}50 pc CCCP mosaic supports a model of past generations of star formation in the region. Collinder 234, a group of massive stars without an associated cluster of pre-main-sequence stars, may be part of this dispersed population.

  1. X-ray Star Clusters in the Carina Complex

    NASA Astrophysics Data System (ADS)

    Feigelson, Eric D.; Getman, Konstantin V.; Townsley, Leisa K.; Broos, Patrick S.; Povich, Matthew S.; Garmire, Gordon P.; King, Robert R.; Montmerle, Thierry; Preibisch, Thomas; Smith, Nathan; Stassun, Keivan G.; Wang, Junfeng; Wolk, Scott; Zinnecker, Hans

    2011-05-01

    The distribution of young stars found in the Chandra Carina Complex Project (CCCP) is examined for clustering structure. X-ray surveys are advantageous for identifying young stellar populations compared to optical and infrared surveys in suffering less contamination from nebular emission and Galactic field stars. The analysis is based on smoothed maps of a spatially complete subsample of ~3000 brighter X-ray sources classified as Carina members and ~10,000 stars from the full CCCP sample. The principal known clusters are recovered, and some additional smaller groups are identified. No rich embedded clusters are present, although a number of sparse groups are found. The CCCP reveals considerable complexity in clustering properties. The Trumpler 14 and 15 clusters have rich stellar populations in unimodal, centrally concentrated structures several parsecs across. Non-spherical internal structure is seen, and large-scale low surface density distributions surround these rich clusters. Trumpler 16, in contrast, is comprised of several smaller clusters within a circular boundary. Collinder 228 is a third type of cluster which extends over tens of parsecs with many sparse compact groups likely arising from triggered star formation processes. A widely dispersed, but highly populous, distribution of X-ray stars across the ~50 pc CCCP mosaic supports a model of past generations of star formation in the region. Collinder 234, a group of massive stars without an associated cluster of pre-main-sequence stars, may be part of this dispersed population.

  2. Commentary on interstellar matter associated with 18 open clusters

    NASA Technical Reports Server (NTRS)

    Leisawitz, David

    1989-01-01

    Information supplementary to that contained in Section 4 of an article entitled, A CO Survey of Regions Around 34 Open Clusters, (Leisawitz, Bash, and Thaddeus) published in the Astrophysical Journal Supplement Series, Volume 70, Number 4, August 1989 is summarized. The information presented here, which describes the interstellar environments of young clusters and some cluster physical characteristics, comes from observations published in the astronomical literature and the author's carbon monoxide (CO) emission line survey, and may help clarify our understanding of the interaction of massive stars with the interstellar medium.

  3. Sequential clustering of star formations in IC 1396

    NASA Astrophysics Data System (ADS)

    Huang, Ya-Fang; Li, Jin-Zeng

    2013-05-01

    We present a comprehensive study of the H II region IC 1396 and its star forming activity, in which multi-wavelength data ranging from the optical to the near- and far-infrared were employed. The surface density distribution of all the 2MASS sources with a certain detection toward IC 1396 indicates the existence of a compact cluster spatially consistent with the position of the exciting source of the H II region, HD 206267. The spatial distribution of the sources with excessive infrared emission, selected based on archived 2MASS data, reveals the existence of four sub-clusters in this region. One is associated with the open cluster Trumpler 37. The other three are found to be spatially coincident with the bright rims of the H II region. All the sources with excessive emission in the near infrared are cross-identified with AKARI IRC data. An analysis of the spectral energy distributions (SEDs) of the resultant sample leads to the identification of eight CLASS I, 15 CLASS II and 15 CLASS III sources in IC 1396. Optical identification of the sample sources with R magnitudes brighter than 17 mag corroborates the results from the SED analysis. Based on the spatial distribution of the infrared young stellar objects at different evolutionary stages, the surrounding sub-clusters located in the bright rims are believed to be younger than the central one. This is consistent with a scenario of sequential star formation in this region. Imaging data of a dark patch in IC 1396 by Herschel SPIRE, on the other hand, indicate the presence of two far-infrared cores in LDN 1111, which are likely to be a new generation of protostellar objects in formation. So we infer that the star formation process in this H II region was not continuous but rather episodic.

  4. Dependency of Dynamical Ejections of O Stars on the Masses of Very Young Star Clusters

    NASA Astrophysics Data System (ADS)

    Oh, Seungkyung; Kroupa, Pavel; Pflamm-Altenburg, Jan

    2015-06-01

    Massive stars can be efficiently ejected from their birth star clusters through encounters with other massive stars. We study how the dynamical ejection fraction of O star systems varies with the masses of very young star clusters, {{M}ecl}, by means of direct N-body calculations. We include diverse initial conditions by varying the half-mass radius, initial mass segregation, initial binary fraction, and orbital parameters of the massive binaries. The results show robustly that the ejection fraction of O star systems exhibits a maximum at a cluster mass of {{10}3.5} {{M}⊙ } for all models, even though the number of ejected systems increases with cluster mass. We show that lower mass clusters ({{M}ecl}≈ 400 {{M}⊙ }) are the dominant sources for populating the Galactic field with O stars by dynamical ejections, considering the mass function of embedded clusters. About 15% (up to ≈38%, depending on the cluster models) of O stars of which a significant fraction are binaries, and which would have formed in a ≈10 Myr epoch of star formation in a distribution of embedded clusters, will be dynamically ejected to the field. Individual clusters may eject 100% of their original O star content. A large fraction of such O stars have velocities up to only 10 km s-1. Synthesising a young star cluster mass function, it follows, given the stellar-dynamical results presented here, that the observed fractions of field and runaway O stars, and the binary fractions among them, can be well understood theoretically if all O stars form in embedded clusters.

  5. Dynamical ejections of massive stars from young star clusters under diverse initial conditions

    NASA Astrophysics Data System (ADS)

    Oh, Seungkyung; Kroupa, Pavel

    2016-05-01

    We study the effects that initial conditions of star clusters and their massive star population have on dynamical ejections of massive stars from star clusters up to an age of 3 Myr. We use a large set of direct N-body calculations for moderately massive star clusters (Mecl ≈ 103.5 M⊙). We vary the initial conditions of the calculations, such as the initial half-mass radius of the clusters, initial binary populations for massive stars and initial mass segregation. We find that the initial density is the most influential parameter for the ejection fraction of the massive systems. The clusters with an initial half-mass radius rh(0) of 0.1 (0.3) pc can eject up to 50% (30)% of their O-star systems on average, while initially larger (rh(0) = 0.8 pc) clusters, that is, lower density clusters, eject hardly any OB stars (at most ≈ 4.5%). When the binaries are composed of two stars of similar mass, the ejections are most effective. Most of the models show that the average ejection fraction decreases with decreasing stellar mass. For clusters that are efficient at ejecting O stars, the mass function of the ejected stars is top-heavy compared to the given initial mass function (IMF), while the mass function of stars that remain in the cluster becomes slightly steeper (top-light) than the IMF. The top-light mass functions of stars in 3 Myr old clusters in our N-body models agree well with the mean mass function of young intermediate-mass clusters in M 31, as reported previously. This implies that the IMF of the observed young clusters is the canonical IMF. We show that the multiplicity fraction of the ejected massive stars can be as high as ≈ 60%, that massive high-order multiple systems can be dynamically ejected, and that high-order multiples become common especially in the cluster. We also discuss binary populations of the ejected massive systems. Clusters that are initially not mass-segregated begin ejecting massive stars after a time delay that is caused by mass

  6. Tracing galaxy evolution through resolved stellar populations and star clusters

    NASA Astrophysics Data System (ADS)

    Silva-Villa, E.

    2011-09-01

    Field stars and star clusters contain a big part of the galaxy’s history. To understand galaxy formation and evolution we need then to understand the parts of which galaxies are composed. It has commonly been assumed that most stars formed in clusters. However, the connection between these two systems is not clear, and the fraction of actual star formation happening in clusters is still uncertain. Through this thesis, we aim to use field stars and star clusters to attack different problems regarding galaxy formation and evolution, named: 1. the cluster formation efficiency and its (co-)relation with environment (i.e. the host galaxy), 2. the star formation rate in the arms and inter-arm regions of spiral galaxies, and 3. the indications of a possible interaction between two galaxies observed through their resolved stellar populations. We performed a systematic and homogeneous study over the galaxies NGC45, NGC1313, NGC4395, NGC5236 and NGC7793, where star clusters and field stars are analyze separately. For this aim, we used Hubble Space Telescope observations in the optical bands U, B, V and I, using the Advanced Camera for Surveys and the Wide Field Planetary Camera 2. Standard photometric procedures are use to study the properties of these two main parts of the galaxies. However, incompleteness constrains our results to ages younger than 100 Myr. Following the synthetic CMD method we recovered the star formation history for the last 100 Myr over the five galaxies. Comparing observed clusters properties with simple stellar population models, we estimate ages and masses of star clusters. We observe that the galaxies NGC5236 and NGC1313 show higher star and cluster formation rates, while NGC45, NGC4395 and NGC7793 show lower values. We found that the actual fraction of star formation happening in clusters presents low values (< 10%), contrary to common assumptions, however in agreement with studies in other galaxies. Observations of the surface star formation

  7. CCD UBV photometry of the open cluster NGC 6819

    NASA Astrophysics Data System (ADS)

    Ak, T.; Bostancı, Z. F.; Yontan, T.; Bilir, S.; Güver, T.; Ak, S.; Ürgüp, H.; Paunzen, E.

    2016-04-01

    We present the results of CCD UBV observations of the open cluster NGC 6819. We calculated the stellar density profile in the cluster's field to determine the structural parameters of NGC 6819. Using the existing astrometric data, we calculated the probabilities of the stars being physical members of the cluster, and used these objects in the determination of the astrophysical parameters of NGC 6819. We inferred the reddening and metallicity of the cluster as E(B-V)=0.130±0.035 mag and [Fe/H]=+0.051± 0.020 dex, respectively, using the U-B vs B-V two-colour diagram and UV excesses of the F-G type main-sequence stars. We fit the colour-magnitude diagrams of NGC 6819 with the PARSEC isochrones and derived the distance modula, distance and age of the cluster as μV=12.22± 0.10 mag, d=2309±106 pc and t=2.4±0.2 Gyr, respectively. The parameters of the galactic orbit estimated for NGC 6819 indicate that the cluster is orbiting in a slightly eccentric orbit of e=0.06 with a period of P_{orb}= 142 Myr. The slope of the mass function estimated for the cluster is close to the one found for the stars in the solar neighbourhood.

  8. Mass segregation in star clusters is not energy equipartition

    NASA Astrophysics Data System (ADS)

    Parker, Richard J.; Goodwin, Simon P.; Wright, Nicholas J.; Meyer, Michael R.; Quanz, Sascha P.

    2016-06-01

    Mass segregation in star clusters is often thought to indicate the onset of energy equipartition, where the most massive stars impart kinetic energy to the lower-mass stars and brown dwarfs/free-floating planets. The predicted net result of this is that the centrally concentrated massive stars should have significantly lower velocities than fast-moving low-mass objects on the periphery of the cluster. We search for energy equipartition in initially spatially and kinematically substructured N-body simulations of star clusters with N = 1500 stars, evolved for 100 Myr. In clusters that show significant mass segregation we find no differences in the proper motions or radial velocities as a function of mass. The kinetic energies of all stars decrease as the clusters relax, but the kinetic energies of the most massive stars do not decrease faster than those of lower-mass stars. These results suggest that dynamical mass segregation - which is observed in many star clusters - is not a signature of energy equipartition from two-body relaxation.

  9. STAR CLUSTER CANDIDATES IN M81

    SciTech Connect

    Nantais, Julie B.; Huchra, John P.; McLeod, Brian; Strader, Jay; Brodie, Jean P.

    2010-04-15

    We present a catalog of extended objects in the vicinity of M81 based on a set of 24 Hubble Space Telescope Advanced Camera for Surveys Wide Field Camera F814W (I-band) images. We have found 233 good globular cluster (GC) candidates; 92 candidate H II regions, OB associations, or diffuse open clusters; 489 probable background galaxies; and 1719 unclassified objects. We have color data from ground-based g- and r-band MMT Megacam images for 79 galaxies, 125 GC candidates, 7 H II regions, and 184 unclassified objects. The color-color diagram of GC candidates shows that most fall into the range 0.25 < g - r < 1.25 and 0.5 < r - I < 1.25, similar to the color range of Milky Way GCs. Unclassified objects are often blue, suggesting that many of them are likely to be H II regions and open clusters, although a few galaxies and GCs may be among them.

  10. The old, massive, metal rich open cluster NGC 6791

    NASA Astrophysics Data System (ADS)

    Carraro, Giovanni

    2015-08-01

    NGC~6791 is a rich open cluster that attracted a lot of attention in the last decade. Recent estimates indicate that the mass is even larger, around 5000\\,$\\mathrm{M}_{\\odot}$. This is quite remarkable: the cluster is in fact 8\\,Gyr old, while the typical dissolution time for Galactic open clusters is a few Myr only. This might imply that the cluster managed to survive so long either because its original mass was much larger, or because it moved along a preferential orbit. In any case, such combination of old age and large mass is unique among Galactic open clusters, especially for clusters located in the inner regions of the Galactic disk. This is not the only special property of NGC 6791. Its abundance in iron is [Fe/H] $\\sim$ +0.40. again unique among Galactic star clusters of the same age range. Significant dispersions in various elements have been detected, that are not routinely found in Galactic open clusters. The combined UV flux of the few hot HB stars makes the cluster the closest proxy of an elliptical galaxy. This surprising result might indeed indicate that NGC 6791 was massive enough at origin to experience a strong burst of star formation and a fast enrichment.This pletora of unique properties renders NGC 6791 an extremely important object to study and understand.How and where could such a stellar system have formed? Is NGC 6791 just an open cluster? Did it form close to the bulge? How could have survived in the adverse, high-density, environment of the inner Galactic disk?These are difficult questions to answer to, of course. One of the still missing key observational evidence is whether the cluster suffered from tidal interaction, that could have significantly decreased its mass. We find such evidences, and use them as an argument to support a scenario in which the cluster formed as a massive object. We also estimate, using approximate analytic description based on available $N$-body models, how much mass NGC~6791 lost, and which was its

  11. X-Ray source populations in old open clusters: Collinder 261

    NASA Astrophysics Data System (ADS)

    Vats, Smriti; van den Berg, Maureen; Wijnands, Rudy

    2014-09-01

    We are carrying out an X-ray survey of old open clusters with the Chandra X-ray Observatory. Single old stars, being slow rotators, are very faint in X-rays (L_X < 1×10^27 erg/s). Hence, X-rays produced by mass transfer in cataclysmic variables (CVs) or by rapid rotation of the stars in tidally locked, detached binaries (active binaries; ABs) can be detected, without contamination from single stars. By comparing the properties of various types of interacting binaries in different environments (the Galactic field, old open clusters, globular clusters), we aim to study binary evolution and how it may be affected by dynamical encounters with other cluster stars. Stellar clusters are good targets to study binaries, as age, distance, chemical composition, are well constrained. Collinder (Cr) 261 is an old open cluster (age ~ 7 Gyr), with one of the richest populations inferred of close binaries and blue stragglers of all open clusters and is therefore an obvious target to study the products of close encounters in open clusters. We will present the first results of this study, detailing the low-luminosity X-ray population of Cr 261, in conjunction with other open clusters in our survey (NGC 188, Berkeley 17, NGC 6253, M67, NGC 6791) and in comparison with populations in globular clusters.

  12. The nature, origin and evolution of embedded star clusters

    NASA Technical Reports Server (NTRS)

    Lada, Charles J.; Lada, Elizabeth A.

    1991-01-01

    The recent development of imaging infrared array cameras has enabled the first systematic studies of embedded protoclusters in the galaxy. Initial investigations suggest that rich embedded clusters are quite numerous and that a significant fraction of all stars formed in the galaxy may begin their lives in such stellar systems. These clusters contain extremely young stellar objects and are important laboratories for star formation research. However, observational and theoretical considerations suggest that most embedded clusters do not survive emergence from molecular clouds as bound clusters. Understanding the origin, nature, and evolution of embedded clusters requires understanding the intimate physical relation between embedded clusters and the dense molecular cloud cores from which they form.

  13. HUBBLE SPIES GIANT STAR CLUSTERS NEAR GALACTIC CENTER

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Penetrating 25,000 light-years of obscuring dust and myriad stars, NASA's Hubble Space Telescope has provided the clearest view yet of a pair of the largest young clusters of stars inside our Milky Way galaxy, located less than 100 light-years from the very center of the Galaxy. Having the equivalent mass greater than 10,000 stars like our sun, the monster clusters are ten times larger than typical young star clusters scattered throughout our Milky Way. Both clusters are destined to be ripped apart in just a few million years by gravitational tidal forces in the Galaxy's core. But in the brief time they are around, they shine more brightly than any other star cluster in the Galaxy. Arches cluster (left): The more compact Arches cluster is so dense, over 100,000 of its stars would fill a spherical region in space whose radius is the distance between the Sun and its nearest neighbor, the star Alpha Centauri, 4.3 light-years away. At least 150 of its stars are among the brightest ever seen in the Galaxy. Quintuplet cluster (right): This 4-million-year-old cluster is more dispersed than the Arches cluster. It has stars on the verge of blowing up as supernovae. It is the home of the brightest star seen in the Galaxy, called the Pistol star. Both pictures were taken in infrared light by Hubble's NICMOS camera in September 1997. The false colors correspond to infrared wavelengths. The galactic center stars are white, the red stars are enshrouded in dust or behind dust, and the blue stars are foreground stars between us and the Milky Way's center. The clusters are hidden from direct view behind black dust clouds in the constellation Sagittarius. If the clusters could be seen from Earth they would appear to the naked eye as a pair of third magnitude 'stars,' 1/6th of a full moon's diameter apart. Credit: Don Figer (Space Telescope Science Institute) and NASA

  14. Clustered star formation and the origin of stellar masses.

    PubMed

    Pudritz, Ralph E

    2002-01-01

    Star clusters are ubiquitous in galaxies of all types and at all stages of their evolution. We also observe them to be forming in a wide variety of environments, ranging from nearby giant molecular clouds to the supergiant molecular clouds found in starburst and merging galaxies. The typical star in our galaxy and probably in others formed as a member of a star cluster, so star formation is an intrinsically clustered and not an isolated phenomenon. The greatest challenge regarding clustered star formation is to understand why stars have a mass spectrum that appears to be universal. This review examines the observations and models that have been proposed to explain these fundamental issues in stellar formation.

  15. Pulsar-irradiated stars in dense globular clusters

    NASA Technical Reports Server (NTRS)

    Tavani, Marco

    1992-01-01

    We discuss the properties of stars irradiated by millisecond pulsars in 'hard' binaries of dense globular clusters. Irradiation by a relativistic pulsar wind as in the case of the eclipsing millisecond pulsar PSR 1957+20 alter both the magnitude and color of the companion star. Some of the blue stragglers (BSs) recently discovered in dense globular clusters can be irradiated stars in binaries containing powerful millisecond pulsars. The discovery of pulsar-driven orbital modulations of BS brightness and color with periods of a few hours together with evidence for radio and/or gamma-ray emission from BS binaries would valuably contribute to the understanding of the evolution of collapsed stars in globular clusters. Pulsar-driven optical modulation of cluster stars might be the only observable effect of a new class of binary pulsars, i.e., hidden millisecond pulsars enshrouded in the evaporated material lifted off from the irradiated companion star.

  16. Homogeneous photometry and star counts in the field of 9 Galactic star clusters

    NASA Astrophysics Data System (ADS)

    Seleznev, A. F.; Carraro, G.; Costa, E.; Loktin, A. V.

    2010-01-01

    We present homogeneous V, I CCD photometry of nine stellar fields in the two inner quadrants of the Galactic plane. The lines-of-view to most of these fields aim in the direction of the very inner Galaxy, where the Galactic field is very dense, and extinction is high and patchy. Our nine fields are, according to several catalogs, centred on Galactic star clusters, namely Trumpler 13, Trumpler 20, Lynga 4, Hogg 19, Lynga 12, Trumpler 25, Trumpler 26, Ruprecht 128, and Trumpler 34. Apart from their coordinates, and in some cases additional basic data (mainly from the 2MASS archive), their properties are poorly known. By means of star count techniques and field star decontaminated Color Magnitude diagrams, the nature and size of these visual over-densities has been established; and, when possible, new cluster fundamental parameters have been derived. To strengthen our findings, we complement our data-set with JHKs photometry from the 2MASS archive, that we analyze using a suitably defined Q-parameter. Most clusters are projected towards the Carina-Sagittarium spiral arm. Because of that, we detect in the Color Magnitude diagrams of most of the other fields several distinctive sequences produced by young population within the arm. All the clusters are of intermediate or old age. The most interesting cases detected by our study are, perhaps, that of Trumpler 20, which seems to be much older than previously believed, as indicated by its prominent - and double - red clump; and that of Hogg 19, a previously overlooked old open cluster, whose existence in such regions of the Milky Way is puzzling.

  17. Absolute dimensions of eclipsing binaries. XXIV. The Be star system DW Carinae, a member of the open cluster Collinder 228

    NASA Astrophysics Data System (ADS)

    Southworth, J.; Clausen, J. V.

    2007-01-01

    Context: The study of detached eclipsing binaries which are members of stellar clusters is is a powerful way of determining the properties of the cluster and of constraining the physical ingredients of theoretical stellar evolutionary models. Aims: DW Carinae is a close but detached early B-type eclipsing binary in the young open cluster Collinder 228. We have measured accurate physical properties of the components of DW Car (masses and radii to 1%, effective temperatures to 0.02 dex) and used these to derive the age, metallicity and distance of Collinder 228. Methods: The rotational velocities of both components of DW Car are high, so we have investigated the performance of double-Gaussian fitting, one- and two-dimensional cross-correlation and spectral disentangling for deriving spectroscopic radial velocites in the presence of strong line blending. Gaussian and cross-correlation analyses require substantial corrections for the effects of line blending, which are only partially successful for cross-correlation. Spectral disentangling is to be preferred because it does not assume anything about the shapes of spectral lines, and is not significantly affected by blending. However, it suffers from a proliferation of local minima in the least-squares fit. We show that the most reliable radial velocities are obtained using spectral disentangling constrained by the results of Gaussian fitting. Complete Strömgren uvby light curves have been obtained and accurate radii have been measured from them by modelling the light curves using the Wilson-Devinney program. This procedure also suffers from the presence of many local minima in parameter space, so we have constrained the solution using an accurate spectroscopic light ratio. The effective temperatures and reddening of the system have been found from Strömgren photometric calibrations. Results: The mass and radius of DW Car A are MA = 11.34 ± 0.12 {M}_⊙ and RA = 4.558 ± 0.045 {R}_⊙. The values for DW Car B are MB

  18. The era of star formation in galaxy clusters

    SciTech Connect

    Brodwin, M.; Stanford, S. A.; Gonzalez, Anthony H.; Mancone, C. L.; Gettings, D. P.; Zeimann, G. R.; Snyder, G. F.; Ashby, M. L. N.; Pope, A.; Alberts, S.; Eisenhardt, P. R.; Stern, D.; Moustakas, L. A.; Brown, M. J. I.; Chary, R.-R.; Dey, Arjun; Galametz, A.; Jannuzi, B. T.; Miller, E. D.; Moustakas, J.

    2013-12-20

    We analyze the star formation properties of 16 infrared-selected, spectroscopically confirmed galaxy clusters at 1 < z < 1.5 from the Spitzer/IRAC Shallow Cluster Survey (ISCS). We present new spectroscopic confirmation for six of these high-redshift clusters, five of which are at z > 1.35. Using infrared luminosities measured with deep Spitzer/Multiband Imaging Photometer for Spitzer observations at 24 μm, along with robust optical + IRAC photometric redshifts and spectral-energy-distribution-fitted stellar masses, we present the dust-obscured star-forming fractions, star formation rates, and specific star formation rates in these clusters as functions of redshift and projected clustercentric radius. We find that z ∼ 1.4 represents a transition redshift for the ISCS sample, with clear evidence of an unquenched era of cluster star formation at earlier times. Beyond this redshift, the fraction of star-forming cluster members increases monotonically toward the cluster centers. Indeed, the specific star formation rate in the cores of these distant clusters is consistent with field values at similar redshifts, indicating that at z > 1.4 environment-dependent quenching had not yet been established in ISCS clusters. By combining these observations with complementary studies showing a rapid increase in the active galactic nucleus (AGN) fraction, a stochastic star formation history, and a major merging episode at the same epoch in this cluster sample, we suggest that the starburst activity is likely merger-driven and that the subsequent quenching is due to feedback from merger-fueled AGNs. The totality of the evidence suggests we are witnessing the final quenching period that brings an end to the era of star formation in galaxy clusters and initiates the era of passive evolution.

  19. Testing the chemical tagging technique with open clusters

    NASA Astrophysics Data System (ADS)

    Blanco-Cuaresma, S.; Soubiran, C.; Heiter, U.; Asplund, M.; Carraro, G.; Costado, M. T.; Feltzing, S.; González-Hernández, J. I.; Jiménez-Esteban, F.; Korn, A. J.; Marino, A. F.; Montes, D.; San Roman, I.; Tabernero, H. M.; Tautvaišienė, G.

    2015-05-01

    Context. Stars are born together from giant molecular clouds and, if we assume that the priors were chemically homogeneous and well-mixed, we expect them to share the same chemical composition. Most of the stellar aggregates are disrupted while orbiting the Galaxy and most of the dynamic information is lost, thus the only possibility of reconstructing the stellar formation history is to analyze the chemical abundances that we observe today. Aims: The chemical tagging technique aims to recover disrupted stellar clusters based merely on their chemical composition. We evaluate the viability of this technique to recover co-natal stars that are no longer gravitationally bound. Methods: Open clusters are co-natal aggregates that have managed to survive together. We compiled stellar spectra from 31 old and intermediate-age open clusters, homogeneously derived atmospheric parameters, and 17 abundance species, and applied machine learning algorithms to group the stars based on their chemical composition. This approach allows us to evaluate the viability and efficiency of the chemical tagging technique. Results: We found that stars at different evolutionary stages have distinct chemical patterns that may be due to NLTE effects, atomic diffusion, mixing, and biases. When separating stars into dwarfs and giants, we observed that a few open clusters show distinct chemical signatures while the majority show a high degree of overlap. This limits the recovery of co-natal aggregates by applying the chemical tagging technique. Nevertheless, there is room for improvement if more elements are included and models are improved. Based on observations obtained at the Telescope Bernard Lyot (USR5026) operated by the Observatoire Midi-Pyrénées, Université de Toulouse (Paul Sabatier), Centre National de la Recherche Scientifique of France, and on public data obtained from the ESO Science Archive Facility under requests number 81252 and 81618.

  20. Integrated spectral properties of 7 galactic open clusters

    NASA Astrophysics Data System (ADS)

    Ahumada, A. V.; Clariá, J. J.; Bica, E.; Piatti, A. E.

    2000-01-01

    This paper presents flux-calibrated integrated spectra in the range 3600-9000 Ä for 7 concentrated, relatively populous Galactic open clusters. We perform simultaneous estimates of age and foreground interstellar reddening by comparing the continuum distribution and line strengths of the cluster spectra with those of template cluster spectra with known parameters. For five clusters these two parameters have been determined for the first time (Ruprecht 144, BH 132, Pismis 21, Lyng\\aa 11 and BH 217), while the results here derived for the remaining two clusters (Hogg 15 and Melotte 105) show very good agreement with previous studies based mainly on colour-magnitude diagrams. We also provide metallicity estimates for six clusters from the equivalent widths of CaII triplet and TiO features. The present cluster sample improves the age resolution around solar metal content in the cluster spectral library for population synthesis. We compare the properties of the present sample with those of clusters in similar directions. Hogg 15 and Pismis 21 are among the most reddened clusters in sectors centered at l = 270o and l = 0o, respectively. Besides, the present results would favour an important dissolution rate of star clusters in these zones. Based on observations made at Complejo Astronómico El Leoncito, which is operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba and San Juan, Argentina.

  1. Photometry Using Kepler "Superstamps" of Open Clusters NGC 6791 & NGC 6819

    NASA Astrophysics Data System (ADS)

    Kuehn, Charles A.; Drury, J.; Stello, D.; Bedding, T. R.

    2014-01-01

    The Kepler space telescope has proven to be a gold mine for the study of variable stars. To conserve bandwidth, Kepler only returns a handful of pixels surrounding each star on the target list. Unfortunately, this omits a large number of stars in the Kepler field. Fortunately, for the open clusters NGC 6791 and NGC 6819, Kepler also reads out larger superstamps which contain complete images of the central region of each cluster. These cluster images can be used to study additional stars in the open clusters which were not originally on Kepler's target list. We present preliminary results from using traditional photometric techniques to identify and analyze additional variable stars from these superstamp images.

  2. Photometry Using Kepler "Superstamps" of Open Clusters NGC 6791 & NGC 6819

    NASA Astrophysics Data System (ADS)

    Kuehn, Charles A.; Drury, Jason A.; Bellamy, Beau R.; Stello, Dennis; Bedding, Timothy R.; Reed, Mike; Quick, Breanna

    2015-09-01

    The Kepler space telescope has proven to be a gold mine for the study of variable stars. Usually, Kepler only reads out a handful of pixels around each pre-selected target star, omitting a large number of stars in the Kepler field. Fortunately, for the open clusters NGC 6791 and NGC 6819, Kepler also read out larger "superstamps" which contained complete images of the central region of each cluster. These cluster images can be used to study additional stars in the open clusters that were not originally on Kepler's target list. We discuss our work on using two photometric techniques to analyze these superstamps and present sample results from this project to demonstrate the value of this technique for a wide variety of variable stars.

  3. Variable stars in large Magellanic cloud globular clusters. III. Reticulum

    SciTech Connect

    Kuehn, Charles A.; Dame, Kyra; Smith, Horace A.; De Lee, Nathan E-mail: damekyra@msu.edu E-mail: nathan.delee@vanderbilt.edu; and others

    2013-06-01

    This is the third in a series of papers studying the variable stars in old globular clusters in the Large Magellanic Cloud. The primary goal of this series is to look at how the characteristics and behavior of RR Lyrae stars in Oosterhoff-intermediate systems compare to those of their counterparts in Oosterhoff-I/II systems. In this paper we present the results of our new time-series BVI photometric study of the globular cluster Reticulum. We found a total of 32 variables stars (22 RRab, 4 RRc, and 6 RRd stars) in our field of view. We present photometric parameters and light curves for these stars. We also present physical properties, derived from Fourier analysis of light curves, for some of the RR Lyrae stars. We discuss the Oosterhoff classification of Reticulum and use our results to re-derive the distance modulus and age of the cluster.

  4. Searching for Massive Star Clusters around Luminous Blue Variables

    NASA Astrophysics Data System (ADS)

    Stensland, Jared; Edwards, M. L.; Mikles, V. J.

    2011-01-01

    We present a method to search for the massive birth clusters of Luminous Blue Variables (LBVs). Using theoretical absolute magnitudes of early-type stars, we calculated expected color and magnitude limits for candidate massive stars at the distance and reddening of the Pistol Star and FMM 362 in the Quintuplet. We then applied these cuts to stars found in the 2MASS catalog surrounding the LBVs. By using a well-characterized cluster, we were able to confirm the method's effectiveness and determine the color and magnitude criteria that eliminated the highest number of false candidates while recovering the largest number of known massive cluster members. We then calculated and applied similar cuts to stars within a 1pc radius of WRA 751 to confirm its cluster, Teutsch 143a, discovered by Pasquali et al (2006) and later investigated by Froebrich et al (2008). We used our method to select 22 strong candidate massive cluster stars, 18 medium confidence candidates and 39 weak candidates, categorized based on their colors and magnitudes. These stars are prime candidates for follow-up spectroscopy to determine their spectral types and confirm cluster membership. We plan to apply a similar method to other LBVs without known birth clusters.

  5. The growth of massive stars via stellar collisions in ensemble star clusters

    NASA Astrophysics Data System (ADS)

    Fujii, M. S.; Portegies Zwart, S.

    2013-04-01

    Recent simulations and observations suggest that star clusters form via the assembling of smaller subclusters. Because of their short relaxation time, subclusters experience core collapse much earlier than virialized solo clusters, which have similar properties of the merger remnant of the assembling clusters. As a consequence, it seems that the assembling clusters result in efficient multiple collisions of stars in the cluster core. We performed a series of N-body simulations of ensemble and solitary clusters including stellar collisions and found that the efficiency of multiple collisions between stars is suppressed if subclusters assemble after they experience core collapse individually. In this case, subclusters form their own multiple collision stars which experienced a few collisions, but they fail to collide with each other after their host subclusters assemble. The multiple collision stars scatter each other and escape, and furthermore the central density of the remnant clusters had already been depleted for the stars to experience more collisions. On the other hand, if subclusters assemble before they experience core collapse, the multiple collisions of stars proceed efficiently in the remnant cluster, and the collision products are more massive than virialized solo clusters and comparable in mass to cold solo clusters.

  6. Study of Intermediate Age (~10-30 Myr) Open Clusters

    NASA Astrophysics Data System (ADS)

    Olguin, Lorenzo; Michel, Raul; Contreras, Maria; Hernandez, Jesus; Schuster, William; Chavarria-Kleinhenn, Carlos

    2013-07-01

    We present the study of a sample of intermediate age open clusters (age ~ 10-30 Myr) using optical (UBVRI) and infrared photometric data. Optical photometry was obtained as part of the San Pedro Martir Open Clusters Project (SPM-OCP, Schuster et al. 2007; Michel et al. 2013). Infrared photometry was retrieved from 2MASS public data archive and WISE database. Open clusters included in the SPM-OCP were selected from catalogues presented by Dias et al. (2002) and Froebrich, Scholz & Raftery (2007). One of the main goals of the SPM-OCP is to compile a self-consistent and homogeneous set of cluster fundamental parameters such as reddening, distance, age, and metallicity whenever possible. In this work, we have analyzed a set of 25 clusters from the SPM-OCP with estimated ages between 10 and 30 Myr. Derived fundamental parameters for each cluster in the sample as well as an example of typical color-color and color-magnitude diagrams are presented. Kinematic membership was established by using proper motion data taken from the literature. Based on infrared photometry, we have searched for candidate stars to posses a circumstellar disk within each clusters. For those selected candidates a follow-up spectroscpic study is being carried out. This work was partially supported by UNAM-PAPIIT grant IN-109311.

  7. SEARCH FOR RED DWARF STARS IN GLOBULAR CLUSTER NGC 6397

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Left A NASA Hubble Space Telescope image of a small region (1.4 light-years across) in the globular star cluster NGC 6397. Simulated stars (diamonds) have been added to this view of the same region of the cluster to illustrate what astronomers would have expected to see if faint red dwarf stars were abundant in the Milky Way Galaxy. The field would then contain 500 stars, according to theoretical calculations. Right The unmodified HST image shows far fewer stars than would be expected, according to popular theories of star formation. HST resolves about 200 stars. The stellar density is so low that HST can literally see right through the cluster and resolve far more distant background galaxies. From this observation, scientists have identified the surprising cutoff point below which nature apparently doesn't make many stars smaller that 1/5 the mass of our Sun. These HST findings provide new insights into star formation in our Galaxy. Technical detail:The globular cluster NGC 6397, one of the nearest and densest agglomerations of stars, is located 7,200 light-years away in the southern constellation Ara. This visible-light picture was taken on March 3, 1994 with the Wide Field Planetary Camera 2, as part the HST parallel observing program. Credit: F. Paresce, ST ScI and ESA and NASA

  8. Formation and evolution of black holes in dense star clusters

    NASA Astrophysics Data System (ADS)

    Goswami, Sanghamitra

    Using supercomputer simulations combining stellar dynamics and stellar evolution, we have studied various problems related to the existence of black holes in dense star clusters. We consider both stellar and intermediate-mass black holes, and we focus on massive, dense star clusters, such as old globular clusters and young, so called "super star clusters." The first problem concerns the formation of intermediate-mass black holes in young clusters through the runaway collision instability. A promising mechanism to form intermediate-mass black holes (IMBHs) is runaway mergers in dense star clusters, where main-sequence stars collide re- peatedly and form a very massive star (VMS), which then collapses to a black hole (BH). Here we study the effects of primordial mass segregation and the importance of the stellar initial mass function (IMF) on the runaway growth of VMSs using a dynamical Monte Carlo code to model systems with N as high as 10^6 stars. Our Monte Carlo code includes an explicittreatment of all stellar collisions. We place special emphasis on the possibility of top-heavy IMFs, as observed in some very young massive clusters. We find that both primordial mass segregation and the shape of the IMF affect the rate of core collapse of star clusters and thus the time of the runaway. When we include primordial mass segregation we generally see a decrease in core collapse time (tcc). Although for smaller degrees of primordial mass segregation this decrease in tcc is mostly due to the change in the density profile of the cluster, for highly mass-segregated (primordial) clusters, it is the increase in the average mass in the core which reduces the central relaxation time, decreasing tcc. Finally, flatter IMFs generally increase the average mass in the whole cluster, which increases tcc. For the range of IMFs investigated in this thesis, this increase in tcc is to some degree balanced by stellar collisions, which accelerate core collapse. Thus there is no

  9. Variable stars in the globular cluster NGC 4590 (M68)

    NASA Astrophysics Data System (ADS)

    Sariya, Devesh P.; Lata, Sneh; Yadav, R. K. S.

    2014-02-01

    We present results of time series photometry to search for variable stars in the field of metal-poor globular cluster NGC 4590 (M68). Periods have been revised for 40 known variables and no significant changes were found. A considerable change in Blazhko effect for V25 has been detected. Among nine newly discovered variable candidates, 5 stars are of RRc Bailey type variables while 4 stars are unclassified. The variable stars V10, V21, V50 and V51 are found to be cluster members based on the radial velocity data taken from literature.

  10. The simultaneous formation of massive stars and stellar clusters

    NASA Astrophysics Data System (ADS)

    Smith, Rowan J.; Longmore, Steven; Bonnell, Ian

    2009-12-01

    We show that massive stars and stellar clusters are formed simultaneously, the global evolution of the forming cluster is what allows the central stars to become massive. We predict that massive star-forming clumps, such as those observed in Motte et al., contract and grow in mass leading to the formation of massive stars. This occurs as mass is continually channelled from large radii on to the central protostars, which can become massive through accretion. Using smoothed particle hydrodynamic simulations of massive star-forming clumps in a giant molecular cloud, we show that clumps are initially diffuse and filamentary, and become more concentrated as they collapse. Simulated interferometry observations of our data provide an explanation as to why young massive star-forming regions show more substructure than older ones. The most massive stars in our model are found within the most bound cluster. Most of the mass accreted by the massive stars was originally distributed throughout the clump at low densities and was later funnelled to the star due to global infall. Even with radiative feedback no massive pre-stellar cores are formed. The original cores are of intermediate mass and gain their additional mass in the protostellar stage. We also find that cores which form low-mass stars exist within the volume from which the high-mass stars accrete, but are largely unaffected by this process.

  11. Photometry and Classification of Stars in the Direction of Clusters NGC 7129 and NGC 7142 in Cepheus. I. Magnitudes, Color Indices and Spectral Types of 2140 Stars

    NASA Astrophysics Data System (ADS)

    Maskoliūnas, M.; Zdanavičius, J.; Zdanavičius, K.; Straižys, V.

    In a 1.5 square degree area, centered at RA = 21:44:30, DEC = +65:58, we have determined magnitudes and color indices for 2140 stars in the Vilnius seven-color system down to V = 17 mag. This area includes a star-forming region with the open cluster NGC 7129 embedded in a dense dust cloud TGU 645 (LDN 1181), close to the Cepheus Flare, and a distant old open cluster NGC 7142 seen through a semi-transparent window. For most of the stars spectral and luminosity classes in the MK system, determined from the photometric data, are given.

  12. Pre-main-sequence stars in the young cluster IC 2391

    NASA Technical Reports Server (NTRS)

    Stauffer, John; Hartmann, Lee W.; Jones, Burton F.; Mcnamara, Brian R.

    1989-01-01

    Seven or eight new, late-type members of the poor open cluster IC 2391 are identified, and membership is confirmed for two other stars. The new members fall approximately along a 3 x 10 to the 7th yr isochrone, which is the age estimated for the cluster on the basis of it super main-seqence turnoff. Echelle spectra were obtained for the most probable cluster members. Most show H-alpha in emission and a strong Li 6707 A absorption line, and a few are rapid rotators. The Li abundances for cluster stars cooler than the sun are considerably less than the primordial Li abundance, providing the first direct evidence for substantial premain-sequence Li burning. The rotational velocities show a range from about 15 to 150 km/s, with a distribution of rotational velocities not significantly different from that observed for low-mass stars in the Pleiades.

  13. Photometric binary stars in Praesepe and the search for globular cluster binaries

    NASA Technical Reports Server (NTRS)

    Bolte, Michael

    1991-01-01

    A radial velocity study of the stars which are located on a second sequence above the single-star zero-age main sequence at a given color in the color-magnitude diagram of the open cluster Praesepe, (NGC 2632) shows that 10, and possibly 11, of 17 are binary systems. Of the binary systems, five have full amplitudes for their velocity variations that are greater than 50 km/s. To the extent that they can be applied to globular clusters, these results suggests that (1) observations of 'second-sequence' stars in globular clusters would be an efficient way of finding main-sequence binary systems in globulars, and (2) current instrumentation on large telescopes is sufficient for establishing unambiguously the existence of main-sequence binary systems in nearby globular clusters.

  14. Star Clusters in Intermediate-Age Galaxy Merger Remnants

    NASA Astrophysics Data System (ADS)

    Miller, Bryan W.; Trancho, G.; Schweizer, F.

    2011-01-01

    Studies of globular cluster systems play a critical role in our understanding of galaxy formation. Star clusters are useful tracers of major star-formation events in galaxies since they are compact, relatively easy to detect, and have properties well described by simple-stellar-population models. Imaging with the Hubble Space Telescope has revealed that young compact star clusters are formed copiously during galaxy mergers, strengthening theories in which giant elliptical galaxies are formed through mergers of spirals. However, the formation and evolution of globular cluster systems is still not well understood. We should be able to observe how cluster systems evolve from the very young systems with power-law luminosity functions to old systems with log-normal luminosity functions like those observed in old elliptical galaxies. Finding intermediate-age cluster systems would constrain theories of cluster formation and destruction (evaporation, shocking, dynamical friction) as well as show the significance of merger events in the histories of galaxies. We present results of combining HST optical photometry with ground-based K-band photometry from NIRI and Flamingos-I on Gemini to study the star cluster systems of five intermediate-age merger remnants. The galaxies were chosen based on blue colors and fine structure such as shells and ripples that are indicative of past interactions. We find evidence for star clusters with ages consistent with the estimated merger ages. The properties of the star clusters systems and implications for galaxy and star cluster formation will be discussed. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Particle Physics and Astronomy Research Council (United Kingdom), the National Research Council (Canada

  15. Neutron star natal kicks and the long-term survival of star clusters

    NASA Astrophysics Data System (ADS)

    Contenta, Filippo; Varri, Anna Lisa; Heggie, Douglas C.

    2015-04-01

    We investigate the dynamical evolution of a star cluster in an external tidal field by using N-body simulations, with focus on the effects of the presence or absence of neutron star natal velocity kicks. We show that, even if neutron stars typically represent less than 2 per cent of the total bound mass of a star cluster, their primordial kinematic properties may affect the lifetime of the system by up to almost a factor of 4. We interpret this result in the light of two known modes of star cluster dissolution, dominated by either early stellar evolution mass-loss or two-body relaxation. The competition between these effects shapes the mass-loss profile of star clusters, which may either dissolve abruptly (`jumping'), in the pre-core-collapse phase, or gradually (`skiing'), after having reached core collapse.

  16. Peculiarities of α-element abundances in Galactic open clusters

    NASA Astrophysics Data System (ADS)

    Marsakov, V. A.; Gozha, M. L.; Koval', V. V.; Shpigel', L. V.

    2016-01-01

    A catalog compiling the parameters of 346 open clusters, including their metallicities, positions, ages, and velocities has been composed. The elements of the Galactic orbits for 272 of the clusters have been calculated. Spectroscopic determinations of the relative abundances, [el/Fe], for 14 elements synthesized in various nuclear processes averaged over data from 109 publications are presented for 90 clusters. The compiled data indicate that the relative abundances of primary α elements (oxygen and magnesium) exhibit different dependences on metallicity, age, Galactocentric distance, and the elements of the Galactic orbits in clusters with high, elongated orbits satisfying the criterion ( Z max 2 + 4 e 2)1/2 > 0.40 and in field stars of the Galactic thin disk ( Z max is the maximum distance of the orbit from the Galactic plane in kiloparsec and e is the eccentricity of the Galactic orbit). Since no systematic effects distorting the relative abundances of the studied elements in these clusters have been found, these difference suggest real differences between clusters with high, elongated orbits and field stars. In particular, this supports the earlier conclusion, based on an analysis of the elements of the Galactic orbits, that some clusters formed as a result of interactions between high-velocity,metal-poor clouds and the interstellar mediumof theGalactic thin disk. On average, clusters with high, elongated orbits and metallicities [Fe/H] < -0.1 display lower relative abundances of the primary a elements than do field stars. The low [O, Mg/Fe] ratios of these clusters can be understood if the high-velocity clouds that gave rise to them were formed of interstellar material from regions where the star-formation rate and/or the masses of Type II supernovae were lower than near the Galactic plane. It is also shown that, on average, the relative abundances of the primary a elements are higher in relatively metal-rich clusters with high, elongated orbits than in

  17. Close encounters involving free-floating planets in star clusters

    NASA Astrophysics Data System (ADS)

    Wang, Long; Kouwenhoven, M. B. N.; Zheng, Xiaochen; Church, Ross P.; Davies, Melvyn B.

    2015-06-01

    Instabilities in planetary systems can result in the ejection of planets from their host system, resulting in free-floating planets (FFPs). If this occurs in a star cluster, the FFP may remain bound to the star cluster for some time and interact with the other cluster members until it is ejected. Here, we use N-body simulations to characterize close star-planet and planet-planet encounters and the dynamical fate of the FFP population in star clusters containing 500-2000 single or binary star members. We find that FFPs ejected from their planetary system at low velocities typically leave the star cluster 40 per cent earlier than their host stars, and experience tens of close (<1000 au) encounters with other stars and planets before they escape. The fraction of FFPs that experiences a close encounter depends on both the stellar density and the initial velocity distribution of the FFPs. Approximately half of the close encounters occur within the first 30 Myr, and only 10 per cent occur after 100 Myr. The periastron velocity distribution for all encounters is well described by a modified Maxwell-Bolzmann distribution, and the periastron distance distribution is linear over almost the entire range of distances considered, and flattens off for very close encounters due to strong gravitational focusing. Close encounters with FFPs can perturb existing planetary systems and their debris structures, and they can result in re-capture of FFPs. In addition, these FFP populations may be observed in young star clusters in imaging surveys; a comparison between observations and dynamical predictions may provide clues to the early phases of stellar and planetary dynamics in star clusters.

  18. Deep Washington Photometry of Inconspicuous Star Cluster Candidates in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Choudhury, Samyaday; Subramaniam, Annapurni; Piatti, Andrés E.

    2015-02-01

    We present deep Washington photometry of 45 poorly populated star cluster candidates in the Large Magellanic Cloud (LMC). We have performed a systematic study to estimate the parameters of the cluster candidates by matching theoretical isochrones to the cleaned and dereddened cluster color-magnitude diagrams. We were able to estimate the basic parameters for 33 clusters, out of which 23 are identified as single clusters and 10 are found to be members of double clusters. The other 12 cluster candidates have been classified as possible clusters/asterisms. About 50% of the true clusters are in the 100-300 Myr age range, whereas some are older or younger. We have discussed the distribution of age, location, and reddening with respect to field, as well as the size of true clusters. The sizes and masses of the studied sample are found to be similar to that of open clusters in the Milky Way. Our study adds to the lower end of cluster mass distribution in the LMC, suggesting that the LMC, apart from hosting rich clusters, also has formed small, less massive open clusters in the 100-300 Myr age range.

  19. Deep Washington photometry of inconspicuous star cluster candidates in the Large Magellanic Cloud

    SciTech Connect

    Choudhury, Samyaday; Subramaniam, Annapurni; Piatti, Andrés E.

    2015-02-01

    We present deep Washington photometry of 45 poorly populated star cluster candidates in the Large Magellanic Cloud (LMC). We have performed a systematic study to estimate the parameters of the cluster candidates by matching theoretical isochrones to the cleaned and dereddened cluster color–magnitude diagrams. We were able to estimate the basic parameters for 33 clusters, out of which 23 are identified as single clusters and 10 are found to be members of double clusters. The other 12 cluster candidates have been classified as possible clusters/asterisms. About 50% of the true clusters are in the 100–300 Myr age range, whereas some are older or younger. We have discussed the distribution of age, location, and reddening with respect to field, as well as the size of true clusters. The sizes and masses of the studied sample are found to be similar to that of open clusters in the Milky Way. Our study adds to the lower end of cluster mass distribution in the LMC, suggesting that the LMC, apart from hosting rich clusters, also has formed small, less massive open clusters in the 100–300 Myr age range.

  20. Action of Winds Inside and Outside of Star Clusters

    NASA Astrophysics Data System (ADS)

    Palouš, Jan; Dale, Jim; Wünsch, Richard; Silich, Sergiy; Tenorio-Tagle, Guillermo; Whitworth, Anthony

    2011-04-01

    The feedback form pre-main sequence and young stars influences their vicinity. The stars are formed in clusters, which implies that the winds of individual stars collide with each other. Inside of a star cluster, winds thermalize a fraction of their kinetic energy, forming a very hot medium able to escape from the cluster in the form of a large-scale wind. Outside of the cluster, the cluster wind forms a shock front as it interacts with the ambient medium which is accreted onto the expanding shell. A variety of instabilities may develop in such shells, and in some cases they fragment, triggering second generation of star formation. However, if the cluster surpasses a certain mass (depending on the radius and other parameters) the hot medium starts to be thermally unstable even inside of the cluster, forming dense warm clumps. The formation of next generations of stars may start if the clumps are big enough to self-shield against stellar radiation creating cold dense cores.

  1. Star counts in the globular cluster M71

    SciTech Connect

    Richer, H.B.; Fahlman, G.G.

    1989-04-01

    Star counts were carried out on V CCD frames of the globular cluster M71. A systematic radial variation in the main-sequence luminosity function of the cluster is observed, clearly demonstrating that mass segregation is operative in the cluster. The mass segregation predicted by an isotropic multimass King model is shown to be in good agreement with the present observations. The observations are consistent with those expected from a cluster undergoing dynamical relaxation. 27 refs.

  2. WIYN OPEN CLUSTER STUDY. XXXVIII. STELLAR RADIAL VELOCITIES IN THE YOUNG OPEN CLUSTER M35 (NGC 2168)

    SciTech Connect

    Geller, Aaron M.; Mathieu, Robert D.; Braden, Ella K.; Meibom, Soeren; Dolan, Christopher J.; Platais, Imants E-mail: mathieu@astro.wisc.edu E-mail: smeibom@cfa.harvard.edu E-mail: imants@pha.jhu.edu

    2010-04-15

    We present 5201 radial-velocity (RV) measurements of 1144 stars as part of an ongoing study of the young (150 Myr) open cluster M35 (NGC 2168). We have observed M35 since 1997, using the Hydra Multi-Object Spectrograph on the WIYN 3.5 m telescope. Our stellar sample covers main-sequence stars over a magnitude range of 13.0 {<=} V {<=} 16.5 (1.6-0.8 M {sub sun}) and extends spatially to a radius of 30 arcmin (7 pc in projection at a distance of 805 pc or {approx}4 core radii). Due to its youth, M35 provides a sample of late-type stars with a range of rotation periods. Therefore, we analyze the RV measurement precision as a function of the projected rotational velocity. For narrow-lined stars (vsin i{<=} 10 km s{sup -1}), the RVs have a precision of 0.5 km s{sup -1}, which degrades to 1.0 km s{sup -1} for stars with vsin i = 50 km s{sup -1}. The RV distribution shows a well-defined cluster peak with a central velocity of -8.16 {+-} 0.05 km s{sup -1}, permitting a clean separation of the cluster and field stars. For stars with {>=}3 measurements, we derive RV membership probabilities and identify RV variables, finding 360 cluster members, 55 of which show significant RV variability. Using these cluster members, we construct a color-magnitude diagram for our stellar sample cleaned of field star contamination. We also compare the spatial distribution of the single and binary cluster members, finding no evidence for mass segregation in our stellar sample. Accounting for measurement precision, we place an upper limit on the RV dispersion of the cluster of 0.81 {+-} 0.08 km s{sup -1}. After correction for undetected binaries, we derive a true RV dispersion of 0.65 {+-} 0.10 km s{sup -1}.

  3. Weighing Stars: The Identification of an Evolved Blue Straggler Star in the Globular Cluster 47 Tucanae

    NASA Astrophysics Data System (ADS)

    Ferraro, F. R.; Lapenna, E.; Mucciarelli, A.; Lanzoni, B.; Dalessandro, E.; Pallanca, C.; Massari, D.

    2016-01-01

    Globular clusters are known to host peculiar objects named blue straggler stars (BSSs), significantly heavier than the normal stellar population. While these stars can be easily identified during their core hydrogen-burning phase, they are photometrically indistinguishable from their low-mass sisters in advanced stages of the subsequent evolution. A clear-cut identification of these objects would require the direct measurement of the stellar mass. We used the detailed comparison between chemical abundances derived from neutral and from ionized spectral lines as a powerful stellar “weighing device” to measure stellar mass and to identify an evolved BSS in 47 Tucanae. In particular, high-resolution spectra of three bright stars, located slightly above the level of the “canonical” horizontal branch (HB) sequence in the color-magnitude diagram of 47 Tucanae, have been obtained with the UVES spectrograph. The measurements of iron and titanium abundances performed separately from neutral and ionized lines reveal that two targets have stellar parameters fully consistent with those expected for low-mass post-HB objects, while for the other target the elemental ionization balance is obtained only by assuming a mass of ˜ 1.4{M}⊙ , which is significantly larger than the main sequence turn-off mass of the cluster (˜ 0.85{M}⊙ ). The comparison with theoretical stellar tracks suggests that this is a BSS descendant possibly experiencing its core helium-burning phase. The large applicability of the proposed method to most of the globular clusters in our Galaxy opens the possibility to initiate systematic searches for evolved BSSs, thus giving access to still unexplored phases of their evolution. Based on UVES-FLAMES observations collected under Program 193.D-0232.

  4. STAR CLUSTERS IN M33: UPDATED UBVRI PHOTOMETRY, AGES, METALLICITIES, AND MASSES

    SciTech Connect

    Fan, Zhou; De Grijs, Richard E-mail: grijs@pku.edu.cn

    2014-04-01

    The photometric characterization of M33 star clusters is far from complete. In this paper, we present homogeneous UBVRI photometry of 708 star clusters and cluster candidates in M33 based on archival images from the Local Group Galaxies Survey, which covers 0.8 deg{sup 2} along the galaxy's major axis. Our photometry includes 387, 563, 616, 580, and 478 objects in the UBVRI bands, respectively, of which 276, 405, 430, 457, and 363 do not have previously published UBVRI photometry. Our photometry is consistent with previous measurements (where available) in all filters. We adopted Sloan Digital Sky Survey ugriz photometry for complementary purposes, as well as Two Micron All Sky Survey near-infrared JHK photometry where available. We fitted the spectral-energy distributions of 671 star clusters and candidates to derive their ages, metallicities, and masses based on the updated PARSEC simple stellar populations synthesis models. The results of our χ{sup 2} minimization routines show that only 205 of the 671 clusters (31%) are older than 2 Gyr, which represents a much smaller fraction of the cluster population than that in M31 (56%), suggesting that M33 is dominated by young star clusters (<1 Gyr). We investigate the mass distributions of the star clusters—both open and globular clusters—in M33, M31, the Milky Way, and the Large Magellanic Cloud. Their mean values are log (M {sub cl}/M {sub ☉}) = 4.25, 5.43, 2.72, and 4.18, respectively. The fraction of open to globular clusters is highest in the Milky Way and lowest in M31. Our comparisons of the cluster ages, masses, and metallicities show that our results are basically in agreement with previous studies (where objects in common are available); differences can be traced back to differences in the models adopted, the fitting methods used, and stochastic sampling effects.

  5. Spectroscopic Abundances in the Open Cluster NGC 6819

    NASA Astrophysics Data System (ADS)

    Lee-Brown, Donald B.; Anthony-Twarog, Barbara J.; Deliyannis, Constantine P.; Rich, Evan; Twarog, Bruce A.

    2015-04-01

    High-dispersion spectra of 333 stars in the open cluster NGC 6819, obtained using the HYDRA spectrograph on the WIYN 3.5 m telescope, have been analyzed to determine the abundances of iron and other metals from lines in the 400 Å region surrounding the Li 6708 Å line. Our spectra, with signal-to-noise per pixel ranging from 60 to 300, span the luminosity range from the tip of the red giant branch to a point two magnitudes below the top of the cluster turnoff. We derive radial and rotational velocities for all stars, as well as [Fe/H] based on 17 iron lines, [Ca/H], [Si/H], and [Ni/H] in the 247 most probable, single members of the cluster. Input Teff estimates for model atmosphere analysis are provided by (B-V) colors merged from several sources, with individual reddening corrections applied to each star relative to a cluster mean of E(B-V) = 0.16. Extensive use is made of ROBOSPECT, an automatic equivalent width measurement program; its effectiveness on large spectroscopic samples is discussed. From the sample of likely single members, [Fe/H] = -0.03 ± 0.06, where the error describes the median absolute deviation about the sample median value, leading to internal precision for the cluster below 0.01 dex. The final uncertainty in the cluster abundance is therefore dominated by external systematics due to the temperature scale, surface gravity, and microturbulent velocity, leading to [Fe/H] = -0.02 ± 0.02 for a sub-sample restricted to main sequence and turnoff stars. This result is consistent with our recent intermediate-band photometric determination of a slightly subsolar abundance for this cluster. [Ca/Fe], [Si/Fe], and [Ni/Fe] are determined to be solar within the uncertainties. NGC 6819 has an abundance distribution typical of solar metallicity thin disk stars in the solar neighborhood. WIYN Open Cluster study LXV.

  6. GAMMA RAYS FROM STAR FORMATION IN CLUSTERS OF GALAXIES

    SciTech Connect

    Storm, Emma M.; Jeltema, Tesla E.; Profumo, Stefano

    2012-08-20

    Star formation in galaxies is observed to be associated with gamma-ray emission, presumably from non-thermal processes connected to the acceleration of cosmic-ray nuclei and electrons. The detection of gamma rays from starburst galaxies by the Fermi Large Area Telescope (LAT) has allowed the determination of a functional relationship between star formation rate and gamma-ray luminosity. Since star formation is known to scale with total infrared (8-1000 {mu}m) and radio (1.4 GHz) luminosity, the observed infrared and radio emission from a star-forming galaxy can be used to quantitatively infer the galaxy's gamma-ray luminosity. Similarly, star-forming galaxies within galaxy clusters allow us to derive lower limits on the gamma-ray emission from clusters, which have not yet been conclusively detected in gamma rays. In this study, we apply the functional relationships between gamma-ray luminosity and radio and IR luminosities of galaxies derived by the Fermi Collaboration to a sample of the best candidate galaxy clusters for detection in gamma rays in order to place lower limits on the gamma-ray emission associated with star formation in galaxy clusters. We find that several clusters have predicted gamma-ray emission from star formation that are within an order of magnitude of the upper limits derived in Ackermann et al. based on non-detection by Fermi-LAT. Given the current gamma-ray limits, star formation likely plays a significant role in the gamma-ray emission in some clusters, especially those with cool cores. We predict that both Fermi-LAT over the course of its lifetime and the future Cerenkov Telescope Array will be able to detect gamma-ray emission from star-forming galaxies in clusters.

  7. Massive binary stars and self-enrichment of globular clusters

    NASA Astrophysics Data System (ADS)

    Izzard, R. G.; de Mink, S. E.; Pols, O. R.; Langer, N.; Sana, H.; de Koter, A.

    ~Globular clusters contain many stars with surface abundance patterns indicating contributions from hydrogen burning products, as seen in the anti-correlated elemental abundances of e.g. sodium and oxygen, and magnesium and aluminium. Multiple generations of stars can explain this phenomenon, with the second generation forming from a mixture of pristine gas and ejecta from the first generation. We show that massive binary stars may be a source of much of the material that makes this second generation of stars. Mass transfer in binaries is often non-conservative and the ejected matter moves slowly enough that it can remain inside a globular cluster and remain available for subsequent star formation. Recent studies show that there are more short-period massive binaries than previously thought, hence also more stars that interact and eject nuclear-processed material.

  8. star formation rates of z > 1 galaxy clusters in the IRAC shallow cluster survey

    SciTech Connect

    Zeimann, Gregory R.; Stanford, S. A.; Brodwin, Mark; Gonzalez, Anthony H.; Mancone, Conor; Snyder, Gregory F.; Stern, Daniel; Eisenhardt, Peter; Dey, Arjun; Moustakas, John

    2013-12-20

    We present Hubble Space Telescope near-IR spectroscopy for 18 galaxy clusters at 1.0 Cluster Survey. We use Wide Field Camera 3 grism data to spectroscopically identify Hα emitters in both the cores of galaxy clusters as well as in field galaxies. We find a large cluster-to-cluster scatter in the star formation rates within a projected radius of 500 kpc, and many of our clusters (∼60%) have significant levels of star formation within a projected radius of 200 kpc. A stacking analysis reveals that dust reddening in these star-forming galaxies is positively correlated with stellar mass and may be higher in the field than the cluster at a fixed stellar mass. This may indicate a lower amount of gas in star-forming cluster galaxies than in the field population. Also, Hα equivalent widths of star-forming galaxies in the cluster environment are still suppressed below the level of the field. This suppression is most significant for lower mass galaxies (log M {sub *} < 10.0 M {sub ☉}). We therefore conclude that environmental effects are still important at 1.0 star-forming galaxies in galaxy clusters with log M {sub *} ≲ 10.0 M {sub ☉}.

  9. Stellar Clusters in the NGC 6334 Star-Forming Complex

    NASA Astrophysics Data System (ADS)

    Feigelson, Eric D.; Martin, Amanda L.; McNeill, Collin J.; Broos, Patrick S.; Garmire, Gordon P.

    2009-07-01

    The full stellar population of NGC 6334, one of the most spectacular regions of massive star formation in the nearby Galaxy, has not been well sampled in past studies. We analyze here a mosaic of two Chandra X-ray Observatory images of the region using sensitive data analysis methods, giving a list of 1607 faint X-ray sources with arcsecond positions and approximate line-of-sight absorption. About 95% of these are expected to be cluster members, most lower mass pre-main-sequence stars. Extrapolating to low X-ray levels, the total stellar population is estimated to be 20,000-30,000 pre-main-sequence stars. The X-ray sources show a complicated spatial pattern with ~10 distinct star clusters. The heavily obscured clusters are mostly associated with previously known far-infrared sources and radio H II regions. The lightly obscured clusters are mostly newly identified in the X-ray images. Dozens of likely OB stars are found, both in clusters and dispersed throughout the region, suggesting that star formation in the complex has proceeded over millions of years. A number of extraordinarily heavily absorbed X-ray sources are associated with the active regions of star formation.

  10. STELLAR CLUSTERS IN THE NGC 6334 STAR-FORMING COMPLEX

    SciTech Connect

    Feigelson, Eric D.; Martin, Amanda L.; McNeill, Collin J.; Broos, Patrick S.; Garmire, Gordon P.

    2009-07-15

    The full stellar population of NGC 6334, one of the most spectacular regions of massive star formation in the nearby Galaxy, has not been well sampled in past studies. We analyze here a mosaic of two Chandra X-ray Observatory images of the region using sensitive data analysis methods, giving a list of 1607 faint X-ray sources with arcsecond positions and approximate line-of-sight absorption. About 95% of these are expected to be cluster members, most lower mass pre-main-sequence stars. Extrapolating to low X-ray levels, the total stellar population is estimated to be 20,000-30,000 pre-main-sequence stars. The X-ray sources show a complicated spatial pattern with {approx}10 distinct star clusters. The heavily obscured clusters are mostly associated with previously known far-infrared sources and radio H II regions. The lightly obscured clusters are mostly newly identified in the X-ray images. Dozens of likely OB stars are found, both in clusters and dispersed throughout the region, suggesting that star formation in the complex has proceeded over millions of years. A number of extraordinarily heavily absorbed X-ray sources are associated with the active regions of star formation.

  11. Stellar Nucleosynthesis in the Hyades Open Cluster

    NASA Astrophysics Data System (ADS)

    Schuler, Simon C.; King, Jeremy R.; The, Lih-Sin

    2009-08-01

    We report a comprehensive light-element (Li, C, N, O, Na, Mg, and Al) abundance analysis of three solar-type main sequence (MS) dwarfs and three red giant branch (RGB) clump stars in the Hyades open cluster using high-resolution and high signal-to-noise spectroscopy. The abundances have been derived in a self-consistent fashion, and for each group (MS or RGB), the CNO abundances are found to be in excellent star-to-star agreement. Using the dwarfs to infer the initial composition of the giants, the combined abundance patterns confirm that the giants have undergone the first dredge-up and that material processed by the CN cycle has been mixed to the surface layers. The observed abundances are compared to predictions of a standard stellar model based on the Clemson-American University of Beirut (CAUB) stellar evolution code. The model reproduces the observed evolution of the N and O abundances, as well as the previously derived 12C/13C ratio, but it fails to predict by a factor of 1.5 the observed level of 12C depletion. A similar discord appears to exist in previously reported observed and modeled C abundances of giants in the Galactic disk. Random uncertainties in the mean abundances and uncertainties related to possible systematic errors in the Hyades dwarf and giant parameter scales cannot account for the discrepancy in the observed and modeled abundances. Li abundances are derived to determine if noncanonical extra mixing, like that seen in low-mass metal-poor giants, has occurred in the Hyades giants. The Li abundance of the giant γ Tau is in good accord with the predicted level of surface Li dilution, but a ~0.35 dex spread in the giant Li abundances is found and cannot be explained by the stellar model. Possible sources of the spread are discussed; however, it is apparent that the differential mechanism responsible for the Li dispersion must be unrelated to the uniformly low 12C abundances of the giants. Na, Mg, and Al abundances are derived as an additional

  12. Stellar rotational periods in the planet hosting open cluster Praesepe

    NASA Astrophysics Data System (ADS)

    Kovács, Géza; Hartman, Joel D.; Bakos, Gáspár Á.; Quinn, Samuel N.; Penev, Kaloyan; Latham, David W.; Bhatti, Waqas; Csubry, Zoltán; de Val-Borro, Miguel

    2014-08-01

    By using the dense coverage of the extrasolar planet survey project HATNet (Hungarian-made Automated Telescope Network), we Fourier analyse 381 high-probability members of the nearby open cluster Praesepe (Beehive/M44/NGC 2632). In addition to the detection of 10 variables (of δ Scuti and other types), we identify 180 rotational variables (including the two known planet hosts). This sample increases the number of known rotational variables in this cluster for spectral classes earlier than M by more than a factor of 3. These stars closely follow a colour/magnitude-period relation from early F to late K stars. We approximate this relation by polynomials for an easier reference to the rotational characteristics in different colours. The total (peak-to-peak) amplitudes of the large majority (94 per cent) of these variables span the range of 0.005-0.04 mag. The periods cover a range from 2.5 to 15 d. These data strongly confirm that Praesepe and the Hyades have the same gyrochronological ages. Regarding the two planet hosts, Pr0211 (the one with the shorter orbital period) has a rotational period that is ˜2 d shorter than the one expected from the main rotational pattern in this cluster. This, together with other examples discussed in the paper, may hint that star-planet interaction via tidal dissipation can be significant in some cases in the rotational evolution of stars hosting hot Jupiters.

  13. A populous intermediate-age open cluster and evidence of an embedded cluster among the FSR globular cluster candidates

    NASA Astrophysics Data System (ADS)

    Bica, E.; Bonatto, C.

    2008-03-01

    We study the nature of the globular cluster (GC) candidates FSR 1603 and FSR1755 selected from the catalogue of Froebrich, Scholz & Raftery. Their properties are investigated with Two-Micron All-Sky Survey field-star decontaminated photometry, which is used to build colour-magnitude diagrams (CMDs) and stellar radial density profiles. FSR1603 has the open cluster Ruprecht 101 as optical counterpart, and we show it to be a massive intermediate-age cluster. Relevant parameters of FSR1603 are the age ~1Gyr, distance from the Sun dsolar ~ 2.7kpc, Galactocentric distance RGC ~ 6.4kpc, core radius RC ~ 1.1pc, mass function slope χ ~ 1.8, observed stellar mass (for stars with mass in the range 1.27 <= m <= 2.03Msolar) Mobs ~ 500Msolar and a total (extrapolated to m = 0.08Msolar) stellar mass Mtot ~ 2300Msolar. FSR1755, on the other hand, is not a populous cluster. It may be a sparse young cluster embedded in the HII region Sh2-3, subject to an absorption AV ~ 4.1, located at dsolar ~ 1.3kpc. Important field-star contamination, spatially variable heavy dust obscuration, even in Ks, and gas emission characterize its field. A nearly vertical, sparse blue stellar sequence shows up in the CMDs.

  14. Young Star Cluster Aglow With Mysterious X-Ray Cloud

    NASA Technical Reports Server (NTRS)

    2002-01-01

    At a distance of 6,000 light years from Earth, the star cluster RCW 38 is a relatively close star-forming region. This area is about 5 light years across, and contains thousands of hot, very young stars formed less than a million years ago, 190 of which exposed x-rays to Chandra. Enveloping the star cluster, the diffused cloud of x-rays shows an excess of high energy x-rays, which indicates that the x-rays come from trillion-volt electrons moving in a magnetic field. Such particles are typically produced by exploding stars, or in the strong magnetic fields around neutron stars or black holes, none of which are evident in RCW 38. One possible origin for the particles, could be an undetected supernova that occurred in the cluster, possibly thousands of years ago, producing a shock wave that is interacting with the young stars. Regardless of the origin of these energetic electrons, their presence could change the chemistry of the disks that will eventually form planets around the stars in the cluster.

  15. RAPID DYNAMICAL MASS SEGREGATION AND PROPERTIES OF FRACTAL STAR CLUSTERS

    SciTech Connect

    Yu Jincheng; Chen Li; De Grijs, Richard

    2011-05-01

    We investigate the evolution of young star clusters using N-body simulations. We confirm that subvirial and fractal-structured clusters will dynamically mass segregate on a short timescale (within 0.5 Myr). We adopt a modified minimum-spanning-tree method to measure the degree of mass segregation, demonstrating that the stars escaping from a cluster's potential are important for the temporal dependence of mass segregation in the cluster. The form of the initial velocity distribution will also affect the degree of mass segregation. If it depends on radius, the outer parts of the cluster would expand without undergoing collapse. In velocity space, we find 'inverse mass segregation', which indicates that massive stars have higher velocity dispersions than their lower-mass counterparts.

  16. The Open Cluster Ruprecht 91 and Its Cepheids

    NASA Astrophysics Data System (ADS)

    Turner, David G.; Forbes, Douglas; van den Bergh, Sidney; Younger, P. Frank; Berdnikov, Leonid N.

    2005-09-01

    Photoelectric UBV photometry and star counts are presented for stars in the previously unstudied open cluster Ruprecht 91, supplemented by observations for stars in adjacent regions surrounding the Cepheids SX Car and VY Car, including new observations for the latter. Ruprecht 91 is typical of groups associated with Cepheids, with an evolutionary age of ~8×107 yr, but it is only 980+/-8 pc distant, much closer than the Cepheids. Both Cepheids are unlikely to be members of Ruprecht 91: VY Car on the basis of location beyond the cluster tidal radius, age, and implied distance, and SX Car on the basis of implied distance. The brightest star in Ruprecht 91 is the M1 II supergiant HD 93662, a likely member. The suspected variability of the star is confirmed here with the aid of archival data, and its likely cycle length is found to be 5756 days (15.8 yr). Period changes in VY Car and SX Car are also studied with the aid of archival data. The period of VY Car is decreasing, its rate of -75.92+/-0.37 s yr-1 being consistent with a second crossing of the instability strip. That for SX Car is increasing, its rate of +0.07+/-0.02 s yr-1 being consistent with a third crossing. VY Car and SX Car are established to have space reddenings of EB-V=0.18+/-0.01 and 0.17+/-0.01, respectively.

  17. Calibrating the Optical Luminosity of Red Clump Stars: An Archival Study of Star Clusters

    NASA Astrophysics Data System (ADS)

    Grocholski, Aaron

    2010-09-01

    The core helium burning stars of the red clump {RC} are a conspicuous feature in the color-magnitude diagram of many stellar populations. Its ease of identification, along with its relative brightness {M_I 0} make the RC a popular feature for HST studies of stellar populations in galaxies out to a few Mpc. Such studies generally interpret the data through comparison to theoretical isochrones. For accurate results, the theoretical predictions must be calibrated to match the RC properties of observed populations of known age and metallicity. However, no large scale studies of the luminosity of the RC currently exist in the optical bands. We propose to remedy this situation with an archival study of RC properties in star clusters in the Milky Way, LMC, and SMC. We will focus on HST images of globular clusters, but we will augment the sample with ground-based open cluster observations to extend the coverage of parameter space. The goal is to build a large and homogeneous database, through new analysis and incorporation of literature data, of cluster ages, abundances, distances, and RC photometry. This database will allow us to explore the variations in the RC luminosity as a function of age and [Fe/H] over the full range of parameter space where the RC exists, for both the V and I bands. The results will provide a fundamental calibration for all future HST studies of stellar populations and distances of nearby galaxies using the RC. They will also allow for verification or improvement of theoretical models for red giant phase evolution. This in turn will help many subjects, from stellar modeling to population synthesis and fitting of spectral energy distributions of distant galaxies.

  18. NEW UBVRI PHOTOMETRY OF 234 M33 STAR CLUSTERS

    SciTech Connect

    Ma Jun

    2013-04-15

    This is the second paper of our series. In this paper, we present UBVRI photometry for 234 star clusters in the field of M33. For most of these star clusters, there is photometry in only two bands in previous studies. The photometry of these star clusters is performed using archival images from the Local Group Galaxies Survey, which covers 0.8 deg{sup 2} along the major axis of M33. Detailed comparisons show that, in general, our photometry is consistent with previous measurements, and in particular that our photometry is in good agreement with that of Zloczewski and Kaluzny. Combined with star cluster photometry in previous studies, we present some results: none of the M33 youngest clusters ({approx}10{sup 7} yr) have masses approaching 10{sup 5} M{sub Sun }, and comparisons with models of simple stellar populations suggest a large range of ages for M33 star clusters and some as old as the Galactic globular clusters.

  19. The open cluster Havlen-Moffat No. 1 revisited

    NASA Astrophysics Data System (ADS)

    Vázquez, R. A.; Baume, G.

    2001-06-01

    A deep CCD UBVRI photometric survey combined with UBVRI polarimetric observations of 21 bright stars was carried out in the region of the open cluster Havlen-Moffat No. 1. Our data reveal that the extinction law in this cluster is variable and that six cluster stars show very high polarisation values (>4%), probably because of the presence of a nearby small dust cloud. The cluster is at a distance of d = 3300 pc, it is 2-4 Myr old and the initial mass function of its most massive stars (M > 3 Msun ) has a flat slope of x~ 0.7. As an additional result, it was possible to reconcile the absolute magnitudes of the two WN7-type members using the R-values valid in the regions where they are located. Based on observations collected at the University of Toronto Southern Observatory, Las Campanas, Chile, and the Complejo Astronómico El Leoncito, (CASLEO), Argentina, operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba and San Juan. Table 1 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/371/908.

  20. Effects of dynamical evolution on the internal kinematical properties of star clusters

    NASA Astrophysics Data System (ADS)

    Tiongco, Maria; Vesperini, Enrico; Varri, Anna Lisa

    2016-05-01

    The observational characterization of the internal kinematics of Galactic globular clusters will soon reach an unprecedented level of richness, thanks to the synergy between the astrometric data provided by Gaia and HST, and a number of ESO/VLT spectroscopic programs. Such a wealth of information on the three-dimensional velocity space of star clusters, offers the unique opportunity to address a number of open questions on the phase space evolution of collisional stellar systems.Driven by these motivations, I will present some highlighted results of a large survey of N-body simulations aimed at exploring the long-term dynamical evolution of the kinematical properties of tidally limited star clusters. First, I will discuss of the evolution of the anisotropy in velocity space, with particular attention to the dependence on the cluster initial structural properties and dynamical history. I will then focus on the implications of cluster dynamical evolution and loss of stars on its internal rotation. Such an enriched picture of the kinematical properties of star clusters offers a solid bedrock for addressing a range of exciting new questions related to the dynamics of multiple stellar populations in globular clusters. In this context, I will illustrate some results on the internal rotational velocity profiles and the evolution of the differences in the rotation of different stellar populations.

  1. Lithium in lower-main-sequence stars of the Alpha Persei cluster

    NASA Technical Reports Server (NTRS)

    Balachandran, Suchitra; Lambert, David L.; Stauffer, John R.

    1988-01-01

    Lithium abundances are presented for main-sequence stars of spectral types F, G, and K in the young open cluster Alpha Per. For 46 cluster members, a correlation between Li abundance and projected rotational velocity v sin i is found: all of the Li-poor stars are slow rotators. Two explanations are proposed to account for the correlation: (1) that the Li depletion is introduced following a rapid spin-down phase experienced by young low-mass stars, and that this episode of Li depletion may be the dominant one determining the spread of Li abundances among young low-mass main-sequence stars, and (2) that star formation has occurred over a finite period such that the older stars have undergone a spin-down and depletion of Li by a means that may or may not depend on rotation. The Li abundance in the warm and rapidly rotating stars appears to be undepleted, as is predicted by recent models of pre-main-sequence stars. The depletion observed in the cool stars exceeds the level predicted by these models.

  2. Observational Investigations on Contact Binaries in Multiple-star Systems and Star Clusters

    NASA Astrophysics Data System (ADS)

    Liu, L.

    2013-01-01

    The W UMa-type contact binaries are strongly interacting systems whose components both fill their critical Roche lobes and share a convective common envelope. The models of contact binaries are bottlenecked due to too many uncertain parameters. In the 1960s and 1970s, the common convective envelope model was accepted after several fierce controversies. And then, the thermal relaxation oscillation (TRO) model, the discontinuity model, and the angular momentum loss (AML) model appeared. However, in the past forty years, there lacked remarkable advance. The coexistence of many unknown parameters blocks the theoretical development of contact binaries. A study on the contact binaries in multiple star systems and star clusters, which could provide lots of information for their formation and evolution, may be a potential growing point for understanding these objects. More and more evidence shows that many of contact binaries are located in multiple star systems and star clusters. In this thesis, we observed and analyzed contact binaries in the forementioned systems. The observational and theoretical studies for contact binary are also summarized briefly. The results obtained are as follows: (1) Three contact binaries V1128 Tau, GZ And, VW Boo which possess visual companions show periodic oscillations. The period ranges from 16.7 years to 46.5 years. These oscillations probably come from the orbital movement of a close third body. (2) Four contact binaries GSC 02393-00680, V396 Mon, FU Dra, SS Ari which do not have visual companions also present periodic oscillations. Whether they are real members of multiple star systems needs further investigations. These oscillations probably result from the orbital movement of a close M-type companion. (3) The periods of three contact binaries EQ Cep, ER Cep and V371 Cep in the old open cluster NGC 188 show a long-term increase. There is a cyclic period oscillation in ER Cep, with a period of 5.4 years. We find that the total mass of

  3. Open Clusters as Tracers of the Galactic Disk

    NASA Astrophysics Data System (ADS)

    Cantat-Gaudin, Tristan

    2015-01-01

    Open clusters (OCs) are routinely used as reliable tracers of the properties and evolution of the galactic disk, as they can be found at all galactocentric distances and span a wide range of ages. More than 3000 OCs are listed in catalogues, although few have been studied in details. The goal of this work is to study the properties of open clusters. This work was conducted in the framework of the Gaia-ESO Survey (GES). GES is an observational campaign targeting more than 100,000 stars in all major components of the Milky Way, including stars in a hundred open clusters. It uses the FLAMES instrument at the VLT to produce high and medium-resolution spectra, which provide accurate radial velocities and individual elemental abundances. In this framework, the goals of the Thesis are: * to study the properties of OCs and of their stars from photometry and spectroscopy to derive their age, the extinction and the chemical composition of the stars, to begin to build a homogeneous data base. Looking at literature data it is clear that different authors derive substantially different chemical compositions, and in general OC parameters. * the study of OCs and their chemical homogeneity (or inhomogeneity) can cast light on what is still an open issue: the presence of multiple populations in clusters. While multiple generations of stars are now ubiquitously found in globular clusters in the Milky Way and in the Magellanic Clouds, they have not been yet detected in open clusters. What is the main driver of the self-pollution process? * to study the cluster formation process. All, or at least a significant fraction of stars form in clusters. Young clusters (a few Myr) can retain some of the properties of the molecular cloud they originate from and give us insight about the cluster assembly process. The first GES data release contains data for the young OC Gamma Velorum, in which two (dynamically different) subpopulations have been identified. This cluster can serve as a test case

  4. STAR-TO-STAR IRON ABUNDANCE VARIATIONS IN RED GIANT BRANCH STARS IN THE GALACTIC GLOBULAR CLUSTER NGC 3201

    SciTech Connect

    Simmerer, Jennifer; Ivans, Inese I.; Filler, Dan; Francois, Patrick; Charbonnel, Corinne; Monier, Richard; James, Gaeel E-mail: iii@physics.utah.edu E-mail: patrick.francois@obspm.fr E-mail: richard.monier@unice.fr

    2013-02-10

    We present the metallicity as traced by the abundance of iron in the retrograde globular cluster NGC 3201, measured from high-resolution, high signal-to-noise spectra of 24 red giant branch stars. A spectroscopic analysis reveals a spread in [Fe/H] in the cluster stars at least as large as 0.4 dex. Star-to-star metallicity variations are supported both through photometry and through a detailed examination of spectra. We find no correlation between iron abundance and distance from the cluster core, as might be inferred from recent photometric studies. NGC 3201 is the lowest mass halo cluster to date to contain stars with significantly different [Fe/H] values.

  5. Polarimetry of an intermediate-age open cluster: NGC 5617

    NASA Astrophysics Data System (ADS)

    Orsatti, A. M.; Feinstein, C.; Vergne, M. M.; Martínez, R. E.; Vega, E. I.

    2010-04-01

    Aims: We present polarimetric observations in the UBVRI bands of 72 stars located in the direction of the medium age open cluster NGC 5617. Our intention is to use polarimetry as a tool in membership identification, by building on previous investigations intended mainly to determine the cluster's general characteristics rather than provide membership suitable for studies such as stellar content and metallicity, as well as study the characteristics of the dust lying between the Sun and the cluster. Methods: The obsevations were carried out using the five-channel photopolarimeter of the Torino Astronomical Observatory attached to the 2.15 m telescope at the Complejo Astronómico El Leoncito (CASLEO; Argentina). Results: We are able to add 32 stars to the list of members of NGC 5617, and review the situation for others listed in the literature. In particular, we find that five blue straggler stars in the region of the cluster are located behind the same dust as the member stars are and we confirm the membership of two red giants. The proposed polarimetric memberships are compared with those derived by photometric and kinematical methods, with excellent results. Among the observed stars, we identify 10 with intrinsic polarization in their light. NGC 5617 can be polarimetrically characterized with Pmax = 4.40 % and θv = 73.1 deg. The spread in polarization values for the stars observed in the direction of the cluster seems to be caused by the uneven distribution of dust in front of the cluster's face. Finally, we find that in the direction of the cluster, the interstellar medium is apparently free of dust, from the Sun's position up to the Carina-Sagittarius arm, where NGC 5617 seems to be located at its farthest border. Based on observations obtained at Complejo Astronómico El Leoncito, operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the Universities of La Plata, Córdoba, and San Juan.

  6. The Role of Radiation Pressure in Assembling Super Star Clusters

    NASA Astrophysics Data System (ADS)

    Tsz-Ho Tsang, Benny; Milosavljevic, Milos

    2016-06-01

    Super star clusters are the most extreme star-forming regions of the Universe - they occupy the most massive end of the Kennicutt-Schmidt relation, forming stars at exceptionally high rates and gas surface densities. The radiation feedback from the dense population of massive stars is expected to play a dynamic role during the assembly of the clusters, and represents a potential mechanism for launching large-scale galactic outflows. Observationally, large distances and dust obscuration have been withholding clues about the early stages of massive cluster formation; theoretically, the lack of accurate and efficient radiation transfer schemes in multi-dimensional hydrodynamic simulations has been deterring our understanding of radiative feedback. By extending the adaptive mesh refinement code FLASH with a closure-free, Monte Carlo radiation transport scheme, we perform 3D radiation hydrodynamical simulations of super star cluster formation from the collapse of turbulent molecular clouds. Our simulations probe the star formation in densities typical for starbursts, with both non-ionizing UV and dust-reprocessed IR radiation treated self-consistently. We aim to determine the role of radiation pressure in regulating star formation, and its capacity in driving intense outflows.

  7. The size of star clusters accreted by the Milky Way

    NASA Astrophysics Data System (ADS)

    Miholics, Meghan; Webb, Jeremy J.; Sills, Alison

    2014-12-01

    We perform N-body simulations of a cluster that forms in a dwarf galaxy and is then accreted by the Milky Way to investigate how a cluster's structure is affected by a galaxy merger. We find that the cluster's half-mass radius will respond quickly to this change in potential. When the cluster is placed on an orbit in the Milky Way with a stronger tidal field the cluster experiences a sharp decrease in size in response to increased tidal forces. Conversely, when placed on an orbit with a weaker tidal field, the cluster expands since tidal forces decrease and no longer limit the expansion due to internal effects. In all cases, we find that the cluster's half-mass radius will eventually be indistinguishable from a cluster that has always lived in the Milky Way on that orbit. These adjustments occur within 1-2 half-mass relaxation times of the cluster in the dwarf galaxy. We also find this effect to be qualitatively independent of the time that the cluster is taken from the dwarf galaxy. In contrast to the half-mass radius, we show the core radius of the cluster is not affected by the potential the cluster lives in. Our work suggests that structural properties of accreted clusters are not distinct from clusters born in the Milky Way. Other cluster properties, such as metallicity and horizontal branch morphology, may be the only way to identify accreted star clusters in the Milky Way.

  8. The distance to the young open cluster Westerlund 2

    NASA Astrophysics Data System (ADS)

    Carraro, G.; Turner, D.; Majaess, D.; Baume, G.

    2013-07-01

    A new X-ray, UBVRIc, and JHKs study of the young cluster Westerlund 2 was undertaken to resolve discrepancies tied to the cluster's distance. Existing spectroscopic observations for bright cluster members and new multi-band photometry imply a reddening relation toward Westerlund 2 described by EU - B/EB - V = 0.63 + 0.02EB - V. Variable-extinction analyses for Westerlund 2 and nearby IC 2581 based upon spectroscopic distance moduli and ZAMS fitting yield values of RV = AV/EB - V = 3.88 ± 0.18 and 3.77 ± 0.19, respectively, and confirm prior assertions that anomalous interstellar extinction is widespread throughout Carina. The results were confirmed by applying the color-difference method to UBVRIcJHKs data for 19 spectroscopically observed cluster members, yielding RV = 3.85 ± 0.07. The derived distance to Westerlund 2 of d = 2.85 ± 0.43 kpc places the cluster on the far side of the Carina spiral arm. The cluster's age is no more than τ ~ 2 × 106 yr as inferred from the cluster's brightest stars and an X-ray (Chandra) cleaned analysis of its pre-main-sequence demographic. Four Wolf-Rayet stars in the cluster core and surrounding corona (WR20a, WR20b, WR20c, and WR20aa) are very likely cluster members, and their inferred luminosities are consistent with those of other late-WN stars in open clusters. The color-magnitude diagram for Westerlund 2 also displays a gap at spectral type B0.5 V with associated color spread at higher and lower absolute magnitudes that might be linked to close binary mergers. These features, in conjunction with the evidence for mass loss from the WR stars, may help to explain the high flux of γ-rays, cosmic rays, and X-rays from the direction toward Westerlund 2. Based on observations carried out at Las Campanas Observatory.Full photometric data are available at the CDS via anomymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/555/A50

  9. SIGNATURES OF STAR CLUSTER FORMATION BY COLD COLLAPSE

    SciTech Connect

    Kuznetsova, Aleksandra; Hartmann, Lee; Ballesteros-Paredes, Javier

    2015-12-10

    Subvirial gravitational collapse is one mechanism by which star clusters may form. Here we investigate whether this mechanism can be inferred from observations of young clusters. To address this question, we have computed smoothed particle hydrodynamics simulations of the initial formation and evolution of a dynamically young star cluster through cold (subvirial) collapse, starting with an ellipsoidal, turbulently seeded distribution of gas, and forming sink particles representing (proto)stars. While the initial density distributions of the clouds do not have large initial mass concentrations, gravitational focusing due to the global morphology leads to cluster formation. We use the resulting structures to extract observable morphological and kinematic signatures for the case of subvirial collapse. We find that the signatures of the initial conditions can be erased rapidly as the gas and stars collapse, suggesting that kinematic observations need to be made early in cluster formation and/or at larger scales, away from the growing cluster core. Our results emphasize that a dynamically young system is inherently evolving on short timescales, so that it can be highly misleading to use current-epoch conditions to study aspects such as star formation rates as a function of local density. Our simulations serve as a starting point for further studies of collapse including other factors such as magnetic fields and stellar feedback.

  10. Unveiling hidden properties of young star clusters: differential reddening, star-formation spread, and binary fraction

    NASA Astrophysics Data System (ADS)

    Bonatto, C.; Lima, E. F.; Bica, E.

    2012-04-01

    Context. Usually, important parameters of young, low-mass star clusters are very difficult to obtain by means of photometry, especially when differential reddening and/or binaries occur in large amounts. Aims: We present a semi-analytical approach (ASAmin) that, when applied to the Hess diagram of a young star cluster, is able to retrieve the values of mass, age, star-formation spread, distance modulus, foreground and differential reddening, and binary fraction. Methods: The global optimisation method known as adaptive simulated annealing (ASA) is used to minimise the residuals between the observed and simulated Hess diagrams of a star cluster. The simulations are realistic and take the most relevant parameters of young clusters into account. Important features of the simulations are a normal (Gaussian) differential reddening distribution, a time-decreasing star-formation rate, the unresolved binaries, and the smearing effect produced by photometric uncertainties on Hess diagrams. Free parameters are cluster mass, age, distance modulus, star-formation spread, foreground and differential reddening, and binary fraction. Results: Tests with model clusters built with parameters spanning a broad range of values show that ASAmin retrieves the input values with a high precision for cluster mass, distance modulus, and foreground reddening, but they are somewhat lower for the remaining parameters. Given the statistical nature of the simulations, several runs should be performed to obtain significant convergence patterns. Specifically, we find that the retrieved (absolute minimum) parameters converge to mean values with a low dispersion as the Hess residuals decrease. When applied to actual young clusters, the retrieved parameters follow convergence patterns similar to the models. We show how the stochasticity associated with the early phases may affect the results, especially in low-mass clusters. This effect can be minimised by averaging out several twin clusters in the

  11. STAR CLUSTERS IN A NUCLEAR STAR FORMING RING: THE DISAPPEARING STRING OF PEARLS

    SciTech Connect

    Väisänen, Petri; Barway, Sudhanshu; Randriamanakoto, Zara

    2014-12-20

    An analysis of the star cluster population in a low-luminosity early-type galaxy, NGC 2328, is presented. The clusters are found in a tight star forming nuclear spiral/ring pattern and we also identify a bar from structural two-dimensional decomposition. These massive clusters are forming very efficiently in the circumnuclear environment and they are young, possibly all less than 30 Myr of age. The clusters indicate an azimuthal age gradient, consistent with a ''pearls-on-a-string'' formation scenario, suggesting bar-driven gas inflow. The cluster mass function has a robust down turn at low masses at all age bins. Assuming clusters are born with a power-law distribution, this indicates extremely rapid disruption at timescales of just several million years. If found to be typical, it means that clusters born in dense circumnuclear rings do not survive to become old globular clusters in non-interacting systems.

  12. The physics and modes of star cluster formation: simulations.

    PubMed

    Clarke, Cathie

    2010-02-28

    We review progress in numerical simulations of star cluster formation. These simulations involve the bottom-up assembly of clusters through hierarchical mergers, which produces a fractal stellar distribution at young (approx. 0.5 Myr) ages. The resulting clusters are predicted to be mildly aspherical and highly mass-segregated, except in the immediate aftermath of mergers. The upper initial mass function within individual clusters is generally somewhat flatter than for the aggregate population. Recent work has begun to clarify the factors that control the mean stellar mass in a star-forming cloud and also the efficiency of star formation. The former is sensitive to the thermal properties of the gas while the latter depends both on the magnetic field and the initial degree of gravitational boundedness of the natal cloud. Unmagnetized clouds that are initially bound undergo rapid collapse, which is difficult to reverse by ionization feedback or stellar winds.

  13. Young star clusters in the circumnuclear region of NGC 2110

    SciTech Connect

    Durré, Mark; Mould, Jeremy

    2014-03-20

    High-resolution observations in the near infrared show star clusters around the active galactic nucleus (AGN) of the Seyfert 1 NGC 2110, along with a 90 × 35 pc bar of shocked gas material around its nucleus. These are seen for the first time in our imaging and gas kinematics of the central 100 pc with the Keck OSIRIS instrument with adaptive optics. Each of these clusters is two to three times brighter than the Arches cluster close to the center of the Milky Way. The core star formation rate is 0.3 M {sub ☉} yr{sup –1}. The photoionized gas (He I) dynamics imply an enclosed mass of 3-4 × 10{sup 8} M {sub ☉}. These observations demonstrate the physical linkage between AGN feedback, which triggers star formation in massive clusters, and the resulting stellar (and supernovae) winds, which cause the observed [Fe II] emission and feed the black hole.

  14. Young open clusters in the Milky Way and Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Martayan, C.

    2010-01-01

    NGC 6611, Trumpler 14, Trumpler 15, Trumpler 16, and Collinder 232 are very young open clusters located in star-formation regions in the Eagle Nebula and Carina in the Milky Way, and NGC 346 in the Small Magellanic Cloud. With different instrumentation and techniques, it has been possible to detect and classify new Herbig Ae/Be and classical Be stars and to provide new tests/comparisons of the Be stars' appearance models. Special (He-strong) stars in these star-formation regions are also discussed.

  15. STAR-FORMING GALAXY EVOLUTION IN NEARBY RICH CLUSTERS

    SciTech Connect

    Tyler, K. D.; Rieke, G. H.; Bai, L.

    2013-08-20

    Dense environments are known to quench star formation in galaxies, but it is still unknown what mechanism(s) are directly responsible. In this paper, we study the star formation of galaxies in A2029 and compare it to that of Coma, combining indicators at 24 {mu}m, H{alpha}, and UV down to rates of 0.03 M{sub Sun} yr{sup -1}. We show that A2029's star-forming galaxies follow the same mass-SFR relation as the field. The Coma cluster, on the other hand, has a population of galaxies with star formation rates (SFRs) significantly lower than the field mass-SFR relation, indicative of galaxies in the process of being quenched. Over half of these galaxies also host active galactic nuclei. Ram-pressure stripping and starvation/strangulation are the most likely mechanisms for suppressing the star formation in these galaxies, but we are unable to disentangle which is dominating. The differences we see between the two clusters' populations of star-forming galaxies may be related to their accretion histories, with A2029 having accreted its star-forming galaxies more recently than Coma. Additionally, many early-type galaxies in A2029 are detected at 24 {mu}m and/or in the far-UV, but this emission is not directly related to star formation. Similar galaxies have probably been classified as star forming in previous studies of dense clusters, possibly obscuring some of the effects of the cluster environment on true star-forming galaxies.

  16. Mass effect on the lithium abundance evolution of open clusters: Hyades, NGC 752, and M 67

    NASA Astrophysics Data System (ADS)

    Castro, M.; Duarte, T.; Pace, G.; do Nascimento, J.-D.

    2016-05-01

    Lithium abundances in open clusters provide an effective way of probing mixing processes in the interior of solar-type stars and convection is not the only mixing mechanism at work. To understand which mixing mechanisms are occurring in low-mass stars, we test non-standard models, which were calibrated using the Sun, with observations of three open clusters of different ages, the Hyades, NGC 752, and M 67. We collected all available data, and for the open cluster NGC 752, we redetermine the equivalent widths and the lithium abundances. Two sets of evolutionary models were computed, one grid of only standard models with microscopic diffusion and one grid with rotation-induced mixing, at metallicity [Fe/H] = 0.13, 0.0, and 0.01 dex, respectively, using the Toulouse-Geneva evolution code. We compare observations with models in a color-magnitude diagram for each cluster to infer a cluster age and a stellar mass for each cluster member. Then, for each cluster we analyze the lithium abundance of each star as a function of mass. The data for the open clusters Hyades, NGC 752, and M 67, are compatible with lithium abundance being a function of both age and mass for stars in these clusters. Our models with meridional circulation qualitatively reproduce the general trend of lithium abundance evolution as a function of stellar mass in all three clusters. This study points out the importance of mass dependence in the evolution of lithium abundance as a function of age. Comparison between models with and without rotation-induced mixing shows that the inclusion of meridional circulation is essential to account for lithium depletion in low-mass stars. However, our results suggest that other mechanisms should be included to explain the Li-dip and the lithium dispersion in low-mass stars.

  17. Speckle Interferometry of Massive and Cluster Stars

    NASA Astrophysics Data System (ADS)

    Mason, Brian; Hartkopf, William I.; Gies, Douglas R.; Henry, Todd J.; Tokovinin, Andrei A.

    2006-02-01

    Conducted on NOAO 4-m telescopes in 1994, the first speckle survey of O stars (Mason et al. 1998) had success far in excess of our expectations. In addition to the frequently cited multiplicity analysis, many of the new systems which were first resolved in this paper are of significant astrophysical importance. Now, some ten years after the original survey, we propose to re-investigate all systems analyzed before (N=195). Improvements in detector technology will allow for the detection of companions missed before as well as systems which may have been closer than the resolution limit in 1994. We will also make a first high-resolution inspection of the additional O stars (N=108) in the recent Galactic O Star Catalog of Maiz- Apellaniz & Walborn (2004). Further, we propose to investigate several additional samples of interesting objects, including 15 accessible Galactic WR stars from the speckle survey of Hartkopf et al. (1999), 16 massive, hot stars with separations which would indicate their applicability for mass determinations (for fully detached O stars masses are presently known for only twelve pairs), and 56 multiple stars for a study of their co- planarity statistics.

  18. PROGRESSIVE STAR FORMATION IN THE YOUNG GALACTIC SUPER STAR CLUSTER NGC 3603

    SciTech Connect

    Beccari, Giacomo; Spezzi, Loredana; De Marchi, Guido; Andersen, Morten; Paresce, Francesco; Young, Erick; Panagia, Nino; Bond, Howard; Balick, Bruce; Calzetti, Daniela; Carollo, C. Marcella; Disney, Michael J.; Dopita, Michael A.; Frogel, Jay A.; Hall, Donald N. B.; Holtzman, Jon A.; Kimble, Randy A.; McCarthy, Patrick J.; O'Connell, Robert W.; Saha, Abhijit

    2010-09-10

    Early Release Science observations of the cluster NGC 3603 with the WFC3 on the refurbished Hubble Space Telescope allow us to study its recent star formation history. Our analysis focuses on stars with H{alpha} excess emission, a robust indicator of their pre-main sequence (PMS) accreting status. The comparison with theoretical PMS isochrones shows that 2/3 of the objects with H{alpha} excess emission have ages from 1 to 10 Myr, with a median value of 3 Myr, while a surprising 1/3 of them are older than 10 Myr. The study of the spatial distribution of these PMS stars allows us to confirm their cluster membership and to statistically separate them from field stars. This result establishes unambiguously for the first time that star formation in and around the cluster has been ongoing for at least 10-20 Myr, at an apparently increasing rate.

  19. WIYN open cluster study. LIX. Radial velocity membership of the evolved population of the old open cluster NGC 6791

    SciTech Connect

    Tofflemire, Benjamin M.; Gosnell, Natalie M.; Mathieu, Robert D.; Platais, Imants E-mail: imants@pha.jhu.edu

    2014-10-01

    The open cluster NGC 6791 has been the focus of much recent study due to its intriguing combination of old age and high metallicity (∼8 Gyr, [Fe/H] = +0.30), as well as its location within the Kepler field. As part of the WIYN Open Cluster Study, we present precise (σ = 0.38 km s{sup –1}) radial velocities for proper motion candidate members of NGC 6791 from Platais et al. Our survey, extending down to g' ∼ 16.8, is comprised of the evolved cluster population, including blue stragglers, giants, and horizontal branch stars. Of the 280 proper-motion-selected stars above our magnitude limit, 93% have at least one radial velocity measurement and 79% have three measurements over the course of at least 200 days, sufficient for secure radial-velocity-determined membership of non-velocity-variable stars. The Platais et al. proper motion catalog includes 12 anomalous horizontal branch candidates blueward of the red clump, of which we find only 4 to be cluster members. Three fall slightly blueward of the red clump and the fourth is consistent with being a blue straggler. The cleaned color-magnitude diagram shows a richly populated red giant branch and a blue straggler population. Half of the blue stragglers are in binaries. From our radial velocity measurement distribution, we find the cluster's radial velocity dispersion to be σ {sub c} = 0.62 ± 0.10 km s{sup –1}. This corresponds to a dynamical mass of ∼4600 M {sub ☉}.

  20. Star clusters evolution simulation on basement of linguo- combinatorial approach

    NASA Astrophysics Data System (ADS)

    Ignatyev, Mikhail B.

    2015-08-01

    Each of the clusters of star systems can be described using linguo- combinatorial approach through a formula that determines the number of arbitrary factors in the structure of equivalent equations as the number of combinations of n by m + 1, where n - number of stars in the cluster, m - number of constraints imposed on the stars cluster(M.Ignatyev “The linguo- combinatorial simulation in modern physics”\\\\ J. of Modern Physics,USA, 2012, Vol.1, No 1, p.7-11). Such clusters can be multiple, they can be combined into larger clusters or clusters can decay based on the effect of the collective. For example, if we have two clusters are characterized by the number of arbitrary coefficients S1 and S2, wherem1 + 1 m2 + 1S1 = C S2 = Cn1 n2then by imposing general restrictions mcol we will havem1 + m2 + mcol +1Scol = Cn1 + n2At the same time, depending on the specific parameters can be Scol > S1 + S2, when the union in collective increases the adaptive capabilities, and can be Scol < S1 + S2, where adaptive capacity of less than the sum of the collective adaptation a possibly initial clusters. In the first case, we can observe the effect of the formation of new large clusters, in the second case - the collapse of large clusters into smaller ones. The report deals with the simulation of the evolution of star clusters on the basement of linguo- combinatorial approach.

  1. EXTENDED STAR FORMATION IN THE INTERMEDIATE-AGE LARGE MAGELLANIC CLOUD STAR CLUSTER NGC 2209

    SciTech Connect

    Keller, Stefan C.; Mackey, A. Dougal; Da Costa, Gary S.

    2012-12-10

    We present observations of the 1 Gyr old star cluster NGC 2209 in the Large Magellanic Cloud made with the GMOS imager on the Gemini South Telescope. These observations show that the cluster exhibits a main-sequence turnoff that spans a broader range in luminosity than can be explained by a single-aged stellar population. This places NGC 2209 amongst a growing list of intermediate-age (1-3 Gyr) clusters that show evidence for extended or multiple epochs of star formation of between 50 and 460 Myr in extent. The extended main-sequence turnoff observed in NGC 2209 is a confirmation of the prediction in Keller et al. made on the basis of the cluster's large core radius. We propose that secondary star formation is a defining feature of the evolution of massive star clusters. Dissolution of lower mass clusters through evaporation results in only clusters that have experienced secondary star formation surviving for a Hubble time, thus providing a natural connection between the extended main-sequence turnoff phenomenon and the ubiquitous light-element abundance ranges seen in the ancient Galactic globular clusters.

  2. Do All Stars Form in Clusters?: Masses and Ages of Young Supergiants in Andromeda

    NASA Astrophysics Data System (ADS)

    Choudhury, Zareen; Debs, C.; Kirby, E. N.; Guhathakurta, P.

    2013-01-01

    Currently it is not understood whether seemingly isolated stars formed in situ or were ejected from star clusters as runaway stars. Previous studies determined the origins of isolated stars by measuring their velocities, but past research was limited to OB stars in the Milky Way and Magellanic Clouds due to the difficulty of computing velocities of distant objects. This study proposed an innovative velocity test to statistically determine whether six seemingly isolated BA-type supergiants in Andromeda are runaways. We calculated the minimum relative transverse velocity needed for each supergiant to travel to its current location from the nearest open cluster. By comparing the minimum velocity with Andromeda’s known velocity dispersion, a statistical measure of the stars’ actual velocities, we determined whether the star had the necessary velocity to be a runaway. Minimum velocity was computed from the age of the star, which was calculated from its effective temperature and surface gravity. To compute effective temperature and surface gravity, we applied three new techniques based on Balmer absorption features. The results suggest that all six supergiants had the necessary velocities to be runaways. Although the proposed velocity test is a statistical assessment, it offers a valuable new tool for future investigation of isolated stars beyond the Milky Way and its satellites. This research was supported by the Science Internship Program (SIP) at UCSC, the National Science Foundation, NASA, and Palomar Observatory.

  3. 3D cluster members and near-infrared distance of open cluster NGC 6819

    NASA Astrophysics Data System (ADS)

    Gao, Xin-Hua; Xu, Shou-Kun; Chen, Li

    2015-12-01

    In order to obtain clean members of the open cluster NGC 6819, the proper motions and radial velocities of 1691 stars are used to construct a three-dimensional (3D) velocity space. Based on the DBSCAN clustering algorithm, 537 3D cluster members are obtained. From the 537 3D cluster members, the average radial velocity and absolute proper motion of the cluster are Vr = +2.30 ± 0.04 km s-1 and (PMRA, PMDec) = (-2.5 ± 0.5, -4.3 ± 0.5) mas yr-1, respectively. The proper motions, radial velocities, spatial positions and color-magnitude diagram of the 537 3D members indicate that our membership determination is effective. Among the 537 3D cluster members, 15 red clump giants can be easily identified by eye and are used as reliable standard candles for the distance estimate of the cluster. The distance modulus of the cluster is determined to be (m - M)0 = 11.86 ± 0.05 mag (2355 ± 54 pc), which is quite consistent with published values. The uncertainty of our distance modulus is dominated by the intrinsic dispersion in the luminosities of red clump giants (˜ 0.04 mag).

  4. Spontaneous magnetization of solid quark-cluster stars

    NASA Astrophysics Data System (ADS)

    Lai, Xiao-Yu; Xu, Ren-Xin

    2016-09-01

    Pulsar-like compact stars usually have strong magnetic fields, with strengths from ∼ 108 to ∼ 1012 G on the surface. How such strong magnetic fields can be generated and maintained is still an unsolved problem, which is, in principle, related to the interior structure of compact stars, i.e., the equation of state of cold matter at supra-nuclear density. In this paper we are trying to solve the problem in the regime of solid quark-cluster stars. Inside quark-cluster stars, the extremely low ratio of number density of electrons to that of baryons ne/nb and the screening effect from quark-clusters could reduce the long-range Coulomb interaction between electrons to short-range interaction. In this case, Stoner’s model could apply, and we find that the condition for ferromagnetism is consistent with that for the validity of Stoner’s model. Under the screened Coulomb repulsion, the electrons inside the stars could be spontaneously magnetized and become ferromagnetic, and hence would contribute non-zero net magnetic momentum to the whole star. We conclude that, for most cases in solid quark-cluster stars, the amount of net magnetic momentum, which is proportional to the amount of unbalanced spins ξ = (n+ ‑ n‑)/ne and depends on the number density of electrons ne = n+ + n‑, could be significant with non-zero ξ. The net magnetic moments of electron system in solid quark-cluster stars could be large enough to induce the observed magnetic fields for pulsars with B ∼ 1011 to ∼ 1013 G. Supported by 973 Program (2012CB821801), West Light Foundation (XBBS-2014-23), National Natural Science Foundation of China (11203018, 11225314, 11365022), Science Project of Universities in Xinjiang (XJEDU2012S02) and Doctoral Science Foundation of Xinjiang University (BS120107)

  5. Spontaneous magnetization of solid quark-cluster stars

    NASA Astrophysics Data System (ADS)

    Lai, Xiao-Yu; Xu, Ren-Xin

    2016-09-01

    Pulsar-like compact stars usually have strong magnetic fields, with strengths from ˜ 108 to ˜ 1012 G on the surface. How such strong magnetic fields can be generated and maintained is still an unsolved problem, which is, in principle, related to the interior structure of compact stars, i.e., the equation of state of cold matter at supra-nuclear density. In this paper we are trying to solve the problem in the regime of solid quark-cluster stars. Inside quark-cluster stars, the extremely low ratio of number density of electrons to that of baryons ne/nb and the screening effect from quark-clusters could reduce the long-range Coulomb interaction between electrons to short-range interaction. In this case, Stoner’s model could apply, and we find that the condition for ferromagnetism is consistent with that for the validity of Stoner’s model. Under the screened Coulomb repulsion, the electrons inside the stars could be spontaneously magnetized and become ferromagnetic, and hence would contribute non-zero net magnetic momentum to the whole star. We conclude that, for most cases in solid quark-cluster stars, the amount of net magnetic momentum, which is proportional to the amount of unbalanced spins ξ = (n+ - n-)/ne and depends on the number density of electrons ne = n+ + n-, could be significant with non-zero ξ. The net magnetic moments of electron system in solid quark-cluster stars could be large enough to induce the observed magnetic fields for pulsars with B ˜ 1011 to ˜ 1013 G. Supported by 973 Program (2012CB821801), West Light Foundation (XBBS-2014-23), National Natural Science Foundation of China (11203018, 11225314, 11365022), Science Project of Universities in Xinjiang (XJEDU2012S02) and Doctoral Science Foundation of Xinjiang University (BS120107)

  6. New cluster members and halo stars of the Galactic globular cluster NGC 1851

    NASA Astrophysics Data System (ADS)

    Navin, Colin A.; Martell, Sarah L.; Zucker, Daniel B.

    2015-10-01

    NGC 1851 is an intriguing Galactic globular cluster, with multiple stellar evolutionary sequences, light and heavy element abundance variations and indications of a surrounding stellar halo. We present the first results of a spectroscopic study of red giant stars within and outside of the tidal radius of this cluster. Our results identify nine probable new cluster members (inside the tidal radius) with heliocentric radial velocities consistent with that of NGC 1851. We also identify, based on their radial velocities, four probable extratidal cluster halo stars at distances up to ˜3.1 times the tidal radius, which are supportive of previous findings that NGC 1851 is surrounded by an extended stellar halo. Proper motions were available for 12 of these 13 stars and all are consistent with that of NGC 1851. Apart from the cluster members and cluster halo stars, our observed radial velocity distribution agrees with the expected distribution from a Besançon disc/N-body stellar halo Milky Way model generated by the GALAXIA code, suggesting that no other structures at different radial velocities are present in our field. The metallicities of these stars are estimated using equivalent width measurements of the near-infrared calcium triplet absorption lines and are found, within the limitations of this method, to be consistent with that of NGC 1851. In addition we recover 110 red giant cluster members from previous studies based on their radial velocities and identify three stars with unusually high radial velocities.

  7. NGC346: Looking in the Cradle of a Massive Star Cluster

    NASA Astrophysics Data System (ADS)

    Gouliermis, Dimitrios; Hony, Sacha; Dib, Sami; Galliano, Frederic; Cormier, Diane; Ralf, Klessen

    2015-08-01

    How a star cluster of more than few 10,000 solar masses forms? We present the case of the cluster NGC 346 in the Small Magellanic Cloud, still embedded in its natal star-forming region N66, and we propose a scenario for its formation, based on the rich resolved stellar populations found in the region. Young massive clusters (YMCs) host a significant amount of early-type stars, indicating an extremely high star formation efficiency. The Milky Way galaxy hosts several YMCs that fill the gap between young low-mass open clusters and old massive globular clusters. Only a handful, though, is relatively close to their formation, and the investigation of their gaseous natal environments suffers from contamination by the Galactic disk. YMCs are very abundant in distant starburst and interacting galaxies, but the distance of their hosting galaxies do not also allow a detailed analysis of their formation. The Magellanic Clouds, on the other hand, host YMCs in a wide range of ages with the youngest being still embedded in their giant HII regions. Hubble Space Telescope (HST) imaging of such star-forming complexes provide a complete stellar sampling with a high dynamic range in stellar masses, allowing the detailed study of star formation at scales typical for molecular clouds. The distribution of newly-born stars in N66 shows that star formation in the region proceeds in a clumpy hierarchical fashion, leading to the formation of both a dominant YMC, hosting about half of the observed pre--main-sequence (PMS) stars, and a self-similar dispersed distribution of the remaining PMS population. We investigate the correlation between stellar surface density (and star formation rate derived from star-counts) and molecular gas surface density (derived from dust column density) in an attempt to disentangle the physical conditions that gave birth to NGC 346. We discuss our findings in terms of stellar clustering, its relation to the turbulent interstellar medium, and the observed

  8. Giant Star Clusters Near Galactic Core

    NASA Technical Reports Server (NTRS)

    2001-01-01

    A video sequence of still images goes deep into the Milky Way galaxy to the Arches Cluster. Hubble, penetrating through dust and clouds, peers into the core where two giant clusters shine more brightly than any other clusters in the galaxy. Footage shows the following still images: (1) wide view of Sagittarius constellation; (2) the Palomar Observatory's 2 micron all-sky survey; and (3) an image of the Arches Cluster taken with the Hubble Space Telescope NICMOS instrument. Dr. Don Figer of the Space Telescope Science Institute discusses the significance of the observations and relates his first reaction to the images.

  9. COMPACT STAR CLUSTERS IN THE M31 DISK

    SciTech Connect

    Vansevicius, V.; Narbutis, D.; Stonkute, R.; Bridzius, A.; Semionov, D.; Kodaira, K.; Deveikis, V.

    2009-10-01

    We have carried out a survey of compact star clusters (apparent size approx<3'') in the southwest part of the M31 galaxy, based on the high-resolution Suprime-Cam images (17.'5 x 28.'5), covering approx15% of the deprojected galaxy disk area. The UBVRI photometry of 285 cluster candidates (V approx< 20.5 mag) was performed using frames of the Local Group Galaxies Survey. The final sample, containing 238 high probability star cluster candidates (typical half-light radius r{sub h} approx 1.5 pc), was selected by specifying a lower limit of r{sub h} approx> 0.''15 (approx>0.6 pc). We derived cluster parameters based on the photometric data and multiband images by employing simple stellar population models. The clusters have a wide range of ages from approx5 Myr (young objects associated with 24 {mu}m and/or Halpha emission) to approx10 Gyr (globular cluster candidates), and possess mass in a range of 3.0 approx< log(m/m {sub sun}) approx< 4.3 peaking at m approx 4000 m {sub sun}. Typical age of these intermediate-mass clusters is in the range of 30 Myr approx< t approx< 3 Gyr, with a prominent peak at approx70 Myr. These findings suggest a rich intermediate-mass star cluster population in M31, which appears to be scarce in the Milky Way galaxy.

  10. Ba STARS AND OTHER BINARIES IN FIRST AND SECOND GENERATION STARS IN GLOBULAR CLUSTERS

    SciTech Connect

    D'Orazi, Valentina; Gratton, Raffaele; Lucatello, Sara; Carretta, Eugenio; Bragaglia, Angela; Marino, Anna F.

    2010-08-20

    The determination of the Ba abundance in globular cluster (GC) stars is a very powerful test to address several issues in the framework of multiple population scenarios. We measured the Ba content for a sample of more than 1200 stars in 15 Galactic GCs, using high-resolution FLAMES/Giraffe spectra. We found no variation in [Ba/Fe] ratios for different stellar populations within each cluster; this means that low-mass asymptotic giant branch stars do not significantly contribute to the intracluster pollution. Very interestingly, we found that the fraction of Ba stars in first generation (FG) stars is close to the values derived for field stars ({approx}2%); on the other hand, second generation (SG) stars present a significantly lower fraction. An independent and successful test, based on radial velocity variations among giant stars in NGC 6121, confirms our finding: the binary fraction among FG stars is about {approx}12%, to be compared with {approx}1% of SG stars. This is an evidence that SG stars formed in a denser environment, where infant mortality of binary systems was particularly efficient.

  11. OPEN CLUSTERS AS PROBES OF THE GALACTIC MAGNETIC FIELD. I. CLUSTER PROPERTIES

    SciTech Connect

    Hoq, Sadia; Clemens, D. P. E-mail: clemens@bu.edu

    2015-10-15

    Stars in open clusters are powerful probes of the intervening Galactic magnetic field via background starlight polarimetry because they provide constraints on the magnetic field distances. We use 2MASS photometric data for a sample of 31 clusters in the outer Galaxy for which near-IR polarimetric data were obtained to determine the cluster distances, ages, and reddenings via fitting theoretical isochrones to cluster color–magnitude diagrams. The fitting approach uses an objective χ{sup 2} minimization technique to derive the cluster properties and their uncertainties. We found the ages, distances, and reddenings for 24 of the clusters, and the distances and reddenings for 6 additional clusters that were either sparse or faint in the near-IR. The derived ranges of log(age), distance, and E(B−V) were 7.25–9.63, ∼670–6160 pc, and 0.02–1.46 mag, respectively. The distance uncertainties ranged from ∼8% to 20%. The derived parameters were compared to previous studies, and most cluster parameters agree within our uncertainties. To test the accuracy of the fitting technique, synthetic clusters with 50, 100, or 200 cluster members and a wide range of ages were fit. These tests recovered the input parameters within their uncertainties for more than 90% of the individual synthetic cluster parameters. These results indicate that the fitting technique likely provides reliable estimates of cluster properties. The distances derived will be used in an upcoming study of the Galactic magnetic field in the outer Galaxy.

  12. Star clusters in the interacting galaxy system Arp 284

    NASA Astrophysics Data System (ADS)

    Peterson, Bradley W.; Struck, Curtis; Smith, Beverly J.; Hancock, Mark

    2009-12-01

    We present results from a study of protoglobular cluster candidates in the interacting galaxy system Arp 284 (NGC 7714/5) using data from the Hubble Space Telescope (HST). Previous studies of the Antennae and M51 have suggested that the majority of young massive star clusters dissolve within 20 Myr due to mass loss. We use the evolutionary synthesis code STARBURST99 to estimate ages and extinctions for approximately 175 clusters visible with HST. We also use lower resolution Galaxy Evolution Explorer and ground-based Hα data to estimate the ages of the giant HII regions in which these clusters are found, and compare the Spitzer colours of these HII regions to those of star-forming regions in other interacting systems. The ages are also used to aid in the interpretation of Chandra X-ray data. Clusters in the tidal tails of NGC 7714 are generally found to have ages less than 20 Myr, though observational limits make the significance of this result uncertain. Older clusters, though not numerous, have nearly the same spatial distribution within the imaged portion of NGC 7714 as young clusters. The cluster population in the bridge connecting the two galaxies appears to be older, but the data in this part of the system are too limited to draw firm conclusions. The ages of the giant HII regions in NGC 7714 are generally older than those of their constituent clusters, possibly indicating that the young clusters we detect are surrounded by their dispersed predecessors.

  13. Properties of stellar clusters around high-mass young stars

    NASA Astrophysics Data System (ADS)

    Faustini, F.; Molinari, S.; Testi, L.; Brand, J.

    2009-09-01

    Context: Twenty-six high-luminosity IRAS sources believed to be collection of stars in the early phases of high-mass star formation have been observed in the near-IR (J, H, K_s) to characterize the clustering properties of their young stellar population and compare them with those of more evolved objects (e.g., Herbig Ae/Be stars) of comparable mass. All the observed sources possess strong continuum and/or line emission in the millimeter, being therefore associated with gas and dust envelopes. Nine sources have far-IR colors characteristic of UCHII regions, while the other 17 are probably experiencing an evolutionary phase that precedes the hot-cores, as suggested by a variety of evidence collected in the past decade. Aims: We attempt to gain insight into the initial conditions of star formation in these clusters (initial mass function [IMF], star formation history [SFH]), and to determine mean cluster ages. Methods: For each cluster, we complete aperture photometry. We derive stellar density profiles, color-color and color-magnitude diagrams, and color (HKCF) and luminosity (KLF) functions. These two functions are compared with simulated KLFs and HKCFs from a model that generates populations of synthetic clusters starting from assumptions about the IMF, SFH, and Pre-MS evolution, and using the average properties of the observed clusters as boundary conditions (bolometric luminosity, dust distribution, infrared excess, extinction). Results: Twenty-two sources show evidence of clustering with a stellar richness indicator that varies from a few up to several tens of objects, and a median cluster radius of 0.7 pc. A considerable number of cluster members present an infrared excess characteristic of young pre-main-sequence objects. For a subset of 9 detected clusters, we could perform a statistically significant comparison of the observed KLFs with those resulting from synthetic cluster models; for these clusters, we find that the median stellar age ranges between 2.5

  14. Open Clusters as Tracers of the Galactic Disk

    NASA Astrophysics Data System (ADS)

    Cantat-Gaudin, Tristan

    2015-01-01

    Open clusters (OCs) are routinely used as reliable tracers of the properties and evolution of the galactic disk, as they can be found at all galactocentric distances and span a wide range of ages. More than 3000 OCs are listed in catalogues, although few have been studied in details. The goal of this work is to study the properties of open clusters. This work was conducted in the framework of the Gaia-ESO Survey (GES). GES is an observational campaign targeting more than 100,000 stars in all major components of the Milky Way, including stars in a hundred open clusters. It uses the FLAMES instrument at the VLT to produce high and medium-resolution spectra, which provide accurate radial velocities and individual elemental abundances. In this framework, the goals of the Thesis are: * to study the properties of OCs and of their stars from photometry and spectroscopy to derive their age, the extinction and the chemical composition of the stars, to begin to build a homogeneous data base. Looking at literature data it is clear that different authors derive substantially different chemical compositions, and in general OC parameters. * the study of OCs and their chemical homogeneity (or inhomogeneity) can cast light on what is still an open issue: the presence of multiple populations in clusters. While multiple generations of stars are now ubiquitously found in globular clusters in the Milky Way and in the Magellanic Clouds, they have not been yet detected in open clusters. What is the main driver of the self-pollution process? * to study the cluster formation process. All, or at least a significant fraction of stars form in clusters. Young clusters (a few Myr) can retain some of the properties of the molecular cloud they originate from and give us insight about the cluster assembly process. The first GES data release contains data for the young OC Gamma Velorum, in which two (dynamically different) subpopulations have been identified. This cluster can serve as a test case

  15. Super Star Cluster Nebula in the Starburst Galaxy NGC 660

    NASA Astrophysics Data System (ADS)

    Naiman, J. P.; Turner, J. L.; Tsai, C.-W.; Beck, S. C.; Ho, P. T. P.

    2004-12-01

    We have mapped the starburst galaxy NGC 660 at 100mas resolution at K band (1.3 cm) with the NRAO Very Large Array. A peculiar galaxy at a distance of 13 Mpc, NGC 660 contains concentrated central star formation of power ˜ 2 x 1010 Lsun. Our 1.3 cm continuum image reveals a bright, compact source of less than 10 pc extent with a rising spectral index. We infer that this is optically thick free-free emission from a super star cluster nebula. The nebula is less than 10 pc in size, comparable in luminosity to the ``supernebula" in the dwarf galaxy, NGC 5253. We estimate that there are a few thousand O stars contained in this single young cluster. There are a number of other weaker continuum sources, either slightly smaller or more evolved clusters of similar size within the central 300 parsecs of the galaxy. This work is supported in part by the National Science Foundation.

  16. PROPERTIES OF THE OLD OPEN CLUSTER CZERNIK 30

    SciTech Connect

    Hayes, Christian R.; Friel, Eileen D.; Slack, Taleah J.; Boberg, Owen M. E-mail: efriel@indiana.edu

    2015-12-15

    We present new photometric and spectroscopic data of the old open cluster Czernik 30. Wide field BVI photometry allows us to correct for the high field contamination by statistical subtraction to produce a color–magnitude diagram (CMD) that clearly reveals the cluster sequence. From spectra of stars in the cluster field obtained with the Hydra spectrograph on the Wisconsin-Indiana-Yale-NOAO 3.5 m telescope we determine a mean cluster velocity of +79.9 ± 1.5 km s{sup −1} and provide membership information that helps further define the cluster giant branch and red clump. Stellar abundances for the brighter giants in the cluster indicate a mean metallicity of [Fe/H] = −0.2 ± 0.15. Fitting theoretical isochrones to the CMD we determine the following properties of Czernik 30: age = 2.8 ± 0.3 Gyr, (m − M){sub v} = 14.8 ± 0.1, E(B − V) = 0.24 ± 0.06, and E(V − I) = 0.36 ± 0.04. Czernik 30 is an old, sub-solar metallicity cluster located at a Galactocentric radius of R{sub gc}  ∼ 13.3 kpc. Given its age and position just beyond the transition to a flat abundance gradient seen in the open cluster population, Czernik 30 provides an interesting target for future observations.

  17. Cannibal Stars Cause Giant Explosions in Fornax Cluster Galaxy

    NASA Astrophysics Data System (ADS)

    2000-07-01

    . After reaching maximum light within some days or weeks, it begins to fade as the hydrogen supply is exhausted and blown into space. The processed material is ejected at high speeds, up to ~1000 km/sec, and may later be visible as an expanding shell of emitting gas. Altogether, the tremendous flash of light involves the release of about 10 45 ergs in a few weeks, or about as much energy as our Sun produces in 10,000 years. Supernovae explosions that completely destroy heavier stars at the end of their lives are even more powerful. However, in contrast to supernovae and despite the colossal energy production, the progenitor of a nova is not destroyed during the explosion. Some time after an outburst, transfer of hydrogen from the companion star begins anew, and the process repeats itself with explosions taking place about once every 100,000 years. The nova star will finally die of "old age" when the cool companion has been completely cannibalized. Novae as Distance Indicators Due to their exceptional luminosity, novae can be used as powerful beacons that allow relative distances to different types of galaxies to be measured. The measurement is based on the assumption that novae of the same type are intrinsically equally bright, together with the physical law that states that an object's observed brightness decreases with the square of the distance to the observer. Thus, if we observe that a nova in a certain galaxy is one million times fainter than a nearby one, we know that it must be one thousand times more distant. In addition, observations of novae in other galaxies shed light on the history of formation of their stars. Despite their scientific importance, surveys of novae in distant, rich clusters of galaxies have not been very popular among astronomers. Major reasons are probably the inherent observational difficulties and the comparatively low rates of discovery. In the past, with 4-m class telescopes, tens of hours of monitoring of several galaxies have indeed

  18. Open clusters in the Third Galactic Quadrant III. Alleged binary clusters

    NASA Astrophysics Data System (ADS)

    Vázquez, R. A.; Moitinho, A.; Carraro, G.; Dias, W. S.

    2010-02-01

    Aims: We aim to determine accurate distances and ages of eight open clusters in order to: (1) assess their possible binarity (2) provide probes to trace the structure of the Third Galactic Quadrant. Methods: Cluster reddenings, distances, ages and metallicities are derived from ZAMS and isochrone fits in UBVRI photometric diagrams. Field contamination is reduced by restricting analysis to stars within the cluster limits derived from star counts. Further membership control is done by requiring that stars have consistent positions in several diagrams and by using published spectral types. Results: The derived distances, ages and metallicities have shown that none of the analysed clusters compose binary/double systems. Of the four candidate pairs, only NGC 2383/NGC 2384 are close to each other, but have different metallicities and ages. Ruprecht 72 and Ruprecht 158 are not clusters but fluctuations of the field stellar density. Haffner 18 is found to be the superposition of two stellar groups at different distances: Haffner 18(1) at 4.5 kpc and Haffner 18(2) between 9.5 and 11.4 kpc from the Sun. The derived distances and ages have been used to situate the clusters in the Galactic context. In particular, young stellar groups trace spiral structure at large Galactocentric radii. At least two clusters formed during the last few 108 yr in an interstellar medium with less than solar abundances. Conclusions: In contrast with the LMC, double clusters are apparently rare, or even non existent, in the undisturbed environment of the Third Galactic Quadrant. This leaves open the question of whether binary clusters form more easily toward denser and more violent regions of the Milky Way such as the inner Galaxy. The original photometry is only available in electronic form at CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/511/A38on leave from Dipartimento di Astronomia, Università di Padova, Vicolo Osservatorio 2

  19. An analytic method to compute star cluster luminosity statistics

    NASA Astrophysics Data System (ADS)

    da Silva, Robert L.; Krumholz, Mark R.; Fumagalli, Michele; Fall, S. Michael

    2014-03-01

    The luminosity distribution of the brightest star clusters in a population of galaxies encodes critical pieces of information about how clusters form, evolve and disperse, and whether and how these processes depend on the large-scale galactic environment. However, extracting constraints on models from these data is challenging, in part because comparisons between theory and observation have traditionally required computationally intensive Monte Carlo methods to generate mock data that can be compared to observations. We introduce a new method that circumvents this limitation by allowing analytic computation of cluster order statistics, i.e. the luminosity distribution of the Nth most luminous cluster in a population. Our method is flexible and requires few assumptions, allowing for parametrized variations in the initial cluster mass function and its upper and lower cutoffs, variations in the cluster age distribution, stellar evolution and dust extinction, as well as observational uncertainties in both the properties of star clusters and their underlying host galaxies. The method is fast enough to make it feasible for the first time to use Markov chain Monte Carlo methods to search parameter space to find best-fitting values for the parameters describing cluster formation and disruption, and to obtain rigorous confidence intervals on the inferred values. We implement our method in a software package called the Cluster Luminosity Order-Statistic Code, which we have made publicly available.

  20. STAR FORMATION AND RELAXATION IN 379 NEARBY GALAXY CLUSTERS

    SciTech Connect

    Cohen, Seth A.; Hickox, Ryan C.; Wegner, Gary A.

    2015-06-10

    We investigate the relationship between star formation (SF) and level of relaxation in a sample of 379 galaxy clusters at z < 0.2. We use data from the Sloan Digital Sky Survey to measure cluster membership and level of relaxation, and to select star-forming galaxies based on mid-infrared emission detected with the Wide-Field Infrared Survey Explorer. For galaxies with absolute magnitudes M{sub r} < −19.5, we find an inverse correlation between SF fraction and cluster relaxation: as a cluster becomes less relaxed, its SF fraction increases. Furthermore, in general, the subtracted SF fraction in all unrelaxed clusters (0.117 ± 0.003) is higher than that in all relaxed clusters (0.097 ± 0.005). We verify the validity of our SF calculation methods and membership criteria through analysis of previous work. Our results agree with previous findings that a weak correlation exists between cluster SF and dynamical state, possibly because unrelaxed clusters are less evolved relative to relaxed clusters.

  1. Variable Stars in Large Magellanic Cloud Globular Clusters. III. Reticulum

    NASA Astrophysics Data System (ADS)

    Kuehn, Charles A.; Dame, Kyra; Smith, Horace A.; Catelan, Márcio; Jeon, Young-Beom; Nemec, James M.; Walker, Alistair R.; Kunder, Andrea; Pritzl, Barton J.; De Lee, Nathan; Borissova, Jura

    2013-06-01

    This is the third in a series of papers studying the variable stars in old globular clusters in the Large Magellanic Cloud. The primary goal of this series is to look at how the characteristics and behavior of RR Lyrae stars in Oosterhoff-intermediate systems compare to those of their counterparts in Oosterhoff-I/II systems. In this paper we present the results of our new time-series BVI photometric study of the globular cluster Reticulum. We found a total of 32 variables stars (22 RRab, 4 RRc, and 6 RRd stars) in our field of view. We present photometric parameters and light curves for these stars. We also present physical properties, derived from Fourier analysis of light curves, for some of the RR Lyrae stars. We discuss the Oosterhoff classification of Reticulum and use our results to re-derive the distance modulus and age of the cluster. Based on observations taken with the SMARTS 1.3 m telescope operated by the SMARTS Consortium and observations taken at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU).

  2. Tidal disruption of open clusters in their parent molecular clouds

    NASA Technical Reports Server (NTRS)

    Long, Kevin

    1989-01-01

    A simple model of tidal encounters has been applied to the problem of an open cluster in a clumpy molecular cloud. The parameters of the clumps are taken from the Blitz, Stark, and Long (1988) catalog of clumps in the Rosette molecular cloud. Encounters are modeled as impulsive, rectilinear collisions between Plummer spheres, but the tidal approximation is not invoked. Mass and binding energy changes during an encounter are computed by considering the velocity impulses given to individual stars in a random realization of a Plummer sphere. Mean rates of mass and binding energy loss are then computed by integrating over many encounters. Self-similar evolutionary calculations using these rates indicate that the disruption process is most sensitive to the cluster radius and relatively insensitive to cluster mass. The calculations indicate that clusters which are born in a cloud similar to the Rosette with a cluster radius greater than about 2.5 pc will not survive long enough to leave the cloud. The majority of clusters, however, have smaller radii and will survive the passage through their parent cloud.

  3. Open clusters in the Kepler field. II. NGC 6866

    SciTech Connect

    Janes, Kenneth; Hoq, Sadia; Barnes, Sydney A.; Meibom, Søren

    2014-06-01

    We have developed a maximum-likelihood procedure to fit theoretical isochrones to the observed cluster color-magnitude diagrams of NGC 6866, an open cluster in the Kepler spacecraft field of view. The Markov chain Monte Carlo algorithm permits exploration of the entire parameter space of a set of isochrones to find both the best solution and the statistical uncertainties. For clusters in the age range of NGC 6866 with few, if any, red giant members, a purely photometric determination of the cluster properties is not well-constrained. Nevertheless, based on our UBVRI photometry alone, we have derived the distance, reddening, age, and metallicity of the cluster and established estimates for the binary nature and membership probability of individual stars. We derive the following values for the cluster properties: (m – M) {sub V} = 10.98 ± 0.24, E(B – V) = 0.16 ± 0.04 (so the distance = 1250 pc), age =705 ± 170 Myr, and Z = 0.014 ± 0.005.

  4. Star and cluster formation in NGC 1275

    NASA Technical Reports Server (NTRS)

    Richer, Harvey B.; Crabtree, Dennis R.; Fabian, A. C.; Lin, D. N. C.

    1993-01-01

    Luminous, blue, and unresolved objects have been found by imaging the nuclear region of the central galaxy in the Perseus Cluster, NGC 1275. Stellar formation in a cooling flow in which gas clouds confined by weak magnetic fields are allowed to remain at low densities is favored. Cloud-cloud collisions and coagulation in the high cloud density environment at the center of the galaxy then causes some clouds to become gravitationally unstable and to form globular clusters.

  5. New insights on the formation of nuclear star clusters

    NASA Astrophysics Data System (ADS)

    Guillard, Nicolas; Emsellem, Eric; Renaud, Florent

    2016-10-01

    Nuclear clusters (NCs) are common stellar systems in the centres of galaxies. Yet, the physical mechanisms involved in their formation are still debated. Using a parsec-resolution hydrodynamical simulation of a dwarf galaxy, we propose an updated formation scenario for NCs. In this `wet migration scenario', a massive star cluster forms in the gas-rich disc, keeping a gas reservoir, and growing further while it migrates to the centre via a combination of interactions with other substructures and dynamical friction. A wet merger with another dense cluster and its own gas reservoir can occur, although this is not a prerequisite for the actual formation of the NC. The merging process does significantly alter the properties of the NC (mass, morphology, star formation history), also quenching the ongoing local star formation activity, thus leading to interesting observational diagnostics for the physical origin of NCs. A population of lower mass clusters co-exist during the simulation, but these are either destroyed via tidal forces, or have high angular momentum preventing them to interact with the NC and contribute to its growth. The proposed updated scenario emphasizes the role of gas reservoirs associated with the densest star clusters formed in a gas-rich low-mass galaxy.

  6. The progenitors of magnetic white dwarfs in open clusters

    NASA Astrophysics Data System (ADS)

    Külebi, B.; Kalirai, J.; Jordan, S.; Euchner, F.

    2013-06-01

    Context. White dwarfs are the final stages of stellar evolution for most stars in the galaxy and magnetic white dwarfs (MWDs) represent at least ten percent of the whole sample. According to the fossil-field hypothesis magnetic fields are remnants of the previous stages of evolution. However, population synthesis calculations are unable to reproduce the MWD sample without binary interaction or inclusion of a population of progenitor with unobservable small-scale fields. Aims: One necessary ingredient in population synthesis is the initial-to-final-mass relation (IFMR) which describes the mass-loss processes during the stellar evolution. When white dwarfs are members of open clusters, their evolutionary histories can be assessed through the use of cluster properties. This enables an independent way of determining the mass of their progenitors. The discovery of the magnetic WD 0836+201 in the Praesepe cluster prompted the question whether magnetic fields affect the IFMR. In this work we investigate this suggestion through investigations of all three known MWDs in open clusters. Methods: We assess the cluster membership by correlating the proper-motion of MWDs with the cluster proper-motion and by analyzing the candidates spectroscopically with our magnetic model spectra in order to estimate the effective temperature and radii. Furthermore, we use mass-radius relations and evolutionary models to constrain the histories of the probable cluster members. Results: We identified SDSS J085523.87+164059.0 to be a proper-motion member of Praesepe. We also included the data of the formerly identified cluster members NGC 6819-8, WD 0836+201 and estimated the mass, cooling age and the progenitor masses of the three probable MWD members of open clusters. According to our analysis, the newly identified cluster member SDSS J085523.87+164059.0 is an ultra-massive MWD of mass 1.12 ± 0.11 M⊙. Conclusions: We increase the sample of MWDs with known progenitor masses to ten, with the

  7. Are there two disk star cluster systems in the LMC?

    NASA Technical Reports Server (NTRS)

    Kontizas, Mary; Kontizas, Evangelos

    1991-01-01

    The surface distribution of star clusters in the LMC has revealed the existence of two elliptical systems superimposed. A small surface density outer ellipse outlining the large system and a higher density elliptical inner system. The major axis of the two subsystems form an angle of 60 deg. The central subsystem contains all youngest populous globular star clusters from both the stellar and dynamical point of view. The large outer system seems to contain all old globular clusters, showing a dumpy distribution and outlining two arms at the northeast and southwest. The small LMC clusters were found to have masses less than 1000 solar masses and are distributed all over the large elliptical system.

  8. Evidence for temporal evolution in the M33 disc as traced by its star clusters

    NASA Astrophysics Data System (ADS)

    Beasley, Michael A.; San Roman, Izaskun; Gallart, Carme; Sarajedini, Ata; Aparicio, Antonio

    2015-08-01

    We present precision radial velocities and stellar population parameters for 77 star clusters in the Local Group galaxy M33. Our Gran Telescopio de Canarias and William Herschel Telescope observations sample both young, massive clusters and known/candidate globular clusters (GCs), spanning ages ˜106-1010 yr, and metallicities, [M/H] ˜ -1.7 to solar. The cluster system exhibits an age-metallicity relation; the youngest clusters are the most metal rich. When compared to H I data, clusters with [M/H] ˜ -1.0 and younger than ˜4 Gyr are clearly identified as a disc population. The clusters show evidence for strong time evolution in the disc radial metallicity gradient (d[M/H]dt/dR = 0.03 dex kpc-1 Gyr-1). The oldest clusters have stronger, more negative gradients than the youngest clusters in M33. The clusters also show a clear age-velocity dispersion relation. The line-of-sight velocity dispersions of the clusters increases with age similar to Milky Way open clusters and stars. The general shape of the relation is reproduced by disc heating simulations, and the similarity between the relations in M33 and the Milky Way suggests that heating by substructure and cooling of the interstellar medium both play a role in shaping this relation. We identify 12 `classical' GCs, six of which are newly identified GC candidates. The GCs are more metal rich than Milky Way halo clusters, and show weak rotation. The inner (R < 4.5 kpc) GCs exhibit a steep radial metallicity gradient (d[M/H]/dR = -0.29 ± 0.11 dex kpc-1) and an exponential-like surface density profile. We argue that these inner GCs are thick disc rather than halo objects.

  9. HOT WHITE DWARF SHINES IN YOUNG STAR CLUSTER

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A dazzling 'jewel-box' collection of over 20,000 stars can be seen in crystal clarity in this NASA Hubble Space Telescope image, taken with the Wide Field and Planetary Camera 2. The young (40 million year old) cluster, called NGC 1818, is 164,000 light-years away in the Large Magellanic Cloud (LMC), a satellite galaxy of our Milky Way. The LMC, a site of vigorous current star formation, is an ideal nearby laboratory for studying stellar evolution. In the cluster, astronomers have found a young white dwarf star, which has only very recently formed following the burnout of a red giant. Based on this observation astronomers conclude that the red giant progenitor star was 7.6 times the mass of our Sun. Previously, astronomers have estimated that stars anywhere from 6 to 10 solar masses would not just quietly fade away as white dwarfs but abruptly self-destruct in torrential explosions. Hubble can easily resolve the star in the crowded cluster, and detect its intense blue-white glow from a sizzling surface temperature of 50,000 degrees Fahrenheit. IMAGE DATA Date taken: December 1995 Wavelength: natural color reconstruction from three filters (I,B,U) Field of view: 100 light-years, 2.2 arc minutes TARGET DATA Name: NGC 1818 Distance: 164,000 light-years Constellation: Dorado Age: 40 million years Class: Rich star cluster Apparent magnitude: 9.7 Apparent diameter: 7 arc minutes Credit: Rebecca Elson and Richard Sword, Cambridge UK, and NASA (Original WFPC2 image courtesy J. Westphal, Caltech) Image files are available electronically via the World Wide Web at: http://oposite.stsci.edu/pubinfo/1998/16 and via links in http://oposite.stsci.edu/pubinfo/latest.html or http://oposite.stsci.edu/pubinfo/pictures.html. GIF and JPEG images are available via anonymous ftp to oposite.stsci.edu in /pubinfo/GIF/9816.GIF and /pubinfo/JPEG/9816.jpg.

  10. STAR CLUSTER DISRUPTION IN THE STARBURST GALAXY MESSIER 82

    SciTech Connect

    Li, Shuo; Li, Chengyuan; De Grijs, Richard; Anders, Peter

    2015-01-01

    Using high-resolution, multiple-passband Hubble Space Telescope images spanning the entire optical/near-infrared wavelength range, we obtained a statistically complete U-band-selected sample of 846 extended star clusters across the disk of the nearby starburst galaxy M82. Based on a careful analysis of the clusters' spectral energy distributions, we determined their galaxy-wide age and mass distributions. The M82 clusters exhibit three clear peaks in their age distribution, thus defining relatively young, log (t yr{sup –1}) ≤ 7.5, intermediate-age, log (t yr{sup –1}) in [7.5, 8.5], and old samples, log (t yr{sup –1}) ≥ 8.5. Comparison of the completeness-corrected mass distributions offers a firm handle on the galaxy's star cluster disruption history. The most massive star clusters in the young and old samples are (almost) all concentrated in the most densely populated central region, while the intermediate-age sample's most massive clusters are more spatially dispersed, which may reflect the distribution of the highest-density gas throughout the galaxy's evolutionary history, combined with the solid-body nature of the galaxy's central region.

  11. Kinematics of a Massive Star Cluster in Formation

    NASA Astrophysics Data System (ADS)

    Tan, Jonathan

    2014-10-01

    We propose to measure the proper motion stellar kinematics of a massive (~10^4Msun), forming proto-star-cluster to test basic theoretical models of formation. This will be the first time such a measurement has been performed. It requires HST-WFC3/IR and is beyond the practical capabilities of ground-based adaptive optics (AO) observations. In contrast to previously-studied massive, young (<10 Myr-old), already-formed clusters, such as NGC3603, Westerlund 1 or the Arches, our target protocluster, G286.21+0.17 (hereafter G286), is still gas-dominated and undergoing active star formation. It has been carefully selected from a complete survey of ~300 dense molecular gas clumps in a 120 sq. deg. region of the Galactic plane. The cluster is also relatively nearby (~2.5 kpc), but not too close that it would span a prohibitively large angular area or suffer from significant saturation problems. Such massive systems are rare and indeed we are unaware of any equivalent, early-stage (i.e., gas dominated) cluster that is closer. Given the depth of its gravitational potential based on its mass and size, the expected proper motions of many independent sub-clusters of stars are detectable at the ~5 sigma level over a 2-year baseline and global contraction of the cluster can be seen if it is happening even at just ~10% of the free-fall rate.

  12. Gravitational scattering of stars and clusters and the heating of the Galactic disk

    NASA Astrophysics Data System (ADS)

    Gustafsson, Bengt; Church, Ross P.; Davies, Melvyn B.; Rickman, Hans

    2016-09-01

    Context. Could the velocity spread, increasing with time, in the Galactic disk be explained as a result of gravitational interactions of stars with giant molecular clouds (GMCs) and spiral arms? Do the old open clusters high above the Galactic plane provide clues to this question? Aims: We explore the effects on stellar orbits of scattering by inhomogeneities in the Galactic potential due to GMCs, spiral arms and the Galactic bar, and whether high-altitude clusters could have formed in orbits closer to the Galactic plane and later been scattered. Methods: Simulations of test-particle motions are performed in a realistic Galactic potential. The effects of the internal structure of GMCs are explored. The destruction of clusters in GMC collisions is treated in detail with N-body simulations of the clusters. Results: The observed velocity dispersions of stars as a function of time are well reproduced. The GMC structure is found to be significant, but adequate models produce considerable scattering effects. The fraction of simulated massive old open clusters, scattered into orbits with |z| > 400 pc, is typically 0.5%, in agreement with the observed number of high-altitude clusters and consistent with the present formation rate of massive open clusters. Conclusions: The heating of the thin Galactic disk is well explained by gravitational scattering by GMCs and spiral arms, if the local correlation between the GMC mass and the corresponding voids in the gas is not very strong. Our results suggest that the high-altitude metal-rich clusters were formed in orbits close to the Galactic plane and later scattered to higher orbits. It is possible, though not very probable, that the Sun formed in such a cluster before scattering occurred.

  13. Ages of intermediate-age Magellanic Cloud star clusters

    NASA Technical Reports Server (NTRS)

    Flower, P. J.

    1984-01-01

    Ages of intermediate-age Large Magellanic Cloud star clusters have been estimated without locating the faint, unevolved portion of cluster main sequences. Six clusters with established color-magnitude diagrams were selected for study: SL 868, NGC 1783, NGC 1868, NGC 2121, NGC 2209, and NGC 2231. Since red giant photometry is more accurate than the necessarily fainter main-sequence photometry, the distributions of red giants on the cluster color-magnitude diagrams were compared to a grid of 33 stellar evolutionary tracks, evolved from the main sequence through core-helium exhaustion, spanning the expected mass and metallicity range for Magellanic Cloud cluster red giants. The time-dependent behavior of the luminosity of the model red giants was used to estimate cluster ages from the observed cluster red giant luminosities. Except for the possibility of SL 868 being an old globular cluster, all clusters studied were found to have ages less than 10 to the 9th yr. It is concluded that there is currently no substantial evidence for a major cluster population of large, populous clusters greater than 10 to the 9th yr old in the Large Magellanic Cloud.

  14. Lithium in Open Cluster Red Giants Hosting Substellar Companions

    NASA Astrophysics Data System (ADS)

    Carlberg, Joleen K.; Smith, Verne V.; Cunha, Katia; Carpenter, Kenneth G.

    2016-02-01

    We have measured stellar parameters, [Fe/H], lithium abundances, rotation, and 12C/13C in a small sample of red giants (RGs) in three open clusters that are each home to a RG star that hosts a substellar companion (SSC) (NGC 2423 3, NGC 4349 127, and BD+12 1917 in M67). Our goal is to explore whether the presence of SSCs influences the Li content. Both 12C/13C and stellar rotation are measured as additional tracers of stellar mixing. One of the companion hosts, NGC 2423 3, is found to be Li-rich with A(Li){}{{NLTE}} = 1.56 dex, and this abundance is significantly higher than the A(Li) of the two comparison stars in NGC 2423. All three SSC hosts have the highest A(Li) and 12C/13C when compared to the control RGs in their respective clusters; however, except for NGC 2423 3, at least one control star has similarly high abundances within the uncertainties. Higher A(Li) could suggest that the formation or presence of planets plays a role in the degree of internal mixing on or before the RG branch. However, a multitude of factors affect A(Li) during the RG phase, and when the abundances of our sample are compared with the abundances of RGs in other open clusters available in the literature, we find that they all fall well within a much larger distribution of A(Li) and 12C/13C. Thus, even the high Li in NGC 2423 3 cannot be concretely tied to the presence of the SSC.

  15. Lithium in Open Cluster Red Giants Hosting Substellar Companions

    NASA Technical Reports Server (NTRS)

    Carlberg, Joleen K.; Smith, Verne V.; Cunha, Katia; Carpenter, Kenneth G.

    2016-01-01

    We have measured stellar parameters, [Fe/H], lithium abundances, rotation, and (12)C/13C in a small sample of red giants (RGs) in three open clusters that are each home to a RG star that hosts a substellar companion (SSC) (NGC 2423 3, NGC 4349 127, and BD+12 1917 in M67). Our goal is to explore whether the presence of SSCs influences the Li content. Both (12)C/13C and stellar rotation are measured as additional tracers of stellar mixing. One of the companion hosts, NGC 2423?3, is found to be Li-rich with A(Li)(sub NLTE) = 1.56 dex, and this abundance is significantly higher than the A(Li) of the two comparison stars in NGC 2423. All three SSC hosts have the highest A(Li) and (12)C/13C when compared to the control RGs in their respective clusters; however, except for NGC 2423?3, at least one control star has similarly high abundances within the uncertainties. Higher A(Li) could suggest that the formation or presence of planets plays a role in the degree of internal mixing on or before the RG branch. However, a multitude of factors affect A(Li) during the RG phase, and when the abundances of our sample are compared with the abundances of RGs in other open clusters available in the literature, we find that they all fall well within a much larger distribution of A(Li) and (12)C/13C. Thus, even the high Li in NGC 2423 3 cannot be concretely tied to the presence of the SSC.

  16. Variable Stars In the Unusual, Metal-Rich Globular Cluster

    NASA Technical Reports Server (NTRS)

    Pritzl, Barton J.; Smith, Horace A.; Catelan, Marcio; Sweigart, Allen V.; Oegerle, William R. (Technical Monitor)

    2002-01-01

    We have undertaken a search for variable stars in the metal-rich globular cluster NGC 6388 using time-series BV photometry. Twenty-eight new variables were found in this survey, increasing the total number of variables found near NGC 6388 to approx. 57. A significant number of the variables are RR Lyrae (approx. 14), most of which are probable cluster members. The periods of the fundamental mode RR Lyrae are shown to be unusually long compared to metal-rich field stars. The existence of these long period RRab stars suggests that the horizontal branch of NGC 6388 is unusually bright. This implies that the metallicity-luminosity relationship for RR Lyrae stars is not universal if the RR Lyrae in NGC 6388 are indeed metal-rich. We consider the alternative possibility that the stars in NGC 6388 may span a range in [Fe/H]. Four candidate Population II Cepheids were also found. If they are members of the cluster, NGC 6388 would be the most metal-rich globular cluster to contain Population II Cepheids. The mean V magnitude of the RR Lyrae is found to be 16.85 +/- 0.05 resulting in a distance of 9.0 to 10.3 kpc, for a range of assumed values of (M(sub V)) for RR Lyrae. We determine the reddening of the cluster to be E(B - V) = 0.40 +/- 0.03 mag, with differential reddening across the face of the cluster. We discuss the difficulty in determining the Oosterhoff classification of NGC 6388 and NGC 6441 due to the unusual nature of their RR Lyrae, and address evolutionary constraints on a recent suggestion that they are of Oosterhoff type II.

  17. A Spectroscopic Survey for Binary Stars in the Globular Cluster NGC 5053

    NASA Astrophysics Data System (ADS)

    Yan, Lin; Cohen, J. G.

    1996-10-01

    to the fact that NGC 5053 is relatively dynamically young compared to other clusters. We also argue that the binary population in globular clusters is not significantly deficient compared to binaries in other stellar environments such as open clusters, or to field and low metallicity halo stars.

  18. The Star Cluster Mass-Galactocentric Radius Relation: Implications for Cluster Formation

    NASA Astrophysics Data System (ADS)

    Sun, Weijia; de Grijs, Richard; Fan, Zhou; Cameron, Ewan

    2016-01-01

    Whether or not the initial star cluster mass function is established through a universal, galactocentric-distance-independent stochastic process, on the scales of individual galaxies, remains an unsolved problem. This debate has recently gained new impetus through the publication of a study that concluded that the maximum cluster mass in a given population is not solely determined by size-of-sample effects. Here, we revisit the evidence in favor and against stochastic cluster formation by examining the young (≲ a few × {10}8 year old) star cluster mass-galactocentric radius relation in M33, M51, M83, and the Large Magellanic Cloud. To eliminate size-of-sample effects, we first adopt radial bin sizes containing constant numbers of clusters, which we use to quantify the radial distribution of the first- to fifth-ranked most massive clusters using ordinary least-squares fitting. We supplement this analysis with an application of quantile regression, a binless approach to rank-based regression taking an absolute-value-distance penalty. Both methods yield, within the 1σ to 3σ uncertainties, near-zero slopes in the diagnostic plane, largely irrespective of the maximum age or minimum mass imposed on our sample selection, or of the radial bin size adopted. We conclude that, at least in our four well-studied sample galaxies, star cluster formation does not necessarily require an environment-dependent cluster formation scenario, which thus supports the notion of stochastic star cluster formation as the dominant star cluster-formation process within a given galaxy.

  19. Chemical abundances of A-type dwarfs in the young open cluster M6

    NASA Astrophysics Data System (ADS)

    Kílíçoǧlu, T.; Monier, R.; Fossati, L.

    2011-12-01

    Elemental abundance analysis of five members in the open cluster M6 (age ˜90 myr) were performed using FLAMES-GIRAFFE spectrograph mounted on 8-meter class VLT telescopes. The abundances of 14 chemical elements were derived. Johnson and Geneva photometric systems, hydrogen line profile fittings, and ionization equilibrium were used to derive the atmospheric parameters of the stars. Synthetic spectra were compared to the observed spectra to derive chemical abundances. The abundance analysis of these five members shows that these stars have an enhancement (or solar composition) of metals in general, with some exceptions. C, O, Ca, Sc, Ni, Y, and Ba exhibit the largest star-to-star abundance variations.

  20. LITHIUM IN THE INTERMEDIATE-AGE OPEN CLUSTER, NGC 3680

    SciTech Connect

    Anthony-Twarog, Barbara J.; Twarog, Bruce A.; Deliyannis, Constantine P.; Croxall, Kevin V.; Cummings, Jeffrey D. E-mail: btwarog@ku.edu E-mail: kcroxall@indiana.edu

    2009-10-15

    High-dispersion spectra centered on the Li 6708 A line have been obtained for 70 potential members of the intermediate-age open cluster NGC 3680, with an emphasis on stars in the turnoff region of the cluster color-magnitude diagram (CMD). A measurable Li abundance has been derived for 53 stars, 39 of which have radial velocities and proper motions consistent with cluster membership. After being transferred to common temperature and abundance scales, previous Li estimates have been combined to generate a sample of 49 members, 40 of which bracket the cluster Li-dip. Spectroscopic elemental analysis of eight giants and five turnoff stars produces [Fe/H] = -0.17 {+-} 0.07 (sd) and -0.07 {+-} 0.02 (sd), respectively. We also report measurements of Ca, Si, and Ni which are consistent with scaled-solar ratios within the errors. Adopting [Fe/H] = -0.08 (Section 3.6), Y {sup 2} isochrone comparisons lead to an age of 1.75 {+-} 0.1 Gyr and an apparent modulus of (m - M) = 10.30 {+-} 0.15 for the cluster, placing the center of the Li-dip at 1.35 {+-} 0.03 M {sub sun}. Among the giants, five of the nine cluster members are now known to have measurable Li with A(Li) near 1.0. A combined sample of dwarfs in the Hyades and Praesepe is used to delineate the Li-dip profile at 0.7 Gyr and [Fe/H] = +0.15, establishing its center at 1.42 {+-} 0.02 M {sub sun} and noting the possible existence of a secondary dip on its red boundary. When evolved to the typical age of the clusters NGC 752 (age = 1.45 Gyr, (m - M) = 8.4), IC 4651 (age = 1.5 Gyr, (m - M) = 10.4), and NGC 3680, the Hyades/Praesepe Li-dip profile reproduces the observed morphology of the combined Li-dip within the CMDs of the intermediate-age clusters while implying a metallicity dependence for the central mass of the Li-dip given by M/M {sub sun} = 1.38 {+-} 0.04 + 0.4 {+-} 0.2 [Fe/H]. The implications of the similarity of the Li-dichotomy among giants in NGC 752 and IC 4651 and the disagreement with the pattern among NGC

  1. Effects of intermediate mass black holes on nuclear star clusters

    SciTech Connect

    Mastrobuono-Battisti, Alessandra; Perets, Hagai B.; Loeb, Abraham

    2014-11-20

    Nuclear star clusters (NSCs) are dense stellar clusters observed in galactic nuclei, typically hosting a central massive black hole. Here we study the possible formation and evolution of NSCs through the inspiral of multiple star clusters hosting intermediate mass black holes (IMBHs). Using an N-body code, we examine the dynamics of the IMBHs and their effects on the NSC. We find that IMBHs inspiral to the core of the newly formed NSC and segregate there. Although the IMBHs scatter each other and the stars, none of them is ejected from the NSC. The IMBHs are excited to high eccentricities and their radial density profile develops a steep power-law cusp. The stars also develop a power-law cusp (instead of the central core that forms in their absence), but with a shallower slope. The relaxation rate of the NSC is accelerated due to the presence of IMBHs, which act as massive perturbers. This in turn fills the loss cone and boosts the tidal disruption rate of stars both by the MBH and the IMBHs to a value excluded by rate estimates based on current observations. Rate estimates of tidal disruptions can therefore provide a cumulative constraint on the existence of IMBHs in NSCs.

  2. Effects of Intermediate Mass Black Holes on Nuclear Star Clusters

    NASA Astrophysics Data System (ADS)

    Mastrobuono-Battisti, Alessandra; Perets, Hagai B.; Loeb, Abraham

    2014-11-01

    Nuclear star clusters (NSCs) are dense stellar clusters observed in galactic nuclei, typically hosting a central massive black hole. Here we study the possible formation and evolution of NSCs through the inspiral of multiple star clusters hosting intermediate mass black holes (IMBHs). Using an N-body code, we examine the dynamics of the IMBHs and their effects on the NSC. We find that IMBHs inspiral to the core of the newly formed NSC and segregate there. Although the IMBHs scatter each other and the stars, none of them is ejected from the NSC. The IMBHs are excited to high eccentricities and their radial density profile develops a steep power-law cusp. The stars also develop a power-law cusp (instead of the central core that forms in their absence), but with a shallower slope. The relaxation rate of the NSC is accelerated due to the presence of IMBHs, which act as massive perturbers. This in turn fills the loss cone and boosts the tidal disruption rate of stars both by the MBH and the IMBHs to a value excluded by rate estimates based on current observations. Rate estimates of tidal disruptions can therefore provide a cumulative constraint on the existence of IMBHs in NSCs.

  3. BARIUM SURFACE ABUNDANCES OF BLUE STRAGGLERS IN THE OPEN CLUSTER NGC 6819

    SciTech Connect

    Milliman, Katelyn E.; Mathieu, Robert D.; Schuler, Simon C.

    2015-09-15

    We present a barium surface abundance of 12 blue stragglers (BSs) and 18 main-sequence (MS) stars in the intermediate-age open cluster NGC 6819 (2.5 Gyr) based on spectra obtained from the Hydra Multi-object Spectrograph on the WIYN 3.5 m telescope. For the MS stars we find [Fe/H] = +0.05 ± 0.04 and [Ba/Fe] = −0.01 ± 0.10. The majority of the BS stars are consistent with these values. We identify five BSs with significant barium enhancement. These stars most likely formed through mass transfer from an asymptotic giant branch star that polluted the surface of the BS with the nucleosynthesis products generated during thermal pulsations. This conclusion aligns with the results from the substantial work done on the BSs in old open cluster NGC 188 that identifies mass transfer as the dominant mechanism for BS formation in that open cluster. However, four of the BSs with enhanced barium show no radial-velocity evidence for a companion. The one star that is in a binary is a double-lined system, meaning the companion is not a white dwarf and not the remnant of a prior AGB star. In this paper we attempt to develop a consistent scenario to explain the origin of these five BSs.

  4. The Lambda Orionis association. [star cluster anomalies

    NASA Technical Reports Server (NTRS)

    Murdin, P.; Penston, M. V.

    1977-01-01

    The Lambda Orionis association has the photometric properties of a typical young cluster with an age of about 4 million yr. Its distance is 400 + or - 40 pc. Attention is drawn to the lack of a dense molecular cloud and associated infrared sources in this young grouping

  5. Early phases of LMC star clusters?

    NASA Technical Reports Server (NTRS)

    Kontizas, Evangelos; Michalitsianos, Andrew; Kontizas, Mary

    1991-01-01

    On the basis of optical and IUE observations we have investigated the possibility that some of the very young stellar systems of the LMC, such as SL360, may be regarded as globular clusters at the very early phases of their dynamical evolution after the gas cloud expulsion.

  6. The variable stars of the young LMC cluster NGC 2164

    NASA Technical Reports Server (NTRS)

    Welch, Douglas L.; Mateo, Mario; Olszewski, Edward W.; Fischer, Philippe; Takamiya, Marianne

    1993-01-01

    The present search of the LMC cluster NGC 2164 for variable stars has uncovered one new member classical Cepheid variable with 3.772-day period; attention is also given to photometry for a previously unknown field overtone Cepheid variable with 3.4626-day period, and the 10.6878-day period HV 12078, which may be a member of the young NGC 2156 cluster. The clear separation of fundamental and overtone pulsators in the period-luminosity-color relation of known LMC cluster Cepheids establishes that the NGC 2164 member is a true overtone.

  7. Sejong Open Cluster Survey (SOS) - II. IC 1848 cluster in the H II region W5 West

    NASA Astrophysics Data System (ADS)

    Lim, Beomdu; Sung, Hwankyung; Kim, Jinyoung S.; Bessell, Michael S.; Karimov, Rivkat

    2014-02-01

    IC 1848 is one of the young open clusters in the giant star-forming Cas OB6 association. Several interesting aspects relating to star formation processes in giant star-forming regions attracted us to study the initial mass function (IMF), star formation mode and properties of pre-main-sequence (PMS) stars. A UBVI and Hα photometric study of the young open cluster IC 1848 was conducted as part of the `Sejong Open Cluster Survey'. We have selected 105 early-type members from photometric diagrams. Their mean reddening is = 0.660 ± 0.054 mag. Using the published photometric data with near- and mid-infrared archival data we confirmed the normal reddening law (RV = 3.1) towards the cluster (IC 1848). A careful zero-age main-sequence fitting gives a distance modulus of V0 - MV = 11.7 ± 0.2 mag, equivalent to 2.2 ± 0.2 kpc. Hα photometry and the list of young stellar objects identified by Koenig et al. permitted us to select a large number of PMS stars comprising 196 Hα emission stars, 35 Hα emission candidates, 5 Class I, 368 Class II and 24 transition disc candidates. From the Hertzsprung-Russell diagram using stellar evolution models, we estimate an age of 5 Myr from several evolved stars and 3 Myr from the PMS stars. The IMF was derived from stars with mass larger than 3 M⊙, and the slope is slightly steeper (Γ = -1.6 ± 0.2) than the Salpeter/Kroupa IMF. Finally, we estimated the mass accretion rate of PMS stars with an ultraviolet excess. The mean mass accretion rate is about 1.4 × 10-8 M⊙ yr-1 in the mass range of 0.5-2 M⊙, whereas intermediate-mass stars (≥2.5 M⊙) exhibit a much higher accretion rate of dot{M} > 10^{-6} M_{⊙} yr^{-1}.

  8. Observations of Protostellar Outflow Feedback in Clustered Star Formation

    NASA Astrophysics Data System (ADS)

    Nakamura, F.

    2016-05-01

    We discuss the role of protostellar outflow feedback in clustered star formation using the observational data of recent molecular outflow surveys toward nearby cluster-forming clumps. We found that for almost all clumps, the outflow momentum injection rate is significantly larger than the turbulence dissipation rate. Therefore, the outflow feedback is likely to maintain supersonic turbulence in the clumps. For less massive clumps such as B59, L1551, and L1641N, the outflow kinetic energy is comparable to the clump gravitational energy. In such clumps, the outflow feedback probably affects significantly the clump dynamics. On the other hand, for clumps with masses larger than about 200 M⊙, the outflow kinetic energy is significantly smaller than the clump gravitational energy. Since the majority of stars form in such clumps, we conclude that outflow feedback cannot destroy the whole parent clump. These characteristics of the outflow feedback support the scenario of slow star formation.

  9. X-Ray Activity in the Open Cluster IC 4665

    NASA Technical Reports Server (NTRS)

    Giamapapa, Mark S.; Prosser, Charles F.; Fleming, Thomas A.

    1997-01-01

    We present the results of a joint ROSAT High Resolution Imager (HRI) and optical investigation of the open cluster IC 4665. The ROSAT data contains detections for 28 stellar sources in the field, including 22 cluster members and candidate members spanning the color range -0.18 less than or equal to (B - V(sub o)) less than or equal to +1.63 (approx. B3 - M3). Upper limits are given for the remaining members (or candidate members) in the HRI field. Keck HIRES spectra have been obtained that yield radial and rotational velocity measures, respectively, for faint, low mass candidate members located within the field of the ROSAT HRI observation. In addition, photometry of possible optical counterparts to previously uncatalogued X-ray sources in the HRI field is presented. The trends in X-ray properties with (B - V) color in IC 4665 are found to be quite similar to that for other, more nearby young clusters such as the Pleiades and alpha Persei. In particular, a maximum in normalized X-ray luminosity of log (L(sub x)/L(sub bol)) approx. equal 3 is observed, beginning in the color range of (B - V)(sub o) = 0.7 - 0.8. This is similar to the corresponding color range among Pleiades members, in agreement with the earlier estimate, that the age of IC 4665 is similar to the age of the Pleiades. The correlation of rotation and X-ray emission levels is consistent with that in other young clusters. Among the high mass stars in IC 4665, five B stars are detected as X-ray sources. Of these, one is a spectroscopic binary while the remaining objects are apparently single staxs. The level of intrinsic X-ray emission observed in the rapidly rotating (v sini greater than 200 km/ s), single B stars is consistent with an origin due to shock heating of the ambient medium by radiatively driven, rotationally enhanced winds. On the basis of these observations and the results for other clusters, we argue that observed levels of X-ray emission in high mass stars of log (L(sub x)/L(sub bol

  10. Revisiting the region of the open cluster NGC 5606

    NASA Astrophysics Data System (ADS)

    Orsatti, A. M.; Feinstein, C.; Vega, E. I.; Vergne, M. M.

    2007-08-01

    We present polarimetric observations in the UBVRI bands corresponding to 54 stars located in the direction of NGC 5606. Our intention is to analyze the dust characteristics between the Sun and the cluster, as well as to confirm doubtful memberships using polarimetric tools. We also want to determine if a group of 11 B and A stars identified in the past by Vázquez & Feinstein (1991, A&AS, 87, 383) in front of NGC 5606 has any physical entity. From polarimetric data we have found at least two dust layers along the line of sight to the open cluster. The observations show that both dust layers have their local magnetic field with an orientation which is close to the direction of the Galactic Plane (θ = 70.0 °), but the direction of the polarimetric vector for the members of the cluster seems to be lower than this value. NGC 5606 can be polarimetrically characterized with P_max = 2.97% and θv = 63.5 °. The internal dispersion of the polarization values for the members of NGC 5606 seems to be compatible with intracluster dust. We were able to add four possible new members to the list of stars in NGC 5606, and to reject others accepted as members in past investigations; and we identified 17 (out of the 54 observed stars) with intrinsic polarization in their light. The group of late B- and A-type stars could be physically related, with characteristics of an open cluster of intermediate age (between 0.79 and 1. × 108 yr). For this group we obtained representative values of P = 2.12% and θv = 70.0 °. The new cluster, which we have provisionally named Anon (La Plata 1), extends from NE to SW across the face of NGC 5606 covering about 10'. The fitting procedure of Schmidt-Kaler's ZAMS (1982, in Landolt/Bornstein, Neue Series VI/2b) was used to derive the distance to the group, obtaining a distance modulus of Vo - Mv = 9.90 (649 pc from the Sun). The mean color excess associated with the small group is EB-V = 0.27 ± 0.08 mag and the dust distribution shows great

  11. SUPERSONIC LINE BROADENING WITHIN YOUNG AND MASSIVE SUPER STAR CLUSTERS

    SciTech Connect

    Tenorio-Tagle, Guillermo; Silich, Sergiy; Wuensch, Richard; Munoz-Tunon, Casiana; Palous, Jan E-mail: richard@wunsch.c E-mail: cmt@ll.iac.e

    2010-01-10

    The origin of supersonic infrared and radio recombination nebular lines often detected in young and massive superstar clusters is discussed. We suggest that these arise from a collection of repressurizing shocks (RSs), acting effectively to re-establish pressure balance within the cluster volume and from the cluster wind which leads to an even broader although much weaker component. The supersonic lines here are shown to occur in clusters that undergo a bimodal hydrodynamic solution, that is within clusters that are above the threshold line in the mechanical luminosity or cluster mass versus the size of the cluster plane. A plethora of RSs is due to frequent and recurrent thermal instabilities that take place within the matter reinserted by stellar winds and supernovae. We show that the maximum speed of the RSs and of the cluster wind are both functions of the temperature reached at the stagnation radius. This temperature depends only on the cluster heating efficiency (eta). Based on our two-dimensional simulations we calculate the line profiles that result from several models and confirm our analytical predictions. From a comparison between the predicted and observed values of the half-width zero intensity of the two line components, we conclude that the thermalization efficiency in young super star clusters above the threshold line must be lower than 20%.

  12. OT2_baltieri_5: Star formation in proto-clusters

    NASA Astrophysics Data System (ADS)

    Altieri, B.

    2011-09-01

    Massive clusters of galaxies have been found to date from as early as 3-4 billion years after the Big Bang. Cosmological simulations using the current cold dark matter model predict that these systems should descend from 'proto-clusters' - early overdensities of massive galaxies that merge hierarchically to form a cluster. These protocluster regions themselves are built up hierarchically and so are expected to contain extremely massive galaxies, progenitors of the quiescent behemoths observed in cores of the present day massive galaxy clusters. Observational evidence for this picture, however, is sparse because high-redshift proto-clusters are rare and difficult to observe. Here we propose to probe with Herschel SPIRE the very beginning of the cluster and massive galaxies formation process by observing 5 proto-clusters at 3star formation at such high redshift, to compare the properties of the proto-cluster galaxies with those of field galaxies at similar redshift. Determining whether cluster galaxies differ from field galaxies when the proto-cluster was still forming, tells us whether any of the difference observed today is driven by nature as apposed to nurture.

  13. EVOLUTION OF SUPER STAR CLUSTER WINDS WITH STRONG COOLING

    SciTech Connect

    Wuensch, Richard; Palous, Jan; Silich, Sergiy; Tenorio-Tagle, Guillermo; Munoz-Tunon, Casiana

    2011-10-20

    We study the evolution of super star cluster winds driven by stellar winds and supernova explosions. Time-dependent rates at which mass and energy are deposited into the cluster volume, as well as the time-dependent chemical composition of the re-inserted gas, are obtained from the population synthesis code Starburst99. These results are used as input for a semi-analytic code which determines the hydrodynamic properties of the cluster wind as a function of cluster age. Two types of winds are detected in the calculations. For the quasi-adiabatic solution, all of the inserted gas leaves the cluster in the form of a stationary wind. For the bimodal solution, some of the inserted gas becomes thermally unstable and forms dense warm clumps which accumulate inside the cluster. We calculate the evolution of the wind velocity and energy flux and integrate the amount of accumulated mass for clusters of different mass, radius, and initial metallicity. We also consider conditions with low heating efficiency of the re-inserted gas or mass loading of the hot thermalized plasma with the gas left over from star formation. We find that the bimodal regime and the related mass accumulation occur if at least one of the two conditions above is fulfilled.

  14. Massive Young Star Clusters in M33: Stochastic Star Formation Ruled Out

    NASA Astrophysics Data System (ADS)

    González-Lópezlira, R. A.; Pflamm-Altenburg, J.; Kroupa, P.

    2014-09-01

    It is widely accepted that the distribution function of the masses of young star clusters is universal and can be purely interpreted as a probability density distribution function with a constant upper mass limit. As a result of this picture, the masses of the most massive objects would be exclusively determined by the size of the sample. Conversely we show, with very high confidence, that the masses of the most massive young (< 10 Myr) star clusters in the flocculent galaxy M33 decrease with increasing galactocentric radius, in contradiction with a constant shape and upper mass limit of the cluster mass function. Moreover, by comparing the radial distributions of gas surface densities and highest cluster masses, we find that M_{max} ∝ Σ_{gas, total}^{3.8 ± 0.3}, M_{max} ∝ Σ_{H_2}^{1.2± 0.1} and M_{max} ∝ Σ_{SFR}^{0.9 ± 0.1}. Hence, in M33 we can rule out stochastic star formation. The change of the maximum cluster mass there must be due to physical causes, i.e., very massive star clusters may require special physical conditions, like high gas surface densities, in order to form.

  15. Bright Young Star Clusters in NGC5253 with LEGUS

    NASA Astrophysics Data System (ADS)

    Calzetti, Daniela; Johnson, Kelsey E.; Adamo, Angela; Gallagher, John S.; Andrews, Jennifer E.; Smith, Linda J.; Clayton, Geoffrey C.; Lee, Janice C.; Sabbi, Elena; Ubeda, Leonardo; Kim, Hwihyun; Ryon, Jenna E.; Thilker, David A.; Bright, Stacey N.; Zackrisson, Erik; Kennicutt, Robert; de Mink, Selma E.; Whitmore, Bradley C.; Aloisi, Alessandra; Chandar, Rupali; Cignoni, Michele; Cook, David; Dale, Daniel A.; Elmegreen, Bruce; Elmegreen, Debra M.; Evans, Aaron S.; Fumagalli, Michele; Gouliermis, Dimitrios; Grasha, Kathryn; Grebel, Eva; Krumholz, Mark R.; Walterbos, Rene A. M.; Wofford, Aida; Brown, Thomas M.; Christian, Carol A.; Dobbs, Claire; Herrero-Davo`, Artemio; Kahre, Lauren; Messa, Matteo; Nair, Preethi; Nota, Antonella; Östlin, Göran; Pellerin, Anne; Sacchi, Elena; Schaerer, Daniel; Tosi, Monica

    2016-01-01

    Using UV-to-H broad and narrow-band HST imaging, we derive the ages and masses of the 11 brightest star clusters in the dwarf galaxy NGC5253. This galaxy, located at ~3 Mpc, hosts an intense starburst, which includes a centrally-concentrated dusty region with strong thermal radio emission (the `radio nebula'). The HST imaging includes data from the Cycle 21 Treasury Program LEGUS (Legacy ExtraGalactic UV Survey), in addition to narrow--band H-alpha (6563 A), P-beta (12820 A), and P-alpha (18756 A). The bright clusters have ages ~1-15 Myr and masses ~1E4 - 2.5E5 Msun. Two of the 11 star clusters are located within the radio nebula, and suffer from significant dust attenuation. Both are extremely young, with a best-fit age around 1 Myr, and masses ~7.5E4 and ~2.5E5 Msun, respectively. The most massive of the two `radio nebula' clusters is 2-4 times less massive than previously estimated and is embedded within a cloud of dust with A_V~50 mag. The two clusters account for about half of the ionizing photon rate in the radio nebula, and will eventually supply about 2/3 of the mechanical energy in present-day shocks. Additional sources are required to supply the remaining ionizing radiation, and may include very massive stars.

  16. The Structural Evolution of Forming and Early Stage Star Clusters

    NASA Astrophysics Data System (ADS)

    Jaehnig, Karl; Da Rio, Nicola; Tan, Jonathan C.

    2016-05-01

    We study the degree of angular substructure in the stellar position distribution of young members of Galactic star-forming regions, looking for correlations with distance from cluster center, surface number density of stars, and local dynamical age. To this end we adopt the catalog of members in 18 young (∼1-3 Myr) clusters from the Massive Young Star-Forming Complex Study in Infrared and X-ray (MYStIX) Survey and the statistical analysis of the Angular Dispersion Parameter, δADP. We find statistically significant correlation between δADP and physical projected distance from the center of the clusters, with the centers appearing smoother than the outskirts, consistent with more rapid dynamical processing on local dynamical, free-fall or orbital timescales. Similarly, smoother distributions are seen in regions of higher surface density, or older dynamical ages. These results indicate that dynamical processing that erases substructure is already well-advanced in young, sometimes still-forming, clusters. Such observations of the dissipation of substructure have the potential to constrain theoretical models of the dynamical evolution of young and forming clusters.

  17. THE STRUCTURAL EVOLUTION OF FORMING AND EARLY STAGE STAR CLUSTERS

    SciTech Connect

    Jaehnig, Karl O.; Da Rio, Nicola; Tan, Jonathan C. E-mail: ndario@ufl.edu

    2015-01-10

    We study the degree of angular substructure in the stellar position distribution of young members of Galactic star-forming regions, looking for correlations with distance from cluster center, surface number density of stars, and local dynamical age. To this end we adopt the catalog of members in 18 young (∼1-3 Myr) clusters from the Massive Young Star-Forming Complex Study in Infrared and X-ray Survey and the statistical analysis of the angular dispersion parameter, δ{sub ADP,} {sub N}. We find statistically significant correlation between δ{sub ADP,} {sub N} and physical projected distance from the center of the clusters, with the centers appearing smoother than the outskirts, consistent with more rapid dynamical processing on local dynamical, free-fall or orbital timescales. Similarly, smoother distributions are seen in regions of higher surface density, or older dynamical ages. These results indicate that dynamical processing that erases substructure is already well-advanced in young, sometimes still-forming, clusters. Such observations of the dissipation of substructure have the potential to constrain theoretical models of the dynamical evolution of young and forming clusters.

  18. The Structural Evolution of Forming and Early Stage Star Clusters

    NASA Astrophysics Data System (ADS)

    Jaehnig, Karl O.; Da Rio, Nicola; Tan, Jonathan C.

    2015-01-01

    We study the degree of angular substructure in the stellar position distribution of young members of Galactic star-forming regions, looking for correlations with distance from cluster center, surface number density of stars, and local dynamical age. To this end we adopt the catalog of members in 18 young (~1-3 Myr) clusters from the Massive Young Star-Forming Complex Study in Infrared and X-ray Survey and the statistical analysis of the angular dispersion parameter, δADP, N. We find statistically significant correlation between δADP, N and physical projected distance from the center of the clusters, with the centers appearing smoother than the outskirts, consistent with more rapid dynamical processing on local dynamical, free-fall or orbital timescales. Similarly, smoother distributions are seen in regions of higher surface density, or older dynamical ages. These results indicate that dynamical processing that erases substructure is already well-advanced in young, sometimes still-forming, clusters. Such observations of the dissipation of substructure have the potential to constrain theoretical models of the dynamical evolution of young and forming clusters.

  19. Open Cluster Radial Velocity determination from observations at Observatório Pico Dos Dias

    NASA Astrophysics Data System (ADS)

    Faria, M. A. F.; Monteiro, H.; Dias, W. S.; Lépine, J. R. D.

    2014-10-01

    In studies of the dynamics of the Galactic disk, such as the determination of the speed of the spiral pattern and the permanence of stars in the spiral arms, it is crucial to know orbits obtained from proper motions, radial velocities and the potential of the Galaxy. Aiming to improve the statistics of our catalog of open clusters, maintained by our research group, we determined the radial velocity of stars belonging to a group of open clusters using spectra with a resolution of 4000, obtained at the Pico dos Dias Observatory (LNA) with the 1.60 m telescope and the Coudé spectrograph. We observed the open cluster's member stars and calculated their radial speeds using standard techniques. The stars were selected from our own database based on relevant information concerning the clusters, obtained by statistical analysis of their proper motions and/or their position in the HR's diagram. In this work, we present the detailed analysis of the data reduction and radial velocity determination using synthetic spectra from different libraries. Finally we present the open cluster's radial (and spacial) velocities.

  20. Ultraviolet Spectroscopy of Circumnuclear Star Clusters in M83

    NASA Astrophysics Data System (ADS)

    Wofford, Aida; Leitherer, Claus; Chandar, Rupali

    2011-02-01

    We analyze archival HST/STIS/FUV-MAMA imaging and spectroscopy of 13 compact star clusters within the circumnuclear starburst region of M83, the closest such example. We compare the observed spectra with semi-empirical models, which are based on an empirical library of Galactic O and B stars observed with IUE, and with theoretical models, which are based on a new theoretical UV library of hot massive stars computed with WM-Basic. The models were generated with Starburst99 for metallicities of Z = 0.020 and Z = 0.040, and for stellar initial mass functions (IMFs) with upper mass limits of 10, 30, 50, and 100 M sun. We estimate the ages and masses of the clusters from the best-fit model spectra and find that the ages derived from the semi-empirical and theoretical models agree within a factor of 1.2 on average. A comparison of the spectroscopic age estimates with values derived from HST/WFC3/UVIS multi-band photometry shows a similar level of agreement for all but one cluster. The clusters have a range of ages from about 3 to 20 Myr and do not appear to have an age gradient along M83's starburst. Clusters with strong P-Cygni profiles have masses of a few×104 M sun, seem to have formed stars more massive than 30 M sun, and are consistent with a Kroupa IMF from 0.1to100 M sun. Field regions in the starburst lack P-Cygni profiles and are dominated by B stars.

  1. THE BRIGHTEST YOUNG STAR CLUSTERS IN NGC 5253

    SciTech Connect

    Calzetti, D.; Johnson, K. E.; Adamo, A.; Gallagher III, J. S.; Ryon, J. E.; Andrews, J. E.; Smith, L. J.; Lee, J. C.; Sabbi, E.; Ubeda, L.; Bright, S. N.; Whitmore, B. C.; Aloisi, A.; Kim, H.; Thilker, D.; Zackrisson, E.; Kennicutt, R. C.; Mink, S. E. de; Chandar, R.; and others

    2015-10-01

    The nearby dwarf starburst galaxy NGC 5253 hosts a number of young, massive star clusters, the two youngest of which are centrally concentrated and surrounded by thermal radio emission (the “radio nebula”). To investigate the role of these clusters in the starburst energetics, we combine new and archival Hubble Space Telescope images of NGC 5253 with wavelength coverage from 1500 Å to 1.9 μm in 13 filters. These include Hα, Pβ, and Pα, and the imaging from the Hubble Treasury Program LEGUS (Legacy Extragalactic UV Survey). The extraordinarily well-sampled spectral energy distributions enable modeling with unprecedented accuracy the ages, masses, and extinctions of the nine optically brightest clusters (M{sub V} < −8.8) and the two young radio nebula clusters. The clusters have ages ∼1–15 Myr and masses ∼1 × 10{sup 4}–2.5 × 10{sup 5} M{sub ⊙}. The clusters’ spatial location and ages indicate that star formation has become more concentrated toward the radio nebula over the last ∼15 Myr. The most massive cluster is in the radio nebula; with a mass ∼2.5 × 10{sup 5} M{sub ⊙} and an age ∼1 Myr, it is 2–4 times less massive and younger than previously estimated. It is within a dust cloud with A{sub V} ∼ 50 mag, and shows a clear near-IR excess, likely from hot dust. The second radio nebula cluster is also ∼1 Myr old, confirming the extreme youth of the starburst region. These two clusters account for about half of the ionizing photon rate in the radio nebula, and will eventually supply about 2/3 of the mechanical energy in present-day shocks. Additional sources are required to supply the remaining ionizing radiation, and may include very massive stars.

  2. The SUNBIRD survey: characterizing the super star cluster populations of intensely star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Randriamanakoto, Zara; Vaisanen, Petri; Escala, Andres

    2015-08-01

    This work investigates properties of young, massive and dense star clusters in a sample of 42 nearby starbursts and LIRGs with an average distance of 80 Mpc. The targets form the sample of the SUperNovae and starBursts in the InfraReD (SUNBIRD) survey that were imaged using near-infrared K-band adaptive optics mounted on the Gemini/NIRI and the VLT/NaCo instruments.We fitted power-laws to the SSC K-band luminosity functions and found index values ranging between 1.5 and 2.4 with a median value of α ˜ 1.86±0.24. This is shallower than the average of ≈ 2.4 associated with normal spiral galaxies indicating that SSCs hosted by star-forming galaxies are disrupted in a way depending on their mass or environment. Using simulations we found that blending effects are not significant for targets closer than ≈100Mpc. We also established the first ever near-infrared (NIR) brightest star cluster magnitude - star formation rate (SFR) relation. The correlation has a steeper slope compared to the one with optical data at lower SFRs which could indicate a simple statistical effect, though we argue that a physical truncation of the mass distribution at high masses would better explain the tight scatter of the observed relation.Finally, we combined new NIR imaging of seven LIRG targets with their optical HST archival data to derive the age, mass, and extinction distributions of optically-selected SSC candidates. Apart from having a high mass range of 10^4 - 10^8 M⊙, more than a quarter of the cluster population is younger than 30 Myr. We also derived the cluster initial mass functions and found that at least in one of the LIRGs, a mass-dependent disruption mechanism is responsible for the deficiency in low-mass star clusters. The cluster formation efficiencies Γ = 10 - 23 %, on the other hand, support the arguments that highly-pressurized environments favor SF in bound star clusters.This work has shown the importance of studying SSC host galaxies with high SFR levels to

  3. Star formation in the massive cluster merger Abell 2744

    NASA Astrophysics Data System (ADS)

    Rawle, T. D.; Altieri, B.; Egami, E.; Pérez-González, P. G.; Richard, J.; Santos, J. S.; Valtchanov, I.; Walth, G.; Bouy, H.; Haines, C. P.; Okabe, N.

    2014-07-01

    We present a comprehensive study of star-forming (SF) galaxies in the Hubble Space Telescope (HST) Frontier Field recent cluster merger A2744 (z = 0.308). Wide-field, ultraviolet-infrared (UV-IR) imaging enables a direct constraint of the total star formation rate (SFR) for 53 cluster galaxies, with SFRUV+IR = 343 ± 10 M⊙ yr-1. Within the central 4 arcmin (1.1 Mpc) radius, the integrated SFR is complete, yielding a total SFRUV+IR = 201 ± 9 M⊙ yr-1. Focusing on obscured star formation, this core region exhibits a total SFRIR = 138 ± 8 M⊙ yr-1, a mass-normalized SFRIR of ΣSFR = 11.2 ± 0.7 M⊙ yr-1 per 1014 M⊙ and a fraction of IR-detected SF galaxies f_SF = 0.080^{+0.010}_{-0.037}. Overall, the cluster population at z ˜ 0.3 exhibits significant intrinsic scatter in IR properties (total SFRIR, Tdust distribution) apparently unrelated to the dynamical state: A2744 is noticeably different to the merging Bullet cluster, but similar to several relaxed clusters. However, in A2744 we identify a trail of SF sources including jellyfish galaxies with substantial unobscured SF due to extreme stripping (SFRUV/SFRIR up to 3.3). The orientation of the trail, and of material stripped from constituent galaxies, indicates that the passing shock front of the cluster merger was the trigger. Constraints on star formation from both IR and UV are crucial for understanding galaxy evolution within the densest environments.

  4. Resolved photometry of extragalactic young massive star clusters

    NASA Astrophysics Data System (ADS)

    Larsen, S. S.; de Mink, S. E.; Eldridge, J. J.; Langer, N.; Bastian, N.; Seth, A.; Smith, L. J.; Brodie, J.; Efremov, Yu. N.

    2011-08-01

    Aims: We present colour-magnitude diagrams (CMDs) of young massive star clusters in several galaxies located well beyond the Local Group. The richness of these clusters allows us to obtain large samples of post-main sequence stars and test how well the observed CMDs are reproduced by canonical stellar isochrones. Methods: We use imaging of seven clusters in the galaxies NGC 1313, NGC 1569, NGC 1705, NGC 5236 and NGC 7793 obtained with the Advanced Camera for Surveys on board the Hubble Space Telescope and carry out PSF-fitting photometry of individual stars in the clusters. The clusters have ages in the range ~(5-50) × 106 years and masses of ~105 M⊙-106 M⊙. Although crowding prevents us from obtaining photometry in the inner regions of the clusters, we are still able to measure up to 30-100 supergiant stars in each of the richest clusters. The resulting CMDs and luminosity functions are compared with photometry of artificially generated clusters, designed to reproduce the photometric errors and completeness as realistically as possible. Results: In agreement with previous studies, our CMDs show no clear gap between the H-burning main sequence and the He-burning supergiant stars, contrary to predictions by common stellar isochrones. In general, the isochrones also fail to match the observed number ratios of red-to-blue supergiant stars, although the difficulty of separating blue supergiants from the main sequence complicates this comparison. In several cases we observe a large spread (1-2 mag) in the luminosities of the supergiant stars that cannot be accounted for by observational errors. We find that this spread can be reproduced by including an age spread of ~(10-30) × 106 years in the models. However, age spreads cannot fully account for the observed morphology of the CMDs and other processes, such as the evolution of interacting binary stars, may also play a role. Conclusions: Colour-magnitude diagrams can be successfully obtained for massive star

  5. The role of low-mass star clusters in forming the massive stars in DR 21

    NASA Astrophysics Data System (ADS)

    Rivilla, V. M.; Jiménez-Serra, I.; Martín-Pintado, J.; Sanz-Forcada, J.

    2014-01-01

    We have studied the young low-mass pre-main sequence (PMS) stellar population associated with the massive star-forming region DR 21 by using archival X-ray Chandra observations and by complementing them with existing optical and infrared (IR) surveys. The Chandra observations have revealed for the first time a new highly extincted population of PMS low-mass stars previously missed in observations at other wavelengths. The X-ray population exhibits three main stellar density peaks, coincident with the massive star-forming regions, being the DR 21 core the main peak. The cross-correlated X-ray/IR sample exhibits a radial `Spokes-like' stellar filamentary structure that extends from the DR 21 core towards the northeast. The near-IR data reveal a centrally peaked structure for the extinction, which exhibits its maximum in the DR 21 core and gradually decreases with the distance to the N-S cloud axis and to the cluster centre. We find evidence of a global mass segregation in the full low-mass stellar cluster, and of a stellar age segregation, with the youngest stars still embedded in the N-S cloud, and more evolved stars more spatially distributed. The results are consistent with the scenario where an elongated overall potential well created by the full low-mass stellar cluster funnels gas through filaments feeding stellar formation. Besides the full gravitational well, smaller scale local potential wells created by dense stellar sub-clusters of low-mass stars are privileged in the competition for the gas of the common reservoir, allowing the formation of massive stars. We also discuss the possibility that a stellar collision in the very dense stellar cluster revealed by Chandra in the DR 21 core is the origin of the large-scale and highly energetic outflow arising from this region.

  6. Global survey of star clusters in the Milky Way. V. Integrated JHKS magnitudes and luminosity functions

    NASA Astrophysics Data System (ADS)

    Kharchenko, N. V.; Piskunov, A. E.; Schilbach, E.; Röser, S.; Scholz, R.-D.

    2016-01-01

    Aims: In this study we determine absolute integrated magnitudes in the J,H,KS passbands for Galactic star clusters from the Milky Way Star Clusters survey. In the wide solar neighbourhood, we derive the open cluster luminosity function (CLF) for different cluster ages. Methods: The integrated magnitudes are based on uniform cluster membership derived from the 2MAst catalogue (a merger of the PPMXL and 2MASS) and are computed by summing up the individual luminosities of the most reliable cluster members. We discuss two different techniques of constructing the CLF, a magnitude-limited and a distance-limited approach. Results: Absolute J,H,KS integrated magnitudes are obtained for 3061 open clusters, and 147 globular clusters. The integrated magnitudes and colours are accurate to about 0.8 and 0.2 mag, respectively. Based on the sample of open clusters we construct the general cluster luminosity function in the solar neighbourhood in the three passbands. In each passband the CLF shows a linear part covering a range of 6 to 7 mag at the bright end. The CLFs reach their maxima at an absolute magnitude of -2 mag, then drop by one order of magnitude. During cluster evolution, the CLF changes its slope within tight, but well-defined limits. The CLF of the youngest clusters has a steep slope of about 0.4 at bright magnitudes and a quasi-flat portion for faint clusters. For the oldest population, we find a flatter function with a slope of about 0.2. The CLFs at Galactocentric radii smaller than that of the solar circle differ from those in the direction of the Galactic anti-centre. The CLF in the inner area is flatter and the cluster surface density higher than the local one. In contrast, the CLF is somewhat steeper than the local one in the outer disk, and the surface density is lower. The corresponding catalogue of integrated magnitudes is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc

  7. The Investigation of Stars, Star Clusters and Nebulae in 'Abd al-Rahman-Sufi's Book of the Fixed Stars

    NASA Astrophysics Data System (ADS)

    Hafez, Ihsan; Stephenson, F. Richard; Orchiston, Wayne

    'Abd al-Rahān al-Sūfī (AD 903-986) is justly famous for his Book of the Fixed Stars. This is an outstanding Medieval treatise on astronomy that was written in AD 964. This work was developed from Ptolemy's Almagest, but was based upon al-Sūfī's own stellar observations. The Book of the Fixed Stars has been copied down through the ages, and currently 35 copies are known to exist in various archival repositories around the world. In this paper we begin with a brief introduction to the Book of the Fixed Stars and provide biographical material about al-Sūfī before reviewing his investigation of stars, star clusters, nebulae and galaxies in his book. We examine al-Sūfī's novel stellar magnitude system, his comments on star colours, and stars mentioned in his book but not in the Almagest. We conclude with a listing of star clusters, nebulae and galaxies, including the earliest-known mention of the Great Nebula in Andromeda.

  8. The Very Massive Star Content of the Nuclear Star Clusters in NGC 5253

    NASA Astrophysics Data System (ADS)

    Smith, L. J.; Crowther, P. A.; Calzetti, D.; Sidoli, F.

    2016-05-01

    The blue compact dwarf galaxy NGC 5253 hosts a very young starburst containing twin nuclear star clusters, separated by a projected distance of 5 pc. One cluster (#5) coincides with the peak of the Hα emission and the other (#11) with a massive ultracompact H ii region. A recent analysis of these clusters shows that they have a photometric age of 1 ± 1 Myr, in apparent contradiction with the age of 3-5 Myr inferred from the presence of Wolf-Rayet features in the cluster #5 spectrum. We examine Hubble Space Telescope ultraviolet and Very Large Telescope optical spectroscopy of #5 and show that the stellar features arise from very massive stars (VMSs), with masses greater than 100 M ⊙, at an age of 1-2 Myr. We further show that the very high ionizing flux from the nuclear clusters can only be explained if VMSs are present. We investigate the origin of the observed nitrogen enrichment in the circumcluster ionized gas and find that the excess N can be produced by massive rotating stars within the first 1 Myr. We find similarities between the NGC 5253 cluster spectrum and those of metal-poor, high-redshift galaxies. We discuss the presence of VMSs in young, star-forming galaxies at high redshift; these should be detected in rest-frame UV spectra to be obtained with the James Webb Space Telescope. We emphasize that population synthesis models with upper mass cutoffs greater than 100 M ⊙ are crucial for future studies of young massive star clusters at all redshifts.

  9. The Very Massive Star Content of the Nuclear Star Clusters in NGC 5253

    NASA Astrophysics Data System (ADS)

    Smith, L. J.; Crowther, P. A.; Calzetti, D.; Sidoli, F.

    2016-05-01

    The blue compact dwarf galaxy NGC 5253 hosts a very young starburst containing twin nuclear star clusters, separated by a projected distance of 5 pc. One cluster (#5) coincides with the peak of the Hα emission and the other (#11) with a massive ultracompact H ii region. A recent analysis of these clusters shows that they have a photometric age of 1 ± 1 Myr, in apparent contradiction with the age of 3–5 Myr inferred from the presence of Wolf-Rayet features in the cluster #5 spectrum. We examine Hubble Space Telescope ultraviolet and Very Large Telescope optical spectroscopy of #5 and show that the stellar features arise from very massive stars (VMSs), with masses greater than 100 M ⊙, at an age of 1–2 Myr. We further show that the very high ionizing flux from the nuclear clusters can only be explained if VMSs are present. We investigate the origin of the observed nitrogen enrichment in the circumcluster ionized gas and find that the excess N can be produced by massive rotating stars within the first 1 Myr. We find similarities between the NGC 5253 cluster spectrum and those of metal-poor, high-redshift galaxies. We discuss the presence of VMSs in young, star-forming galaxies at high redshift; these should be detected in rest-frame UV spectra to be obtained with the James Webb Space Telescope. We emphasize that population synthesis models with upper mass cutoffs greater than 100 M ⊙ are crucial for future studies of young massive star clusters at all redshifts.

  10. Star formation in shocked cluster spirals and their tails

    NASA Astrophysics Data System (ADS)

    Roediger, E.; Brüggen, M.; Owers, M. S.; Ebeling, H.; Sun, M.

    2014-09-01

    Recent observations of ram pressure stripped spiral galaxies in clusters revealed details of the stripping process, i.e. the truncation of all interstellar medium phases and of star formation (SF) in the disc, and multiphase star-forming tails. Some stripped galaxies, in particular in merging clusters, develop spectacular star-forming tails, giving them a jellyfish-like appearance. In merging clusters, merger shocks in the intracluster medium (ICM) are thought to have overrun these galaxies, enhancing the ambient ICM pressure and thus triggering SF, gas stripping, and tail formation. We present idealized hydrodynamical simulations of this scenario, including standard descriptions for SF and stellar feedback. To aid the interpretation of recent and upcoming observations, we focus on particular structures and dynamics in SF patterns in the remaining gas disc and in the near tails, which are easiest to observe. The observed jellyfish morphology is qualitatively reproduced for, both, face-on and edge-on stripping. In edge-on stripping, the interplay between the ICM wind and the disc rotation leads to asymmetries along the ICM wind direction and perpendicular to it. The apparent tail is still part of a highly deformed gaseous and young stellar disc. In both geometries, SF takes place in knots throughout the tail, such that the stars in the tails show no ordered age gradients. Significant SF enhancement in the disc occurs only at radii where the gas will be stripped in due course.

  11. HUNTING FOR YOUNG DISPERSING STAR CLUSTERS IN IC 2574

    SciTech Connect

    Pellerin, Anne; Meyer, Martin M.; Calzetti, Daniella; Harris, Jason E-mail: martin.meyer@uwa.edu.au E-mail: jharris@30doradus.org

    2012-12-01

    Dissolving stellar groups are very difficult to detect using traditional surface photometry techniques. We have developed a method to find and characterize non-compact stellar systems in galaxies where the young stellar population can be spatially resolved. By carrying out photometry on individual stars, we are able to separate the luminous blue stellar population from the star field background. The locations of these stars are used to identify groups by applying the HOP algorithm, which are then characterized using color-magnitude and stellar density radial profiles to estimate age, size, density, and shape. We test the method on Hubble Space Telescope Advanced Camera for Surveys archival images of IC 2574 and find 75 dispersed stellar groups. Of these, 20 highly dispersed groups are good candidates for dissolving systems. We find few compact systems with evidence of dissolution, potentially indicating that star formation in this galaxy occurs mostly in unbound clusters or groups. These systems indicate that the dispersion rate of groups and clusters in IC 2574 is at most 0.45 pc Myr{sup -1}. The location of the groups found with HOP correlate well with H I contour map features. However, they do not coincide with H I holes, suggesting that those holes were not created by star-forming regions.

  12. The OCCASO Survey: Open Clusters Chemical Abundances from Spanish Observatories

    NASA Astrophysics Data System (ADS)

    Casamiquela, L.; Carrera, R.; Jordi, C.; Balaguer-Núñez, L.

    2014-07-01

    Stellar clusters are crucial in the study of a variety of topics including the star formation process, stellar nucleosynthesis and evolution, dynamical interaction among stars, or the assembly and evolution of galaxies. In particular, Open Clusters (OCs) have been widely used to constrain the formation and evolution of the Milky Way disc. They provide information about the chemical patterns and the existence of radial and vertical gradients or an age-metallicity relation. However, all these investigations are hampered by the fact that only a small fraction of clusters have been studied homogeneously. Galactic surveys performed from the ground such as the Apache Point Observatory Galactic Evolution Experiment (APOGEE), the Gaia-ESO Survey (GES), or the GALactic Archaeology with HERMES (GALAH) include OCs among their targets. OCs are also sampled from the space by the Gaia and Kepler missions. The OCCASO goal is to derive abundances for more than 20 chemical species in at least 6 Red Clump stars in ˜30 Northern hemisphere OCs. In order to ensure the reliability of the derived chemical abundances, these are derived using different analysis techniques similar to what is being performed by GES. One of the OCCASO requirements is the homogeneity between instruments, methods and model atmospheres used, and in the same scale than the GES-UVES abundances. For this reason we are performing different tests checking internal and external consistency. Derived stellar atmosphere parameters and Fe abundances will be published in the first data release scheduled for the first semester of 2015. The online pdf of the poster with first results is available at https://gaia.ub.edu/Twiki/pub/GREATITNFC/ProgramFinalconference/poster_OCCASO.pdf.

  13. DETAILED CHEMICAL ABUNDANCES OF FOUR STARS IN THE UNUSUAL GLOBULAR CLUSTER PALOMAR 1

    SciTech Connect

    Sakari, Charli M.; Venn, Kim A.; Irwin, Mike; Aoki, Wako; Arimoto, Nobuo; Dotter, Aaron E-mail: kvenn@uvic.ca E-mail: aoki.wako@nao.ac.jp E-mail: dotter@stsci.edu

    2011-10-20

    Detailed chemical abundances for 21 elements are presented for four red giants in the anomalous outer halo globular cluster Palomar 1 (R{sub GC} = 17.2 kpc, Z = 3.6 kpc) using high-resolution (R = 36, 000) spectra from the High Dispersion Spectrograph on the Subaru Telescope. Pal 1 has long been considered unusual because of its low surface brightness, sparse red giant branch, young age, and its possible association with two extragalactic streams of stars. This paper shows that its chemistry further confirms its unusual nature. The mean metallicity of the four stars, [Fe/H] = -0.60 {+-} 0.01, is high for a globular cluster so far from the Galactic center, but is low for a typical open cluster. The [{alpha}/Fe] ratios, though in agreement with the Galactic stars within the 1{sigma} errors, agree best with the lower values in dwarf galaxies. No signs of the Na/O anticorrelation are detected in Pal 1, though Na appears to be marginally high in all four stars. Pal 1's neutron-capture elements are also unusual: its high [Ba/Y] ratio agrees best with dwarf galaxies, implying an excess of second-peak over first-peak s-process elements, while its [Eu/{alpha}] and [Ba/Eu] ratios show that Pal 1's contributions from the r-process must have differed in some way from normal Galactic stars. Therefore, Pal 1 is unusual chemically, as well in its other properties. Pal 1 shares some of its unusual abundance characteristics with the young clusters associated with the Sagittarius dwarf galaxy remnant and the intermediate-age LMC clusters, and could be chemically associated with the Canis Majoris overdensity; however, it does not seem to be similar to the Monoceros/Galactic Anticenter Stellar Stream.

  14. Variable stars in the VVV globular clusters. I. 2MASS-GC 02 and Terzan 10

    SciTech Connect

    Alonso-García, Javier; Dékány, István; Catelan, Márcio; Ramos, Rodrigo Contreras; Gran, Felipe; Leyton, Paul; Minniti, Dante; Amigo, Pía E-mail: idekany@astro.puc.cl E-mail: rcontrer@astro.puc.cl E-mail: pia.amigo@uv.cl E-mail: dante@astrofisica.cl

    2015-03-01

    The VISTA Variables in the Vía Láctea (VVV) ESO Public Survey is opening a new window to study inner Galactic globular clusters (GCs) using their variable stars. These GCs have been neglected in the past due to the difficulties caused by the presence of elevated extinction and high field stellar densities in their lines of sight. However, the discovery and study of any present variables in these clusters, especially RR Lyrae stars, can help to greatly improve the accuracy of their physical parameters. It can also help to shed some light on the questions raised by the intriguing Oosterhoff dichotomy in the Galactic GC system. In a series of papers we plan to explore variable stars in the GCs falling inside the field of the VVV survey. In this first paper, we search for and study the variables present in two highly reddened, moderately metal-poor, faint, inner Galactic GCs: 2MASS-GC 02 and Terzan 10. We report the discovery of sizable populations of RR Lyrae stars in both GCs. We use near-infrared period–luminosity relations to determine the color excess of each RR Lyrae star, from which we obtain both accurate distances to the GCs and the ratios of the selective-to-total extinction in their directions. We find the extinction toward both clusters to be elevated, non-standard, and highly differential. We also find both clusters to be closer to the Galactic center than previously thought, with Terzan 10 being on the far side of the Galactic bulge. Finally, we discuss their Oosterhoff properties, and conclude that both clusters stand out from the dichotomy followed by most Galactic GCs.

  15. Asteroseismology of the Hyades with K2: first detection of main-sequence solar-like oscillations in an open cluster

    NASA Astrophysics Data System (ADS)

    Lund, Mikkel N.; Basu, Sarbani; Silva Aguirre, Víctor; Chaplin, William J.; Serenelli, Aldo M.; García, Rafael A.; Latham, David W.; Casagrande, Luca; Bieryla, Allyson; Davies, Guy R.; Viani, Lucas S.; Buchhave, Lars A.; Miglio, Andrea; Soderblom, David R.; Valenti, Jeff A.; Stefanik, Robert P.; Handberg, Rasmus

    2016-08-01

    The Hyades open cluster was targeted during Campaign 4 (C4) of the NASA K2 mission, and short-cadence data were collected on a number of cool main-sequence stars. Here, we report results on two F-type stars that show detectable oscillations of a quality that allows asteroseismic analyses to be performed. These are the first ever detections of solar-like oscillations in main-sequence stars in an open cluster.

  16. NGC 7789: An open cluster case study

    SciTech Connect

    Overbeek, Jamie C.; Friel, Eileen D.; Pilachowski, Catherine A.; Mészáros, Szabolcs; Jacobson, Heather R.; Johnson, Christian I.

    2015-01-01

    We have obtained high-resolution spectra of 32 giants in the open cluster NGC 7789 using the Wisconsin–Indiana–Yale–NOAO Hydra spectrograph. We explore differences in atmospheric parameters and elemental abundances caused by the use of the linelist developed for the Gaia-ESO Survey (GES) compared to one based on Arcturus used in our previous work. [Fe/H] values decrease when using the GES linelist instead of the Arcturus-based linelist; these differences are probably driven by systematically lower (∼−0.1 dex) GES surface gravities. Using the GES linelist we determine abundances for 10 elements—Fe, Mg, Si, Ca, Ti, Na, Ni, Zr, Ba, and La. We find the cluster's average metallicity [Fe/H] = 0.03 ± 0.07 dex, in good agreement with literature values, and a lower [Mg/Fe] abundance than has been reported before for this cluster (0.11 ± 0.05 dex). We also find the neutron-capture element barium to be highly enhanced—[Ba/Fe] = +0.48 ± 0.08—and disparate from cluster measurements of neutron-capture elements La and Zr (−0.08 ± 0.05 and 0.08 ± 0.08, respectively). This is in accordance with recent discoveries of supersolar Ba enhancement in young clusters along with more modest enhancement of other neutron-capture elements formed in similar environments.

  17. Stellar, brown dwarf and multiple star properties from a radiation hydrodynamical simulation of star cluster formation

    NASA Astrophysics Data System (ADS)

    Bate, Matthew R.

    2012-02-01

    We report the statistical properties of stars, brown dwarfs and multiple systems obtained from the largest radiation hydrodynamical simulation of star cluster formation to date that resolves masses down to the opacity limit for fragmentation (a few Jupiter masses). The initial conditions are identical to those of previous barotropic calculations published by Bate, but this time the calculation is performed using a realistic equation of state and radiation hydrodynamics. The calculation uses sink particles to model 183 stars and brown dwarfs, including 28 binaries and 12 higher-order multiple systems, the properties of which are compared to the results from observational surveys. We find that the radiation hydrodynamical/sink particle simulation reproduces many observed stellar properties very well. In particular, whereas using a barotropic equation of state produces more brown dwarfs than stars, the inclusion of radiative feedback results in a stellar mass function and a ratio of brown dwarfs to stars in good agreement with observations of Galactic star-forming regions. In addition, many of the other statistical properties of the stars and brown dwarfs are in reasonable agreement with observations, including multiplicity as a function of primary mass, the frequency of very low mass binaries, and general trends for the mass ratio and separation distributions of binaries. We also examine the velocity dispersion of the stars, the distributions of disc truncation radii due to dynamical interactions, and coplanarity of orbits and sink particle spins in multiple systems. Overall, the calculation produces a cluster of stars whose statistical properties are difficult to distinguish from observed systems, implying that gravity, hydrodynamics and radiative feedback are the primary ingredients for determining the origin of the statistical properties of low-mass stars.

  18. STAR FORMATION ACTIVITY IN CLASH BRIGHTEST CLUSTER GALAXIES

    SciTech Connect

    Fogarty, Kevin; Postman, Marc; Connor, Thomas; Donahue, Megan; Moustakas, John

    2015-11-10

    The CLASH X-ray selected sample of 20 galaxy clusters contains 10 brightest cluster galaxies (BCGs) that exhibit significant (>5σ) extinction-corrected star formation rates (SFRs). Star formation activity is inferred from photometric estimates of UV and Hα+[N ii] emission in knots and filaments detected in CLASH Hubble Space Telescope ACS and WFC3 observations. UV-derived SFRs in these BCGs span two orders of magnitude, including two with a SFR ≳ 100 M{sub ⊙} yr{sup −1}. These measurements are supplemented with [O ii], [O iii], and Hβ fluxes measured from spectra obtained with the SOAR telescope. We confirm that photoionization from ongoing star formation powers the line emission nebulae in these BCGs, although in many BCGs there is also evidence of a LINER-like contribution to the line emission. Coupling these data with Chandra X-ray measurements, we infer that the star formation occurs exclusively in low-entropy cluster cores and exhibits a correlation with gas properties related to cooling. We also perform an in-depth study of the starburst history of the BCG in the cluster RXJ1532.9+3021, and create 2D maps of stellar properties on scales down to ∼350 pc. These maps reveal evidence for an ongoing burst occurring in elongated filaments, generally on ∼0.5–1.0 Gyr timescales, although some filaments are consistent with much younger (≲100 Myr) burst timescales and may be correlated with recent activity from the active galactic nucleus. The relationship between BCG SFRs and the surrounding intracluster medium gas properties provide new support for the process of feedback-regulated cooling in galaxy clusters and is consistent with recent theoretical predictions.

  19. Hubble space telescope observations of young star clusters in NGC-4038/4039, 'the antennae' galaxies

    NASA Technical Reports Server (NTRS)

    Whitmore, Bradley C.; Schweizer, Francois

    1995-01-01

    New, high-resolution images of the disks of NGC 4038/4039 obtained with the Wide Field Camera of the Hubble Space Telescope (HST) are presented. NGC 4038/4039, nicknamed The Antennae, is a prototypical example of a pair of colliding galaxies believed to be at an early stage of a merger. Down to the limiting magnitude of V approximately 23 mag, the HST images reveal a population of over 700 blue pointlike objects within the disks. The mean absolute magnitude of these objects is M(sub V) = -11 mag, with the brightest objects reaching M(sub V) approximately -15. Their mean apparent color indices ar U - V = -0.7 mag and V - 1 = 0.8 mag on the Johnson UVI passband system, while their mean indices corrected for internal reddening are (u - v)(sub 0) = -1.0 mag and (V - I(sub 0) = 0.5. Their mean effective radius, determined from slightly resolved images, is 18 pc (for H(sub 0) = 50 km/s /Mpc). Based on their luminosities and resolution, most of these objects cannot be individual stars, but are likely young compact star clusters. The brighter ones are similar to the objects found in NGC 1275 and NGC 7252, which appear to be young globular clusters formed during recent galazy mergers. Based on their U - V and V - I colors, the brightest, bluest clusters of NGC 4038/4039 appear to be less than 10 Myr old. Most of these bright clusters are relatively tightly clustered themselves, with typically a dozen individual clusters belonging to a complex identified as a giant H II region from ground-based observations. The cluster luminosity function (LF) is approximately a power law, phi(L)dL proportional to L(exp -1.78+/-0.05)dL, with no hint of a turnover at fainter magnitudes. This power-law shape agrees with the LF of Magellanic Cloud clusters and Galactic open clusters, but differs from the LF of old globular cluster systems that is typically Gaussian with a Full Width at Half Maximum (FWHM) of approximately 3 mag. Besides the blue clusters, we also find about a dozen extremely

  20. Modeling Jet and Outflow Feedback during Star Cluster Formation

    NASA Astrophysics Data System (ADS)

    Federrath, Christoph; Schrön, Martin; Banerjee, Robi; Klessen, Ralf S.

    2014-08-01

    Powerful jets and outflows are launched from the protostellar disks around newborn stars. These outflows carry enough mass and momentum to transform the structure of their parent molecular cloud and to potentially control star formation itself. Despite their importance, we have not been able to fully quantify the impact of jets and outflows during the formation of a star cluster. The main problem lies in limited computing power. We would have to resolve the magnetic jet-launching mechanism close to the protostar and at the same time follow the evolution of a parsec-size cloud for a million years. Current computer power and codes fall orders of magnitude short of achieving this. In order to overcome this problem, we implement a subgrid-scale (SGS) model for launching jets and outflows, which demonstrably converges and reproduces the mass, linear and angular momentum transfer, and the speed of real jets, with ~1000 times lower resolution than would be required without the SGS model. We apply the new SGS model to turbulent, magnetized star cluster formation and show that jets and outflows (1) eject about one-fourth of their parent molecular clump in high-speed jets, quickly reaching distances of more than a parsec, (2) reduce the star formation rate by about a factor of two, and (3) lead to the formation of ~1.5 times as many stars compared to the no-outflow case. Most importantly, we find that jets and outflows reduce the average star mass by a factor of ~ three and may thus be essential for understanding the characteristic mass of the stellar initial mass function.

  1. Modeling jet and outflow feedback during star cluster formation

    SciTech Connect

    Federrath, Christoph; Schrön, Martin; Banerjee, Robi; Klessen, Ralf S.

    2014-08-01

    Powerful jets and outflows are launched from the protostellar disks around newborn stars. These outflows carry enough mass and momentum to transform the structure of their parent molecular cloud and to potentially control star formation itself. Despite their importance, we have not been able to fully quantify the impact of jets and outflows during the formation of a star cluster. The main problem lies in limited computing power. We would have to resolve the magnetic jet-launching mechanism close to the protostar and at the same time follow the evolution of a parsec-size cloud for a million years. Current computer power and codes fall orders of magnitude short of achieving this. In order to overcome this problem, we implement a subgrid-scale (SGS) model for launching jets and outflows, which demonstrably converges and reproduces the mass, linear and angular momentum transfer, and the speed of real jets, with ∼1000 times lower resolution than would be required without the SGS model. We apply the new SGS model to turbulent, magnetized star cluster formation and show that jets and outflows (1) eject about one-fourth of their parent molecular clump in high-speed jets, quickly reaching distances of more than a parsec, (2) reduce the star formation rate by about a factor of two, and (3) lead to the formation of ∼1.5 times as many stars compared to the no-outflow case. Most importantly, we find that jets and outflows reduce the average star mass by a factor of ∼ three and may thus be essential for understanding the characteristic mass of the stellar initial mass function.

  2. CCD UBV photometry and kinematics of the open cluster NGC 225

    NASA Astrophysics Data System (ADS)

    Bilir, Selçuk; Bostancı, Z. Funda; Yontan, Talar; Güver, Tolga; Bakış, Volkan; Ak, Tansel; Ak, Serap; Paunzen, Ernst; Eker, Zeki

    2016-11-01

    We present the results of CCD UBV photometric and spectroscopic observations of the open cluster NGC 225. In order to determine the structural parameters of NGC 225, we calculated the stellar density profile in the cluster's field. We estimated the probabilities of the stars being physical members of the cluster using the existing astrometric data. The most likely members of the cluster were used in the determination of the astrophysical parameters of the cluster. We calculated the mean radial velocity of the cluster as Vr = - 8.3 ± 5.0 km s-1 from the optical spectra of eight stars in the cluster's field. Using the U - B vs B - V two-colour diagram and UV excesses of the F-G type main-sequence stars, the reddening and metallicity of NGC 225 were inferred as E (B - V) = 0.151 ± 0.047 mag and [Fe /H ] = - 0.11 ± 0.01 dex, respectively. We fitted the colour-magnitude diagrams of NGC 225 with the PARSEC isochrones and derived the distance modulus, distance and age of the cluster as μV = 9.3 ± 0.07 mag, d = 585 ± 20 pc and t = 900 ± 100 Myr, respectively. We also estimated the galactic orbital parameters and space velocity components of the cluster and found that the cluster has a slightly eccentric orbit of e = 0.07 ± 0.01 and an orbital period of Porb = 255 ± 5 Myr.

  3. Radial Variation in the Stellar Mass Functions of Star Clusters

    NASA Astrophysics Data System (ADS)

    Webb, Jeremy J.; Vesperini, Enrico

    2016-09-01

    A number of recent observational studies of Galactic globular clusters have measured the variation in the slope of a cluster's stellar mass function α with clustercentric distance r. In order to gather a deeper understanding of the information contained in such observations, we have explored the evolution of α(r) for star clusters with a variety of initial conditions using a large suite of N-body simulations. We have specifically studied how the time evolution of α(r) is affected by initial size, mass, binary fraction, primordial mass segregation, black hole retention, an external tidal field, and the initial mass function itself. Previous studies have shown that the evolution of αG is closely related to the amount of mass loss suffered by a cluster. Hence for each simulation we have also followed the evolution of the slope of the cluster's global stellar mass function, αG, and have shown that clusters follow a well-defined track in the αG-dα(r)/d(ln(r/rm)) plane. The location of a cluster on the αG - dα(r)/d(ln(r/rm)) plane can therefore constrain its dynamical history and, in particular, constrain possible variations in the stellar initial mass function. The αG-dα(r)/d(ln(r/rm)) plane thus serves as a key tool for fully exploiting the information contained in wide field studies of cluster stellar mass functions.

  4. The morphology of star clusters in the SMC

    SciTech Connect

    Kontizas, E.; Kontizas, M.; Sedmak, G.; Smareglia, R.; Dapergolas, A. Trieste Universita Osservatorio Astronomico, Trieste Athens National Observatory )

    1990-08-01

    The projected ellipticities of 34 populous SMC star clusters have been derived by means of PDS 1010A scans and a computer interactive method of reduction implemented on an Apollo 570 workstation. A pair of J and R plates taken with the 1.2 m UK Schmidt telescope in Australia were used. Radial ellipticity variations within individual globular clusters seem to be a common phenomenon for the SMC clusters, similar to that observed in the LMC clusters where the innerparts are more elliptical than the outer ones in 95 percent of the cases. The derived ellipticities which correspond to the innermost part of the cluster at radial distances near to half-mass radii have been found to be statistically more elliptical than those of the LMC, known to be more elliptical than those of the Galaxy. The dynamical masses of the clusters seem to correlate with ellipticities supporting the hypothesis that, either the gravitational field of the parent galaxy being a dominant factor affect slower the shape of the high mass clusters and/or the most massive clusters, being dynamically younger, retain their original shape. 30 refs.

  5. The morphology of star clusters in the SMC

    NASA Technical Reports Server (NTRS)

    Kontizas, E.; Kontizas, M.; Sedmak, G.; Smareglia, R.; Dapergolas, A.

    1990-01-01

    The projected ellipticities of 34 populous SMC star clusters have been derived by means of PDS 1010A scans and a computer interactive method of reduction implemented on an Apollo 570 workstation. A pair of J and R plates taken with the 1.2 m UK Schmidt telescope in Australia were used. Radial ellipticity variations within individual globular clusters seem to be a common phenomenon for the SMC clusters, similar to that observed in the LMC clusters where the innerparts are more elliptical than the outer ones in 95 percent of the cases. The derived ellipticities which correspond to the innermost part of the cluster at radial distances near to half-mass radii have been found to be statistically more elliptical than those of the LMC, known to be more elliptical than those of the Galaxy. The dynamical masses of the clusters seem to correlate with ellipticities supporting the hypothesis that, either the gravitational field of the parent galaxy being a dominant factor affect slower the shape of the high mass clusters and/or the most massive clusters, being dynamically younger, retain their original shape.

  6. Star Formation Efficiency in the Cool Cores of Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    McDonald, Michael; Veilleux, Sylvain; Rupke, David S. N.; Mushotzky, Richard; Reynolds, Christopher

    2011-06-01

    We have assembled a sample of high spatial resolution far-UV (Hubble Space Telescope Advanced Camera for Surveys/Solar Blind Channel) and Hα (Maryland-Magellan Tunable Filter) imaging for 15 cool core galaxy clusters. These data provide a detailed view of the thin, extended filaments in the cores of these clusters. Based on the ratio of the far-UV to Hα luminosity, the UV spectral energy distribution, and the far-UV and Hα morphology, we conclude that the warm, ionized gas in the cluster cores is photoionized by massive, young stars in all but a few (A1991, A2052, A2580) systems. We show that the extended filaments, when considered separately, appear to be star forming in the majority of cases, while the nuclei tend to have slightly lower far-UV luminosity for a given Hα luminosity, suggesting a harder ionization source or higher extinction. We observe a slight offset in the UV/Hα ratio from the expected value for continuous star formation which can be modeled by assuming intrinsic extinction by modest amounts of dust (E(B - V) ~ 0.2) or a top-heavy initial mass function in the extended filaments. The measured star formation rates vary from ~0.05 M sun yr-1 in the nuclei of non-cooling systems, consistent with passive, red ellipticals, to ~5 M sun yr-1 in systems with complex, extended, optical filaments. Comparing the estimates of the star formation rate based on UV, Hα, and infrared luminosities to the spectroscopically determined X-ray cooling rate suggests a star formation efficiency of 14+18 - 8%. This value represents the time-averaged fraction, by mass, of gas cooling out of the intracluster medium, which turns into stars and agrees well with the global fraction of baryons in stars required by simulations to reproduce the stellar mass function for galaxies. This result provides a new constraint on the efficiency of star formation in accreting systems.

  7. CCD UBV(RI)C photometry of twenty open clusters

    NASA Astrophysics Data System (ADS)

    Oralhan, İnci Akkaya; Karataş, Yüksel; Schuster, William J.; Michel, Raúl; Chavarría, Carlos

    2015-01-01

    Fundamental astrophysical parameters have been derived for 20 open clusters (OCs) using CCD UBV(RI)C photometric data observed with the 84 cm telescope at the San Pedro Mártir National Astronomical Observatory, México. The interstellar reddenings, metallicities, distances, and ages have been compared to the literature values. Significant differences are usually due to the usage of diverse empirical calibrations and differing assumptions, such as concerning cluster metallicity, as well as distinct isochrones which correspond to differing element-abundance ratios, internal stellar physics, and photometric systems. Different interstellar reddenings, as well as varying reduction and cluster-membership techniques, are also responsible for these kinds of systematic differences and errors. The morphological ages, which are derived from the morphological indices (δV and δ1) in the CM diagrams, are in good agreement with the isochrone ages of 12 OCs, those with good red clump (RC) and red giant (RG) star candidates. No metal abundance gradient is detected for the range 6.82⩽RGC⩽15.37 kpc, nor any correlation between the cluster ages and metal abundances for these 20 OCs. Young, metal-poor OCs, observed here in the third Galactic quadrant, may be associated with stellar over-densities, such as that in Canis Major (Martin et al.) and the Monoceros Ring (Newberg et al.), or signatures of past accretion events, as discussed by Yong et al. and Carraro et al.

  8. Optical polarization study towards the open cluster NGC 6249

    NASA Astrophysics Data System (ADS)

    Vergne, M. M.; Orsatti, A. M.; Feinstein, C.; Vega, E. I.; Martínez, R. E.

    2016-04-01

    We present multicolor linear polarimetric data (UBVRI) of 30 of the brightest stars in the region of the open cluster NGC 6249. The cluster members were found to be part of two subgroups with average polarization and orientation of the electric vector of P_{V}=1.7% ± 0.13, θ_{V}=39.7° ± 2.2; and P_{V}=2.34% ± 0.07, θ_{V}=41.0° ± 1.2, respectively. This difference in polarization may be a consequence of the presence of a dark, U-shaped absorbing zone seen on the central region, and probably located in front of, or inside, the cluster. From the study of the evolution of the A_v with the distance,we found evidence of the existence of two layers of dust at distances of ≈ 250 pc and ≈ 600 pc. The comparison between the polarimetric parameters of NGC 6249 and those of the nearby cluster NGC 6250 showed some coincidences.

  9. Simulating star clusters with the AMUSE software framework. I. Dependence of cluster lifetimes on model assumptions and cluster dissolution modes

    SciTech Connect

    Whitehead, Alfred J.; McMillan, Stephen L. W.; Vesperini, Enrico; Portegies Zwart, Simon

    2013-12-01

    We perform a series of simulations of evolving star clusters using the Astrophysical Multipurpose Software Environment (AMUSE), a new community-based multi-physics simulation package, and compare our results to existing work. These simulations model a star cluster beginning with a King model distribution and a selection of power-law initial mass functions and contain a tidal cutoff. They are evolved using collisional stellar dynamics and include mass loss due to stellar evolution. After studying and understanding that the differences between AMUSE results and results from previous studies are understood, we explored the variation in cluster lifetimes due to the random realization noise introduced by transforming a King model to specific initial conditions. This random realization noise can affect the lifetime of a simulated star cluster by up to 30%. Two modes of star cluster dissolution were identified: a mass evolution curve that contains a runaway cluster dissolution with a sudden loss of mass, and a dissolution mode that does not contain this feature. We refer to these dissolution modes as 'dynamical' and 'relaxation' dominated, respectively. For Salpeter-like initial mass functions, we determined the boundary between these two modes in terms of the dynamical and relaxation timescales.

  10. Are Young Massive Star Clusters in the Local Universe Analogous to Globular Clusters Progenitors?

    NASA Astrophysics Data System (ADS)

    Charbonnel, Corinne

    2015-08-01

    Several models do compete to reproduce the present-day characteristics of globular clusters (GC) and to explain the origin of the multiple stellar populations these systems are hosting.In parallel, independent clues on GC early evolution may be derived from observations of young massive clusters (YMC) in the Local Group.But are these two populations of clusters related? In this talk, we discuss how and if GC and YMC data can be reconciled.We revisit in particular the impact of massive stars on the early evolution of massive star clusters, as well as the question of early gas expulsion.We propose several tests to probe whether the YMC we are observing today can be considered as the analogues of GC progenitors.

  11. A distance of 133-137 parsecs to the Pleiades star cluster.

    PubMed

    Pan, Xiaopei; Shao, M; Kulkarni, S R

    2004-01-22

    Nearby 'open' clusters of stars (those that are not gravitationally bound) have played a crucial role in the development of stellar astronomy because, as a consequence of the stars having a common age, they provide excellent natural laboratories to test theoretical stellar models. Clusters also play a fundamental part in determining distance scales. The satellite Hipparcos surprisingly found that an extensively studied open cluster--the Pleiades (also known as the Seven Sisters)--had a distance of D = 118 +/- 4 pc (refs 2, 3), about ten per cent smaller than the accepted value. The discrepancy generated a spirited debate because the implication was that either current stellar models were incorrect by a surprising amount or Hipparcos was giving incorrect distances. Here we report the orbital parameters of the bright double star Atlas in the Pleiades, using long-baseline optical/infrared interferometry. From the data we derive a firm lower bound of D > 127 pc, with the most likely range being 133 < D < 137 pc. Our result reaffirms the fidelity of current stellar models.

  12. A distance of 133-137 parsecs to the Pleiades star cluster.

    PubMed

    Pan, Xiaopei; Shao, M; Kulkarni, S R

    2004-01-22

    Nearby 'open' clusters of stars (those that are not gravitationally bound) have played a crucial role in the development of stellar astronomy because, as a consequence of the stars having a common age, they provide excellent natural laboratories to test theoretical stellar models. Clusters also play a fundamental part in determining distance scales. The satellite Hipparcos surprisingly found that an extensively studied open cluster--the Pleiades (also known as the Seven Sisters)--had a distance of D = 118 +/- 4 pc (refs 2, 3), about ten per cent smaller than the accepted value. The discrepancy generated a spirited debate because the implication was that either current stellar models were incorrect by a surprising amount or Hipparcos was giving incorrect distances. Here we report the orbital parameters of the bright double star Atlas in the Pleiades, using long-baseline optical/infrared interferometry. From the data we derive a firm lower bound of D > 127 pc, with the most likely range being 133 < D < 137 pc. Our result reaffirms the fidelity of current stellar models. PMID:14737161

  13. Radial Velocities, Binarity, and Kinematic Membership in the Open Cluster NGC 2516

    NASA Astrophysics Data System (ADS)

    González, Jorge Federico; Lapasset, Emilio

    2000-05-01

    We present echelle spectroscopic observations for 36 bright (V<9.6) stars in the open cluster NGC 2516, including several blue straggler candidates and four red giants. Radial velocities are derived by cross-correlations using high signal-to-noise ratio standard spectra as templates. From 22 cluster members a mean cluster velocity of +22.0+/-0.2 km s-1 was derived. Membership probabilities of the observed stars are computed on the basis of their distance to the cluster center and kinematic criteria. We report the discovery of three double-lined spectroscopic binaries and several probable binaries among main-sequence stars. A binary frequency of more than 26% is found among the high-mass main-sequence stars. The blue straggler HD 66341 is a slowly rotating cluster member with constant velocity, while HD 66194 is a fast-rotating Be star with probable variations in radial velocity. Other blue straggler candidates, such as HD 65663, 65950, 66066, and 65987, must be considered turnoff stars. The observations presented here were obtained at the Complejo Astronómico El Leoncito (CASLEO), which is operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET) and the national universities of La Plata, Córdoba, and San Juan.

  14. DISRUPTION OF STAR CLUSTERS IN THE INTERACTING ANTENNAE GALAXIES

    SciTech Connect

    Karl, Simon J.; Naab, Thorsten; Fall, S. Michael E-mail: naab@mpa-garching.mpg.de

    2011-06-10

    We re-examine the age distribution of star clusters in the Antennae in the context of N-body+hydrodynamical simulations of these interacting galaxies. All of the simulations that account for the observed morphology and other properties of the Antennae have star formation rates that vary relatively slowly with time, by factors of only 1.3-2.5 in the past 10{sup 8} yr. In contrast, the observed age distribution of the clusters declines approximately as a power law, dN/d{tau}{proportional_to}{tau}{sup {gamma}} with {gamma} = -1.0, for ages 10{sup 6} yr {approx}< {tau} {approx}< 10{sup 9} yr. These two facts can only be reconciled if the clusters are disrupted progressively for at least {approx}10{sup 8} yr and possibly {approx}10{sup 9} yr. When we combine the simulated formation rates with a power-law model, f{sub surv}{proportional_to}{tau}{sup {delta}}, for the fraction of clusters that survive to each age {tau}, we match the observed age distribution with exponents in the range -0.9 {approx}< {delta} {approx}< -0.6 (with a slightly different {delta} for each simulation). The similarity between {delta} and {gamma} indicates that dN/d{tau} is shaped mainly by the disruption of clusters rather than variations in their formation rate. Thus, the situation in the interacting Antennae resembles that in relatively quiescent galaxies such as the Milky Way and the Magellanic Clouds.

  15. Nearby star cluster yields insights into early universe

    NASA Astrophysics Data System (ADS)

    1998-07-01

    The nebula offers a unique opportunity for a close-up glimpse of the "firestorm" accompanying the birth of extremely massive stars, each blazing with the brilliance of 300,000 of our suns. Such galactic fireworks were much more common billions of years ago in the early universe, when most star formation took place. "This is giving us new insights into the physical mechanisms governing star formation in far away galaxies that existed long ago," says Mohammad Heydari-Malayeri (Paris Observatory, France), who headed the international team of astronomers who made the discovery using Hubble's Wide Field and Planetary Camera 2. Because these stars are deficient in heavier elements, they also evolve much like the universe's earliest stars, which were made almost exclusively of the primordial elements hydrogen and helium that were created in the big bang. The Small Magellanic Cloud is a unique laboratory for studying star formation in the early universe since it is the closest and best seen galaxy containing so-called "metal-poor" first- and second -generation type stars. These observations show that massive stars may form in groups. "As a result, it is more likely some of these stars are members of double and multiple star systems," says Heydari-Malayeri. "The multiple systems will affect stellar evolution considerably by ejecting a great deal of matter into space." This furious rate of mass loss from these stars is evident in the Hubble picture, which reveals dramatic shapes sculpted in the nebula's wall of glowing gases by violent stellar winds and shock waves. "This implies a very turbulent environment typical of young star formation regions," Heydari-Malayeri adds. He believes one of the members of the cluster may be an extremely rare and short-lived class of super-hot star (50,000 degrees Kelvin) called a Wolf-Rayet. This star represents a violent, transitional phase in the final years of a massive star's existence - before it ultimately explodes as a supernova. "If

  16. Testing asteroseismic scaling relations using eclipsing binaries in star clusters and the field

    NASA Astrophysics Data System (ADS)

    Brogaard, K.; Jessen-Hansen, J.; Handberg, R.; Arentoft, T.; Frandsen, S.; Grundahl, F.; Bruntt, H.; Sandquist, E. L.; Miglio, A.; Beck, P. G.; Thygesen, A. O.; Kjærgaard, K. L.; Haugaard, N. A.

    2016-09-01

    The accuracy of stellar masses and radii determined from asteroseismology is not known! We examine this issue for giant stars by comparing classical measurements of detached eclipsing binary systems (dEBs) with asteroseismic measurements from the Kepler mission. For star clusters, we extrapolate measurements of dEBs in the turn-off region to the red giant branch and the red clump where we investigate the giants as an ensemble. For the field stars, we measure dEBs with an oscillating giant component. These measurements allow a comparison of masses and radii calculated from a classical eclipsing binary analysis to those calculated from asteroseismic scaling relations and/or other asteroseismic methods. Our first results indicate small but significant systematic differences between the classical and asteroseismic measurements. In this contribution we show our latest results and summarize the current status and future plans. We also stress the importance of realizing that for giant stars mass cannot always be translated to age, since an unknown fraction of these evolved through a blue straggler phase with mass transfer in a binary system. Rough estimates of how many such stars to expect are given based on our findings in the open clusters NGC 6819 and NGC 6791.

  17. Spectroscopy and Strömgren Photometry in the Young Open Cluster NGC 2169

    NASA Astrophysics Data System (ADS)

    Yost, C. C.; Gray, R. O.; Murdick, L.; Robinson, P.

    2000-12-01

    NGC 2169 is a young (1.5 x 107 yr) open cluster in Orion with no associated nebulosity. As part of our program of searching for peculiar stars in open clusters, we have obtained classification--resolution (1.8Å/2 pixels) spectra for 23 stars, low--resolution (20Å/2 pixels) spectra for an additional 9 stars, and Strömgren uvby photometry for 40 stars in the field of NGC 2169 down to V ~ 15.5. The observations were made on the 0.8 meter telescope of Appalachian State University's Dark Sky Observatory. NGC 2169 appears to have very few members later than spectral type A3. However, the Strömgren photometry yields 5 new candidate members of NGC 2169, plus a population of possible but not probable pre--main--sequence stars. The spectroscopy shows that most stars in NGC 2169 are normal, except for two helium--weak B--type stars, and a mild Silicon Bp star. More spectroscopy and photometry is planned in the field. This project has been partially funded by a small AAS Grant, plus an Undergraduate Research Scholarship from the Graduate School of Appalachian State University to C.C. Yost. We would also like to acknowledge a grant from the Fund for Astrophysical Research.

  18. The Formation of Hierarchical Systems in Star Clusters

    NASA Astrophysics Data System (ADS)

    Aarseth, S. J.

    Results of star cluster simulations on HARP show that hierarchical systems play an important role for the overall dynamics. Models with 8000 single stars and 2000 primordial binaries reveal a gradual build-up and more than 20 such systems may exist during the later stages of evolution. We concentrate on the formation of hierarchies and their stability. This analysis is facilitated by the use of chain regularization which provides a natural tool for investigating the formation mechanism. Although hierarchies can be considered as newly formed binaries, their mode of formation often leads directly to hard binding energies. Most of these systems are formed by close two-body encounters between binaries, whereas standard binaries form by the classical three-body process and their appearance is therefore coinsiderably less pronounced. Finally, we discuss the implications of persistent higher-order systems for direct N-body simulations of globular clusters.

  19. Super Star Clusters in Luminous Infrared Galaxies: the SUNBIRD Survey

    NASA Astrophysics Data System (ADS)

    Väisänen, P.; Randriamanakoto, Z.; Escala, A.; Kankare, E.; Kniazev, A.; Kotilainen, J. K.; Mattila, S.; Ramphul, R.; Ryder, S.; Tekola, A.

    2014-09-01

    We summarize recent results from an Adaptive Optics (AO) imaging survey of 40 Luminous IR Galaxies (LIRGs). We have constructed the first statistically significant sample of Luminosity Functions (LFs) of Super Star Clusters (SSCs) in the near-IR, and find evidence that the LF slopes in LIRGs are shallower than in more quiescent spiral galaxies. Distance and blending effects were investigated in detail paving the way for SSC studies further out than done previously. We have also correlated the luminosities of the brightest clusters with the star formation rates of the hosts and find that the characteristics of the relation suggest an underlying physical driver rather than solely a size-of-sample effect. Finally we present early results of using SSC age and mass properties to trace the histories of the target LIRG systems.

  20. Abundance analysis of an extended sample of open clusters: A search for chemical inhomogeneities

    NASA Astrophysics Data System (ADS)

    Reddy, Arumalla B. S.; Giridhar, Sunetra; Lambert, David L.

    We have initiated a program to explore the presence of chemical inhomogeneities in the Galactic disk using the open clusters as ideal probes. We have analyzed high-dispersion echelle spectra (R ≥ 55,000) of red giant members for eleven open clusters to derive abundances for many elements. The membership to the cluster has been confirmed through their radial velocities and proper motions. The spread in temperatures and gravities being very small among the red giants, nearly the same stellar lines were employed thereby reducing the random errors. The errors of average abundance for the cluster were generally in 0.02 to 0.07 dex range. Our present sample covers galactocentric distances of 8.3 to 11.3 kpc and an age range of 0.2 to 4.3 Gyrs. Our earlier analysis of four open clusters (Reddy A.B.S. et al., 2012, MNRAS, 419,1350) indicate that abundances relative to Fe for elements from Na to Eu are equal within measurement uncertainties to published abundances for thin disk giants in the field. This supports the view that field stars come from disrupted open clusters. In the enlarged sample of eleven open clusters we find cluster to cluster abundance variations for some s- and r- process elements, with certain elements such as Zr and Ba showing large variation. These differences mark the signatures that these clusters had formed under different environmental conditions (Type II SN, Type Ia SN, AGB stars or a mixture of any of these) unique to the time and site of formation. These eleven clusters support the widely held impression that there is an abundance gradient such that the metallicity [Fe/H] at the solar galactocentric distance decreases outwards at about -0.1 dex per kpc.

  1. THE STAR FORMATION HISTORY OF THE MILKY WAY'S NUCLEAR STAR CLUSTER

    SciTech Connect

    Pfuhl, O.; Fritz, T. K.; Eisenhauer, F.; Genzel, R.; Gillessen, S.; Ott, T.; Dodds-Eden, K.; Zilka, M.; Sternberg, A.; Maness, H.

    2011-11-10

    We present spatially resolved imaging and integral field spectroscopy data for 450 cool giant stars within 1 pc from Sgr A*. We use the prominent CO bandheads to derive effective temperatures of individual giants. Additionally we present the deepest spectroscopic observation of the Galactic center (GC) so far, probing the number of B9/A0 main-sequence stars (2.2-2.8 M{sub sun}) in two deep fields. From spectrophotometry we construct a Hertzsprung-Russell diagram of the red giant population and fit the observed diagram with model populations to derive the star formation history of the nuclear cluster. We find (1) that the average nuclear star formation rate dropped from an initial maximum {approx}10 Gyr ago to a deep minimum 1-2 Gyr ago and increased again during the last few hundred Myrs, (2) that roughly 80% of the stellar mass formed more than 5 Gyr ago, and (3) that mass estimates within R {approx} 1 pc from Sgr A* favor a dominant star formation mode with a 'normal' Chabrier/Kroupa initial mass function for the majority of the past star formation in the GC. The bulk stellar mass seems to have formed under conditions significantly different from the young stellar disks, perhaps because at the time of the formation of the nuclear cluster the massive black hole and its sphere of influence were much smaller than today.

  2. Evolution of stellar collision products in open clusters. II. A grid of low-mass collisions

    NASA Astrophysics Data System (ADS)

    Glebbeek, E.; Pols, O. R.

    2008-09-01

    In a companion paper we studied the detailed evolution of stellar collision products that occurred in an N-body simulation of the old open cluster M 67 and compared our detailed models to simple prescriptions. In this paper we extend this work by studying the evolution of the collision products in open clusters as a function of mass and age of the progenitor stars. We calculated a grid of head-on collisions covering the section of parameter space relevant for collisions in open clusters. We create detailed models of the merger remnants using an entropy-sorting algorithm and follow their subsequent evolution during the initial contraction phase, through the main sequence and up to the giant branch with our detailed stellar evolution code. We compare the location of our models in a colour-magnitude diagram to the observed blue straggler population of the old open clusters M 67 and NGC 188 and find that they cover the observed blue straggler region of both clusters. For M 67, collisions need to have taken place recently. Differences between the evolution tracks of the collision products and normal main sequence stars can be understood quantitatively using a simple analytic model. We present an analytic recipe that can be used in an N-body code to transform a precomputed evolution track for a normal star into an evolution track for a collision product. Tables 4 and 5 are only available in electronic form at http://www.aanda.org

  3. Candidate members of star clusters from LAMOST DR2

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Chen, Xiao-Yan; Liu, Chao; Chen, Li; Deng, Li-Cai; Hou, Jin-Liang; Shao, Zheng-Yi; Yang, Fan; Wu, Yue; Yang, Ming; Zhang, Yong; Hou, Yong-Hui; Wang, Yue-Fei

    2015-08-01

    In this work, we provide 2189 photometrically- and kinematically-selected candidate members of 24 star clusters from the LAMOST DR2 catalog. We perform two-step membership identification: selection along the stellar track in the color-magnitude diagram, i.e., photometric identification, and selection from the distribution of radial velocities, i.e. the kinematic identification. We find that the radial velocities from the LAMOST data are very helpful in the membership identification. The mean probability of membership is 40% for the sample selected with radial velocity. With these 24 star clusters, we investigate the performance of the radial velocity and metallicity estimated with the LAMOST pipeline. We find that the systematic offsets in radial velocity and metallicity are 0.85 ± 1.26 km s-1 and -0.08 ± 0.04 dex, with dispersions of 5.47+1.16-0.71 km s-1 and 0.13+0.04-0.02 dex, respectively. Finally, we propose that the photometrically-selected candidate members of the clusters covered by the LAMOST footprint should be assigned higher priority so that more candidate stars can be observed.

  4. Determining the Locations of Brown Dwarfs in Young Star Clusters

    NASA Technical Reports Server (NTRS)

    Porter, Lauren A.

    2005-01-01

    Brown dwarfs are stellar objects with masses less than 0.08 times that of the Sun that are unable to sustain nuclear fusion. Because of the lack of fusion, they are relatively cold, allowing the formation of methane and water molecules in their atmospheres. Brown dwarfs can be detected by examining stars' absorption spectra in the near-infrared to see whether methane and water are present. The objective of this research is to determine the locations of brown dwarfs in Rho Ophiuchus, a star cluster that is only 1 million years old. The cluster was observed in four filters in the near-infrared range using the Wide-Field Infra-Red Camera (WIRC) on the 100" DuPont Telescope and Persson's Auxiliary Nasymith Infrared Camera (PANIC) on the 6.5-m Magellan Telescope. By comparing the magnitude of a star in each of the four filters, an absorption spectrum can be formed. This project uses standard astronomical techniques to reduce raw frames into final images and perform photometry on them to obtain publishable data. Once this is done, it will be possible to determine the locations and magnitudes of brown dwarfs within the cluster.

  5. DUST-OBSCURED STAR FORMATION IN INTERMEDIATE REDSHIFT GALAXY CLUSTERS

    SciTech Connect

    Finn, Rose A.; Desai, Vandana; Rudnick, Gregory; Poggianti, Bianca; Bell, Eric F.; Hinz, Joannah; Zaritsky, Dennis; Jablonka, Pascale; Milvang-Jensen, Bo; Moustakas, John; Rines, Kenneth E-mail: jmoustakas@ucsd.ed

    2010-09-01

    We present Spitzer MIPS 24 {mu}m observations of sixteen 0.4 < z < 0.8 galaxy clusters drawn from the ESO Distant Cluster Survey. This is the first large 24 {mu}m survey of clusters at intermediate redshift. The depth of our imaging corresponds to a total IR luminosity of 8 x 10{sup 10} L{sub sun}, just below the luminosity of luminous infrared galaxies (LIRGs), and 6{sup +1}{sub -1}% of M{sub V} < -19 cluster members show 24 {mu}m emission at or above this level. We compare with a large sample of coeval field galaxies and find that while the fraction of cluster LIRGs lies significantly below that of the field, the IR luminosities of the field and cluster galaxies are consistent. However, the stellar masses of the EDisCS LIRGs are systematically higher than those of the field LIRGs. A comparison with optical data reveals that {approx}80% of cluster LIRGs are blue and the remaining 20% lie on the red sequence. Of LIRGs with optical spectra, 88{sup +4} {sub -5}% show [O II] emission with EW([O II]) > 5 A, and {approx}75% exhibit optical signatures of dusty starbursts. On average, the fraction of cluster LIRGs increases with projected clustercentric radius but remains systematically lower than the field fraction over the area probed (<1.5x R {sub 200}). The amount of obscured star formation declines significantly over the 2.4 Gyr interval spanned by the EDisCS sample, and the rate of decline is the same for the cluster and field populations. Our results are consistent with an exponentially declining LIRG fraction, with the decline in the field delayed by {approx}1 Gyr relative to the clusters.

  6. INSIGHTS INTO PRE-ENRICHMENT OF STAR CLUSTERS AND SELF-ENRICHMENT OF DWARF GALAXIES FROM THEIR INTRINSIC METALLICITY DISPERSIONS

    SciTech Connect

    Leaman, Ryan

    2012-12-01

    Star clusters are known to have smaller intrinsic metallicity spreads than dwarf galaxies due to their shorter star formation timescales. Here we use individual spectroscopic [Fe/H] measurements of stars in 19 Local Group dwarf galaxies, 13 Galactic open clusters, and 49 globular clusters to show that star cluster and dwarf galaxy linear metallicity distributions are binomial in form, with all objects showing strong correlations between their mean linear metallicity Z-bar and intrinsic spread in metallicity {sigma}(Z){sup 2}. A plot of {sigma}(Z){sup 2} versus Z-bar shows that the correlated relationships are offset for the dwarf galaxies from the star clusters. The common binomial nature of these linear metallicity distributions can be explained with a simple inhomogeneous chemical evolution model, where the star cluster and dwarf galaxy behavior in the {sigma}(Z){sup 2}- Z-bar diagram is reproduced in terms of the number of enrichment events, covering fraction, and intrinsic size of the enriched regions. The inhomogeneity of the self-enrichment sets the slope for the observed dwarf galaxy {sigma}(Z){sup 2}- Z-bar correlation. The offset of the star cluster sequence from that of the dwarf galaxies is due to pre-enrichment, and the slope of the star cluster sequence represents the remnant signature of the self-enriched history of their host galaxies. The offset can be used to separate star clusters from dwarf galaxies without a priori knowledge of their luminosity or dynamical mass. The application of the inhomogeneous model to the {sigma}(Z){sup 2}- Z-bar relationship provides a numerical formalism to connect the self-enrichment and pre-enrichment between star clusters and dwarf galaxies using physically motivated chemical enrichment parameters. Therefore we suggest that the {sigma}(Z){sup 2}- Z-bar relationship can provide insight into what drives the efficiency of star formation and chemical evolution in galaxies, and is an important prediction for galaxy

  7. The life cycle of star clusters in a tidal field

    NASA Astrophysics Data System (ADS)

    Gieles, Mark; Heggie, Douglas C.; Zhao, Hongsheng

    2011-06-01

    The evolution of globular clusters due to two-body relaxation results in an outward flow of energy and at some stage all clusters need a central energy source to sustain their evolution. Hénon provided the insight that we do not need to know the details of the energy production in order to understand the relaxation-driven evolution of the cluster, at least outside the core. He provided two self-similar solutions for the evolution of clusters based on the view that the cluster as a whole determines the amount of energy that is produced in the core: steady expansion for isolated clusters, and homologous contraction for clusters evaporating in a tidal field. The amount of expansion or evaporation per relaxation time-scale is set by the instantaneous radius or number of stars, respectively. We combine these two approximate models and propose a pair of Unified Equations of Evolution (UEE) for the life cycle of initially compact clusters in a tidal field. The half-mass radius increases during the first part (roughly half) of the evolution, and decreases in the second half, while the escape rate approaches a constant value set by the tidal field. We refer to these phases as 'expansion dominated' and 'evaporation dominated'. These simple analytical solutions of the UEE immediately allow us to construct evolutionary tracks and isochrones in terms of cluster half-mass density, cluster mass and galactocentric radius. From a comparison to the Milky Way globular clusters we find that roughly one-third of them are in the second, evaporation-dominated phase and for these clusters the density inside the half-mass radius varies with the galactocentric distance RG as ρh∝R-2G. The remaining two-thirds are still in the first, expansion-dominated phase and their isochrones follow the environment-independent scaling ρh∝M2, where M is the cluster mass; that is, a constant relaxation time-scale. We find substantial agreement between Milky Way globular cluster parameters and the

  8. Improved proper motion determinations for 15 open clusters based on the UCAC4 catalog

    NASA Astrophysics Data System (ADS)

    Kurtenkov, Alexander; Dimitrova, Nadezhda; Atanasov, Alexander; Aleksiev, Teodor D.

    2016-07-01

    The proper motions of 15 nearby (d > 1 kpc) open clusters (OCs) were recalculated using data from the UCAC4 catalog. Only evolved or main sequence stars inside a certain radius from the center of the cluster were used. The results significantly differ from the ones presented by Dias et al. (2014). This could be explained by a different approach in which we take the field star contamination into account. The present work aims to emphasize the importance of applying photometric criteria for the calculation of OC proper motions.

  9. A Survey of Localized Star Clusters in NGC 1427A

    NASA Astrophysics Data System (ADS)

    Weaver, John R.; Gregg, Michael

    2016-01-01

    It is well established that galactic clusters provide dynamic environments in which to examine galaxy evolution. The starbursting dwarf irregular NGC 1427A presents an interesting case as it is being pulled into the nearby Fornax cluster at supersonic speeds, producing a visibly exceptional star formation rate and notably blue colors. It has been suggested that the highly deformed structure of NGC 1427A is due to ram pressure stripping as a result of interacting with a super-heated ICM provided by several nearby elliptical galaxies. The gas density profile of its leading edge is similar to a "bow-shock", containing several dozen super-star clusters (SSCs) and thousands of smaller star forming clusters. It is clearly evident that the properties of NGC 1427A change rapidly over relatively short distances. Using dithered HST/ACS images in Sloan equivalent g' r' i' z' and Hα filters, we present a morphological and photometric study of NGC 1427A using a novel approach in which stellar properties are measured from sources grouped within localized regions. Apertures are fitted for ~5000 sources at 4σ using a filter-combined master image. Four characteristic regions are chosen to study stellar properties, selected interactively through DS9. We then introduce COMET, a specially-designed source catalog handler for producing graphical figures of each region, cropping both spatially and photometrically. These are then batch-reviewed and analyzed using synthetic isochrones corresponding of each region. Hα bright sources are indicated to illustrate the significance of SSCs. Secondary analysis is carried out using smoothed color maps of source-subtracted diffuse light, yielding penetrative mapping of underlying stellar populations. We show for the first time how the dynamical stellar populations of NGC 1427A differ as a function of position across the surface of the galaxy, ultimately furthering our understanding of cluster interactions and the evolution of irregular galaxies

  10. UV-selected Young Massive Star Cluster Populations in Nearby Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Smith, Linda J.

    2015-08-01

    The Legacy ExtraGalactic UV Survey (LEGUS) is an HST Treasury program aimed at the investigation of star-formation and its relationship to environment in nearby galaxies. The results of a UV-selected study of young massive star clusters in a sample of nearby galaxies (< 10 Mpc) using detections based on the WFC3/UVIS F275W filter will be presented. Previous studies have used V or I-band detections and tend to ignore clusters younger than 10 Myr old. This very young population, which represents the most recent cluster-forming event in the LEGUS galaxies will be discussed.This poster is presented on behalf of the LEGUS team (PI Daniela Calzetti).

  11. Optical and Near Infrared Study of the Open Cluster Czernik 17

    NASA Astrophysics Data System (ADS)

    Sujatha, S.; Krishna, K. K.; Komala, S.; Babu, G. S. D.

    2015-09-01

    In this paper we present the fundamental physical parameters of the poorly studied open cluster Czernik 17. The parameters have been derived from the UBVRI CCD photometric observations obtained with the 2-m Himalayan Chandra Telescope as well as using data taken from the Two-Micron All Sky Survey. This cluster is located in the direction of Camelopardalis constellation with a radial extent of 4' and is estimated to be at a distance of 7 ± 0.5 kpc. The interstellar extinction in the line of sight of the cluster is found to be E(B-V) = 0.72 ± 0.05 mag. Based on the evolutionary stage of the evolved stars the log(age) of the cluster is found to be 8.05 to 8.1 making it a relatively young cluster which can be considered as a spiral arm tracer of the outer arm. We have constructed the luminosity function for the stars within the adopted cluster radius which shows the common trend of the number of stars increasing toward the fainter magnitudes. We also find the presence of Böhm-Vitense gaps in the main-sequence branch of the color-magnitude diagrams of this cluster which may be attributed to surface convection which has the effect of making the stars redder although the luminosity remains unchanged.

  12. Radial Velocities and Kinematic Membership in the Open Cluster NGC 3114

    NASA Astrophysics Data System (ADS)

    González, Jorge Federico; Lapasset, Emilio

    2001-05-01

    Echelle spectroscopic observations for 30 bright stars in the field of the sparse open cluster NGC 3114 are presented. The sample includes main-sequence stars, yellow and red giants, and blue straggler candidates. Radial velocities are derived by cross-correlations using high signal-to-noise ratio standard spectra as templates. The cluster mean velocity is well defined from eight giants and several main-sequence stars whose average is =-3.52+/-0.25 km s-1. The membership probabilities of the observed stars are computed on the basis of the velocity distributions of the cluster and field stars, and the expected percentage of contamination at each position. We classified 19 cluster members and 10 nonmembers; the remaining star is a known spectroscopic binary for which no membership probability was assigned. Among the members, there is a bright yellow giant, seven red giants, and four blue straggler candidates, although they should be considered as turn-off stars. The location of two of them in the color-magnitude diagram (slightly blueward of the turn-off) can be explained by their low rotational velocities. No velocity variations were detected in the 16 stars measured more than once, which indicates that NGC 3114 possess an abnormally low binary frequency. From spectral types of cluster members, a distance modulus (V-Mv)=9.8+/-0.2 mag and a reddening E(B-V)=0.07+/-0.01 mag are derived. The cluster age is estimated to be 1.6×108 yr. The observations presented here were obtained at the Complejo Astronómico El Leoncito (CASLEO), which is operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET) and the National Universities of La Plata, Córdoba and San Juan.

  13. The enigma of the open cluster M29 (NGC 6913) solved

    SciTech Connect

    Straižys, V.; Milašius, K.; Černis, K.; Kazlauskas, A.; Zdanavičius, K.; Zdanavičius, J.; Laugalys, V.; Boyle, R. P.; Vrba, F. J.; Munari, U.; Walborn, N. R.; Janusz, R.

    2014-11-01

    Determining the distance to the open cluster M29 (NGC 6913) has proven difficult, with distances determined by various authors differing by a factor of two or more. To solve this problem, we have initiated a new photometric investigation of the cluster in the Vilnius seven-color photometric system, supplementing it with available data in the BV and JHK {sub s} photometric systems and spectra of the nine brightest stars of spectral classes O and B. Photometric spectral classes and luminosities of 260 stars in a 15' × 15' area down to V = 19 mag are used to investigate the interstellar extinction run with distance and to estimate the distance of the Great Cygnus Rift, ∼ 800 pc. The interstellar reddening law in the optical and near-infrared regions is found to be close to normal, with the ratio of extinction to color excess R{sub BV} = 2.87. The extinction A{sub V} of cluster members is between 2.5 and 3.8 mag, with a mean value of 2.97 mag, or E {sub B–V} = 1.03. The average distance of eight stars of spectral types O9-B2 is 1.54 ± 0.15 kpc. Two stars from the seven brightest stars are field stars: HDE 229238 is a background B0.5 supergiant and HD 194378 is a foreground F star. In the intrinsic color-magnitude diagram, seven fainter stars of spectral classes B3-B8 are identified as possible members of the cluster. The 15 selected members of the cluster of spectral classes O9-B8 plotted on the log L/L {sub ☉} versus log T {sub eff} diagram, together with the isochrones from the Padova database, give the age of the cluster as 5 ± 1 Myr.

  14. Discovery of a brown dwarf in the Pleiades star cluster

    NASA Astrophysics Data System (ADS)

    Rebolo, R.; Zapatero Osorio, M. R.; Martín, E. L.

    1995-09-01

    BROWN dwarfs are cool star-like objects that have insufficient mass to maintain stable nuclear fusion in their interiors. Although brown dwarfs are not stars, they are expected to form in the same way, and their frequency of occurrence should reflect the trends seen in the birthrates of low-mass stars. But finding brown dwarfs has proved to be difficult, because of their low intrinsic luminosity. The nearby Pleiades star cluster is widely recognized as a likely host for detectable brown dwarfs because of its young age - the still-contracting brown dwarfs should radiate a large fraction of their gravitational energy at near-infrared wavelengths. Here we report the discovery of a brown dwarf near the centre of the Pleiades. The luminosity and temperature of this object are so low that its mass must be less than 0.08 solar masses, the accepted lower limit on the mass of a true star1-3. The detection of only one brown dwarf within our survey area is consistent with a smooth extrapolation of the stellar mass function of the Pleiades4, suggesting that brown dwarfs, although probably quite numerous in the Galactic disk, are unlikely to comprise more than ~1% of its mass.

  15. Atmosphere composition of quiescent accreting neutron stars in globular clusters

    NASA Astrophysics Data System (ADS)

    Servillat, M.

    2012-12-01

    Through the study of the quiescent X-ray emission of neutron stars in low-mass X-ray binaries it is possible to constrain the equation of state of dense matter. However, the chemical composition of the neutron star atmosphere is still uncertain. Using deep Chandra observations, we report the detailed spectral analysis of a neutron star in the globular cluster M28. For the first time for this kind of object, different atmosphere models composed of hydrogen, helium or carbon are used. The carbon model can be ruled out, and the derived mass and radius are clearly distinct depending on the composition of the atmosphere, leading to different constraints on the equation of state. We compare those results with the other similar neutron stars studied with a hydrogen atmosphere model only and show that a helium model could be relevant in many cases. Measurements of neutron star masses/radii by spectral fitting should consider the possibility of heavier element atmospheres, which produce larger masses/radii for the same data, unless the composition of the accretor is known independently.

  16. A comprehensive set of simulations studying the influence of gas expulsion on star cluster evolution

    NASA Astrophysics Data System (ADS)

    Baumgardt, H.; Kroupa, P.

    2007-10-01

    We have carried out a large set of N-body simulations studying the effect of residual-gas expulsion on the survival rate, and final properties of star clusters. We have varied the star formation efficiency (SFE), gas expulsion time-scale and strength of the external tidal field, obtaining a three-dimensional grid of models which can be used to predict the evolution of individual star clusters or whole star cluster systems by interpolating between our runs. The complete data of these simulations are made available on the internet. Our simulations show that cluster sizes, bound mass fraction and velocity profile are strongly influenced by the details of the gas expulsion. Although star clusters can survive SFEs as low as 10 per cent if the tidal field is weak and the gas is removed only slowly, our simulations indicate that most star clusters are destroyed or suffer dramatic loss of stars during the gas removal phase. Surviving clusters have typically expanded by a factor of 3 or 4 due to gas removal, implying that star clusters formed more concentrated than as we see them today. Maximum expansion factors seen in our runs are around 10. If gas is removed on time-scales smaller than the initial crossing time, star clusters acquire strongly radially anisotropic velocity dispersions outside their half-mass radii. Observed velocity profiles of star clusters can therefore be used as a constraint on the physics of cluster formation.

  17. Mass Loss from Evolved Stars in LMC Clusters

    NASA Astrophysics Data System (ADS)

    Points, Sean; Olsen, K.; Blum, R.; Whitney, B.; Meade, M.; Babler, B.; Indebetouw, R.; Hora, J.; Gordon, K.; Engelbracht, C.; For, B.; Block, M.; Misselt, K.; Meixner, M.; Vijh, U.; Leitherer, C.; Srinivasan, S.

    2006-12-01

    We present preliminary results of our investigation into the mass-loss from evolved stars in rich, well-studied clusters in the Large Magellanic Cloud (LMC) using data obtained with the Spitzer Space Telescope SAGE (Surveying the Agents of a Galaxy's Evolution) survey. We have obtained the 8 and 24 micron magnitudes of point sources toward 30 clusters in the LMC with a range of ages from 10^6 to 10^10 years, a spread in metallicity ([Fe/H]) from -2.0 to 0.0, and masses from 10^3 to 10^5 solar masses. Using the 8 and 24 micron fluxes as proxies for stellar mass loss, we calculate the normalized mass loss rates for the clusters in our sample. We use these data to explore the relationships between mass-loss, age, and metallicity, with the aim of developing a cluster mass-loss history for the LMC. Our further goal is to use these results in conjunction with knowledge of the star formation history of the LMC to investigate the LMC's chemical enrichment history.

  18. Catalog of open clusters and associated interstellar matter

    NASA Technical Reports Server (NTRS)

    Leisawitz, David

    1988-01-01

    The Catalog of Open Clusters and Associated Interstellar Matter summarizes observations of 128 open clusters and their associated ionized, atomic, and molecular iinterstellar matter. Cluster sizes, distances, radial velocities, ages, and masses, and the radial velocities and masses of associated interstellar medium components, are given. The database contains information from approximately 400 references published in the scientific literature before 1988.

  19. The Brightest Young Star Clusters in NGC 5253.

    NASA Astrophysics Data System (ADS)

    Calzetti, D.; Johnson, K. E.; Adamo, A.; Gallagher, J. S., III; Andrews, J. E.; Smith, L. J.; Clayton, G. C.; Lee, J. C.; Sabbi, E.; Ubeda, L.; Kim, H.; Ryon, J. E.; Thilker, D.; Bright, S. N.; Zackrisson, E.; Kennicutt, R. C.; de Mink, S. E.; Whitmore, B. C.; Aloisi, A.; Chandar, R.; Cignoni, M.; Cook, D.; Dale, D. A.; Elmegreen, B. G.; Elmegreen, D. M.; Evans, A. S.; Fumagalli, M.; Gouliermis, D. A.; Grasha, K.; Grebel, E. K.; Krumholz, M. R.; Walterbos, R.; Wofford, A.; Brown, T. M.; Christian, C.; Dobbs, C.; Herrero, A.; Kahre, L.; Messa, M.; Nair, P.; Nota, A.; Östlin, G.; Pellerin, A.; Sacchi, E.; Schaerer, D.; Tosi, M.

    2015-10-01

    The nearby dwarf starburst galaxy NGC 5253 hosts a number of young, massive star clusters, the two youngest of which are centrally concentrated and surrounded by thermal radio emission (the “radio nebula”). To investigate the role of these clusters in the starburst energetics, we combine new and archival Hubble Space Telescope images of NGC 5253 with wavelength coverage from 1500 Å to 1.9 μm in 13 filters. These include Hα, Pβ, and Pα, and the imaging from the Hubble Treasury Program LEGUS (Legacy Extragalactic UV Survey). The extraordinarily well-sampled spectral energy distributions enable modeling with unprecedented accuracy the ages, masses, and extinctions of the nine optically brightest clusters (MV < -8.8) and the two young radio nebula clusters. The clusters have ages ˜1-15 Myr and masses ˜1 × 104-2.5 × 105 M⊙. The clusters’ spatial location and ages indicate that star formation has become more concentrated toward the radio nebula over the last ˜15 Myr. The most massive cluster is in the radio nebula; with a mass ˜2.5 × 105 M⊙ and an age ˜1 Myr, it is 2-4 times less massive and younger than previously estimated. It is within a dust cloud with AV ˜ 50 mag, and shows a clear near-IR excess, likely from hot dust. The second radio nebula cluster is also ˜1 Myr old, confirming the extreme youth of the starburst region. These two clusters account for about half of the ionizing photon rate in the radio nebula, and will eventually supply about 2/3 of the mechanical energy in present-day shocks. Additional sources are required to supply the remaining ionizing radiation, and may include very massive stars. Based on observations obtained with the NASA/ESA Hubble Space Telescope, at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  20. Generating a Magellanic star cluster catalog with ASteCA

    NASA Astrophysics Data System (ADS)

    Perren, G. I.; Piatti, A. E.; Vázquez, R. A.

    2016-08-01

    An increasing number of software tools have been employed in the recent years for the automated or semi-automated processing of astronomical data. The main advantages of using these tools over a standard by-eye analysis include: speed (particularly for large databases), homogeneity, reproducibility, and precision. At the same time, they enable a statistically correct study of the uncertainties associated with the analysis, in contrast with manually set errors, or the still widespread practice of simply not assigning errors. We present a catalog comprising 210 star clusters located in the Large and Small Magellanic Clouds, observed with Washington photometry. Their fundamental parameters were estimated through an homogeneous, automatized and completely unassisted process, via the Automated Stellar Cluster Analysis package ( ASteCA). Our results are compared with two types of studies on these clusters: one where the photometry is the same, and another where the photometric system is different than that employed by ASteCA.

  1. The Relation between Cool Cluster Cores and Herschel-detected Star Formation in Brightest Cluster Galaxies

    NASA Astrophysics Data System (ADS)

    Rawle, T. D.; Edge, A. C.; Egami, E.; Rex, M.; Smith, G. P.; Altieri, B.; Fiedler, A.; Haines, C. P.; Pereira, M. J.; Pérez-González, P. G.; Portouw, J.; Valtchanov, I.; Walth, G.; van der Werf, P. P.; Zemcov, M.

    2012-03-01

    We present far-infrared (FIR) analysis of 68 brightest cluster galaxies (BCGs) at 0.08 < z < 1.0. Deriving total infrared luminosities directly from Spitzer and Herschel photometry spanning the peak of the dust component (24-500 μm), we calculate the obscured star formation rate (SFR). 22+6.2 -5.3% of the BCGs are detected in the far-infrared, with SFR = 1-150 M ⊙ yr-1. The infrared luminosity is highly correlated with cluster X-ray gas cooling times for cool-core clusters (gas cooling time <1 Gyr), strongly suggesting that the star formation in these BCGs is influenced by the cluster-scale cooling process. The occurrence of the molecular gas tracing Hα emission is also correlated with obscured star formation. For all but the most luminous BCGs (L TIR > 2 × 1011 L ⊙), only a small (lsim0.4 mag) reddening correction is required for SFR(Hα) to agree with SFRFIR. The relatively low Hα extinction (dust obscuration), compared to values reported for the general star-forming population, lends further weight to an alternate (external) origin for the cold gas. Finally, we use a stacking analysis of non-cool-core clusters to show that the majority of the fuel for star formation in the FIR-bright BCGs is unlikely to originate from normal stellar mass loss. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  2. AMPLITUDES OF SOLAR-LIKE OSCILLATIONS: CONSTRAINTS FROM RED GIANTS IN OPEN CLUSTERS OBSERVED BY KEPLER

    SciTech Connect

    Stello, Dennis; Huber, Daniel; Bedding, Timothy R.; Benomar, Othman; Kallinger, Thomas; Basu, Sarbani; Mosser, BenoIt; Hekker, Saskia; Mathur, Savita; GarcIa, Rafael A.; Gilliland, Ronald L.; Verner, Graham A.; Chaplin, William J.; Elsworth, Yvonne P.; Meibom, Soeren; Molenda-Zakowicz, Joanna; Szabo, Robert

    2011-08-10

    Scaling relations that link asteroseismic quantities to global stellar properties are important for gaining understanding of the intricate physics that underpins stellar pulsations. The common notion that all stars in an open cluster have essentially the same distance, age, and initial composition implies that the stellar parameters can be measured to much higher precision than what is usually achievable for single stars. This makes clusters ideal for exploring the relation between the mode amplitude of solar-like oscillations and the global stellar properties. We have analyzed data obtained with NASA's Kepler space telescope to study solar-like oscillations in 100 red giant stars located in either of the three open clusters, NGC 6791, NGC 6819, and NGC 6811. By fitting the measured amplitudes to predictions from simple scaling relations that depend on luminosity, mass, and effective temperature, we find that the data cannot be described by any power of the luminosity-to-mass ratio as previously assumed. As a result we provide a new improved empirical relation which treats luminosity and mass separately. This relation turns out to also work remarkably well for main-sequence and subgiant stars. In addition, the measured amplitudes reveal the potential presence of a number of previously unknown unresolved binaries in the red clump in NGC 6791 and NGC 6819, pointing to an interesting new application for asteroseismology as a probe into the formation history of open clusters.

  3. VizieR Online Data Catalog: Milky Way global survey of star clusters (Kharchenko+, 2012)

    NASA Astrophysics Data System (ADS)

    Kharchenko, N. V.; Piskunov, A. E.; Roeser, S.; Schilbach, E.; Scholz, R.-D.

    2012-07-01

    An all-sky target list of 3784 entries with initial cluster parameters was compiled from sources available in the literature. As the primary source we used the data from the Catalogue of Open Cluster Data (COCD, Kharchenko et al. 2005a,b, Cat. J/A+A/438/1163, J/A+A/440/403). For further optical clusters the data were taken from the Dias et al. (2002, Cat. B/ocl) list (Version 3.1, 24/nov/2010). Known associations were retrieved from Melnik & Dambis (2009, Cat. J/MNRAS/400/518). For clusters detected in the NIR the information came from Bica et al. (2003b, Cat. J/A+A/404/223), Dutra et al. (2003, Cat. J/A+A/400/533), Froebrich et al. (2007, Cat. J/MNRAS/374/399). Globular clusters were selected from the catalogue by Harris (1996) (edition 2010, 2010arXiv1012.3224H). Additionally, we incorporated supplementary data on embedded clusters from Bica et al. (2003a, Cat. J/A+A/397/177), Lada & Lada (2003ARA&A..41...57L) and on stars in associations from Humphreys (1978, Cat. V/44). The basic stellar data were taken from the all-sky catalogue 2MAst (2Mass with Astrometry), that was extracted from the all-sky catalogues PPMXL (Roeser et al. 2010, Cat. I/317) and 2MASS (Cutri et al. 2003, Cat. II/246). Additionally, we incorporated data on radial velocities from Kharchenko et al. (2007, Cat. III/254) and spectral types from ASCC-2.5 (Kharchenko & Roeser 2009, Cat. I/280). Around each object from our target list we defined a circular area with a radius of ra=r2+radd where r2 is cluster radius, and radd=0.3°. In these areas we selected in 2MAst only those stars with flags Rflg (the 2nd triple of the flags in 2MASS) set to 1, 2, or 3 in each band, i.e. the stars with the best quality detections in photometric and astrometric data. There are 871 targets in the 2nd Galaxy quadrant, we confirmed 650 open clusters and/or associations. These 650 sky areas contain about 11.2 mln 2MAst stars with best quality detections in photometric and astrometric data. We selected 30387 most

  4. X-ray Source Populations in Old Open Clusters - Collinder 261

    NASA Astrophysics Data System (ADS)

    Vats, Smriti

    2014-11-01

    We are carrying out an X-ray survey of old open clusters (OCs) with the Chandra X-ray Observatory. Single old stars emit very faint X-rays, making X-rays produced by mass transfer in CVs, or by rapid rotation of the stars in tidally-locked, detached binaries detectable, without contamination from single stars. By comparing properties of interacting binaries in different environments, we aim to study binary evolution, and how dynamical encounters with other cluster members affect it. Collinder (Cr) 261 is an old OC(~7Gyr), with one of the richest populations inferred, of close binary populations and blue stragglers of all OCs. We will present the first results, detailing the X-ray population of Cr 261, in conjugation with other OCs, and in comparison with populations in globular clusters.

  5. Star formation and initial mass function studies in young star clusters

    NASA Astrophysics Data System (ADS)

    Jose, Jessy

    This thesis presents results from the comprehensive multi wavelength observational analysis of three young clusters Iassociated with H II regions. The fundamental properties of each region such as radius, distance, reddening etc. are analyzed and their massive members are identified. We observed signatures of both clustered and distributed star formation (SF) in these regions. The K-band luminosity functions (KLFs) and initial mass functions (IMFs) of these regions are found to be consistent with each other and with the Salpeter IMF and are seen to be unaltered irrespective of their diverse environments. The candidate YSOs are identified, their mass, age, age spread, circumstellar disk fraction and SF history of each region are studied. The spatial distribution of the identified YSOs shows that there is a correlation between the locations where YSOs are forming and the locations of ionization fronts created by the massive stars. The three regions are found to be diverse in nature and each region is experiencing multiple epochs of SF at various locations within it during the last ˜ 5 Myr. The newly formed stars are seen to be influenced by the presence of massive stars and the modes of triggering mechanism in each region is found to be different. The results suggest that the multiple epochs of SF and multiple modes of triggering mechanism are a common phenomena within young clusters.

  6. H-alpha LEGUS: Unveiling the Interplay Between Stars, Star Clusters, and Ionized Gas

    NASA Astrophysics Data System (ADS)

    Chandar, Rupali

    2014-10-01

    We propose to obtain narrow-band, H-alpha observations for a significant subset of the star-forming, nearby galaxies recently targeted by the LEGUS treasury program (GO-13364). LEGUS is observing these galaxies in five broad-band filters: NUV, U, B, V, and I. The new H-alpha observations will reveal thousands of previously undetected HII regions, including those ionized by stellar clusters and single massive stars, allow us to measure their luminosities and sizes, and to separate discrete sources from diffuse ionized gas. We will use our narrow-band imaging survey to: (1) establish the connection between star and cluster formation, and determine the prevelance with which isolated massive stars form in different galaxies; (2) determine whether the initial cluster mass function is universal; (3) investigate the size evolution of ionized gas bubbles, and how this depends on cluster age and mass, as well as on local galactic conditions; and (4) place stringent limits on the leakage of ionizing photons from HII regions, and better understand how the interplay between properties of the ionizing source and the morphology of the HII region impacts leakage. The broad goal of this study is to better understand how feedback from massive stars affects the surrounding medium. Ultimately, the interplay between feedback and the ISM on these scales will enable a better understanding of galaxy-scale outflows in the early universe, a process critical to galaxy evolution. This program naturally lends itself to an improvement of the scientific output by involving the general public via an already established Citizen Science program.

  7. STELLAR COLLISIONS AND BLUE STRAGGLER STARS IN DENSE GLOBULAR CLUSTERS

    SciTech Connect

    Chatterjee, Sourav; Rasio, Frederic A.; Sills, Alison; Glebbeek, Evert

    2013-11-10

    Blue straggler stars (BSSs) are abundantly observed in all Galactic globular clusters (GGCs) where data exist. However, observations alone cannot reveal the relative importance of various formation channels or the typical formation times for this well-studied population of anomalous stars. Using a state-of-the-art Hénon-type Monte Carlo code that includes all relevant physical processes, we create 128 models with properties typical of the observed GGCs. These models include realistic numbers of single and binary stars, use observationally motivated initial conditions, and span large ranges in central density, concentration, binary fraction, and mass. Their properties can be directly compared with those of observed GGCs. We can easily identify the BSSs in our models and determine their formation channels and birth times. We find that for central densities above ∼10{sup 3} M{sub ☉} pc{sup –3}, the dominant formation channel is stellar collisions, while for lower density clusters, mass transfer in binaries provides a significant contribution (up to 60% in our models). The majority of these collisions are binary-mediated, occurring during three-body and four-body interactions. As a result, a strong correlation between the specific frequency of BSSs and the binary fraction in a cluster can be seen in our models. We find that the number of BSSs in the core shows only a weak correlation with the collision rate estimator Γ traditionally used by observers, in agreement with the latest Hubble Space Telescope Advanced Camera for Surveys data. Using an idealized 'full mixing' prescription for collision products, our models indicate that the BSSs observed today may have formed several Gyr ago. However, denser clusters tend to have younger (∼1 Gyr) BSSs.

  8. Spectroscopic Binaries and Kinematic Membership in the Open Cluster NGC 3532

    NASA Astrophysics Data System (ADS)

    González, Jorge Federico; Lapasset, Emilio

    2002-06-01

    We report spectroscopic observations for bright stars in the open cluster NGC 3532 up to 1 mag below the turnoff point. We compute radial velocities by cross-correlations and determine spectral types and rotational velocities. Using 21 stars identified as certain members, we derive a mean cluster velocity of +3.4+/-0.3 km s-1. From radial velocities and angular distances to the cluster center, we compute membership probabilities for all but two stars that are radial velocity variables. Only one out of 34 program stars is a clear kinematic nonmember. Three spectroscopic binaries and three additional possible radial velocity variables are detected among the 23 stars measured more than once. We report the star HD 96609 as a double-lined spectroscopic binary. Using the two-dimensional cross-correlation technique TODCOR developed by Zucker & Mazeh, we derive the radial velocity curves for both components and obtain the orbital parameters with errors of 0.3% and 0.7% for the projected orbital semiaxis and masses, respectively. This system is composed of two main-sequence stars in a circular orbit, with a period of 8.19 days. The observations presented here were obtained at the Complejo Astronómico El Leoncito (CASLEO), which is operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET) and the National Universities of La Plata, Córdoba, and San Juan.

  9. CCD Photometry and Classification of Stars in the North America and Pelican Nebulae Region. IV. The Region of a Supposed Cluster Collinder 428

    NASA Astrophysics Data System (ADS)

    Laugalys, V.; Straižys, V.; Vrba, F. J.; Černis, K.; Kazlauskas, A.; Boyle, R. P.; Philip, A. G. Davis

    Magnitudes and color indices of 860 stars down to V = 16.7 mag in the seven-color Vilnius photometric system were obtained in the area of the suspected open cluster Collinder 428 in the North America Nebula. Spectral types, interstellar color excesses, extinctions and distances of stars were determined for 290 stars from the photometric data. The plot of extinction vs. distance gives the front edge of the dust cloud at 540 pc. We conclude that Collinder 428 is not a real star cluster.

  10. Young Stellar Populations and Star Clusters in NGC 1705

    NASA Astrophysics Data System (ADS)

    Annibali, F.; Tosi, M.; Monelli, M.; Sirianni, M.; Montegriffo, P.; Aloisi, A.; Greggio, L.

    2009-07-01

    We present Hubble Space Telescope (HST) photometry of the late-type dwarf galaxy NGC 1705 observed with the Wide-Field Planetary Camera 2 (WFPC2) in the F380W and F439W bands and with the Advanced Camera for Surveys/High-Resolution Channel (HRC) in the F330W, F555W, and F814W broad-band filters. We cross-correlate these data with previous ones acquired with the WFPC2 in the F555W, F814W bands, and derive multiband color-magnitude diagrams (CMDs) of the cross-identified individual stars and candidate star clusters. For the central regions of the galaxy, where HST-NICMOS F110W and F160W photometry is also available, we present U, B, V, I, J, H CMDs of the 256 objects with magnitudes measured in all bands. While our previous study based on F555W, F814W, F110W, and F160W data allowed us to trace the star formation history of NGC 1705 back to a Hubble time, the new data provide a better insight on its recent evolution. With the method of the synthetic CMDs, we confirm the presence of two strong bursts of star formation (SF). The older of the two bursts (B1) occurred between ~10 and 15 Myr ago, coeval to the age of the central super star cluster (SSC). The younger burst (B2) started ~3 Myr ago, and it is still active. The stellar mass produced by B2 amounts to ~106 M sun, and it is a factor of ~3 lower for B1. The interburst phase was likely characterized by a much lower level of SF rather than by its complete cessation. The two bursts show distinct spatial distributions: while B1 is centrally concentrated, B2 is more diffused, and presents ring and arclike structures that remind of an expanding shell. This suggests a feedback mechanism, in which the expanding superbubble observed in NGC 1705, likely generated by the 10-15 Myr burst, triggered the current strong SF activity. The excellent spatial resolution of the HRC allowed us to reliably identify 12 star clusters (plus the SSC) in the central ~26'' × 29'' region of NGC 1705, 10 of which have photometry in all the

  11. YOUNG STELLAR POPULATIONS AND STAR CLUSTERS IN NGC 1705

    SciTech Connect

    Annibali, F.; Greggio, L.; Tosi, M.; Montegriffo, P.; Monelli, M.; Sirianni, M.; Aloisi, A.

    2009-07-15

    We present Hubble Space Telescope (HST) photometry of the late-type dwarf galaxy NGC 1705 observed with the Wide-Field Planetary Camera 2 (WFPC2) in the F380W and F439W bands and with the Advanced Camera for Surveys/High-Resolution Channel (HRC) in the F330W, F555W, and F814W broad-band filters. We cross-correlate these data with previous ones acquired with the WFPC2 in the F555W, F814W bands, and derive multiband color-magnitude diagrams (CMDs) of the cross-identified individual stars and candidate star clusters. For the central regions of the galaxy, where HST-NICMOS F110W and F160W photometry is also available, we present U, B, V, I, J, H CMDs of the 256 objects with magnitudes measured in all bands. While our previous study based on F555W, F814W, F110W, and F160W data allowed us to trace the star formation history of NGC 1705 back to a Hubble time, the new data provide a better insight on its recent evolution. With the method of the synthetic CMDs, we confirm the presence of two strong bursts of star formation (SF). The older of the two bursts (B1) occurred between {approx}10 and 15 Myr ago, coeval to the age of the central super star cluster (SSC). The younger burst (B2) started {approx}3 Myr ago, and it is still active. The stellar mass produced by B2 amounts to {approx}10{sup 6} M {sub sun}, and it is a factor of {approx}3 lower for B1. The interburst phase was likely characterized by a much lower level of SF rather than by its complete cessation. The two bursts show distinct spatial distributions: while B1 is centrally concentrated, B2 is more diffused, and presents ring and arclike structures that remind of an expanding shell. This suggests a feedback mechanism, in which the expanding superbubble observed in NGC 1705, likely generated by the 10-15 Myr burst, triggered the current strong SF activity. The excellent spatial resolution of the HRC allowed us to reliably identify 12 star clusters (plus the SSC) in the central {approx}26'' x 29'' region of NGC

  12. CALIBRATING STELLAR POPULATION MODELS WITH MAGELLANIC CLOUD STAR CLUSTERS

    SciTech Connect

    Noeel, N. E. D.; Carollo, C. M.; Greggio, L.; Renzini, A.; Maraston, C.

    2013-07-20

    Stellar population models are commonly calculated using star clusters as calibrators for those evolutionary stages that depend on free parameters. However, discrepancies exist among different models, even if similar sets of calibration clusters are used. With the aim of understanding these discrepancies, and of improving the calibration procedure, we consider a set of 43 Magellanic Cloud (MC) clusters, taking age and photometric information from the literature. We carefully assign ages to each cluster based on up-to-date determinations, ensuring that these are as homogeneous as possible. To cope with statistical fluctuations, we stack the clusters in five age bins, deriving for each of them integrated luminosities and colors. We find that clusters become abruptly red in optical and optical-infrared colors as they age from {approx}0.6 to {approx}1 Gyr, which we interpret as due to the development of a well-populated thermally pulsing asymptotic giant branch (TP-AGB). We argue that other studies missed this detection because of coarser age binnings. Maraston and Girardi et al. models predict the presence of a populated TP-AGB at {approx}0.6 Gyr, with a correspondingly very red integrated color, at variance with the data; Bruzual and Charlot and Conroy models run within the error bars at all ages. The discrepancy between the synthetic colors of Maraston models and the average colors of MC clusters results from the now obsolete age scale adopted. Finally, our finding that the TP-AGB phase appears to develop between {approx}0.6 and 1 Gyr is dependent on the adopted age scale for the clusters and may have important implications for stellar evolution.

  13. VARIABLE STARS IN THE GLOBULAR CLUSTER NGC 2808

    SciTech Connect

    Kunder, Andrea; Walker, Alistair R.; Stetson, Peter B.; Catelan, Marcio; Amigo, Pia E-mail: mcatelan@astro.puc.cl

    2013-02-01

    The first calibrated broadband BVI time-series photometry is presented for the variable stars in NGC 2808, with observations spanning a range of 28 years. We have also redetermined the variability types and periods for the variable stars identified previously by Corwin et al., revising the number of probable fundamental-mode RR Lyrae variables (RR0) to 11 and the number of first-overtone variables (RR1) to five. Our observations were insufficient to discern the nature of the previously identified RR1 star, V24, and the tentatively identified RR1 star, V13. These two variables are {approx}0.8 mag brighter than the RR Lyrae variables, appear to have somewhat erratic period and/or luminosity changes, and lie inside the RR Lyrae instability strip. Curiously, all but one of the RR Lyrae stars studied in this relatively metal-rich cluster exhibit the Blazhko phenomenon, an effect thought to occur with higher frequency in metal-poor environments. The mean periods of the RR0 and RR1 variables are (P){sub RR0} = 0.56 {+-} 0.01 d and

    {sub RR1} = 0.30 {+-} 0.02 d, respectively, supporting an Oosterhoff I classification of the cluster. On the other hand, the number ratio of RR1-to-RR0-type variables is high, though not unprecedented, for an Oosterhoff I cluster. The RR Lyrae variables have no period shifts at a given amplitude compared to the M3 variables, making it unlikely that these variables are He enhanced. Using the recent recalibration of the RR Lyrae luminosity scale by Catelan and Cortes, a mean distance modulus of (m - M){sub V} = 15.57 {+-} 0.13 mag for NGC 2808 is obtained, in good agreement with that determined here from its type II Cepheid and SX Phoenicis population. Our data have also allowed the discovery of two new candidate SX Phoenicis stars and an eclipsing binary in the blue straggler region of the NGC 2808 color-magnitude diagram.

  14. WIYN Open Cluster Study: UBVRI Photometry of NGC 2158

    NASA Astrophysics Data System (ADS)

    Taverne, Luke T.; Steinhauer, Aaron J.; Deliyannis, Constantine P.

    2015-01-01

    We present WIYN 0.9m HDI UBVRI photometry of NGC 2158, a very rich, intermediate-aged, open cluster located near the galactic anti-center. We report derived values for the cluster age, distance, reddening.

  15. Star Formation Activity in CLASH Brightest Cluster Galaxies

    NASA Astrophysics Data System (ADS)

    Fogarty, Kevin; Postman, Marc; Connor, Thomas; Donahue, Megan; Moustakas, John

    2015-11-01

    The CLASH X-ray selected sample of 20 galaxy clusters contains 10 brightest cluster galaxies (BCGs) that exhibit significant (>5σ) extinction-corrected star formation rates (SFRs). Star formation activity is inferred from photometric estimates of UV and Hα+[N ii] emission in knots and filaments detected in CLASH Hubble Space Telescope ACS and WFC3 observations. UV-derived SFRs in these BCGs span two orders of magnitude, including two with a SFR ≳ 100 M⊙ yr-1. These measurements are supplemented with [O ii], [O iii], and Hβ fluxes measured from spectra obtained with the SOAR telescope. We confirm that photoionization from ongoing star formation powers the line emission nebulae in these BCGs, although in many BCGs there is also evidence of a LINER-like contribution to the line emission. Coupling these data with Chandra X-ray measurements, we infer that the star formation occurs exclusively in low-entropy cluster cores and exhibits a correlation with gas properties related to cooling. We also perform an in-depth study of the starburst history of the BCG in the cluster RXJ1532.9+3021, and create 2D maps of stellar properties on scales down to ˜350 pc. These maps reveal evidence for an ongoing burst occurring in elongated filaments, generally on ˜0.5-1.0 Gyr timescales, although some filaments are consistent with much younger (≲100 Myr) burst timescales and may be correlated with recent activity from the active galactic nucleus. The relationship between BCG SFRs and the surrounding intracluster medium gas properties provide new support for the process of feedback-regulated cooling in galaxy clusters and is consistent with recent theoretical predictions. Based on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel

  16. Open cluster evolutions in binary system: How they dissolved

    NASA Astrophysics Data System (ADS)

    Priyatikanto, R.; Arifyanto, M. I.; Wulandari, H. R. T.

    2014-03-01

    Binarity among stellar clusters in galaxy is such a reality which has been realized for a long time, but still hides several questions and problems to be solved. Some of binary star clusters are formed by close encounter, but the others are formed together from similar womb. Some of them undergo separation process, while the others are in the middle of merger toward common future. The products of merger binary star cluster have typical characteristics which differ from solo clusters, especially in their spatial distribution and their stellar members kinematics. On the other hand, these merger products still have to face dissolving processes triggered by both internal and external factors. In this study, we performed N-body simulations of merger binary clusters with different initial conditions. After merging, these clusters dissolve with greater mass-loss rate because of their angular momentum. These rotating clusters also experience more deceleration caused by external tidal field.

  17. WIYN OPEN CLUSTER STUDY. LV. ASTROMETRY AND MEMBERSHIP IN NGC 6819

    SciTech Connect

    Platais, Imants; Gosnell, Natalie M.; Meibom, Soren; Kozhurina-Platais, Vera; Bellini, Andrea; Veillet, Christian; Burkhead, Martin S.

    2013-08-01

    We present proper motions and astrometric membership analysis for 15,750 stars around the intermediate-age open cluster NGC 6819. The accuracy of relative proper motions for well-measured stars ranges from {approx}0.2 mas yr{sup -1} within 10' of the cluster center to 1.1 mas yr{sup -1} outside this radius. In the proper motion vector-point diagram, the separation between the cluster members and field stars is convincing down to V {approx} 18 and within 10' from the cluster center. The formal sum of membership probabilities indicates a total of {approx}2500 cluster members down to V {approx} 22. We confirm the cluster membership of several variable stars, including some eclipsing binaries. The estimated absolute proper motion of NGC 6819 is {mu}{sub x}{sup abs}=-2.6{+-}0.5 and {mu}{sub y}{sup abs}=-4.2{+-}0.5 mas yr{sup -1}. A cross-identification between the proper motion catalog and a list of X-ray sources in the field of NGC 6819 resulted in a number of new likely optical counterparts, including a candidate CV. For the first time we show that there is significant differential reddening toward NGC 6819.

  18. Deep Imaging of Eridanus II and Its Lone Star Cluster

    NASA Astrophysics Data System (ADS)

    Crnojević, D.; Sand, D. J.; Zaritsky, D.; Spekkens, K.; Willman, B.; Hargis, J. R.

    2016-06-01

    We present deep imaging of the most distant dwarf discovered by the Dark Energy Survey, Eridanus II (Eri II). Our Magellan/Megacam stellar photometry reaches ˜3 mag deeper than previous work and allows us to confirm the presence of a stellar cluster whose position is consistent with Eri II’s center. This makes Eri II, at {M}V=-7.1, the least luminous galaxy known to host a (possibly central) cluster. The cluster is partially resolved, and at {M}V=-3.5 it accounts for ˜4% of Eri II’s luminosity. We derive updated structural parameters for Eri II, which has a half-light radius of ˜280 pc and is elongated (ɛ ˜ 0.48) at a measured distance of D ˜ 370 kpc. The color-magnitude diagram displays a blue, extended horizontal branch, as well as a less populated red horizontal branch. A central concentration of stars brighter than the old main-sequence turnoff hints at a possible intermediate-age (˜3 Gyr) population; alternatively, these sources could be blue straggler stars. A deep Green Bank Telescope observation of Eri II reveals no associated atomic gas. This paper includes data gathered with the 6.5 m Magellan Telescopes at Las Campanas Observatory, Chile.

  19. The mass-to-light ratio of rich star clusters

    NASA Astrophysics Data System (ADS)

    Boily, Christian M.; Fleck, Jean-Julien; Lançon, Ariane; Renaud, Florent

    2009-12-01

    We point out a strong time evolution of the mass-to-light conversion factor, η, commonly used to estimate masses of unresolved star clusters from observed cluster spectrophotometric measures. We present a series of gas-dynamical models, coupled with the Cambridge stellar evolution tracks, to compute line-of-sight velocity dispersions and half-light radii weighted by the luminosity. We explore a range of initial conditions, varying in turn the cluster mass and/or density, and the stellar population’s initial mass function. We find that η, and hence the estimated cluster mass, may increase by as much as a factor of three over time-scales of 50 million yr. We apply these results to an hypothetic cluster mass distribution function (d.f.), and show that the d.f. shape may be strongly affected at the low-mass end by this effect. Fitting truncated isothermal (Michie-King) models to the projected light profile leads to over-estimates of the concentration parameter, c, of δ c≈0.3 compared to the same functional fit applied to the projected mass density.

  20. The life-cycle of young star-clusters; the role of the galactic environment on cluster formation and evolution

    NASA Astrophysics Data System (ADS)

    Adamo, Angela

    2015-08-01

    Our understanding of star formation on galactic scales has been fairly grasped (e.g. the rate at which stars form scales proportionally to the molecular gas content) both in the local and high redshift universe. However, our knowledge on how star formation proceeds at small scales (e.g. the fraction of star formation happening in stellar clusters, the time-scales for star-forming regions to dissolve, the impact of the galactic environment on star and cluster formation) remains a challenge. Gravitationally bound young stellar clusters appear to be a commune product of star formation. There are tantalizing similarities between young star clusters and globular clusters, the latter formed by gravitationally bound ancient stellar populations. However, the young and globular cluster populations show statistical properties (mass functions, formation efficiencies, and survival times) that have been claimed incompatible, leaving the two populations being the results of distinct processes of formation. In my contribution, I will discuss the latest results produced with the analysis of the young cluster populations in several nearby galaxies. The use of new statistical methods, the link with dense gas fueling star formation, the access to homogenous datasets show, for the first time, clear evidence of the influence of the galactic environment in shaping the properties of young star cluster populations. After all, the differences between the two cluster populations may not be so pronounced, suggesting that the same physical formation process under different environmental conditions has been (and currently is) at work at high redshift (when globular clusters were formed) and in the local universe.

  1. On the infant weight loss of low- to intermediate-mass star clusters

    NASA Astrophysics Data System (ADS)

    Weidner, C.; Kroupa, P.; Nürnberger, D. E. A.; Sterzik, M. F.

    2007-04-01

    Star clusters are born in a highly compact configuration, typically with radii of less than about 1 pc roughly independently of mass. Since the star formation efficiency is less than 50 per cent by observation and because the residual gas is removed from the embedded cluster, the cluster must expand. In the process of doing so it only retains a fraction fst of its stars. To date there are no observational constraints for fst, although N-body calculations by Kroupa, Aarseth & Hurley suggest it to be about 20-30 per cent for Orion-type clusters. Here we use the data compiled by Testi et al., Testi, Palla & Natta and Testi, Palla & Natta for clusters around young Ae/Be stars and by de Wit et al. and de Wit et al. around young O stars and the study of de Zeeuw et al. of OB associations and combine these measurements with the expected number of stars in clusters with primary Ae/Be and O stars, respectively, using the empirical correlation between maximal stellar mass and star cluster mass of Weidner & Kroupa. We find that fst < 50 per cent with a decrease to higher cluster masses/more massive primaries. The interpretation would be that cluster formation is very disruptive. It appears that clusters with a birth stellar mass in the range 10-103Msolar keep at most 50 per cent of their stars.

  2. The DRAGON simulations: globular cluster evolution with a million stars

    NASA Astrophysics Data System (ADS)

    Wang, Long; Spurzem, Rainer; Aarseth, Sverre; Giersz, Mirek; Askar, Abbas; Berczik, Peter; Naab, Thorsten; Schadow, Riko; Kouwenhoven, M. B. N.

    2016-05-01

    Introducing the DRAGON simulation project, we present direct N-body simulations of four massive globular clusters (GCs) with 106 stars and 5 per cent primordial binaries at a high level of accuracy and realism. The GC evolution is computed with NBODY6++GPU and follows the dynamical and stellar evolution of individual stars and binaries, kicks of neutron stars and black holes (BHs), and the effect of a tidal field. We investigate the evolution of the luminous (stellar) and dark (faint stars and stellar remnants) GC components and create mock observations of the simulations (i.e. photometry, colour-magnitude diagrams, surface brightness and velocity dispersion profiles). By connecting internal processes to observable features, we highlight the formation of a long-lived `dark' nuclear subsystem made of BHs, which results in a two-component structure. The inner core is dominated by the BH subsystem and experiences a core-collapse phase within the first Gyr. It can be detected in the stellar (luminous) line-of-sight velocity dispersion profiles. The outer extended core - commonly observed in the (luminous) surface brightness profiles - shows no collapse features and is continuously expanding. We demonstrate how a King model fit to observed clusters might help identify the presence of post core-collapse BH subsystems. For global observables like core and half-mass radii, the direct simulations agree well with Monte Carlo models. Variations in the initial mass function can result in significantly different GC properties (e.g. density distributions) driven by varying amounts of early mass-loss and the number of forming BHs.

  3. Abundances of lithium, oxygen, and sodium in the turn-off stars of Galactic globular cluster 47 Tucanae

    NASA Astrophysics Data System (ADS)

    Dobrovolskas, V.; Kučinskas, A.; Bonifacio, P.; Korotin, S. A.; Steffen, M.; Sbordone, L.; Caffau, E.; Ludwig, H.-G.; Royer, F.; Prakapavičius, D.

    2014-05-01

    Context. The cluster 47 Tuc is among the most metal-rich Galactic globular clusters and its metallicity is similar to that of metal-poor disc stars and open clusters. Like other globular clusters, it displays variations in the abundances of elements lighter than Si, which is generally interpreted as evidence of the presence of multiple stellar populations. Aims: We aim to determine abundances of Li, O, and Na in a sample of of 110 turn-off (TO) stars, in order to study the evolution of light elements in this cluster and to put our results in perspective with observations of other globular and open clusters, as well as with field stars. Methods: We use medium resolution spectra obtained with the GIRAFFE spectrograph at the ESO 8.2 m Kueyen VLT telescope and use state of the art 1D model atmospheres and NLTE line transfer to determine the abundances. We also employ CO5BOLD hydrodynamical simulations to assess the impact of stellar granulation on the line formation and inferred abundances. Results: Our results confirm the existence of Na-O abundance anti-correlation and hint towards a possible Li-O anti-correlation in the TO stars of 47 Tuc. At the same time, we find no convincing evidence supporting the existence of Li-Na correlation. The obtained 3D NLTE mean lithium abundance in a sample of 94 TO stars where Li lines were detected reliably, ⟨A(Li)3D NLTE⟩ = 1.78 ± 0.18 dex, appears to be significantly lower than what is observed in other globular clusters. At the same time, star-to-star spread in Li abundance is also larger than seen in other clusters. The highest Li abundance observed in 47 Tuc is about 0.1 dex lower than the lowest Li abundance observed among the un-depleted stars of the metal-poor open cluster NGC 2243. Conclusions: The correlations/anti-correlations among light element abundances confirm that chemical enrichment history of 47 Tuc was similar to that of other globular clusters, despite the higher metallicity of 47 Tuc. The lithium

  4. Global survey of star clusters in the Milky Way. I. The pipeline and fundamental parameters in the second quadrant

    NASA Astrophysics Data System (ADS)

    Kharchenko, N. V.; Piskunov, A. E.; Schilbach, E.; Röser, S.; Scholz, R.-D.

    2012-07-01

    Aims: On the basis of the PPMXL star catalogue we performed a survey of star clusters in the second quadrant of the Milky Way. Methods: From the PPMXL catalogue of positions and proper motions we took the subset of stars with near-infrared photometry from 2MASS and added the remaining 2MASS stars without proper motions (called 2MAst, i.e. 2MASS with astrometry). We developed a data-processing pipeline including interactive human control of a standardised set of multi-dimensional diagrams to determine kinematic and photometric membership probabilities for stars in a cluster region. The pipeline simultaneously produced the astrophysical parameters of a cluster. From literature we compiled a target list of presently known open and globular clusters, cluster candidates, associations, and moving groups. From established member stars we derived spatial parameters (coordinates of centres and radii of the main morphological parts of clusters) and cluster kinematics (average proper motions and sometimes radial velocities). For distance, reddening, and age determination we used specific sets of theoretical isochrones. Tidal parameters were obtained by a fit of three-parameter King profiles to the observed density distributions of members. Results: We investigated all 871 objects in the 2nd Galactic quadrant, of which we successfully treated 642 open clusters, 2 globular clusters, and 8 stellar associations. The remaining 219 objects (24%) were recognised by us to be nonexistent clusters, duplicate entries, or clusters too faint for 2MAst. We found that our sample is complete in the 2nd quadrant up to a distance of 2 kpc, where the average surface density is 94 clusters per kpc2. Compared with literature values we found good agreement in spatial and kinematic data, as well as for optical distances and reddening. Small, but systematic offsets were detected in the age determination. Appendices A-C are available in electronic form at http://www.aanda.orgCatalogues are only

  5. W UMA-Type Binary Stars in Globular Clusters

    NASA Astrophysics Data System (ADS)

    Rucinski, Slavek M.

    2000-07-01

    A sample of 86 contact binary systems in 14 globular clusters with available color index data in B-V or in V-I has been analyzed. A large fraction of all systems (at least one-third) are numerous foreground Galactic disk projections over long lines of sight to the clusters. Since the selection of the cluster members has been based on the MV(logP,color) calibrations, the matter of a metallicity correction required particular attention with the result that such a correction is apparently not needed at the present level of accuracy. Analysis of the color-magnitude and period-color relations shows that globular cluster members have different properties from the Galactic disk contact systems: They are underluminous mainly because of the smaller sizes and, consequently, have shorter orbital periods; the color-index effect of the diminished blanketing is relatively less important, especially for V-I. Among the class 1 members (deviations in MV smaller than 0.5 mag), the most common are blue straggler (BS) systems. The variability amplitudes for the BS systems show a significantly different distribution from that for systems below the turn-off point (TOP): The BS systems in the sample have only small amplitudes (which may be an indication of small mass ratios), while the distribution for the systems below the TOP is peculiar in containing only large-amplitude systems. This difference may be linked to the relatively small number of the detected main-sequence contact systems below the TOP as resulting from an observational selection effect due to the rapidly increasing measurement difficulties below the TOP. As a consequence, efforts at determining the frequency of occurrence of the contact systems below the TOP have been judged to be premature. The frequency among the BS stars could be moderately well established at about 45+/-10 BS stars per one contact BS binary; thus, contact binaries are about 3 times more common among the BS stars than among the disk population dwarfs

  6. Linking star formation and galaxy kinematics in the massive cluster Abell 2163

    NASA Astrophysics Data System (ADS)

    Menacho, Veronica; Verdugo, Miguel

    2015-02-01

    The origin of the morphology-density relation is still an open question in galaxy evolution. It is most likely driven by the combination of the efficient star formation in the highest peaks of the mass distribution at high-z and the transformation by environmental processes at later times as galaxies fall into more massive halos. To gain additional insights about these processes we study the kinematics, star formation and structural properties of galaxies in Abell 2163 a very massive (~4×1015 M⊙, Holz & Perlmutter 2012) merging cluster at z = 0.2. We use high resolution spectroscopy with VLT/VIMOS to derive rotation curves and dynamical masses for galaxies that show regular kinematics. Galaxies that show irregular rotation are also analysed to study the origin of their distortion. This information is combined with stellar masses and structural parameters obtained from high quality CFHT imaging. From narrow band photometry (2.2m/WFI), centered on the redshifted Hα line, we obtain star formation rates. Although our sample is still small, field and cluster galaxies lie in a similar Tully-Fisher relation as local galaxies. Controlling by additional parameters like SFRs or bulge-to-disk ratio do not affect this result. We find however that ~50% of the cluster galaxies display irregular kinematics in contrast to what is found in the field at similar redshifts (~30%, Böhm et al. 2004) and in agreement with other studies in clusters (e.g. Bösch et al. 2013, Kutdemir et al. 2010) which points out to additional processes operating in clusters that distort the galaxy kinematics.

  7. The dearth of nuclear star clusters in bright galaxies

    NASA Astrophysics Data System (ADS)

    Arca-Sedda, M.; Capuzzo-Dolcetta, R.; Spera, M.

    2016-03-01

    We investigate the interaction of a massive globular cluster (GC) with a super massive black hole (SMBH), located at the centre of its host galaxy, by means of direct N-body simulations. The results show that tidal distortions induced by the stellar background and the SMBH act on a time shorter than that of dynamical friction decay for a 106 M⊙ GC whenever the SMBH mass exceeds ˜108 M⊙. This implies an almost complete dissolution of the infalling GC before it reaches the inner region (≲5 pc) of the parent galaxy. The generalization of this result to a larger sample of infalling GCs shows that such destructive process may prevent the formation and growth of a bright galactic nucleus. Another interesting, serendipitous, result we obtained is that the close interaction between the SMBH and the GC produces a `wave' of stars that escape from the cluster and, in a fraction, even from the whole galaxy.

  8. TWO 'b's IN THE BEEHIVE: THE DISCOVERY OF THE FIRST HOT JUPITERS IN AN OPEN CLUSTER