Science.gov

Sample records for open string models

  1. Open G2 strings

    NASA Astrophysics Data System (ADS)

    de Boer, Jan; de Medeiros, Paul; El-Showk, Sheer; Sinkovics, Annamaria

    2008-02-01

    We consider an open string version of the topological twist previously proposed for sigma-models with G2 target spaces. We determine the cohomology of open strings states and relate these to geometric deformations of calibrated submanifolds and to flat or anti-self-dual connections on such submanifolds. On associative three-cycles we show that the worldvolume theory is a gauge-fixed Chern-Simons theory coupled to normal deformations of the cycle. For coassociative four-cycles we find a functional that extremizes on anti-self-dual gauge fields. A brane wrapping the whole G2 induces a seven-dimensional associative Chern-Simons theory on the manifold. This theory has already been proposed by Donaldson and Thomas as the higher-dimensional generalization of real Chern-Simons theory. When the G2 manifold has the structure of a Calabi-Yau times a circle, these theories reduce to a combination of the open A-model on special Lagrangians and the open B + B-bar-model on holomorphic submanifolds. We also comment on possible applications of our results.

  2. Topological open string amplitudes on local toric del Pezzo surfaces via remodeling the B-model

    NASA Astrophysics Data System (ADS)

    Manabe, Masahide

    2009-09-01

    We study topological strings on local toric del Pezzo surfaces by a method called remodeling the B-model which was recently proposed by Bouchard, Klemm, Mariño and Pasquetti. For a large class of local toric del Pezzo surfaces we prove a functional formula of the Bergman kernel which is the basic constituent of the topological string amplitudes by the topological recursion relation of Eynard and Orantin. Because this formula is written as a functional of the period, we can obtain the topological string amplitudes at any point of the moduli space by a simple change of variables of the Picard-Fuchs equations for the period. By this formula and mirror symmetry we compute the A-model amplitudes on KF_2, and predict the open orbifold Gromov-Witten invariants of C/Z.

  3. String Theory, String Model-Building, and String Phenomenology — A Practical Introduction

    NASA Astrophysics Data System (ADS)

    Dienes, Keith R.

    This is the written version of an introductory self-contained course on string model-building and string phenomenology given at the 2006 TASI summer school. No prior knowledge of string theory is assumed. The goal is to provide a practical, "how-to" manual on string theory, string model-building, and string phenomenology with a minimum of mathematics. These notes cover the construction of bosonic strings, super-strings, and heterotic strings prior to compactification. These notes also develop the ten-dimensional free-fermionic construction. A final lecture discusses general features of heterotic string models, Type I (open) string models, and recent trends of string phenomenology. and general features of low-energy string phenomenology.

  4. Summing Planar Bosonic Open Strings

    SciTech Connect

    Bardakci, Korkut

    2006-02-16

    In earlier work, planar graphs of massless {phi}{sup 3} theory were summed with the help of the light cone world sheet picture and the mean field approximation. In the present article, the same methods are applied to the problem of summing planar bosonic open strings. They find that in the ground state of the system, string boundaries form a condensate on the world sheet, and a new string emerges from this summation. Its slope is always greater than the initial slope, and it remains non-zero even when the initial slope is set equal to zero. If they assume the initial string tends to a field a theory in the zero slope limit, this result provides evidence for string formation in field theory.

  5. Open string fields as matrices

    NASA Astrophysics Data System (ADS)

    Kishimoto, Isao; Masuda, Toru; Takahashi, Tomohiko; Takemoto, Shoko

    2015-03-01

    We show that the action expanded around Erler-Maccaferri's N D-brane solution describes the N+1 D-brane system where one D-brane disappears due to tachyon condensation. String fields on multi-branes can be regarded as block matrices of a string field on a single D-brane in the same way as matrix theories.

  6. Fundamental string solutions in open string field theories

    SciTech Connect

    Michishita, Yoji

    2006-02-15

    In Witten's open cubic bosonic string field theory and Berkovits' superstring field theory we investigate solutions of the equations of motion with appropriate source terms, which correspond to Callan-Maldacena solution in Born-Infeld theory representing fundamental strings ending on the D-branes. The solutions are given in order by order manner, and we show some full order properties in the sense of {alpha}{sup '} expansion. In superstring case we show that the solution is 1/2 BPS in full order.

  7. Moduli Stabilization Using Open String Fluxes

    NASA Astrophysics Data System (ADS)

    Kumar, Alok

    2007-04-01

    In this talk we discuss how by turning on gauge fluxes which couple to the end-points of open strings one can obtain stabilization of closed string moduli. This is done by analyzing supersymmetry constraints and RR tadpole conditions. Stabilization of complex and Kahler moduli is studied in a T6/Z2 orientifold. .

  8. Open-closed string duality at tree level.

    PubMed

    Sen, Ashoke

    2003-10-31

    We study the decay of unstable D-branes in string theory in the presence of an electric field, and show that the classical open string theory results for various properties of the final state agree with the properties of closed string states into which the system is expected to decay. This suggests a duality between tree level open string theory on unstable D-branes and closed strings at high density.

  9. Closed String S-matrix Elements in Open String Field Theory

    NASA Astrophysics Data System (ADS)

    Garousi, Mohammad R.; Maktabdaran, G. R.

    2005-03-01

    We study the S-matrix elements of the gauge invariant operators corresponding to on-shell closed strings, in open string field theory. In particular, we calculate the tree level S-matrix element of two arbitrary closed strings, and the S-matrix element of one closed string and two open strings. By mapping the world-sheet of these amplitudes to the upper half z-plane, and by evaluating explicitly the correlators in the ghost part, we show that these S-matrix elements are exactly identical to the corresponding disk level S-matrix elements in perturbative string theory.

  10. Infinity in string cosmology: A review through open problems

    NASA Astrophysics Data System (ADS)

    Antoniadis, Ignatios; Cotsakis, Spiros

    We review recent developments in the field of string cosmology with particular emphasis on open problems having to do mainly with geometric asymptotics and singularities. We discuss outstanding issues in a variety of currently popular themes, such as tree-level string cosmology asymptotics, higher-order string correction effects, M-theory cosmology, braneworlds and finally ambient cosmology.

  11. Open string multi-branched and Kähler potentials

    NASA Astrophysics Data System (ADS)

    Carta, Federico; Marchesano, Fernando; Staessens, Wieland; Zoccarato, Gianluca

    2016-09-01

    We consider type II string compactifications on Calabi-Yau orientifolds with fluxes and D-branes, and analyse the F-term scalar potential that simultaneously involves closed and open string modes. In type IIA models with D6-branes this potential can be directly computed by integrating out Minkowski three-forms. The result shows a multi-branched structure along the space of lifted open string moduli, in which discrete shifts in special Lagrangian and Wilson line deformations are compensated by changes in the RR flux quanta. The same sort of discrete shift symmetries are present in the superpotential and constrain the Kähler potential. As for the latter, inclusion of open string moduli breaks the factorisation between complex structure and Kähler moduli spaces. Nevertheless, the 4d Kähler metrics display a set of interesting relations that allow to rederive the scalar potential analytically. Similar results hold for type IIB flux compactifications with D7-brane Wilson lines.

  12. The decay of highly excited open strings

    NASA Technical Reports Server (NTRS)

    Mitchell, D.; Turok, N.; Wilkinson, R.; Jetzer, P.

    1988-01-01

    The decay rates of leading edge Regge trajectory states are calculated for very high level number in open bosonic string theories, ignoring tachyon final states. The optical theorem simplifies the analysis while enabling identification of the different mass level decay channels. The main result is that (in four dimensions) the greatest single channel is the emission of a single photon and a state of the next mass level down. A simple asymptotic formula for arbitrarily high level number is given for this process. Also calculated is the total decay rate exactly up to N=100. It shows little variation over this range but appears to decrease for larger N. The formalism is checked in examples and the decay rate of the first excited level calculated for open superstring theories. The calculation may also have implications for high spin meson resonances.

  13. String bit models for superstring

    SciTech Connect

    Bergman, O.; Thorn, C.B.

    1995-12-31

    The authors extend the model of string as a polymer of string bits to the case of superstring. They mainly concentrate on type II-B superstring, with some discussion of the obstacles presented by not II-B superstring, together with possible strategies for surmounting them. As with previous work on bosonic string work within the light-cone gauge. The bit model possesses a good deal less symmetry than the continuous string theory. For one thing, the bit model is formulated as a Galilei invariant theory in (D {minus} 2) + 1 dimensional space-time. This means that Poincare invariance is reduced to the Galilei subgroup in D {minus} 2 space dimensions. Naturally the supersymmetry present in the bit model is likewise dramatically reduced. Continuous string can arise in the bit models with the formation of infinitely long polymers of string bits. Under the right circumstances (at the critical dimension) these polymers can behave as string moving in D dimensional space-time enjoying the full N = 2 Poincare supersymmetric dynamics of type II-B superstring.

  14. String bit models for superstring

    SciTech Connect

    Bergman, O.; Thorn, C.B.

    1995-11-15

    We extend the model of string as a polymer of string bits to the case of superstring. We mainly concentrate on type II-B superstring, with some discussion of the obstacles presented by not II-B superstring, together with possible strategies for surmounting them. As with previous work on bosonic string we work within the light-cone gauge. The bit model possesses a good deal less symmetry than the continuous string theory. For one thing, the bit model is formulated as a Galilei-invariant theory in [({ital D}{minus}2)+1]-dimensional space-time. This means that Poincare invariance is reduced to the Galilei subgroup in {ital D}{minus}2 space dimensions. Naturally the supersymmetry present in the bit model is likewise dramatically reduced. Continuous string can arise in the bit models with the formation of infinitely long polymers of string bits. Under the right circumstances (at the critical dimension) these polymers can behave as string moving in {ital D}-dimensional space-time enjoying the full {ital N}=2 Poincare supersymmetric dynamics of type II-B superstring.

  15. Schwinger-type parametrization of open string worldsheets

    NASA Astrophysics Data System (ADS)

    Playle, Sam; Sciuto, Stefano

    2017-03-01

    A parametrization of (super) moduli space near the corners corresponding to bosonic or Neveu-Schwarz open string degenerations is introduced for worldsheets of arbitrary topology. With this parametrization, Feynman graph polynomials arise as the α‧ → 0 limit of objects on moduli space. Furthermore, the integration measures of string theory take on a very simple and elegant form.

  16. No Strings Attached: Open Source Solutions

    ERIC Educational Resources Information Center

    Fredricks, Kathy

    2009-01-01

    Imagine downloading a new software application and not having to worry about licensing, finding dollars in the budget, or incurring additional maintenance costs. Imagine finding a Web design tool in the public domain--free for use. Imagine major universities that provide online courses with no strings attached. Imagine online textbooks without a…

  17. String Fragmentation Model in Space Radiation Problems

    NASA Technical Reports Server (NTRS)

    Tang, Alfred; Johnson, Eloise (Editor); Norbury, John W.; Tripathi, R. K.

    2002-01-01

    String fragmentation models such as the Lund Model fit experimental particle production cross sections very well in the high-energy limit. This paper gives an introduction of the massless relativistic string in the Lund Model and shows how it can be modified with a simple assumption to produce formulas for meson production cross sections for space radiation research. The results of the string model are compared with inclusive pion production data from proton-proton collision experiments.

  18. A matrix model from string field theory

    NASA Astrophysics Data System (ADS)

    Zeze, Syoji

    2016-09-01

    We demonstrate that a Hermitian matrix model can be derived from level truncated open string field theory with Chan-Paton factors. The Hermitian matrix is coupled with a scalar and U(N) vectors which are responsible for the D-brane at the tachyon vacuum. Effective potential for the scalar is evaluated both for finite and large N. Increase of potential height is observed in both cases. The large N matrix integral is identified with a system of N ZZ branes and a ghost FZZT brane.

  19. On the large-scale structures formed by wakes of open cosmic strings

    NASA Technical Reports Server (NTRS)

    Hara, Tetsuya; Morioka, Shoji; Miyoshi, Shigeru

    1990-01-01

    Large-scale structures of the universe have been variously described as sheetlike, filamentary, cellular, bubbles or spongelike. Recently cosmic strings became one of viable candidates for a galaxy formation scenario, and some of the large-scale structures seem to be simply explained by the open cosmic strings. According to this scenario, sheets are wakes which are traces of moving open cosmic strings where dark matter and baryonic matter have accumulated. Filaments are intersections of such wakes and high density regions are places where three wakes intersect almost orthogonally. The wakes formed at t sub eq become the largest surface density among all wakes, where t sub eq is the epoch when matter density equals to radiation density. If we assume that there is one open cosmic string per each horizon, then it can be explained that the typical distances among wakes, filaments and clusters are also approx. 10(exp 2) Mpc. This model does not exclude a much more large scale structure. Open cosmic string may move even now and accumulate cold dark matter after its traces. However, the surface density is much smaller than the ones formed at t sub eq. From this model, it is expected that the typical high density region will have extended features such as six filaments and three sheets and be surrounded by eight empty regions (voids). Here, the authors are mainly concerned with such structures and have made numerical simulations for the formation of such large scale structures.

  20. Gauge invariant actions for string models

    SciTech Connect

    Banks, T.

    1986-06-01

    String models of unified interactions are elegant sets of Feynman rules for the scattering of gravitons, gauge bosons, and a host of massive excitations. The purpose of these lectures is to describe the progress towards a nonperturbative formulation of the theory. Such a formulation should make the geometrical meaning of string theory manifest and explain the many ''miracles'' exhibited by the string Feynman rules. There are some new results on gauge invariant observables, on the cosmological constant, and on the symmetries of interacting string field theory. 49 refs.

  1. Open parabosonic string theory between two parallel Dp-branes

    SciTech Connect

    Hamam, D.; Belaloui, N.

    2012-06-27

    We investigate an open parabosonic string theory between two parallel Dp-branes. The spectrum is constructed and the partition function is derived. A common chord between the development of this latter and the degeneracy of the states for each mass level is obtained. The theory is consistent and with no tachyon. The Virasoro algebra is derived and compared to the one of the ordinary case.

  2. Thermofield dynamics extension of the open string field theory

    NASA Astrophysics Data System (ADS)

    Botta Cantcheff, M.; Scherer Santos, R. J.

    2016-03-01

    We study the application of the rules of thermofield dynamics (TFD) to the covariant formulation of open-string field theory. We extend the states space and fields according to the duplication rules of TFD and construct the corresponding classical action. The result is interpreted as a theory whose fields would encode the statistical information of open strings. The physical spectrum of the free theory is studied through the cohomology of the extended Becchi, Rouet, Stora and Tyutin (BRST) charge, and, as a result, we get new fields in the spectrum emerging by virtue of the quantum entanglement, and, noticeably, it presents degrees of freedom that could be identified as those of closed strings. We also show, however, that their appearing in the action is directly related to the choice of the inner product in the extended algebra, so that different sectors of fields could be eliminated from the theory by choosing that product conveniently. Finally, we study the extension of the three-vertex interaction and provide a simple prescription for it of which the results at tree level agree with those of the conventional theory.

  3. Linear b-gauges for open string fields

    NASA Astrophysics Data System (ADS)

    Kiermaier, Michael; Sen, Ashoke; Zwiebach, Barton

    2008-03-01

    Motivated by Schnabl's gauge choice, we explore open string perturbation theory in gauges where a linear combination of antighost oscillators annihilates the string field. We find that in these linear b-gauges different gauge conditions are needed at different ghost numbers. We derive the full propagator and prove the formal properties which guarantee that the Feynman diagrams reproduce the correct on-shell amplitudes. We find that these properties can fail due to the need to regularize the propagator, and identify a large class of linear b-gauges for which they hold rigorously. In these gauges the propagator has a non-anomalous Schwinger representation and builds Riemann surfaces by adding strip-like domains. Projector-based gauges, like Schnabl's, are not in this class of gauges but we construct a family of regular linear b-gauges which interpolate between Siegel gauge and Schnabl gauge.

  4. The strings connection: MSSM-like models from strings

    NASA Astrophysics Data System (ADS)

    Nilles, Hans Peter

    2014-05-01

    String theory constructions towards the MSSM allow us to identify some general properties that could be relevant for tests at the LHC. They originate from the geometric structure of compactification and the location of fields in extra-dimensional space. Within the framework of the heterotic MiniLandscape we extract some generic lessons for supersymmetric model building. Among them is a specific pattern of SUSY breakdown based on mirage mediation and remnants of extended supersymmetry. This leads to a split spectrum with heavy scalars of the first two families of quarks and leptons and suppressed masses for gauginos, top partners and Higgs bosons. The models exhibit some specific form of hidden supersymmetry consistent with the high mass of the Higgs boson and all presently available experimental constraints. The most compelling picture is based on precision gauge coupling unification that might be in the kinematic reach of the LHC.

  5. Kahler stabilized, modular invariant heterotic string models

    SciTech Connect

    Gaillard, Mary K.; Gaillard, Mary K.; Nelson, Brent D.

    2007-03-19

    We review the theory and phenomenology of effective supergravity theories based on orbifold compactifications of the weakly-coupled heterotic string. In particular, we consider theories in which the four-dimensional theory displays target space modular invariance and where the dilatonic mode undergoes Kahler stabilization. A self-contained exposition of effective Lagrangian approaches to gaugino condensation and heterotic string theory is presented, leading to the development of the models of Binétruy, Gaillard and Wu. Various aspects of the phenomenology of this class of models are considered. These include issues of supersymmetry breaking and superpartner spectra, the role of anomalous U(1) factors, issues of flavor and R-parity conservation, collider signatures, axion physics, and early universe cosmology. For the vast majority of phenomenological considerations the theories reviewed here compare quite favorably to other string-derived models in the literature. Theoretical objections to the framework and directions for further research are identified and discussed.

  6. Open and closed string vertices for branes with magnetic field and T-duality

    NASA Astrophysics Data System (ADS)

    Pesando, Igor

    2010-02-01

    We discuss carefully the vertices which describe the dipole open strings and closed strings on a D-brane with magnetic flux on a torus. Translation invariance along closed cycles forces surprisingly closed string vertices written in open string formalism to acquire Chan-Paton like matrices. Moreover the one loop amplitudes have a single trace for the part of gauge group with the magnetic flux. These peculiarities are also required by consistency of the action of T-duality in the open string sector. In this way we can show to all orders in perturbation theory the equivalence of the T-dual open string theories, gravitational interactions included. We provide also a new and direct derivation of the bosonic boundary state in presence of constant magnetic and Kalb-Ramond background based on Sciuto-Della Selva-Saito vertex formalism.

  7. Type 0 open string amplitudes and the tensionless limit

    NASA Astrophysics Data System (ADS)

    Rojas, Francisco

    2014-12-01

    The sum over planar multiloop diagrams in the NS + sector of type 0 open strings in flat spacetime has been proposed by Thorn as a candidate to resolve nonperturbative issues of gauge theories in the large N limit. With S U (N ) Chan-Paton factors, the sum over planar open string multiloop diagrams describes the 't Hooft limit N →∞ with N gs2 held fixed. By including only planar diagrams in the sum the usual mechanism for the cancellation of loop divergences (which occurs, for example, among the planar and Möbius strip diagrams by choosing a specific gauge group) is not available and a renormalization procedure is needed. In this article the renormalization is achieved by suspending total momentum conservation by an amount p ≡∑ i n ki≠0 at the level of the integrands in the integrals over the moduli and analytically continuing them to p =0 at the very end. This procedure has been successfully tested for the 2 and 3 gluon planar loop amplitudes by Thorn. Gauge invariance is respected and the correct running of the coupling in the limiting gauge field theory was also correctly obtained. In this article we extend those results in two directions. First, we generalize the renormalization method to an arbitrary n -gluon planar loop amplitude giving full details for the 4-point case. One of our main results is to provide a fully renormalized amplitude which is free of both UV and the usual spurious divergences leaving only the physical singularities in it. Second, using the complete renormalized amplitude, we extract the high-energy scattering regime at fixed angle (tensionless limit). Apart from obtaining the usual exponential falloff at high energies, we compute the full dependence on the scattering angle which shows the existence of a smooth connection between the Regge and hard scattering regimes.

  8. Computer Center: BASIC String Models of Genetic Information Transfer.

    ERIC Educational Resources Information Center

    Spain, James D., Ed.

    1984-01-01

    Discusses some of the major genetic information processes which may be modeled by computer program string manipulation, focusing on replication and transcription. Also discusses instructional applications of using string models. (JN)

  9. String coupling and interactions in type IIB matrix model

    SciTech Connect

    Kitazawa, Yoshihisa; Nagaoka, Satoshi

    2009-05-15

    We investigate the interactions of closed strings in a IIB matrix model. The basic interaction of the closed superstring is realized by the recombination of two intersecting strings. Such interaction is investigated in a IIB matrix model via two-dimensional noncommutative gauge theory in the IR limit. By estimating the probability of the recombination, we identify the string coupling g{sub s} in the IIB matrix model. We confirm that our identification is consistent with matrix string theory.

  10. Subcritical string and large N QCD

    SciTech Connect

    Thorn, Charles B.

    2008-10-15

    We pursue the possibility of using subcritical string theory in 4 spacetime dimensions to establish a string dual for large N QCD. In particular we study the even G-parity sector of the 4 dimensional Neveu-Schwarz dual resonance model as the natural candidate for this string theory. Our point of view is that the open string dynamics given by this model will determine the appropriate subcritical closed string theory, a tree level background of which should describe the sum of planar multiloop open string diagrams. We examine the one-loop open string diagram, which contains information about the closed string spectrum at weak coupling. Higher loop open string diagrams will be needed to determine closed string interactions. We also analyze the field theory limit of the one-loop open string diagram and recover the correct running coupling behavior of the limiting gauge theory.

  11. Nonorientable one-loop amplitudes for the bosonic open string: Electrostatics on a Moebius strip

    SciTech Connect

    Rodrigues, J.P.

    1987-11-01

    The partition function, N-point scalar, and four-point vector nonorientable one-loop amplitudes for the bosonic open string in the critical dimension are obtained using a first quantized path integral treatment of Polyakov's string that assumes scale independence.

  12. Mssm-Like AdS Flux Vacua with Frozen Open-String Moduli

    NASA Astrophysics Data System (ADS)

    Chen, Ching-Ming; Li, Tianjun; Mayes, Van Eric; Nanopoulos, D. V.

    We construct supersymmetric Pati-Salam flux vacua in AdS from intersecting D6-branes on T6/(ℤ2 × ℤ‧2). The models constructed have three generations of MSSM matter plus right-handed neutrinos. Because the cycles wrapped by the D-branes are rigid there are no extra massless fields in the adjoint representation, arising as open-string moduli. However, we find that it is problematic to break the Pati-Salam gauge symmetry to the Standard Model (SM) while keeping the SM hypercharge massless.

  13. Modeling Regular Replacement for String Constraint Solving

    NASA Technical Reports Server (NTRS)

    Fu, Xiang; Li, Chung-Chih

    2010-01-01

    Bugs in user input sanitation of software systems often lead to vulnerabilities. Among them many are caused by improper use of regular replacement. This paper presents a precise modeling of various semantics of regular substitution, such as the declarative, finite, greedy, and reluctant, using finite state transducers (FST). By projecting an FST to its input/output tapes, we are able to solve atomic string constraints, which can be applied to both the forward and backward image computation in model checking and symbolic execution of text processing programs. We report several interesting discoveries, e.g., certain fragments of the general problem can be handled using less expressive deterministic FST. A compact representation of FST is implemented in SUSHI, a string constraint solver. It is applied to detecting vulnerabilities in web applications

  14. All conjugate-maximal-helicity-violating amplitudes from topological open string theory in twistor space.

    PubMed

    Roiban, Radu; Volovich, Anastasia

    2004-09-24

    It has recently been proposed that the D-instanton expansion of the open topological B model on P(3|4) is equivalent to the perturbative expansion of the maximally supersymmetric Yang-Mills theory in four dimensions. In this letter we show how to construct the gauge theory results for all n-point conjugate-maximal-helicity-violating amplitudes by computing the integral over the moduli space of curves of degree n-3 in P(3|4), providing strong support to the string theory construction.

  15. Time-delay at higher genus in high-energy open string scattering*

    NASA Astrophysics Data System (ADS)

    Kuroki, T.; Rey, S.-J.

    2001-02-01

    We explore some aspects of causal time-delay in open string scattering studied recently by Seiberg, Susskind and Toumbas. By examining high-energy scattering amplitudes at higher order in perturbation theory, we argue that causal time-delay at /Gth order is /1/(G+1) times smaller than the time-delay at tree level. We propose a space-time interpretation of the result by utilizing the picture of the high-energy open string scattering put forward by Gross and Mañes. We argue that the phenomenon of reduced time-delay is attributed to the universal feature of the space-time string trajectory in high-energy scattering that string shape at higher order remains the same as that at tree level but overall scale is reduced. We also discuss implications to the space-time uncertainty principle and make brief comments on causal time-delay behavior in space/time noncommutative field theory.

  16. Higher spin modes as rolling tachyons in open string field theory

    NASA Astrophysics Data System (ADS)

    Polyakov, Dimitri

    2016-09-01

    We find a simple analytic solution in open string field theory which, in the on-shell limit, generates a tower of higher-spin vertex operators in bosonic string theory. The solution is related to irregular off-shell vertex operators for Gaiotto states. The wave functions for the irregular vertex operators are described by equations following from the cubic effective action for generalized rolling tachyons, indicating that the evolution from flat to collective higher-spin background in string field theory occurs according to cosmological pattern. We discuss the relation between nonlocalities of the rolling tachyon action and those of higher-spin interactions.

  17. With string model to time series forecasting

    NASA Astrophysics Data System (ADS)

    Pinčák, Richard; Bartoš, Erik

    2015-10-01

    Overwhelming majority of econometric models applied on a long term basis in the financial forex market do not work sufficiently well. The reason is that transaction costs and arbitrage opportunity are not included, as this does not simulate the real financial markets. Analyses are not conducted on the non equidistant date but rather on the aggregate date, which is also not a real financial case. In this paper, we would like to show a new way how to analyze and, moreover, forecast financial market. We utilize the projections of the real exchange rate dynamics onto the string-like topology in the OANDA market. The latter approach allows us to build the stable prediction models in trading in the financial forex market. The real application of the multi-string structures is provided to demonstrate our ideas for the solution of the problem of the robust portfolio selection. The comparison with the trend following strategies was performed, the stability of the algorithm on the transaction costs for long trade periods was confirmed.

  18. Noncommutative-geometry model for closed bosonic strings

    NASA Technical Reports Server (NTRS)

    Sen, Siddhartha; Holman, R.

    1987-01-01

    It is shown how Witten's (1986) noncommutative geometry may be extended to describe the closed bosonic string. For closed strings, an explicit representation is provided of the integral operator needed to construct an action and of an associative product on string fields. The proper choice of the action of the integral operator and the associative product in order to give rise to a reasonable theory is explained, and the consequences of such a choice are discussed. It is shown that the ghost numbers of the operator and associative product can be chosen arbitrarily for both open and closed strings, and that this construct can be used as an action for interacting closed bosonic strings.

  19. String model for the dynamics of glass-forming liquids.

    PubMed

    Pazmiño Betancourt, Beatriz A; Douglas, Jack F; Starr, Francis W

    2014-05-28

    We test the applicability of a living polymerization theory to describe cooperative string-like particle rearrangement clusters (strings) observed in simulations of a coarse-grained polymer melt. The theory quantitatively describes the interrelation between the average string length L, configurational entropy Sconf, and the order parameter for string assembly Φ without free parameters. Combining this theory with the Adam-Gibbs model allows us to predict the relaxation time τ in a lower temperature T range than accessible by current simulations. In particular, the combined theories suggest a return to Arrhenius behavior near Tg and a low T residual entropy, thus avoiding a Kauzmann "entropy crisis."

  20. String networks with junctions in competition models

    NASA Astrophysics Data System (ADS)

    Avelino, P. P.; Bazeia, D.; Losano, L.; Menezes, J.; de Oliveira, B. F.

    2017-03-01

    In this work we give specific examples of competition models, with six and eight species, whose three-dimensional dynamics naturally leads to the formation of string networks with junctions, associated with regions that have a high concentration of enemy species. We study the two- and three-dimensional evolution of such networks, both using stochastic network and mean field theory simulations. If the predation, reproduction and mobility probabilities do not vary in space and time, we find that the networks attain scaling regimes with a characteristic length roughly proportional to t 1 / 2, where t is the physical time, thus showing that the presence of junctions, on its own, does not have a significant impact on their scaling properties.

  1. BOOK REVIEW: Supersymmetry and String Theory: Beyond the Standard Model

    NASA Astrophysics Data System (ADS)

    Rocek, Martin

    2007-11-01

    When I was asked to review Michael Dine's new book, 'Supersymmetry and String Theory', I was pleased to have a chance to read a book by such an established authority on how string theory might become testable. The book is most useful as a list of current topics of interest in modern theoretical physics. It gives a succinct summary of a huge variety of subjects, including the standard model, symmetry, Yang Mills theory, quantization of gauge theories, the phenomenology of the standard model, the renormalization group, lattice gauge theory, effective field theories, anomalies, instantons, solitons, monopoles, dualities, technicolor, supersymmetry, the minimal supersymmetric standard model, dynamical supersymmetry breaking, extended supersymmetry, Seiberg Witten theory, general relativity, cosmology, inflation, bosonic string theory, the superstring, the heterotic string, string compactifications, the quintic, string dualities, large extra dimensions, and, in the appendices, Goldstone's theorem, path integrals, and exact beta-functions in supersymmetric gauge theories. Its breadth is both its strength and its weakness: it is not (and could not possibly be) either a definitive reference for experts, where the details of thorny technical issues are carefully explored, or a textbook for graduate students, with detailed pedagogical expositions. As such, it complements rather than replaces the much narrower and more focussed String Theory I and II volumes by Polchinski, with their deep insights, as well the two older volumes by Green, Schwarz, and Witten, which develop string theory pedagogically.

  2. Summing planar open string loops on a worldsheet lattice with Dirichlet and Neumann boundaries

    SciTech Connect

    Thorn, Charles B.

    2009-10-15

    We extend the lightcone worldsheet lattice approach to string theory, proposed in 1977 by Giles and me, to allow for coincident D-branes. We find a convenient lattice representation of Dirichlet boundary conditions, which the open string coordinates transverse to the D-branes satisfy. We then represent the sum over all planar open string multiloop diagrams by introducing an Ising spin system on the worldsheet lattice to keep track of the presence or absence of fluctuating boundaries. Finally we discuss a simple mean field treatment of the resulting coupled Ising/coordinate worldsheet system. The interplay between Neumann and Dirichlet boundary conditions leads to a richer phase structure, within this mean field approximation, than that found by Orland for the original system with only Neumann conditions.

  3. Involution-dependent constants and the cancellation of divergences in the 1-loop open string amplitude

    SciTech Connect

    Nagao, G.

    1987-12-01

    We recalculate the bosonic 1-loop open string scattering amplitude using the results of the bosonic 1-loop closed string amplitude. The results show explicitly how the cancellation of divergences depends upon of a set of involution-dependent constants which relate the torus to the cylinder and Moebius strip. Such a set of involution-dependent constants exists at each loop level and thus provides a means with which to study the cancellation of divergences and the connection between the world-sheet and internal symmetries. 14 refs., 3 figs.

  4. String Models for the Heavy Quark-Antiquark Bound States.

    NASA Astrophysics Data System (ADS)

    Tse, Sze-Man

    1988-12-01

    The heavy quark-antiquark bound state is examined in the phenomenological string models. Specifically, the Nambu-Goto model and the Polyakov's smooth string model are studied in the large-D limit, D being the number of transverse space-time dimensions. The static potential V(R) is extracted in both models in the large-D limit. In the former case, this amounts to the usual saddle point calculation. In the latter case, the renormalized, physical string tension is expressed in terms of the bare string tension and the extrinsic curvature coupling. A systematic loop expansion of V(R) is developed and carried out explicitly to one loop order, with the two loops result presented without detail. For large separations R, the potential is linear in R with corrections of order 1/R. The coefficient of the 1/R Luscher term has the universal value -piD/24 to any finite order in the loop expansion. For very small separations R, the potential V(R) is also proportional to 1/R with a coefficient twice that of Luscher's term. The corrections are logarithmically small. Polyakov's smooth string model is extended to the finite temperature situation. The temperature dependence of the string tension is investigated in the large-D limit. The effective string tension is calculated to the second order in the loop expansion. At low temperature, it differs from that of the Nambu-Goto model only by terms that fall exponentially with inverse temperature. Comparison of the potential V(R) in the smooth string model with lattice gauge calculation and hadron spectroscopy data yields a consistent result.

  5. A note on probabilistic models over strings: the linear algebra approach.

    PubMed

    Bouchard-Côté, Alexandre

    2013-12-01

    Probabilistic models over strings have played a key role in developing methods that take into consideration indels as phylogenetically informative events. There is an extensive literature on using automata and transducers on phylogenies to do inference on these probabilistic models, in which an important theoretical question is the complexity of computing the normalization of a class of string-valued graphical models. This question has been investigated using tools from combinatorics, dynamic programming, and graph theory, and has practical applications in Bayesian phylogenetics. In this work, we revisit this theoretical question from a different point of view, based on linear algebra. The main contribution is a set of results based on this linear algebra view that facilitate the analysis and design of inference algorithms on string-valued graphical models. As an illustration, we use this method to give a new elementary proof of a known result on the complexity of inference on the "TKF91" model, a well-known probabilistic model over strings. Compared to previous work, our proving method is easier to extend to other models, since it relies on a novel weak condition, triangular transducers, which is easy to establish in practice. The linear algebra view provides a concise way of describing transducer algorithms and their compositions, opens the possibility of transferring fast linear algebra libraries (for example, based on GPUs), as well as low rank matrix approximation methods, to string-valued inference problems.

  6. Modeling Harpsichord Plucking: The Plectrum and the String

    NASA Astrophysics Data System (ADS)

    Perng, Jack; Rossing, Thomas; Smith, Julius

    2011-11-01

    The harpsichord is a plucked string keyboard instrument that was popular during the Renaissance and Baroque music eras. Although it was later replaced by the more expressive piano, it has mounted a comeback due to the early music movement today. A physical model of the harpsichord's plucking mechanism is presented, detailing the plectrum-string interaction which illustrates many aspects of the harpsichord's characteristic sound.

  7. Unified model for vortex-string network evolution.

    PubMed

    Martins, C J A P; Moore, J N; Shellard, E P S

    2004-06-25

    We describe and numerically test the velocity-dependent one-scale string evolution model, a simple analytic approach describing a string network with the averaged correlation length and velocity. We show that it accurately reproduces the large-scale behavior (in particular the scaling laws) of numerical simulations of both Goto-Nambu and field theory string networks. We explicitly demonstrate the relation between the high-energy physics approach and the damped and nonrelativistic limits which are relevant for condensed matter physics. We also reproduce experimental results in this context and show that the vortex-string density is significantly reduced by loop production, an effect not included in the usual "coarse-grained" approach.

  8. Conformal counterterms and boundary conditions for open strings

    SciTech Connect

    de Beer, W.

    1988-03-15

    It is explained how Neumann boundary conditions still lead to the mixed boundary conditions required to calculate the functional determinants in the Polyakov model. Neumann boundary conditions on the conformal factor are obtained, thereby negating the need for a finite counterterm in the quantum bare action.

  9. sigma model approach to the heterotic string theory

    SciTech Connect

    Sen, A.

    1985-09-01

    Relation between the equations of motion for the massless fields in the heterotic string theory, and the conformal invariance of the sigma model describing the propagation of the heterotic string in arbitrary background massless fields is discussed. It is emphasized that this sigma model contains complete information about the string theory. Finally, we discuss the extension of the Hull-Witten proof of local gauge and Lorentz invariance of the sigma-model to higher order in ..cap alpha..', and the modification of the transformation laws of the antisymmetric tensor field under these symmetries. Presence of anomaly in the naive N = 1/2 supersymmetry transformation is also pointed out in this context. 12 refs.

  10. Higher-level Kac-Moody string models and their phenomenological implications

    NASA Astrophysics Data System (ADS)

    Font, Anamaría; Ibáñez, Luis E.; Quevedo, Fernando

    1990-12-01

    We present a systematic approach to string compactifications in which some of the gauge interactions are realized at higher Kac-Moody level. This can be realized in the current constructions of four-dimensional strings including symmetric and asymmetric compactifications. It is shown that there exist higher-level models which can be obtained from exactly marginal deformations of a level-one model, and a simple field theory interpretation is provided in terms of flat scalar field directions in the original level-one model. We then consider the phenomenological possibilities opened to four-dimensional higher-level string models. In particular we show how the levels associated to standard model interactions as well as the massless content of the theory are constrained by unitarity and the renormalization group equations. We also consider the prospects for string GUT models. Mechanisms like "missing partner" in SU(5) or "see-saw" neutrino in SO(10) are only possible for k ⩾ 5. For E 6 at any level only adjoints or fundamentals can be light. A generic feature of the unification models seem to be the existence of relatively light chiral multiplets transforming like (8, 1, 0) + (1, 3, 0) + (1, 1, 0) under SU(3) × SU(2) × U(1). The problems of neutrino masses and proton stability are reconsidered and a possible simultaneous solution involving a discrete gauge symmetry is suggested.

  11. Strings as sigma models and in the tensionless limit

    NASA Astrophysics Data System (ADS)

    Persson, Jonas

    2007-05-01

    This thesis considers two different aspects of string theory, the tensionless limit of the string and supersymmetric sigma models. The tensionless limit is used to find a IIB supergravity background generated by a tensionless string. Quantization of the tensionless string in a pp-wave background is performed and the tensionless limit is found to commute with quantization. Further, the sigma model with N=(2,2) extended world-sheet supersymmetry is considered and the requirement on the target space to have a bi-Hermitean geometry is reviewed. It is shown that the equivalence between bi-Hermitean geometry and generalized Kahler follows, in this context, from the equivalence between the Lagrangian- and Hamiltonian formulation of the model. Moreover, the explicit T-duality transformation in the Hamiltonian formulation of the sigma model is constructed and shown to be a symplectomorphism. Under certain assumptions, the amount of extended supersymmetry present in the sigma model is shown to be preserved under T-duality. Further, by requiring N=(2,2) extended supersymmetry in a first order formulation of the sigma model an intriguing geometrical structure arises and in a special case generalized complex geometry is found to be contained in the new framework.

  12. A simple solution for marginal deformations in open string field theory

    NASA Astrophysics Data System (ADS)

    Maccaferri, Carlo

    2014-05-01

    We derive a new open string field theory solution for boundary marginal deformations generated by chiral currents with singular self-OPE. The solution is algebraically identical to the Kiermaier-Okawa-Soler solution and it is gauge equivalent to the TakahashiTanimoto identity-based solution. It is wedge-based and we can analytically evaluate the Ellwood invariant and the action, reproducing the expected results from BCFT. By studying the isomorphism between the states of the initial and final background a dual derivation of the Ellwood invariant is also obtained.

  13. Factorization of chiral string amplitudes

    NASA Astrophysics Data System (ADS)

    Huang, Yu-tin; Siegel, Warren; Yuan, Ellis Ye

    2016-09-01

    We re-examine a closed-string model defined by altering the boundary conditions for one handedness of two-dimensional propagators in otherwise-standard string theory. We evaluate the amplitudes using Kawai-Lewellen-Tye factorization into open-string amplitudes. The only modification to standard string theory is effectively that the spacetime Minkowski metric changes overall sign in one open-string factor. This cancels all but a finite number of states: as found in earlier approaches, with enough supersymmetry (e.g., type II) the tree amplitudes reproduce those of the massless truncation of ordinary string theory. However, we now find for the other cases that additional fields, formerly thought to be auxiliary, describe new spin-2 states at the two adjacent mass levels (tachyonic and tardyonic). The tachyon is always a ghost, but can be avoided in the heterotic case.

  14. Open Source Molecular Modeling

    PubMed Central

    Pirhadi, Somayeh; Sunseri, Jocelyn; Koes, David Ryan

    2016-01-01

    The success of molecular modeling and computational chemistry efforts are, by definition, dependent on quality software applications. Open source software development provides many advantages to users of modeling applications, not the least of which is that the software is free and completely extendable. In this review we categorize, enumerate, and describe available open source software packages for molecular modeling and computational chemistry. PMID:27631126

  15. Transient and sustained elementary flux mode networks on a catalytic string-based chemical evolution model.

    PubMed

    Pereira, José A

    2014-08-01

    Theoretical models designed to test the metabolism-first hypothesis for prebiotic evolution have yield strong indications about the hypothesis validity but could sometimes use a more extensive identification between model objects and real objects towards a more meaningful interpretation of results. In an attempt to go in that direction, the string-based model SSE ("steady state evolution") was developed, where abstract molecules (strings) and catalytic interaction rules are based on some of the most important features of carbon compounds in biological chemistry. The system is open with a random inflow and outflow of strings but also with a permanent string food source. Although specific catalysis is a key aspect of the model, used to define reaction rules, the focus is on energetics rather than kinetics. Standard energy change tables were constructed and used with standard formation reactions to track energy flows through the interpretation of equilibrium constant values. Detection of metabolic networks on the reaction system was done with elementary flux mode (EFM) analysis. The combination of these model design and analysis options enabled obtaining metabolic and catalytic networks showing several central features of biological metabolism, some more clearly than in previous models: metabolic networks with stepwise synthesis, energy coupling, catalysts regulation, SN2 coupling, redox coupling, intermediate cycling, coupled inverse pathways (metabolic cycling), autocatalytic cycles and catalytic cascades. The results strongly suggest that the main biological metabolism features, including the genotype-phenotype interpretation, are caused by the principles of catalytic systems and are prior to modern genetic systems principles. It also gives further theoretical support to the thesis that the basic features of biologic metabolism are a consequence of the time evolution of a random catalyst search working on an open system with a permanent food source. The importance

  16. Dilaton stabilization in three-generation heterotic string model

    NASA Astrophysics Data System (ADS)

    Beye, Florian; Kobayashi, Tatsuo; Kuwakino, Shogo

    2016-09-01

    We study dilaton stabilization in heterotic string models. By utilizing the asymmetric orbifold construction, we construct an explicit three-generation model whose matter content in the visible sector is the supersymmetric standard model with additional vectorlike matter. This model does not contain any geometric moduli fields except the dilaton field. Model building at a symmetry enhancement point in moduli space enlarges the rank of the hidden gauge group. By analyzing multiple hidden gauge sectors, the dilaton field is stabilized by the racetrack mechanism. We also discuss a supersymmetry breaking scenario and F-term uplifting.

  17. A matrix model for Misner universe and closed string tachyons

    NASA Astrophysics Data System (ADS)

    She, Jian-Huang

    2006-01-01

    We use D-instantons to probe the geometry of Misner universe, and calculate the world volume field theory action, which is of the 1+0 dimensional form and highly non-local. Turning on closed string tachyons, we see from the deformed moduli space of the D-instantons that the spacelike singularity is removed and the region near the singularity becomes a fuzzy cone, where space and time do not commute. When realized cosmologically there can be controllable trans-planckian effects. And the infinite past is now causally connected with the infinite future, thus also providing a model for big crunch/big bang transition. In the spirit of IKKT matrix theory, we propose that the D-instanton action here provides a holographic description for Misner universe and time is generated dynamically. In addition we show that winding string production from the vacua and instability of D-branes have simple uniform interpretations in this second quantized formalism.

  18. Retrieving Backbone String Neighbors Provides Insights Into Structural Modeling of Membrane Proteins*

    PubMed Central

    Sun, Jiang-Ming; Li, Tong-Hua; Cong, Pei-Sheng; Tang, Sheng-Nan; Xiong, Wen-Wei

    2012-01-01

    Identification of protein structural neighbors to a query is fundamental in structure and function prediction. Here we present BS-align, a systematic method to retrieve backbone string neighbors from primary sequences as templates for protein modeling. The backbone conformation of a protein is represented by the backbone string, as defined in Ramachandran space. The backbone string of a query can be accurately predicted by two innovative technologies: a knowledge-driven sequence alignment and encoding of a backbone string element profile. Then, the predicted backbone string is employed to align against a backbone string database and retrieve a set of backbone string neighbors. The backbone string neighbors were shown to be close to native structures of query proteins. BS-align was successfully employed to predict models of 10 membrane proteins with lengths ranging between 229 and 595 residues, and whose high-resolution structural determinations were difficult to elucidate both by experiment and prediction. The obtained TM-scores and root mean square deviations of the models confirmed that the models based on the backbone string neighbors retrieved by the BS-align were very close to the native membrane structures although the query and the neighbor shared a very low sequence identity. The backbone string system represents a new road for the prediction of protein structure from sequence, and suggests that the similarity of the backbone string would be more informative than describing a protein as belonging to a fold. PMID:22415040

  19. Open source molecular modeling.

    PubMed

    Pirhadi, Somayeh; Sunseri, Jocelyn; Koes, David Ryan

    2016-09-01

    The success of molecular modeling and computational chemistry efforts are, by definition, dependent on quality software applications. Open source software development provides many advantages to users of modeling applications, not the least of which is that the software is free and completely extendable. In this review we categorize, enumerate, and describe available open source software packages for molecular modeling and computational chemistry. An updated online version of this catalog can be found at https://opensourcemolecularmodeling.github.io.

  20. Involution-dependent constants and the cancellation of divergences in the one-loop open-string amplitude

    SciTech Connect

    Nagao, G.

    1988-07-15

    We recalculate the bosonic one-loop open-string scattering amplitude using the results of the bosonic one-loop closed-string amplitude. The results show explicitly how the cancellation of divergences depends upon a set of involution-dependent constants which relate the torus to the cylinder and Moebius strip. Such a set of involution-dependent constants exists at each loop level and thus provides a means with which to study the cancellation of divergences and the connection between the world sheet and internal symmetries.

  1. Universality and string theory

    NASA Astrophysics Data System (ADS)

    Bachlechner, Thomas Christian

    The first run at the Large Hadron Collider has deeply challenged conventional notions of naturalness, and CMB polarization experiments are about to open a new window to early universe cosmology. As a compelling candidate for the ultraviolet completion of the standard model, string theory provides a prime opportunity to study both early universe cosmology and particle physics. However, relating low energy observations to ultraviolet physics requires knowledge of the metastable states of string theory through the study of vacua. While it is difficult to directly obtain infrared data from explicit string theory constructions, string theory imposes constraints on low energy physics. The study of ensembles of low energy theories consistent with ultra-violet constraints provides insight on generic features we might expect to occur in string compactifications. In this thesis we present a statistical treatment of vacuum stability and vacuum properties in the context of random supergravity theories motivated by string theory. Early universe cosmology provides another avenue to high energy physics. From the low energy perspective large field inflation is typically considered highly unnatural: the scale relevant for the diameter of flat regions in moduli space is sub-Planckian in regions of perturbative control. To approach this problem, we consider generic Calabi-Yau compactifications of string theory and find that super-Planckian diameters of axion fundamental domains in fact arise generically. We further demonstrate that such super-Planckian flat regions are plausibly consistent with theWeak Gravity Conjecture.

  2. Super no-scale models in string theory

    NASA Astrophysics Data System (ADS)

    Kounnas, Costas; Partouche, Hervé

    2016-12-01

    We consider "super no-scale models" in the framework of the heterotic string, where the N = 4 , 2 , 1 → 0 spontaneous breaking of supersymmetry is induced by geometrical fluxes realizing a stringy Scherk-Schwarz perturbative mechanism. Classically, these backgrounds are characterized by a boson/fermion degeneracy at the massless level, even if supersymmetry is broken. At the 1-loop level, the vacuum energy is exponentially suppressed, provided the supersymmetry breaking scale is small, m3/2 ≪Mstring. We show that the "super no-scale string models" under consideration are free of Hagedorn-like tachyonic singularities, even when the supersymmetry breaking scale is large, m3/2 ≃Mstring. The vacuum energy decreases monotonically and converges exponentially to zero, when m3/2 varies from Mstring to 0. We also show that all Wilson lines associated to asymptotically free gauge symmetries are dynamically stabilized by the 1-loop effective potential, while those corresponding to non-asymptotically free gauge groups lead to instabilities and condense. The Wilson lines of the conformal gauge symmetries remain massless. When stable, the stringy super no-scale models admit low energy effective actions, where decoupling gravity yields theories in flat spacetime, with softly broken supersymmetry.

  3. A numerical study of the string function using a primitive equation ocean model

    NASA Astrophysics Data System (ADS)

    Tyler, R. H.; Käse, R.

    We use results from a primitive-equation ocean numerical model (SCRUM) to test a theoretical 'string function' formulation put forward by Tyler and Käse in another article in this issue. The string function acts as a stream function for the large-scale potential energy flow under the combined beta and topographic effects. The model results verify that large-scale anomalies propagate along the string function contours with a speed correctly given by the cross-string gradient. For anomalies having a scale similar to the Rossby radius, material rates of change in the layer mass following the string velocity are balanced by material rates of change in relative vorticity following the flow velocity. It is shown that large-amplitude anomalies can be generated when wind stress is resonant with the string function configuration.

  4. Signatures of broken parity and time-reversal symmetry in generalized string-net models

    NASA Astrophysics Data System (ADS)

    Lake, Ethan; Wu, Yong-Shi

    2016-09-01

    We study indicators of broken time-reversal and parity symmetries in gapped topological phases of matter. We focus on phases realized by Levin-Wen string-net models and generalize the string-net model to describe phases which break parity and time-reversal symmetries. We do this by introducing an extra degree of freedom into the string-net graphical calculus, which takes the form of a branch cut located at each vertex of the underlying string-net lattice. We also work with string-net graphs defined on arbitrary (nontrivalent) graphs, which reveals otherwise hidden information about certain configurations of anyons in the string-net graph. Most significantly, we show that objects known as higher Frobenius-Schur indicators can provide several efficient ways to detect whether a given topological phase breaks parity or time-reversal symmetry.

  5. Mean transverse momenta correlations in hadron-hadron collisions in MC toy model with repulsing strings

    SciTech Connect

    Altsybeev, Igor

    2016-01-22

    In the present work, Monte-Carlo toy model with repulsing quark-gluon strings in hadron-hadron collisions is described. String repulsion creates transverse boosts for the string decay products, giving modifications of observables. As an example, long-range correlations between mean transverse momenta of particles in two observation windows are studied in MC toy simulation of the heavy-ion collisions.

  6. Ultra-relativistic heavy ion collisions in a multi-string model

    SciTech Connect

    Werner, K.

    1987-01-01

    We present a model for ultra-relativistic heavy ion collisions based on color string formation and subsequent independent string fragmentation. Strings are formed due to color exchange between quarks at each individual nucleon nucleon collision. The fragmentation is treated as in e/sup +/e/sup -/ or lepton nucleon scattering. Calculation for pp, pA, and AA were carried out using the Monte Carlo code VENUS for Very Energetic Nuclear Scattering (version 1.0). 20 refs., 6 figs.

  7. Diffeomorphisms as symplectomorphisms in history phase space: Bosonic string model

    NASA Astrophysics Data System (ADS)

    Kouletsis, I.; Kuchař, K. V.

    2002-06-01

    The structure of the history phase space G of a covariant field system and its history group (in the sense of Isham and Linden) is analyzed on an example of a bosonic string. The history space G includes the time map T from the spacetime manifold (the two-sheet) Y to a one-dimensional time manifold T as one of its configuration variables. A canonical history action is posited on G such that its restriction to the configuration history space yields the familiar Polyakov action. The standard Dirac-ADM action is shown to be identical with the canonical history action, the only difference being that the underlying action is expressed in two different coordinate charts on G. The canonical history action encompasses all individual Dirac-ADM actions corresponding to different choices T of foliating Y. The history Poisson brackets of spacetime fields on G induce the ordinary Poisson brackets of spatial fields in the instantaneous phase space G0 of the Dirac-ADM formalism. The canonical history action is manifestly invariant both under spacetime diffeomorphisms Diff Y and temporal diffeomorphisms Diff T. Both of these diffeomorphisms are explicitly represented by symplectomorphisms on the history phase space G. The resulting classical history phase space formalism is offered as a starting point for projection operator quantization and consistent histories interpretation of the bosonic string model.

  8. Reduced-Size Integer Linear Programming Models for String Selection Problems: Application to the Farthest String Problem.

    PubMed

    Zörnig, Peter

    2015-08-01

    We present integer programming models for some variants of the farthest string problem. The number of variables and constraints is substantially less than that of the integer linear programming models known in the literature. Moreover, the solution of the linear programming-relaxation contains only a small proportion of noninteger values, which considerably simplifies the rounding process. Numerical tests have shown excellent results, especially when a small set of long sequences is given.

  9. Heat string model of bi-dimensional dc Glidarc

    NASA Astrophysics Data System (ADS)

    Pellerin, S.; Richard, F.; Chapelle, J.; Cormier, J.-M.; Musiol, K.

    2000-10-01

    The gliding arc discharge (`Glidarc') is the subject of renewed interest in application to a variety of chemical reactions. The gliding arc creates a weakly ionized gas `string' between two horn-shaped electrodes. In this paper, we present a simple model for a bi-dimensional dc Glidarc working in air, in which the conducting zone of the discharge that is heated by the Joule effect is considered as a hot wire cooled by an air flow. Inside this wire, the heat transfer results from thermal conduction. The exchange of heat between the hot wire and the air flow is assured by convection and depends on the wire radius and the relative velocity of the arc with respect to the gas flow. The model correctly describes experimental results and allows us to predict the working parameters of the Glidarc in different experimental situations.

  10. Cosmic strings in hidden sectors: 1. Radiation of standard model particles

    SciTech Connect

    Long, Andrew J.; Hyde, Jeffrey M.; Vachaspati, Tanmay E-mail: jmhyde@asu.edu

    2014-09-01

    In hidden sector models with an extra U(1) gauge group, new fields can interact with the Standard Model only through gauge kinetic mixing and the Higgs portal. After the U(1) is spontaneously broken, these interactions couple the resultant cosmic strings to Standard Model particles. We calculate the spectrum of radiation emitted by these ''dark strings'' in the form of Higgs bosons, Z bosons, and Standard Model fermions assuming that string tension is above the TeV scale. We also calculate the scattering cross sections of Standard Model fermions on dark strings due to the Aharonov-Bohm interaction. These radiation and scattering calculations will be applied in a subsequent paper to study the cosmological evolution and observational signatures of dark strings.

  11. Affleck-Dine baryogenesis in type IIB string models

    NASA Astrophysics Data System (ADS)

    Allahverdi, Rouzbeh; Cicoli, Michele; Muia, Francesco

    2016-06-01

    We propose a possible string embedding of Affleck-Dine baryogenesis in type IIB sequestered models where the late-time decay of the lightest modulus reheats the universe to relatively low temperatures. We show that if inflation is driven by a blow-up Kähler modulus, the Affleck-Dine field can become tachyonic during inflation if the Kähler metric for matter fields has an appropriate inflaton-dependent contribution. We find that the Affleck-Dine mechanism can generate the observed baryon asymmetry for natural values of the underlying parameters which lead also to successful inflation and low-energy gaugino masses in a split supersymmetry scenario. The reheating temperature from the lightest modulus decay is high enough to allow thermal Higgsino-like dark matter.

  12. Frequency-Zooming ARMA Modeling for Analysis of Noisy String Instrument Tones

    NASA Astrophysics Data System (ADS)

    Esquef, Paulo A. A.; Karjalainen, Matti; Välimäki, Vesa

    2003-12-01

    This paper addresses model-based analysis of string instrument sounds. In particular, it reviews the application of autoregressive (AR) modeling to sound analysis/synthesis purposes. Moreover, a frequency-zooming autoregressive moving average (FZ-ARMA) modeling scheme is described. The performance of the FZ-ARMA method on modeling the modal behavior of isolated groups of resonance frequencies is evaluated for both synthetic and real string instrument tones immersed in background noise. We demonstrate that the FZ-ARMA modeling is a robust tool to estimate the decay time and frequency of partials of noisy tones. Finally, we discuss the use of the method in synthesis of string instrument sounds.

  13. Dark strings

    SciTech Connect

    Vachaspati, Tanmay

    2009-09-15

    Recent astrophysical observations have motivated novel theoretical models of the dark matter sector. A class of such models predicts the existence of GeV scale cosmic strings that communicate with the standard model sector by Aharonov-Bohm interactions with electrically charged particles. We discuss the cosmology of these 'dark strings' and investigate possible observational signatures. More elaborate dark sector models are argued to contain hybrid topological defects that may also have observational signatures.

  14. LRS Bianchi type-II string cosmological models in a modified theory of gravitation

    NASA Astrophysics Data System (ADS)

    Kanakavalli, T.; Ananda Rao, G.; Reddy, D. R. K.

    2017-03-01

    This paper is devoted to the investigation of spatially homogeneous anisotropic LRS Bianchi type-II cosmological models with string source in a modified theory of gravitation formulated by Harko et al. (Phys. Rev. D 84:024020, 2011) which is universally known as f( R, T) gravity. Here R is the Ricci scalar and T is the trace of the energy momentum tensor. By solving the field equation we have presented massive string and Takabyasi or p-string models in this theory. However it is interesting to note that geometric string in this space-time does not exist in this theory. Physical and geometrical properties of the strings obtained are also discussed.

  15. Paraquantum strings in noncommutative space-time

    NASA Astrophysics Data System (ADS)

    Seridi, M. A.; Belaloui, N.

    2015-10-01

    A parabosonic string is assumed to propagate in a total noncommutative target phase space. Three models are investigated: open strings, open strings between two parallel Dp-Dq branes and closed ones. This leads to a generalization of the oscillators algebra of the string and the corresponding Virasoro algebra. The mass operator is no more diagonal in the ordinary Fock space, a redefinition of this later will modify the mass spectrum, so that, neither massless vector state nor massless tensor state are present. The restoration of the photon and the graviton imposes specific forms of the noncommutativity parameter matrices, partially removes the mass degeneracy and gives new additional ones. In particular, for the D-branes, one can have a tachyon free model with a photon state when more strict conditions on these parameters are imposed, while, the match level condition of the closed string model induces the reduction of the spectrum.

  16. Bianchi type-VIh string cloud cosmological models with bulk viscosity

    NASA Astrophysics Data System (ADS)

    Tripathy, Sunil K.; Behera, Dipanjali

    2010-11-01

    String cloud cosmological models are studied using spatially homogeneous and anisotropic Bianchi type VIh metric in the frame work of general relativity. The field equations are solved for massive string cloud in presence of bulk viscosity. A general linear equation of state of the cosmic string tension density with the proper energy density of the universe is considered. The physical and kinematical properties of the models have been discussed in detail and the limits of the anisotropic parameter responsible for different phases of the universe are explored.

  17. Computational modelling of string body interaction for the violin family and simulation of wolf notes

    NASA Astrophysics Data System (ADS)

    Inácio, O.; Antunes, J.; Wright, M. C. M.

    2008-02-01

    Most theoretical studies of bowed-string instruments deal with isolated strings, pinned on fixed supports. In others, the instrument body dynamics have been accounted by using extremely simplified models of the string-body interaction through the instrument bridge. Such models have, nevertheless, been instrumental to the understanding of a very common and musically undesirable phenomenon known as the wolf note—a strong beating interplay between string and body vibrations. Cellos, bad and good, are particularly prone to this problem. In previous work, a computational method that allows efficient time-domain modelling of bowed strings based on a modal approach has been introduced. This has been extended to incorporate the complex dynamics of real-life instrument bodies, and their coupling to the string motions, using experimental dynamical body data. The string is modelled using its unconstrained modes, assuming pinned-pinned boundary conditions at the tailpiece and the nut. At the intermediary bridge location, the string-body coupling is enforced using the body impulse-response or modal data, as measured at the instrument bridge. In the present paper, this computational approach is applied to a specific cello, which provided experimental wolf-behaviour data under several bowing conditions, as well as laboratory measurements of the bridge impulse responses on which the numerical simulations were based. Interesting aspects of the string-body dynamical responses are highlighted by numerical simulations and the corresponding sounds and animations produced. Finally, a qualitative (and, when possible, quantitative) comparison of the experimental and numerical results is presented.

  18. Average formation length of hadrons in a string model

    NASA Astrophysics Data System (ADS)

    Grigoryan, L.

    2010-04-01

    The space-time scales of the hadronization process in the framework of the string model are investigated. It is shown that the average formation lengths of pseudoscalar mesons, produced in semi-inclusive deep inelastic scattering of leptons on different targets, depend on their electrical charges. In particular, the average formation lengths of positively charged hadrons are larger than those of negatively charged ones. This statement is fulfilled for all scaling functions used, for z (the fraction of the virtual photon energy transferred to the detected hadron) larger than 0.15, for all nuclear targets, and for any value of the Björken scaling variable xBj. In all cases, the main mechanism is direct production of pseudoscalar mesons. Including in consideration an additional mechanism of production resulting in decay of resonances leads to a decrease in average formation lengths. It is shown that the average formation lengths of positively (negatively) charged mesons are slowly increasing (decreasing) functions of xBj. The results obtained can be important, in particular, for understanding of the hadronization process in the nuclear environment.

  19. Simple bit-string model for lineage branching

    NASA Astrophysics Data System (ADS)

    de Oliveira, P. M. C.; Sá Martins, J. S.; Stauffer, D.; Moss de Oliveira, S.

    2004-11-01

    We introduce a population dynamics model, where individual genomes are represented by bit strings. Selection is described by death probabilities which depend on these genomes, and new individuals continuously replace the ones that die, keeping the population constant. An offspring has the same genome as its (randomly chosen) parent, except for a small amount of (also random) mutations. Chance may thus generate a newborn with a genome that is better than that of its parent, and the newborn will have a smaller death probability. When this happens, this individual is a would-be founder of a new lineage. A new lineage is considered created if the number of its live descendants grows above a certain previously defined threshold. The time evolution of populations evolving under these rules is followed by computer simulations and the probability densities of lineage duration and size, among others, are computed. These densities show a scale-free behavior, in accordance with some conjectures in paleoevolution, and suggesting a simple mechanism as explanation for the ubiquity of these power laws.

  20. Aspects of topological string theory

    NASA Astrophysics Data System (ADS)

    Cook, Paul L. H.

    Two aspects of the topological string and its applications are considered in this thesis. Firstly, non-perturbative contributions to the OSV conjecture relating four-dimensional extremal black holes and the closed topological string partition function are studied. A new technique is formulated for encapsulating these contributions for the case of a Calabi-Yau manifold constructed by fibering two line bundle over a torus, with the unexpected property that the resulting non-perturbative completion of the topological string partition function is such that the black hole partition function is equal to a product of a chiral and an anti-chiral function. This new approach is considered both in the context of the requirement of background independence for the topological string, and for more general Calabi-Yau manifolds. Secondly, this thesis provides a microscopic derivation of the open topological string holomorphic anomaly equations proposed by Walcher in arXiv:0705.4098 under the assumption that open string moduli do not contribute. In doing so, however, new anomalies are found for compact Calabi-Yau manifolds when the disk one-point functions (string to boundary amplitudes) are non-zero. These new anomalies introduce coupling to wrong moduli (complex structure moduli in A-model and Kahler moduli in B-model), and spoil the recursive structure of the holomorphic anomaly equations. For vanishing disk one-point functions, the open string holomorphic anomaly equations can be integrated to solve for amplitudes recursively, using a Feynman diagram approach, for which a proof is presented.

  1. Cosmic strings

    NASA Technical Reports Server (NTRS)

    Bennett, David P.

    1988-01-01

    Cosmic strings are linear topological defects which are predicted by some grand unified theories to form during a spontaneous symmetry breaking phase transition in the early universe. They are the basis for the only theories of galaxy formation aside from quantum fluctuations from inflation based on fundamental physics. In contrast to inflation, they can also be observed directly through gravitational lensing and their characterisitc microwave background anisotropy. It was recently discovered that details of cosmic string evolution are very differnt from the so-called standard model that was assumed in most of the string-induced galaxy formation calculations. Therefore, the details of galaxy formation in the cosmic string models are currently very uncertain.

  2. OpenStudio - Fault Modeling

    SciTech Connect

    Frank, Stephen; Robertson, Joseph; Cheung, Howard; Horsey, Henry

    2014-09-19

    This software record documents the OpenStudio fault model development portion of the Fault Detection and Diagnostics LDRD project.The software provides a suite of OpenStudio measures (scripts) for modeling typical HVAC system faults in commercial buildings and also included supporting materials: example projects and OpenStudio measures for reporting fault costs and energy impacts.

  3. Cosmic string parameter constraints and model analysis using small scale Cosmic Microwave Background data

    SciTech Connect

    Urrestilla, Jon; Bevis, Neil; Hindmarsh, Mark; Kunz, Martin E-mail: n.bevis@imperial.ac.uk E-mail: martin.kunz@physics.unige.ch

    2011-12-01

    We present a significant update of the constraints on the Abelian Higgs cosmic string tension by cosmic microwave background (CMB) data, enabled both by the use of new high-resolution CMB data from suborbital experiments as well as the latest results of the WMAP satellite, and by improved predictions for the impact of Abelian Higgs cosmic strings on the CMB power spectra. The new cosmic string spectra [1] were improved especially for small angular scales, through the use of larger Abelian Higgs string simulations and careful extrapolation. If Abelian Higgs strings are present then we find improved bounds on their contribution to the CMB anisotropies, fd{sup AH} < 0.095, and on their tension, Gμ{sub AH} < 0.57 × 10{sup −6}, both at 95% confidence level using WMAP7 data; and fd{sup AH} < 0.048 and Gμ{sub AH} < 0.42 × 10{sup −6} using all the CMB data. We also find that using all the CMB data, a scale invariant initial perturbation spectrum, n{sub s} = 1, is now disfavoured at 2.4σ even if strings are present. A Bayesian model selection analysis no longer indicates a preference for strings.

  4. Open Rotor Aeroacoustic Modelling

    NASA Technical Reports Server (NTRS)

    Envia, Edmane

    2012-01-01

    Owing to their inherent fuel efficiency, there is renewed interest in developing open rotor propulsion systems that are both efficient and quiet. The major contributor to the overall noise of an open rotor system is the propulsor noise, which is produced as a result of the interaction of the airstream with the counter-rotating blades. As such, robust aeroacoustic prediction methods are an essential ingredient in any approach to designing low-noise open rotor systems. To that end, an effort has been underway at NASA to assess current open rotor noise prediction tools and develop new capabilities. Under this effort, high-fidelity aerodynamic simulations of a benchmark open rotor blade set were carried out and used to make noise predictions via existing NASA open rotor noise prediction codes. The results have been compared with the aerodynamic and acoustic data that were acquired for this benchmark open rotor blade set. The emphasis of this paper is on providing a summary of recent results from a NASA Glenn effort to validate an in-house open noise prediction code called LINPROP which is based on a high-blade-count asymptotic approximation to the Ffowcs-Williams Hawkings Equation. The results suggest that while predicting the absolute levels may be difficult, the noise trends are reasonably well predicted by this approach.

  5. Open Rotor Aeroacoustic Modeling

    NASA Technical Reports Server (NTRS)

    Envia, Edmane

    2012-01-01

    Owing to their inherent fuel efficiency, there is renewed interest in developing open rotor propulsion systems that are both efficient and quiet. The major contributor to the overall noise of an open rotor system is the propulsor noise, which is produced as a result of the interaction of the airstream with the counter-rotating blades. As such, robust aeroacoustic prediction methods are an essential ingredient in any approach to designing low-noise open rotor systems. To that end, an effort has been underway at NASA to assess current open rotor noise prediction tools and develop new capabilities. Under this effort, high-fidelity aerodynamic simulations of a benchmark open rotor blade set were carried out and used to make noise predictions via existing NASA open rotor noise prediction codes. The results have been compared with the aerodynamic and acoustic data that were acquired for this benchmark open rotor blade set. The emphasis of this paper is on providing a summary of recent results from a NASA Glenn effort to validate an in-house open noise prediction code called LINPROP which is based on a high-blade-count asymptotic approximation to the Ffowcs-Williams Hawkings Equation. The results suggest that while predicting the absolute levels may be difficult, the noise trends are reasonably well predicted by this approach.

  6. Axially symmetric anisotropic string cosmological models in Saez-Ballester theory of gravitation

    NASA Astrophysics Data System (ADS)

    Kanakavalli, T.; Rao, G. Ananda; Reddy, D. R. K.

    2017-02-01

    Field equations of a scalar-tensor theory of gravitation proposed by Saez and Ballester (Phys. Lett. A 113:467, 1986) are derived with the help of a spatially homogeneous axially symmetric anisotropic Bianchi type metric in the presence of cosmic string source. To obtain determinate solutions of the field equations we have used the fact that the scalar expansion is proportional to shear scalar and the equations of state which correspond to geometric, Takabayasi and massive strings. It is found that geometric and massive strings do not coexist with the Saez-Ballester Scalar field. However, Takabayasi string which survives has been determined. Also, physical discussion of the dynamical parameters of the model is presented.

  7. New Bianchi type-I cosmological models for biharmonic particles using string cosmology with exponential law

    NASA Astrophysics Data System (ADS)

    Körpinar, Talat; Ünlütürk, Yasin

    2015-11-01

    Anisotropic Bianchi type-I magnetized string cosmological models are obtained in decaying vacuum energy density proposed by Pradhan (Commun Theor Phys 55:931-941, 2011). In this study, we obtain some physical and geometrical properties of biharmonic particles of a new spacetime using Bianchi type-I (B-I) cosmological model. We use solution of the Einstein's field equations for biharmonic particles. Some important features of the model have been discussed. Established the existence of string cosmological models for biharmonic particles, unlike the earlier authors, in this theory and studied some physical and geometrical properties.

  8. Two exercises in supersymmetry: a low-energy supergravity model and free string field theory

    SciTech Connect

    Preitschopf, C.R.

    1986-09-01

    The new features of a supersymmetric standard model in the presence of heavy families are studied. The minimal set of Higgs fields, the desert between the electroweak and the grand unification scale and perturbative values of the dimensionless parameters throughout this region are assumed. Using the numerical as well as the approximate analytic solution of the renormalization group equations, the evolution of all the parameters of the theory are studied in the case of large Yukawa couplings for the fourth family. The desired spontaneous symmetry breaking of the electroweak symmetry takes place only for a rather unnatural choice of the initial values of certain mass parameters at the grand unification scale. If it is gravitino mass smaller than 200 GeV the vacuum expectation values of the Higgs fields emerge necessarily in an interplay of the tree level Higgs potential and its quantum corrections and are approximately equal. The qurak masses of the fourth family are roughly 135 GeV, while the mass of the fourth charged lepton has an upper bound of 90 GeV. Further characteristic features of this scenario are one light neutral Higgs field of mass 50 GeV and gluino masses below 75 GeV. If the gravitino mass is higher than 200 GeV one obtains a scaled up version of the well-known three family, heavy top scenario with quark masses between 40 and 205 GeV and all superparticle masses heavier than 150 GeV except the photino, gluino, one chargino and one neutralino. The gauge-invariant theory of the free bosonic open string is generalized to treat closed strings and superstrings. All of these theories can be written as theories of string differential forms defined on suitable spaces. All of the bosonic theories have exactly the same structure; the Ramond theory takes an analogous first-order form. We show explicitly, how to gauge-fix each action to the light-cone gauge and to the Feynman-Siegel gauge.

  9. Open ocean tide modelling

    NASA Technical Reports Server (NTRS)

    Parke, M. E.

    1978-01-01

    Two trends evident in global tidal modelling since the first GEOP conference in 1972 are described. The first centers on the incorporation of terms for ocean loading and gravitational self attraction into Laplace's tidal equations. The second centers on a better understanding of the problem of near resonant modelling and the need for realistic maps of tidal elevation for use by geodesists and geophysicists. Although new models still show significant differences, especially in the South Atlantic, there are significant similarities in many of the world's oceans. This allows suggestions to be made for future locations for bottom pressure gauge measurements. Where available, estimates of M2 tidal dissipation from the new models are significantly lower than estimates from previous models.

  10. Torsional vibrations of helically buckled drill-strings: experiments and FE modelling

    NASA Astrophysics Data System (ADS)

    Kapitaniak, M.; Hamaneh, V. V.; Wiercigroch, M.

    2016-05-01

    This paper presents investigations of a complex drill-string vibrations on a novel experimental rig, developed by the Centre for Applied Dynamics Research at the University of Aberdeen. The rig is capable of exhibiting of all major types of drill-string vibrations, including torsional, axial and lateral modes. The importance of this work lies in the fact, that the experimental rig utilizes real industrial drill-bits and rock samples, which after careful identification of Torque On Bit (TOB) speed curves, allows to use an equivalent friction model to accommodate for both frictional and cutting components of the bit-rock interactions. Moreover, the proposed Finite Element model, after a careful calibration, is capable of replicating experimental results, for the prebuckled configuration of the drill-string. This allows us to observe the effect of winding and unwinding of the helical deformation during stick-slip motion.

  11. Numerical modelling of longitudinal vibrations of a sucker rod string

    NASA Astrophysics Data System (ADS)

    Shardakov, I. N.; Wasserman, I. N.

    2010-03-01

    A new technique for analyzing the dynamic behavior of a sucker rod string used in the oil well industry is presented. The main difficulty in the numerical calculation of the examined structure is a multivalued velocity—force relation determined by Coulomb's friction and by loads generated during operation of pump valves. Both the monotonic and nonmonotonic velocity—force relations are considered. A quasi-variational inequality formulation of the problem is proposed. The solution of the inequality amounts to finding the minimum of a convex nonsmooth functional at each time step by means of the Newmark difference time scheme, successive iterations and finite element discretization. The problem of functional minimization is reduced to construction of a sequence of smooth nonlinear programming problems by introducing the auxiliary variables and applying the augmented Lagrangian method. The proposed approach is used to study the longitudinal vibrations of sucker rod strings under near-real conditions. In such systems the most commonly occurring vibration modes are the stick-slip vibrations and the vibrations with natural force excited twice a cycle. The nonmonotonic character of the friction law leads to intensification of these vibrations. In the case of nonmonotonic friction law the stick-slip vibrations can occur even under the action of constant external forces.

  12. CP(N-1) model on a disk and decay of a non-Abelian string

    NASA Astrophysics Data System (ADS)

    Gorsky, A.; Milekhin, A.

    2013-10-01

    We consider the role of quantum effects in the nonperturbative decay of the non-Abelian string with orientational moduli in nonsupersymmetric D=4 gauge theory. To this aim the effective action in the CP(N-1) model on a disk at large N has been calculated. It exhibits a phase transition at some radius, the “wrong sign” Luscher term, and a large boundary boojumlike negative contribution. The effect of the θ term and the possibility of the spontaneous creation of the non-Abelian string are briefly discussed.

  13. The string prediction models as invariants of time series in the forex market

    NASA Astrophysics Data System (ADS)

    Pincak, R.

    2013-12-01

    In this paper we apply a new approach of string theory to the real financial market. The models are constructed with an idea of prediction models based on the string invariants (PMBSI). The performance of PMBSI is compared to support vector machines (SVM) and artificial neural networks (ANN) on an artificial and a financial time series. A brief overview of the results and analysis is given. The first model is based on the correlation function as invariant and the second one is an application based on the deviations from the closed string/pattern form (PMBCS). We found the difference between these two approaches. The first model cannot predict the behavior of the forex market with good efficiency in comparison with the second one which is, in addition, able to make relevant profit per year. The presented string models could be useful for portfolio creation and financial risk management in the banking sector as well as for a nonlinear statistical approach to data optimization.

  14. Non-perturbative structure in heterotic strings from dual F-theory models

    NASA Astrophysics Data System (ADS)

    O'Driscoll, Dónal

    1999-05-01

    We examine how to construct explicit heterotic string models dual to F-theory in eight dimensions. In doing so we learn about where the moduli spaces of the two theories overlap, and how non-perturbative features leave their trace on a purely perturbative level. We also briefly look at the relationship with NS9-branes

  15. [The string of Einthoven's string galvanometer].

    PubMed

    Wyers, P J

    1996-01-01

    The Dutch physiologist Willem Einthoven (1860-1927) published in 1901 his construction of a string galvanometer. With this apparatus he opened the era for electrocardiography. As the quality of his instrument largely depended on the string of the string galvanometer it is surprising to note that in his publications Einthoven never mentioned the exact way of producing the string. However, Einthoven's hand written laboratory notes are preserved at the Museum Boerhaave in Leiden. From these notes it comes clear what problems Einthoven had with the string. To get a very thin thread of quarts he first used the method of shooting the thread as was described by Boys (1887), later the blowing method of Nichols (1894). The silvering of the thread was done first chemically, later by cathode spray. In all cases premature breaking of the thread was a nuisance. Because of these failures Einthoven might have decided not to publish any details.

  16. Progress in string theory

    NASA Astrophysics Data System (ADS)

    Maldacena, Juan Martín

    D-Branes on Calabi-Yau manifolds / Paul S. Aspinwall -- Lectures on AdS/CFT / Juan M. Maldacena -- Tachyon dynamics in open string theory / Ashoke Sen -- TASI/PITP/ISS lectures on moduli and microphysics / Eva Silverstein -- The duality cascade / Matthew J. Strassler -- Perturbative computations in string field theory / Washington Taylor -- Student seminars -- Student participants -- Lecturers, directors, and local organizing committee.

  17. Modeling of wave propagation in drill strings using vibration transfer matrix methods.

    PubMed

    Han, Je-Heon; Kim, Yong-Joe; Karkoub, Mansour

    2013-09-01

    In order to understand critical vibration of a drill bit such as stick-slip and bit-bounce and their wave propagation characteristics through a drill string system, it is critical to model the torsional, longitudinal, and flexural waves generated by the drill bit vibration. Here, a modeling method based on a vibration transfer matrix between two sets of structural wave variables at the ends of a constant cross-sectional, hollow, circular pipe is proposed. For a drill string system with multiple pipe sections, the total vibration transfer matrix is calculated by multiplying all individual matrices, each is obtained for an individual pipe section. Since drill string systems are typically extremely long, conventional numerical analysis methods such as a finite element method (FEM) require a large number of meshes, which makes it computationally inefficient to analyze these drill string systems numerically. The proposed "analytical" vibration transfer matrix method requires significantly low computational resources. For the validation of the proposed method, experimental and numerical data are obtained from laboratory experiments and FEM analyses conducted by using a commercial FEM package, ANSYS. It is shown that the modeling results obtained by using the proposed method are well matched with the experimental and numerical results.

  18. Modeling the influence of string collective phenomena on the long range rapidity correlations between the transverse momentum and the multiplicities

    SciTech Connect

    Andronov, E.; Vechernin, V.

    2016-01-22

    The long-range rapidity correlations between the multiplicities (n-n) and the transverse momentum and the multiplicity (pT-n) of charge particles are analyzed in the framework of the simple string inspired model with two types of sources. The sources of the first type correspond to the initial strings formed in a hadronic collision. The sources of the second type imitate the appearance of the emitters of a new kind resulting from interaction (fusion) of the initial strings. The model enabled to describe effectively the influence of the string fusion effects on the strength both the n-n and the pT-n correlations. It was found that in the region, where the process of string fusion comes into play, the calculation results predict the non-monotonic behaviour of the n-n and pT-n correlation coefficients with the growth of the mean number of initial strings, i.e. with the increase of the collision centrality. It was shown also that the increase of the event-by-event fluctuation in the number of primary strings leads to the change of the pT-n correlation sign from negative to positive. One can try to search these signatures of string collective phenomena in interactions of various nuclei at different energies varying the class of collision centrality and its width.

  19. Spin-string interaction in QCD strings

    SciTech Connect

    Vyas, Vikram

    2008-08-15

    I consider the question of the interaction between a QCD string and the spin of a quark or an antiquark on whose worldline the string terminates. The problem is analyzed from the point of view of a string representation for the expectation value of a Wilson loop for a spin-half particle. A string representation of the super Wilson loop is obtained starting from an effective string representation of a Wilson Loop. The action obtained in this manner is invariant under a worldline supersymmetry and has a boundary term which contains the spin-string interaction. For rectangular loops the spin-string interaction vanishes and there is no spin-spin term in the resulting heavy quark potential. On the other hand if an allowance is made for the finite intrinsic thickness of the flux tube by assuming that the spin-string interaction takes place not just at the boundary of the string world sheet but extends to a distance of the order of the intrinsic thickness of the flux tube then we do obtain a spin-spin interaction which falls as the fifth power of the distance. Such a term was previously suggested by Kogut and Parisi in the context of a flux-tube model of confinement.

  20. Progressive Transmission of 3D Building Models based on String Grammars and Planar Half-Spaces

    NASA Astrophysics Data System (ADS)

    Kada, M.

    2014-11-01

    As there are numerous applications for 3D city models with a wide range of model requirements regarding geometric accuracy and granularity, there is also a high demand for such models at different levels of detail (LOD). And although their reconstruction and cartographic generalization has been widely studied, particularly with regard to 3D building models, their encoding for a progressive storage and transmission is up to now not profoundly explored and sufficiently solved. Most often building models at different LODs are considered as discrete entities that are not related to each other. In this paper we present a progressive encoding and transmission scheme for 3D building models that is easy to understand and implement for the end user as well as flexible and extensible for the model producer. The progressive scheme is based on string grammars and describes a sequence of successive LODs as a dynamic set of production rules. In order to restrict the effects of LOD changes on a local range of the progressive string representation, we use a solid modelling approach based on planar half-spaces to construct 3D buildings. The generation of such progressive string grammars is shown and examples are given.

  1. Finite temperature corrections and embedded strings in noncommutative geometry and the standard model with neutrino mixing

    SciTech Connect

    Martins, R. A.

    2007-08-15

    The recent extension of the standard model to include massive neutrinos in the framework of noncommutative geometry and the spectral action principle involves new scalar fields and their interactions with the usual complex scalar doublet. After ensuring that they bring no unphysical consequences, we address the question of how these fields affect the physics predicted in the Weinberg-Salam theory, particularly in the context of the electroweak phase transition. Applying the Dolan-Jackiw procedure, we calculate the finite temperature corrections, and find that the phase transition is first order. The new scalar interactions significantly improve the stability of the electroweak Z string, through the 'bag' phenomenon described by Vachaspati and Watkins ['Bound states can stabilize electroweak strings', Phys. Lett. B 318, 163-168 (1993)]. (Recently, cosmic strings have climbed back into interest due to a new evidence.) Sourced by static embedded strings, an internal space analogy of Cartan's torsion is drawn, and a possible Higgs-force-like 'gravitational' effect of this nonpropagating torsion on the fermion masses is described. We also check that the field generating the Majorana mass for the {nu}{sub R} is nonzero in the physical vacuum.

  2. Modeling the Physics of Sliding Objects on Rotating Space Elevators and Other Non-relativistic Strings

    NASA Astrophysics Data System (ADS)

    Golubovic, Leonardo; Knudsen, Steven

    2017-01-01

    We consider general problem of modeling the dynamics of objects sliding on moving strings. We introduce a powerful computational algorithm that can be used to investigate the dynamics of objects sliding along non-relativistic strings. We use the algorithm to numerically explore fundamental physics of sliding climbers on a unique class of dynamical systems, Rotating Space Elevators (RSE). Objects sliding along RSE strings do not require internal engines or propulsion to be transported from the Earth's surface into outer space. By extensive numerical simulations, we find that sliding climbers may display interesting non-linear dynamics exhibiting both quasi-periodic and chaotic states of motion. While our main interest in this study is in the climber dynamics on RSEs, our results for the dynamics of sliding object are of more general interest. In particular, we designed tools capable of dealing with strongly nonlinear phenomena involving moving strings of any kind, such as the chaotic dynamics of sliding climbers observed in our simulations.

  3. Propagation of cosmic rays through the atmosphere in the quark-gluon strings model

    NASA Technical Reports Server (NTRS)

    Erlykin, A. D.; Krutikova, N. P.; Shabelski, Y. M.

    1985-01-01

    The quark-gluon strings model succeeds in the description of multiple hadron production in the central rapidity region of nucleon-nucleon interctions. This model was developed for hadron-nucleus interactions and used for calculation of the cosmic ray propagation through the atmosphere. It is shown that at energies 10 to the 11th power to the 12th power eV, this model gives a satisfactory description of experimental data. But with the increase of the energy up to approximately 10 to the 14th power eV, results of calculations and of experiments begin to differ and this difference rises with the energy. It may indicate that the scaling violation in the fragmentation region of inclusive spectra for hadron-nucleus interactions is stronger than in the quark-gluon strings model.

  4. Complexity of chromatin folding is captured by the strings and binders switch model.

    PubMed

    Barbieri, Mariano; Chotalia, Mita; Fraser, James; Lavitas, Liron-Mark; Dostie, Josée; Pombo, Ana; Nicodemi, Mario

    2012-10-02

    Chromatin has a complex spatial organization in the cell nucleus that serves vital functional purposes. A variety of chromatin folding conformations has been detected by single-cell imaging and chromosome conformation capture-based approaches. However, a unified quantitative framework describing spatial chromatin organization is still lacking. Here, we explore the "strings and binders switch" model to explain the origin and variety of chromatin behaviors that coexist and dynamically change within living cells. This simple polymer model recapitulates the scaling properties of chromatin folding reported experimentally in different cellular systems, the fractal state of chromatin, the processes of domain formation, and looping out. Additionally, the strings and binders switch model reproduces the recently proposed "fractal-globule" model, but only as one of many possible transient conformations.

  5. Mirage Models Confront the LHC: The Phenomenology of String-Motivated Effective Field Theories

    NASA Astrophysics Data System (ADS)

    Kaufman, Bryan

    In this dissertation, I study a class of string-motivated effective supergravity theories in light of data from the LHC. I will consider three models that exhibit so-called 'mirage mediation'. I first consider the Binetruy-Gaillard-Wu (BGW) model, a model arising from heterotic string theory in which the dilaton is stabilized via non-perturbative corrections to the Kahler metric. I then consider the Kachru-Kallosh-Linde-Trivedi (KKLT) model, a model of Type-IIB string theory compactified on a Calabi-Yau orientifold, and an extension known as deflected mirage mediation (DMM) where contributions from gauge mediation are added to those arising from gravity mediation and anomaly mediation. The sequence of these three models allows an exploration in which the three dominant methods of communicating SUSY breaking appear in differing ratios. For each model, I outline the extent to which the phenomenologically-motived parameter space can be ruled out by existing experimental data before discussing how the remaining parameter space may be probed by continuing studies at the LHC and dark matter direct detection experiments.

  6. Light-light and heavy-light mesons in the model of QCD string with quarks at the ends

    NASA Astrophysics Data System (ADS)

    Nefediev, A. V.

    2002-06-01

    The variational einbein field method is applied to the model of the QCD string with quarks at the ends for the case of light-light and heavy-light mesons. Special attention is payed to the proper string dynamics. The correct string slope of the Regge trajectories is reproduced for light-light states which comes out from the picture of rotating string. Masses of several low-lying orbitally and radially excited states in the D, Ds, B, and Bs meson spectra are calculated and a good agreement with the experimental data as well as with recent lattice calculations is found. The role of the string correction to the interquark interaction is discussed at the example of the identification of D*' (2637) state recently claimed by DELPHI Collaboration. For the heavy-light mesons the standard constants used in Heavy Quark Effective Theory are extracted and compared to the results of other approaches.

  7. AdS5×S(5) mirror model as a string sigma model.

    PubMed

    Arutyunov, Gleb; van Tongeren, Stijn J

    2014-12-31

    Doing a double Wick rotation in the world sheet theory of the light cone AdS5×S(5) superstring results in an inequivalent, so-called mirror theory that plays a central role in the field of integrability in the AdS-CFT correspondence. We show that this mirror theory can be interpreted as the light cone theory of a free string on a different background. This background is related to dS5×H(5) by a double T-duality, and has hidden supersymmetry. The geometry can also be extracted from an integrable deformation of the AdS5×S(5) sigma model, and we prove the observed mirror duality of these deformed models at the bosonic level as a byproduct. While we focus on AdS5×S(5), our results apply more generally.

  8. Mirage Models Confront the LHC: Kähler-Stabilized Heterotic String Theory

    NASA Astrophysics Data System (ADS)

    Kaufman, Bryan; Nelson, Brent

    2013-04-01

    We begin the study of a class of string-motivated effective supergravity theories in light of current data from the CERN Large Hadron Collider (LHC). In particular, the case of heterotic string theory in which the dilaton is stabilized via non-perturbative corrections to the Kähler metric will be discussed. This model is highly constrained and therefore predictive. We find that most of the reasonable parameter space afforded to the model - representing the strong dynamics of a presumed gaugino condensation in the hidden sector - is now observationally disfavored by the LHC results. What limited parameter space that remains will be definitively explored within the first year of operation at √{ s} = 13 TeV , and much will be explored even before data-taking ends in 2013. Expected signatures for a number of benchmark points are discussed. This represents the first example of an explicit string-based model with the potential to be falsified by observational data. We find that the surviving space of the model makes a precise prediction as to the relation of many superpartner masses, as well as the manner in which the correct dark matter relic density is obtained. Implications for current and future dark matter search experiments are discussed.

  9. Mirage Models Confront the LHC: Kähler-Stabilized Heterotic String Theory

    NASA Astrophysics Data System (ADS)

    Kaufman, Bryan; Nelson, Brent

    2013-04-01

    We begin the study of a class of string-motivated effective supergravity theories in light of current data from the CERN Large Hadron Collider (LHC). In particular, the case of heterotic string theory in which the dilaton is stabilized via non-perturbative corrections to the Kähler metric will be discussed. This model is highly constrained and therefore predictive. We find that most of the reasonable parameter space afforded to the model -- representing the strong dynamics of a presumed gaugino condensation in the hidden sector -- is now observationally disfavored by the LHC results. What limited parameter space that remains will be definitively explored within the first year of operation at √s = 13,, and much will be explored even before data-taking ends in 2013. Expected signatures for a number of benchmark points are discussed. This represents the first example of an explicit string-based model with the potential to be falsified by observational data. We find that the surviving space of the model makes a precise prediction as to the relation of many superpartner masses, as well as the manner in which the correct dark matter relic density is obtained. Implications for current and future dark matter search experiments are discussed.

  10. The stochastic string model as a unifying theory of the term structure of interest rates

    NASA Astrophysics Data System (ADS)

    Bueno-Guerrero, Alberto; Moreno, Manuel; Navas, Javier F.

    2016-11-01

    We present the stochastic string model of Santa-Clara and Sornette (2001), as reformulated by Bueno-Guerrero et al. (2015), as a unifying theory of the continuous-time modeling of the term structure of interest rates. We provide several new results, such as: (a) an orthogonality condition for the volatilities in the Heath, Jarrow, and Morton (1992) (HJM) model, (b) the interpretation of multi-factor HJM models as approximations to a full infinite-dimensional model, (c) a result of consistency based on Hilbert spaces, and (d) a theorem for option valuation.

  11. Tilted string cosmologies

    NASA Astrophysics Data System (ADS)

    Clancy, Dominic; Feinstein, Alexander; Lidsey, James E.; Tavakol, Reza

    1999-04-01

    Global symmetries of the string effective action are employed to generate tilted, homogeneous Bianchi type VIh string cosmologies from a previously known stiff perfect fluid solution to Einstein gravity. The dilaton field is not constant on the surfaces of homogeneity. The future asymptotic state of the models is interpreted as a plane wave and is itself an exact solution to the string equations of motion to all orders in the inverse string tension. An inhomogeneous generalization of the Bianchi type III model is also found.

  12. CMB power spectrum contribution from cosmic strings using field-evolution simulations of the Abelian Higgs model

    SciTech Connect

    Bevis, Neil; Hindmarsh, Mark; Kunz, Martin; Urrestilla, Jon

    2007-03-15

    We present the first field-theoretic calculations of the contribution made by cosmic strings to the temperature power spectrum of the cosmic microwave background (CMB). Unlike previous work, in which strings were modeled as idealized one-dimensional objects, we evolve the simplest example of an underlying field theory containing local U(1) strings, the Abelian Higgs model. Limitations imposed by finite computational volumes are overcome using the scaling property of string networks and a further extrapolation related to the lessening of the string width in comoving coordinates. The strings and their decay products, which are automatically included in the field theory approach, source metric perturbations via their energy-momentum tensor, the unequal-time correlation functions of which are used as input into the CMB calculation phase. These calculations involve the use of a modified version of CMBEASY, with results provided over the full range of relevant scales. We find that the string tension {mu} required to normalize to the WMAP 3-year data at multipole l=10 is G{mu}=[2.04{+-}0.06(stat.){+-}0.12(sys.)]x10{sup -6}, where we have quoted statistical and systematic errors separately, and G is Newton's constant. This is a factor 2-3 higher than values in current circulation.

  13. On Realistic Brane Worlds from Type i Strings

    NASA Astrophysics Data System (ADS)

    Aldazabal, Gerardo; IbÁñez, Luis E.; Quevedo, Fernando

    We review recent progress in constructing realistic brane models from type I string vacua. Explicit models with three families of the standard model gauge group and its l-right generalizations are presented with supersymmetry broken at the string scale of order Ms ~ 1010-12 GeV, realizing gravity mediated supersymmetry breaking at low energies. Unification of couplings occurs at the string scale due to the particular U(1) normalizations of D-branes, as well as to the existence of a Higgs field per family of quarks and leptons. The proton is naturally stable due to intrinsic discrete symmetries of the corresponding string theory. In particular R-parity appears as a natural stringy symmetry. There are axionic fields with the right couplings as to solve the strong CP problem. Similar realizations are also presented for a string scale of 1 TeV, although without solving the gauge unification problem. Open questions are briefly discussed.

  14. Exact string theory model of closed timelike curves and cosmological singularities

    NASA Astrophysics Data System (ADS)

    Johnson, Clifford V.; Svendsen, Harald G.

    2004-12-01

    We study an exact model of string theory propagating in a space-time containing regions with closed timelike curves (CTCs) separated from a finite cosmological region bounded by a big bang and a big crunch. The model is an nontrivial embedding of the Taub-NUT geometry into heterotic string theory with a full conformal field theory (CFT) definition, discovered over a decade ago as a heterotic coset model. Having a CFT definition makes this an excellent laboratory for the study of the stringy fate of CTCs, the Taub cosmology, and the Milne/Misner-type chronology horizon which separates them. In an effort to uncover the role of stringy corrections to such geometries, we calculate the complete set of α' corrections to the geometry. We observe that the key features of Taub-NUT persist in the exact theory, together with the emergence of a region of space with Euclidean signature bounded by timelike curvature singularities. Although such remarks are premature, their persistence in the exact geometry is suggestive that string theory is able to make physical sense of the Milne/Misner singularities and the CTCs, despite their pathological character in general relativity. This may also support the possibility that CTCs may be viable in some physical situations, and may be a natural ingredient in pre-big bang cosmological scenarios.

  15. Exact string theory model of closed timelike curves and cosmological singularities

    SciTech Connect

    Johnson, Clifford V.; Svendsen, Harald G.

    2004-12-15

    We study an exact model of string theory propagating in a space-time containing regions with closed timelike curves (CTCs) separated from a finite cosmological region bounded by a big bang and a big crunch. The model is an nontrivial embedding of the Taub-NUT geometry into heterotic string theory with a full conformal field theory (CFT) definition, discovered over a decade ago as a heterotic coset model. Having a CFT definition makes this an excellent laboratory for the study of the stringy fate of CTCs, the Taub cosmology, and the Milne/Misner-type chronology horizon which separates them. In an effort to uncover the role of stringy corrections to such geometries, we calculate the complete set of {alpha}{sup '} corrections to the geometry. We observe that the key features of Taub-NUT persist in the exact theory, together with the emergence of a region of space with Euclidean signature bounded by timelike curvature singularities. Although such remarks are premature, their persistence in the exact geometry is suggestive that string theory is able to make physical sense of the Milne/Misner singularities and the CTCs, despite their pathological character in general relativity. This may also support the possibility that CTCs may be viable in some physical situations, and may be a natural ingredient in pre-big bang cosmological scenarios.

  16. Unitary-matrix models as exactly solvable string theories

    NASA Technical Reports Server (NTRS)

    Periwal, Vipul; Shevitz, Danny

    1990-01-01

    Exact differential equations are presently found for the scaling functions of models of unitary matrices which are solved in a double-scaling limit, using orthogonal polynomials on a circle. For the case of the simplest, k = 1 model, the Painleve II equation with constant 0 is obtained; possible nonperturbative phase transitions exist for these models. Equations are presented for k = 2 and 3, and discussed with a view to asymptotic behavior.

  17. Minimal Pati-Salam model from string theory unification

    SciTech Connect

    Dent, James B.; Kephart, Thomas W.

    2008-06-01

    We provide what we believe is the minimal three family N=1 SUSY and conformal Pati-Salam model from type IIB superstring theory. This Z{sub 3} orbifolded AdS x S{sup 5} model has long lived protons and has potential phenomenological consequences for LHC (Large Hadron Collider)

  18. Model building with the non-supersymmetric heterotic SO(16)×SO(16) string

    NASA Astrophysics Data System (ADS)

    Groot Nibbelink, Stefan

    2015-07-01

    In this talk we review recent investigations [1] of the non-supersymmetric heterotic SO(16)×SO(16) string on orbifolds and smooth Calabi-Yaus. Using such supersymmetry preserving backgrounds allows one to re-employ commonly known model building techniques. We will argue that tachyons do not appear on smooth Calabi-Yaus to leading order in α' and gs. Twisted tachyons may arise on singular orbifolds, where some of these approximations break down. However, they get lifted in full blow-up. Finally, we show that model searches is viable by identifying over 12,000 of SM-like models on various orbifold geometries.

  19. Long-range correlations in proton-nucleus collisions in MC model with string fusion

    SciTech Connect

    Kovalenko, V.

    2014-07-23

    The study of long-range correlations between observables in two rapidity windows was proposed as a signature of the string fusion and percolation phenomenon. In the present work we calculate the correlation functions and coefficients for p–Pb collisions in the framework of the Monte Carlo string-parton model, based on the picture of elementary collisions of color dipoles. It describes pA and AA scattering without referring to the Glauber picture of independent nucleons collisions and includes effects of string fusion. Different types of correlations are considered: n–n, p{sub t}–n, p{sub t}–p{sub t} where n is the event multiplicity of charged particles in a given rapidity window and p{sub t} is their mean transverse momentum. The results, obtained in the present work for p–Pb collisions, are compared with available experimental results for p{sub t}–n correlations in one window and further predictions are made.

  20. The Open Learning Object Model to Promote Open Educational Resources

    ERIC Educational Resources Information Center

    Fulantelli, Giovanni; Gentile, Manuel; Taibi, Davide; Allegra, Mario

    2008-01-01

    In this paper we present the results of research work, that forms part of the activities of the EU-funded project SLOOP: Sharing Learning Objects in an Open Perspective, aimed at encouraging the definition, development and management of Open Educational Resources based on the Learning Object paradigm (Wiley, 2000). We present a model of Open…

  1. Hammered Strings

    NASA Astrophysics Data System (ADS)

    Rossing, Thomas D.

    In the next three chapters we consider the science of hammered string instruments. In this chapter, we present a brief discussion of vibrating strings excited by a hard or soft hammer. Chapter 20 discusses the most important hammered string instrument, the piano - probably the most versatile and popular of all musical instruments. Chapter 21 discusses hammered dulcimers, especially the American folk dulcimer.

  2. Cosmic strings and galaxy formation

    NASA Technical Reports Server (NTRS)

    Bertschinger, Edmund

    1989-01-01

    The cosmogonical model proposed by Zel'dovich and Vilenkin (1981), in which superconducting cosmic strings act as seeds for the origin of structure in the universe, is discussed, summarizing the results of recent theoretical investigations. Consideration is given to the formation of cosmic strings, the microscopic structure of strings, gravitational effects, cosmic string evolution, and the formation of galaxies and large-scale structure. Simulation results are presented in graphs, and several outstanding issues are listed and briefly characterized.

  3. Azimuthal anisotropy of long-range correlations at LHC energy in Monte Carlo model with string fusion

    NASA Astrophysics Data System (ADS)

    Kovalenko, Vladimir

    2017-03-01

    Long-range multiplicity correlations in intervals separated in pseudorapidity and azimuth are studied in the framework of string fusion approach. We applied a Monte Carlo model, in which the string configurations in the transverse plane and rapidity are simulating event-by-event. The string interaction is realized in the lattice string fusion approach with introduction of a grid in the transverse plane. We assumed that the azimuthal anisotropy of particle production is caused by parton energy loss traveling trough the media formed by clusters of fused strings : Δpt/Δx = -α(pt √η)2/3, where η is a string density. In the cellular approach the Bresenham's line algorithm has been applied. It is obtained that in AA collisions, the parton energy loss seems to play considerable role, in particular, by providing large contribution to the correlation of mean transverse momentum with multiplicity. The developed approach provides non-zero values flows in p-Pb collisions at LHC energies and produces the pattern similar to the one of the experimental di-hadron analysis.

  4. TeV-Scale Strings

    NASA Astrophysics Data System (ADS)

    Berenstein, David

    2014-10-01

    This review discusses the status of string physics where the string tension is around the TeV scale. It covers model-building basics for perturbative strings, based on D-brane configurations. The effective low-energy physics description of such string constructions is analyzed: how anomaly cancellation is implemented, how fast proton decay is avoided, and how D-brane models lead to additional Z' particles. This review also discusses direct search bounds for strings at the TeV scale, as well as theoretical issues with model building related to flavor physics and axions.

  5. Evolution of cosmic string networks

    NASA Technical Reports Server (NTRS)

    Albrecht, Andreas; Turok, Neil

    1989-01-01

    A discussion of the evolution and observable consequences of a network of cosmic strings is given. A simple model for the evolution of the string network is presented, and related to the statistical mechanics of string networks. The model predicts the long string density throughout the history of the universe from a single parameter, which researchers calculate in radiation era simulations. The statistical mechanics arguments indicate a particular thermal form for the spectrum of loops chopped off the network. Detailed numerical simulations of string networks in expanding backgrounds are performed to test the model. Consequences for large scale structure, the microwave and gravity wave backgrounds, nucleosynthesis and gravitational lensing are calculated.

  6. String Comparator Metrics and Enhanced Decision Rules in the Fellegi-Sunter Model of Record Linkage.

    ERIC Educational Resources Information Center

    Winkler, William E.

    To locate matches across pairs of lists without unique identifiers it is sometimes necessary to compare strings of letters. String comparators are used in production computer matching software during the Post Enumeration Survey for the 1990 U.S. census. A string comparator metric is described that partially accounts for: (1) typographical…

  7. Symmetry-enriched string nets: Exactly solvable models for SET phases

    NASA Astrophysics Data System (ADS)

    Heinrich, Chris; Burnell, Fiona; Fidkowski, Lukasz; Levin, Michael

    2016-12-01

    We construct exactly solvable models for a wide class of symmetry-enriched topological (SET) phases. Our construction applies to two-dimensional (2D) bosonic SET phases with finite unitary on-site symmetry group G and we conjecture that our models realize every phase in this class that can be described by a commuting projector Hamiltonian. Our models are designed so that they have a special property: If we couple them to a dynamical lattice gauge field with gauge group G , the resulting gauge theories are equivalent to string-net models. This property is what allows us to analyze our models in generality. As an example, we present a model for a phase with the same anyon excitations as the toric code and with a Z2 symmetry which exchanges the e and m type anyons. We further illustrate our construction with a number of additional examples.

  8. Supersymmetry and String Theory

    NASA Astrophysics Data System (ADS)

    Dine, Michael

    2016-01-01

    Preface to the first edition; Preface to the second edition; A note on choice of metric; Text website; Part I. Effective Field Theory: The Standard Model, Supersymmetry, Unification: 1. Before the Standard Model; 2. The Standard Model; 3. Phenomenology of the Standard Model; 4. The Standard Model as an effective field theory; 5. Anomalies, instantons and the strong CP problem; 6. Grand unification; 7. Magnetic monopoles and solitons; 8. Technicolor: a first attempt to explain hierarchies; Part II. Supersymmetry: 9. Supersymmetry; 10. A first look at supersymmetry breaking; 11. The Minimal Supersymmetric Standard Model; 12. Supersymmetric grand unification; 13. Supersymmetric dynamics; 14. Dynamical supersymmetry breaking; 15. Theories with more than four conserved supercharges; 16. More supersymmetric dynamics; 17. An introduction to general relativity; 18. Cosmology; 19. Astroparticle physics and inflation; Part III. String Theory: 20. Introduction; 21. The bosonic string; 22. The superstring; 23. The heterotic string; 24. Effective actions in ten dimensions; 25. Compactification of string theory I. Tori and orbifolds; 26. Compactification of string theory II. Calabi-Yau compactifications; 27. Dynamics of string theory at weak coupling; 28. Beyond weak coupling: non-perturbative string theory; 29. Large and warped extra dimensions; 30. The landscape: a challenge to the naturalness principle; 31. Coda: where are we headed?; Part IV. The Appendices: Appendix A. Two-component spinors; Appendix B. Goldstone's theorem and the pi mesons; Appendix C. Some practice with the path integral in field theory; Appendix D. The beta function in supersymmetric Yang-Mills theory; References; Index.

  9. Renormalization constants from string theory.

    NASA Astrophysics Data System (ADS)

    di Vecchia, P.; Magnea, L.; Lerda, A.; Russo, R.; Marotta, R.

    The authors review some recent results on the calculation of renormalization constants in Yang-Mills theory using open bosonic strings. The technology of string amplitudes, supplemented with an appropriate continuation off the mass shell, can be used to compute the ultraviolet divergences of dimensionally regularized gauge theories. The results show that the infinite tension limit of string amplitudes corresponds to the background field method in field theory.

  10. Supermassive cosmic string compactifications

    SciTech Connect

    Blanco-Pillado, Jose J.; Reina, Borja; Sousa, Kepa; Urrestilla, Jon E-mail: borja.reina@ehu.es E-mail: jon.urrestilla@ehu.es

    2014-06-01

    The space-time dimensions transverse to a static straight cosmic string with a sufficiently large tension (supermassive cosmic strings) are compact and typically have a singularity at a finite distance form the core. In this paper, we discuss how the presence of multiple supermassive cosmic strings in the 4d Abelian-Higgs model can induce the spontaneous compactification of the transverse space and explicitly construct solutions where the gravitational background becomes regular everywhere. We discuss the embedding of this model in N = 1 supergravity and show that some of these solutions are half-BPS, in the sense that they leave unbroken half of the supersymmetries of the model.

  11. Universality in string interactions

    NASA Astrophysics Data System (ADS)

    Huang, Yu-tin; Schlotterer, Oliver; Wen, Congkao

    2016-09-01

    In this note, we provide evidence for universality in the low-energy expansion of tree-level string interactions. More precisely, in the α'-expansion of tree-level scattering amplitudes, we conjecture that the leading transcendental coefficient at each order in α' is universal for all perturbative string theories. We have checked this universality up to seven points and trace its origin to the ability to restructure the disk integrals of open bosonic string into those of the superstring. The accompanying kinematic functions have the same low-energy limit and do not introduce any transcendental numbers in their α'-corrections. Universality in the closed-string sector then follows from KLT-relations.

  12. Bianchi type-V bulk viscous string cosmological model in a self-creation theory of gravitation

    NASA Astrophysics Data System (ADS)

    Bhaskara Rao, M. P. V. V.; Reddy, D. R. K.; Sobhan Babu, K.

    2015-10-01

    A spatially homogenous and anisotropic Bianchi type space-time is considered in the frame work of second self-creation theory of gravitation proposed by Barber (Gen. Relativ. Gravit. 14:117, 1982) in the presence of bulk viscous fluid containing one dimensional cosmic strings. Solving the field equations of this theory an exact cosmological model is obtained using some physically plausible conditions. It is observed that strings in this model do not survive. Some physical and kinematical properties of the model are also discussed.

  13. Anisotropic string cosmological model in Brans-Dicke theory of gravitation with time-dependent deceleration parameter

    NASA Astrophysics Data System (ADS)

    Maurya, D. Ch.; Zia, R.; Pradhan, A.

    2016-10-01

    We discuss a spatially homogeneous and anisotropic string cosmological models in the Brans-Dicke theory of gravitation. For a spatially homogeneous metric, it is assumed that the expansion scalar θ is proportional to the shear scalar σ. This condition leads to A = kB m , where k and m are constants. With these assumptions and also assuming a variable scale factor a = a( t), we find solutions of the Brans-Dicke field equations. Various phenomena like the Big Bang, expanding universe, and shift from anisotropy to isotropy are observed in the model. It can also be seen that in early stage of the evolution of the universe, strings dominate over particles, whereas the universe is dominated by massive strings at the late time. Some physical and geometrical behaviors of the models are also discussed and observed to be in good agreement with the recent observations of SNe la supernovae.

  14. Mirage models confront the LHC: Kähler-stabilized heterotic string theory

    NASA Astrophysics Data System (ADS)

    Kaufman, Bryan L.; Nelson, Brent D.; Gaillard, Mary K.

    2013-07-01

    We begin the study of a class of string-motivated effective supergravity theories in light of current data from the CERN Large Hadron Collider (LHC). The case of heterotic string theory, in which the dilaton is stabilized via nonperturbative corrections to the Kähler metric, will be considered first. The model, which represents the strong dynamics of a presumed gaugino condensation in the hidden sector, is highly constrained and therefore predictive. We find that much of the parameter space associated with confined hidden sector gauge groups up to rank five is now observationally disfavored by the LHC results. Most of the theoretically motivated parameter space that remains can be probed with data that has already been collected, and most of the remainder will be definitively explored within the first year of operation at s=13TeV. Expected signatures for a number of benchmark points are discussed. We find that the surviving space of the model makes a precise prediction as to the relation of many superpartner masses, as well as the manner in which the correct dark matter relic density is obtained. Implications for current and future dark matter search experiments are discussed.

  15. Bowed Strings

    NASA Astrophysics Data System (ADS)

    Rossing, Thomas D.; Hanson, Roger J.

    In the next eight chapters, we consider some aspects of the science of bowed string instruments, old and new. In this chapter, we present a brief discussion of bowed strings, a subject that will be developed much more thoroughly in Chap. 16. Chapters 13-15 discuss the violin, the cello, and the double bass. Chapter 17 discusses viols and other historic string instruments, and Chap. 18 discusses the Hutchins-Schelleng violin octet.

  16. Reionization from cosmic string loops

    SciTech Connect

    Olum, Ken D.; Vilenkin, Alexander

    2006-09-15

    Loops formed from a cosmic string network at early times would act as seeds for early formation of halos, which would form galaxies and lead to early reionization. With reasonable guesses about astrophysical and string parameters, the cosmic string scale G{mu} must be no more than about 3x10{sup -8} to avoid conflict with the reionization redshift found by WMAP. The bound is much stronger for superstring models with a small string reconnection probability. For values near the bound, cosmic string loops may explain the discrepancy between the WMAP value and theoretical expectations.

  17. Mirage models confront the LHC. II. Flux-stabilized type IIB string theory

    NASA Astrophysics Data System (ADS)

    Kaufman, Bryan L.; Nelson, Brent D.

    2014-04-01

    We continue the study of a class of string-motivated effective supergravity theories in light of current data from the CERN Large Hadron Collider (LHC). In this installment we consider type IIB string theory compactified on a Calabi-Yau orientifold in the presence of fluxes, in the manner originally formulated by Kachru et al. We allow for a variety of potential uplift mechanisms and embeddings of the Standard Model field content into D3-and D7-brane configurations. We find that an uplift sector independent of the Kähler moduli, as is the case with anti-D3-branes, is inconsistent with data unless the matter and Higgs sectors are localized on D7 branes exclusively, or are confined to twisted sectors between D3-and D7-branes. We identify regions of parameter space for all possible D-brane configurations that remain consistent with Planck observations on the dark matter relic density and measurements of the CP-even Higgs mass at the LHC. Constraints arising from LHC searches at √s =8 TeV and the LUX dark matter detection experiment are discussed. The discovery prospects for the remaining parameter space at dark matter direct-detection experiments are described, and signatures for detection of superpartners at the LHC with √s =14 TeV are analyzed.

  18. Gauge invariant perturbation theory and non-critical string models of Yang-Mills theories

    NASA Astrophysics Data System (ADS)

    Lugo, Adrián R.; Sturla, Mauricio B.

    2010-04-01

    We carry out a gauge invariant analysis of certain perturbations of D - 2-branes solutions of low energy string theories. We get generically a system of second order coupled differential equations, and show that only in very particular cases it is possible to reduce it to just one differential equation. Later, we apply it to a multi-parameter, generically singular family of constant dilaton solutions of non-critical string theories in D dimensions, a generalization of that recently found in arXiv:0709.0471 [hep-th]. According to arguments coming from the holographic gauge theory-gravity correspondence, and at least in some region of the parameters space, we obtain glue-ball spectra of Yang-Mills theories in diverse dimensions, putting special emphasis in the scalar metric perturbations not considered previously in the literature in the non critical setup. We compare our numerical results to those studied previously and to lattice results, finding qualitative and in some cases, tuning properly the parameters, quantitative agreement. These results seem to show some kind of universality of the models, as well as an irrelevance of the singular character of the solutions. We also develop the analysis for the T-dual, non trivial dilaton family of solutions, showing perfect agreement between them.

  19. Aspects of String Phenomenology and New Physics

    NASA Astrophysics Data System (ADS)

    Antoniadis, I.

    I discuss possible connections between several scales in particle physics and cosmology, such the the electroweak, ination, dark energy and Planck scales. In particular, I discuss the physics of extra dimensions and low scale gravity that are motivated from the problem of mass hierarchy, providing an alternative to low energy supersymmetry. I describe their realization in type I string theory with D-branes and I present the main experimental predictions in particle accelerators and their implications in cosmology. I also show that low-mass-scale string compactifications, with a generic D-brane configuration that realizes the Standard Model by open strings, can explain the relatively broad peak in the diphoton invariant mass spectrum at 750 GeV recently reported by the ATLAS and CMS collaborations.

  20. Pre-string theory

    NASA Astrophysics Data System (ADS)

    Frampton, Paul H.

    2016-04-01

    In this note, I recollect a two-week period in September 1968 when I factorized the Veneziano model using string variables in Chicago. Professor Yoichiro Nambu went on to calculate the N-particle dual resonance model and then to factorize it on an exponential degeneracy of states. That was in 1968 and the following year 1969 he discovered the string action. I also include some other reminiscences of Nambu who passed away on July 5, 2015.

  1. Pre-string theory

    NASA Astrophysics Data System (ADS)

    Frampton, Paul H.

    In this note, I recollect a two-week period in September 1968 when I factorized the Veneziano model using string variables in Chicago. Professor Yoichiro Nambu went on to calculate the N-particle dual resonance model and then to factorize it on an exponential degeneracy of states. That was in 1968 and the following year 1969 he discovered the string action. I also include some other reminiscences of Nambu who passed away on July 5, 2015.

  2. p-Adic Strings and Their Applications

    SciTech Connect

    Freund, Peter G. O.

    2006-03-29

    The theory of p-adic strings is reviewed along with some of their applications, foremost among them to the tachyon condensation problem in string theory. Some open problems are discussed, in particular that of the superstring in 10 dimensions as the end-stage of the 26-dimensional closed bosonic string's tachyon condensation.

  3. String radiative backreaction

    SciTech Connect

    Battye, R.A.; Shellard, E.P. |

    1995-12-01

    We discuss radiative backreaction for global strings described by the Kalb-Ramond action with an analogous derivation to that for the point electron in classical electrodynamics. We show how local corrections to the equations of motion allow one to separate the self-field of the string from that of the radiation field. Modifications to this {open_quote}{open_quote}local backreaction approximation{close_quote}{close_quote} circumvent the runaway solutions, allowing these corrections to be used to evolve string trajectories numerically. Comparisons are made with analytic and numerical radiation calculations from previous work and the merits and limitations of this approach are discussed. {copyright} {ital 1995 The American Physical Society.}

  4. Strings in an electric field, and the Milne Universe

    NASA Astrophysics Data System (ADS)

    Berkooz, M.; Pioline, B.

    2003-11-01

    Arguably the simplest model of a cosmological singularity in string theory, the Lorentzian orbifold Bbb R1,1/boost is known to lead to severe divergences in scattering amplitudes of untwisted states, indicating a large backreaction towards the singularity. In this work we take a first step in investigating whether condensation of twisted states may remedy this problem and resolve the spacelike singularity. By using the formal analogy with charged open strings in an electric field, we argue that, contrary to earlier claims, twisted sectors do contain physical scattering states, which can be viewed as charged particles in an electric field. Correlated pairs of twisted states will therefore be produced by the ordinary Schwinger mechanism. For open strings in an electric field, on-shell wave functions for the zero-modes are determined, and shown to analytically continue to non-normalizable modes of the usual Landau harmonic oscillator in Euclidean space. Closed string scattering states of the Milne orbifold continue to non-normalizable modes in an unusual Euclidean orbifold of Bbb R2 by a rotation by an irrational angle. Irrespective of the formal analogy with the Milne Universe, open strings in a constant electric field, or colliding D-branes, may also serve as a useful laboratory to study time-dependence in string theory.

  5. Cosmic string catalysis of skyrmion decay

    NASA Technical Reports Server (NTRS)

    Gregory, Ruth; Davis, Anne-Christine; Brandenberger, Robert

    1988-01-01

    The Callan-Witten picture is developed for monopole catalyzed skyrmion decay in order to analyze the corresponding cosmic string scenario. It is discovered that cosmic strings (both ordinary and superconducting) can catalyze proton decay, but that this catalysis only occurs on the scale of the core of the string. In order to do this we have to develop a vortex model for the superconducting string. An argument is also given for the difference in the enhancement factors for monopoles and strings.

  6. The Commercial Open Source Business Model

    NASA Astrophysics Data System (ADS)

    Riehle, Dirk

    Commercial open source software projects are open source software projects that are owned by a single firm that derives a direct and significant revenue stream from the software. Commercial open source at first glance represents an economic paradox: How can a firm earn money if it is making its product available for free as open source? This paper presents the core properties of com mercial open source business models and discusses how they work. Using a commercial open source approach, firms can get to market faster with a superior product at lower cost than possible for traditional competitors. The paper shows how these benefits accrue from an engaged and self-supporting user community. Lacking any prior comprehensive reference, this paper is based on an analysis of public statements by practitioners of commercial open source. It forges the various anecdotes into a coherent description of revenue generation strategies and relevant business functions.

  7. String completion of an SU(3)c ⊗ SU(3)L ⊗ U(1)X electroweak model

    NASA Astrophysics Data System (ADS)

    Addazi, Andrea; Valle, J. W. F.; Vaquera-Araujo, C. A.

    2016-08-01

    The extended electroweak SU(3)c ⊗ SU(3)L ⊗ U(1)X symmetry framework "explaining" the number of fermion families is revisited. While 331-based schemes can not easily be unified within the conventional field theory sense, we show how to do it within an approach based on D-branes and (un)oriented open strings, on Calabi-Yau singularities. We show how the theory can be UV-completed in a quiver setup, free of gauge and string anomalies. Lepton and baryon numbers are perturbatively conserved, so neutrinos are Dirac-type, and their lightness results from a novel TeV scale seesaw mechanism. Dynamical violation of baryon number by exotic instantons could induce neutron-antineutron oscillations, with proton decay and other dangerous R-parity violating processes strictly forbidden.

  8. The social structure of experimental'' strings at Fermilab; a physics and detector driven model

    SciTech Connect

    Bodnarczuk, M.

    1990-12-12

    Physicists in HEP have been forced to organize large scientific projects without a well defined organizational or sociological model to guide them. In the absence of such models, what structures do experimentalists use to develop social structures in HEP In this paper, I claim that physicists organize around what they know best, the physics problems they study and the detectors and devices they study them with. After describing the advent of management'' in HEP, I use a case study of 4 Fermilab experiments as the base upon which to propose a physics and detector driven model of social structure for experiments. In addition, I show how this model can be extended to describe strings'' of experiments, where continuities of physics interests, spectrometer design, and a core group of physicists become a definable sociological unit that can exist for over 15 years. A dominate theme that emerges from my analysis is the conscious attempt on the part of experimenters to remove the uncertainties that are part of the practice of HEP.

  9. Transverse structure of the QCD string

    SciTech Connect

    Meyer, Harvey B.

    2010-11-15

    The characterization of the transverse structure of the QCD string is discussed. We formulate a conjecture as to how the stress-energy tensor of the underlying gauge theory couples to the string degrees of freedom. A consequence of the conjecture is that the energy density and the longitudinal-stress operators measure the distribution of the transverse position of the string, to leading order in the string fluctuations, whereas the transverse-stress operator does not. We interpret recent numerical measurements of the transverse size of the confining string and show that the difference of the energy and longitudinal-stress operators is a particularly natural probe at next-to-leading order. Second, we derive the constraints imposed by open-closed string duality on the transverse structure of the string. We show that a total of three independent ''gravitational'' form factors characterize the transverse profile of the closed string, and obtain the interpretation of recent effective string theory calculations: the square radius of a closed string of length {beta} defined from the slope of its gravitational form factor, is given by (d-1/2{pi}{sigma})log({beta}/4r{sub 0}) in d space dimensions. This is to be compared with the well-known result that the width of the open string at midpoint grows as (d-1/2{pi}{sigma})log(r/r{sub 0}). We also obtain predictions for transition form factors among closed-string states.

  10. Long-range string orders and topological quantum phase transitions in the one-dimensional quantum compass model.

    PubMed

    Wang, Hai Tao; Cho, Sam Young

    2015-01-14

    In order to investigate the quantum phase transition in the one-dimensional quantum compass model, we numerically calculate non-local string correlations, entanglement entropy and fidelity per lattice site by using the infinite matrix product state representation with the infinite time evolving block decimation method. In the whole range of the interaction parameters, we find that four distinct string orders characterize the four different Haldane phases and the topological quantum phase transition occurs between the Haldane phases. The critical exponents of the string order parameters β = 1/8 and the cental charges c = 1/2 at the critical points show that the topological phase transitions between the phases belong to an Ising type of universality classes. In addition to the string order parameters, the singularities of the second derivative of the ground state energies per site, the continuous and singular behaviors of the Von Neumann entropy and the pinch points of the fidelity per lattice site manifest that the phase transitions between the phases are of the second-order, in contrast to the first-order transition suggested in previous studies.

  11. Matrix model for strings beyond the c =1 barrier: The spin-s Heisenberg model on random surfaces

    NASA Astrophysics Data System (ADS)

    Ambjørn, J.; Khachatryan, Sh.; Sedrakyan, A.

    2015-07-01

    We consider a spin-s Heisenberg model coupled to two-dimensional quantum gravity. We quantize the model using the Feynman path integral, summing over all possible two-dimensional geometries and spin configurations. We regularize this path integral by starting with the R-matrices defining the spin-s Heisenberg model on a regular 2d Manhattan lattice. Two-dimensional quantum gravity is included by defining the R-matrices on random Manhattan lattices and summing over these, in the same way as one sums over 2d geometries using random triangulations in noncritical string theory. We formulate a random matrix model where the partition function reproduces the annealed average of the spin-s Heisenberg model over all random Manhattan lattices. A technique is presented which reduces the random matrix integration in the partition function to an integration over their eigenvalues.

  12. Exotic nonrelativistic string

    SciTech Connect

    Casalbuoni, Roberto; Gomis, Joaquim; Longhi, Giorgio

    2007-12-15

    We construct a classical nonrelativistic string model in 3+1 dimensions. The model contains a spurion tensor field that is responsible for the noncommutative structure of the model. Under double-dimensional reduction the model reduces to the exotic nonrelativistic particle in 2+1 dimensions.

  13. Multiple model estimator based detection of abnormal cell overheating in a Li-ion battery string with minimum number of temperature sensors

    NASA Astrophysics Data System (ADS)

    Lystianingrum, Vita; Hredzak, Branislav; Agelidis, Vassilios G.

    2015-01-01

    This paper proposes modeling of abnormal cell overheating caused by internal short circuit in a cell of a Li-ion battery string by augmenting the cell state space model with unknown input disturbance. Furthermore, with minimum number of temperature sensors, in order to identify which of the cells in the string is experiencing the abnormal overheating, a multiple model estimator (MME) is used. Simulation results demonstrate that the proposed MME can detect the abnormally overheating cell as well as quickly detect that an abnormal overheating event occurred in the battery string.

  14. String fields and their interactions

    NASA Astrophysics Data System (ADS)

    Erler, Theodore George, IV

    2005-07-01

    In this thesis is devoted to illuminating the underlying structure of Witten's star product, which defines the interactions of open strings in cubic bosonic string field theory [3]. We give an in depth analysis of the product from the perspective of noncommutative geometry, specifically using the split string [19] and Moyal formalisms [20, 22]. We identify some fundamental algebraic features of the star product originating from the singular structure of the overlap conditions at the string midpoint. Finally, we use some of these insights to construct a consistent and nonsingular initial value formulation of the theory in lightcone time. Such a general formalism seems prerequisite to address questions of time, causality, and cosmology in string theory.

  15. Modelling Performance: Opening Pandora's Box.

    ERIC Educational Resources Information Center

    McNamara, T. F.

    1995-01-01

    This paper argues that it is necessary for researchers and test developers in the area of language performance testing to have a clear understanding of the role of underlying performance capacities in second language performance. It critically evaluates the models proposed by Hymes, Canale and Swain, and Bachman. (71 references) (MDM)

  16. Analytical model for CMB temperature angular power spectrum from cosmic (super-)strings

    SciTech Connect

    Yamauchi, Daisuke; Yoo, Chul-Moon; Sasaki, Misao; Takahashi, Keitaro; Sendouda, Yuuiti

    2010-09-15

    We present a new analytical method to calculate the small angle cosmic microwave background (CMB) temperature angular power spectrum due to cosmic (super-)string segments. In particular, using our method, we clarify the dependence on the intercommuting probability P. We find that the power spectrum is dominated by Poisson-distributed string segments. The power spectrum for a general value of P has a plateau on large angular scales and shows a power-law decrease on small angular scales. The resulting spectrum in the case of conventional cosmic strings is in very good agreement with the numerical result obtained by Fraisse et al.. Then we estimate the upper bound on the dimensionless tension of the string for various values of P by assuming that the fraction of the CMB power spectrum due to cosmic (super-)strings is less than ten percent at various angular scales up to l=2000. We find that the amplitude of the spectrum increases as the intercommuting probability. As a consequence, strings with smaller intercommuting probabilities are found to be more tightly constrained.

  17. Evolution of cosmic string networks

    NASA Technical Reports Server (NTRS)

    Albrecht, Andreas; Turok, Neil

    1989-01-01

    Results on cosmic strings are summarized including: (1) the application of non-equilibrium statistical mechanics to cosmic string evolution; (2) a simple one scale model for the long strings which has a great deal of predictive power; (3) results from large scale numerical simulations; and (4) a discussion of the observational consequences of our results. An upper bound on G mu of approximately 10(-7) emerges from the millisecond pulsar gravity wave bound. How numerical uncertainties affect this are discussed. Any changes which weaken the bound would probably also give the long strings the dominant role in producing observational consequences.

  18. Nonlinear modelling in time domain numerical analysis of stringed instrument dynamics

    NASA Astrophysics Data System (ADS)

    Bielski, Paweł; Kujawa, Marcin

    2017-03-01

    Musical instruments are very various in terms of sound quality with their timbre shaped by materials and geometry. Materials' impact is commonly treated as dominant one by musicians, while it is unclear whether it is true or not. The research proposed in the study focuses on determining influence of both these factors on sound quality based on their impact on harmonic composition. Numerical approach has been chosen to allowed independent manipulation of geometrical and material parameters as opposed to experimental study subjected to natural randomness of instrument construction. Distinctive element of this research is precise modelling of whole instrument and treating it as one big vibrating system instead of performing modal analysis on an isolated part. Finite elements model of a stringed instrument has been built and a series of nonlinear time-domain dynamic analyses were executed to obtain displacement signals and perform subsequent spectral analysis. Precision of computations seems sufficient to determine the influence of instrument's macroscopic mechanical parameters on timbre. Further research should focus on implementation of acoustic medium in attempt to include dissipation and synchronization mechanisms. Outside the musical field this kind of research could be potentially useful in noise reduction problems.

  19. Cell-balancing currents in parallel strings of a battery system

    NASA Astrophysics Data System (ADS)

    Dubarry, Matthieu; Devie, Arnaud; Liaw, Bor Yann

    2016-07-01

    Lithium-ion batteries are attractive for vehicle electrification or grid modernization applications. In these applications, battery packs are required to have multiple-cell configurations and battery management system to operate properly and safely. Here, a useful equivalent circuit model was developed to simulate the spontaneous transient balancing currents among parallel strings in a battery system. The simulation results were validated with experimental data to illustrate the accuracy and validity of the model predictions. Understanding the transient behavior of such cell and string balancing in a parallel circuit configuration is very important to assess the impacts of current fluctuation and cell variability on a battery system's performance, regarding durability, reliability, safety, abuse tolerance and failure prevention, including possible short circuit or open circuit conditions. Additional features and advantages, including the ability to assessing impacts on the performance of the string assemblies from string swapping or cell/module replacement in the strings, could be realized to aid battery management, maintenance and repair.

  20. Open Source Cable Models for EMI Simulations

    NASA Astrophysics Data System (ADS)

    Greedy, S.; Smartt, C.; Thomas, D. W. P.

    2016-05-01

    This paper describes the progress of work towards an Open Source software toolset suitable for developing Spice based multi-conductor cable models. The issues related to creating a transmission line model for implementation in Spice which include the frequency dependent properties of real cables are presented and the viability of spice cable models is demonstrated through application to a three conductor crosstalk model. Development of the techniques to include models of shielded cables and incident field excitation has been demonstrated.

  1. Cosmic strings and superconducting cosmic strings

    NASA Technical Reports Server (NTRS)

    Copeland, Edmund

    1988-01-01

    The possible consequences of forming cosmic strings and superconducting cosmic strings in the early universe are discussed. Lecture 1 describes the group theoretic reasons for and the field theoretic reasons why cosmic strings can form in spontaneously broken gauge theories. Lecture 2 discusses the accretion of matter onto string loops, emphasizing the scenario with a cold dark matter dominated universe. In lecture 3 superconducting cosmic strings are discussed, as is a mechanism which leads to the formation of structure from such strings.

  2. The minimal SUSY B - L model: simultaneous Wilson lines and string thresholds

    NASA Astrophysics Data System (ADS)

    Deen, Rehan; Ovrut, Burt A.; Purves, Austin

    2016-07-01

    In previous work, we presented a statistical scan over the soft supersymmetry breaking parameters of the minimal SUSY B - L model. For specificity of calculation, unification of the gauge parameters was enforced by allowing the two Z_3× Z_3 Wilson lines to have mass scales separated by approximately an order of magnitude. This introduced an additional "left-right" sector below the unification scale. In this paper, for three important reasons, we modify our previous analysis by demanding that the mass scales of the two Wilson lines be simultaneous and equal to an "average unification" mass < M U >. The present analysis is 1) more "natural" than the previous calculations, which were only valid in a very specific region of the Calabi-Yau moduli space, 2) the theory is conceptually simpler in that the left-right sector has been removed and 3) in the present analysis the lack of gauge unification is due to threshold effects — particularly heavy string thresholds, which we calculate statistically in detail. As in our previous work, the theory is renormalization group evolved from < M U > to the electroweak scale — being subjected, sequentially, to the requirement of radiative B - L and electroweak symmetry breaking, the present experimental lower bounds on the B - L vector boson and sparticle masses, as well as the lightest neutral Higgs mass of ˜125 GeV. The subspace of soft supersymmetry breaking masses that satisfies all such constraints is presented and shown to be substantial.

  3. An Open Learner Model for Trainee Pilots

    ERIC Educational Resources Information Center

    Gakhal, Inderdip; Bull, Susan

    2008-01-01

    This paper investigates the potential for simple open learner models for highly motivated, independent learners, using the example of trainee pilots. In particular we consider whether such users access their learner model to help them identify their current knowledge level, areas of difficulty and specific misconceptions, to help them plan their…

  4. PT-symmetric strings

    SciTech Connect

    Amore, Paolo; Fernández, Francisco M.; Garcia, Javier; Gutierrez, German

    2014-04-15

    We study both analytically and numerically the spectrum of inhomogeneous strings with PT-symmetric density. We discuss an exactly solvable model of PT-symmetric string which is isospectral to the uniform string; for more general strings, we calculate exactly the sum rules Z(p)≡∑{sub n=1}{sup ∞}1/E{sub n}{sup p}, with p=1,2,… and find explicit expressions which can be used to obtain bounds on the lowest eigenvalue. A detailed numerical calculation is carried out for two non-solvable models depending on a parameter, obtaining precise estimates of the critical values where pair of real eigenvalues become complex. -- Highlights: •PT-symmetric Hamiltonians exhibit real eigenvalues when PT symmetry is unbroken. •We study PT-symmetric strings with complex density. •They exhibit regions of unbroken PT symmetry. •We calculate the critical parameters at the boundaries of those regions. •There are exact real sum rules for some particular complex densities.

  5. Instability of colliding metastable strings

    NASA Astrophysics Data System (ADS)

    Hiramatsu, Takashi; Eto, Minoru; Kamada, Kohei; Kobayashi, Tatsuo; Ookouchi, Yutaka

    2014-01-01

    The breaking of U(1) R symmetry plays a crucial role in modeling the breaking of supersymmetry (SUSY). In the models that possess both SUSY preserving and SUSY breaking vacua, tube-like cosmic strings called R-tubes, whose surfaces are constituted by domain walls interpolating a false and a true vacuum with some winding numbers, can exist. Their (in)stability can strongly constrain SUSY breaking models theirselves. In the present study, we investigate the dynamical (in)stability of two colliding metastable tube-like strings by field-theoretic simulations. From them, we find that the strings become unstable, depending on the relative collision angle and speed of two strings, and the false vacuum is eventually filled out by the true vacuum owing to rapid expansion of the strings or unstable bubbles created as remnants of the collision.

  6. Modeling and Commissioning of a Cold Compressor String for the Superfluid Cryogenic Plant at Fermilab's Cryo-module Test Facility

    NASA Astrophysics Data System (ADS)

    Ueresin, C.; Decker, L.; Treite, P.

    In 2011, Linde Cryogenics, a division of Linde Process Plants, Tulsa, Oklahoma, was awarded the contract to deliver a 500 W at 2 K superfluid cryogenic plant to Fermi National Accelerator Laboratory (FNAL) in Batavia, Illinois, USA. This system includes a cold compressor string with three centrifugal compressors and a vacuum pump skid with five volumetric pumps in parallel used to pump down helium to its saturation pressure corresponding to 2 K. Linde Kryotechnik AG, Pfungen Switzerland engineered and supplied the cold compressor system and commissioned it with its control logic to cover the complete range of system operation. The paper outlines issues regarding compressor design, compressor string modeling, control algorithms, controller performance, and surge protection.

  7. Anatomy of zero-norm states in string theory

    NASA Astrophysics Data System (ADS)

    Chan, Chuan-Tsung; Lee, Jen-Chi; Yi-Yang

    2005-04-01

    We calculate and identify the counterparts of zero-norm states in the old covariant first quantized (OCFQ) spectrum of open bosonic string in two other quantization schemes of string theory, namely, the light-cone Del Giudice Di Vecchia Fubine zero-norm states and the off-shell Becchi-Rouet-Stora-Tyutin (BRST) zero-norm states (with ghost) in the Witten string field theory (WSFT). In particular, special attention is paid to the interparticle zero-norm states in all quantization schemes. For the case of the off-shell BRST zero-norm states, we impose the no-ghost conditions and recover exactly two types of on-shell zero-norm states in the OCFQ string spectrum for the first few low-lying mass levels. We then show that off-shell gauge transformations of WSFT are identical to the on-shell stringy gauge symmetries generated by two types of zero-norm states in the generalized massive σ-model approach of string theory. The high-energy limit of these stringy gauge symmetries was recently used to calculate the proportionality constants, conjectured by Gross, among high-energy scattering amplitudes of different string states. Based on these zero-norm state calculations, we have thus related gauge symmetry of WSFT to the high-energy stringy symmetry of Gross.

  8. Teaching Strings.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany. Bureau of Secondary Curriculum Development.

    Intended primarily for use by instrumental music teachers who do not have a major concentration in strings, this guide provides pertinent basic resources, materials, teaching--learning expectation, and a general overall guide to achievement levels at various stages of development. Discussions are presented of Choosing the Proper Method Book,…

  9. Three-dimensional scalar field theory model of center vortices and its relation to k-string tensions

    SciTech Connect

    Cornwall, John M.

    2004-09-15

    In d=3 SU(N) gauge theory, we study a scalar-field theory model of center vortices, and their monopolelike companions called nexuses, that furnishes an approach to the determination of so-called k-string tensions. This model is constructed from stringlike quantum solitons introduced previously, and exploits the well-known relation between string partition functions and scalar-field theories in d=3. A basic feature of the model is that center vortices corresponding to magnetic flux J (in units of 2{pi}/N) are composites of J elementary J=1 constituent vortices that come in N-1 types, with repulsion between like constituents and attraction between unlike constituents. The scalar-field theory is of a somewhat unusual type, involving N scalar fields {phi}{sub i} (one of which is eliminated) that can merge, dissociate, and recombine while conserving flux modN. The properties of these fields are deduced directly from the corresponding gauge-theory quantum solitons. Every vacuum Feynman graph of the theory corresponds to a real-space configuration of center vortices. We use qualitative features of this theory based on the vortex action to study the problem of k-string tensions (explicitly at large N, although large N is in no way a restriction on the model in general), whose solution is far from obvious in center-vortex language. We construct a simplified dynamical picture of constituent-vortex merging, dissociation, and recombination, which allows in principle for the determination of vortex areal densities and k-string tensions. This picture involves pointlike molecules made of constituent atoms in d=2 which combine and disassociate dynamically. These molecules and atoms are cross sections of vortices piercing a test plane; the vortices evolve in a Euclidean 'time' which is the location of the test plane along an axis perpendicular to the plane. A simple approximation to the molecular dynamics is compatible with k-string tensions that are linear in k for k<

  10. Quantum String Theory

    NASA Astrophysics Data System (ADS)

    Kawamoto, Noboru; Kugo, Taichiro

    String theories seem to have created a breakthrough in theoretical physics. At long last a unified theory of all the fundamental interactions, including gravity, looks possible. This, according to theorist Stephen Hawking, will mark the end of theoretical physics as we have known it, since we will then have a single consistent theory within which to explain all natural phenomena from elementary particles to galactic superclusters. Strings themselves are extremely tiny entities, smaller than the Planck scale, which form loops whose vibrational harmonics can be used to model all the standard elementary particles. Of course the mathematical complexities of the theory are daunting, and physicists are still at a very early stage in understanding how strings and their theoretical cousins superstrings can be used. This proceedings volume gives an overview of the intense recent work in the field and reports latest developments.

  11. The Open Provenance Model: an Overview

    SciTech Connect

    Moreau, Luc; Freire, Juliana; Futrelle, Joe; McGrath, Robert E.; Myers, Jim; Paulson, Patrick R.

    2008-11-19

    The Open Provenance Model (OPM) is a model for provenance that is designed to meet the following requirements: { To allow provenance information to be exchanged between systems, by means of a compatibility layer based on a shared provenance model. { To allow developers to build and share tools that operate on such provenance model. { To dene the model in a precise, technology-agnostic manner. { To support a digital representation of provenance for any \\thing", whether produced by computer systems or not. { To dene a core set of rules that identify the valid inferences that can be made on provenance graphs.

  12. Implementation Model of an Open Inquiry Curriculum

    ERIC Educational Resources Information Center

    Zion, Michal

    2007-01-01

    Despite the growing consensus regarding the value of inquiry based teaching and learning, the implementation of such practices continues to be a challenge. The goal of this paper is to present a model for the educational infrastructure that can support the implementation of the Biomind program, which is a new open inquiry program for Israeli…

  13. OpenMx: An Open Source Extended Structural Equation Modeling Framework

    ERIC Educational Resources Information Center

    Boker, Steven; Neale, Michael; Maes, Hermine; Wilde, Michael; Spiegel, Michael; Brick, Timothy; Spies, Jeffrey; Estabrook, Ryne; Kenny, Sarah; Bates, Timothy; Mehta, Paras; Fox, John

    2011-01-01

    OpenMx is free, full-featured, open source, structural equation modeling (SEM) software. OpenMx runs within the "R" statistical programming environment on Windows, Mac OS-X, and Linux computers. The rationale for developing OpenMx is discussed along with the philosophy behind the user interface. The OpenMx data structures are…

  14. Open Vehicle Sketch Pad Aircraft Modeling Strategies

    NASA Technical Reports Server (NTRS)

    Hahn, Andrew S.

    2013-01-01

    Geometric modeling of aircraft during the Conceptual design phase is very different from that needed for the Preliminary or Detailed design phases. The Conceptual design phase is characterized by the rapid, multi-disciplinary analysis of many design variables by a small engineering team. The designer must walk a line between fidelity and productivity, picking tools and methods with the appropriate balance of characteristics to achieve the goals of the study, while staying within the available resources. Identifying geometric details that are important, and those that are not, is critical to making modeling and methodology choices. This is true for both the low-order analysis methods traditionally used in Conceptual design as well as the highest-order analyses available. This paper will highlight some of Conceptual design's characteristics that drive the designer s choices as well as modeling examples for several aircraft configurations using the open source version of the Vehicle Sketch Pad (Open VSP) aircraft Conceptual design geometry modeler.

  15. Relation between strings and ribbon knots

    NASA Astrophysics Data System (ADS)

    Ahmed, E.; El-Rifai, E. A.; Abdellatif, R. A.

    1991-02-01

    A ribbon knot can be represented as the propagation of an open string in (Euclidean) space-time. By imposing physical conditions plus an ansatz on the string scattering amplitude, we get invariant polynomials of ribbon knots which correspond to Jones and Wadati et al. polynomials for ordinary knots. Motivated by the string scattering vertices, we derive an algebra which is a generalization of Hecke and Murakami-Birman-Wenzel (BMW) algebras of knots.

  16. Adaptation of Laser Microdissection Technique for the Study of a Spontaneous Metastatic Mammary Carcinoma Mouse Model by NanoString Technologies.

    PubMed

    Castro, Nadia P; Merchant, Anand S; Saylor, Karen L; Anver, Miriam R; Salomon, David S; Golubeva, Yelena G

    2016-01-01

    Laser capture microdissection (LCM) of tissue is an established tool in medical research for collection of distinguished cell populations under direct microscopic visualization for molecular analysis. LCM samples have been successfully analyzed in a number of genomic and proteomic downstream molecular applications. However, LCM sample collection and preparation procedure has to be adapted to each downstream analysis platform. In this present manuscript we describe in detail the adaptation of LCM methodology for the collection and preparation of fresh frozen samples for NanoString analysis based on a study of a model of mouse mammary gland carcinoma and its lung metastasis. Our adaptation of LCM sample preparation and workflow to the requirements of the NanoString platform allowed acquiring samples with high RNA quality. The NanoString analysis of such samples provided sensitive detection of genes of interest and their associated molecular pathways. NanoString is a reliable gene expression analysis platform that can be effectively coupled with LCM.

  17. Light-like big bang singularities in string and matrix theories

    NASA Astrophysics Data System (ADS)

    Craps, Ben; Evnin, Oleg

    2011-10-01

    Important open questions in cosmology require a better understanding of the big bang singularity. In string and matrix theories, light-like analogues of cosmological singularities (singular plane wave backgrounds) turn out to be particularly tractable. We give a status report on the current understanding of such light-like big bang models, presenting both solved and open problems.

  18. An open source model for open access journal publication.

    PubMed

    Blesius, Carl R; Williams, Michael A; Holzbach, Ana; Huntley, Arthur C; Chueh, Henry

    2005-01-01

    We describe an electronic journal publication infrastructure that allows a flexible publication workflow, academic exchange around different forms of user submissions, and the exchange of articles between publishers and archives using a common XML based standard. This web-based application is implemented on a freely available open source software stack. This publication demonstrates the Dermatology Online Journal's use of the platform for non-biased independent open access publication.

  19. p-adic string theories provide lattice Discretization to the ordinary string worldsheet.

    PubMed

    Ghoshal, Debashis

    2006-10-13

    A class of models called p-adic strings is useful in understanding the tachyonic instability of string theory. These are found to be empirically related to the ordinary strings in the p-->1 limit. We propose that these models provide discretization for the string worldsheet and argue that the limit is naturally thought of as a continuum limit in the sense of the renormalization group.

  20. A System for Automated Extraction of Metadata from Scanned Documents using Layout Recognition and String Pattern Search Models.

    PubMed

    Misra, Dharitri; Chen, Siyuan; Thoma, George R

    2009-01-01

    One of the most expensive aspects of archiving digital documents is the manual acquisition of context-sensitive metadata useful for the subsequent discovery of, and access to, the archived items. For certain types of textual documents, such as journal articles, pamphlets, official government records, etc., where the metadata is contained within the body of the documents, a cost effective method is to identify and extract the metadata in an automated way, applying machine learning and string pattern search techniques.At the U. S. National Library of Medicine (NLM) we have developed an automated metadata extraction (AME) system that employs layout classification and recognition models with a metadata pattern search model for a text corpus with structured or semi-structured information. A combination of Support Vector Machine and Hidden Markov Model is used to create the layout recognition models from a training set of the corpus, following which a rule-based metadata search model is used to extract the embedded metadata by analyzing the string patterns within and surrounding each field in the recognized layouts.In this paper, we describe the design of our AME system, with focus on the metadata search model. We present the extraction results for a historic collection from the Food and Drug Administration, and outline how the system may be adapted for similar collections. Finally, we discuss some ongoing enhancements to our AME system.

  1. String mediated phase transitions

    NASA Technical Reports Server (NTRS)

    Copeland, ED; Haws, D.; Rivers, R.; Holbraad, S.

    1988-01-01

    It is demonstrated from first principles how the existence of string-like structures can cause a system to undergo a phase transition. In particular, the role of topologically stable cosmic string in the restoration of spontaneously broken symmetries is emphasized. How the thermodynamic properties of strings alter when stiffness and nearest neighbor string-string interactions are included is discussed.

  2. The "Magic" String

    ERIC Educational Resources Information Center

    Hoover, Todd F.

    2010-01-01

    The "Magic" String is a discrepant event that includes a canister with what appears to be the end of two strings protruding from opposite sides of it. Due to the way the strings are attached inside the canister, it appears as if the strings can magically switch the way they are connected. When one string end is pulled, the observer's expectation…

  3. Reheating the Universe after string theory inflation

    SciTech Connect

    Kofman, Lev; Yi, Piljin

    2005-11-15

    In string theory realizations of inflation, the endpoint of inflation is often brane-antibrane annihilation. We consider the processes of reheating of the standard model universe after brane inflation. We identify the channels of inflaton energy decay, cascading from tachyon annihilation through massive closed string loops, KK modes, and brane displacement moduli to the lighter standard model particles. Cosmological data constrains scenarios by putting stringent limits on the fraction of reheating energy deposited in gravitons and nonstandard sector massive relics. We estimate the energy deposited into various light degrees of freedom in the open and closed string sectors, the timing of reheating, and the reheating temperature. Production of gravitons is significantly suppressed in warped inflation. However, we predict a residual gravitational radiation background at the level {omega}{sub GW}{approx}10{sup -8} of the present cosmological energy density. We also extend our analysis to multiple throat scenarios. A viable reheating would be possible in a single throat or in a certain subclass of multiple throat scenarios of the KKLMMT type inflation model, but overproduction of massive Kaluza-Klein (KK) modes poses a serious problem. The problem is quite severe if some inner manifold comes with approximate isometries (angular KK modes) or if there exists a throat of modest length other than the standard model throat, possibly associated with some hidden sector (low-lying KK modes)

  4. Ultrasensitive string-based temperature sensors

    NASA Astrophysics Data System (ADS)

    Larsen, T.; Schmid, S.; Grönberg, L.; Niskanen, A. O.; Hassel, J.; Dohn, S.; Boisen, A.

    2011-03-01

    Resonant strings are a promising concept for ultra sensitive temperature detection. We present an analytical model for the sensitivity with which we optimize the temperature response of resonant strings by varying geometry and material. The temperature sensitivity of silicon nitride and aluminum microstrings was measured. The relative change in resonant frequency per temperature change of -1.74±0.04%/°C of the aluminum strings is more than one order of magnitude higher than of the silicon nitride strings and of comparable state-of-the-art AuPd strings.

  5. Axions in String Theory

    SciTech Connect

    Svrcek, Peter; Witten, Edward; /Princeton, Inst. Advanced Study

    2006-06-09

    In the context of string theory, axions appear to provide the most plausible solution of the strong CP problem. However, as has been known for a long time, in many string-based models, the axion coupling parameter Fa is several orders of magnitude higher than the standard cosmological bounds. We re-examine this problem in a variety of models, showing that Fa is close to the GUT scale or above in many models that have GUT-like phenomenology, as well as some that do not. On the other hand, in some models with Standard Model gauge fields supported on vanishing cycles, it is possible for Fa to be well below the GUT scale.

  6. Indication of change of phase in high-multiplicity proton-proton events at LHC in string percolation model

    NASA Astrophysics Data System (ADS)

    Bautista, I.; Téllez, A. Fernandez; Ghosh, Premomoy

    2015-10-01

    We analyze high-multiplicity proton-proton (p p ) collision data in the framework of the string percolation model that has been successful in describing several phenomena of multiparticle production, including the signatures of recent discovery of strongly interacting partonic matter, the quark-gluon plasma, in relativistic heavy-ion collisions. Our study in terms of the ratio of shear viscosity and entropy density (η /s ) and the [Lattice Quantum Chromodinamics (LQCD)] predicted signature of QCD change of phase, in terms of the effective number of degrees of freedom (ɛ /T4), reiterates the possibility of a strongly interacting collective medium in these events.

  7. Exploring center strings in S U (2 ) and S U (3 ) relativistic Yang-Mills-Higgs models

    NASA Astrophysics Data System (ADS)

    Oxman, L. E.; Vercauteren, D.

    2017-01-01

    We develop numerical tools and apply them to solve the relativistic Yang-Mills-Higgs equations in a model where the S U (N ) symmetry is spontaneously broken to its center. In S U (2 ) and S U (3 ), we obtain the different field profiles for infinite and finite center strings, with end points at external monopole sources. Exploration of parameter space permits the detection of a region where the equations get Abelianized. Finally, a general parametrization of the color structure of S U (2 ) fields leads us to a reference point where an Abelian-like Bogomol'nyi-Prasad-Sommereld (BPS) bound is reconciled with N -ality.

  8. New numerical results and novel effective string predictions for Wilson loops

    NASA Astrophysics Data System (ADS)

    Billó, M.; Caselle, M.; Pellegrini, R.

    2012-01-01

    We compute the prediction of the Nambu-Goto effective string model for a rectangular Wilson loop up to three loops. This is done through the use of an operatorial, first order formulation and of the open string analogues of boundary states. This result is interesting since there are universality theorems stating that the predictions up to three loops are common to all effective string models. To test the effective string prediction, we use a Montecarlo evaluation, in the 3 d Ising gauge model, of an observable (the ratio of two Wilson loops with the same perimeter) for which boundary effects are relatively small. Our simulation attains a level of precision which is sufficient to test the two-loop correction. The three-loop correction seems to go in the right direction, but is actually yet beyond the reach of our simulation, since its effect is comparable with the statistical errors of the latter.

  9. Two aspects of one loop structure: Unitarity delay in the Standard Model and modular invariance in string theory

    SciTech Connect

    Ahn, C.

    1989-08-01

    We study two aspects of one loop structures in quantum field theories which describe two different areas of particle physics: the one loop unitarity behavior of the Standard Model of electroweak interactions and modular invariance of string model theory. Loop expansion has its importance in that it contains quantum fluctuations due to all physical states in the theory. Therefore, by studying the various models to one loop, we can understand how the contents of the theory can contribute to physically measurable quantities and how the consistency at quantum level restricts the physical states of the theory, as well. In the first half of the thesis, we study one loop corrections to the process {ital e}{sup +}{ital e}{sup {minus}} {yields} {ital W}{sup +}{ital W}{sup {minus}}. In this process, there is a delicate unitarity-saving cancellation between s-channel and t-channel tree level Feynman diagrams. If the one loop contribution due to heavy particles corrects the channels asymmetrically, the cancellation, hence unitarity, will be delayed up to the mass scale of these heavy particles. We refer to this phenomena as the unitarity delay effect. Due to this effect, cross section below these mass scales can have significant radiative corrections which may provide an appropriate window through which we can see the high energy structure of the Standard Model from relatively low energy experiments. In the second half, we will show how quantum consistency can restrict the physical states in string theory. 53 refs., 13 figs.

  10. CMB constraints on cosmic strings and superstrings

    NASA Astrophysics Data System (ADS)

    Charnock, Tom; Avgoustidis, Anastasios; Copeland, Edmund J.; Moss, Adam

    2016-06-01

    We present the first complete Markov chain Monte Carlo analysis of cosmological models with evolving cosmic (super)string networks, using the unconnected segment model in the unequal-time correlator formalism. For ordinary cosmic string networks, we derive joint constraints on Λ cold dark matter (CDM) and string network parameters, namely the string tension G μ , the loop-chopping efficiency cr, and the string wiggliness α . For cosmic superstrings, we obtain joint constraints on the fundamental string tension G μF, the string coupling gs, the self-interaction coefficient cs, and the volume of compact extra dimensions w . This constitutes the most comprehensive CMB analysis of Λ CDM cosmology+strings to date. For ordinary cosmic string networks our updated constraint on the string tension, obtained using Planck2015 temperature and polarization data, is G μ <1.1 ×10-7 in relativistic units, while for cosmic superstrings our constraint on the fundamental string tension after marginalizing over gs, cs, and w is G μF<2.8 ×10-8.

  11. Inner string cementing adapter and method of use

    SciTech Connect

    Helms, L.C.

    1991-08-20

    This patent describes an inner string cementing adapter for use on a work string in a well casing having floating equipment therein. It comprises mandrel means for connecting to a lower end of the work string; and sealing means adjacent to the mandrel means for substantially flatly sealing against a surface of the floating equipment without engaging a central opening in the floating equipment.

  12. The Open Source Snowpack modelling ecosystem

    NASA Astrophysics Data System (ADS)

    Bavay, Mathias; Fierz, Charles; Egger, Thomas; Lehning, Michael

    2016-04-01

    As a large number of numerical snow models are available, a few stand out as quite mature and widespread. One such model is SNOWPACK, the Open Source model that is developed at the WSL Institute for Snow and Avalanche Research SLF. Over the years, various tools have been developed around SNOWPACK in order to expand its use or to integrate additional features. Today, the model is part of a whole ecosystem that has evolved to both offer seamless integration and high modularity so each tool can easily be used outside the ecosystem. Many of these Open Source tools experience their own, autonomous development and are successfully used in their own right in other models and applications. There is Alpine3D, the spatially distributed version of SNOWPACK, that forces it with terrain-corrected radiation fields and optionally with blowing and drifting snow. This model can be used on parallel systems (either with OpenMP or MPI) and has been used for applications ranging from climate change to reindeer herding. There is the MeteoIO pre-processing library that offers fully integrated data access, data filtering, data correction, data resampling and spatial interpolations. This library is now used by several other models and applications. There is the SnopViz snow profile visualization library and application that supports both measured and simulated snow profiles (relying on the CAAML standard) as well as time series. This JavaScript application can be used standalone without any internet connection or served on the web together with simulation results. There is the OSPER data platform effort with a data management service (build on the Global Sensor Network (GSN) platform) as well as a data documenting system (metadata management as a wiki). There are several distributed hydrological models for mountainous areas in ongoing development that require very little information about the soil structure based on the assumption that in step terrain, the most relevant information is

  13. Predictions from String Theory

    NASA Astrophysics Data System (ADS)

    Kuflik, Eric

    String theory is the leading candidate for an underlying theory of nature, as it provides a framework through which to address critical questions left unanswered by the Standard Model and Supersymmetry. A number of predictions of string constructions can be empirically tested at the Large Hadron Collider (LHC) and dark matter experiments. In this work I aim to make generic predictions of string theory, while combining bottom-up approaches to fill in the gaps in our understanding of string theory to make predictions for current and upcoming experiments. First I study moduli masses and claim that moduli dominated the energy density of the universe prior to big bang nucleosynthesis. We argue that in any string theory with stabilized moduli there will be at least one modulus field whose mass is of order the gravitino mass. Cosmology then generically requires the gravitino mass to be greater than 30 TeV and the early cosmological history of the Universe be non-thermal. We are then led to believe that the best-motivated channel for early LHC discovery is gluino pair-production events decaying into a high multiplicity of third generation quarks. We analyze signals and background at the LHC for 7 TeV center of mass energy for 1 fb -1 integrated luminosity, suggesting a reach for gluinos for masses about 650 GeV. Second, I seek to construct a Grand Unified Theory (GUT) within different branches of string theory. One promising GUT, developed outside of string theory, is Flipped-SU(5), which I show has serious phenomenological difficulties. I demonstrate both that Flipped-SU(5) requires an R-symmetry to solve the mu-problem, and that no R-symmetries exist in F-theory. Thus Flipped-SU(5) cannot serve as a GUT within F-theory. Similarly, I seek to construct a GUT within M-theory. My study is based upon the discrete symmetry proposed by Witten that forbids the mu-term and solves the doublet-triplet splitting problem, but does not address how the symmetry might be broken. I find

  14. From the currency rate quotations onto strings and brane world scenarios

    NASA Astrophysics Data System (ADS)

    Horváth, D.; Pincak, R.

    2012-11-01

    In the paper, we study the projections of the real exchange rate dynamics onto the string-like topology. Our approach is inspired by the contemporary movements in the string theory. The string map of data is defined here by the boundary conditions, characteristic length, real valued and the method of redistribution of information. As a practical matter, this map represents the detrending and data standardization procedure. We introduced maps onto 1-end-point and 2-end-point open strings that satisfy the Dirichlet and Neumann boundary conditions. The questions of the choice of extra-dimensions, symmetries, duality and ways to the partial compactification are discussed. Subsequently, we pass to higher dimensional and more complex objects. The 2D-Brane was suggested which incorporated bid-ask spreads. Polarization by the spread was considered which admitted analyzing arbitrage opportunities on the market where transaction costs are taken into account. The model of the rotating string which naturally yields calculation of angular momentum is suitable for tracking of several currency pairs. The systematic way which allows one suggest more structured maps suitable for a simultaneous study of several currency pairs was analyzed by means of the Gâteaux generalized differential calculus. The effect of the string and brane maps on test data was studied by comparing their mean statistical characteristics. The study revealed notable differences between topologies. We review the dependence on the characteristic string length, mean fluctuations and properties of the intra-string statistics. The study explores the coupling of the string amplitude and volatility. The possible utilizations of the string theory approach in financial markets are slight.

  15. Composite representation invariants and unoriented topological string amplitudes

    NASA Astrophysics Data System (ADS)

    Paul, Chandrima; Borhade, Pravina; Ramadevi, P.

    2010-12-01

    Sinha and Vafa [1] had conjectured that the SO Chern-Simons gauge theory on S must be dual to the closed A-model topological string on the orientifold of a resolved conifold. Though the Chern-Simons free energy could be rewritten in terms of the topological string amplitudes providing evidence for the conjecture, we needed a novel idea in the context of Wilson loop observables to extract cross-cap c=0,1,2 topological amplitudes. Recent paper of Marino [2] based on the work of Morton and Ryder [3] has clearly shown that the composite representation placed on the knots and links plays a crucial role to rewrite the topological string cross-cap c=0 amplitude. This enables extracting the unoriented cross-cap c=2 topological amplitude. In this paper, we have explicitly worked out the composite invariants for some framed knots and links carrying composite representations in U(N) Chern-Simons theory. We have verified generalised Rudolph's theorem, which relates composite invariants to the invariants in SO(N) Chern-Simons theory, and also verified Marino's conjectures on the integrality properties of the topological string amplitudes. For some framed knots and links, we have tabulated the BPS integer invariants for cross-cap c=0 and c=2 giving the open-string topological amplitude on the orientifold of the resolved conifold.

  16. Inflation, string theory and cosmic strings

    NASA Astrophysics Data System (ADS)

    Chernoff, David F.; Tye, S.-H. Henry

    2015-02-01

    At its very beginning, the universe is believed to have grown exponentially in size via the mechanism of inflation. The almost scale-invariant density perturbation spectrum predicted by inflation is strongly supported by cosmological observations, in particular the cosmic microwave background (MB) radiation. However, the universe's precise inflationary scenario remains a profound problem for cosmology and for fundamental physics. String theory, the most-studied theory as the final physical theory of nature, should provide an answer to this question. Some of the proposals on how inflation is realized in string theory are reviewed. Since everything is made of strings, some string loops of cosmological sizes are likely to survive in the hot big bang that followed inflation. They appear as cosmic strings, which can have intricate properties. Because of the warped geometry in flux compactification of the extra spatial dimensions in string theory, some of the cosmic strings may have tensions substantially below the Planck or string scale. Such strings cluster in a manner similar to dark matter leading to hugely enhanced densities. As a result, numerous fossil remnants of the low tension cosmic strings may exist within the galaxy. They can be revealed through the optical lensing of background stars in the near future and studied in detail through gravitational wave emission. We anticipate that these cosmic strings will permit us to address central questions about the properties of string theory as well as the birth of our universe.

  17. City Scale Modeling with OpenStudio

    SciTech Connect

    2016-08-12

    Assessing the impact of energy efficiency technologies at a district or city scale is of great interest to local governments, real estate developers, utility companies, and policymakers. This paper describes a flexible framework that can be used to create and run district and city scale building energy simulations. The framework is built around the new OpenStudio City Database (CityDB). Building footprints, building height, building type, and other data can be imported from public records or other sources. Missing data can be inferred or assigned from a statistical sampling of other datasets. Once all required data is available, OpenStudio Measures are used to create starting point energy models and to model energy efficiency measures for each building. Together this framework allows a user to pose several scenarios such as 'what if 30% of the commercial retail buildings added rooftop solar' or 'what if all elementary schools converted to ground source heat pumps' and then visualize the impacts at a district or city scale. This paper focuses on modeling existing building stock using public records. However, the framework is capable of supporting the evaluation of new construction, district systems, and the use of proprietary data sources.

  18. A Warped Cosmic String

    SciTech Connect

    Slagter, R. J.

    2010-06-23

    We present a cosmic string solution in Einstein-Yang-Mills Gauss-Bonnet theory on a warped 5 dimensional space-time conform the Randall-Sundrum-2 theory. In a simplipied model, we find an exact solutions with exponential decreasing or periodic warp function. In a more general setting, where the metric- and Yang-Mills components depend on both scales and one of the YM components resides in the bulk, we find a time dependent numerical solution.

  19. Constraint Reasoning Over Strings

    NASA Technical Reports Server (NTRS)

    Koga, Dennis (Technical Monitor); Golden, Keith; Pang, Wanlin

    2003-01-01

    This paper discusses an approach to representing and reasoning about constraints over strings. We discuss how many string domains can often be concisely represented using regular languages, and how constraints over strings, and domain operations on sets of strings, can be carried out using this representation.

  20. String theory in electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Ambjørn, Jan; Makeenko, Yuri M.; Semenoff, Gordon W.; Szabo, Richard J.

    2003-02-01

    A review of various aspects of superstrings in background electromagnetic fields is presented. Topics covered include the Born-Infeld action, spectrum of open strings in background gauge fields, the Schwinger mechanism, finite-temperature formalism and Hagedorn behaviour in external fields, Debye screening, D-brane scattering, thermodynamics of D-branes, and noncommutative field and string theories on D-branes. The electric field instabilities are emphasized throughout and contrasted with the case of magnetic fields. A new derivation of the velocity-dependent potential between moving D-branes is presented, as is a new result for the velocity corrections to the one-loop thermal effective potential.

  1. String driven inflation

    SciTech Connect

    Turok, N.

    1987-11-01

    It is argued that, in fundamental string theories, as one traces the universe back in time a point is reached when the expansion rate is so fast that the rate of string creation due to quantum effects balances the dilution of the string density due to the expansion. One is therefore led into a phase of constant string density and an exponentially expanding universe. Fundamental strings therefore seem to lead naturally to inflation. 17 refs., 1 fig.

  2. String-driven inflation

    NASA Technical Reports Server (NTRS)

    Turok, Neil

    1988-01-01

    It is argued that, in fundamental string theories, as one traces the universe back in time a point is reached when the expansion rate is so fast that the rate of string creation due to quantum effects balances the dilution of the string density due to the expansion. One is therefore led into a phase of constant string density and an exponentially expanding universe. Fundamental strings therefore seem to lead naturally to inflation.

  3. Thermodynamical string fragmentation

    NASA Astrophysics Data System (ADS)

    Fischer, Nadine; Sjöstrand, Torbjörn

    2017-01-01

    The observation of heavy-ion-like behaviour in pp collisions at the LHC suggests that more physics mechanisms are at play than traditionally assumed. The introduction e.g. of quark-gluon plasma or colour rope formation can describe several of the observations, but as of yet there is no established paradigm. In this article we study a few possible modifications to the Pythia event generator, which describes a wealth of data but fails for a number of recent observations. Firstly, we present a new model for generating the transverse momentum of hadrons during the string fragmentation process, inspired by thermodynamics, where heavier hadrons naturally are suppressed in rate but obtain a higher average transverse momentum. Secondly, close-packing of strings is taken into account by making the temperature or string tension environment-dependent. Thirdly, a simple model for hadron rescattering is added. The effect of these modifications is studied, individually and taken together, and compared with data mainly from the LHC. While some improvements can be noted, it turns out to be nontrivial to obtain effects as big as required, and further work is called for.

  4. Orbifold SUSY GUT from the Heterotic String

    SciTech Connect

    Kyae, Bumseok

    2008-11-23

    From the string partition function, we discuss the mass-shell and GSO projection conditions valid for Kaluza-Klein (KK) as well as massless states in the heterotic string theory compactifled on a nonprime orbifold. Using the obtained conditions we construct a 4D string standard model, which is embedded in a 6D SUSY GUT by including KK states above the compactiflcation scale. We discuss the stringy threshold corrections to gauge couplings, including the Wilson line effects.

  5. Cosmic Strings Stabilized by Quantum Fluctuations

    NASA Astrophysics Data System (ADS)

    Weigel, H.

    2017-03-01

    Fermion quantum corrections to the energy of cosmic strings are computed. A number of rather technical tools are needed to formulate this correction, and isospin and gauge invariance are employed to verify consistency of these tools. These corrections must also be included when computing the energy of strings that are charged by populating fermion bound states in its background. It is found that charged strings are dynamically stabilized in theories similar to the standard model of particle physics.

  6. Integrable string models with constant torsion in terms of chiral invariants of SU(n), SO(n), SP(n) groups

    SciTech Connect

    Gershun, V. D.

    2010-02-15

    We used the invariant local chiral currents of principal chiral models for SU(n), SO(n), SP(n) groups to construct new integrable string equations of hydrodynamic type on the Riemann space of the chiral primitive invariant currents and on the chiral nonprimitive Casimir operators as Hamiltonians.

  7. The vibrations of a real 3-string: the timbre of the tritare

    NASA Astrophysics Data System (ADS)

    Gaudet, Samuel; Gauthier, Claude; Léger, Sophie; Walker, Cory

    2005-03-01

    The tritare is a new stringed musical instrument comprised of six networks of strings instead of six single strings. Each of the networks is called 3-string. We analyze the timbre of the tritare by studying the vibrations of the 3-strings. We show that for a real 3-string, i.e. a physical model rather than a theoretical model, the frequency spectrum is composed of only non-harmonic frequencies which leads to a very unique tone color.

  8. String theory of the Regge intercept.

    PubMed

    Hellerman, S; Swanson, I

    2015-03-20

    Using the Polchinski-Strominger effective string theory in the covariant gauge, we compute the mass of a rotating string in D dimensions with large angular momenta J, in one or two planes, in fixed ratio, up to and including first subleading order in the large J expansion. This constitutes a first-principles calculation of the value for the order-J(0) contribution to the mass squared of a meson on the leading Regge trajectory in planar QCD with bosonic quarks. For open strings with Neumann boundary conditions, and for closed strings in D≥5, the order-J(0) term in the mass squared is exactly calculated by the semiclassical approximation. This term in the expansion is universal and independent of the details of the theory, assuming only D-dimensional Poincaré invariance and the absence of other infinite-range excitations on the string world volume, beyond the Nambu-Goldstone bosons.

  9. An Open Source Business Model for Malaria

    PubMed Central

    Årdal, Christine; Røttingen, John-Arne

    2015-01-01

    Greater investment is required in developing new drugs and vaccines against malaria in order to eradicate malaria. These precious funds must be carefully managed to achieve the greatest impact. We evaluate existing efforts to discover and develop new drugs and vaccines for malaria to determine how best malaria R&D can benefit from an enhanced open source approach and how such a business model may operate. We assess research articles, patents, clinical trials and conducted a smaller survey among malaria researchers. Our results demonstrate that the public and philanthropic sectors are financing and performing the majority of malaria drug/vaccine discovery and development, but are then restricting access through patents, ‘closed’ publications and hidden away physical specimens. This makes little sense since it is also the public and philanthropic sector that purchases the drugs and vaccines. We recommend that a more “open source” approach is taken by making the entire value chain more efficient through greater transparency which may lead to more extensive collaborations. This can, for example, be achieved by empowering an existing organization like the Medicines for Malaria Venture (MMV) to act as a clearing house for malaria-related data. The malaria researchers that we surveyed indicated that they would utilize such registry data to increase collaboration. Finally, we question the utility of publicly or philanthropically funded patents for malaria medicines, where little to no profits are available. Malaria R&D benefits from a publicly and philanthropically funded architecture, which starts with academic research institutions, product development partnerships, commercialization assistance through UNITAID and finally procurement through mechanisms like The Global Fund to Fight AIDS, Tuberculosis and Malaria and the U.S.’ President’s Malaria Initiative. We believe that a fresh look should be taken at the cost/benefit of patents particularly related to new

  10. An open source business model for malaria.

    PubMed

    Årdal, Christine; Røttingen, John-Arne

    2015-01-01

    Greater investment is required in developing new drugs and vaccines against malaria in order to eradicate malaria. These precious funds must be carefully managed to achieve the greatest impact. We evaluate existing efforts to discover and develop new drugs and vaccines for malaria to determine how best malaria R&D can benefit from an enhanced open source approach and how such a business model may operate. We assess research articles, patents, clinical trials and conducted a smaller survey among malaria researchers. Our results demonstrate that the public and philanthropic sectors are financing and performing the majority of malaria drug/vaccine discovery and development, but are then restricting access through patents, 'closed' publications and hidden away physical specimens. This makes little sense since it is also the public and philanthropic sector that purchases the drugs and vaccines. We recommend that a more "open source" approach is taken by making the entire value chain more efficient through greater transparency which may lead to more extensive collaborations. This can, for example, be achieved by empowering an existing organization like the Medicines for Malaria Venture (MMV) to act as a clearing house for malaria-related data. The malaria researchers that we surveyed indicated that they would utilize such registry data to increase collaboration. Finally, we question the utility of publicly or philanthropically funded patents for malaria medicines, where little to no profits are available. Malaria R&D benefits from a publicly and philanthropically funded architecture, which starts with academic research institutions, product development partnerships, commercialization assistance through UNITAID and finally procurement through mechanisms like The Global Fund to Fight AIDS, Tuberculosis and Malaria and the U.S.' President's Malaria Initiative. We believe that a fresh look should be taken at the cost/benefit of patents particularly related to new malaria

  11. OpenMx: An Open Source Extended Structural Equation Modeling Framework.

    PubMed

    Boker, Steven; Neale, Michael; Maes, Hermine; Wilde, Michael; Spiegel, Michael; Brick, Timothy; Spies, Jeffrey; Estabrook, Ryne; Kenny, Sarah; Bates, Timothy; Mehta, Paras; Fox, John

    2011-04-01

    OpenMx is free, full-featured, open source, structural equation modeling (SEM) software. OpenMx runs within the R statistical programming environment on Windows, Mac OS-X, and Linux computers. The rationale for developing OpenMx is discussed along with the philosophy behind the user interface. The OpenMx data structures are introduced - these novel structures define the user interface framework and provide new opportunities for model specification. Two short example scripts for the specification and fitting of a confirmatory factor model are next presented. We end with an abbreviated list of modeling applications available in OpenMx 1.0 and a discussion of directions for future development.

  12. Metastability in an open quantum Ising model.

    PubMed

    Rose, Dominic C; Macieszczak, Katarzyna; Lesanovsky, Igor; Garrahan, Juan P

    2016-11-01

    We apply a recently developed theory for metastability in open quantum systems to a one-dimensional dissipative quantum Ising model. Earlier results suggest this model features either a nonequilibrium phase transition or a smooth but sharp crossover, where the stationary state changes from paramagnetic to ferromagnetic, accompanied by strongly intermittent emission dynamics characteristic of first-order coexistence between dynamical phases. We show that for a range of parameters close to this transition or crossover point the dynamics of the finite system displays pronounced metastability, i.e., the system relaxes first to long-lived metastable states before eventual relaxation to the true stationary state. From the spectral properties of the quantum master operator we characterize the low-dimensional manifold of metastable states, which are shown to be probability mixtures of two, paramagnetic and ferromagnetic, metastable phases. We also show that for long times the dynamics can be approximated by a classical stochastic dynamics between the metastable phases that is directly related to the intermittent dynamics observed in quantum trajectories and thus the dynamical phases.

  13. Metastability in an open quantum Ising model

    NASA Astrophysics Data System (ADS)

    Rose, Dominic C.; Macieszczak, Katarzyna; Lesanovsky, Igor; Garrahan, Juan P.

    2016-11-01

    We apply a recently developed theory for metastability in open quantum systems to a one-dimensional dissipative quantum Ising model. Earlier results suggest this model features either a nonequilibrium phase transition or a smooth but sharp crossover, where the stationary state changes from paramagnetic to ferromagnetic, accompanied by strongly intermittent emission dynamics characteristic of first-order coexistence between dynamical phases. We show that for a range of parameters close to this transition or crossover point the dynamics of the finite system displays pronounced metastability, i.e., the system relaxes first to long-lived metastable states before eventual relaxation to the true stationary state. From the spectral properties of the quantum master operator we characterize the low-dimensional manifold of metastable states, which are shown to be probability mixtures of two, paramagnetic and ferromagnetic, metastable phases. We also show that for long times the dynamics can be approximated by a classical stochastic dynamics between the metastable phases that is directly related to the intermittent dynamics observed in quantum trajectories and thus the dynamical phases.

  14. Cosmic microwave anisotropies from BPS semilocal strings

    SciTech Connect

    Urrestilla, Jon; Bevis, Neil; Hindmarsh, Mark; Kunz, Martin; Liddle, Andrew R E-mail: n.bevis@imperial.ac.uk E-mail: martin.kunz@physics.unige.ch

    2008-07-15

    We present the first ever calculation of cosmic microwave background (CMB) anisotropy power spectra from semilocal cosmic strings, obtained via simulations of a classical field theory. Semilocal strings are a type of non-topological defect arising in some models of inflation motivated by fundamental physics, and are thought to relax the constraints on the symmetry breaking scale as compared to models with (topological) cosmic strings. We derive constraints on the model parameters, including the string tension parameter {mu}, from fits to cosmological data, and find that in this regard Bogomol'nyi-Prasad-Sommerfield (BPS) semilocal strings resemble global textures more than topological strings. The observed microwave anisotropy at l=10 is reproduced if G{mu} = 5.3 Multiplication-Sign 10{sup -6} (G is Newton's constant). However as with other defects the spectral shape does not match observations, and in models with inflationary perturbations plus semilocal strings the 95% confidence level upper bound is G{mu}<2.0 Multiplication-Sign 10{sup -6} when CMB, Hubble key project and big bang nucleosynthesis data are used (cf G{mu}<0.9 Multiplication-Sign 10{sup -6} for cosmic strings). We additionally carry out a Bayesian model comparison of several models with and without defects, showing that models with defects are neither conclusively favoured nor disfavoured at present.

  15. Specifications for Managed Strings

    DTIC Science & Technology

    2006-05-01

    string_m 3.1.3.1 The strcreate_m Function Synopsis #include <string_m.h> errno_t strcreate_m(string_m *s, const char * cstr , const rsize_t maxlen...strcreate_m function creates a managed string, referenced by s, given a conven- tional string cstr (which may be null or empty). maxlen specifies the...characters to be those in the null-terminated byte string cstr (which may be empty). If charset is a null pointer, no restricted character set is

  16. The OpenCourseWare Model: High-Impact Open Educational Content

    ERIC Educational Resources Information Center

    Carson, Stephen

    2007-01-01

    OpenCourseWare (OCW) is one among several models for offering open educational resources (OER). This article explains the OCW model and its position within the broader OER context. OCW primarily represents publication of existing course materials already in use for teaching purposes. OCW projects are most often institutional, carrying the…

  17. Spontaneous knotting of an agitated string.

    PubMed

    Raymer, Dorian M; Smith, Douglas E

    2007-10-16

    It is well known that a jostled string tends to become knotted; yet the factors governing the "spontaneous" formation of various knots are unclear. We performed experiments in which a string was tumbled inside a box and found that complex knots often form within seconds. We used mathematical knot theory to analyze the knots. Above a critical string length, the probability P of knotting at first increased sharply with length but then saturated below 100%. This behavior differs from that of mathematical self-avoiding random walks, where P has been proven to approach 100%. Finite agitation time and jamming of the string due to its stiffness result in lower probability, but P approaches 100% with long, flexible strings. We analyzed the knots by calculating their Jones polynomials via computer analysis of digital photos of the string. Remarkably, almost all were identified as prime knots: 120 different types, having minimum crossing numbers up to 11, were observed in 3,415 trials. All prime knots with up to seven crossings were observed. The relative probability of forming a knot decreased exponentially with minimum crossing number and Möbius energy, mathematical measures of knot complexity. Based on the observation that long, stiff strings tend to form a coiled structure when confined, we propose a simple model to describe the knot formation based on random "braid moves" of the string end. Our model can qualitatively account for the observed distribution of knots and dependence on agitation time and string length.

  18. Nucleus from string theory

    NASA Astrophysics Data System (ADS)

    Hashimoto, Koji; Morita, Takeshi

    2011-08-01

    In generic holographic QCD, we find that baryons are bound to form a nucleus, and that its radius obeys the empirically-known mass-number (A) dependence r∝A1/3 for large A. Our result is robust, since we use only a generic property of D-brane actions in string theory. We also show that nucleons are bound completely in a finite volume. Furthermore, employing a concrete holographic model (derived by Hashimoto, Iizuka, and Yi, describing a multibaryon system in the Sakai-Sugimoto model), the nuclear radius is evaluated as O(1)×A1/3[fm], which is consistent with experiments.

  19. Aspects of supersymmetric gauge theory and string theory

    NASA Astrophysics Data System (ADS)

    Huang, Minxin

    This thesis consists of two parts. In the first part we study some topics in N = 1 supersymmeric gauge theory and the relation to matrix models. We review the relevant non-perturbative techniques for computing effective superpotential, such as Seiberg-Witten curve. Then we review the proposal of Dijkgraaf and Vafa that relates the glueball superpotentials to the computation in matrix models. We then consider a case of multi-trace superpotential. We perform the perturbative computation of glueball superpotential in this case and explain the subtlety in identifying the glueball superfield. We also use these techniques to study phases of N = 1 gauge theory with flavors. In the second part we study topics in AdS/CFT correspondence and its plane wave limit. We review the plane wave geometry and BMN operators that corresponding to string modes. Then we study string interactions in the case of a highly curved plane wave background, and demonstrate the agreements between calculations of string interaction amplitudes in the two dual theories. Finally we study D3-brane giant gravitons and open string attached to them. Giant gravitons are non-perturbative objects that have very large R-charge.

  20. Openness, Technologies, Business Models and Austerity

    ERIC Educational Resources Information Center

    Jones, Chris

    2015-01-01

    Open education emerged when the state had an active role in shaping and financing post-secondary education. In the twenty-first century, two pressures influence the way openness is conceived. The first is the compounding of neo-liberal economics with austerity following the financial crash of 2008. The second is the consolidation of networked and…

  1. OpenFLUID: an open-source software environment for modelling fluxes in landscapes

    NASA Astrophysics Data System (ADS)

    Fabre, Jean-Christophe; Rabotin, Michaël; Crevoisier, David; Libres, Aline; Dagès, Cécile; Moussa, Roger; Lagacherie, Philippe; Raclot, Damien; Voltz, Marc

    2013-04-01

    Integrative landscape functioning has become a common concept in environmental management. Landscapes are complex systems where many processes interact in time and space. In agro-ecosystems, these processes are mainly physical processes, including hydrological-processes, biological processes and human activities. Modelling such systems requires an interdisciplinary approach, coupling models coming from different disciplines, developed by different teams. In order to support collaborative works, involving many models coupled in time and space for integrative simulations, an open software modelling platform is a relevant answer. OpenFLUID is an open source software platform for modelling landscape functioning, mainly focused on spatial fluxes. It provides an advanced object-oriented architecture allowing to i) couple models developed de novo or from existing source code, and which are dynamically plugged to the platform, ii) represent landscapes as hierarchical graphs, taking into account multi-scale, spatial heterogeneities and landscape objects connectivity, iii) run and explore simulations in many ways : using the OpenFLUID software interfaces for users (command line interface, graphical user interface), or using external applications such as GNU R through the provided ROpenFLUID package. OpenFLUID is developed in C++ and relies on open source libraries only (Boost, libXML2, GLib/GTK, OGR/GDAL, …). For modelers and developers, OpenFLUID provides a dedicated environment for model development, which is based on an open source toolchain, including the Eclipse editor, the GCC compiler and the CMake build system. OpenFLUID is distributed under the GPLv3 open source license, with a special exception allowing to plug existing models licensed under any license. It is clearly in the spirit of sharing knowledge and favouring collaboration in a community of modelers. OpenFLUID has been involved in many research applications, such as modelling of hydrological network

  2. String resistance detector

    NASA Technical Reports Server (NTRS)

    Hall, A. Daniel (Inventor); Davies, Francis J. (Inventor)

    2007-01-01

    Method and system are disclosed for determining individual string resistance in a network of strings when the current through a parallel connected string is unknown and when the voltage across a series connected string is unknown. The method/system of the invention involves connecting one or more frequency-varying impedance components with known electrical characteristics to each string and applying a frequency-varying input signal to the network of strings. The frequency-varying impedance components may be one or more capacitors, inductors, or both, and are selected so that each string is uniquely identifiable in the output signal resulting from the frequency-varying input signal. Numerical methods, such as non-linear regression, may then be used to resolve the resistance associated with each string.

  3. Light from cosmic strings

    SciTech Connect

    Steer, Daniele A.; Vachaspati, Tanmay

    2011-02-15

    The time-dependent metric of a cosmic string leads to an effective interaction between the string and photons--the ''gravitational Aharonov-Bohm'' effect--and causes cosmic strings to emit light. We evaluate the radiation of pairs of photons from cosmic strings and find that the emission from cusps, kinks and kink-kink collisions occurs with a flat spectrum at all frequencies up to the string scale. Further, cusps emit a beam of photons, kinks emit along a curve, and the emission at a kink-kink collision is in all directions. The emission of light from cosmic strings could provide an important new observational signature of cosmic strings that is within reach of current experiments for a range of string tensions.

  4. Adaptation of Laser Microdissection Technique for the Study of a Spontaneous Metastatic Mammary Carcinoma Mouse Model by NanoString Technologies

    PubMed Central

    Saylor, Karen L.; Anver, Miriam R.; Salomon, David S.; Golubeva, Yelena G.

    2016-01-01

    Laser capture microdissection (LCM) of tissue is an established tool in medical research for collection of distinguished cell populations under direct microscopic visualization for molecular analysis. LCM samples have been successfully analyzed in a number of genomic and proteomic downstream molecular applications. However, LCM sample collection and preparation procedure has to be adapted to each downstream analysis platform. In this present manuscript we describe in detail the adaptation of LCM methodology for the collection and preparation of fresh frozen samples for NanoString analysis based on a study of a model of mouse mammary gland carcinoma and its lung metastasis. Our adaptation of LCM sample preparation and workflow to the requirements of the NanoString platform allowed acquiring samples with high RNA quality. The NanoString analysis of such samples provided sensitive detection of genes of interest and their associated molecular pathways. NanoString is a reliable gene expression analysis platform that can be effectively coupled with LCM. PMID:27077656

  5. Effective string description of confining flux tubes

    NASA Astrophysics Data System (ADS)

    Brandt, Bastian B.; Meineri, Marco

    2016-08-01

    We review the current knowledge about the theoretical foundations of the effective string theory for confining flux tubes and the comparison of the predictions to pure gauge lattice data. A concise presentation of the effective string theory is provided, incorporating recent developments. We summarize the predictions for the spectrum and the profile/width of the flux tube and their comparison to lattice data. The review closes with a short summary of open questions for future research.

  6. The Fate of Massive Closed Strings

    SciTech Connect

    Chen Bin; Li Miao; She Jianhuang

    2005-12-02

    We calculate the semi-inclusive decay rate of an average string state with toroidal compactification in the the superstring theory. We also apply this calculation to a brane-inflation model in a warped geometry and find that the decay rate is greatly suppressed if the final strings are both massive and enhanced for massless radiation.

  7. Filter for a drill string

    DOEpatents

    Hall, David R.; Pixton, David S.; Briscoe, Michael; McPherson, James

    2007-12-04

    A filter for a drill string comprises a perforated receptacle having an open end and a perforated end and first and second mounting surfaces are adjacent the open end. A transmission element is disposed within each of the first and second mounting surfaces. A capacitor may modify electrical characteristics of an LC circuit that comprises the transmission elements. The respective transmission elements are in communication with each other and with a transmission network integrated into the drill string. The transmission elements may be inductive couplers, direct electrical contacts, or optical couplers. In some embodiments of the present invention, the filter comprises an electronic component. The electronic component may be selected from the group consisting of a sensor, a router, a power source, a clock source, a repeater, and an amplifier.

  8. Open source data assimilation framework for hydrological modeling

    NASA Astrophysics Data System (ADS)

    Ridler, Marc; Hummel, Stef; van Velzen, Nils; Katrine Falk, Anne; Madsen, Henrik

    2013-04-01

    An open-source data assimilation framework is proposed for hydrological modeling. Data assimilation (DA) in hydrodynamic and hydrological forecasting systems has great potential to improve predictions and improve model result. The basic principle is to incorporate measurement information into a model with the aim to improve model results by error minimization. Great strides have been made to assimilate traditional in-situ measurements such as discharge, soil moisture, hydraulic head and snowpack into hydrologic models. More recently, remotely sensed data retrievals of soil moisture, snow water equivalent or snow cover area, surface water elevation, terrestrial water storage and land surface temperature have been successfully assimilated in hydrological models. The assimilation algorithms have become increasingly sophisticated to manage measurement and model bias, non-linear systems, data sparsity (time & space) and undetermined system uncertainty. It is therefore useful to use a pre-existing DA toolbox such as OpenDA. OpenDA is an open interface standard for (and free implementation of) a set of tools to quickly implement DA and calibration for arbitrary numerical models. The basic design philosophy of OpenDA is to breakdown DA into a set of building blocks programmed in object oriented languages. To implement DA, a model must interact with OpenDA to create model instances, propagate the model, get/set variables (or parameters) and free the model once DA is completed. An open-source interface for hydrological models exists capable of all these tasks: OpenMI. OpenMI is an open source standard interface already adopted by key hydrological model providers. It defines a universal approach to interact with hydrological models during simulation to exchange data during runtime, thus facilitating the interactions between models and data sources. The interface is flexible enough so that models can interact even if the model is coded in a different language, represent

  9. Modeling open boundaries in dissipative MHD simulation

    NASA Astrophysics Data System (ADS)

    Meier, E. T.; Glasser, A. H.; Lukin, V. S.; Shumlak, U.

    2012-04-01

    The truncation of large physical domains to concentrate computational resources is necessary or desirable in simulating many natural and man-made plasma phenomena. Three open boundary condition (BC) methods for such domain truncation of dissipative magnetohydrodynamics (MHD) problems are described and compared here. A novel technique, lacuna-based open boundary conditions (LOBC), is presented for applying open BC to dissipative MHD and other hyperbolic and mixed hyperbolic-parabolic systems of partial differential equations. LOBC, based on manipulating Calderon-type near-boundary sources, essentially damp hyperbolic effects in an exterior region attached to the simulation domain and apply BC appropriate for the remaining parabolic effects (if present) at the exterior region boundary. Another technique, approximate Riemann BC (ARBC), is adapted from finite volume and discontinuous Galerkin methods. In ARBC, the value of incoming flux is specified using a local, characteristic-based method. A third commonly-used open BC, zero-normal derivative BC (ZND BC), is presented for comparison. These open BC are tested in several gas dynamics and dissipative MHD problems. LOBC are found to give stable, low-reflection solutions even in the presence of strong parabolic behavior, while ARBC are stable only when hyperbolic behavior is dominant. Pros and cons of the techniques are discussed and put into context within the body of open BC research to date.

  10. Dynamics of Carroll strings

    NASA Astrophysics Data System (ADS)

    Cardona, Biel; Gomis, Joaquim; Pons, Josep M.

    2016-07-01

    We construct the canonical action of a Carroll string doing the Carroll limit of a canonical relativistic string. We also study the Killing symmetries of the Carroll string, which close under an infinite dimensional algebra. The tensionless limit and the Carroll p-brane action are also discussed.

  11. Drill string enclosure

    DOEpatents

    Jorgensen, Douglas K.; Kuhns, Douglass J.; Wiersholm, Otto; Miller, Timothy A.

    1993-01-01

    The drill string enclosure consists of six component parts, including; a top bracket, an upper acrylic cylinder, an acrylic drill casing guide, a lower acrylic cylinder, a bottom bracket, and three flexible ducts. The upper acrylic cylinder is optional based upon the drill string length. The drill string enclosure allows for an efficient drill and sight operation at a hazardous waste site.

  12. Drill string enclosure

    DOEpatents

    Jorgensen, D.K.; Kuhns, D.J.; Wiersholm, O.; Miller, T.A.

    1993-03-02

    The drill string enclosure consists of six component parts, including; a top bracket, an upper acrylic cylinder, an acrylic drill casing guide, a lower acrylic cylinder, a bottom bracket, and three flexible ducts. The upper acrylic cylinder is optional based upon the drill string length. The drill string enclosure allows for an efficient drill and sight operation at a hazardous waste site.

  13. A New Open Data Open Modeling Framework for the Geosciences Community (Invited)

    NASA Astrophysics Data System (ADS)

    Liang, X.; Salas, D.; Navarro, M.; Liang, Y.; Teng, W. L.; Hooper, R. P.; Restrepo, P. J.; Bales, J. D.

    2013-12-01

    A prototype Open Hydrospheric Modeling Framework (OHMF), also called Open Data Open Modeling framework, has been developed to address two key modeling challenges faced by the broad research community: (1) accessing external data from diverse sources and (2) execution, coupling, and evaluation/intercomparison of various and complex models. The former is achieved via the Open Data architecture, while the latter is achieved via the Open Modeling architecture. The Open Data architecture adopts a common internal data model and representation, to facilitate the integration of various external data sources into OHMF, using Data Agents that handle remote data access protocols (e.g., OPeNDAP, Web services), metadata standards, and source-specific implementations. These Data Agents hide the heterogeneity of the external data sources and provide a common interface to the OHMF system core. The Open Modeling architecture allows different models or modules to be easily integrated into OHMF. The OHMF architectural design offers a general many-to-many connectivity between individual models and external data sources, instead of one-to-one connectivity from data access to model simulation results. OHMF adopts a graphical scientific workflow, offers tools to re-scale in space and time, and provides multi-scale data fusion and assimilation functionality. Notably, the OHMF system employs a strategy that does not require re-compiling or adding interface codes for a user's model to be integrated. Thus, a corresponding model agent can be easily developed by a user. Once an agent is available for a model, it can be shared and used by others. An example will be presented to illustrate the prototype OHMF system and the automatic flow from accessing data to model simulation results in a user-friendly workflow-controlled environment.

  14. From decay to complete breaking: pulling the strings in SU(2) Yang-Mills theory.

    PubMed

    Pepe, M; Wiese, U-J

    2009-05-15

    We study {2Q+1} strings connecting two static charges Q in (2+1)D SU(2) Yang-Mills theory. While the fundamental {2} string between two charges Q=1/2 is unbreakable, the adjoint {3} string connecting two charges Q=1 can break. When a {4} string is stretched beyond a critical length, it decays into a {2} string by gluon pair creation. When a {5} string is stretched, it first decays into a {3} string, which eventually breaks completely. The energy of the screened charges at the ends of a string is well described by a phenomenological constituent gluon model.

  15. Is a `Brane' Electron Modeled by a Closed-loop String of Neutrinos, is time formally a periodic function, and can tornadoes be ``turned off''?

    NASA Astrophysics Data System (ADS)

    McLeod, Roger; McLeod, David

    2006-03-01

    Model a `planar' electron by a closed string of vibrating neutrinos; displacement values are proportional to the speed of light times the square root of the mass. `Spin' supplies required inward spherical fields in three spatial dimensions. Interlocked quark loops model protons or neutrons; ideas like strong and weak forces, or an uncertainty principle, arise. Subtle, longer string-like `vibrating,' quasi-periodic, lighted phenomena we detect are at locations used by some of our Native American forebears, or by the Hopi or Maya -locations indicated by problematic constructions, by `sacred' place-names, or by individuals with `titles' identified as names. Lighted `tubes,' associated with EMF, required by our model for tornado generation, imply breaking the EMF lines will `kill' any tornado. `Kokopelli's hair,' is the place to construct a designated current loop.

  16. Strings matter: Dynamics and evolution of cosmic string networks in flat spacetime

    NASA Astrophysics Data System (ADS)

    Sakellariadou, Maria

    1990-12-01

    This research inquires into the dynamics and evolution of cosmic string networks in flat spacetime. It involves the study of the statistical properties of string networks and the dynamics of long strings, including the scaling density; the fractal nature of string substructure; and the effectiveness of the gravitational damping mechanism, regarding the long strings' wiggles. Methodologically, it employs both numerical (within the framework of an exact soluble model in flat spacetime) and analytical analyses. The central propositions of this research are a follows: (1) for a string network in equilibrium, when the energy density of the network is low, the dominant part of the string is in the form of closed loops of the smallest allowed size, and a certain critical density the system undergoes a phase transition characterized by formation of very long strings; (2) for an evolving network, the typical curvature radius of long strings, and the characteristic distance between them, are both comparable to the evolution time, and at the same time, long strings possess a significant small-scale structure, which plays an important role in the energy distribution of the produced loops: and (3) gravitational radiation is rather effective in damping the small-scale structure, but only for large amplitude waves.

  17. Strings matter: Dynamics and evolution of cosmic string networks in flat spacetime

    SciTech Connect

    Sakellariadou, M.

    1990-01-01

    This research inquires into the dynamics and evolution of cosmic string networks in flat spacetime. It involves the study of the statistical properties of string networks and the dynamics of long strings, including the scaling density; the fractal nature of string substructure; and the effectiveness of the gravitational damping mechanism, regarding the long strings' wiggles. Methodologically, it employs both numerical (within the framework of an exact soluble model in flat spacetime) and analytical analyses. The central propositions of this research are a follows: (1) for a string network in equilibrium, when the energy density of the network is low, the dominant part of the string is in the form of closed loops of the smallest allowed size, and a certain critical density the system undergoes a phase transition characterized by formation of very long strings; (2) for an evolving network, the typical curvature radius of long strings, and the characteristic distance between them, are both comparable to the evolution time, and at the same time, long strings possess a significant small-scale structure, which plays an important role in the energy distribution of the produced loops: and (3) gravitational radiation is rather effective in damping the small-scale structure, but only for large amplitude waves.

  18. String theory in target space

    NASA Astrophysics Data System (ADS)

    Boels, Rutger H.; Hansen, Tobias

    2014-06-01

    It is argued that the complete S-matrix of string theory at tree level in a flat background can be obtained from a small set of target space properties, without recourse to the worldsheet description. The main non-standard inputs are (generalised) Britto-Cachazo-Feng-Witten shifts, as well as the monodromy relations for open string theory and the Kawai-Lewellen-Tye relations for closed string theory. The roots of the scattering amplitudes and especially their appearance in the residues at the kinematic poles are central to the story. These residues determine the amplitudes through on-shell recursion relations. Several checks of the formalism are presented, including a computation of the Koba-Nielsen amplitude in the bosonic string. Furthermore the question of target space unitarity is (re-)investigated. For the Veneziano amplitude this question is reduced by Poincaré invariance, unitarity and locality to that of positivity of a particular numerical sum. Interestingly, this analysis produces the main conditions of the no-ghost theorem on dimension and intercept from the first three poles of this amplitude.

  19. Ambitwistor Strings in Four Dimensions

    NASA Astrophysics Data System (ADS)

    Geyer, Yvonne; Lipstein, Arthur E.; Mason, Lionel

    2014-08-01

    We develop ambitwistor string theories for four dimensions to obtain new formulas for tree-level gauge and gravity amplitudes with arbitrary amounts of supersymmetry. Ambitwistor space is the space of complex null geodesics in complexified Minkowski space, and in contrast to earlier ambitwistor strings, we use twistors rather than vectors to represent this space. Although superficially similar to the original twistor string theories of Witten, Berkovits, and Skinner, these theories differ in the assignment of world sheet spins of the fields, rely on both twistor and dual twistor representatives for the vertex operators, and use the ambitwistor procedure for calculating correlation functions. Our models are much more flexible, no longer requiring maximal supersymmetry, and the resulting formulas for amplitudes are simpler, having substantially reduced moduli. These are supported on the solutions to the scattering equations refined according to helicity and can be checked by comparison with corresponding formulas of Witten and of Cachazo and Skinner.

  20. Formal Specification of the OpenMP Memory Model

    SciTech Connect

    Bronevetsky, G; de Supinski, B

    2006-12-19

    OpenMP [2] is an important API for shared memory programming, combining shared memory's potential for performance with a simple programming interface. Unfortunately, OpenMP lacks a critical tool for demonstrating whether programs are correct: a formal memory model. Instead, the current official definition of the OpenMP memory model (the OpenMP 2.5 specification [2]) is in terms of informal prose. As a result, it is impossible to verify OpenMP applications formally since the prose does not provide a formal consistency model that precisely describes how reads and writes on different threads interact. We expand on our previous work that focused on the formal verification of OpenMP programs through a formal memory model [?]. As in that work, our formalization, which is derived from the existing prose model [2], provides a two-step process to verify whether an observed OpenMP execution is conformant. This paper extends the model to cover the entire specification. In addition to this formalization, our contributions include a discussion of ambiguities in the current prose-based memory model description. Although our formal model may not capture the current informal memory model perfectly, in part due to these ambiguities, our model reflects our understanding of the informal model's intent. We conclude with several examples that may indicate areas of the OpenMP memory model that need further refinement, however it is specified. Our goal is to motivate the OpenMP community to adopt those refinements eventually, ideally through a formal model, in later OpenMP specifications.

  1. The Targeted Open Online Course (TOOC) Model

    ERIC Educational Resources Information Center

    Baker, Credence; Gentry, James

    2014-01-01

    In an era of increasingly hyped Massive Open Online Courses (MOOCs) that seem to evoke feelings of both promise and peril for higher education, many institutions are struggling to find their niche among top-tier Ivy League schools offering courses to thousands of participants for free. While the effectiveness of MOOCs in terms of learning outcomes…

  2. A distributed data component for the open modeling interface

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As the volume of collected data continues to increase in the environmental sciences, so does the need for effective means for accessing those data. We have developed an Open Modeling Interface (OpenMI) data component that retrieves input data for model components from environmental information syste...

  3. OpenSHMEM-UCX : Evaluation of UCX for implementing OpenSHMEM Programming Model

    SciTech Connect

    Baker, Matthew B; Gorentla Venkata, Manjunath; Aderholdt, William Ferrol; Shamis, Pavel

    2016-01-01

    The OpenSHMEM reference implementation was developed towards the goal of developing an open source and high-performing Open- SHMEM implementation. To achieve portability and performance across various networks, the OpenSHMEM reference implementation uses GAS- Net and UCCS for network operations. Recently, new network layers have emerged with the promise of providing high-performance, scalabil- ity, and portability for HPC applications. In this paper, we implement the OpenSHMEM reference implementation to use the UCX framework for network operations. Then, we evaluate its performance and scalabil- ity on Cray XK systems to understand UCX s suitability for developing the OpenSHMEM programming model. Further, we develop a bench- mark called SHOMS for evaluating the OpenSHMEM implementation. Our experimental results show that OpenSHMEM-UCX outperforms the vendor supplied OpenSHMEM implementation in most cases on the Cray XK system by up to 40% with respect to message rate and up to 70% for the execution of application kernels.

  4. Introduction to string and superstring theory II

    SciTech Connect

    Peskin, M.E.

    1987-03-01

    Conformal field theory is reviewed, then conformal invariance is used to rederive the basic results on the embedding dimensionality for bosonic and fermionic strings. The spectrum of the bosonic and the computation of scattering amplitudes are discussed. The formalism used is extended to clarify the origin of Yang-Mills gauge invariance in the open bosonic string theory. The question of the general-coordinate gauge invariance of string theory is addressed, presenting two disparate viewpoints on this question. A brief introduction is then given of the reduction from the idealized string theory in 10 extended dimensions to more realistic solutions in which all but 4 of these dimensions are compactified. The state of knowledge about the space-time supersymmetry of the superstring from the covariant viewpoint is outlined. An approach for identifying possible 6-dimensional spaces which might represent the form of the compact dimensions is discussed, and the orbifold scheme of compactification is presented. 77 refs., 18 figs. (LEW)

  5. Model Fusion Tool - the Open Environmental Modelling Platform Concept

    NASA Astrophysics Data System (ADS)

    Kessler, H.; Giles, J. R.

    2010-12-01

    The vision of an Open Environmental Modelling Platform - seamlessly linking geoscience data, concepts and models to aid decision making in times of environmental change. Governments and their executive agencies across the world are facing increasing pressure to make decisions about the management of resources in light of population growth and environmental change. In the UK for example, groundwater is becoming a scarce resource for large parts of its most densely populated areas. At the same time river and groundwater flooding resulting from high rainfall events are increasing in scale and frequency and sea level rise is threatening the defences of coastal cities. There is also a need for affordable housing, improved transport infrastructure and waste disposal as well as sources of renewable energy and sustainable food production. These challenges can only be resolved if solutions are based on sound scientific evidence. Although we have knowledge and understanding of many individual processes in the natural sciences it is clear that a single science discipline is unable to answer the questions and their inter-relationships. Modern science increasingly employs computer models to simulate the natural, economic and human system. Management and planning requires scenario modelling, forecasts and ‘predictions’. Although the outputs are often impressive in terms of apparent accuracy and visualisation, they are inherently not suited to simulate the response to feedbacks from other models of the earth system, such as the impact of human actions. Geological Survey Organisations (GSO) are increasingly employing advances in Information Technology to visualise and improve their understanding of geological systems. Instead of 2 dimensional paper maps and reports many GSOs now produce 3 dimensional geological framework models and groundwater flow models as their standard output. Additionally the British Geological Survey have developed standard routines to link geological

  6. Twisting the N=2 string

    NASA Astrophysics Data System (ADS)

    Ketov, Sergei V.; Lechtenfeld, Olaf; Parkes, Andrew J.

    1995-03-01

    The most general homogeneous monodromy conditions in N=2 string theory are classified in terms of the conjugacy classes of the global symmetry group U(1,1)⊗openZ2. For classes which generate a discrete subgroup Γ, the corresponding target space backgrounds openC1,1/Γ include half spaces, complex orbifolds, and tori. We propose a generalization of the intercept formula to matrix-valued twists, but find massless physical states only for Γ=open1 (untwisted) and Γ=openZ2 (in the manner of Mathur and Mukhi), as well as for Γ being a parabolic element of U(1,1). In particular, the 16 openZ2-twisted sectors of the N=2 string are investigated, and the corresponding ground states are identified via bosonization and BRST cohomology. We find enough room for an extended multiplet of ``spacetime'' supersymmetry, with the number of supersymmetries being dependent on global ``spacetime'' topology. However, world-sheet locality for the chiral vertex operators does not permit interactions among all massless ``spacetime'' fermions.

  7. Quark Confinement and Strings

    NASA Astrophysics Data System (ADS)

    't Hooft, Gerardus

    QCD was proposed as a theory for the strong interactions long before we had any idea as to how it could be that its fundamental constituents, the quarks, are never seen as physical particles. Massless gluons also do not exist as free particles. How can this be explained? The first indication that this question had to be considered in connection with the topological structure of a gauge theory came when Nielsen and Olesen observed the occurrence of stable magnetic vortex structures [1] in the Abelian Higgs model. Expanding on such ideas, the magnetic monopole solution was found [2]. Other roundabout attempts to understand confinement involve instantons. Today, we have better interpretations of these topological structures, including a general picture of the way they do lead to unbound potentials confining quarks. It is clear that these unbound potentials can be ascribed to a string-like structure of the vortices formed by the QCD field lines. Can string theory be used to analyze QCD? Many researchers think so. The leading expert on this is Sacha Polyakov. In his instructive account he adds how he experienced the course of events in Gauge Theory, emphasizing the fact that quite a few discoveries often ascribed to researchers from the West, actually were made independently by scientists from the Soviet Union…

  8. Effects of overlapping strings in pp collisions

    DOE PAGES

    Bierlich, Christian; Gustafson, Gösta; Lönnblad, Leif; ...

    2015-03-26

    In models for hadron collisions based on string hadronization, the strings are usually treated as independent, allowing no interaction between the confined colour fields. In studies of nucleus collisions it has been suggested that strings close in space can fuse to form "colour ropes." Such ropes are expected to give more strange particles and baryons, which also has been suggested as a signal for plasma formation. Overlapping strings can also be expected in pp collisions, where usually no phase transition is expected. In particular at the high LHC energies the expected density of strings is quite high. To investigate possiblemore » effects of rope formation, we present a model in which strings are allowed to combine into higher multiplets, giving rise to increased production of baryons and strangeness, or recombine into singlet structures and vanish. Also a crude model for strings recombining into junction structures is considered, again giving rise to increased baryon production. The models are implemented in the DIPSY MC event generator, using PYTHIA8 for hadronization, and comparison to pp minimum bias data, reveals improvement in the description of identified particle spectra.« less

  9. Effects of overlapping strings in pp collisions

    SciTech Connect

    Bierlich, Christian; Gustafson, Gösta; Lönnblad, Leif; Tarasov, Andrey

    2015-03-26

    In models for hadron collisions based on string hadronization, the strings are usually treated as independent, allowing no interaction between the confined colour fields. In studies of nucleus collisions it has been suggested that strings close in space can fuse to form "colour ropes." Such ropes are expected to give more strange particles and baryons, which also has been suggested as a signal for plasma formation. Overlapping strings can also be expected in pp collisions, where usually no phase transition is expected. In particular at the high LHC energies the expected density of strings is quite high. To investigate possible effects of rope formation, we present a model in which strings are allowed to combine into higher multiplets, giving rise to increased production of baryons and strangeness, or recombine into singlet structures and vanish. Also a crude model for strings recombining into junction structures is considered, again giving rise to increased baryon production. The models are implemented in the DIPSY MC event generator, using PYTHIA8 for hadronization, and comparison to pp minimum bias data, reveals improvement in the description of identified particle spectra.

  10. Emergence of string valence-bond-solid state in the frustrated J1-J2 transverse field Ising model on the square lattice

    NASA Astrophysics Data System (ADS)

    Sadrzadeh, M.; Haghshenas, R.; Jahromi, S. S.; Langari, A.

    2016-12-01

    We investigate the ground-state nature of the transverse field Ising model on the J1-J2 square lattice at the highly frustrated point J2/J1=0.5 . At zero field, the model has an exponentially large degenerate classical ground state, which can be affected by quantum fluctuations for nonzero field toward a unique quantum ground state. We consider two types of quantum fluctuations, harmonic ones by using linear spin-wave theory (LSWT) with single-spin-flip excitations above a long-range magnetically ordered background and anharmonic fluctuations, by employing a cluster-operator approach (COA) with multispin cluster-type fluctuations above a nonmagnetic cluster-ordered background. Our findings reveal that the harmonic fluctuations of LSWT fail to lift the extensive degeneracy as well as signaling a violation of the Hellmann-Feynman theorem. However, the string-type anharmonic fluctuations of COA are able to lift the degeneracy toward a string valence-bond-solid (VBS) state, which is obtained from an effective theory consistent with the Hellmann-Feynman theorem as well. Our results are further confirmed by implementing numerical tree tensor network simulation. The emergent nonmagnetic string VBS phase is gapped and breaks lattice rotational symmetry with only twofold degeneracy, which bears a continuous quantum phase transition at Γ /J1≅0.50 to the quantum paramagnet phase of high fields. The critical behavior is characterized by ν ≅1.0 and γ ≅0.33 exponents.

  11. "Open Access" Requires Clarification: Medical Journal Publication Models Evolve.

    PubMed

    Lubowitz, James H; Brand, Jefferson C; Rossi, Michael J; Provencher, Matthew T

    2017-03-01

    While Arthroscopy journal is a traditional subscription model journal, our companion journal Arthroscopy Techniques is "open access." We used to believe open access simply meant online and free of charge. However, while open-access journals are free to readers, in 2017 authors must make a greater sacrifice in the form of an article-processing charge (APC). Again, while this does not apply to Arthroscopy, the APC will apply to Arthroscopy Techniques.

  12. Topological M-strings and supergroup Wess-Zumino-Witten models

    NASA Astrophysics Data System (ADS)

    Okazaki, Tadashi; Smith, Douglas J.

    2016-09-01

    We study the boundary conditions in topologically twisted Chern-Simons matter theories with the Lie 3-algebraic structure. We find that the supersymmetric boundary conditions and the gauge-invariant boundary conditions can be unified as complexified gauge-invariant boundary conditions which lead to supergroup Wess-Zumino-Witten (WZW) models. We propose that the low-energy effective field theories on the two-dimensional intersection of multiple M2-branes on a holomorphic curve inside K3 with two nonparallel M5-branes on the K3 are supergroup WZW models from the topologically twisted Bagger-Lambert-Gustavson model and the Aharony-Bergman-Jafferis-Maldacena model.

  13. From matrix models' topological expansion to topological string theories: counting surfaces with algebraic geometry

    NASA Astrophysics Data System (ADS)

    Orantin, N.

    2007-09-01

    The 2-matrix model has been introduced to study Ising model on random surfaces. Since then, the link between matrix models and combinatorics of discrete surfaces has strongly tightened. This manuscript aims to investigate these deep links and extend them beyond the matrix models, following my work's evolution. First, I take care to define properly the hermitian 2 matrix model which gives rise to generating functions of discrete surfaces equipped with a spin structure. Then, I show how to compute all the terms in the topological expansion of any observable by using algebraic geometry tools. They are obtained as differential forms on an algebraic curve associated to the model: the spectral curve. In a second part, I show how to define such differentials on any algebraic curve even if it does not come from a matrix model. I then study their numerous symmetry properties under deformations of the algebraic curve. In particular, I show that these objects coincide with the topological expansion of the observable of a matrix model if the algebraic curve is the spectral curve of this model. Finally, I show that fine tuning the parameters ensure that these objects can be promoted to modular invariants and satisfy the holomorphic anomaly equation of the Kodaira-Spencer theory. This gives a new hint that the Dijkgraaf-Vafa conjecture is correct.

  14. OpenWorm: an open-science approach to modeling Caenorhabditis elegans

    PubMed Central

    Szigeti, Balázs; Gleeson, Padraig; Vella, Michael; Khayrulin, Sergey; Palyanov, Andrey; Hokanson, Jim; Currie, Michael; Cantarelli, Matteo; Idili, Giovanni; Larson, Stephen

    2014-01-01

    OpenWorm is an international collaboration with the aim of understanding how the behavior of Caenorhabditis elegans (C. elegans) emerges from its underlying physiological processes. The project has developed a modular simulation engine to create computational models of the worm. The modularity of the engine makes it possible to easily modify the model, incorporate new experimental data and test hypotheses. The modeling framework incorporates both biophysical neuronal simulations and a novel fluid-dynamics-based soft-tissue simulation for physical environment-body interactions. The project's open-science approach is aimed at overcoming the difficulties of integrative modeling within a traditional academic environment. In this article the rationale is presented for creating the OpenWorm collaboration, the tools and resources developed thus far are outlined and the unique challenges associated with the project are discussed. PMID:25404913

  15. Analog modeling of Worm-Like Chain molecules using macroscopic beads-on-a-string.

    PubMed

    Tricard, Simon; Feinstein, Efraim; Shepherd, Robert F; Reches, Meital; Snyder, Phillip W; Bandarage, Dileni C; Prentiss, Mara; Whitesides, George M

    2012-07-07

    This paper describes an empirical model of polymer dynamics, based on the agitation of millimeter-sized polymeric beads. Although the interactions between the particles in the macroscopic model and those between the monomers of molecular-scale polymers are fundamentally different, both systems follow the Worm-Like Chain theory.

  16. OpenStreams: Open Source Components as Building Blocks for Integrated Hydrological Models

    NASA Astrophysics Data System (ADS)

    Schellekens, J.; Becker, B. P. J.; Donchyts, G.; Goorden, N.; Hoogewoud, J. C.; Patzke, S.; Schwanenberg, D.

    2012-04-01

    Currently, Deltares is in the process of bringing out open source versions of most of its hydrology and hydrodynamics software. At the same time two packages are being developed as open source products from the start: OpenStreams aims to be a collection of (distributed) hydrological models and model components in which RTC-Tools targets at the implementation of various real-time control techniques. The aim is to come to a set of components that can work independently (e.g. through a command line interface) but can also be linked together through industry standards (such OpenMI) and more closely linked interfaces if needed. The system combines hydrological software written in different languages (Python with PCRaster extensions, C++, Fortran) and links these together using a C# layer that implements OpenMI. To do so all models and components first export their key functionality through an API in their native language around which the C# layers is wrapped using SWIG. The software presented here will be made available through http://oss.deltares.nl. Here we present a first test case in which a distributed hydrological model for the Rhine basin is linked to an RTC-Tools component for a major reservoir and to a groundwater model (MODFLOW) for the whole basin.

  17. More on the Abrikosov strings with non-Abelian moduli

    NASA Astrophysics Data System (ADS)

    Shifman, M.; Tallarita, Gianni; Yung, Alexei

    2014-04-01

    We continue explorations of deformed Abrikosov-Nielsen-Olesen (ANO) strings, with non-Abelian moduli on the worldsheet. In a simple model with an extra field, we find classically stable ANO and non-Abelian strings. The tension of the latter is a few percent lower than the tension of the ANO string. Then, we calculate the interpolating field configuration. Once the kink mass Mk and the difference of tensions ΔT are found, we calculate the decay rate of the ANO string with a higher tension ("false vacuum") into the non-Abelian string with the lower tension ("genuine vacuum") through the "bubble" formation in the quasiclassical approximation.

  18. pp wave big bangs: Matrix strings and shrinking fuzzy spheres

    SciTech Connect

    Das, Sumit R.; Michelson, Jeremy

    2005-10-15

    We find pp wave solutions in string theory with null-like linear dilatons. These provide toy models of big bang cosmologies. We formulate matrix string theory in these backgrounds. Near the big bang 'singularity', the string theory becomes strongly coupled but the Yang-Mills description of the matrix string is weakly coupled. The presence of a second length scale allows us to focus on a specific class of non-Abelian configurations, viz. fuzzy cylinders, for a suitable regime of parameters. We show that, for a class of pp waves, fuzzy cylinders which start out big at early times dynamically shrink into usual strings at sufficiently late times.

  19. Towards a theory of the QCD string

    NASA Astrophysics Data System (ADS)

    Dubovsky, Sergei; Gorbenko, Victor

    2016-02-01

    We construct a new model of four-dimensional relativistic strings with integrable dynamics on the worldsheet. In addition to translational modes this model contains a single massless pseudoscalar worldsheet field — the worldsheet axion. The axion couples to a topological density which counts the self-intersection number of a string. The corresponding coupling is fixed by integrability to Q=√{7/16π }≈ 0.37 . We argue that this model is a member of a larger family of relativistic non-critical integrable string models. This family includes and extends conventional non-critical strings described by the linear dilaton CFT. Intriguingly, recent lattice data in SU(3) and SU(5) gluodynamics reveals the presence of a massive pseudoscalar axion on the worldsheet of confining flux tubes. The value of the corresponding coupling, as determined from the lattice data, is equal to Q L ≈ 0 .38 ± 0 .04.

  20. OpenDrift - an open source framework for ocean trajectory modeling

    NASA Astrophysics Data System (ADS)

    Dagestad, Knut-Frode; Breivik, Øyvind; Ådlandsvik, Bjørn

    2016-04-01

    We will present a new, open source tool for modeling the trajectories and fate of particles or substances (Lagrangian Elements) drifting in the ocean, or even in the atmosphere. The software is named OpenDrift, and has been developed at Norwegian Meteorological Institute in cooperation with Institute of Marine Research. OpenDrift is a generic framework written in Python, and is openly available at https://github.com/knutfrode/opendrift/. The framework is modular with respect to three aspects: (1) obtaining input data, (2) the transport/morphological processes, and (3) exporting of results to file. Modularity is achieved through well defined interfaces between components, and use of a consistent vocabulary (CF conventions) for naming of variables. Modular input implies that it is not necessary to preprocess input data (e.g. currents, wind and waves from Eulerian models) to a particular file format. Instead "reader modules" can be written/used to obtain data directly from any original source, including files or through web based protocols (e.g. OPeNDAP/Thredds). Modularity of processes implies that a model developer may focus on the geophysical processes relevant for the application of interest, without needing to consider technical tasks such as reading, reprojecting, and colocating input data, rotation and scaling of vectors and model output. We will show a few example applications of using OpenDrift for predicting drifters, oil spills, and search and rescue objects.

  1. Earthquake Risk Modelling - Opening the black box

    NASA Astrophysics Data System (ADS)

    Alarcon, John E.; Simic, Milan; Franco, Guillermo; Shen-Tu, Bingming

    2010-05-01

    Assessing the risk from natural catastrophes such as earthquakes involves the detailed study of the seismic sources and site conditions that contribute to the earthquake hazard in the region of interest, the distribution and particular characteristics of the exposures through the study of building stock and its vulnerabilities, and the application of specific financial terms for particular portfolios. The catastrophe modelling framework encompasses these relatively complex considerations while also including a measure of uncertainty. This paper describes succinctly the structure and modules included in a probabilistic catastrophe risk model and presents several examples of risk modelling for realistic scenarios such as the expected earthquakes in the Marmara Sea region of Turkey and the results from modelling the 2009 L'Aquila (Abruzzo) earthquake.

  2. Modified Penna bit-string network evolution model for scale-free networks with assortative mixing

    NASA Astrophysics Data System (ADS)

    Kim, Yup; Choi, Woosik; Yook, Soon-Hyung

    2012-02-01

    Motivated by biological aging dynamics, we introduce a network evolution model for social interaction networks. In order to study the effect of social interactions originating from biological and sociological reasons on the topological properties of networks, we introduce the activitydependent rewiring process. From the numerical simulations, we show that the degree distribution of the obtained networks follows a power-law distribution with an exponentially decaying tail, P( k) ˜ ( k + c)- γ exp(- k/k 0). The obtained value of γ is in the range 2 < γ š 3, which is consistent with the values for real social networks. Moreover, we also show that the degree-degree correlation of the network is positive, which is a characteristic of social interaction networks. The possible applications of our model to real systems are also discussed.

  3. String-like cooperative motion in homogeneous melting.

    PubMed

    Zhang, Hao; Khalkhali, Mohammad; Liu, Qingxia; Douglas, Jack F

    2013-03-28

    Despite the fundamental nature and practical importance of melting, there is still no generally accepted theory of this ubiquitous phenomenon. Even the earliest simulations of melting of hard discs by Alder and Wainwright indicated the active role of collective atomic motion in melting and here we utilize molecular dynamics simulation to determine whether these correlated motions are similar to those found in recent studies of glass-forming (GF) liquids and other condensed, strongly interacting, particle systems. We indeed find string-like collective atomic motion in our simulations of "superheated" Ni crystals, but other observations indicate significant differences from GF liquids. For example, we observe neither stretched exponential structural relaxation, nor any decoupling phenomenon, while we do find a boson peak, findings that have strong implications for understanding the physical origin of these universal properties of GF liquids. Our simulations also provide a novel view of "homogeneous" melting in which a small concentration of interstitial defects exerts a powerful effect on the crystal stability through their initiation and propagation of collective atomic motion. These relatively rare point defects are found to propagate down the strings like solitons, driving the collective motion. Crystal integrity remains preserved when the permutational atomic motions take the form of ring-like atomic exchanges, but a topological transition occurs at higher temperatures where the rings open to form linear chains similar in geometrical form and length distribution to the strings of GF liquids. The local symmetry breaking effect of the open strings apparently destabilizes the local lattice structure and precipitates crystal melting. The crystal defects are thus not static entities under dynamic conditions, such as elevated temperatures or material loading, but rather are active agents exhibiting a rich nonlinear dynamics that is not addressed in conventional "static

  4. Does pronounceability modulate the letter string deficit of children with dyslexia? A study with the rate and amount model

    PubMed Central

    Marinelli, Chiara V.; Traficante, Daniela; Zoccolotti, Pierluigi

    2014-01-01

    The locus of the deficit of children with dyslexia in dealing with strings of letters may be a deficit at a pre-lexical graphemic level or an inability to bind orthographic and phonological information. We evaluate these alternative hypotheses in two experiments by examining the role of stimulus pronounceability in a lexical decision task (LDT) and in a forced-choice letter discrimination task (Reicher–Wheeler paradigm). Seventeen fourth grade children with dyslexia and 24 peer control readers participated to two experiments. In the LDT children were presented with high-, low-frequency words, pronounceable pseudowords (such as DASU) and unpronounceable non-words (such as RNGM) of 4-, 5-, or 6- letters. No sign of group by pronounceability interaction was found when over-additivity was taken into account. Children with dyslexia were impaired when they had to process strings, not only of pronounceable stimuli but also of unpronounceable stimuli, a deficit well accounted for by a single global factor. Complementary results were obtained with the Reicher–Wheeler paradigm: both groups of children gained in accuracy in letter discrimination in the context of pronounceable primes (words and pseudowords) compared to unpronounceable primes (non-words). No global factor was detected in this task which requires the discrimination between a target letter and a competitor but does not involve simultaneous letter string processing. Overall, children with dyslexia show a selective difficulty in simultaneously processing a letter string as a whole, independent of its pronounceability; however, when the task involves isolated letter processing, also these children can make use of the ortho-phono-tactic information derived from a previously seen letter string. This pattern of findings is in keeping with the idea that an impairment in pre-lexical graphemic analysis may be a core deficit in developmental dyslexia. PMID:25520680

  5. Multirate Simulations of String Vibrations Including Nonlinear Fret-String Interactions Using the Functional Transformation Method

    NASA Astrophysics Data System (ADS)

    Trautmann, L.; Rabenstein, R.

    2004-12-01

    The functional transformation method (FTM) is a well-established mathematical method for accurate simulations of multidimensional physical systems from various fields of science, including optics, heat and mass transfer, electrical engineering, and acoustics. This paper applies the FTM to real-time simulations of transversal vibrating strings. First, a physical model of a transversal vibrating lossy and dispersive string is derived. Afterwards, this model is solved with the FTM for two cases: the ideally linearly vibrating string and the string interacting nonlinearly with the frets. It is shown that accurate and stable simulations can be achieved with the discretization of the continuous solution at audio rate. Both simulations can also be performed with a multirate approach with only minor degradations of the simulation accuracy but with preservation of stability. This saves almost 80% of the computational cost for the simulation of a six-string guitar and therefore it is in the range of the computational cost for digital waveguide simulations.

  6. Cosmic superstring gravitational lensing phenomena: Predictions for networks of (p,q) strings

    SciTech Connect

    Shlaer, Benjamin; Wyman, Mark

    2005-12-15

    The unique, conical space-time created by cosmic strings brings about distinctive gravitational lensing phenomena. The variety of these distinctive phenomena is increased when the strings have nontrivial mutual interactions. In particular, when strings bind and create junctions, rather than intercommute, the resulting configurations can lead to novel gravitational lensing patterns. In this brief note, we use exact solutions to characterize these phenomena, the detection of which would be strong evidence for the existence of complex cosmic string networks of the kind predicted by string theory-motivated cosmic string models. We also correct some common errors in the lensing phenomenology of straight cosmic strings.

  7. Modeling Group Interactions via Open Data Sources

    DTIC Science & Technology

    2011-08-30

    data. The state-of-art search engines are designed to help general query-specific search and not suitable for finding disconnected online groups. The...groups, (2) developing innovative mathematical and statistical models and efficient algorithms that leverage existing search engines and employ

  8. dugksFoam: An open source OpenFOAM solver for the Boltzmann model equation

    NASA Astrophysics Data System (ADS)

    Zhu, Lianhua; Chen, Songze; Guo, Zhaoli

    2017-04-01

    A deterministic Boltzmann model equation solver called dugksFoam has been developed in the framework of the open source CFD toolbox OpenFOAM. The solver adopts the discrete unified gas kinetic scheme (Guo et al., 2015) with the Shakhov collision model. It has been validated by simulating several test cases covering different flow regimes including the one dimensional shock tube problem, a two dimensional thermal induced flow and the three dimensional lid-driven cavity flow. The solver features a parallel computing ability based on the velocity space decomposition, which is different from the physical space decomposition based approach provided by the OpenFOAM framework. The two decomposition approaches have been compared in both two and three dimensional cases. The parallel performance improves significantly using the newly implemented approach. A speed up by two orders of magnitudes has been observed using 256 cores on a small cluster.

  9. OpenDA Open Source Generic Data Assimilation Environment and its Application in Process Models

    NASA Astrophysics Data System (ADS)

    El Serafy, Ghada; Verlaan, Martin; Hummel, Stef; Weerts, Albrecht; Dhondia, Juzer

    2010-05-01

    Data Assimilation techniques are essential elements in state-of-the-art development of models and their optimization with data in the field of groundwater, surface water and soil systems. They are essential tools in calibration of complex modelling systems and improvement of model forecasts. The OpenDA is a new and generic open source data assimilation environment for application to a choice of physical process models, applied to case dependent domains. OpenDA was introduced recently when the developers of Costa, an open-source TU Delft project [http://www.costapse.org; Van Velzen and Verlaan; 2007] and those of the DATools from the former WL|Delft Hydraulics [El Serafy et al 2007; Weerts et al. 2009] decided to join forces. OpenDA makes use of a set of interfaces that describe the interaction between models, observations and data assimilation algorithms. It focuses on flexible applications in portable systems for modelling geophysical processes. It provides a generic interfacing protocol that allows combination of the implemented data assimilation techniques with, in principle, any time-stepping model duscribing a process(atmospheric processes, 3D circulation, 2D water level, sea surface temperature, soil systems, groundwater etc.). Presently, OpenDA features filtering techniques and calibration techniques. The presentation will give an overview of the OpenDA and the results of some of its practical applications. Application of data assimilation in portable operational forecasting systems—the DATools assimilation environment, El Serafy G.Y., H. Gerritsen, S. Hummel, A. H. Weerts, A.E. Mynett and M. Tanaka (2007), Journal of Ocean Dynamics, DOI 10.1007/s10236-007-0124-3, pp.485-499. COSTA a problem solving environment for data assimilation applied for hydrodynamical modelling, Van Velzen and Verlaan (2007), Meteorologische Zeitschrift, Volume 16, Number 6, December 2007 , pp. 777-793(17). Application of generic data assimilation tools (DATools) for flood

  10. From Open Content to Open Course Models: Increasing Access and Enabling Global Participation in Higher Education

    ERIC Educational Resources Information Center

    Morgan, Tannis; Carey, Stephen

    2009-01-01

    Two of the major challenges to international students' right of access to higher education are geographical/economic isolation and academic literacy in English (Carey, 1999; Hamel, 2007). The authors propose that adopting open course models in traditional universities, through blended or online delivery, can offer benefits to the institutions and…

  11. A note on closed-string interactions a la witten

    NASA Astrophysics Data System (ADS)

    Romans, L. J.

    1987-08-01

    We consider the problem of formulating a field theory of interacting closed strings analogous to Witten's open-string field theory. Two natural candidates have been suggested for an off-shell three-string interaction vertex: one scheme involves a cyclic geometric overlap in spacetime, while the other is obtained by ``stuttering'' the Fock-space realization of the open-string vertex. We demonstrate that these two approaches are in fact equivalent, utilizing the operator formalism as developed to describe Witten's theory. Implications of this result for the construction of closed-string theories are briefly discussed. Address after August 1, 1987: Department of Physics, University of Southern California, Los Angeles, CA 90089, USA.

  12. A Model for Open Semantic Hyperwikis

    NASA Astrophysics Data System (ADS)

    Boulain, Philip; Shadbolt, Nigel; Gibbins, Nicholas

    Wiki systems have developed over the past years as lightweight, community-editable, web-based hypertext systems. With the emergence of semantic wikis such as Semantic MediaWiki [6], these collections of interlinked documents have also gained a dual role as ad-hoc RDF [7] graphs. However, their roots lie in the limited hypertext capabilities of the World Wide Web [1]: embedded links, without support for features like composite objects or transclusion. Collaborative editing on wikis has been hampered by redundancy; much of the effort spent on Wikipedia is used keeping content synchronised and organised.[3] We have developed a model for a system, which we have prototyped and are evaluating, which reintroduces ideas from the field of hypertext to help alleviate this burden.

  13. Constraints on cosmic strings due to black holes formed from collapsed cosmic string loops

    NASA Technical Reports Server (NTRS)

    Caldwell, R. R.; Gates, Evalyn

    1993-01-01

    The cosmological features of primordial black holes formed from collapsed cosmic string loops are studied. Observational restrictions on a population of primordial black holes are used to restrict f, the fraction of cosmic string loops which collapse to form black holes, and mu, the cosmic string mass-per-unit length. Using a realistic model of cosmic strings, we find the strongest restriction on the parameters f and mu is due to the energy density in 100MeV photons radiated by the black holes. We also find that inert black hole remnants cannot serve as the dark matter. If earlier, crude estimates of f are reliable, our results severely restrict mu, and therefore limit the viability of the cosmic string large-scale structure scenario.

  14. Inhomogeneous Einstein-Rosen string cosmology

    NASA Astrophysics Data System (ADS)

    Clancy, Dominic; Feinstein, Alexander; Lidsey, James E.; Tavakol, Reza

    1999-08-01

    Families of anisotropic and inhomogeneous string cosmologies containing non-trivial dilaton and axion fields are derived by applying the global symmetries of the string effective action to a generalized Einstein-Rosen metric. The models exhibit a two-dimensional group of Abelian isometries. In particular, two classes of exact solutions are found that represent inhomogeneous generalizations of the Bianchi type VIh cosmology. The asymptotic behavior of the solutions is investigated and further applications are briefly discussed.

  15. Mirage pattern from the heterotic string

    SciTech Connect

    Loewen, Valeri; Nilles, Hans Peter

    2008-05-15

    We provide a simple example of dilaton stabilization in the framework of heterotic string theory. It requires a gaugino condensate and an uplifting sector similar to the one postulated in type IIB string theory. Its signature is a hybrid mediation of supersymmetry breakdown with a variant of a mirage pattern for the soft breaking terms. The setup is suited for the discussion of heterotic minimal supersymmetric standard model candidates.

  16. Models for open innovation in the pharmaceutical industry.

    PubMed

    Schuhmacher, Alexander; Germann, Paul-Georg; Trill, Henning; Gassmann, Oliver

    2013-12-01

    The nature of the pharmaceutical industry is such that the main driver for its growth is innovation. In view of the vast challenges that the industry has been facing for several years and, in particular, how to manage stagnating research and development (R&D) productivity, pharmaceutical companies have opened their R&D organizations to external innovation. Here, we identify and characterize four new types of open innovator, which we call 'knowledge creator', 'knowledge integrator', 'knowledge translator' and 'knowledge leverager', and which describe current open R&D models.

  17. An Open Simulation System Model for Scientific Applications

    NASA Technical Reports Server (NTRS)

    Williams, Anthony D.

    1995-01-01

    A model for a generic and open environment for running multi-code or multi-application simulations - called the open Simulation System Model (OSSM) - is proposed and defined. This model attempts to meet the requirements of complex systems like the Numerical Propulsion Simulator System (NPSS). OSSM places no restrictions on the types of applications that can be integrated at any state of its evolution. This includes applications of different disciplines, fidelities, etc. An implementation strategy is proposed that starts with a basic prototype, and evolves over time to accommodate an increasing number of applications. Potential (standard) software is also identified which may aid in the design and implementation of the system.

  18. Open Knee: Open Source Modeling & Simulation to Enable Scientific Discovery and Clinical Care in Knee Biomechanics

    PubMed Central

    Erdemir, Ahmet

    2016-01-01

    Virtual representations of the knee joint can provide clinicians, scientists, and engineers the tools to explore mechanical function of the knee and its tissue structures in health and disease. Modeling and simulation approaches such as finite element analysis also provide the possibility to understand the influence of surgical procedures and implants on joint stresses and tissue deformations. A large number of knee joint models are described in the biomechanics literature. However, freely accessible, customizable, and easy-to-use models are scarce. Availability of such models can accelerate clinical translation of simulations, where labor intensive reproduction of model development steps can be avoided. The interested parties can immediately utilize readily available models for scientific discovery and for clinical care. Motivated by this gap, this study aims to describe an open source and freely available finite element representation of the tibiofemoral joint, namely Open Knee, which includes detailed anatomical representation of the joint's major tissue structures, their nonlinear mechanical properties and interactions. Three use cases illustrate customization potential of the model, its predictive capacity, and its scientific and clinical utility: prediction of joint movements during passive flexion, examining the role of meniscectomy on contact mechanics and joint movements, and understanding anterior cruciate ligament mechanics. A summary of scientific and clinically directed studies conducted by other investigators are also provided. The utilization of this open source model by groups other than its developers emphasizes the premise of model sharing as an accelerator of simulation-based medicine. Finally, the imminent need to develop next generation knee models are noted. These are anticipated to incorporate individualized anatomy and tissue properties supported by specimen-specific joint mechanics data for evaluation, all acquired in vitro from varying age

  19. Swiftly Computing Center Strings

    PubMed Central

    2011-01-01

    Background The center string (or closest string) problem is a classic computer science problem with important applications in computational biology. Given k input strings and a distance threshold d, we search for a string within Hamming distance at most d to each input string. This problem is NP complete. Results In this paper, we focus on exact methods for the problem that are also swift in application. We first introduce data reduction techniques that allow us to infer that certain instances have no solution, or that a center string must satisfy certain conditions. We describe how to use this information to speed up two previously published search tree algorithms. Then, we describe a novel iterative search strategy that is effecient in practice, where some of our reduction techniques can also be applied. Finally, we present results of an evaluation study for two different data sets from a biological application. Conclusions We find that the running time for computing the optimal center string is dominated by the subroutine calls for d = dopt -1 and d = dopt. Our data reduction is very effective for both, either rejecting unsolvable instances or solving trivial positions. We find that this speeds up computations considerably. PMID:21504573

  20. Macroscopic constraints on string unification

    SciTech Connect

    Taylor, T.R.

    1989-03-01

    The comparison of sting theory with experiment requires a huge extrapolation from the microscopic distances, of order of the Planck length, up to the macroscopic laboratory distances. The quantum effects give rise to large corrections to the macroscopic predictions of sting unification. I discus the model-independent constraints on the gravitational sector of string theory due to the inevitable existence of universal Fradkin-Tseytlin dilatons. 9 refs.

  1. Cloud-Based Model Calibration Using OpenStudio: Preprint

    SciTech Connect

    Hale, E.; Lisell, L.; Goldwasser, D.; Macumber, D.; Dean, J.; Metzger, I.; Parker, A.; Long, N.; Ball, B.; Schott, M.; Weaver, E.; Brackney, L.

    2014-03-01

    OpenStudio is a free, open source Software Development Kit (SDK) and application suite for performing building energy modeling and analysis. The OpenStudio Parametric Analysis Tool has been extended to allow cloud-based simulation of multiple OpenStudio models parametrically related to a baseline model. This paper describes the new cloud-based simulation functionality and presents a model cali-bration case study. Calibration is initiated by entering actual monthly utility bill data into the baseline model. Multiple parameters are then varied over multiple iterations to reduce the difference between actual energy consumption and model simulation results, as calculated and visualized by billing period and by fuel type. Simulations are per-formed in parallel using the Amazon Elastic Cloud service. This paper highlights model parameterizations (measures) used for calibration, but the same multi-nodal computing architecture is available for other purposes, for example, recommending combinations of retrofit energy saving measures using the calibrated model as the new baseline.

  2. Topological strings in d < 1

    NASA Astrophysics Data System (ADS)

    Dijkgraaf, Robbert; Verlinde, Herman; Verlinde, Erik

    1991-03-01

    We calculate correlation functions in minimal topological field theories. These twisted versions of N = 2 minimal models have recently been proposed to describe d < 1 matrix models, once coupled to topological gravity. In our calculation we make use of the Landau-Ginzburg formulation of the N = 2 models, and we find a direct relation between the Landau-Ginzburg superpotential and the KdV differential operator. Using this correspondence we show that the minimal topological models are in perfect agreement with the matrix models as solved in terms of the KdV hierarchy. This proves the equivalence at tree-level of topological and ordinary string thoery in d < 1.

  3. Cosmic strings in hidden sectors: 2. Cosmological and astrophysical signatures

    SciTech Connect

    Long, Andrew J.; Vachaspati, Tanmay E-mail: tvachasp@asu.edu

    2014-12-01

    Cosmic strings can arise in hidden sector models with a spontaneously broken Abelian symmetry group. We have studied the couplings of the Standard Model fields to these so-called dark strings in the companion paper. Here we survey the cosmological and astrophysical observables that could be associated with the presence of dark strings in our universe with an emphasis on low-scale models, perhaps TeV . Specifically, we consider constraints from nucleosynthesis and CMB spectral distortions, and we calculate the predicted fluxes of diffuse gamma ray cascade photons and cosmic rays. For strings as light as TeV, we find that the predicted level of these signatures is well below the sensitivity of the current experiments, and therefore low scale cosmic strings in hidden sectors remain unconstrained. Heavier strings with a mass scale in the range 10{sup 13} GeV to 10{sup 15} GeV are at tension with nucleosynthesis constraints.

  4. Cosmic strings in hidden sectors: 2. Cosmological and astrophysical signatures

    SciTech Connect

    Long, Andrew J.; Vachaspati, Tanmay

    2014-12-18

    Cosmic strings can arise in hidden sector models with a spontaneously broken Abelian symmetry group. We have studied the couplings of the Standard Model fields to these so-called dark strings in the companion paper. Here we survey the cosmological and astrophysical observables that could be associated with the presence of dark strings in our universe with an emphasis on low-scale models, perhaps TeV. Specifically, we consider constraints from nucleosynthesis and CMB spectral distortions, and we calculate the predicted fluxes of diffuse gamma ray cascade photons and cosmic rays. For strings as light as TeV, we find that the predicted level of these signatures is well below the sensitivity of the current experiments, and therefore low scale cosmic strings in hidden sectors remain unconstrained. Heavier strings with a mass scale in the range 10{sup 13} GeV to 10{sup 15} GeV are at tension with nucleosynthesis constraints.

  5. Purely cubic action for string field theory

    NASA Technical Reports Server (NTRS)

    Horowitz, G. T.; Lykken, J.; Rohm, R.; Strominger, A.

    1986-01-01

    It is shown that Witten's (1986) open-bosonic-string field-theory action and a closed-string analog can be written as a purely cubic interaction term. The conventional form of the action arises by expansion around particular solutions of the classical equations of motion. The explicit background dependence of the conventional action via the Becchi-Rouet-Stora-Tyutin operator is eliminated in the cubic formulation. A closed-form expression is found for the full nonlinear gauge-transformation law.

  6. Origin of gauge invariance in string theory

    NASA Technical Reports Server (NTRS)

    Horowitz, G. T.; Strominger, A.

    1986-01-01

    A first quantization of the space-time embedding Chi exp mu and the world-sheet metric rho of the open bosonic string. The world-sheet metric rho decouples from S-matrix elements in 26 dimensions. This formulation of the theory naturally includes 26-dimensional gauge transformations. The gauge invariance of S-matrix elements is a direct consequence of the decoupling of rho. Second quantization leads to a string field Phi(Chi exp mu, rho) with a gauge-covariant equation of motion.

  7. Cosmological cosmic strings

    NASA Technical Reports Server (NTRS)

    Gregory, Ruth

    1988-01-01

    The effect of an infinite cosmic string on a cosmological background is investigated. It is found that the metric is approximately a scaled version of the empty space string metric, i.e., conical in nature. Results are used to place bounds on the amount of cylindrical gravitational radiation currently emitted by such a string. The gravitational radiation equations are then analyzed explicitly and it is shown that even initially large disturbances are rapidly damped as the expansion proceeds. The implications of the gravitational radiation background and the limitations of the quadrupole formula are discussed.

  8. Final Report: "Strings 2014"

    SciTech Connect

    Witten, Edward

    2015-10-21

    The Strings 2014 meeting was held at Princeton University June 23-27, 2014, co-sponsored by Princeton University and the Institute for Advanced Study. The goal of the meeting was to provide a stimulating and up-to-date overview of research in string theory and its relations to other areas of physics and mathematics, ranging from geometry to quantum field theory, condensed matter physics, and more. This brief report lists committee members and speakers but contains no scientific information. Note that the talks at Strings 2014 were videotaped and are available on the conference website: http://physics.princeton.edustrings2014/Talk_titles.shtml.

  9. String theory in the early universe

    NASA Astrophysics Data System (ADS)

    Gwyn, Rhiannon

    String theory is a rich and elegant framework which many believe furnishes a UV-complete unified theory of the fundamental interactions, including gravity. However, if true, it holds at energy scales out of the reach of any terrestrial particle accelerator. While we cannot observe the string regime directly, we live in a universe which has been evolving from the string scale since shortly after the Big Bang. It is possible that string theory underlies cosmological processes like inflation, and that cosmology could confirm or constrain stringy physics in the early universe. This makes the intersection of string theory with the early universe a potential window into otherwise inaccessible physics. The results of three papers at this intersection are presented in this thesis. First, we address a longstanding problem: the apparent incompatibility of the experimentally constrained axion decay constant with most string theoretic realisations of the axion. Using warped compactifications in heterotic string theory, we show that the axion decay constant can be lowered to acceptable values by the warp factor. Next, we move to the subject of cosmic strings: linelike topological defects formed during phase transitions in the early universe. It was realised recently that cosmic superstrings are produced in many models of brane inflation, and that cosmic superstrings are stable and can have tensions within the observational bounds. Although they are now known not to be the primary generators of primordial density perturbations leading to structure formation, the evolution of cosmic string networks could have important consequences for astrophysics and cosmology. In particular, there are quantitative differences between cosmic superstring networks and GUT cosmic string networks. We investigate the properties of cosmic superstring networks in warped backgrounds, where they are expected to be produced at the end of brane inflation. We give the tension and properties of three-string

  10. Loop Variables in String Theory

    NASA Astrophysics Data System (ADS)

    Sathiapalan, B.

    The loop variable approach is a proposal for a gauge-invariant generalization of the sigma-model renormalization group method of obtaining equations of motion in string theory. The basic guiding principle is space-time gauge invariance rather than world sheet properties. In essence it is a version of Wilson's exact renormalization group equation for the world sheet theory. It involves all the massive modes and is defined with a finite world sheet cutoff, which allows one to go off the mass-shell. On shell the tree amplitudes of string theory are reproduced. The equations are gauge-invariant off shell also. This paper is a self-contained discussion of the loop variable approach as well as its connection with the Wilsonian RG.

  11. Subsurface drill string

    DOEpatents

    Casper, William L.; Clark, Don T.; Grover, Blair K.; Mathewson, Rodney O.; Seymour, Craig A.

    2008-10-07

    A drill string comprises a first drill string member having a male end; and a second drill string member having a female end configured to be joined to the male end of the first drill string member, the male end having a threaded portion including generally square threads, the male end having a non-threaded extension portion coaxial with the threaded portion, and the male end further having a bearing surface, the female end having a female threaded portion having corresponding female threads, the female end having a non-threaded extension portion coaxial with the female threaded portion, and the female end having a bearing surface. Installation methods, including methods of installing instrumented probes are also provided.

  12. Strings at finite temperature

    SciTech Connect

    Arago C. de; Bazeia, D.; Eboli, O.J.P.; Marques, G.C.

    1985-12-15

    We obtain a semiclassical evaluation of the temperature for which the free energy of the strings of spontaneously broken scalar electrodynamics vanishes. We argue that, above this temperature, these objects should play a significant physical role.

  13. String triality, black hole entropy, and Cayley's hyperdeterminant

    NASA Astrophysics Data System (ADS)

    Duff, M. J.

    2007-07-01

    The four-dimensional N=2 STU model of string compactification is invariant under an SL(2,Z)S×SL(2,Z)T×SL(2,Z)U duality acting on the dilaton/axion S, complex Kahler form T, and the complex structure fields U, and also under a string/string/string triality S↔T↔U. The model admits an extremal black hole solution with four electric and four magnetic charges whose entropy must respect these symmetries. It is given by the square root of the hyperdeterminant introduced by Cayley in 1845. This also features three-qubit quantum entanglement.

  14. Dirac equation for strings

    NASA Astrophysics Data System (ADS)

    Trzetrzelewski, Maciej

    2016-11-01

    Starting with a Nambu-Goto action, a Dirac-like equation can be constructed by taking the square-root of the momentum constraint. The eigenvalues of the resulting Hamiltonian are real and correspond to masses of the excited string. In particular there are no tachyons. A special case of radial oscillations of a closed string in Minkowski space-time admits exact solutions in terms of wave functions of the harmonic oscillator.

  15. Instantons in string theory

    SciTech Connect

    Ahlén, Olof

    2015-12-17

    These proceedings from the second Caesar Lattes meeting in Rio de Janeiro 2015 are a brief introduction to how automorphic forms appear in the low energy effective action of maximally supersymmetric string theory. The explicit example of the R{sup 4}-interaction of type IIB string theory in ten dimensions is discussed. Its Fourier expansion is interpreted in terms of perturbative and non-perturbative contributions to the four graviton amplitude.

  16. String Theory - The Physics of String-Bending and Other Electric Guitar Techniques

    PubMed Central

    Grimes, David Robert

    2014-01-01

    Electric guitar playing is ubiquitous in practically all modern music genres. In the hands of an experienced player, electric guitars can sound as expressive and distinct as a human voice. Unlike other more quantised instruments where pitch is a discrete function, guitarists can incorporate micro-tonality and, as a result, vibrato and sting-bending are idiosyncratic hallmarks of a player. Similarly, a wide variety of techniques unique to the electric guitar have emerged. While the mechano-acoustics of stringed instruments and vibrating strings are well studied, there has been comparatively little work dedicated to the underlying physics of unique electric guitar techniques and strings, nor the mechanical factors influencing vibrato, string-bending, fretting force and whammy-bar dynamics. In this work, models for these processes are derived and the implications for guitar and string design discussed. The string-bending model is experimentally validated using a variety of strings and vibrato dynamics are simulated. The implications of these findings on the configuration and design of guitars is also discussed. PMID:25054880

  17. String theory--the physics of string-bending and other electric guitar techniques.

    PubMed

    Grimes, David Robert

    2014-01-01

    Electric guitar playing is ubiquitous in practically all modern music genres. In the hands of an experienced player, electric guitars can sound as expressive and distinct as a human voice. Unlike other more quantised instruments where pitch is a discrete function, guitarists can incorporate micro-tonality and, as a result, vibrato and sting-bending are idiosyncratic hallmarks of a player. Similarly, a wide variety of techniques unique to the electric guitar have emerged. While the mechano-acoustics of stringed instruments and vibrating strings are well studied, there has been comparatively little work dedicated to the underlying physics of unique electric guitar techniques and strings, nor the mechanical factors influencing vibrato, string-bending, fretting force and whammy-bar dynamics. In this work, models for these processes are derived and the implications for guitar and string design discussed. The string-bending model is experimentally validated using a variety of strings and vibrato dynamics are simulated. The implications of these findings on the configuration and design of guitars is also discussed.

  18. The Open Provenance Model core specification (v1.1)

    SciTech Connect

    Moreau, Luc; Clifford, Ben; Freire, Juliana; Futrelle, Joe; Gil, Yolanda; Groth, Paul; Kwasnikowska, Natalia; Miles, Simon; Missier, Paolo; Myers, Jim; Plale, Beth; Simmhan, Yogesh; Stephan, Eric; den Bussche, Jan Van

    2011-06-01

    The Open Provenance Model is a model of provenance that is designed to meet the following requirements: (1) To allow provenance information to be ex- changed between systems, by means of a compatibility layer based on a shared provenance model. (2) To allow developers to build and share tools that operate on such a provenance model. (3) To deFIne provenance in a precise, technology- agnostic manner. (4) To support a digital representation of provenance for any “thing, whether produced by computer systems or not. (5) To allow multiple levels of description to coexist. (6) To deFIne a core set of rules that identify the valid inferences that can be made on provenance representation. This docu- ment contains the speciFIcation of the Open Provenance Model (v1.1) resulting from a commChallenge.

  19. Hydroball string sensing system

    DOEpatents

    Hurwitz, Michael J.; Ekeroth, Douglas E.; Squarer, David

    1991-01-01

    A hydroball string sensing system for a nuclear reactor that includes stainless tubes positioned to guide hydroball strings into and out of the nuclear reactor core. A sensor such as an ultrasonic transducer transmitter and receiver is positioned outside of the nuclear reactor core and adjacent to the tube. The presence of an object such a bullet member positioned at an end a hydroball string, or any one of the hydroballs interrupts the transmission of ultrasound from the transmitter to the receiver. Alternatively, if the bullet member and hydroballs include a ferritic material, either a Hall effect sensor or other magnetic field sensors such as a magnetic field rate of change sensor can be used to detect the location and position of a hydroball string. Placing two sensors along the tube with a known distance between the sensors enables the velocity of a hydroball string to be determined. This determined velocity can be used to control the flow rate of a fluid within the tube so as to control the velocity of the hydroball string.

  20. Status of the Next-Generation OpenGGCM Model

    NASA Astrophysics Data System (ADS)

    Germaschewski, K.; Raeder, J.; Bhattacharjee, A.; Lin, L.; Maynard, K. R. M.; Wang, L.

    2014-12-01

    OpenGGCM is a global coupled magnetosphere - ionosphere - thermosphere model that has been in use for more than two decades, and which has since 2001 been available as a community model at the Community Coordinated Modeling Center (ccmc.gsfc.nasa.gov) for model runs on demand. As new versions of the OpenGGCM are periodically released, here we will give an update on the features of the next generation, modularized, OpenGGCM model. New features of the model include: (1) more options for the MHD solver, including a modern van-Leer constrained-transport solver, (2) a Generalized Ohm's Law including the Hall term, (3) new physics models, in particular a 5-moment and 10-moment multi-fluid plasma description, (4) block-structured adaptive mesh refinement with support for staggered electric and magnetic fields for the constrained transport method, and (5) computational enhancements like command-line selectable modules and sub-models, parallel I/O, and checkpointing.

  1. a Framework for AN Open Source Geospatial Certification Model

    NASA Astrophysics Data System (ADS)

    Khan, T. U. R.; Davis, P.; Behr, F.-J.

    2016-06-01

    The geospatial industry is forecasted to have an enormous growth in the forthcoming years and an extended need for well-educated workforce. Hence ongoing education and training play an important role in the professional life. Parallel, in the geospatial and IT arena as well in the political discussion and legislation Open Source solutions, open data proliferation, and the use of open standards have an increasing significance. Based on the Memorandum of Understanding between International Cartographic Association, OSGeo Foundation, and ISPRS this development led to the implementation of the ICA-OSGeo-Lab imitative with its mission "Making geospatial education and opportunities accessible to all". Discussions in this initiative and the growth and maturity of geospatial Open Source software initiated the idea to develop a framework for a worldwide applicable Open Source certification approach. Generic and geospatial certification approaches are already offered by numerous organisations, i.e., GIS Certification Institute, GeoAcademy, ASPRS, and software vendors, i. e., Esri, Oracle, and RedHat. They focus different fields of expertise and have different levels and ways of examination which are offered for a wide range of fees. The development of the certification framework presented here is based on the analysis of diverse bodies of knowledge concepts, i.e., NCGIA Core Curriculum, URISA Body Of Knowledge, USGIF Essential Body Of Knowledge, the "Geographic Information: Need to Know", currently under development, and the Geospatial Technology Competency Model (GTCM). The latter provides a US American oriented list of the knowledge, skills, and abilities required of workers in the geospatial technology industry and influenced essentially the framework of certification. In addition to the theoretical analysis of existing resources the geospatial community was integrated twofold. An online survey about the relevance of Open Source was performed and evaluated with 105

  2. Non-perturbative String Theory from Water Waves

    SciTech Connect

    Iyer, Ramakrishnan; Johnson, Clifford V.; Pennington, Jeffrey S.; /SLAC

    2012-06-14

    We use a combination of a 't Hooft limit and numerical methods to find non-perturbative solutions of exactly solvable string theories, showing that perturbative solutions in different asymptotic regimes are connected by smooth interpolating functions. Our earlier perturbative work showed that a large class of minimal string theories arise as special limits of a Painleve IV hierarchy of string equations that can be derived by a similarity reduction of the dispersive water wave hierarchy of differential equations. The hierarchy of string equations contains new perturbative solutions, some of which were conjectured to be the type IIA and IIB string theories coupled to (4, 4k ? 2) superconformal minimal models of type (A, D). Our present paper shows that these new theories have smooth non-perturbative extensions. We also find evidence for putative new string theories that were not apparent in the perturbative analysis.

  3. Refinement of model of an open geothermal system

    NASA Astrophysics Data System (ADS)

    Vaganova, Nataliia; Filimonov, M. Yu.

    2016-12-01

    A heat transfer model of an open geothermal system is considered. This system consists of two wells: a production well with hot water, which is used and became cooler, and an injection well, which returns the cold water into the productive layer (aquifer). This cold water is filtered in the productive layer (porous soil) towards the inflow of hot water of the production well. Some different boundary conditions for the model are compared in view to estimate effective thermal life of the system.

  4. The Hubble Web: The Dark Matter Problem and Cosmic Strings

    SciTech Connect

    Alexander, Stephon

    2009-07-06

    I propose a reinterpretation of cosmic dark matter in which a rigid network of cosmic strings formed at the end of inflation. The cosmic strings fulfill three functions: At recombination they provide an accretion mechanism for virializing baryonic and warm dark matter into disks. These cosmic strings survive as configurations which thread spiral and elliptical galaxies leading to the observed flatness of rotation curves and the Tully-Fisher relation. We find a relationship between the rotational velocity of the galaxy and the string tension and discuss the testability of this model.

  5. Building an Open Source Framework for Integrated Catchment Modeling

    NASA Astrophysics Data System (ADS)

    Jagers, B.; Meijers, E.; Villars, M.

    2015-12-01

    In order to develop effective strategies and associated policies for environmental management, we need to understand the dynamics of the natural system as a whole and the human role therein. This understanding is gained by comparing our mental model of the world with observations from the field. However, to properly understand the system we should look at dynamics of water, sediments, water quality, and ecology throughout the whole system from catchment to coast both at the surface and in the subsurface. Numerical models are indispensable in helping us understand the interactions of the overall system, but we need to be able to update and adjust them to improve our understanding and test our hypotheses. To support researchers around the world with this challenging task we started a few years ago with the development of a new open source modeling environment DeltaShell that integrates distributed hydrological models with 1D, 2D, and 3D hydraulic models including generic components for the tracking of sediment, water quality, and ecological quantities throughout the hydrological cycle composed of the aforementioned components. The open source approach combined with a modular approach based on open standards, which allow for easy adjustment and expansion as demands and knowledge grow, provides an ideal starting point for addressing challenging integrated environmental questions.

  6. String inflation after Planck 2013

    SciTech Connect

    Burgess, C.P.; Cicoli, M.; Quevedo, F. E-mail: mcicoli@ictp.it

    2013-11-01

    We briefly summarize the impact of the recent Planck measurements for string inflationary models, and outline what might be expected to be learned in the near future from the expected improvement in sensitivity to the primordial tensor-to-scalar ratio. We comment on whether these models provide sufficient added value to compensate for their complexity, and ask how they fare in the face of the new constraints on non-gaussianity and dark radiation. We argue that as a group the predictions made before Planck agree well with what has been seen, and draw conclusions from this about what is likely to mean as sensitivity to primordial gravitational waves improves.

  7. Confinement, NonAbelian monopoles, and 2D ℂPN-1 model on the worldsheet of finite-length strings

    NASA Astrophysics Data System (ADS)

    Konishi, Kenichi

    2017-03-01

    Quark confinement is proposed to be dual Meissner effect of nonAbelian kind. Important hints come from physics of strongly-coupled infrared-fixed-point theories in N = 2 supersymmetric QCD, which turn into confining vacua under a small relevant perturbation. The quest for the semiclassical origin of these nonAbelian monopoles, ubiquitous as the infrared degrees of freedom in supersymmetric gauge theories, motivates us to study the quantum dynamics of 2D ℂPN-1 model defined on a finite-width worldstrip, with various boundary conditions. The model is found to possess a unique phase ("confinement phase"), independent of the length of the string, showing the quantum persistence of the nonAbelian monopole.

  8. JSim, an open-source modeling system for data analysis

    PubMed Central

    Bassingthwaighte, James B.

    2013-01-01

    JSim is a simulation system for developing models, designing experiments, and evaluating hypotheses on physiological and pharmacological systems through the testing of model solutions against data. It is designed for interactive, iterative manipulation of the model code, handling of multiple data sets and parameter sets, and for making comparisons among different models running simultaneously or separately. Interactive use is supported by a large collection of graphical user interfaces for model writing and compilation diagnostics, defining input functions, model runs, selection of algorithms solving ordinary and partial differential equations, run-time multidimensional graphics, parameter optimization (8 methods), sensitivity analysis, and Monte Carlo simulation for defining confidence ranges. JSim uses Mathematical Modeling Language (MML) a declarative syntax specifying algebraic and differential equations. Imperative constructs written in other languages (MATLAB, FORTRAN, C++, etc.) are accessed through procedure calls. MML syntax is simple, basically defining the parameters and variables, then writing the equations in a straightforward, easily read and understood mathematical form. This makes JSim good for teaching modeling as well as for model analysis for research.   For high throughput applications, JSim can be run as a batch job.  JSim can automatically translate models from the repositories for Systems Biology Markup Language (SBML) and CellML models. Stochastic modeling is supported. MML supports assigning physical units to constants and variables and automates checking dimensional balance as the first step in verification testing. Automatic unit scaling follows, e.g. seconds to minutes, if needed. The JSim Project File sets a standard for reproducible modeling analysis: it includes in one file everything for analyzing a set of experiments: the data, the models, the data fitting, and evaluation of parameter confidence ranges. JSim is open source; it

  9. Models for Galaxy halos in an open universe

    NASA Technical Reports Server (NTRS)

    White, Simon D. M.; Zaritsky, Dennis

    1992-01-01

    The properties of simple, self-consistent infall models which embed an 'isothermal' dark halo in an open universe are presented. These models depend on one scaling parameter and two shape parameters. The first may be taken to be the circular velocity in the inner regions, and the others to be the density of the universe, Omega, and a measure, e, of the shape of orbits. These models provide a useful description of ensembles of satellite galaxies, or of binary galaxies, because they allow explicitly for the fact that such systems have orbital periods approaching the age of the universe and so cannot have a random orbital phase.

  10. The bispectrum of cosmic string temperature fluctuations including recombination effects

    SciTech Connect

    Regan, Donough; Hindmarsh, Mark E-mail: m.b.hindmarsh@sussex.ac.uk

    2015-10-01

    We calculate the cosmic microwave background temperature bispectrum from cosmic strings, including the contributions from the last scattering surface, using a well-established Gaussian model for the string energy-momentum correlation functions, and a simplified model for the cosmic fluid. We check our approximation for the integrated Sachs-Wolfe (ISW) contribution against the bispectrum obtained from the full sky map of the cosmic string ISW signal used by the Planck team, obtaining good agreement. We validate our model for the last scattering surface contribution by comparing the predicted temperature power spectrum with that obtained from a full Boltzmann code treatment applied to the Unconnected Segment Model of a string network. We find that including the last scattering contribution has only a small impact on the upper limit on the string tension resulting from the bispectrum at Planck resolutions, and argue that the bispectrum is unlikely to be competitive with the power spectrum at any resolution.

  11. The simple script wrapper for OpenMI:Enabling interdisciplinary modeling studies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Integrated environmental modeling enables the development of comprehensive simulations by compositing individual models within and across disciplines. The Simple Script Wrapper (SSW), developed here, provides a foundation for model linkages and integrated studies. The Open Modeling Interface (OpenMI...

  12. p-Adic string compactified on a torus

    NASA Astrophysics Data System (ADS)

    Chekhov, L.; Zinoviev, Yu.

    1990-10-01

    The open p-adic string world sheet is a coset space F=T/Γ, where T is the Bruhat-Tits tree for the p-adic linear group GL(2, ℚ p ) and Γ ⊂ PGL(2, ℚ p ) is some Schottky group. The string dynamics is governed by the local action on F, with the fields taking values in a compact group G. We find the correlation functions and partition functions for the p-adic string surfaces of arbitrary genus and G=U(1)x D ( D-dimensional torus).

  13. The bispectrum of matter perturbations from cosmic strings

    SciTech Connect

    Regan, Donough; Hindmarsh, Mark E-mail: m.b.hindmarsh@sussex.ac.uk

    2015-03-01

    We present the first calculation of the bispectrum of the matter perturbations induced by cosmic strings. The calculation is performed in two different ways: the first uses the unequal time correlators (UETCs) of the string network - computed using a Gaussian model previously employed for cosmic string power spectra. The second approach uses the wake model, where string density perturbations are concentrated in sheet-like structures whose surface density grows with time. The qualitative and quantitative agreement of the two gives confidence to the results. An essential ingredient in the UETC approach is the inclusion of compensation factors in the integration with the Green's function of the matter and radiation fluids, and we show that these compensation factors must be included in the wake model also. We also present a comparison of the UETCs computed in the Gaussian model, and those computed in the unconnected segment model (USM) used by the standard cosmic string perturbation package CMBACT. We compare numerical estimates for the bispectrum of cosmic strings to those produced by perturbations from an inflationary era, and discover that, despite the intrinsically non-Gaussian nature of string-induced perturbations, the matter bispectrum is unlikely to produce competitive constraints on a population of cosmic strings.

  14. Modeling of DNA single stage splicing language via Yusof-Goode approach: One string with two rules

    NASA Astrophysics Data System (ADS)

    Lim, Wen Li; Yusof, Yuhani; Mudaber, Mohammad Hassan

    2015-02-01

    Splicing system plays a pivotal role in attempts to recombine sets of double-stranded DNA molecules when acted by restriction enzymes and ligase. Traditional method of finding the result of DNA recombination through experiment is both time and money consuming. Hence, finding the number of patterns of DNA single stage splicing language through formalism of splicing system is a way to optimize the searching process. From the biological perspective, it predicts the number of types of molecules that will exist in the system under existence of restriction enzymes and ligase. In this paper, some theorems, corollaries and examples that lead to the predictions of single stage splicing languages involving one pattern string and two rules are presented via Yusof-Goode approach.

  15. Flexible Environmental Modeling with Python and Open - GIS

    NASA Astrophysics Data System (ADS)

    Pryet, Alexandre; Atteia, Olivier; Delottier, Hugo; Cousquer, Yohann

    2015-04-01

    Numerical modeling now represents a prominent task of environmental studies. During the last decades, numerous commercial programs have been made available to environmental modelers. These software applications offer user-friendly graphical user interfaces that allow an efficient management of many case studies. However, they suffer from a lack of flexibility and closed-source policies impede source code reviewing and enhancement for original studies. Advanced modeling studies require flexible tools capable of managing thousands of model runs for parameter optimization, uncertainty and sensitivity analysis. In addition, there is a growing need for the coupling of various numerical models associating, for instance, groundwater flow modeling to multi-species geochemical reactions. Researchers have produced hundreds of open-source powerful command line programs. However, there is a need for a flexible graphical user interface allowing an efficient processing of geospatial data that comes along any environmental study. Here, we present the advantages of using the free and open-source Qgis platform and the Python scripting language for conducting environmental modeling studies. The interactive graphical user interface is first used for the visualization and pre-processing of input geospatial datasets. Python scripting language is then employed for further input data processing, call to one or several models, and post-processing of model outputs. Model results are eventually sent back to the GIS program, processed and visualized. This approach combines the advantages of interactive graphical interfaces and the flexibility of Python scripting language for data processing and model calls. The numerous python modules available facilitate geospatial data processing and numerical analysis of model outputs. Once input data has been prepared with the graphical user interface, models may be run thousands of times from the command line with sequential or parallel calls. We

  16. Strings in strong gravitational fields

    NASA Astrophysics Data System (ADS)

    De Vega, H. J.; Nicolaidis, A.

    1992-12-01

    We study string propagation in curved space-time. In such a problem, the equations of motion and the string constraints are nonlinear and difficult to solve. We propose here a systematic expansion in c, the world-sheet speed of light, to solve the string dynamics. Since c is proportional to the string tension, this amounts to a large α' expansion. To zeroth order each point of the string moves along a null geodesic (null string), while the first order correction incorporates the string dynamics. As an illustration we apply our formalism to the Robertson-Walker geometry. In this case, it turns out that the string expands or contracts at the same rate as the whole universe.

  17. An Elongated Tetrakaidecahedron Model for Open-Celled Foams

    NASA Technical Reports Server (NTRS)

    Sullivan, Roy M.; Ghosn, Louis J.; Lerch, Bradley A.

    2007-01-01

    A micro-mechanics model for non-isotropic, open-celled foams is developed using an elongated tetrakaidecahedron (Kelvin model) as the repeating unit cell. The micro-mechanics model employs an elongated Kelvin model geometry which is more general than that employed by previous authors. Assuming the cell edges possess axial and bending rigidity, the mechanics of deformation of the elongated tetrakaidecahedron lead to a set of equations for the Young's modulus, Poisson's ratio and strength of the foam in the principal material directions. These equations are written as a function of the cell edge lengths and cross-section properties, the inclination angle and the strength and stiffness of the solid material. The model is applied to predict the strength and stiffness of several polymeric foams. Good agreement is observed between the model results and the experimental measurements.

  18. New aperture admittance model for open-ended waveguides

    NASA Astrophysics Data System (ADS)

    Stuchly, S. S.; Sibbald, C. L.; Anderson, J. M.

    1994-02-01

    A new model for the aperture admittance of open ended waveguide structures radiating into a homogeneous, lossy dielectric is presented. The model is based on the physical and the mathematical properties of the driving point admittance of passive, stable one-port networks. The model parameters, which depend upon the geometry of the waveguide and aperture, are determined from a relatively small number of computed admittances. This computed data is obtained by a full-wave moment method solution and, hence, includes the effects of radiation and energy storage in the near field and evanescent waveguide modes. The accuracy of the numerical method is demonstrated by comparison with measured values. As an example, the model parameters are determined for the coaxial-line geometry. The accuracy of the model, for both the direct and inverse problem, is verified and a rigorous sensitivity and uncertainty analysis is performed. The new model has important applications in the field of dielectric spectroscopy.

  19. Probing the String Landscape

    SciTech Connect

    Keith Dienes

    2009-12-01

    We are currently in the throes of a potentially huge paradigm shift in physics. Motivated by recent developments in string theory and the discovery of the so-called "string landscape", physicists are beginning to question the uniqueness of fundamental theories of physics and the methods by which such theories might be understood and investigated. In this colloquium, I will give a non-technical introduction to the nature of this paradigm shift and how it developed. I will also discuss some of the questions to which it has led, and the nature of the controversies it has spawned.

  20. String Theory and Turbulence

    NASA Astrophysics Data System (ADS)

    Jejjala, Vishnu; Minic, Djordje; Ng, Y. Jack; Tze, Chia-Hsiung

    We propose a string theory of turbulence that explains the Kolmogorov scaling in 3+1 dimensions and the Kraichnan and Kolmogorov scalings in 2+1 dimensions. This string theory of turbulence should be understood in light of the AdS/CFT dictionary. Our argument is crucially based on the use of Migdal's loop variables and the self-consistent solutions of Migdal's loop equations for turbulence. In particular, there is an area law for turbulence in 2+1 dimensions related to the Kraichnan scaling.

  1. Probing the String Landscape

    ScienceCinema

    Keith Dienes

    2016-07-12

    We are currently in the throes of a potentially huge paradigm shift in physics. Motivated by recent developments in string theory and the discovery of the so-called "string landscape", physicists are beginning to question the uniqueness of fundamental theories of physics and the methods by which such theories might be understood and investigated. In this colloquium, I will give a non-technical introduction to the nature of this paradigm shift and how it developed. I will also discuss some of the questions to which it has led, and the nature of the controversies it has spawned.

  2. Thermal breakage of a discrete one-dimensional string.

    PubMed

    Lee, Chiu Fan

    2009-09-01

    We study the thermal breakage of a discrete one-dimensional string, with open and fixed ends, in the heavily damped regime. Basing our analysis on the multidimensional Kramers escape theory, we are able to make analytical predictions on the mean breakage rate and on the breakage propensity with respect to the breakage location on the string. We then support our predictions with numerical simulations.

  3. CMB ISW-lensing bispectrum from cosmic strings

    SciTech Connect

    Yamauchi, Daisuke; Sendouda, Yuuiti; Takahashi, Keitaro E-mail: sendouda@cc.hirosaki-u.ac.jp

    2014-02-01

    We study the effect of weak lensing by cosmic (super-)strings on the higher-order statistics of the cosmic microwave background (CMB). A cosmic string segment is expected to cause weak lensing as well as an integrated Sachs-Wolfe (ISW) effect, the so-called Gott-Kaiser-Stebbins (GKS) effect, to the CMB temperature fluctuation, which are thus naturally cross-correlated. We point out that, in the presence of such a correlation, yet another kind of the post-recombination CMB temperature bispectra, the ISW-lensing bispectra, will arise in the form of products of the auto- and cross-power spectra. We first present an analytic method to calculate the autocorrelation of the temperature fluctuations induced by the strings, and the cross-correlation between the temperature fluctuation and the lensing potential both due to the string network. In our formulation, the evolution of the string network is assumed to be characterized by the simple analytic model, the velocity-dependent one scale model, and the intercommutation probability is properly incorporated in order to characterize the possible superstringy nature. Furthermore, the obtained power spectra are dominated by the Poisson-distributed string segments, whose correlations are assumed to satisfy the simple relations. We then estimate the signal-to-noise ratios of the string-induced ISW-lensing bispectra and discuss the detectability of such CMB signals from the cosmic string network. It is found that in the case of the smaller string tension, Gμ << 10{sup -7}, the ISW-lensing bispectrum induced by a cosmic string network can constrain the string-model parameters even more tightly than the purely GKS-induced bispectrum in the ongoing and future CMB observations on small scales.

  4. Stochastic gravitational wave background from light cosmic strings

    SciTech Connect

    DePies, Matthew R.; Hogan, Craig J.

    2007-06-15

    Spectra of the stochastic gravitational wave backgrounds from cosmic strings are calculated and compared with present and future experimental limits. Motivated by theoretical expectations of light cosmic strings in superstring cosmology, improvements in experimental sensitivity, and recent demonstrations of large, stable loop formation from a primordial network, this study explores a new range of string parameters with masses lighter than previously investigated. A standard 'one-scale' model for string loop formation is assumed. Background spectra are calculated numerically for dimensionless string tensions G{mu}/c{sup 2} between 10{sup -7} and 10{sup -18}, and initial loop sizes as a fraction of the Hubble radius {alpha} from 0.1 to 10{sup -6}. The spectra show a low frequency power-law tail, a broad spectral peak due to loops decaying at the present epoch (including frequencies higher than their fundamental mode, and radiation associated with cusps), and a flat (constant energy density) spectrum at high frequencies due to radiation from loops that decayed during the radiation-dominated era. The string spectrum is distinctive and unlike any other known source. The peak of the spectrum for light strings appears at high frequencies, significantly affecting predicted signals. The spectra of the cosmic string backgrounds are compared with current millisecond pulsar limits and Laser Interferometer Space Antenna (LISA) sensitivity curves. For models with large stable loops ({alpha}=0.1), current pulsar-timing limits exclude G{mu}/c{sup 2}>10{sup -9}, a much tighter limit on string tension than achievable with other techniques, and within the range of current models based on brane inflation. LISA may detect a background from strings as light as G{mu}/c{sup 2}{approx_equal}10{sup -16}, corresponding to field theory strings formed at roughly 10{sup 11} GeV.

  5. Non-Abelian strings in supersymmetric Yang-Mills

    SciTech Connect

    Shifman, M.

    2012-09-26

    I give a broad review of novel phenomena discovered in certain Yang-Mills theories: non-Abelian strings and confined monopoles. Then I explain how these phenomena allow one to study strong dynamics of gauge theories in four dimensions from two-dimensional models emerging on the string world sheet.

  6. Turbulence model form uncertainty quantification in OpenFOAM

    NASA Astrophysics Data System (ADS)

    Hao, Zengrong; Zeoli, Stéphanie; Bricteux, Laurent; Gorlé, Catherine; CFD; UQ Team; Fluids-Machines Team

    2015-11-01

    Reynolds-averaged Navier-Stokes (RANS) simulations with a two-equation linear eddy-viscosity turbulence model remain a commonly used computational technique for engineering design and analysis of turbulent flows. The accuracy of the results is however limited by the inability of the turbulence model to correctly predict the complex flow features relevant to engineering applications. To enable supporting critical design decisions based on these imperfect model results it is essential to quantify the uncertainty related to the turbulence model form and define confidence levels for the results. The objective of this study is the implementation and validation of a previously developed approach for quantifying the uncertainty in RANS predictions of a turbulent flow in the open source code OpenFOAM. The methodology is based on two steps: 1. calculate a marker to determine where in the flow the model is plausibly inaccurate, and 2. perturb the modeled Reynolds stresses in the momentum equations. The perturbations are defined in terms of the decomposed Reynolds stress tensor, i.e., the tensor magnitude and the eigenvalues and eigenvectors of the normalized anisotropy tensor. Results for a square duct and the flow over a wavy wall will be presented for validation of the implementation.

  7. How Open Data Shapes In Silico Transporter Modeling.

    PubMed

    Montanari, Floriane; Zdrazil, Barbara

    2017-03-07

    Chemical compound bioactivity and related data are nowadays easily available from open data sources and the open medicinal chemistry literature for many transmembrane proteins. Computational ligand-based modeling of transporters has therefore experienced a shift from local (quantitative) models to more global, qualitative, predictive models. As the size and heterogeneity of the data set rises, careful data curation becomes even more important. This includes, for example, not only a tailored cutoff setting for the generation of binary classes, but also the proper assessment of the applicability domain. Powerful machine learning algorithms (such as multi-label classification) now allow the simultaneous prediction of multiple related targets. However, the more complex, the less interpretable these models will get. We emphasize that transmembrane transporters are very peculiar, some of which act as off-targets rather than as real drug targets. Thus, careful selection of the right modeling technique is important, as well as cautious interpretation of results. We hope that, as more and more data will become available, we will be able to ameliorate and specify our models, coming closer towards function elucidation and the development of safer medicine.

  8. String Theory and Gauge Theories

    SciTech Connect

    Maldacena, Juan

    2009-02-20

    We will see how gauge theories, in the limit that the number of colors is large, give string theories. We will discuss some examples of particular gauge theories where the corresponding string theory is known precisely, starting with the case of the maximally supersymmetric theory in four dimensions which corresponds to ten dimensional string theory. We will discuss recent developments in this area.

  9. Star democracy in open string field theory

    NASA Astrophysics Data System (ADS)

    Maccaferri, Carlo; Mamone, Davide

    2003-09-01

    We study three types of star products in SFT: the ghosts, the twisted ghosts and the matter. We find that their Neumann coefficients are related to each other in a compact way which includes the Gross-Jevicki relation between matter and ghost sector: we explicitly show that the same relation, with a minus sign, holds for the twisted and nontwisted ghosts (which are different but define the same solution). In agreement with this, we prove that matter and twisted ghost coefficients just differ by a minus sign. As a consistency check, we also compute the spectrum of the twisted ghost vertices from conformal field theory and, using equality of twisted and reduced slivers, we derive the spectrum of the non twisted ghost star.

  10. Higher spins and open strings: Quartic interactions

    SciTech Connect

    Polyakov, Dimitri

    2011-02-15

    We analyze quartic gauge-invariant interactions of massless higher spin fields by using vertex operators constructed in our previous works and computing their 4-point amplitudes in superstring theory. The kinematic part of the quartic interactions of the higher spins is determined by the matter structure of their vertex operators; the nonlocality of the interactions is the consequence of the specific ghost structure of these operators. We compute explicitly the 4-point amplitude describing the complete gauge-invariant 1-1-3-3 quartic interaction (two massless spin 3 particles interacting with two photons) and comment on more general 1-1-s-s cases, particularly pointing out the structure of 1-1-5-5 coupling.

  11. Natural quintessence in string theory

    SciTech Connect

    Cicoli, Michele; Pedro, Francisco G.; Tasinato, Gianmassimo E-mail: f.pedro1@physics.ox.ac.uk

    2012-07-01

    We introduce a natural model of quintessence in string theory where the light rolling scalar is radiatively stable and couples to Standard Model matter with weaker-than-Planckian strength. The model is embedded in an anisotropic type IIB compactification with two exponentially large extra dimensions and TeV-scale gravity. The bulk turns out to be nearly supersymmetric since the scale of the gravitino mass is of the order of the observed value of the cosmological constant. The quintessence field is a modulus parameterising the size of an internal four-cycle which naturally develops a potential of the order (gravitino mass){sup 4}, leading to a small dark energy scale without tunings. The mass of the quintessence field is also radiatively stable since it is protected by supersymmetry in the bulk. Moreover, this light scalar couples to ordinary matter via its mixing with the volume mode. Due to the fact that the quintessence field is a flat direction at leading order, this mixing is very small, resulting in a suppressed coupling to Standard Model particles which avoids stringent fifth-force constraints. On the other hand, if dark matter is realised in terms of Kaluza-Klein states, unsuppressed couplings between dark energy and dark matter can emerge, leading to a scenario of coupled quintessence within string theory. We study the dynamics of quintessence in our set-up, showing that its main features make it compatible with observations.

  12. Music: Instrumental Techniques, Strings.

    ERIC Educational Resources Information Center

    Ryan, Philip

    A course in music which emphasizes harmony is presented. The approach used is a laboratory one in which pupils will develop skill in playing orchestral string instruments, sing, listen to, read and compose music with emphasis on elementary concepts of harmony. Course objectives include: (1) The student will select the title of a familiar melody…

  13. String Cosmology: A Review

    SciTech Connect

    McAllister, Liam P.; Silverstein, Eva

    2007-10-22

    We give an overview of the status of string cosmology. We explain the motivation for the subject, outline the main problems, and assess some of the proposed solutions. Our focus is on those aspects of cosmology that benefit from the structure of an ultraviolet-complete theory.

  14. Gravity and Strings

    NASA Astrophysics Data System (ADS)

    Ortín, Tomás

    2015-03-01

    1. Differential geometry; 2. Symmetries and Noether's theorems; 3. A perturbative introduction to general relativity; 4. Action principles for gravity; 5. Pure N=1,2,d=4 supergravities; 6. Matter-coupled N=1,d=4 supergravity; 7. Matter-coupled N=2,d=4 supergravity; 8. A generic description of all the N>2,d=4 SUEGRAS; 9. Matter-coupled N=1,d=5 supergravity; 10. Conserved charges in general relativity; 11. The Schwarzschild black hole; 12. The Reissner-Nordström black hole; 13. The Taub-NUT solution; 14. Gravitational pp-waves; 15. The Kaluza-Klein black hole; 16. Dilaton and dilaton/axion black holes; 17. Unbroken supersymmetry I: supersymmetric vacua; 18. Unbroken supersymmetry II: partially supersymmetric solutions; 19. Supersymmetric black holes from supergravity; 20. String theory; 21. The string effective action and T duality; 22. From eleven to four dimensions; 23. The type-IIB superstring and type-II T duality; 24. Extended objects; 25. The extended objects of string theory; 26. String black holes in four and five dimensions; 27. The FGK formalism for (single, static) black holes and branes; Appendices: A.1 Lie groups, symmetric spaces, and Yang-Mills fields; A.2 The irreducible, non-symmetric Riemannian spaces of special holonomy; A.3 Miscellanea on the symplectic group; A.4 Gamma matrices and spinors; A.5 Kähler geometry; A.6 Special Kähler geometry; A.7 Quaternionic-Kähler geometry.

  15. A String Teachers Roundtable.

    ERIC Educational Resources Information Center

    Music Educators Journal, 1979

    1979-01-01

    Seven string educators respond to questions about repertoire sources for novice players, the teaching of improvisation, weaknesses in current instructional materials, ensemble size, the integration of Suzuki's methods into traditional programs, the problems of a violinist teaching other instruments, and coordination of school and other youth…

  16. Experimenting with Guitar Strings

    ERIC Educational Resources Information Center

    LoPresto, Michael C.

    2006-01-01

    What follows is a description of a simple experiment developed in a non-mathematical general education science course on sound and light for fine arts students in which a guitar is used with data collection hardware and software to verify the properties of standing waves on a string.

  17. Antisymmetric string actions

    NASA Astrophysics Data System (ADS)

    Aragone, C.

    1986-12-01

    An action is presented for the free bosonic string on external flat space in terms of an antisymmetric second-rank string background tensor which is classically equivalent to the Nambu-Goto action. Both action and field equations are entirely described in terms of 2D world-sheet forms, without any reference to a 2D metric tensor background. The analysis of its canonical formulation shows how the quadratic Virasoro constraints are generated in this case and what their connection with the Bianchi identities are. Since in the orthonormal gauge the reduced action coincides with the standard one, it has the same critical dimension D = 26. The existence of an interaction term of a purely geometric structure stemming in the extrinsic curvature is pointed out. Its action and the new string field equations are then derived. This polynomial antisymmetric string action is uniformly generalized in order to describe d < D-dimensional extended objects in D-dimensional flat space. On leave of absence from Departamento de Física, Universidad Simon Bolívar, Apartado 80659, Caracas 1080A, Venezuela.

  18. A Vibrating String Experiment

    ERIC Educational Resources Information Center

    Tsutsumanova, Gichka; Russev, Stoyan

    2013-01-01

    A simple experiment demonstrating the excitation of a standing wave in a metal string is presented here. Several tasks using the set-up are considered, which help the students to better understand the standing waves, the interaction between electric current and magnetic field and the resonance phenomena. This can serve also as a good lecture…

  19. At the end of a moving string

    NASA Astrophysics Data System (ADS)

    Hanna, James; Santangelo, Christian

    2012-11-01

    We address a basic problem in the dynamics of flexible bodies: the propagation of a shape along a string and its reflection at a free boundary. Although the string equations - inertia balancing stress in an inextensible curve - are quite old, the only exact solutions known for non-trivial geometries are traveling waves with spatially uniform stress. Suitable for closed ``lariats,'' these solutions are incompatible with a free end, where the stress must vanish. It is impossible to drag an open, flexible, curved string along its tangents. This is reflected in the unwrapping motion of a string or chain as it is pulled around an object, and has strong implications for slender structures in passive locomotion, whether industrial cables or the ribbons of rhythmic gymnastics. We consider planar dynamics restricted to time-independent, but spatially varying, stress. We find a new exact solution at a distance ~t4/3 from the free end; continuation to the end requires introduction of a secular error into the positions and velocities and a singularity in acceleration ~t-2/3 at the end, which appears to have a physical basis. This work is an early step towards understanding the dynamics of a wide class of industrial and natural thin-object systems.

  20. Strings on AdS wormholes

    SciTech Connect

    Ali, Mir; Ruiz, Frenny; Saint-Victor, Carlos; Vazquez-Poritz, Justin F.

    2009-08-15

    We consider the behavior of open strings on anti-de Sitter wormholes in Gauss-Bonnet theory, which are the Gauss-Bonnet gravity duals of a pair of field theories. A string with both endpoints on the same side of the wormhole describes two charges within the same field theory, which exhibit Coulomb interaction for small separation. On the other hand, a string extending through the wormhole describes two charges which live in different field theories, and they exhibit a springlike confining potential. A transition occurs when there is a pair of charges present within each field theory: for small separation each pair of charges exhibits Coulomb interaction, while for large separation the charges in the different field theories pair up and exhibit confinement. Two steadily-moving charges in different field theories can occupy the same location provided that their speed is less than a critical speed, which also plays the role of a subluminal speed limit. However, for some wormhole backgrounds, charges moving at the critical speed cannot occupy the same location and energy is transferred from the leading charge to the lagging one. We also show that strings on anti-de Sitter wormholes in supergravity theories without higher-derivative curvature terms can exhibit these properties as well.

  1. Space Generic Open Avionics Architecture (SGOAA) reference model technical guide

    NASA Technical Reports Server (NTRS)

    Wray, Richard B.; Stovall, John R.

    1993-01-01

    This report presents a full description of the Space Generic Open Avionics Architecture (SGOAA). The SGOAA consists of a generic system architecture for the entities in spacecraft avionics, a generic processing architecture, and a six class model of interfaces in a hardware/software system. The purpose of the SGOAA is to provide an umbrella set of requirements for applying the generic architecture interface model to the design of specific avionics hardware/software systems. The SGOAA defines a generic set of system interface points to facilitate identification of critical interfaces and establishes the requirements for applying appropriate low level detailed implementation standards to those interface points. The generic core avionics system and processing architecture models provided herein are robustly tailorable to specific system applications and provide a platform upon which the interface model is to be applied.

  2. Modeling sea-water intrusion with open boundary conditions

    SciTech Connect

    Padilla, F.; Cruz-Sanjulian, J.

    1997-07-01

    The present study concerns the application of a new numerical approach to describe the fresh-water/sea-water relationships in coastal aquifers. Essentially, a solution to the partial differential equation governing the regional motion of a phreatic surface and the resulting interface between fresh water and salt water is analyzed by a Galerkin finite-element formulation. A single-phase steady numerical model was applied to approximate, with simple triangular elements, the regional behavior of a coastal aquifer under appropriate sinks, sources, Neumann, outflow face, and open boundary conditions. On the one hand, outflow open boundaries at the coastline were not treated with other classical boundary conditions, but instead with a formal numerical approach for open boundaries inspired in this particular case by the Dupuit approximation of horizontal outflow at the boundary. The solution to this numerical model, together with the Ghyben-Herzberg principle, allows the correct simulation of fresh-water heads and the position of the salt-water interface for a steeply sloping coast. Although the solutions were precise and do not present classical numerical oscillations, this approach requires a previous solution with Dirichlet boundary conditions at the coastline in order to find a good convergence of the solution algorithm. On the other hand, the same precise results were obtained with a more restrictive open boundary condition, similar in a way to the outflow face approach, which required less computer time, did not need a prior numerical solution and could be extended to different coastline conditions. The steady-state problem was solved for different hypothetical coastal aquifers and fresh-water usage through three types of numerical tests.

  3. The ALPS Project: Open Source Software for Quantum Lattice Models

    NASA Astrophysics Data System (ADS)

    Trebst, Simon

    2004-03-01

    Algorithms for the simulation of strongly correlated quantum lattice models have matured and there is increasing demand for reliable simulation results both from theoreticians to test ideas and from experimental researchers as means of data analysis. Unlike in other fields there have been no "community codes" available, with the computational experts writing individual codes, adjusting them for specific needs of new projects and thereby investing weeks to months in software development for each project. We will present experiences with the ALPS collaboration, an open source effort aiming at simplifying the development of simulation codes for strongly correlated classical and quantum lattice models. It provides powerful but generic libraries and open-source application programs (such as classical and quantum Monte Carlo, exact diagonalization, DMRG, and others), intended also for non-experts. We will especially address three topics that are of relevance also to other similar efforts: license issues have been extensively discussed, especially concerning the scientific return of making source codes available to the community. The ALPS license is a compromise ensuring scientific return by requesting citations to the original authors of the codes while making sources openly available for future developments. The coordination of an international collaboration with researchers contributing from Austria, France, Germany, Japan and Switzerland by intense developer workshops on a semi-annual basis and annual user workshops is discussed. The situation for funding needed for such a joint open source development effort, which is often classified more as an infrastructure project and less as a research project, is also addressed. Work done with the ALPS collaboration initiated by M. Troyer (ETH) and S. Todo (Tokyo). For details and a list of members see http://alps.comp-phys.org/

  4. Current balancing for battery strings

    DOEpatents

    Galloway, James H.

    1985-01-01

    A battery plant is described which features magnetic circuit means for balancing the electrical current flow through a pluraliircuitbattery strings which are connected electrically in parallel. The magnetic circuit means is associated with the battery strings such that the conductors carrying the electrical current flow through each of the battery strings pass through the magnetic circuit means in directions which cause the electromagnetic fields of at least one predetermined pair of the conductors to oppose each other. In an alternative embodiment, a low voltage converter is associated with each of the battery strings for balancing the electrical current flow through the battery strings.

  5. Statistical inference and string theory

    NASA Astrophysics Data System (ADS)

    Heckman, Jonathan J.

    2015-09-01

    In this paper, we expose some surprising connections between string theory and statistical inference. We consider a large collective of agents sweeping out a family of nearby statistical models for an M-dimensional manifold of statistical fitting parameters. When the agents making nearby inferences align along a d-dimensional grid, we find that the pooled probability that the collective reaches a correct inference is the partition function of a nonlinear sigma model in d dimensions. Stability under perturbations to the original inference scheme requires the agents of the collective to distribute along two dimensions. Conformal invariance of the sigma model corresponds to the condition of a stable inference scheme, directly leading to the Einstein field equations for classical gravity. By summing over all possible arrangements of the agents in the collective, we reach a string theory. We also use this perspective to quantify how much an observer can hope to learn about the internal geometry of a superstring compactification. Finally, we present some brief speculative remarks on applications to the AdS/CFT correspondence and Lorentzian signature space-times.

  6. BOOK REVIEW: String Theory in a Nutshell

    NASA Astrophysics Data System (ADS)

    Skenderis, Kostas

    2007-11-01

    The book 'String Theory in a Nutshell' by Elias Kiritsis provides a comprehensive introduction to modern string theory. String theory is the leading candidate for a theory that successfully unifies all fundamental forces of nature, including gravity. The subject has been continuously developing since the early 1970s, with classic textbooks on the subject being those of Green, Schwarz and Witten (1987) and Polchinski (1998). Since the latter was published there have been substantial developments, in particular in understanding black holes and gravity/gauge theory dualities. A textbook treatment of this important material is clearly needed, both by students and researchers in string theory and by mathematicians and physicists working in related fields. This book has a good selection of material, starting from basics and moving into classic and modern topics. In particular, Kiritsis' presentation of the basic material is complementary to that of the earlier textbooks and he includes a number of topics which are not easily found or covered adequately elsewhere, for example, loop corrections to string effective couplings. Overall the book nicely covers the major advances of the last ten years, including (non-perturbative) string dualities, black hole physics, AdS/CFT and matrix models. It provides a concise but fairly complete introduction to these subjects which can be used both by students and by researchers. Moreover the emphasis is on results that are reasonably established, as is appropriate for a textbook; concise summaries are given for subjects which are still in flux, with references to relevant reviews and papers. A positive feature of the book is that the bibliography sections at the end of each chapter provide a comprehensive guide to the literature. The bibliographies point to reviews and pedagogical papers on subjects covered in this book as well as those that were omitted. It is rare for a textbook to contain such a self-contained and detailed guide to

  7. Theater and ALife Art: Modeling Open and Closed Systems.

    PubMed

    Norman, Sally Jane

    2015-01-01

    The live art of theater remains curiously missing from ALife art history, despite the fact that its very existence is poised on the cusp of the living and the artificial, and on the modeling of life as artefact-what can be called the containment-versus-continuity dilemma. How far one seeks to affirm autonomy of the creative artwork or, in contrast, how far one seeks to affirm its continuity with its supposed real-life contexts is a question that has forever haunted theater, and that has naturally come to haunt ALife and ALife arts. Investigation of the boundary separating observers from modeled systems is as core to research into the live art of theater as to ALife research. This brief article seeks to open up discussion on links between ALife, ALife art, and the live art of theater, through key thematic threads that traverse these domains: their modeling of universes, the open or closed nature of the resultant modeled systems, and their implications with respect to observers, definitions, and instantiations of life regarding non-life or death as well as attributions of liveness to emergent synthetic biology and metamaterials.

  8. The context-tree kernel for strings.

    PubMed

    Cuturi, Marco; Vert, Jean-Philippe

    2005-10-01

    We propose a new kernel for strings which borrows ideas and techniques from information theory and data compression. This kernel can be used in combination with any kernel method, in particular Support Vector Machines for string classification, with notable applications in proteomics. By using a Bayesian averaging framework with conjugate priors on a class of Markovian models known as probabilistic suffix trees or context-trees, we compute the value of this kernel in linear time and space while only using the information contained in the spectrum of the considered strings. This is ensured through an adaptation of a compression method known as the context-tree weighting algorithm. Encouraging classification results are reported on a standard protein homology detection experiment, showing that the context-tree kernel performs well with respect to other state-of-the-art methods while using no biological prior knowledge.

  9. String-merging of meso- viscoelastic droplets

    NASA Astrophysics Data System (ADS)

    Xu, Yuanze; Xu, Jianmao

    2007-03-01

    Great challenge exists in the multi-scale rheological modeling of immiscible polyblends with non-linear morphology changes, including viscoelastic drop break-up and collapse. A new type mechanism of merging and coalescence, called string-merging of meso- viscoelastic droplets was described and analyzed. By iterative stretching and relaxation in a four-roll mill rheometer, one droplet containing high molar mass PIB (polyisobutene), was separated into two droplets connected by a string in a dumbbell shape suspending in polydimethylsiloxane (PDMS) medium. In quiescent state, the string pulled the two spheres merging closer and collapsed into one spherical drop finally. The process exhibits interesting features, different from capillary breakup mechanism. By adding the viscoelasticity of the systems to the force balance of Laplace force and viscous drag, the phenomenon may be well analyzed. The necessity to involve the microscopic consideration of the highly oriented entangled state are discussed.

  10. An Open Source Simulation Model for Soil and Sediment Bioturbation

    PubMed Central

    Schiffers, Katja; Teal, Lorna Rachel; Travis, Justin Mark John; Solan, Martin

    2011-01-01

    Bioturbation is one of the most widespread forms of ecological engineering and has significant implications for the structure and functioning of ecosystems, yet our understanding of the processes involved in biotic mixing remains incomplete. One reason is that, despite their value and utility, most mathematical models currently applied to bioturbation data tend to neglect aspects of the natural complexity of bioturbation in favour of mathematical simplicity. At the same time, the abstract nature of these approaches limits the application of such models to a limited range of users. Here, we contend that a movement towards process-based modelling can improve both the representation of the mechanistic basis of bioturbation and the intuitiveness of modelling approaches. In support of this initiative, we present an open source modelling framework that explicitly simulates particle displacement and a worked example to facilitate application and further development. The framework combines the advantages of rule-based lattice models with the application of parameterisable probability density functions to generate mixing on the lattice. Model parameters can be fitted by experimental data and describe particle displacement at the spatial and temporal scales at which bioturbation data is routinely collected. By using the same model structure across species, but generating species-specific parameters, a generic understanding of species-specific bioturbation behaviour can be achieved. An application to a case study and comparison with a commonly used model attest the predictive power of the approach. PMID:22162997

  11. An open source simulation model for soil and sediment bioturbation.

    PubMed

    Schiffers, Katja; Teal, Lorna Rachel; Travis, Justin Mark John; Solan, Martin

    2011-01-01

    Bioturbation is one of the most widespread forms of ecological engineering and has significant implications for the structure and functioning of ecosystems, yet our understanding of the processes involved in biotic mixing remains incomplete. One reason is that, despite their value and utility, most mathematical models currently applied to bioturbation data tend to neglect aspects of the natural complexity of bioturbation in favour of mathematical simplicity. At the same time, the abstract nature of these approaches limits the application of such models to a limited range of users. Here, we contend that a movement towards process-based modelling can improve both the representation of the mechanistic basis of bioturbation and the intuitiveness of modelling approaches. In support of this initiative, we present an open source modelling framework that explicitly simulates particle displacement and a worked example to facilitate application and further development. The framework combines the advantages of rule-based lattice models with the application of parameterisable probability density functions to generate mixing on the lattice. Model parameters can be fitted by experimental data and describe particle displacement at the spatial and temporal scales at which bioturbation data is routinely collected. By using the same model structure across species, but generating species-specific parameters, a generic understanding of species-specific bioturbation behaviour can be achieved. An application to a case study and comparison with a commonly used model attest the predictive power of the approach.

  12. Chiral phase transition from string theory.

    PubMed

    Parnachev, Andrei; Sahakyan, David A

    2006-09-15

    The low energy dynamics of a certain D-brane configuration in string theory is described at weak t'Hooft coupling by a nonlocal version of the Nambu-Jona-Lasinio model. We study this system at finite temperature and strong t'Hooft coupling, using the string theory dual. We show that for sufficiently low temperatures chiral symmetry is broken, while for temperatures larger then the critical value, it gets restored. We compute the latent heat and observe that the phase transition is of the first order.

  13. Device for balancing parallel strings

    DOEpatents

    Mashikian, Matthew S.

    1985-01-01

    A battery plant is described which features magnetic circuit means in association with each of the battery strings in the battery plant for balancing the electrical current flow through the battery strings by equalizing the voltage across each of the battery strings. Each of the magnetic circuit means generally comprises means for sensing the electrical current flow through one of the battery strings, and a saturable reactor having a main winding connected electrically in series with the battery string, a bias winding connected to a source of alternating current and a control winding connected to a variable source of direct current controlled by the sensing means. Each of the battery strings is formed by a plurality of batteries connected electrically in series, and these battery strings are connected electrically in parallel across common bus conductors.

  14. Self-similar motion of a Nambu-Goto string

    NASA Astrophysics Data System (ADS)

    Igata, Takahisa; Houri, Tsuyoshi; Harada, Tomohiro

    2016-09-01

    We study the self-similar motion of a string in a self-similar spacetime by introducing the concept of a self-similar string, which is defined as the world sheet to which a homothetic vector field is tangent. It is shown that in Nambu-Goto theory, the equations of motion for a self-similar string reduce to those for a particle. Moreover, under certain conditions such as the hypersurface orthogonality of the homothetic vector field, the equations of motion for a self-similar string simplify to the geodesic equations on a (pseudo)Riemannian space. As a concrete example, we investigate a self-similar Nambu-Goto string in a spatially flat Friedmann-Lemaître-Robertson-Walker expanding universe with self-similarity and obtain solutions of open and closed strings, which have various nontrivial configurations depending on the rate of the cosmic expansion. For instance, we obtain a circular solution that evolves linearly in the cosmic time while keeping its configuration by the balance between the effects of the cosmic expansion and string tension. We also show the instability for linear radial perturbation of the circular solutions.

  15. An Open Source modular platform for hydrological model implementation

    NASA Astrophysics Data System (ADS)

    Kolberg, Sjur; Bruland, Oddbjørn

    2010-05-01

    An implementation framework for setup and evaluation of spatio-temporal models is developed, forming a highly modularized distributed model system. The ENKI framework allows building space-time models for hydrological or other environmental purposes, from a suite of separately compiled subroutine modules. The approach makes it easy for students, researchers and other model developers to implement, exchange, and test single routines in a fixed framework. The open-source license and modular design of ENKI will also facilitate rapid dissemination of new methods to institutions engaged in operational hydropower forecasting or other water resource management. Written in C++, ENKI uses a plug-in structure to build a complete model from separately compiled subroutine implementations. These modules contain very little code apart from the core process simulation, and are compiled as dynamic-link libraries (dll). A narrow interface allows the main executable to recognise the number and type of the different variables in each routine. The framework then exposes these variables to the user within the proper context, ensuring that time series exist for input variables, initialisation for states, GIS data sets for static map data, manually or automatically calibrated values for parameters etc. ENKI is designed to meet three different levels of involvement in model construction: • Model application: Running and evaluating a given model. Regional calibration against arbitrary data using a rich suite of objective functions, including likelihood and Bayesian estimation. Uncertainty analysis directed towards input or parameter uncertainty. o Need not: Know the model's composition of subroutines, or the internal variables in the model, or the creation of method modules. • Model analysis: Link together different process methods, including parallel setup of alternative methods for solving the same task. Investigate the effect of different spatial discretization schemes. o Need not

  16. An analytical model for microsegregation in open and expanding domains

    SciTech Connect

    Nastac, L.; Stefanescu, D.M.; Chuzhoy, L.

    1995-12-31

    A review of existing models for microsegregation shows that there are no analytical models that consider limited diffusion in both liquid and solid phases for an expanding domain (system). Earlier, an analytical mathematical model for microsegregation was introduced for the closed system case. Mass transport by diffusion only was considered, but diffusion in both liquid and solid was assumed. The model proposed in this paper relaxes the assumptions of a closed system. Thus, the contribution of mass transport by fluid flow, and the effects of coarsening and coalescence can be included in microsegregation calculations. The model does not require a prescribed movement of the interface, and therefore, it can be used in microscopic modeling of solidification. The derivation assumed spherical geometry of the domain. Thus, it is possible to calculate microsegregation at the level of equiaxed dendrites. The importance of an open and expanding domain assumptions was studied by comparing results obtained with the present model with calculation based on the closed system assumptions. The microsegregation model was coupled with a macro transport-transformation kinetics code to compare the calculated results with experimental results for spheroidal graphite iron castings.

  17. Observation and Analysis of Suzuki String Teaching.

    ERIC Educational Resources Information Center

    Colprit, Elaine J.

    2000-01-01

    Examines teacher and student behaviors in 48 violin and cello lessons taught by 12 expert Suzuki string teachers. Reveals that approximately 45% of the mean percentage of time was devoted to teacher verbalizations, 20% to teacher modeling, and 41% to student performance. (CMK)

  18. Mathematical models of the open magnetosphere - Application to dayside auroras.

    NASA Technical Reports Server (NTRS)

    Forbes, T. G.; Speiser, T. W.

    1971-01-01

    Two static mathematical models of the open or Dungey model of the magnetosphere are constructed. The process of construction is similar to that for early closed magnetosphere models, such as the Taylor-Hones model. The first model in fact is simply an addition of an interplanetary field in arbitrary direction to a Taylor-Hones image dipole model. In order to preserve the shape of the magnetosphere at high latitudes, and to partially exclude the exterior field, another model is constructed with the magnetopause approximated by a diamagnetic sphere. We find that there are some interplanetary field lines connected to the earth for all orientations of the interplanetary field other than strictly northward, and that the maximum number of connected field lines occurs with a due southward field. For an average spiral hose angle of the interplanetary field, the dayside neutral point occurs on the magnetopause at about 10 o'clock local time. Dayside auroras, convection patterns, and other phenomena may exhibit symmetry about this local time. For a positive (negative) interplanetary field sector, energetic, anisotropic particle fluxes should have direct access to the northern (southern) polar caps, as is supported by many recent observations.

  19. Topics in string theory

    NASA Astrophysics Data System (ADS)

    Jejjala, Vishnumohan

    2002-01-01

    This Thesis explores aspects of superstring theory on orbifold spaces and applies some of the intuition gleaned from the study of the non-commutative geometry of space-time to understanding the fractional quantum Hall effect. The moduli space of vacua of marginal and relevant deformations of N = 4 super-Yang-Mills gauge theory in four dimensions is interpreted in terms of non-commutative geometry. A formalism for thinking about the algebraic geometry of the moduli space is developed. Within this framework, the representation theory of the algebras studied provides a natural exposition of D-brane fractionation. The non-commutative moduli space of deformations preserving N = 1 supersymmetry is examined in detail through various examples. In string theory, by the AdS/CFT correspondence, deformations of the N = 4 field theory are dual to the near-horizon geometries of D-branes on orbifolds of AdS5 x S 5. The physics of D-branes on the dual AdS backgrounds is explored. Quivers encapsulate the matter content of supersymmetric field theories on the worldvolumes of D-branes at orbifold singularities. New techniques for constructing quivers are presented here. When N is a normal subgroup of a finite group G, the quiver corresponding to fixed points of the orbifold M/G is computed from a G/N action on the quiver corresponding to M/G . These techniques prove useful for constructing non-Abelian quivers and for examining discrete torsion orbifolds. Quivers obtained through our constructions contain interesting low-energy phenomenology. The matter content on a brane at an isolated singularity of the Delta27 orbifold embeds the Standard Model. The symmetries of the quiver require exactly three generations of fields in the particle spectrum. Lepton masses are suppressed relative to quark masses because lepton Yukawa couplings do not appear in the superpotential. Lepton masses are generated through the Kahler potential and are related to the supersymmetry breaking scale. The model

  20. Pitch glide effect induced by a nonlinear string-barrier interaction

    NASA Astrophysics Data System (ADS)

    Kartofelev, Dmitri; Stulov, Anatoli; Välimäki, Vesa

    2015-10-01

    Interactions of a vibrating string with its supports and other spatially distributed barriers play a significant role in the physics of many stringed musical instruments. It is well known that the tone of the string vibrations is determined by the string supports, and that the boundary conditions of the string termination may cause a short-lasting initial fundamental frequency shifting. Generally, this phenomenon is associated with the nonlinear modulation of the stiff string tension. The aim of this paper is to study the initial frequency glide phenomenon that is induced only by the string-barrier interaction, apart from other possible physical causes, and without the interfering effects of dissipation and dispersion. From a numerical simulation perspective, this highly nonlinear problem may present various difficulties, not the least of which is the risk of numerical instability. We propose a numerically stable and a purely kinematic model of the string-barrier interaction, which is based on the travelling wave solution of the ideal string vibration. The model is capable of reproducing the motion of the vibrating string exhibiting the initial fundamental frequency glide, which is caused solely by the complex nonlinear interaction of the string with its termination. The results presented in this paper can expand our knowledge and understanding of the timbre evolution and the physical principles of sound generation of numerous stringed instruments, such as lutes called the tambura, sitar and biwa.

  1. The confining baryonic Y-strings on the lattice

    SciTech Connect

    Bakry, Ahmed S.; Chen, Xurong; Zhang, Peng-Ming

    2016-01-22

    In a string picture, the nucleon is conjectured as consisting of a Y-shaped gluonic string ended by constituent quarks. In this proceeding, we summarize our results on revealing the signature of the confining Y-bosonic string in the gluonic profile due to a system of three static quarks on the lattice at finite temperature. The analysis of the action density unveils a background of a filled-Δ distribution. However, we found that these Δ-shaped profiles are comprised of three Y-shaped Gaussian-like flux tubes. The length of the revealed Y-string-like distribution is maximum near the deconfinement point and approaches the geometrical minimal near the end of the QCD plateau. The action density width profile returns good fits to a baryonic string model for the junction fluctuations at large quark source separation.

  2. String propagation through a big crunch to big bang transition

    NASA Astrophysics Data System (ADS)

    Tolley, Andrew J.

    2006-06-01

    We consider the propagation of classical and quantum strings on cosmological spacetimes which interpolate from a collapsing phase to an expanding phase. We begin by considering the classical propagation of strings on spacetimes with isotropic and anisotropic cosmological singularities. We find that cosmological singularities fall into two classes, in the first class the string evolution is well behaved all the way up to the singularity, while in the second class it becomes ill-defined. Then assuming the singularities are regulated by string scale corrections, we consider the implications of the propagation through a “bounce.” It is known that as we evolve through a bounce, quantum strings will become excited giving rise to “particle transmutation.” We reconsider this effect, giving qualitative arguments for the amount of excitation for each class. We find that strings whose physical wavelength at the bounce is less than α' inevitably emerge in highly excited states, and that in this regime there is an interesting correspondence between strings on anisotropic cosmological spacetimes and plane waves. We argue that long wavelength modes, such as those describing cosmological perturbations, will also emerge in mildly excited string scale mass states. Finally we discuss the relevance of this to the propagation of cosmological perturbations in models such as the ekpyrotic/cyclic universe.

  3. Straight strings and Friedmann-Robertson-Walker spacetimes

    NASA Astrophysics Data System (ADS)

    Unruh, W. G.

    1992-10-01

    The embeddability of a straight cosmic string in a Friedmann-Robertson-Walker (FRW) universe is examined. Although previous suggestions that an exact embedding for a string with longitudinal tension equal to energy density is impossible are substantiated, it is shown that the deviations of either the external metric from the exact FRW metric or of the internal structure of the string from the exact tension equals energy density are expected to be very small, of the order of the square of the ratio of the string diameter (or the evacuated shell around the string) to the Hubble radius. Thus the lack of an exact mathematical embedding leads to negligible physical consequences. The problem with solving for an exact embedding of a string in the manner of the Swiss-cheese model is examined in detail, and it is shown that the metric in the evacuated region around the string is unique. That metric is determined to lowest order in the ratio of the evacuated region over the Hubble radius. The implications of this uniqueness for the Swiss-cheese embedding of a string are discussed.

  4. New Solutions for Non-Abelian Cosmic Strings

    NASA Astrophysics Data System (ADS)

    Hindmarsh, Mark; Rummukainen, Kari; Weir, David J.

    2016-12-01

    We study the properties of classical vortex solutions in a non-Abelian gauge theory. A system of two adjoint Higgs fields breaks the SU(2) gauge symmetry to Z2 , producing 't Hooft-Polyakov monopoles trapped on cosmic strings, termed beads; there are two charges of monopole and two degenerate string solutions. The strings break an accidental discrete Z2 symmetry of the theory, explaining the degeneracy of the ground state. Further symmetries of the model, not previously appreciated, emerge when the masses of the two adjoint Higgs fields are degenerate. The breaking of the enlarged discrete symmetry gives rise to additional string solutions and splits the monopoles into four types of "semipole": kink solutions that interpolate between the string solutions, classified by a complex gauge-invariant magnetic flux and a Z4 charge. At special values of the Higgs self-couplings, the accidental symmetry broken by the string is continuous, giving rise to supercurrents on the strings. The SU(2) theory can be embedded in a wide class of grand unified theories (GUTs), including SO(10). We argue that semipoles and supercurrents are generic on GUT strings.

  5. Reconstruction of piano hammer force from string velocity.

    PubMed

    Chaigne, Antoine

    2016-11-01

    A method is presented for reconstructing piano hammer forces through appropriate filtering of the measured string velocity. The filter design is based on the analysis of the pulses generated by the hammer blow and propagating along the string. In the five lowest octaves, the hammer force is reconstructed by considering two waves only: the incoming wave from the hammer and its first reflection at the front end. For the higher notes, four- or eight-wave schemes must be considered. The theory is validated on simulated string velocities by comparing imposed and reconstructed forces. The simulations are based on a nonlinear damped stiff string model previously developed by Chabassier, Chaigne, and Joly [J. Acoust. Soc. Am. 134(1), 648-665 (2013)]. The influence of absorption, dispersion, and amplitude of the string waves on the quality of the reconstruction is discussed. Finally, the method is applied to real piano strings. The measured string velocity is compared to the simulated velocity excited by the reconstructed force, showing a high degree of accuracy. A number of simulations are compared to simulated strings excited by a force derived from measurements of mass and acceleration of the hammer head. One application to an historic piano is also presented.

  6. REVIEW: Seeing through the string landscape—a string hunter's companion in particle physics and cosmology

    NASA Astrophysics Data System (ADS)

    Lüst, Dieter

    2009-03-01

    In this article we will overview several aspects of the string landscape, namely intersecting D-brane models and their statistics, possible model independent LHC signatures of intersecting brane models, flux compactification, moduli stabilization in type II compactifications, domain wall solutions and brane inflation.

  7. Estimation of population size using open capture-recapture models

    USGS Publications Warehouse

    McDonald, T.L.; Amstrup, Steven C.

    2001-01-01

    One of the most important needs for wildlife managers is an accurate estimate of population size. Yet, for many species, including most marine species and large mammals, accurate and precise estimation of numbers is one of the most difficult of all research challenges. Open-population capture-recapture models have proven useful in many situations to estimate survival probabilities but typically have not been used to estimate population size. We show that open-population models can be used to estimate population size by developing a Horvitz-Thompson-type estimate of population size and an estimator of its variance. Our population size estimate keys on the probability of capture at each trap occasion and therefore is quite general and can be made a function of external covariates measured during the study. Here we define the estimator and investigate its bias, variance, and variance estimator via computer simulation. Computer simulations make extensive use of real data taken from a study of polar bears (Ursus maritimus) in the Beaufort Sea. The population size estimator is shown to be useful because it was negligibly biased in all situations studied. The variance estimator is shown to be useful in all situations, but caution is warranted in cases of extreme capture heterogeneity.

  8. Real topological string amplitudes

    NASA Astrophysics Data System (ADS)

    Narain, K. S.; Piazzalunga, N.; Tanzini, A.

    2017-03-01

    We discuss the physical superstring correlation functions in type I theory (or equivalently type II with orientifold) that compute real topological string amplitudes. We consider the correlator corresponding to holomorphic derivative of the real topological amplitude G_{χ } , at fixed worldsheet Euler characteristic χ. This corresponds in the low-energy effective action to N=2 Weyl multiplet, appropriately reduced to the orientifold invariant part, and raised to the power g' = -χ + 1. We show that the physical string correlator gives precisely the holomorphic derivative of topological amplitude. Finally, we apply this method to the standard closed oriented case as well, and prove a similar statement for the topological amplitude F_g.

  9. Effective string theory revisited

    NASA Astrophysics Data System (ADS)

    Dubovsky, Sergei; Flauger, Raphael; Gorbenko, Victor

    2012-09-01

    We revisit the effective field theory of long relativistic strings such as confining flux tubes in QCD. We derive the Polchinski-Strominger interaction by a calculation in static gauge. This interaction implies that a non-critical string which initially oscillates in one direction gets excited in orthogonal directions as well. In static gauge no additional term in the effective action is needed to obtain this effect. It results from a one-loop calculation using the Nambu-Goto action. Non-linearly realized Lorentz symmetry is manifest at all stages in dimensional regularization. We also explain that independent of the number of dimensions non-covariant counterterms have to be added to the action in the commonly used zeta-function regularization.

  10. Anyons from Strings

    SciTech Connect

    Mezincescu, Luca; Townsend, Paul K.

    2010-11-05

    The Nambu-Goto string in a three-dimensional (3D) Minkowski spacetime is quantized preserving Lorentz invariance and parity. The spectrum of massive states contains anyons. An ambiguity in the ground state energy is resolved by the 3D N=1 Green-Schwarz superstring, which has massless ground states describing a dilaton and dilatino, and first-excited states of spin 1/4.

  11. Wing on a String

    ERIC Educational Resources Information Center

    Fitzgerald, Mike; Brand, Lance

    2004-01-01

    In this article, the authors present an activity that shows students how flight occurs. The "wing on a string" is a simple teacher-made frame that consists of PVC pipe, fishing line, and rubber bands--all readily available hardware store items. The only other materials/tools involved are a sheet of paper, some pieces of a soda straw, a stapler,…

  12. Open Schooling: Why Open Schools Are Re-Emerging as a New Model

    ERIC Educational Resources Information Center

    Commonwealth of Learning, 2010

    2010-01-01

    Open schools are not just concerned with increasing access to secondary schooling, but also with equalising educational opportunities for citizens regardless of their geographic location or socio-economic background. Through a well-articulated policy, broad consensus on the most appropriate direction for the future development of open schooling…

  13. Revisiting noninteracting string partition functions in Rindler space

    NASA Astrophysics Data System (ADS)

    Mertens, Thomas G.; Verschelde, Henri; Zakharov, Valentin I.

    2016-05-01

    We revisit noninteracting string partition functions in Rindler space by summing over fields in the spectrum. In field theory, the total partition function splits in a natural way into a piece that does not contain surface terms and a piece consisting of solely the so-called edge states. For open strings, we illustrate that surface contributions to the higher-spin fields correspond to open strings piercing the Rindler origin, unifying the higher-spin surface contributions in string language. For closed strings, we demonstrate that the string partition function is not quite the same as the sum over the partition functions of the fields in the spectrum: an infinite overcounting is present for the latter. Next we study the partition functions obtained by excluding the surface terms. Using recent results of He et al. [J. High Energy Phys. 05 (2015) 106], this construction, first done by Emparan [arXiv:hep-th/9412003], can be put on much firmer ground. We generalize to type II and heterotic superstrings and demonstrate modular invariance. All of these exhibit an IR divergence that can be interpreted as a maximal acceleration close to the black hole horizon. Ultimately, since these partition functions are only part of the full story, divergences here should not be viewed as a failure of string theory: maximal acceleration is a feature of a faulty treatment of the higher-spin fields in the string spectrum. We comment on the relevance of this to Solodukhin's recent proposal [Phys. Rev. D 91, 084028 (2015)]. A possible link with the firewall paradox is apparent.

  14. Coulomb string tension, asymptotic string tension, and the gluon chain

    DOE PAGES

    Greensite, Jeff; Szczepaniak, Adam P.

    2015-02-01

    We compute, via numerical simulations, the non-perturbative Coulomb potential and position-space ghost propagator in pure SU(3) gauge theory in Coulomb gauge. We find that that the Coulomb potential scales nicely in accordance with asymptotic freedom, that the Coulomb potential is linear in the infrared, and that the Coulomb string tension is about four times larger than the asymptotic string tension. We explain how it is possible that the asymptotic string tension can be lower than the Coulomb string tension by a factor of four.

  15. Stationary rotating strings as relativistic particle mechanics

    SciTech Connect

    Ogawa, Kouji; Ishihara, Hideki; Saito, Shinya; Kozaki, Hiroshi; Nakano, Hiroyuki

    2008-07-15

    Stationary rotating strings can be viewed as geodesic motions in appropriate metrics in two-dimensional space. We obtain all solutions describing stationary rotating strings in flat spacetime as an application. These rotating strings have infinite length with various wiggly shapes. Averaged value of the string energy, the angular momentum, and the linear momentum along the string are discussed.

  16. Matrix theory interpretation of discrete light cone quantization string worldsheets

    PubMed

    Grignani; Orland; Paniak; Semenoff

    2000-10-16

    We study the null compactification of type-IIA string perturbation theory at finite temperature. We prove a theorem about Riemann surfaces establishing that the moduli spaces of infinite-momentum-frame superstring worldsheets are identical to those of branched-cover instantons in the matrix-string model conjectured to describe M theory. This means that the identification of string degrees of freedom in the matrix model proposed by Dijkgraaf, Verlinde, and Verlinde is correct and that its natural generalization produces the moduli space of Riemann surfaces at all orders in the genus expansion.

  17. Reheating for closed string inflation

    SciTech Connect

    Cicoli, Michele; Mazumdar, Anupam E-mail: a.mazumdar@lancaster.ac.uk

    2010-09-01

    We point out some of the outstanding challenges for embedding inflationary cosmology within string theory studying the process of reheating for models where the inflaton is a closed string mode parameterising the size of an internal cycle of the compactification manifold. A realistic model of inflation must explain the tiny perturbations in the cosmic microwave background radiation and also how to excite the ordinary matter degrees of freedom after inflation, required for the success of Big Bang Nucleosynthesis. We study these issues focusing on two promising inflationary models embedded in LARGE volume type IIB flux compactifications. We show that phenomenological requirements and consistency of the effective field theory treatment imply the presence at low energies of a hidden sector together with a visible sector, where the Minimal Supersymmetric Standard Model fields are residing. A detailed calculation of the inflaton coupling to the fields of the hidden sector, visible sector, and moduli sector, reveals that the inflaton fails to excite primarily the visible sector fields, instead hidden sector fields are excited copiously after the end of inflation. This sets severe constraints on hidden sector model building where the most promising scenario emerges as a pure N = 1 SYM theory, forbidding the kinematical decay of the inflaton to the hidden sector. In this case it is possible to reheat the Universe with the visible degrees of freedom even though in some cases we discover a new tension between TeV scale SUSY and reheating on top of the well-known tension between TeV scale SUSY and inflation.

  18. There Is No Business Model for Open Educational Resources: A Business Model Approach

    ERIC Educational Resources Information Center

    de Langen, Frank

    2011-01-01

    The economic proverb "There is no such thing such as a free lunch" applies also to open educational resources (OER). In recent years, several authors have used revenue models and business models to analyse the different sources of possible funding for OER. In this article the business models of Osterwalder and Chesbrough are combined…

  19. Classical theory of radiating strings

    NASA Technical Reports Server (NTRS)

    Copeland, Edmund J.; Haws, D.; Hindmarsh, M.

    1990-01-01

    The divergent part of the self force of a radiating string coupled to gravity, an antisymmetric tensor and a dilaton in four dimensions are calculated to first order in classical perturbation theory. While this divergence can be absorbed into a renormalization of the string tension, demanding that both it and the divergence in the energy momentum tensor vanish forces the string to have the couplings of compactified N = 1 D = 10 supergravity. In effect, supersymmetry cures the classical infinities.

  20. Experimenting with string musical instruments

    NASA Astrophysics Data System (ADS)

    LoPresto, Michael C.

    2012-03-01

    What follows are several investigations involving string musical instruments developed for and used in a Science of Sound & Light course. The experiments make use of a guitar, orchestral string instruments and data collection and graphing software. They are designed to provide students with concrete examples of how mathematical formulae, when used in physics, represent reality that can actually be observed, in this case, the operation of string musical instruments.

  1. GHGfrack: An Open-Source Model for Estimating Greenhouse Gas Emissions from Combustion of Fuel during Drilling and Hydraulic Fracturing.

    PubMed

    Vafi, Kourosh; Brandt, Adam

    2016-07-19

    This paper introduces GHGfrack, an open-source engineering-based model that estimates energy consumption and associated GHG emissions from drilling and hydraulic fracturing operations. We describe verification and calibration of GHGfrack against field data for energy and fuel consumption. We run GHGfrack using data from 6927 wells in Eagle Ford and 4431 wells in Bakken oil fields. The average estimated energy consumption in Eagle Ford wells using lateral hole diameters of 8 (3)/4 and 6 (1)/8 in. are 2.25 and 2.73 TJ/well, respectively. The average estimated energy consumption in Bakken wells using hole diameters of 6 in. for horizontal section is 2.16 TJ/well. We estimate average greenhouse gas (GHG) emissions of 419 and 510 tonne of equivalent CO2 per well (tonne of CO2 eq/well) for the two aforementioned assumed geometries in Eagle Ford, respectively, and 417 tonne of CO2 eq/well for the case of Bakken. These estimates are limited only to GHG emissions from combustion of diesel fuel to supply energy only for rotation of drill string, drilling mud circulation, and fracturing pumps. Sensitivity analysis of the model shows that the top three key variables in driving energy intensity in drilling are the lateral hole diameter, drill pipe internal diameter, and mud flow rate. In hydraulic fracturing, the top three are lateral casing diameter, fracturing fluid volume, and length of the lateral.

  2. Open-Source Software for Modeling of Nanoelectronic Devices

    NASA Technical Reports Server (NTRS)

    Oyafuso, Fabiano; Hua, Hook; Tisdale, Edwin; Hart, Don

    2004-01-01

    The Nanoelectronic Modeling 3-D (NEMO 3-D) computer program has been upgraded to open-source status through elimination of license-restricted components. The present version functions equivalently to the version reported in "Software for Numerical Modeling of Nanoelectronic Devices" (NPO-30520), NASA Tech Briefs, Vol. 27, No. 11 (November 2003), page 37. To recapitulate: NEMO 3-D performs numerical modeling of the electronic transport and structural properties of a semiconductor device that has overall dimensions of the order of tens of nanometers. The underlying mathematical model represents the quantum-mechanical behavior of the device resolved to the atomistic level of granularity. NEMO 3-D solves the applicable quantum matrix equation on a Beowulf-class cluster computer by use of a parallel-processing matrix vector multiplication algorithm coupled to a Lanczos and/or Rayleigh-Ritz algorithm that solves for eigenvalues. A prior upgrade of NEMO 3-D incorporated a capability for a strain treatment, parameterized for bulk material properties of GaAs and InAs, for two tight-binding submodels. NEMO 3-D has been demonstrated in atomistic analyses of effects of disorder in alloys and, in particular, in bulk In(x)Ga(1-x)As and in In(0.6)Ga(0.4)As quantum dots.

  3. Complex geometry and string theory

    NASA Astrophysics Data System (ADS)

    Morozov, A. Y.; Perelomov, A. M.

    1990-06-01

    The analytic properties of string theory are reviewed. It is demonstrated that the theory of strings is connected with contemporary fields of complex geometry. A massless classical point-like particle which moves in Minkowski space of D dimensions is considered. The formulation used to develop string theory is based on the Polyakov approach. In order to find the quantum scattering amplitude in the Polyakov approach, the functional integral over all Riemannian surfaces is calculated. The simplest case of the amplitude of vacuum-vacuum transitions Z of a closed string is considered. The description of linear bundles in the divisor terms is given.

  4. Dynamical phase transition in the open Dicke model

    PubMed Central

    Klinder, Jens; Keßler, Hans; Wolke, Matthias; Mathey, Ludwig; Hemmerich, Andreas

    2015-01-01

    The Dicke model with a weak dissipation channel is realized by coupling a Bose–Einstein condensate to an optical cavity with ultranarrow bandwidth. We explore the dynamical critical properties of the Hepp–Lieb–Dicke phase transition by performing quenches across the phase boundary. We observe hysteresis in the transition between a homogeneous phase and a self-organized collective phase with an enclosed loop area showing power-law scaling with respect to the quench time, which suggests an interpretation within a general framework introduced by Kibble and Zurek. The observed hysteretic dynamics is well reproduced by numerically solving the mean-field equation derived from a generalized Dicke Hamiltonian. Our work promotes the understanding of nonequilibrium physics in open many-body systems with infinite range interactions. PMID:25733892

  5. D Topological Indoor Building Modeling Integrated with Open Street Map

    NASA Astrophysics Data System (ADS)

    Jamali, A.; Rahman, A. Abdul; Boguslawski, P.

    2016-09-01

    Considering various fields of applications for building surveying and various demands, geometry representation of a building is the most crucial aspect of a building survey. The interiors of the buildings need to be described along with the relative locations of the rooms, corridors, doors and exits in many kinds of emergency response, such as fire, bombs, smoke, and pollution. Topological representation is a challenging task within the Geography Information Science (GIS) environment, as the data structures required to express these relationships are particularly difficult to develop. Even within the Computer Aided Design (CAD) community, the structures for expressing the relationships between adjacent building parts are complex and often incomplete. In this paper, an integration of 3D topological indoor building modeling in Dual Half Edge (DHE) data structure and outdoor navigation network from Open Street Map (OSM) is presented.

  6. Advances in String Theory in Curved Backgrounds

    NASA Astrophysics Data System (ADS)

    Sanchez, N. G.

    A synthetic report of the advances in the study of classical and quantum string dynamics in curved backgrounds is provided, namely : the new feature of Multistring solutions; the mass spectrum of Strings in Curved backgrounds; The effect of a Cosmological Constant and of Spacial Curvature on Classical and Quantum Strings; Classical splitting of Fundamental Strings; The General String Evolution in constant Curvature Spacetimes; The Conformal Invariance Effects; Strings on plane fronted and gravitational shock waves, string falling on spacetime singularities and its spectrum. New Developments in String Gravity and String Cosmology are reported: String driven cosmology and its Predictions; The primordial gravitational wave background; Non-singular string cosmologies from Exact Conformal Field Theories; Quantum Field Theory, String Temperature and the String Phase of de Sitter space-time Hawking Radiation in String Theory and the String Phase of Black Holes; New Dual Relation between Quantum Field Theory regime and String regime and the "QFT/String Tango" New Coherent String States and Minimal Uncertainty Principle in string theory.

  7. Flow model for open-channel reach or network

    USGS Publications Warehouse

    Schaffranek, R.W.

    1987-01-01

    Formulation of a one-dimensional model for simulating unsteady flow in a single open-channel reach or in a network of interconnected channels is presented. The model is both general and flexible in that it can be used to simulate a wide range of flow conditions for various channel configurations. It is based on a four-point (box), implicit, finite-difference approximation of the governing nonlinear flow equations with user-definable weighting coefficients to permit varying the solution scheme from box-centered to fully forward. Unique transformation equations are formulated that permit correlation of the unknowns at the extremities of the channels, thereby reducing coefficient matrix and execution time requirements. Discharges and water-surface elevations computed at intermediate locations within a channel are determined following solution of the transformation equations. The matrix of transformation and boundary-condition equations is solved by Gauss elimination using maximum pivot strategy. Two diverse applications of the model are presented to illustrate its broad utility. (USGS)

  8. Coalescence of two viscoelastic droplets connected by a string

    NASA Astrophysics Data System (ADS)

    Yang, Jianmao; Xu, Yuanze

    2008-04-01

    A new type of coalescence of viscoelastic droplets is described and analyzed. A viscoelastic drop of polyisobutene (PIB) containing high molar mass PIB (HPIB), suspended in polydimethylsiloxane, is separated into two droplets connected by a string, which is called "bead-string-bead" (BSB), through repeated elongation and relaxation in a four-roll mill rheometer. Upon flow cessation, the two drops are pulled to approach each other by the string and eventually coalesce. This process exhibits interesting features: The string remains stable like a rod without capillary breakup; the string length and the merging force decay exponentially with time; the string diameter may not change significantly through the approach. The string in BSB is more stable than that of the capillary thinning process of beads on string in jet or fixed-end rheometer. These phenomena are modeled based on the force balance of the viscoelasticity of HPIB systems, viscous drag, and the Laplace force. The model prediction agrees with the experimental observation reasonably well, revealing the viscoelastic nature of the coalescence of two droplets. The characteristic time of drop approach is comparable to that of the pulling stress decay. The condition of keeping a constant diameter in BSB approach creates a status where both drop approach and stress decay exponentially with the same characteristic time, which is comparable to the material relaxation time. This case allows the model to analyze the relationships between critical string diameter and the material parameter as well as the process parameters and to discuss the microscopic images of the BSB process.

  9. Primordial magnetic fields from the string network

    NASA Astrophysics Data System (ADS)

    Horiguchi, Kouichirou; Ichiki, Kiyotomo; Sugiyama, Naoshi

    2016-08-01

    Cosmic strings are a type of cosmic defect formed by a symmetry-breaking phase transition in the early universe. Individual strings would have gathered to build a network, and their dynamical motion would induce scalar-, vector-, and tensor-type perturbations. In this paper, we focus on the vector mode perturbations arising from the string network based on the one scale model and calculate the time evolution and the power spectrum of the associated magnetic fields. We show that the relative velocity between photon and baryon fluids induced by the string network can generate magnetic fields over a wide range of scales based on standard cosmology. We obtain the magnetic field spectrum before recombination as aB(k,z)~4×10Gμ/1k)3.5 gauss on super-horizon scales, and aB(k,z)~2.4×10Gμ/1k)2.5 gauss on sub-horizon scales in co-moving coordinates. This magnetic field grows up to the end of recombination, and has a final amplitude of approximately B~10Gμ gauss at the k~1 Mpc scale today. This field might serve as a seed for cosmological magnetic fields.

  10. Wave propagation in axially moving periodic strings

    NASA Astrophysics Data System (ADS)

    Sorokin, Vladislav S.; Thomsen, Jon Juel

    2017-04-01

    The paper deals with analytically studying transverse waves propagation in an axially moving string with periodically modulated cross section. The structure effectively models various relevant technological systems, e.g. belts, thread lines, band saws, etc., and, in particular, roller chain drives for diesel engines by capturing both their spatial periodicity and axial motion. The Method of Varying Amplitudes is employed in the analysis. It is shown that the compound wave traveling in the axially moving periodic string comprises many components with different frequencies and wavenumbers. This is in contrast to non-moving periodic structures, for which all components of the corresponding compound wave feature the same frequency. Due to this "multi-frequency" character of the wave motion, the conventional notion of frequency band-gaps appears to be not applicable for the moving periodic strings. Thus, for such structures, by frequency band-gaps it is proposed to understand frequency ranges in which the primary component of the compound wave attenuates. Such frequency band-gaps can be present for a moving periodic string, but only if its axial velocity is lower than the transverse wave speed, and, the higher the axial velocity, the narrower the frequency band-gaps. The revealed effects could be of potential importance for applications, e.g. they indicate that due to spatial inhomogeneity, oscillations of axially moving periodic chains always involve a multitude of frequencies.

  11. Application of KBc Subalgebra in String Field Theory

    NASA Astrophysics Data System (ADS)

    Zeze, S.

    Recently, a classical solution of open cubic string field theory (CSFT) which corresponds to the closed string vacuum is found by Erler and Schnabl. In their work, a very simple subalgebra of open string star algebra --- called K B c subalgebra --- plays a crucial role. In this talk, we demonstrate two applications of the K B c subalgebra. One is evaluation of classical and effective tachyon potential. It turns out that the level expansion in the K B c subalgebra terminates at a certain level, so that analytic evaluation of effective potential is available. The other application is regularization of the identity based solutions. It is demonstrated that the Okawa-Erler-Schnabl type solution naturally includes gauge invariant regularization of identity based solutions.

  12. Ward identities and high energy scattering amplitudes in string theory

    NASA Astrophysics Data System (ADS)

    Chan, Chuan-Tsung; Ho, Pei-Ming; Lee, Jen-Chi

    2005-02-01

    High-energy limit α→∞ of stringy Ward identities derived from the decoupling of two types of zero-norm states in the old covariant first quantized (OCFQ) spectrum of open bosonic string are used to check the consistency of saddle point calculations of high energy scattering amplitudes of Gross and Mende and Gross and Manes. Some inconsistencies of their saddle point calculations are found even for the string-tree scattering amplitudes of the excited string states. We discuss and calculate the missing terms of the calculation by those authors to recover the stringy Ward identities. In addition, based on the tree-level stringy Ward identities, we give the proof of a general formula, which was proposed previously, of all high energy four-point string-tree amplitudes of arbitrary particles in the string spectrum. In this formula all such scattering amplitudes are expressed in terms of those of tachyons as conjectured by Gross. The formula is extremely simple which manifestly demonstrates the universal high energy behavior of the interactions among all string states.

  13. Sequestering in String Theory

    SciTech Connect

    Kachru, Shamit; McAllister, Liam; Sundrum, Raman

    2007-04-04

    We study sequestering, a prerequisite for flavor-blind supersymmetry breaking in several high-scale mediation mechanisms, in compactifications of type IIB string theory. We find that although sequestering is typically absent in unwarped backgrounds, strongly warped compactifications do readily sequester. The AdS/CFT dual description in terms of conformal sequestering plays an important role in our analysis, and we establish how sequestering works both on the gravity side and on the gauge theory side. We pay special attention to subtle compactification effects that can disrupt sequestering. Our result is a step toward realizing an appealing pattern of soft terms in a KKLT compactification.

  14. QCD, with strings attached

    NASA Astrophysics Data System (ADS)

    Güijosa, Alberto

    2016-10-01

    In the nearly 20 years that have elapsed since its discovery, the gauge-gravity correspondence has become established as an efficient tool to explore the physics of a large class of strongly-coupled field theories. A brief overview is given here of its formulation and a few of its applications, emphasizing attempts to emulate aspects of the strong-coupling regime of quantum chromodynamics (QCD). To the extent possible, the presentation is self-contained, and does not presuppose knowledge of string theory.

  15. Self-Dual Supergravity from N = 2 Strings

    SciTech Connect

    de Boer, J.; Skenderis, K.

    1997-09-24

    A new heterotic N = 2 string with manifest target space supersymmetry is constructed by combining a conventional N = 2 string in the right-moving sector and a Green-Schwarz-Berkovits type string in the left-moving sector. The corresponding sigma model is then obtained by turning on background fields for the massless excitations. We compute the beta functions and we partially check the OPE's of the superconformal algebra perturbatively in {alpha}{prime}, all in superspace. The resulting field equations describe N = 1 self-dual supergravity.

  16. Stabilizing semilocal strings by polarization

    NASA Astrophysics Data System (ADS)

    Eto, Minoru; Nitta, Muneto; Sakurai, Kohei

    2016-10-01

    Semilocal strings are vortices in the extended Abelian-Higgs model with two complex Higgs scalar fields among which a global SU(2) symmetry acts. They are known to be stable (unstable against expansion) in type-I (II) superconductors, in which gauge field is heavier (lighter) than the Higgs scalar field. In this paper, we find that vortices can be stabilized in the whole parameter region including the type-II region by adding a potential term breaking the SU(2) symmetry. We construct numerical solutions in various parameters and determine the vortex phase diagram consisting of six phases. In two phases, a vortex is polarized, that is, split into two half-quantized vortices with a certain distance, to form a vortex molecule, while in the rests a vortex is identical to the conventional Abrikosov-Nielsen-Olesen vortex.

  17. CMB polarization power spectra contributions from a network of cosmic strings

    SciTech Connect

    Bevis, Neil; Hindmarsh, Mark; Urrestilla, Jon; Kunz, Martin

    2007-08-15

    We present the first calculation of the possible (local) cosmic string contribution to the cosmic microwave background polarization spectra from simulations of a string network (rather than a stochastic collection of unconnected string segments). We use field-theory simulations of the Abelian Higgs model to represent local U(1) strings, including their radiative decay and microphysics. Relative to previous estimates, our calculations show a shift in power to larger angular scales, making the chance of a future cosmic string detection from the B-mode polarization slightly greater. We explore a future ground-based polarization detector, taking the CLOVER project as our example. In the null hypothesis (that cosmic strings make a zero contribution) we find that CLOVER should limit the string tension {mu} to G{mu}<0.12x10{sup -6} (where G is the gravitational constant), above which it is likely that a detection would be possible.

  18. Match-bounded String Rewriting Systems

    NASA Technical Reports Server (NTRS)

    Geser, Alfons; Hofbauer, Dieter; Waldmann, Johannes

    2003-01-01

    We introduce a new class of automated proof methods for the termination of rewriting systems on strings. The basis of all these methods is to show that rewriting preserves regular languages. To this end, letters are annotated with natural numbers, called match heights. If the minimal height of all positions in a redex is h+1 then every position in the reduct will get height h+1. In a match-bounded system, match heights are globally bounded. Using recent results on deleting systems, we prove that rewriting by a match-bounded system preserves regular languages. Hence it is decidable whether a given rewriting system has a given match bound. We also provide a sufficient criterion for the abence of a match-bound. The problem of existence of a match-bound is still open. Match-boundedness for all strings can be used as an automated criterion for termination, for match-bounded systems are terminating. This criterion can be strengthened by requiring match-boundedness only for a restricted set of strings, for instance the set of right hand sides of forward closures.

  19. Solar-Cell String Conveyor

    NASA Technical Reports Server (NTRS)

    Frasch, W.; Ciavola, S.

    1982-01-01

    String-conveyor portion of solar-array assembly line holds silicon solar cells while assembled into strings and tested. Cells are transported collector-side-down, while uniform cell spacing and registration are maintained. Microprocessor on machine controls indexing of cells.

  20. French String Grammar. Final Report.

    ERIC Educational Resources Information Center

    New York Univ., NY. Linguistic String Project.

    This work reports on an initial study of the possibility of providing a suitable framework for the teaching of a foreign language grammar through string analysis, using French as the target language. Analysis of a string word list (word-class sequences) yields an overall view of the grammar. Details are furnished in a set of restrictions which…

  1. A Platonic Sextet for Strings

    ERIC Educational Resources Information Center

    Schaffer, Karl

    2012-01-01

    The use of traditional string figures by the Dr. Schaffer and Mr. Stern Dance Ensemble led to experimentation with polyhedral string constructions. This article presents a series of polyhedra made with six loops of three colors which sequence through all the Platonic Solids.

  2. Energy in a String Wave

    ERIC Educational Resources Information Center

    Ng, Chiu-king

    2010-01-01

    When one end of a taut horizontal elastic string is shaken repeatedly up and down, a transverse wave (assume sine waveform) will be produced and travel along it. College students know this type of wave motion well. They know when the wave passes by, each element of the string will perform an oscillating up-down motion, which in mechanics is termed…

  3. Experimenting with String Musical Instruments

    ERIC Educational Resources Information Center

    LoPresto, Michael C.

    2012-01-01

    What follows are several investigations involving string musical instruments developed for and used in a "Science of Sound & Light" course. The experiments make use of a guitar, orchestral string instruments and data collection and graphing software. They are designed to provide students with concrete examples of how mathematical formulae, when…

  4. Yang-Mills glueballs as closed bosonic strings

    NASA Astrophysics Data System (ADS)

    Dubovsky, Sergei; Hernández-Chifflet, Guzmán

    2017-02-01

    We put forward the Axionic String Ansatz (ASA), which provides a unified description for the worldsheet dynamics of confining strings in pure Yang-Mills theory both in D = 3 and D = 4 space-time dimensions. The ASA is motivated by the excitation spectrum of long confining strings, as measured on a lattice, and by recently constructed integrable axionic non-critical string models. According to the ASA, pure gluodynamics in 3D is described by a non-critical bosonic string theory without any extra local worldsheet degrees of freedom. We argue that this assumption fixes the set of quantum numbers (spins, P-and C-parities) of almost all glueball states. We confront the resulting predictions with the properties of approximately 12 + 22 + 32 + 52 = 39 lightest glueball states measured on a lattice and find a good agreement. On the other hand, the spectrum of low lying glueballs in 4D gluodynamics suggests the presence of a massive pseudoscalar mode on the string worldsheet, in agreement with the ASA and lattice data for long strings.

  5. STRING 3: An Advanced Groundwater Flow Visualization Tool

    NASA Astrophysics Data System (ADS)

    Schröder, Simon; Michel, Isabel; Biedert, Tim; Gräfe, Marius; Seidel, Torsten; König, Christoph

    2016-04-01

    The visualization of 3D groundwater flow is a challenging task. Previous versions of our software STRING [1] solely focused on intuitive visualization of complex flow scenarios for non-professional audiences. STRING, developed by Fraunhofer ITWM (Kaiserslautern, Germany) and delta h Ingenieurgesellschaft mbH (Witten, Germany), provides the necessary means for visualization of both 2D and 3D data on planar and curved surfaces. In this contribution we discuss how to extend this approach to a full 3D tool and its challenges in continuation of Michel et al. [2]. This elevates STRING from a post-production to an exploration tool for experts. In STRING moving pathlets provide an intuition of velocity and direction of both steady-state and transient flows. The visualization concept is based on the Lagrangian view of the flow. To capture every detail of the flow an advanced method for intelligent, time-dependent seeding is used building on the Finite Pointset Method (FPM) developed by Fraunhofer ITWM. Lifting our visualization approach from 2D into 3D provides many new challenges. With the implementation of a seeding strategy for 3D one of the major problems has already been solved (see Schröder et al. [3]). As pathlets only provide an overview of the velocity field other means are required for the visualization of additional flow properties. We suggest the use of Direct Volume Rendering and isosurfaces for scalar features. In this regard we were able to develop an efficient approach for combining the rendering through raytracing of the volume and regular OpenGL geometries. This is achieved through the use of Depth Peeling or A-Buffers for the rendering of transparent geometries. Animation of pathlets requires a strict boundary of the simulation domain. Hence, STRING needs to extract the boundary, even from unstructured data, if it is not provided. In 3D we additionally need a good visualization of the boundary itself. For this the silhouette based on the angle of

  6. Jet Signals for Low Mass Strings at the Large Hadron Collider

    SciTech Connect

    Anchordoqui, Luis A.; Nawata, Satoshi; Goldberg, Haim; Taylor, Tomasz R.

    2008-05-02

    The mass scale M{sub s} of superstring theory is an arbitrary parameter that can be as low as few TeVs if the Universe contains large extra dimensions. We propose a search for the effects of Regge excitations of fundamental strings at the CERN Large Hadron Collider (LHC), in the process pp{yields}{gamma}+jet. The underlying parton process is dominantly the single photon production in gluon fusion, gg{yields}{gamma}g, with open string states propagating in intermediate channels. If the photon mixes with the gauge boson of the baryon number, which is a common feature of D-brane quivers, the amplitude appears already at the string disk level. It is completely determined by the mixing parameter--and it is otherwise model (compactification) independent. Even for relatively small mixing, 100 fb{sup -1} of LHC data could probe deviations from standard model physics, at a 5{sigma} significance, for M{sub s} as large as 3.3 TeV.

  7. String Mining in Bioinformatics

    NASA Astrophysics Data System (ADS)

    Abouelhoda, Mohamed; Ghanem, Moustafa

    Sequence analysis is a major area in bioinformatics encompassing the methods and techniques for studying the biological sequences, DNA, RNA, and proteins, on the linear structure level. The focus of this area is generally on the identification of intra- and inter-molecular similarities. Identifying intra-molecular similarities boils down to detecting repeated segments within a given sequence, while identifying inter-molecular similarities amounts to spotting common segments among two or multiple sequences. From a data mining point of view, sequence analysis is nothing but string- or pattern mining specific to biological strings. For a long time, this point of view, however, has not been explicitly embraced neither in the data mining nor in the sequence analysis text books, which may be attributed to the co-evolution of the two apparently independent fields. In other words, although the word "data-mining" is almost missing in the sequence analysis literature, its basic concepts have been implicitly applied. Interestingly, recent research in biological sequence analysis introduced efficient solutions to many problems in data mining, such as querying and analyzing time series [49,53], extracting information from web pages [20], fighting spam mails [50], detecting plagiarism [22], and spotting duplications in software systems [14].

  8. String Mining in Bioinformatics

    NASA Astrophysics Data System (ADS)

    Abouelhoda, Mohamed; Ghanem, Moustafa

    Sequence analysis is a major area in bioinformatics encompassing the methods and techniques for studying the biological sequences, DNA, RNA, and proteins, on the linear structure level. The focus of this area is generally on the identification of intra- and inter-molecular similarities. Identifying intra-molecular similarities boils down to detecting repeated segments within a given sequence, while identifying inter-molecular similarities amounts to spotting common segments among two or multiple sequences. From a data mining point of view, sequence analysis is nothing but string- or pattern mining specific to biological strings. For a long time, this point of view, however, has not been explicitly embraced neither in the data mining nor in the sequence analysis text books, which may be attributed to the co-evolution of the two apparently independent fields. In other words, although the word “data-mining” is almost missing in the sequence analysis literature, its basic concepts have been implicitly applied. Interestingly, recent research in biological sequence analysis introduced efficient solutions to many problems in data mining, such as querying and analyzing time series [49,53], extracting information from web pages [20], fighting spam mails [50], detecting plagiarism [22], and spotting duplications in software systems [14].

  9. Surface operators from M -strings

    NASA Astrophysics Data System (ADS)

    Mori, Hironori; Sugimoto, Yuji

    2017-01-01

    It has been found that surface operators have a significant role in Alday-Gaiotto-Tachikawa (AGT) relation. This duality is an outstanding consequence of M -theory, but it is actually encoded into the brane web for which the topological string can work. From this viewpoint, the surface defect in AGT relation is geometrically engineered as a toric brane realization. Also, there is a class of the brane configuration in M -theory called M -strings which can be translated into the language of the topological string. In this work, we propose a new M -string configuration which can realize AGT relation in the presence of the surface defect by utilizing the geometric transition in the refined topological string.

  10. Cosmic necklaces from string theory

    SciTech Connect

    Leblond, Louis; Wyman, Mark

    2007-06-15

    We present the properties of a cosmic superstring network in the scenario of flux compactification. An infinite family of strings, the (p,q) strings, are allowed to exist. The flux compactification leads to a string tension that is periodic in p. Monopoles, appearing here as beads on a string, are formed in certain interactions in such networks. This allows bare strings to become cosmic necklaces. We study network evolution in this scenario, outlining what conditions are necessary to reach a cosmologically viable scaling solution. We also analyze the physics of the beads on a cosmic necklace, and present general conditions for which they will be cosmologically safe, leaving the network's scaling undisturbed. In particular, we find that a large average loop size is sufficient for the beads to be cosmologically safe. Finally, we argue that loop formation will promote a scaling solution for the interbead distance in some situations.

  11. Robust Inflation from fibrous strings

    SciTech Connect

    Burgess, C.P.; Cicoli, M.; Alwis, S. de; Quevedo, F.

    2016-05-13

    Successful inflationary models should (i) describe the data well; (ii) arise generically from sensible UV completions; (iii) be insensitive to detailed fine-tunings of parameters and (iv) make interesting new predictions. We argue that a class of models with these properties is characterized by relatively simple potentials with a constant term and negative exponentials. We here continue earlier work exploring UV completions for these models — including the key (though often ignored) issue of modulus stabilisation — to assess the robustness of their predictions. We show that string models where the inflaton is a fibration modulus seem to be robust due to an effective rescaling symmetry, and fairly generic since most known Calabi-Yau manifolds are fibrations. This class of models is characterized by a generic relation between the tensor-to-scalar ratio r and the spectral index n{sub s} of the form r∝(n{sub s}−1){sup 2} where the proportionality constant depends on the nature of the effects used to develop the inflationary potential and the topology of the internal space. In particular we find that the largest values of the tensor-to-scalar ratio that can be obtained by generalizing the original set-up are of order r≲0.01. We contrast this general picture with specific popular models, such as the Starobinsky scenario and α-attractors. Finally, we argue the self consistency of large-field inflationary models can strongly constrain non-supersymmetric inflationary mechanisms.

  12. The Emergence of the Open Networked ``i-Learning'' Model

    NASA Astrophysics Data System (ADS)

    Elia, Gianluca

    The most significant forces that are changing the business world and the society behaviors in this beginning of the twenty-first century can be identified into the globalization of the economy, technological evolution and convergence, change of the workers' expectations, workplace diversity and mobility, and mostly, knowledge and learning as major organizational assets. But which type of ­learning dynamics must be nurtured and pursued within the organizations, today, in order to generate valuable knowledge and its effective applications? After a brief discussion on the main changes observable in management, ICT and society/workplace in the last years, this chapter aims to answer to this question, through the proposition of the “Π-shaped” profile (a new professional archetype for leading change), and through the discussion of the open networked “i-Learning” model (a new framework to “incubate” innovation in learning processes). Actually, the “i” stands for “innovation” (to highlight the nature of the impact on traditional ­learning model), but also it stands for “incubation” (to underline the urgency to have new environments in which incubating new professional profiles). Specifically, the main key characteristics at the basis of the innovation of the learning processes will be ­presented and described, by highlighting the managerial, technological and societal aspects of their nature. A set of operational guidelines will be also ­provided to ­activate and sustain the innovation process, so implementing changes in the strategic dimensions of the model. Finally, the “i-Learning Radar” is presented as an operational tool to design, communicate and control an “i-Learning experience”. This tool is represented by a radar diagram with six strategic dimensions of a ­learning initiative.

  13. Open-Space Forced Swim Model of Depression for Mice

    PubMed Central

    Stone, Eric A.; Lin, Yan

    2011-01-01

    This protocol describes a simplified method for inducing a chronic depression-like state in mice that is based on the repeated open-space forced swim method for rats originally developed by Sun and Alkon (2003). The method consists of swimming mice daily in lukewarm water (32-34°C) in rat tub cages 24 × 43 × 23 cm w × h × l, for 15 min/day for 4 days, and thereafter once per week. This procedure produces a progressive decrease in distance swum and a concomitant increase in immobility (floating) in about 70 percent of the mice (Swiss Webster males), both of which persist unaltered for weeks and generalize to other tests of depression (tail suspension). The model has predictive, face and construct validity in that it is responsive to chronic antidepressants and coping responses but not to anxiolytics or antipsychotics, represents an inescapable stress that produces generalized passivity, and is accompanied by changes in neural activity and brain cell proliferation that are characteristic of depression and believed to contribute to the disorder. It is less effective in producing anhedonia than other models probably because it is less stressful. The model has a number of advantages over previous methods in that it utilizes very mild stress, is short in duration, is easily standardized, requires only a video camera and either a manual or automatic behavioral scoring system to measure immobility and distance swum, and can be readily used for time course studies of onset of drug action. Moreover, since it utilizes a greater swimming area than the traditional (Porsolt) method it can be used to study interactions of depressive behavior with behavioral flexibility and perseveration. Finally, its use of mice makes it readily amenable to genetic and molecular analyses. PMID:21207368

  14. Gauge/String Duality, Hot QCD and Heavy Ion Collisions

    NASA Astrophysics Data System (ADS)

    Casalderrey-Solana, Jorge; Liu, Hong; Mateos, David; Rajagopal, Krishna; Wiedemann, Urs Achim

    2014-06-01

    1. Opening remarks; 2. A heavy ion phenomenology primer; 3. Results from lattice QCD at nonzero temperature; 4. Introducing the gauge/string duality; 5. A duality toolbox; 6. Bulk properties of strongly coupled plasma; 7. From hydrodynamics for far-from-equilibrium dynamics; 8. Probing strongly coupled plasma; 9. Quarkonium mesons in strongly coupled plasma; 10. Concluding remarks and outlook; Appendixes; References; Index.

  15. Power suppression at large scales in string inflation

    SciTech Connect

    Cicoli, Michele; Downes, Sean; Dutta, Bhaskar E-mail: sddownes@physics.tamu.edu

    2013-12-01

    We study a possible origin of the anomalous suppression of the power spectrum at large angular scales in the cosmic microwave background within the framework of explicit string inflationary models where inflation is driven by a closed string modulus parameterizing the size of the extra dimensions. In this class of models the apparent power loss at large scales is caused by the background dynamics which involves a sharp transition from a fast-roll power law phase to a period of Starobinsky-like slow-roll inflation. An interesting feature of this class of string inflationary models is that the number of e-foldings of inflation is inversely proportional to the string coupling to a positive power. Therefore once the string coupling is tuned to small values in order to trust string perturbation theory, enough e-foldings of inflation are automatically obtained without the need of extra tuning. Moreover, in the less tuned cases the sharp transition responsible for the power loss takes place just before the last 50-60 e-foldings of inflation. We illustrate these general claims in the case of Fibre Inflation where we study the strength of this transition in terms of the attractor dynamics, finding that it induces a pivot from a blue to a redshifted power spectrum which can explain the apparent large scale power loss. We compute the effects of this pivot for example cases and demonstrate how magnitude and duration of this effect depend on model parameters.

  16. Designing a Trust Evaluation Model for Open-Knowledge Communities

    ERIC Educational Resources Information Center

    Yang, Xianmin; Qiu, Qin; Yu, Shengquan; Tahir, Hasan

    2014-01-01

    The openness of open-knowledge communities (OKCs) leads to concerns about the knowledge quality and reliability of such communities. This confidence crisis has become a major factor limiting the healthy development of OKCs. Earlier studies on trust evaluation for Wikipedia considered disadvantages such as inadequate influencing factors and…

  17. Progressor: social navigation support through open social student modeling

    NASA Astrophysics Data System (ADS)

    Hsiao, I.-Han; Bakalov, Fedor; Brusilovsky, Peter; König-Ries, Birgitta

    2013-06-01

    The increased volumes of online learning content have produced two problems: how to help students to find the most appropriate resources and how to engage them in using these resources. Personalized and social learning have been suggested as potential ways to address these problems. Our work presented in this paper combines the ideas of personalized and social learning in the context of educational hypermedia. We introduce Progressor, an innovative Web-based tool based on the concepts of social navigation and open student modeling that helps students to find the most relevant resources in a large collection of parameterized self-assessment questions on Java programming. We have evaluated Progressor in a semester-long classroom study, the results of which are presented in this paper. The study confirmed the impact of personalized social navigation support provided by the system in the target context. The interface encouraged students to explore more topics attempting more questions and achieving higher success rates in answering them. A deeper analysis of the social navigation support mechanism revealed that the top students successfully led the way to discovering most relevant resources by creating clear pathways for weaker students.

  18. Economic analysis of open space box model utilization in spacecraft

    NASA Astrophysics Data System (ADS)

    Mohammad, Atif F.; Straub, Jeremy

    2015-05-01

    It is a known fact that the amount of data about space that is stored is getting larger on an everyday basis. However, the utilization of Big Data and related tools to perform ETL (Extract, Transform and Load) applications will soon be pervasive in the space sciences. We have entered in a crucial time where using Big Data can be the difference (for terrestrial applications) between organizations underperforming and outperforming their peers. The same is true for NASA and other space agencies, as well as for individual missions and the highly-competitive process of mission data analysis and publication. In most industries, conventional opponents and new candidates alike will influence data-driven approaches to revolutionize and capture the value of Big Data archives. The Open Space Box Model is poised to take the proverbial "giant leap", as it provides autonomic data processing and communications for spacecraft. We can find economic value generated from such use of data processing in our earthly organizations in every sector, such as healthcare, retail. We also can easily find retailers, performing research on Big Data, by utilizing sensors driven embedded data in products within their stores and warehouses to determine how these products are actually used in the real world.

  19. Dualities, CPT symmetry and dimensional reduction in string theory

    NASA Astrophysics Data System (ADS)

    Bertolami, O.

    1997-08-01

    In this lecture we address the following issues in the context of string theories: i) The role played by S and T dualities in obtaining topological inflation in N=1 supergravity models, ii) A mechanism for generating the baryon asymmetry of the universe based on the string interactions that violate CPT symmetry and iii) The quantum cosmology of the dimensionally reduced multidimensional Einstein-Yang-Mills system.

  20. Gravitating non-Abelian cosmic strings

    NASA Astrophysics Data System (ADS)

    de Pádua Santos, Antônio; Bezerra de Mello, Eugênio R.

    2015-08-01

    In this paper, we study regular cosmic string solutions of the non-Abelian Higgs model coupled with gravity. In order to develop this analysis, we constructed a set of coupled non-linear differential equations. Because there is no closed solution for this set of equations, we solve it numerically. The solutions we are interested in asymptote to a flat spacetime with a planar angle deficit. The model under consideration presents two bosonic sectors, besides the non-Abelian gauge field. The two bosonic sectors may present a direct coupling, so we investigate the relevance of this coupling on the system, specifically in the linear energy density of the string and on the planar angle deficit. We also analyze the behaviors of these quantities as a function of the energy scale where the gauge symmetry is spontaneously broken.

  1. Δ(54) flavor phenomenology and strings

    NASA Astrophysics Data System (ADS)

    Carballo-Pérez, Brenda; Peinado, Eduardo; Ramos-Sánchez, Saúl

    2016-12-01

    Δ(54) can serve as a flavor symmetry in particle physics, but remains almost unexplored. We show that in a classification of semi-realistic ℤ 3 × ℤ 3 heterotic string orbifolds, Δ(54) turns out to be the most natural flavor symmetry, providing additional motivation for its study. We revisit its phenomenological potential from a low-energy perspective and subject to the constraints of string models. We find a model with Δ(54) arising from heterotic orbifolds that leads to the Gatto-Sartori-Tonin relation for quarks and charged-leptons. Additionally, in the neutrino sector, it leads to a normal hierarchy for neutrino masses and a correlation between the reactor and the atmospheric mixing angles, the latter taking values in the second octant and being compatible at three sigmas with experimental data.

  2. Quantum phases of a vortex string.

    PubMed

    Auzzi, Roberto; Prem Kumar, S

    2009-12-04

    We argue that the world sheet dynamics of magnetic k strings in the Higgs phase of the mass-deformed N = 4 theory is controlled by a bosonic O(3) sigma model with anisotropy and a topological theta term. The theory interpolates between a massless O(2) symmetric regime, a massive O(3) symmetric phase, and another massive phase with a spontaneously broken Z(2) symmetry. The first two phases are separated by a Kosterlitz-Thouless transition. When theta = pi, the O(3) symmetric phase flows to an interacting fixed point; sigma model kinks and their dyonic partners become degenerate, mirroring the behavior of monopoles in the parent gauge theory. This leads to the identification of the kinks with monopoles confined on the string.

  3. Role of OpenEHR as an open source solution for the regional modelling of patient data in obstetrics.

    PubMed

    Pahl, Christina; Zare, Mojtaba; Nilashi, Mehrbakhsh; de Faria Borges, Marco Aurélio; Weingaertner, Daniel; Detschew, Vesselin; Supriyanto, Eko; Ibrahim, Othman

    2015-06-01

    This work investigates, whether openEHR with its reference model, archetypes and templates is suitable for the digital representation of demographic as well as clinical data. Moreover, it elaborates openEHR as a tool for modelling Hospital Information Systems on a regional level based on a national logical infrastructure. OpenEHR is a dual model approach developed for the modelling of Hospital Information Systems enabling semantic interoperability. A holistic solution to this represents the use of dual model based Electronic Healthcare Record systems. Modelling data in the field of obstetrics is a challenge, since different regions demand locally specific information for the process of treatment. Smaller health units in developing countries like Brazil or Malaysia, which until recently handled automatable processes like the storage of sensitive patient data in paper form, start organizational reconstruction processes. This archetype proof-of-concept investigation has tried out some elements of the openEHR methodology in cooperation with a health unit in Colombo, Brazil. Two legal forms provided by the Brazilian Ministry of Health have been analyzed and classified into demographic and clinical data. LinkEHR-Ed editor was used to read, edit and create archetypes. Results show that 33 clinical and demographic concepts, which are necessary to cover data demanded by the Unified National Health System, were identified. Out of the concepts 61% were reused and 39% modified to cover domain requirements. The detailed process of reuse, modification and creation of archetypes is shown. We conclude that, although a major part of demographic and clinical patient data were already represented by existing archetypes, a significant part required major modifications. In this study openEHR proved to be a highly suitable tool in the modelling of complex health data. In combination with LinkEHR-Ed software it offers user-friendly and highly applicable tools, although the complexity

  4. Effective String Theory and Integrability

    NASA Astrophysics Data System (ADS)

    Mohsen, Ali

    In this dissertation several applications are collected were one deduces properties of UV complete string theories by examining low energy interactions on the world sheet of effective strings. As a first application, a UV complete asymptotically fragile theory is presented, which provides a very special theory in regards to the standard connection between causality and analyticity, and positivity conditions. Continuing with this approach, and exploiting the interplay between hidden symmetries and integrability, a no go theorem for the bosonic string is proved and the connection between double softness of branon amplitudes and integrability is elucidated. This theorem suggests considering supersymmetric strings and more generally Lorentz invariant fermionic strings. Analyzing the integrability of the former at tree level singles out critical dimensions where kappa-symmetry can exist, and unveils a hidden supersymmetry for GS-like actions. Whereas the analysis of the latter necessitates the use of the CCWZ machinery and results in the complete classification of Lorentz invariant fermionic strings, including among unexplored possibilities the GS, RNS and Heterotic superstrings in D=10. Finally, Zamolodchikov's method of integrable deformations of fixed point CFTs is applied for the bosonic string, which provides higher spin currents perturbatively and singles out the critical dimension in yet another paradigm.

  5. Obstacle to populating the string theory landscape

    SciTech Connect

    Johnson, Matthew C; Larfors, Magdalena

    2008-12-15

    We construct domain walls and instantons in a class of models with coupled scalar fields, determining, in agreement with previous studies, that many such solutions contain naked timelike singularities. Vacuum bubble solutions of this type do not contain a region of true vacuum, obstructing the ability of eternal inflation to populate other vacua. We determine a criterion that potentials must satisfy to avoid the existence of such singularities and show that many domain wall solutions in type IIB string theory are singular.

  6. A character string scanner

    NASA Technical Reports Server (NTRS)

    Enison, R. L.

    1971-01-01

    A computer program called Character String Scanner (CSS), is presented. It is designed to search a data set for any specified group of characters and then to flag this group. The output of the CSS program is a listing of the data set being searched with the specified group of characters being flagged by asterisks. Therefore, one may readily identify specific keywords, groups of keywords or specified lines of code internal to a computer program, in a program output, or in any other specific data set. Possible applications of this program include the automatic scan of an output data set for pertinent keyword data, the editing of a program to change the appearance of a certain word or group of words, and the conversion of a set of code to a different set of code.

  7. Supersymmetric string waves

    SciTech Connect

    Bergshoeff, E.A. ); Kallosh, R.; Ortin, T. )

    1993-06-15

    We present plane-wave-type solutions of the lowest-order superstring effective action which have unbroken space-time supersymmetries. They are given by a stringy generalization of the Brinkmann metric, dialton, axion, and gauge fields. Some conspiracy between the metric and the axion field is required. The [alpha][prime] stringy corrections to the effective on-shell action, to the equations of motion (and therefore to the solutions themselves), and to the supersymmetry transformations are shown to vanish for a special class of these solutions that we call supersymmetric string waves (SSW's). In the SSW solutions, there exists a conspiracy not only between the metric and the axion field, but also between the gauge fields and the metric, since the embedding of the spin connection in the gauge group is required.

  8. An experimental analysis of a vibrating guitar string using high-speed photography

    NASA Astrophysics Data System (ADS)

    Whitfield, Scott B.; Flesch, Kurt B.

    2014-02-01

    We use high-speed photography (1200 frames/s) to investigate the vibrational motion of a plucked guitar string over several cycles. We investigate the vibrational pattern for plucking the string at two different locations along the string's length, and with different initial amplitudes. The vibrational patterns are then compared to a standing wave model of the string vibrations. We find excellent agreement between the observed vibrational patterns and the model for small-initial-amplitude displacement of the string. For larger amplitude displacements, the qualitative behavior of the string's vibrational pattern differs significantly from the small-amplitude displacement. This behavior may be due to the presence of inharmonicity, as suggested by its incorporation into the model calculations.

  9. Modeling healthcare authorization and claim submissions using the openEHR dual-model approach

    PubMed Central

    2011-01-01

    Background The TISS standard is a set of mandatory forms and electronic messages for healthcare authorization and claim submissions among healthcare plans and providers in Brazil. It is not based on formal models as the new generation of health informatics standards suggests. The objective of this paper is to model the TISS in terms of the openEHR archetype-based approach and integrate it into a patient-centered EHR architecture. Methods Three approaches were adopted to model TISS. In the first approach, a set of archetypes was designed using ENTRY subclasses. In the second one, a set of archetypes was designed using exclusively ADMIN_ENTRY and CLUSTERs as their root classes. In the third approach, the openEHR ADMIN_ENTRY is extended with classes designed for authorization and claim submissions, and an ISM_TRANSITION attribute is added to the COMPOSITION class. Another set of archetypes was designed based on this model. For all three approaches, templates were designed to represent the TISS forms. Results The archetypes based on the openEHR RM (Reference Model) can represent all TISS data structures. The extended model adds subclasses and an attribute to the COMPOSITION class to represent information on authorization and claim submissions. The archetypes based on all three approaches have similar structures, although rooted in different classes. The extended openEHR RM model is more semantically aligned with the concepts involved in a claim submission, but may disrupt interoperability with other systems and the current tools must be adapted to deal with it. Conclusions Modeling the TISS standard by means of the openEHR approach makes it aligned with ISO recommendations and provides a solid foundation on which the TISS can evolve. Although there are few administrative archetypes available, the openEHR RM is expressive enough to represent the TISS standard. This paper focuses on the TISS but its results may be extended to other billing processes. A complete

  10. String Formatting Considered Harmful for Novice Programmers

    ERIC Educational Resources Information Center

    Hughes, Michael C.; Jadud, Matthew C.; Rodrigo, Ma. Mercedes T.

    2010-01-01

    In Java, "System.out.printf" and "String.format" consume a specialised kind of string commonly known as a format string. In our study of first-year students at the Ateneo de Manila University, we discovered that format strings present a substantial challenge for novice programmers. Focusing on their first laboratory we found…

  11. Open Online Language Courses: The Multi-Level Model of the Spanish N(ottingham)OOC

    ERIC Educational Resources Information Center

    Goria, Cecilia; Lagares, Manuel

    2015-01-01

    Research into open education has identified a "high number of participants" and "unpredictable mixed abilities" as factors responsible for the relatively weak presence of language Massive Open Online Courses (MOOCs). This contribution presents a model for open online language courses that aims to bridge this gap. The tangible…

  12. Overview of K-Theory Applied to Strings

    NASA Astrophysics Data System (ADS)

    Witten, Edward

    2001-04-01

    K-theory provides a framework for classifying Ramond-Ramond (RR) charges and fields.K-theory of manifolds has a natural extension to K-theory of noncommutative algebras, such as the algebras considered in noncommutative Yang-Mills theory or in open string field theory. In a number of concrete problems, the K-theory analysis proceeds most naturally if one starts out with an infinite set of D-branes, reduced by tachyon condensation to a finite set. This suggests that string field theory should be reconsidered for N = ∞.

  13. Effect of a cosmic string on spin dynamics

    NASA Astrophysics Data System (ADS)

    Chowdhury, Debashree; Basu, B.

    2014-12-01

    In the present paper, we have investigated the role of the cosmic string on spin current and Hall electric field. Due to the background cosmic string, the modified electric field of the system generates renormalized spin-orbit coupling, which induces a modified non-Abelian gauge field. The defect causes a change in the Aharonov-Bohm and Aharonov-Casher phases appearing due to the modified electromagnetic field. In addition, for a time varying electric field we perform explicit analytic calculations to derive the exact form of spin electric field and spin current, which is defect parameter dependent and of oscillating type. Furthermore, in an asymmetric crystal within the Drude model approach we investigate the dependence of the cosmic string parameters on cosmic string induced Hall electric field.

  14. Hamiltonian of Tensionless Strings with Tensor Central Charge Coordinates

    NASA Astrophysics Data System (ADS)

    Zheltukhin, Aleksandr A.; Lindström, Ulf

    2002-01-01

    A new class of twistor-like string models in four-dimensional space-time extended by the addition of six tensorial central charge (TCC) coordinates zmn is studied. The hamiltonian of tensionless string in the extended space-time is derived and its symmetries are investigated. We establish that the string constraints reduce the number of independent TCC coordinates zmn to one real effective coordinate which composes an effective 5-dimensional target space together with the xm coordinates. We construct the P.B. algebra of the first class constraints and discover that it coincides with the P.B. algebra of tensionless strings. The Lorentz covariant antisymmetric Dirac hat C-matrix of the P.B. of the second class constraints is constructed and its algebraic structure is further presented.

  15. Cosmic Microwave Background spectral distortions from cosmic string loops

    SciTech Connect

    Anthonisen, Madeleine; Brandenberger, Robert; Laguë, Alex; Morrison, Ian A.; Xia, Daixi E-mail: rhb@physics.mcgill.ca E-mail: imorrison@physics.mcgill.ca

    2016-02-01

    Cosmic string loops contain cusps which decay by emitting bursts of particles. A significant fraction of the released energy is in the form of photons. These photons are injected non-thermally and can hence cause spectral distortions of the Cosmic Microwave Background (CMB). Under the assumption that cusps are robust against gravitational back-reaction, we compute the fractional energy density released as photons in the redshift interval where such non-thermal photon injection causes CMB spectral distortions. Whereas current constraints on such spectral distortions are not strong enough to constrain the string tension, future missions such as the PIXIE experiment will be able to provide limits which rule out a range of string tensions between G μ ∼ 10{sup −15} and G μ ∼ 10{sup −12}, thus ruling out particle physics models yielding these kind of intermediate-scale cosmic strings.

  16. String/flux tube duality on the light cone

    SciTech Connect

    Brower, Richard C.; Tan, C.-I; Thorn, Charles B.

    2006-06-15

    The equivalence of quantum field theory and string theory as exemplified by the AdS/CFT correspondence is explored from the point of view of light cone quantization. On the string side we discuss the light cone version of the static string connecting a heavy external quark source to a heavy external antiquark source, together with small oscillations about the static string configuration. On the field theory side we analyze the weak/strong coupling transition in a ladder diagram model of the quark-antiquark system, also from the point of view of the light cone. Our results are completely consistent with those obtained by more standard covariant methods in the limit of infinitely massive quarks.

  17. Geometry, topology, and string theory

    SciTech Connect

    Varadarajan, Uday

    2003-01-01

    A variety of scenarios are considered which shed light upon the uses and limitations of classical geometric and topological notions in string theory. The primary focus is on situations in which D-brane or string probes of a given classical space-time see the geometry quite differently than one might naively expect. In particular, situations in which extra dimensions, non-commutative geometries as well as other non-local structures emerge are explored in detail. Further, a preliminary exploration of such issues in Lorentzian space-times with non-trivial causal structures within string theory is initiated.

  18. Worldsheet geometries of ambitwistor string

    NASA Astrophysics Data System (ADS)

    Ohmori, Kantaro

    2015-06-01

    Mason and Skinner proposed the ambitwistor string theory which directly reproduces the formulas for the amplitudes of massless particles proposed by Cachazo, He and Yuan. In this paper we discuss geometries of the moduli space of worldsheets associated to the bosonic or the RNS ambitwistor string. Further, we investigate the factorization properties of the amplitudes when an internal momentum is near on-shell in the abstract CFT language. Along the way, we propose the existence of the ambitwistor strings with three or four fermionic worldsheet currents.

  19. Models and Building Blocks for Secure Open Systems

    DTIC Science & Technology

    1992-11-01

    benadcringcn met elkaar vergeleken en wordt. zo mogelijk, een gemcenschappciijke basis voor de verschillende mogelijkheden gezocht met gebruik van...volgens de in deze studie beschreven modellen voor beveiliging in open systemen. TNO report Page 5 CONTENTS ABSTRACT 2 SAMENVATrING 3 CONTENTS 5...special problem since each element in an open system (hardware, networks, operating systems, database management systems and other applications) must be

  20. Semisuperfluid strings in high density QCD

    SciTech Connect

    Balachandran, A.P.; Digal, S.; Matsuura, T.

    2006-04-01

    We show that topological semisuperfluid strings exist in the color-flavor locked (CFL) phase of color superconductors. These semisuperfluid strings carry quantized flux of ordinary and color magnetic fields. Away from the core the behavior of the string is that of a superfluid string. Using a Ginzburg-Landau free energy we find the configurations of these strings. These strings can form during the transition from the normal phase to the CFL phase at the core of very dense stars. We discuss an interesting scenario for a network of strings and its evolution at the core of dense stars.

  1. Perturbations from strings don't look like strings!

    NASA Technical Reports Server (NTRS)

    Albrecht, Andreas; Stebbins, Albert

    1991-01-01

    A systematic analysis is challenging popular ideas about perturbation from cosmic strings. One way in which the picture has changed is reviewed. It is concluded that, while the scaling properties of cosmic strings figure significantly in the analysis, care must be taken when thinking in terms of single time snapshots. The process of seeding density perturbations is not fundamentally localized in time, and this fact can wash out many of the details which appear in a single snapshot.

  2. Prototyping an online wetland ecosystem services model using open model sharing standards

    USGS Publications Warehouse

    Feng, M.; Liu, S.; Euliss, N.H.; Young, Caitlin; Mushet, D.M.

    2011-01-01

    Great interest currently exists for developing ecosystem models to forecast how ecosystem services may change under alternative land use and climate futures. Ecosystem services are diverse and include supporting services or functions (e.g., primary production, nutrient cycling), provisioning services (e.g., wildlife, groundwater), regulating services (e.g., water purification, floodwater retention), and even cultural services (e.g., ecotourism, cultural heritage). Hence, the knowledge base necessary to quantify ecosystem services is broad and derived from many diverse scientific disciplines. Building the required interdisciplinary models is especially challenging as modelers from different locations and times may develop the disciplinary models needed for ecosystem simulations, and these models must be identified and made accessible to the interdisciplinary simulation. Additional difficulties include inconsistent data structures, formats, and metadata required by geospatial models as well as limitations on computing, storage, and connectivity. Traditional standalone and closed network systems cannot fully support sharing and integrating interdisciplinary geospatial models from variant sources. To address this need, we developed an approach to openly share and access geospatial computational models using distributed Geographic Information System (GIS) techniques and open geospatial standards. We included a means to share computational models compliant with Open Geospatial Consortium (OGC) Web Processing Services (WPS) standard to ensure modelers have an efficient and simplified means to publish new models. To demonstrate our approach, we developed five disciplinary models that can be integrated and shared to simulate a few of the ecosystem services (e.g., water storage, waterfowl breeding) that are provided by wetlands in the Prairie Pothole Region (PPR) of North America.

  3. Charting the landscape of supercritical string theory.

    PubMed

    Hellerman, Simeon; Swanson, Ian

    2007-10-26

    Special solutions of string theory in supercritical dimensions can interpolate in time between theories with different numbers of spacetime dimensions and different amounts of world sheet supersymmetry. These solutions connect supercritical string theories to the more familiar string duality web in ten dimensions and provide a precise link between supersymmetric and purely bosonic string theories. Dimension quenching and c duality appear to be natural concepts in string theory, giving rise to large networks of interconnected theories.

  4. Classification of cohomogeneity-one strings

    SciTech Connect

    Ishihara, Hideki; Kozaki, Hiroshi

    2005-09-15

    We define the cohomogeneity one string, string with continuous symmetries, as its world surface is tangent to a Killing vector field of a target space. We classify the Killing vector fields by an equivalence relation using isometries of the target space. We find that the equivalence classes of Killing vectors in Minkowski spacetime are partitioned into seven families. It is clarified that there exist seven types of strings with spacelike symmetries and four types of strings with timelike symmetries, stationary strings.

  5. ABJM on ellipsoid and topological strings

    NASA Astrophysics Data System (ADS)

    Hatsuda, Yasuyuki

    2016-07-01

    It is known that the large N expansion of the partition function in ABJM theory on a three-sphere is completely determined by the topological string on local Hirzebruch surface {F}_0 . In this note, we investigate the ABJM partition function on an ellipsoid, which has a conventional deformation parameter b. Using 3d mirror symmetry, we find a remarkable relation between the ellipsoid partition function for b 2 = 3 (or b 2 = 1 /3) in ABJM theory at k = 1 and a matrix model for the topological string on another CalabiYau threefold, known as local {P}^2 . As in the case of b = 1, we can compute the full large N expansion of the partition function in this case. This is the first example of the complete large N solution in ABJM theory on the squashed sphere. Using the obtained results, we also analyze the supersymmetric Rényi entropy.

  6. Gauge - Mediated Supersymmetry Breaking in String Compactifications

    SciTech Connect

    Diaconescu, Duiliu-Emanuel; Florea, Bogdan; Kachru, Shamit; Svrcek, Peter; /Stanford U., Phys. Dept. /SLAC

    2006-01-04

    We provide string theory examples where a toy model of a SUSY GUT or the MSSM is embedded in a compactification along with a gauge sector which dynamically breaks supersymmetry. We argue that by changing microscopic details of the model (such as precise choices of flux), one can arrange for the dominant mediation mechanism transmitting SUSY breaking to the Standard Model to be either gravity mediation or gauge mediation. Systematic improvement of such examples may lead to top-down models incorporating a solution to the SUSY flavor problem.

  7. The Lauricella functions and exact string scattering amplitudes

    NASA Astrophysics Data System (ADS)

    Lai, Sheng-Hong; Lee, Jen-Chi; Yang, Yi

    2016-11-01

    We discover that the 26 D open bosonic string scattering amplitudes (SSA) of three tachyons and one arbitrary string state can be expressed in terms of the D-type Lauricella functions with associated SL(K+3,C) symmetry. As a result, SSA and symmetries or relations among SSA of different string states at various limits calculated previously can be rederived. These include the linear relations first conjectured by Gross [1-5] and later corrected and proved in [6-12] in the hard scattering limit, the recurrence relations in the Regge scattering limit with associated SL(5,C) symmetry [24-26] and the extended recurrence relations in the nonrelativistic scattering limit with associated SL(4,C) symmetry [29] discovered recently. Finally, as an application, we calculate a new recurrence relation of SSA which is valid for all energies.

  8. Intonation and compensation of fretted string instruments

    NASA Astrophysics Data System (ADS)

    Varieschi, Gabriele; Gower, Christina

    2011-04-01

    We discuss theoretical and physical models that are useful for analyzing the intonation of musical instruments such as guitars and mandolins and can be used to improve the tuning on these instruments. The placement of frets on the fingerboard is designed according to mathematical rules and the assumption of an ideal string. The analysis becomes more complicated when we include the effects of deformation of the string and inharmonicity due to other string characteristics. As a consequence, perfect intonation of all the notes on the instrument cannot be achieved, but complex compensation procedures can be introduced to minimize the problem. To test the validity of these procedures, we performed extensive measurements using standard monochord sonometers and other acoustical devices, confirming the correctness of our theoretical models. These experimental activities can be integrated into acoustics courses and laboratories and can become a more advanced version of basic experiments with monochords and sonometers. This work was supported by a grant from the Frank R. Seaver College of Science and Engineering, Loyola Marymount University.

  9. Wilson loops from supergravity and string theory

    NASA Astrophysics Data System (ADS)

    Sonnenschein, J.

    2000-03-01

    We present a theorem that determines the value of the Wilson loop associated with a Nambu-Goto action which generalizes the action of the AdS 5 × S 5 model. In particular, we derive sufficient conditions for confining behaviour. We then apply this theorem to various string models. We go beyond the classical string picture by incorporating quadratic quantum fluctuations. We show that the bosonic determinant of Dp -branes with 16 supersymmetries yields a Lüscher term. We confirm that the free energy associated with a BPS configuration of a single quark is free from divergences. We show that unlike for a string in flat spacetime in the case of AdS 5 × S 5 the fermionic determinant does not cancel the bosonic one. For a set-up that corresponds to a confining gauge theory the correction to the potential is attractive. We determine the form of the Wilson loop for actions that include non-trivial B µicons/Journals/Common/nu" ALT="nu" ALIGN="TOP"/> field. The issue of an exact determination of the value of the stringy Wilson loop is discussed.

  10. Guitar Strings as Standing Waves: A Demonstration

    NASA Astrophysics Data System (ADS)

    Davis, Michael

    2007-08-01

    An undergraduate student's first exposure to modern atomic theory tends to start with Bohr's model of the atom. This familiar introduction to atomic structure also marks a general chemistry student's first foray into waves. Many popular chemistry textbooks illustrate the concept of a standing wave in the development of the modern quantum model by using the phrase “as seen on a guitar string”. In these illustrations, the wave itself is often small and difficult to discern. The same phenomenon, however, can be easily and audibly observed. This demonstration uses an acoustic guitar to produce three unique harmonic vibrations, each of which is representative of a standing wave and illustrates the concept of quantization. Manipulation of the guitar string to produce a standing wave is pervasive in popular music and is audibly recognizable. Lightly placing a finger on the 12th, 7th, or 5th fret and strumming any one or all six strings can produce an audible example of a standing wave on a guitar. This corresponds to a standing wave with 1, 2, or 3 nodes, respectively. Attempting to induce a node at other points on a guitar string does not generate a standing wave, due to destructive interference, thus no audible tone is produced.

  11. The implications of the COBE diffuse microwave radiation results for cosmic strings

    NASA Technical Reports Server (NTRS)

    Bennett, David P.; Stebbins, Albert; Bouchet, Francois R.

    1992-01-01

    We compare the anisotropies in the cosmic microwave background radiation measured by the COBE experiment to those predicted by cosmic string theories. We use an analytic model for the Delta T/T power spectrum that is based on our previous numerical simulations of strings, under the assumption that cosmic strings are the sole source of the measured anisotropy. This implies a value for the string mass per unit length of 1.5 +/- 0.5 x 10 exp -6 C-squared/G. This is within the range of values required for cosmic strings to successfully seed the formation of large-scale structures in the universe. These results clearly encourage further studies of Delta T/T and large-scale structure in the cosmic string model.

  12. String and Sticky Tape Experiments.

    ERIC Educational Resources Information Center

    Edge, R. D., Ed.

    1979-01-01

    Explains how to demonstrate the fundamentals of one dimensional kinematics such as Newton's third law of motion, and collision between bodies, using simple materials of marbles, strings, sticky tape, drinking straws, and rubber bands. (GA)

  13. Spin chains and string theory.

    PubMed

    Kruczenski, Martin

    2004-10-15

    Recently, an important test of the anti de Sitter/conformal field theory correspondence has been done using rotating strings with two angular momenta. We show that such a test can be described more generally as the agreement between two actions: one a low energy description of a spin chain appearing in the field theory side, and the other a limit of the string action in AdS5xS5. This gives a map between the mean value of the spin in the boundary theory and the position of the string in the bulk, and shows how a string action can emerge from a gauge theory in the large-N limit.

  14. Nuclear Force from String Theory

    NASA Astrophysics Data System (ADS)

    Hashimoto, Koji

    2010-04-01

    Recent "technology" called holography, or gauge/string duality (AdS/CFT correspondence) found in string theory, makes it possible to compute various quantities of strongly coupled gauge theories. This technology was applied to QCD, and it was found that it describes surprisingly well important properties of low energy QCD, the hadron physics. We apply it further to nuclear physics. In this talk, I review a part of the developments of the holographic QCD, and show a computation of nuclear force at short distance, derived using the holographic QCD, which was done in collaboration with T. Sakai and S. Sugimoto [K. Hashimoto, T. Sakai, and S. Sugimoto, "Holographic Baryons: Static Properties and Form Factors from Gauge/String Duality," Prog. Theor. Phys. 120 (2008) 1093-1137, arXiv:0806.3122 [hep-th]; K. Hashimoto, T. Sakai, and S. Sugimoto, "Nuclear Force from String Theory," arXiv:0901.4449 [hep-th

  15. ncRNA consensus secondary structure derivation using grammar strings.

    PubMed

    Achawanantakun, Rujira; Sun, Yanni; Takyar, Seyedeh Shohreh

    2011-04-01

    Many noncoding RNAs (ncRNAs) function through both their sequences and secondary structures. Thus, secondary structure derivation is an important issue in today's RNA research. The state-of-the-art structure annotation tools are based on comparative analysis, which derives consensus structure of homologous ncRNAs. Despite promising results from existing ncRNA aligning and consensus structure derivation tools, there is a need for more efficient and accurate ncRNA secondary structure modeling and alignment methods. In this work, we introduce a consensus structure derivation approach based on grammar string, a novel ncRNA secondary structure representation that encodes an ncRNA's sequence and secondary structure in the parameter space of a context-free grammar (CFG) and a full RNA grammar including pseudoknots. Being a string defined on a special alphabet constructed from a grammar, grammar string converts ncRNA alignment into sequence alignment. We derive consensus secondary structures from hundreds of ncRNA families from BraliBase 2.1 and 25 families containing pseudoknots using grammar string alignment. Our experiments have shown that grammar string-based structure derivation competes favorably in consensus structure quality with Murlet and RNASampler. Source code and experimental data are available at http://www.cse.msu.edu/~yannisun/grammar-string.

  16. Computational Modeling of Aerosol Hazard Arising from the Opening of an Anthrax Letter in an Open-Office Complex

    NASA Astrophysics Data System (ADS)

    Lien, F. S.; Ji, H.; Yee, E.

    Early experimental work, conducted at Defence R&D Canada — Suffield, measured and characterized the personal and environmental contamination associated with the simulated opening of anthrax-tainted letters under a number of different scenarios. A better understanding of the physical and biological processes is considerably significant for detecting, assessing, and formulating potential mitigation strategies for managing these risks. These preliminary experimental investigations have been extended to simulate the contamination from the opening of anthrax-tainted letters in an Open-Office environment using Computational Fluid Dynamics (CFD). Bacillus globigii (BG) was used as a biological simulant for anthrax, with 0.1 gram of the simulant released from opened letters in the experiments conducted. The accuracy of the model for prediction of the spatial distribution of BG spores in the office is first assessed quantitatively by comparison with measured SF6 concentrations (the baseline experiment), and then qualitatively by comparison with measured BG concentrations obtained under a number of scenarios, some involving people moving within various offices.

  17. Evolution of segmented strings

    NASA Astrophysics Data System (ADS)

    Gubser, Steven S.

    2016-11-01

    I explain how to evolve segmented strings in de Sitter and anti-de Sitter spaces of any dimension in terms of forward-directed null displacements. The evolution is described entirely in terms of discrete hops which do not require a continuum spacetime. Moreover, the evolution rule is purely algebraic, so it can be defined not only on ordinary real de Sitter and anti-de Sitter but also on the rational points of the quadratic equations that define these spaces. For three-dimensional anti-de Sitter space, a simpler evolution rule is possible that descends from the Wess-Zumino-Witten equations of motion. In this case, one may replace three-dimensional anti-de Sitter space by a noncompact discrete subgroup of S L (2 ,R ) whose structure is related to the Pell equation. A discrete version of the Bañados-Teitelboim-Zanelli (BTZ) black hole can be constructed as a quotient of this subgroup. This discrete black hole avoids the firewall paradox by a curious mechanism: even for large black holes, there are no points inside the horizon until one reaches the singularity.

  18. Termination Proofs for String Rewriting Systems via Inverse Match-Bounds

    NASA Technical Reports Server (NTRS)

    Butler, Ricky (Technical Monitor); Geser, Alfons; Hofbauer, Dieter; Waldmann, Johannes

    2004-01-01

    Annotating a letter by a number, one can record information about its history during a reduction. A string rewriting system is called match-bounded if there is a global upper bound to these numbers. In earlier papers we established match-boundedness as a strong sufficient criterion for both termination and preservation of regular languages. We show now that the string rewriting system whose inverse (left and right hand sides exchanged) is match-bounded, also have exceptional properties, but slightly different ones. Inverse match-bounded systems effectively preserve context-free languages; their sets of normalized strings and their sets of immortal strings are effectively regular. These sets of strings can be used to decide the normalization, the termination and the uniform termination problems of inverse match-bounded systems. We also show that the termination problem is decidable in linear time, and that a certain strong reachability problem is deciable, thus solving two open problems of McNaughton's.

  19. Attenuation of sound waves in drill strings

    SciTech Connect

    Drumheller, D.S. )

    1993-10-01

    During drilling of deep wells, digital data are often transmitted from sensors located near the drill bit to the surface. Development of a new communication system with increased data capacity is of paramount importance to the drilling industry. Since steel drill strings are used, transmission of these data by elastic carrier waves traveling within the drill pipe is possible, but the potential communication range is uncertain. The problem is complicated by the presence of heavy-threaded tool joints every 10 m, which form a periodic structure and produce classical patterns of passbands and stop bands in the wave spectra. In this article, field measurements of the attenuation characteristics of a drill string in the Long Valley Scientific Well in Mammoth Lakes, California are presented. Wave propagation distances approach 2 km. A theoretical model is discussed which predicts the location, width, and attenuation of the passbands. Mode conversion between extensional and bending waves, and spurious reflections due to deviations in the periodic spacings of the tool joints are believed to be the sources of this attenuation. It is estimated that attenuation levels can be dramatically reduced by rearranging the individual pipes in the drill string according to length. 7 refs., 20 figs., 4 tabs.

  20. UV completions for non-critical strings

    NASA Astrophysics Data System (ADS)

    Apruzzi, Fabio; Hassler, Falk; Heckman, Jonathan J.; Melnikov, Ilarion V.

    2016-07-01

    Compactifications of the physical superstring to two dimensions provide a general template for realizing 2D conformal field theories coupled to worldsheet gravity, i.e. non-critical string theories. Motivated by this observation, in this paper we determine the quasi-topological 8D theory which governs the vacua of 2D N = (0, 2) gauged linear sigma models (GLSMs) obtained from compactifications of type I and heterotic strings on a Calabi-Yau fourfold. We also determine the quasi-topological 6D theory governing the 2D vacua of intersecting 7-branes in compactifications of F-theory on an elliptically fibered Calabi-Yau fivefold, where matter fields and interaction terms localize on lower-dimensional subspaces, i.e. defect operators. To cancel anomalies / cancel tadpoles, these GLSMs must couple to additional chiral sectors, which in some cases do not admit a known description in terms of a UV GLSM. Additionally, we find that constructing an anomaly free spectrum can sometimes break supersymmetry due to spacetime filling anti-branes. We also study various canonical examples such as the standard embedding of heterotic strings on a Calabi-Yau fourfold and F-theoretic "rigid clusters" with no local deformation moduli of the elliptic fibration.

  1. Topological insulators and superconductors from string theory

    SciTech Connect

    Ryu, Shinsei; Takayanagi, Tadashi

    2010-10-15

    Topological insulators and superconductors in different spatial dimensions and with different discrete symmetries have been fully classified recently, revealing a periodic structure for the pattern of possible types of topological insulators and superconductors, both in terms of spatial dimensions and in terms of symmetry classes. It was proposed that K theory is behind the periodicity. On the other hand, D-branes, a solitonic object in string theory, are also known to be classified by K theory. In this paper, by inspecting low-energy effective field theories realized by two parallel D-branes, we establish a one-to-one correspondence between the K-theory classification of topological insulators/superconductors and D-brane charges. In addition, the string theory realization of topological insulators and superconductors comes naturally with gauge interactions, and the Wess-Zumino term of the D-branes gives rise to a gauge field theory of topological nature, such as ones with the Chern-Simons term or the {theta} term in various dimensions. This sheds light on topological insulators and superconductors beyond noninteracting systems, and the underlying topological field theory description thereof. In particular, our string theory realization includes the honeycomb lattice Kitaev model in two spatial dimensions, and its higher-dimensional extensions. Increasing the number of D-branes naturally leads to a realization of topological insulators and superconductors in terms of holography (AdS/CFT).

  2. DEVELOPMENT OF CAPE-OPEN COMPLIANT PROCESS MODELING COMPONENTS IN MICROSOFT .NET

    EPA Science Inventory

    The CAPE-OPEN middleware standards were created to allow process modeling components (PMCs) developed by third parties to be used in any process modeling environment (PME) utilizing these standards. The CAPE-OPEN middleware specifications were based upon both Microsoft's Compone...

  3. Genetic algorithms and the search for viable string vacua

    NASA Astrophysics Data System (ADS)

    Abel, Steven; Rizos, John

    2014-08-01

    Genetic Algorithms are introduced as a search method for finding string vacua with viable phenomenological properties. It is shown, by testing them against a class of Free Fermionic models, that they are orders of magnitude more efficient than a randomised search. As an example, three generation, exophobic, Pati-Salam models with a top Yukawa occur once in every 1010 models, and yet a Genetic Algorithm can find them after constructing only 105 examples. Such non-deterministic search methods may be the only means to search for Standard Model string vacua with detailed phenomenological requirements.

  4. Strings on AdS wormholes and nonsingular black holes

    NASA Astrophysics Data System (ADS)

    Lü, H.; Vázquez-Poritz, Justin F.; Zhang, Zhibai

    2015-01-01

    Certain AdS black holes in the STU model can be conformally scaled to wormhole and black hole backgrounds which have two asymptotically AdS regions and are completely free of curvature singularities. While there is a delta-function source for the dilaton, classical string probes are not sensitive to this singularity. According to the AdS/CFT correspondence, the dual field theory lives on the union of the disjoint boundaries. For the wormhole background, causal contact exists between the two boundaries and the structure of certain correlation functions is indicative of an interacting phase for which there is a coupling between the degrees of freedom living at each boundary. The nonsingular black hole describes an entangled state in two non-interacting identical conformal field theories. By studying the behavior of open strings on these backgrounds, we extract a number of features of the ‘quarks’ and ‘anti-quarks’ that live in the field theories. In the interacting phase, we find that there is a maximum speed with which the quarks can move without losing energy, beyond which energy is transferred from a quark in one field theory to a quark in the other. We also compute the rate at which moving quarks within entangled states lose energy to the two surrounding plasmas. While a quark-antiquark pair within a single field theory exhibits Coulomb interaction for small separation, a quark in one field theory exhibits spring-like confinement with an anti-quark in the other field theory. For the entangled states, we study how the quark-antiquark screening length depends on temperature and chemical potential.

  5. Open resource metagenomics: a model for sharing metagenomic libraries.

    PubMed

    Neufeld, J D; Engel, K; Cheng, J; Moreno-Hagelsieb, G; Rose, D R; Charles, T C

    2011-11-30

    Both sequence-based and activity-based exploitation of environmental DNA have provided unprecedented access to the genomic content of cultivated and uncultivated microorganisms. Although researchers deposit microbial strains in culture collections and DNA sequences in databases, activity-based metagenomic studies typically only publish sequences from the hits retrieved from specific screens. Physical metagenomic libraries, conceptually similar to entire sequence datasets, are usually not straightforward to obtain by interested parties subsequent to publication. In order to facilitate unrestricted distribution of metagenomic libraries, we propose the adoption of open resource metagenomics, in line with the trend towards open access publishing, and similar to culture- and mutant-strain collections that have been the backbone of traditional microbiology and microbial genetics. The concept of open resource metagenomics includes preparation of physical DNA libraries, preferably in versatile vectors that facilitate screening in a diversity of host organisms, and pooling of clones so that single aliquots containing complete libraries can be easily distributed upon request. Database deposition of associated metadata and sequence data for each library provides researchers with information to select the most appropriate libraries for further research projects. As a starting point, we have established the Canadian MetaMicroBiome Library (CM(2)BL [1]). The CM(2)BL is a publicly accessible collection of cosmid libraries containing environmental DNA from soils collected from across Canada, spanning multiple biomes. The libraries were constructed such that the cloned DNA can be easily transferred to Gateway® compliant vectors, facilitating functional screening in virtually any surrogate microbial host for which there are available plasmid vectors. The libraries, which we are placing in the public domain, will be distributed upon request without restriction to members of both the

  6. Open resource metagenomics: a model for sharing metagenomic libraries

    PubMed Central

    Neufeld, J.D.; Engel, K.; Cheng, J.; Moreno-Hagelsieb, G.; Rose, D.R.; Charles, T.C.

    2011-01-01

    Both sequence-based and activity-based exploitation of environmental DNA have provided unprecedented access to the genomic content of cultivated and uncultivated microorganisms. Although researchers deposit microbial strains in culture collections and DNA sequences in databases, activity-based metagenomic studies typically only publish sequences from the hits retrieved from specific screens. Physical metagenomic libraries, conceptually similar to entire sequence datasets, are usually not straightforward to obtain by interested parties subsequent to publication. In order to facilitate unrestricted distribution of metagenomic libraries, we propose the adoption of open resource metagenomics, in line with the trend towards open access publishing, and similar to culture- and mutant-strain collections that have been the backbone of traditional microbiology and microbial genetics. The concept of open resource metagenomics includes preparation of physical DNA libraries, preferably in versatile vectors that facilitate screening in a diversity of host organisms, and pooling of clones so that single aliquots containing complete libraries can be easily distributed upon request. Database deposition of associated metadata and sequence data for each library provides researchers with information to select the most appropriate libraries for further research projects. As a starting point, we have established the Canadian MetaMicroBiome Library (CM2BL [1]). The CM2BL is a publicly accessible collection of cosmid libraries containing environmental DNA from soils collected from across Canada, spanning multiple biomes. The libraries were constructed such that the cloned DNA can be easily transferred to Gateway® compliant vectors, facilitating functional screening in virtually any surrogate microbial host for which there are available plasmid vectors. The libraries, which we are placing in the public domain, will be distributed upon request without restriction to members of both the

  7. Internal parity symmetry and degeneracy of Bethe Ansatz strings in the isotropic heptagonal magnetic ring

    NASA Astrophysics Data System (ADS)

    Milewski, J.; Lulek, B.; Lulek, T.; Łabuz, M.; Stagraczyński, R.

    2014-02-01

    The exact Bethe eigenfunctions for the heptagonal ring within the isotropic XXX model exhibit a doubly degenerated energy level in the three-deviation sector at the centre of the Brillouin zone. We demonstrate an explicit construction of these eigenfunctions by use of algebraic Bethe Ansatz, and point out a relation of degeneracy to parity conservation, applied to the configuration of strings for these eigenfunctions. Namely, the internal structure of the eigenfunctions (the 2-string and the 1-string, with opposite quasimomenta) admits generation of two mutually orthogonal eigenfunctions due to the fact that the strings which differ by their length are distinguishable objects.

  8. Collisions of Strings with Y Junctions

    SciTech Connect

    Copeland, E. J.; Kibble, T. W. B.; Steer, D. A.

    2006-07-14

    We study the dynamics of Nambu-Goto strings with junctions at which three strings meet. In particular, we exhibit one simple exact solution and examine the process of intercommuting of two straight strings in which they exchange partners but become joined by a third string. We show that there are important kinematical constraints on this process. The exchange cannot occur if the strings meet with very large relative velocity. This may have important implications for the evolution of cosmic superstring networks and non-Abelian string networks.

  9. Conceptual adsorption models and open issues pertaining to performance assessment

    SciTech Connect

    Serne, R.J.

    1991-10-01

    Recently several articles have been published that question the appropriateness of the distribution coefficient, Rd, concept to quantify radionuclide migration. Several distinct issues are raised by various critics. In this paper I provide some perspective on issues surrounding the modeling of nuclide retardation. The first section defines adsorption terminology and discusses various adsorption processes. The next section describes five commonly used adsorption conceptual models, specifically emphasizing what attributes that affect adsorption are explicitly accommodated in each model. I also review efforts to incorporate each adsorption model into performance assessment transport computer codes. The five adsorption conceptual models are (1) the constant Rd model, (2) the parametric Rd model, (3) isotherm adsorption models, (4) mass-action adsorption models, and (5) surface-complexation with electrostatics models. The final section discusses the adequacy of the distribution ratio concept, the adequacy of transport calculations that rely on constant retardation factors and the status of incorporating sophisticated adsorption models into transport codes.

  10. String theory and the dark glueball problem

    NASA Astrophysics Data System (ADS)

    Halverson, James; Nelson, Brent D.; Ruehle, Fabian

    2017-02-01

    We study cosmological constraints on dark pure Yang-Mills sectors. Dark glueballs are overproduced for large regions of ultraviolet parameter space. The problem may be alleviated in two ways: via a large preferential reheating into the visible sector, motivating certain inflation or modulus decay models, or via decays into axions or moduli, which are strongly constrained by nucleosynthesis and Δ Neff bounds. String models frequently have multiple hidden Yang-Mills sectors, which are subject to even stronger constraints due to the existence of multiple dark glueballs.

  11. Open source software engineering for geoscientific modeling applications

    NASA Astrophysics Data System (ADS)

    Bilke, L.; Rink, K.; Fischer, T.; Kolditz, O.

    2012-12-01

    OpenGeoSys (OGS) is a scientific open source project for numerical simulation of thermo-hydro-mechanical-chemical (THMC) processes in porous and fractured media. The OGS software development community is distributed all over the world and people with different backgrounds are contributing code to a complex software system. The following points have to be addressed for successful software development: - Platform independent code - A unified build system - A version control system - A collaborative project web site - Continuous builds and testing - Providing binaries and documentation for end users OGS should run on a PC as well as on a computing cluster regardless of the operating system. Therefore the code should not include any platform specific feature or library. Instead open source and platform independent libraries like Qt for the graphical user interface or VTK for visualization algorithms are used. A source code management and version control system is a definite requirement for distributed software development. For this purpose Git is used, which enables developers to work on separate versions (branches) of the software and to merge those versions at some point to the official one. The version control system is integrated into an information and collaboration website based on a wiki system. The wiki is used for collecting information such as tutorials, application examples and case studies. Discussions take place in the OGS mailing list. To improve code stability and to verify code correctness a continuous build and testing system, based on the Jenkins Continuous Integration Server, has been established. This server is connected to the version control system and does the following on every code change: - Compiles (builds) the code on every supported platform (Linux, Windows, MacOS) - Runs a comprehensive test suite of over 120 benchmarks and verifies the results Runs software development related metrics on the code (like compiler warnings, code complexity

  12. Bounds on topological Abelian string-vortex and string-cigar from information-entropic measure

    NASA Astrophysics Data System (ADS)

    Correa, R. A. C.; Dantas, D. M.; Almeida, C. A. S.; da Rocha, Roldão

    2016-04-01

    In this work we obtain bounds on the topological Abelian string-vortex and on the string-cigar, by using a new measure of configurational complexity, known as configurational entropy. In this way, the information-theoretical measure of six-dimensional braneworlds scenarios is capable to probe situations where the parameters responsible for the brane thickness are arbitrary. The so-called configurational entropy (CE) selects the best value of the parameter in the model. This is accomplished by minimizing the CE, namely, by selecting the most appropriate parameters in the model that correspond to the most organized system, based upon the Shannon information theory. This information-theoretical measure of complexity provides a complementary perspective to situations where strictly energy-based arguments are inconclusive. We show that the higher the energy the higher the CE, what shows an important correlation between the energy of the a localized field configuration and its associated entropic measure.

  13. Hall-MHD and PIC Modeling of the Conduction-to-Opening Transition in a Plasma Opening Switch

    NASA Astrophysics Data System (ADS)

    Schumer, J. W.; SwanekampDdagger, S. B.; Ottinger, P. F.; Commisso, R. J.; Weber, B. V.

    1998-11-01

    Utilizing the fast opening characteristics of a plasma opening switch (POS), inductive energy storage devices can generate short-duration high-power pulses (<0.1 μ s, >1 TW) with current rise-times on the order of 10 ns. Plasma redistribution and thinning during the POS conduction phase can be modeled adequately with MHD methods. By including the Hall term in Ohm's Law, MHD methods can simulate plasmas with density gradient scale lengths between c/ω_pe < Ln < c/ω_pi. However, the neglect of electron inertia (c/ω_pe) and space-charge separation (λ_De) by single-fluid theory eventually becomes invalid in small gap regions that form during POS opening. PIC methods are well-suited for low-density plasmas, but are numerically taxed by high-density POS regions. An interface converts MHD (Mach2) output into PIC (Magic) input suitable for validating various transition criteria through comparison of current and density distributions from both methods. We will discuss recent progress in interfacing Hall-MHD and PIC simulations. Work supported by Defense Special Weapons Agency. ^ NRL-NRC Research Associate. hspace0.25in ^ JAYCOR, Vienna, VA 22102.

  14. Topological string theory and enumerative geometry

    NASA Astrophysics Data System (ADS)

    Song, Yun S.

    2001-10-01

    In this thesis we investigate several problems which have their roots in both topological string theory and enumerative geometry. In the former case, underlying theories are topological field theories, whereas the latter case is concerned with intersection theories on moduli spaces. A permeating theme in this thesis is to examine the close interplay between these two complementary fields of study. The main problems addressed are as follows: In considering the Hurwitz enumeration problem of branched covers of compact connected Riemann surfaces, we completely solve the problem in the case of simple Hurwitz numbers. In addition, utilizing the connection between Hurwitz numbers and Hodge integrals, we derive a generating function for the latter on the moduli space overline Mg,2 of 2- pointed, genus- g Deligne-Mumford stable curves. We also investigate Givental's recent conjecture regarding semisimple Frobenius structures and Gromov- Witten invariants, both of which are closely related to topological field theories; we consider the case of a complex projective line P1 as a specific example and verify his conjecture at low genera. In the last chapter, we demonstrate that certain topological open string amplitudes can be computed via relative stable morphisms in the algebraic category.

  15. Fermionic ghosts in Moyal string field theory

    NASA Astrophysics Data System (ADS)

    Bars, Itzhak; Kishimoto, Isao; Matsuo, Yutaka

    2003-07-01

    We complete the construction of the Moyal star formulation of bosonic open string field theory (MSFT) by providing a detailed study of the fermionic ghost sector. In particular, as in the case of the matter sector, (1) we construct a map from Witten's star product to the Moyal product, (2) we propose a regularization scheme which is consistent with the matter sector and (3) as a check of the formalism, we derive the ghost Neumann coefficients algebraically directly from the Moyal product. The latter satisfy the Gross-Jevicki nonlinear relations even in the presence of the regulator, and when the regulator is removed they coincide numerically with the expression derived from conformal field theory. After this basic construction, we derive a regularized action of string field theory in the Siegel gauge and define the Feynman rules. We give explicitly the analytic expression of the off-shell four point function for tachyons, including the ghost contribution. Some of the results in this paper have already been used in our previous publications. This paper provides the technical details of the computations which were omitted there.

  16. Higher-Loop Amplitude Monodromy Relations in String and Gauge Theory.

    PubMed

    Tourkine, Piotr; Vanhove, Pierre

    2016-11-18

    The monodromy relations in string theory provide a powerful and elegant formalism to understand some of the deepest properties of tree-level field theory amplitudes, like the color-kinematics duality. This duality has been instrumental in tremendous progress on the computations of loop amplitudes in quantum field theory, but a higher-loop generalization of the monodromy construction was lacking. In this Letter, we extend the monodromy relations to higher loops in open string theory. Our construction, based on a contour deformation argument of the open string diagram integrands, leads to new identities that relate planar and nonplanar topologies in string theory. We write one and two-loop monodromy formulas explicitly at any multiplicity. In the field theory limit, at one-loop we obtain identities that reproduce known results. At two loops, we check our formulas by unitarity in the case of the four-point N=4 super-Yang-Mills amplitude.

  17. Spider Silk Violin Strings with a Unique Packing Structure Generate a Soft and Profound Timbre

    NASA Astrophysics Data System (ADS)

    Osaki, Shigeyoshi

    2012-04-01

    We overcome the difficulties in pulling long draglines from spiders, twist bundles of dragline filaments, and succeed in preparing violin strings. The twisting is found to change the cross section shapes of filaments from circular to polygonal and to optimize the packing structure with no openings among filaments providing mechanically strong and elastic strings. The spider string signal peaks of overtones for the violin are relatively large at high frequencies, generating a soft and profound timbre. Such a preferable timbre is considered to be due to the unique polygonal packing structure which provides valuable knowledge for developing new types of materials.

  18. Spider silk violin strings with a unique packing structure generate a soft and profound timbre.

    PubMed

    Osaki, Shigeyoshi

    2012-04-13

    We overcome the difficulties in pulling long draglines from spiders, twist bundles of dragline filaments, and succeed in preparing violin strings. The twisting is found to change the cross section shapes of filaments from circular to polygonal and to optimize the packing structure with no openings among filaments providing mechanically strong and elastic strings. The spider string signal peaks of overtones for the violin are relatively large at high frequencies, generating a soft and profound timbre. Such a preferable timbre is considered to be due to the unique polygonal packing structure which provides valuable knowledge for developing new types of materials.

  19. Cooperative strings and glassy interfaces.

    PubMed

    Salez, Thomas; Salez, Justin; Dalnoki-Veress, Kari; Raphaël, Elie; Forrest, James A

    2015-07-07

    We introduce a minimal theory of glass formation based on the ideas of molecular crowding and resultant string-like cooperative rearrangement, and address the effects of free interfaces. In the bulk case, we obtain a scaling expression for the number of particles taking part in cooperative strings, and we recover the Adam-Gibbs description of glassy dynamics. Then, by including thermal dilatation, the Vogel-Fulcher-Tammann relation is derived. Moreover, the random and string-like characters of the cooperative rearrangement allow us to predict a temperature-dependent expression for the cooperative length ξ of bulk relaxation. Finally, we explore the influence of sample boundaries when the system size becomes comparable to ξ. The theory is in agreement with measurements of the glass-transition temperature of thin polymer films, and allows quantification of the temperature-dependent thickness hm of the interfacial mobile layer.

  20. Safety First When Stringing Holiday Lights

    MedlinePlus

    ... fullstory_162645.html Safety First When Stringing Holiday Lights Putting lights on a metallic tree is an electrical hazard, ... TUESDAY, Dec. 20, 2016 (HealthDay News) -- Stringing up lights is a holiday tradition for many families, but ...

  1. Energy and Momentum Transport in String Waves

    ERIC Educational Resources Information Center

    Juenker, D. W.

    1976-01-01

    Formulas are derived for the energy, momentum, and angular momentum transmitted by waves of arbitrary shape in an inextensible string by pure transverse waves in a string using Tait's procedure. (Author/CP)

  2. Geometry independence of three-string vertices

    NASA Astrophysics Data System (ADS)

    Maeno, Masahiro

    1989-01-01

    The geometry independence of three-string vertices in both HIKKO's and Witten's string field theories is examined. A careful regularization shows that the anomaly which has been reported by Morris and Mañes vanishes.

  3. Acoustic data transmission through a drill string

    DOEpatents

    Drumheller, D.S.

    1988-04-21

    Acoustical signals are transmitted through a drill string by canceling upward moving acoustical noise and by preconditioning the data in recognition of the comb filter impedance characteristics of the drill string. 5 figs.

  4. Actomyosin purse strings: renewable resources that make morphogenesis robust and resilient.

    PubMed

    Rodriguez-Diaz, Alice; Toyama, Yusuke; Abravanel, Daniel L; Wiemann, John M; Wells, Adrienne R; Tulu, U Serdar; Edwards, Glenn S; Kiehart, Daniel P

    2008-08-01

    Dorsal closure in Drosophila is a model system for cell sheet morphogenesis and wound healing. During closure two sheets of lateral epidermis move dorsally to close over the amnioserosa and form a continuous epidermis. Forces from the amnioserosa and actomyosin-rich, supracellular purse strings at the leading edges of these lateral epidermal sheets drive closure. Purse strings generate the largest force for closure and occur during development and wound healing throughout phylogeny. We use laser microsurgery to remove some or all of the purse strings from developing embryos. Free edges produced by surgery undergo characteristic responses as follows. Intact cells in the free edges, which previously had no purse string, recoil away from the incision and rapidly assemble new, secondary purse strings. Next, recoil slows, then pauses at a turning point. Following a brief delay, closure resumes and is powered to completion by the secondary purse strings. We confirm that the assembly of the secondary purse strings requires RhoA. We show that alpha-actinin alternates with nonmuscle myosin II along purse strings and requires nonmuscle myosin II for its localization. Together our data demonstrate that purse strings are renewable resources that contribute to the robust and resilient nature of closure.

  5. Reference Model for an Open Archival Information System

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This document is a technical report for use in developing a consensus on what is required to operate a permanent, or indefinite long-term, archive of digital information. It may be useful as a starting point for a similar document addressing the indefinite long-term preservation of non-digital information. This report establishes a common framework of terms and concepts which comprise an Open Archival Information System (OAIS). It allows existing and future archives to be more meaningfully compared and contrasted. It provides a basis for further standardization of within an archival context and it should promote greater vendor awareness of, and support of , archival requirements. Through the process of normal evolution, it is expected that expansion, deletion, or modification to this document may occur. This report is therefore subject to CCSDS document management and change control procedures.

  6. The structural dynamics of the American five-string banjo.

    PubMed

    Dickey, Joe

    2003-11-01

    The American five-string banjo is unique among musical instruments in that many significant parameters that effect tone are easily adjusted. This is probably why so many banjo players fiddle with their banjo. The instrument is a combination of canonical vibrating systems (strings, and a circular membrane) and therefore more amenable to analysis and modeling than most other musical instruments (e.g., the violin). Such an analysis is presented here. The model is a harmonically driven string which excites the other strings and a membrane under tension, causing the membrane to radiate sound. Three figures-of-merit, FOMs, are assumed. They are loudness, brightness, and decay of the sound. The effects of a number of parameters on the proposed FOMs are investigated. Among these are the loss factor and tension of the membrane, the mass of the bridge, and the location on the string of the excitation. It is noted that the calculated effects of the changes agree with generally accepted setup practices.

  7. The structural dynamics of the American five-string banjo

    NASA Astrophysics Data System (ADS)

    Dickey, Joe

    2003-11-01

    The American five-string banjo is unique among musical instruments in that many significant parameters that effect tone are easily adjusted. This is probably why so many banjo players fiddle with their banjo. The instrument is a combination of canonical vibrating systems (strings, and a circular membrane) and therefore more amenable to analysis and modeling than most other musical instruments (e.g., the violin). Such an analysis is presented here. The model is a harmonically driven string which excites the other strings and a membrane under tension, causing the membrane to radiate sound. Three figures-of-merit, FOMs, are assumed. They are loudness, brightness, and decay of the sound. The effects of a number of parameters on the proposed FOMs are investigated. Among these are the loss factor and tension of the membrane, the mass of the bridge, and the location on the string of the excitation. It is noted that the calculated effects of the changes agree with generally accepted setup practices.

  8. Cosmological constraints on cosmic-string gravitational radiation

    NASA Astrophysics Data System (ADS)

    Caldwell, R. R.; Allen, B.

    1992-05-01

    The primordial nucleosynthesis and pulsar timing noise constraints on cosmic-string gravitational radiation are computed. The computation consists of a numerical integration of the Friedmann-Robertson-Walker Einstein equations which describe a universe containing radiation, dust, and a ``one-scale''-model cosmic-string component. The procedure takes into account the effects of the annihilations of massive particle species on the equation of state of the cosmological fluid. An expression for the power emitted per mode of oscillation by a cosmic-string loop, suggested by both analytic calculations and recent numerical simulations, is used. The results of the computation are spectra of the cosmic-string gravitational radiation at nucleosynthesis and at present. Comparison of these spectra with the observed bounds on pulsar timing noise, and the observed bound on the effective number of light neutrino species permitted by the model of nucleosynthesis, allows one to exclude a range of values of μ, the cosmic-string linear mass density, for certain values of α, the size of a newly formed loop as a fraction of the particle horizon radius. We find constraints to μ which are more restrictive than any previous limit.

  9. Violin Pedagogy and the Physics of the Bowed String

    NASA Astrophysics Data System (ADS)

    McLeod, Alexander Rhodes

    The paper describes the mechanics of violin tone production using non-specialist language, in order to present a scientific understanding of tone production accessible to a broad readership. As well as offering an objective understanding of tone production, this model provides a powerful tool for analyzing the technique of string playing. The interaction between the bow and the string is quite complex. Literature reviewed for this study reveals that scientific investigations have provided important insights into the mechanics of string playing, offering explanations for factors which both contribute to and limit the range of tone colours and dynamics that stringed instruments can produce. Also examined in the literature review are significant works of twentieth century violin pedagogy exploring tone production on the violin, based on the practical experience of generations of teachers and performers. Hermann von Helmholtz described the stick-slip cycle which drives the string in 1863, which replaced earlier ideas about the vibration of violin strings. Later, scientists such as John Schelleng and Lothar Cremer were able to demonstrate how the mechanics of the bow-string interaction can create different tone colours. Recent research by Anders Askenfelt, Knut Guettler, and Erwin Schoonderwaldt have continued to refine earlier research in this area. The writings of Lucien Capet, Leopold Auer, Carl Flesch, Paul Rolland, Kato Havas, Ivan Galamian, and Simon Fischer are examined and analyzed. Each author describes a different approach to tone production on the violin, representing a different understanding of the underlying mechanism. Analyzing these writings within the context of a scientific understanding of tone production makes it possible to compare these approaches more consistently, and to synthesize different concepts drawn from the diverse sources evaluated.

  10. Bit-string scattering theory

    SciTech Connect

    Noyes, H.P.

    1990-01-29

    We construct discrete space-time coordinates separated by the Lorentz-invariant intervals h/mc in space and h/mc{sup 2} in time using discrimination (XOR) between pairs of independently generated bit-strings; we prove that if this space is homogeneous and isotropic, it can have only 1, 2 or 3 spacial dimensions once we have related time to a global ordering operator. On this space we construct exact combinatorial expressions for free particle wave functions taking proper account of the interference between indistinguishable alternative paths created by the construction. Because the end-points of the paths are fixed, they specify completed processes; our wave functions are born collapsed''. A convenient way to represent this model is in terms of complex amplitudes whose squares give the probability for a particular set of observable processes to be completed. For distances much greater than h/mc and times much greater than h/mc{sup 2} our wave functions can be approximated by solutions of the free particle Dirac and Klein-Gordon equations. Using a eight-counter paradigm we relate this construction to scattering experiments involving four distinguishable particles, and indicate how this can be used to calculate electromagnetic and weak scattering processes. We derive a non-perturbative formula relating relativistic bound and resonant state energies to mass ratios and coupling constants, equivalent to our earlier derivation of the Bohr relativistic formula for hydrogen. Using the Fermi-Yang model of the pion as a relativistic bound state containing a nucleon-antinucleon pair, we find that (G{sub {pi}N}{sup 2}){sup 2} = (2m{sub N}/m{sub {pi}}){sup 2} {minus} 1. 21 refs., 1 fig.

  11. Termination of String Rewriting Rules that have One Pair of Overlaps

    NASA Technical Reports Server (NTRS)

    Geser, Alfons; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    This paper presents a partial solution to the long standing open problem of termination of one-rule string rewriting. Overlaps between the two sides of the rule play a central role in existing termination criteria. We characterize termination of all one-rule string rewriting systems that have one such overlap at either end. This both completes a result of Kurth and generalizes a result of Shikishima-Tsuji et al.

  12. Construction of action for heterotic string field theory including the Ramond sector

    NASA Astrophysics Data System (ADS)

    Goto, Keiyu; Kunitomo, Hiroshi

    2016-12-01

    Extending the formulation for open superstring field theory given in arXiv:1508.00366, we attempt to construct a complete action for heterotic string field theory. The action is non-polynomial in the Ramond string field Ψ, and we construct it order by order in Ψ. Using a dual formulation in which the role of η and Q is exchanged, the action is explicitly obtained at the quadratic and quartic order in Ψ with the gauge transformations.

  13. Behavior of boundary string field theory associated with integrable massless flow.

    PubMed

    Fujii, A; Itoyama, H

    2001-06-04

    We put forward an idea that the boundary entropy associated with integrable massless flow of thermodynamic Bethe ansatz (TBA) is identified with tachyon action of boundary string field theory. We show that the temperature parametrizing a massless flow in the TBA formalism can be identified with tachyon energy for the classical action at least near the ultraviolet fixed point, i.e., the open string vacuum.

  14. Twenty-five questions for string theorists

    SciTech Connect

    Binetruy, Pierre; Kane, G.L.; Lykken, Joseph D.; Nelson, Brent D.; /Pennsylvania U.

    2005-09-01

    In an effort to promote communication between the formal and phenomenological branches of the high-energy theory community, we provide a description of some important issues in supersymmetric and string phenomenology. We describe each within the context of string constructions, illustrating them with specific examples where applicable. Each topic culminates in a set of questions that we believe are amenable to direct consideration by string theorists, and whose answers we think could help connect string theory and phenomenology.

  15. Using cosmic strings to relate local geometry to spatial topology

    NASA Astrophysics Data System (ADS)

    Duston, Christopher Levi

    In this paper, we will discuss how cosmic strings can be used to bridge the gap between the local geometry of our spacetime model and the global topology. The primary tool is the theory of foliations and surfaces, and together with observational constraints, we can isolate several possibilities for the topology of the spatial section of the observable universe. This implies that the discovery of cosmic strings would not just be significant for an understanding of structure formation in the early universe, but also for the global properties of the spacetime model.

  16. Stabilization of semilocal strings by dark scalar condensates

    NASA Astrophysics Data System (ADS)

    Forgács, Péter; Lukács, Árpád

    2017-02-01

    Semilocal and electroweak strings are well known to be unstable against unwinding by the condensation of the second Higgs component in their cores. A large class of current models of dark matter contains dark scalar fields coupled to the Higgs sector of the Standard Model (Higgs portal) and/or dark U(1) gauge fields. It is shown that Higgs-portal-type couplings and a gauge kinetic mixing term of the dark U(1) gauge field have a significant stabilizing effect on semilocal strings in the "visible" sector.

  17. 78 FR 29139 - Medicare Program; Bundled Payments for Care Improvement Model 1 Open Period

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-17

    ... participation in Model 1 of the Bundled Payments for Care Improvement initiative. DATES: Model 1 of the Bundled Payments for Care Improvement Deadline: Interested organizations must submit a Model 1 Open Period... regarding Model 1 of the Bundled Payments for Care Improvement initiative. For additional information...

  18. The 1974 AVCR Young Scholar Paper: An Open-System Model of Learning

    ERIC Educational Resources Information Center

    Winn, William

    1975-01-01

    Rejecting the cybernetic model of the learner, the author offers an open-system model based on von Bertalanffy's equation for growth of the living organism. The model produces four learning curves, not just the logarithmic curve produced by the successive approximations of the cybernetic model. (Editor)

  19. The Open Flip--A Digital Economic Model for Education

    ERIC Educational Resources Information Center

    Weller, Martin

    2016-01-01

    The advent of the internet and digital technologies has given rise to a number of new economic models. These have often been applied to education, but either through faults in the initial models or differences in the characteristics of the education sector, they have not proven to be widely applicable. The use of digital, network technologies…

  20. An open-population hierarchical distance sampling model

    USGS Publications Warehouse

    Sollmann, Rachel; Beth Gardner,; Richard B Chandler,; Royle, J. Andrew; T Scott Sillett,

    2015-01-01

    Modeling population dynamics while accounting for imperfect detection is essential to monitoring programs. Distance sampling allows estimating population size while accounting for imperfect detection, but existing methods do not allow for direct estimation of demographic parameters. We develop a model that uses temporal correlation in abundance arising from underlying population dynamics to estimate demographic parameters from repeated distance sampling surveys. Using a simulation study motivated by designing a monitoring program for island scrub-jays (Aphelocoma insularis), we investigated the power of this model to detect population trends. We generated temporally autocorrelated abundance and distance sampling data over six surveys, using population rates of change of 0.95 and 0.90. We fit the data generating Markovian model and a mis-specified model with a log-linear time effect on abundance, and derived post hoc trend estimates from a model estimating abundance for each survey separately. We performed these analyses for varying number of survey points. Power to detect population changes was consistently greater under the Markov model than under the alternatives, particularly for reduced numbers of survey points. The model can readily be extended to more complex demographic processes than considered in our simulations. This novel framework can be widely adopted for wildlife population monitoring.