Complete action for open superstring field theory
NASA Astrophysics Data System (ADS)
Kunitomo, Hiroshi; Okawa, Yuji
2016-02-01
We construct a complete action for open superstring field theory that includes the Neveu-Schwarz sector and the Ramond sector. For the Neveu-Schwarz sector, we use the string field in the large Hilbert space of the superconformal ghost sector, and the action in the Neveu-Schwarz sector is the same as the Wess-Zumino-Witten-like action of the Berkovits formulation. For the Ramond sector, it is known that the BRST cohomology on an appropriate subspace of the small Hilbert space reproduces the correct spectrum, and we use the string field projected to this subspace. We show that the action is invariant under gauge transformations that are consistent with the projection for the string field in the Ramond sector.
Open superstring field theory on the restricted Hilbert space
NASA Astrophysics Data System (ADS)
Konopka, Sebastian; Sachs, Ivo
2016-04-01
It appears that the formulation of an action for the Ramond sector of open superstring field theory requires to either restrict the Hilbert space for the Ramond sector or to introduce auxiliary fields with picture -3/2. The purpose of this note is to clarify the relation of the restricted Hilbert space with other approaches and to formulate open superstring field theory entirely in the small Hilbert space.
Multigluon scattering in open superstring theory
Stieberger, Stephan; Taylor, Tomasz R.
2006-12-15
We discuss the amplitudes describing N-gluon scattering in type I superstring theory, on a disk world sheet. After reviewing the general structure of amplitudes and the complications created by the presence of a large number of vertices at the boundary, we focus on the most promising case of maximally helicity violating (MHV) configurations because in this case, the zero Regge slope limit ({alpha}{sup '}{yields}0) is particularly simple. We obtain the full-fledged MHV disk amplitudes for N=4, 5, and N=6 gluons, expressed in terms of one, two and six functions of kinematic invariants, respectively. These functions represent certain boundary integrals--generalized Euler integrals--which for N{>=}6 correspond to multiple hypergeometric series (generalized Kampe de Feriet functions). Their {alpha}{sup '} expansions lead to Euler-Zagier sums. For arbitrary N, we show that the leading string corrections to the Yang-Mills amplitude, of order O({alpha}{sup '2}), originate from the well-known {alpha}{sup '2} TrF{sup 4} effective interactions of four gauge field strength tensors. By using iteration based on the soft gluon limit, we derive a simple formula valid to that order for arbitrary N. We argue that such a procedure can be extended to all orders in {alpha}{sup '}. If nature gracefully picked a sufficiently low string mass scale, our results would be important for studying string effects in multijet production at the Large Hadron Collider (LHC)
Complete action for open superstring field theory with cyclic A ∞ structure
NASA Astrophysics Data System (ADS)
Erler, Theodore; Okawa, Yuji; Takezaki, Tomoyuki
2016-08-01
We construct a gauge invariant action for the Neveu-Schwarz and Ramond sectors of open superstring field theory realizing a cyclic A ∞ structure, providing the first complete and fully explicit solution to the classical Batalin-Vilkovisky master equation in superstring field theory. We also demonstrate the equivalence of our action to the Wess-Zumino-Witten-based construction of Kunitomo and one of the authors.
Resolving Witten's superstring field theory
NASA Astrophysics Data System (ADS)
Erler, Theodore; Konopka, Sebastian; Sachs, Ivo
2014-04-01
We regulate Witten's open superstring field theory by replacing the picturechanging insertion at the midpoint with a contour integral of picture changing insertions over the half-string overlaps of the cubic vertex. The resulting product between string fields is non-associative, but we provide a solution to the A ∞ relations defining all higher vertices. The result is an explicit covariant superstring field theory which by construction satisfies the classical BV master equation.
Nonrelativistic superstring theories
Kim, Bom Soo
2007-12-15
We construct a supersymmetric version of the critical nonrelativistic bosonic string theory [B. S. Kim, Phys. Rev. D 76, 106007 (2007).] with its manifest global symmetry. We introduce the anticommuting bc conformal field theory (CFT) which is the super partner of the {beta}{gamma} CFT. The conformal weights of the b and c fields are both 1/2. The action of the fermionic sector can be transformed into that of the relativistic superstring theory. We explicitly quantize the theory with manifest SO(8) symmetry and find that the spectrum is similar to that of type IIB superstring theory. There is one notable difference: the fermions are nonchiral. We further consider noncritical generalizations of the supersymmetric theory using the superspace formulation. There is an infinite range of possible string theories similar to the supercritical string theories. We comment on the connection between the critical nonrelativistic string theory and the lightlike linear dilaton theory.
Theory of ultracold superstrings
Snoek, Michiel; Vandoren, S.; Stoof, H. T. C.
2006-09-15
The combination of a vortex line in a one-dimensional optical lattice with fermions bound to the vortex core makes up an ultracold superstring. We give a detailed derivation of the way to make this supersymmetric string in the laboratory. In particular, we discuss the presence of a fermionic bound state in the vortex core and the tuning of the laser beams needed to achieve supersymmetry. Moreover, we discuss experimental consequences of supersymmetry and identify the precise supersymmetry in the problem. Finally, we make the mathematical connection with string theory.
Schwarz, John H.
1999-07-15
In this talk I will survey some of the basic facts about superstring theories in 10 dimensions and the dualities that relate them to M theory in 11 dimensions. Then I will mention some important unresolved issues.
The sociology of superstring theory
NASA Astrophysics Data System (ADS)
Dick, Brian Douglas
This dissertation carefully tracks the historical origins of superstring theory in high energy particle physics, its subsequent decline under the guise of the "dual model" in the mid-1970s, and its reemergence in the mid-1980s in what came to be known as the "first superstring revolution." I then explore the scientific controversy that emerged after the first superstring revolution due to superstring theory's lack of contact with experiment, and the set of institutional pressures felt by string theorists that they refer to as the "sociology" of superstring theory. I employ and develop the concept of "scientific legitimacy" to organize the historical analysis of superstring theory and the subsequent scientific controversy. My study emphasizes the interpretive flexibility of theory selection, the role of scientific judgment in the acceptance of scientific knowledge, and the ways in which boundary work operates in scientific controversies. A careful analysis of the empirical case of superstring theory indicates some of the limitations associated with the ways in which the closure of scientific controversies has traditionally been conceptualized by social researchers. To help overcome these difficulties, I propose a four-fold typology that I refer to as the "epistemic space of rejected science."
Summability of superstring theory
NASA Astrophysics Data System (ADS)
Davis, Simon
1998-07-01
Several arguments are given for the summability of the superstring perturbation series. Whereas the Schottky group coordinatization of moduli space may be used to provide refined estimates of large-order bosonic string amplitudes, the super-Schottky group variables define a measure for the supermoduli space integral which leads to upper bounds on superstring scattering amplitudes.
Recent developments in superstring theory
Schwarz, John H.
1998-01-01
There have been many remarkable developments in our understanding of superstring theory in the past few years, a period that has been described as “the second superstring revolution.” In particular, what once appeared to be five distinct theories are now recognized to be different manifestations of a single (unique) underlying theory. Some of the evidence for this, based on dualities and the appearance of an eleventh dimension, is presented. Also, a specific proposal for the underlying theory, called “Matrix Theory,” is described. The presentation is intended primarily for the benefit of nonexperts. PMID:9501161
Recent developments in superstring theory.
Schwarz, J H
1998-03-17
There have been many remarkable developments in our understanding of superstring theory in the past few years, a period that has been described as "the second superstring revolution." In particular, what once appeared to be five distinct theories are now recognized to be different manifestations of a single (unique) underlying theory. Some of the evidence for this, based on dualities and the appearance of an eleventh dimension, is presented. Also, a specific proposal for the underlying theory, called "Matrix Theory," is described. The presentation is intended primarily for the benefit of nonexperts. PMID:9501161
Spin-statistics violations in superstring theory
Jackson, Mark G.
2008-12-15
I describe how superstring theory may violate spin statistics in an experimentally observable manner. Reviewing the basics of superstring interactions and how to utilize these to produce a statistical phase, I then apply these ideas to two specific examples. The first is the case of heterotic world sheet linkings, whereby one small closed string momentarily enlarges sufficiently to pass over another, producing such a statistical phase. The second is the braneworld model with noncommutative geometry, whereby matter composed of open strings may couple to a background in which spacetime coordinates do not commute, modifying the field (anti)commutator algebra. I conclude with ways to sharpen and experimentally test these exciting avenues to possibly verify superstring theory.
Non-Relativistic Superstring Theories
Kim, Bom Soo
2007-12-14
We construct a supersymmetric version of the 'critical' non-relativistic bosonic string theory [1] with its manifest global symmetry. We introduce the anticommuting bc CFT which is the super partner of the {beta}{gamma} CFT. The conformal weights of the b and c fields are both 1/2. The action of the fermionic sector can be transformed into that of the relativistic superstring theory. We explicitly quantize the theory with manifest SO(8) symmetry and find that the spectrum is similar to that of Type IIB superstring theory. There is one notable difference: the fermions are non-chiral. We further consider 'noncritical' generalizations of the supersymmetric theory using the superspace formulation. There is an infinite range of possible string theories similar to the supercritical string theories. We comment on the connection between the critical non-relativistic string theory and the lightlike Linear Dilaton theory.
Recent Progress in Superstring Theory
NASA Astrophysics Data System (ADS)
Schwarz, John H.
2002-12-01
Superstring theory has continued to develop at a rapid clip in the past few years. Following a quick review of some of the major discoveries prior to 1998, this talk focuses on a few of the more recent developments. The topics I have chosen to present are 1) the use of K-theory to classify conserved charges carried by D-branes; 2) tachyon condensation on unstable D-brane systems; and 3) an introduction to noncommutative field theories and their solitons.
Black hole entropy in canonical quantum gravity and superstring theory
Susskind, L.; Uglum, J. )
1994-08-15
In this paper the entropy of an eternal Schwarzschild black hole is studied in the limit of an infinite black hole mass. The problem is addressed from the point of view of both canonical quantum gravity and superstring theory. The entropy per unit area of a free scalar field propagating in a fixed black hole background is shown to be quadratically divergent near the horizon. It is shown that such quantum corrections to the entropy per unit area are equivalent to the quantum corrections to the gravitational coupling. Unlike field theory, superstring theory provides a set of identifiable configurations which give rise to the classical contribution to the entropy per unit area. These configurations can be understood as open superstrings with both ends attached to the horizon. The entropy per unit area is shown to be finite to all orders in superstring perturbation theory. The importance of these conclusions to the resolution of the problem of black hole information loss is reiterated.
Introduction to string and superstring theory II
Peskin, M.E.
1987-03-01
Conformal field theory is reviewed, then conformal invariance is used to rederive the basic results on the embedding dimensionality for bosonic and fermionic strings. The spectrum of the bosonic and the computation of scattering amplitudes are discussed. The formalism used is extended to clarify the origin of Yang-Mills gauge invariance in the open bosonic string theory. The question of the general-coordinate gauge invariance of string theory is addressed, presenting two disparate viewpoints on this question. A brief introduction is then given of the reduction from the idealized string theory in 10 extended dimensions to more realistic solutions in which all but 4 of these dimensions are compactified. The state of knowledge about the space-time supersymmetry of the superstring from the covariant viewpoint is outlined. An approach for identifying possible 6-dimensional spaces which might represent the form of the compact dimensions is discussed, and the orbifold scheme of compactification is presented. 77 refs., 18 figs. (LEW)
Ramond equations of motion in superstring field theory
NASA Astrophysics Data System (ADS)
Erler, Theodore; Konopka, Sebastian; Sachs, Ivo
2015-11-01
We extend the recently constructed NS superstring field theories in the small Hilbert space to give classical field equations for all superstring theories, including Ramond sectors. We also comment on the realization of supersymmetry in this framework.
NASA Astrophysics Data System (ADS)
Green, M. B.
1986-09-01
Superstring theory treats elementary particles as harmonics of strings 10 to the -35 m long. The gravity model in the theory expands the universe to nine spatial dimensions and time, with all motion following geodesic lines and only four dimensions ever being observable. The possible configurations of a field of strings in space would be more numerous than all points in space, which leads to a new concept of space in which strings are wavelike disturbances. Certain disturbances produce gravity through the medium of the massless spin-2 graviton, which is actually two strings joined end to end and vibrating. Strings move across world sheets of minimum area, and closed strings, i.e., strings with open ends attached to one another, travel world sheets that touch the string at its starting point and at its end in spacetime. The nine spatial dimensions of the theory permit chirality, which provides agreement with calculations of the Yang-Mills forces. Directions being taken in further theoretical research are summarized, along with possible venues for experimental verification.
On the Foundations of Superstring Theory
NASA Astrophysics Data System (ADS)
't Hooft, Gerard
2013-01-01
Superstring theory is an extension of conventional quantum field theory that allows for stringlike and branelike material objects besides pointlike particles. The basic foundations on which the theory is built are amazingly shaky, and, equally amazingly, it seems to be this lack of solid foundations to which the theory owes its strength. We emphasize that such a situation is legitimate only in the development phases of a new doctrine. Eventually, a more solidly founded structure must be sought. Although it is advertised as a "candidate theory of quantum gravity", we claim that string theory may not be exactly that. Rather, just like quantum field theory itself, it is a general mathematical framework for a class of theories. Its major flaw could be that it still embraces a Copenhagen view on the relation between quantum mechanics and reality, while any "theory of everything", that is, a theory for the entire cosmos, should do better than that.
NS-NS sector of closed superstring field theory
NASA Astrophysics Data System (ADS)
Erler, Theodore; Konopka, Sebastian; Sachs, Ivo
2014-08-01
We give a construction for a general class of vertices in superstring field theory which include integration over bosonic moduli as well as the required picture changing insertions. We apply this procedure to find a covariant action for the NS-NS sector of Type II closed superstring field theory.
Supersymmetry restoration in superstring perturbation theory
NASA Astrophysics Data System (ADS)
Sen, Ashoke
2015-12-01
Superstring perturbation theory based on the 1PI effective theory approach has been useful for addressing the problem of mass renormalization and vacuum shift. We derive Ward identities associated with space-time supersymmetry transformation in this approach. This leads to a proof of the equality of renormalized masses of bosons and fermions and identities relating fermionic amplitudes to bosonic amplitudes after taking into account the effect of mass renormalization. This also relates unbroken supersymmetry to a given order in perturbation theory to absence of tadpoles of massless scalars to higher order. The results are valid at the perturbative vacuum as well as in the shifted vacuum when the latter describes the correct ground state of the theory. We apply this to SO(32) heterotic string theory on Calabi-Yau 3-folds where a one loop Fayet-Iliopoulos term apparently breaks supersymmetry at one loop, but analysis of the low energy effective field theory indicates that there is a nearby vacuum where supersymmetry is restored. We explicitly prove that the perturbative amplitudes of this theory around the shifted vacuum indeed satisfy the Ward identities associated with unbroken supersymmetry. We also test the general arguments by explicitly verifying the equality of bosonic and fermionic masses at one loop order in the shifted vacuum, and the appearance of two loop dilaton tadpole in the perturbative vacuum where supersymmetry is expected to be broken.
Supersymmetry of Green-Schwarz superstring and matrix string theory
Hyun, Seungjoon; Shin, Hyeonjoon
2001-08-15
We study the dynamics of a Green-Schwarz superstring on the gravitational wave background corresponding to the matrix string theory and the supersymmetry transformation rules of the superstring. The dynamics is obtained in the light-cone formulation and is shown to agree with that derived from matrix string theory. The supersymmetry structure has corrections due to the effect of the background and is identified with that of the low-energy one-loop effective action of matrix string theory in a two superstring background in the weak string coupling limit.
Superstrings and the search for the theory of everything
Peat, D.
1988-01-01
This book contains the following chapters: A Crisis in Physics; From Points to Strings; Nambu's String Theory; Grand Unification; Superstrings; Heterotic Strings: Two Dimensions in One; From Spinors to Twistors; Twistor Space; Twistor Gravity; and Into Deep Waters.
On the field theory expansion of superstring five point amplitudes
NASA Astrophysics Data System (ADS)
Boels, Rutger H.
2013-11-01
A simple recursive expansion algorithm for the integrals of tree level superstring five point amplitudes in a flat background is given which reduces the expansion to simple symbol(ic) manipulations. This approach can be used for instance to prove the expansion is maximally transcendental to all orders and to verify several conjectures made in recent literature to high order. Closed string amplitudes follow from these open string results by the KLT relations. To obtain insight into these results in particular the maximal R-symmetry violating amplitudes (MRV) in type IIB superstring theory are studied. The obtained expansion of the open string amplitudes reduces the analysis for MRV amplitudes to the classification of completely symmetric polynomials of the external legs, up to momentum conservation. Using Molien's theorem as a counting tool this problem is solved by constructing an explicit nine element basis for this class. This theorem may be of wider interest: as is illustrated at higher points it can be used to calculate dimensions of polynomials of external momenta invariant under any finite group for in principle any number of legs, up to momentum conservation. In the closed (or mixed) case this follows after application of the Kawai-Lewellen-Tye [1] relations (or their analogons [2,3]).
What lattice theorists can do for superstring/M-theory
NASA Astrophysics Data System (ADS)
Hanada, Masanori
2016-08-01
The gauge/gravity duality provides us with nonperturbative formulation of superstring/M-theory. Although inputs from gauge theory side are crucial for answering many deep questions associated with quantum gravitational aspects of superstring/M-theory, many of the important problems have evaded analytic approaches. For them, lattice gauge theory is the only hope at this moment. In this review I give a list of such problems, putting emphasis on problems within reach in a five-year span, including both Euclidean and real-time simulations.
The monster sporadic group and a theory underlying superstring models
Chapline, G.
1996-09-01
The pattern of duality symmetries acting on the states of compactified superstring models reinforces an earlier suggestion that the Monster sporadic group is a hidden symmetry for superstring models. This in turn points to a supersymmetric theory of self-dual and anti-self-dual K3 manifolds joined by Dirac strings and evolving in a 13 dimensional spacetime as the fundamental theory. In addition to the usual graviton and dilaton this theory contains matter-like degrees of freedom resembling the massless states of the heterotic string, thus providing a completely geometric interpretation for ordinary matter. 25 refs.
Consistent superstrings as solutions of the D = 26 bosonic string theory
NASA Astrophysics Data System (ADS)
Casher, A.; Englert, F.; Nicolai, H.; Taormina, A.
1985-11-01
Consistent closed ten-dimensional superstrings, i.e., the two N = 1 heterotic strings and the two N = 2 superstrings, are contained in the 26-dimensional bosonic closed string theory. The latter thus appears as the fundamental string theory.
Type II superstring field theory: geometric approach and operadic description
NASA Astrophysics Data System (ADS)
Jurčo, Branislav; Münster, Korbinian
2013-04-01
We outline the construction of type II superstring field theory leading to a geometric and algebraic BV master equation, analogous to Zwiebach's construction for the bosonic string. The construction uses the small Hilbert space. Elementary vertices of the non-polynomial action are described with the help of a properly formulated minimal area problem. They give rise to an infinite tower of superstring field products defining a {N} = 1 generalization of a loop homotopy Lie algebra, the genus zero part generalizing a homotopy Lie algebra. Finally, we give an operadic interpretation of the construction.
A simpler prescription for MHV graviton tree amplitudes in superstring theory
NASA Astrophysics Data System (ADS)
Ursulino, Tiago
2013-11-01
We extend the Berkovits-Maldacena prescription for MHV amplitudes of the open superstring to the closed superstring, showing that in the α' = 0 limit it reduces to the result of supergravity found recently by Hodges. We also verify that this prescription calculates the correct superstring tree level MHV amplitude for 4 gravitons including α' corrections.
From superstrings theory to the dark matter in galaxies
Matos, Tonatiuh
1999-10-25
Starting from the effective action of the low energy limit of superstrings theory, I find an exact solution of the field equations which geodesics behavie exactly as the trajectories of stars arround of a spiral galaxy. Here dark matter is of dilatonic origin. It is remarkable that the energy density of this space-time is the same as the used by astronomers to model galaxy stability. Some remarks about a universe dominated by dilatons are pointed out.
Descent relations in cubic superstring field theory
NASA Astrophysics Data System (ADS)
Aref'eva, I. Y.; Gorbachev, R.; Medvedev, P. B.; Rychkov, D. V.
2008-01-01
The descent relations between string field theory (SFT) vertices are characteristic relations of the operator formulation of SFT and they provide self-consistency of this theory. The descent relations langleV2|V1rangle and langleV3|V1rangle in the NS fermionic string field theory in the κ and discrete bases are established. Different regularizations and schemes of calculations are considered and relations between them are discussed.
Pure gauge configurations and solutions to fermionic superstring field theory equations of motion
NASA Astrophysics Data System (ADS)
Aref'eva, I. Ya; Gorbachev, R. V.; Medvedev, P. B.
2009-07-01
Recent results on solutions to the equation of motion of the cubic fermionic string field theory and an equivalence of nonpolynomial and cubic string field theory are discussed. To have the possibility of dealing with both GSO(+) and GSO(-) sectors in the uniform way, a matrix formulation for the NS fermionic SFT is used. In constructions of analytical solutions to open-string field theories truncated pure gauge configurations parametrized by wedge states play an essential role. The matrix form of this parametrization for NS fermionic SFT is presented. Using the cubic open superstring field theory as an example we demonstrate explicitly that for the large parameter of the perturbation expansion these truncated pure gauge configurations give divergent contributions to the equations of motion on the subspace of the wedge states. The perturbation expansion is corrected by adding extra terms that are just those necessary for the equation of motion contracted with the solution itself to be satisfied.
Superstring perturbation theory and Ramond-Ramond backgrounds
Berenstein, D.; Leigh, R.G.
1999-11-01
We consider perturbative type II superstring theory in the covariant NSR formalism in the presence of NSNS and RR backgrounds. A concrete example that we have in mind is the geometry of D3-branes which in the near-horizon region is AdS{sub 5}{times}S{sub 5}, although our methods may be applied to other backgrounds as well. We show how conformal invariance of the string path integral is maintained order by order in the number of holes. This procedure makes uses of the Fischler-Susskind mechanism to build up the background geometry. A simple formal expression is given for a {sigma}-model Lagrangian. This suggests a perturbative expansion in 1/g{sup 2}N and 1/N. As applications, we consider at leading order the mixing of RR and NSNS states, and the realization of the spacetime supersymmetry algebra. {copyright} {ital 1999} {ital The American Physical Society}
Constraints on Tree-Level Higher Order Gravitational Couplings in Superstring Theory
NASA Astrophysics Data System (ADS)
Stieberger, Stephan
2011-03-01
We consider the scattering amplitudes of five and six gravitons at tree level in superstring theory. Their power series expansions in the Regge slope α' are analyzed through the order α'8 showing some interesting constraints on higher order gravitational couplings in the effective superstring action such as the absence of R5 terms. Furthermore, some transcendentality constraints on the coefficients of the nonvanishing couplings are observed: the absence of zeta values of even weight through the order α'8 like the absence of ζ(2)ζ(3)R6 terms. Our analysis is valid for any superstring background in any space-time dimension, which allows for a conformal field theory description.
Revisiting the S-matrix approach to the open superstring low energy effective lagrangian
NASA Astrophysics Data System (ADS)
Barreiro, Luiz Antonio; Medina, Ricardo
2012-10-01
The conventional S-matrix approach to the (tree level) open string low energy effective lagrangian assumes that, in order to obtain all its bosonic α ' N order terms, it is necessary to know the open string (tree level) ( N + 2)-point amplitude of massless bosons, at least expanded at that order in α '. In this work we clarify that the previous claim is indeed valid for the bosonic open string, but for the supersymmetric one the situation is much more better than that: there are constraints in the kinematical bosonic terms of the amplitude (probably due to Spacetime Supersymmetry) such that a much lower open superstring n-point amplitude is needed to find all the α ' N order terms. In this `revisited' S-matrix approach we have checked that, at least up to α '4 order, using these kinematical constraints and only the known open superstring 4-point amplitude, it is possible to determine all the bosonic terms of the low energy effective lagrangian. The sort of results that we obtain seem to agree completely with the ones achieved by the method of BPS configurations, proposed about ten years ago. By means of the KLT relations, our results can be mapped to the NS-NS sector of the low energy effective lagrangian of the type II string theories implying that there one can also find kinematical constraints in the N-point amplitudes and that important informations can be inferred, at least up to α '4 order, by only using the (tree level) 4-point amplitude.
Inflation from superstring and M-theory compactification with higher order corrections
Maeda, Kei-ichi; Ohta, Nobuyoshi
2005-03-15
We study time-dependent solutions in M and superstring theories with higher-order corrections. We first present general field equations for theories of Lovelock type with stringy corrections in arbitrary dimensions. We then exhaust all exact and asymptotic solutions of exponential and power-law expansions in the theory with Gauss-Bonnet terms relevant to heterotic strings and in the theories with quartic corrections corresponding to the M theory and type II superstrings. We discuss interesting inflationary solutions that can generate enough e foldings in the early universe.
Relating Berkovits and A ∞ superstring field theories; large Hilbert space perspective
NASA Astrophysics Data System (ADS)
Erler, Theodore
2016-02-01
We lift the dynamical field of the A ∞ superstring field theory to the large Hilbert space by introducing a gauge invariance associated with the eta zero mode. We then provide a field redefinition which relates the lifted field to the dynamical field of Berkovits' superstring field theory in the large Hilbert space. This generalizes the field redefinition in the small Hilbert space described in earlier works, and gives some understanding of the relation between the gauge symmetries of the theories. It also provides a new perspective on the algebraic structure underlying gauge invariance of the Wess-Zumino-Witten-like action.
Yukawa couplings in superstring compactification. [in quantum gravity theory
NASA Technical Reports Server (NTRS)
Strominger, A.
1985-01-01
A topological formula is given for the entire tree-level contribution to the low-energy effective action of a Calabi-Yau superstring compactification. The constraints on proton lifetime in the Calabi-Yau compactification are discussed in detail.
Sakellariadou, Mairi
2008-08-28
Cosmic superstrings are expected to be formed at the end of brane inflation, within the context of brane-world cosmological models inspired from string theory. By studying the properties of cosmic superstring networks and comparing their phenomenological consequences against observational data, we aim to pin down the successful and natural inflationary model and get an insight into the stringy description of our Universe. PMID:18534932
Constraints on Tree-Level Higher Order Gravitational Couplings in Superstring Theory
Stieberger, Stephan
2011-03-18
We consider the scattering amplitudes of five and six gravitons at tree level in superstring theory. Their power series expansions in the Regge slope {alpha}{sup '} are analyzed through the order {alpha}{sup '8} showing some interesting constraints on higher order gravitational couplings in the effective superstring action such as the absence of R{sup 5} terms. Furthermore, some transcendentality constraints on the coefficients of the nonvanishing couplings are observed: the absence of zeta values of even weight through the order {alpha}{sup '8} like the absence of {zeta}(2){zeta}(3)R{sup 6} terms. Our analysis is valid for any superstring background in any space-time dimension, which allows for a conformal field theory description.
Constraints on tree-level higher order gravitational couplings in superstring theory.
Stieberger, Stephan
2011-03-18
We consider the scattering amplitudes of five and six gravitons at tree level in superstring theory. Their power series expansions in the Regge slope α' are analyzed through the order α'(8) showing some interesting constraints on higher order gravitational couplings in the effective superstring action such as the absence of R(5) terms. Furthermore, some transcendentality constraints on the coefficients of the nonvanishing couplings are observed: the absence of zeta values of even weight through the order α'(8) like the absence of ζ(2)ζ(3)R(6) terms. Our analysis is valid for any superstring background in any space-time dimension, which allows for a conformal field theory description. PMID:21469856
The Vacuum State in the Heterotic Superstring Theory
NASA Astrophysics Data System (ADS)
Pollock, M. D.
The gravitational vacuum state of the heterotic superstring theory is derived by substituting the maximally symmetric D-space hat {R}ABCD = hat {Λ }(hat {g}ADhat {g}BC - hat {g}AChat {g}BD)/(D-1), where hat {Λ } is the cosmological constant, into the classical field equations obtained from the effective ten-Lagrangian including quartic higher-derivative terms, hat {L}=(-hat {R}/2 + α 'hat { {R}} E2/16 + α '3hat { {R}}4)/hat {κ }2. If the theory is reduced to the physical dimensionality D = 4, as required by supersymmetry and phenomenology, the ground state, due to hat {R} and hat { {R}}4, is anti-de Sitter space with Λ = -[18/175 ζ (3)]1/3 A r-1κ -2, where A r ≈ 1/g s2 ≈ 2 is the inverse gauge coupling and κ2 ≡ 8πGN is the gravitational coupling, GN being the Newton constant. The term {R} E2, derived from the Euler-number density hat { {R}} E2, is a total divergence and the quadratic term {R}ij2, derived from hat { {R}}4 -> {R}2bar { {R}}2, vanishes identically, while the quadratic anomaly {R}ij{2 (anom)}, which alone would give rise to a positive Λ(anom), is ignorable for the reduced E6 × E8' heterotic string, containing nv = 488 vector fields, because Λ(anom) ≳ -Λ unless nv ≳ 7,000. For hypothetical reduction to the higher dimensonalities D = 5, 9, 10, hat { {R}}4 has the effect of augmenting the Boulware-Deser, anti-de Sitter space vacuum due to hat { {R}} E2, which becomes exact when D = 8, for which {R}ij4 vanishes identically, but leads to a de Sitter space for D = 6, 7 thus justifying the Ricci-flat vacuum state for the six-dimensional internal space. For simplicity, we assume compactification onto a toroidal internal space when D ≥ 5, so that all contributions of the form hat { {R}}4 -> {R}2 bar { {R}}2 vanish. The remaining terms hat { {R}} E2 and hat { {R}}4 are then almost comparable in effect, bringing into question the convergence of the Lagrangian power series hat {L} = ∑ n=1∞ an(α 'hat { {R}})n in the Einstein space
Peskin, M.E.
1986-12-01
The basic elements of string theory are presented after a brief review of the main properties of string theories, particularly the supersymmetric version. Lessons are provided on the basic quantized string, zero-point energy, the bosonic string, compactification on a torus, the superstring, the heterotic string, field compactification on an orbifold, and string compactification on an orbifold. 35 refs., 17 figs. (LEW)
A singular one-parameter family of solutions in cubic superstring field theory
NASA Astrophysics Data System (ADS)
Arroyo, E. Aldo
2016-05-01
Performing a gauge transformation of a simple identity-like solution of superstring field theory, we construct a one-parameter family of solutions, and by evaluating the energy associated to this family, we show that for most of the values of the parameter the solution represents the tachyon vacuum, except for two isolated singular points where the solution becomes the perturbative vacuum and the half brane solution.
The Big Bang, Superstring Theory and the origin of life on the Earth.
Trevors, J T
2006-03-01
This article examines the origin of life on Earth and its connection to the Superstring Theory, that attempts to explain all phenomena in the universe (Theory of Everything) and unify the four known forces and relativity and quantum theory. The four forces of gravity, electro-magnetism, strong and weak nuclear were all present and necessary for the origin of life on the Earth. It was the separation of the unified force into four singular forces that allowed the origin of life. PMID:17046368
Maximal R-symmetry violating amplitudes in type IIb superstring theory.
Boels, Rutger H
2012-08-24
On-shell superspace techniques are used to quantify R-symmetry violation in type IIB superstring theory amplitudes in a flat background in 10 dimensions. This shows the existence of a particularly simple class of nonvanishing amplitudes in this theory, which violate R symmetry maximally. General properties of the class and some of its extensions are established that at string tree level are shown to determine the first three nontrivial effective field theory contributions to all multiplicity. This leads to a natural conjecture for the exact analytic part of the first two of these. PMID:23002738
Mirror Symmetry and Other Miracles in Superstring Theory
NASA Astrophysics Data System (ADS)
Rickles, Dean
2013-01-01
The dominance of string theory in the research landscape of quantum gravity physics (despite any direct experimental evidence) can, I think, be justified in a variety of ways. Here I focus on an argument from mathematical fertility, broadly similar to Hilary Putnam's `no miracles argument' that, I argue, many string theorists in fact espouse in some form or other. String theory has generated many surprising, useful, and well-confirmed mathematical `predictions'—here I focus on mirror symmetry and the mirror theorem. These predictions were made on the basis of general physical principles entering into string theory. The success of the mathematical predictions are then seen as evidence for the framework that generated them. I shall attempt to defend this argument, but there are nonetheless some serious objections to be faced. These objections can only be evaded at a considerably high (philosophical) price.
Superstring disk amplitudes in a rolling tachyon background
Jokela, Niko; Majumder, Jaydeep; Keski-Vakkuri, Esko
2006-02-15
We study the tree level scattering or emission of n closed superstrings from a decaying non-BPS brane in Type II superstring theory. We attempt to calculate generic n-point superstring disk amplitudes in the rolling tachyon background. We show that these can be written as infinite power series of Toeplitz determinants, related to expectation values of a periodic function in Circular Unitary Ensembles. Further analytical progress is possible in the special case of bulk-boundary disk amplitudes. These are interpreted as probability amplitudes for emission of a closed string with initial conditions perturbed by the addition of an open string vertex operator. This calculation has been performed previously in bosonic string theory, here we extend the analysis for superstrings. We obtain a result for the average energy of closed superstrings produced in the perturbed background.
Fundamental string solutions in open string field theories
Michishita, Yoji
2006-02-15
In Witten's open cubic bosonic string field theory and Berkovits' superstring field theory we investigate solutions of the equations of motion with appropriate source terms, which correspond to Callan-Maldacena solution in Born-Infeld theory representing fundamental strings ending on the D-branes. The solutions are given in order by order manner, and we show some full order properties in the sense of {alpha}{sup '} expansion. In superstring case we show that the solution is 1/2 BPS in full order.
Simplifying one-loop amplitudes in superstring theory
NASA Astrophysics Data System (ADS)
Bianchi, Massimo; Consoli, Dario
2016-01-01
We show that 4-point vector boson one-loop amplitudes, computed in [1] in the RNS formalism, around vacuum configurations with open unoriented strings, preserving at least N=1 SUSY in D = 4, satisfy the correct supersymmetry Ward identities, in that they vanish for non MHV configurations (++++) and ( -+++). In the MHV case ( --++) we drastically simplify their expressions. We then study factorisation and the limiting IR and UV behaviours and find some unexpected results. In particular no massless poles are exposed at generic values of the modular parameter. Relying on the supersymmetric properties of our bosonic amplitudes, we extend them to manifestly supersymmetric super-amplitudes and compare our results with those obtained in the D = 4 hybrid formalism, pointing out difficulties in reconciling the two approaches for contributions from N=1,2 sectors.
Polchinski, Joseph
2004-12-10
It is possible that superstrings, as well as other one-dimensional branes, could have been produced in the early universe and then expanded to cosmic size today. I discuss the conditions under which this will occur, and the signatures of these strings. Such cosmic superstrings could be the brightest objects visible in gravitational wave astronomy, and might be distinguishable from gauge theory cosmic strings by their network properties.
On the application of the field-redefinition theorem to the heterotic superstring theory
NASA Astrophysics Data System (ADS)
Pollock, M. D.
2015-05-01
The ten-dimensional effective action which defines the heterotic superstring theory at low energy is constructed by hypothesis in such a way that the resulting classical equation of motion for the space-time metric simultaneously implies the vanishing of the beta-function for the N = 1 supersymmetric non-linear sigma-model on the world sheet. At four-loop order it was found by Grisaru and Zanon (see also Freeman et al.) that the effective Lagrangian so constructed differs in the numerical coefficient of the term from that obtained directly from the four-point gravitational scattering amplitude. The two expressions can be related via a metric field redefinition , activation of which, however, results in the appearance of ghosts at higher gravitational order , n > 4, as shown by Lawrence. Here, we prove, after reduction of to the physical dimensionality D = 4, that the corresponding field redefinition yields the identity g' ij = g ij , signified by L 3/ R = 0, in a Friedmann space-time generated by a perfect-fluid source characterized by adiabatic index γ ≡ 1 + p/ ρ, where p is the pressure and ρ is the energy density, if, and only if, κ 6 ρ 3 γ 2( γ - 1) = 0. That is, the theory remains free of ghosts in Minkowski space ρ = 0, in a maximally symmetric space-time γ = 0, or in a dust Universe γ = 1. Further aspects of ghost freedom and dimensional reduction, especially to D = 4, are discussed.
Saririan, K.
1997-05-01
In this thesis, the author presents some works in the direction of studying quantum effects in locally supersymmetric effective field theories that appear in the low energy limit of superstring theory. After reviewing the Kaehler covariant formulation of supergravity, he shows the calculation of the divergent one-loop contribution to the effective boson Lagrangian for supergravity, including the Yang-Mills sector and the helicity-odd operators that arise from integration over fermion fields. The only restriction is on the Yang-Mills kinetic energy normalization function, which is taken diagonal in gauge indices, as in models obtained from superstrings. He then presents the full result for the divergent one-loop contribution to the effective boson Lagrangian for supergravity coupled to chiral and Yang-Mills supermultiplets. He also considers the specific case of dilaton couplings in effective supergravity Lagrangians from superstrings, for which the one-loop result is considerably simplified. He studies gaugino condensation in the presence of an intermediate mass scale in the hidden sector. S-duality is imposed as an approximate symmetry of the effective supergravity theory. Furthermore, the author includes in the Kaehler potential the renormalization of the gauge coupling and the one-loop threshold corrections at the intermediate scale. It is shown that confinement is indeed achieved. Furthermore, a new running behavior of the dilaton arises which he attributes to S-duality. He also discusses the effects of the intermediate scale, and possible phenomenological implications of this model.
Solution of the dilaton problem in open bosonic string theories
Bern, Z. ); Dunbar, D.C. )
1991-01-01
One of the most remarkable features of string theories is that they seem to provide a framework for a consistent theory of quantum gravity which is unified with all other forces. String theories fall into the two basic, a priori equally interesting, categories of open and closed string theories. For the past five years virtually all attention has been focused on purely closed string theories even though the reincarnation of string theory began with the discovery of anomaly cancellation and finiteness in the Green-Schwarz open superstring. It is the authors' purpose in this essay to rekindle interest in open string theories as potential theories of nature, including gravity. All string theories naively contain a massless dilaton which couples with the strength of gravity in direct violation of experiment. They present a simple mechanism for giving the dilaton a mass in unoriented open bosonic string theories.
Supersymmetry and Superstring Phenomenology
Gaillard, Mary K; Gaillard, Mary K.; Zumino, Bruno
2008-05-05
We briefly cover the early history of supersymmetry, describe the relation of SUSY quantum field theories to superstring theories and explain why they are considered a likely tool to describe the phenomenology of high energy particle theory beyond the Standard Model.
Chaos in superstring cosmology
Damour; Henneaux
2000-07-31
It is shown that the general solution near a spacelike singularity of the Einstein-dilaton- p-form field equations relevant to superstring theories and M theory exhibits an oscillatory behavior of the Belinskii-Khalatnikov-Lifshitz type. String dualities play a significant role in the analysis. PMID:10991439
NASA Astrophysics Data System (ADS)
de Vega, H. J.; Medrano, M. Ramon; Sanchez, N.
1992-07-01
We investigate the physical implications and particle content of superstring scattering in the supergravity shock-wave background recently found by us. The amplitudes for the different particle transmutation processes taking place in this geometry are explicitly computed for Gree-Schwarz superstring, including the new phenomena of fermion to boson and boson to fermion transmutations. Transition amplitudes among the ground states, first and second excited states are obtained. Particularly interesting are the amplitudes within the massless particle sector, which lead to physical massive particles upon supersymmetry breaking at low energies.
NASA Astrophysics Data System (ADS)
Davis, Simon
2016-05-01
The finiteness of the eikonal approximation to the superstring amplitude is related to unitarity bounds. The Froissart-Gribov bound is used to establish that only the soft pomeron can contribute at lower energies to the parton distribution. A model of the strongly coupled pomeron, consistent with the intercept of the Regge trajectory, is described.
NASA Astrophysics Data System (ADS)
Anagnostopoulos, K. N.; Nishimura, J.
2002-11-01
Monte Carlo simulations of a system whose action has an imaginary part are considered to be extremely difficult. We propose a new approach to this ``complex-action problem,'' which utilizes a factorization property of distribution functions. The basic idea is quite general, and it removes the so-called overlap problem completely. Here we apply the method to a nonperturbative study of superstring theory using its matrix formulation. In this particular example, the distribution function turns out to be positive definite, which allows us to reduce the problem even further. Our numerical results suggest an intuitive explanation for the dynamical generation of 4D space-time.
NASA Astrophysics Data System (ADS)
Kaku, Michio
The history and fundamental principles of superstring theory are presented in a textbook for graduate physics students. The approach is based on the use of Feynman path integrals and the method of second quantization. Chapters are devoted to path integrals and point particles, Nambu-Goto strings, superstrings, conformal field theory and Kac-Moody algebras, multiple loops and Teichmueller spaces, light-cone field theory, and Becchi-Rouet-Stora-Tyupin field theory. Consideration is given to geometric string-field theory, anomalies and the Atiyah-Singer theorem, heterotic strings and compactification, and Calabi-Yau spaces and orbifolds. Brief introductions to topics in basic theory and a detailed glossary of terms are provided.
Akune, Kenta; Maeda, Kei-ichi; Ohta, Nobuyoshi
2006-05-15
We present a detailed study of inflationary solutions in M theory with higher order quantum corrections. We first exhaust all exact and asymptotic solutions of exponential and power-law expansions in this theory with quartic curvature corrections, and then perform a linear perturbation analysis around fixed points for the exact solutions in order to see which solutions are more generic and give interesting cosmological models. We find an interesting solution in which the external space expands exponentially and the internal space is static both in the original and Einstein frames. Furthermore, we perform a numerical calculation around this solution and find numerical solutions which give enough e-foldings. We also briefly summarize similar solutions in type II superstrings.
Kim, Sang-Woo; Nishimura, Jun; Tsuchiya, Asato
2012-01-01
We reconsider the matrix model formulation of type IIB superstring theory in (9+1)-dimensional space-time. Unlike the previous works in which the Wick rotation was used to make the model well defined, we regularize the Lorentzian model by introducing infrared cutoffs in both the spatial and temporal directions. Monte Carlo studies reveal that the two cutoffs can be removed in the large-N limit and that the theory thus obtained has no parameters other than one scale parameter. Moreover, we find that three out of nine spatial directions start to expand at some "critical time," after which the space has SO(3) symmetry instead of SO(9). PMID:22304254
Massive S-matrix of AdS3×S3×T4 superstring theory with mixed 3-form flux
NASA Astrophysics Data System (ADS)
Hoare, B.; Tseytlin, A. A.
2013-08-01
The type IIB supergravity AdS3×S3×T4 background with mixed RR and NSNS 3-form fluxes is a near-horizon limit of a non-threshold bound state of D5-D1 and NS5-NS1 branes. The corresponding superstring world-sheet theory is expected to be integrable, opening the possibility of computing its exact spectrum for any values of the coefficient q of the NSNS flux and the string tension. In arXiv:1303.1447 we have found the tree-level S-matrix for the massive BMN excitations in this theory, which turned out to have a simple dependence on q. Here, by analyzing the constraints of symmetry and integrability, we propose an exact massive-sector dispersion relation and the exact S-matrix for this world-sheet theory. The S-matrix generalizes its recent construction in the q=0 case in arXiv:1303.5995. This is a consequence of the fact that parity symmetry is broken with the introduction of the NSNS flux. However, charge conjugation composed with parity is still a symmetry.
Cusps on cosmic superstrings with junctions
Davis, Anne-Christine; Rajamanoharan, Senthooran; Nelson, William; Sakellariadou, Mairi E-mail: william.nelson@kcl.ac.uk E-mail: mairi.sakellariadou@kcl.ac.uk
2008-11-15
The existence of cusps on non-periodic strings ending on D-branes is demonstrated and the conditions for which such cusps are generic are derived. The dynamics of F-strings, D-strings and FD-string junctions are investigated. It is shown that pairs of FD-string junctions, such as would form after intercommutations of F-strings and D-strings, generically contain cusps. This new feature of cosmic superstrings opens up the possibility of extra channels of energy loss from a string network. The phenomenology of cusps on such cosmic superstring networks is compared to that of cusps formed on networks of their field theory analogues, the standard cosmic strings.
Superstring vertex operators in type IIB matrix model
Kitazawa, Yoshihisa; Nagaoka, Satoshi
2008-06-15
We clarify the relation between the vertex operators in type IIB matrix model and superstring. Green-Schwarz light-cone closed superstring theory is obtained from IIB matrix model on two-dimensional noncommutative backgrounds. Superstring vertex operators should be reproduced from those of IIB matrix model through this connection. Indeed, we confirm that supergravity vertex operators in IIB matrix model on the two-dimensional backgrounds reduce to those in superstring theory. Noncommutativity plays an important role in our identification. Through this correspondence, we can reproduce superstring scattering amplitudes from IIB matrix model.
Gauge anomalies, gravitational anomalies, and superstrings
Bardeen, W.A.
1985-08-01
The structure of gauge and gravitational anomalies will be reviewed. The impact of these anomalies on the construction, consistency, and application of the new superstring theories will be discussed. 25 refs.
String bit models for superstring
Bergman, O.; Thorn, C.B.
1995-12-31
The authors extend the model of string as a polymer of string bits to the case of superstring. They mainly concentrate on type II-B superstring, with some discussion of the obstacles presented by not II-B superstring, together with possible strategies for surmounting them. As with previous work on bosonic string work within the light-cone gauge. The bit model possesses a good deal less symmetry than the continuous string theory. For one thing, the bit model is formulated as a Galilei invariant theory in (D {minus} 2) + 1 dimensional space-time. This means that Poincare invariance is reduced to the Galilei subgroup in D {minus} 2 space dimensions. Naturally the supersymmetry present in the bit model is likewise dramatically reduced. Continuous string can arise in the bit models with the formation of infinitely long polymers of string bits. Under the right circumstances (at the critical dimension) these polymers can behave as string moving in D dimensional space-time enjoying the full N = 2 Poincare supersymmetric dynamics of type II-B superstring.
String bit models for superstring
Bergman, O.; Thorn, C.B.
1995-11-15
We extend the model of string as a polymer of string bits to the case of superstring. We mainly concentrate on type II-B superstring, with some discussion of the obstacles presented by not II-B superstring, together with possible strategies for surmounting them. As with previous work on bosonic string we work within the light-cone gauge. The bit model possesses a good deal less symmetry than the continuous string theory. For one thing, the bit model is formulated as a Galilei-invariant theory in [({ital D}{minus}2)+1]-dimensional space-time. This means that Poincare invariance is reduced to the Galilei subgroup in {ital D}{minus}2 space dimensions. Naturally the supersymmetry present in the bit model is likewise dramatically reduced. Continuous string can arise in the bit models with the formation of infinitely long polymers of string bits. Under the right circumstances (at the critical dimension) these polymers can behave as string moving in {ital D}-dimensional space-time enjoying the full {ital N}=2 Poincare supersymmetric dynamics of type II-B superstring.
Entropy function for 4-charge extremal black holes in type IIA superstring theory
Cai Ronggen; Pang Dawei
2006-09-15
We calculate the entropy of 4-charge extremal black holes in Type IIA supersting theory by using Sen's entropy function method. Using the low-energy effective actions in both 10D and 4D, we find precise agreements with the Bekenstein-Hawking entropy of the black hole. We also calculate the higher-order corrections to the entropy and find that they depend on the exact form of the higher-order corrections to the effective action.
Regularized adelic formulas for string and superstring amplitudes in one-class quadratic fields
NASA Astrophysics Data System (ADS)
Vladimirov, V. S.
2010-09-01
We obtain regularized adelic formulas for gamma and beta functions for fields of rational numbers and the one-class quadratic fields and arbitrary quasicharacters (ramified or not). We consider applications to four-tachyon tree string amplitudes, generalized Veneziano amplitudes (open string), perturbed Virasoro amplitudes (closed string), massless four-particle tree open and closed superstring amplitudes, Ramond-Neveu-Schwarz superstring amplitudes, and charged heterotic superstring amplitudes. We establish certain relations between different string and superstring amplitudes.
Supersymmetry breaking in superstring theory by Gaugino condensation and its phenomenology
Wu, Yi-Yen
1997-05-01
Weakly-coupled heterotic string is known to have problems of dilaton/moduli stabilization, supersymmetry breaking (by hidden-sector gaugino condensation), gauge coupling unification, QCD axion, as well as cosmological problems involving dilaton/moduli and axion. The author studies these problems by adopting the point of view that they arise mostly due to limited calculational power, little knowledge of the full vacuum structure, and an inappropriate treatment of gaugino condensation. It turns out that these problems can be solved or are much less severe after a more consistent and complete treatment. There are two kinds of non-perturbative effects in the construction of string effective field theory: the field-theoretical non-perturbative effects of gaugino condensation (with an important constraint ignored in the past) and the stringy nonperturbative effects conjectured by S. Shenker, which are best described using the linear multiplet formalism. Stringy non-perturbative corrections to the Kaehler potential are invoked to stabilize the dilaton at a value compatible with a weak coupling regime. Modular invariance is ensured through the Green-Schwarz counterterm and string threshold corrections which, together with hidden matter condensation, lead to moduli stabilization at the self-dual point where the vev`s of moduli`s F components vanish. In the vacuum, supersymmetry is broken at a realistic scale with vanishing cosmological constant. As for soft supersymmetry breaking, this model always leads to a dilaton-dominated scenario. For the strong CP problem, the model-independent axion has the right properties to be the QCD axion. Furthermore, there is a natural hierarchy between the dilaton/moduli mass and the gravitino mass, which could solve both the cosmological moduli problem and the cosmological problem of the model-independent axion.
Thermodynamic interpretation of time for superstring rolling tachyons
Hutasoit, Jimmy A.; Jokela, Niko
2008-01-15
Rolling tachyon backgrounds, arising from open strings on unstable branes in bosonic string theory, can be related to a simple statistical mechanical model-Coulomb gas of point charges in two dimensions confined to a circle, the Dyson gas. In this paper we describe a statistical system that is dual to non-BPS branes in superstring theory. We argue that even though the concept of time is absent in the statistical dual sitting at equilibrium, the notion of time can emerge at the large number of particles N{yields}{infinity} limit.
Cosmic superstrings and primordial magnetogenesis
Davis, Anne-Christine; Dimopoulos, Konstantinos
2005-08-15
Cosmic superstrings are produced at the end of brane inflation. Their properties are similar to cosmic strings arising in grand unified theories. Like cosmic strings they can give rise to a primordial magnetic field, as a result of vortical motions stirred in the ionized plasma by the gravitational pull of moving string segments. The resulting magnetic field is both strong enough and coherent enough to seed the galactic dynamo and explain the observed magnetic fields of the galaxies.
Feng Haidong; Siegel, Warren
2006-08-15
We propose some new simplifying ingredients for Feynman diagrams that seem necessary for random lattice formulations of superstrings. In particular, half the fermionic variables appear only in particle loops (similarly to loop momenta), reducing the supersymmetry of the constituents of the type IIB superstring to N=1, as expected from their interpretation in the 1/N expansion as super Yang-Mills.
BRST Cohomology of the Superstring in Super-Beltrami Parametrization
NASA Astrophysics Data System (ADS)
Tătaru, Liviu; Vancea, Ion V.
A method for calculating the BRST cohomology, recently developed for 2-D gravity theory and the bosonic string in Beltrami parametrization, is generalized to the superstring theories quantized in super-Beltrami parametrization.
Secret symmetries of type IIB superstring theory on Ad{{S}_{3}} × {{S}^{3}} × {{M}^{4}}
NASA Astrophysics Data System (ADS)
Pittelli, Antonio; Torrielli, Alessandro; Wolf, Martin
2014-11-01
We establish features of so-called Yangian secret symmetries for AdS3 type IIB superstring backgrounds, thus verifying the persistence of such symmetries to this new instance of the AdS/CFT correspondence. Specifically, we find two a priori different classes of secret symmetry generators. One class of generators, anticipated from the previous literature, is more naturally embedded in the algebra governing the integrable scattering problem. The other class of generators is more elusive and somewhat closer in its form to its higher-dimensional AdS5 counterpart. All of these symmetries respect left-right crossing. In addition, by considering the interplay between left and right representations, we gain a new perspective on the AdS5 case. We also study the RTT-realisation of the Yangian in AdS3 backgrounds, thus establishing a new incarnation of the Beisert-de Leeuw construction.
Interactions of cosmic superstrings
Jackson, Mark G.; /Fermilab
2007-06-01
We develop methods by which cosmic superstring interactions can be studied in detail. These include the reconnection probability and emission of radiation such as gravitons or small string loops. Loop corrections to these are discussed, as well as relationships to (p; q)-strings. These tools should allow a phenomenological study of string models in anticipation of upcoming experiments sensitive to cosmic string radiation.
Constraints on cosmic superstrings from Kaluza-Klein emission.
Dufaux, Jean-François
2012-07-01
Cosmic superstrings interact generically with a tower of light and/or strongly coupled Kaluza-Klein (KK) modes associated with the geometry of the internal space. We study the production of KK particles by cosmic superstring loops, and show that it is constrained by big bang nucleosynthesis. We study the resulting constraints in the parameter space of the underlying string theory model and highlight their complementarity with the regions that can be probed by current and upcoming gravitational wave experiments. PMID:23031097
Scaling of multitension cosmic superstring networks
Tye, S.-H. Henry; Wasserman, Ira; Wyman, Mark
2005-05-15
Brane inflation in superstring theory ends when branes collide, initiating the hot big bang. Cosmic superstrings are produced during the brane collision. The cosmic superstrings produced in a D3-brane-antibrane inflationary scenario have a spectrum: (p,q) bound states of p fundamental (F) strings and q D-strings, where p and q are coprime. By extending the velocity-dependent one-scale network evolution equations for Abelian Higgs cosmic strings to allow a spectrum of string tensions, we construct a coupled (infinite) set of equations for strings that interact through binding and self-interactions. We apply this model to a network of (p,q) superstrings. Our numerical solutions show that (p,q) networks rapidly approach a stable scaling solution. We also extract the relative densities of each string type from our solutions. Typically, only a small number of the lowest tension states are populated substantially once scaling is reached. The model we study also has an interesting new feature: the energy released in (p,q) string binding is by itself adequate to allow the network to reach scaling. This result suggests that the scaling solution is robust. To demonstrate that this result is not trivial, we show that choosing a different form for string interactions can lead to network frustration.
Superstring in doubled superspace
NASA Astrophysics Data System (ADS)
Bandos, Igor
2015-12-01
The covariant and kappa-symmetric action for superstring in direct product of two flat D = 10 N = 1 superspaces is presented. It is given by the sum of supersymmetric generalization of two copies of chiral boson actions constructed with the use of the Pasti-Sorokin-Tonin (PST) technique. The chirality of 8 'left' bosons and 8 'left' fermions and the anti-chirality of their 'right' counterparts are obtained as gauge fixed version of the equations of motion, so that the physical degrees of freedom are essentially those of the II Green-Schwarz superstring. Our action is manifestly T-duality invariant as the fields describing oscillating and winding modes enter it on equal footing.
Superstrings and the Foundations of Quantum Mechanics
NASA Astrophysics Data System (ADS)
't Hooft, Gerard
2014-05-01
It is put forward that modern elementary particle physics cannot be completely unified with the laws of gravity and general relativity without addressing the question of the ontological interpretation of quantum mechanics itself. The position of superstring theory in this general question is emphasized: superstrings may well form exactly the right mathematical system that can explain how quantum mechanics can be linked to a deterministic picture of our world. Deterministic interpretations of quantum mechanics are usually categorically rejected, because of Bell's powerful observations, and indeed these apply here also, but we do emphasize that the models we arrive at are super-deterministic, which is exactly the case where Bell expressed his doubts. Strong correlations at space-like separations could explain the apparent contradictions.
Chang, S.; Coriano, C.; Faraggi, A.E. |
1996-05-15
The authors investigate the cosmological constraints on exotic stable matter states which arise in realistic free fermionic superstring models. These states appear in the superstring models due to a ``Wilson-line`` breaking of the unifying non-Abelian gauge symmetry. In the models that they consider the unifying SO(10) gauge symmetry is broken at the string level to SO(6) x SO(4), SU(5) x U(1) or SU(3) x SU(2) x U(1). The exotic matter states are classified according to the patterns of the SO(10) symmetry breaking. In SO(6) x XO(4) and SU(5) x U(1) type models one obtains fractionally charged states with Q{sub e.m.} = {+-}1/2. In SU(3) x SU(2) x U(1) type models one also obtains states with the regular charges under the Standard Model gauge group but with ``fractional`` charges under the U(1){sub z{prime}} symmetry. These states include down-like color triplets and electroweak doublets, as well as states which are Standard Model singlets. By analyzing the renormalizable and nonrenormalizable terms of the superpotential in a specific superstring model, the authors show that these exotic states can be stable. They investigate the cosmological constraints on the masses and relic density of the exotic states. They propose that, while the abundance and the masses of the fractionally charged states are highly constrained, the Standard Model-like states, and in particular the Standard Model singlet, are good dark matter candidates.
Ramond-Ramond Central Charges in the Supersymmetry Algebra of the Superstring
Berkovits, N.
1997-09-01
The free action for the massless sector of the type II superstring was recently constructed using closed Ramond-Neveo-Schwarz superstring field theory. The supersymmetry transformations of this action are shown to satisfy an N=2 D=10 supersymmetry algebra with Ramond-Ramond central charges. {copyright} {ital 1997} {ital The American Physical Society}
Quantum deformations of the flat space superstring
NASA Astrophysics Data System (ADS)
Pachoł, Anna; van Tongeren, Stijn J.
2016-01-01
We discuss a quantum deformation of the Green-Schwarz superstring on flat space, arising as a contraction limit of the corresponding deformation of AdS5×S5 . This contraction limit turns out to be equivalent to a previously studied limit that yields the so-called mirror model—the model obtained from the light cone gauge fixed AdS5×S5 string by a double Wick rotation. Reversing this logic, the AdS5×S5 superstring is the double Wick rotation of a quantum deformation of the flat space superstring. This quantum deformed flat space string realizes symmetries of the timelike κ -Poincaré type and is T dual to dS5×H5, indicating interesting relations between symmetry algebras under T duality. Our results directly extend to AdS2×S2×T6 and AdS3×S3×T4 and beyond string theory to many (semi)symmetric space coset sigma models, such as a deformation of the four-dimensional Minkowski sigma model with timelike κ -Poincaré symmetry. We also discuss possible null and spacelike deformations.
Twistor superstring in two-time physics
Bars, Itzhak
2004-11-15
By utilizing the gauge symmetries of two-time physics (2T physics), a superstring with linearly realized global SU(2,2|4) supersymmetry in 4+2 dimensions (plus internal degrees of freedom) is constructed. It is shown that the dynamics of the Witten-Berkovits twistor superstring in 3+1 dimensions emerges as one of the many one-time (1T) holographic pictures of the 4+2 dimensional string obtained via gauge fixing of the 2T gauge symmetries. In 2T physics the twistor language can be transformed to usual spacetime language and vice versa, off shell, as different gauge fixings of the same 2T string theory. Further holographic string pictures in 3+1 dimensions that are dual theories also can be derived. The 2T superstring is further generalized in the SU(4)=SO(6) sector of SU(2,2|4) by the addition of six bosonic dimensions, for a total of 10+2 dimensions. Excitations of the extra bosons produce a SU(2,2|4) current algebra spectrum that matches the classification of the high-spin currents of N=4, d=4 super Yang-Mills theory which are conserved in the weak coupling limit. This spectrum is interpreted as the extension of the SU(2,2|4) classification of the Kaluza-Klein towers of typeII-B supergravity compactified on AdS{sub 5}xS{sup 5}, into the full string theory, and is speculated to have a covariant 10+2 origin in F-theory or S-theory. Further generalizations of the superstring theory to 3+2, 5+2, and 6+2 dimensions based on the supergroups OSp(8|4), F(4), OSp(8{sup *}|4), respectively, and other cases, are discussed also. The OSp(8{sup *}|4) case in 6+2 dimensions can be gauge fixed to 5+1 dimensions to provide a formulation of the special superconformal theory in six dimensions either in terms of ordinary spacetime or in terms of twistors.
Stringy evidence for {ital D}=11 structure in a strongly coupled type-IIA superstring
Bars, I.
1995-09-15
Witten proposed that the low energy physics of a strongly coupled {ital D}=10 type-IIA superstring may be described by {ital D}=11 supergravity. To explore the stringy aspects of the underlying theory we examine the stringy massive states. We propose a systematic formula for identifying nonperturbative states in {ital D}=10 type-IIA superstring theory, such that, together with the elementary excited string states, they form {ital D}=11 supersymmetric multiplets, in SO(10) representations. This provides hints for the construction of a conjectured weakly coupled {ital D}=11 theory that is dual to the strongly coupled {ital D}=10 type-IIA superstring.
Collision of cosmic superstrings
Copeland, E. J.; Firouzjahi, H.; Kibble, T. W. B.; Steer, D. A.
2008-03-15
We study the formation of three-string junctions between (p,q)-cosmic superstrings, and collisions between such strings and show that kinematic constraints analogous to those found previously for collisions of Nambu-Goto strings apply here too, with suitable modifications to take account of the additional requirements of flux conservation. We examine in detail several examples involving collisions between strings with low values of p and q, and also examine the rates of growth or shrinkage of strings at a junction. Finally, we briefly discuss the formation of junctions for strings in a warped space, specifically with a Klebanov-Strassler throat, and show that similar constraints still apply with changes to the parameters taking account of the warping and the background flux.
Superstrings and geometry of superspace
Dhar, A.
1986-05-01
These lectures present some recent developments in the sigma-model approach to the Green-Schwarzsuperstring. Among the topics included are: (1) interpretation of the free superstring as a flat superspace sigma-model; (2) propagation of the superstring in curved superspace; and (3) in the presence of background super Yang-Mills fields. The role of the world-sheet fermionic gauge symmetry needed to ensure consistent coupling to background fields is emphasized. 24 refs.
Amplitude for N-Gluon Superstring Scattering
Stieberger, Stephan; Taylor, Tomasz R.
2006-11-24
We consider scattering processes involving N gluonic massless states of open superstrings with a certain Regge slope {alpha}{sup '}. At the semiclassical level, the string world-sheet sweeps a disk and N gluons are created or annihilated at the boundary. We present exact expressions for the corresponding amplitudes, valid to all orders in {alpha}{sup '}, for the so-called maximally helicity violating configurations, with N=4, 5 and N=6. We also obtain the leading O({alpha}{sup '2}) string corrections to the zero-slope N-gluon Yang-Mills amplitudes.
Supersymmetry breaking from superstrings and the gauge hierarchy
Gaillard, M.K. California Univ., Berkeley, CA . Dept. of Physics)
1990-07-11
The gauge hierarchy problem is reviewed and a class of effective field theories obtained from superstrings is described. These are characterized by a classical symmetry, related to the space-time duality of string theory, that is responsible for the suppression of observable supersymmetry breaking effects. At the quantum level, the symmetry is broken by anomalies that provide the seed of observable supersymmetry breaking, and an acceptably large gauge hierarchy may be generated. 39 refs.
Exotic leptoquarks from superstring derived models
Elwood, J.K.; Faraggi, A.E.
1997-03-01
The H1 and ZEUS collaborations have recently reported a significant excess of e{sup +}p {r_arrow} e{sup +} jet events at high Q{sup 2}. While there exists insufficient data to conclusively determine the origin of this excess, one possibility is that it is due to a new leptoquark at mass scale around 200 GeV. We examine the type of leptoquark states that exist in superstring derived standard-like models, and show that, while these models may contain the standard leptoquark states which exist in Grand Unified Theories, they also generically contain new and exotic leptoquark states with fractional lepton number, {+-}1/2. In contrast to the traditional GUT-type leptoquark states, the couplings of the exotic leptoquarks to the Standard Model states are generated after the breaking of U(1){sub B-L}. This important feature of the exotic leptoquark states may result in local discrete symmetries which forbid some of the undesired leptoquark couplings. We examine these couplings in several models and study the phenomenological implications. The flavor symmetries of the superstring models are found to naturally suppress leptoquark flavor changing processes.
1 /N perturbations in superstring bit models
NASA Astrophysics Data System (ADS)
Thorn, Charles B.
2016-03-01
We develop the 1 /N expansion for stable string bit models, focusing on a model with bit creation operators carrying only transverse spinor indices a =1 ,…,s . At leading order (N =∞ ), this model produces a (discretized) light cone string with a "transverse space" of s Grassmann worldsheet fields. Higher orders in the 1 /N expansion are shown to be determined by the overlap of a single large closed chain (discretized string) with two smaller closed chains. In the models studied here, the overlap is not accompanied with operator insertions at the break/join point. Then, the requirement that the discretized overlap has a smooth continuum limit leads to the critical Grassmann "dimension" of s =24 . This "protostring," a Grassmann analog of the bosonic string, is unusual, because it has no large transverse dimensions. It is a string moving in one space dimension, and there are neither tachyons nor massless particles. The protostring, derived from our pure spinor string bit model, has 24 Grassmann dimensions, 16 of which could be bosonized to form 8 compactified bosonic dimensions, leaving 8 Grassmann dimensions—the worldsheet content of the superstring. If the transverse space of the protostring could be "decompactified," string bit models might provide an appealing and solid foundation for superstring theory.
Nondecoupling of maximal supergravity from the superstring.
Green, Michael B; Ooguri, Hirosi; Schwarz, John H
2007-07-27
We consider the conditions necessary for obtaining perturbative maximal supergravity in d dimensions as a decoupling limit of type II superstring theory compactified on a (10-d) torus. For dimensions d=2 and d=3, it is possible to define a limit in which the only finite-mass states are the 256 massless states of maximal supergravity. However, in dimensions d>or=4, there are infinite towers of additional massless and finite-mass states. These correspond to Kaluza-Klein charges, wound strings, Kaluza-Klein monopoles, or branes wrapping around cycles of the toroidal extra dimensions. We conclude that perturbative supergravity cannot be decoupled from string theory in dimensions>or=4. In particular, we conjecture that pure N=8 supergravity in four dimensions is in the Swampland. PMID:17678349
Target extraction from blurred trace infrared images with a superstring galaxy template algorithm
NASA Astrophysics Data System (ADS)
Yu, Xiao; Fu, Dongmei
2014-05-01
Accurate and efficient targets extraction from blurred trace infrared images has very important meaning for latent trace evidence collection in crime scene. Based on the superstring theory, a superstring galaxy template extraction algorithm for infrared trace target is presented. First, all of the pixels are divided into three classes: target pixels, background pixels and blurred pixels. Next, the superstring template characteristics for every pixel in a blurred infrared image are calculated as the features of each pixel. Finally, a galaxy covering algorithm is proposed, target pixels and background pixels are used for training the galaxy covering domain of every galaxy classifiers, and these classifiers will divide each blurred pixel into two classes: a target pixel or a background pixel. Experimental results indicate that the superstring galaxy template algorithm can improve the target extraction rate and reduce the extraction error rate.
Brane Inflation: From Superstring to Cosmic Strings
Tye, S.-H. Henry
2004-12-10
Brane inflation, where branes move towards each other in the brane world, has been shown to be quite natural in superstring theory. Inflation ends when branes collide and heat the universe, initiating the hot big bang. Cosmic strings (but not domain walls or monopoles) are copiously produced during the brane collision. Using the COBE data on the temperature anisotropy in the cosmic microwave background, the cosmic string tension {mu} is estimated to be around 10 -6 > G{mu} > 10-11, while the present observational bound is 7 x 10 -7 > G{mu}. This implies that the anisotropy that seeds structure formation comes mostly from inflation, but with a small component (< 10%) from cosmic string effects. This cosmic string effect should be testable in the near future via gravitational lensing, the cosmic microwave background radiation, and/or gravitational wave detectors like LIGO II/VIRGO.
Genus dependence of superstring amplitudes
Davis, Simon
2006-11-15
The problem of the consistency of the finiteness of the supermoduli space integral in the limit of vanishing super-fixed point distance and the genus-dependence of the integral over the super-Schottky coordinates in the fundamental region containing a neighborhood of |K{sub n}|=0 is resolved. Given a choice of the categories of isometric circles representing the integration region, the exponential form of bounds for superstring amplitudes is derived.
A monopole solution in open string theory
NASA Astrophysics Data System (ADS)
Behrndt, K.
1994-02-01
We investigate a solution of the Weyl invariance conditions in open string theory in four dimensions. In the closed string sector this solution is a combination of the SU(2) Wess-Zumino-Witten model and a Liouville theory. The investigation is carried out in the σ model approach where we have coupled all massless modes (especiallyan abelian gauge field via the boundary) and tachyon fields. Neglecting all higher derivatives in the field strength we get an exact result which can be interpreted as a monopole configuration living in non-trivia space-time. The masses of both tachyon fields are quantized by cWZW. But only for massless tachyons ( cWZW = 1) the corresponding vertex operators are well defined.
Degenerate Open Shell Density Perturbation Theory
NASA Astrophysics Data System (ADS)
Palenik, Mark; Dunlap, Brett
The density perturbation theory (DPT) methodology we have developed applies the Hohenberg-Kohn theorem to perturbations in density functional theory. At each order, the energy is directly minimized with respect to the density at all lower orders. The difference between the perturbed and unperturbed densities is expanded in terms of a finite number of basis functions, and a single matrix inversion in this space reduces the complexity of the problem to that of non-interacting perturbation theory. For open-shell systems with symmetry, however, the situation becomes more complex. Typically, the perturbation will break the symmetry leading to a zeroth-order shift in the Kohn-Sham potential. Because the symmetry breaking is independent of the strength of the perturbation, the mapping from the initial to the perturbed KS potential is discontinuous and techniques from perturbation theory for noninteracting particles fail. We describe a rigorous formulation of DPT for use in systems that display an initial degeneracy, such as atoms and Fe55Cp*12 clusters and present initial calculations on these systems.
Energy radiation by cosmic superstrings in brane inflation
Firouzjahi, Hassan
2008-01-15
The dominant method of energy loss by a loop of cosmic D-strings in models of warped brane inflation is studied. It is shown that the energy loss via Ramond-Ramond field radiation can dominate by many orders of magnitude over the energy radiation via gravitational wave emission. The ratio of these two energy loss mechanisms depends on the energy scale of inflation, the mass scale of string theory, and whether it is a single-throat or a multithroat inflationary scenario. This can have important consequences for the detection of cosmic superstrings in the near future. It is argued that the bounds from cosmic microwave background anisotropies and big bang nucleosynthesis are the dominant cosmological sources to constrain the physical parameters of the network of cosmic superstrings, whereas the role of the gravitational wave-based experiments may be secondary.
Green-Schwarz superstring from type IIB matrix model
Kitazawa, Yoshihisa; Nagaoka, Satoshi
2008-01-15
We construct a Green-Schwarz (GS) light-cone closed superstring theory from the type IIB matrix model. A GS light-cone string action is derived from the two-dimensional N=8 U(n) noncommutative Yang-Mills (NCYM) theory by identifying a noncommutative scale with a string scale. The supersymmetry transformation for the light-cone gauge action is also derived from supersymmetry transformation for the IIB matrix model. By identifying the physical states and interaction vertices, string theory is perturbatively reproduced.
Quantum game theory and open access publishing
NASA Astrophysics Data System (ADS)
Hanauske, Matthias; Bernius, Steffen; Dugall, Berndt
2007-08-01
The digital revolution of the information age and in particular the sweeping changes of scientific communication brought about by computing and novel communication technology, potentiate global, high grade scientific information for free. The arXiv, for example, is the leading scientific communication platform, mainly for mathematics and physics, where everyone in the world has free access on. While in some scientific disciplines the open access way is successfully realized, other disciplines (e.g. humanities and social sciences) dwell on the traditional path, even though many scientists belonging to these communities approve the open access principle. In this paper we try to explain these different publication patterns by using a game theoretical approach. Based on the assumption, that the main goal of scientists is the maximization of their reputation, we model different possible game settings, namely a zero sum game, the prisoners’ dilemma case and a version of the stag hunt game, that show the dilemma of scientists belonging to “non-open access communities”. From an individual perspective, they have no incentive to deviate from the Nash equilibrium of traditional publishing. By extending the model using the quantum game theory approach it can be shown, that if the strength of entanglement exceeds a certain value, the scientists will overcome the dilemma and terminate to publish only traditionally in all three settings.
Superconductors from Superstrings
Gubser, Steven S.; Herzog, Christopher P.; Pufu, Silviu S.; Tesileanu, Tiberiu
2009-10-02
We establish that in a large class of strongly coupled (3+1)-dimensional N=1 quiver conformal field theories with gravity duals, adding a chemical potential for the R charge leads to the existence of superfluid states in which a chiral primary operator of the schematic form O=lambdalambda+W condenses. Here lambda is a gluino and W is the superpotential. Our argument is based on the construction of a consistent truncation of type IIB supergravity that includes a U(1) gauge field and a complex scalar.
E10, BE10 and Arithmetical Chaos in Superstring Cosmology
NASA Astrophysics Data System (ADS)
Damour, Thibault; Henneaux, Marc
2001-05-01
It is shown that the neverending oscillatory behavior of the generic solution, near a cosmological singularity, of the massless bosonic sector of superstring theory can be described as a billiard motion within a simplex in nine-dimensional hyperbolic space. The Coxeter group of reflections of this billiard is discrete and is the Weyl group of the hyperbolic Kac-Moody algebra E10 (for type II) or BE10 (for type I or heterotic), which are both arithmetic. These results lead to a proof of the chaotic (``Anosov'') nature of the classical cosmological oscillations, and suggest a ``chaotic quantum billiard'' scenario of vacuum selection in string theory.
E10, BE10 and arithmetical chaos in superstring cosmology.
Damour, T; Henneaux, M
2001-05-21
It is shown that the neverending oscillatory behavior of the generic solution, near a cosmological singularity, of the massless bosonic sector of superstring theory can be described as a billiard motion within a simplex in nine-dimensional hyperbolic space. The Coxeter group of reflections of this billiard is discrete and is the Weyl group of the hyperbolic Kac-Moody algebra E10 (for type II) or BE10 (for type I or heterotic), which are both arithmetic. These results lead to a proof of the chaotic ("Anosov") nature of the classical cosmological oscillations, and suggest a "chaotic quantum billiard" scenario of vacuum selection in string theory. PMID:11384339
Lincoln, Don
2015-01-12
The quest to find the ultimate building blocks of nature is one of the oldest in all of physics. While we are far from knowing the answer to that question, one intriguing proposed answer is that all matter is composed of tiny “strings.” The known particles are simply different vibrational patterns of these strings. In this video, Fermilab’s Dr. Don Lincoln explains this idea, using interesting and accessible examples of real-world vibrations.
NASA Astrophysics Data System (ADS)
Anagnostopoulos, K.; Azuma, T.; Nishimura, J.
The IIB matrix model proposes a mechanism for dynamically generating four dimensional space--time in string theory by spontaneous breaking of the ten dimensional rotational symmetry $\\textrm{SO}(10)$. Calculations using the Gaussian expansion method (GEM) lend support to this conjecture. We study a simple $\\textrm{SO}(4)$ invariant matrix model using Monte Carlo simulations and we confirm that its rotational symmetry breaks down, showing that lower dimensional configurations dominate the path integral. The model has a strong complex action problem and the calculations were made possible by the use of the factorization method on the density of states $\\rho_n(x)$ of properly normalized eigenvalues $\\tilde\\lambda_n$ of the space--time moment of inertia tensor. We study scaling properties of the factorized terms of $\\rho_n(x)$ and we find them in agreement with simple scaling arguments. These can be used in the finite size scaling extrapolation and in the study of the region of configuration space obscured by the large fluctuations of the phase. The computed values of $\\tilde\\lambda_n$ are in reasonable agreement with GEM calculations and a numerical method for comparing the free energy of the corresponding ansatze is proposed and tested.
The shadow world of superstring theories
NASA Technical Reports Server (NTRS)
Kolb, E. W.; Turner, M. S.; Seckel, D.
1985-01-01
Some possible astrophysical and cosmological implications of 'shadow matter', a form of matter which only interacts gravitationally with ordinary matter and which may or may not be identical in its properties to ordinary matter, are considered. The possible existence, amount, and location of shadow matter in the solar system are discussed, and the significance of shadow matter for primordial nucleosynthesis, macroscopic asymmetry, baryogenesis, double-bubble inflation, and asymmetric microphysics is addressed. Massive shadow states are discussed.
NSR superstring measures in genus 5
NASA Astrophysics Data System (ADS)
Dunin-Barkowski, Petr; Sleptsov, Alexey; Stern, Abel
2013-07-01
Currently there are two proposed ansätze for NSR superstring measures: the Grushevsky ansatz and the OPSMY ansatz, which for genera g⩽4 are known to coincide. However, neither the Grushevsky nor the OPSMY ansatz leads to a vanishing two-point function in genus four, which can be constructed from the genus five expressions for the respective ansätze. This is inconsistent with the known properties of superstring amplitudes. In the present paper we show that the Grushevsky and OPSMY ansätze do not coincide in genus five. Then, by combining these ansätze, we propose a new ansatz for genus five, which now leads to a vanishing two-point function in genus four. We also show that one cannot construct an ansatz from the currently known forms in genus 6 that satisfies all known requirements for superstring measures.
Wormhole effect on the superstring axion
Kim, J.E.
1989-04-15
Wormhole solutions can arise from the third-rank field strength H/sub ..mu..//sub ..nu..//sub rho/ which has a gluon anomaly. The superstring axion has this property. The effect of these wormholes on axion cosmology is studied. To save the superstring axion energy-density problem, theta-bar is /similar to/10/sup -3/ or ..lambda../sub 0//sup 1/4/ is /similar to/10 keV at the QCD chiral-symmetry-breaking scale.
Open quantum systems and random matrix theory
Mulhall, Declan
2014-10-15
A simple model for open quantum systems is analyzed with RMT. The system is coupled to the continuum in a minimal way. In this paper we see the effect of opening the system on the level statistics, in particular the level spacing, width distribution and Δ{sub 3}(L) statistic are examined as a function of the strength of this coupling. The usual super-radiant state is observed, and it is seen that as it is formed, the level spacing and Δ{sub 3}(L) statistic exhibit the signatures of missed levels.
Closed string cohomology in open string field theory
NASA Astrophysics Data System (ADS)
Moeller, Nicolas; Sachs, Ivo
2011-07-01
We show that closed string states in bosonic string field theory are encoded in the cyclic cohomology of cubic open string field theory (OSFT) which, in turn, classifies the deformations of OSFT. This cohomology is then shown to be independent of the open string background. Exact elements correspond to closed string gauge transformations, generic boundary deformations of Witten's 3-vertex and infinitesimal shifts of the open string background. Finally it is argued that the closed string cohomology and the cyclic cohomology of OSFT are isomorphic to each other.
General Open Systems Theory and the Substrata-Factor Theory of Reading.
ERIC Educational Resources Information Center
Kling, Martin
This study was designed to extend the generality of the Substrata-Factor Theory by two methods of investigation: (1) theoretically, to est"blish the validity of the hypothesis that an isomorphic relationship exists between the Substrata-Factor Theory and the General Open Systems Theory, and (2) experimentally, to disc"ver through a series of…
Superstring phenomenology present-and-future perspective
Faraggi, A.E.
1997-07-01
The objective of superstring phenomenology is to develop the models and methodology needed to connect quantitatively between Planck scale and electroweak scale experimental data. I review the present status of this endeavor with a focus on the three generation free fermionic models.
Sensor And Method For Detecting A Superstrate
NASA Technical Reports Server (NTRS)
Arndt, G. Dickey (Inventor); Cari, James R. (Inventor); Ngo, Phong H. (Inventor); Fink, Patrick W. (Inventor); Siekierski, James D. (Inventor)
2006-01-01
Method and apparatus are provided for determining a superstrate on or near a sensor, e.g., for detecting the presence of an ice superstrate on an airplane wing or a road. In one preferred embodiment, multiple measurement cells are disposed along a transmission line. While the present invention is operable with different types of transmission lines, construction details for a presently preferred coplanar waveguide and a microstrip waveguide are disclosed. A computer simulation is provided as part of the invention for predicting results of a simulated superstrate detector system. The measurement cells may be physically partitioned, nonphysically partitioned with software or firmware, or include a combination of different types of partitions. In one embodiment, a plurality of transmission lines are utilized wherein each transmission line includes a plurality of measurement cells. The plurality of transmission lines may be multiplexed with the signal from each transmission line being applied to the same phase detector. In one embodiment, an inverse problem method is applied to determine the superstrate dielectric for a transmission line with multiple measurement cells.
Information theory of open fragmenting systems
Gulminelli, F.; Juillet, O.; Ison, M. J.; Dorso, C. O.
2007-02-12
An information theory description of finite systems explicitly evolving in time is presented. We impose a MaxEnt variational principle on the Shannon entropy at a given time while the constraints are set at a former time. The resulting density matrix contains explicit time odd components in the form of collective flows. As a specific application we consider the dynamics of the expansion in connection with heavy ion experiments. Lattice gas and classical molecular dynamics simulations are shown.
One loop superstring effective actions and N=8 supergravity
Moura, Filipe
2008-06-15
In a previous article we have shown the existence of a new independent R{sup 4} term, at one loop, in the type IIA and heterotic effective actions, after reduction to four dimensions, besides the usual square of the Bel-Robinson tensor. It had been shown that such a term could not be directly supersymmetrized, but we showed that was possible after coupling to a scalar chiral multiplet. In this article, we study the extended (N=8) supersymmetrization of this term, where no other coupling can be taken. We show that such supersymmetrization cannot be achieved at the linearized level. This is in conflict with the theory one gets after toroidal compactification of type II superstrings being N=8 supersymmetric. We interpret this result in the face of the recent claim that perturbative supergravity cannot be decoupled from string theory in d{>=}4, and N=8, d=4 supergravity is in the swampland.
NASA Astrophysics Data System (ADS)
Chaudhuri, Shyamoli
2014-12-01
We derive the Euclidean time formulation for the equilibrium canonical ensemble of the type IIA and type IIB superstrings, and the spin(32 )/Z2 heterotic string. We compactify on R8×T2 , and twist by the Neveu-Schwarz sector antisymmetric 2-form B -field potential, spontaneously breaking supersymmetry at low temperatures, while preserving the tachyon-free low-energy gravitational field theory limit. We verify that the super partners of the massless dilaton-graviton multiplet obtain a mass which is linear in the temperature. In addition, we show that the free energy for the superstring canonical ensemble at weak coupling is always strongly convergent in the ultraviolet, high-temperature, regime dominated by the highest mass level number states. We derive the precise form of the exponential suppression as a linear power of the mass level, which erases the exponential Hagedorn growth of the degeneracies as the square root of mass level number. Finally, we close a gap in previous research giving an unambiguous derivation of the normalization of the one-loop vacuum energy density of the spin(32 )/Z2 perturbative heterotic string theory. Invoking the O(32) type IB-heterotic strong-weak duality, we match the normalization of the one loop vacuum energy densities of the T -dual O(32) type IA open and closed string with that of the spin(32 )/Z2 heterotic string on R9×S1 , for values of the compactification radius, R[O (32 )] , RIB≫ α'1 /2 , with RIA<α'1 /2 . We show that the type IA thermal solitonic winding spectrum is a simple model for finite temperature pure QCD, transitioning above the critical duality phase transformation temperature to the deconfined ensemble of thermally excited IB gluons.
NASA Astrophysics Data System (ADS)
Dobaczewski, Jacek
2010-06-01
Nuclear structure theory is a domain of physics faced at present with great challenges and opportunities. A larger and larger body of high-precision experimental data has been and continues to be accumulated. Experiments on very exotic short-lived isotopes are the backbone of activity at numerous large-scale facilities. Over the years, tremendous progress has been made in understanding the basic features of nuclei. However, the theoretical description of nuclear systems is still far from being complete and is often not very precise. Many questions, both basic and practical, remain unanswered. The goal of publishing this special focus issue of Journal of Physics G: Nuclear and Particle Physics on Open Problems in Nuclear Structure Theory (OPeNST) is to construct a fundamental inventory thereof, so that the tasks and available options become more clearly exposed and that this will help to stimulate a boost in theoretical activity, commensurate with the experimental progress. The requested format and scope of the articles on OPeNST was quite flexible. The journal simply offered the possibility to provide a forum for the material, which is very often discussed at conferences during the coffee breaks but does not normally have sufficient substance to form regular publications. Nonetheless, very often formulating a problem provides a major step towards its solution, and it may constitute a scientific achievement on its own. Prospective authors were therefore invited to find their own balance between the two extremes of very general problems on the one hand (for example, to solve exactly the many-body equations for a hundred particles) and very specific problems on the other hand (for example, those that one could put in one's own grant proposal). The authors were also asked not to cover results already obtained, nor to limit their presentations to giving a review of the subject, although some elements of those could be included to properly introduce the subject matter
Open string Regge trajectory and its field theory limit
NASA Astrophysics Data System (ADS)
Rojas, Francisco; Thorn, Charles B.
2011-07-01
We study the properties of the leading Regge trajectory in open string theory including the open string planar one-loop corrections. With SU(N) Chan-Paton factors, the sum over planar open string multiloop diagrams describes the ’t Hooft limit N→∞ with Ngs2 fixed. Our motivation is to improve the understanding of open string theory at finite α' as a model of gauge field theories. SU(N) gauge theories in D space-time dimensions are described by requiring open strings to end on a stack of N Dp-branes of space-time dimension D=p+1. The large N leading trajectory α(t)=1+α't+Σ(t) can be extracted, through order g2, from the s→-∞ limit, at fixed t, of the four open string tree and planar loop diagrams. We analyze the t→0 behavior with the result that Σ(t)˜-Cg2(-α't)(D-4)/2/(D-4). This result precisely tracks the 1-loop Reggeized gluon of gauge theory in D>4 space-time dimensions. In particular, for D→4 it reproduces the known infrared divergences of gauge theory in 4 dimensions with a Regge trajectory behaving as -ln(-α't). We also study Σ(t) in the limit t→-∞ and show that, when D<8, it behaves as α't/(ln(-α't))γ, where γ>0 depends on D and the number of massless scalars. Thus, as long as 4
Open parabosonic string theory between two parallel Dp-branes
Hamam, D.; Belaloui, N.
2012-06-27
We investigate an open parabosonic string theory between two parallel Dp-branes. The spectrum is constructed and the partition function is derived. A common chord between the development of this latter and the degeneracy of the states for each mass level is obtained. The theory is consistent and with no tachyon. The Virasoro algebra is derived and compared to the one of the ordinary case.
ERIC Educational Resources Information Center
Guler, Nese; Gelbal, Selahattin
2010-01-01
In this study, the Classical test theory and generalizability theory were used for determination to reliability of scores obtained from measurement tool of mathematics success. 24 open-ended mathematics question of the TIMSS-1999 was applied to 203 students in 2007-spring semester. Internal consistency of scores was found as 0.92. For…
Nursing Services Delivery Theory: an open system approach
Meyer, Raquel M; O’Brien-Pallas, Linda L
2010-01-01
meyer r.m. & o’brien-pallas l.l. (2010)Nursing services delivery theory: an open system approach. Journal of Advanced Nursing66(12), 2828–2838. Aim This paper is a discussion of the derivation of the Nursing Services Delivery Theory from the application of open system theory to large-scale organizations. Background The underlying mechanisms by which staffing indicators influence outcomes remain under-theorized and unmeasured, resulting in a ‘black box’ that masks the nature and organization of nursing work. Theory linking nursing work, staffing, work environments, and outcomes in different settings is urgently needed to inform management decisions about the allocation of nurse staffing resources in organizations. Data sources A search of CINAHL and Business Source Premier for the years 1980–2008 was conducted using the following terms: theory, models, organization, organizational structure, management, administration, nursing units, and nursing. Seminal works were included. Discussion The healthcare organization is conceptualized as an open system characterized by energy transformation, a dynamic steady state, negative entropy, event cycles, negative feedback, differentiation, integration and coordination, and equifinality. The Nursing Services Delivery Theory proposes that input, throughput, and output factors interact dynamically to influence the global work demands placed on nursing work groups at the point of care in production subsystems. Implications for nursing The Nursing Services Delivery Theory can be applied to varied settings, cultures, and countries and supports the study of multi-level phenomena and cross-level effects. Conclusion The Nursing Services Delivery Theory gives a relational structure for reconciling disparate streams of research related to nursing work, staffing, and work environments. The theory can guide future research and the management of nursing services in large-scale healthcare organizations. PMID:20831573
Superconformal spaces and implications for superstrings
Hatsuda, M.; Siegel, W.
2008-03-15
We clarify some properties of projective superspace by using a manifestly superconformal notation. In particular, we analyze the N=2 scalar multiplet in detail, including its action, and the propagator and its super-Schwinger parameters. The internal symmetry is taken to be noncompact (after Wick rotation), allowing boundary conditions that preserve it off shell. Generalization to N=4 suggests the coset superspace PSU(2,2|4)/OSp(4|4) for the AdS/CFT superstring.
Theory of short periodic orbits for partially open quantum maps.
Carlo, Gabriel G; Benito, R M; Borondo, F
2016-07-01
We extend the semiclassical theory of short periodic orbits [M. Novaes et al., Phys. Rev. E 80, 035202(R) (2009)PLEEE81539-375510.1103/PhysRevE.80.035202] to partially open quantum maps, which correspond to classical maps where the trajectories are partially bounced back due to a finite reflectivity R. These maps are representative of a class that has many experimental applications. The open scar functions are conveniently redefined, providing a suitable tool for the investigation of this kind of system. Our theory is applied to the paradigmatic partially open tribaker map. We find that the set of periodic orbits that belongs to the classical repeller of the open map (R=0) is able to support the set of long-lived resonances of the partially open quantum map in a perturbative regime. By including the most relevant trajectories outside of this set, the validity of the approximation is extended to a broad range of R values. Finally, we identify the details of the transition from qualitatively open to qualitatively closed behavior, providing an explanation in terms of short periodic orbits. PMID:27575138
Theory of short periodic orbits for partially open quantum maps
NASA Astrophysics Data System (ADS)
Carlo, Gabriel G.; Benito, R. M.; Borondo, F.
2016-07-01
We extend the semiclassical theory of short periodic orbits [M. Novaes et al., Phys. Rev. E 80, 035202(R) (2009), 10.1103/PhysRevE.80.035202] to partially open quantum maps, which correspond to classical maps where the trajectories are partially bounced back due to a finite reflectivity R . These maps are representative of a class that has many experimental applications. The open scar functions are conveniently redefined, providing a suitable tool for the investigation of this kind of system. Our theory is applied to the paradigmatic partially open tribaker map. We find that the set of periodic orbits that belongs to the classical repeller of the open map (R =0 ) is able to support the set of long-lived resonances of the partially open quantum map in a perturbative regime. By including the most relevant trajectories outside of this set, the validity of the approximation is extended to a broad range of R values. Finally, we identify the details of the transition from qualitatively open to qualitatively closed behavior, providing an explanation in terms of short periodic orbits.
CMB constraints on cosmic strings and superstrings
NASA Astrophysics Data System (ADS)
Charnock, Tom; Avgoustidis, Anastasios; Copeland, Edmund J.; Moss, Adam
2016-06-01
We present the first complete Markov chain Monte Carlo analysis of cosmological models with evolving cosmic (super)string networks, using the unconnected segment model in the unequal-time correlator formalism. For ordinary cosmic string networks, we derive joint constraints on Λ cold dark matter (CDM) and string network parameters, namely the string tension G μ , the loop-chopping efficiency cr, and the string wiggliness α . For cosmic superstrings, we obtain joint constraints on the fundamental string tension G μF, the string coupling gs, the self-interaction coefficient cs, and the volume of compact extra dimensions w . This constitutes the most comprehensive CMB analysis of Λ CDM cosmology+strings to date. For ordinary cosmic string networks our updated constraint on the string tension, obtained using Planck2015 temperature and polarization data, is G μ <1.1 ×10-7 in relativistic units, while for cosmic superstrings our constraint on the fundamental string tension after marginalizing over gs, cs, and w is G μF<2.8 ×10-8.
Knots and Gamma Classes in Open Topological String Theory
NASA Astrophysics Data System (ADS)
Mahowald, Matthew
This thesis explores some mathematical applications of string dualities in open topological string theory and presents some new techniques for studying and computing open Gromov-Witten invariants. First, we prove a mild generalization of the gamma class formula of [BCR13], and show that it applies in two novel examples: the quintic threefold Q with Lagrangian given by the real quintic QR Q, and for Lagrangians LK ? X = O P1 (--1, --1) obtained from the conormal bundles of (r, s) torus knots K ? S3 via the conifold transition. Disk enumeration on (Q, Q R ) was first considered in [PSW08], and disk enumeration for (X, LK) was studied in winding-1 in [DSV13]. The gamma class formula agrees with the results of [DSV13] and [PSW08], and we generalize the formula of [DSV13] to arbitrary winding. Next we study a relationship between mirror symmetry and knot contact homology described in [AENV14, AV12]. For knots K ? S 3 , large-N duality relates open Gromov-Witten theory on (X, L_K ) to SU (N) Chern-Simons theory on (S3, K). We use the conjecture of [AV12] to compute open Gromov-Witten invariants of (X, L K) through mirror symmetry in many examples, including several non-toric knots. We also find further evidence for this conjecture: for ( r, s) torus knots, we find a formula for the genus-0, 1-boundary-component, degree-d, winding-w open Gromov-Witten invariants of (X, LK ) using localization. This formula agrees with the results of the mirror symmetry calculation. Moreover, using this formula, we describe a method for obtaining the augmentation polynomial of a knot K from the open Gromov-Witten invariants of ( X, LK ). This method is shown to correctly recover the augmentation polynomial for the unknot and (3, 2) torus knot.
Thermofield dynamics extension of the open string field theory
NASA Astrophysics Data System (ADS)
Botta Cantcheff, M.; Scherer Santos, R. J.
2016-03-01
We study the application of the rules of thermofield dynamics (TFD) to the covariant formulation of open-string field theory. We extend the states space and fields according to the duplication rules of TFD and construct the corresponding classical action. The result is interpreted as a theory whose fields would encode the statistical information of open strings. The physical spectrum of the free theory is studied through the cohomology of the extended Becchi, Rouet, Stora and Tyutin (BRST) charge, and, as a result, we get new fields in the spectrum emerging by virtue of the quantum entanglement, and, noticeably, it presents degrees of freedom that could be identified as those of closed strings. We also show, however, that their appearing in the action is directly related to the choice of the inner product in the extended algebra, so that different sectors of fields could be eliminated from the theory by choosing that product conveniently. Finally, we study the extension of the three-vertex interaction and provide a simple prescription for it of which the results at tree level agree with those of the conventional theory.
A new graph model and algorithms for consistent superstring problems†
Na, Joong Chae; Cho, Sukhyeun; Choi, Siwon; Kim, Jin Wook; Park, Kunsoo; Sim, Jeong Seop
2014-01-01
Problems related to string inclusion and non-inclusion have been vigorously studied in diverse fields such as data compression, molecular biology and computer security. Given a finite set of positive strings and a finite set of negative strings , a string α is a consistent superstring if every positive string is a substring of α and no negative string is a substring of α. The shortest (resp. longest) consistent superstring problem is to find a string α that is the shortest (resp. longest) among all the consistent superstrings for the given sets of strings. In this paper, we first propose a new graph model for consistent superstrings for given and . In our graph model, the set of strings represented by paths satisfying some conditions is the same as the set of consistent superstrings for and . We also present algorithms for the shortest and the longest consistent superstring problems. Our algorithms solve the consistent superstring problems for all cases, including cases that are not considered in previous work. Moreover, our algorithms solve in polynomial time the consistent superstring problems for more cases than the previous algorithms. For the polynomially solvable cases, our algorithms are more efficient than the previous ones. PMID:24751868
Fermionic reductions of the AdS{sub 4}xCP{sup 3} superstring
Dukalski, Marcin; Tongeren, Stijn J. van
2009-08-15
We discuss fermionic reductions of type IIA superstrings on AdS{sub 4}xCP{sup 3} in relation to the conjectured AdS{sub 4}/CFT{sub 3} duality. The superstring theory is described by means of a coset model construction, which is classically integrable. We discuss the global light-cone symmetries of the action and related {kappa}-symmetry gauge choices, and also present the complete quartic action in covariant form with respect to these. Further, we study integrable (fermionic) reductions, in particular, a reduction yielding a quadratic action of two complex fermions on the string world-sheet. Interestingly, this model appears to be exactly the same as the corresponding integrable reduction found in the AdS{sub 5}xS{sup 5} case.
Singlet-paired coupled cluster theory for open shells.
Gomez, John A; Henderson, Thomas M; Scuseria, Gustavo E
2016-06-28
Restricted single-reference coupled cluster theory truncated to single and double excitations accurately describes weakly correlated systems, but often breaks down in the presence of static or strong correlation. Good coupled cluster energies in the presence of degeneracies can be obtained by using a symmetry-broken reference, such as unrestricted Hartree-Fock, but at the cost of good quantum numbers. A large body of work has shown that modifying the coupled cluster ansatz allows for the treatment of strong correlation within a single-reference, symmetry-adapted framework. The recently introduced singlet-paired coupled cluster doubles (CCD0) method is one such model, which recovers correct behavior for strong correlation without requiring symmetry breaking in the reference. Here, we extend singlet-paired coupled cluster for application to open shells via restricted open-shell singlet-paired coupled cluster singles and doubles (ROCCSD0). The ROCCSD0 approach retains the benefits of standard coupled cluster theory and recovers correct behavior for strongly correlated, open-shell systems using a spin-preserving ROHF reference. PMID:27369507
Toward open-shell nuclei with coupled-cluster theory
Jansen, G. R.; Hjorth-Jensen, M.; Hagen, G.; Papenbrock, T.
2011-05-15
We develop a method based on equation-of-motion coupled-cluster theory to describe properties of open-shell nuclei with A{+-}2 nucleons outside a closed shell. We perform proof-of-principle calculations for the ground states of the helium isotopes {sup 3-6}He and the first excited 2{sup +} state in {sup 6}He. The comparison with exact results from matrix diagonalization in small model spaces demonstrates the accuracy of the coupled-cluster methods. Three-particle-one-hole excitations of {sup 4}He play an important role for the accurate description of {sup 6}He. For the open-shell nucleus {sup 6}He, the computational cost of the method is comparable with the coupled-cluster singles-and-doubles approximation while its accuracy is similar to the coupled-cluster with singles, doubles, and triples excitations.
On the Relaxation of Superstring Axion Mini-Clusters
NASA Astrophysics Data System (ADS)
Pollock, M. D.
The cosmological axion theory leads to the prediction of axionic mini-clusters of mass M 10-9Msolar, which form at the time te of equipartition of matter and radiation. By applying the two-body relaxation formula of Spitzer and Hart, we show, for the heterotic superstring theory of Gross et al., that these mini-clusters, considered as point masses, themselves cluster into axion mini-stars of mass M0≈ 10-2 (1 + λ 2)3/4 g3sMsun within the age of the Universe t0 only if they are located within a distance R 0.1 pc of the Galactic Center. Here, λ ≡ fB/fA is the ratio of the second to model-independent axion decay constants, assuming the QCD decay constant to be in the range 2.18 x 1016 g2s <= fa ≡ (1)/(2)(1+λ 2)1/2 fA/GeV< ˜ 2.4x 1018, and g2s ≈ 1.4 is the strong-interaction coupling parameter. Thus, if axion mini-stars are to explain the microlensing observations by the EROS and MACHO groups towards the Galactic Bulge and the Large and Small Magellanic Clouds, then a collisionless relaxation mechanism is required, as proposed by Seidel and Suen (essentially the violent relaxation of Lynden-Bell), or the four-axion self-interaction effect considered by Tkachev.
Keldysh field theory for driven open quantum systems.
Sieberer, L M; Buchhold, M; Diehl, S
2016-09-01
Recent experimental developments in diverse areas-ranging from cold atomic gases to light-driven semiconductors to microcavity arrays-move systems into the focus which are located on the interface of quantum optics, many-body physics and statistical mechanics. They share in common that coherent and driven-dissipative quantum dynamics occur on an equal footing, creating genuine non-equilibrium scenarios without immediate counterpart in equilibrium condensed matter physics. This concerns both their non-thermal stationary states and their many-body time evolution. It is a challenge to theory to identify novel instances of universal emergent macroscopic phenomena, which are tied unambiguously and in an observable way to the microscopic drive conditions. In this review, we discuss some recent results in this direction. Moreover, we provide a systematic introduction to the open system Keldysh functional integral approach, which is the proper technical tool to accomplish a merger of quantum optics and many-body physics, and leverages the power of modern quantum field theory to driven open quantum systems. PMID:27482736
Keldysh field theory for driven open quantum systems
NASA Astrophysics Data System (ADS)
Sieberer, L. M.; Buchhold, M.; Diehl, S.
2016-09-01
Recent experimental developments in diverse areas—ranging from cold atomic gases to light-driven semiconductors to microcavity arrays—move systems into the focus which are located on the interface of quantum optics, many-body physics and statistical mechanics. They share in common that coherent and driven–dissipative quantum dynamics occur on an equal footing, creating genuine non-equilibrium scenarios without immediate counterpart in equilibrium condensed matter physics. This concerns both their non-thermal stationary states and their many-body time evolution. It is a challenge to theory to identify novel instances of universal emergent macroscopic phenomena, which are tied unambiguously and in an observable way to the microscopic drive conditions. In this review, we discuss some recent results in this direction. Moreover, we provide a systematic introduction to the open system Keldysh functional integral approach, which is the proper technical tool to accomplish a merger of quantum optics and many-body physics, and leverages the power of modern quantum field theory to driven open quantum systems.
A Probabilistic PTAS for Shortest Common Superstring
NASA Astrophysics Data System (ADS)
Plociennik, Kai
We consider approximation algorithms for the shortest common superstring problem (SCS). It is well-known that there is a constant f > 1 such that there is no efficient approximation algorithm for SCS achieving a factor of at most f in the worst case, unless P = NP. We study SCS on random inputs and present an approximation scheme that achieves, for every ɛ> 0, a 1 + ɛ-approximation in expected polynomial time. This result applies not only if the letters are chosen independently at random, but also to the more realistic mixing model, which allows dependencies among the letters of the random strings. Our result is based on a sharp tail bound on the optimal compression, which improves a previous result by Frieze and Szpankowski.
Gauge transformation of double field theory for open string
NASA Astrophysics Data System (ADS)
Ma, Chen-Te
2015-09-01
We combine symmetry structures of ordinary (parallel directions) and dual (transversal directions) coordinates to construct the Dirac-Born-Infeld theory. The ordinary coordinates are associated with the Neumann boundary conditions and the dual coordinates are associated with the Dirichlet boundary conditions. Gauge fields become scalar fields by exchanging the ordinary and dual coordinates. A gauge transformation of a generalized metric is governed by the generalized Lie derivative. The gauge transformation of the massless closed string theory gives the C -bracket, but the gauge transformation of the open string theory gives the F -bracket. The F -bracket with the strong constraints is different from the Courant bracket by an exact one-form. This exact one-form should come from the one-form gauge field. Based on a symmetry point of view, we deduce a suitable action with a nonzero H -flux at the low-energy level. From an equation of motion of the scalar dilaton, it defines a generalized scalar curvature. Finally, we construct a double sigma model with a boundary term and show that this model with constraints is classically equivalent to the ordinary sigma model.
String field theory and tachyon field
NASA Astrophysics Data System (ADS)
Yang, Yi
In this thesis, we study Sen's conjecture on tachyon condensation by using string field theories, i.e. boundary string field theory (BSFT) and cubic string field theory (CSFT). In the BSFT side, the first explicit calculation of effective tachyon action for the bosonic string was given by Witten ten years ago and by many other authors in the last two years. It was extended to the superstring case shortly after. In our work, we give an explicit calculation of Green functions for the fermionic fields and compute the effective tachyon action for the superstring. The results we obtain agree with earlier results. We then generalize the BSFT method to one loop level. The tachyon condensation at one loop level is systematically studied, and many interesting results are obtained which verify Sen's conjecture. We also apply this method to the non-orientable theory at one loop level, where the expected divergence cancellation is reproduced and the similar effective tachyon action is obtained. By using the boundary state formalism, we verify the duality between open and closed strings. In the CSFT side, since there is no known solution to this theory, tachyon condensation can only be studied by numerical methods, i.e. level truncation. However, at the tachyon vacuum, CSFT is simplified to vacuum string field theory (VSFT) which has a solution - sliver state. By adding a tachyon vertex to the boundary of the sliver state, we have calculated the effective action.
Pauli-Villars regulatization of supergravity and field theory anomalies
Gaillard, M.K.
1995-06-01
A procedure for Pauli-Villars regularization of locally and globally supersymmetric theories is described. Implications for specific theories, especially those obtained from superstrings, are discussed with emphasis on the role of field theory anomalies.
Towards a Theory of Metastability in Open Quantum Dynamics
NASA Astrophysics Data System (ADS)
Macieszczak, Katarzyna; GuÅ£ǎ, Mǎdǎlin; Lesanovsky, Igor; Garrahan, Juan P.
2016-06-01
By generalizing concepts from classical stochastic dynamics, we establish the basis for a theory of metastability in Markovian open quantum systems. Partial relaxation into long-lived metastable states—distinct from the asymptotic stationary state—is a manifestation of a separation of time scales due to a splitting in the spectrum of the generator of the dynamics. We show here how to exploit this spectral structure to obtain a low dimensional approximation to the dynamics in terms of motion in a manifold of metastable states constructed from the low-lying eigenmatrices of the generator. We argue that the metastable manifold is in general composed of disjoint states, noiseless subsystems, and decoherence-free subspaces.
Towards a Theory of Metastability in Open Quantum Dynamics.
Macieszczak, Katarzyna; Guţă, Mădălin; Lesanovsky, Igor; Garrahan, Juan P
2016-06-17
By generalizing concepts from classical stochastic dynamics, we establish the basis for a theory of metastability in Markovian open quantum systems. Partial relaxation into long-lived metastable states-distinct from the asymptotic stationary state-is a manifestation of a separation of time scales due to a splitting in the spectrum of the generator of the dynamics. We show here how to exploit this spectral structure to obtain a low dimensional approximation to the dynamics in terms of motion in a manifold of metastable states constructed from the low-lying eigenmatrices of the generator. We argue that the metastable manifold is in general composed of disjoint states, noiseless subsystems, and decoherence-free subspaces. PMID:27367368
The AdS{sub 5}xS{sup 5} superstring worldsheet S matrix and crossing symmetry
Janik, Romuald A.
2006-04-15
An S matrix satisfying the Yang-Baxter equation with symmetries relevant to the AdS{sub 5}xS{sup 5} superstring recently has been determined up to an unknown scalar factor. Such scalar factors are typically fixed using crossing relations; however, due to the lack of conventional relativistic invariance, in this case its determination remained an open problem. In this paper we propose an algebraic way to implement crossing relations for the AdS{sub 5}xS{sup 5} superstring worldsheet S matrix. We base our construction on a Hopf-algebraic formulation of crossing in terms of the antipode and introduce generalized rapidities living on the universal cover of the parameter space which is constructed through an auxillary, coupling-constant dependent, elliptic curve. We determine the crossing transformation and write functional equations for the scalar factor of the S matrix in the generalized rapidity plane.
Green-Schwarz superstring on the lattice
NASA Astrophysics Data System (ADS)
Bianchi, L.; Bianchi, M. S.; Forini, V.; Leder, B.; Vescovi, E.
2016-07-01
We consider possible discretizations for a gauge-fixed Green-Schwarz action of Type IIB superstring. We use them for measuring the action, from which we extract the cusp anomalous dimension of planar N=4 SYM as derived from AdS/CFT, as well as the mass of the two AdS excitations transverse to the relevant null cusp classical string solution. We perform lattice simulations employing a Rational Hybrid Monte Carlo (RHMC) algorithm and two Wilson-like fermion discretizations, one of which preserves the global SO(6) symmetry the model. We compare our results with the expected behavior at various values of g=√{λ }/4π . For both the observables, we find a good agreement for large g, which is the perturbative regime of the sigma-model. For smaller values of g, the expectation value of the action exhibits a deviation compatible with the presence of quadratic divergences. After their non-perturbative subtraction the continuum limit can be taken, and suggests a qualitative agreement with the non-perturbative expectation from AdS/CFT. Furthermore, we detect a phase in the fermion determinant, whose origin we explain, that for small g leads to a sign problem not treatable via standard reweigthing. The continuum extrapolations of the observables in the two different discretizations agree within errors, which is strongly suggesting that they lead to the same continuum limit. Part of the results discussed here were presented earlier in [1].
Can the superstring inspire the standard model?
NASA Astrophysics Data System (ADS)
Ellis, John; Enqvist, K.; Nanopoulos, D. V.; Olive, Keith A.
1988-02-01
We discuss general features of models in which the E 8 × E' 8 heterotic superstring is compactified on a specific Calabi-Yau manifold. The gauge group of rank-6 in four dimensions is supposed to be broken down at an intermediate scale mI to the standard model group SU(3) C × SU(2) L × U(1) Y, as a result of two neutral scalar fields acquiring large vacuum expectations (vev's) in one of many flat directions of the effective potential. We find that it is difficult to generate such an intermediate scale by radiative symmetry breaking, whilst such models have prima facie problems with baryon decay mediated by massive particles and with non-perturbative behaviour of the gauge couplings, unless mI ≳ 10 16 GeV. Rapid baryon decay mediated by light particles, large neutrino masses, other ΔL ≠ 0 processes and flavour-changing neutral currents are generic features of these models. We illustrate these observations with explicit calculations in a number of different models given by vev's in different flat directions.
Infinite tension limit of the pure spinor superstring
NASA Astrophysics Data System (ADS)
Berkovits, Nathan
2014-03-01
Mason and Skinner recently constructed a chiral infinite tension limit of the Ramond-Neveu-Schwarz superstring which was shown to compute the Cachazo-He-Yuan formulae for tree-level d = 10 Yang-Mills amplitudes and the NS-NS sector of tree-level d = 10 supergravity amplitudes. In this letter, their chiral infinite tension limit is generalized to the pure spinor superstring which computes a d = 10 superspace version of the Cachazo-He-Yuan formulae for tree-level d = 10 super-Yang-Mills and supergravity amplitudes.
The decay of highly excited open strings
NASA Technical Reports Server (NTRS)
Mitchell, D.; Turok, N.; Wilkinson, R.; Jetzer, P.
1988-01-01
The decay rates of leading edge Regge trajectory states are calculated for very high level number in open bosonic string theories, ignoring tachyon final states. The optical theorem simplifies the analysis while enabling identification of the different mass level decay channels. The main result is that (in four dimensions) the greatest single channel is the emission of a single photon and a state of the next mass level down. A simple asymptotic formula for arbitrarily high level number is given for this process. Also calculated is the total decay rate exactly up to N=100. It shows little variation over this range but appears to decrease for larger N. The formalism is checked in examples and the decay rate of the first excited level calculated for open superstring theories. The calculation may also have implications for high spin meson resonances.
On the pure spinor heterotic superstring b ghost
NASA Astrophysics Data System (ADS)
Fleury, Thiago
2016-03-01
A simplified pure spinor superstring b ghost in a curved heterotic background was constructed recently. The b ghost is a composite operator and it is not holomorphic. However, it satisfies overline{partial}b=[Q,Ω ] , where Q is the BRST charge. In this paper, we find a possible Ω.
Cosmic super-strings and Kaluza-Klein modes
Dufaux, Jean-François
2012-09-01
Cosmic super-strings interact generically with a tower of relatively light and/or strongly coupled Kaluza-Klein (KK) modes associated with the geometry of the internal space. In this paper, we study the production of spin-2 KK particles by cusps on loops of cosmic F- and D-strings. We consider cosmic super-strings localized either at the bottom of a warped throat or in a flat internal space with large volume. The total energy emitted by cusps in KK modes is comparable in both cases, although the number of produced KK modes may differ significantly. We then show that KK emission is constrained by the photo-dissociation of light elements and by observations of the diffuse gamma ray background. We show that this rules out regions of the parameter space of cosmic super-strings that are complementary to the regions that can be probed by current and upcoming gravitational wave experiments. KK modes are also expected to play an important role in the friction-dominated epoch of cosmic super-string evolution.
S -matrix algebra of the AdS2×S2 superstring
NASA Astrophysics Data System (ADS)
Hoare, Ben; Pittelli, Antonio; Torrielli, Alessandro
2016-03-01
In this paper, we find the Yangian algebra responsible for the integrability of the AdS2×S2×T6 superstring in the planar limit. We demonstrate the symmetry of the corresponding exact S matrix in the massive sector, including the presence of the secret symmetry. We give two alternative presentations of the Hopf algebra. The first takes the usual canonical form, which, as the relevant representations are long, leads to a Yangian representation that is not of evaluation type. After investigating the relationship between cocommutativity, evaluation representations and the shortening condition, we find an alternative realization of the Yangian whose representation is of the evaluation type. Finally, we explore two limits of the S matrix. The first is the classical r matrix, where we rediscover the need for a secret symmetry also in this context. The second is the simplifying zero-coupling limit. In this limit, taking the S matrix as a generating R matrix for the algebraic Bethe ansatz, we obtain an effective model of free fermions on a periodic spin-chain. This limit should provide hints to the one-loop anomalous dimension of the mysterious superconformal quantum mechanics dual to the superstring theory in this geometry.
Gravitational wave bursts from cosmic (super)strings: Quantitative analysis and constraints
Siemens, Xavier; Creighton, Jolien; Majumder, Saikat Ray; Cannon, Kipp; Read, Jocelyn; Maor, Irit
2006-05-15
We discuss data analysis techniques that can be used in the search for gravitational wave bursts from cosmic strings. When data from multiple interferometers are available, we describe consistency checks that can be used to greatly reduce the false alarm rates. We construct an expression for the rate of bursts for arbitrary cosmic string loop distributions and apply it to simple known solutions. The cosmology is solved exactly and includes the effects of a late-time acceleration. We find substantially lower burst rates than previous estimates suggest and explain the disagreement. Initial LIGO is unlikely to detect field-theoretic cosmic strings with the usual loop sizes, though it may detect cosmic superstrings as well as cosmic strings and superstrings with nonstandard loop sizes (which may be more realistic). In the absence of a detection, we show how to set upper limits based on the loudest event. Using Initial LIGO sensitivity curves, we show that these upper limits may result in interesting constraints on the parameter space of theories that lead to the production of cosmic strings.
Complete N-point superstring disk amplitude I. Pure spinor computation
NASA Astrophysics Data System (ADS)
Mafra, Carlos R.; Schlotterer, Oliver; Stieberger, Stephan
2013-08-01
In this paper the pure spinor formalism is used to obtain a compact expression for the superstring N-point disk amplitude. The color-ordered string amplitude is given by a sum over (N-3)! super-Yang-Mills subamplitudes multiplied by multiple Gaussian hypergeometric functions. In order to obtain this result, the cohomology structure of the pure spinor superspace is exploited to generalize the Berends-Giele method of computing super-Yang-Mills amplitudes. The method was briefly presented in Mafra et al. (2011) [1], and this paper elaborates on the details and contains higher-rank examples of building blocks and associated cohomology objects. But the main achievement of this work is to identify these field-theory structures in the pure spinor computation of the superstring amplitude. In particular, the associated set of basis worldsheet integrals is constructively obtained here and thoroughly investigated together with the structure and properties of the amplitude in Mafra et al. (2011) [2], arXiv:1106.2646 [hep-th].
Cross sections for production of closed superstrings at high energy colliders in brane world models
Chialva, Diego; Iengo, Roberto; Russo, Jorge G.
2005-05-15
In brane world string models with large extra dimensions, there are processes where fermion and antifermion (or two gluons) can annihilate producing a light particle (e.g. gluon) carrying transverse momentum and a Kaluza-Klein graviton or an excited closed string that propagates in the extra dimensions. In high energy colliders, this process gives a missing-momentum signature. We compute the total cross section for this process within the context of type II superstring theory in the presence of a D-brane. This includes all missing-energy sources for this string-theory model up to s=8M{sub s}{sup 2}, and it can be used to put new limits on the string scale M{sub s}.
Three-algebra for supermembrane and two-algebra for superstring
NASA Astrophysics Data System (ADS)
Lee, Kanghoon; Park, Jeong-Hyuck
2009-04-01
While string or Yang-Mills theories are based on Lie algebra or two-algebra structure, recent studies indicate that Script M-theory may require a one higher, three-algebra structure. Here we construct a covariant action for a supermembrane in eleven dimensions, which is invariant under global supersymmetry, local fermionic symmetry and worldvolume diffeomorphism. Our action is classically on-shell equivalent to the celebrated Bergshoeff-Sezgin-Townsend action. However, the novelty is that we spell the action genuinely in terms of Nambu three-brackets: All the derivatives appear through Nambu brackets and hence it manifests the three-algebra structure. Further the double dimensional reduction of our action gives straightforwardly to a type IIA string action featuring two-algebra. Applying the same method, we also construct a covariant action for type IIB superstring, leading directly to the IKKT matrix model.
Survival of pq-superstrings in field theory simulations
NASA Astrophysics Data System (ADS)
Lizarraga, Joanes; Urrestilla, Jon
2016-04-01
We perform large-scale field theoretical simulations in expanding universe to characterize a network of strings that can form composed bound states. The network consists of two copies of Abelian Higgs strings (which we label p and q, respectively) coupled via a potential term to give pq bound states. The simulations are performed using two different kinds of initial conditions: the first one with a network of p- and q-strings, and the second one with a network of q- and pq-strings. This way, we start from two opposite situations: one with no initial pq-strings, and one with a large initial number of pq-strings. We find that in both cases the system scales, and in both cases the system prefers to have a low fraction of pq-strings. This is somewhat surprising in the case for the second type of conditions, showing that the unzipping mechanism is very efficient. We also find hints that both initial conditions tend to asymptote to a common configuration, though we would need a larger dynamical range to confirm it. The average velocities of the different types of strings in the network have also been explored for the first time.
One-loop superstring six-point amplitudes and anomalies in pure spinor superspace
NASA Astrophysics Data System (ADS)
Mafra, Carlos R.; Schlotterer, Oliver
2016-04-01
We present the massless six-point one-loop amplitudes in the open and closed superstring using BRST cohomology arguments from the pure spinor formalism. The hexagon gauge anomaly is traced back to a class of kinematic factors in pure spinor superspace which were recently introduced as BRST pseudo-invariants. This complements previous work where BRST invariance arguments were used to derive the non-anomalous part of the amplitude. The associated worldsheet functions are non-singular and demonstrated to yield total derivatives on moduli space upon gauge variation. These cohomology considerations yield an efficient organizing principle for closed-string amplitudes that match expectations from S-duality in the low-energy limit.
Developing open systems using theories and models of the world
Kokar, M.M.; Korona, Z.
1996-12-31
This paper considers an open system as such that can deal with inputs that were not anticipated by the designer. Using an ATR system as an example, we show how the combination of logic with software engineering techniques allowed us to improve the performance of the system.
Universality and clustering in 1 + 1 dimensional superstring-bit models
Bergman, O.; Thorn, C.B.
1996-03-01
We construct a 1+1 dimensional superstring-bit model for D=3 Type IIB superstring. This low dimension model escapes the problem encountered in higher dimension models: (1) It possesses full Galilean supersymmetry; (2) For noninteracting Polymers of bits, the exactly soluble linear superpotential describing bit interactions is in a large universality class of superpotentials which includes ones bounded at spatial infinity; (3) The latter are used to construct a superstring-bit model with the clustering properties needed to define an S-matrix for closed polymers of superstring-bits.
Universality and clustering in {bold 1+1} dimensional superstring-bit models
Bergman, O.; Thorn, C.B.
1996-03-01
We construct a 1+1 dimensional superstring-bit model for {ital D}=3 type IIB superstring. This low dimension model escapes the problems encountered in higher dimension models: (1) It possesses full Galilean supersymmetry. (2) For noninteracting polymers of bits, the exactly soluble linear superpotential describing bit interactions is in a large universality class of superpotentials which includes ones bounded at spatial infinity. (3) The latter are used to construct a superstring-bit model with the clustering properties needed to define an {ital S} matrix for closed polymers of superstring bits. {copyright} {ital 1996 The American Physical Society.}
Superstring one-loop and gravitino contributions to planckian scattering
NASA Astrophysics Data System (ADS)
Bellini, Alessandro; Ademollo, Marco; Ciafaloni, Marcello
1993-03-01
Corrections to the semiclassical approximation in nearly forward planckian energy collisions are reconsidered. Starting from the one-loop superstring amplitude, we are able to disentangle the first subleading high-energy contribution at large impact parameters, and we thus directly compute the one-loop correction to the superstring eikonal. By comparing this result with previous ones by Amati, Ciafaloni and Veneziano (ACV) for pure gravity, we identify one-loop gravitino contributions which agree with previous results by Lipatov. We finally argue, on the basis of analyticity and unitarity, that gravitinos do not contribute at all the large-distance two-loop ACV correction, which thus acquires a universal "classical" interpretation.
Cosmic (Super)String Constraints from 21 cm Radiation
Khatri, Rishi; Wandelt, Benjamin D.
2008-03-07
We calculate the contribution of cosmic strings arising from a phase transition in the early Universe, or cosmic superstrings arising from brane inflation, to the cosmic 21 cm power spectrum at redshifts z{>=}30. Future experiments can exploit this effect to constrain the cosmic string tension G{mu} and probe virtually the entire brane inflation model space allowed by current observations. Although current experiments with a collecting area of {approx}1 km{sup 2} will not provide any useful constraints, future experiments with a collecting area of 10{sup 4}-10{sup 6} km{sup 2} covering the cleanest 10% of the sky can, in principle, constrain cosmic strings with tension G{mu} > or approx. 10{sup -10}-10{sup -12} (superstring/phase transition mass scale >10{sup 13} GeV)
Cosmic (Super)String Constraints from 21 cm Radiation.
Khatri, Rishi; Wandelt, Benjamin D
2008-03-01
We calculate the contribution of cosmic strings arising from a phase transition in the early Universe, or cosmic superstrings arising from brane inflation, to the cosmic 21 cm power spectrum at redshifts z > or =30. Future experiments can exploit this effect to constrain the cosmic string tension G mu and probe virtually the entire brane inflation model space allowed by current observations. Although current experiments with a collecting area of approximately 1 km2 will not provide any useful constraints, future experiments with a collecting area of 10(4)-10(6) km2 covering the cleanest 10% of the sky can, in principle, constrain cosmic strings with tension G mu > or = 10(-10)-10(-12) (superstring/phase transition mass scale >10(13) GeV). PMID:18352691
Closing in on chemical bonds by opening up relativity theory.
Whitney, Cynthia K
2008-03-01
This paper develops a connection between the phenomenology of chemical bonding and the theory of relativity. Empirical correlations between electron numbers in atoms and chemical bond stabilities in molecules are first reviewed and extended. Quantitative chemical bond strengths are then related to ionization potentials in elements. Striking patterns in ionization potentials are revealed when the data are viewed in an element-independent way, where element-specific details are removed via an appropriate scaling law. The scale factor involved is not explained by quantum mechanics; it is revealed only when one goes back further, to the development of Einstein's special relativity theory. PMID:19325749
Closing in on Chemical Bonds by Opening up Relativity Theory
Whitney, Cynthia Kolb
2008-01-01
This paper develops a connection between the phenomenology of chemical bonding and the theory of relativity. Empirical correlations between electron numbers in atoms and chemical bond stabilities in molecules are first reviewed and extended. Quantitative chemical bond strengths are then related to ionization potentials in elements. Striking patterns in ionization potentials are revealed when the data are viewed in an element-independent way, where element-specific details are removed via an appropriate scaling law. The scale factor involved is not explained by quantum mechanics; it is revealed only when one goes back further, to the development of Einstein’s special relativity theory. PMID:19325749
Two-loop superstring five-point amplitude and S -duality
NASA Astrophysics Data System (ADS)
Gomez, Humberto; Mafra, Carlos R.; Schlotterer, Oliver
2016-02-01
The low-energy limit of the massless two-loop five-point amplitudes for both type IIA and type IIB superstrings is computed with the pure spinor formalism and its overall coefficient determined from first principles. For the type IIB theory, the five-graviton amplitude is found to be proportional to its tree-level counterpart at the corresponding order in α' . Their ratio ties in with expectations based on S-duality since it matches the same modular function E5 /2 which relates the two-loop and tree-level four-graviton amplitudes. For R-symmetry violating states, the ratio between tree-level and two-loop amplitudes at the same α'-order carries an additional factor of -3 /5 . Its S -duality origin can be traced back to a modular form derived from E5 /2.
Gain enhancement methods for printed circuit antennas through multiple superstrates
NASA Astrophysics Data System (ADS)
Yang, H. Y.; Alexopoulos, Nicolaos G.
1987-07-01
Reciprocity and a transmission line model are used to determine the radiation properties of printed circuit antennas (PCA's) in a multilayered material configuration. It is demonstrated that extremely high directive gain may result at any scan angle, with practical materials, if the thickness of the substrate and multiple superstrate layers is chosen properly. This model is also used to analyze the radiation characteristics of printed circuit antennas in inhomogeneous substrates.
Open to Interpretation: Multiple Intelligences Theory in Adult Literacy Education
ERIC Educational Resources Information Center
Kallenbach, Silja; Viens, Julie
2004-01-01
This paper discusses how adult literacy educators chose to apply multiple intelligences (MI) theory. The findings fall into two categories of teachers' interpretation, MI-inspired instruction, and MI reflections. The resulting findings were that these MI-inspired teaching approaches helped to reduce teacher directedness and increase student…
On the Theory of Diamagnetic Measurements in Open Traps
Kotelnikov, I.A.
2005-01-15
A formula for the plasma pressure as a functional of the diamagnetic loop voltage is derived for a general case when the time for the magnetic flux to percolate through conducting wall of vacuum chamber is not small as compared to the plasma confinement time. An arbitrary shape of the conducting chamber and the plasma column are allowed in contrast to earlier theories based on axial symmetry of the system.
Extended conformal field theories
NASA Astrophysics Data System (ADS)
Taormina, Anne
1990-08-01
Some extended conformal field theories are briefly reviewed. They illustrate how non minimal models of the Virasoro algebra (c≥1) can become minimal with respect to a larger algebra. The accent is put on N-extended superconformal algebras, which are relevant in superstring compactification.
NASA Astrophysics Data System (ADS)
Münkler, Hagen; Pollok, Jonas
2015-09-01
Based on an extension of the holographic principle to superspace, we provide a strong-coupling description of smooth super Wilson loops in {N}=4 super Yang-Mills theory in terms of minimal surfaces of the {{AdS}}5× {S}5 superstring. We employ the classical integrability of the Green-Schwarz superstring on {{AdS}}5× {S}5 to derive the superconformal and Yangian Y[{psu}(2,2| 4)] Ward identities for the super Wilson loop, thus extending the strong coupling results obtained for the Maldacena-Wilson loop. In the course of the derivation, we determine the minimal surface solution up to third order in an expansion close to the conformal boundary.
Noncritical superstring-black hole transition
Parnachev, Andrei; Sahakyan, David A.
2006-04-15
An interesting case of string/black hole transition occurs in two-dimensional noncritical string theory dressed with a compact CFT. In these models the high energy densities of states of perturbative strings and black holes have the same leading behavior when the Hawking temperature of the black hole is equal to the Hagedorn temperature of perturbative strings. We compare the first subleading terms in the black hole and closed string entropies in this setting and argue that the entropy interpolates between these expressions as the energy is varied. We compute the subleading correction to the black hole entropy for a specific simple model.
Supersymmetric extended string field theory in NSn sector and NSn - 1-R sector
NASA Astrophysics Data System (ADS)
Asano, Masako; Kato, Mitsuhiro
2016-09-01
We construct a class of quadratic gauge invariant actions for extended string fields defined on the tensor product of open superstring state space for multiple open string Neveu-Schwarz (NS) sectors with or without one Ramond (R) sector. The basic idea is the same as for the bosonic extended string field theory developed by the authors [1]. The theory for NSn sector and NS n - 1-R sector contains general n-th rank tensor fields and (n - 1)-th rank spinor-tensor fields in the massless spectrum respectively. In principle, consistent gauge invariant actions for any generic type of 10-dimensional massive or massless tensor or spinor-tensor fields can be extracted from the theory. We discuss some simple examples of bosonic and fermionic massless actions.
Solutions in bosonic string field theory and higher spin algebras in AdS
NASA Astrophysics Data System (ADS)
Polyakov, Dimitri
2015-11-01
We find a class of analytic solutions in open bosonic string field theory, parametrized by the chiral copy of higher spin algebra in AdS3. The solutions are expressed in terms of the generating function for the products of Bell polynomials in derivatives of bosonic space-time coordinates Xm(z ) of the open string, the form of which is determined in this work. The products of these polynomials form a natural operator algebra realizations of w∞ (area-preserving diffeomorphisms), enveloping algebra of SU(2) and higher spin algebra in AdS3. The class of string field theory solutions found can, in turn, be interpreted as the "enveloping of enveloping," or the enveloping of AdS3 higher spin algebra. We also discuss the extensions of this class of solutions to superstring theory and their relations to higher spin algebras in higher space-time dimensions.
Theories and Applications of Massive Online Open Courses (MOOCs): The Case for Hybrid Design
ERIC Educational Resources Information Center
Anders, Abram
2015-01-01
Initial studies of learning in massive open online courses (MOOCs) primarily focused on participation patterns and participant experiences. More recently, research has addressed learning theories and offered case studies of different pedagogical designs for MOOCs. Based on a meta-analysis and synthesis of the research literature, this study…
Gravitational wave bursts from cosmic superstrings with Y-junctions
Binetruy, P.; Bohe, A.; Hertog, T.; Steer, D. A.
2009-12-15
Cosmic superstring loops generically contain strings of different tensions that meet at Y-junctions. These loops evolve nonperiodically in time, and have cusps and kinks that interact with the junctions. We study the effect of junctions on the gravitational wave signal emanating from cosmic string cusps and kinks. We find that earlier results on the strength of individual bursts from cusps and kinks on strings without junctions remain largely unchanged, but junctions give rise to additional contributions to the gravitational wave signal coming from strings expanding at the speed of light at a junction and kinks passing through a junction.
Scaling properties of cosmic (super)string networks
NASA Astrophysics Data System (ADS)
Martins, C. J. A. P.
2014-10-01
I use a combination of state-of-the-art numerical simulations and analytic modelling to discuss the scaling properties of cosmic defect networks, including superstrings. Particular attention is given to the role of extra degrees of freedom in the evolution of these networks. Compared to the 'plain vanilla' case of Goto-Nambu strings, three such extensions play important but distinct roles in the network dynamics: the presence of charges/currents on the string worldsheet, the existence of junctions, and the possibility of a hierarchy of string tensions. I also comment on insights gained from studying simpler defect networks, including Goto-Nambu strings themselves, domain walls and semilocal strings.
An open-shell restricted Hartree-Fock perturbation theory based on symmetric spin orbitals
NASA Technical Reports Server (NTRS)
Lee, Timothy J.; Jayatilaka, Dylan
1993-01-01
A new open-shell perturbation theory is formulated in terms of symmetric spin orbitals. Only one set of spatial orbitals is required, thereby reducing the number of independent coefficients in the perturbed wavefunctions. For second order, the computational cost is shown to be similar to a closed-shell calculation. This formalism is therefore more efficient than the recently developed RMP, ROMP or RMP-MBPT theories. The perturbation theory described herein was designed to have a close correspondence with our recently proposed coupled-cluster theory based on symmetric spin orbitals. The first-order wavefunction contains contributions from only doubly excited determinants. Equilibrium structures and vibrational frequencies determined from second-order perturbation theory are presented for OH, NH, CH, 02, NH2 and CH2.
Massive superstring scatterings in the Regge regime
He Song; Lee, Jen-Chi; Takahashi, Keijiro; Yang Yi
2011-03-15
We calculate four classes of high-energy massive string scattering amplitudes of fermionic string theory at arbitrary mass levels in the Regge regime (RR). We show that all four leading order amplitudes in the RR can be expressed in terms of the Kummer function of the second kind. Based on the summation algorithm of a set of extended signed Stirling number identities, we show that all four ratios calculated previously by the method of decoupling of zero-norm states among scattering amplitudes in the Gross regime can be extracted from this Kummer function in the RR. Finally, we conjecture and give evidence that the existence of these four Gross regime ratios in the RR persists to subleading orders in the Regge expansion of all high-energy fermionic string scattering amplitudes.
Massive superstring scatterings in the Regge regime
NASA Astrophysics Data System (ADS)
He, Song; Lee, Jen-Chi; Takahashi, Keijiro; Yang, Yi
2011-03-01
We calculate four classes of high-energy massive string scattering amplitudes of fermionic string theory at arbitrary mass levels in the Regge regime (RR). We show that all four leading order amplitudes in the RR can be expressed in terms of the Kummer function of the second kind. Based on the summation algorithm of a set of extended signed Stirling number identities, we show that all four ratios calculated previously by the method of decoupling of zero-norm states among scattering amplitudes in the Gross regime can be extracted from this Kummer function in the RR. Finally, we conjecture and give evidence that the existence of these four Gross regime ratios in the RR persists to subleading orders in the Regge expansion of all high-energy fermionic string scattering amplitudes.
Solution to the nonlinear field equations of ten dimensional supersymmetric Yang-Mills theory
NASA Astrophysics Data System (ADS)
Mafra, Carlos R.; Schlotterer, Oliver
2015-09-01
In this paper, we present a formal solution to the nonlinear field equations of ten-dimensional super Yang-Mills theory. It is assembled from products of linearized superfields which have been introduced as multiparticle superfields in the context of superstring perturbation theory. Their explicit form follows recursively from the conformal field theory description of the gluon multiplet in the pure spinor superstring. Furthermore, superfields of higher-mass dimensions are defined and their equations of motion are spelled out.
Searching for signatures of cosmic superstrings in the CMB
Danos, Rebecca J.; Brandenberger, Robert H. E-mail: rhb@physics.mcgill.ca
2010-02-01
Because cosmic superstrings generically form junctions and gauge theoretic strings typically do not, junctions may provide a signature to distinguish between cosmic superstrings and gauge theoretic cosmic strings. In cosmic microwave background anisotropy maps, cosmic strings lead to distinctive line discontinuities. String junctions lead to junctions in these line discontinuities. In turn, edge detection algorithms such as the Canny algorithm can be used to search for signatures of strings in anisotropy maps. We apply the Canny algorithm to simulated maps which contain the effects of cosmic strings with and without string junctions. The Canny algorithm produces edge maps. To distinguish between edge maps from string simulations with and without junctions, we examine the density distribution of edges and pixels crossed by edges. We find that in string simulations without Gaussian noise (such as produced by the dominant inflationary fluctuations) our analysis of the output data from the Canny algorithm can clearly distinguish between simulations with and without string junctions. In the presence of Gaussian noise at the level expected from the current bounds on the contribution of cosmic strings to the total power spectrum of density fluctuations, the distinction between models with and without junctions is more difficult. However, by carefully analyzing the data the models can still be differentiated.
Extending dispersive waves theory to use in semi-open systems
NASA Astrophysics Data System (ADS)
Chumakova, Lyubov; Rosales, Ruben; Rzeznik, Andrew; Tabak, Esteban
2015-11-01
In the classical linear dispersive wave theory the sinusoidal waves e i (kx - ωt) carry energy with the group speed cg = dω / dk . This concept is limited to the case where both the frequency ω (k) and the wavenumber k are real. On the other hand, semi-open dispersive systems allow more than just sinusoidal solutions: they can have exponentially blowing up and/or decaying solutions as well. In this talk I will address the questions of what is direction and the speed of the energy propagation for these exponential waves, extend the classical concept of group velocity, and use this theory to construct radiation boundary conditions for semi-open dispersive systems. This approach will be demonstrated on an example of dry hydrostatic troposphere which experiences effective damping due to gravity waves propagating into the stratosphere. RSE, Scottish government.
NASA Technical Reports Server (NTRS)
Toncich, S. S.; Collin, R. E.; Bhasin, K. B.
1993-01-01
A technique for a full wave characterization of microstrip open end discontinuities fabricated on uniaxial anisotropic substrates using potential theory is presented. The substrate to be analyzed is enclosed in a cutoff waveguide, with the anisotropic axis aligned perpendicular to the air-dielectric interface. A full description of the sources on the microstrip line is included with edge conditions built in. Extention to other discontinuities is discussed.
On p-Adic Sector of Open Scalar Strings and Zeta Field Theory
Dragovich, Branko
2010-06-17
We consider construction of Lagrangians which may be suitable for description of p-adic sector of an open scalar string. Such Lagrangians have their origin in Lagrangian for a single p-adic string and they contain the Riemann zeta function with the d'Alembertian in its argument. However, investigation of the field theory with Riemann zeta function is interesting in itself as well. We present a brief review and some new results.
Quantum Information Biology: From Theory of Open Quantum Systems to Adaptive Dynamics
NASA Astrophysics Data System (ADS)
Asano, Masanari; Basieva, Irina; Khrennikov, Andrei; Ohya, Masanori; Tanaka, Yoshiharu; Yamato, Ichiro
This chapter reviews quantum(-like) information biology (QIB). Here biology is treated widely as even covering cognition and its derivatives: psychology and decision making, sociology, and behavioral economics and finances. QIB provides an integrative description of information processing by bio-systems at all scales of life: from proteins and cells to cognition, ecological and social systems. Mathematically QIB is based on the theory of adaptive quantum systems (which covers also open quantum systems). Ideologically QIB is based on the quantum-like (QL) paradigm: complex bio-systems process information in accordance with the laws of quantum information and probability. This paradigm is supported by plenty of statistical bio-data collected at all bio-scales. QIB re ects the two fundamental principles: a) adaptivity; and, b) openness (bio-systems are fundamentally open). In addition, quantum adaptive dynamics provides the most generally possible mathematical representation of these principles.
Quantization of higher abelian gauge theory in generalized differential cohomology
NASA Astrophysics Data System (ADS)
Szabo, R.
We review and elaborate on some aspects of the quantization of certain classes of higher abelian gauge theories using techniques of generalized differential cohomology. Particular emphasis is placed on the examples of generalized Maxwell theory and Cheeger-Simons cohomology, and of Ramond-Ramond fields in Type II superstring theory and differential K-theory.
Cosmological Baryogenesis in Superstring Models with Stable Protons
NASA Astrophysics Data System (ADS)
Campbell, B. A.; Ellis, J.; Nanopoulos, D. V.; Olive, K. A.
We discuss cosmological baryogenesis in phenomenological low-energy models inspired by the superstring which have an unobservably long baryon lifetime. The Affleck-Dine mechanism of baryogenesis in a cold (≲104 GeV) universe is shown to be feasible, with a large baryon density being produced by the decays of large expectation values for squark and slepton fields after inflation. We catalogue the gauge-invariant quartic scalar operators in the low-energy effective action which could appear once supersymmetry is broken, show that the D-terms in the potential can vanish, and discuss the possibility that the F-terms have flat directions allowing large values for these scalar fields.
Scaling configurations of cosmic superstring networks and their cosmological implications
Pourtsidou, A.; Avgoustidis, A.; Copeland, E. J.; Pogosian, L.; Steer, D. A.
2011-03-15
We study the cosmic microwave background temperature and polarization spectra sourced by multitension cosmic-superstring networks. First, we obtain solutions for the characteristic length scales and velocities associated with the evolution of a network of F-D strings, allowing for the formation of junctions between strings of different tensions. We find two distinct regimes describing the resulting scaling distributions for the relative densities of the different types of strings, depending on the magnitude of the fundamental string coupling g{sub s}. In one of them, corresponding to the value of the coupling being of order unity, the network's stress-energy power spectrum is dominated by populous light F and D strings, while the other regime, at smaller values of g{sub s}, has the spectrum dominated by rare heavy D strings. These regimes are seen in the cosmic microwave background (CMB) anisotropies associated with the network. We focus on the dependence of the shape of the B-mode polarization spectrum on g{sub s} and show that measuring the peak position of the B-mode spectrum can point to a particular value of the string coupling. Finally, we assess how this result, along with pulsar bounds on the production of gravitational waves from strings, can be used to constrain a combination of g{sub s} and the fundamental string tension {mu}{sub F}. Since CMB and pulsar bounds constrain different combinations of the string tensions and densities, they result in distinct shapes of bounding contours in the ({mu}{sub F},g{sub s}) parameter plane, thus providing complementary constraints on the properties of cosmic superstrings.
Dual superconformal symmetry from AdS{sub 5}xS{sup 5} superstring integrability
Beisert, Niklas; Ricci, Riccardo; Tseytlin, Arkady A.; Wolf, Martin
2008-12-15
We discuss 2d duality transformations in the classical AdS{sub 5}xS{sup 5} superstring and their effect on the integrable structure. T-duality along four directions in the Poincare parametrization of AdS{sub 5} maps the bosonic part of the superstring action into itself. On the bosonic level, this duality may be understood as a symmetry of the first-order (phase space) system of equations for the coset components of the current. The associated Lax connection is invariant modulo the action of an so(2,4)-automorphism. We then show that this symmetry extends to the full superstring, provided one supplements the transformation of the bosonic components of the current with a transformation on the fermionic ones. At the level of the action, this symmetry can be seen by combining the bosonic duality transformation with a similar one applied to part of the fermionic superstring coordinates. As a result, the full superstring action is mapped into itself, albeit in a different {kappa}-symmetry gauge. One implication is that the dual model has the same superconformal symmetry group as the original one, and this may be seen as a consequence of the integrability of the superstring. The invariance of the Lax connection under the duality implies a map on the full set of conserved charges that should interchange some of the Noether (local) charges with hidden (nonlocal) ones and vice versa.
Introduction to the theory of strings
Peskin, M.E.
1985-10-01
These lectures present, from an introductory perspective, some basic aspects of the quantum theory of strings. They treat (1) the kinematics, spectrum, and scattering amplitude of the bosonic string, (2) the spectrum and supersymmetry of Green-Schwarz superstring, and (3) the identification of the underlying gauge invariances of the string theory. 43 refs.
NASA Astrophysics Data System (ADS)
Cappelli, Andrea; Castellani, Elena; Colomo, Filippo; Di Vecchia, Paolo
2012-04-01
Part I. Overview: 1. Introduction and synopsis; 2. Rise and fall of the hadronic string G. Veneziano; 3. Gravity, unification, and the superstring J. H. Schwarz; 4. Early string theory as a challenging case study for philosophers E. Castellani; Part II. The Prehistory: The Analytic S-Matrix: 5. Introduction to Part II; 6. Particle theory in the sixties: from current algebra to the Veneziano amplitude M. Ademollo; 7. The path to the Veneziano model H. R. Rubinstein; 8. Two-component duality and strings P. G. O. Freund; 9. Note on the prehistory of string theory M. Gell-Mann; Part III. The Dual Resonance Model: 10. Introduction to Part III; 11. From the S-matrix to string theory P. Di Vecchia; 12. Reminiscence on the birth of string theory J. A. Shapiro; 13. Personal recollections D. Amati; 14. Early string theory at Fermilab and Rutgers L. Clavelli; 15. Dual amplitudes in higher dimensions: a personal view C. Lovelace; 16. Personal recollections on dual models R. Musto; 17. Remembering the 'supergroup' collaboration F. Nicodemi; 18. The '3-Reggeon vertex' S. Sciuto; Part IV. The String: 19. Introduction to Part IV; 20. From dual models to relativistic strings P. Goddard; 21. The first string theory: personal recollections L. Susskind; 22. The string picture of the Veneziano model H. B. Nielsen; 23. From the S-matrix to string theory Y. Nambu; 24. The analogue model for string amplitudes D. B. Fairlie; 25. Factorization in dual models and functional integration in string theory S. Mandelstam; 26. The hadronic origins of string theory R. C. Brower; Part V. Beyond the Bosonic String: 27. Introduction to Part V; 28. From dual fermion to superstring D. I. Olive; 29. Dual models with fermions: memoirs of an early string theorist P. Ramond; 30. Personal recollections A. Neveu; 31. Aspects of fermionic dual models E. Corrigan; 32. The dual quark models K. Bardakci and M. B. Halpern; 33. Remembering the dawn of relativistic strings J.-L. Gervais; 34. Early string theory in
Billeter, Salomon R; Egli, Daniel
2006-12-14
This paper generalizes the recently proposed approaches for calculating the derivative couplings between adiabatic states in density-functional theory (DFT) based on a Slater transition-state density to transitions such as singlet-singlet excitations, where a single-determinant ansatz is insufficient. The proposed approach is based on restricted open-shell Frank et al. [J. Chem. Phys. 108, 4060 (1998)] theory used to describe a spin-adapted Slater transition state. To treat the dependence of electron-electron interactions on the nuclear positions, variational linear-response density-functional perturbation theory is generalized to reference states with an orbital-dependent Kohn-Sham Hamiltonian and nontrivial occupation patterns. The methods proposed in this paper are not limited to the calculation of derivative coupling vectors, but can also be used for the calculation of other transition matrix elements. Moreover, they can be used to calculate the linear response of open-shell systems to arbitrary external perturbations in DFT. PMID:17176130
String theories as the adiabatic limit of Yang-Mills theory
NASA Astrophysics Data System (ADS)
Popov, Alexander D.
2015-08-01
We consider Yang-Mills theory with a matrix gauge group G on a direct product manifold M =Σ2×H2 , where Σ2 is a two-dimensional Lorentzian manifold and H2 is a two-dimensional open disc with the boundary S1=∂H2 . The Euler-Lagrange equations for the metric on Σ2 yield constraint equations for the Yang-Mills energy-momentum tensor. We show that in the adiabatic limit, when the metric on H2 is scaled down, the Yang-Mills equations plus constraints on the energy-momentum tensor become the equations describing strings with a world sheet Σ2 moving in the based loop group Ω G =C∞(S1,G )/G , where S1 is the boundary of H2. By choosing G =Rd -1 ,1 and putting to zero all parameters in Ω Rd -1 ,1 besides Rd -1 ,1 , we get a string moving in Rd -1 ,1 . In another paper of the author, it was described how one can obtain the Green-Schwarz superstring action from Yang-Mills theory on Σ2×H2 while H2 shrinks to a point. Here we also consider Yang-Mills theory on a three-dimensional manifold Σ2×S1 and show that in the limit when the radius of S1 tends to zero, the Yang-Mills action functional supplemented by a Wess-Zumino-type term becomes the Green-Schwarz superstring action.
Multi-valley effective mass theory for device-level modeling of open quantum dynamics
NASA Astrophysics Data System (ADS)
Jacobson, N. Tobias; Baczewski, Andrew D.; Frees, Adam; Gamble, John King; Montano, Ines; Moussa, Jonathan E.; Muller, Richard P.; Nielsen, Erik
2015-03-01
Simple models for semiconductor-based quantum information processors can provide useful qualitative descriptions of device behavior. However, as experimental implementations have matured, more specific guidance from theory has become necessary, particularly in the form of quantitatively reliable yet computationally efficient modeling. Besides modeling static device properties, improved characterization of noisy gate operations requires a more sophisticated description of device dynamics. Making use of recent developments in multi-valley effective mass theory, we discuss device-level simulations of the open system quantum dynamics of a qubit interacting with phonons and other noise sources. Sandia is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy National Nuclear Security Administration under Contract No. DE-AC04-94AL85000.
Analysis of the Junction Properties of CdS/CdTe Devices in Substrate and Superstrate Configurations
Dhere, R. G.; Duenow, J. N.; DeHart, C. M.; Li, J. V.; Kuciauskas, D.; Young, M. R.; Alberi, K.; Mascarenhas, A.; Gessert, T. A.
2011-01-01
The best efficiency of CdS/CdTe devices fabricated in the substrate configuration reported to date is about 8%, which is about half the 17.3% reported for the conventional superstrate configuration. The performance of substrate devices is affected by lower open-circuit voltage (Voc), about 700 mV, and low fill factor (FF), which indicates that these devices are primarily limited by non-ideal junction properties and possibly by the ohmic contact to CdTe. In our study of the junction properties of superstrate devices, we show that lower-Voc devices (< 720 mV) with SnO2/CdTe and CdS/CdTe structures are true heterojunction devices. High charged defect density at the heterointerfaces is present in the depletion region and contributes to the dark current density, thereby reducing Voc. On the other hand, for higher-performance devices with Voc > 800 mV, the junction is between an n-type, Te-rich CdSTe alloy with a bandgap of 1.45 eV and p-type CdTe with a bandgap of 1.5 eV. Because the crystal structure of both the Te-rich alloy and the CdTe is cubic zinc blende, and the lattice mismatch between the two is minimal, the device in this case can be considered a quasi-homojunction. These higher-Voc devices are therefore affected less by the high charged defect density at the hetero-interface, which lies outside of the depletion region. We present analysis of the junction properties of our recent and improved substrate-configuration devices with Voc well in excess of 800 mV, FF approaching 60%, and efficiencies around 10%. We also compare devices fabricated in both the substrate and superstrate configurations and with comparable Voc in the range of 700 to more than 800 mV. Photoluminescence (PL) and temperature-dependent PL, current density-voltage and quantum efficiency analysis, and modulated reflectance measurements are used to study device properties.
ERIC Educational Resources Information Center
Koralus, Philipp Elias
2010-01-01
The dissertation presents a theory of semantics and pragmatics for both language and vision. I focus on sentences including proper names, descriptions, and attitude report verbs, and on the Necker cube. I propose the Open Instruction Theory (OIT), according to which the linguistic meaning of a sentence and the semantic contribution of visual…
Detection of cosmic superstrings by geodesic test particle motion
Hartmann, Betti; Sirimachan, Parinya; Laemmerzahl, Claus
2011-02-15
(p,q)-strings are bound states of p F-strings and q D-strings and are predicted to form at the end of brane inflation. As such, these cosmic superstrings should be detectable in the Universe. In this paper we argue that they can be detected by the way that massive and massless test particles move in the space-time of these cosmic superstrings. In particular, we study solutions to the geodesic equation in the space-time of field theoretical (p,q)-strings. The geodesics can be classified according to the test particles' energy, angular momentum and momentum in the direction of the string axis. We discuss how the change of the magnetic fluxes, the ratio between the symmetry-breaking scale and the Planck mass, the Higgs-to-gauge-boson mass ratios and the binding between the F- and D-strings, respectively, influence the motion of the test particles. While massless test particles can move only on escape orbits, a new feature as compared to the infinitely thin string limit is the existence of bound orbits for massive test particles. In particular, we observe that--in contrast to the space-time of a single Abelian-Higgs string--bound orbits for massive test particles in (p,q)-string space-times are possible if the Higgs boson mass is larger than the gauge boson mass. We also compute the effect of the binding between the p- and the q-string on observables such as the light deflection and the perihelion shift. While light deflection can also be caused by other matter distributions, the possibility of a negative perihelion shift seems to be a feature of finite width cosmic strings that could lead to the unmistakable identification of such objects. In Melvin space-times, which are asymptotically nonconical, massive test particles have to move on bound orbits, while massless test particles can escape to infinity only if their angular momentum vanishes.
Effect of Two Different Superstrate Layers On Bismuth Titanate (BiT) Array Antennas
Wee, F. H.; Malek, F.; Al-Amani, A. U.; Ghani, Farid
2014-01-01
The microwave industry has shown increasing interest in electronic ceramic material (ECM) due to its advantages, such as light weight, low cost, low loss, and high dielectric strength. In this paper, simple antennas covered by superstrate layers for 2.30 GHz to 2.50 GHz are proposed. The antennas are compact and have the capability of producing high performance in terms of gain, directivity, and radiation efficiency. Bismuth titanate with high dielectric constant of 21, was utilized as the ECM, while the superstrate layers chosen included a split ring resonator and dielectric material. The superstrate layers were designed for some improvement in the performance of directivity, gain, and return loss. The proposed antennas were simulated and fabricated. The results obtained were small antennas that possess high gain and high directivity with 360°, omni-directional signal transmission that resonant types of conventional dipole antenna cannot achieve. The gain of the antenna with the superstrate layer was enhanced by about 1 dBi over the antenna without a superstrate layer at 2.40 GHz. PMID:24424254
Effect of two different superstrate layers on bismuth titanate (BiT) array antennas.
Wee, F H; Malek, F; Al-Amani, A U; Ghani, Farid
2014-01-01
The microwave industry has shown increasing interest in electronic ceramic material (ECM) due to its advantages, such as light weight, low cost, low loss, and high dielectric strength. In this paper, simple antennas covered by superstrate layers for 2.30 GHz to 2.50 GHz are proposed. The antennas are compact and have the capability of producing high performance in terms of gain, directivity, and radiation efficiency. Bismuth titanate with high dielectric constant of 21, was utilized as the ECM, while the superstrate layers chosen included a split ring resonator and dielectric material. The superstrate layers were designed for some improvement in the performance of directivity, gain, and return loss. The proposed antennas were simulated and fabricated. The results obtained were small antennas that possess high gain and high directivity with 360°, omni-directional signal transmission that resonant types of conventional dipole antenna cannot achieve. The gain of the antenna with the superstrate layer was enhanced by about 1 dBi over the antenna without a superstrate layer at 2.40 GHz. PMID:24424254
ERIC Educational Resources Information Center
Joo, K. P.
2014-01-01
Drawing upon cultural-historical activity theory, this research analyzed the structural contradictions existing in a variety of educational activities among a group of alienated adult students in Korea National Open University (KNOU). Despite KNOU's quantitative development in student enrollment, the contradictions shed light on how the…
Metamaterial Superstrate and Electromagnetic Band-Gap Substrate for High Directive Antenna
NASA Astrophysics Data System (ADS)
Xu, Huiliang; Zhao, Zeyu; Lv, Yueguang; Du, Chunlei; Luo, Xiangang
2008-05-01
A high directive planar antenna made from a metamaterial superstrate and an electromagnetic band-gap (EBG) substrate has been investigated. A patch antenna surrounded with EBG structures is used as the radiation source. The CST Microwave Studio is used for the simulation. The results show that the gain of the antenna with metamaterial is 21.6 dB at the operating frequency of 14.6 GHz. Compared with the patch feed with the same aperture size but without the metamaterial superstrate, the performance of the antenna is improved obviously and the gain increases about 12.4 dB.
Ab initio Bogoliubov coupled cluster theory for open-shell nuclei
Signoracci, Angelo J.; Duguet, Thomas; Hagen, Gaute; Jansen, G. R.
2015-06-29
Background: Ab initio many-body methods have been developed over the past 10 yr to address closed-shell nuclei up to mass A≈130 on the basis of realistic two- and three-nucleon interactions. A current frontier relates to the extension of those many-body methods to the description of open-shell nuclei. Several routes to address open-shell nuclei are currently under investigation, including ideas that exploit spontaneous symmetry breaking. Purpose: Singly open-shell nuclei can be efficiently described via the sole breaking of U(1) gauge symmetry associated with particle-number conservation as a way to account for their superfluid character. While this route was recently followed within the framework of self-consistent Green's function theory, the goal of the present work is to formulate a similar extension within the framework of coupled cluster theory. Methods: We formulate and apply Bogoliubov coupled cluster (BCC) theory, which consists of representing the exact ground-state wave function of the system as the exponential of a quasiparticle excitation cluster operator acting on a Bogoliubov reference state. Equations for the ground-state energy and the cluster amplitudes are derived at the singles and doubles level (BCCSD) both algebraically and diagrammatically. The formalism includes three-nucleon forces at the normal-ordered two-body level. The first BCC code is implemented in m scheme, which will permit the treatment of doubly open-shell nuclei via the further breaking of SU(2) symmetry associated with angular momentum conservation. Results: Proof-of-principle calculations in an N_{max}=6 spherical harmonic oscillator basis for ^{16,18}O and ^{18}Ne in the BCCD approximation are in good agreement with standard coupled cluster results with the same chiral two-nucleon interaction, while ^{20}O and ^{20}Mg display underbinding relative to experiment. The breaking of U(1) symmetry, monitored by computing the variance
Ab initio Bogoliubov coupled cluster theory for open-shell nuclei
Signoracci, Angelo J.; Duguet, Thomas; Hagen, Gaute; Jansen, G. R.
2015-06-29
Background: Ab initio many-body methods have been developed over the past 10 yr to address closed-shell nuclei up to mass A≈130 on the basis of realistic two- and three-nucleon interactions. A current frontier relates to the extension of those many-body methods to the description of open-shell nuclei. Several routes to address open-shell nuclei are currently under investigation, including ideas that exploit spontaneous symmetry breaking. Purpose: Singly open-shell nuclei can be efficiently described via the sole breaking of U(1) gauge symmetry associated with particle-number conservation as a way to account for their superfluid character. While this route was recently followed withinmore » the framework of self-consistent Green's function theory, the goal of the present work is to formulate a similar extension within the framework of coupled cluster theory. Methods: We formulate and apply Bogoliubov coupled cluster (BCC) theory, which consists of representing the exact ground-state wave function of the system as the exponential of a quasiparticle excitation cluster operator acting on a Bogoliubov reference state. Equations for the ground-state energy and the cluster amplitudes are derived at the singles and doubles level (BCCSD) both algebraically and diagrammatically. The formalism includes three-nucleon forces at the normal-ordered two-body level. The first BCC code is implemented in m scheme, which will permit the treatment of doubly open-shell nuclei via the further breaking of SU(2) symmetry associated with angular momentum conservation. Results: Proof-of-principle calculations in an Nmax=6 spherical harmonic oscillator basis for 16,18O and 18Ne in the BCCD approximation are in good agreement with standard coupled cluster results with the same chiral two-nucleon interaction, while 20O and 20Mg display underbinding relative to experiment. The breaking of U(1) symmetry, monitored by computing the variance associated with the particle-number operator, is
NASA Technical Reports Server (NTRS)
Brooks, T. F.; Marcolini, M. A.; Pope, D. S.
1984-01-01
Trailing edge data for boundary layer-near wake thickness parameters are given for airfoils and flat plates. Reynolds number effects are examined as a function of model size, velocity and boundary layer tripping. These data expand that presented previously by the authors particularly for airfoil non-zero angles of attack. Comparisons are made here with boundary layer calculations using potential flow modeling and a well documented two-dimensional finite-difference method for laminar and turbulent boundary layers. Open wind tunnel corrections to angle of attack and camber are developed and are incorporated in the potential flow modeling to assure correct comparisons for non-zero angles of attack. It was found that although the open tunnel flow turbulence affected boundary layer transition for the higher velocities the theory successfully 'brackets' the data. Comparisons demonstrate the degree of accuracy one might expect for the prediction of boundary layer thickness parameters when given only geometry and nominal flow conditions as input to boundary layer codes.
Open Quantum Random Walks: Ergodicity, Hitting Times, Gambler's Ruin and Potential Theory
NASA Astrophysics Data System (ADS)
Lardizabal, Carlos F.; Souza, Rafael R.
2016-07-01
In this work we study certain aspects of open quantum random walks (OQRWs), a class of quantum channels described by Attal et al. (J Stat Phys 147: 832-852, 2012). As a first objective we consider processes which are nonhomogeneous in time, i.e., at each time step, a possibly distinct evolution kernel. Inspired by a spectral technique described by Saloff-Coste and Zúñiga (Stoch Proc Appl 117: 961-979, 2007), we define a notion of ergodicity for finite nonhomogeneous quantum Markov chains and describe a criterion for ergodicity of such objects in terms of singular values. As a second objective, and based on a quantum trajectory approach, we study a notion of hitting time for OQRWs and we see that many constructions are variations of well-known classical probability results, with the density matrix degree of freedom on each site giving rise to systems which are seen to be nonclassical. In this way we are able to examine open quantum versions of the gambler's ruin, birth-and-death chain and a basic theorem on potential theory.
Open Quantum Random Walks: Ergodicity, Hitting Times, Gambler's Ruin and Potential Theory
NASA Astrophysics Data System (ADS)
Lardizabal, Carlos F.; Souza, Rafael R.
2016-09-01
In this work we study certain aspects of open quantum random walks (OQRWs), a class of quantum channels described by Attal et al. (J Stat Phys 147: 832-852, 2012). As a first objective we consider processes which are nonhomogeneous in time, i.e., at each time step, a possibly distinct evolution kernel. Inspired by a spectral technique described by Saloff-Coste and Zúñiga (Stoch Proc Appl 117: 961-979, 2007), we define a notion of ergodicity for finite nonhomogeneous quantum Markov chains and describe a criterion for ergodicity of such objects in terms of singular values. As a second objective, and based on a quantum trajectory approach, we study a notion of hitting time for OQRWs and we see that many constructions are variations of well-known classical probability results, with the density matrix degree of freedom on each site giving rise to systems which are seen to be nonclassical. In this way we are able to examine open quantum versions of the gambler's ruin, birth-and-death chain and a basic theorem on potential theory.
Chen, Xinguang; Wang, Yan; Li, Fang; Gong, Jie; Yan, Yaqiong
2015-01-01
Obtaining reliable and valid data on sensitive questions represents a longstanding challenge for public health, particularly HIV research. To overcome the challenge, we assessed a construal level theory (CLT)-based novel method. The method was previously established and pilot-tested using the Brief Sexual Openness Scale (BSOS). This scale consists of five items assessing attitudes toward premarital sex, multiple sexual partners, homosexuality, extramarital sex, and commercial sex, all rated on a standard 5-point Likert scale. In addition to self-assessment, the participants were asked to assess rural residents, urban residents, and foreigners. The self-assessment plus the assessment of the three other groups were all used as subconstructs of one latent construct: sexual openness. The method was validated with data from 1,132 rural-to-urban migrants (mean age = 32.5, SD = 7.9; 49.6% female) recruited in China. Consistent with CLT, the Cronbach alpha of the BSOS as a conventional tool increased with social distance, from .81 for self-assessment to .97 for assessing foreigners. In addition to a satisfactory fit of the data to a one-factor model (CFI = .94, TLI = .93, RMSEA = .08), a common factor was separated from the four perspective factors (i.e., migrants’ self-perspective and their perspectives of rural residents, urban residents and foreigners) through a trifactor modeling analysis (CFI = .95, TLI = .94, RMSEA = .08). Relative to its conventional form, CTL-based BSOS was more reliable (alpha: .96 vs .81) and valid in predicting sexual desire, frequency of dating, age of first sex, multiple sexual partners and STD history. This novel technique can be used to assess sexual openness, and possibly other sensitive questions among Chinese domestic migrants. PMID:26308336
General Formalism of Decision Making Based on Theory of Open Quantum Systems
NASA Astrophysics Data System (ADS)
Asano, M.; Ohya, M.; Basieva, I.; Khrennikov, A.
2013-01-01
We present the general formalism of decision making which is based on the theory of open quantum systems. A person (decision maker), say Alice, is considered as a quantum-like system, i.e., a system which information processing follows the laws of quantum information theory. To make decision, Alice interacts with a huge mental bath. Depending on context of decision making this bath can include her social environment, mass media (TV, newspapers, INTERNET), and memory. Dynamics of an ensemble of such Alices is described by Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) equation. We speculate that in the processes of evolution biosystems (especially human beings) designed such "mental Hamiltonians" and GKSL-operators that any solution of the corresponding GKSL-equation stabilizes to a diagonal density operator (In the basis of decision making.) This limiting density operator describes population in which all superpositions of possible decisions has already been resolved. In principle, this approach can be used for the prediction of the distribution of possible decisions in human populations.
Permeation through an open channel: Poisson-Nernst-Planck theory of a synthetic ionic channel.
Chen, D; Lear, J; Eisenberg, B
1997-01-01
The synthetic channel [acetyl-(LeuSerSerLeuLeuSerLeu)3-CONH2]6 (pore diameter approximately 8 A, length approximately 30 A) is a bundle of six alpha-helices with blocked termini. This simple channel has complex properties, which are difficult to explain, even qualitatively, by traditional theories: its single-channel currents rectify in symmetrical solutions and its selectivity (defined by reversal potential) is a sensitive function of bathing solution. These complex properties can be fit quantitatively if the channel has fixed charge at its ends, forming a kind of macrodipole, bracketing a central charged region, and the shielding of the fixed charges is described by the Poisson-Nernst-Planck (PNP) equations. PNP fits current voltage relations measured in 15 solutions with an r.m.s. error of 3.6% using four adjustable parameters: the diffusion coefficients in the channel's pore DK = 2.1 x 10(-6) and DCl = 2.6 x 10(-7) cm2/s; and the fixed charge at the ends of the channel of +/- 0.12e (with unequal densities 0.71 M = 0.021e/A on the N-side and -1.9 M = -0.058e/A on the C-side). The fixed charge in the central region is 0.31e (with density P2 = 0.47 M = 0.014e/A). In contrast to traditional theories, PNP computes the electric field in the open channel from all of the charges in the system, by a rapid and accurate numerical procedure. In essence, PNP is a theory of the shielding of fixed (i.e., permanent) charge of the channel by mobile charge and by the ionic atmosphere in and near the channel's pore. The theory fits a wide range of data because the ionic contents and potential profile in the channel change significantly with experimental conditions, as they must, if the channel simultaneously satisfies the Poisson and Nernst-Planck equations and boundary conditions. Qualitatively speaking, the theory shows that small changes in the ionic atmosphere of the channel (i.e., shielding) make big changes in the potential profile and even bigger changes in flux, because
NASA Astrophysics Data System (ADS)
Biswas, Ritabrata; Debnath, Ujjal
2014-10-01
In Brans-Dicke theory of gravity, from the nature of the scalar field-potential considered, the dark energy, dark matter, radiation densities predicted by different observations and the closedness of the universe considered, we can fix our ω BD , the Brans-Dicke parameter, keeping only the thing in mind that from different solar system constrains it must be greater than 5×105. Once we have a value, satisfying the required lower boundary, in our hand we proceed for setting unknown parameters of the different dark energy models' EoS parameter. In this paper we work with three well known red shift parametrizations of dark energy EoS. To constrain their free parameters for Brans Dicke theory of gravity we take twelve point red shift vs Hubble's parameter data and perform χ 2 test. We present the observational data analysis mechanism for Stern, Stern+BAO and Stern+BAO+CMB observations. Minimising χ 2, we obtain the best fit values and draw different confidence contours. We analyze the contours physically. Also we examine the best fit of distance modulus for our theoretical models and the Supernovae Type Ia Union2 sample. For Brans Dicke theory of gravity the difference from the mainstream confidence contouring method of data analysis id that the confidence contours evolved are not at all closed contours like a circle or a ellipse. Rather they are found to be open contours allowing the free parameters to float inside a infinite region of parameter space. However, negative EoSs are likely to evolve from the best fit values.
T-duality of Green-Schwarz superstrings on AdS d × S d × M 10-2 d
NASA Astrophysics Data System (ADS)
Abbott, Michael C.; Murugan, Jeff; Penati, Silvia; Pittelli, Antonio; Sorokin, Dmitri; Sundin, Per; Tarrant, Justine; Wolf, Martin; Wulff, Linus
2015-12-01
We verify the self-duality of Green-Schwarz supercoset sigma models on AdS d × S d backgrounds ( d = 2 , 3 , 5) under combined bosonic and fermionic T-dualities without gauge fixing kappa symmetry. We also prove this property for superstrings on AdS d × S d × S d ( d = 2 , 3) described by supercoset sigma models with the isometries governed by the exceptional Lie supergroups D(2 , 1; α) ( d = 2) and D(2 , 1; α) × D(2 , 1; α) ( d = 3), which requires an additional T-dualisation along one of the spheres. Then, by taking into account the contribution of non-supercoset fermionic modes (up to the second order), we provide evidence for the T-self-duality of the complete type IIA and IIB Green-Schwarz superstring theory on AdS d × S d × T 10-2 d ( d = 2 , 3) backgrounds with Ramond-Ramond fluxes. Finally, applying the Buscher-like rules to T-dualising supergravity fields, we prove the T-self-duality of the whole class of the AdS d × S d × M 10-2 d superbackgrounds with Ramond-Ramond fluxes in the context of supergravity.
ERIC Educational Resources Information Center
Light, Richard Lawrence
2011-01-01
Background: Research on pedagogy in physical education and sport has increasingly been informed by contemporary learning theory with the socio-cultural perspective being prominent. Over a similar period research on the social dimensions of physical education and youth sport has drawn on a range of social theory yet there has been little systematic…
NASA Astrophysics Data System (ADS)
Matsumoto, Takuya; Yoshida, Kentaroh
2014-11-01
Based on the formulation of Yang-Baxter sigma models developed by Klimcik and Delduc-Magro-Vicedo, we explain that various deformations of type IIB superstring on AdS5 × S5 can be charactered by classical r-matrices satisfying the classical Yang-Baxter equation (CYBE). The relation may be referred to as the gravity/CYBE correspondence. We present non-trivial examples of the correspondence including Lunin-Maldacena backgrounds for β-deformations of the N = 4 super Yang-Mills theory and the gravity duals for non-commutative gauge theories. We also discuss non-integrable backgrounds such as AdS5 × T1,1 as a generalization.
Effective nonrenormalizable theories at one loop
Gaillard, M.K.
1987-10-12
The paper focuses on a nonrenormalizable theory that is more closely related to those suggested by superstrings, namely a gauged nonlinear delta-model, but one which can also be obtained analytically in a particular limit of a parameter (m/sub H/ ..-->.. infinity) of the standard, renormalizable electroweak theory. This will provide another laboratory for testing the validity of calculations using the effective theory. We find (as for certain superstring inspired models to be discussed later) features similar to those for the Fermi theory: quadratic divergences can be reinterpreted as renormalizations, while new terms are generated at the level of logarithmic divergences. Also introduced in the context of more familiar physics are notions such as scalar metric, scalar curvature and nonlinear symmetries, that play an important role in formal aspects of string theories. 58 refs., 12 figs.
Open Quantum Transport and Non-Hermitian Real-Time Time-Dependent Density Functional Theory
NASA Astrophysics Data System (ADS)
Elenewski, Justin; Zhao, Yanxiang; Chen, Hanning
Sub-nanometer electronic devices are notoriously difficult to simulate, with the most widely adopted transport schemes predicting currents that diverge from experiment by several orders of magnitude. This deviation arises from numerous factors, including the inability of these methods to accommodate dynamic processes such as charge reorganization. A promising alternative entails the direct propagation of an electronic structure calculation, as exemplified by real-time time-dependent density functional theory (RT-TDDFT). Unfortunately this framework is inherently that of a closed system, and modifications must be made to handle incoming and outgoing particle fluxes. To this end, we establish a formal correspondence between the quantum master equation for an open, many-particle system and its description in terms of RT-TDDFT and non-Hermitian boundary potentials. By dynamically constraining the particle density within the boundary regions corresponding to the device leads, a simulation may be selectively converged to the non-equilibrium steady state associated with a given electrostatic bias. Our numerical tests demonstrate that this algorithm is both highly stable and readily integrated into existing electronic structure frameworks
Thermal D-Brane Boundary States from Type Iib Green-Schwarz Superstring in pp-WAVE Background
NASA Astrophysics Data System (ADS)
Vancea, Ion V.
We construct the thermal boundary states from the type IIB Green-Schwarz superstring in pp-wave background in the light-cone gauge. The superstring is treated in the canonical ensemble and in the TFD formalism which is appropriate to discuss canonically quantized systems. The thermal boundary states are obtained by thermalizing the total boundary states which are the boundary states of the total system that is composed by the superstring modes and the corresponding thermal reservoir modes. That analysis is similar to the one in the flat space-time case.67 However, there are some subtleties concerning the construction of the total string which are discussed. Next, we compute the entropy of thermal boundary state which is defined as the expectation value of the superstring entropy operator in the thermal boundary state.
NASA Astrophysics Data System (ADS)
Ivashchuk, V. D.; Melnikov, V. N.
2014-01-01
In the framework of 10-dimensional "Friedmann-Calabi-Yau" cosmology of superstring origin we show that the time variation of either Newton's gravitational constant or Yang-Mills one is unavoidable in the present epoch.
NASA Astrophysics Data System (ADS)
Krantz, Matthias C.; Gugat, Jascha L.; Gerken, Martina
2015-11-01
The static bending-mode transverse magnetoelectric effect and the magnetic field-induced bending response of composite cantilevers with thin magnetostrictive (MS), piezoelectric (PE), and substrate (Sub) layers is investigated for the PE layer subjected to open and short circuit conditions. Analytic theories are presented for strain-coupled three layer composites of PE, MS, and Sub layers in all layer sequences. We use constitutive equations with linear coupling of stress, strain, H, E, and D fields and present results for the open and short circuit magnetoelectric and bending responses for arbitrary layer thickness ratios for the FeCoBSi-AlN-Si materials system. Besides a rich sequence dependent behavior the theory predicts great and systematic differences between the open and short circuit magnetoelectric response yielding maxima at similar MS and PE layer thicknesses in the open circuit and near vanishing PE layer thicknesses in the short circuit cases. In contrast, the open vs. short circuit bending response differences are pronounced but much smaller. Layer sequence systematics and implications for static H-field sensors will be discussed.
China's Radio and TV Universities: Reflections on Theory and Practice of Open and Distance Learning
ERIC Educational Resources Information Center
Wei, Runfang
2010-01-01
Distance education and open learning are western innovations, representing the educational concepts, cultures and societies of western countries. The introduction of distance education and the adoption of open learning in China's radio and TV universities are by no means an indication that they will and can be copied wholesale. Open and distance…
Coalescent: an open-science framework for importance sampling in coalescent theory
Spouge, John L.
2015-01-01
Background. In coalescent theory, computer programs often use importance sampling to calculate likelihoods and other statistical quantities. An importance sampling scheme can exploit human intuition to improve statistical efficiency of computations, but unfortunately, in the absence of general computer frameworks on importance sampling, researchers often struggle to translate new sampling schemes computationally or benchmark against different schemes, in a manner that is reliable and maintainable. Moreover, most studies use computer programs lacking a convenient user interface or the flexibility to meet the current demands of open science. In particular, current computer frameworks can only evaluate the efficiency of a single importance sampling scheme or compare the efficiencies of different schemes in an ad hoc manner. Results. We have designed a general framework (http://coalescent.sourceforge.net; language: Java; License: GPLv3) for importance sampling that computes likelihoods under the standard neutral coalescent model of a single, well-mixed population of constant size over time following infinite sites model of mutation. The framework models the necessary core concepts, comes integrated with several data sets of varying size, implements the standard competing proposals, and integrates tightly with our previous framework for calculating exact probabilities. For a given dataset, it computes the likelihood and provides the maximum likelihood estimate of the mutation parameter. Well-known benchmarks in the coalescent literature validate the accuracy of the framework. The framework provides an intuitive user interface with minimal clutter. For performance, the framework switches automatically to modern multicore hardware, if available. It runs on three major platforms (Windows, Mac and Linux). Extensive tests and coverage make the framework reliable and maintainable. Conclusions. In coalescent theory, many studies of computational efficiency consider only
Das, C. R.; Laperashvili, L. V.; Tureanu, A.
2010-06-23
We have developed a concept of parallel existence of the ordinary (O) and mirror (M), or shadow (Sh) worlds. E{sub 6} unification, inspired by superstring theory, restores the broken mirror parity at the scale {approx}10{sup 18} GeV. With the aim to explain the tiny cosmological constant, we consider the breakings: E{sub 6{yields}}SO(10)xU(1){sub Z}--in the O-world, and E'6{yields}SU(6)'xSU(2)'{sub {theta}-}-in the Sh-world. We assume the existence of shadow {theta}-particles and the low energy symmetry group SU(3)'{sub C}xSU(2)'{sub L}xSU(2)'{sub {theta}x}U(1)'{sub Y} in the shadow world, instead of the Standard Model. The additional non-Abelian SU(2)'{sub {theta}}group with massless gauge fields, 'thetons', has a macroscopic confinement radius 1/{Lambda}'{sub {theta}.} The assumption that {Lambda}'{sub {theta}{approx_equal}2}.3{center_dot}10{sup -3} eV explains the tiny cosmological constant given by recent astrophysical measurements. Searching for the Dark Matter (DM), it is possible to observe and study various signals of theta-particles.
NASA Astrophysics Data System (ADS)
Buecking, Paul W.
2007-10-01
The present concept of a string is too simple. It does not have the necessary level of complexity needed to express the `Everything'. On string level no defined unique structure exists that inherently can make the world the way it is in a self-consistent way. The idea of a vacuum deflates string theory. In the new concept (NC) a superstring (SS) is the most elementary structure with functionality. It consists of more basic substructural entities that do not have, but enable functionality. In the NC these entities are anti-commuting spacetime topologies. Their emergence in primordial spacetime breaks its isotropic hydrodynamic symmetry. By quantization of three plane simply connected cobording topologies and their compactification to three-layered toric SS with spin functionality, globally an entagled SS-fluid is restored. Its constituents are mutually repulsing (-->λ) dark SS stem particles in a supersymmetric state. Breaking of this symmetry generates all particles of physics. This diversification decouples physics, taking place in spacetime, from its broken topology. All particle decays and changes of flavors include the conservation of this symmetry. The NC seems to solve many enigmas and finds explanations for the `Why'. By this it reveals the awe-inspiring genius of nature in its fundamental aspiration to conserve symmetries.
On the quantum geometry of string theory
NASA Astrophysics Data System (ADS)
Ambjørn, J.; Anagnostopoulos, K. N.; Bietenholz, W.; Hofheinz, F.; Nishimura, J.
The IKKT or IIB matrix model has been proposed as a non-perturbative definition of type IIB superstring theories. It has the attractive feature that space-time appears dynamically. It is possible that lower dimensional universes dominate the theory, therefore providing a dynamical solution to the reduction of space-time dimensionality. We summarize recent works that show the central role of the phase of the fermion determinant in the possible realization of such a scenario.
On the quantum geometry of string theory
NASA Astrophysics Data System (ADS)
Ambjørn, J.; Anagnostopoulos, K. N.; Bietenholz, W.; Hofheinz, F.; Nishimura, J.
2002-03-01
The IKKT or IIB matrix model has been proposed as a non-perturbative definition of type IIB superstring theories. It has the attractive feature that space-time appears dynamically. It is possible that lower dimensional universes dominate the theory, therefore providing a dynamical solution to the reduction of space-time dimensionality. We summarize recent works that show the central role of the phase of the fermion determinant in the possible realization of such a scenario.
The ten-dimensional Green-Schwarz superstring is a twisted Neveu-Schwarz-Ramond string
NASA Astrophysics Data System (ADS)
Berkovits, Nathan
1994-05-01
An action for the ten-dimensional Green-Schwarz superstring with N = 2 world-sheet superconformal invariance has recently been quantized and used to calculate superstring scattering amplitudes. In this paper, it is shown that the N = 2 stress-energy tensor for this Green-Schwarz action can be constructed out of the stres-energy tensor and ghosts of the Neveu-Schwarz-Ramond action by the standard twisting procedure. In other words, a field redefinition is found from the GS matter fields into the NSR matter and ghost fields which transforms the matter part of the two fermionic GS superconformal generators into the b ghost and shifted BRST current of the NSR string. In light-cone gauge, this field redefinition reduces to the usual one relating the light-cone GS and NSR fields.
ERIC Educational Resources Information Center
Kallenbach, Silja; Viens, Julie
The Adult Multiple Intelligences Study was the first systematic effort related to multiple intelligences (MI) theory in adult literacy education. The study's findings regarding MI theory served as the foundation for a study of MI theory's implications for adult literacy practice, policy, and research. The study was conducted across 10 different…
Research in the theory of condensed matter and elementary particles. (Progress report)
Not Available
1985-01-01
The proposed research is concerned with problems occupying the common ground between quantum field theory and statistical mechanics. The topics under investigation include: superconformal field theory in two dimensions, its relationship to two dimensional critical phenomena and its applications in string theory; the covariant formulation of the superstring theory; formation of large-scale structures and spatial chaos in dynamical systems; fermion-boson mass relations in BCS type theories; and properties of quantum field theories defined over galois fields. 37 refs.
Minimal Pati-Salam model from string theory unification
Dent, James B.; Kephart, Thomas W.
2008-06-01
We provide what we believe is the minimal three family N=1 SUSY and conformal Pati-Salam model from type IIB superstring theory. This Z{sub 3} orbifolded AdS x S{sup 5} model has long lived protons and has potential phenomenological consequences for LHC (Large Hadron Collider)
Researching Resistance to Open Education Resource Contribution: An Activity Theory Approach
ERIC Educational Resources Information Center
Cox, Glenda
2013-01-01
Higher education and associated institutions are beginning to share teaching materials known as Open Educational Resources (OER) or open courseware across the globe. Their success depends largely on the willingness of academics at these institutions to add their teaching resources. In a survey of the literature on OER there are several articles…
Resummation for Nonequilibrium Perturbation Theory and Application to Open Quantum Lattices
NASA Astrophysics Data System (ADS)
Li, Andy C. Y.; Petruccione, F.; Koch, Jens
2016-04-01
Lattice models of fermions, bosons, and spins have long served to elucidate the essential physics of quantum phase transitions in a variety of systems. Generalizing such models to incorporate driving and dissipation has opened new vistas to investigate nonequilibrium phenomena and dissipative phase transitions in interacting many-body systems. We present a framework for the treatment of such open quantum lattices based on a resummation scheme for the Lindblad perturbation series. Employing a convenient diagrammatic representation, we utilize this method to obtain relevant observables for the open Jaynes-Cummings lattice, a model of special interest for open-system quantum simulation. We demonstrate that the resummation framework allows us to reliably predict observables for both finite and infinite Jaynes-Cummings lattices with different lattice geometries. The resummation of the Lindblad perturbation series can thus serve as a valuable tool in validating open quantum simulators, such as circuit-QED lattices, currently being investigated experimentally.
Duality symmetries in string theory
Nunez, Carmen A.
1999-10-25
The search for a unified theory of quantum gravity and gauge interactions leads naturally to string theory. This field of research has received a revival of interest after the discovery of duality symmetries in recent years. We present a self contained account of some non-perturbative aspects of string theory which have been recently understood. The spectrum and interactions of the five consistent superstring theories in ten dimensions are recollected and the fundamental principles underlying this initial stage in the construction of the theory are briefly reviewed. We next discuss some evidences that these apparently different superstrings are just different aspects of one unique theory. The key to this development is given by the non-perturbative duality symmetries which have modified and improved our understanding of string dynamics in many ways. In particular, by relating the fundamental objects of one theory to solitons of another theory, they have unraveled the presence of extended objects in the theory which stand on an equal footing with strings. We introduce these higher dimensional objects, named D-branes, and discuss applications of D-brane physics.
NASA Technical Reports Server (NTRS)
Lee, Timothy J.; Arnold, James O. (Technical Monitor)
1994-01-01
A new spin orbital basis is employed in the development of efficient open-shell coupled-cluster and perturbation theories that are based on a restricted Hartree-Fock (RHF) reference function. The spin orbital basis differs from the standard one in the spin functions that are associated with the singly occupied spatial orbital. The occupied orbital (in the spin orbital basis) is assigned the delta(+) = 1/square root of 2(alpha+Beta) spin function while the unoccupied orbital is assigned the delta(-) = 1/square root of 2(alpha-Beta) spin function. The doubly occupied and unoccupied orbitals (in the reference function) are assigned the standard alpha and Beta spin functions. The coupled-cluster and perturbation theory wave functions based on this set of "symmetric spin orbitals" exhibit much more symmetry than those based on the standard spin orbital basis. This, together with interacting space arguments, leads to a dramatic reduction in the computational cost for both coupled-cluster and perturbation theory. Additionally, perturbation theory based on "symmetric spin orbitals" obeys Brillouin's theorem provided that spin and spatial excitations are both considered. Other properties of the coupled-cluster and perturbation theory wave functions and models will be discussed.
Motivating Learners in Open and Distance Learning: Do We Need a New Theory of Learner Support?
ERIC Educational Resources Information Center
Simpson, Ormond
2008-01-01
This paper calls for a new theory of learner support in distance learning based on recent findings in the fields of learning and motivational psychology. It surveys some current learning motivation theories and proposes that models drawn from the relatively new field of Positive Psychology, such as the "Strengths Approach", together with Dweck's…
Opening Address SEER 2003: Got Research in Experiential Education? Theory and Evidence
ERIC Educational Resources Information Center
Henderson, Karla A.
2004-01-01
In a speech at the Symposium for Experiential Education Research 2003, Henderson discusses the importance of theory in building a body of knowledge. She says that to use information to create a body of knowledge, researchers must continue to develop and apply theory, and to address the emerging opportunities for evidence-based research and…
OPEN SYSTEM THEORY AND CHANGE IN VOCATIONAL PROGRAMS OF IDAHO SECONDARY SCHOOLS.
ERIC Educational Resources Information Center
HEGER, ROBERT J.
THE DECISION-MAKING PROCESS OF SUPERINTENDENTS AS RELATED TO THE SYSTEM THEORY OF ADMINISTRATIVE CHANGE WAS THE CENTRAL FOCUS OF THIS STUDY. SPECIFIC OBJECTIVES WERE (1) TO ANALYZE SUPERINTENDENTS' DECISION MAKING AS RELATED TO MODIFYING AND INITIATING VOCATIONAL EDUCATION PROGRAMS IN IDAHO, (2) TO TEST A THEORY OF ADMINISTRATIVE CHANGE AS RELATED…
Selwyn, Peter A.
2015-01-01
Reviewing his clinic patient schedule for the day, a physician reflects on the history of a young woman he has been caring for over the past 9 years. What starts out as a routine visit then turns into a unique opening for communication and connection. A chance glimpse out the window of the exam room leads to a deeper meditation on parenthood, survival, and healing, not only for the patient but also for the physician. How many missed opportunities have we all had, without even realizing it, to allow this kind of fleeting but profound opening? PMID:26195687
Selwyn, Peter A
2015-01-01
Reviewing his clinic patient schedule for the day, a physician reflects on the history of a young woman he has been caring for over the past 9 years. What starts out as a routine visit then turns into a unique opening for communication and connection. A chance glimpse out the window of the exam room leads to a deeper meditation on parenthood, survival, and healing, not only for the patient but also for the physician. How many missed opportunities have we all had, without even realizing it, to allow this kind of fleeting but profound opening? PMID:26195687
Asplund, Erik; Kluener, Thorsten
2012-03-28
In this paper, control of open quantum systems with emphasis on the control of surface photochemical reactions is presented. A quantum system in a condensed phase undergoes strong dissipative processes. From a theoretical viewpoint, it is important to model such processes in a rigorous way. In this work, the description of open quantum systems is realized within the surrogate Hamiltonian approach [R. Baer and R. Kosloff, J. Chem. Phys. 106, 8862 (1997)]. An efficient and accurate method to find control fields is optimal control theory (OCT) [W. Zhu, J. Botina, and H. Rabitz, J. Chem. Phys. 108, 1953 (1998); Y. Ohtsuki, G. Turinici, and H. Rabitz, J. Chem. Phys. 120, 5509 (2004)]. To gain control of open quantum systems, the surrogate Hamiltonian approach and OCT, with time-dependent targets, are combined. Three open quantum systems are investigated by the combined method, a harmonic oscillator immersed in an ohmic bath, CO adsorbed on a platinum surface, and NO adsorbed on a nickel oxide surface. Throughout this paper, atomic units, i.e., ({Dirac_h}/2{pi})=m{sub e}=e=a{sub 0}= 1, have been used unless otherwise stated.
NASA Astrophysics Data System (ADS)
Goodpaster, Jason D.; Barnes, Taylor A.; Manby, Frederick R.; Miller, Thomas F.
2012-12-01
Density functional theory (DFT) embedding provides a formally exact framework for interfacing correlated wave-function theory (WFT) methods with lower-level descriptions of electronic structure. Here, we report techniques to improve the accuracy and stability of WFT-in-DFT embedding calculations. In particular, we develop spin-dependent embedding potentials in both restricted and unrestricted orbital formulations to enable WFT-in-DFT embedding for open-shell systems, and develop an orbital-occupation-freezing technique to improve the convergence of optimized effective potential calculations that arise in the evaluation of the embedding potential. The new techniques are demonstrated in applications to the van-der-Waals-bound ethylene-propylene dimer and to the hexa-aquairon(II) transition-metal cation. Calculation of the dissociation curve for the ethylene-propylene dimer reveals that WFT-in-DFT embedding reproduces full CCSD(T) energies to within 0.1 kcal/mol at all distances, eliminating errors in the dispersion interactions due to conventional exchange-correlation (XC) functionals while simultaneously avoiding errors due to subsystem partitioning across covalent bonds. Application of WFT-in-DFT embedding to the calculation of the low-spin/high-spin splitting energy in the hexaaquairon(II) cation reveals that the majority of the dependence on the DFT XC functional can be eliminated by treating only the single transition-metal atom at the WFT level; furthermore, these calculations demonstrate the substantial effects of open-shell contributions to the embedding potential, and they suggest that restricted open-shell WFT-in-DFT embedding provides better accuracy than unrestricted open-shell WFT-in-DFT embedding due to the removal of spin contamination.
NASA Technical Reports Server (NTRS)
Isar, Aurelian
1995-01-01
The harmonic oscillator with dissipation is studied within the framework of the Lindblad theory for open quantum systems. By using the Wang-Uhlenbeck method, the Fokker-Planck equation, obtained from the master equation for the density operator, is solved for the Wigner distribution function, subject to either the Gaussian type or the delta-function type of initial conditions. The obtained Wigner functions are two-dimensional Gaussians with different widths. Then a closed expression for the density operator is extracted. The entropy of the system is subsequently calculated and its temporal behavior shows that this quantity relaxes to its equilibrium value.
Theory of transport noise in membrane channels with open-closed kinetics.
Frehland, E
1979-03-21
A theoretical approach to transport noise in kinetic systems, which has recently been developed, is applied to electric fluctuations around steady-states in membrane channels with different conductance states. The channel kinetics may be simple two state (open-closed) kinetics or more complicated. The membrane channel is considered as a sequence of binding sites separated by energy barriers over which the ions have to jump according to the usual single-file diffusion model. For simplicity the channels are assumed to act independently. In the special case of ionic movement fast compared with the channel open-closed kinetics the results agree with those derived from the usual Master equation approach to electric fluctuations in nerve membrane channels. For the simple model of channels with one binding site and two energy barries the coupling between the fluctuations coming from the open-closed kinetics and from the jump diffusion is investigated. PMID:427255
Numerical Predictions of Mode Reflections in an Open Circular Duct: Comparison with Theory
NASA Technical Reports Server (NTRS)
Dahl, Milo D.; Hixon, Ray
2015-01-01
The NASA Broadband Aeroacoustic Stator Simulation code was used to compute the acoustic field for higher-order modes in a circular duct geometry. To test the accuracy of the results computed by the code, the duct was terminated by an open end with an infinite flange or no flange. Both open end conditions have a theoretical solution that was used to compare with the computed results. Excellent comparison for reflection matrix values was achieved after suitable refinement of the grid at the open end. The study also revealed issues with the level of the mode amplitude introduced into the acoustic held from the source boundary and the amount of reflection that occurred at the source boundary when a general nonreflecting boundary condition was applied.
Exploring the Invisible Universe: From Black Holes to Superstrings
NASA Astrophysics Data System (ADS)
Baaquie, Belal E.; Willeboordse, Frederick H.
2015-03-01
The book is written for a broad scientific audience with an interest in the leading theories about the Universe. The focus is on the physical Universe, and the laws of Physics are taken to be the guiding light in all our analysis. Starting from first principles and using self-evident reasoning, all the fundamental ideas that are employed in exploring the hidden and invisible realms of the Universe are shown to arise quite naturally, once one adopts the outlook that has come to light with the advances in Physics...
Nuclear Matrix Model: A path to nuclear physics from superstrings
Hashimoto, Koji
2011-10-21
We derive nuclear forces and nuclear density saturation from large N{sub c} QCD, by applying AdS/CFT correspondence of string theory, called holographic QCD. This is made possible by a new description of a multi-baryon system in the holographic QCD. The description employs a matrix quantum mechanics which can be derived via the correspondence. This talk is based on collaboration work with N. Iizuka and P. Yi [1], with N. Iizuka [2, 3] and with T. Morita [4].
A Personal View of Functional Illiteracy: An Open Letter to Teachers. From Theory to Practice.
ERIC Educational Resources Information Center
Monahan, Evelyn
1987-01-01
This document, written in the first person, describes the history and feelings of a woman who was functionally illiterate as an adult but who, having learned to read, is now a student at Rancho Santiago Community College District in Orange, California. This "open letter" urges teachers to support and encourage students with similar problems,…
Many-Body Perturbation Theory of the Effective Electron-Electron Interaction for Open-Shell Atoms
NASA Astrophysics Data System (ADS)
Morrison, John; Salomonson, Sten
1980-01-01
The effective-operator form of many-body theory is reviewed and applied to the calculation of the effective interaction of electrons in an open-shell atom. Numerical results are given for the 1s22s22p2 configuration of carbon. The effect of correlation upon the interaction of the 2p electrons of this configuration is represented by effective two-body operators of the form ΣakTk(1) · Tk(2). These operators are evaluated using angular-momentum diagrams and solving numerically a two-particle equation for the linear combination of excited states which contribute to the Goldstone diagrams. The effect of the operators of even rank is to depress the values of the two-electron Slater integrals Fk(2p, 2p) below their Hartree-Fock values. The two-body operator of odd rank does not appear in the Hartree-Fock theory. Our second-order values of the Slater integrals agree quite well with experiment but the value which we obtain of the coefficient of odd rank is much too small. This is partly due to a large cancellation which occurs for the contribution of the outer 2s2, 2s2p, 2p2 pair excitations. In order to study the convergence properties of the theory and to obtain more accurate values of the interaction integrals, we consider the higher-order terms in the perturbation expansion. An important family of two-particle effects is included to all orders by solving the pair equations iteratively until self-consistency is achieved. A more accurate description of the electron-electron interaction is obtained in this way. There are three additional families of wave-operator diagrams which can have an important effect. One family has an additional open-shell line which polarizes a closed-, open-, or excited orbital. There are also the coupled-cluster diagrams and a family of diagrams involving two polarizing open-shell lines, which appears first in fourth order. All of these diagrams can be included in our iterative scheme and they include all possible two-particle effects to self-consistency.
Interaction of moving branes with background massless and tachyon fields in superstring theory
Rezaei, Z. Kamani, D.
2012-02-15
Using the boundary state formalism, we study a moving Dp-brane in a partially compact space-time in the presence of background fields: the Kalb-Ramond field B{sub {mu}{nu}}, a U(1) gauge field A{sub {alpha}}, and the tachyon field. The boundary state enables us to obtain the interaction amplitude of two branes with the above back-ground fields. The branes are parallel or perpendicular to each other. Because of the presence of background fields, compactification of some space-time directions, motion of the branes, and the arbitrariness of the dimensions of the branes, the system is rather general. Due to the tachyon fields and velocities of the branes, the behavior of the interaction amplitude reveals obvious differences from the conventional behavior.
The Way of Openness: Moral Sphere Theory, Education, Ethics, and Classroom Management
ERIC Educational Resources Information Center
Bullough, Robert V., Jr.
2014-01-01
Noting the challenges of radical pluralism and uncertainty to ethics and education, the author describes, then explores Moral Sphere Theory (MST) developed by the philosopher Robert Kane and in relationship to insights drawn from American pragmatism. The argument is that MST offers fresh ways for thinking about education and the profound…
Analysis of Optical and Morphological Properties of Aluminium Induced Texture Glass Superstrates
NASA Astrophysics Data System (ADS)
Wang, Juan; Venkataraj, Selvaraj; Battaglia, Corsin; Vayalakkara, Premachandran; Aberle, Armin G.
2012-10-01
Texturing the glass surface is a promising method for improving the light trapping properties of superstrate thin-film silicon solar cells, as it enables thinner absorber layers and, possibly, higher cell efficiencies. In this paper we present the optical and morphological properties of borosilicate glass superstrates textured with the aluminium induced texture (AIT) method. High haze values are achieved without any reduction in the total optical transmission of the glass sheets after the AIT process. Scanning electron microscope and atomic force microscope (AFM) measurements reveal a laterally uniform surface morphology of the AIT texture. We demonstrate that the surface roughness and thus the transmission haze can be controlled by adjusting the AIT process parameters. From the AFM images, we extract histograms of the local height and angle distributions of the texture. Samples with a wide angle distribution are shown to produce the highest optical haze. The results of this analysis provide a better understanding of the correlation between the AIT process parameters and the resulting surface morphology. This analysis is further extended to an amorphous silicon pin solar cell deposited onto the textured glass substrate.
Gessert, T. A.; Dhere, R. G.; Duenow, J. N.; Kuciauskas, D.; Kanevce, A.; Bergeson, J. D.
2011-07-01
We discuss typical and alternative procedures to analyze time-resolved photoluminescence (TRPL) measurements of minority carrier lifetime (MCL) with the hope of enhancing our understanding of how this technique may be used to better analyze CdTe photovoltaic (PV) device functionality. Historically, TRPL measurements of the fast recombination rate (t1) have provided insightful correlation with broad device functionality. However, we have more recently found that t1 does not correlate as well with smaller changes in device performance, nor does it correlate well with performance differences observed between superstrate and substrate CdTe PV devices. This study presents TRPL data for both superstrate and substrate CdTe devices where both t1 and the slower TRPL decay (t2) are analyzed. The study shows that changes in performance expected from small changes in device processing may correlate better with t2. Numerical modeling further suggests that, for devices that are expected to have similar drift field in the depletion region, effects of changes in bulk MCL and interface recombination should be more pronounced in t2. Although this technique may provide future guidance to improving CdS/CdTe device performance, it is often difficult to extract statistically precise values for t2, and therefore t2 data may demonstrate significant scatter when correlated with performance parameters.
Analytical model for CMB temperature angular power spectrum from cosmic (super-)strings
Yamauchi, Daisuke; Yoo, Chul-Moon; Sasaki, Misao; Takahashi, Keitaro; Sendouda, Yuuiti
2010-09-15
We present a new analytical method to calculate the small angle cosmic microwave background (CMB) temperature angular power spectrum due to cosmic (super-)string segments. In particular, using our method, we clarify the dependence on the intercommuting probability P. We find that the power spectrum is dominated by Poisson-distributed string segments. The power spectrum for a general value of P has a plateau on large angular scales and shows a power-law decrease on small angular scales. The resulting spectrum in the case of conventional cosmic strings is in very good agreement with the numerical result obtained by Fraisse et al.. Then we estimate the upper bound on the dimensionless tension of the string for various values of P by assuming that the fraction of the CMB power spectrum due to cosmic (super-)strings is less than ten percent at various angular scales up to l=2000. We find that the amplitude of the spectrum increases as the intercommuting probability. As a consequence, strings with smaller intercommuting probabilities are found to be more tightly constrained.
Sahraei, Nasim; Peters, Marius; Venkataraj, Selvaraj; Aberle, Armin G; Calnan, Sonya; Ring, Sven; Stannowski, Bernd; Schlatmann, Rutger; Stangl, Rolf
2015-05-10
Light scattering superstrates are important for thin-film a-Si:H solar cells. In this work, aluminum-induced texture (AIT) glass, covered with nonetched Al-doped ZnO (AZO), is investigated as an alternative to the commonly used planar glass with texture-etched AZO superstrate. Four different AIT glasses with different surface roughnesses and different lateral feature sizes are investigated for their effects on light trapping in a-Si:H solar cells. For comparison, two reference superstrates are investigated as well: planar glass covered with nonetched AZO and planar glass covered with texture-etched AZO. Single-junction a-Si:H solar cells are deposited onto each superstrate, and the scattering properties (haze and angular resolved scattering) as well as the solar cell characteristics (current-voltage and external quantum efficiency) are measured and compared. The results indicate that AIT glass superstrates with nonetched AZO provide similar, or even superior, light trapping than the standard reference superstrate, which is demonstrated by a higher short-circuit current Jsc and a higher external quantum efficiency. Using the trapped light fraction δ, a quantity based on the integrated light scattering at the AZO/a-Si:H interface, we show that Jsc linearly increases with δ in the scattering regime of the samples, regardless of the type of superstrate used. PMID:25967490
Testing string theory by probing the pre-bangian Universe
Veneziano, Gabriele
1999-07-15
After recalling why superstring theory suggests a new cosmological principle of 'asymptotic past triviality', I will argue that classical (quantum) gravitational instabilities can inflate (warm up) an asymptotic-past-trivial Universe. I will then discuss how near-future observations could provide a window through which we can probe the pre-bangian Universe and thus test string theory both at short and at large distances.
Solar wind control of the open magnetosphere: Comparison of GGS/polar images and theory
NASA Astrophysics Data System (ADS)
Urquhart, Andrew Lee
This investigation explores the connection between the open polar cap magnetic flux ΦPCF and interplanetary conditions. Φ PCF is determined from GGS/Polar VIS Earth Camera far ultraviolet observations of the aurora borealis. Observations from the GGS/Wind SWE and MFI instruments are used to characterize the interplanetary conditions. Additional observations from the IMP-8 PLA and MAG instruments are used to evaluate solar wind propagation time delay estimation methods so that the GGS/Wind observations can be better associated with the GGS/Polar observations. This allows the GGS/Wind observations to be used to estimate the polar cap potential φPCP values associated with the GGS/Polar ΦPCF values. Statistical methods are applied to determine a proxy relationship between φPCP and ΦPCF. The Rice Field Model (RFM) is modified to accept Φ PCF as a configuration parameter, and RFM polar caps are produced using Φ PCF determined both directly from the GGS/Polar images and by the proxy relationship from the GGS/Wind data. The RFM is able to produce polar caps with the same areas and open magnetic fluxes as the GGS/Polar observations, but the agreement in the polar cap shapes and locations leaves opportunities for further improvements.
Application of the theory of open quantum systems to nuclear physics problems
NASA Astrophysics Data System (ADS)
Sargsyan, V. V.; Kanokov, Z.; Adamian, G. G.; Antonenko, N. V.
2016-03-01
Quantum diffusion equations with transport coefficients explicitly depending on time are derived from the generalized non-Markovian Langevin equations. The asymptotic behavior of the friction and diffusion coefficients is investigated in the case of the FC and RWA couplings between the collective and internal subsystems. An asymptotic expression is obtained for the propagator of the density matrix of the open quantum system with the general quadratic Hamiltonian, linearly coupled (in coordinate and momentum) to internal degrees of freedom. The effect of different sets of transport coefficients on the decoherence and decay rate of the metastable state is investigated using the master equation for the reduced density matrix of open quantum systems. The developed approach is used to study the capture of the projectile nucleus by the target nucleus at energies near the Coulomb barrier. Capture cross sections in asymmetric reactions are well described with allowance for the calculated capture probabilities. Particular cases where dissipation favors penetration through the potential barrier are found. The generalized Kramers formula for the quasi-stationary decay rate of the quantum metastable systems is analytically derived.
Towards a consistent noncommutative supersymmetric Yang-Mills theory: Superfield covariant analysis
Ferrari, A.F.; Girotti, H.O.; Ribeiro, A.A.; Gomes, M.; Rivelles, V.O.; Silva, A.J. da; Petrov, A.Yu.
2004-10-15
Commutative four dimensional supersymmetric Yang-Mills (SYM) theory is known to be renormalizable for N=1,2, and finite for N=4. However, in the noncommutative version of the model the UV/IR mechanism gives rise to infrared divergences which may spoil the perturbative expansion. In this work we pursue the study of the consistency of the N=1,2,4 noncommutative supersymmetric Yang-Mills theory with gauge group U(N) (NCSYM). We employ the covariant superfield framework to compute the one-loop corrections to the two- and three-point functions of the gauge superfield V. It is found that the cancellation of the harmful UV/IR infrared divergences only takes place in the fundamental representation of the gauge group. We argue that this is in agreement with the low energy limit of the open superstring in the presence of an external magnetic field. As expected, the planar sector of the two-point function of the V superfield exhibits UV divergences. They are found to cancel, in the Feynman gauge, for the maximally extended N=4 supersymmetric theory. This gives support to the belief that the N=4 NCSYM theory is UV finite.
Wang, RuLin; Zheng, Xiao; Kwok, YanHo; Xie, Hang; Chen, GuanHua; Yam, ChiYung
2015-04-14
Understanding electronic dynamics on material surfaces is fundamentally important for applications including nanoelectronics, inhomogeneous catalysis, and photovoltaics. Practical approaches based on time-dependent density functional theory for open systems have been developed to characterize the dissipative dynamics of electrons in bulk materials. The accuracy and reliability of such approaches depend critically on how the electronic structure and memory effects of surrounding material environment are accounted for. In this work, we develop a novel squared-Lorentzian decomposition scheme, which preserves the positive semi-definiteness of the environment spectral matrix. The resulting electronic dynamics is guaranteed to be both accurate and convergent even in the long-time limit. The long-time stability of electronic dynamics simulation is thus greatly improved within the current decomposition scheme. The validity and usefulness of our new approach are exemplified via two prototypical model systems: quasi-one-dimensional atomic chains and two-dimensional bilayer graphene.
NASA Astrophysics Data System (ADS)
Wang, RuLin; Zheng, Xiao; Kwok, YanHo; Xie, Hang; Chen, GuanHua; Yam, ChiYung
2015-04-01
Understanding electronic dynamics on material surfaces is fundamentally important for applications including nanoelectronics, inhomogeneous catalysis, and photovoltaics. Practical approaches based on time-dependent density functional theory for open systems have been developed to characterize the dissipative dynamics of electrons in bulk materials. The accuracy and reliability of such approaches depend critically on how the electronic structure and memory effects of surrounding material environment are accounted for. In this work, we develop a novel squared-Lorentzian decomposition scheme, which preserves the positive semi-definiteness of the environment spectral matrix. The resulting electronic dynamics is guaranteed to be both accurate and convergent even in the long-time limit. The long-time stability of electronic dynamics simulation is thus greatly improved within the current decomposition scheme. The validity and usefulness of our new approach are exemplified via two prototypical model systems: quasi-one-dimensional atomic chains and two-dimensional bilayer graphene.
NASA Astrophysics Data System (ADS)
Saal, James E.; Kirklin, Scott; Aykol, Muratahan; Meredig, Bryce; Wolverton, C.
2013-11-01
High-throughput density functional theory (HT DFT) is fast becoming a powerful tool for accelerating materials design and discovery by the amassing tens and even hundreds of thousands of DFT calculations in large databases. Complex materials problems can be approached much more efficiently and broadly through the sheer quantity of structures and chemistries available in such databases. Our HT DFT database, the Open Quantum Materials Database (OQMD), contains over 200,000 DFT calculated crystal structures and will be freely available for public use at http://oqmd.org. In this review, we describe the OQMD and its use in five materials problems, spanning a wide range of applications and materials types: (I) Li-air battery combination catalyst/electrodes, (II) Li-ion battery anodes, (III) Li-ion battery cathode coatings reactive with HF, (IV) Mg-alloy long-period stacking ordered (LPSO) strengthening precipitates, and (V) training a machine learning model to predict new stable ternary compounds.
Open-Closed Homotopy Algebras and Strong Homotopy Leibniz Pairs Through Koszul Operad Theory
NASA Astrophysics Data System (ADS)
Hoefel, Eduardo; Livernet, Muriel
2012-08-01
Open-closed homotopy algebras (OCHA) and strong homotopy Leibniz pairs (SHLP) were introduced by Kajiura and Stasheff in 2004. In an appendix to their paper, Markl observed that an SHLP is equivalent to an algebra over the minimal model of a certain operad, without showing that the operad is Koszul. In the present paper, we show that both OCHA and SHLP are algebras over the minimal model of the zeroth homology of two versions of the Swiss-cheese operad and prove that these two operads are Koszul. As an application, we show that the OCHA operad is non-formal as a 2-colored operad but is formal as an algebra in the category of 2-collections.
A continuous vibration theory for rotors with an open edge crack
NASA Astrophysics Data System (ADS)
Ebrahimi, Alireza; Heydari, Mahdi; Behzad, Mehdi
2014-07-01
In this paper a new continuous model for flexural vibration of rotors with an open edge crack has been developed. The cracked rotor is considered in the rotating coordinate system attached to it. Therefore, the rotor bending can be decomposed in two perpendicular directions. Two quasi-linear displacement fields are assumed for these two directions and the strain and stress fields are calculated in each direction. Then the final displacement and stress fields are obtained by composing the displacement and stress fields in the two directions. The governing equation of motion for the rotor has been obtained using the Hamilton principle and solved using a modified Galerkin method. The free vibration has been analyzed and the critical speeds have been calculated. Results are compared with the finite element results and an excellent agreement is observed.
[Towards an unified theory of the universe basic forces ("the everything theory")].
Aguilar Peris, José
2004-01-01
Numerous efforts have been made in order to unify all the basic forces in nature. In 1967 the fusion of electromagnetic and weak forces was obtained and in 1973 a theoretical bridge between the electroweak and the strong forces have been constructed. This theory is waiting for experimental proofs in the CERN large hadron collider. The last stage would be "the everything theory", which includes the gravitational force. Only the so called superstring theory is a good candidate to overcome the incompatibility of the quantum mechanics and the general relativity, but this theory is not already achieved. PMID:15563114
NASA Astrophysics Data System (ADS)
Page, Michael; McIver, J. W., Jr.
1983-11-01
A general Newton-Raphson based iterative method of orbital optimization is presented. In contrast to the usual exponential transformation technique, the unitary orbital rotation matrix is specified in terms of unconstrained variables through the use of an eigenvalue equation. The method seeks improved orbitals by repeatedly constructing and diagonalizing a single symmetric matrix. The theory is applied to the closed shell, open shell, and two configuration self-consistent field (2CSCF) wave functions. In these cases, simplifying approximations greatly reduce the computational labor without seriously impeding convergence properties. Under these approximations and a particular specification of certain parameters, the closed shell case becomes identical to the traditional Roothaan method. However, an alternative specification gives a method which has superior convergence properties to the Roothaan method. The convergence properties of the general method are examined. The general criterion for the intrinsic convergence of the method and a simple test for the stability of the converged solution are given. Also, an inexpensive enhancement based on an interpolation scheme results in accelerated and forced convergence. Some aspects of the implementation of the method are discussed. Relatively minor modifications to existing closed shell computer programs allow the calculation of open shell and 2CSCF wave functions.
NASA Astrophysics Data System (ADS)
Blanchard, Philippe; Hellmich, Mario; Ługiewicz, Piotr; Olkiewicz, Robert
Quantum mechanics is the greatest revision of our conception of the character of the physical world since Newton. Consequently, David Hilbert was very interested in quantum mechanics. He and John von Neumann discussed it frequently during von Neumann's residence in Göttingen. He published in 1932 his book Mathematical Foundations of Quantum Mechanics. In Hilbert's opinion it was the first exposition of quantum mechanics in a mathematically rigorous way. The pioneers of quantum mechanics, Heisenberg and Dirac, neither had use for rigorous mathematics nor much interest in it. Conceptually, quantum theory as developed by Bohr and Heisenberg is based on the positivism of Mach as it describes only observable quantities. It first emerged as a result of experimental data in the form of statistical observations of quantum noise, the basic concept of quantum probability.
A review of progress in the physics of open quantum systems: theory and experiment
NASA Astrophysics Data System (ADS)
Rotter, I.; Bird, J. P.
2015-11-01
This report on progress explores recent advances in our theoretical and experimental understanding of the physics of open quantum systems (OQSs). The study of such systems represents a core problem in modern physics that has evolved to assume an unprecedented interdisciplinary character. OQSs consist of some localized, microscopic, region that is coupled to an external environment by means of an appropriate interaction. Examples of such systems may be found in numerous areas of physics, including atomic and nuclear physics, photonics, biophysics, and mesoscopic physics. It is the latter area that provides the main focus of this review, an emphasis that is driven by the capacity that exists to subject mesoscopic devices to unprecedented control. We thus provide a detailed discussion of the behavior of mesoscopic devices (and other OQSs) in terms of the projection-operator formalism, according to which the system under study is considered to be comprised of a localized region (Q), embedded into a well-defined environment (P) of scattering wavefunctions (with Q + P = 1). The Q subspace must be treated using the concepts of non-Hermitian physics, and of particular interest here is: the capacity of the environment to mediate a coupling between the different states of Q; the role played by the presence of exceptional points (EPs) in the spectra of OQSs; the influence of EPs on the rigidity of the wavefunction phases, and; the ability of EPs to initiate a dynamical phase transition (DPT). EPs are singular points in the continuum, at which two resonance states coalesce, that is where they exhibit a non-avoided crossing. DPTs occur when the quantum dynamics of the open system causes transitions between non-analytically connected states, as a function of some external control parameter. Much like conventional phase transitions, the behavior of the system on one side of the DPT does not serve as a reliable indicator of that on the other. In
A review of progress in the physics of open quantum systems: theory and experiment.
Rotter, I; Bird, J P
2015-11-01
This report on progress explores recent advances in our theoretical and experimental understanding of the physics of open quantum systems (OQSs). The study of such systems represents a core problem in modern physics that has evolved to assume an unprecedented interdisciplinary character. OQSs consist of some localized, microscopic, region that is coupled to an external environment by means of an appropriate interaction. Examples of such systems may be found in numerous areas of physics, including atomic and nuclear physics, photonics, biophysics, and mesoscopic physics. It is the latter area that provides the main focus of this review, an emphasis that is driven by the capacity that exists to subject mesoscopic devices to unprecedented control. We thus provide a detailed discussion of the behavior of mesoscopic devices (and other OQSs) in terms of the projection-operator formalism, according to which the system under study is considered to be comprised of a localized region (Q), embedded into a well-defined environment (P) of scattering wavefunctions (with Q + P = 1). The Q subspace must be treated using the concepts of non-Hermitian physics, and of particular interest here is: the capacity of the environment to mediate a coupling between the different states of Q; the role played by the presence of exceptional points (EPs) in the spectra of OQSs; the influence of EPs on the rigidity of the wavefunction phases, and; the ability of EPs to initiate a dynamical phase transition (DPT). EPs are singular points in the continuum, at which two resonance states coalesce, that is where they exhibit a non-avoided crossing. DPTs occur when the quantum dynamics of the open system causes transitions between non-analytically connected states, as a function of some external control parameter. Much like conventional phase transitions, the behavior of the system on one side of the DPT does not serve as a reliable indicator of that on the other. In
POSTOP: Postbuckled open-stiffener optimum panels-theory and capability
NASA Technical Reports Server (NTRS)
Dickson, J. N.; Biggers, S. B.
1984-01-01
The computer program POSTOP was developed to serve as an aid in the analysis and sizing of stiffened composite panels that are loaded in the postbuckling regime. A comprehensive set of analysis routines was coupled to a widely used optimization program to produce this sizing code. POSTOP is intended for the preliminary design of metal or composite panels with open-section stiffeners, subjected to multiple combined biaxial compression (or tension), shear and normal pressure load cases. Longitudinal compression, however, is assumed to be the dominant loading. Temperature, initial bow eccentricity and load eccentricity effects are included. The panel geometry is assumed to be repetitive over several bays in the longitudinal (stiffener) direction as well as in the transverse direction. Analytical routines are included to compute panel stiffnesses, strains, local and panel buckling loads, and skin/stiffener interface stresses. The resulting program is applicable to stiffened panels as commonly used in fuselage, wing, or empennage structures. The analysis procedures and rationale for the assumptions used therein are described in detail.
Stationary open systems: A brief review on contemporary theories on irreversibility
NASA Astrophysics Data System (ADS)
Lucia, Umberto
2013-03-01
Open systems are very important in science and engineering for their applications and the analysis of the real word. At their steady state, two apparently opposed principles for their rate of entropy production have been proposed: the minimum entropy production rate and the maximum entropy production, useful in the analysis of dissipation and irreversibility of different processes in physics, chemistry, biology and engineering. Both principles involve an extremum of the rate of the entropy production at the steady state under non-equilibrium conditions. On the other hand, in engineering thermodynamics, dissipation and irreversibility are analyzed using the entropy generation, for which there exist two principle of extrema too, the minimum and the maximum principle. Finally, oppositions to the extrema principle have been developed too. In this paper, all these extrema principles will be analyzed in order to point out the relations among them and a synthesis useful in engineering applications, in physical and chemical process analysis and in biology and biotechnology will be proposed.
(Research in the theory of condensed matter and elementary particles. ) Progress report
Not Available
1986-01-01
Progress is summarized in these areas: a new formulation of two dimensional critical phenomena and string theory, supersymmetric critical phenomena and string compactification, conformal field theory on orbifolds, Gaussian models with twisted boundary conditions, modular invariance and supersymmetric critical phenomena, critical indices, conformal invariance, and current algebra, renormalization group fixed points and the string equation of motion, fermionic string field theory, N = 2 super Riemann surfaces, the spinor field in covariant superstring theory, covariant quantization of superstrings, models of aggregation, and quasi-supersymmetry in the BCS mechanism. Further work is proposed in the areas of two dimensional critical phenomena, two dimensional conformal field theory and string theory, the physics of computation, models of aggregation, and the many vortex Aharonov-Bohm problem. 57 refs. (LEW)
Supersymmetry and String Theory
NASA Astrophysics Data System (ADS)
Dine, Michael
2016-01-01
Preface to the first edition; Preface to the second edition; A note on choice of metric; Text website; Part I. Effective Field Theory: The Standard Model, Supersymmetry, Unification: 1. Before the Standard Model; 2. The Standard Model; 3. Phenomenology of the Standard Model; 4. The Standard Model as an effective field theory; 5. Anomalies, instantons and the strong CP problem; 6. Grand unification; 7. Magnetic monopoles and solitons; 8. Technicolor: a first attempt to explain hierarchies; Part II. Supersymmetry: 9. Supersymmetry; 10. A first look at supersymmetry breaking; 11. The Minimal Supersymmetric Standard Model; 12. Supersymmetric grand unification; 13. Supersymmetric dynamics; 14. Dynamical supersymmetry breaking; 15. Theories with more than four conserved supercharges; 16. More supersymmetric dynamics; 17. An introduction to general relativity; 18. Cosmology; 19. Astroparticle physics and inflation; Part III. String Theory: 20. Introduction; 21. The bosonic string; 22. The superstring; 23. The heterotic string; 24. Effective actions in ten dimensions; 25. Compactification of string theory I. Tori and orbifolds; 26. Compactification of string theory II. Calabi–Yau compactifications; 27. Dynamics of string theory at weak coupling; 28. Beyond weak coupling: non-perturbative string theory; 29. Large and warped extra dimensions; 30. The landscape: a challenge to the naturalness principle; 31. Coda: where are we headed?; Part IV. The Appendices: Appendix A. Two-component spinors; Appendix B. Goldstone's theorem and the pi mesons; Appendix C. Some practice with the path integral in field theory; Appendix D. The beta function in supersymmetric Yang–Mills theory; References; Index.
NASA Astrophysics Data System (ADS)
Costa, Cristina Chuva; da Cunha, Paulo Rupino
The way the Internet has connected millions of users at negligible costs has changed playing field for companies. Several stakeholders can now come together in virtual networks to create innovative business models that would be unfeasible in the physical world. However, the more radical the departure from the established models of value creation, the bigger the complexity in ensuring the sustained interest of the involved parties and the stability of the bonds. To address this problem, we sought inspiration in the Actor-Network Theory (ANT), which is capable of providing insights into socio-technical settings where human and non-human agents interact. We describe how several of its principles, ideas, and concepts were adapted and embedded in our approach for complex business model design or analysis. A simple illustration is provided. Our iterative approach helps systematically scrutinize and tune the contributions and returns of the various actors, ensuring that all end up with an attractive value proposal, thus promoting the robustness of the network. Guidelines for the services that an underlying information system must provide are also derived from the results.
Thermal D-brane boundary states from Green-Schwarz superstrings
NASA Astrophysics Data System (ADS)
Vancea, Ion V.
2006-10-01
In this paper we thermalize the type II superstrings in the GS formulation by applying the Thermo Field Dynamics formalism. The thermal boundary conditions on the thermal Hilbert space are obtained from the Bogomol’nyi-Prasad-Sommerfield D-brane boundary conditions at zero temperature. We show that thermal boundary states can be obtained by thermalization from the Bogomol’nyi-Prasad-Sommerfield D-branes at zero temperature. These new states can be interpreted as thermal D-branes. Next, we discuss the supersymmetry breaking of the thermal string in the Thermo Field Dynamics formalism approach. We identify the broken supersymmetry with the γ-transformation while the η-transformation is preserved. Also, we compute the thermal partition function and the entropy of the thermal string.
Skewness in CMB temperature fluctuations from curved cosmic (super-)strings
Yamauchi, Daisuke; Sendouda, Yuuiti; Yoo, Chul-Moon; Naruko, Atsushi; Sasaki, Misao; Takahashi, Keitaro E-mail: sendouda@yukawa.kyoto-u.ac.jp E-mail: keitaro@a.phys.nagoya-u.ac.jp E-mail: misao@yukawa.kyoto-u.ac.jp
2010-05-01
We compute the one-point probability distribution function of small-angle cosmic microwave background temperature fluctuations due to curved cosmic (super-)strings with a simple model of string network by performing Monte Carlo simulations. Taking into account of the correlation between the curvature and the velocity of string segments, there appear non-Gaussian features, specifically non-Gaussian tails and a skewness, in the one-point pdf. The obtained sample skewness for the conventional field-theoretic cosmic strings is g{sub 1} ≈ −0.14, which is consistent with the result reported by Fraisse et al. We also discuss the dependence of the pdf on the intercommuting probability. We find that the standard deviation of the Gaussian part increases and non-Gaussian features are suppressed as the intercommuting probability decreases. For sufficiently small intercommuting probability, the skewness is given by ∼< (a few) × 10{sup −2}.
Kappa-symmetry of superstring sigma model and generalized 10d supergravity equations
NASA Astrophysics Data System (ADS)
Tseytlin, A. A.; Wulff, L.
2016-06-01
We determine the constraints imposed on the 10d target superspace geometry by the requirement of classical kappa-symmetry of the Green-Schwarz superstring. In the type I case we find that the background must satisfy a generalization of type I supergravity equations. These equations depend on an arbitrary vector X a and imply the one-loop scale invariance of the GS sigma model. In the special case when X a is the gradient of a scalar ϕ (dilaton) one recovers the standard type I equations equivalent to the 2d Weyl invariance conditions of the superstring sigma model. In the type II case we find a generalized version of the 10d supergravity equations the bosonic part of which was introduced in arXiv:1511.05795. These equations depend on two vectors X a and K a subject to 1st order differential relations (with the equations in the NS-NS sector depending only on the combination X a = X a + K a ). In the special case of K a = 0 one finds that X a = ∂ a ϕ and thus obtains the standard type II supergravity equations. New generalized solutions are found if K a is chosen to be a Killing vector (and thus they exist only if the metric admits an isometry). Non-trivial solutions of the generalized equations describe K-isometric backgrounds that can be mapped by T-duality to type II supergravity solutions with dilaton containing a linear isometry-breaking term. Examples of such backgrounds appeared recently in the context of integrable η-deformations of AdS n × S n sigma models. The classical kappa-symmetry thus does not, in general, imply the 2d Weyl invariance conditions for the GS sigma model (equivalent to type II supergravity equations) but only weaker scale invariance type conditions.
ERIC Educational Resources Information Center
Lin, Wei-Lun; Lien, Yunn-Wen
2013-01-01
This study examined how working memory plays different roles in open-ended versus closed-ended creative problem-solving processes, as represented by divergent thinking tests and insight problem-solving tasks. With respect to the analysis of different task demands and the framework of dual-process theories, the hypothesis was that the idea…
Low energy theorems and the unitarity bounds in the extra U(1) superstring inspired E{sub 6} models
Sharma, N.K.; Saxena, Pranav; Nagawat, Ashok K.; Singh, Sardar; Parashar, Prachi
2005-11-01
The conventional method using low energy theorems derived by Chanowitz et al. [Phys. Rev. Lett. 57, 2344 (1986);] does not seem to lead to an explicit unitarity limit in the scattering processes of longitudinally polarized gauge bosons for the high energy case in the extra U(1) superstring inspired models, commonly known as {eta} model, emanating from E{sub 6} group of superstring theory. We have made use of an alternative procedure given by Durand and Lopez [Phys. Lett. B 217, 463 (1989);], which is applicable to supersymmetric grand unified theories. Explicit unitarity bounds on the superpotential couplings (identified as Yukawa couplings) are obtained from both using unitarity constraints as well as using renormalization group equations (RGE) analysis at one-loop level utilizing critical couplings concepts implying divergence of scalar coupling at M{sub G}. These are found to be consistent with finiteness over the entire range M{sub Z}{<=}{radical}(s){<=}M{sub G} i.e. from grand unification scale to weak scale. For completeness, the similar approach has been made use of in other models i.e., {chi}, {psi}, and {nu} models emanating from E{sub 6} and it has been noticed that at weak scale, the unitarity bounds on Yukawa couplings do not differ among E{sub 6} extra U(1) models significantly except for the case of {chi} model in 16 representations. For the case of the E{sub 6}-{eta} model ({beta}{sub E} congruent with 9.64), the analysis using the unitarity constraints leads to the following bounds on various parameters: {lambda}{sub t(max.)}(M{sub Z})=1.294, {lambda}{sub b(max.)}(M{sub Z})=1.278, {lambda}{sub H(max.)}(M{sub Z})=0.955, {lambda}{sub D(max.)}(M{sub Z})=1.312. The analytical analysis of RGE at the one-loop level provides the following critical bounds on superpotential couplings: {lambda}{sub t,c}(M{sub Z}) congruent with 1.295, {lambda}{sub b,c}(M{sub Z}) congruent with 1.279, {lambda}{sub H,c}(M{sub Z}) congruent with 0.968, {lambda}{sub D,c}(M{sub Z
NASA Astrophysics Data System (ADS)
Becker, Katrin; Becker, Melanie; Robbins, Daniel
2015-11-01
In this talk we report on recent progress in describing compactifications of string theory and M-theory on G2 and Spin(7) manifolds. We include the infinite set of α’-corrections and describe the entire tower of massless and massive Kaluza-Klein modes resulting from such compactifications. Contribution to the ‘Focus Issue on Gravity, Supergravity and Fundamental Physics: the Richard Arnowitt Symposium’, to be published in Physica Scripta. Based on a talk delivered by Becker at the workshop ‘Superstring Perturbation Theory’ at the Perimeter Institute, 22-24 April 2015.
Franke, J.-H.; Kosov, D. S.
2015-01-28
We study the adsorption and ring-opening of lactide on the naturally chiral metal surface Pt(321){sup S}. Lactide is a precursor for polylactic acid ring-opening polymerization, and Pt is a well known catalyst surface. We study, here, the energetics of the ring-opening of lactide on a surface that has a high density of kink atoms. These sites are expected to be present on a realistic Pt surface and show enhanced catalytic activity. The use of a naturally chiral surface also enables us to study potential chiral selectivity effects of the reaction at the same time. Using density functional theory with a functional that includes the van der Waals forces in a first-principles manner, we find modest adsorption energies of around 1.4 eV for the pristine molecule and different ring-opened states. The energy barrier to be overcome in the ring-opening reaction is found to be very small at 0.32 eV and 0.30 eV for LL- and its chiral partner DD-lactide, respectively. These energies are much smaller than the activation energy for a dehydrogenation reaction of 0.78 eV. Our results thus indicate that (a) ring-opening reactions of lactide on Pt(321) can be expected already at very low temperatures, and Pt might be a very effective catalyst for this reaction; (b) the ring-opening reaction rate shows noticeable enantioselectivity.
Berenstein, David; Correa, Diego H.; Vazquez, Samuel E.
2005-11-04
We study an XXX open spin chain with variable number of sites, where the variability is introduced only at the boundaries. This model arises naturally in the study of giant gravitons in the anti-de Sitter-space/conformal field-theory correspondence. We show how to quantize the spin chain by mapping its states to a bosonic lattice of finite length with sources and sinks of particles at the boundaries. Using coherent states, we show how the Hamiltonian for the bosonic lattice gives the correct description of semiclassical open strings ending on giant gravitons.
NASA Astrophysics Data System (ADS)
Harman, C. J.
2015-12-01
Even amongst the academic community, new theoretical tools can remain underutilized due to the investment of time and resources required to understand and implement them. This surely limits the frequency that new theory is rigorously tested against data by scientists outside the group that developed it, and limits the impact that new tools could have on the advancement of science. Reducing the barriers to adoption through online education and open-source code can bridge the gap between theory and data, forging new collaborations, and advancing science. A pilot venture aimed at increasing the adoption of a new theory of time-variable transit time distributions was begun in July 2015 as a collaboration between Johns Hopkins University and The Consortium of Universities for the Advancement of Hydrologic Science (CUAHSI). There were four main components to the venture: a public online seminar covering the theory, an open source code repository, a virtual short course designed to help participants apply the theory to their data, and an online forum to maintain discussion and build a community of users. 18 participants were selected for the non-public components based on their responses in an application, and were asked to fill out a course evaluation at the end of the short course, and again several months later. These evaluations, along with participation in the forum and on-going contact with the organizer suggest strengths and weaknesses in this combination of components to assist participants in adopting new tools.
The quantum superstring as a WZNW model with N=2 superconformal symmetry
NASA Astrophysics Data System (ADS)
Grassi, P. A.; Policastro, G.; van Nieuwenhuizen, P.
2004-01-01
We present a new development in our approach to the covariant quantization of superstrings in 10 dimensions which is based on a gauged WZNW model. To incorporate worldsheet diffeomorphisms we need the quartet of ghosts ( bzz, cz, βzz, γz) for topological gravity. The currents of this combined system form an N=2 superconformal algebra. The model has vanishing central charge and contains two anticommuting BRST charges, QS= QW+∮ γzbzz and QV=∮ cz( TWzz+(1/2) Ttopzz)+ γz( BWzz+(1/2) Btopzz-(1/2) czFzzz-(1/4) γzΦzzz). Physical states form the cohomology of QS+ QV+∮ ηz, where ηz is obtained by the usual fermionization of βzz, γz, have non-negative grading, and are annihilated by b0 and β0. We no longer introduce any ghosts by hand, and the formalism is completely Lorentz covariant.
Takahashi, Keitaro; Naruko, Atsushi; Sendouda, Yuuiti; Yamauchi, Daisuke; Sasaki, Misao; Yoo, Chul-Moon E-mail: naruko@yukawa.kyoto-u.ac.jp E-mail: yamauchi@yukawa.kyoto-u.ac.jp E-mail: misao@yukawa.kyoto-u.ac.jp
2009-10-01
We compute analytically the small-scale temperature fluctuations of the cosmic microwave background from cosmic (super-)strings and study the dependence on the string intercommuting probability P. We develop an analytical model which describes the evolution of a string network and calculate the numbers of string segments and kinks in a horizon volume. Then we derive the probability distribution function (pdf) which takes account of finite angular resolution of observation. The resultant pdf consists of a Gaussian part due to frequent scatterings by long string segments and a non-Gaussian tail due to close encounters with kinks. The dispersion of the Gaussian part is reasonably consistent with that obtained by numerical simulations by Fraisse et al.. On the other hand, the non-Gaussian tail contains two phenomenological parameters which are determined by comparison with the numerical results for P = 1. Extrapolating the pdf to the cases with P < 1, we predict that the non-Gaussian feature is suppressed for small P.
Stochastic background from cosmic (super)strings: Popcorn-like and (Gaussian) continuous regimes
NASA Astrophysics Data System (ADS)
Regimbau, Tania; Giampanis, Stefanos; Siemens, Xavier; Mandic, Vuk
2012-03-01
In the era of the next generation of gravitational wave experiments a stochastic background from cusps of cosmic (super)strings is expected to be probed and, if not detected, to be significantly constrained. A popcornlike background can be, for part of the parameter space, as pronounced as the (Gaussian) continuous contribution from unresolved sources that overlap in frequency and time. We study both contributions from unresolved cosmic string cusps over a range of frequencies relevant to ground based interferometers, such as the LIGO/Virgo second generation and Einstein Telescope third generation detectors, the space antenna LISA, and pulsar timing arrays. We compute the sensitivity (at the 2σ level) in the parameter space for the LIGO/Virgo second generation detector, the Einstein Telescope detector, LISA, and pulsar timing arrays. We conclude that the popcorn regime is complementary to the continuous background. Its detection could therefore enhance confidence in a stochastic background detection and possibly help determine fundamental string parameters such as the string tension and the reconnection probability.
Extinction and the rate of superstring microlensing detection for WFIRST survey of the Bulge
NASA Astrophysics Data System (ADS)
Morris, Taylor Andrew; Chernoff, David F.
2015-01-01
A network of superstrings produced during the epoch of inflation gives birth to long-lived string loops if, as current observational constraints imply, the string tension G μ/c2 < 10-9. String loops track dark matter when galaxy formation occurs. As part of an ongoing Cornell project we investigate the detection rate of string loop microlensing of stars within the Galaxy and make detailed estimates for the WFIRST survey of the Bulge. In particular, here we compare the rate estimates for different models of J-band extinction. Most of the stars microlensed by strings reside near the Galactic center and the range of variation in extinction models induces a factor of 5 in the overall rate. While this rate-sensitivity is non-trivial we conclude that the overall microlensing rate is sufficiently large that detecting strings over a tension range 10-14 to 10-10 is feasible. For a well-defined model of the string loop population, stellar blending and our effective magnitude cutoff in the WFIRST survey currently dominate our rate uncertainties. For example, detection rates at S/N=102 (cutoff of 23) are about an order of magnitude less than rates at marginal S/N (cutoff of 27). Future work will explore the effective cutoff and the resultant rates.
Daniel Heineman Prize: QCD, strings and black holes: A duality between gravity and field theory
NASA Astrophysics Data System (ADS)
Maldacena, Juan
2007-04-01
We discuss Yang Mills theory with a large number of colors. In this limit it becomes a theory of strings. We describe the string theory associated to the most supersymmetric version of Yang Mills theory. These strings live in a ten dimensional curved space. Thus supersymmetric Yang Mills theory is related to the ordinary ten dimensional superstring theory which describes quantum gravity. We will review some results in this area and discuss some recent developments. We will also discuss the implications for black hole entropy and the black hole information puzzle.
Jones, Gavin O; Chang, Young A; Horn, Hans W; Acharya, Ashwin K; Rice, Julia E; Hedrick, James L; Waymouth, Robert M
2015-04-30
Computational investigations with density functional theory (DFT) have been performed on the N-heterocyclic carbene (NHC) catalyzed ring-opening polymerization of ε-caprolactone in the presence and in the absence of a methanol initiator. Much like the zwitterionic ring opening (ZROP) of δ-valerolactone which was previously reported, calculations predict that the mechanism of the ZROP of caprolactone that occurs without an alcohol present involves a high-barrier step involving ring opening of the zwitterionic tetrahedral intermediate formed after the initial nucleophilic attack of NHC on caprolactone. However, the operative mechanism by which caprolactone is polymerized in the presence of an alcohol initiator does not involve the analogous mechanism involving initial nucleophilic attack by the organocatalytic NHC. Instead, the NHC activates the alcohol through hydrogen bonding and promotes nucleophilic attack and the subsequent ring-opening steps that occur during polymerization. The largest free energy barrier for the hydrogen-bonding mechanism in alcohol involves nucleophilic attack, while that for both ZROP processes involves ring opening of the initially formed zwitterionic tetrahedral intermediate. The DFT calculations predict that the rate of polymerization in the presence of alcohol is faster than the reaction performed without an alcohol initiator; this prediction has been validated by experimental kinetic studies. PMID:25848823
Kaluza's and Klein's Contributions to the Kaluza-Klein-Theory
NASA Astrophysics Data System (ADS)
Wünsch, Daniela; Goenner, Hubert
2006-02-01
Kaluza's and Klein's contributions to Kaluza-Klein-theory. The Kaluza-Klein-theory is one of the "classics" of modern theoretical physics. All theories that construct a space with extra dimensions, such as superstring and membrane theory, are based on the structure of this unified theory. The original five-dimensional theories by Theodor Kaluza (from 1921) and Oskar Klein (from 1926) have not yet been closely analysed, historically. What has survived as an established part of physics is a "folklore version" that mixes together elements from both theories. Our paper analyses the individual mathematical and physical contributions by Kaluza and Klein. It points out the importance of the achievements of these two founders of five-dimensional unified theories, and compares them with the folklore version of the Kaluza-Klein theory.
Veeraraghavan, Srikant; Mazziotti, David A.
2014-03-28
We present a density matrix approach for computing global solutions of restricted open-shell Hartree-Fock theory, based on semidefinite programming (SDP), that gives upper and lower bounds on the Hartree-Fock energy of quantum systems. While wave function approaches to Hartree-Fock theory yield an upper bound to the Hartree-Fock energy, we derive a semidefinite relaxation of Hartree-Fock theory that yields a rigorous lower bound on the Hartree-Fock energy. We also develop an upper-bound algorithm in which Hartree-Fock theory is cast as a SDP with a nonconvex constraint on the rank of the matrix variable. Equality of the upper- and lower-bound energies guarantees that the computed solution is the globally optimal solution of Hartree-Fock theory. The work extends a previously presented method for closed-shell systems [S. Veeraraghavan and D. A. Mazziotti, Phys. Rev. A 89, 010502–R (2014)]. For strongly correlated systems the SDP approach provides an alternative to the locally optimized Hartree-Fock energies and densities with a certificate of global optimality. Applications are made to the potential energy curves of C{sub 2}, CN, Cr {sub 2}, and NO {sub 2}.
Veeraraghavan, Srikant; Mazziotti, David A
2014-03-28
We present a density matrix approach for computing global solutions of restricted open-shell Hartree-Fock theory, based on semidefinite programming (SDP), that gives upper and lower bounds on the Hartree-Fock energy of quantum systems. While wave function approaches to Hartree-Fock theory yield an upper bound to the Hartree-Fock energy, we derive a semidefinite relaxation of Hartree-Fock theory that yields a rigorous lower bound on the Hartree-Fock energy. We also develop an upper-bound algorithm in which Hartree-Fock theory is cast as a SDP with a nonconvex constraint on the rank of the matrix variable. Equality of the upper- and lower-bound energies guarantees that the computed solution is the globally optimal solution of Hartree-Fock theory. The work extends a previously presented method for closed-shell systems [S. Veeraraghavan and D. A. Mazziotti, Phys. Rev. A 89, 010502-R (2014)]. For strongly correlated systems the SDP approach provides an alternative to the locally optimized Hartree-Fock energies and densities with a certificate of global optimality. Applications are made to the potential energy curves of C2, CN, Cr2, and NO2. PMID:24697423
ERIC Educational Resources Information Center
Kallenbach, Silja; Viens, Julie
The Adult Multiple Intelligences (AMI) Study investigated how multiple intelligences (MI) theory can support instruction and assessment in adult literacy education across different adult learning contexts. Two interwoven qualitative research projects focused on applying MI theory in practice. One involved 10 teacher-conducted and AMI…
Reduced Cu(InGa)Se_{2} Thickness in Solar Cells Using a Superstrate Configuration
Shafarman, William N.
2015-03-30
This project by the Institute of Energy Conversion (IEC) and the Department of Electrical and Computer Engineering at the University of Delaware sought to develop the technology and underlying science to enable reduced cost of Cu(InGa)Se_{2} manufacturing by reducing the thickness of the Cu(InGa)Se_{2} absorber layer by half compared to typical production. The approach to achieve this was to use the superstrate cell configuration in which light is incident on the cell through the glass. This structure facilitates optical enhancement approaches needed to achieve high efficiency with Cu(InGa)Se_{2} thicknesses less than 1 µm. The primary objective was to demonstrate a Cu(InGa)Se_{2} cell with absorber thickness 0.5 - 0.7 µm and 17% efficiency, along with a quantitative loss analysis to define a pathway to 20% efficiency. Additional objectives were the development of stable TCO and buffer layers or contact layers to withstand the Cu(InGa)Se_{2} deposition temperature and of advanced optical enhancement methods. The underlying fundamental science needed to effectively transition these outcomes to large scale was addressed by extensive materials and device characterization and by development of comprehensive optical models. Two different superstrate configurations have been investigated. A frontwall cell is illuminated through the glass to the primary front junction of the device. This configuration has been used for previous efforts on superstrate Cu(InGa)Se_{2} but performance has been limited by interdiffusion or reaction with CdS or other buffer layers. In this project, several approaches to overcome these limitations were explored using CdS, ZnO and ZnSe buffer layers. In each case, mechanisms that limit device performance were identified using detailed characterization of the materials and junctions. Due to the junction formation difficulties, efforts were concentrated on a new backwall configuration in which light
ERIC Educational Resources Information Center
Mazmanian, Paul E.
This paper suggests that since continuing professional educators must address the ever present gap between new knowledge and practitioner competence, accurate identification and prioritization of practitioners' educational needs must be maintained on a continuous basis. Describing an adult education agency as an open system whose output depends on…
NASA Astrophysics Data System (ADS)
Qian, Hong
2014-10-01
The study of biological cells in terms of mesoscopic, nonequilibrium, nonlinear, stochastic dynamics of open chemical systems provides a paradigm for other complex, self-organizing systems with ultra-fast stochastic fluctuations, short-time deterministic nonlinear dynamics, and long-time evolutionary behavior with exponentially distributed rare events, discrete jumps among punctuated equilibria, and catastrophe.
Gauge theory, topological strings, and S-duality
NASA Astrophysics Data System (ADS)
Kapustin, Anton
2004-09-01
We offer a derivation of the duality between the topological U(1) gauge theory on a Calabi-Yau 3-fold and the topological A-model on the same manifold. This duality was conjectured recently by Iqbal, Nekrasov, Okounkov, and Vafa. We deduce it from the S-duality of the IIB superstring. We also argue that the mirror version of this duality relates the topological B-model on a Calabi-Yau 3-fold and a topological sector of the Type IIA Little String Theory on the same manifold.
Matrix theory interpretation of discrete light cone quantization string worldsheets
Grignani; Orland; Paniak; Semenoff
2000-10-16
We study the null compactification of type-IIA string perturbation theory at finite temperature. We prove a theorem about Riemann surfaces establishing that the moduli spaces of infinite-momentum-frame superstring worldsheets are identical to those of branched-cover instantons in the matrix-string model conjectured to describe M theory. This means that the identification of string degrees of freedom in the matrix model proposed by Dijkgraaf, Verlinde, and Verlinde is correct and that its natural generalization produces the moduli space of Riemann surfaces at all orders in the genus expansion. PMID:11030892
Datta, Dipayan Gauss, Jürgen
2015-07-07
We report analytical calculations of isotropic hyperfine-coupling constants in radicals using a spin-adapted open-shell coupled-cluster theory, namely, the unitary group based combinatoric open-shell coupled-cluster (COSCC) approach within the singles and doubles approximation. A scheme for the evaluation of the one-particle spin-density matrix required in these calculations is outlined within the spin-free formulation of the COSCC approach. In this scheme, the one-particle spin-density matrix for an open-shell state with spin S and M{sub S} = + S is expressed in terms of the one- and two-particle spin-free (charge) density matrices obtained from the Lagrangian formulation that is used for calculating the analytic first derivatives of the energy. Benchmark calculations are presented for NO, NCO, CH{sub 2}CN, and two conjugated π-radicals, viz., allyl and 1-pyrrolyl in order to demonstrate the performance of the proposed scheme.
Eriksen, Janus J; Matthews, Devin A; Jørgensen, Poul; Gauss, Jürgen
2016-05-21
The accuracy at which total energies of open-shell atoms and organic radicals may be calculated is assessed for selected coupled cluster perturbative triples expansions, all of which augment the coupled cluster singles and doubles (CCSD) energy by a non-iterative correction for the effect of triple excitations. Namely, the second- through sixth-order models of the recently proposed CCSD(T-n) triples series [J. J. Eriksen et al., J. Chem. Phys. 140, 064108 (2014)] are compared to the acclaimed CCSD(T) model for both unrestricted as well as restricted open-shell Hartree-Fock (UHF/ROHF) reference determinants. By comparing UHF- and ROHF-based statistical results for a test set of 18 modest-sized open-shell species with comparable RHF-based results, no behavioral differences are observed for the higher-order models of the CCSD(T-n) series in their correlated descriptions of closed- and open-shell species. In particular, we find that the convergence rate throughout the series towards the coupled cluster singles, doubles, and triples (CCSDT) solution is identical for the two cases. For the CCSD(T) model, on the other hand, not only its numerical consistency, but also its established, yet fortuitous cancellation of errors breaks down in the transition from closed- to open-shell systems. The higher-order CCSD(T-n) models (orders n > 3) thus offer a consistent and significant improvement in accuracy relative to CCSDT over the CCSD(T) model, equally for RHF, UHF, and ROHF reference determinants, albeit at an increased computational cost. PMID:27208931
NASA Astrophysics Data System (ADS)
Eriksen, Janus J.; Matthews, Devin A.; Jørgensen, Poul; Gauss, Jürgen
2016-05-01
The accuracy at which total energies of open-shell atoms and organic radicals may be calculated is assessed for selected coupled cluster perturbative triples expansions, all of which augment the coupled cluster singles and doubles (CCSD) energy by a non-iterative correction for the effect of triple excitations. Namely, the second- through sixth-order models of the recently proposed CCSD(T-n) triples series [J. J. Eriksen et al., J. Chem. Phys. 140, 064108 (2014)] are compared to the acclaimed CCSD(T) model for both unrestricted as well as restricted open-shell Hartree-Fock (UHF/ROHF) reference determinants. By comparing UHF- and ROHF-based statistical results for a test set of 18 modest-sized open-shell species with comparable RHF-based results, no behavioral differences are observed for the higher-order models of the CCSD(T-n) series in their correlated descriptions of closed- and open-shell species. In particular, we find that the convergence rate throughout the series towards the coupled cluster singles, doubles, and triples (CCSDT) solution is identical for the two cases. For the CCSD(T) model, on the other hand, not only its numerical consistency, but also its established, yet fortuitous cancellation of errors breaks down in the transition from closed- to open-shell systems. The higher-order CCSD(T-n) models (orders n > 3) thus offer a consistent and significant improvement in accuracy relative to CCSDT over the CCSD(T) model, equally for RHF, UHF, and ROHF reference determinants, albeit at an increased computational cost.
NASA Astrophysics Data System (ADS)
Eriksen, Janus J.; Matthews, Devin A.; Jørgensen, Poul; Gauss, Jürgen
2016-05-01
We extend our assessment of the potential of perturbative coupled cluster (CC) expansions for a test set of open-shell atoms and organic radicals to the description of quadruple excitations. Namely, the second- through sixth-order models of the recently proposed CCSDT(Q-n) quadruples series [J. J. Eriksen et al., J. Chem. Phys. 140, 064108 (2014)] are compared to the prominent CCSDT(Q) and ΛCCSDT(Q) models. From a comparison of the models in terms of their recovery of total CC singles, doubles, triples, and quadruples (CCSDTQ) energies, we find that the performance of the CCSDT(Q-n) models is independent of the reference used (unrestricted or restricted (open-shell) Hartree-Fock), in contrast to the CCSDT(Q) and ΛCCSDT(Q) models, for which the accuracy is strongly dependent on the spin of the molecular ground state. By further comparing the ability of the models to recover relative CCSDTQ total atomization energies, the discrepancy between them is found to be even more pronounced, stressing how a balanced description of both closed- and open-shell species—as found in the CCSDT(Q-n) models—is indeed of paramount importance if any perturbative CC model is to be of chemical relevance for high-accuracy applications. In particular, the third-order CCSDT(Q-3) model is found to offer an encouraging alternative to the existing choices of quadruples models used in modern computational thermochemistry, since the model is still only of moderate cost, albeit markedly more costly than, e.g., the CCSDT(Q) and ΛCCSDT(Q) models.
Eriksen, Janus J; Matthews, Devin A; Jørgensen, Poul; Gauss, Jürgen
2016-05-21
We extend our assessment of the potential of perturbative coupled cluster (CC) expansions for a test set of open-shell atoms and organic radicals to the description of quadruple excitations. Namely, the second- through sixth-order models of the recently proposed CCSDT(Q-n) quadruples series [J. J. Eriksen et al., J. Chem. Phys. 140, 064108 (2014)] are compared to the prominent CCSDT(Q) and ΛCCSDT(Q) models. From a comparison of the models in terms of their recovery of total CC singles, doubles, triples, and quadruples (CCSDTQ) energies, we find that the performance of the CCSDT(Q-n) models is independent of the reference used (unrestricted or restricted (open-shell) Hartree-Fock), in contrast to the CCSDT(Q) and ΛCCSDT(Q) models, for which the accuracy is strongly dependent on the spin of the molecular ground state. By further comparing the ability of the models to recover relative CCSDTQ total atomization energies, the discrepancy between them is found to be even more pronounced, stressing how a balanced description of both closed- and open-shell species-as found in the CCSDT(Q-n) models-is indeed of paramount importance if any perturbative CC model is to be of chemical relevance for high-accuracy applications. In particular, the third-order CCSDT(Q-3) model is found to offer an encouraging alternative to the existing choices of quadruples models used in modern computational thermochemistry, since the model is still only of moderate cost, albeit markedly more costly than, e.g., the CCSDT(Q) and ΛCCSDT(Q) models. PMID:27208932
NASA Astrophysics Data System (ADS)
Englert, François; Houart, Laurent; Taormina, Anne; West, Peter
2003-09-01
We consider the Cartan subalgebra of any very extended algebra Script G+++ where Script G is a simple Lie algebra and let the parameters be space-time fields. These are identified with diagonal metrics and dilatons. Using the properties of the algebra, we find that for all very extensions Script G+++ of simple Lie algebras there are theories of gravity and matter, which admit classical solutions carrying representations of the Weyl group of Script G+++. We also identify the T and S-dualities of superstrings and of the bosonic string with Weyl reflections and outer automorphisms of well-chosen very extended algebras and we exhibit specific features of the very extensions. We take these results as indication that very extended algebras underlie symmetries of any consistent theory of gravity and matter, and might encode basic information for the construction of such theory.
Li, Zhendong; Liu, Wenjian
2016-06-14
Compared with closed-shell systems, open-shell systems place three additional challenges to time-dependent density functional theory (TD-DFT) for electronically excited states: (a) the spin-contamination problem is a serious issue; (b) the exchange-correlation (XC) kernel may be numerically instable; and (c) the single-determinant description of open-shell ground states readily becomes energetically instable. Confined to flip-up single excitations, the spin-contamination problem can largely be avoided by using the spin-flip TD-DFT (SF-TD-DFT) formalism, provided that a noncollinear XC kernel is employed. As for the numerical instabilities associated with such a kernel, only an ad hoc scheme has been proposed so far, viz., the ALDA0 kernel, which amounts to setting the divergent components (arising from density gradients and kinetic energy density) simply to zero. The ground-state instability problem can effectively be avoided by introducing the Tamm-Dancoff approximation (TDA) to TD-DFT. Therefore, on a general basis, the SF-TDA/ALDA0 Ansatz is so far the only promising means within the TD-DFT framework for flip-up single excitations of open-shell systems. To assess systematically the performance of SF-TDA/ALDA0, in total 61 low-lying quartet excited states of the benchmark set of 11 small radicals [J. Chem. Theory Comput. 2016, 12, 238] are investigated with various XC functionals. Taking the MRCISD+Q (multireference configuration interaction with singles and doubles plus the Davidson correction) results as benchmark, it is found that the mean absolute errors of SF-TDA/ALDA0 with the SAOP (statistical averaging of model orbital potentials), global hybrid, and range-separated hybrid functionals are in the range of 0.2-0.4 eV. This is in line not only with the typical accuracy of TD-DFT for singlet and triplet excited states of closed-shell systems but also with the gross accuracy of spin-adapted TD-DFT for spin-conserving excited states of open-shell systems. PMID
NASA Astrophysics Data System (ADS)
Noori, Keian; Konios, Dimitrios; Stylianakis, Minas M.; Kymakis, Emmanuel; Giustino, Feliciano
2016-03-01
Functionalized graphene promises to become a key component of novel solar cell architectures, owing to its versatile ability to act either as transparent conductor, electron acceptor, or buffer layer. In spite of this promise, the solar energy conversion efficiency of graphene-based devices falls short of the performance of competing solution-processable photovoltaic technologies. Here we address the question of the maximum achievable open-circuit voltage of all-organic graphene: polymer solar cells using a combined theoretical/experimental approach, going from the atomic scale level to the device level. Our calculations on very large atomistic models of the graphene/polymer interface indicate that the ideal open-circuit voltage approaches one volt, and that epoxide functional groups can have a dramatic effect on the photovoltage. Our predictions are confirmed by direct measurements on complete devices where we control the concentration of functional groups via chemical reduction. Our findings indicate that the selective removal of epoxide groups and the use of ultradisperse polymers are key to achieving graphene solar cells with improved energy conversion efficiency.
Theory of open-circuit voltage and the driving force of charge separation in pn-junction solar cells
NASA Astrophysics Data System (ADS)
Hara, Kosuke O.; Usami, Noritaka
2013-10-01
We have derived the formula to calculate the open-circuit voltage in a pn-junction solar cell from carrier densities by considering the driving force of charge separation without using the equation for current. The excess amount of chemical potential of charge carriers is proposed as the origin of the driving force of charge separation, and the voltage formula is derived from the gradient of excess chemical potential. The calculated voltage is shown to agree with the result of a rigorous device simulation for symmetrical pn-homojunction devices with band gaps of 0.6-1.8 eV and majority-carrier densities of 1015-1019 cm-3. The developed formula is, therefore, valid for the pn-homojunction devices, indicating that the driving force of charge separation stems from the excess chemical potential.
Datta, Dipayan Gauss, Jürgen
2014-09-14
An analytic scheme is presented for the evaluation of first derivatives of the energy for a unitary group based spin-adapted coupled cluster (CC) theory, namely, the combinatoric open-shell CC (COSCC) approach within the singles and doubles approximation. The widely used Lagrange multiplier approach is employed for the derivation of an analytical expression for the first derivative of the energy, which in combination with the well-established density-matrix formulation, is used for the computation of first-order electrical properties. Derivations of the spin-adapted lambda equations for determining the Lagrange multipliers and the expressions for the spin-free effective density matrices for the COSCC approach are presented. Orbital-relaxation effects due to the electric-field perturbation are treated via the Z-vector technique. We present calculations of the dipole moments for a number of doublet radicals in their ground states using restricted open-shell Hartree-Fock (ROHF) and quasi-restricted HF (QRHF) orbitals in order to demonstrate the applicability of our analytic scheme for computing energy derivatives. We also report calculations of the chlorine electric-field gradients and nuclear quadrupole-coupling constants for the CCl, CH{sub 2}Cl, ClO{sub 2}, and SiCl radicals.
NASA Astrophysics Data System (ADS)
Gorrie, Bryan F.
This project considers the ways that Actor-Network Theory (ANT) can be brought to bear upon Cultural Resource Management (CRM) practices on renewable energy projects. ANT is a way of making inquiry into scientific knowledge practices and as CRM is intended to preserve environmental, historic, and prehistoric resources, it necessarily involves certain kinds of knowledge generation about regions in which projects are being developed. Because the practice of CRM is complex, involving a range of actors from developers to biologists, native peoples to academics, private landholders to environmental and cultural activists, it is imperative to account for the interests of all stakeholders and to resist devolving into the polemical relations of winners and losers, good and bad participants, or simple situations of right and wrong. This project intends to account for the "matters of concern" of various actors, both primary and secondary, by examining the case study of a single solar installation project in the Mojave Desert. A theoretical description of ANT is provided at the beginning and the concerns of this theory are brought to bear upon the case study project through describing the project, discussing the laws governing CRM on federal lands and in the state of California, and providing the points of view of various interviewees who worked directly or indirectly on various aspects of CRM for the solar project. The creators of ANT claim that it is not a methodology but it does speak to ethnomethodologies in that it insists that there is always something more to learn from inquiring into and describing any given situation. These descriptions avoid generalizations, providing instead various points of entry, from diverse perspectives to the project. There is an invitation to avoid assuming that one knows all there is to know about a given situation and to choose instead to continue investigating and thus give voice to the more obscure, often marginalized, voices in the
Bacci, Elizabeth D; Staniewska, Dorota; Coyne, Karin S; Boyer, Stacey; White, Leigh Ann; Zach, Neta; Cedarbaum, Jesse M
2016-01-01
Our objective was to examine dimensionality and item-level performance of the Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised (ALSFRS-R) across time using classical and modern test theory approaches. Confirmatory factor analysis (CFA) and Item Response Theory (IRT) analyses were conducted using data from patients with amyotrophic lateral sclerosis (ALS) Pooled Resources Open-Access ALS Clinical Trials (PRO-ACT) database with complete ALSFRS-R data (n = 888) at three time-points (Time 0, Time 1 (6-months), Time 2 (1-year)). Results demonstrated that in this population of 888 patients, mean age was 54.6 years, 64.4% were male, and 93.7% were Caucasian. The CFA supported a 4* individual-domain structure (bulbar, gross motor, fine motor, and respiratory domains). IRT analysis within each domain revealed misfitting items and overlapping item response category thresholds at all time-points, particularly in the gross motor and respiratory domain items. Results indicate that many of the items of the ALSFRS-R may sub-optimally distinguish among varying levels of disability assessed by each domain, particularly in patients with less severe disability. Measure performance improved across time as patient disability severity increased. In conclusion, modifications to select ALSFRS-R items may improve the instrument's specificity to disability level and sensitivity to treatment effects. PMID:26473473
Porsa, Sina; Lin, Yi-Chung; Pandy, Marcus G
2016-08-01
The aim of this study was to compare the computational performances of two direct methods for solving large-scale, nonlinear, optimal control problems in human movement. Direct shooting and direct collocation were implemented on an 8-segment, 48-muscle model of the body (24 muscles on each side) to compute the optimal control solution for maximum-height jumping. Both algorithms were executed on a freely-available musculoskeletal modeling platform called OpenSim. Direct collocation converged to essentially the same optimal solution up to 249 times faster than direct shooting when the same initial guess was assumed (3.4 h of CPU time for direct collocation vs. 35.3 days for direct shooting). The model predictions were in good agreement with the time histories of joint angles, ground reaction forces and muscle activation patterns measured for subjects jumping to their maximum achievable heights. Both methods converged to essentially the same solution when started from the same initial guess, but computation time was sensitive to the initial guess assumed. Direct collocation demonstrates exceptional computational performance and is well suited to performing predictive simulations of movement using large-scale musculoskeletal models. PMID:26715209
Yan, YiJing
2014-02-07
This work establishes a strongly correlated system-and-bath dynamics theory, the many-dissipaton density operators formalism. It puts forward a quasi-particle picture for environmental influences. This picture unifies the physical descriptions and algebraic treatments on three distinct classes of quantum environments, electron bath, phonon bath, and two-level spin or exciton bath, as their participating in quantum dissipation processes. Dynamical variables for theoretical description are no longer just the reduced density matrix for system, but remarkably also those for quasi-particles of bath. The present theoretical formalism offers efficient and accurate means for the study of steady-state (nonequilibrium and equilibrium) and real-time dynamical properties of both systems and hybridizing environments. It further provides universal evaluations, exact in principle, on various correlation functions, including even those of environmental degrees of freedom in coupling with systems. Induced environmental dynamics could be reflected directly in experimentally measurable quantities, such as Fano resonances and quantum transport current shot noise statistics.
NASA Astrophysics Data System (ADS)
Duxbury, G.; Jungen, Ch.; Alijah, A.
2013-06-01
The studies of the Renner-Teller coupling in isoelectronic series of the neutral dihydrides, started with the experiments of Dressler and Ramsay on the absorption spectra of NH_{2} and of ND_{2} published in 1959, with a companion paper on the theory by Pople and Longuet Higgins. Subsequently experiments on their ionic counterparts, e.g. H_{2}O+, were carried out, initially using photoelectron spectroscopy. However it was not until the period starting in 1965 to 1980 that methods for calculating the vibronic interaction between the half-states were derived and tested. Complications arise owing the the role of the linear degeneracy of the two half states in the formation of the rovibronic structure, and the effects of the increasing spin-orbit interaction in the series from NH_{2} to SbH_{2}, and H_{2}O+ to H_{2}Se+ in facilitating fragmentation processes. Many of these molecular spectra were considered in great detail, but some, such as that of AsH_{2}, have had a less complete treatment of vibronic interaction, in part since the original study of its electronic spectrum took place in the period from 1966-67 before most of the vibronic coupling methods had been developed developed. We wish to show the interplay between the angular momentum effects caused by the large amplitude motion in a degenerate system, and those caused by a rapidly increasing spin-orbit coupling constant. Phil. Trans. Roy. Soc. 251,553(1959) Molec. Phys. 1,372(1958)
ERIC Educational Resources Information Center
MacLure, Maggie
2010-01-01
Theory frequently offends. The paper argues that this is its strength: the value of theory lies in its power to get in the way. Theory is needed to block the reproduction of banality, and thereby, hopefully, open new possibilities for thinking and doing. However, I also note that theory has become somewhat disengaged from its objects, diminishing…
Do we have a theory of early universe cosmology?
NASA Astrophysics Data System (ADS)
Brandenberger, Robert
2014-05-01
The inflationary scenario has become the paradigm of early universe cosmology, and - in conjunction with ideas from superstring theory-has led to speculations about an "inflationary multiverse". From a point of view of phenomenology, the inflationary universe scenario has been very successful. However, the scenario suffers from some conceptual problems, and thus it does not (yet) have the status of a solid theory. There are alternative ideas for the evolution of the very early universe which do not involve inflation but which agree with most current cosmological observations as well as inflation does. In this lecture I will outline the conceptual problems of inflation and introduce two alternative pictures - the "matter bounce" and "string gas cosmology", the latter being a realization of the "emergent universe" scenario based on some key principles of superstring theory. I will demonstrate that these two alternative pictures lead to the same predictions for the power spectrum of the observed large-scale structure and for the angular power spectrum of cosmic microwave background anisotropies as the inflationary scenario, and I will mention predictions for future observations with which the three scenarios can be observationally teased apart.
NASA Astrophysics Data System (ADS)
Khrennikova, Polina; Haven, Emmanuel; Khrennikov, Andrei
2014-04-01
The Gorini-Kossakowski-Sudarshan-Lindblad equation allows us to model the process of decision making in US elections. The crucial point we attempt to make is that the voter's mental state can be represented as a superposition of two possible choices for either republicans or democrats. However, reality dictates a more complicated situation: typically a voter participates in two elections, i.e. the congress and the presidential elections. In both elections the voter has to decide between two choices. This very feature of the US election system requires that the mental state is represented by a 2-qubit state corresponding to the superposition of 4 different choices. The main issue is to describe the dynamics of the voters' mental states taking into account the mental and political environment. What is novel in this paper is that we apply the theory of open quantum systems to social science. The quantum master equation describes the resolution of uncertainty (represented in the form of superposition) to a definite choice.
The Rising Landscape: A Visual Exploration of Superstring Revolutions in Physics.
ERIC Educational Resources Information Center
Chen, Chaomei; Kuljis, Jasna
2003-01-01
Discussion of knowledge domain visualization focuses on practical issues concerning modeling and visualizing scientific revolutions. Studies growth patterns of specialties derived from citation and cocitation data on string theory in physics, using the general framework of Thomas Kuhn's structure of scientific revolutions. (Author/LRW)
Superstrings on AdS{sub 4}xCP{sup 3} from supergravity
D'Auria, Riccardo; Trigiante, Mario; Fre, Pietro; Grassi, Pietro Antonio
2009-04-15
We derive from a general formulation of pure spinor string theory on type IIA backgrounds the specific form of the action for the AdS{sub 4}xCP{sup 3} background. We provide a complete geometrical characterization of the structure of the superfields involved in the action.
New Two-Dimensional Massless Field Theory from Bagger-Lambert Model
NASA Astrophysics Data System (ADS)
Santos, M. A.; Vancea, I. V.
By compactifying the Bagger-Lambert-Gustavsson model on ℝ1,1×S1, we obtain a new two-dimensional massless field theory with dynamical fields valued in the Lie three-algebra {A} coupled with an SO(1, 1) scalar and vector field which are valued in the set End( {A}) of the endomorphisms of the Lie three-algebra. In the limit gBLG→∞ the theory reduces to a supersymmetric Lie three-valued generalization of the Green-Schwarz superstring in the light-cone gauge.
Metric-independent measures for supersymmetric extended object theories on curved backgrounds
NASA Astrophysics Data System (ADS)
Nishino, Hitoshi; Rajpoot, Subhash
2014-09-01
For Green-Schwarz superstring σ-model on curved backgrounds, we introduce a non-metric measure Φ≡ɛɛ(∂iφI)(∂jφJ) with two scalars φI (I=1,2) used in ‘Two-Measure Theory’ (TMT). As in the flat-background case, the string tension T=(2 emerges as an integration constant for the Ai-field equation. This mechanism is further generalized to supermembrane theory, and to super-p-brane theory, both on general curved backgrounds. This shows the universal applications of dynamical measure of TMT to general supersymmetric extended objects on general curved backgrounds.
Comparing two approaches to the K-theory classification of D-branes
NASA Astrophysics Data System (ADS)
Ferrari Ruffino, Fabio; Savelli, Raffaele
2011-01-01
We consider the two main classification methods of D-brane charges via K-theory, in type II superstring theory with vanishing B-field: the Gysin map approach and the one based on the Atiyah-Hirzebruch spectral sequence. Then, we find out an explicit link between these two approaches: the Gysin map provides a representative element of the equivalence class obtained via the spectral sequence. We also briefly discuss the case of rational coefficients, characterized by a complete equivalence between the two classification methods.
Solution-processed Cu2ZnSnS4 superstrate solar cell using vertically aligned ZnO nanorods.
Lee, Dongwook; Yong, Kijung
2014-02-14
One-dimensional (1D) zinc oxide (ZnO) nanostructures are considered to be promising materials for use in thin film solar cells because of their high light harvesting and charge collection efficiencies. We firstly report enhanced photovoltaic performances in Cu2ZnSnS4 (CZTS) thin film solar cells prepared using ZnO nanostructures. A CdS-coated, vertically well-aligned ZnO nanorod (NR) array was prepared via a hydrothermal reaction and nanocrystal layer deposition (NCLD) and was used as a transparent window/buffer layer in a CZTS thin film photovoltaic. A light absorber CZTS thin film was prepared on the CdS/ZnO NRs in air by depositing a non-toxic precursor solution that was annealed in two steps at temperatures up to 250 °C. The crystallized CZTS phase completely infiltrated the CdS/ZnO NR array. The nanostructured ZnO array provided improved light harvesting behavior compared to a thin film configuration by measuring UV-vis transmittance spectroscopy. The prepared CZTS/CdS/ZnO NR device exhibited a solar energy conversion efficiency of 1.2%, which is the highest efficiency yet reported for nanostructured superstrate CZTS solar cells. PMID:24434835
Two exercises in supersymmetry: a low-energy supergravity model and free string field theory
Preitschopf, C.R.
1986-09-01
The new features of a supersymmetric standard model in the presence of heavy families are studied. The minimal set of Higgs fields, the desert between the electroweak and the grand unification scale and perturbative values of the dimensionless parameters throughout this region are assumed. Using the numerical as well as the approximate analytic solution of the renormalization group equations, the evolution of all the parameters of the theory are studied in the case of large Yukawa couplings for the fourth family. The desired spontaneous symmetry breaking of the electroweak symmetry takes place only for a rather unnatural choice of the initial values of certain mass parameters at the grand unification scale. If it is gravitino mass smaller than 200 GeV the vacuum expectation values of the Higgs fields emerge necessarily in an interplay of the tree level Higgs potential and its quantum corrections and are approximately equal. The qurak masses of the fourth family are roughly 135 GeV, while the mass of the fourth charged lepton has an upper bound of 90 GeV. Further characteristic features of this scenario are one light neutral Higgs field of mass 50 GeV and gluino masses below 75 GeV. If the gravitino mass is higher than 200 GeV one obtains a scaled up version of the well-known three family, heavy top scenario with quark masses between 40 and 205 GeV and all superparticle masses heavier than 150 GeV except the photino, gluino, one chargino and one neutralino. The gauge-invariant theory of the free bosonic open string is generalized to treat closed strings and superstrings. All of these theories can be written as theories of string differential forms defined on suitable spaces. All of the bosonic theories have exactly the same structure; the Ramond theory takes an analogous first-order form. We show explicitly, how to gauge-fix each action to the light-cone gauge and to the Feynman-Siegel gauge.
Higher spins and open strings: Quartic interactions
Polyakov, Dimitri
2011-02-15
We analyze quartic gauge-invariant interactions of massless higher spin fields by using vertex operators constructed in our previous works and computing their 4-point amplitudes in superstring theory. The kinematic part of the quartic interactions of the higher spins is determined by the matter structure of their vertex operators; the nonlocality of the interactions is the consequence of the specific ghost structure of these operators. We compute explicitly the 4-point amplitude describing the complete gauge-invariant 1-1-3-3 quartic interaction (two massless spin 3 particles interacting with two photons) and comment on more general 1-1-s-s cases, particularly pointing out the structure of 1-1-5-5 coupling.
NASA Astrophysics Data System (ADS)
Carlson, Glenn Andrew
This dissertation develops details of Handel's Maser-Soliton Theory of ball lightning. The atmosphere between a thundercloud and the Earth's surface is modeled as an idealized stable open resonator with water vapor as the active medium and the thundercloud and Earth's surface as reflecting surfaces. The stable resonator generates a maser beam that narrows to the beam waist at the Earth's surface, which is assumed to be planar. Two candidate rotational transitions are identified within the ν1ν 2ν3 = 010 vibrational band of water having wavelengths of 13.9 cm and 1.12 cm, and relevant spectroscopic parameters are retrieved from the HITRAN 2008 molecular spectroscopic database. The maser is modeled as a continuously pumped four-level maser that includes the effects of nonradiative relaxation due to molecular collisions and of microwave absorption in atmospheric oxygen. Since maser spiking is highly unlikely to occur due to the high rate of collisional relaxation at normal atmospheric pressure, the electrical breakdown of air must be achieved by the steady state output of the atmospheric maser. A parametric analysis is performed to relate the size of the atmospheric maser to the pumping rate needed to create a steady state population inversion sufficient to generate maser radiation intense enough at the beam waist to result in the electrical breakdown of air. The analysis suggests that electric field intensities at the beam waist sufficient to cause electrical breakdown of air could only be created through huge pumping rates (˜105 to 107 times the critical pumping rate) and only for the most highly curved clouds (g ≈ 0) that give the narrowest beam waists.
Classification of the chiral Z2× Z2 fermionic models in the heterotic superstring
NASA Astrophysics Data System (ADS)
Faraggi, A. E.; Kounnas, C.; Nooij, S. E. M.; Rizos, J.
2004-09-01
The first particle physics observable whose origin may be sought in string theory is the triple replication of the matter generations. The class of Z2× Z2 orbifolds of six-dimensional compactified tori, that have been most widely studied in the free fermionic formulation, correlate the family triplication with the existence of three twisted sectors in this class. In this work we seek an improved understanding of the geometrical origin of the three generation free fermionic models. Using fermionic and orbifold techniques we classify the Z2× Z2 orbifold with symmetric shifts on six-dimensional compactified internal manifolds. We show that perturbative three generation models are not obtained in the case of Z2× Z2 orbifolds with symmetric shifts on complex tori, and that the perturbative three generation models in this class necessarily employ an asymmetric shift. We present a class of three generation models in which the SO(10) gauge symmetry cannot be broken perturbatively, while preserving the Standard Model matter content. We discuss the potential implications of the asymmetric shift for strong-weak coupling duality and moduli stabilization. We show that the freedom in the modular invariant phases in the N=1 vacua that control the chiral content, can be interpreted as vacuum expectation values of background fields of the underlying N=4 theory, whose dynamical components are projected out by the Z2-fermionic projections. In this class of vacua the chiral content of the models is determined by the underlying N=4 mother theory.
Cosmic superstring gravitational lensing phenomena: Predictions for networks of (p,q) strings
Shlaer, Benjamin; Wyman, Mark
2005-12-15
The unique, conical space-time created by cosmic strings brings about distinctive gravitational lensing phenomena. The variety of these distinctive phenomena is increased when the strings have nontrivial mutual interactions. In particular, when strings bind and create junctions, rather than intercommute, the resulting configurations can lead to novel gravitational lensing patterns. In this brief note, we use exact solutions to characterize these phenomena, the detection of which would be strong evidence for the existence of complex cosmic string networks of the kind predicted by string theory-motivated cosmic string models. We also correct some common errors in the lensing phenomenology of straight cosmic strings.
On the spontaneous breakdown of Lorentz symmetry in matrix models of superstrings
NASA Astrophysics Data System (ADS)
Ambjørn, J.; Anagnostopoulos, K. N.; Bietenholz, W.; Hofheinz, F.; Nishimura, J.
2002-04-01
In string or M theories, the spontaneous breaking of 10D or 11D Lorentz symmetry is required to describe our space-time. A direct approach to this issue is provided by the type IIB matrix model. We study its 4D version, which corresponds to the zero volume limit of 4D super SU(N) Yang-Mills theory. Based on the moment of inertia as a criterion, spontaneous symmetry breaking (SSB) seems to occur, so that only one extended direction remains, as first observed by Bialas and Burda et al. However, using Wilson loops as probes of space-time we do not observe any sign of SSB in Monte Carlo simulations where N is as large as 48. This agrees with an earlier observation that the phase of the fermionic integral, which is absent in the 4D model, should play a crucial role if SSB of Lorentz symmetry really occurs in the 10D type IIB matrix model.
Statistical inference and string theory
NASA Astrophysics Data System (ADS)
Heckman, Jonathan J.
2015-09-01
In this paper, we expose some surprising connections between string theory and statistical inference. We consider a large collective of agents sweeping out a family of nearby statistical models for an M-dimensional manifold of statistical fitting parameters. When the agents making nearby inferences align along a d-dimensional grid, we find that the pooled probability that the collective reaches a correct inference is the partition function of a nonlinear sigma model in d dimensions. Stability under perturbations to the original inference scheme requires the agents of the collective to distribute along two dimensions. Conformal invariance of the sigma model corresponds to the condition of a stable inference scheme, directly leading to the Einstein field equations for classical gravity. By summing over all possible arrangements of the agents in the collective, we reach a string theory. We also use this perspective to quantify how much an observer can hope to learn about the internal geometry of a superstring compactification. Finally, we present some brief speculative remarks on applications to the AdS/CFT correspondence and Lorentzian signature space-times.
Non-linear sigma-models and string theories
Sen, A.
1986-10-01
The connection between sigma-models and string theories is discussed, as well as how the sigma-models can be used as tools to prove various results in string theories. Closed bosonic string theory in the light cone gauge is very briefly introduced. Then, closed bosonic string theory in the presence of massless background fields is discussed. The light cone gauge is used, and it is shown that in order to obtain a Lorentz invariant theory, the string theory in the presence of background fields must be described by a two-dimensional conformally invariant theory. The resulting constraints on the background fields are found to be the equations of motion of the string theory. The analysis is extended to the case of the heterotic string theory and the superstring theory in the presence of the massless background fields. It is then shown how to use these results to obtain nontrivial solutions to the string field equations. Another application of these results is shown, namely to prove that the effective cosmological constant after compactification vanishes as a consequence of the classical equations of motion of the string theory. 34 refs. (LEW)
NASA Astrophysics Data System (ADS)
Alexopoulos, Nicholaos G.; Yang, Hung-Ya
The thrust of the research has been to develop the methodology for the modeling and design antenna arrays and microstrip discontinuities for microwave circuit applications. The thesis involves several key contributions in the subject areas of modeling microstrip discontinuities, microstrip transitions, and the synthesis of microstrip dipole arrays. This work has generated several journal publications within which one finds a fundamental contribution to the understanding of the above mentioned subjects. The analysis and the generated computer programs serve as practical tools for the design of microstrip circuits and microstrip dipole arrays. An evolution of the work has led to the understanding of microstrip discontinuity effects. In particular the theory has been extended to model microstrip bends, T-junctions, four ports, etc. In each case the algorithms account for a precise description of energy loss at discontinuities due to radiation loss and surface wave loss. These models have also been substantiated with experiment. The models are now extended to provide precise designs for microstrip corporate feeds. This will lead to the design of two dimensional transversely fed electromagnetically coupled dipole arrays.
Infrared divergences and harmonic anomalies in the two-loop superstring effective action
NASA Astrophysics Data System (ADS)
Pioline, Boris; Russo, Rodolfo
2015-12-01
We analyze the pertubative contributions to the {D}^4{R}^4 and {D}^6{R}^4 couplings in the low-energy effective action of type II string theory compactified on a torus T d , with particular emphasis on two-loop corrections. In general, it is necessary to introduce an infrared cut-off Λ to separate local interactions from non-local effects due to the exchange of massless states. We identify the degenerations of the genus-two Riemann surface which are responsible for power-like dependence on Λ, and give an explicit prescription for extracting the Λ-independent effective couplings. These renormalized couplings are then shown to be eigenmodes of the Laplace operator with respect to the torus moduli, up to computable anomalous source terms arising in the presence of logarithmic divergences, in precise agreement with predictions from U-duality. Our results for the two-loop {D}^6{R}^4 contribution also probe essential properties of the Kawazumi-Zhang invariant.
Supergravity and superstring signatures of the one-parameter model at LHC
Maxin, James A.; Mayes, Van E.; Nanopoulos, Dimitri V.
2009-03-15
Many string constructions have a classical no-scale structure, resulting in a one-parameter model (OPM) for the supersymmetry breaking soft terms. As a highly constrained subset of mSUGRA, the OPM has the potential to be predictive. Conversely, if the observed superpartner spectrum at LHC is a subset of the OPM parameter space, then this may provide a clue to the underlying theory at high energies. We investigate the allowed supersymmetry parameter space for a generic one-parameter model taking into account the most recent experimental constraints. We find that, in the strict moduli scenario, there are no regions of the parameter space which may satisfy all constraints. However, for the dilaton scenario, there are small regions of the parameter space where all constraints may be satisfied and for which the observed dark matter density may be generated. We also survey the possible signatures which may be observable at the Large Hadron Collider (LHC). Finally, we compare collider signatures of OPM to those from a model with nonuniversal soft terms, in particular, those of an intersecting D6-brane model. We find that it may be possible to distinguish between these diverse scenarios at LHC.
Svozil, K.
1995-11-01
Inasmuch as physical theories are formalizable, set theory provides a framework for theoretical physics. Four speculations about the relevance of set theoretical modeling for physics are presented: the role of transcendental set theory (i) in chaos theory, (ii) for paradoxical decompositions of solid three-dimensional objects, (iii) in the theory of effective computability (Church-Turing thesis) related to the possible {open_quotes}solution of supertasks,{close_quotes} and (iv) for weak solutions. Several approaches to set theory and their advantages and disadvantages for physical applications are discussed: Cantorian {open_quotes}naive{close_quotes} (i.e., nonaxiomatic) set theory, contructivism, and operationalism. In the author`s opinion, an attitude, of {open_quotes}suspended attention{close_quotes} (a term borrowed from psychoanalysis) seems most promising for progress. Physical and set theoretical entities must be operationalized wherever possible. At the same time, physicists should be open to {open_quotes}bizarre{close_quotes} or {open_quotes}mindboggling{close_quotes} new formalisms, which need not be operationalizable or testable at the time of their creation, but which may successfully lead to novel fields of phenomenology and technology.
NASA Astrophysics Data System (ADS)
Buchbinder, I. L.; Ivanov, E. A.; Pletnev, N. G.
2016-05-01
We review the current state of research on the construction of effective actions in supersymmetric quantum field theory. Special attention is paid to gauge models with extended supersymmetry in the superfield approach. The advantages of formulation of such models in harmonic superspace for the calculation of effective action are emphasized. Manifestly supersymmetric and manifestly gauge-invariant methods for constructing the low-energy effective actions and deriving the corrections to them are considered and the possibilities to obtain the exact solutions are discussed. The calculations of one-loop effective actions in N = 2 supersymmetric Yang-Mills theory with hypermultiplets and in N = 4 supersymmetric Yang-Mills theory are analyzed in detail. The relationship between the effective action in supersymmetric quantum field theory and the low-energy limit in superstring theory is discussed.
ERIC Educational Resources Information Center
Blackmar, Lucy Eleanor
In order to help social learning become a more operational theory, this thesis attempts to create a better understanding of the conditions conducive to effective group action in a social context. Parts one and two trace the evolution of social learning theory in education and planning. Part three attempts to identify within a practical setting --…
NASA Astrophysics Data System (ADS)
Ma, Hua; Qu, Shaobo; Xu, Zhuo; Wang, Jiafu
2009-03-01
By adopting the coordinate transformation theory and the corresponding numerical approach, we investigated the method of designing open cloaks that have one or more windows to exchange information and matter with the outer environment. Compared with close cloaks, open cloaks have the quasiperfect cloaking performance and are applied to any objects especially to the moving ones that must communicate and exchange matter with the outer region, which thus opens up possibilities for practical applications of cloak technologies developed recently.
Supersymmetric Wilson loops in a type-IIB matrix model
Hamada, K.
1997-12-01
We show that the supersymmetric Wilson loops in a type-IIB matrix model give a transition operator from reduced supersymmetric Yang-Mills theory to supersymmetric space-time theory. In comparison with Green-Schwarz superstring we identify the supersymmetric Wilson loops with the asymptotic states of a type-IIB superstring. It is pointed out that the supersymmetry transformation law of the Wilson loops is the inverse of that for the vertex operators of massless modes in the U(N) open superstring with a Dirichlet boundary condition. {copyright} {ital 1997} {ital The American Physical Society}
NASA Astrophysics Data System (ADS)
Niikura, Chisato; Chowdhury, Amartya; Janthong, Bancha; Sichanugrist, Porponth; Konagai, Makoto
2016-04-01
Efficient amorphous Si thin-film solar cells in a p-i-n superstrate configuration with a high initial conversion efficiency of 10.3% were successfully fabricated on periodically three-dimensional (3D) micropatterned SiO x /glass substrates prepared by soft imprinting. Conformal film deposition on a 3D microstructure was realized owing to the shape of our newly designed 3D pattern and the triode plasma-enhanced CVD technique, which enables the selective transport of favorable film precursors to the substrate surface. The nanoscale surface texture of the front transparent conductive oxide layer was found to be crucial for optical confinement, unexceptionally for amorphous Si solar cells on a 3D microstructure, which results in an improved short-circuit current density.
Heat kernels on cone of AdS2 and k-wound circular Wilson loop in AdS5 × S5 superstring
NASA Astrophysics Data System (ADS)
Bergamin, R.; Tseytlin, A. A.
2016-04-01
We compute the one-loop world-sheet correction to partition function of {{AdS}}5× {{{S}}}5 superstring that should be representing k-fundamental circular Wilson loop in planar limit. The 2d metric of the minimal surface ending on k-wound circle at the boundary is that of a cone of AdS2 with deficit 2π (1-k). We compute the determinants of 2d fluctuation operators by first constructing heat kernels of scalar and spinor Laplacians on the cone using the Sommerfeld formula. The final expression for the k-dependent part of the one-loop correction has simple integral representation but is different from earlier results.
ERIC Educational Resources Information Center
Howison, James
2009-01-01
This dissertation presents evidence that the production of Free and Open Source Software (FLOSS) is far more alone than together; it is far more often individual work done "in company" than it is teamwork. When tasks appear too large for an individual they are more likely to be deferred until they are easier rather than be undertaken through…
Quantum Strings and Superstrings
NASA Astrophysics Data System (ADS)
Grigore, D. R.
In the first sections of this paper we give an elementary but rigorous approach to the construction of the quantum Bosonic and supersymmetric string system continuing the analysis of Dimock. This includes the construction of the DDF operators without using the vertex algebras. Next we give a rigorous proof of the equivalence between the light-cone and the covariant quantization methods. Finally, we provide a new and simple proof of the BRST quantization for these string models.
Differential geometry of groups in string theory
Schmidke, W.B. Jr.
1990-09-01
Techniques from differential geometry and group theory are applied to two topics from string theory. The first topic studied is quantum groups, with the example of GL (1{vert bar}1). The quantum group GL{sub q}(1{vert bar}1) is introduced, and an exponential description is derived. The algebra and coproduct are determined using the invariant differential calculus method introduced by Woronowicz and generalized by Wess and Zumino. An invariant calculus is also introduced on the quantum superplane, and a representation of the algebra of GL{sub q}(1{vert bar}1) in terms of the super-plane coordinates is constructed. The second topic follows the approach to string theory introduced by Bowick and Rajeev. Here the ghost contribution to the anomaly of the energy-momentum tensor is calculated as the Ricci curvature of the Kaehler quotient space Diff(S{sup 1})/S{sup 1}. We discuss general Kaehler quotient spaces and derive an expression for their Ricci curvatures. Application is made to the string and superstring diffeomorphism groups, considering all possible choices of subgroup. The formalism is extended to associated holomorphic vector bundles, where the Ricci curvature corresponds to the anomaly for different ghost sea levels. 26 refs.
Inflation-Theory Implications for Extraterrestrial Visitation
NASA Astrophysics Data System (ADS)
Deardoff, J.; Haisch, B.; Maccabee, B.; Puthoff, H. E.
It has recently been argued that anthropic reasoning applied to inflation theory reinforces the prediction that we should find ourselves part of a large, galaxy-sized civilisation, thus strengthening Fermi's paradox concerning `Where are they?' Furthermore, superstring and M-brane theory allow for the possibility of parallel universes, some of which in principle could be habitable. In addition, discussion of such exotic transport concepts as `traversable wormholes' now appears in the rigorous physics literature. As a result, the `We are alone' solution to Fermi's paradox, based on the constraints of earlier 20th century viewpoints, appears today to be inconsistent with new developments in our best current physics and astrophysics theories. Therefore we reexamine and reevaluate the present assumption that extraterrestrials or their probes are not in the vicinity of Earth, and argue instead that some evidence of their presence might be found in certain high-quality UFO reports. This study follows up on previous arguments that (1) interstellar travel for advanced civilizations is not a priori ruled out by physical principles and therefore may be practicable, and (2) such advanced civilisations may value the search for knowledge from uncontaminated species more than direct, interspecies communication, thereby accounting for apparent covertness regarding their presence.
Gauge field theory of covariant strings
NASA Astrophysics Data System (ADS)
Kaku, Michio
1986-03-01
We present a gauge covariant second-quantized field theory of strings which is explicitly invariant under the gauge transformations generated by the Virasoro algebra. Unlike the old field theory strings [1] this new formulation is Lorentz covariant as well as gauge covariant under the continuous group Diff( S1) and its central extension. We derive the free action: L=Φ(X) †P[i∂ τ-(L 0-1)]PΦ(X) , in the same way that Feynman derived the Schrödinger equation from the path integral formalism. The action is manifestly invariant under the gauge transformation δΦ(X)= limit∑n=1∞ɛ -nL -nΦ(X) , where P is a projection operator which annihilates spurious states. We give three distinct formulations of this operator P to all orders, the first based on extracting the operator from the functional formulation of the Nambu-Goto action, and the second and third based on inverting the Shapovalov matrix on a Verma module. This gauge covariant formulation can be easily extended to the Green-Schwarz superstring [2,3]. One element application of these methods is to re-express the old Neveu-Schwarz-Ramond model as a field theory which is manifestly invariant under space-time supersymmetric transformations.
Grand unified string theories with SU(3) gauge family symmetry
NASA Astrophysics Data System (ADS)
Maslikov, A. A.; Sergeev, S. M.; Volkov, G. G.
1994-06-01
In the framework of four dimensional heterotic superstring with free fermions we investigate the rank eight Grand Unified String Theories (GUST) which contain the SU(3) H-gauge family symmetry. We explicitly construct GUSTs with gauge symmetry G = SU(5) × U(1) × ( SU(3) × U(1)) H ⊂ SO(16) ⊂ E(8) in free complex fermion formulation. We solve the problem of the GUST symmetry breaking taking for the observable gauge symmetry the diagonal subgroup Gsym of rank 16 group G × G ⊂ SO(16) × SO(16) ⊂ E(8) × E(8). In this approach the observed electromagnetic charge Qem can be viewed as a sum of two Q1- and Q2-charges of each G-group. In this case the model spectrum does not contain particles with exotic fractional charges.
Application of Kawaguchi Lagrangian formulation to string theory
NASA Astrophysics Data System (ADS)
Yahagi, Ryoko; Sugamoto, Akio
2015-11-01
String-scalar duality proposed by Y. Hosotani and membrane-scalar duality by A. Sugamoto are reexamined in the context of Kawaguchi Lagrangian formulation. The characteristic feature of this formulation is the indifferent nature of fields and parameters. Therefore even the exchange of roles between fields and parameters is possible. In this manner, dualities above can be proved easily. Between Kawaguchi metrics of the dually related theories, a simple relation is found. As an example of the exchange between fermionic fields and parameters, a replacement of the role of Grassmann parameters of the 2-dimensional superspace by the 9th component of Neveu-Schwarz-Ramond (NSR) fermions is studied in superstring model. Compactification is also discussed in this model.
Instanton Effective Action in Deformed Super Yang-Mills Theories
Nakajima, Hiroaki; Ito, Katsushi; Sasaki, Shin
2008-11-23
We study the ADHM construction of instantons in N = 2 supersymmetric Yang-Mills theory deformed in constant Ramond-Ramond (R-R) 3-form field strength background in type IIB superstrings. We compare the deformed instanton effective action with the effective action of fractional D3/D(-1) branes at the orbifold singularity of C{sup 2}/Z{sub 2} in the same R-R background. We find discrepancy between them at the second order in deformation parameters, which comes from the coupling of the translational zero modes of the D(-1)-branes to the R-R background. We improve the deformed action by adding a term with spacetime dependent gauge coupling such that the action reproduces the effective action of the fractional branes.
Coding Issues in Grounded Theory
ERIC Educational Resources Information Center
Moghaddam, Alireza
2006-01-01
This paper discusses grounded theory as one of the qualitative research designs. It describes how grounded theory generates from data. Three phases of grounded theory--open coding, axial coding, and selective coding--are discussed, along with some of the issues which are the source of debate among grounded theorists, especially between its…
ERIC Educational Resources Information Center
Pryor, Robert G. L.; Bright, Jim
2003-01-01
Four theoretical streams--contexualism/ecology, systems theory, realism/constructivism, and chaos theory--contributed to a theory of individuals as complex, unique, nonlinear, adaptive chaotic and open systems. Individuals use purposive action to construct careers but can make maladaptive and inappropriate choices. (Contains 42 references.) (SK)
NASA Technical Reports Server (NTRS)
Soderblom, David R.; King, Jeremy R.; Hanson, Robert B.; Jones, Burton F.; Fischer, Debra; Stauffer, John R.; Pinsonneault, Marc H.
1998-01-01
This paper examines the discrepancy between distances to nearby open clusters as determined by parallaxes from Hipparcos compared to traditional main-sequence fitting. The biggest difference is seen for the Pleiades, and our hypothesis is that if the Hipparcos distance to the Pleiades is correct, then similar subluminous zero-age main-sequence (ZAMS) stars should exist elsewhere, including in the immediate solar neighborhood. We examine a color-magnitude diagram of very young and nearby solar-type stars and show that none of them lie below the traditional ZAMS, despite the fact that the Hipparcos Pleiades parallax would place its members 0.3 mag below that ZAMS. We also present analyses and observations of solar-type stars that do lie below the ZAMS, and we show that they are subluminous because of low metallicity and that they have the kinematics of old stars.
Homotopy Classification of Bosonic String Field Theory
NASA Astrophysics Data System (ADS)
Münster, Korbinian; Sachs, Ivo
2014-09-01
We prove the decomposition theorem for the loop homotopy Lie algebra of quantum closed string field theory and use it to show that closed string field theory is unique up to gauge transformations on a given string background and given S-matrix. For the theory of open and closed strings we use results in open-closed homotopy algebra to show that the space of inequivalent open string field theories is isomorphic to the space of classical closed string backgrounds. As a further application of the open-closed homotopy algebra, we show that string field theory is background independent and locally unique in a very precise sense. Finally, we discuss topological string theory in the framework of homotopy algebras and find a generalized correspondence between closed strings and open string field theories.
Ishikawa, Y; Santana, J A; Trabert, E
2009-09-30
A recently developed relatistic multireference many-body perturbation theory based on multireference configuration-interaction wavefunctions as zeroth order wavefunctions is outlined. The perturbation theory employs a general class of configuration-interaction wve functions as reference functions, and thus is applciable to multiple open valence shell systems with near degeneracy of a manifold of strongly interacting configurations. Multireference many-body perturbation calculations are reported for the ground and excited states of chlorine-like Fe X in which the near degeneracy of a manifold of strongly interacting configurations mandates a multireference treatment. Term energies of a total of 83 excited levels arising from the 3s{sup 2}3p{sup 5}, 3s3p{sup 6}, 3s{sup 2}3p{sup 4}3d, 3s3p{sup 5}3d, and 3s{sup 2}3p{sup 3}3d{sup 2} configurations of the ion are evaluated to high accuracy. Transition rates associated with E1/M1/E2/M2/E3 radiative decays and lifetimes of a number of excited levels are calculated and compared with laboratory measurements to critically evaluate recent experiments.
Turner, H.
1996-12-31
This paper presents mathematical results that can sometimes be used to simplify the task of reasoning about a default theory, by {open_quotes}splitting it into parts.{close_quotes} These so-called Splitting Theorems for default logic are related in spirit to {open_quotes}partial evaluation{close_quotes} in logic programming, in which results obtained from one part of a program are used to simplify the remainder of the program. In this paper we focus primarily on the statement and proof of the Splitting Theorems for default logic. We illustrate the usefulness of the results by applying them to an example default theory for commonsense reasoning about action.
U-duality between NCOS theory and matrix theory
NASA Astrophysics Data System (ADS)
Hyun, Seungjoon
2001-03-01
We show that the NCOS (noncommutative open string) theories on torus T p ( p⩽5) are U-dual to matrix theory on torus with electric flux background. Under U-duality, the number of D-branes and the number of units of electric flux get interchanged. Furthermore, under the same U-duality the decoupling limit taken in the NCOS theory maps to the decoupling limit taken in the matrix theory, thus ensure the U-duality between those two class of theories. We consider the energy needed for Higgsing process and some bound states with finite energy and find agreements in both theories.
Exact spectrum of anomalous dimensions of planar N = 4 supersymmetric Yang-Mills theory.
Gromov, Nikolay; Kazakov, Vladimir; Vieira, Pedro
2009-09-25
We present a set of functional equations defining the anomalous dimensions of arbitrary local single trace operators in planar N = 4 supersymmetric Yang-Mills theory. It takes the form of a Y system based on the integrability of the dual superstring sigma model on the five-dimensional anti-de Sitter space (AdS_{5} x S;{5}) background. This Y system passes some very important tests: it incorporates the full asymptotic Bethe ansatz at large length of operator L, including the dressing factor, and it confirms all recently found wrapping corrections. The recently proposed AdS_{4}/three-dimensional conformal field theory duality is also treated in a similar fashion. PMID:19905502
Exact Spectrum of Anomalous Dimensions of Planar N=4 Supersymmetric Yang-Mills Theory
Gromov, Nikolay; Kazakov, Vladimir; Vieira, Pedro
2009-09-25
We present a set of functional equations defining the anomalous dimensions of arbitrary local single trace operators in planar N=4 supersymmetric Yang-Mills theory. It takes the form of a Y system based on the integrability of the dual superstring sigma model on the five-dimensional anti-de Sitter space (AdS{sub 5}xS{sup 5}) background. This Y system passes some very important tests: it incorporates the full asymptotic Bethe ansatz at large length of operator L, including the dressing factor, and it confirms all recently found wrapping corrections. The recently proposed AdS{sub 4}/three-dimensional conformal field theory duality is also treated in a similar fashion.
NASA Astrophysics Data System (ADS)
Doebner, H.-D.
2008-02-01
Ladies and Gentlemen Dear Friends and Colleagues I welcome you at the 5th International Symposium `Quantum Theory and Symmetries, QTS5' in Valladolid as Chairman of the Conference Board of this biannual series. The aim of the series is to arrange an international meeting place for scientists working in theoretical and mathematical physics, in mathematics, in mathematical biology and chemistry and in other sciences for the presentation and discussion of recent developments in connection with quantum physics and chemistry, material science and related further fields, like life sciences and engineering, which are based on mathematical methods which can be applied to model and to understand microphysical and other systems through inherent symmetries in their widest sense. These systems include, e.g., foundations and extensions of quantum theory; quantum probability; quantum optics and quantum information; the description of nonrelativistic, finite dimensional and chaotic systems; quantum field theory, particle physics, string theory and quantum gravity. Symmetries in their widest sense describe properties of a system which could be modelled, e.g., through geometry, group theory, topology, algebras, differential geometry, noncommutative geometry, functional analysis and approximation methods; numerical evaluation techniques are necessary to connect such symmetries with experimental results. If you ask for a more detailed characterisation of this notion a hand waving indirect answer is: Collect titles and contents of the contributions of the proceedings of QTS4 and get a characterisation through semantic closure. Quantum theory and its Symmetries was and is a diversified and rapidly growing field. The number of and the types of systems with an internal symmetry and the corresponding mathematical models develop fast. This is reflected in the content of the five former international symposia of this series: The first symposium, QTS1-1999, was organized in Goslar (Germany
NASA Astrophysics Data System (ADS)
Doebner, H.-D.
2008-02-01
Ladies and Gentlemen Dear Friends and Colleagues I welcome you at the 5th International Symposium `Quantum Theory and Symmetries, QTS5' in Valladolid as Chairman of the Conference Board of this biannual series. The aim of the series is to arrange an international meeting place for scientists working in theoretical and mathematical physics, in mathematics, in mathematical biology and chemistry and in other sciences for the presentation and discussion of recent developments in connection with quantum physics and chemistry, material science and related further fields, like life sciences and engineering, which are based on mathematical methods which can be applied to model and to understand microphysical and other systems through inherent symmetries in their widest sense. These systems include, e.g., foundations and extensions of quantum theory; quantum probability; quantum optics and quantum information; the description of nonrelativistic, finite dimensional and chaotic systems; quantum field theory, particle physics, string theory and quantum gravity. Symmetries in their widest sense describe properties of a system which could be modelled, e.g., through geometry, group theory, topology, algebras, differential geometry, noncommutative geometry, functional analysis and approximation methods; numerical evaluation techniques are necessary to connect such symmetries with experimental results. If you ask for a more detailed characterisation of this notion a hand waving indirect answer is: Collect titles and contents of the contributions of the proceedings of QTS4 and get a characterisation through semantic closure. Quantum theory and its Symmetries was and is a diversified and rapidly growing field. The number of and the types of systems with an internal symmetry and the corresponding mathematical models develop fast. This is reflected in the content of the five former international symposia of this series: The first symposium, QTS1-1999, was organized in Goslar (Germany
String Theory and Gauge Theories
Maldacena, Juan
2009-02-20
We will see how gauge theories, in the limit that the number of colors is large, give string theories. We will discuss some examples of particular gauge theories where the corresponding string theory is known precisely, starting with the case of the maximally supersymmetric theory in four dimensions which corresponds to ten dimensional string theory. We will discuss recent developments in this area.
ERIC Educational Resources Information Center
Langberg, Arnold
1984-01-01
Describes the individualized program of Mountain Open High School which at first coincidentally resembed Maurice Gibbons'"Walkabout" concept and was subsequently more consciously shaped by theory. Students move through three phases culminating in challenging independent projects of practical use. (MJL)
Reid, Robert Stowers
2000-01-01
A new type of thermodynamic device combining a thermodynamic cycle with the externally applied steady flow of an open thermodynamic process is discussed and experimentally demonstrated. The gas flowing through this device can be heated or cooled in a series of semi-open cyclic steps. The combination of open and cyclic flows makes possible the elimination of some or all of the heat exchangers (with their associated irreversibility). Heat is directly exchanged with the process fluid as it flows through the device when operating as a refrigerator, producing a staging effect that tends to increase First Law thermodynamic efficiency. An open-flow thermoacoustic refrigerator was built to demonstrate this concept. Several approaches are presented that describe the physical characteristics of this device. Tests have been conducted on this refrigerator with good agreement with a proposed theory.
NASA Astrophysics Data System (ADS)
Zichichi, Antonino
2008-07-01
Mini-courses on basics. Complexity of chaotic fields and standard model parameters / C. Beck. QCD at low energy: the simplicity of complex non-perturbative phenomena / G. Colangelo. Complexity and landscape in string theory / F. Denef, M. R. Douglas. Black holes, qubits and the Fano plane / M. J. Duff, S. Ferrara. The status of lattice QCD / R. Kenway. The landscape and its physics foundations - how string theory generates the landscape / L. Susskind. Complexity and nonextensive statistical mechanics - theory, experiments, observations and computer simulations / C. Tsallis. Complexity at the fundamental level: consequences for LHC / A. Zichichi -- Highlights from laboratories. Present and future of the Gran Sasso underground laboratory / E. Coccia. From BABAR to the future / M. A. Giorgi. Evidence for a quark-gluon plasma at RHIC / J. W. Harris. International linear collider / N. S. Lockyer. Diffraction at HERA on the quark and gluon scale / B. Löhr. LHC Upgrade / H. Wenninger -- Seminars on specialistic topics. How to detect extra-dimensions / I. Antoniadis. Supercomputing: general purpose and custom architectures / R. Petronzio -- Homage to R. H. Dalitz. Dick Dalitz: examples of his contributions to particle physics / G. R. Goldstein -- Special sessions for new talents. Noncommutative gravity and the [symbol]-Lie algebra of diffeomorphisms / P. Aschieri. Events with isolated leptons and missing transverse momentum in ep collisions at HERA / G. Brandt. From quark gluon plasma to a perfect fluid of quarks and beyond / M. Csanád. Analog models beyond kinematics / S. Fagnocchi. Complexity in cosmic structures / F. s. Labini. Inclusive measurements as an mSUGRA signal with ATLAS / D. López Mateos. Unraveling the [symbol] nature by connecting KLOE and BABAR data through analyticity / S. Pacetti. Dynamic time scales in colored glass nuclear matter / V. Parihar. Mapping the transverse size of the proton / O. Smith. Scalar higher dimensional theories in 1/N
NASA Astrophysics Data System (ADS)
Chantana, Jakapan; Arai, Hiroyuki; Minemoto, Takashi
2016-07-01
Cu(In,Ga)Se2 (CIGS) solar cells with superstrate-type structure of soda-lime glass (SLG)/epoxy/Al/ZnO:Al (AZO)/ZnO/CdS/CIGS/back n-type transparent conductive oxide (TCO) electrode/Al are fabricated by lift-off process. AZO or In2O3:Sn (ITO) is used as the back n-type TCO electrode. Ohmic-like contact between p-type CIGS and n-type D-TCO (damage-TCO), namely, D-AZO or D-ITO, is formed through the trap-assisted recombination. The D-TCO, meaning TCO with high sputtering damage on the CIGS surface, is prepared under the optimization of its deposition condition, namely, the power density of 2.4 W/cm2 for D-AZO or 3.3 W/cm2 for D-ITO, for high defect density on the CIGS surface to promote the trap-assisted recombination. Ultimately, the superstrate-type CIGS solar cell with a bi-layer of D-AZO/AZO as back n-type TCO electrode with conversion efficiency (η) of 9.2% is achieved, which is 70% of η of the substrate-type CIGS solar cell before lift-off process. The bi-layer of D-AZO/AZO is utilized owing to high resistivity of D-AZO (about 0.1 Ω cm). On the other hand, the superstrate-type CIGS solar cell with D-ITO as the back n-type TCO electrode with η of 10.4% is attained, which is 93.7% of η of the substrate-type CIGS solar cell, where the resistivity of the D-ITO layer is low at about 5.0 × 10-3 Ω cm.
Roiban, R.; Tseytlin, A. A.
2008-03-15
We consider folded (S,J) spinning strings in AdS{sub 5}xS{sup 5} (with one spin component in AdS{sub 5} and a one in S{sup 5}) corresponding to the Tr(D{sup S}{phi}{sup J}) operators in the sl(2) sector of the N=4 super Yang-Mills theory in the special scaling limit in which both the string mass {approx}{radical}({lambda})lnS and J are sent to infinity with their ratio fixed. Expanding in the parameter l=(J/{radical}({lambda})lnS) we compute the 2-loop string sigma-model correction to the string energy and show that it agrees with the expression proposed by Alday and Maldacena [J. High Energy Phys. 11 (2007) 019]. We suggest that a resummation of the logarithmic l{sup 2}ln{sup n}l terms is necessary in order to establish an interpolation to the weakly coupled gauge-theory results. In the process, we set up a general framework for the calculation of higher loop corrections to the energy of multispin string configurations. In particular, we find that in addition to the direct 2-loop term in the string energy there is a contribution from lower loop order due to a finite 'renormalization' of the relation between the parameters of the classical solution and the fixed spins, i.e., the charges of the SO(2,4)xSO(6) symmetry.
Open, Openness, Opening, Opened--What is Your Style?
ERIC Educational Resources Information Center
Queen, Renee
This paper presents in descriptive and practical terms a rationale for working towards openness in the classroom. Open education is defined as a humanistic approach designed to offer support to the children in their move towards self-realization. More than classroom structure, open education is a way of thinking about children, learning, self and…
NASA Technical Reports Server (NTRS)
Wojahn, Oliver W.
2001-01-01
In this paper we analyze the bargaining problem between countries when negotiating bilateral air service agreements. To do so, we use the methods of bargaining and game theory. We give special attention to the case where a liberal minded country is trying to convince a less liberal country to agree to bilateral open skies, and the liberal country might also unilaterally open up its market. The following analysis is positive in the sense that the results help explain and predict the outcome of negotiations under different payoffs and structures of the bargaining process. They are normative in the sense that adequate manipulation of the bargaining conditions can ensure a desired outcome.
Topological defects in alternative theories to cosmic inflation and string cosmology
NASA Astrophysics Data System (ADS)
Alexander, Stephon H. S.
The physics of the Early Universe is described in terms of the inflationary paradigm, which is based on a marriage between Einstein's general theory of relativity minimally coupled to quantum field theory. Inflation was posed to solve some of the outstanding problems of the Standard Big Bang Cosmology (SBB) such as the horizon, formation of structure and monopole problems. Despite its observational and theoretical successes, inflation is plagued with fine tuning and initial singularity problems. On the other hand, superstring/M theory, a theory of quantum gravity, possesses symmetries which naturally avoid space-time singularities. This thesis investigates alternative theories to cosmic inflation for solving the initial singularity, horizon and monopole problems, making use of topological defects. It was proposed by Dvali, Liu and Vaschaspati that the monopole problem can be solved without inflation if domain walls "sweep" up the monopoles in the early universe, thus reducing their number density significantly. Necessary for this mechanism to work is the presence of an attractive force between the monopole and the domain wall as well as a channel for the monopole's unwinding. We show numerically and analytically in two field theory models that for global defects the attraction is a universal result but the unwinding is model specific. The second part of this thesis investigates a string/M theory inspired model for solving the horizon problem. It was proposed by Moffat, Albrecht and Magueijo that the horizon problem is solved with a "phase transition" associated with a varying speed of light before the surface of last scattering. We provide a string/M theory mechanism based on assuming that our space-time is a D-3 brane probing a bulk supergravity black hole bulk background. This mechanism provides the necessary time variation of the velocity of light to solve the horizon problem. We suggest a mechanism which stablilizes the speed of light on the D-3 brane. We
Sahraei, Nasim; Forberich, Karen; Venkataraj, Selvaraj; Aberle, Armin G; Peters, Marius
2014-01-13
Light scattering at randomly textured interfaces is essential to improve the absorption of thin-film silicon solar cells. Aluminium-induced texture (AIT) glass provides suitable scattering for amorphous silicon (a-Si:H) solar cells. The scattering properties of textured surfaces are usually characterised by two properties: the angularly resolved intensity distribution and the haze. However, we find that the commonly used haze equations cannot accurately describe the experimentally observed spectral dependence of the haze of AIT glass. This is particularly the case for surface morphologies with a large rms roughness and small lateral feature sizes. In this paper we present an improved method for haze calculation, based on the power spectral density (PSD) function of the randomly textured surface. To better reproduce the measured haze characteristics, we suggest two improvements: i) inclusion of the average lateral feature size of the textured surface into the haze calculation, and ii) considering the opening angle of the haze measurement. We show that with these two improvements an accurate prediction of the haze of AIT glass is possible. Furthermore, we use the new equation to define optimum morphology parameters for AIT glass to be used for a-Si:H solar cell applications. The autocorrelation length is identified as the critical parameter. For the investigated a-Si:H solar cells, the optimum autocorrelation length is shown to be 320 nm. PMID:24922000
Modern Quantum Field Theory II - Proceeeings of the International Colloquium
NASA Astrophysics Data System (ADS)
Das, S. R.; Mandal, G.; Mukhi, S.; Wadia, S. R.
1995-08-01
The Table of Contents for the book is as follows: * Foreword * 1. Black Holes and Quantum Gravity * Quantum Black Holes and the Problem of Time * Black Hole Entropy and the Semiclassical Approximation * Entropy and Information Loss in Two Dimensions * Strings on a Cone and Black Hole Entropy (Abstract) * Boundary Dynamics, Black Holes and Spacetime Fluctuations in Dilation Gravity (Abstract) * Pair Creation of Black Holes (Abstract) * A Brief View of 2-Dim. String Theory and Black Holes (Abstract) * 2. String Theory * Non-Abelian Duality in WZW Models * Operators and Correlation Functions in c ≤ 1 String Theory * New Symmetries in String Theory * A Look at the Discretized Superstring Using Random Matrices * The Nested BRST Structure of Wn-Symmetries * Landau-Ginzburg Model for a Critical Topological String (Abstract) * On the Geometry of Wn Gravity (Abstract) * O(d, d) Tranformations, Marginal Deformations and the Coset Construction in WZNW Models (Abstract) * Nonperturbative Effects and Multicritical Behaviour of c = 1 Matrix Model (Abstract) * Singular Limits and String Solutions (Abstract) * BV Algebra on the Moduli Spaces of Riemann Surfaces and String Field Theory (Abstract) * 3. Condensed Matter and Statistical Mechanics * Stochastic Dynamics in a Deposition-Evaporation Model on a Line * Models with Inverse-Square Interactions: Conjectured Dynamical Correlation Functions of the Calogero-Sutherland Model at Rational Couplings * Turbulence and Generic Scale Invariance * Singular Perturbation Approach to Phase Ordering Dynamics * Kinetics of Diffusion-Controlled and Ballistically-Controlled Reactions * Field Theory of a Frustrated Heisenberg Spin Chain * FQHE Physics in Relativistic Field Theories * Importance of Initial Conditions in Determining the Dynamical Class of Cellular Automata (Abstract) * Do Hard-Core Bosons Exhibit Quantum Hall Effect? (Abstract) * Hysteresis in Ferromagnets * 4. Fundamental Aspects of Quantum Mechanics and Quantum Field Theory
Yang-Baxter deformations, AdS/CFT, and twist-noncommutative gauge theory
NASA Astrophysics Data System (ADS)
van Tongeren, Stijn J.
2016-03-01
We give an AdS/CFT interpretation to homogeneous Yang-Baxter deformations of the AdS5 ×S5 superstring as noncommutative deformations of the dual gauge theory, going well beyond the canonical noncommutative case. These homogeneous Yang-Baxter deformations can be of so-called abelian or jordanian type. While abelian deformations have a clear interpretation in string theory and many already had well understood gauge theory duals, jordanian deformations appear novel on both counts. We discuss the symmetry structure of the deformed string from the uniformizing perspective of Drinfeld twists and indicate that this structure can be realized on the gauge theory side by considering theories on various noncommutative spaces. We then conjecture that these are the gauge theory duals of our strings, modulo subtleties involving singularities. We support this conjecture by a brane construction for two jordanian examples, corresponding to noncommutative spaces with [x- , ⋆xi ] ∼xi (i = 1 , 2). We also discuss κ-Minkowski type deformations of AdS5 ×S5, one of which may be the gravity dual of gauge theory on spacelike κ-Minkowski space.
Universality and string theory
NASA Astrophysics Data System (ADS)
Bachlechner, Thomas Christian
The first run at the Large Hadron Collider has deeply challenged conventional notions of naturalness, and CMB polarization experiments are about to open a new window to early universe cosmology. As a compelling candidate for the ultraviolet completion of the standard model, string theory provides a prime opportunity to study both early universe cosmology and particle physics. However, relating low energy observations to ultraviolet physics requires knowledge of the metastable states of string theory through the study of vacua. While it is difficult to directly obtain infrared data from explicit string theory constructions, string theory imposes constraints on low energy physics. The study of ensembles of low energy theories consistent with ultra-violet constraints provides insight on generic features we might expect to occur in string compactifications. In this thesis we present a statistical treatment of vacuum stability and vacuum properties in the context of random supergravity theories motivated by string theory. Early universe cosmology provides another avenue to high energy physics. From the low energy perspective large field inflation is typically considered highly unnatural: the scale relevant for the diameter of flat regions in moduli space is sub-Planckian in regions of perturbative control. To approach this problem, we consider generic Calabi-Yau compactifications of string theory and find that super-Planckian diameters of axion fundamental domains in fact arise generically. We further demonstrate that such super-Planckian flat regions are plausibly consistent with theWeak Gravity Conjecture.
NASA Astrophysics Data System (ADS)
Hatefi, Ehsan
2015-11-01
From the world-sheet point of view we compute three, four and five point BPS and non-BPS scattering amplitudes of type IIA and IIB superstring theory. All these mixed S-matrix elements including a Ramond-Ramond closed string (RR) in the bulk and a scalar/gauge or tachyons with all different pictures (including an RR in asymmetric and symmetric pictures) have been carried out. We have also shown that in asymmetric pictures various equations must be kept fixed. More importantly, by direct calculations on the upper half plane, it is realised that some of the equations (which must be true) for BPS branes cannot be necessarily applied to non-BPS amplitudes. We also derive the S-matrix elements of < V_C^{-2} V_{φ }0V _A0 V_T0 rangle and clarify the fact that in the presence of the scalar field and an RR, the terms carrying momentum of an RR in the transverse directions play an important role in the entire form of the S-matrix and their presence is needed in order to have gauge invariance for the entire S-matrix elements of type IIA (IIB) superstring theory.
ERIC Educational Resources Information Center
Kansa, Sarah Whitcher; Kansa, Eric C.
2007-01-01
This article presents the challenges and rewards of sharing research content through a discussion of Open Context, a new open access data publication system for field sciences and museum collections. Open Context is the first data repository of its kind, allowing self-publication of research data, community commentary through tagging, and clear…
p-Adic Strings and Their Applications
Freund, Peter G. O.
2006-03-29
The theory of p-adic strings is reviewed along with some of their applications, foremost among them to the tachyon condensation problem in string theory. Some open problems are discussed, in particular that of the superstring in 10 dimensions as the end-stage of the 26-dimensional closed bosonic string's tachyon condensation.
Black hole solutions in string theory with Gauss-Bonnet curvature correction
Maeda, Kei-ichi; Ohta, Nobuyoshi; Sasagawa, Yukinori
2009-11-15
We present the black hole solutions and analyze their properties in the superstring effective field theory with the Gauss-Bonnet curvature correction terms. We find qualitative differences in our results from those obtained in the truncated model in the Einstein frame. The main difference in our model from the truncated one is that the existence of a turning point in the mass-area curve, the mass-entropy curve, and the mass-temperature curve in five and higher dimensions, where we expect a change of stability. We also find a mass gap in our model, where there is no black hole solution. In five dimensions, there exists a maximum black hole temperature and the temperature vanishes at the minimum mass, which is not found in the truncated model.
Non-linear gauge transformations in D = 10 SYM theory and the BCJ duality
NASA Astrophysics Data System (ADS)
Lee, Seungjin; Mafra, Carlos R.; Schlotterer, Oliver
2016-03-01
Recent progress on scattering amplitudes in super Yang-Mills and super-string theory benefitted from the use of multiparticle superfields. They universally capture tree-level subdiagrams, and their generating series solve the non-linear equations of ten-dimensional super Yang-Mills. We provide simplified recursions for multiparticle superfields and relate them to earlier representations through non-linear gauge transformations of their generating series. Moreover, we discuss the gauge transformations which enforce their Lie symmetries as suggested by the Bern-Carrasco-Johansson duality between color and kine-matics. Another gauge transformation due to Harnad and Shnider is shown to streamline the theta-expansion of multiparticle superfields, bypassing the need to use their recursion relations beyond the lowest components. The findings of this work tremendously simplify the component extraction from kinematic factors in pure spinor superspace.
NASA Astrophysics Data System (ADS)
Anagnostopoulos, K.; Azuma, T.; Nishimura, J.
The IKKT or IIB matrix model has been postulated to be a non perturbative definition of superstring theory. It has the attractive feature that spacetime is dynamically generated, which makes possible the scenario of dynamical compactification of extra dimensions, which in the Euclidean model manifests by spontaneously breaking the SO(10) rotational invariance (SSB). In this work we study using Monte Carlo simulations the 6 dimensional version of the Euclidean IIB matrix model. Simulations are found to be plagued by a strong complex action problem and the factorization method is used for effective sampling and computing expectation values of the extent of spacetime in various dimensions. Our results are consistent with calculations using the Gaussian Expansion method which predict SSB to SO(3) symmetric vacua, a finite universal extent of the compactified dimensions and finite spacetime volume.
Diagrammatic semiclassical laser theory
Zaitsev, Oleg; Deych, Lev
2010-02-15
We derive semiclassical laser equations valid in all orders of nonlinearity. With the help of a diagrammatic representation, the perturbation series in powers of electric field can be resummed in terms of a certain class of diagrams. The resummation makes it possible to take into account a weak effect of population pulsations in a controlled way while treating the nonlinearity exactly. The proposed laser theory reproduces the all-order nonlinear equations in the approximation of constant population inversion and the third-order equations with population-pulsation terms as special cases. The theory can be applied to arbitrarily open and irregular lasers, such as random lasers.
Walsh, Timothy Francis; Reese, Garth M.; Bhardwaj, Manoj Kumar
2004-08-01
This manual describes the theory behind many of the constructs in Salinas. For a more detailed description of how to use Salinas , we refer the reader to Salinas, User's Notes. Many of the constructs in Salinas are pulled directly from published material. Where possible, these materials are referenced herein. However, certain functions in Salinas are specific to our implementation. We try to be far more complete in those areas. The theory manual was developed from several sources including general notes, a programer-notes manual, the user's notes and of course the material in the open literature.
NASA Astrophysics Data System (ADS)
Svozil, K.
1995-11-01
Inasmuch as physical theories are formalizable, set theory provides a framework for theoretical physics. Four speculations about the relevance of set theoretical modeling for physics are presented: the role of transcendental set theory (i) in chaos theory, (ii) for paradoxical decompositions of solid three-dimensional objects, (iii) in the theory of effective computability (Church-Turing thesis) related to the possible “solution of supertasks,” and (iv) for weak solutions. Several approaches to set theory and their advantages and disadvatages for physical applications are discussed: Canlorian “naive” (i.e., nonaxiomatic) set theory, contructivism, and operationalism. In the author's opinion, an attitude of “suspended attention” (a term borrowed from psychoanalysis) seems most promising for progress. Physical and set theoretical entities must be operationalized wherever possible. At the same time, physicists should be open to “bizarre” or “mindboggling” new formalisms, which need not be operationalizable or testable at the lime of their creation, but which may successfully lead to novel fields of phenomenology and technology.
Dimensions of Openness: Beyond the Course as an Open Format in Online Education
ERIC Educational Resources Information Center
Dalsgaard, Christian; Thestrup, Klaus
2015-01-01
The objective of the paper is to present a pedagogical approach to openness. The paper develops a framework for understanding the pedagogical opportunities of openness in education. Based on the pragmatism of John Dewey and sociocultural learning theory, the paper defines openness in education as a matter of engaging educational activities in…
Paleo, Bruno Woltzenlogel
2012-01-01
Axiomatization of Physics (and science in general) has many drawbacks that are correctly criticized by opposing philosophical views of science. This paper shows that, by giving formal proofs a more prominent role in the formalization, many of the drawbacks can be solved and many of the opposing views are naturally conciliated. Moreover, this approach allows, by means of proof theory, to open new conceptual bridges between the disciplines of Physics and Computer Science. PMID:24976655
Interactions of massless higher spin fields from string theory
Polyakov, Dimitri
2010-09-15
We construct vertex operators for massless higher spin fields in Ramond-Neveu-Schwarz superstring theory and compute some of their three-point correlators, describing gauge-invariant cubic interactions of the massless higher spins. The Fierz-Pauli on-shell conditions for the higher spins (including tracelessness and vanishing divergence) follow from the Becchi-Rouet-Stora-Tyutin-invariance conditions for the vertex operators constructed in this paper. The gauge symmetries of the massless higher spins emerge as a result of the Becchi-Rouet-Stora-Tyutin-nontriviality conditions for these operators, being equivalent to transformations with the traceless gauge parameter in the Fronsdal's approach. The gauge invariance of the interaction terms of the higher spins is therefore ensured automatically by that of the vertex operators in string theory. We develop a general algorithm to compute the cubic interactions of the massless higher spins and use it to explicitly describe the gauge-invariant interaction of two s=3 and one s=4 massless particles.
ERIC Educational Resources Information Center
Suber, Peter
2012-01-01
The Internet lets us share perfect copies of our work with a worldwide audience at virtually no cost. We take advantage of this revolutionary opportunity when we make our work "open access": digital, online, free of charge, and free of most copyright and licensing restrictions. Open access is made possible by the Internet and copyright-holder…
NASA Astrophysics Data System (ADS)
Yamada, T.
2014-12-01
Ladies and Gentlemen, it is my great honor and pleasure to present an opening address of the 3rd International Workshop on "State of the Art in Nuclear Cluster Physics"(SOTANCP3). On the behalf of the organizing committee, I certainly welcome all your visits to KGU Kannai Media Center belonging to Kanto Gakuin University, and stay in Yokohama. In particular, to whom come from abroad more than 17 countries, I would appreciate your participations after long long trips from your homeland to Yokohama. The first international workshop on "State of the Art in Nuclear Cluster Physics", called SOTANCP, was held in Strasbourg, France, in 2008, and the second one was held in Brussels, Belgium, in 2010. Then the third workshop is now held in Yokohama. In this period, we had the traditional 10th cluster conference in Debrecen, Hungary, in 2012. Thus we have the traditional cluster conference and SOTANCP, one after another, every two years. This obviously shows our field of nuclear cluster physics is very active and flourishing. It is for the first time in about 10 years to hold the international workshop on nuclear cluster physics in Japan, because the last cluster conference held in Japan was in Nara in 2003, about 10 years ago. The president in Nara conference was Prof. K. Ikeda, and the chairpersons were Prof. H. Horiuchi and Prof. I. Tanihata. I think, quite a lot of persons in this room had participated at the Nara conference. Since then, about ten years passed. So, this workshop has profound significance for our Japanese colleagues. The subjects of this workshop are to discuss "the state of the art in nuclear cluster physics" and also discuss the prospect of this field. In a couple of years, we saw significant progresses of this field both in theory and in experiment, which have brought better and new understandings on the clustering aspects in stable and unstable nuclei. I think, the concept of clustering has been more important than ever. This is true also in the
ERIC Educational Resources Information Center
Williams, Jeffrey
1994-01-01
Considers the recent flood of anthologies of literary criticism and theory as exemplifications of the confluence of pedagogical concerns, economics of publishing, and other historical factors. Looks specifically at how these anthologies present theory. Cites problems with their formatting theory and proposes alternative ways of organizing theory…
Applications of the holographic principle in string theory
NASA Astrophysics Data System (ADS)
Button, Bradly Kevin
The holographic principle has become an extraordinary tool in theoretical physics, most notably in the form of the Anti-deSitter Conformal Field Theory (AdS/CFT) correspondence, in which classical gravitational degrees of freedom in N-dimensions are related quantum field theory degrees of freedom in N -- 1 dimensions in the limit of a large number of fields. Here we present an account of the AdS/CFT correspondence, also known as the gauge/gravity duality, from its origins in the large N 'tHooft expansion, up to Maldacena's proposal that type IIB string theory in the presence of D-branes at low energy is dual to an N = 4, d = 4, U(N) super Yang-Mills on AdS5 . S5 . We begin with an extensive review of (super)string theory including D-branes. We then present the general formulation of the AdS/CFT in the supergravity background of AdS5 x S5 , along with several examples of how it is used in terms of the identification of bulk fields with operators on the boundary of a CFT. We move on to discuss two applications of the gauge/gravity duality. The first is the application of the holographic gauge/gravity correspondence to the QCD k-string. The second applies the AdS/CFT formalism to a Kerr black hole solution embedded in 10-dimensional heterotic sting theory. These two applications of the holographic gauge/gravity duality comprise the original work presented here. We follow with summaries and discussions of the background material, the original work, and future investigations.
Open Education and the Open Science Economy
ERIC Educational Resources Information Center
Peters, Michael A.
2009-01-01
Openness as a complex code word for a variety of digital trends and movements has emerged as an alternative mode of "social production" based on the growing and overlapping complexities of open source, open access, open archiving, open publishing, and open science. This paper argues that the openness movement with its reinforcing structure of…
Open string in a nonrelativistic background
Kluson, J.
2010-05-15
This paper is devoted to the study of the open string description of Wilson loops and quarks in nonrelativistic quantum field theory that are expected to be dual of gravity in Schroedinger space-time.
Chen Bin; He Yali; Song Xingchang; Zhang Peng
2005-04-15
We construct a one-parameter family of flat currents in AdS{sub 5}xS{sup 1} and AdS{sub 3}xS{sup 3} Green-Schwarz superstrings, which would naturally lead to a hierarchy of classical conserved nonlocal charges. In the former case we rewrite the AdS{sub 5}xS{sup 1} string using a new Z{sub 4}-graded base of the superalgebra su(2,2 vertical bar 2). In both cases the existence of the Z{sub 4} grading in the superalgebras plays a key role in the construction. As a result, we find that the flat currents, when formally written in terms of the G{sub 0}-gauge invariant lowercase 1-forms, take the same form as the one in the AdS{sub 5}xS{sup 5} case.
Superstrings in Sheared Polymer Blends
NASA Astrophysics Data System (ADS)
Migler, Kalman
2000-03-01
We report the discovery of a droplet-string-ribbon transition in concentrated polymer blends which occurs when the droplet size of the dispersed component becomes comparable to the gap between the boundary plates. Above a critical shear rate (or gap width), dispersed droplets continuously coalescence and breakup; the upper limit on their size is set by the Taylor length. Below this critical shear rate, droplets coalesce into strings and then ribbons in a four stage kinetic process. The mass ratio of string / droplet can be as large as 10^4. The transition is sharp, occurring over a shear interval of 2droplet-string transition is a manifestation of the weakening of the Rayleigh-Tomatika instability which occurs when the system becomes quasi two-dimensional. Possible applications of this technology are ultra-thin materials of high one-dimensional strength, polymer blend wires, and novel polymeric scaffolds.
Sanfilippo, Antonio P.
2005-12-27
Graph theory is a branch of discrete combinatorial mathematics that studies the properties of graphs. The theory was pioneered by the Swiss mathematician Leonhard Euler in the 18th century, commenced its formal development during the second half of the 19th century, and has witnessed substantial growth during the last seventy years, with applications in areas as diverse as engineering, computer science, physics, sociology, chemistry and biology. Graph theory has also had a strong impact in computational linguistics by providing the foundations for the theory of features structures that has emerged as one of the most widely used frameworks for the representation of grammar formalisms.
NASA Astrophysics Data System (ADS)
Solari, Soren; Smith, Andrew; Minnett, Rupert; Hecht-Nielsen, Robert
2008-06-01
Confabulation Theory [Hecht-Nielsen R. Confabulation theory. Springer-Verlag; 2007] is the first comprehensive theory of human and animal cognition. Here, we briefly describe Confabulation Theory and discuss experimental results that suggest the theory is correct. Simply put, Confabulation Theory proposes that thinking is like moving. In humans, the theory postulates that there are roughly 4000 thalamocortical modules, the “muscles of thought”. Each module performs an internal competition ( confabulation) between its symbols, influenced by inputs delivered via learned axonal associations with symbols in other modules. In each module, this competition is controlled, as in an individual muscle, by a single graded (i.e., analog) thought control signal. The final result of this confabulation process is a single active symbol, the expression of which also results in launching of action commands that trigger and control subsequent movements and/or thought processes. Modules are manipulated in groups under coordinated, event-contingent control, in a similar manner to our 700 muscles. Confabulation Theory hypothesizes that the control of thinking is a direct evolutionary outgrowth of the control of movement. Establishing a complete understanding of Confabulation Theory will require launching and sustaining a massive new phalanx of confabulation neuroscience research.
Using Open Space Technology for School Improvement.
ERIC Educational Resources Information Center
Cox, David
2002-01-01
Describes a theory referred to as Open Space Technology (OST), which holds that the most productive learning in conference settings takes place in the open space between formally scheduled conference sessions. Argues that OST can be applied to staff development days and other educational development programs. (Contains 10 references.) (NB)
Open String on Symmetric Product
NASA Astrophysics Data System (ADS)
Fuji, Hiroyuki; Matsuo, Yutaka
We discuss some basic properties of the open string on the symmetric product which is supposed to describe the open string field theory in discrete light-cone quantization (DLCQ). We first derive the consistent twisted boundary conditions for Annulus/Möbius/Klein Bottle diagrams and give the explicit form of the corresponding amplitude. They have the interpretation as the long open (or closed) string amplitude but the world sheet topology viewed from the short string and from the long string is in general different. Boundary (cross-cap) states of the short string are classified into three categories, the boundary (cross-cap) states of the long string and the "joint" state which connects two strings. The partition function has the typical structure of the string field theory in DLCQ. Tadpole condition is also analyzed and gives a reasonable gauge group SO(213).
Meeting the constraint of neutrino-Higgsino mixing in gravity unified theories
Faraggi, A.E.; Pati, J.C.
1997-02-01
In Gravity Unified Theories all operators that are consistent with the local gauge and discrete symmetries are expected to arise in the effective low-energy theory. given the absence of multiplets like 126 of S0(10) in string models, and assuming that B - L is violated spontaneously to generate light neutrino masses via a seesaw mechanism, it is observed that string theory solutions genetically face the problem of producing an excessive {nu}{sub L} - {tilde H} mixing mass at the GUT scale, which is some nineteen orders of magnitude larger than the experimental bound of 1 MeV. The suppression of {nu}{sub L} - {tilde H} mixing, like proton longevity, thus provides one of the most severe restraints on the validity of any string theory solution. We examine this problem in a class of superstring derived models. We find a family of solutions within this class for which the symmetries of the models and an allowed pattern of VEVs, surprisingly, succeed in adequately suppressing the neutrino-Higgsino mixing terms. At the same time they produce the terms required to generate small neutrino masses via seesaw mechanism.
Theory into Practice Goes Exactly
ERIC Educational Resources Information Center
Griffiths, Jonny
2007-01-01
"Dimensions of possible variation" is a phrase that now occupies a safe place in the literature describing the application of education theory to education practice: "asking yourself what could be changed [in the task], while using the same approach or technique, opens up dimensions of possible variation. A set of exercises forming a sequence of…
Communal Resources in Open Source Software Development
ERIC Educational Resources Information Center
Spaeth, Sebastian; Haefliger, Stefan; von Krogh, Georg; Renzl, Birgit
2008-01-01
Introduction: Virtual communities play an important role in innovation. The paper focuses on the particular form of collective action in virtual communities underlying as Open Source software development projects. Method: Building on resource mobilization theory and private-collective innovation, we propose a theory of collective action in…
Instanton effects and the landscape of string theory
NASA Astrophysics Data System (ADS)
Halverson, James Heaton
In this dissertation we study non-perturbative effects in four-dimensional N = 1 compactifications of superstring theory and F-theory, primarily focusing on the importance of instanton corrections to the superpotential. We utilize dualities and limits of F-theory to elucidate the physics of M5-instantons. We study the Pfaffian prefactor via heterotic duality and demonstrate its dependence on seven-brane structure and points of enhanced symmetry. Utilizing anomaly inflow and string junctions, we shed light on the localization and representation theoretic structure of instanton zero modes upon movement in moduli space. We perform a geometric uplift of an instanton in a type IIb GUT to an instanton in F-theory and identify a class of geometries which allow for the determinantion of all uncharged instanton corrections. Utilizing Seiberg-Witten theory, we explain the quantum splitting of certain seven-brane stacks. Motivated by the systematic study of instantons, we study the computability structure of the string theory landscape. We cast the study of fairly generic physical properties into the language of computability theory and show that this amounts to solving systems of diophantine equations. Utilizing the negative solution to Hilbert's 10th problem, we argue that in such systematic studies there may be no algorithm by which one can determine all physical effects. This argument holds for any suitably large class of physical theories, including the landscape. We study a large class of semi-realistic N = 1 quiver gauge theories which can arise in string compactifications. We present many MSSM quivers where the presence of anomalous U (1) symmetries and instanton corrections can account for observed phenomenological hierarchies, including the Yukawa couplings of the MSSM. We propose a new mechanism for obtaining small neutrino masses via an instanton-induced Weinberg operator and systematically study singlet-extended standard models. We discuss constraints on chiral
Evolutionary theories of aging and longevity.
Gavrilov, Leonid A; Gavrilova, Natalia S
2002-02-01
The purpose of this article is to provide students and researchers entering the field of aging studies with an introduction to the evolutionary theories of aging, as well as to orient them in the abundant modern scientific literature on evolutionary gerontology. The following three major evolutionary theories of aging are discussed: 1) the theory of programmed death suggested by August Weismann, 2) the mutation accumulation theory of aging suggested by Peter Medawar, and 3) the antagonistic pleiotropy theory of aging suggested by George Williams. We also discuss a special case of the antagonistic pleiotropy theory, the disposable soma theory developed by Tom Kirkwood and Robin Holliday. The theories are compared with each other as well as with recent experimental findings. At present the most viable evolutionary theories are the mutation accumulation theory and the antagonistic pleiotropy theory; these theories are not mutually exclusive, and they both may become a part of a future unifying theory of aging. Evolutionary theories of aging are useful because they open new opportunities for further research by suggesting testable predictions, but they have also been harmful in the past when they were used to impose limitations on aging studies. At this time, the evolutionary theories of aging are not ultimate completed theories, but rather a set of ideas that themselves require further elaboration and validation. This theoretical review article is written for a wide readership. PMID:12806021
NASA Technical Reports Server (NTRS)
Goldin, Daniel S.
2005-01-01
In these opening remarks to a symposium reflecting on forty years of U.S. Human Spaceflight, NASA Administrator Daniel Goldin, reviews the impact that Alan Shepard had on him personally, to NASA, and to the whole idea of manned spaceflight. Mr Goldin cites Shepard as an example of the past and future of manned spaceflight.
Hildebrand, S.G.
1994-09-01
Included in this paper are the opening remarks of S.G. Hildebrand, from Environmental Science Division, ORNL, to a conference on water resources and water resource issues. Wetlands are the focus of this talk, with an emphasis on conservation and land use to conserve wetland functions and values.
Walsh, Timothy Francis; Reese, Garth M.; Bhardwaj, Manoj Kumar
2011-11-01
Salinas provides a massively parallel implementation of structural dynamics finite element analysis, required for high fidelity, validated models used in modal, vibration, static and shock analysis of structural systems. This manual describes the theory behind many of the constructs in Salinas. For a more detailed description of how to use Salinas, we refer the reader to Salinas, User's Notes. Many of the constructs in Salinas are pulled directly from published material. Where possible, these materials are referenced herein. However, certain functions in Salinas are specific to our implementation. We try to be far more complete in those areas. The theory manual was developed from several sources including general notes, a programmer notes manual, the user's notes and of course the material in the open literature.
An Economic Theory of School Governance.
ERIC Educational Resources Information Center
Rada, Roger D.
Working from the basic assumption that the primary motivation for those involved in school governance is self-interest, this paper develops and discusses 15 hypotheses that form the essential elements of an economic theory of school governance. The paper opens with a review of previous theories of governance and their origins in social science…
NASA Astrophysics Data System (ADS)
Susskind, Leonard
2013-01-01
After reviewing the original motivation for the formulation of string theory and what we learned from it, I discuss some of the implications of the holographic principle and of string dualities for the question of the building blocks of nature.
NASA Astrophysics Data System (ADS)
Murdin, P.
2000-11-01
A theory based on the premise that, on the microscopic scale, physical quantities have discrete, rather than a continuous range of, values. The theory was devised in the early part of the twentieth century to account for certain phenomena that could not be explained by classical physics. In 1900, the German physicist, Max Planck (1858-1947), was able precisely to describe the previously unexplaine...
Towards universal axion inflation and reheating in string theory
NASA Astrophysics Data System (ADS)
Blumenhagen, Ralph; Plauschinn, Erik
2014-09-01
The recent BICEP2 measurements of B-modes indicate a large tensor-to-scalar ratio in inflationary cosmology, which points towards trans-Planckian evolution of the inflaton. We propose possible string-theory realizations thereof. Schemes for natural and axion monodromy inflation are presented in the framework of the type IIB large volume scenario. The inflaton in both cases is given by the universal axion and its potential is generated by F-terms. Our models are shown to feature a natural mechanism for inflaton decay into predominantly Standard Model particles. We assume that the (flux) landscape admits points where the masses of the saxions (including the dilaton) are hierarchically different from the mass of C0. In particular, apart from the nearly massless axion of the big four-cycle in a LVS, C0 can be the lightest closed-string modulus, making it a good candidate for the inflaton. For natural inflation, the potential of the axion is generated by non-perturbative effects from fluxed E3-instantons, whereas for axion monodromy inflation the axion C0 can appear quadratically in the flux induced scalar potential. There exists a mechanism guaranteeing that inflaton decay at the end of inflation predominantly goes into standard model (SM) degrees of freedom. This last point is one of the very interesting aspects of the models considered in this Letter. Note furthermore that the relevant axion potentials are F-terms in an effective spontaneously-broken supergravity theory, which is in the same spirit as [18].Finally, note that an axion decay constant f>Mpl corresponds to the non-perturbative (F-theory) regime gs>1 of the type IIB superstring. We collect some indications that the LVS scenario might be trustable even for string coupling constants slightly larger than one, but of course conclusive evidence requires the parametric control over infinitely many perturbative corrections to the Kähler potential.
Inflation in anisotropic scalar-tensor theories
NASA Technical Reports Server (NTRS)
Pimentel, Luis O.; Stein-Schabes, Jaime
1988-01-01
The existence of an inflationary phase in anisotropic Scalar-Tensor Theories is investigated by means of a conformal transformation that allows us to rewrite these theories as gravity minimally coupled to a scalar field with a nontrivial potential. The explicit form of the potential is then used and the No Hair Theorem concludes that there is an inflationary phase in all open or flat anisotropic spacetimes in these theories. Several examples are constructed where the effect becomes manifest.
Probabilistic Open Set Recognition
NASA Astrophysics Data System (ADS)
Jain, Lalit Prithviraj
Real-world tasks in computer vision, pattern recognition and machine learning often touch upon the open set recognition problem: multi-class recognition with incomplete knowledge of the world and many unknown inputs. An obvious way to approach such problems is to develop a recognition system that thresholds probabilities to reject unknown classes. Traditional rejection techniques are not about the unknown; they are about the uncertain boundary and rejection around that boundary. Thus traditional techniques only represent the "known unknowns". However, a proper open set recognition algorithm is needed to reduce the risk from the "unknown unknowns". This dissertation examines this concept and finds existing probabilistic multi-class recognition approaches are ineffective for true open set recognition. We hypothesize the cause is due to weak adhoc assumptions combined with closed-world assumptions made by existing calibration techniques. Intuitively, if we could accurately model just the positive data for any known class without overfitting, we could reject the large set of unknown classes even under this assumption of incomplete class knowledge. For this, we formulate the problem as one of modeling positive training data by invoking statistical extreme value theory (EVT) near the decision boundary of positive data with respect to negative data. We provide a new algorithm called the PI-SVM for estimating the unnormalized posterior probability of class inclusion. This dissertation also introduces a new open set recognition model called Compact Abating Probability (CAP), where the probability of class membership decreases in value (abates) as points move from known data toward open space. We show that CAP models improve open set recognition for multiple algorithms. Leveraging the CAP formulation, we go on to describe the novel Weibull-calibrated SVM (W-SVM) algorithm, which combines the useful properties of statistical EVT for score calibration with one-class and binary
Smith, Marshall S
2009-01-01
Spurred by the publication of Massachusetts Institute of Technology OpenCourseWare in 2002, the open educational resources (OER) movement, which has rapidly expanded and captured the imagination and energy of millions of creators and users throughout the world, now faces many opportunities and substantial challenges as it moves to become an integral part of the world's educational environment. The confluence of the Web and a spirit of sharing intellectual property have fueled a worldwide movement to make knowledge and education materials open to all for use. OER are content (courses, books, lesson plans, articles, etc.), tools (virtual laboratories, simulations, and games), and software that support learning and educational practice. OER are free on the Web, and most have licenses that allow copyright holders to retain ownership while providing specified rights for use in original and modified forms. At the least, OER have helped to level the distribution of knowledge across the world. A second promise of OER is to help transform educational practices. This article explores the history of and promises and challenges for OER. PMID:19119226
O(Nc) and USp(Nc) QCD from String Theory
NASA Astrophysics Data System (ADS)
Imoto, T.; Sakai, T.; Sugimoto, S.
2009-12-01
We propose a holographic dual of large N_c quantum chromodynamics (QCD) with the gauge groups O(N_c) and USp(N_c) and N_f flavors of massless quarks. This is constructed by adding O6-planes to an intersecting D4-D8 system in type IIA superstring theory. The holographic dual description is formulated in Witten's D4-brane background with D8-branes and O6-planes embedded in it as probes. The D4-brane background gives rise to a smooth interpolation of D8-overline{D8} pairs and an O6-overline{O6} pair. We show that the resultant brane configuration explains geometrically the flavor symmetry breaking patterns in O(N_c) and USp(N_c) QCD, which are caused by quark bilinear condensates. We next discuss that baryons can be realized as D4-overline{D4} pairs wrapped on S^4, which intersect with the O6-plane. By analyzing the tachyons on it, we reproduce the stability conditions of the baryons that are expected from the gauge theory viewpoint . The stable baryon configurations are classified systematically using K-theory. We also give a similar analysis of the flux tubes and again reproduce the results that are consistent with QCD.
Effective theories of universal theories
NASA Astrophysics Data System (ADS)
Wells, James D.; Zhang, Zhengkang
2016-01-01
It is well-known but sometimes overlooked that constraints on the oblique parameters (most notably S and T parameters) are generally speaking only applicable to a special class of new physics scenarios known as universal theories. In the effective field theory (EFT) framework, the oblique parameters should not be associated with Wilson coefficients in a particular operator basis, unless restrictions have been imposed on the EFT so that it describes universal theories. We work out these restrictions, and present a detailed EFT analysis of universal theories. We find that at the dimension-6 level, universal theories are completely characterized by 16 parameters. They are conveniently chosen to be: 5 oblique parameters that agree with the commonly-adopted ones, 4 anomalous triple-gauge couplings, 3 rescaling factors for the h 3, hf f , hV V vertices, 3 parameters for hV V vertices absent in the Standard Model, and 1 four-fermion coupling of order y f 2 . All these parameters are defined in an unambiguous and basis-independent way, allowing for consistent constraints on the universal theories parameter space from precision electroweak and Higgs data.
Density functional theory for Yukawa fluids
NASA Astrophysics Data System (ADS)
Hatlo, Marius M.; Banerjee, Priyanka; Forsman, Jan; Lue, Leo
2012-08-01
We develop an approximate field theory for particles interacting with a generalized Yukawa potential. This theory improves and extends a previous splitting field theory, originally developed for counterions around a fixed charge distribution. The resulting theory bridges between the second virial approximation, which is accurate at low particle densities, and the mean-field approximation, accurate at high densities. We apply this theory to charged, screened ions in bulk solution, modeled to interact with a Yukawa potential; the theory is able to accurately reproduce the thermodynamic properties of the system over a broad range of conditions. The theory is also applied to "dressed counterions," interacting with a screened electrostatic potential, contained between charged plates. It is found to work well from the weak coupling to the strong coupling limits. The theory is able to reproduce the counterion profiles and force curves for closed and open systems obtained from Monte Carlo simulations.
OpenER, a Dutch Initiative in Open Educational Resources
ERIC Educational Resources Information Center
Schuwer, Robert; Mulder, Fred
2009-01-01
Over the period 2006-2008, the Dutch Open Universiteit Nederland conducted an experiment in which Open Educational Resources (OER) were offered in an effort to bridge the gap between informal and formal learning and to establish a new style of entry portal to higher education with no barriers at all. OpenER received considerable attention both in…
NASA Astrophysics Data System (ADS)
Kar, Debjit; Das, Debajyoti
2016-07-01
With the advent of nc-Si solar cells having improved stability, the efficient growth of nc-Si i-layer of the top cell of an efficient all-Si solar cell in the superstrate configuration prefers nc-Si n-layer as its substrate. Accordingly, a wide band gap and high conducting nc-Si alloy material is a basic requirement at the n-layer. Present investigation deals with the development of phosphorous doped n-type nanocrystalline silicon quantum dots embedded in hydrogenated amorphous silicon carbide (nc-Si-QD/a-SiC:H) hetero-structure films, wherein the optical band gap can be widened by the presence of Si-C bonds in the amorphous matrix and the embedded high density tiny nc-Si-QDs could provide high electrical conductivity, particularly in P-doped condition. The nc-Si-QDs simultaneously facilitate further widening of the optical band gap by virtue of the associated quantum confinement effect. A complete investigation has been made on the electrical transport phenomena involving charge transfer by tunneling and thermionic emission prevailing in n-type nc-Si-QD/a-SiC:H thin films. Their correlation with different phases of the specific heterostructure has been carried out for detailed understanding of the material, in order to improve its device applicability. The n-type nc-Si-QD/a-SiC:H films exhibit a thermally activated electrical transport above room temperature and multi-phonon hopping (MPH) below room temperature, involving defects in the amorphous phase and the grain-boundary region. The n-type nc-Si-QD/a-SiC:H films grown at ˜300 °C, demonstrating wide optical gap ˜1.86-1.96 eV and corresponding high electrical conductivity ˜4.5 × 10-1-1.4 × 10-2 S cm-1, deserve to be an effective foundation layer for the top nc-Si sub-cell of all-Si solar cells in n-i-p structure with superstrate configuration.
Nesseris, Savvas; Mazumdar, Anupam
2009-05-15
We consider corrections to the Einstein-Hilbert action, which contain both higher order and nonlocal terms. We derive an effective Newtonian gravitational constant applicable at the weak field limit and use the primordial nucleosynthesis (BBN) bound and the local gravity constraints on G{sub eff} in order to test the viability of several cases of our general Lagrangian. We will also provide a BBN constrain on the {open_square}R gravitational correction.
NASA Astrophysics Data System (ADS)
Moraru, Gheorghe; Mursa, Condrat
2006-12-01
In this book we present the basic concepts of the theory of elasticity: stress and deformation states (plane and three-dimensional) and generalized Hooke's law. We present a number of problems which have applications in strength analysis. The book includes a synthesis of the theory of elasticity and modern methods of applied mathematics. This book is designed for students, post graduate students and specialists in strength analysis. the book contains a number of appendixes which includes: elements of matrix-calculation, concepts of tensorial calculation, the Fourier transform, the notion of improper integrals,singular and hypersingular integrals, generalized functions, the Dirac Delta function
None
2011-04-25
Michel Pentz est née en Afrique du Sud et venu au Cern en 1957 comme physicien et président de l'associaion du personnel. Il est également fondateur du mouvement Antiapartheid de Genève et a participé à la fondation de l'Open University en Grande-Bretagne. Il nous parle des contextes pédagogiques, culturels et nationaux dans lesquels la méthode peut s'appliquer.
Entropy favours open colloidal lattices
NASA Astrophysics Data System (ADS)
Mao, Xiaoming; Chen, Qian; Granick, Steve
2013-03-01
Burgeoning experimental and simulation activity seeks to understand the existence of self-assembled colloidal structures that are not close-packed. Here we describe an analytical theory based on lattice dynamics and supported by experiments that reveals the fundamental role entropy can play in stabilizing open lattices. The entropy we consider is associated with the rotational and vibrational modes unique to colloids interacting through extended attractive patches. The theory makes predictions of the implied temperature, pressure and patch-size dependence of the phase diagram of open and close-packed structures. More generally, it provides guidance for the conditions at which targeted patchy colloidal assemblies in two and three dimensions are stable, thus overcoming the difficulty in exploring by experiment or simulation the full range of conceivable parameters.
ERIC Educational Resources Information Center
Moorman, Thomas
1992-01-01
Students experience the distinction between observable fact and scientific theory by taking a critical look at how spaghetti can be sucked up into the mouth. A demonstration shows that air is needed to suck up the spaghetti but that the scientific explanation is not as simple. (MDH)
ERIC Educational Resources Information Center
Toso, Robert B.
2000-01-01
Inspired by William Glasser's Reality Therapy ideas, Control Theory (CT) is a disciplinary approach that stresses people's ability to control only their own behavior, based on internal motivations to satisfy five basic needs. At one North Dakota high school, CT-trained teachers are the program's best recruiters. (MLH)
NASA Astrophysics Data System (ADS)
Paschos, E. A.
2005-01-01
The electroweak theory unifies two basic forces of nature: the weak force and electromagnetism. This book is a concise introduction to the structure of the electroweak theory and its applications. It describes the structure and properties of field theories with global and local symmetries, leading to the construction of the standard model. It describes the new particles and processes predicted by the theory, and compares them with experimental results. It also covers neutral currents, the properties of W and Z bosons, the properties of quarks and mesons containing heavy quarks, neutrino oscillations, CP-asymmetries in K, D, and B meson decays, and the search for Higgs particles. Each chapter contains problems, stemming from the long teaching experience of the author, to supplement the text. This will be of great interest to graduate students and researchers in elementary particle physics. Password protected solutions are available to lecturers at www.cambridge.org/9780521860987. Each chapter has an introduction highlighting its contents and giving a historical perspective. Chapters are cross-referenced, interrelating concepts and sections of the book. Contains 49 exercises
Open Standards, Open Source, and Open Innovation: Harnessing the Benefits of Openness
ERIC Educational Resources Information Center
Committee for Economic Development, 2006
2006-01-01
Digitization of information and the Internet have profoundly expanded the capacity for openness. This report details the benefits of openness in three areas--open standards, open-source software, and open innovation--and examines the major issues in the debate over whether openness should be encouraged or not. The report explains each of these…
[From the cell theory to the neuron theory].
Tixier-Vidal, Andrée
2010-01-01
The relationship between the cell theory formulated by Schwann (1839) and by Virchow (1855) on the one hand, and, on the other hand, the neuron theory, as formulated by Waldeyer (1891) and by Cajal (1906), are discussed from a historical point of view. Both of them are the result of technical and conceptuel progress. Both of them had to fight against the dominant dogma before being accepted. The cell theory opposed the school of Bichat, the vitalist philosophy and the positivist philosophy of Auguste Comte. The neuron theory, which is clearly based on the cell theory, was mostly concerned with the mode of interneuronal communication; it opposed the concept of contiguity to Golgi's concept of continuity. At present, the cell theory remains central in every field of Biology. By contrast, the neuron theory, which until the middle of the XXth century opened the study of the nervous system to a necessary reductionnist approach, is no longer central to recent developments of neurosciences. PMID:21215242
Perturbative approach to open circuit QED systems
NASA Astrophysics Data System (ADS)
Li, Andy C. Y.; Petruccione, Francesco; Koch, Jens
2014-03-01
Perturbation theory (PT) is a powerful and commonly used tool in the investigation of closed quantum systems. In the context of open quantum systems, PT based on the Markovian quantum master equation is much less developed. The investigation of open systems mostly relies on exact diagonalization of the Liouville superoperator or quantum trajectories. In this approach, the system size is rather limited by current computational capabilities. Analogous to closed-system PT, we develop a PT suitable for open quantum systems. The proposed method is useful in the analytical understanding of open systems as well as in the numerical calculation of system observables, which would otherwise be impractical. This enables us to investigate a variety of open circuit QED systems, including the open Jaynes-Cummings lattice model.
NASA Astrophysics Data System (ADS)
Hawking, S. W.
In February this year, Neil Turok and I proposed a new model for inflation. The distinctive feature was that it produced an infinite, open universe, yet it satisfied the no boundary condition and came from an instanton of finite size, with a mass of the order of one gram. Our paper aroused a lot of interest, as shown by 37 citations on HEP-TH, but it brought a lot of opposition. This centered on three features of our model.First, we were attacked for using the no boundary proposal. People like Linde and Vilenkin, claimed that one should use the quantum tunneling wave function instead.Second, we were criticized because our instanton contained a singularity. It was said this was contrary to the spirit of the no boundary proposal; that the singularity would be naked and would make the universe non predictable.Third, we invoked the anthropic principle, to avoid the model predicting a totally empty universe. We were attacked both for using anthropic arguments, and for the very low value for the density of the universe, that they seemed to lead to.In this talk, I will describe the open inflation model that Neil and I proposed, and answer some of the objections that have been raised.
Recruiting and Retaining Adult Students: An Organizational Theory Perspective.
ERIC Educational Resources Information Center
Cookson, Peter S.
1989-01-01
Describes the recruitment and retention of adult students in light of two varieties of organizational theory. Compliance theory was formulated to classify relationships between organizational representatives and "lower participants" in large organizations. Open systems theory emphasizes the nature of the interaction between an organization and its…
Evaluating Theory-Based Evaluation: Information, Norms, and Adherence
ERIC Educational Resources Information Center
Jacobs, W. Jake; Sisco, Melissa; Hill, Dawn; Malter, Frederic; Figueredo, Aurelio Jose
2012-01-01
Programmatic social interventions attempt to produce appropriate social-norm-guided behavior in an open environment. A marriage of applicable psychological theory, appropriate program evaluation theory, and outcome of evaluations of specific social interventions assures the acquisition of cumulative theory and the production of successful social…
Pani, Paolo; Cardoso, Vitor
2009-04-15
It is generally accepted that Einstein's theory will get some as yet unknown corrections, possibly large in the strong-field regime. An ideal place to look for these modifications is in the vicinities of compact objects such as black holes. Here, we study dilatonic black holes, which arise in the framework of Gauss-Bonnet couplings and one-loop corrected four-dimensional effective theory of heterotic superstrings at low energies. These are interesting objects as a prototype for alternative, yet well-behaved gravity theories: they evade the 'no-hair' theorem of general relativity but were proven to be stable against radial perturbations. We investigate the viability of these black holes as astrophysical objects and try to provide some means to distinguish them from black holes in general relativity. We start by extending previous works and establishing the stability of these black holes against axial perturbations. We then look for solutions of the field equations describing slowly rotating black holes and study geodesic motion around this geometry. Depending on the values of mass, dilaton charge, and angular momentum of the solution, one can have differences in the innermost-stable-circular-orbit location and orbital frequency, relative to black holes in general relativity. In the most favorable cases, the difference amounts to a few percent. Given the current state-of-the-art, we discuss the difficulty of distinguishing the correct theory of gravity from electromagnetic observations or even with gravitational-wave detectors.
Open-closed homotopy algebra in mathematical physics
Kajiura, Hiroshige; Stasheff, Jim
2006-02-15
In this paper we discuss various aspects of open-closed homotopy algebras (OCHAs) presented in our previous paper, inspired by Zwiebach's open-closed string field theory, but that first paper concentrated on the mathematical aspects. Here we show how an OCHA is obtained by extracting the tree part of Zwiebach's quantum open-closed string field theory. We clarify the explicit relation of an OCHA with Kontsevich's deformation quantization and with the B-models of homological mirror symmetry. An explicit form of the minimal model for an OCHA is given as well as its relation to the perturbative expansion of open-closed string field theory. We show that our open-closed homotopy algebra gives us a general scheme for deformation of open string structures (A{sub {infinity}} algebras) by closed strings (L{sub {infinity}} algebras)
Theory Survey or Survey Theory?
ERIC Educational Resources Information Center
Dean, Jodi
2010-01-01
Matthew Moore's survey of political theorists in U.S. American colleges and universities is an impressive contribution to political science (Moore 2010). It is the first such survey of political theory as a subfield, the response rate is very high, and the answers to the survey questions provide new information about how political theorists look…
NASA Technical Reports Server (NTRS)
Johnson, W.
1980-01-01
A comprehensive presentation is made of the engineering analysis methods used in the design, development and evaluation of helicopters. After an introduction covering the fundamentals of helicopter rotors, configuration and operation, rotary wing history, and the analytical notation used in the text, the following topics are discussed: (1) vertical flight, including momentum, blade element and vortex theories, induced power, vertical drag and ground effect; (2) forward flight, including in addition to momentum and vortex theory for this mode such phenomena as rotor flapping and its higher harmonics, tip loss and root cutout, compressibility and pitch-flap coupling; (3) hover and forward flight performance assessment; (4) helicopter rotor design; (5) rotary wing aerodynamics; (6) rotary wing structural dynamics, including flutter, flap-lag dynamics ground resonance and vibration and loads; (7) helicopter aeroelasticity; (8) stability and control (flying qualities); (9) stall; and (10) noise.
Knot theory in understanding proteins.
Mishra, Rama; Bhushan, Shantha
2012-12-01
This paper aims to enthuse mathematicians, especially topologists, knot theorists and geometers to examine problems in the study of proteins. We have highlighted those advances and breakthroughs in knot theory that directly and indirectly help in understanding proteins. We have discussed the phenomena of knotting of protein backbone. This paper also provides a few open questions for knot theorists, the answers to which will help in further understanding of proteins. PMID:22105789
Summing Planar Bosonic Open Strings
Bardakci, Korkut
2006-02-16
In earlier work, planar graphs of massless {phi}{sup 3} theory were summed with the help of the light cone world sheet picture and the mean field approximation. In the present article, the same methods are applied to the problem of summing planar bosonic open strings. They find that in the ground state of the system, string boundaries form a condensate on the world sheet, and a new string emerges from this summation. Its slope is always greater than the initial slope, and it remains non-zero even when the initial slope is set equal to zero. If they assume the initial string tends to a field a theory in the zero slope limit, this result provides evidence for string formation in field theory.
The Worldsheet S-Matrix of Planar N = 4 Gauge Theory (Abstract)
Beisert, N.
2007-10-03
Maximally supersymmetric Yang-Mills theory in the 't Hooft limit is apparently completely integrable. Bethe equations then enable us to compute anomalous dimensions, for example those of twist-two operators, exactly at very high perturbative orders. The Bethe ansatz in turn is based on the (worldsheet) S-matrix which is reviewed in this talk. The flavour structure of the S-matrix is completely fixed by symmetry and an overall phase is partially constrained by a crossing relation. In hep-th/0610251 we have recently proposed an expression for this phase to all perturbative orders which is consistent with presently available data. For instance, it leads to an integral equation for the high-spin limit of twist-two operators (also known as the cusp/soft anomalous dimension) at finite coupling. In fact, this result appears to be a part of the corresponding analytic answer for *every* four-dimensional gauge theory including QCD.The putatively exact phase also leads to one of the strongest tests of the AdS/CFT conjecture to date: We can now show complete agreement with dynamical results in non-interacting IIB superstrings on the AdS{sub 5}xS{sup 5} background by reexpanding the phase at strong coupling.
Duncan, S.S.
1995-12-31
Although antinuclear campaigns seem to be effective, public communication and education efforts on low-level radioactive waste have mixed results. Attempts at public information programs on low-level radioactive waste still focus on influencing public opinion. A question then is: {open_quotes}Is it preferable to have a program focus on public education that will empower individuals to make informed decisions rather than trying to influence them in their decisions?{close_quotes} To address this question, a case study with both quantitative and qualitative data will be used. The Ohio Low-Level Radioactive Waste Education Program has a goal to provide people with information they want/need to make their own decisions. The program initiated its efforts by conducting a statewide survey to determine information needed by people and where they turned for that information. This presentation reports data from the survey and then explores the program development process in which programs were designed and presented using the information. Pre and post data from the programs reveal attitude and knowledge shifts.
Chukudebelu, W O; Lucas, A O; Ransome-kuti, O; Akinla, O; Obayi, G U
1988-01-01
The theme of the 3rd International Conference of the Society of Gynecology and Obstetrics of Nigeria (SOGON) held October 26, 1986 in Enugu was maternal morbidity and mortality in Africa. The opening addresses emphasize the high maternal mortality rate in Africa and SOGON's dedication to promoting women's health and welfare. In order to reduce maternal mortality, the scope of this problem must be made evident by gathering accurate mortality rates through maternity care monitoring and auditing. Governments, health professionals, educators, behavioral scientists, and communication specialists have a responsibility to improve maternal health services in this country. By making the population aware of this problem through education, measures can be taken to reduce the presently high maternal mortality rates. Nigerian women are physically unprepared for childbirth; therefore, balanced diets and disease prevention should be promoted. Since about 40% of deliveries are unmanaged, training for traditional birth attendants should be provided. Furthermore, family planning programs should discourage teenage pregnancies, encourage birth spacing and small families, and promote the use of family planning techniques among men. The problem of child bearing and rearing accompanied by hard work should also be investigated. For practices to change so that maternal mortality rates can be reduced, attitudes must be changed such that the current rates are viewed as unacceptable. PMID:12179275
Perturbative approach to Markovian open quantum systems
Li, Andy C. Y.; Petruccione, F.; Koch, Jens
2014-01-01
The exact treatment of Markovian open quantum systems, when based on numerical diagonalization of the Liouville super-operator or averaging over quantum trajectories, is severely limited by Hilbert space size. Perturbation theory, standard in the investigation of closed quantum systems, has remained much less developed for open quantum systems where a direct application to the Lindblad master equation is desirable. We present such a perturbative treatment which will be useful for an analytical understanding of open quantum systems and for numerical calculation of system observables which would otherwise be impractical. PMID:24811607
NASA Astrophysics Data System (ADS)
Crida, Aurélien
2015-08-01
The great variety of the architectures of the extra-solar planetary systems has revealed the fundamental role played by planetary migration: the interactions between the planets and the gaseous disk in which they form leads to a modification of their orbits. Here, I will review the basic processes and the most recent results in this area.Planets up to ~50 Earth masses are prone to so-called type I migration.I will describe the processes at play, namely the Lindblad and corotation torques, and explain how the total torque depends on the planet mass and the local disk structure. Application to realistic disks shows one or two sweet spot(s) for outward migration of planets roughly between 5 and 30 Earth masses around the snowline ; this is confirmed by dedicated 3D numerical simulations. This has strong consequences on the formation of hot Super-Earths or mini-Neptunes.For smaller mass planets, it has been recently proposed that the heating of the neighboring gas by the luminous planet can lead to a positive torque, hence promoting outward migration. On the other hand, if the planet is not a heat source, a cold finger appears, whose resulting torque is negative. Applications of these two recent results should be discussed.Giant planets open gaps in the proto-planetary disk, and then are supposedly subject to type II migration, following the viscous accretion of the disk. This standard picture has been questioned recently, as gas appears to drift through the gap. Although the gap opening process is well understood in 2D for a planet on a fixed orbit, recent results on 3D simulations or migrating planets make the picture more accurate.Our ever better understanding of planet-disk interactions is of crucial importance as the statistics on extra solar systems keep growing and the results of these interactions are now imaged.
NASA Astrophysics Data System (ADS)
Mamedov, B. A.; Çopuroğlu, E.
2016-06-01
In this work, we study the effects of self-friction field on the states of a single configuration of closed and open shells by using the Combined Hartree-Fock-Roothaan equations for atomic-molecular and nuclear systems. Here, we present a program that implements the evaluation of the various properties of atoms and molecular systems with respect to the various values of self-friction quantum numbers. An especially fast and accurate algorithm for the calculation of the self-friction multicenter molecular integrals is obtained by using one-range addition theorems. To demonstrate the action of self-friction field on the atomic and molecular systems we have performed the calculations of H2O, CH3, CH2 and NH3 molecules. For the derivations of the orbital, kinetic and total energies and linear combination coefficients, the results are given for various values of self-friction quantum numbers. For various values of self-friction quantum numbers the obtained results of the orbital, kinetic and total energies and linear combination coefficients have been analyzed.
Open Source, Openness, and Higher Education
ERIC Educational Resources Information Center
Wiley, David
2006-01-01
In this article David Wiley provides an overview of how the general expansion of open source software has affected the world of education in particular. In doing so, Wiley not only addresses the development of open source software applications for teachers and administrators, he also discusses how the fundamental philosophy of the open source…
ERIC Educational Resources Information Center
Johnson, Neil A.
1990-01-01
Assesses the contributions of T. B. Greenfield's "Alternative Theory" to a comprehensive theory for school administration in practice and scholarship. Considers Greenfield's standpoint in relation to rational, natural, and open systems perspectives. (DMM)
[Systems theory and nursing--a theoretical discussion].
Andersson-Segesten, K
1989-01-01
Every nurse interested in nursing process models and nursing theory will sooner or later meet the general systems theory (GST). In this article the background of GST is briefly described. Further the key concepts of GST are defined; components, attributes, relations, borders, input, output, filtering, process, open system, closed system, subsystem, suprasystem, feedback and steady state. As examples of GST in nursing the Newman Health Care Systems Model, the Johnson Open System Model and Yura and Walsh way of using the theory are described in brief. Finally some advantages and disadvantages of using general systems theory in nursing are noticed. PMID:2487988
Salciccioli, Michael; Chen, Ying; Vlachos, Dion G.
2010-11-09
Semiempirical methods for prediction of thermochemical properties of adsorbed oxygenates are developed. Periodic density functional theory calculations are used to study the relative stability of ethanol, ethylene glycol, isopropyl alcohol, and glycerol dehydrogenation intermediates on Pt(111). For ethylene glycol dehydrogenation intermediates, it is found that the thermodynamically favored intermediates at each level of dehydrogenation are as follows: HOCH_{2}CHOH, HOCHCHOH, HOCHCOH, HOCCOH ≈ HOCHCO, HOCCO, OCCO. Structural and energetic patterns emerge from these C_{2}H_{x}O_{2} adsorption calculations that lead to the formation of group additive properties for thermochemical property prediction of oxygenates on Pt(111). Finally, linear scaling relationships of atomic binding energy are used to predict the binding energy of the C_{2}H_{x}O_{2} species on the Ni(111) surface and Ni-Pt-Pt(111) bimetallic surface. It is shown that the linear scaling relationships can accurately predict the binding energy of larger oxygenates as well as of oxygenates on bimetallic catalysts. Corrections for ring strain and weak oxygen-metal and hydrogen-bonding interactions are added to increase the accuracy of group additivity and linear scaling relationships.
Quadruple-junction thin-film silicon-based solar cells with high open-circuit voltage
NASA Astrophysics Data System (ADS)
Si, Fai Tong; Kim, Do Yun; Santbergen, Rudi; Tan, Hairen; van Swaaij, René A. C. M. M.; Smets, Arno H. M.; Isabella, Olindo; Zeman, Miro
2014-08-01
We have fabricated a-SiOx:H/a-Si:H/nc-Si:H/nc-Si:H quadruple-junction thin-film silicon-based solar cells (4J TFSSCs) to obtain high spectral utilization and high voltages. By processing the solar cells on micro-textured superstrates, extremely high open-circuit voltages for photovoltaic technology based on thin-film silicon alloys up to 2.91 V have been achieved. Optical simulations of quadruple-junction solar cells using an advanced in-house model are a crucial tool to effectively tackle the challenging task of current matching among the individual sub-cells in such devices. After optimizing the optical design of the device and the absorber thicknesses, an energy conversion efficiency of 11.4% has been achieved. The open-circuit voltage, short-circuit current density, and fill factor were 2.82 V, 5.49 mA/cm2, and 73.9%, respectively. Based on this demonstration, strategies for further development of highly efficient 4J TFSSCs are proposed.
Scale invariance of the η-deformed AdS5 × S5 superstring, T-duality and modified type II equations
NASA Astrophysics Data System (ADS)
Arutyunov, G.; Frolov, S.; Hoare, B.; Roiban, R.; Tseytlin, A. A.
2016-02-01
We consider the ABF background underlying the η-deformed AdS5 ×S5 sigma model. This background fails to satisfy the standard IIB supergravity equations which indicates that the corresponding sigma model is not Weyl invariant, i.e. does not define a critical string theory in the usual sense. We argue that the ABF background should still define a UV finite theory on a flat 2d world-sheet implying that the η-deformed model is scale invariant. This property follows from the formal relation via T-duality between the η-deformed model and the one defined by an exact type IIB supergravity solution that has 6 isometries albeit broken by a linear dilaton. We find that the ABF background satisfies candidate type IIB scale invariance conditions which for the R-R field strengths are of the second order in derivatives. Surprisingly, we also find that the ABF background obeys an interesting modification of the standard IIB supergravity equations that are first order in derivatives of R-R fields. These modified equations explicitly depend on Killing vectors of the ABF background and, although not universal, they imply the universal scale invariance conditions. Moreover, we show that it is precisely the non-isometric dilaton of the T-dual solution that leads, after T-duality, to modification of type II equations from their standard form. We conjecture that the modified equations should follow from κ-symmetry of the η-deformed model. All our observations apply also to η-deformations of AdS3 ×S3 ×T4and AdS2 ×S2 ×T6models.
Biological atomism and cell theory.
Nicholson, Daniel J
2010-09-01
Biological atomism postulates that all life is composed of elementary and indivisible vital units. The activity of a living organism is thus conceived as the result of the activities and interactions of its elementary constituents, each of which individually already exhibits all the attributes proper to life. This paper surveys some of the key episodes in the history of biological atomism, and situates cell theory within this tradition. The atomistic foundations of cell theory are subsequently dissected and discussed, together with the theory's conceptual development and eventual consolidation. This paper then examines the major criticisms that have been waged against cell theory, and argues that these too can be interpreted through the prism of biological atomism as attempts to relocate the true biological atom away from the cell to a level of organization above or below it. Overall, biological atomism provides a useful perspective through which to examine the history and philosophy of cell theory, and it also opens up a new way of thinking about the epistemic decomposition of living organisms that significantly departs from the physicochemical reductionism of mechanistic biology. PMID:20934641
Openness/Intellect in a 50-Item IPIP Instrument
ERIC Educational Resources Information Center
Ingram, Paul B.; Boan-Lenzo, Candace; Vuyk, M. Alexandra
2013-01-01
The M5-50 is a five-factor theory instrument based on the International Personality Item Pool (IPIP) that has had difficulties with the five-factor model fitting well. The openness domain's factor structure has a history of concerns that might relate to the connected yet distinguishable facets of openness/intellect. This study explored the…
ERIC Educational Resources Information Center
Voyles, Bennett
2007-01-01
People know about the Sakai Project (open source course management system); they may even know about Kuali (open source financials). So, what is the next wave in open source software? This article discusses business intelligence (BI) systems. Though open source BI may still be only a rumor in most campus IT departments, some brave early adopters…
Interdisciplinary and physics challenges of network theory
NASA Astrophysics Data System (ADS)
Bianconi, Ginestra
2015-09-01
Network theory has unveiled the underlying structure of complex systems such as the Internet or the biological networks in the cell. It has identified universal properties of complex networks, and the interplay between their structure and dynamics. After almost twenty years of the field, new challenges lie ahead. These challenges concern the multilayer structure of most of the networks, the formulation of a network geometry and topology, and the development of a quantum theory of networks. Making progress on these aspects of network theory can open new venues to address interdisciplinary and physics challenges including progress on brain dynamics, new insights into quantum technologies, and quantum gravity.
Effective coupling for open billiards
NASA Astrophysics Data System (ADS)
Pichugin, Konstantin; Schanz, Holger; Šeba, Petr
2001-11-01
We derive an explicit expression for the coupling constants of individual eigenstates of a closed billiard that is opened by attaching a waveguide. The Wigner time delay and the resonance positions resulting from the coupling constants are compared to an exact numerical calculation. Deviations can be attributed to evanescent modes in the waveguide and to the finite number of eigenstates taken into account. The influence of the shape of the billiard and of the boundary conditions at the mouth of the waveguide are also discussed. Finally we show that the mean value of the dimensionless coupling constants tends to the critical value when the eigenstates of the billiard follow random-matrix theory.
Actor-Network Theory of Cosmopolitan Education
ERIC Educational Resources Information Center
Saito, Hiro
2010-01-01
In the past, philosophers discussed cosmopolitanism as a normative ideal of allegiance to humanity as a whole. A debate among social theorists, however, has examined cosmopolitanism as an incipient empirical phenomenon: an orientation of openness to foreign others and cultures. This paper introduces actor-network theory to elaborate the…
The Worldsheet Perspective of T-Duality Symmetry in String Theory
NASA Astrophysics Data System (ADS)
Maharana, Jnanadeva
2013-03-01
The purpose of this paper is to present a pedagogical review of T-duality in string theory. The evolution of the closed string is envisaged on the worldsheet in the presence of its massless excitations. The duality symmetry is studied when some of the spacial coordinates are compactified on d-dimensional torus, Td. The known results are reviewed to elucidate that equations of motion for the compact coordinates are O(d, d) covariant, d being the number of compact directions. Next, the vertex operators of excited massive levels are considered in a simple compactification scheme. It is shown that the vertex operators for each massive level can be cast in a T-duality invariant form in such a case. Subsequently, the duality properties of superstring is investigated in the NSR formulation for the massless backgrounds such as graviton and antisymmetric tensor. The worldsheet superfield formulation is found to be very suitable for our purpose. The Hassan-Sen compactification is adopted and it is shown that the worldsheet equations of motion for compact superfields are O(d, d) covariant when the backgrounds are independent of superfields along compact directions. The vertex operators for excited levels are presented in the NS-NS sector and it is shown that they can be cast in T-duality invariant form for the case of Hassan-Sen compactification scheme. An illustrative example is presented to realize our proposal.
Extended scalar-tensor theories of gravity
NASA Astrophysics Data System (ADS)
Crisostomi, Marco; Koyama, Kazuya; Tasinato, Gianmassimo
2016-04-01
We study new consistent scalar-tensor theories of gravity recently introduced by Langlois and Noui with potentially interesting cosmological applications. We derive the conditions for the existence of a primary constraint that prevents the propagation of an additional dangerous mode associated with higher order equations of motion. We then classify the most general, consistent scalar-tensor theories that are at most quadratic in the second derivatives of the scalar field. In addition, we investigate the possible connection between these theories and (beyond) Horndeski through conformal and disformal transformations. Finally, we point out that these theories can be associated with new operators in the effective field theory of dark energy, which might open up new possibilities to test dark energy models in future surveys.
On the theory of coronal heating mechanisms
NASA Technical Reports Server (NTRS)
Kuperus, M.; Ionson, J. A.; Spicer, D. S.
1981-01-01
The present state-of-the-art of two classes of theories of coronal heating is examined: (1) heating by acoustic processes in the 'nonmagnetic' parts of the atmosphere (the shock-wave theory is an example); and (2) heating by electrodynamic processes in the magnetic regions of the corona (beta much less than 1) either by MHD waves or current heating in regions with high electric current densities (flare-type heating). It is concluded that the mechanism of the heating of the solar chromosphere and corona remains an open question, especially in explaining detailed atmospheric structures. The acoustic theory might be correct with little modification for most of the chromosphere, but as soon as the atmosphere shows a high degree of structure as in the corona and transition layer the magnetic field must play a dominant role. It appears that the current heating theories have a small range of applicability, while the MHD-wave theories are the most promising.
Cosmic necklaces from string theory
Leblond, Louis; Wyman, Mark
2007-06-15
We present the properties of a cosmic superstring network in the scenario of flux compactification. An infinite family of strings, the (p,q) strings, are allowed to exist. The flux compactification leads to a string tension that is periodic in p. Monopoles, appearing here as beads on a string, are formed in certain interactions in such networks. This allows bare strings to become cosmic necklaces. We study network evolution in this scenario, outlining what conditions are necessary to reach a cosmologically viable scaling solution. We also analyze the physics of the beads on a cosmic necklace, and present general conditions for which they will be cosmologically safe, leaving the network's scaling undisturbed. In particular, we find that a large average loop size is sufficient for the beads to be cosmologically safe. Finally, we argue that loop formation will promote a scaling solution for the interbead distance in some situations.
Theory and Vocational Education.
ERIC Educational Resources Information Center
Swanson, Gordon I.
1988-01-01
The search for an explanation of day-to-day problems is the appropriate framework for describing theory. Theory and research have reciprocal relationships: Theory gives direction to research and research refines theory. Vocational education occurs in the context of many theoretical frames. Understanding this theory relatedness is important to…
Sierra Structural Dynamics Theory Manual
Reese, Garth M.
2015-10-19
Sierra/SD provides a massively parallel implementation of structural dynamics finite element analysis, required for high fidelity, validated models used in modal, vibration, static and shock analysis of structural systems. This manual describes the theory behind many of the constructs in Sierra/SD. For a more detailed description of how to use Sierra/SD , we refer the reader to Sierra/SD, User's Notes . Many of the constructs in Sierra/SD are pulled directly from published material. Where possible, these materials are referenced herein. However, certain functions in Sierra/SD are specific to our implementation. We try to be far more complete in those areas. The theory manual was developed from several sources including general notes, a programmer notes manual, the user's notes and of course the material in the open literature. This page intentionally left blank.
Quantum Hamilton-Jacobi theory.
Roncadelli, Marco; Schulman, L S
2007-10-26
Quantum canonical transformations have attracted interest since the beginning of quantum theory. Based on their classical analogues, one would expect them to provide a powerful quantum tool. However, the difficulty of solving a nonlinear operator partial differential equation such as the quantum Hamilton-Jacobi equation (QHJE) has hindered progress along this otherwise promising avenue. We overcome this difficulty. We show that solutions to the QHJE can be constructed by a simple prescription starting from the propagator of the associated Schrödinger equation. Our result opens the possibility of practical use of quantum Hamilton-Jacobi theory. As an application, we develop a surprising relation between operator ordering and the density of paths around a semiclassical trajectory. PMID:17995307
Decidability of formal theories and hyperincursivity theory
NASA Astrophysics Data System (ADS)
Grappone, Arturo G.
2000-05-01
This paper shows the limits of the Proof Standard Theory (briefly, PST) and gives some ideas of how to build a proof anticipatory theory (briefly, PAT) that has no such limits. Also, this paper considers that Gödel's proof of the undecidability of Principia Mathematica formal theory is not valid for axiomatic theories that use a PAT to build their proofs because the (hyper)incursive functions are self-representable.
Educational Philosophy and the Challenge of Complexity Theory
ERIC Educational Resources Information Center
Morrison, Keith
2008-01-01
Complexity theory challenges educational philosophy to reconsider accepted paradigms of teaching, learning and educational research. However, though attractive, not least because of its critique of positivism, its affinity to Dewey and Habermas, and its arguments for openness, diversity, relationships, agency and creativity, the theory is not…
General Strain Theory, Peer Rejection, and Delinquency/Crime
ERIC Educational Resources Information Center
Higgins, George E.; Piquero, Nicole L.; Piquero, Alex R.
2011-01-01
The development of general strain theory (GST) has led to a renewed focus on the influence of negative life experiences on antisocial behavior. Although a number of studies have generated an impressive array of support for the theory, several avenues remain open for research. In this article, we examine how a specific noxious stimuli, peer…
Openness, Web 2.0 Technology, and Open Science
ERIC Educational Resources Information Center
Peters, Michael A.
2010-01-01
Open science is a term that is being used in the literature to designate a form of science based on open source models or that utilizes principles of open access, open archiving and open publishing to promote scientific communication. Open science increasingly also refers to open governance and more democratized engagement and control of science…
NASA Astrophysics Data System (ADS)
Becker, Katrin; Becker, Melanie; Schwarz, John H.
String theory is one of the most exciting and challenging areas of modern theoretical physics. This book guides the reader from the basics of string theory to recent developments. It introduces the basics of perturbative string theory, world-sheet supersymmetry, space-time supersymmetry, conformal field theory and the heterotic string, before describing modern developments, including D-branes, string dualities and M-theory. It then covers string geometry and flux compactifications, applications to cosmology and particle physics, black holes in string theory and M-theory, and the microscopic origin of black-hole entropy. It concludes with Matrix theory, the AdS/CFT duality and its generalizations. This book is ideal for graduate students and researchers in modern string theory, and will make an excellent textbook for a one-year course on string theory. It contains over 120 exercises with solutions, and over 200 homework problems with solutions available on a password protected website for lecturers at www.cambridge.org/9780521860697. Comprehensive coverage of topics from basics of string theory to recent developments Ideal textbook for a one-year course in string theory Includes over 100 exercises with solutions Contains over 200 homework problems with solutions available to lecturers on-line
Open access and open source in chemistry
Todd, Matthew H
2007-01-01
Scientific data are being generated and shared at ever-increasing rates. Two new mechanisms for doing this have developed: open access publishing and open source research. We discuss both, with recent examples, highlighting the differences between the two, and the strengths of both. PMID:17939849
Open access, open education resources and open data in Uganda
Salvo, Ivana Di; Mwoka, Meggie; Kwaga, Teddy; Rukundo, Priscilla Aceng; Ernest, Dennis Ssesanga; Osaheni, Louis Aikoriogie; John, Kasibante; Shafik, Kasirye; de Sousa, Agostinho Moreira
2015-01-01
As a follow up to OpenCon 2014, International Federation of Medical Students’ Associations (IFMSA) students organized a 3 day workshop Open Access, Open Education Resources and Open Data in Kampala from 15-18 December 2014. One of the aims of the workshop was to engage the Open Access movement in Uganda which encompasses the scientific community, librarians, academia, researchers and students. The IFMSA students held the workshop with the support of: Consortium for Uganda University Libraries (CUUL), The Right to Research Coalition, Electronic Information for Libraries (EIFL), Makerere University, International Health Sciences University (IHSU), Pan African Medical Journal (PAMJ) and the Centre for Health Human Rights and Development (CEHURD). All these organizations are based or have offices in Kampala. The event culminated in a meeting with the Science and Technology Committee of Parliament of Uganda in order to receive the support of the Ugandan Members of Parliament and to make a concrete change for Open Access in the country. PMID:26327966
Open access, open education resources and open data in Uganda.
Salvo, Ivana Di; Mwoka, Meggie; Kwaga, Teddy; Rukundo, Priscilla Aceng; Ernest, Dennis Ssesanga; Osaheni, Louis Aikoriogie; John, Kasibante; Shafik, Kasirye; de Sousa, Agostinho Moreira
2015-01-01
As a follow up to OpenCon 2014, International Federation of Medical Students' Associations (IFMSA) students organized a 3 day workshop Open Access, Open Education Resources and Open Data in Kampala from 15-18 December 2014. One of the aims of the workshop was to engage the Open Access movement in Uganda which encompasses the scientific community, librarians, academia, researchers and students. The IFMSA students held the workshop with the support of: Consortium for Uganda University Libraries (CUUL), The Right to Research Coalition, Electronic Information for Libraries (EIFL), Makerere University, International Health Sciences University (IHSU), Pan African Medical Journal (PAMJ) and the Centre for Health Human Rights and Development (CEHURD). All these organizations are based or have offices in Kampala. The event culminated in a meeting with the Science and Technology Committee of Parliament of Uganda in order to receive the support of the Ugandan Members of Parliament and to make a concrete change for Open Access in the country. PMID:26327966
Foundations for a theory of gravitation theories
NASA Technical Reports Server (NTRS)
Thorne, K. S.; Lee, D. L.; Lightman, A. P.
1972-01-01
A foundation is laid for future analyses of gravitation theories. This foundation is applicable to any theory formulated in terms of geometric objects defined on a 4-dimensional spacetime manifold. The foundation consists of (1) a glossary of fundamental concepts; (2) a theorem that delineates the overlap between Lagrangian-based theories and metric theories; (3) a conjecture (due to Schiff) that the Weak Equivalence Principle implies the Einstein Equivalence Principle; and (4) a plausibility argument supporting this conjecture for the special case of relativistic, Lagrangian-based theories.
Expert "vs." Novice: Approaches Used by Chemists When Solving Open-Ended Problems
ERIC Educational Resources Information Center
Randles, C. A.; Overton, T. L.
2015-01-01
This paper describes the results of a qualitative study using ground theory to investigate the different approaches used by chemists when answering open-ended problems. The study involved undergraduate, industrialist and academic participants who individually answered three open-ended problems using a think aloud protocol. Open-ended problems are…
NASA Technical Reports Server (NTRS)
Thomas, John H.; Weiss, Nigel O.
1992-01-01
This review covers the present state of our theoretical understanding of the physics of sunspots, along with the principal observational results that need to be explained. The topics covered range from the detailed structure of an individual sunspot to the broad connection between sunspots and the global solar magnetic field and the solar cycle. Our aim is to give a critical discussion of the theoretical ideas and models without presenting mathematical details. After outlining the historical development of the basic concepts associated with the magnetohydrodynamic theory of sunspots, we discuss recent treatments of their properties and structure, placing special emphasis on developments that have occurred within the last ten years. There have been remarkable improvements in the theoretical modelling of sunspots, led by new ideas and by more elaborate and realistic numerical simulations. At the same time, new observations have raised new theoretical questions or caused old ones to be reconsidered. In particular, measurements of oscillations in and around sunspots have opened up the new field of sunspot seismology, while recent high-resolution observations have forced us to rethink the structure of a sunspot penumbra.
Microlesions - Theory and reality
NASA Technical Reports Server (NTRS)
Worgul, Basil V.; Koniarek, Jan P.; Krebs, Wolf
1989-01-01
Efforts to assess radiation risk in space have been complicated by the considerable unknowns regarding the biological effects of the heavy ion component (HZE particles) of the cosmic rays. The attention has focused primarily on the assignation of a quality factor (Q) which would take into account the greater effectiveness of heavy ions vis-a-vis other forms of ionizing radiation. If, however, as the so-called 'microlesion theory' allows, the passage of HZE particles through living tissue produces unique biological damage, the traditional use of Q becomes meaningless. Therefore, it is critical to determine if microlesions, in fact, do exist. While the concept does not necessarily require detectable morphological damage, 'tunnel-lesions' or holes in ocular tissues have been cited as evidence of microlesions. These data, however, are open to reinterpretation. Ongoing light, scanning and transmission electron microscopic studies of the corneas, lenses and retinas of rat eyes exposed to 450 MeV/amu Fe-56 ions thus far have not revealed tunnel-lesion damage. The morphological effects of the heavy ions have been found to be qualitatively similar to the changes following other kinds of ionizing radiation.
The Concept of Openness behind c- and x-MOOCs (Massive Open Online Courses)
ERIC Educational Resources Information Center
Rodriguez, Osvaldo
2013-01-01
The last five years have witnessed a hype about MOOCs (Massive Open Online Courses) presaging a revolution in higher education. Although all MOOCs have in common their scale and free access, they have already bifurcated in two very distinct types of courses when compared in terms of their underpinning theory, format and structure, known as c-MOOCs…
Trionfo, Arianna; Cavanaugh, Priscilla K; Herman, Martin J
2016-07-01
Open fractures in children are rare and are typically associated with better prognoses compared with their adult equivalents. Regardless, open fractures pose a challenge because of the risk of healing complications and infection, leading to significant morbidity even in the pediatric population. Therefore, the management of pediatric open fractures requires special consideration. This article comprehensively reviews the initial evaluation, classification, treatment, outcomes, and controversies of open fractures in children. PMID:27241379
ERIC Educational Resources Information Center
Tenopir, Carol
2004-01-01
Open access publishing is a hot topic today. But open access publishing can have many different definitions, and pros and cons vary with the definitions. Open access publishing is especially attractive to companies and small colleges or universities that are likely to have many more readers than authors. A downside is that a membership fee sounds…
2011-01-01
The advent of open access to peer reviewed scholarly literature in the biomedical sciences creates the opening to examine scholarship in general, and chemistry in particular, to see where and how novel forms of network technology can accelerate the scientific method. This paper examines broad trends in information access and openness with an eye towards their applications in chemistry. PMID:21999327
ERIC Educational Resources Information Center
Hill, John
1983-01-01
The appearance of open universities in Asia is of interest to Australian educators, particularly since the Asian institutions differ in some respects from the British model which combined open entry to all and extensively employed the electronic media. The Asian Open Universities have provided access to higher education for many. (SSH)
NASA Astrophysics Data System (ADS)
Showstack, Randy
2010-03-01
U.S. President Barack Obama's Memorandum on Transparency and Open Government requires federal agencies to take steps toward increased transparency, public participation, and collaboration. Agencies are accepting suggestions until 19 March 2010. For more information, visit http://www.whitehouse.gov/open and http://www.usa.gov/webcontent/open/tool_poc.shtml.
Kerr-NUT-AdS metrics and string theory
NASA Astrophysics Data System (ADS)
Chen, Wei
With the advent of supergravity and superstring theory, it is of great importance to study higher-dimensional solutions to the Einstein equations. In this dissertation, we study the higher dimensional Kerr-AdS metrics, and show how they admit further generalisations in which additional NUT-type parameters are introduced. The choice of coordinates in four dimensions that leads to the natural inclusion of a NUT parameter in the Kerr-AdS solution is rather well known. An important feature of this coordinate system is that the radial variable and the latitude variable are placed on a very symmetrical footing. The NUT generalisations of the high-dimensional Kerr-AdS metrics obtained in this dissertation work in a very similar way. We first consider the Kerr-AdS metrics specialised to cohomogeneity 2 by appropriate restrictions on their rotation parameters. A latitude coordinate is introduced in such a way that it, and the radial variable, appeared in a very symmetrical way. The inclusion of a NUT charge is a natural result of this parametrisation. This procedure is then applied to the general D dimensional Kerr-AdS metrics with cohomogeneity [D/2]. The metrics depend on the radial coordinate r and [D/2] latitude variables mu i that are subject to the constraint Sigmai m2i = 1. We find a coordinate reparameterisation in which the mu i variables are replaced by [D/2]-1 unconstrained coordinates gammaalpha, and put the coordinates r and gammaalpha on a parallel footing in the metrics, leading to an immediate introduction of ([D/2]-1) NUT parameters. This gives the most general Kerr-NUT-AdS metrics in D dimensions. We discuss some remarkable properties of the new Kerr-NUT-AdS metrics. We show that the Hamilton-Jacobi and Klein-Gordon equations are separable in Kerr-NUT-AdS metrics with cohomogeneity 2. We also demonstrate that the general cohomogeneity-n Kerr-NUT-AdS metrics can be written in multi-Kerr-Schild form. Lastly, We study the BPS limits of the Kerr
Looking south at the open hearth steelmaking plant; open hearth ...
Looking south at the open hearth steelmaking plant; open hearth stockhouse in foreground and open hearth furnace building in background - U.S. Steel Edgar Thomson Works, Open Hearth Steelmaking Plant, Along Monongahela River, Braddock, Allegheny County, PA
ERIC Educational Resources Information Center
Apsche, Jack A.
2005-01-01
In his work on the Theory of Modes, Beck (1996) suggested that there were flaws with his cognitive theory. He suggested that though there are shortcomings to his cognitive theory, there were not similar shortcomings to the practice of Cognitive Therapy. The author suggests that if there are shortcomings to cognitive theory the same shortcomings…
Spherical coupled-cluster theory for open-shell nuclei
NASA Astrophysics Data System (ADS)
Jansen, G. R.
2013-08-01
Background: A microscopic description of nuclei is important to understand the nuclear shell model from fundamental principles. This is difficult to achieve for more than the lightest nuclei without an effective approximation scheme.Purpose: Define and evaluate an approximation scheme that can be used to study nuclei that are described as two particles attached to a closed (sub-)shell nucleus.Methods: The equation-of-motion coupled-cluster formalism has been used to obtain ground- and excited-state energies. This method is based on the diagonalization of a non-Hermitian matrix obtained from a similarity transformation of the many-body nuclear Hamiltonian. A chiral interaction at the next-to-next-to-next-to leading order (N3LO) using a cutoff at 500 MeV was used.Results: The ground-state energies of 6Li and 6He were in good agreement with a no-core shell-model calculation using the same interaction. Several excited states were also produced with overall good agreement. Only the Jπ=3+ excited state in 6Li showed a sizable deviation. The ground-state energies of 18O, 18F, and 18Ne were converged but underbound compared to experiment. Moreover, the calculated spectra were converged and comparable to both experiment and shell-model studies in this region. Some excited states in 18O were high or missing in the spectrum. It was also shown that the wave function for both ground and excited states separates into an intrinsic part and a Gaussian for the center-of-mass coordinate. Spurious center-of-mass excitations are clearly identified.Conclusions: Results are converged with respect to the size of the model space and the method can be used to describe nuclear states with simple structure. Especially the ground-state energies were very close to what has been achieved by exact diagonalization. To obtain a closer match with experimental data, effects of three-nucleon forces, the scattering continuum, as well as additional configurations in the coupled-cluster approximations are necessary.
Direct proof of the Ward-like identities in split field theory
NASA Astrophysics Data System (ADS)
Abdurrahman, Abdulmajeed; Abdurrahman, Ibrahim; Gassem, Mahmoud
2016-03-01
The bosonic representation of the split field theory of the open bosonic string ghost, in the full string basis, is examined. The proof that the split field theory 3- vertex (matter and ghost) in the bosonic representation satisfy the Ward like identities is established thus completing the proof of the Bose Fermi equivalence in the split field theory formalism of the open bosonic string. This work is supported by CFEST, Institute of Public Services, Shippensburg University of Pennsylvania.
The Open Future: Openness as Catalyst for an Educational Reformation
ERIC Educational Resources Information Center
Wiley, David
2010-01-01
The word "open" is receiving a lot of attention in education circles. For over a decade, "open" has been used as an adjective to modify a variety of nouns that describe teaching and learning materials. For example, open content, open educational resources, open courseware, and open textbooks are all part of the current higher education discourse.…
Quantum Theory is an Information Theory
NASA Astrophysics Data System (ADS)
D'Ariano, Giacomo M.; Perinotti, Paolo
2016-03-01
In this paper we review the general framework of operational probabilistic theories (OPT), along with the six axioms from which quantum theory can be derived. We argue that the OPT framework along with a relaxed version of five of the axioms, define a general information theory. We close the paper with considerations about the role of the observer in an OPT, and the interpretation of the von Neumann postulate and the Schrödinger-cat paradox.
Closed and Open Systems: The Tavistock Group from a General System Perspective.
ERIC Educational Resources Information Center
Rugel, Robert P.
1991-01-01
Describes phases in the life of a Tavistock group composed of college students using concepts from Von Bertalanffy's general systems theory, MacKenzie's role theory, and Kantor's family theory. Discusses early, middle, and late phases of typical 16-session group as it moves from a closed to an open system. (Author/NB)
Teaching Theory X and Theory Y in Organizational Communication
ERIC Educational Resources Information Center
Noland, Carey
2014-01-01
The purpose of the activity described here is to integrate McGregor's Theory X and Theory Y into a group application: design a syllabus that embodies either Theory X or Theory Y tenets. Students should be able to differentiate between Theory X and Theory Y, create a syllabus based on Theory X or Theory Y tenets, evaluate the different syllabi…
The Peer Reviewers' Openness Initiative: incentivizing open research practices through peer review
Chambers, Christopher D.; Etchells, Peter J.; Harris, Christine R.; Hoekstra, Rink; Lakens, Daniël; Morey, Candice Coker; Newman, Daniel P.; Schönbrodt, Felix D.; Wagenmakers, Eric-Jan; Zwaan, Rolf A.
2016-01-01
Openness is one of the central values of science. Open scientific practices such as sharing data, materials and analysis scripts alongside published articles have many benefits, including easier replication and extension studies, increased availability of data for theory-building and meta-analysis, and increased possibility of review and collaboration even after a paper has been published. Although modern information technology makes sharing easier than ever before, uptake of open practices had been slow. We suggest this might be in part due to a social dilemma arising from misaligned incentives and propose a specific, concrete mechanism—reviewers withholding comprehensive review—to achieve the goal of creating the expectation of open practices as a matter of scientific principle. PMID:26909182
Separation-individuation theory and attachment theory.
Blum, Harold P
2004-01-01
Separation-individuation and attachment theories are compared and assessed in the context of psychoanalytic developmental theory and their application to clinical work. As introduced by Margaret Mahler and John Bowlby, respectively, both theories were initially regarded as diverging from traditional views. Separation-individuation theory, though it has had to be corrected in important respects, and attachment theory, despite certain limitations, have nonetheless enriched psychoanalytic thought. Without attachment an infant would die, and with severely insecure attachment is at greater risk for serious disorders. Development depends on continued attachment to a responsive and responsible caregiver. Continued attachment to the primary object was regarded by Mahler as as intrinsic to the process of separation-individuation. Attachment theory does not account for the essential development of separateness, and separation-individuation is important for the promotion of autonomy, independence, and identity. Salient historical and theoretical issues are addressed, including the renewed interest in attachment theory and the related decline of interest in separation-individuation theory. PMID:15222460
Generalizability Theory and Classical Test Theory
ERIC Educational Resources Information Center
Brennan, Robert L.
2011-01-01
Broadly conceived, reliability involves quantifying the consistencies and inconsistencies in observed scores. Generalizability theory, or G theory, is particularly well suited to addressing such matters in that it enables an investigator to quantify and distinguish the sources of inconsistencies in observed scores that arise, or could arise, over…
Physicochemical insight into gap openings in graphene
Zhu, Y. F.; Dai, Q. Q.; Zhao, M.; Jiang, Q.
2013-01-01
Based on a newly developed size-dependent cohesive energy formula for two-dimensional materials, a unified theoretical model was established to illustrate the gap openings in disordered graphene flakes, involving quantum dots, nanoribbons and nanoporous sheets. It tells us that the openings are essentially dominated by the variation in cohesive energy of C atoms, associated to the edge physicochemical nature regarding the coordination imperfection or the chemical bonding. In contrast to those ideal flakes, consequently, the gaps can be opened monotonously for disordered flakes on changing their sizes, affected by the dimension, geometric shape and the edge saturation. Using the density functional theory, accordingly, the electronic structures of disordered flakes differ to the ideal case because of the edge disorder. Our theoretical predictions have been validated by available experimental results, and provide us a distinct way for the quantitative modulation of bandgap in graphene for nanoelectronics. PMID:23524635
Analytic thinking reduces belief in conspiracy theories.
Swami, Viren; Voracek, Martin; Stieger, Stefan; Tran, Ulrich S; Furnham, Adrian
2014-12-01
Belief in conspiracy theories has been associated with a range of negative health, civic, and social outcomes, requiring reliable methods of reducing such belief. Thinking dispositions have been highlighted as one possible factor associated with belief in conspiracy theories, but actual relationships have only been infrequently studied. In Study 1, we examined associations between belief in conspiracy theories and a range of measures of thinking dispositions in a British sample (N=990). Results indicated that a stronger belief in conspiracy theories was significantly associated with lower analytic thinking and open-mindedness and greater intuitive thinking. In Studies 2-4, we examined the causational role played by analytic thinking in relation to conspiracist ideation. In Study 2 (N=112), we showed that a verbal fluency task that elicited analytic thinking reduced belief in conspiracy theories. In Study 3 (N=189), we found that an alternative method of eliciting analytic thinking, which related to cognitive disfluency, was effective at reducing conspiracist ideation in a student sample. In Study 4, we replicated the results of Study 3 among a general population sample (N=140) in relation to generic conspiracist ideation and belief in conspiracy theories about the July 7, 2005, bombings in London. Our results highlight the potential utility of supporting attempts to promote analytic thinking as a means of countering the widespread acceptance of conspiracy theories. PMID:25217762
Transparent superstrate terrestrial solar cell module
NASA Technical Reports Server (NTRS)
1977-01-01
The design, development, fabrication, and testing of the transparent solar cell module were examined. Cell performance and material process characteristics were determined by extensive tests and design modifications were made prior to preproduction fabrication. These tests included three cell submodules and two full size engineering modules. Along with hardware and test activity, engineering documentation was prepared and submitted.
Equivalency Theory and Distance Education.
ERIC Educational Resources Information Center
Simonson, Michael
1999-01-01
Discusses distance education and the need for an accepted theory. Highlights include theories of independent study; theory of industrialization of teaching; theory of interaction and communication; and equivalency theory that is based on local control, personalized instruction, and telecommunications. (LRW)
Open Babel: An open chemical toolbox
2011-01-01
Background A frequent problem in computational modeling is the interconversion of chemical structures between different formats. While standard interchange formats exist (for example, Chemical Markup Language) and de facto standards have arisen (for example, SMILES format), the need to interconvert formats is a continuing problem due to the multitude of different application areas for chemistry data, differences in the data stored by different formats (0D versus 3D, for example), and competition between software along with a lack of vendor-neutral formats. Results We discuss, for the first time, Open Babel, an open-source chemical toolbox that speaks the many languages of chemical data. Open Babel version 2.3 interconverts over 110 formats. The need to represent such a wide variety of chemical and molecular data requires a library that implements a wide range of cheminformatics algorithms, from partial charge assignment and aromaticity detection, to bond order perception and canonicalization. We detail the implementation of Open Babel, describe key advances in the 2.3 release, and outline a variety of uses both in terms of software products and scientific research, including applications far beyond simple format interconversion. Conclusions Open Babel presents a solution to the proliferation of multiple chemical file formats. In addition, it provides a variety of useful utilities from conformer searching and 2D depiction, to filtering, batch conversion, and substructure and similarity searching. For developers, it can be used as a programming library to handle chemical data in areas such as organic chemistry, drug design, materials science, and computational chemistry. It is freely available under an open-source license from http://openbabel.org. PMID:21982300
Nonlinear gas oscillations in pipes. I - Theory.
NASA Technical Reports Server (NTRS)
Jimenez, J.
1973-01-01
The problem of forced acoustic oscillations in a pipe is studied theoretically. The oscillations are produced by a moving piston in one end of the pipe, while a variety of boundary conditions ranging from a completely closed to a completely open mouth at the other end are considered. The linear theory predicts large amplitudes near resonance and that nonlinear effects become crucially important. By expanding the equations of motion in a series in the Mach number, both the amplitude and waveform of the oscillation are predicted there. In both the open- and closed-end cases the need for shock waves in some range of parameters is found. The amplitude of the oscillation is different for the two cases, however, being proportional to the square root of the piston amplitude in the closed-end case and to the cube root for the open end.
[Mathematics and string theory
Jaffe, A.; Yau, Shing-Tung.
1993-01-01
Work on this grant was centered on connections between non- commutative geometry and physics. Topics covered included: cyclic cohomology, non-commutative manifolds, index theory, reflection positivity, space quantization, quantum groups, number theory, etc.
Kheirandish, F.; Amooshahi, M.
2008-11-18
Quantum field theory of a damped vibrating string as the simplest dissipative scalar field theory is investigated by introducing a minimal coupling method. The rate of energy flowing between the system and its environment is obtained.
A Field Theory Problem Relating to Questions in Hyperfield Theory
NASA Astrophysics Data System (ADS)
Massouros, Ch. G.
2011-09-01
M. Krasner introduced the notions of the hypefield and the hyperring in 1956. Much later, he constructed the quotient hyperfield/hyperrring, using a field/ring and a subgroup of its multiplicative group/semigroup. The existence of non-quotient hyperfields and hyperrings was an essential question for the self-sufficiency of the theory of hyperfields and hyperrings vis-à-vis that of fields and rings. The momogene hyperfield, which was introduced by the author, is a hyperfield H having the property x - x = H for all x≠0. The existence of non-quotient monogene hyperfields is a hitherto open question. The answer to this question is directly connected with the answer to the question which fields can be expressed as a difference of a subgroup of their multiplicative group from itself and which these subgroups are. These issues, as well as some relevant theorems are presented in this paper.
Aerodynamic preliminary analysis system. Part 1: Theory. [linearized potential theory
NASA Technical Reports Server (NTRS)
Bonner, E.; Clever, W.; Dunn, K.
1978-01-01
A comprehensive aerodynamic analysis program based on linearized potential theory is described. The solution treats thickness and attitude problems at subsonic and supersonic speeds. Three dimensional configurations with or without jet flaps having multiple non-planar surfaces of arbitrary planform and open or closed slender bodies of non-circular contour may be analyzed. Longitudinal and lateral-directional static and rotary derivative solutions may be generated. The analysis was implemented on a time sharing system in conjunction with an input tablet digitizer and an interactive graphics input/output display and editing terminal to maximize its responsiveness to the preliminary analysis problem. Nominal case computation time of 45 CPU seconds on the CDC 175 for a 200 panel simulation indicates the program provides an efficient analysis for systematically performing various aerodynamic configuration tradeoff and evaluation studies.
Theories of Career Development. A Comparison of the Theories.
ERIC Educational Resources Information Center
Osipow, Samuel H.
These seven theories of career development are examined in previous chapters: (1) Roe's personality theory, (2) Holland's career typology theory, (3) the Ginzberg, Ginsburg, Axelrod, and Herma Theory, (4) psychoanalytic conceptions, (5) Super's developmental self-concept theory, (6) other personality theories, and (7) social systems theories.…
Open problems in color constancy: discussion.
van Trigt, C
2014-02-01
This paper discusses a number of open problems in color constancy theory whose correct solution is a prerequisite for the theory of the phenomenon. Solutions employing suitable visually meaningful versus physically meaningful basis functions (principal components) are examined. In the former case the starting point is an estimate of the first derivative of the reflectance (illuminant), essential for defining color, instead of an estimate of the reflectance (illuminant), as in the latter. Conceptual consequences are discussed. Mathematical and physical constraints are identified. We compare the results of theories that do or do not ignore them. The following questions are considered. (1) Do unique solutions of the estimation problem exist everywhere in the object-color solid belonging to the illuminant? (2) Are they physically meaningful, i.e., at least nonnegative? (3) Are they representative for reflectance and spectral distribution functions? (4) What role plays metamerism? PMID:24562033
ERIC Educational Resources Information Center
Davis, Philip W.
This volume explores objectively the essential characteristic of nine twentieth-century linguistic theories with the theoretical variant for discussion based on one closely representative of work within a given approach or usually associated with the name of the theory. First, the theory of Ferdinand de Saussure is discussed based on his book,…