Science.gov

Sample records for open superstring theory

  1. Multigluon scattering in open superstring theory

    SciTech Connect

    Stieberger, Stephan; Taylor, Tomasz R.

    2006-12-15

    We discuss the amplitudes describing N-gluon scattering in type I superstring theory, on a disk world sheet. After reviewing the general structure of amplitudes and the complications created by the presence of a large number of vertices at the boundary, we focus on the most promising case of maximally helicity violating (MHV) configurations because in this case, the zero Regge slope limit ({alpha}{sup '}{yields}0) is particularly simple. We obtain the full-fledged MHV disk amplitudes for N=4, 5, and N=6 gluons, expressed in terms of one, two and six functions of kinematic invariants, respectively. These functions represent certain boundary integrals--generalized Euler integrals--which for N{>=}6 correspond to multiple hypergeometric series (generalized Kampe de Feriet functions). Their {alpha}{sup '} expansions lead to Euler-Zagier sums. For arbitrary N, we show that the leading string corrections to the Yang-Mills amplitude, of order O({alpha}{sup '2}), originate from the well-known {alpha}{sup '2} TrF{sup 4} effective interactions of four gauge field strength tensors. By using iteration based on the soft gluon limit, we derive a simple formula valid to that order for arbitrary N. We argue that such a procedure can be extended to all orders in {alpha}{sup '}. If nature gracefully picked a sufficiently low string mass scale, our results would be important for studying string effects in multijet production at the Large Hadron Collider (LHC)

  2. Complete action for open superstring field theory with cyclic A ∞ structure

    NASA Astrophysics Data System (ADS)

    Erler, Theodore; Okawa, Yuji; Takezaki, Tomoyuki

    2016-08-01

    We construct a gauge invariant action for the Neveu-Schwarz and Ramond sectors of open superstring field theory realizing a cyclic A ∞ structure, providing the first complete and fully explicit solution to the classical Batalin-Vilkovisky master equation in superstring field theory. We also demonstrate the equivalence of our action to the Wess-Zumino-Witten-based construction of Kunitomo and one of the authors.

  3. Real analytic solutions for marginal deformations in open superstring field theory

    NASA Astrophysics Data System (ADS)

    Okawa, Yuji

    2007-09-01

    We construct analytic solutions for marginal deformations satisfying the reality condition in open superstring field theory formulated by Berkovits when operator products made of the marginal operator and the associated superconformal primary field are regular. Our strategy is based on the recent observation by Erler that the problem of finding solutions for marginal deformations in open superstring field theory can be reduced to a problem in the bosonic theory of finding a finite gauge parameter for a certain pure-gauge configuration labeled by the parameter of the marginal deformation. We find a gauge transformation generated by a real gauge parameter which infinitesimally changes the deformation parameter and construct a finite gauge parameter by its path-ordered exponential. The resulting solution satisfies the reality condition by construction.

  4. Comments on complete actions for open superstring field theory

    NASA Astrophysics Data System (ADS)

    Matsunaga, Hiroaki

    2016-11-01

    We clarify a Wess-Zumino-Witten-like structure including Ramond fields and propose one systematic way to construct gauge invariant actions: Wess-Zumino-Witten-like complete action S WZW. We show that Kunitomo-Okawa's action proposed in arXiv:1508.00366 can obtain a topological parameter dependence of Ramond fields and belongs to our WZW-like framework. In this framework, once a WZW-like functional {{A}}_{η }={{A}}_{η}[Ψ ] of a dynamical string field Ψ is constructed, we obtain one realization of S WZW[Ψ] parametrized by Ψ. On the basis of this way, we construct an action tilde{S} whose on-shell condition is equivalent to the Ramond equations of motion proposed in arXiv:1506.05774. Using these results, we provide the equivalence of two theories: arXiv:1508.00366 and arXiv:1506.05774.

  5. Nonrelativistic superstring theories

    SciTech Connect

    Kim, Bom Soo

    2007-12-15

    We construct a supersymmetric version of the critical nonrelativistic bosonic string theory [B. S. Kim, Phys. Rev. D 76, 106007 (2007).] with its manifest global symmetry. We introduce the anticommuting bc conformal field theory (CFT) which is the super partner of the {beta}{gamma} CFT. The conformal weights of the b and c fields are both 1/2. The action of the fermionic sector can be transformed into that of the relativistic superstring theory. We explicitly quantize the theory with manifest SO(8) symmetry and find that the spectrum is similar to that of type IIB superstring theory. There is one notable difference: the fermions are nonchiral. We further consider noncritical generalizations of the supersymmetric theory using the superspace formulation. There is an infinite range of possible string theories similar to the supercritical string theories. We comment on the connection between the critical nonrelativistic string theory and the lightlike linear dilaton theory.

  6. From the Berkovits formulation to the Witten formulation in open superstring field theory

    NASA Astrophysics Data System (ADS)

    Iimori, Yuki; Noumi, Toshifumi; Okawa, Yuji; Torii, Shingo

    2014-03-01

    The Berkovits formulation of open superstring field theory is based on the large Hilbert space of the superconformal ghost sector. We discuss its relation to the Witten formulation based on the small Hilbert space. We introduce a one-parameter family of conditions for partial gauge fixing of the Berkovits formulation such that the cubic interaction of the theory under the partial gauge fixing reduces to that of the Witten formulation in a singular limit. The local picture-changing operator at the open-string midpoint in the Witten formulation is regularized in our approach, and the divergence in on-shell four-point amplitudes coming from collision of picture-changing operators is resolved. The quartic interaction inherited from the Berkovits formulation plays a role of adjusting different behaviors of the picture-changing operators in the s channel and in the t channel of Feynman diagrams with two cubic vertices, and correct amplitudes in the world-sheet theory are reproduced. While gauge invariance at the second order in the coupling constant is obscured in the Witten formulation by collision of picture-changing operators, it is well defined in our approach and is recovered by including the quartic interaction inherited from the Berkovits formulation.

  7. Theory of ultracold superstrings

    SciTech Connect

    Snoek, Michiel; Vandoren, S.; Stoof, H. T. C.

    2006-09-15

    The combination of a vortex line in a one-dimensional optical lattice with fermions bound to the vortex core makes up an ultracold superstring. We give a detailed derivation of the way to make this supersymmetric string in the laboratory. In particular, we discuss the presence of a fermionic bound state in the vortex core and the tuning of the laser beams needed to achieve supersymmetry. Moreover, we discuss experimental consequences of supersymmetry and identify the precise supersymmetry in the problem. Finally, we make the mathematical connection with string theory.

  8. The sociology of superstring theory

    NASA Astrophysics Data System (ADS)

    Dick, Brian Douglas

    This dissertation carefully tracks the historical origins of superstring theory in high energy particle physics, its subsequent decline under the guise of the "dual model" in the mid-1970s, and its reemergence in the mid-1980s in what came to be known as the "first superstring revolution." I then explore the scientific controversy that emerged after the first superstring revolution due to superstring theory's lack of contact with experiment, and the set of institutional pressures felt by string theorists that they refer to as the "sociology" of superstring theory. I employ and develop the concept of "scientific legitimacy" to organize the historical analysis of superstring theory and the subsequent scientific controversy. My study emphasizes the interpretive flexibility of theory selection, the role of scientific judgment in the acceptance of scientific knowledge, and the ways in which boundary work operates in scientific controversies. A careful analysis of the empirical case of superstring theory indicates some of the limitations associated with the ways in which the closure of scientific controversies has traditionally been conceptualized by social researchers. To help overcome these difficulties, I propose a four-fold typology that I refer to as the "epistemic space of rejected science."

  9. Recent developments in superstring theory.

    PubMed

    Schwarz, J H

    1998-03-17

    There have been many remarkable developments in our understanding of superstring theory in the past few years, a period that has been described as "the second superstring revolution." In particular, what once appeared to be five distinct theories are now recognized to be different manifestations of a single (unique) underlying theory. Some of the evidence for this, based on dualities and the appearance of an eleventh dimension, is presented. Also, a specific proposal for the underlying theory, called "Matrix Theory," is described. The presentation is intended primarily for the benefit of nonexperts.

  10. Recent developments in superstring theory

    PubMed Central

    Schwarz, John H.

    1998-01-01

    There have been many remarkable developments in our understanding of superstring theory in the past few years, a period that has been described as “the second superstring revolution.” In particular, what once appeared to be five distinct theories are now recognized to be different manifestations of a single (unique) underlying theory. Some of the evidence for this, based on dualities and the appearance of an eleventh dimension, is presented. Also, a specific proposal for the underlying theory, called “Matrix Theory,” is described. The presentation is intended primarily for the benefit of nonexperts. PMID:9501161

  11. Spin-statistics violations in superstring theory

    SciTech Connect

    Jackson, Mark G.

    2008-12-15

    I describe how superstring theory may violate spin statistics in an experimentally observable manner. Reviewing the basics of superstring interactions and how to utilize these to produce a statistical phase, I then apply these ideas to two specific examples. The first is the case of heterotic world sheet linkings, whereby one small closed string momentarily enlarges sufficiently to pass over another, producing such a statistical phase. The second is the braneworld model with noncommutative geometry, whereby matter composed of open strings may couple to a background in which spacetime coordinates do not commute, modifying the field (anti)commutator algebra. I conclude with ways to sharpen and experimentally test these exciting avenues to possibly verify superstring theory.

  12. Non-Relativistic Superstring Theories

    SciTech Connect

    Kim, Bom Soo

    2007-12-14

    We construct a supersymmetric version of the 'critical' non-relativistic bosonic string theory [1] with its manifest global symmetry. We introduce the anticommuting bc CFT which is the super partner of the {beta}{gamma} CFT. The conformal weights of the b and c fields are both 1/2. The action of the fermionic sector can be transformed into that of the relativistic superstring theory. We explicitly quantize the theory with manifest SO(8) symmetry and find that the spectrum is similar to that of Type IIB superstring theory. There is one notable difference: the fermions are non-chiral. We further consider 'noncritical' generalizations of the supersymmetric theory using the superspace formulation. There is an infinite range of possible string theories similar to the supercritical string theories. We comment on the connection between the critical non-relativistic string theory and the lightlike Linear Dilaton theory.

  13. Superstrings. A theory of everything?

    NASA Astrophysics Data System (ADS)

    Davies, P. C. W.; Brown, J.

    The first part of this book presents an introduction, in nonmathematical terms, to the basic ideas of superstring theoryand its potential physical and cosmological implications. This part is written by P. C. W. Davies. The second part of the book presents transcripts of interviews with theoretical physicists involved in developing superstring theory. These interviews were originally broadcast in a BBC Radio science documentary. The book includes the text of the interviews with the physicists John Schwarz, Edward Witten, Michael Green, David Gross, John Ellis, Abdus Salam, Sheldon Glashow, Richard Feynman and Steven Weinberg.

  14. Introduction to string and superstring theory II

    SciTech Connect

    Peskin, M.E.

    1987-03-01

    Conformal field theory is reviewed, then conformal invariance is used to rederive the basic results on the embedding dimensionality for bosonic and fermionic strings. The spectrum of the bosonic and the computation of scattering amplitudes are discussed. The formalism used is extended to clarify the origin of Yang-Mills gauge invariance in the open bosonic string theory. The question of the general-coordinate gauge invariance of string theory is addressed, presenting two disparate viewpoints on this question. A brief introduction is then given of the reduction from the idealized string theory in 10 extended dimensions to more realistic solutions in which all but 4 of these dimensions are compactified. The state of knowledge about the space-time supersymmetry of the superstring from the covariant viewpoint is outlined. An approach for identifying possible 6-dimensional spaces which might represent the form of the compact dimensions is discussed, and the orbifold scheme of compactification is presented. 77 refs., 18 figs. (LEW)

  15. Causality and supersymmetry in the superstring theory

    NASA Astrophysics Data System (ADS)

    Pollock, M. D.

    2003-07-01

    Reduction of the ten-dimensional, heterotic-superstring effective action μν and N = 1 supersymmetry is preserved via the equation d≡ tr(∧ ∧ μνξ is the totally antisymmetric three-index field (while the bosonic string and type-II superstring may contain a spin-2 tachyon and a spin-0 tachyon, respectively). Here, we show that this crucial feature is independent of imposing supersymmetry, for if d¬=; 0, there is an additional contribution to R2 which, however, produces no tachyons. Thus, the requirement of a stable, causal theory singles out the heterotic superstring irrespective of the requirement of N = 1 supersymmetry, which is essential at high energies rather for its roles in the vanishing of the cosmological constant and the maintenance of the gauge hierarchy.

  16. Regularization of open superstring from orientable closed surface

    SciTech Connect

    Frampton, P.H.; Kshirsagar, A.K.; Ng, Y.J.

    1986-10-15

    By tracing the one-loop annulus and Moebius diagrams to a common origin, as integration contours on a torus, the principal-part regularization of the open superstring is given some justification. The result hints at the possibility of a simple topological expansion for open superstrings.

  17. Supersymmetry and Dimensionality in the Superstring Theory

    NASA Astrophysics Data System (ADS)

    Pollock, M. D.

    The realization of non-linear global supersymmetry in the superstring theory requires the quadratic fermionic Lagrangian { T}2D ≡ T2-TmnTmn, defined from the D-dimensional, Minkowski-space energy-momentum tensor Tmn, to have the same form as the quadratic gravitational contribution { R}2D to the superstring Lagrangian. Here, we prove that this condition is only satisfied for the heterotic string theory after reduction to D = 4, irrespective of whether the original source of { R}2D in ten or twenty-six dimensions is the quadratic term hat { R}2 or the quartic term hat { R}4. If { R}2D derives from hat { R}4, the solution is D = 4 (or the unphysical value D = 1), while if we suppose that D≠4 and hat { R}2 E dominates, we obtain the (singular) solution (D-2)3 = 0. The world sheet is also discussed. The bosonic string and type-II superstring, on the other hand, yield solutions for D which are complex, non-integral, or at the singular point D = 2, where the Einstein equations hold identically.

  18. On the Foundations of Superstring Theory

    NASA Astrophysics Data System (ADS)

    't Hooft, Gerard

    2013-01-01

    Superstring theory is an extension of conventional quantum field theory that allows for stringlike and branelike material objects besides pointlike particles. The basic foundations on which the theory is built are amazingly shaky, and, equally amazingly, it seems to be this lack of solid foundations to which the theory owes its strength. We emphasize that such a situation is legitimate only in the development phases of a new doctrine. Eventually, a more solidly founded structure must be sought. Although it is advertised as a "candidate theory of quantum gravity", we claim that string theory may not be exactly that. Rather, just like quantum field theory itself, it is a general mathematical framework for a class of theories. Its major flaw could be that it still embraces a Copenhagen view on the relation between quantum mechanics and reality, while any "theory of everything", that is, a theory for the entire cosmos, should do better than that.

  19. Cutkosky rules for superstring field theory

    NASA Astrophysics Data System (ADS)

    Pius, Roji; Sen, Ashoke

    2016-10-01

    Superstring field theory expresses the perturbative S-matrix of superstring theory as a sum of Feynman diagrams each of which is manifestly free from ultraviolet divergences. The interaction vertices fall off exponentially for large space-like external momenta making the ultraviolet finiteness property manifest, but blow up exponentially for large time-like external momenta making it impossible to take the integration contours for loop energies to lie along the real axis. This forces us to carry out the integrals over the loop energies by choosing appropriate contours in the complex plane whose ends go to infinity along the imaginary axis but which take complicated form in the interior navigating around the various poles of the propagators. We consider the general class of quantum field theories with this property and prove Cutkosky rules for the amplitudes to all orders in perturbation theory. Besides having applications to string field theory, these results also give an alternative derivation of Cutkosky rules in ordinary quantum field theories.

  20. Unitarity of superstring field theory

    NASA Astrophysics Data System (ADS)

    Sen, Ashoke

    2016-12-01

    We complete the proof of unitarity of (compactified) heterotic and type II string field theories by showing that in the cut diagrams only physical states appear in the sum over intermediate states. This analysis takes into account the effect of mass and wave-function renormalization, and the possibility that the true vacuum may be related to the perturbative vacuum by small shifts in the string fields.

  1. Superstring limit of Yang-Mills theories

    NASA Astrophysics Data System (ADS)

    Lechtenfeld, Olaf; Popov, Alexander D.

    2016-11-01

    It was pointed out by Shifman and Yung that the critical superstring on X10 =R4 ×Y6, where Y6 is the resolved conifold, appears as an effective theory for a U(2) Yang-Mills-Higgs system with four fundamental Higgs scalars defined on Σ2 ×R2, where Σ2 is a two-dimensional Lorentzian manifold. Their Yang-Mills model supports semilocal vortices on R2 ⊂Σ2 ×R2 with a moduli space X10. When the moduli of slowly moving thin vortices depend on the coordinates of Σ2, the vortex strings can be identified with critical fundamental strings. We show that similar results can be obtained for the low-energy limit of pure Yang-Mills theory on Σ2 × Tp2, where Tp2 is a two-dimensional torus with a puncture p. The solitonic vortices of Shifman and Yung then get replaced by flat connections. Various ten-dimensional superstring target spaces can be obtained as moduli spaces of flat connections on Tp2, depending on the choice of the gauge group. The full Green-Schwarz sigma model requires extending the gauge group to a supergroup and augmenting the action with a topological term.

  2. Supersymmetry of Green-Schwarz superstring and matrix string theory

    SciTech Connect

    Hyun, Seungjoon; Shin, Hyeonjoon

    2001-08-15

    We study the dynamics of a Green-Schwarz superstring on the gravitational wave background corresponding to the matrix string theory and the supersymmetry transformation rules of the superstring. The dynamics is obtained in the light-cone formulation and is shown to agree with that derived from matrix string theory. The supersymmetry structure has corrections due to the effect of the background and is identified with that of the low-energy one-loop effective action of matrix string theory in a two superstring background in the weak string coupling limit.

  3. What lattice theorists can do for superstring/M-theory

    NASA Astrophysics Data System (ADS)

    Hanada, Masanori

    2016-08-01

    The gauge/gravity duality provides us with nonperturbative formulation of superstring/M-theory. Although inputs from gauge theory side are crucial for answering many deep questions associated with quantum gravitational aspects of superstring/M-theory, many of the important problems have evaded analytic approaches. For them, lattice gauge theory is the only hope at this moment. In this review I give a list of such problems, putting emphasis on problems within reach in a five-year span, including both Euclidean and real-time simulations.

  4. The monster sporadic group and a theory underlying superstring models

    SciTech Connect

    Chapline, G.

    1996-09-01

    The pattern of duality symmetries acting on the states of compactified superstring models reinforces an earlier suggestion that the Monster sporadic group is a hidden symmetry for superstring models. This in turn points to a supersymmetric theory of self-dual and anti-self-dual K3 manifolds joined by Dirac strings and evolving in a 13 dimensional spacetime as the fundamental theory. In addition to the usual graviton and dilaton this theory contains matter-like degrees of freedom resembling the massless states of the heterotic string, thus providing a completely geometric interpretation for ordinary matter. 25 refs.

  5. Topology change in Kaluza-Klein and superstring theories

    NASA Astrophysics Data System (ADS)

    Tipler, Frank J.

    1985-12-01

    It is shown that topology change-for instance, true dynamical compactification - cannot occur in classical Kaluza-Klein and superstring theories without causality violation either in the form of a breakdown in predictability (a failure of global hyperbolicity), or in the form of closed timelike curves. This implies that if causality holds, then any topological distinction between the spacetime and internal dimensions either has to be present ab initio, or else must arise in the quantum gravity regime. Permanent address.

  6. Wilsonian effective action of superstring theory

    NASA Astrophysics Data System (ADS)

    Sen, Ashoke

    2017-01-01

    By integrating out the heavy fields in type II or heterotic string field theory one can construct the effective action for the light fields. This effective theory inherits all the algebraic structures of the parent theory and the effective action automatically satisfies the Batalin-Vilkovisky quantum master equation. This theory is manifestly ultraviolet finite, has only light fields as its explicit degrees of freedom, and the Feynman diagrams of this theory reproduce the exact scattering amplitudes of light states in string theory to any arbitrary order in perturbation theory. Furthermore in this theory the degrees of freedom of light fields above certain energy scale are also implicitly integrated out. This energy scale is determined by a particular parameter labelling a family of equivalent actions, and can be made arbitrarily low, leading to the interpretation of the effective action as the Wilsonian effective action.

  7. Comments on superstring field theory and its vacuum solution

    NASA Astrophysics Data System (ADS)

    Kroyter, Michael

    2009-08-01

    We prove that the NS cubic superstring field theories are classically equivalent, regardless of the choice of Y-2 in their definition, and illustrate it by an explicit evaluation of the action of Erler's solution. We then turn to examine this solution. First, we explain that its cohomology is trivial also in the Ramond sector. Then, we show that the boundary state corresponding to it is identically zero. We conclude that this solution is indeed a closed string vacuum solution despite the absence of a tachyon field on the BPS D-brane.

  8. Generating Erler-Schnabl-type solution for the tachyon vacuum in cubic superstring field theory

    NASA Astrophysics Data System (ADS)

    Aldo Arroyo, E.

    2010-11-01

    We study a new set of identity-based solutions to analyze the problem of tachyon condensation in open bosonic string field theory and cubic superstring field theory. Even though these identity-based solutions seem to be trivial, it turns out that after performing a suitable gauge transformation, we are left with the known Erler-Schnabl-type solutions which correctly reproduce the value of the D-brane tension. This result shows explicitly that a seemingly trivial solution can generate a non-trivial configuration which precisely represents the tachyon vacuum.

  9. The structure of n-point one-loop open superstring amplitudes

    NASA Astrophysics Data System (ADS)

    Mafra, Carlos R.; Schlotterer, Oliver

    2014-08-01

    In this article we investigate one-loop amplitudes in maximally supersymmetric superstring theory. The non-anomalous part of the worldsheet integrand is presented for any number of massless open-string states. The polarization dependence is organized into the same BRST-invariant kinematic combinations which also govern the leading string correction to tree-level amplitudes. The dimensions of the bases for both the kinematics and the associated worldsheet integrals is found to be the unsigned Stirling number of first kind. We explain why the same combinatorial structures govern on the one hand finite one-loop amplitudes of equal helicity states in pure Yang-Mills theory and on the other hand the color tensors at order α'2 of the color-dressed tree amplitude.

  10. A ∞ /L ∞ structure and alternative action for WZW-like superstring field theory

    NASA Astrophysics Data System (ADS)

    Goto, Keiyu; Matsunaga, Hiroaki

    2017-01-01

    We propose new gauge invariant actions for open NS, heterotic NS, and closed NS-NS superstring field theories. They are based on the large Hilbert space, and have Wess-Zumino-Witten-like expressions which are the Z_2 -reversed versions of the conventional WZW-like actions. On the basis of the procedure proposed in arXiv:1505.01659, we show that our new WZW-like actions are completely equivalent to A ∞ /L ∞ actions proposed in arXiv:1403.0940 respectively.

  11. On the semi-classical approximation to the superstring theory

    SciTech Connect

    Pollock, M.D. )

    1992-10-10

    In this paper, the semi-classical limit of the compactified, heterotic superstring theory is examined, including the effects of higher-derivative terms R[sup 2] in the effective Lagrangian. The total wave-function [Psi] obeys a Schrodinger equation in the mini-superspace ds[sup 2] = dt[sup 2] [minus] e[sup 2][alpha](t) dx[sup 2], the canonical coordinates being the position [alpha] and the velocity (Hubble parameter) [xi] [triple bond] [alpha], while the cosmic time coincides with the parameter introduced by Tomonaga, (derivative)/(derivative) [sigma] [triple bond] [xi] (derivative)/(derivative) [alpha]. The wave function describing the matter, [Psi][sub m], also obeys a linear Schrodinger equation.

  12. Cosmic superstrings.

    PubMed

    Sakellariadou, Mairi

    2008-08-28

    Cosmic superstrings are expected to be formed at the end of brane inflation, within the context of brane-world cosmological models inspired from string theory. By studying the properties of cosmic superstring networks and comparing their phenomenological consequences against observational data, we aim to pin down the successful and natural inflationary model and get an insight into the stringy description of our Universe.

  13. Constraints on tree-level higher order gravitational couplings in superstring theory.

    PubMed

    Stieberger, Stephan

    2011-03-18

    We consider the scattering amplitudes of five and six gravitons at tree level in superstring theory. Their power series expansions in the Regge slope α' are analyzed through the order α'(8) showing some interesting constraints on higher order gravitational couplings in the effective superstring action such as the absence of R(5) terms. Furthermore, some transcendentality constraints on the coefficients of the nonvanishing couplings are observed: the absence of zeta values of even weight through the order α'(8) like the absence of ζ(2)ζ(3)R(6) terms. Our analysis is valid for any superstring background in any space-time dimension, which allows for a conformal field theory description.

  14. Inflation from superstring and M-theory compactification with higher order corrections

    SciTech Connect

    Maeda, Kei-ichi; Ohta, Nobuyoshi

    2005-03-15

    We study time-dependent solutions in M and superstring theories with higher-order corrections. We first present general field equations for theories of Lovelock type with stringy corrections in arbitrary dimensions. We then exhaust all exact and asymptotic solutions of exponential and power-law expansions in the theory with Gauss-Bonnet terms relevant to heterotic strings and in the theories with quartic corrections corresponding to the M theory and type II superstrings. We discuss interesting inflationary solutions that can generate enough e foldings in the early universe.

  15. Yukawa couplings in superstring compactification. [in quantum gravity theory

    NASA Technical Reports Server (NTRS)

    Strominger, A.

    1985-01-01

    A topological formula is given for the entire tree-level contribution to the low-energy effective action of a Calabi-Yau superstring compactification. The constraints on proton lifetime in the Calabi-Yau compactification are discussed in detail.

  16. Constraints on Tree-Level Higher Order Gravitational Couplings in Superstring Theory

    SciTech Connect

    Stieberger, Stephan

    2011-03-18

    We consider the scattering amplitudes of five and six gravitons at tree level in superstring theory. Their power series expansions in the Regge slope {alpha}{sup '} are analyzed through the order {alpha}{sup '8} showing some interesting constraints on higher order gravitational couplings in the effective superstring action such as the absence of R{sup 5} terms. Furthermore, some transcendentality constraints on the coefficients of the nonvanishing couplings are observed: the absence of zeta values of even weight through the order {alpha}{sup '8} like the absence of {zeta}(2){zeta}(3)R{sup 6} terms. Our analysis is valid for any superstring background in any space-time dimension, which allows for a conformal field theory description.

  17. The Vacuum State in the Heterotic Superstring Theory

    NASA Astrophysics Data System (ADS)

    Pollock, M. D.

    The gravitational vacuum state of the heterotic superstring theory is derived by substituting the maximally symmetric D-space hat {R}ABCD = hat {Λ }(hat {g}ADhat {g}BC - hat {g}AChat {g}BD)/(D-1), where hat {Λ } is the cosmological constant, into the classical field equations obtained from the effective ten-Lagrangian including quartic higher-derivative terms, hat {L}=(-hat {R}/2 + α 'hat { {R}} E2/16 + α '3hat { {R}}4)/hat {κ }2. If the theory is reduced to the physical dimensionality D = 4, as required by supersymmetry and phenomenology, the ground state, due to hat {R} and hat { {R}}4, is anti-de Sitter space with Λ = -[18/175 ζ (3)]1/3 A r-1κ -2, where A r ≈ 1/g s2 ≈ 2 is the inverse gauge coupling and κ2 ≡ 8πGN is the gravitational coupling, GN being the Newton constant. The term {R} E2, derived from the Euler-number density hat { {R}} E2, is a total divergence and the quadratic term {R}ij2, derived from hat { {R}}4 -> {R}2bar { {R}}2, vanishes identically, while the quadratic anomaly {R}ij{2 (anom)}, which alone would give rise to a positive Λ(anom), is ignorable for the reduced E6 × E8' heterotic string, containing nv = 488 vector fields, because Λ(anom) ≳ -Λ unless nv ≳ 7,000. For hypothetical reduction to the higher dimensonalities D = 5, 9, 10, hat { {R}}4 has the effect of augmenting the Boulware-Deser, anti-de Sitter space vacuum due to hat { {R}} E2, which becomes exact when D = 8, for which {R}ij4 vanishes identically, but leads to a de Sitter space for D = 6, 7 thus justifying the Ricci-flat vacuum state for the six-dimensional internal space. For simplicity, we assume compactification onto a toroidal internal space when D ≥ 5, so that all contributions of the form hat { {R}}4 -> {R}2 bar { {R}}2 vanish. The remaining terms hat { {R}} E2 and hat { {R}}4 are then almost comparable in effect, bringing into question the convergence of the Lagrangian power series hat {L} = ∑ n=1∞ an(α 'hat { {R}})n in the Einstein space

  18. The Big Bang, Superstring Theory and the origin of life on the Earth.

    PubMed

    Trevors, J T

    2006-03-01

    This article examines the origin of life on Earth and its connection to the Superstring Theory, that attempts to explain all phenomena in the universe (Theory of Everything) and unify the four known forces and relativity and quantum theory. The four forces of gravity, electro-magnetism, strong and weak nuclear were all present and necessary for the origin of life on the Earth. It was the separation of the unified force into four singular forces that allowed the origin of life.

  19. A singular one-parameter family of solutions in cubic superstring field theory

    NASA Astrophysics Data System (ADS)

    Arroyo, E. Aldo

    2016-05-01

    Performing a gauge transformation of a simple identity-like solution of superstring field theory, we construct a one-parameter family of solutions, and by evaluating the energy associated to this family, we show that for most of the values of the parameter the solution represents the tachyon vacuum, except for two isolated singular points where the solution becomes the perturbative vacuum and the half brane solution.

  20. Fundamental string solutions in open string field theories

    SciTech Connect

    Michishita, Yoji

    2006-02-15

    In Witten's open cubic bosonic string field theory and Berkovits' superstring field theory we investigate solutions of the equations of motion with appropriate source terms, which correspond to Callan-Maldacena solution in Born-Infeld theory representing fundamental strings ending on the D-branes. The solutions are given in order by order manner, and we show some full order properties in the sense of {alpha}{sup '} expansion. In superstring case we show that the solution is 1/2 BPS in full order.

  1. Maximal R-symmetry violating amplitudes in type IIb superstring theory.

    PubMed

    Boels, Rutger H

    2012-08-24

    On-shell superspace techniques are used to quantify R-symmetry violation in type IIB superstring theory amplitudes in a flat background in 10 dimensions. This shows the existence of a particularly simple class of nonvanishing amplitudes in this theory, which violate R symmetry maximally. General properties of the class and some of its extensions are established that at string tree level are shown to determine the first three nontrivial effective field theory contributions to all multiplicity. This leads to a natural conjecture for the exact analytic part of the first two of these.

  2. Tree-level S-matrix of Pohlmeyer reduced form of AdS 5 × S 5 superstring theory

    NASA Astrophysics Data System (ADS)

    Hoare, B.; Tseytlin, A. A.

    2010-02-01

    With a motivation to find a 2-d Lorentz-invariant solution of the AdS 5 × S 5 superstring we continue the study of the Pohlmeyer-reduced form of this theory. The reduced theory is constructed from currents of the superstring sigma model and is classically equivalent to it. Its action is that of G/ H = Sp(2, 2) × Sp(4)/[SU(2)]4 gauged WZW model deformed by an integrable potential and coupled to fermions. This theory is UV finite and is conjectured to be related to the superstring theory also at the quantum level. Expanded near the trivial vacuum it has the same elementary excitations (8+8 massive bosonic and fermionic 2-d degrees of freedom) as the AdS 5 × S 5 superstring in the S 5 light-cone gauge or near plane-wave expansion. In contrast to the superstring case, the interaction terms in the reduced action are manifestly 2-d Lorentz invariant. Since the theory is integrable, its S-matrix should be effectively determined by the two-particle scattering. Here we explicitly compute the tree-level two-particle S-matrix for the elementary excitations of the reduced theory. We find that this S-matrix has the same index structure and group factorization properties as the superstring S-matrix computed in hep-th/0611169 but has simpler coefficients, depending only on the difference of two rapidities. While the gauge-fixed form of the reduced action has only the bosonic [SU(2)]4 part of the PSU(2|2) × PSU(2|2) symmetry of the light-cone superstring spectrum as its manifest symmetry we conjecture that it should also have a hidden fermionic symmetry that effectively interchanges bosons and fermions and which should guide us towards understanding the relation between the two S-matrices.

  3. Status of Superstring and M-THEORY

    NASA Astrophysics Data System (ADS)

    Schwarz, John H.

    The first lecture gives a colloquium-level overview of string theory and M-theory. The second lecture surveys various attempts to construct a viable model of particle physics. A recently proposed approach, based on F-theory, is emphasized.

  4. Superstring disk amplitudes in a rolling tachyon background

    SciTech Connect

    Jokela, Niko; Majumder, Jaydeep; Keski-Vakkuri, Esko

    2006-02-15

    We study the tree level scattering or emission of n closed superstrings from a decaying non-BPS brane in Type II superstring theory. We attempt to calculate generic n-point superstring disk amplitudes in the rolling tachyon background. We show that these can be written as infinite power series of Toeplitz determinants, related to expectation values of a periodic function in Circular Unitary Ensembles. Further analytical progress is possible in the special case of bulk-boundary disk amplitudes. These are interpreted as probability amplitudes for emission of a closed string with initial conditions perturbed by the addition of an open string vertex operator. This calculation has been performed previously in bosonic string theory, here we extend the analysis for superstrings. We obtain a result for the average energy of closed superstrings produced in the perturbed background.

  5. Mirror Symmetry and Other Miracles in Superstring Theory

    NASA Astrophysics Data System (ADS)

    Rickles, Dean

    2013-01-01

    The dominance of string theory in the research landscape of quantum gravity physics (despite any direct experimental evidence) can, I think, be justified in a variety of ways. Here I focus on an argument from mathematical fertility, broadly similar to Hilary Putnam's `no miracles argument' that, I argue, many string theorists in fact espouse in some form or other. String theory has generated many surprising, useful, and well-confirmed mathematical `predictions'—here I focus on mirror symmetry and the mirror theorem. These predictions were made on the basis of general physical principles entering into string theory. The success of the mathematical predictions are then seen as evidence for the framework that generated them. I shall attempt to defend this argument, but there are nonetheless some serious objections to be faced. These objections can only be evaded at a considerably high (philosophical) price.

  6. Compactification and inflation in the superstring theory from the condensation of gravitino pairs

    NASA Astrophysics Data System (ADS)

    Pollock, M. D.

    1987-12-01

    We discuss the possibility that inflation can occur in the E8×E8' heterotic superstring theory, if there is a pair condensation of the gravitino field ψA and also of the Majorana-Weyl spinor λ, as suggested by the Helayël-Neto and Smith. In the absence of a condensation of the anti-symmetric tensor field HMNP, then the associated potential V(θ,φ) is bounded from below and independent of the dilaton field φ. It can be made to vanish at the minimum, where the compactification scale θ is fixed. Alternatively, a small cosmological constant may remain (ultimately to be cancelled by radiative corrections at the lower energy scale of the gaugino condensation), which could in principle lead to inflation. Present address: Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Bombay 400 005, India.

  7. On the Quartic Higher-Derivative Gravitational Terms in the Heterotic Superstring Theory

    NASA Astrophysics Data System (ADS)

    Pollock, M. D.

    The quartic higher-derivative gravitational terms hat { R}4 in the heterotic-superstring effective Lagrangian hat L, defined from the Riemann ten-tensor hat { R}ABCD, are expanded, after reduction to the conformally-flat physical D-space gij, in terms of the Ricci tensor Rij and scalar R. The resulting quadratic term { R}2 ≡ B(R2-Rij Rij) is tachyon-free and agrees exactly with the prediction from global supersymmetry in the nonlinear realization of Volkov and Akulov of the flat-space, quadratic fermionic Lagrangian { T}2 ≡ T2-Tij Tij for a massless Dirac or Weyl spinor, only when D = 4, assuming the Einstein equation Rij -(1)/(2) R gij ≈ κ 2Tij for the energy-momentum tensor. This proves that the heterotic superstring has to be reduced from ten to four dimensions if supersymmetry is to be correctly incorporated into the theory, and it rules out the bosonic string and type-II superstring, for which { R}2 has the different a priori forms ±(R2-4RijRij) derived from hat { R}2, which also contain tachyons (that seem to remain after the inclusion of a further contribution to { R}2 from hat { R}4). The curvature of space-time introduces a mass into the Dirac equation, |m| ˜ √ {|R|}, while quadratic, higher-derivative terms { R}2 make an additional contribution to the Einstein equations, these two effects causing a difference between { R}3 and { R}4 on the one hand, and the predictions from { T}3 and { T}4 on the other. The quartic terms { R}4 still possess some residual symmetry, however, enabling us to estimate the radius-squared of the internal six-dimensional space bar g{μ ν } in units of the Regge slope-parameter α‧ as Br ≈ 1.75, indicating that compactification occurs essentially at the Planck era, due to quantum mechanical processes, when the action evaluated within the causal horizon is Sh 1. This symmetry is also discussed with regard to the zero-action hypothesis. The dimensionality D = 4 of space-time is rederived from the Wheeler

  8. Topics in N = 1 supergravity in four dimensions and superstring effective field theories beyond tree-level

    SciTech Connect

    Saririan, Kamran

    1997-05-01

    In this thesis, the author presents some works in the direction of studying quantum effects in locally supersymmetric effective field theories that appear in the low energy limit of superstring theory. After reviewing the Kaehler covariant formulation of supergravity, he shows the calculation of the divergent one-loop contribution to the effective boson Lagrangian for supergravity, including the Yang-Mills sector and the helicity-odd operators that arise from integration over fermion fields. The only restriction is on the Yang-Mills kinetic energy normalization function, which is taken diagonal in gauge indices, as in models obtained from superstrings. He then presents the full result for the divergent one-loop contribution to the effective boson Lagrangian for supergravity coupled to chiral and Yang-Mills supermultiplets. He also considers the specific case of dilaton couplings in effective supergravity Lagrangians from superstrings, for which the one-loop result is considerably simplified. He studies gaugino condensation in the presence of an intermediate mass scale in the hidden sector. S-duality is imposed as an approximate symmetry of the effective supergravity theory. Furthermore, the author includes in the Kaehler potential the renormalization of the gauge coupling and the one-loop threshold corrections at the intermediate scale. It is shown that confinement is indeed achieved. Furthermore, a new running behavior of the dilaton arises which he attributes to S-duality. He also discusses the effects of the intermediate scale, and possible phenomenological implications of this model.

  9. Supersymmetry and Superstring Phenomenology

    SciTech Connect

    Gaillard, Mary K; Gaillard, Mary K.; Zumino, Bruno

    2008-05-05

    We briefly cover the early history of supersymmetry, describe the relation of SUSY quantum field theories to superstring theories and explain why they are considered a likely tool to describe the phenomenology of high energy particle theory beyond the Standard Model.

  10. Chaos in superstring cosmology

    PubMed

    Damour; Henneaux

    2000-07-31

    It is shown that the general solution near a spacelike singularity of the Einstein-dilaton- p-form field equations relevant to superstring theories and M theory exhibits an oscillatory behavior of the Belinskii-Khalatnikov-Lifshitz type. String dualities play a significant role in the analysis.

  11. Inflation from superstring and M-theory compactification with higher order corrections. - II. - Case of quartic Weyl terms

    SciTech Connect

    Akune, Kenta; Maeda, Kei-ichi; Ohta, Nobuyoshi

    2006-05-15

    We present a detailed study of inflationary solutions in M theory with higher order quantum corrections. We first exhaust all exact and asymptotic solutions of exponential and power-law expansions in this theory with quartic curvature corrections, and then perform a linear perturbation analysis around fixed points for the exact solutions in order to see which solutions are more generic and give interesting cosmological models. We find an interesting solution in which the external space expands exponentially and the internal space is static both in the original and Einstein frames. Furthermore, we perform a numerical calculation around this solution and find numerical solutions which give enough e-foldings. We also briefly summarize similar solutions in type II superstrings.

  12. Expanding (3+1)-dimensional universe from a lorentzian matrix model for superstring theory in (9+1) dimensions.

    PubMed

    Kim, Sang-Woo; Nishimura, Jun; Tsuchiya, Asato

    2012-01-06

    We reconsider the matrix model formulation of type IIB superstring theory in (9+1)-dimensional space-time. Unlike the previous works in which the Wick rotation was used to make the model well defined, we regularize the Lorentzian model by introducing infrared cutoffs in both the spatial and temporal directions. Monte Carlo studies reveal that the two cutoffs can be removed in the large-N limit and that the theory thus obtained has no parameters other than one scale parameter. Moreover, we find that three out of nine spatial directions start to expand at some "critical time," after which the space has SO(3) symmetry instead of SO(9).

  13. Cusps on cosmic superstrings with junctions

    SciTech Connect

    Davis, Anne-Christine; Rajamanoharan, Senthooran; Nelson, William; Sakellariadou, Mairi E-mail: william.nelson@kcl.ac.uk E-mail: mairi.sakellariadou@kcl.ac.uk

    2008-11-15

    The existence of cusps on non-periodic strings ending on D-branes is demonstrated and the conditions for which such cusps are generic are derived. The dynamics of F-strings, D-strings and FD-string junctions are investigated. It is shown that pairs of FD-string junctions, such as would form after intercommutations of F-strings and D-strings, generically contain cusps. This new feature of cosmic superstrings opens up the possibility of extra channels of energy loss from a string network. The phenomenology of cusps on such cosmic superstring networks is compared to that of cusps formed on networks of their field theory analogues, the standard cosmic strings.

  14. A walk through superstring theory with an application to Yang-Mills theory: K-strings and D-branes as gauge/gravity dual objects

    NASA Astrophysics Data System (ADS)

    Stiffler, Kory M.

    Superstring theory is one current, promising attempt at unifying gravity with the other three known forces: the electromagnetic force, and the weak and strong nuclear forces. Though this is still a work in progress, much effort has been put toward this goal. A set of specific tools which are used in this effort are gauge/gravity dualities. This thesis consists of a specific implementation of gauge/gravity dualities to describe k-strings of strongly coupled gauge theories as objects dual to Dp-branes embedded in confining supergravity backgrounds from low energy superstring field theory. Along with superstring theory, k-strings are also commonly investigated with lattice gauge theory and Hamiltonian methods. A k-string is a colorless combination of quark-antiquark source pairs, between which a color flux tube develops. The two most notable terms of the k-string energy are, for large quark anti-quark separation L, the tension term, proportional to L, and the Coulombic 1/L correction, known as the Luscher term. This thesis provides an overview of superstring theories and how gauge/gravity dualities emerge from them. It shows in detail how these dualities can be used for the specific problem of calculating the k-string energy in 2 + 1 and 3 + 1 space-time dimensions as the energy of D p-branes in the dual gravitational theory. A detailed review of k-string tension calculations is given where good agreement is found with lattice gauge theory and Hamiltonian methods. In reviewing the k-string tension, we also touch on how different representations of k-strings can be described with Dp-branes through gauge/gravity dualities. The main result of this thesis is how the Luscher term is found to emerge as the one loop quantum corrections to the Dp-brane energy. In 2+1 space-time dimensions, we have Luscher term data to compare with from lattice gauge theory, where we find good agreement.

  15. Superstring cosmology

    NASA Astrophysics Data System (ADS)

    Alvarez, Enrique

    1985-01-01

    Some cosmological consequences of the assumption that superstrings are more fundamental objects than ordinary local quantum fields are examined. We study, in particular, the dependence of both the string tension and the temperature of the primordial string soup on cosmic time. A particular scenario is proposed in which the universe undergoes a contracting ``string phase'' before the ordinary ``big bang,'' which according to this picture is nothing but the outcome of the transition from nonlocal to local fundamental physics.

  16. Superstring vertex operators in type IIB matrix model

    SciTech Connect

    Kitazawa, Yoshihisa; Nagaoka, Satoshi

    2008-06-15

    We clarify the relation between the vertex operators in type IIB matrix model and superstring. Green-Schwarz light-cone closed superstring theory is obtained from IIB matrix model on two-dimensional noncommutative backgrounds. Superstring vertex operators should be reproduced from those of IIB matrix model through this connection. Indeed, we confirm that supergravity vertex operators in IIB matrix model on the two-dimensional backgrounds reduce to those in superstring theory. Noncommutativity plays an important role in our identification. Through this correspondence, we can reproduce superstring scattering amplitudes from IIB matrix model.

  17. Gauge anomalies, gravitational anomalies, and superstrings

    SciTech Connect

    Bardeen, W.A.

    1985-08-01

    The structure of gauge and gravitational anomalies will be reviewed. The impact of these anomalies on the construction, consistency, and application of the new superstring theories will be discussed. 25 refs.

  18. String bit models for superstring

    SciTech Connect

    Bergman, O.; Thorn, C.B.

    1995-12-31

    The authors extend the model of string as a polymer of string bits to the case of superstring. They mainly concentrate on type II-B superstring, with some discussion of the obstacles presented by not II-B superstring, together with possible strategies for surmounting them. As with previous work on bosonic string work within the light-cone gauge. The bit model possesses a good deal less symmetry than the continuous string theory. For one thing, the bit model is formulated as a Galilei invariant theory in (D {minus} 2) + 1 dimensional space-time. This means that Poincare invariance is reduced to the Galilei subgroup in D {minus} 2 space dimensions. Naturally the supersymmetry present in the bit model is likewise dramatically reduced. Continuous string can arise in the bit models with the formation of infinitely long polymers of string bits. Under the right circumstances (at the critical dimension) these polymers can behave as string moving in D dimensional space-time enjoying the full N = 2 Poincare supersymmetric dynamics of type II-B superstring.

  19. String bit models for superstring

    SciTech Connect

    Bergman, O.; Thorn, C.B.

    1995-11-15

    We extend the model of string as a polymer of string bits to the case of superstring. We mainly concentrate on type II-B superstring, with some discussion of the obstacles presented by not II-B superstring, together with possible strategies for surmounting them. As with previous work on bosonic string we work within the light-cone gauge. The bit model possesses a good deal less symmetry than the continuous string theory. For one thing, the bit model is formulated as a Galilei-invariant theory in [({ital D}{minus}2)+1]-dimensional space-time. This means that Poincare invariance is reduced to the Galilei subgroup in {ital D}{minus}2 space dimensions. Naturally the supersymmetry present in the bit model is likewise dramatically reduced. Continuous string can arise in the bit models with the formation of infinitely long polymers of string bits. Under the right circumstances (at the critical dimension) these polymers can behave as string moving in {ital D}-dimensional space-time enjoying the full {ital N}=2 Poincare supersymmetric dynamics of type II-B superstring.

  20. Entropy function for 4-charge extremal black holes in type IIA superstring theory

    SciTech Connect

    Cai Ronggen; Pang Dawei

    2006-09-15

    We calculate the entropy of 4-charge extremal black holes in Type IIA supersting theory by using Sen's entropy function method. Using the low-energy effective actions in both 10D and 4D, we find precise agreements with the Bekenstein-Hawking entropy of the black hole. We also calculate the higher-order corrections to the entropy and find that they depend on the exact form of the higher-order corrections to the effective action.

  1. One-loop soft supersymmetry breaking terms in superstring effective theories.

    SciTech Connect

    Binetruy, Pierre; Gaillard, Mary K.; Nelson, Brent D.

    2000-11-01

    We perform a systematic analysis of soft supersymmetry breaking terms at the one loop level in a large class of string effective field theories. This includes the so-called anomaly mediated contributions. We illustrate our results for several classes of orbifold models. In particular, we discuss a class of models where soft supersymmetry breaking terms are determined by quasi model independent anomaly mediated contributions, with possibly non-vanishing scalar masses at the one loop level. We show that the latter contribution depends on the detailed prescription of the regularization process which is assumed to represent the Planck scale physics of the underlying fundamental theory. The usual anomaly mediation case with vanishing scalar masses at one loop is not found to be generic. However gaugino masses and A-terms always vanish at tree level if supersymmetry breaking is moduli dominated with the moduli stabilized at self-dual points, whereas the manishing of the B-term depends on the origin of the mu-term in the underlying theory. We also discuss the supersymmetric spectrum of O-I and O-II models, as well as a model of gaugino condensation. For reference, explicit spectra corresponding to a Higgs mass of 114 GeV are given. Finally, we address general strategies for distinguishing among these models.

  2. The Wheeler-Dewitt Equation for the Heterotic Superstring Theory Including Terms Quartic in the Riemann Tensor

    NASA Astrophysics Data System (ADS)

    Pollock, M. D.

    The Wheeler-DeWitt equation for the wave function of the Universe Ψ can be derived for the heterotic superstring, after reduction of the effective action, including terms hat { R}4 quartic in the Riemann tensor, from ten dimensions to { D} = M+1 dimensions, where { D} < 10. If the compactified space is Ricci flat, then no terms R3 appear, since the coefficient of hat { R}3 in the ten-dimensional action vanishes. The reduced Lagrangian, ignoring all non-gravitational fields, is then L=(16πG)-1R+a2R2+a4α‧2R4, where G is the Newton gravitational constant, α‧ is the Regge slope parameter, and a2 and a4 are dimensionless coefficients. Including only the first two terms, in the Friedmann space-time ds2=dt2-e2α(t)dx2, leads to the Schrödinger equation i∂Ψ/∂t=[-AMe-Mα∂2/∂ξ2+ VM,K(α, ξ)]Ψ, where AM is a positive constant, ξ≡dα/dt and K is the curvature of the M-space dx2. After the Wick rotation t = ∓ ĩ {t}, ξ = ± ĩ {ξ } , this equation becomes ± ∂ Ψ /∂ ˜ {t} = [-AM e{- Mα } ∂ 2/∂ ˜ {ξ }2 + ˜ {V}M,K (α ,˜ {ξ })]Ψ , where ˜ {V}M,K(α ,˜ {ξ }) = -VM,K (α ,± iξ ). The requirement that both V and ˜ {V} are positive semi-definite leads to the conditions M=3, K=0, which state that space is three-dimensional and flat. Here, a more complete Schrödinger equation is derived, via a perturbative treatment of the terms a4α‧2R4, which lifts the degeneracy of the potential V3,0 under Wick rotations, the Lorentzian signature being energetically favoured over the Euclidean signature. This corroborates results concerning supersymmetry and the quantum mechanical consistency of the string theory on the world sheet, for which the Lorentzian signature is also necessary, as it is argued to be for the Feynman path-integral formulation of Ψ.

  3. Thermodynamic interpretation of time for superstring rolling tachyons

    SciTech Connect

    Hutasoit, Jimmy A.; Jokela, Niko

    2008-01-15

    Rolling tachyon backgrounds, arising from open strings on unstable branes in bosonic string theory, can be related to a simple statistical mechanical model-Coulomb gas of point charges in two dimensions confined to a circle, the Dyson gas. In this paper we describe a statistical system that is dual to non-BPS branes in superstring theory. We argue that even though the concept of time is absent in the statistical dual sitting at equilibrium, the notion of time can emerge at the large number of particles N{yields}{infinity} limit.

  4. Random lattice superstrings

    SciTech Connect

    Feng Haidong; Siegel, Warren

    2006-08-15

    We propose some new simplifying ingredients for Feynman diagrams that seem necessary for random lattice formulations of superstrings. In particular, half the fermionic variables appear only in particle loops (similarly to loop momenta), reducing the supersymmetry of the constituents of the type IIB superstring to N=1, as expected from their interpretation in the 1/N expansion as super Yang-Mills.

  5. Response to ''Comment on 'Proof of one-loop finiteness of type-I SO(32) superstring theory' ''

    SciTech Connect

    Clavelli, L.

    1986-11-15

    The preceding Comment by Potting and Shapiro refers to a well-known ambiguity in the open-string theory. Although they raise a valid concern, the ultimate resolution will probably involve a much deeper understanding of the relation between the planar and Moebius loops than is presently in hand.

  6. Elliptic multiple zeta values and one-loop superstring amplitudes

    NASA Astrophysics Data System (ADS)

    Broedel, Johannes; Mafra, Carlos R.; Matthes, Nils; Schlotterer, Oliver

    2015-07-01

    We investigate iterated integrals on an elliptic curve, which are a natural genus-one generalization of multiple polylogarithms. These iterated integrals coincide with the multiple elliptic polylogarithms introduced by Brown and Levin when constrained to the real line. At unit argument they reduce to an elliptic analogue of multiple zeta values, whose network of relations we start to explore. A simple and natural application of this framework are one-loop scattering amplitudes in open superstring theory. In particular, elliptic multiple zeta values are a suitable language to express their low energy limit. Similar to the techniques available at tree-level, our formalism allows to completely automatize the calculation.

  7. The Galilean superstring

    NASA Astrophysics Data System (ADS)

    Gomis, Joaquim; Townsend, Paul K.

    2017-02-01

    The action for a Galilean superstring is found from a non-relativistic limit of the closed Green-Schwarz (GS) superstring; it has zero tension and provides an example of a massless super-Galilean system. A Wess-Zumino term leads to a topological central charge in the Galilean supersymmetry algebra, such that unitarity requires a upper bound on the total momentum. This Galilean-invariant bound, which is also implied by the classical phase-space constraints, is saturated by solutions of the superstring equations of motion that half-preserve supersymmetry. We discuss briefly the extension to the Galilean supermembrane.

  8. Interactions of cosmic superstrings

    SciTech Connect

    Jackson, Mark G.; /Fermilab

    2007-06-01

    We develop methods by which cosmic superstring interactions can be studied in detail. These include the reconnection probability and emission of radiation such as gravitons or small string loops. Loop corrections to these are discussed, as well as relationships to (p; q)-strings. These tools should allow a phenomenological study of string models in anticipation of upcoming experiments sensitive to cosmic string radiation.

  9. Constraints on cosmic superstrings from Kaluza-Klein emission.

    PubMed

    Dufaux, Jean-François

    2012-07-06

    Cosmic superstrings interact generically with a tower of light and/or strongly coupled Kaluza-Klein (KK) modes associated with the geometry of the internal space. We study the production of KK particles by cosmic superstring loops, and show that it is constrained by big bang nucleosynthesis. We study the resulting constraints in the parameter space of the underlying string theory model and highlight their complementarity with the regions that can be probed by current and upcoming gravitational wave experiments.

  10. Scaling of multitension cosmic superstring networks

    SciTech Connect

    Tye, S.-H. Henry; Wasserman, Ira; Wyman, Mark

    2005-05-15

    Brane inflation in superstring theory ends when branes collide, initiating the hot big bang. Cosmic superstrings are produced during the brane collision. The cosmic superstrings produced in a D3-brane-antibrane inflationary scenario have a spectrum: (p,q) bound states of p fundamental (F) strings and q D-strings, where p and q are coprime. By extending the velocity-dependent one-scale network evolution equations for Abelian Higgs cosmic strings to allow a spectrum of string tensions, we construct a coupled (infinite) set of equations for strings that interact through binding and self-interactions. We apply this model to a network of (p,q) superstrings. Our numerical solutions show that (p,q) networks rapidly approach a stable scaling solution. We also extract the relative densities of each string type from our solutions. Typically, only a small number of the lowest tension states are populated substantially once scaling is reached. The model we study also has an interesting new feature: the energy released in (p,q) string binding is by itself adequate to allow the network to reach scaling. This result suggests that the scaling solution is robust. To demonstrate that this result is not trivial, we show that choosing a different form for string interactions can lead to network frustration.

  11. Ramond-Ramond Central Charges in the Supersymmetry Algebra of the Superstring

    SciTech Connect

    Berkovits, N.

    1997-09-01

    The free action for the massless sector of the type II superstring was recently constructed using closed Ramond-Neveo-Schwarz superstring field theory. The supersymmetry transformations of this action are shown to satisfy an N=2 D=10 supersymmetry algebra with Ramond-Ramond central charges. {copyright} {ital 1997} {ital The American Physical Society}

  12. Quantum deformations of the flat space superstring

    NASA Astrophysics Data System (ADS)

    Pachoł, Anna; van Tongeren, Stijn J.

    2016-01-01

    We discuss a quantum deformation of the Green-Schwarz superstring on flat space, arising as a contraction limit of the corresponding deformation of AdS5×S5 . This contraction limit turns out to be equivalent to a previously studied limit that yields the so-called mirror model—the model obtained from the light cone gauge fixed AdS5×S5 string by a double Wick rotation. Reversing this logic, the AdS5×S5 superstring is the double Wick rotation of a quantum deformation of the flat space superstring. This quantum deformed flat space string realizes symmetries of the timelike κ -Poincaré type and is T dual to dS5×H5, indicating interesting relations between symmetry algebras under T duality. Our results directly extend to AdS2×S2×T6 and AdS3×S3×T4 and beyond string theory to many (semi)symmetric space coset sigma models, such as a deformation of the four-dimensional Minkowski sigma model with timelike κ -Poincaré symmetry. We also discuss possible null and spacelike deformations.

  13. Exploring the lambda model of the hybrid superstring

    NASA Astrophysics Data System (ADS)

    Schmidtt, David M.

    2016-10-01

    The purpose of this contribution is to initiate the study of integrable deformations for different superstring theory formalisms that manifest the property of (classical) integrability. In this paper we choose the hybrid formalism of the superstring in the background AdS 2 × S 2 and explore in detail the most immediate consequences of its λ-deformation. The resulting action functional corresponds to the λ-model of the matter part of the fairly more sophisticated pure spinor formalism, which is also known to be classical integrable. In particular, the deformation preserves the integrability and the one-loop conformal invariance of its parent theory, hence being a marginal deformation.

  14. Twistor superstring in two-time physics

    SciTech Connect

    Bars, Itzhak

    2004-11-15

    By utilizing the gauge symmetries of two-time physics (2T physics), a superstring with linearly realized global SU(2,2|4) supersymmetry in 4+2 dimensions (plus internal degrees of freedom) is constructed. It is shown that the dynamics of the Witten-Berkovits twistor superstring in 3+1 dimensions emerges as one of the many one-time (1T) holographic pictures of the 4+2 dimensional string obtained via gauge fixing of the 2T gauge symmetries. In 2T physics the twistor language can be transformed to usual spacetime language and vice versa, off shell, as different gauge fixings of the same 2T string theory. Further holographic string pictures in 3+1 dimensions that are dual theories also can be derived. The 2T superstring is further generalized in the SU(4)=SO(6) sector of SU(2,2|4) by the addition of six bosonic dimensions, for a total of 10+2 dimensions. Excitations of the extra bosons produce a SU(2,2|4) current algebra spectrum that matches the classification of the high-spin currents of N=4, d=4 super Yang-Mills theory which are conserved in the weak coupling limit. This spectrum is interpreted as the extension of the SU(2,2|4) classification of the Kaluza-Klein towers of typeII-B supergravity compactified on AdS{sub 5}xS{sup 5}, into the full string theory, and is speculated to have a covariant 10+2 origin in F-theory or S-theory. Further generalizations of the superstring theory to 3+2, 5+2, and 6+2 dimensions based on the supergroups OSp(8|4), F(4), OSp(8{sup *}|4), respectively, and other cases, are discussed also. The OSp(8{sup *}|4) case in 6+2 dimensions can be gauge fixed to 5+1 dimensions to provide a formulation of the special superconformal theory in six dimensions either in terms of ordinary spacetime or in terms of twistors.

  15. Amplitude for N-gluon superstring scattering.

    PubMed

    Stieberger, Stephan; Taylor, Tomasz R

    2006-11-24

    We consider scattering processes involving N gluonic massless states of open superstrings with a certain Regge slope alpha'. At the semiclassical level, the string world-sheet sweeps a disk and N gluons are created or annihilated at the boundary. We present exact expressions for the corresponding amplitudes, valid to all orders in alpha', for the so-called maximally helicity violating configurations, with N = 4, 5 and N = 6. We also obtain the leading O(alpha '2) string corrections to the zero-slope N-gluon Yang-Mills amplitudes.

  16. Amplitude for N-Gluon Superstring Scattering

    SciTech Connect

    Stieberger, Stephan; Taylor, Tomasz R.

    2006-11-24

    We consider scattering processes involving N gluonic massless states of open superstrings with a certain Regge slope {alpha}{sup '}. At the semiclassical level, the string world-sheet sweeps a disk and N gluons are created or annihilated at the boundary. We present exact expressions for the corresponding amplitudes, valid to all orders in {alpha}{sup '}, for the so-called maximally helicity violating configurations, with N=4, 5 and N=6. We also obtain the leading O({alpha}{sup '2}) string corrections to the zero-slope N-gluon Yang-Mills amplitudes.

  17. On the vanishing of the vacuum energy for superstrings

    NASA Astrophysics Data System (ADS)

    Morozov, A.; Perelomov, A.

    1987-01-01

    A hypothesis concerning the structure of formulae for vacuum diagrams in the first-quantized superstring theory is proposed. The analytical measure in the integration over moduli space is proportional to the sum Σeɛeθ [ e] 4 ( ɛe = ±1) over spin structures on Riemann surfaces and vanishes because of the Riemann identities for θ-constants.

  18. Quantum game theory and open access publishing

    NASA Astrophysics Data System (ADS)

    Hanauske, Matthias; Bernius, Steffen; Dugall, Berndt

    2007-08-01

    The digital revolution of the information age and in particular the sweeping changes of scientific communication brought about by computing and novel communication technology, potentiate global, high grade scientific information for free. The arXiv, for example, is the leading scientific communication platform, mainly for mathematics and physics, where everyone in the world has free access on. While in some scientific disciplines the open access way is successfully realized, other disciplines (e.g. humanities and social sciences) dwell on the traditional path, even though many scientists belonging to these communities approve the open access principle. In this paper we try to explain these different publication patterns by using a game theoretical approach. Based on the assumption, that the main goal of scientists is the maximization of their reputation, we model different possible game settings, namely a zero sum game, the prisoners’ dilemma case and a version of the stag hunt game, that show the dilemma of scientists belonging to “non-open access communities”. From an individual perspective, they have no incentive to deviate from the Nash equilibrium of traditional publishing. By extending the model using the quantum game theory approach it can be shown, that if the strength of entanglement exceeds a certain value, the scientists will overcome the dilemma and terminate to publish only traditionally in all three settings.

  19. 1 /N perturbations in superstring bit models

    NASA Astrophysics Data System (ADS)

    Thorn, Charles B.

    2016-03-01

    We develop the 1 /N expansion for stable string bit models, focusing on a model with bit creation operators carrying only transverse spinor indices a =1 ,…,s . At leading order (N =∞ ), this model produces a (discretized) light cone string with a "transverse space" of s Grassmann worldsheet fields. Higher orders in the 1 /N expansion are shown to be determined by the overlap of a single large closed chain (discretized string) with two smaller closed chains. In the models studied here, the overlap is not accompanied with operator insertions at the break/join point. Then, the requirement that the discretized overlap has a smooth continuum limit leads to the critical Grassmann "dimension" of s =24 . This "protostring," a Grassmann analog of the bosonic string, is unusual, because it has no large transverse dimensions. It is a string moving in one space dimension, and there are neither tachyons nor massless particles. The protostring, derived from our pure spinor string bit model, has 24 Grassmann dimensions, 16 of which could be bosonized to form 8 compactified bosonic dimensions, leaving 8 Grassmann dimensions—the worldsheet content of the superstring. If the transverse space of the protostring could be "decompactified," string bit models might provide an appealing and solid foundation for superstring theory.

  20. Supersymmetry breaking from superstrings and the gauge hierarchy

    SciTech Connect

    Gaillard, M.K. California Univ., Berkeley, CA . Dept. of Physics)

    1990-07-11

    The gauge hierarchy problem is reviewed and a class of effective field theories obtained from superstrings is described. These are characterized by a classical symmetry, related to the space-time duality of string theory, that is responsible for the suppression of observable supersymmetry breaking effects. At the quantum level, the symmetry is broken by anomalies that provide the seed of observable supersymmetry breaking, and an acceptably large gauge hierarchy may be generated. 39 refs.

  1. Nondecoupling of maximal supergravity from the superstring.

    PubMed

    Green, Michael B; Ooguri, Hirosi; Schwarz, John H

    2007-07-27

    We consider the conditions necessary for obtaining perturbative maximal supergravity in d dimensions as a decoupling limit of type II superstring theory compactified on a (10-d) torus. For dimensions d=2 and d=3, it is possible to define a limit in which the only finite-mass states are the 256 massless states of maximal supergravity. However, in dimensions d>or=4, there are infinite towers of additional massless and finite-mass states. These correspond to Kaluza-Klein charges, wound strings, Kaluza-Klein monopoles, or branes wrapping around cycles of the toroidal extra dimensions. We conclude that perturbative supergravity cannot be decoupled from string theory in dimensions>or=4. In particular, we conjecture that pure N=8 supergravity in four dimensions is in the Swampland.

  2. Target extraction from blurred trace infrared images with a superstring galaxy template algorithm

    NASA Astrophysics Data System (ADS)

    Yu, Xiao; Fu, Dongmei

    2014-05-01

    Accurate and efficient targets extraction from blurred trace infrared images has very important meaning for latent trace evidence collection in crime scene. Based on the superstring theory, a superstring galaxy template extraction algorithm for infrared trace target is presented. First, all of the pixels are divided into three classes: target pixels, background pixels and blurred pixels. Next, the superstring template characteristics for every pixel in a blurred infrared image are calculated as the features of each pixel. Finally, a galaxy covering algorithm is proposed, target pixels and background pixels are used for training the galaxy covering domain of every galaxy classifiers, and these classifiers will divide each blurred pixel into two classes: a target pixel or a background pixel. Experimental results indicate that the superstring galaxy template algorithm can improve the target extraction rate and reduce the extraction error rate.

  3. Genus dependence of superstring amplitudes

    SciTech Connect

    Davis, Simon

    2006-11-15

    The problem of the consistency of the finiteness of the supermoduli space integral in the limit of vanishing super-fixed point distance and the genus-dependence of the integral over the super-Schottky coordinates in the fundamental region containing a neighborhood of |K{sub n}|=0 is resolved. Given a choice of the categories of isometric circles representing the integration region, the exponential form of bounds for superstring amplitudes is derived.

  4. Calculation of multi-loop superstring amplitudes

    NASA Astrophysics Data System (ADS)

    Danilov, G. S.

    2016-12-01

    The multi-loop interaction amplitudes in the closed, oriented superstring theory are obtained by the integration of local amplitudes. The local amplitude is represented by a sum over the spinning string local amplitudes. The spinning string local amplitudes are given explicitly through super-Schottky group parameters and through interaction vertex coordinates on the (1| 1) complex, non-split supermanifold. The obtained amplitudes are free from divergences. They are consistent with the world-sheet spinning string symmetries. The vacuum amplitude vanishes along with 1-, 2- and 3-point amplitudes of massless states. The vanishing of the above-mentioned amplitude occurs after the integration of the corresponding local amplitude has been performed over the super-Schottky group limiting points and over interaction vertex coordinate, except for those (3| 2) variables which are fixed due to SL(2)-symmetry.

  5. Brane Inflation: From Superstring to Cosmic Strings

    SciTech Connect

    Tye, S.-H. Henry

    2004-12-10

    Brane inflation, where branes move towards each other in the brane world, has been shown to be quite natural in superstring theory. Inflation ends when branes collide and heat the universe, initiating the hot big bang. Cosmic strings (but not domain walls or monopoles) are copiously produced during the brane collision. Using the COBE data on the temperature anisotropy in the cosmic microwave background, the cosmic string tension {mu} is estimated to be around 10 -6 > G{mu} > 10-11, while the present observational bound is 7 x 10 -7 > G{mu}. This implies that the anisotropy that seeds structure formation comes mostly from inflation, but with a small component (< 10%) from cosmic string effects. This cosmic string effect should be testable in the near future via gravitational lensing, the cosmic microwave background radiation, and/or gravitational wave detectors like LIGO II/VIRGO.

  6. Energy radiation by cosmic superstrings in brane inflation

    SciTech Connect

    Firouzjahi, Hassan

    2008-01-15

    The dominant method of energy loss by a loop of cosmic D-strings in models of warped brane inflation is studied. It is shown that the energy loss via Ramond-Ramond field radiation can dominate by many orders of magnitude over the energy radiation via gravitational wave emission. The ratio of these two energy loss mechanisms depends on the energy scale of inflation, the mass scale of string theory, and whether it is a single-throat or a multithroat inflationary scenario. This can have important consequences for the detection of cosmic superstrings in the near future. It is argued that the bounds from cosmic microwave background anisotropies and big bang nucleosynthesis are the dominant cosmological sources to constrain the physical parameters of the network of cosmic superstrings, whereas the role of the gravitational wave-based experiments may be secondary.

  7. Green-Schwarz superstring from type IIB matrix model

    SciTech Connect

    Kitazawa, Yoshihisa; Nagaoka, Satoshi

    2008-01-15

    We construct a Green-Schwarz (GS) light-cone closed superstring theory from the type IIB matrix model. A GS light-cone string action is derived from the two-dimensional N=8 U(n) noncommutative Yang-Mills (NCYM) theory by identifying a noncommutative scale with a string scale. The supersymmetry transformation for the light-cone gauge action is also derived from supersymmetry transformation for the IIB matrix model. By identifying the physical states and interaction vertices, string theory is perturbatively reproduced.

  8. Superconductors from Superstrings

    SciTech Connect

    Gubser, Steven S.; Herzog, Christopher P.; Pufu, Silviu S.; Tesileanu, Tiberiu

    2009-10-02

    We establish that in a large class of strongly coupled (3+1)-dimensional N=1 quiver conformal field theories with gravity duals, adding a chemical potential for the R charge leads to the existence of superfluid states in which a chiral primary operator of the schematic form O=lambdalambda+W condenses. Here lambda is a gluino and W is the superpotential. Our argument is based on the construction of a consistent truncation of type IIB supergravity that includes a U(1) gauge field and a complex scalar.

  9. Open quantum systems and random matrix theory

    SciTech Connect

    Mulhall, Declan

    2014-10-15

    A simple model for open quantum systems is analyzed with RMT. The system is coupled to the continuum in a minimal way. In this paper we see the effect of opening the system on the level statistics, in particular the level spacing, width distribution and Δ{sub 3}(L) statistic are examined as a function of the strength of this coupling. The usual super-radiant state is observed, and it is seen that as it is formed, the level spacing and Δ{sub 3}(L) statistic exhibit the signatures of missed levels.

  10. Open quantum systems and random matrix theory

    NASA Astrophysics Data System (ADS)

    Mulhall, Declan

    2014-10-01

    A simple model for open quantum systems is analyzed with RMT. The system is coupled to the continuum in a minimal way. In this paper we see the effect of opening the system on the level statistics, in particular the level spacing, width distribution and Δ3(L) statistic are examined as a function of the strength of this coupling. The usual super-radiant state is observed, and it is seen that as it is formed, the level spacing and Δ3(L) statistic exhibit the signatures of missed levels.

  11. E10, BE10 and arithmetical chaos in superstring cosmology.

    PubMed

    Damour, T; Henneaux, M

    2001-05-21

    It is shown that the neverending oscillatory behavior of the generic solution, near a cosmological singularity, of the massless bosonic sector of superstring theory can be described as a billiard motion within a simplex in nine-dimensional hyperbolic space. The Coxeter group of reflections of this billiard is discrete and is the Weyl group of the hyperbolic Kac-Moody algebra E10 (for type II) or BE10 (for type I or heterotic), which are both arithmetic. These results lead to a proof of the chaotic ("Anosov") nature of the classical cosmological oscillations, and suggest a "chaotic quantum billiard" scenario of vacuum selection in string theory.

  12. Quantum and statistical mechanics in open systems: theory and examples

    NASA Astrophysics Data System (ADS)

    Zueco, David

    2009-08-01

    Using the system-bath model Hamiltonian this thesis covers the equilibrium and out of equilibrium properties of quantum open systems. Topics included are the calculation of thermodynamical quantities of open systems, derivation of quantum master equations, phase space and numerical methods and Linear and non Linear Response Theory. Applications are the transport in periodic potentials and the dynamics of spins.

  13. Superstrings

    SciTech Connect

    Lincoln, Don

    2015-01-12

    The quest to find the ultimate building blocks of nature is one of the oldest in all of physics. While we are far from knowing the answer to that question, one intriguing proposed answer is that all matter is composed of tiny “strings.” The known particles are simply different vibrational patterns of these strings. In this video, Fermilab’s Dr. Don Lincoln explains this idea, using interesting and accessible examples of real-world vibrations.

  14. Superstrings

    ScienceCinema

    Lincoln, Don

    2016-07-12

    The quest to find the ultimate building blocks of nature is one of the oldest in all of physics. While we are far from knowing the answer to that question, one intriguing proposed answer is that all matter is composed of tiny “strings.” The known particles are simply different vibrational patterns of these strings. In this video, Fermilab’s Dr. Don Lincoln explains this idea, using interesting and accessible examples of real-world vibrations.

  15. Star democracy in open string field theory

    NASA Astrophysics Data System (ADS)

    Maccaferri, Carlo; Mamone, Davide

    2003-09-01

    We study three types of star products in SFT: the ghosts, the twisted ghosts and the matter. We find that their Neumann coefficients are related to each other in a compact way which includes the Gross-Jevicki relation between matter and ghost sector: we explicitly show that the same relation, with a minus sign, holds for the twisted and nontwisted ghosts (which are different but define the same solution). In agreement with this, we prove that matter and twisted ghost coefficients just differ by a minus sign. As a consistency check, we also compute the spectrum of the twisted ghost vertices from conformal field theory and, using equality of twisted and reduced slivers, we derive the spectrum of the non twisted ghost star.

  16. D-branes from pure spinor superstring in AdS5 × S5 background

    NASA Astrophysics Data System (ADS)

    Hanazawa, Sota; Sakaguchi, Makoto

    2017-01-01

    We examine the surface term for the BRST transformation of the open pure spinor superstring in an AdS5 ×S5 background. We find that the boundary condition to eliminate the surface term leads to a classification of possible configurations of 1/2 supersymmetric D-branes.

  17. Superstrings:. why Einstein would Love Spaghetti in Fundamental Physics

    NASA Astrophysics Data System (ADS)

    Gates, S. James

    2001-09-01

    There are some questions in physics that until recently could not be answered due to the lack of a complete theory of gravitation. Some of these were, "How does the force of gravity work on objects a billion billions times smaller than the hydrogen atom?" or "What was the universe like, the very instant after the BIG BANG?" or "What is the complete physics of Black Holes?" In these arenas, the effects of gravity and all the other forces must be very different from those seen in everyday experience. Einstein suspected this and it led him to the belief that there must exist a "unified field theory" to describe our world at the tiniest scales. He spent the last forty years of his life unsuccessfully searching for this construction. More recently there appeared new mathematical models called "superstring theory" that have apparently succeeded in reaching his goal. This talk is an introduction to the idea of superstrings and heterotic strings as well as a progress report on the newest frontiers of this subject, "M-theory."

  18. General Open Systems Theory and the Substrata-Factor Theory of Reading.

    ERIC Educational Resources Information Center

    Kling, Martin

    This study was designed to extend the generality of the Substrata-Factor Theory by two methods of investigation: (1) theoretically, to establish the validity of the hypothesis that an isomorphic relationship exists between the Substrata-Factor Theory and the General Open Systems Theory, and (2) experimentally, to discover through a series of…

  19. General Open Systems Theory and the Substrata-Factor Theory of Reading.

    ERIC Educational Resources Information Center

    Kling, Martin

    This study was designed to extend the generality of the Substrata-Factor Theory by two methods of investigation: (1) theoretically, to est"blish the validity of the hypothesis that an isomorphic relationship exists between the Substrata-Factor Theory and the General Open Systems Theory, and (2) experimentally, to disc"ver through a…

  20. Description of a class of superstring compactifications related to semi-simple Lie algebras

    NASA Astrophysics Data System (ADS)

    Markushevich, D. G.; Olshanetsky, M. A.; Perelomov, A. M.

    1987-06-01

    A class of vacuum configurations in the superstring theory obtained by compactification of physical dimensions from ten to four is constructed. The compactification scheme involves taking quotients of tori of semisimple Lie algebras by finite symmetry group actions. The complete list of such configurations arising from actions by a Coxeter transformation is given. Some topological invariants having physical interpretations are calculated.

  1. Open parabosonic string theory between two parallel Dp-branes

    SciTech Connect

    Hamam, D.; Belaloui, N.

    2012-06-27

    We investigate an open parabosonic string theory between two parallel Dp-branes. The spectrum is constructed and the partition function is derived. A common chord between the development of this latter and the degeneracy of the states for each mass level is obtained. The theory is consistent and with no tachyon. The Virasoro algebra is derived and compared to the one of the ordinary case.

  2. Off-Shell Supersymmetry versus Hermiticity in Superstrings

    SciTech Connect

    Berkovits, N.

    1996-09-01

    We point out that off-shell four-dimensional spacetime supersymmetry implies strange Hermiticity properties for the {ital N}=1 Ramond-Neveu-Schwarz superstring. However, these Hermiticity properties become natural when the {ital N}=1 superstring is embedded into an {ital N}=2 superstring. {copyright} {ital 1996 The American Physical Society.}

  3. Nursing Services Delivery Theory: an open system approach

    PubMed Central

    Meyer, Raquel M; O’Brien-Pallas, Linda L

    2010-01-01

    meyer r.m. & o’brien-pallas l.l. (2010)Nursing services delivery theory: an open system approach. Journal of Advanced Nursing66(12), 2828–2838. Aim This paper is a discussion of the derivation of the Nursing Services Delivery Theory from the application of open system theory to large-scale organizations. Background The underlying mechanisms by which staffing indicators influence outcomes remain under-theorized and unmeasured, resulting in a ‘black box’ that masks the nature and organization of nursing work. Theory linking nursing work, staffing, work environments, and outcomes in different settings is urgently needed to inform management decisions about the allocation of nurse staffing resources in organizations. Data sources A search of CINAHL and Business Source Premier for the years 1980–2008 was conducted using the following terms: theory, models, organization, organizational structure, management, administration, nursing units, and nursing. Seminal works were included. Discussion The healthcare organization is conceptualized as an open system characterized by energy transformation, a dynamic steady state, negative entropy, event cycles, negative feedback, differentiation, integration and coordination, and equifinality. The Nursing Services Delivery Theory proposes that input, throughput, and output factors interact dynamically to influence the global work demands placed on nursing work groups at the point of care in production subsystems. Implications for nursing The Nursing Services Delivery Theory can be applied to varied settings, cultures, and countries and supports the study of multi-level phenomena and cross-level effects. Conclusion The Nursing Services Delivery Theory gives a relational structure for reconciling disparate streams of research related to nursing work, staffing, and work environments. The theory can guide future research and the management of nursing services in large-scale healthcare organizations. PMID:20831573

  4. Constructive field theory and applications: Perspectives and open problems

    NASA Astrophysics Data System (ADS)

    Rivasseau, V.

    2000-06-01

    In this paper we review many interesting open problems in mathematical physics which may be attacked with the help of tools from constructive field theory. They could give work for future mathematical physicists trained with constructive methods well into the 21st century.

  5. Theory of short periodic orbits for partially open quantum maps.

    PubMed

    Carlo, Gabriel G; Benito, R M; Borondo, F

    2016-07-01

    We extend the semiclassical theory of short periodic orbits [M. Novaes et al., Phys. Rev. E 80, 035202(R) (2009)PLEEE81539-375510.1103/PhysRevE.80.035202] to partially open quantum maps, which correspond to classical maps where the trajectories are partially bounced back due to a finite reflectivity R. These maps are representative of a class that has many experimental applications. The open scar functions are conveniently redefined, providing a suitable tool for the investigation of this kind of system. Our theory is applied to the paradigmatic partially open tribaker map. We find that the set of periodic orbits that belongs to the classical repeller of the open map (R=0) is able to support the set of long-lived resonances of the partially open quantum map in a perturbative regime. By including the most relevant trajectories outside of this set, the validity of the approximation is extended to a broad range of R values. Finally, we identify the details of the transition from qualitatively open to qualitatively closed behavior, providing an explanation in terms of short periodic orbits.

  6. Theory of short periodic orbits for partially open quantum maps

    NASA Astrophysics Data System (ADS)

    Carlo, Gabriel G.; Benito, R. M.; Borondo, F.

    2016-07-01

    We extend the semiclassical theory of short periodic orbits [M. Novaes et al., Phys. Rev. E 80, 035202(R) (2009), 10.1103/PhysRevE.80.035202] to partially open quantum maps, which correspond to classical maps where the trajectories are partially bounced back due to a finite reflectivity R . These maps are representative of a class that has many experimental applications. The open scar functions are conveniently redefined, providing a suitable tool for the investigation of this kind of system. Our theory is applied to the paradigmatic partially open tribaker map. We find that the set of periodic orbits that belongs to the classical repeller of the open map (R =0 ) is able to support the set of long-lived resonances of the partially open quantum map in a perturbative regime. By including the most relevant trajectories outside of this set, the validity of the approximation is extended to a broad range of R values. Finally, we identify the details of the transition from qualitatively open to qualitatively closed behavior, providing an explanation in terms of short periodic orbits.

  7. Tensionless superstrings: view from the worldsheet

    NASA Astrophysics Data System (ADS)

    Bagchi, Arjun; Chakrabortty, Shankhadeep; Parekh, Pulastya

    2016-10-01

    In this brief note, we show that the residual symmetries that arise in the analysis of the tensionless superstrings in the equivalent of the conformal gauge is (a trivial extension of) the recently discovered 3d Super Bondi-Metzner-Sachs algebra, discussed in the context of asymptotic symmetries of 3d Supergravity in flat-spacetimes. This helps us uncover a limiting approach to the construction of the tensionless superstring from the point of view of the worldsheet, analogous to the one we had adopted earlier for the closed tensionless bosonic string.

  8. The shadow world of superstring theories

    NASA Technical Reports Server (NTRS)

    Kolb, E. W.; Turner, M. S.; Seckel, D.

    1985-01-01

    Some possible astrophysical and cosmological implications of 'shadow matter', a form of matter which only interacts gravitationally with ordinary matter and which may or may not be identical in its properties to ordinary matter, are considered. The possible existence, amount, and location of shadow matter in the solar system are discussed, and the significance of shadow matter for primordial nucleosynthesis, macroscopic asymmetry, baryogenesis, double-bubble inflation, and asymmetric microphysics is addressed. Massive shadow states are discussed.

  9. Thermofield dynamics extension of the open string field theory

    NASA Astrophysics Data System (ADS)

    Botta Cantcheff, M.; Scherer Santos, R. J.

    2016-03-01

    We study the application of the rules of thermofield dynamics (TFD) to the covariant formulation of open-string field theory. We extend the states space and fields according to the duplication rules of TFD and construct the corresponding classical action. The result is interpreted as a theory whose fields would encode the statistical information of open strings. The physical spectrum of the free theory is studied through the cohomology of the extended Becchi, Rouet, Stora and Tyutin (BRST) charge, and, as a result, we get new fields in the spectrum emerging by virtue of the quantum entanglement, and, noticeably, it presents degrees of freedom that could be identified as those of closed strings. We also show, however, that their appearing in the action is directly related to the choice of the inner product in the extended algebra, so that different sectors of fields could be eliminated from the theory by choosing that product conveniently. Finally, we study the extension of the three-vertex interaction and provide a simple prescription for it of which the results at tree level agree with those of the conventional theory.

  10. Sensor And Method For Detecting A Superstrate

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Cari, James R. (Inventor); Ngo, Phong H. (Inventor); Fink, Patrick W. (Inventor); Siekierski, James D. (Inventor)

    2006-01-01

    Method and apparatus are provided for determining a superstrate on or near a sensor, e.g., for detecting the presence of an ice superstrate on an airplane wing or a road. In one preferred embodiment, multiple measurement cells are disposed along a transmission line. While the present invention is operable with different types of transmission lines, construction details for a presently preferred coplanar waveguide and a microstrip waveguide are disclosed. A computer simulation is provided as part of the invention for predicting results of a simulated superstrate detector system. The measurement cells may be physically partitioned, nonphysically partitioned with software or firmware, or include a combination of different types of partitions. In one embodiment, a plurality of transmission lines are utilized wherein each transmission line includes a plurality of measurement cells. The plurality of transmission lines may be multiplexed with the signal from each transmission line being applied to the same phase detector. In one embodiment, an inverse problem method is applied to determine the superstrate dielectric for a transmission line with multiple measurement cells.

  11. Linear response theory for open systems: Quantum master equation approach

    NASA Astrophysics Data System (ADS)

    Ban, Masashi; Kitajima, Sachiko; Arimitsu, Toshihico; Shibata, Fumiaki

    2017-02-01

    A linear response theory for open quantum systems is formulated by means of the time-local and time-nonlocal quantum master equations, where a relevant quantum system interacts with a thermal reservoir as well as with an external classical field. A linear response function that characterizes how a relaxation process deviates from its intrinsic process by a weak external field is obtained by extracting the linear terms with respect to the external field from the quantum master equation. It consists of four parts. One represents the linear response of a quantum system when system-reservoir correlation at an initial time and correlation between reservoir states at different times are neglected. The others are correction terms due to these effects. The linear response function is compared with the Kubo formula in the usual linear response theory. To investigate the properties of the linear response of an open quantum system, an exactly solvable model for a stochastic dephasing of a two-level system is examined. Furthermore, the method for deriving the linear response function is applied for calculating two-time correlation functions of open quantum systems. It is shown that the quantum regression theorem is not valid for open quantum systems unless their reduced time evolution is Markovian.

  12. One loop superstring effective actions and N=8 supergravity

    SciTech Connect

    Moura, Filipe

    2008-06-15

    In a previous article we have shown the existence of a new independent R{sup 4} term, at one loop, in the type IIA and heterotic effective actions, after reduction to four dimensions, besides the usual square of the Bel-Robinson tensor. It had been shown that such a term could not be directly supersymmetrized, but we showed that was possible after coupling to a scalar chiral multiplet. In this article, we study the extended (N=8) supersymmetrization of this term, where no other coupling can be taken. We show that such supersymmetrization cannot be achieved at the linearized level. This is in conflict with the theory one gets after toroidal compactification of type II superstrings being N=8 supersymmetric. We interpret this result in the face of the recent claim that perturbative supergravity cannot be decoupled from string theory in d{>=}4, and N=8, d=4 supergravity is in the swampland.

  13. SAR reduction using a single SRR superstrate for a dual-band antenna.

    PubMed

    Rosaline, Imaculate; Singaravelu, Raghavan

    2017-01-01

    A dual-band microstrip antenna operating at GSM 900 and GSM 1800 MHz is designed initially. Then a single split ring resonator (SRR) structure is used as a superstrate for this dual-band antenna. A circular current is induced in the SRR due to the perpendicular plane wave excitation, which in turn leads to an electric excitation coupled to the magnetic resonance. It also exhibits higher order excitations at 0.9 and 1.8 GHz which ultimately resulted in specific absorption rate (SAR) reduction of human head at both the designed frequencies of the antenna. The antenna and the SRR superstrate are printed on a 1.6 mm thick FR-4 substrate of dimension 59.6 × 49.6 mm(2). Analysis of the SRR using the classic waveguide theory approach is discussed. Radiation pattern of the antenna in the presence of SRR superstrate and human head is also discussed. Prototype of the antenna along with the SRR superstrate is fabricated and measured for return loss and radiation pattern. Measurement results fairly agree with the simulated results. A human head phantom is utilized in the calculation of SAR.

  14. Euclidean time formulation for the superstring ensembles: Perturbative canonical ensemble with Neveu-Schwarz B -field backgrounds

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Shyamoli

    2014-12-01

    We derive the Euclidean time formulation for the equilibrium canonical ensemble of the type IIA and type IIB superstrings, and the spin(32 )/Z2 heterotic string. We compactify on R8×T2 , and twist by the Neveu-Schwarz sector antisymmetric 2-form B -field potential, spontaneously breaking supersymmetry at low temperatures, while preserving the tachyon-free low-energy gravitational field theory limit. We verify that the super partners of the massless dilaton-graviton multiplet obtain a mass which is linear in the temperature. In addition, we show that the free energy for the superstring canonical ensemble at weak coupling is always strongly convergent in the ultraviolet, high-temperature, regime dominated by the highest mass level number states. We derive the precise form of the exponential suppression as a linear power of the mass level, which erases the exponential Hagedorn growth of the degeneracies as the square root of mass level number. Finally, we close a gap in previous research giving an unambiguous derivation of the normalization of the one-loop vacuum energy density of the spin(32 )/Z2 perturbative heterotic string theory. Invoking the O(32) type IB-heterotic strong-weak duality, we match the normalization of the one loop vacuum energy densities of the T -dual O(32) type IA open and closed string with that of the spin(32 )/Z2 heterotic string on R9×S1 , for values of the compactification radius, R[O (32 )] , RIB≫ α'1 /2 , with RIA<α'1 /2 . We show that the type IA thermal solitonic winding spectrum is a simple model for finite temperature pure QCD, transitioning above the critical duality phase transformation temperature to the deconfined ensemble of thermally excited IB gluons.

  15. Open-shell M∅ller—Plesset perturbation theory

    NASA Astrophysics Data System (ADS)

    Amos, Roger D.; Andrews, Jamie S.; Handy, Nicholas C.; Knowles, Peter J.

    1991-10-01

    In a previous paper, the spin constrained unrestricted Hartree—Fock method (SUHF) was introduced, in which the UHF method was amended by a constraint that < Ŝ2> should have a prescribed value with λ the associated Lagrange multiplier. It was shown that the limit λ→∞ gave the high spin restricted open-shell Hartree—Fock (ROHF) wavefunction and energy, although the orbitals are rotated. Here it is shown how the λ→∞ results are achieved analytically directly from ROHF calculations. M∅ller—Plesset perturbation theory may then be set up within the amended Fock operators of SUHF theory, based upon the unrestricted formalism. Single replacement contributions enter into the first-order wavefunction. The convergence of this restricted open-shell M∅ller—Plesset perturbation theory (ROMP) is examined to high order using our full configuration interaction program. The calculations show none of the slow convergence properties associated with the UMP series. For NH 2 (C 2v, 1.5 re) and CN ( re). ROMP2 and ROMP4 are a substantial improvement over UMP2 and UMP4.

  16. Toward open-shell nuclei with coupled-cluster theory

    SciTech Connect

    Jansen, G. R.; Hjorth-Jensen, M.; Hagen, G.; Papenbrock, T.

    2011-05-15

    We develop a method based on equation-of-motion coupled-cluster theory to describe properties of open-shell nuclei with A{+-}2 nucleons outside a closed shell. We perform proof-of-principle calculations for the ground states of the helium isotopes {sup 3-6}He and the first excited 2{sup +} state in {sup 6}He. The comparison with exact results from matrix diagonalization in small model spaces demonstrates the accuracy of the coupled-cluster methods. Three-particle-one-hole excitations of {sup 4}He play an important role for the accurate description of {sup 6}He. For the open-shell nucleus {sup 6}He, the computational cost of the method is comparable with the coupled-cluster singles-and-doubles approximation while its accuracy is similar to the coupled-cluster with singles, doubles, and triples excitations.

  17. Construction of action for heterotic string field theory including the Ramond sector

    NASA Astrophysics Data System (ADS)

    Goto, Keiyu; Kunitomo, Hiroshi

    2016-12-01

    Extending the formulation for open superstring field theory given in arXiv:1508.00366, we attempt to construct a complete action for heterotic string field theory. The action is non-polynomial in the Ramond string field Ψ, and we construct it order by order in Ψ. Using a dual formulation in which the role of η and Q is exchanged, the action is explicitly obtained at the quadratic and quartic order in Ψ with the gauge transformations.

  18. Recent Advances in Open-Shell Perturbation Theory and Coupled-Cluster Theory

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    Comparisons of various recently developed open-shell RHF perturbation theories will be presented. Among the aspects considered are spin-contamination, computational cost, and quality of numerical results. In addition, a new approach to avoid the disk storage and I/O bottlenecks in large scale coupled-cluster calculations will be discussed.

  19. Torsion and geometrostasis in covariant superstrings

    SciTech Connect

    Zachos, C.

    1985-01-01

    The covariant action for freely propagating heterotic superstrings consists of a metric and a torsion term with a special relative strength. It is shown that the strength for which torsion flattens the underlying 10-dimensional superspace geometry is precisely that which yields free oscillators on the light cone. This is in complete analogy with the geometrostasis of two-dimensional sigma-models with Wess-Zumino interactions. 13 refs.

  20. Superconformal spaces and implications for superstrings

    SciTech Connect

    Hatsuda, M.; Siegel, W.

    2008-03-15

    We clarify some properties of projective superspace by using a manifestly superconformal notation. In particular, we analyze the N=2 scalar multiplet in detail, including its action, and the propagator and its super-Schwinger parameters. The internal symmetry is taken to be noncompact (after Wick rotation), allowing boundary conditions that preserve it off shell. Generalization to N=4 suggests the coset superspace PSU(2,2|4)/OSp(4|4) for the AdS/CFT superstring.

  1. Keldysh field theory for driven open quantum systems.

    PubMed

    Sieberer, L M; Buchhold, M; Diehl, S

    2016-09-01

    Recent experimental developments in diverse areas-ranging from cold atomic gases to light-driven semiconductors to microcavity arrays-move systems into the focus which are located on the interface of quantum optics, many-body physics and statistical mechanics. They share in common that coherent and driven-dissipative quantum dynamics occur on an equal footing, creating genuine non-equilibrium scenarios without immediate counterpart in equilibrium condensed matter physics. This concerns both their non-thermal stationary states and their many-body time evolution. It is a challenge to theory to identify novel instances of universal emergent macroscopic phenomena, which are tied unambiguously and in an observable way to the microscopic drive conditions. In this review, we discuss some recent results in this direction. Moreover, we provide a systematic introduction to the open system Keldysh functional integral approach, which is the proper technical tool to accomplish a merger of quantum optics and many-body physics, and leverages the power of modern quantum field theory to driven open quantum systems.

  2. Keldysh field theory for driven open quantum systems

    NASA Astrophysics Data System (ADS)

    Sieberer, L. M.; Buchhold, M.; Diehl, S.

    2016-09-01

    Recent experimental developments in diverse areas—ranging from cold atomic gases to light-driven semiconductors to microcavity arrays—move systems into the focus which are located on the interface of quantum optics, many-body physics and statistical mechanics. They share in common that coherent and driven-dissipative quantum dynamics occur on an equal footing, creating genuine non-equilibrium scenarios without immediate counterpart in equilibrium condensed matter physics. This concerns both their non-thermal stationary states and their many-body time evolution. It is a challenge to theory to identify novel instances of universal emergent macroscopic phenomena, which are tied unambiguously and in an observable way to the microscopic drive conditions. In this review, we discuss some recent results in this direction. Moreover, we provide a systematic introduction to the open system Keldysh functional integral approach, which is the proper technical tool to accomplish a merger of quantum optics and many-body physics, and leverages the power of modern quantum field theory to driven open quantum systems.

  3. Low-energy structure of four-dimensional superstrings

    SciTech Connect

    Zwirner, F.

    1988-05-01

    The N = 1, d = 4 supergravity theories derived as the low-energy limit of four-dimensional superstrings are discussed, focusing on the properties of their effective potentials. Gauge symmetry breaking is possible along several flat directions. A class of superpotential modifications is introduced, which describes supersymmetry breaking with vanishing cosmological constant and Str M{sup 2} = 0 at any minimum of the tree level potential. Under more restrictive assumptions, there are minima with broken supersymmetry at which also Str f(M{sup 2}) = 0 for any function f, so that the whole one-loop cosmological constant vanishes. This result is interpreted in terms of a new discrete boson-fermion symmetry, relating particles whose helicities differ by 3/2, e.g., the graviton and the dilatino.' 21 refs.

  4. CMB constraints on cosmic strings and superstrings

    NASA Astrophysics Data System (ADS)

    Charnock, Tom; Avgoustidis, Anastasios; Copeland, Edmund J.; Moss, Adam

    2016-06-01

    We present the first complete Markov chain Monte Carlo analysis of cosmological models with evolving cosmic (super)string networks, using the unconnected segment model in the unequal-time correlator formalism. For ordinary cosmic string networks, we derive joint constraints on Λ cold dark matter (CDM) and string network parameters, namely the string tension G μ , the loop-chopping efficiency cr, and the string wiggliness α . For cosmic superstrings, we obtain joint constraints on the fundamental string tension G μF, the string coupling gs, the self-interaction coefficient cs, and the volume of compact extra dimensions w . This constitutes the most comprehensive CMB analysis of Λ CDM cosmology+strings to date. For ordinary cosmic string networks our updated constraint on the string tension, obtained using Planck2015 temperature and polarization data, is G μ <1.1 ×10-7 in relativistic units, while for cosmic superstrings our constraint on the fundamental string tension after marginalizing over gs, cs, and w is G μF<2.8 ×10-8.

  5. A new graph model and algorithms for consistent superstring problems.

    PubMed

    Na, Joong Chae; Cho, Sukhyeun; Choi, Siwon; Kim, Jin Wook; Park, Kunsoo; Sim, Jeong Seop

    2014-05-28

    Problems related to string inclusion and non-inclusion have been vigorously studied in diverse fields such as data compression, molecular biology and computer security. Given a finite set of positive strings P and a finite set of negative strings N, a string α is a consistent superstring if every positive string is a substring of α and no negative string is a substring of α. The shortest (resp. longest) consistent superstring problem is to find a string α that is the shortest (resp. longest) among all the consistent superstrings for the given sets of strings. In this paper, we first propose a new graph model for consistent superstrings for given P and N. In our graph model, the set of strings represented by paths satisfying some conditions is the same as the set of consistent superstrings for P and N. We also present algorithms for the shortest and the longest consistent superstring problems. Our algorithms solve the consistent superstring problems for all cases, including cases that are not considered in previous work. Moreover, our algorithms solve in polynomial time the consistent superstring problems for more cases than the previous algorithms. For the polynomially solvable cases, our algorithms are more efficient than the previous ones.

  6. A new graph model and algorithms for consistent superstring problems†

    PubMed Central

    Na, Joong Chae; Cho, Sukhyeun; Choi, Siwon; Kim, Jin Wook; Park, Kunsoo; Sim, Jeong Seop

    2014-01-01

    Problems related to string inclusion and non-inclusion have been vigorously studied in diverse fields such as data compression, molecular biology and computer security. Given a finite set of positive strings and a finite set of negative strings , a string α is a consistent superstring if every positive string is a substring of α and no negative string is a substring of α. The shortest (resp. longest) consistent superstring problem is to find a string α that is the shortest (resp. longest) among all the consistent superstrings for the given sets of strings. In this paper, we first propose a new graph model for consistent superstrings for given and . In our graph model, the set of strings represented by paths satisfying some conditions is the same as the set of consistent superstrings for and . We also present algorithms for the shortest and the longest consistent superstring problems. Our algorithms solve the consistent superstring problems for all cases, including cases that are not considered in previous work. Moreover, our algorithms solve in polynomial time the consistent superstring problems for more cases than the previous algorithms. For the polynomially solvable cases, our algorithms are more efficient than the previous ones. PMID:24751868

  7. Gain enhancement with near-zero-index metamaterial superstrate

    NASA Astrophysics Data System (ADS)

    Bouzouad, M.; Chaker, S. M.; Bensafielddine, D.; Laamari, E. M.

    2015-11-01

    The objective of this paper was to use a near-zero-index ( n) metamaterial as a single- or a double-layer superstrate suspended above a microstrip patch antenna, operating at 43 GHz, for the gain enhancement. The single metamaterial layer superstrate consists of a periodic arrangement of Jerusalem cross unit cells and behaves as an homogeneous medium characterized by a refractive index close to zero. This metamaterial property allows gathering radiated waves from the antenna and collimates them toward the superstrate normal direction. The proposed design improves the antenna gain by 5.1 dB with the single-layer superstrate and 7 dB with the double-layer superstrate.

  8. Fermionic reductions of the AdS{sub 4}xCP{sup 3} superstring

    SciTech Connect

    Dukalski, Marcin; Tongeren, Stijn J. van

    2009-08-15

    We discuss fermionic reductions of type IIA superstrings on AdS{sub 4}xCP{sup 3} in relation to the conjectured AdS{sub 4}/CFT{sub 3} duality. The superstring theory is described by means of a coset model construction, which is classically integrable. We discuss the global light-cone symmetries of the action and related {kappa}-symmetry gauge choices, and also present the complete quartic action in covariant form with respect to these. Further, we study integrable (fermionic) reductions, in particular, a reduction yielding a quadratic action of two complex fermions on the string world-sheet. Interestingly, this model appears to be exactly the same as the corresponding integrable reduction found in the AdS{sub 5}xS{sup 5} case.

  9. Probing cosmic superstrings with gravitational waves

    NASA Astrophysics Data System (ADS)

    Sousa, L.; Avelino, P. P.

    2016-09-01

    We compute the stochastic gravitational wave background generated by cosmic superstrings using a semianalytical velocity-dependent model to describe their dynamics. We show that heavier string types may leave distinctive signatures on the stochastic gravitational wave background spectrum within the reach of present and upcoming gravitational wave detectors. We examine the physically motivated scenario in which the physical size of loops is determined by the gravitational backreaction scale and use NANOGrav data to derive a conservative constraint of G μF<3.2 ×10-9 on the tension of fundamental strings. We demonstrate that approximating the gravitational wave spectrum generated by cosmic superstring networks using the spectrum generated by ordinary cosmic strings with reduced intercommuting probability (which is often done in the literature) leads, in general, to weaker observational constraints on G μF. We show that the inclusion of heavier string types is required for a more accurate characterization of the region of the (gs,G μF) parameter space that may be probed using direct gravitational wave detectors. In particular, we consider the observational constraints that result from NANOGrav data and show that heavier strings generate a secondary exclusion region of parameter space.

  10. String theory in electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Ambjørn, Jan; Makeenko, Yuri M.; Semenoff, Gordon W.; Szabo, Richard J.

    2003-02-01

    A review of various aspects of superstrings in background electromagnetic fields is presented. Topics covered include the Born-Infeld action, spectrum of open strings in background gauge fields, the Schwinger mechanism, finite-temperature formalism and Hagedorn behaviour in external fields, Debye screening, D-brane scattering, thermodynamics of D-branes, and noncommutative field and string theories on D-branes. The electric field instabilities are emphasized throughout and contrasted with the case of magnetic fields. A new derivation of the velocity-dependent potential between moving D-branes is presented, as is a new result for the velocity corrections to the one-loop thermal effective potential.

  11. Effective theories and thresholds in particle physics

    SciTech Connect

    Gaillard, M.K.

    1991-06-07

    The role of effective theories in probing a more fundamental underlying theory and in indicating new physics thresholds is discussed, with examples from the standard model and more speculative applications to superstring theory. 38 refs.

  12. Silicone Rubber Superstrate Loaded Patch Antenna Design Using Slotting Technique

    NASA Astrophysics Data System (ADS)

    Kaur, Bhupinder; Saini, Garima; Saini, Ashish

    2016-09-01

    For the protection of antenna from external environmental conditions, there is a need that antenna should be covered with a stable, non-reactive, highly durable and weather resistive material which is insensitive to changing external environment. Hence, in this paper silicone rubber is proposed as a superstrate layer for patch antenna for its protection. The electrical properties of silicon rubber sealant are experimentally found out and its effect of using as superstrate on coaxial fed microstrip patch antenna using transmission line model is observed. The overall performance is degraded by slightly after the use of superstrate. Further to improve the performance of superstrate loaded antenna, patch slots and ground defects have been proposed. The proposed design achieves the wideband of 790 MHz (13.59 %), gain of 7.12 dB, VSWR of 1.12 and efficiency of 83.02 %.

  13. Short superstrings and the structure of overlapping strings.

    PubMed

    Armen, C; Stein, C

    1995-01-01

    Given a collection of strings S = [s1,...,sn] over an alphabet sigma, a superstring alpha of S is a string containing each si as a substring, that is, for each i, 1 < or = i < or = n, alpha contains a block of magnitude of si consecutive characters that match si exactly. The shortest superstring problem is the problem of finding a superstring alpha of minimum length. The shortest superstring problem has applications in both computational biology and data compression. The shortest superstring problem is NP-hard (Gallant et al., 1980); in fact, it was recently shown to be MAX SNP-hard (Blum et al., 1994). Given the importance of the applications, several heuristics and approximation algorithms have been proposed. Constant factor approximation algorithms have been given in Blum et al. (1994) (factor of 3), Teng and Yao (1993) (factor of 2 8/9), Czumaj et al. (1994) (factor of 2 5/6), and Kosaraju et al. (1994) (factor of 2 50/63). Informally, the key to any algorithm for the shortest superstring problem is to identify sets of strings with large amounts of similarity, or overlap. Although the previous algorithms and their analyses have grown increasingly sophisticated, they reveal remarkably little about the structure of strings with large amounts of overlap. In this sense, they are solving a more general problem than the one at hand. In this paper, we study the structure of strings with large amounts of overlap and use our understanding to give an algorithm that finds a superstring whose length is no more than 2 3/4 times that of the optimal superstring. Our algorithm runs in O(magnitude of S + n3) time, which matches that of previous algorithms. We prove several interesting properties about short periodic strings, allowing us to answer questions of the following form: Given a string with some periodic structure, characterize all the possible periodic strings that can have a large amount of overlap with the first string.

  14. The decay of highly excited open strings

    NASA Technical Reports Server (NTRS)

    Mitchell, D.; Turok, N.; Wilkinson, R.; Jetzer, P.

    1988-01-01

    The decay rates of leading edge Regge trajectory states are calculated for very high level number in open bosonic string theories, ignoring tachyon final states. The optical theorem simplifies the analysis while enabling identification of the different mass level decay channels. The main result is that (in four dimensions) the greatest single channel is the emission of a single photon and a state of the next mass level down. A simple asymptotic formula for arbitrarily high level number is given for this process. Also calculated is the total decay rate exactly up to N=100. It shows little variation over this range but appears to decrease for larger N. The formalism is checked in examples and the decay rate of the first excited level calculated for open superstring theories. The calculation may also have implications for high spin meson resonances.

  15. Structuration theory: open the black box of integrated care

    PubMed Central

    Esslinger, Adelheid Susanne

    2009-01-01

    Introduction The health care system is in transition. Integrated cares solutions are prominent and even forced by health care policy. But how can we understand the needs of different stakeholders in this system? Why do they still not act effectively and efficiently together? A closer look, using the structuration theory of Anthony Giddens, may be helpful. Theory The theory of structuration enables people to explain social interactions. As this is a matter of fact, the health care system was analyzed by the author in her habilitation thesis. The focus of the study laid on the effective and efficient care of the very old people in Germany. The structuration theory was presented, and as an example of practical translation of the theory, the implementation of the ‘Pflegestützpunkte’ (service point for care) was described. Practice Giddens' structuration theory is on the one hand complex in theory, and simple on the other hand in practice. Choosing the paradigm may be helpful to explain the motivation of the different stakeholders in the health care system. It would be necessary to create a suitable questionnaire, to get deeper insight in how the different actors in the system act and react. Such a questionnaire should be based on Giddens' theory. The following three dimensions are needed: structure (including domination, legitimation, and signification), interaction (including power, sanctioning, and communication) and modality/duality (including instruments of power, norms and interpretation).

  16. Relativistic many-body perturbation theory for general open-shell multiplet states of atoms

    NASA Astrophysics Data System (ADS)

    Ishikawa, Yasuyuki; Koc, Konrad

    1996-06-01

    A relativistic many-body perturbation theory, which accounts for relativistic and electron-correlation effects for general open-shell multiplet states of atoms and molecules, is developed and implemented with analytic basis sets of Gaussian spinors. The theory retains the essential aspects of Mo/ller-Plesset perturbation theory by employing the relativistic single-Fock-operator method of Koc and Ishikawa [Phys. Rev. A 49, 794 (1994)] for general open-shell systems. Open-shell Dirac-Fock and relativistic many-body perturbation calculations are reported for the ground and low-lying excited states of Li, B2+, Ne7+, and Ca11+.

  17. Closing in on Chemical Bonds by Opening up Relativity Theory

    PubMed Central

    Whitney, Cynthia Kolb

    2008-01-01

    This paper develops a connection between the phenomenology of chemical bonding and the theory of relativity. Empirical correlations between electron numbers in atoms and chemical bond stabilities in molecules are first reviewed and extended. Quantitative chemical bond strengths are then related to ionization potentials in elements. Striking patterns in ionization potentials are revealed when the data are viewed in an element-independent way, where element-specific details are removed via an appropriate scaling law. The scale factor involved is not explained by quantum mechanics; it is revealed only when one goes back further, to the development of Einstein’s special relativity theory. PMID:19325749

  18. Closing in on chemical bonds by opening up relativity theory.

    PubMed

    Whitney, Cynthia K

    2008-03-01

    This paper develops a connection between the phenomenology of chemical bonding and the theory of relativity. Empirical correlations between electron numbers in atoms and chemical bond stabilities in molecules are first reviewed and extended. Quantitative chemical bond strengths are then related to ionization potentials in elements. Striking patterns in ionization potentials are revealed when the data are viewed in an element-independent way, where element-specific details are removed via an appropriate scaling law. The scale factor involved is not explained by quantum mechanics; it is revealed only when one goes back further, to the development of Einstein's special relativity theory.

  19. The AdS{sub 5}xS{sup 5} superstring worldsheet S matrix and crossing symmetry

    SciTech Connect

    Janik, Romuald A.

    2006-04-15

    An S matrix satisfying the Yang-Baxter equation with symmetries relevant to the AdS{sub 5}xS{sup 5} superstring recently has been determined up to an unknown scalar factor. Such scalar factors are typically fixed using crossing relations; however, due to the lack of conventional relativistic invariance, in this case its determination remained an open problem. In this paper we propose an algebraic way to implement crossing relations for the AdS{sub 5}xS{sup 5} superstring worldsheet S matrix. We base our construction on a Hopf-algebraic formulation of crossing in terms of the antipode and introduce generalized rapidities living on the universal cover of the parameter space which is constructed through an auxillary, coupling-constant dependent, elliptic curve. We determine the crossing transformation and write functional equations for the scalar factor of the S matrix in the generalized rapidity plane.

  20. Green-Schwarz superstring on the lattice

    NASA Astrophysics Data System (ADS)

    Bianchi, L.; Bianchi, M. S.; Forini, V.; Leder, B.; Vescovi, E.

    2016-07-01

    We consider possible discretizations for a gauge-fixed Green-Schwarz action of Type IIB superstring. We use them for measuring the action, from which we extract the cusp anomalous dimension of planar N=4 SYM as derived from AdS/CFT, as well as the mass of the two AdS excitations transverse to the relevant null cusp classical string solution. We perform lattice simulations employing a Rational Hybrid Monte Carlo (RHMC) algorithm and two Wilson-like fermion discretizations, one of which preserves the global SO(6) symmetry the model. We compare our results with the expected behavior at various values of g=√{λ }/4π . For both the observables, we find a good agreement for large g, which is the perturbative regime of the sigma-model. For smaller values of g, the expectation value of the action exhibits a deviation compatible with the presence of quadratic divergences. After their non-perturbative subtraction the continuum limit can be taken, and suggests a qualitative agreement with the non-perturbative expectation from AdS/CFT. Furthermore, we detect a phase in the fermion determinant, whose origin we explain, that for small g leads to a sign problem not treatable via standard reweigthing. The continuum extrapolations of the observables in the two different discretizations agree within errors, which is strongly suggesting that they lead to the same continuum limit. Part of the results discussed here were presented earlier in [1].

  1. Open effective field theories from deeply inelastic reactions

    NASA Astrophysics Data System (ADS)

    Braaten, Eric; Hammer, H.-W.; Lepage, G. Peter

    2016-09-01

    Effective field theories have often been applied to systems with deeply inelastic reactions that produce particles with large momenta outside the domain of validity of the effective theory. The effects of the deeply inelastic reactions have been taken into account in previous work by adding local anti-Hermitian terms to the effective Hamiltonian. Here, we show that when multiparticle systems are considered, an additional modification is required in equations governing the density matrix. We define an effective density matrix by tracing over the states containing high-momentum particles and show that it satisfies a Lindblad equation, with local Lindblad operators determined by the anti-Hermitian terms in the effective Hamiltonian density.

  2. Open Effective Field Theories from Deeply Inelastic Reactions

    NASA Astrophysics Data System (ADS)

    Braaten, Eric; Hammer, Hans-Werner; Lepage, G. Peter

    2017-01-01

    Effective field theories have often been applied to systems with inelastic reactions that produce particles with large momenta outside the domain of validity of the effective theory. The effects of the deeply inelastic reactions have been taken into account in previous work by adding local anti-Hermitian terms to the effective Hamiltonian density. We show that an additional modification is required in equations governing the density matrix when multi-particle states are considered. We define an effective density matrix by tracing out states containing high-momentum particles, and show that it satisfies a Lindblad equation, with Lindblad operators determined by the anti-Hermitian terms in the effective Hamiltonian density. This research was supported in part by the Department of Energy, the National Science Foundation, and the Simons Foundation.

  3. Superstrate effects on slot-coupled microstrip antennas

    NASA Astrophysics Data System (ADS)

    Huang, Chang-Hsiu; Hsu, Powen

    1991-09-01

    An analysis for studying the superstrate (cover) effects on the slot-coupled microstrip antennas is presented. The approach is based on the reciprocity theorem and uses the grounded double- and single-layer dielectric slab Green's functions in a moment method solution for the unknown slot fields and patch currents. From these fields and currents, various characteristics of the antenna can be extracted, such as the radiation efficiency, directivity, input impedance, and resonant frequency. Numerical calculations showing superstrate effects on these antenna characteristics are presented. The input matches obtained from proper adjustment of the slot and patch dimensions are discussed.

  4. Ultracold Superstrings in Atomic Boson-Fermion Mixtures

    SciTech Connect

    Snoek, Michiel; Haque, Masudul; Vandoren, S.; Stoof, H.T.C.

    2005-12-16

    We propose a setup with ultracold atomic gases that can be used to make a nonrelativistic superstring in four spacetime dimensions. In particular, we consider for the creation of the superstring a fermionic atomic gas that is trapped in the core of a vortex in a Bose-Einstein condensate. We explain the required tuning of experimental parameters to achieve supersymmetry between the fermionic atoms and the bosonic modes describing the oscillations in the vortex position. Furthermore, we discuss the experimental consequences of supersymmetry.

  5. Linear Response Theory for Thermally Driven Quantum Open Systems

    NASA Astrophysics Data System (ADS)

    Jakšić, V.; Ogata, Y.; Pillet, C.-A.

    2006-05-01

    This note is a continuation of our recent paper [V. Jakšić Y. Ogata, and C.-A. Pillet, The Green-Kubo formula and Onsager reciprocity relations in quantum statistical mechanics. Commun. Math. Phys. in press.] where we have proven the Green-Kubo formula and the Onsager reciprocity relations for heat fluxes in thermally driven quantum open systems. In this note we extend the derivation of the Green-Kubo formula to heat and charge fluxes and discuss some other generalizations of the model and results of [V. Jakšić Y. Ogata and C.-A. Pillet, The Green-Kubo formula and Onsager reciprocity relations in quantum statistical mechanics. Commun. Math. Phys. in press.].

  6. Multiscale Opening of Conjoined Fuzzy Objects: Theory and Applications.

    PubMed

    Saha, Punam K; Basu, Subhadip; Hoffman, Eric A

    2016-10-01

    Theoretical properties of a multi-scale opening (MSO) algorithm for two conjoined fuzzy objects are established, and its extension to separating two conjoined fuzzy objects with different intensity properties is introduced. Also, its applications to artery/vein (A/V) separation in pulmonary CT imaging and carotid vessel segmentation in CT angiograms (CTAs) of patients with intracranial aneurysms are presented. The new algorithm accounts for distinct intensity properties of individual conjoined objects by combining fuzzy distance transform (FDT), a morphologic feature, with fuzzy connectivity, a topologic feature. The algorithm iteratively opens the two conjoined objects starting at large scales and progressing toward finer scales. Results of application of the method in separating arteries and veins in a physical cast phantom of a pig lung are presented. Accuracy of the algorithm is quantitatively evaluated in terms of sensitivity and specificity on patients' CTA data sets and its performance is compared with existing methods. Reproducibility of the algorithm is examined in terms of volumetric agreement between two users' carotid vessel segmentation results. Experimental results using this algorithm on patients' CTA data demonstrate a high average accuracy of 96.3% with 95.1% sensitivity and 97.5% specificity and a high reproducibility of 94.2% average agreement between segmentation results from two mutually independent users. Approximately, twenty-five to thirty-five user-specified seeds/separators are needed for each CTA data through a custom designed graphical interface requiring an average of thirty minutes to complete carotid vascular segmentation in a patient's CTA data set.

  7. Microscopic theory of a nonequilibrium open bosonic chain

    NASA Astrophysics Data System (ADS)

    Santos, Jader P.; Landi, Gabriel T.

    2016-12-01

    Quantum master equations form an important tool in the description of transport problems in open quantum systems. However, they suffer from the difficulty that the shape of the Lindblad dissipator depends sensibly on the system Hamiltonian. Consequently, most of the work done in this field has focused on phenomenological dissipators which act locally on different parts of the system. In this paper we show how to construct Lindblad dissipators to model a one-dimensional bosonic tight-binding chain connected to two baths at the first and last site, kept at different temperatures and chemical potentials. We show that even though the bath coupling is local, the effective Lindblad dissipator stemming from this interaction is inherently nonlocal, affecting all normal modes of the system. We then use this formalism to study the current of particles and energy through the system and find that they have the structure of Landauer's formula, with the bath spectral density playing the role of the transfer integral. Finally, we consider infinitesimal temperature and chemical potential gradients and show that the currents satisfy Onsager's reciprocal relations, which is a consequence of the fact that the microscopic quantum dynamics obeys detailed balance.

  8. Silica nanoparticles on front glass for efficiency enhancement in superstrate-type amorphous silicon solar cells

    NASA Astrophysics Data System (ADS)

    Das, Sonali; Banerjee, Chandan; Kundu, Avra; Dey, Prasenjit; Saha, Hiranmay; Datta, Swapan K.

    2013-10-01

    Antireflective coating on front glass of superstrate-type single junction amorphous silicon solar cells (SCs) has been applied using highly monodispersed and stable silica nanoparticles (NPs). The silica NPs having 300 nm diameter were synthesized by Stober technique where the size of the NPs was controlled by varying the alcohol medium. The synthesized silica NPs were analysed by dynamic light scattering technique and Fourier transform infrared spectroscopy. The NPs were spin coated on glass side of fluorinated tin oxide (SnO2: F) coated glass superstrate and optimization of the concentration of the colloidal solution, spin speed and number of coated layers was done to achieve minimum reflection characteristics. An estimation of the distribution of the NPs for different optimization parameters has been done using field-emission scanning electron microscopy. Subsequently, the transparent conducting oxide coated glass with the layer having the minimum reflectance is used for fabrication of amorphous silicon SC. Electrical analysis of the fabricated cell indicates an improvement of 6.5% in short-circuit current density from a reference of 12.40 mA cm-2 while the open circuit voltage and the fill factor remains unaltered. A realistic optical model has also been proposed to gain an insight into the system.

  9. Swiss cheese model with the superstring dark energy

    NASA Astrophysics Data System (ADS)

    Stuchlík, Zdeněk; Kološ, Martin

    2005-12-01

    The Swiss cheese model of the Universe with the superstring dark energy is constructed. The junction conditions are shown to be fulfilled and time evolution of the matching hypersurface of the internal Schwarzschild spacetime and homogeneous external Friedman Universe is studied.

  10. Cosmic super-strings and Kaluza-Klein modes

    SciTech Connect

    Dufaux, Jean-François

    2012-09-01

    Cosmic super-strings interact generically with a tower of relatively light and/or strongly coupled Kaluza-Klein (KK) modes associated with the geometry of the internal space. In this paper, we study the production of spin-2 KK particles by cusps on loops of cosmic F- and D-strings. We consider cosmic super-strings localized either at the bottom of a warped throat or in a flat internal space with large volume. The total energy emitted by cusps in KK modes is comparable in both cases, although the number of produced KK modes may differ significantly. We then show that KK emission is constrained by the photo-dissociation of light elements and by observations of the diffuse gamma ray background. We show that this rules out regions of the parameter space of cosmic super-strings that are complementary to the regions that can be probed by current and upcoming gravitational wave experiments. KK modes are also expected to play an important role in the friction-dominated epoch of cosmic super-string evolution.

  11. Non-Abelian vortex in four dimensions as a critical superstring

    NASA Astrophysics Data System (ADS)

    Shifman, M.; Yung, A.

    2017-01-01

    We discuss recent progress in describing a certain non-Abelian vortex string as a critical superstring on a conifold and clarify some subtle points. This particular solitonic vortex is supported in four-dimensional N = 2 supersymmetric QCD with the U(2) gauge group, N f = 4 quark flavors and the Fayet-Iliopoulos term. Under certain conditions the non-Abelian vortex can become infinitely thin and can be interpreted as a critical ten-dimensional superstring. In addition to four translational moduli the non-Abelian vortex under consideration carries six orientational and size moduli. The vortex moduli dynamics are described by a twodimensional sigma model with the target space R4 × Y 6 where Y 6 is a non-compact Calabi-Yau conifold. The closed string states which emerge in four dimensions (4D) are identified with hadrons of 4D bulk N = 2 QCD. It turns out that most of the states arising from the ten-dimensional graviton spectrum are non-dynamical in 4D. A single dynamical massless hypermultiplet associated with the deformation of the complex structure of the conifold is found. It is interpreted as a monopole-monopole baryon of the 4D theory (at strong coupling).

  12. The superstring, DiffS/sup 1//S/sup 1/, and holomorphic geometry

    SciTech Connect

    Harari, D.; Hong, Deog Ki; Ramond, P.; Rodgers, V.G.J.

    1987-04-01

    We incorporate superstrings into the non-perturbative formulation of string field theories based on Kahler geometry recently proposed by Bowick and Rajeev. The string field is conjectured to be the Kahler potential of loop space, its equation of motion given by the vanishing of the curvature of a product bundle constructed over a graded DiffS/sup 1//S/sup 1/, as required for reparametrization invariance of the theory. We find that bosonic and fermionic loops in a Minkowski background solve the equation for the Kahler potential only in ten dimensions. We use geometric quantization techniques to calculate the curvature of the superholomorphic vector bundle, since they emphasize the role of the complex geometry, and flag manifold techniques to calculate the curvature of the line bundle over SuperDiffS/sup 1//S/sup 1/.

  13. Cross sections for production of closed superstrings at high energy colliders in brane world models

    SciTech Connect

    Chialva, Diego; Iengo, Roberto; Russo, Jorge G.

    2005-05-15

    In brane world string models with large extra dimensions, there are processes where fermion and antifermion (or two gluons) can annihilate producing a light particle (e.g. gluon) carrying transverse momentum and a Kaluza-Klein graviton or an excited closed string that propagates in the extra dimensions. In high energy colliders, this process gives a missing-momentum signature. We compute the total cross section for this process within the context of type II superstring theory in the presence of a D-brane. This includes all missing-energy sources for this string-theory model up to s=8M{sub s}{sup 2}, and it can be used to put new limits on the string scale M{sub s}.

  14. Closed String S-matrix Elements in Open String Field Theory

    NASA Astrophysics Data System (ADS)

    Garousi, Mohammad R.; Maktabdaran, G. R.

    2005-03-01

    We study the S-matrix elements of the gauge invariant operators corresponding to on-shell closed strings, in open string field theory. In particular, we calculate the tree level S-matrix element of two arbitrary closed strings, and the S-matrix element of one closed string and two open strings. By mapping the world-sheet of these amplitudes to the upper half z-plane, and by evaluating explicitly the correlators in the ghost part, we show that these S-matrix elements are exactly identical to the corresponding disk level S-matrix elements in perturbative string theory.

  15. Higher spin modes as rolling tachyons in open string field theory

    NASA Astrophysics Data System (ADS)

    Polyakov, Dimitri

    2016-09-01

    We find a simple analytic solution in open string field theory which, in the on-shell limit, generates a tower of higher-spin vertex operators in bosonic string theory. The solution is related to irregular off-shell vertex operators for Gaiotto states. The wave functions for the irregular vertex operators are described by equations following from the cubic effective action for generalized rolling tachyons, indicating that the evolution from flat to collective higher-spin background in string field theory occurs according to cosmological pattern. We discuss the relation between nonlocalities of the rolling tachyon action and those of higher-spin interactions.

  16. All conjugate-maximal-helicity-violating amplitudes from topological open string theory in twistor space.

    PubMed

    Roiban, Radu; Volovich, Anastasia

    2004-09-24

    It has recently been proposed that the D-instanton expansion of the open topological B model on P(3|4) is equivalent to the perturbative expansion of the maximally supersymmetric Yang-Mills theory in four dimensions. In this letter we show how to construct the gauge theory results for all n-point conjugate-maximal-helicity-violating amplitudes by computing the integral over the moduli space of curves of degree n-3 in P(3|4), providing strong support to the string theory construction.

  17. OPEN PROBLEM: Geometric function theory: a modern view of a classical subject

    NASA Astrophysics Data System (ADS)

    Crowdy, Darren

    2008-10-01

    Geometric function theory is a classical subject. Yet it continues to find new applications in an ever-growing variety of areas such as modern mathematical physics, more traditional fields of physics such as fluid dynamics, nonlinear integrable systems theory and the theory of partial differential equations. This paper surveys, with a view to modern applications, open problems and challenges in this subject. Here we advocate an approach based on the use of the Schottky-Klein prime function within a Schottky model of compact Riemann surfaces.

  18. Theories and Applications of Massive Online Open Courses (MOOCs): The Case for Hybrid Design

    ERIC Educational Resources Information Center

    Anders, Abram

    2015-01-01

    Initial studies of learning in massive open online courses (MOOCs) primarily focused on participation patterns and participant experiences. More recently, research has addressed learning theories and offered case studies of different pedagogical designs for MOOCs. Based on a meta-analysis and synthesis of the research literature, this study…

  19. Arts Students and Quantum Theory in an Open University History of Science Course.

    ERIC Educational Resources Information Center

    Lawless, Clive

    1982-01-01

    In an open university History of Science course a unit was written to provide basic information on quantum theory for students with arts and social science background in order to enable these students to handle the Bohr-Einstein debate. An evaluation of the unit showed that it achieved its purpose. (Author/MLW)

  20. An open-shell restricted Hartree-Fock perturbation theory based on symmetric spin orbitals

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Jayatilaka, Dylan

    1993-01-01

    A new open-shell perturbation theory is formulated in terms of symmetric spin orbitals. Only one set of spatial orbitals is required, thereby reducing the number of independent coefficients in the perturbed wavefunctions. For second order, the computational cost is shown to be similar to a closed-shell calculation. This formalism is therefore more efficient than the recently developed RMP, ROMP or RMP-MBPT theories. The perturbation theory described herein was designed to have a close correspondence with our recently proposed coupled-cluster theory based on symmetric spin orbitals. The first-order wavefunction contains contributions from only doubly excited determinants. Equilibrium structures and vibrational frequencies determined from second-order perturbation theory are presented for OH, NH, CH, 02, NH2 and CH2.

  1. Universality and clustering in {bold 1+1} dimensional superstring-bit models

    SciTech Connect

    Bergman, O.; Thorn, C.B.

    1996-03-01

    We construct a 1+1 dimensional superstring-bit model for {ital D}=3 type IIB superstring. This low dimension model escapes the problems encountered in higher dimension models: (1) It possesses full Galilean supersymmetry. (2) For noninteracting polymers of bits, the exactly soluble linear superpotential describing bit interactions is in a large universality class of superpotentials which includes ones bounded at spatial infinity. (3) The latter are used to construct a superstring-bit model with the clustering properties needed to define an {ital S} matrix for closed polymers of superstring bits. {copyright} {ital 1996 The American Physical Society.}

  2. Universality and clustering in 1 + 1 dimensional superstring-bit models

    SciTech Connect

    Bergman, O.; Thorn, C.B.

    1996-03-01

    We construct a 1+1 dimensional superstring-bit model for D=3 Type IIB superstring. This low dimension model escapes the problem encountered in higher dimension models: (1) It possesses full Galilean supersymmetry; (2) For noninteracting Polymers of bits, the exactly soluble linear superpotential describing bit interactions is in a large universality class of superpotentials which includes ones bounded at spatial infinity; (3) The latter are used to construct a superstring-bit model with the clustering properties needed to define an S-matrix for closed polymers of superstring-bits.

  3. Green-Schwarz superstring on doubled-yet-gauged spacetime

    NASA Astrophysics Data System (ADS)

    Park, Jeong-Hyuck

    2016-11-01

    We construct a world-sheet action for Green-Schwarz superstring in terms of doubled-yet-gauged spacetime coordinates. For an arbitrarily curved NS-NS background, the action possesses O(10, 10) T-duality, Spin(1, 9) × Spin(9, 1) Lorentz symmetry, coordinate gauge symmetry, spacetime doubled-yet-gauged diffeomorphisms, world-sheet diffeomorphisms and Weyl symmetry. Further, restricted to flat backgrounds, it enjoys maximal spacetime supersymmetry and kappa-symmetry. After the auxiliary coordinate gauge symmetry potential being integrated out, our action can consistently reduce to the original undoubled Green-Schwarz action. Thanks to the twofold spin groups, the action is unique: it is specific choices of the NS-NS backgrounds that distinguish IIA or IIB, as well as lead to non-Riemannian or non-relativistic superstring a la Gomis-Ooguri which might deserve the nomenclature, type IIC.

  4. Cosmic (Super)String Constraints from 21 cm Radiation

    SciTech Connect

    Khatri, Rishi; Wandelt, Benjamin D.

    2008-03-07

    We calculate the contribution of cosmic strings arising from a phase transition in the early Universe, or cosmic superstrings arising from brane inflation, to the cosmic 21 cm power spectrum at redshifts z{>=}30. Future experiments can exploit this effect to constrain the cosmic string tension G{mu} and probe virtually the entire brane inflation model space allowed by current observations. Although current experiments with a collecting area of {approx}1 km{sup 2} will not provide any useful constraints, future experiments with a collecting area of 10{sup 4}-10{sup 6} km{sup 2} covering the cleanest 10% of the sky can, in principle, constrain cosmic strings with tension G{mu} > or approx. 10{sup -10}-10{sup -12} (superstring/phase transition mass scale >10{sup 13} GeV)

  5. Superstring one-loop and gravitino contributions to planckian scattering

    NASA Astrophysics Data System (ADS)

    Bellini, Alessandro; Ademollo, Marco; Ciafaloni, Marcello

    1993-03-01

    Corrections to the semiclassical approximation in nearly forward planckian energy collisions are reconsidered. Starting from the one-loop superstring amplitude, we are able to disentangle the first subleading high-energy contribution at large impact parameters, and we thus directly compute the one-loop correction to the superstring eikonal. By comparing this result with previous ones by Amati, Ciafaloni and Veneziano (ACV) for pure gravity, we identify one-loop gravitino contributions which agree with previous results by Lipatov. We finally argue, on the basis of analyticity and unitarity, that gravitinos do not contribute at all the large-distance two-loop ACV correction, which thus acquires a universal "classical" interpretation.

  6. Coevolving solutions to the shortest common superstring problem.

    PubMed

    Zaritsky, Assaf; Sipper, Moshe

    2004-01-01

    The shortest common superstring (SCS) problem, known to be NP-Complete, seeks the shortest string that contains all strings from a given set. In this paper we compare four approaches for finding solutions to the SCS problem: a standard genetic algorithm, a novel cooperative-coevolutionary algorithm, a benchmark greedy algorithm, and a parallel coevolutionary-greedy approach. We show the coevolutionary approach produces the best results, and discuss directions for future research.

  7. Calculation and modular properties of multiloop superstring amplitudes

    SciTech Connect

    Danilov, G. S.

    2013-06-15

    Multiloop superstring amplitudes are calculated within an extensively used gauge where the two-dimensional gravitino field carries Grassmann moduli. In general, the amplitudes possess, instead of modular symmetry, symmetry with respect to modular transformation supplemented with appropriate transformations of two-dimensional local supersymmetry. If the number of loops is larger than three, the integrationmeasures are notmodular forms, while the expression for the amplitude contains integrals along the boundary of the fundamental region of the modular group.

  8. Extending dispersive waves theory to use in semi-open systems

    NASA Astrophysics Data System (ADS)

    Chumakova, Lyubov; Rosales, Ruben; Rzeznik, Andrew; Tabak, Esteban

    2015-11-01

    In the classical linear dispersive wave theory the sinusoidal waves e i (kx - ωt) carry energy with the group speed cg = dω / dk . This concept is limited to the case where both the frequency ω (k) and the wavenumber k are real. On the other hand, semi-open dispersive systems allow more than just sinusoidal solutions: they can have exponentially blowing up and/or decaying solutions as well. In this talk I will address the questions of what is direction and the speed of the energy propagation for these exponential waves, extend the classical concept of group velocity, and use this theory to construct radiation boundary conditions for semi-open dispersive systems. This approach will be demonstrated on an example of dry hydrostatic troposphere which experiences effective damping due to gravity waves propagating into the stratosphere. RSE, Scottish government.

  9. Quantum Information Biology: From Theory of Open Quantum Systems to Adaptive Dynamics

    NASA Astrophysics Data System (ADS)

    Asano, Masanari; Basieva, Irina; Khrennikov, Andrei; Ohya, Masanori; Tanaka, Yoshiharu; Yamato, Ichiro

    This chapter reviews quantum(-like) information biology (QIB). Here biology is treated widely as even covering cognition and its derivatives: psychology and decision making, sociology, and behavioral economics and finances. QIB provides an integrative description of information processing by bio-systems at all scales of life: from proteins and cells to cognition, ecological and social systems. Mathematically QIB is based on the theory of adaptive quantum systems (which covers also open quantum systems). Ideologically QIB is based on the quantum-like (QL) paradigm: complex bio-systems process information in accordance with the laws of quantum information and probability. This paradigm is supported by plenty of statistical bio-data collected at all bio-scales. QIB re ects the two fundamental principles: a) adaptivity; and, b) openness (bio-systems are fundamentally open). In addition, quantum adaptive dynamics provides the most generally possible mathematical representation of these principles.

  10. Analytical formulation of the radiation field of printed antennas in the presence of artificial magnetic superstrates

    NASA Astrophysics Data System (ADS)

    Attia, Hussein; Yousefi, Leila; Siddiqui, Omar; Ramahi, Omar M.

    2011-06-01

    In this paper, the cavity model of a microstrip patch antenna in conjunction with the reciprocity theorem is used to develop a fast analytical solution for the radiation field of a microstrip patch antenna loaded with a novel artificial magnetic superstrate and to investigate the effect of the engineered superstrate layer on the directivity and radiation pattern of the printed patch antenna.

  11. An undulation theory for condensation in open end slit pores: critical hysteresis temperature & critical hysteresis pore size.

    PubMed

    Fan, Chunyan; Zeng, Yonghong; Do, D D; Nicholson, D

    2014-06-28

    A new theory of condensation in an open end slit pore, based on the concept of temperature dependent undulation, at the interface separating the adsorbed phase and the gas-like region, is presented. The theory, describes, for the first time, the microscopic origin of the critical hysteresis temperature and the critical hysteresis pore size, properties which are not accessible to any classical theories.

  12. NREL Determines Long-Lived Carriers and Differences in CdTe Superstrate and Substrate Cells (Fact Sheet)

    SciTech Connect

    Not Available

    2012-02-01

    NREL study may provide future guidance in improving CdS/CdTe photovoltaic device performance. The majority of minority carrier lifetime (MCL) studies performed on CdS/CdTe photovoltaic (PV) devices have correlated device performance primarily with the fast decay observed in time-resolved photoluminescence (TRPL) measurements (t{sub 1}). This decay is believed to be associated primarily with recombination in depletion width (W{sub D}), and therefore should be a good indicator of device quality if carrier generation occurs primarily within WD. However, although previous studies have shown that t1 can be a good indicator of broad device quality, it does not correlate as well with small changes in device performance and/or with differences observed between superstrate and substrate devices. Researchers at the National Renewable Energy Laboratory (NREL) have shown that in this case, the parameter t{sub 2} (from the longer-term decay of TRPL) may not only provide a better correlation with device open-circuit voltage (V{sub OC}) for superstrate devices but may also provide guidance for inter-comparison with alternative device designs (e.g., substrate devices). It is also suggested that previous studies may yield added value if a larger number of TRPL parameters (i.e., t{sub 1}, t{sub 2}, and respective amplitudes) are re-examined as a function of device performance. The parameter t{sub 2} may not only provide a better correlation with device VOC for superstrate devices but may also provide guidance for inter-comparison with alternative device designs (e.g., substrate devices).

  13. Minimal surfaces of the {{AdS}}_{5}\\times {S}^{5} superstring and the symmetries of super Wilson loops at strong coupling

    NASA Astrophysics Data System (ADS)

    Münkler, Hagen; Pollok, Jonas

    2015-09-01

    Based on an extension of the holographic principle to superspace, we provide a strong-coupling description of smooth super Wilson loops in {N}=4 super Yang-Mills theory in terms of minimal surfaces of the {{AdS}}5× {S}5 superstring. We employ the classical integrability of the Green-Schwarz superstring on {{AdS}}5× {S}5 to derive the superconformal and Yangian Y[{psu}(2,2| 4)] Ward identities for the super Wilson loop, thus extending the strong coupling results obtained for the Maldacena-Wilson loop. In the course of the derivation, we determine the minimal surface solution up to third order in an expansion close to the conformal boundary.

  14. Noncritical superstring-black hole transition

    SciTech Connect

    Parnachev, Andrei; Sahakyan, David A.

    2006-04-15

    An interesting case of string/black hole transition occurs in two-dimensional noncritical string theory dressed with a compact CFT. In these models the high energy densities of states of perturbative strings and black holes have the same leading behavior when the Hawking temperature of the black hole is equal to the Hagedorn temperature of perturbative strings. We compare the first subleading terms in the black hole and closed string entropies in this setting and argue that the entropy interpolates between these expressions as the energy is varied. We compute the subleading correction to the black hole entropy for a specific simple model.

  15. Gravitational wave bursts from cosmic superstrings with Y-junctions

    SciTech Connect

    Binetruy, P.; Bohe, A.; Hertog, T.; Steer, D. A.

    2009-12-15

    Cosmic superstring loops generically contain strings of different tensions that meet at Y-junctions. These loops evolve nonperiodically in time, and have cusps and kinks that interact with the junctions. We study the effect of junctions on the gravitational wave signal emanating from cosmic string cusps and kinks. We find that earlier results on the strength of individual bursts from cusps and kinks on strings without junctions remain largely unchanged, but junctions give rise to additional contributions to the gravitational wave signal coming from strings expanding at the speed of light at a junction and kinks passing through a junction.

  16. Massive superstring scatterings in the Regge regime

    SciTech Connect

    He Song; Lee, Jen-Chi; Takahashi, Keijiro; Yang Yi

    2011-03-15

    We calculate four classes of high-energy massive string scattering amplitudes of fermionic string theory at arbitrary mass levels in the Regge regime (RR). We show that all four leading order amplitudes in the RR can be expressed in terms of the Kummer function of the second kind. Based on the summation algorithm of a set of extended signed Stirling number identities, we show that all four ratios calculated previously by the method of decoupling of zero-norm states among scattering amplitudes in the Gross regime can be extracted from this Kummer function in the RR. Finally, we conjecture and give evidence that the existence of these four Gross regime ratios in the RR persists to subleading orders in the Regge expansion of all high-energy fermionic string scattering amplitudes.

  17. A simple solution for marginal deformations in open string field theory

    NASA Astrophysics Data System (ADS)

    Maccaferri, Carlo

    2014-05-01

    We derive a new open string field theory solution for boundary marginal deformations generated by chiral currents with singular self-OPE. The solution is algebraically identical to the Kiermaier-Okawa-Soler solution and it is gauge equivalent to the TakahashiTanimoto identity-based solution. It is wedge-based and we can analytically evaluate the Ellwood invariant and the action, reproducing the expected results from BCFT. By studying the isomorphism between the states of the initial and final background a dual derivation of the Ellwood invariant is also obtained.

  18. Multi-valley effective mass theory for device-level modeling of open quantum dynamics

    NASA Astrophysics Data System (ADS)

    Jacobson, N. Tobias; Baczewski, Andrew D.; Frees, Adam; Gamble, John King; Montano, Ines; Moussa, Jonathan E.; Muller, Richard P.; Nielsen, Erik

    2015-03-01

    Simple models for semiconductor-based quantum information processors can provide useful qualitative descriptions of device behavior. However, as experimental implementations have matured, more specific guidance from theory has become necessary, particularly in the form of quantitatively reliable yet computationally efficient modeling. Besides modeling static device properties, improved characterization of noisy gate operations requires a more sophisticated description of device dynamics. Making use of recent developments in multi-valley effective mass theory, we discuss device-level simulations of the open system quantum dynamics of a qubit interacting with phonons and other noise sources. Sandia is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy National Nuclear Security Administration under Contract No. DE-AC04-94AL85000.

  19. Searching for signatures of cosmic superstrings in the CMB

    SciTech Connect

    Danos, Rebecca J.; Brandenberger, Robert H. E-mail: rhb@physics.mcgill.ca

    2010-02-01

    Because cosmic superstrings generically form junctions and gauge theoretic strings typically do not, junctions may provide a signature to distinguish between cosmic superstrings and gauge theoretic cosmic strings. In cosmic microwave background anisotropy maps, cosmic strings lead to distinctive line discontinuities. String junctions lead to junctions in these line discontinuities. In turn, edge detection algorithms such as the Canny algorithm can be used to search for signatures of strings in anisotropy maps. We apply the Canny algorithm to simulated maps which contain the effects of cosmic strings with and without string junctions. The Canny algorithm produces edge maps. To distinguish between edge maps from string simulations with and without junctions, we examine the density distribution of edges and pixels crossed by edges. We find that in string simulations without Gaussian noise (such as produced by the dominant inflationary fluctuations) our analysis of the output data from the Canny algorithm can clearly distinguish between simulations with and without string junctions. In the presence of Gaussian noise at the level expected from the current bounds on the contribution of cosmic strings to the total power spectrum of density fluctuations, the distinction between models with and without junctions is more difficult. However, by carefully analyzing the data the models can still be differentiated.

  20. Non-Markovian linear response theory for quantum open systems and its applications

    NASA Astrophysics Data System (ADS)

    Shen, H. Z.; Li, D. X.; Yi, X. X.

    2017-01-01

    The Kubo formula is an equation that expresses the linear response of an observable due to a time-dependent perturbation. It has been extended from closed systems to open systems in recent years under the Markovian approximation, but is barely explored for open systems in non-Markovian regimes. In this paper, we derive a formula for the linear response of an open system to a time-independent external field. This response formula is available for both Markovian and non-Markovian dynamics depending on parameters in the spectral density of the environment. As an illustration of the theory, the Hall conductance of a two-band system subjected to environments is derived and discussed. With the tight-binding model, we point out the Hall conductance changes from Markovian to non-Markovian dynamics by modulating the spectral density of the environment. Our results suggest a way to the controlling of the system response, which has potential applications for quantum statistical mechanics and condensed matter physics.

  1. Non-Markovian linear response theory for quantum open systems and its applications.

    PubMed

    Shen, H Z; Li, D X; Yi, X X

    2017-01-01

    The Kubo formula is an equation that expresses the linear response of an observable due to a time-dependent perturbation. It has been extended from closed systems to open systems in recent years under the Markovian approximation, but is barely explored for open systems in non-Markovian regimes. In this paper, we derive a formula for the linear response of an open system to a time-independent external field. This response formula is available for both Markovian and non-Markovian dynamics depending on parameters in the spectral density of the environment. As an illustration of the theory, the Hall conductance of a two-band system subjected to environments is derived and discussed. With the tight-binding model, we point out the Hall conductance changes from Markovian to non-Markovian dynamics by modulating the spectral density of the environment. Our results suggest a way to the controlling of the system response, which has potential applications for quantum statistical mechanics and condensed matter physics.

  2. Solution to the nonlinear field equations of ten dimensional supersymmetric Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Mafra, Carlos R.; Schlotterer, Oliver

    2015-09-01

    In this paper, we present a formal solution to the nonlinear field equations of ten-dimensional super Yang-Mills theory. It is assembled from products of linearized superfields which have been introduced as multiparticle superfields in the context of superstring perturbation theory. Their explicit form follows recursively from the conformal field theory description of the gluon multiplet in the pure spinor superstring. Furthermore, superfields of higher-mass dimensions are defined and their equations of motion are spelled out.

  3. Semantics in Philosophy and Cognitive Neuroscience: The Open Instruction Theory of Attitude Report Sentences, Descriptions, and the Necker Cube

    ERIC Educational Resources Information Center

    Koralus, Philipp Elias

    2010-01-01

    The dissertation presents a theory of semantics and pragmatics for both language and vision. I focus on sentences including proper names, descriptions, and attitude report verbs, and on the Necker cube. I propose the Open Instruction Theory (OIT), according to which the linguistic meaning of a sentence and the semantic contribution of visual…

  4. Supersymmetric extended string field theory in NSn sector and NSn - 1-R sector

    NASA Astrophysics Data System (ADS)

    Asano, Masako; Kato, Mitsuhiro

    2016-09-01

    We construct a class of quadratic gauge invariant actions for extended string fields defined on the tensor product of open superstring state space for multiple open string Neveu-Schwarz (NS) sectors with or without one Ramond (R) sector. The basic idea is the same as for the bosonic extended string field theory developed by the authors [1]. The theory for NSn sector and NS n - 1-R sector contains general n-th rank tensor fields and (n - 1)-th rank spinor-tensor fields in the massless spectrum respectively. In principle, consistent gauge invariant actions for any generic type of 10-dimensional massive or massless tensor or spinor-tensor fields can be extracted from the theory. We discuss some simple examples of bosonic and fermionic massless actions.

  5. Soft behavior of a closed massless state in superstring and universality in the soft behavior of the dilaton

    NASA Astrophysics Data System (ADS)

    Di Vecchia, Paolo; Marotta, Raffaele; Mojaza, Matin

    2016-12-01

    We consider the tree-level scattering amplitudes in the NS-NS (Neveu-Schwarz) massless sector of closed superstrings in the case where one external state becomes soft. We compute the amplitudes generically for any number of dimensions and any number and kind of the massless closed states through the subsubleading order in the soft expansion. We show that, when the soft state is a graviton or a dilaton, the full result can be expressed as a soft theorem factorizing the amplitude in a soft and a hard part. This behavior is similar to what has previously been observed in field theory and in the bosonic string. Differently from the bosonic string, the supersymmetric soft theorem for the graviton has no string corrections at subsubleading order. The dilaton soft theorem, on the other hand, is found to be universally free of string corrections in any string theory.

  6. Low profile superstrate using transformation optics for semicircular radiation pattern of antenna

    NASA Astrophysics Data System (ADS)

    Joshi, Chetan; Lepage, Anne Claire; Begaud, Xavier

    2017-02-01

    In this article, a dielectric superstrate inspired from transformation optics is presented. When placed over a patch antenna, this superstrate increases the half power beam width (HPBW) of a classical patch antenna. An appropriate spatial transformation relation with spatial compression and refractive index shift factors has been used to derive an expression for a dielectric material profile. The wave front exiting from the transformed space is optimized for a semicylindrical shape. Then, a discretized version of this profile has been used to design a cuboidal superstrate. Full wave simulations have been presented that essentially show a superstrate device capable of producing a 297° of HPBW in H-plane with a peak directivity of 3.2 dBi at the design frequency. The derived solution can be realized using the standard dielectric materials for real-world applications.

  7. Cosmological Baryogenesis in Superstring Models with Stable Protons

    NASA Astrophysics Data System (ADS)

    Campbell, B. A.; Ellis, J.; Nanopoulos, D. V.; Olive, K. A.

    We discuss cosmological baryogenesis in phenomenological low-energy models inspired by the superstring which have an unobservably long baryon lifetime. The Affleck-Dine mechanism of baryogenesis in a cold (≲104 GeV) universe is shown to be feasible, with a large baryon density being produced by the decays of large expectation values for squark and slepton fields after inflation. We catalogue the gauge-invariant quartic scalar operators in the low-energy effective action which could appear once supersymmetry is broken, show that the D-terms in the potential can vanish, and discuss the possibility that the F-terms have flat directions allowing large values for these scalar fields.

  8. On the Covariant Quantization of Type II Superstrings

    NASA Astrophysics Data System (ADS)

    Guttenberg, Sebastian; Knapp, Johanna; Kreuzer, Maximilian

    2004-06-01

    In a series of papers Grassi, Policastro, Porrati and van Nieuwenhuizen have introduced a new method to covariantly quantize the GS-superstring by constructing a resolution of the pure spinor constraint of Berkovits' approach. Their latest version is based on a gauged WZNW model and a definition of physical states in terms of relative cohomology groups. We first put the off-shell formulation of the type-II version of their ideas into a chirally split form and directly construct the free action of the gauged WZNW model, thus circumventing some complications of the super group manifold approach to type-II. Then we discuss the BRST charges that define the relative cohomology and the N=2 superconformal algebra. A surprising result is that nilpotency of the BRST charge requires the introduction of another quartet of ghosts.

  9. Ab initio Bogoliubov coupled cluster theory for open-shell nuclei

    DOE PAGES

    Signoracci, Angelo J.; Duguet, Thomas; Hagen, Gaute; ...

    2015-06-29

    Background: Ab initio many-body methods have been developed over the past 10 yr to address closed-shell nuclei up to mass A≈130 on the basis of realistic two- and three-nucleon interactions. A current frontier relates to the extension of those many-body methods to the description of open-shell nuclei. Several routes to address open-shell nuclei are currently under investigation, including ideas that exploit spontaneous symmetry breaking. Purpose: Singly open-shell nuclei can be efficiently described via the sole breaking of U(1) gauge symmetry associated with particle-number conservation as a way to account for their superfluid character. While this route was recently followed withinmore » the framework of self-consistent Green's function theory, the goal of the present work is to formulate a similar extension within the framework of coupled cluster theory. Methods: We formulate and apply Bogoliubov coupled cluster (BCC) theory, which consists of representing the exact ground-state wave function of the system as the exponential of a quasiparticle excitation cluster operator acting on a Bogoliubov reference state. Equations for the ground-state energy and the cluster amplitudes are derived at the singles and doubles level (BCCSD) both algebraically and diagrammatically. The formalism includes three-nucleon forces at the normal-ordered two-body level. The first BCC code is implemented in m scheme, which will permit the treatment of doubly open-shell nuclei via the further breaking of SU(2) symmetry associated with angular momentum conservation. Results: Proof-of-principle calculations in an Nmax=6 spherical harmonic oscillator basis for 16,18O and 18Ne in the BCCD approximation are in good agreement with standard coupled cluster results with the same chiral two-nucleon interaction, while 20O and 20Mg display underbinding relative to experiment. The breaking of U(1) symmetry, monitored by computing the variance associated with the particle-number operator, is

  10. Ab initio Bogoliubov coupled cluster theory for open-shell nuclei

    SciTech Connect

    Signoracci, Angelo J.; Duguet, Thomas; Hagen, Gaute; Jansen, G. R.

    2015-06-29

    Background: Ab initio many-body methods have been developed over the past 10 yr to address closed-shell nuclei up to mass A≈130 on the basis of realistic two- and three-nucleon interactions. A current frontier relates to the extension of those many-body methods to the description of open-shell nuclei. Several routes to address open-shell nuclei are currently under investigation, including ideas that exploit spontaneous symmetry breaking. Purpose: Singly open-shell nuclei can be efficiently described via the sole breaking of U(1) gauge symmetry associated with particle-number conservation as a way to account for their superfluid character. While this route was recently followed within the framework of self-consistent Green's function theory, the goal of the present work is to formulate a similar extension within the framework of coupled cluster theory. Methods: We formulate and apply Bogoliubov coupled cluster (BCC) theory, which consists of representing the exact ground-state wave function of the system as the exponential of a quasiparticle excitation cluster operator acting on a Bogoliubov reference state. Equations for the ground-state energy and the cluster amplitudes are derived at the singles and doubles level (BCCSD) both algebraically and diagrammatically. The formalism includes three-nucleon forces at the normal-ordered two-body level. The first BCC code is implemented in m scheme, which will permit the treatment of doubly open-shell nuclei via the further breaking of SU(2) symmetry associated with angular momentum conservation. Results: Proof-of-principle calculations in an Nmax=6 spherical harmonic oscillator basis for 16,18O and 18Ne in the BCCD approximation are in good agreement with standard coupled cluster results with the same chiral two-nucleon interaction, while 20O and 20Mg display underbinding relative to experiment. The breaking of U(1) symmetry, monitored by computing the variance

  11. Exact Solution to Integrable Open Multi-species SSEP and Macroscopic Fluctuation Theory

    NASA Astrophysics Data System (ADS)

    Vanicat, M.

    2017-01-01

    We introduce a multi-species generalization of the symmetric simple exclusion process with open boundaries. This model possesses the property of being integrable and appears as physically relevant because the boundary conditions can be interpreted as the interaction with particles reservoirs with fixed densities of each species. The system is driven out-of-equilibrium by these reservoirs. The steady state is analytically computed in a matrix product form. This algebraic structure allows us to obtain exact expressions for the mean particle currents and for the one and two-point correlation functions. An additivity principle is also derived from the matrix ansatz and permits the computation of the large deviation functional of the density profile. We also propose a description of the model in the context of the macroscopic fluctuation theory and we check the consistency with the exact computations from the finite size lattice.

  12. Exact Solution to Integrable Open Multi-species SSEP and Macroscopic Fluctuation Theory

    NASA Astrophysics Data System (ADS)

    Vanicat, M.

    2017-03-01

    We introduce a multi-species generalization of the symmetric simple exclusion process with open boundaries. This model possesses the property of being integrable and appears as physically relevant because the boundary conditions can be interpreted as the interaction with particles reservoirs with fixed densities of each species. The system is driven out-of-equilibrium by these reservoirs. The steady state is analytically computed in a matrix product form. This algebraic structure allows us to obtain exact expressions for the mean particle currents and for the one and two-point correlation functions. An additivity principle is also derived from the matrix ansatz and permits the computation of the large deviation functional of the density profile. We also propose a description of the model in the context of the macroscopic fluctuation theory and we check the consistency with the exact computations from the finite size lattice.

  13. Towards modeling of epigenetic evolution with the aid of theory of open quantum systems

    NASA Astrophysics Data System (ADS)

    Asano, Masanari; Basieva, Irina; Khrennikov, Andrei; Ohya, Masanori; Tanaka, Yoshiharu; Yamato, Ichiro

    2012-12-01

    We apply theory of open quantum systems to modeling of epigenetic evolution. This is an attempt to unify Darwinian and Lamarckian viewpoints on evolution on the basis of a quantum-like model. The state of uncertainty of cell's epigenome is resolved to a stable and inherited epigenetic configuration. This process of evolution and stabilization is described by the quantum master equation (the Gorini-Kossakowski-Sudarshan-Lindblad equation). The initial state of epigenome starting interaction with a new environment is represented as a pure quantum state. It evolves to a steady state solution of the quantum master equation given by a diagonal density matrix. The latter represents the state resulting from a series of epimutations induced by the environment. We use the information interpretation of the wave function which was elaborated by C. Fuchs and A. Zeilinger.

  14. Dissipative open systems theory as a foundation for the thermodynamics of linear systems

    NASA Astrophysics Data System (ADS)

    Delvenne, Jean-Charles; Sandberg, Henrik

    2017-03-01

    In this paper, we advocate the use of open dynamical systems, i.e. systems sharing input and output variables with their environment, and the dissipativity theory initiated by Jan Willems as models of thermodynamical systems, at the microscopic and macroscopic level alike. We take linear systems as a study case, where we show how to derive a global Lyapunov function to analyse networks of interconnected systems. We define a suitable notion of dynamic non-equilibrium temperature that allows us to derive a discrete Fourier law ruling the exchange of heat between lumped, discrete-space systems, enriched with the Maxwell-Cattaneo correction. We complete these results by a brief recall of the steps that allow complete derivation of the dissipation and fluctuation in macroscopic systems (i.e. at the level of probability distributions) from lossless and deterministic systems. This article is part of the themed issue 'Horizons of cybernetical physics'.

  15. Scaling configurations of cosmic superstring networks and their cosmological implications

    SciTech Connect

    Pourtsidou, A.; Avgoustidis, A.; Copeland, E. J.; Pogosian, L.; Steer, D. A.

    2011-03-15

    We study the cosmic microwave background temperature and polarization spectra sourced by multitension cosmic-superstring networks. First, we obtain solutions for the characteristic length scales and velocities associated with the evolution of a network of F-D strings, allowing for the formation of junctions between strings of different tensions. We find two distinct regimes describing the resulting scaling distributions for the relative densities of the different types of strings, depending on the magnitude of the fundamental string coupling g{sub s}. In one of them, corresponding to the value of the coupling being of order unity, the network's stress-energy power spectrum is dominated by populous light F and D strings, while the other regime, at smaller values of g{sub s}, has the spectrum dominated by rare heavy D strings. These regimes are seen in the cosmic microwave background (CMB) anisotropies associated with the network. We focus on the dependence of the shape of the B-mode polarization spectrum on g{sub s} and show that measuring the peak position of the B-mode spectrum can point to a particular value of the string coupling. Finally, we assess how this result, along with pulsar bounds on the production of gravitational waves from strings, can be used to constrain a combination of g{sub s} and the fundamental string tension {mu}{sub F}. Since CMB and pulsar bounds constrain different combinations of the string tensions and densities, they result in distinct shapes of bounding contours in the ({mu}{sub F},g{sub s}) parameter plane, thus providing complementary constraints on the properties of cosmic superstrings.

  16. Dual superconformal symmetry from AdS{sub 5}xS{sup 5} superstring integrability

    SciTech Connect

    Beisert, Niklas; Ricci, Riccardo; Tseytlin, Arkady A.; Wolf, Martin

    2008-12-15

    We discuss 2d duality transformations in the classical AdS{sub 5}xS{sup 5} superstring and their effect on the integrable structure. T-duality along four directions in the Poincare parametrization of AdS{sub 5} maps the bosonic part of the superstring action into itself. On the bosonic level, this duality may be understood as a symmetry of the first-order (phase space) system of equations for the coset components of the current. The associated Lax connection is invariant modulo the action of an so(2,4)-automorphism. We then show that this symmetry extends to the full superstring, provided one supplements the transformation of the bosonic components of the current with a transformation on the fermionic ones. At the level of the action, this symmetry can be seen by combining the bosonic duality transformation with a similar one applied to part of the fermionic superstring coordinates. As a result, the full superstring action is mapped into itself, albeit in a different {kappa}-symmetry gauge. One implication is that the dual model has the same superconformal symmetry group as the original one, and this may be seen as a consequence of the integrability of the superstring. The invariance of the Lax connection under the duality implies a map on the full set of conserved charges that should interchange some of the Noether (local) charges with hidden (nonlocal) ones and vice versa.

  17. A perturbation theory guide to open-shell complexes: OH-Ar(X 2Π)

    NASA Astrophysics Data System (ADS)

    Green, William H., Jr.; Lester, Marsha I.

    1992-02-01

    Perturbation theory is used to understand the experimentally observed stimulated emission spectra of OH-Ar(X 2Π). A useful zero-order Hamiltonian for an open-shell van der Waals complex is presented, and the most important perturbation terms are identified: rotational decoupling ( jṡs), Renner-Teller coupling (V̂2), and a Coriolis interaction (Jṡj). This treatment reveals those parts of the Hamiltonian which are responsible for various unusual features in the spectra of open-shell complexes, such as the large parity splittings in certain vibrational bands and spin-orbit-induced predissociation of the OH-Ar(X 2Π) complex. The magnitude of the parity splitting is shown to be directly proportional to the change in the intermolecular potential when the odd electron in the free radical lies in or out of the O-H-Ar plane, the A' and A` surfaces. The measured splitting is used to infer the magnitude of the difference between the A' and A` potential-energy surfaces (˜12 cm-1) in the region sampled by the first excited bend.

  18. Nonequilibrium effective field theory for absorbing state phase transitions in driven open quantum spin systems

    NASA Astrophysics Data System (ADS)

    Buchhold, Michael; Everest, Benjamin; Marcuzzi, Matteo; Lesanovsky, Igor; Diehl, Sebastian

    2017-01-01

    Phase transitions to absorbing states are among the simplest examples of critical phenomena out of equilibrium. The characteristic feature of these models is the presence of a fluctuationless configuration which the dynamics cannot leave, which has proved a rather stringent requirement in experiments. Recently, a proposal to seek such transitions in highly tunable systems of cold-atomic gases offers to probe this physics and, at the same time, to investigate the robustness of these transitions to quantum coherent effects. Here, we specifically focus on the interplay between classical and quantum fluctuations in a simple driven open quantum model which, in the classical limit, reproduces a contact process, which is known to undergo a continuous transition in the "directed percolation" universality class. We derive an effective long-wavelength field theory for the present class of open spin systems and show that, due to quantum fluctuations, the nature of the transition changes from second to first order, passing through a bicritical point which appears to belong instead to the "tricritical directed percolation" class.

  19. Open-ended response theory with polarizable embedding: multiphoton absorption in biomolecular systems.

    PubMed

    Steindal, Arnfinn Hykkerud; Beerepoot, Maarten T P; Ringholm, Magnus; List, Nanna Holmgaard; Ruud, Kenneth; Kongsted, Jacob; Olsen, Jógvan Magnus Haugaard

    2016-10-12

    We present the theory and implementation of an open-ended framework for electric response properties at the level of Hartree-Fock and Kohn-Sham density functional theory that includes effects from the molecular environment modeled by the polarizable embedding (PE) model. With this new state-of-the-art multiscale functionality, electric response properties to any order can be calculated for molecules embedded in polarizable atomistic molecular environments ranging from solvents to complex heterogeneous macromolecules such as proteins. In addition, environmental effects on multiphoton absorption (MPA) properties can be studied by evaluating single residues of the response functions. The PE approach includes mutual polarization effects between the quantum and classical parts of the system through induced dipoles that are determined self-consistently with respect to the electronic density. The applicability of our approach is demonstrated by calculating MPA strengths up to four-photon absorption for the green fluorescent protein. We show how the size of the quantum region, as well as the treatment of the border between the quantum and classical regions, is crucial in order to obtain reliable MPA predictions.

  20. General Formalism of Decision Making Based on Theory of Open Quantum Systems

    NASA Astrophysics Data System (ADS)

    Asano, M.; Ohya, M.; Basieva, I.; Khrennikov, A.

    2013-01-01

    We present the general formalism of decision making which is based on the theory of open quantum systems. A person (decision maker), say Alice, is considered as a quantum-like system, i.e., a system which information processing follows the laws of quantum information theory. To make decision, Alice interacts with a huge mental bath. Depending on context of decision making this bath can include her social environment, mass media (TV, newspapers, INTERNET), and memory. Dynamics of an ensemble of such Alices is described by Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) equation. We speculate that in the processes of evolution biosystems (especially human beings) designed such "mental Hamiltonians" and GKSL-operators that any solution of the corresponding GKSL-equation stabilizes to a diagonal density operator (In the basis of decision making.) This limiting density operator describes population in which all superpositions of possible decisions has already been resolved. In principle, this approach can be used for the prediction of the distribution of possible decisions in human populations.

  1. Permeation through an open channel: Poisson-Nernst-Planck theory of a synthetic ionic channel.

    PubMed Central

    Chen, D; Lear, J; Eisenberg, B

    1997-01-01

    The synthetic channel [acetyl-(LeuSerSerLeuLeuSerLeu)3-CONH2]6 (pore diameter approximately 8 A, length approximately 30 A) is a bundle of six alpha-helices with blocked termini. This simple channel has complex properties, which are difficult to explain, even qualitatively, by traditional theories: its single-channel currents rectify in symmetrical solutions and its selectivity (defined by reversal potential) is a sensitive function of bathing solution. These complex properties can be fit quantitatively if the channel has fixed charge at its ends, forming a kind of macrodipole, bracketing a central charged region, and the shielding of the fixed charges is described by the Poisson-Nernst-Planck (PNP) equations. PNP fits current voltage relations measured in 15 solutions with an r.m.s. error of 3.6% using four adjustable parameters: the diffusion coefficients in the channel's pore DK = 2.1 x 10(-6) and DCl = 2.6 x 10(-7) cm2/s; and the fixed charge at the ends of the channel of +/- 0.12e (with unequal densities 0.71 M = 0.021e/A on the N-side and -1.9 M = -0.058e/A on the C-side). The fixed charge in the central region is 0.31e (with density P2 = 0.47 M = 0.014e/A). In contrast to traditional theories, PNP computes the electric field in the open channel from all of the charges in the system, by a rapid and accurate numerical procedure. In essence, PNP is a theory of the shielding of fixed (i.e., permanent) charge of the channel by mobile charge and by the ionic atmosphere in and near the channel's pore. The theory fits a wide range of data because the ionic contents and potential profile in the channel change significantly with experimental conditions, as they must, if the channel simultaneously satisfies the Poisson and Nernst-Planck equations and boundary conditions. Qualitatively speaking, the theory shows that small changes in the ionic atmosphere of the channel (i.e., shielding) make big changes in the potential profile and even bigger changes in flux, because

  2. Remarks on time-dependent [current]-density functional theory for open quantum systems.

    PubMed

    Yuen-Zhou, Joel; Aspuru-Guzik, Alán

    2013-08-14

    Time-dependent [current]-density functional theory for open quantum systems (OQS) has emerged as a formalism that can incorporate dissipative effects in the dynamics of many-body quantum systems. Here, we review and clarify some formal aspects of these theories that have been recently questioned in the literature. In particular, we provide theoretical support for the following conclusions: (1) contrary to what we and others had stated before, within the master equation framework, there is in fact a one-to-one mapping between vector potentials and current densities for fixed initial state, particle-particle interaction, and memory kernel; (2) regardless of the first conclusion, all of our recently suggested Kohn-Sham (KS) schemes to reproduce the current and particle densities of the original OQS, and in particular, the use of a KS closed driven system, remains formally valid; (3) the Lindblad master equation maintains the positivity of the density matrix regardless of the time-dependence of the Hamiltonian or the dissipation operators; (4) within the stochastic Schrödinger equation picture, a one-to-one mapping from stochastic vector potential to stochastic current density for individual trajectories has not been proven so far, except in the case where the vector potential is the same for every member of the ensemble, in which case, it reduces to the Lindblad master equation picture; (5) master equations may violate certain desired properties of the density matrix, such as positivity, but they remain as one of the most useful constructs to study OQS when the environment is not easily incorporated explicitly in the calculation. The conclusions support our previous work as formally rigorous, offer new insights into it, and provide a common ground to discuss related theories.

  3. Top-quark mass coupling and classification of weakly coupled heterotic superstring vacua

    NASA Astrophysics Data System (ADS)

    Rizos, J.

    2014-06-01

    The quest for the Standard Model among the huge number of string vacua is usually based on a set of phenomenological criteria related to the massless spectrum of string models. In this work we study criteria associated with interactions in the effective low energy theory and in particular with the presence of the coupling that provides mass to the top quark. Working in the context of the free-fermionic formulation of the heterotic superstring, we demonstrate that, in a big class of phenomenologically promising compactifications, these criteria can be expressed entirely in terms of the generalised GSO projection coefficients entering the definition of the models. They are shown to be very efficient in identifying phenomenologically viable vacua, especially in the framework of computer-based search, as they are met by approximately one every models. We apply our results in the investigation of a class of supersymmetric Pati-Salam vacua, comprising configurations, and we show that when combined with other phenomenological requirements they lead to a relatively small set of about Standard Model compatible models that can be fully classified.

  4. Topological string theory revisited I: The stage

    NASA Astrophysics Data System (ADS)

    Jia, Bei

    2016-08-01

    In this paper, we reformulate topological string theory using supermanifolds and supermoduli spaces, following the approach worked out by Witten (Superstring perturbation theory revisited, arXiv:1209.5461). We intend to make the construction geometrical in nature, by using supergeometry techniques extensively. The goal is to establish the foundation of studying topological string amplitudes in terms of integration over appropriate supermoduli spaces.

  5. Effect of two different superstrate layers on bismuth titanate (BiT) array antennas.

    PubMed

    Wee, F H; Malek, F; Al-Amani, A U; Ghani, Farid

    2014-01-15

    The microwave industry has shown increasing interest in electronic ceramic material (ECM) due to its advantages, such as light weight, low cost, low loss, and high dielectric strength. In this paper, simple antennas covered by superstrate layers for 2.30 GHz to 2.50 GHz are proposed. The antennas are compact and have the capability of producing high performance in terms of gain, directivity, and radiation efficiency. Bismuth titanate with high dielectric constant of 21, was utilized as the ECM, while the superstrate layers chosen included a split ring resonator and dielectric material. The superstrate layers were designed for some improvement in the performance of directivity, gain, and return loss. The proposed antennas were simulated and fabricated. The results obtained were small antennas that possess high gain and high directivity with 360°, omni-directional signal transmission that resonant types of conventional dipole antenna cannot achieve. The gain of the antenna with the superstrate layer was enhanced by about 1 dBi over the antenna without a superstrate layer at 2.40 GHz.

  6. Effect of Two Different Superstrate Layers On Bismuth Titanate (BiT) Array Antennas

    PubMed Central

    Wee, F. H.; Malek, F.; Al-Amani, A. U.; Ghani, Farid

    2014-01-01

    The microwave industry has shown increasing interest in electronic ceramic material (ECM) due to its advantages, such as light weight, low cost, low loss, and high dielectric strength. In this paper, simple antennas covered by superstrate layers for 2.30 GHz to 2.50 GHz are proposed. The antennas are compact and have the capability of producing high performance in terms of gain, directivity, and radiation efficiency. Bismuth titanate with high dielectric constant of 21, was utilized as the ECM, while the superstrate layers chosen included a split ring resonator and dielectric material. The superstrate layers were designed for some improvement in the performance of directivity, gain, and return loss. The proposed antennas were simulated and fabricated. The results obtained were small antennas that possess high gain and high directivity with 360°, omni-directional signal transmission that resonant types of conventional dipole antenna cannot achieve. The gain of the antenna with the superstrate layer was enhanced by about 1 dBi over the antenna without a superstrate layer at 2.40 GHz. PMID:24424254

  7. China's Radio and TV Universities: Reflections on Theory and Practice of Open and Distance Learning

    ERIC Educational Resources Information Center

    Wei, Runfang

    2010-01-01

    Distance education and open learning are western innovations, representing the educational concepts, cultures and societies of western countries. The introduction of distance education and the adoption of open learning in China's radio and TV universities are by no means an indication that they will and can be copied wholesale. Open and distance…

  8. Coalescent: an open-science framework for importance sampling in coalescent theory

    PubMed Central

    Spouge, John L.

    2015-01-01

    Background. In coalescent theory, computer programs often use importance sampling to calculate likelihoods and other statistical quantities. An importance sampling scheme can exploit human intuition to improve statistical efficiency of computations, but unfortunately, in the absence of general computer frameworks on importance sampling, researchers often struggle to translate new sampling schemes computationally or benchmark against different schemes, in a manner that is reliable and maintainable. Moreover, most studies use computer programs lacking a convenient user interface or the flexibility to meet the current demands of open science. In particular, current computer frameworks can only evaluate the efficiency of a single importance sampling scheme or compare the efficiencies of different schemes in an ad hoc manner. Results. We have designed a general framework (http://coalescent.sourceforge.net; language: Java; License: GPLv3) for importance sampling that computes likelihoods under the standard neutral coalescent model of a single, well-mixed population of constant size over time following infinite sites model of mutation. The framework models the necessary core concepts, comes integrated with several data sets of varying size, implements the standard competing proposals, and integrates tightly with our previous framework for calculating exact probabilities. For a given dataset, it computes the likelihood and provides the maximum likelihood estimate of the mutation parameter. Well-known benchmarks in the coalescent literature validate the accuracy of the framework. The framework provides an intuitive user interface with minimal clutter. For performance, the framework switches automatically to modern multicore hardware, if available. It runs on three major platforms (Windows, Mac and Linux). Extensive tests and coverage make the framework reliable and maintainable. Conclusions. In coalescent theory, many studies of computational efficiency consider only

  9. Coalescent: an open-science framework for importance sampling in coalescent theory.

    PubMed

    Tewari, Susanta; Spouge, John L

    2015-01-01

    Background. In coalescent theory, computer programs often use importance sampling to calculate likelihoods and other statistical quantities. An importance sampling scheme can exploit human intuition to improve statistical efficiency of computations, but unfortunately, in the absence of general computer frameworks on importance sampling, researchers often struggle to translate new sampling schemes computationally or benchmark against different schemes, in a manner that is reliable and maintainable. Moreover, most studies use computer programs lacking a convenient user interface or the flexibility to meet the current demands of open science. In particular, current computer frameworks can only evaluate the efficiency of a single importance sampling scheme or compare the efficiencies of different schemes in an ad hoc manner. Results. We have designed a general framework (http://coalescent.sourceforge.net; language: Java; License: GPLv3) for importance sampling that computes likelihoods under the standard neutral coalescent model of a single, well-mixed population of constant size over time following infinite sites model of mutation. The framework models the necessary core concepts, comes integrated with several data sets of varying size, implements the standard competing proposals, and integrates tightly with our previous framework for calculating exact probabilities. For a given dataset, it computes the likelihood and provides the maximum likelihood estimate of the mutation parameter. Well-known benchmarks in the coalescent literature validate the accuracy of the framework. The framework provides an intuitive user interface with minimal clutter. For performance, the framework switches automatically to modern multicore hardware, if available. It runs on three major platforms (Windows, Mac and Linux). Extensive tests and coverage make the framework reliable and maintainable. Conclusions. In coalescent theory, many studies of computational efficiency consider only

  10. Adsorption and ring-opening of lactide on the chiral metal surface Pt(321)S studied by density functional theory

    NASA Astrophysics Data System (ADS)

    Franke, J.-H.; Kosov, D. S.

    2015-01-01

    We study the adsorption and ring-opening of lactide on the naturally chiral metal surface Pt(321)S. Lactide is a precursor for polylactic acid ring-opening polymerization, and Pt is a well known catalyst surface. We study, here, the energetics of the ring-opening of lactide on a surface that has a high density of kink atoms. These sites are expected to be present on a realistic Pt surface and show enhanced catalytic activity. The use of a naturally chiral surface also enables us to study potential chiral selectivity effects of the reaction at the same time. Using density functional theory with a functional that includes the van der Waals forces in a first-principles manner, we find modest adsorption energies of around 1.4 eV for the pristine molecule and different ring-opened states. The energy barrier to be overcome in the ring-opening reaction is found to be very small at 0.32 eV and 0.30 eV for LL- and its chiral partner DD-lactide, respectively. These energies are much smaller than the activation energy for a dehydrogenation reaction of 0.78 eV. Our results thus indicate that (a) ring-opening reactions of lactide on Pt(321) can be expected already at very low temperatures, and Pt might be a very effective catalyst for this reaction; (b) the ring-opening reaction rate shows noticeable enantioselectivity.

  11. Researching Resistance to Open Education Resource Contribution: An Activity Theory Approach

    ERIC Educational Resources Information Center

    Cox, Glenda

    2013-01-01

    Higher education and associated institutions are beginning to share teaching materials known as Open Educational Resources (OER) or open courseware across the globe. Their success depends largely on the willingness of academics at these institutions to add their teaching resources. In a survey of the literature on OER there are several articles…

  12. Quantum aspects of black objects in string theory

    NASA Astrophysics Data System (ADS)

    Hyakutake, Yoshifumi

    2017-01-01

    One of important directions in superstring theory is to reveal the quantum nature of black hole. In this paper we embed Schwarzschild black hole into superstring theory or M-theory, which we call a smeared black hole, and resolve quantum corrections to it. Furthermore we boost the smeared black hole along the 11th direction and construct a smeared quantum black 0-brane in 10 dimensions. Quantum aspects of the thermodynamic for these black objects are investigated in detail. We also discuss radiations of a string and a D0-brane from the smeared quantum black 0-brane.

  13. Relativistic Quantum Information Theory

    DTIC Science & Technology

    2007-11-20

    In S. Kalara and D.V. Nanopou- los, editors, Proceedings of the International Symposium on Black Holes , Membranes, Wormholes and Superstrings, pages...within the gravitational field of a black hole . We outline the general theory of how the entanglement of polarized photons changes under...relativistic Lorentz transformations, and have studied quantum information transmission in the presence of a black hole . A description of the accretion of

  14. String Theory, String Model-Building, and String Phenomenology — A Practical Introduction

    NASA Astrophysics Data System (ADS)

    Dienes, Keith R.

    This is the written version of an introductory self-contained course on string model-building and string phenomenology given at the 2006 TASI summer school. No prior knowledge of string theory is assumed. The goal is to provide a practical, "how-to" manual on string theory, string model-building, and string phenomenology with a minimum of mathematics. These notes cover the construction of bosonic strings, super-strings, and heterotic strings prior to compactification. These notes also develop the ten-dimensional free-fermionic construction. A final lecture discusses general features of heterotic string models, Type I (open) string models, and recent trends of string phenomenology. and general features of low-energy string phenomenology.

  15. Thermodynamics of superstring on near-extremal NS5 and effective Hagedorn behavior

    NASA Astrophysics Data System (ADS)

    Sugawara, Yuji

    2012-10-01

    We study the thermodynamical torus partition function of superstring on the near-extremal black NS5-brane background. The exact partition function has been computed with the helps of our previous works: [arXiv:1012.5721 [hep-th

  16. Integrable deformation of the AdS5×S5 superstring action.

    PubMed

    Delduc, F; Magro, M; Vicedo, B

    2014-02-07

    An integrable deformation of the type IIB AdS5×S5 superstring action is presented. The deformed field equations, Lax connection, and κ-symmetry transformations are given. The original psu(2,2|4) symmetry is expected to become q deformed.

  17. Motivating Learners in Open and Distance Learning: Do We Need a New Theory of Learner Support?

    ERIC Educational Resources Information Center

    Simpson, Ormond

    2008-01-01

    This paper calls for a new theory of learner support in distance learning based on recent findings in the fields of learning and motivational psychology. It surveys some current learning motivation theories and proposes that models drawn from the relatively new field of Positive Psychology, such as the "Strengths Approach", together with…

  18. Numerical Predictions of Mode Reflections in an Open Circular Duct: Comparison with Theory

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.; Hixon, Ray

    2015-01-01

    The NASA Broadband Aeroacoustic Stator Simulation code was used to compute the acoustic field for higher-order modes in a circular duct geometry. To test the accuracy of the results computed by the code, the duct was terminated by an open end with an infinite flange or no flange. Both open end conditions have a theoretical solution that was used to compare with the computed results. Excellent comparison for reflection matrix values was achieved after suitable refinement of the grid at the open end. The study also revealed issues with the level of the mode amplitude introduced into the acoustic held from the source boundary and the amount of reflection that occurred at the source boundary when a general nonreflecting boundary condition was applied.

  19. Integrable deformations of the AdS5×S5 superstring and the classical Yang-Baxter equation - Towards the gravity/CYBE correspondence -

    NASA Astrophysics Data System (ADS)

    Matsumoto, Takuya; Yoshida, Kentaroh

    2014-11-01

    Based on the formulation of Yang-Baxter sigma models developed by Klimcik and Delduc-Magro-Vicedo, we explain that various deformations of type IIB superstring on AdS5 × S5 can be charactered by classical r-matrices satisfying the classical Yang-Baxter equation (CYBE). The relation may be referred to as the gravity/CYBE correspondence. We present non-trivial examples of the correspondence including Lunin-Maldacena backgrounds for β-deformations of the N = 4 super Yang-Mills theory and the gravity duals for non-commutative gauge theories. We also discuss non-integrable backgrounds such as AdS5 × T1,1 as a generalization.

  20. Development of New Open-Shell Perturbation and Coupled-Cluster Theories Based on Symmetric Spin Orbitals

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Arnold, James O. (Technical Monitor)

    1994-01-01

    A new spin orbital basis is employed in the development of efficient open-shell coupled-cluster and perturbation theories that are based on a restricted Hartree-Fock (RHF) reference function. The spin orbital basis differs from the standard one in the spin functions that are associated with the singly occupied spatial orbital. The occupied orbital (in the spin orbital basis) is assigned the delta(+) = 1/square root of 2(alpha+Beta) spin function while the unoccupied orbital is assigned the delta(-) = 1/square root of 2(alpha-Beta) spin function. The doubly occupied and unoccupied orbitals (in the reference function) are assigned the standard alpha and Beta spin functions. The coupled-cluster and perturbation theory wave functions based on this set of "symmetric spin orbitals" exhibit much more symmetry than those based on the standard spin orbital basis. This, together with interacting space arguments, leads to a dramatic reduction in the computational cost for both coupled-cluster and perturbation theory. Additionally, perturbation theory based on "symmetric spin orbitals" obeys Brillouin's theorem provided that spin and spatial excitations are both considered. Other properties of the coupled-cluster and perturbation theory wave functions and models will be discussed.

  1. Linear theory of boundary effects in open wind tunnels with finite jet lengths

    NASA Technical Reports Server (NTRS)

    Katzoff, S; Gardner, Clifford S; Diesendruck, Leo; Eisenstadt, Bertram J

    1950-01-01

    In the first part, the boundary conditions for an open wind tunnel (incompressible flow) are examined with special reference to the effects of the closed entrance and exit sections. Basic conditions are that the velocity must be continuous at the entrance lip and that the velocities in the upstream and downstream closed portions must be equal. In the second part, solutions are derived for four types of two-dimensional open tunnels, including one in which the pressures on the two free surfaces are not equal. Numerical results are given for every case. In general, if the lifting element is more than half the tunnel height from the inlet, the boundary effect at the lifting element is the same as for an infinitely long open tunnel. In the third part, a general method is given for calculating the boundary effect in an open circular wind tunnel of finite jet length. Numerical results are given for a lifting element concentrate at a point on the axis.

  2. Optimal control of open quantum systems: A combined surrogate Hamiltonian optimal control theory approach applied to photochemistry on surfaces

    SciTech Connect

    Asplund, Erik; Kluener, Thorsten

    2012-03-28

    In this paper, control of open quantum systems with emphasis on the control of surface photochemical reactions is presented. A quantum system in a condensed phase undergoes strong dissipative processes. From a theoretical viewpoint, it is important to model such processes in a rigorous way. In this work, the description of open quantum systems is realized within the surrogate Hamiltonian approach [R. Baer and R. Kosloff, J. Chem. Phys. 106, 8862 (1997)]. An efficient and accurate method to find control fields is optimal control theory (OCT) [W. Zhu, J. Botina, and H. Rabitz, J. Chem. Phys. 108, 1953 (1998); Y. Ohtsuki, G. Turinici, and H. Rabitz, J. Chem. Phys. 120, 5509 (2004)]. To gain control of open quantum systems, the surrogate Hamiltonian approach and OCT, with time-dependent targets, are combined. Three open quantum systems are investigated by the combined method, a harmonic oscillator immersed in an ohmic bath, CO adsorbed on a platinum surface, and NO adsorbed on a nickel oxide surface. Throughout this paper, atomic units, i.e., ({Dirac_h}/2{pi})=m{sub e}=e=a{sub 0}= 1, have been used unless otherwise stated.

  3. Optimal control of open quantum systems: a combined surrogate hamiltonian optimal control theory approach applied to photochemistry on surfaces.

    PubMed

    Asplund, Erik; Klüner, Thorsten

    2012-03-28

    In this paper, control of open quantum systems with emphasis on the control of surface photochemical reactions is presented. A quantum system in a condensed phase undergoes strong dissipative processes. From a theoretical viewpoint, it is important to model such processes in a rigorous way. In this work, the description of open quantum systems is realized within the surrogate hamiltonian approach [R. Baer and R. Kosloff, J. Chem. Phys. 106, 8862 (1997)]. An efficient and accurate method to find control fields is optimal control theory (OCT) [W. Zhu, J. Botina, and H. Rabitz, J. Chem. Phys. 108, 1953 (1998); Y. Ohtsuki, G. Turinici, and H. Rabitz, J. Chem. Phys. 120, 5509 (2004)]. To gain control of open quantum systems, the surrogate hamiltonian approach and OCT, with time-dependent targets, are combined. Three open quantum systems are investigated by the combined method, a harmonic oscillator immersed in an ohmic bath, CO adsorbed on a platinum surface, and NO adsorbed on a nickel oxide surface. Throughout this paper, atomic units, i.e., ℏ = m(e) = e = a(0) = 1, have been used unless otherwise stated.

  4. Open-ended formulation of self-consistent field response theory with the polarizable continuum model for solvation.

    PubMed

    Di Remigio, Roberto; Beerepoot, Maarten T P; Cornaton, Yann; Ringholm, Magnus; Steindal, Arnfinn Hykkerud; Ruud, Kenneth; Frediani, Luca

    2016-12-21

    The study of high-order absorption properties of molecules is a field of growing importance. Quantum-chemical studies can help design chromophores with desirable characteristics. Given that most experiments are performed in solution, it is important to devise a cost-effective strategy to include solvation effects in quantum-chemical studies of these properties. We here present an open-ended formulation of self-consistent field (SCF) response theory for a molecular solute coupled to a polarizable continuum model (PCM) description of the solvent. Our formulation relies on the open-ended, density matrix-based quasienergy formulation of SCF response theory of Thorvaldsen, et al., [J. Chem. Phys., 2008, 129, 214108] and the variational formulation of the PCM, as presented by Lipparini et al., [J. Chem. Phys., 2010, 133, 014106]. Within the PCM approach to solvation, the mutual solute-solvent polarization is represented by means of an apparent surface charge (ASC) spread over the molecular cavity defining the solute-solvent boundary. In the variational formulation, the ASC is an independent, variational degree of freedom. This allows us to formulate response theory for molecular solutes in the fixed-cavity approximation up to arbitrary order and with arbitrary perturbation operators. For electric dipole perturbations, pole and residue analyses of the response functions naturally lead to the identification of excitation energies and transition moments. We document the implementation of this approach in the Dalton program package using a recently developed open-ended response code and the PCMSolver libraries and present results for one-, two-, three-, four- and five-photon absorption processes of three small molecules in solution.

  5. Wigner distribution function and entropy of the damped harmonic oscillator within the theory of the open quantum systems

    NASA Technical Reports Server (NTRS)

    Isar, Aurelian

    1995-01-01

    The harmonic oscillator with dissipation is studied within the framework of the Lindblad theory for open quantum systems. By using the Wang-Uhlenbeck method, the Fokker-Planck equation, obtained from the master equation for the density operator, is solved for the Wigner distribution function, subject to either the Gaussian type or the delta-function type of initial conditions. The obtained Wigner functions are two-dimensional Gaussians with different widths. Then a closed expression for the density operator is extracted. The entropy of the system is subsequently calculated and its temporal behavior shows that this quantity relaxes to its equilibrium value.

  6. The Way of Openness: Moral Sphere Theory, Education, Ethics, and Classroom Management

    ERIC Educational Resources Information Center

    Bullough, Robert V., Jr.

    2014-01-01

    Noting the challenges of radical pluralism and uncertainty to ethics and education, the author describes, then explores Moral Sphere Theory (MST) developed by the philosopher Robert Kane and in relationship to insights drawn from American pragmatism. The argument is that MST offers fresh ways for thinking about education and the profound…

  7. Opening Windows Onto the Future: Theory of the Governor's School of North Carolina.

    ERIC Educational Resources Information Center

    Lewis, H. Michael

    Presented is the curriculum theory designed for 400 gifted boys and girls, from rising junior and senior classes in high school, who attend the 8-week summer Governor's School (GS) of North Carolina. The main aim of the GS is given to be inspiring and guiding future leaders by providing opportunities for special aptitude, general conceptual, and…

  8. Open problems in applying random-matrix theory to nuclear reactions

    NASA Astrophysics Data System (ADS)

    Weidenmüller, H. A.

    2014-09-01

    Problems in applying random-matrix theory (RMT) to nuclear reactions arise in two domains. To justify the approach, statistical properties of isolated resonances observed experimentally must agree with RMT predictions. That agreement is less striking than would be desirable. In the implementation of the approach, the range of theoretically predicted observables is too narrow.

  9. Application of the theory of open quantum systems to nuclear physics problems

    NASA Astrophysics Data System (ADS)

    Sargsyan, V. V.; Kanokov, Z.; Adamian, G. G.; Antonenko, N. V.

    2016-03-01

    Quantum diffusion equations with transport coefficients explicitly depending on time are derived from the generalized non-Markovian Langevin equations. The asymptotic behavior of the friction and diffusion coefficients is investigated in the case of the FC and RWA couplings between the collective and internal subsystems. An asymptotic expression is obtained for the propagator of the density matrix of the open quantum system with the general quadratic Hamiltonian, linearly coupled (in coordinate and momentum) to internal degrees of freedom. The effect of different sets of transport coefficients on the decoherence and decay rate of the metastable state is investigated using the master equation for the reduced density matrix of open quantum systems. The developed approach is used to study the capture of the projectile nucleus by the target nucleus at energies near the Coulomb barrier. Capture cross sections in asymmetric reactions are well described with allowance for the calculated capture probabilities. Particular cases where dissipation favors penetration through the potential barrier are found. The generalized Kramers formula for the quasi-stationary decay rate of the quantum metastable systems is analytically derived.

  10. Solar wind control of the open magnetosphere: Comparison of GGS/polar images and theory

    NASA Astrophysics Data System (ADS)

    Urquhart, Andrew Lee

    This investigation explores the connection between the open polar cap magnetic flux ΦPCF and interplanetary conditions. Φ PCF is determined from GGS/Polar VIS Earth Camera far ultraviolet observations of the aurora borealis. Observations from the GGS/Wind SWE and MFI instruments are used to characterize the interplanetary conditions. Additional observations from the IMP-8 PLA and MAG instruments are used to evaluate solar wind propagation time delay estimation methods so that the GGS/Wind observations can be better associated with the GGS/Polar observations. This allows the GGS/Wind observations to be used to estimate the polar cap potential φPCP values associated with the GGS/Polar ΦPCF values. Statistical methods are applied to determine a proxy relationship between φPCP and ΦPCF. The Rice Field Model (RFM) is modified to accept Φ PCF as a configuration parameter, and RFM polar caps are produced using Φ PCF determined both directly from the GGS/Polar images and by the proxy relationship from the GGS/Wind data. The RFM is able to produce polar caps with the same areas and open magnetic fluxes as the GGS/Polar observations, but the agreement in the polar cap shapes and locations leaves opportunities for further improvements.

  11. Free differential algebras and pure spinor action in IIB superstring sigma models

    NASA Astrophysics Data System (ADS)

    Oda, Ichiro; Tonin, Mario

    2011-06-01

    In this paper we extend to the case of IIB superstring sigma models the method proposed in hep-th/10023500 to derive the pure spinor approach for type IIA sigma models. In particular, starting from the (Free) Differential Algebra and superspace parametrization of type IIB supergravity, extended to include the BRST differential and all the ghosts, we derive the BRST transformations of fields and ghosts as well as the standard pure spinor constraints for the ghosts λ related to supersymmetry. Moreover, using the method first proposed by us, we derive the pure spinor action for type IIB superstrings in curved supergravity backgrounds (on shell), in full agreement with the action first obtained by Berkovits and Howe.

  12. Effective nonrenormalizable theories at one loop

    SciTech Connect

    Gaillard, M.K.

    1987-10-12

    The paper focuses on a nonrenormalizable theory that is more closely related to those suggested by superstrings, namely a gauged nonlinear delta-model, but one which can also be obtained analytically in a particular limit of a parameter (m/sub H/ ..-->.. infinity) of the standard, renormalizable electroweak theory. This will provide another laboratory for testing the validity of calculations using the effective theory. We find (as for certain superstring inspired models to be discussed later) features similar to those for the Fermi theory: quadratic divergences can be reinterpreted as renormalizations, while new terms are generated at the level of logarithmic divergences. Also introduced in the context of more familiar physics are notions such as scalar metric, scalar curvature and nonlinear symmetries, that play an important role in formal aspects of string theories. 58 refs., 12 figs.

  13. Astrophysical Implications of the Superstring-Inspired E{sub 6} Unification and Shadow Theta-Particles

    SciTech Connect

    Das, C. R.; Laperashvili, L. V.; Tureanu, A.

    2010-06-23

    We have developed a concept of parallel existence of the ordinary (O) and mirror (M), or shadow (Sh) worlds. E{sub 6} unification, inspired by superstring theory, restores the broken mirror parity at the scale {approx}10{sup 18} GeV. With the aim to explain the tiny cosmological constant, we consider the breakings: E{sub 6{yields}}SO(10)xU(1){sub Z}--in the O-world, and E'6{yields}SU(6)'xSU(2)'{sub {theta}-}-in the Sh-world. We assume the existence of shadow {theta}-particles and the low energy symmetry group SU(3)'{sub C}xSU(2)'{sub L}xSU(2)'{sub {theta}x}U(1)'{sub Y} in the shadow world, instead of the Standard Model. The additional non-Abelian SU(2)'{sub {theta}}group with massless gauge fields, 'thetons', has a macroscopic confinement radius 1/{Lambda}'{sub {theta}.} The assumption that {Lambda}'{sub {theta}{approx_equal}2}.3{center_dot}10{sup -3} eV explains the tiny cosmological constant given by recent astrophysical measurements. Searching for the Dark Matter (DM), it is possible to observe and study various signals of theta-particles.

  14. A L-Band Superstrate Lens Enhanced Antenna and Array for Tactical Operations

    DTIC Science & Technology

    2013-07-01

    UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Space and Naval Warfare Systems Center Pacific,Advanced Integrated Circuits Technology...unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The design of a 1.2 GHz microstrip antenna utilizing a superstrate layer for gain enhancement is...David Hooper3 Spawar Systems Center Pacific 1Advanced Integrated Circuits Technology 2Tactical Edge Wireless Networks 3Unmanned Systems San Diego

  15. Quasi-optical theory of microwave plasma heating in open magnetic trap

    NASA Astrophysics Data System (ADS)

    Shalashov, A. G.; Balakin, A. A.; Gospodchikov, E. D.; Khusainov, T. A.

    2016-11-01

    Microwave heating of a high-temperature plasma confined in a large-scale open magnetic trap, including all important wave effects like diffraction, absorption, dispersion, and wave beam aberrations, is described for the first time within the first-principle technique based on consistent Maxwell's equations. With this purpose, the quasi-optical approach is generalized over weakly inhomogeneous gyrotrotropic media with resonant absorption and spatial dispersion, and a new form of the integral quasi-optical equation is proposed. An effective numerical technique for this equation's solution is developed and realized in a new code QOOT, which is verified with the simulations of realistic electron cyclotron heating scenarios at the Gas Dynamic Trap at the Budker Institute of Nuclear Physics (Novosibirsk, Russia).

  16. Theory of the Decoherence Effect in Finite and Infinite Open Quantum Systems Using the Algebraic Approach

    NASA Astrophysics Data System (ADS)

    Blanchard, Philippe; Hellmich, Mario; Ługiewicz, Piotr; Olkiewicz, Robert

    Quantum mechanics is the greatest revision of our conception of the character of the physical world since Newton. Consequently, David Hilbert was very interested in quantum mechanics. He and John von Neumann discussed it frequently during von Neumann's residence in Göttingen. He published in 1932 his book Mathematical Foundations of Quantum Mechanics. In Hilbert's opinion it was the first exposition of quantum mechanics in a mathematically rigorous way. The pioneers of quantum mechanics, Heisenberg and Dirac, neither had use for rigorous mathematics nor much interest in it. Conceptually, quantum theory as developed by Bohr and Heisenberg is based on the positivism of Mach as it describes only observable quantities. It first emerged as a result of experimental data in the form of statistical observations of quantum noise, the basic concept of quantum probability.

  17. Xylem Surfactants Introduce a New Element to the Cohesion-Tension Theory1[OPEN

    PubMed Central

    Espino, Susana; Nima, Neda; Do, Aissa Y.T.; Michaud, Joseph M.; Papahadjopoulos-Sternberg, Brigitte; Yang, Jinlong; Steppe, Kathy

    2017-01-01

    Vascular plants transport water under negative pressure without constantly creating gas bubbles that would disable their hydraulic systems. Attempts to replicate this feat in artificial systems almost invariably result in bubble formation, except under highly controlled conditions with pure water and only hydrophilic surfaces present. In theory, conditions in the xylem should favor bubble nucleation even more: there are millions of conduits with at least some hydrophobic surfaces, and xylem sap is saturated or sometimes supersaturated with atmospheric gas and may contain surface-active molecules that can lower surface tension. So how do plants transport water under negative pressure? Here, we show that angiosperm xylem contains abundant hydrophobic surfaces as well as insoluble lipid surfactants, including phospholipids, and proteins, a composition similar to pulmonary surfactants. Lipid surfactants were found in xylem sap and as nanoparticles under transmission electron microscopy in pores of intervessel pit membranes and deposited on vessel wall surfaces. Nanoparticles observed in xylem sap via nanoparticle-tracking analysis included surfactant-coated nanobubbles when examined by freeze-fracture electron microscopy. Based on their fracture behavior, this technique is able to distinguish between dense-core particles, liquid-filled, bilayer-coated vesicles/liposomes, and gas-filled bubbles. Xylem surfactants showed strong surface activity that reduces surface tension to low values when concentrated as they are in pit membrane pores. We hypothesize that xylem surfactants support water transport under negative pressure as explained by the cohesion-tension theory by coating hydrophobic surfaces and nanobubbles, thereby keeping the latter below the critical size at which bubbles would expand to form embolisms. PMID:27927981

  18. A review of progress in the physics of open quantum systems: theory and experiment.

    PubMed

    Rotter, I; Bird, J P

    2015-11-01

    This report on progress explores recent advances in our theoretical and experimental understanding of the physics of open quantum systems (OQSs). The study of such systems represents a core problem in modern physics that has evolved to assume an unprecedented interdisciplinary character. OQSs consist of some localized, microscopic, region that is coupled to an external environment by means of an appropriate interaction. Examples of such systems may be found in numerous areas of physics, including atomic and nuclear physics, photonics, biophysics, and mesoscopic physics. It is the latter area that provides the main focus of this review, an emphasis that is driven by the capacity that exists to subject mesoscopic devices to unprecedented control. We thus provide a detailed discussion of the behavior of mesoscopic devices (and other OQSs) in terms of the projection-operator formalism, according to which the system under study is considered to be comprised of a localized region (Q), embedded into a well-defined environment (P) of scattering wavefunctions (with Q   +   P   =   1). The Q subspace must be treated using the concepts of non-Hermitian physics, and of particular interest here is: the capacity of the environment to mediate a coupling between the different states of Q; the role played by the presence of exceptional points (EPs) in the spectra of OQSs; the influence of EPs on the rigidity of the wavefunction phases, and; the ability of EPs to initiate a dynamical phase transition (DPT). EPs are singular points in the continuum, at which two resonance states coalesce, that is where they exhibit a non-avoided crossing. DPTs occur when the quantum dynamics of the open system causes transitions between non-analytically connected states, as a function of some external control parameter. Much like conventional phase transitions, the behavior of the system on one side of the DPT does not serve as a reliable indicator of that on the other. In

  19. A review of progress in the physics of open quantum systems: theory and experiment

    NASA Astrophysics Data System (ADS)

    Rotter, I.; Bird, J. P.

    2015-11-01

    This report on progress explores recent advances in our theoretical and experimental understanding of the physics of open quantum systems (OQSs). The study of such systems represents a core problem in modern physics that has evolved to assume an unprecedented interdisciplinary character. OQSs consist of some localized, microscopic, region that is coupled to an external environment by means of an appropriate interaction. Examples of such systems may be found in numerous areas of physics, including atomic and nuclear physics, photonics, biophysics, and mesoscopic physics. It is the latter area that provides the main focus of this review, an emphasis that is driven by the capacity that exists to subject mesoscopic devices to unprecedented control. We thus provide a detailed discussion of the behavior of mesoscopic devices (and other OQSs) in terms of the projection-operator formalism, according to which the system under study is considered to be comprised of a localized region (Q), embedded into a well-defined environment (P) of scattering wavefunctions (with Q   +   P   =   1). The Q subspace must be treated using the concepts of non-Hermitian physics, and of particular interest here is: the capacity of the environment to mediate a coupling between the different states of Q; the role played by the presence of exceptional points (EPs) in the spectra of OQSs; the influence of EPs on the rigidity of the wavefunction phases, and; the ability of EPs to initiate a dynamical phase transition (DPT). EPs are singular points in the continuum, at which two resonance states coalesce, that is where they exhibit a non-avoided crossing. DPTs occur when the quantum dynamics of the open system causes transitions between non-analytically connected states, as a function of some external control parameter. Much like conventional phase transitions, the behavior of the system on one side of the DPT does not serve as a reliable indicator of that on the other. In

  20. POSTOP: Postbuckled open-stiffener optimum panels-theory and capability

    NASA Technical Reports Server (NTRS)

    Dickson, J. N.; Biggers, S. B.

    1984-01-01

    The computer program POSTOP was developed to serve as an aid in the analysis and sizing of stiffened composite panels that are loaded in the postbuckling regime. A comprehensive set of analysis routines was coupled to a widely used optimization program to produce this sizing code. POSTOP is intended for the preliminary design of metal or composite panels with open-section stiffeners, subjected to multiple combined biaxial compression (or tension), shear and normal pressure load cases. Longitudinal compression, however, is assumed to be the dominant loading. Temperature, initial bow eccentricity and load eccentricity effects are included. The panel geometry is assumed to be repetitive over several bays in the longitudinal (stiffener) direction as well as in the transverse direction. Analytical routines are included to compute panel stiffnesses, strains, local and panel buckling loads, and skin/stiffener interface stresses. The resulting program is applicable to stiffened panels as commonly used in fuselage, wing, or empennage structures. The analysis procedures and rationale for the assumptions used therein are described in detail.

  1. Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD)

    NASA Astrophysics Data System (ADS)

    Saal, James E.; Kirklin, Scott; Aykol, Muratahan; Meredig, Bryce; Wolverton, C.

    2013-11-01

    High-throughput density functional theory (HT DFT) is fast becoming a powerful tool for accelerating materials design and discovery by the amassing tens and even hundreds of thousands of DFT calculations in large databases. Complex materials problems can be approached much more efficiently and broadly through the sheer quantity of structures and chemistries available in such databases. Our HT DFT database, the Open Quantum Materials Database (OQMD), contains over 200,000 DFT calculated crystal structures and will be freely available for public use at http://oqmd.org. In this review, we describe the OQMD and its use in five materials problems, spanning a wide range of applications and materials types: (I) Li-air battery combination catalyst/electrodes, (II) Li-ion battery anodes, (III) Li-ion battery cathode coatings reactive with HF, (IV) Mg-alloy long-period stacking ordered (LPSO) strengthening precipitates, and (V) training a machine learning model to predict new stable ternary compounds.

  2. Time-dependent density functional theory for open systems with a positivity-preserving decomposition scheme for environment spectral functions

    SciTech Connect

    Wang, RuLin; Zheng, Xiao; Kwok, YanHo; Xie, Hang; Chen, GuanHua; Yam, ChiYung

    2015-04-14

    Understanding electronic dynamics on material surfaces is fundamentally important for applications including nanoelectronics, inhomogeneous catalysis, and photovoltaics. Practical approaches based on time-dependent density functional theory for open systems have been developed to characterize the dissipative dynamics of electrons in bulk materials. The accuracy and reliability of such approaches depend critically on how the electronic structure and memory effects of surrounding material environment are accounted for. In this work, we develop a novel squared-Lorentzian decomposition scheme, which preserves the positive semi-definiteness of the environment spectral matrix. The resulting electronic dynamics is guaranteed to be both accurate and convergent even in the long-time limit. The long-time stability of electronic dynamics simulation is thus greatly improved within the current decomposition scheme. The validity and usefulness of our new approach are exemplified via two prototypical model systems: quasi-one-dimensional atomic chains and two-dimensional bilayer graphene.

  3. Business Model Design from an ANT Perspective: Contributions and Insights of an Open and Living Theory

    NASA Astrophysics Data System (ADS)

    Costa, Cristina Chuva; da Cunha, Paulo Rupino

    The way the Internet has connected millions of users at negligible costs has changed playing field for companies. Several stakeholders can now come together in virtual networks to create innovative business models that would be unfeasible in the physical world. However, the more radical the departure from the established models of value creation, the bigger the complexity in ensuring the sustained interest of the involved parties and the stability of the bonds. To address this problem, we sought inspiration in the Actor-Network Theory (ANT), which is capable of providing insights into socio-technical settings where human and non-human agents interact. We describe how several of its principles, ideas, and concepts were adapted and embedded in our approach for complex business model design or analysis. A simple illustration is provided. Our iterative approach helps systematically scrutinize and tune the contributions and returns of the various actors, ensuring that all end up with an attractive value proposal, thus promoting the robustness of the network. Guidelines for the services that an underlying information system must provide are also derived from the results.

  4. Keeping an open mind: highlights and controversies of the breast cancer stem cell theory.

    PubMed

    Shah, Mansi; Allegrucci, Cinzia

    2012-10-26

    The discovery that breast cancers contain stem-like cells has fuelled exciting research in the last few years. These cells are referred to as breast cancer stem cells (BCSCs) and are thought to be involved in tumor initiation, progression, and metastasis. Being intrinsically resistant to chemo- and radiotherapy, they are also considered responsible for recurrence of the disease after treatment. BCSCs have been suggested to be at the basis of tumor complexity, as they have the ability to self-renew and give rise to highly proliferating and terminally differentiated cancer cells that comprise the heterogeneous bulk of the tumor. There has been much speculation on the BCSC model, and in this review we address some fundamental questions, such as the identity of BCSCs and their involvement in tumor intra- and interheterogeneity. As an alternative to the BCSC model, we discuss clonal evolution, as both theories show extensive evidence in support of their arguments. Finally, we discuss a unifying idea that reconciles both models, which is based on stem cell plasticity and epigenetic modifications induced by the tumor microenvironment. The implications of cancer stem cell plasticity for drug discovery and future therapeutic interventions are presented.

  5. Minimal Pati-Salam model from string theory unification

    SciTech Connect

    Dent, James B.; Kephart, Thomas W.

    2008-06-01

    We provide what we believe is the minimal three family N=1 SUSY and conformal Pati-Salam model from type IIB superstring theory. This Z{sub 3} orbifolded AdS x S{sup 5} model has long lived protons and has potential phenomenological consequences for LHC (Large Hadron Collider)

  6. Research in the theory of condensed matter and elementary particles. (Progress report)

    SciTech Connect

    Not Available

    1985-01-01

    The proposed research is concerned with problems occupying the common ground between quantum field theory and statistical mechanics. The topics under investigation include: superconformal field theory in two dimensions, its relationship to two dimensional critical phenomena and its applications in string theory; the covariant formulation of the superstring theory; formation of large-scale structures and spatial chaos in dynamical systems; fermion-boson mass relations in BCS type theories; and properties of quantum field theories defined over galois fields. 37 refs.

  7. Nuclear Matrix Model: A path to nuclear physics from superstrings

    SciTech Connect

    Hashimoto, Koji

    2011-10-21

    We derive nuclear forces and nuclear density saturation from large N{sub c} QCD, by applying AdS/CFT correspondence of string theory, called holographic QCD. This is made possible by a new description of a multi-baryon system in the holographic QCD. The description employs a matrix quantum mechanics which can be derived via the correspondence. This talk is based on collaboration work with N. Iizuka and P. Yi [1], with N. Iizuka [2, 3] and with T. Morita [4].

  8. Space-Time Variable Superstring Vacua Calabi-Yau Cosmic Yarn)

    NASA Astrophysics Data System (ADS)

    Green, Paul S.; Hübsch, Tristan

    In a general superstring vacuum configuration, the “internal” space (sector) varies in space-time. When this variation is nontrivial only in two spacelike dimensions, the vacuum contains static cosmic strings with finite energy per unit length and which is, up to interactions with matter, an easily computed topological invariant. The total space-time is smooth although the “internal” space is singular at the center of each cosmic string. In a similar analysis of the Wick-rotated Euclidean model, these cosmic strings acquire expected self-interactions. Also, a possibility emerges to define a global time in order to rotate back to the Lorentzian case.

  9. Computational science and re-discovery: open-source implementation of ellipsoidal harmonics for problems in potential theory

    NASA Astrophysics Data System (ADS)

    Bardhan, Jaydeep P.; Knepley, Matthew G.

    2012-01-01

    We present two open-source (BSD) implementations of ellipsoidal harmonic expansions for solving problems of potential theory using separation of variables. Ellipsoidal harmonics are used surprisingly infrequently, considering their substantial value for problems ranging in scale from molecules to the entire solar system. In this paper, we suggest two possible reasons for the paucity relative to spherical harmonics. The first is essentially historical—ellipsoidal harmonics developed during the late 19th century and early 20th, when it was found that only the lowest-order harmonics are expressible in closed form. Each higher-order term requires the solution of an eigenvalue problem, and tedious manual computation seems to have discouraged applications and theoretical studies. The second explanation is practical: even with modern computers and accurate eigenvalue algorithms, expansions in ellipsoidal harmonics are significantly more challenging to compute than those in Cartesian or spherical coordinates. The present implementations reduce the 'barrier to entry' by providing an easy and free way for the community to begin using ellipsoidal harmonics in actual research. We demonstrate our implementation using the specific and physiologically crucial problem of how charged proteins interact with their environment, and ask: what other analytical tools await re-discovery in an era of inexpensive computation?

  10. Compensating substrate-induced bianisotropy in optical metamaterials using ultrathin superstrate coatings.

    PubMed

    Jiang, Zhi Hao; Werner, Douglas H

    2013-03-11

    In this work, we propose an efficient approach to compensate for the commonly observed substrate-induced bianisotropy that occurs in on-wafer optical metamaterials at normal incidence. First, the consequence of placing a finite thickness substrate underneath a metamaterial is analyzed, indicating that the induced bianisotropy is a near-field effect. The properties of metamaterials sandwiched between an infinitely thick substrate and a finite-thickness superstrate with different permittivity and thickness values are then investigated. It is demonstrated from full-wave simulations that by adding an ultrathin superstrate with a judicious choice of its thickness and permittivity value, the substrate-induced bianisotropy of the system can be suppressed and even eliminated. In addition to the extracted nonlocal effective medium parameters, the induced electric and magnetic dipole moments calculated from the volumetric microscopic fields are also presented, validating that the magnetoelectric coupling compensation is a real physical phenomenon. This study will benefit future optical metamaterial design and implementation strategies as well as the corresponding fabrication and characterization methodologies.

  11. Comparison of Minority Carrier Lifetime Measurements in Superstrate and Substrate CdTe PV Devices: Preprint

    SciTech Connect

    Gessert, T. A.; Dhere, R. G.; Duenow, J. N.; Kuciauskas, D.; Kanevce, A.; Bergeson, J. D.

    2011-07-01

    We discuss typical and alternative procedures to analyze time-resolved photoluminescence (TRPL) measurements of minority carrier lifetime (MCL) with the hope of enhancing our understanding of how this technique may be used to better analyze CdTe photovoltaic (PV) device functionality. Historically, TRPL measurements of the fast recombination rate (t1) have provided insightful correlation with broad device functionality. However, we have more recently found that t1 does not correlate as well with smaller changes in device performance, nor does it correlate well with performance differences observed between superstrate and substrate CdTe PV devices. This study presents TRPL data for both superstrate and substrate CdTe devices where both t1 and the slower TRPL decay (t2) are analyzed. The study shows that changes in performance expected from small changes in device processing may correlate better with t2. Numerical modeling further suggests that, for devices that are expected to have similar drift field in the depletion region, effects of changes in bulk MCL and interface recombination should be more pronounced in t2. Although this technique may provide future guidance to improving CdS/CdTe device performance, it is often difficult to extract statistically precise values for t2, and therefore t2 data may demonstrate significant scatter when correlated with performance parameters.

  12. Analytical model for CMB temperature angular power spectrum from cosmic (super-)strings

    SciTech Connect

    Yamauchi, Daisuke; Yoo, Chul-Moon; Sasaki, Misao; Takahashi, Keitaro; Sendouda, Yuuiti

    2010-09-15

    We present a new analytical method to calculate the small angle cosmic microwave background (CMB) temperature angular power spectrum due to cosmic (super-)string segments. In particular, using our method, we clarify the dependence on the intercommuting probability P. We find that the power spectrum is dominated by Poisson-distributed string segments. The power spectrum for a general value of P has a plateau on large angular scales and shows a power-law decrease on small angular scales. The resulting spectrum in the case of conventional cosmic strings is in very good agreement with the numerical result obtained by Fraisse et al.. Then we estimate the upper bound on the dimensionless tension of the string for various values of P by assuming that the fraction of the CMB power spectrum due to cosmic (super-)strings is less than ten percent at various angular scales up to l=2000. We find that the amplitude of the spectrum increases as the intercommuting probability. As a consequence, strings with smaller intercommuting probabilities are found to be more tightly constrained.

  13. Superstrate Cu(In,Ga)Se2 Solar Cells: Prospects and Limitations

    NASA Astrophysics Data System (ADS)

    Heinenann, Marc Daniel; Wollgarten, Markus; Unold, Thomas; Schock, Hans-Werner; Kaufmann, Christian

    2014-03-01

    Superstrate solar cell devices were prepared by thermal evaporation of the Cu(In,Ga)Se2 absorber material onto ZnO coated glass substrates. Photo-conversion efficiencies above 11% were reached by optimizing the deposition process. Interface analysis with electron microscopy and XPS measurements, combined with capacitance spectroscopy and device simulations, showed specific limitations of this device configurations, but also possible ways to overcome these. It was found that the GaOx, which forms at the CIGSe/ZnO interface during the absorber deposition process, reduces the interface recombination. At the same time it limits the efficiency due to its high density of negatively charged acceptor states which causes an electron barrier at the heterointerface. The required addition of sodium enhances the p-type doping of the absorber as normally observed, but also increases the net doping within the GaOx, which requires a tradeoff between these two effects. The devices were found to degrade over time, which is explained by field induced diffusion of positive cations out of the GaOx layer. This model is able to explain frequently observed effects upon light-soaking and forward-biasing of superstrate devices.

  14. Communication: spin densities within a unitary group based spin-adapted open-shell coupled-cluster theory: analytic evaluation of isotropic hyperfine-coupling constants for the combinatoric open-shell coupled-cluster scheme.

    PubMed

    Datta, Dipayan; Gauss, Jürgen

    2015-07-07

    We report analytical calculations of isotropic hyperfine-coupling constants in radicals using a spin-adapted open-shell coupled-cluster theory, namely, the unitary group based combinatoric open-shell coupled-cluster (COSCC) approach within the singles and doubles approximation. A scheme for the evaluation of the one-particle spin-density matrix required in these calculations is outlined within the spin-free formulation of the COSCC approach. In this scheme, the one-particle spin-density matrix for an open-shell state with spin S and MS = + S is expressed in terms of the one- and two-particle spin-free (charge) density matrices obtained from the Lagrangian formulation that is used for calculating the analytic first derivatives of the energy. Benchmark calculations are presented for NO, NCO, CH2CN, and two conjugated π-radicals, viz., allyl and 1-pyrrolyl in order to demonstrate the performance of the proposed scheme.

  15. Interaction of moving branes with background massless and tachyon fields in superstring theory

    SciTech Connect

    Rezaei, Z. Kamani, D.

    2012-02-15

    Using the boundary state formalism, we study a moving Dp-brane in a partially compact space-time in the presence of background fields: the Kalb-Ramond field B{sub {mu}{nu}}, a U(1) gauge field A{sub {alpha}}, and the tachyon field. The boundary state enables us to obtain the interaction amplitude of two branes with the above back-ground fields. The branes are parallel or perpendicular to each other. Because of the presence of background fields, compactification of some space-time directions, motion of the branes, and the arbitrariness of the dimensions of the branes, the system is rather general. Due to the tachyon fields and velocities of the branes, the behavior of the interaction amplitude reveals obvious differences from the conventional behavior.

  16. Equivalence of Two-Loop Superstring Amplitudes in the Pure Spinor and Ramond-Neveu-Schwarz Formalisms

    SciTech Connect

    Berkovits, Nathan; Mafra, Carlos R

    2006-01-13

    The pure spinor formalism for the superstring has recently been used to compute massless four-point two-loop amplitudes in a manifestly super-Poincare covariant manner. In this Letter, we show that when all four external states are Neveu-Schwarz states, the two-loop amplitude coincides with the Ramond-Neveu-Schwarz result.

  17. Equivalence of two-loop superstring amplitudes in the pure spinor and Ramond-Neveu-Schwarz formalisms.

    PubMed

    Berkovits, Nathan; Mafra, Carlos R

    2006-01-13

    The pure spinor formalism for the superstring has recently been used to compute massless four-point two-loop amplitudes in a manifestly super-Poincaré covariant manner. In this Letter, we show that when all four external states are Neveu-Schwarz states, the two-loop amplitude coincides with the Ramond-Neveu-Schwarz result.

  18. Density Functional Theory of Open-Shell Systems. The 3d-Series Transition-Metal Atoms and Their Cations.

    PubMed

    Luo, Sijie; Averkiev, Boris; Yang, Ke R; Xu, Xuefei; Truhlar, Donald G

    2014-01-14

    The 3d-series transition metals (also called the fourth-period transition metals), Sc to Zn, are very important in industry and biology, but they provide unique challenges to computing the electronic structure of their compounds. In order to successfully describe the compounds by theory, one must be able to describe their components, in particular the constituent atoms and cations. In order to understand the ingredients required for successful computations with density functional theory, it is useful to examine the performance of various exchange-correlation functionals; we do this here for 4s(N)3d(N') transition-metal atoms and their cations. We analyze the results using three ways to compute the energy of the open-shell states: the direct variational method, the weighted-averaged broken symmetry (WABS) method, and a new broken-symmetry method called the reinterpreted broken symmetry (RBS) method. We find the RBS method to be comparable in accuracy with the WABS method. By examining the overall accuracy in treating 18 multiplicity-changing excitations and 10 ionization potentials with the RBS method, 10 functionals are found to have a mean-unsigned error of <5 kcal/mol, with ωB97X-D topping the list. For local density functionals, which are more practical for extended systems, the M06-L functional is the most accurate. And by combining the results with our previous studies of p-block and 4d-series elements as well as databases for alkyl bond dissociation, main-group atomization energies, and π-π noncovalent interactions, we find five functionals, namely, PW6B95, MPW1B95, M08-SO, SOGGA11-X, and MPWB1K, to be highly recommended. We also studied the performance of PW86 and C09 exchange functionals, which have drawn wide interest in recent studies due to their claimed ability to reproduce Hartree-Fock exchange at long distance. By combining them with four correlation functionals, we find the performance of the resulting functionals disappointing both for 3d

  19. Adsorption and ring-opening of lactide on the chiral metal surface Pt(321){sup S} studied by density functional theory

    SciTech Connect

    Franke, J.-H.; Kosov, D. S.

    2015-01-28

    We study the adsorption and ring-opening of lactide on the naturally chiral metal surface Pt(321){sup S}. Lactide is a precursor for polylactic acid ring-opening polymerization, and Pt is a well known catalyst surface. We study, here, the energetics of the ring-opening of lactide on a surface that has a high density of kink atoms. These sites are expected to be present on a realistic Pt surface and show enhanced catalytic activity. The use of a naturally chiral surface also enables us to study potential chiral selectivity effects of the reaction at the same time. Using density functional theory with a functional that includes the van der Waals forces in a first-principles manner, we find modest adsorption energies of around 1.4 eV for the pristine molecule and different ring-opened states. The energy barrier to be overcome in the ring-opening reaction is found to be very small at 0.32 eV and 0.30 eV for LL- and its chiral partner DD-lactide, respectively. These energies are much smaller than the activation energy for a dehydrogenation reaction of 0.78 eV. Our results thus indicate that (a) ring-opening reactions of lactide on Pt(321) can be expected already at very low temperatures, and Pt might be a very effective catalyst for this reaction; (b) the ring-opening reaction rate shows noticeable enantioselectivity.

  20. Quantum String Theory

    NASA Astrophysics Data System (ADS)

    Kawamoto, Noboru; Kugo, Taichiro

    String theories seem to have created a breakthrough in theoretical physics. At long last a unified theory of all the fundamental interactions, including gravity, looks possible. This, according to theorist Stephen Hawking, will mark the end of theoretical physics as we have known it, since we will then have a single consistent theory within which to explain all natural phenomena from elementary particles to galactic superclusters. Strings themselves are extremely tiny entities, smaller than the Planck scale, which form loops whose vibrational harmonics can be used to model all the standard elementary particles. Of course the mathematical complexities of the theory are daunting, and physicists are still at a very early stage in understanding how strings and their theoretical cousins superstrings can be used. This proceedings volume gives an overview of the intense recent work in the field and reports latest developments.

  1. Transmission from theory to practice: Experiences using open-source code development and a virtual short course to increase the adoption of new theoretical approaches

    NASA Astrophysics Data System (ADS)

    Harman, C. J.

    2015-12-01

    Even amongst the academic community, new theoretical tools can remain underutilized due to the investment of time and resources required to understand and implement them. This surely limits the frequency that new theory is rigorously tested against data by scientists outside the group that developed it, and limits the impact that new tools could have on the advancement of science. Reducing the barriers to adoption through online education and open-source code can bridge the gap between theory and data, forging new collaborations, and advancing science. A pilot venture aimed at increasing the adoption of a new theory of time-variable transit time distributions was begun in July 2015 as a collaboration between Johns Hopkins University and The Consortium of Universities for the Advancement of Hydrologic Science (CUAHSI). There were four main components to the venture: a public online seminar covering the theory, an open source code repository, a virtual short course designed to help participants apply the theory to their data, and an online forum to maintain discussion and build a community of users. 18 participants were selected for the non-public components based on their responses in an application, and were asked to fill out a course evaluation at the end of the short course, and again several months later. These evaluations, along with participation in the forum and on-going contact with the organizer suggest strengths and weaknesses in this combination of components to assist participants in adopting new tools.

  2. Testing string theory by probing the pre-bangian Universe

    SciTech Connect

    Veneziano, Gabriele

    1999-07-15

    After recalling why superstring theory suggests a new cosmological principle of 'asymptotic past triviality', I will argue that classical (quantum) gravitational instabilities can inflate (warm up) an asymptotic-past-trivial Universe. I will then discuss how near-future observations could provide a window through which we can probe the pre-bangian Universe and thus test string theory both at short and at large distances.

  3. Mirror world and superstring-inspired hidden sector of the Universe, dark matter and dark energy

    NASA Astrophysics Data System (ADS)

    Das, C. R.; Laperashvili, L. V.; Nielsen, H. B.; Tureanu, A.

    2011-09-01

    We develop a concept of parallel existence of the ordinary (O) and hidden (H) worlds. We compare two cases: (1) when the hidden sector of the Universe is a mirror counterpart of the ordinary world, and (2) when it is a superstring-inspired shadow world described, in contrast to the mirror world, by a symmetry group (or by a chain of groups), which does not coincide with the ordinary world symmetry group. We construct a cosmological model assuming the existence of the superstring-inspired E6 unification, broken at the early stage of the Universe to SO(10)×U(1)Z—in the O-world, and to SU(6)'×SU(2)θ'—in the H-world. As a result, we obtain the low-energy symmetry group GSM'×SU(2)θ' in the shadow world, instead of the standard model group GSM existing in the O-world. The additional non-Abelian SU(2)θ' group with massless gauge fields, ”thetons,” is responsible for dark energy. Considering a quintessence model of cosmology with an inflaton σ and an axion aθ, which is a pseudo Nambu-Goldstone boson induced by the SU(2)θ'-group anomaly, we explain the origin of dark energy, dark matter and ordinary matter. In the present model we review all cosmological epochs (inflation, reheating, recombination and nucleosynthesis), and give our version of the baryogenesis. The cosmological constant problem is also briefly discussed.

  4. Kappa-symmetry of superstring sigma model and generalized 10d supergravity equations

    NASA Astrophysics Data System (ADS)

    Tseytlin, A. A.; Wulff, L.

    2016-06-01

    We determine the constraints imposed on the 10d target superspace geometry by the requirement of classical kappa-symmetry of the Green-Schwarz superstring. In the type I case we find that the background must satisfy a generalization of type I supergravity equations. These equations depend on an arbitrary vector X a and imply the one-loop scale invariance of the GS sigma model. In the special case when X a is the gradient of a scalar ϕ (dilaton) one recovers the standard type I equations equivalent to the 2d Weyl invariance conditions of the superstring sigma model. In the type II case we find a generalized version of the 10d supergravity equations the bosonic part of which was introduced in arXiv:1511.05795. These equations depend on two vectors X a and K a subject to 1st order differential relations (with the equations in the NS-NS sector depending only on the combination X a = X a + K a ). In the special case of K a = 0 one finds that X a = ∂ a ϕ and thus obtains the standard type II supergravity equations. New generalized solutions are found if K a is chosen to be a Killing vector (and thus they exist only if the metric admits an isometry). Non-trivial solutions of the generalized equations describe K-isometric backgrounds that can be mapped by T-duality to type II supergravity solutions with dilaton containing a linear isometry-breaking term. Examples of such backgrounds appeared recently in the context of integrable η-deformations of AdS n × S n sigma models. The classical kappa-symmetry thus does not, in general, imply the 2d Weyl invariance conditions for the GS sigma model (equivalent to type II supergravity equations) but only weaker scale invariance type conditions.

  5. Quantum theory of open systems based on stochastic differential equations of generalized Langevin (non-Wiener) type

    SciTech Connect

    Basharov, A. M.

    2012-09-15

    It is shown that the effective Hamiltonian representation, as it is formulated in author's papers, serves as a basis for distinguishing, in a broadband environment of an open quantum system, independent noise sources that determine, in terms of the stationary quantum Wiener and Poisson processes in the Markov approximation, the effective Hamiltonian and the equation for the evolution operator of the open system and its environment. General stochastic differential equations of generalized Langevin (non-Wiener) type for the evolution operator and the kinetic equation for the density matrix of an open system are obtained, which allow one to analyze the dynamics of a wide class of localized open systems in the Markov approximation. The main distinctive features of the dynamics of open quantum systems described in this way are the stabilization of excited states with respect to collective processes and an additional frequency shift of the spectrum of the open system. As an illustration of the general approach developed, the photon dynamics in a single-mode cavity without losses on the mirrors is considered, which contains identical intracavity atoms coupled to the external vacuum electromagnetic field. For some atomic densities, the photons of the cavity mode are 'locked' inside the cavity, thus exhibiting a new phenomenon of radiation trapping and non-Wiener dynamics.

  6. (Research in the theory of condensed matter and elementary particles. ) Progress report

    SciTech Connect

    Not Available

    1986-01-01

    Progress is summarized in these areas: a new formulation of two dimensional critical phenomena and string theory, supersymmetric critical phenomena and string compactification, conformal field theory on orbifolds, Gaussian models with twisted boundary conditions, modular invariance and supersymmetric critical phenomena, critical indices, conformal invariance, and current algebra, renormalization group fixed points and the string equation of motion, fermionic string field theory, N = 2 super Riemann surfaces, the spinor field in covariant superstring theory, covariant quantization of superstrings, models of aggregation, and quasi-supersymmetry in the BCS mechanism. Further work is proposed in the areas of two dimensional critical phenomena, two dimensional conformal field theory and string theory, the physics of computation, models of aggregation, and the many vortex Aharonov-Bohm problem. 57 refs. (LEW)

  7. High‐Volume Processed, ITO‐Free Superstrates and Substrates for Roll‐to‐Roll Development of Organic Electronics

    PubMed Central

    Hösel, Markus; Angmo, Dechan; Søndergaard, Roar R.; dos Reis Benatto, Gisele A.; Carlé, Jon E.; Jørgensen, Mikkel

    2014-01-01

    The fabrication of substrates and superstrates prepared by scalable roll‐to‐roll methods is reviewed. The substrates and superstrates that act as the flexible carrier for the processing of functional organic electronic devices are an essential component, and proposals are made about how the general availability of various forms of these materials is needed to accelerate the development of the field of organic electronics. The initial development of the replacement of indium‐tin‐oxide (ITO) for the flexible carrier materials is described and a description of how roll‐to‐roll processing development led to simplification from an initially complex make‐up to higher performing materials through a more simple process is also presented. This process intensification through process simplification is viewed as a central strategy for upscaling, increasing throughput, performance, and cost reduction. PMID:27980893

  8. Global solutions of restricted open-shell Hartree-Fock theory from semidefinite programming with applications to strongly correlated quantum systems.

    PubMed

    Veeraraghavan, Srikant; Mazziotti, David A

    2014-03-28

    We present a density matrix approach for computing global solutions of restricted open-shell Hartree-Fock theory, based on semidefinite programming (SDP), that gives upper and lower bounds on the Hartree-Fock energy of quantum systems. While wave function approaches to Hartree-Fock theory yield an upper bound to the Hartree-Fock energy, we derive a semidefinite relaxation of Hartree-Fock theory that yields a rigorous lower bound on the Hartree-Fock energy. We also develop an upper-bound algorithm in which Hartree-Fock theory is cast as a SDP with a nonconvex constraint on the rank of the matrix variable. Equality of the upper- and lower-bound energies guarantees that the computed solution is the globally optimal solution of Hartree-Fock theory. The work extends a previously presented method for closed-shell systems [S. Veeraraghavan and D. A. Mazziotti, Phys. Rev. A 89, 010502-R (2014)]. For strongly correlated systems the SDP approach provides an alternative to the locally optimized Hartree-Fock energies and densities with a certificate of global optimality. Applications are made to the potential energy curves of C2, CN, Cr2, and NO2.

  9. Global solutions of restricted open-shell Hartree-Fock theory from semidefinite programming with applications to strongly correlated quantum systems

    SciTech Connect

    Veeraraghavan, Srikant; Mazziotti, David A.

    2014-03-28

    We present a density matrix approach for computing global solutions of restricted open-shell Hartree-Fock theory, based on semidefinite programming (SDP), that gives upper and lower bounds on the Hartree-Fock energy of quantum systems. While wave function approaches to Hartree-Fock theory yield an upper bound to the Hartree-Fock energy, we derive a semidefinite relaxation of Hartree-Fock theory that yields a rigorous lower bound on the Hartree-Fock energy. We also develop an upper-bound algorithm in which Hartree-Fock theory is cast as a SDP with a nonconvex constraint on the rank of the matrix variable. Equality of the upper- and lower-bound energies guarantees that the computed solution is the globally optimal solution of Hartree-Fock theory. The work extends a previously presented method for closed-shell systems [S. Veeraraghavan and D. A. Mazziotti, Phys. Rev. A 89, 010502–R (2014)]. For strongly correlated systems the SDP approach provides an alternative to the locally optimized Hartree-Fock energies and densities with a certificate of global optimality. Applications are made to the potential energy curves of C{sub 2}, CN, Cr {sub 2}, and NO {sub 2}.

  10. Communication: Spin densities within a unitary group based spin-adapted open-shell coupled-cluster theory: Analytic evaluation of isotropic hyperfine-coupling constants for the combinatoric open-shell coupled-cluster scheme

    SciTech Connect

    Datta, Dipayan Gauss, Jürgen

    2015-07-07

    We report analytical calculations of isotropic hyperfine-coupling constants in radicals using a spin-adapted open-shell coupled-cluster theory, namely, the unitary group based combinatoric open-shell coupled-cluster (COSCC) approach within the singles and doubles approximation. A scheme for the evaluation of the one-particle spin-density matrix required in these calculations is outlined within the spin-free formulation of the COSCC approach. In this scheme, the one-particle spin-density matrix for an open-shell state with spin S and M{sub S} = + S is expressed in terms of the one- and two-particle spin-free (charge) density matrices obtained from the Lagrangian formulation that is used for calculating the analytic first derivatives of the energy. Benchmark calculations are presented for NO, NCO, CH{sub 2}CN, and two conjugated π-radicals, viz., allyl and 1-pyrrolyl in order to demonstrate the performance of the proposed scheme.

  11. A Model (Based upon Open Systems Organizational Theory) for Continuous Educational Needs Assessment in Continuing Professional Education Programs.

    ERIC Educational Resources Information Center

    Mazmanian, Paul E.

    This paper suggests that since continuing professional educators must address the ever present gap between new knowledge and practitioner competence, accurate identification and prioritization of practitioners' educational needs must be maintained on a continuous basis. Describing an adult education agency as an open system whose output depends on…

  12. Assessment of the accuracy of coupled cluster perturbation theory for open-shell systems. I. Triples expansions.

    PubMed

    Eriksen, Janus J; Matthews, Devin A; Jørgensen, Poul; Gauss, Jürgen

    2016-05-21

    The accuracy at which total energies of open-shell atoms and organic radicals may be calculated is assessed for selected coupled cluster perturbative triples expansions, all of which augment the coupled cluster singles and doubles (CCSD) energy by a non-iterative correction for the effect of triple excitations. Namely, the second- through sixth-order models of the recently proposed CCSD(T-n) triples series [J. J. Eriksen et al., J. Chem. Phys. 140, 064108 (2014)] are compared to the acclaimed CCSD(T) model for both unrestricted as well as restricted open-shell Hartree-Fock (UHF/ROHF) reference determinants. By comparing UHF- and ROHF-based statistical results for a test set of 18 modest-sized open-shell species with comparable RHF-based results, no behavioral differences are observed for the higher-order models of the CCSD(T-n) series in their correlated descriptions of closed- and open-shell species. In particular, we find that the convergence rate throughout the series towards the coupled cluster singles, doubles, and triples (CCSDT) solution is identical for the two cases. For the CCSD(T) model, on the other hand, not only its numerical consistency, but also its established, yet fortuitous cancellation of errors breaks down in the transition from closed- to open-shell systems. The higher-order CCSD(T-n) models (orders n > 3) thus offer a consistent and significant improvement in accuracy relative to CCSDT over the CCSD(T) model, equally for RHF, UHF, and ROHF reference determinants, albeit at an increased computational cost.

  13. The origins of utility regulation and the [open quotes]theories of regulation[close quotes] debate

    SciTech Connect

    Priest, G.L.

    1993-04-01

    In this article, the author attempts to show that the effort to ascribe regulatory effects to a theory largely deflects attention from the dynamic relationships between the regulator and the regulated firm or industry played out most frequently within a long-term relationship closely resembling more familiar forms of long-term contracts. The focus on regulation by commission is misguided and the differences between regulation by commission and by other regulatory techniques are less important than has been appreciated. The author's examination of the history of public utility regulation makes impossible any clear-cut distinction between competing public interest and private interest theories.

  14. Predicting Multicomponent Adsorption Isotherms in Open-Metal Site Materials Using Force Field Calculations Based on Energy Decomposed Density Functional Theory.

    PubMed

    Heinen, Jurn; Burtch, Nicholas C; Walton, Krista S; Fonseca Guerra, Célia; Dubbeldam, David

    2016-12-12

    For the design of adsorptive-separation units, knowledge is required of the multicomponent adsorption behavior. Ideal adsorbed solution theory (IAST) breaks down for olefin adsorption in open-metal site (OMS) materials due to non-ideal donor-acceptor interactions. Using a density-function-theory-based energy decomposition scheme, we develop a physically justifiable classical force field that incorporates the missing orbital interactions using an appropriate functional form. Our first-principles derived force field shows greatly improved quantitative agreement with the inflection points, initial uptake, saturation capacity, and enthalpies of adsorption obtained from our in-house adsorption experiments. While IAST fails to make accurate predictions, our improved force field model is able to correctly predict the multicomponent behavior. Our approach is also transferable to other OMS structures, allowing the accurate study of their separation performances for olefins/paraffins and further mixtures involving complex donor-acceptor interactions.

  15. Supersymmetry and String Theory

    NASA Astrophysics Data System (ADS)

    Dine, Michael

    2016-01-01

    Preface to the first edition; Preface to the second edition; A note on choice of metric; Text website; Part I. Effective Field Theory: The Standard Model, Supersymmetry, Unification: 1. Before the Standard Model; 2. The Standard Model; 3. Phenomenology of the Standard Model; 4. The Standard Model as an effective field theory; 5. Anomalies, instantons and the strong CP problem; 6. Grand unification; 7. Magnetic monopoles and solitons; 8. Technicolor: a first attempt to explain hierarchies; Part II. Supersymmetry: 9. Supersymmetry; 10. A first look at supersymmetry breaking; 11. The Minimal Supersymmetric Standard Model; 12. Supersymmetric grand unification; 13. Supersymmetric dynamics; 14. Dynamical supersymmetry breaking; 15. Theories with more than four conserved supercharges; 16. More supersymmetric dynamics; 17. An introduction to general relativity; 18. Cosmology; 19. Astroparticle physics and inflation; Part III. String Theory: 20. Introduction; 21. The bosonic string; 22. The superstring; 23. The heterotic string; 24. Effective actions in ten dimensions; 25. Compactification of string theory I. Tori and orbifolds; 26. Compactification of string theory II. Calabi-Yau compactifications; 27. Dynamics of string theory at weak coupling; 28. Beyond weak coupling: non-perturbative string theory; 29. Large and warped extra dimensions; 30. The landscape: a challenge to the naturalness principle; 31. Coda: where are we headed?; Part IV. The Appendices: Appendix A. Two-component spinors; Appendix B. Goldstone's theorem and the pi mesons; Appendix C. Some practice with the path integral in field theory; Appendix D. The beta function in supersymmetric Yang-Mills theory; References; Index.

  16. Restricted open-shell Kohn-Sham theory for π-π* transitions. I. Polyenes, cyanines, and protonated imines

    NASA Astrophysics Data System (ADS)

    Grimm, Stephan; Nonnenberg, Christel; Frank, Irmgard

    2003-12-01

    We present a self-consistent field algorithm for the restricted open-shell Kohn-Sham method which can be used to calculate excited states that have the same spatial symmetry as the corresponding ground states. The method is applied to π-π* transitions in polyenes, cyanines, and protonated imines. Excitation energies obtained with gradient corrected functionals are found to be significantly redshifted; the shift is constant within a homologous series. Planar excited state geometries have been optimized for all systems.

  17. Experimental investigation of the no-signalling principle in parity-time symmetric theory using an open quantum system

    NASA Astrophysics Data System (ADS)

    Tang, Jian-Shun; Wang, Yi-Tao; Yu, Shang; He, De-Yong; Xu, Jin-Shi; Liu, Bi-Heng; Chen, Geng; Sun, Yong-Nan; Sun, Kai; Han, Yong-Jian; Li, Chuan-Feng; Guo, Guang-Can

    2016-10-01

    The experimental progress achieved in parity-time () symmetry in classical optics is the most important accomplishment in the past decade and stimulates many new applications, such as unidirectional light transport and single-mode lasers. However, in the quantum regime, some controversial effects are proposed for -symmetric theory, for example, the potential violation of the no-signalling principle. It is therefore important to understand whether -symmetric theory is consistent with well-established principles. Here, we experimentally study this no-signalling problem related to the -symmetric theory using two space-like separated entangled photons, with one of them passing through a post-selected quantum gate, which effectively simulates a -symmetric evolution. Our results suggest that the superluminal information transmission can be simulated when the successfully -symmetrically evolved subspace is solely considered. However, considering this subspace is only a part of the full Hermitian system, additional information regarding whether the -symmetric evolution is successful is necessary, which transmits to the receiver at maximally light speed, maintaining the no-signalling principle.

  18. Dynamical supersymmetry analysis of conformal invariance for superstrings in type IIB RR plane-wave background

    SciTech Connect

    Mukhopadhyay, Partha

    2009-12-15

    In a previous work (arXiv:0902.3750 [hep-th]) we studied the world-sheet conformal invariance for superstrings in the type IIB R-R plane-wave in semi-light-cone gauge. Here we give further justification to the results found in that work through alternative arguments using dynamical supersymmetries. We show that by using the supersymmetry algebra the same quantum definition of the energy-momentum (EM) tensor can be derived. Furthermore, using certain Jacobi identities we indirectly compute the Virasoro anomaly terms by calculating the second-order supersymmetry variation of the EM tensor. Certain integrated forms of all such terms are shown to vanish. In order to deal with various divergences that appear in such computations we take a point-split definition of the same EM tensor. The final results are shown not to suffer from the ordering ambiguity as noticed in the previous work provided the coincidence limit is taken before sending the regularization parameter to zero at the end of the computation.

  19. Aspects of nonrenormalizable terms in a superstring standard-like models

    NASA Astrophysics Data System (ADS)

    Faraggi, Alon E.

    1992-06-01

    I investigate the role of nonrenormalizable terms, up to order N=8, in a superstring derived standard-like model. I argue that nonrenormalizable terms restrict the gauge symmetry, at the Planck scale, to be SU(3)xSU(2)xU(1)(sub B-L)xU(1)(sub T(sub 3R)) rather than SU(3)xSU(2)xU(1)(sub Y). I show that the breaking the gauge symmetry directly to the Standard Model leads to breaking the supersymmetry at the Planck scale, or to dimension four, baryon and lepton violating, operators. I show that if the gauge symmetry is broken directly to the Standard Model the cubic level solution to the F and D flatness constraints is violated by higher order terms, while if U(1)(sub Z') remains unbroken at the Planck scale, the cubic level solution is valid to all orders of nonrenormalizable terms. I discuss the Higgs and fermion mass spectrum. I demonstrate that realistic, hierarchical, fermion mass spectrum can be generated in this model.

  20. Aspects of non-renormalizable terms in a superstring derived standard-like model

    NASA Astrophysics Data System (ADS)

    Faraggi, Alon E.

    1993-08-01

    I investigate the role of non-renormalizable terms, up to order N = 8, in a superstring derived standard-like model. I argue that non-renormalizable terms restrict the gauge symmetry, at the Planck scale, to be SU(3)×SU(2)×U(1) B ×U(1) T3 R rather than SU(3)×SU(2)×U(1) Y. I show that breaking the gauge symmetry directly to the Standard Model leads to breaking of supersymmetry at the Planck scale, or to dimension four, baryon and lepton violating, operators. I show that if the gauge symmetry is broken directly to the Standard Model the cubic-level solution to the F and D flatness constraints is violated by higher-order terms, while if U(1) Z' remains unbroken at the Planck scale, the cubic-level solution is valid to all orders of non-renormalizable terms. I discuss the Higgs and fermion mass spectrum. I demonstrate that realistic, hierarchical, fermion mass spectrum can be generated in this model.

  1. Assessment of the accuracy of coupled cluster perturbation theory for open-shell systems. II. Quadruples expansions.

    PubMed

    Eriksen, Janus J; Matthews, Devin A; Jørgensen, Poul; Gauss, Jürgen

    2016-05-21

    We extend our assessment of the potential of perturbative coupled cluster (CC) expansions for a test set of open-shell atoms and organic radicals to the description of quadruple excitations. Namely, the second- through sixth-order models of the recently proposed CCSDT(Q-n) quadruples series [J. J. Eriksen et al., J. Chem. Phys. 140, 064108 (2014)] are compared to the prominent CCSDT(Q) and ΛCCSDT(Q) models. From a comparison of the models in terms of their recovery of total CC singles, doubles, triples, and quadruples (CCSDTQ) energies, we find that the performance of the CCSDT(Q-n) models is independent of the reference used (unrestricted or restricted (open-shell) Hartree-Fock), in contrast to the CCSDT(Q) and ΛCCSDT(Q) models, for which the accuracy is strongly dependent on the spin of the molecular ground state. By further comparing the ability of the models to recover relative CCSDTQ total atomization energies, the discrepancy between them is found to be even more pronounced, stressing how a balanced description of both closed- and open-shell species-as found in the CCSDT(Q-n) models-is indeed of paramount importance if any perturbative CC model is to be of chemical relevance for high-accuracy applications. In particular, the third-order CCSDT(Q-3) model is found to offer an encouraging alternative to the existing choices of quadruples models used in modern computational thermochemistry, since the model is still only of moderate cost, albeit markedly more costly than, e.g., the CCSDT(Q) and ΛCCSDT(Q) models.

  2. Assessment of the accuracy of coupled cluster perturbation theory for open-shell systems. II. Quadruples expansions

    NASA Astrophysics Data System (ADS)

    Eriksen, Janus J.; Matthews, Devin A.; Jørgensen, Poul; Gauss, Jürgen

    2016-05-01

    We extend our assessment of the potential of perturbative coupled cluster (CC) expansions for a test set of open-shell atoms and organic radicals to the description of quadruple excitations. Namely, the second- through sixth-order models of the recently proposed CCSDT(Q-n) quadruples series [J. J. Eriksen et al., J. Chem. Phys. 140, 064108 (2014)] are compared to the prominent CCSDT(Q) and ΛCCSDT(Q) models. From a comparison of the models in terms of their recovery of total CC singles, doubles, triples, and quadruples (CCSDTQ) energies, we find that the performance of the CCSDT(Q-n) models is independent of the reference used (unrestricted or restricted (open-shell) Hartree-Fock), in contrast to the CCSDT(Q) and ΛCCSDT(Q) models, for which the accuracy is strongly dependent on the spin of the molecular ground state. By further comparing the ability of the models to recover relative CCSDTQ total atomization energies, the discrepancy between them is found to be even more pronounced, stressing how a balanced description of both closed- and open-shell species—as found in the CCSDT(Q-n) models—is indeed of paramount importance if any perturbative CC model is to be of chemical relevance for high-accuracy applications. In particular, the third-order CCSDT(Q-3) model is found to offer an encouraging alternative to the existing choices of quadruples models used in modern computational thermochemistry, since the model is still only of moderate cost, albeit markedly more costly than, e.g., the CCSDT(Q) and ΛCCSDT(Q) models.

  3. Energy-level alignment and open-circuit voltage at graphene/polymer interfaces: theory and experiment

    NASA Astrophysics Data System (ADS)

    Noori, Keian; Konios, Dimitrios; Stylianakis, Minas M.; Kymakis, Emmanuel; Giustino, Feliciano

    2016-03-01

    Functionalized graphene promises to become a key component of novel solar cell architectures, owing to its versatile ability to act either as transparent conductor, electron acceptor, or buffer layer. In spite of this promise, the solar energy conversion efficiency of graphene-based devices falls short of the performance of competing solution-processable photovoltaic technologies. Here we address the question of the maximum achievable open-circuit voltage of all-organic graphene: polymer solar cells using a combined theoretical/experimental approach, going from the atomic scale level to the device level. Our calculations on very large atomistic models of the graphene/polymer interface indicate that the ideal open-circuit voltage approaches one volt, and that epoxide functional groups can have a dramatic effect on the photovoltage. Our predictions are confirmed by direct measurements on complete devices where we control the concentration of functional groups via chemical reduction. Our findings indicate that the selective removal of epoxide groups and the use of ultradisperse polymers are key to achieving graphene solar cells with improved energy conversion efficiency.

  4. Multiloop amplitudes of light-cone gauge NSR string field theory in noncritical dimensions

    NASA Astrophysics Data System (ADS)

    Ishibashi, Nobuyuki; Murakami, Koichi

    2017-01-01

    Feynman amplitudes of light-cone gauge superstring field theory are ill-defined because of various divergences. In a previous paper, one of the authors showed that taking the worldsheet theory to be the one in a linear dilaton background Φ = - iQX 1 with Feynman iɛ ( ɛ > 0) and Q 2 > 10 yields finite amplitudes. In this paper, we apply this worldsheet theory to dimensional regularization of the light-cone gauge NSR superstring field theory. We concentrate on the amplitudes for even spin structure with external lines in the (NS,NS) sector. We show that the multiloop amplitudes are indeed regularized in our scheme and that they coincide with the results in the first-quantized formalism through the analytic continuation Q → 0.

  5. Opening up the solar box: Cultural resource management and actor network theory in solar energy projects in the Mojave Desert

    NASA Astrophysics Data System (ADS)

    Gorrie, Bryan F.

    This project considers the ways that Actor-Network Theory (ANT) can be brought to bear upon Cultural Resource Management (CRM) practices on renewable energy projects. ANT is a way of making inquiry into scientific knowledge practices and as CRM is intended to preserve environmental, historic, and prehistoric resources, it necessarily involves certain kinds of knowledge generation about regions in which projects are being developed. Because the practice of CRM is complex, involving a range of actors from developers to biologists, native peoples to academics, private landholders to environmental and cultural activists, it is imperative to account for the interests of all stakeholders and to resist devolving into the polemical relations of winners and losers, good and bad participants, or simple situations of right and wrong. This project intends to account for the "matters of concern" of various actors, both primary and secondary, by examining the case study of a single solar installation project in the Mojave Desert. A theoretical description of ANT is provided at the beginning and the concerns of this theory are brought to bear upon the case study project through describing the project, discussing the laws governing CRM on federal lands and in the state of California, and providing the points of view of various interviewees who worked directly or indirectly on various aspects of CRM for the solar project. The creators of ANT claim that it is not a methodology but it does speak to ethnomethodologies in that it insists that there is always something more to learn from inquiring into and describing any given situation. These descriptions avoid generalizations, providing instead various points of entry, from diverse perspectives to the project. There is an invitation to avoid assuming that one knows all there is to know about a given situation and to choose instead to continue investigating and thus give voice to the more obscure, often marginalized, voices in the

  6. Black hole entropy, topological entropy and the Baum-Connes conjecture in K-theory

    NASA Astrophysics Data System (ADS)

    Zois, Ioannis P.

    2002-03-01

    We shall try to show a relation between black hole (BH) entropy and topological entropy using the famous Baum-Connes conjecture for foliated manifolds which are particular examples of noncommutative spaces. Our argument is qualitative and it is based on the microscopic origin of the Beckenstein-Hawking area-entropy formula for BHs, provided by superstring theory, in the more general noncommutative geometric context of M-theory following the approach of Connes-Douglas-Schwarz.

  7. Critical Assessment of Time-Dependent Density Functional Theory for Excited States of Open-Shell Systems: II. Doublet-Quartet Transitions.

    PubMed

    Li, Zhendong; Liu, Wenjian

    2016-06-14

    Compared with closed-shell systems, open-shell systems place three additional challenges to time-dependent density functional theory (TD-DFT) for electronically excited states: (a) the spin-contamination problem is a serious issue; (b) the exchange-correlation (XC) kernel may be numerically instable; and (c) the single-determinant description of open-shell ground states readily becomes energetically instable. Confined to flip-up single excitations, the spin-contamination problem can largely be avoided by using the spin-flip TD-DFT (SF-TD-DFT) formalism, provided that a noncollinear XC kernel is employed. As for the numerical instabilities associated with such a kernel, only an ad hoc scheme has been proposed so far, viz., the ALDA0 kernel, which amounts to setting the divergent components (arising from density gradients and kinetic energy density) simply to zero. The ground-state instability problem can effectively be avoided by introducing the Tamm-Dancoff approximation (TDA) to TD-DFT. Therefore, on a general basis, the SF-TDA/ALDA0 Ansatz is so far the only promising means within the TD-DFT framework for flip-up single excitations of open-shell systems. To assess systematically the performance of SF-TDA/ALDA0, in total 61 low-lying quartet excited states of the benchmark set of 11 small radicals [J. Chem. Theory Comput. 2016, 12, 238] are investigated with various XC functionals. Taking the MRCISD+Q (multireference configuration interaction with singles and doubles plus the Davidson correction) results as benchmark, it is found that the mean absolute errors of SF-TDA/ALDA0 with the SAOP (statistical averaging of model orbital potentials), global hybrid, and range-separated hybrid functionals are in the range of 0.2-0.4 eV. This is in line not only with the typical accuracy of TD-DFT for singlet and triplet excited states of closed-shell systems but also with the gross accuracy of spin-adapted TD-DFT for spin-conserving excited states of open-shell systems.

  8. Direct Methods for Predicting Movement Biomechanics Based Upon Optimal Control Theory with Implementation in OpenSim.

    PubMed

    Porsa, Sina; Lin, Yi-Chung; Pandy, Marcus G

    2016-08-01

    The aim of this study was to compare the computational performances of two direct methods for solving large-scale, nonlinear, optimal control problems in human movement. Direct shooting and direct collocation were implemented on an 8-segment, 48-muscle model of the body (24 muscles on each side) to compute the optimal control solution for maximum-height jumping. Both algorithms were executed on a freely-available musculoskeletal modeling platform called OpenSim. Direct collocation converged to essentially the same optimal solution up to 249 times faster than direct shooting when the same initial guess was assumed (3.4 h of CPU time for direct collocation vs. 35.3 days for direct shooting). The model predictions were in good agreement with the time histories of joint angles, ground reaction forces and muscle activation patterns measured for subjects jumping to their maximum achievable heights. Both methods converged to essentially the same solution when started from the same initial guess, but computation time was sensitive to the initial guess assumed. Direct collocation demonstrates exceptional computational performance and is well suited to performing predictive simulations of movement using large-scale musculoskeletal models.

  9. AdS{sub 4}xCP{sup 3} superstring and D=3 N=6 superconformal symmetry

    SciTech Connect

    Uvarov, D. V.

    2009-05-15

    Motivated by the isomorphism between osp(4|6) superalgebra and D=3 N=6 superconformal algebra we consider the superstring action on the AdS{sub 4}xCP{sup 3} background parametrized by D=3 N=6 super-Poincare and CP{sup 3} coordinates supplemented by the coordinates corresponding to dilatation and superconformal generators. The relation between the degeneracy of fermionic equations of motion and the action {kappa}-invariance in the framework of the supercoset approach is also discussed.

  10. Theory of open quantum systems with bath of electrons and phonons and spins: many-dissipaton density matrixes approach.

    PubMed

    Yan, YiJing

    2014-02-07

    This work establishes a strongly correlated system-and-bath dynamics theory, the many-dissipaton density operators formalism. It puts forward a quasi-particle picture for environmental influences. This picture unifies the physical descriptions and algebraic treatments on three distinct classes of quantum environments, electron bath, phonon bath, and two-level spin or exciton bath, as their participating in quantum dissipation processes. Dynamical variables for theoretical description are no longer just the reduced density matrix for system, but remarkably also those for quasi-particles of bath. The present theoretical formalism offers efficient and accurate means for the study of steady-state (nonequilibrium and equilibrium) and real-time dynamical properties of both systems and hybridizing environments. It further provides universal evaluations, exact in principle, on various correlation functions, including even those of environmental degrees of freedom in coupling with systems. Induced environmental dynamics could be reflected directly in experimentally measurable quantities, such as Fano resonances and quantum transport current shot noise statistics.

  11. Perspective - Open problems in earth surface dynamics require innovative new methodologies from graph theory and non-linear analysis

    NASA Astrophysics Data System (ADS)

    Foufoula-Georgiou, Efi; Schwenk, Jon; Tejedor, Alejandro

    2015-04-01

    Are the dynamics of meandering rivers non-linear? What information does the shape of an oxbow lake carry about its forming process? How to characterize self-dissimilar landscapes carrying the signature of larger-scale geologic or tectonic controls? Do we have proper frameworks for quantifying the topology and dynamics of deltaic systems? What can the structural complexity of river networks (erosional and depositional) reveal about their vulnerability and response to change? Can the structure and dynamics of river networks reveal potential hotspots of geomorphic change? All of the above problems are at the heart of understanding landscape evolution, relating process to structure and form, and developing methodologies for inferring how a system might respond to future changes. We argue that a new surge of rigorous methodologies is needed to address these problems. The innovations introduced herein are: (1) gradual wavelet reconstruction for depicting threshold nonlinearity (due to cutoffs) versus inherent nonlinearity (due to underlying dynamics) in river meandering, (2) graph theory for studying the topology and dynamics of deltaic river networks and their response to change, and (3) Lagrangian approaches combined with topology and non-linear dynamics for inferring sediment-driven hotspots of geomorphic change.

  12. Hybrid Boltzmann-Gross-Pitaevskii theory of Bose-Einstein condensation and superfluidity in open driven-dissipative systems

    NASA Astrophysics Data System (ADS)

    Solnyshkov, D. D.; Terças, H.; Dini, K.; Malpuech, G.

    2014-03-01

    We derive a theoretical model which describes Bose-Einstein condensation in an open driven-dissipative system. It includes external pumping of a thermal reservoir, finite lifetime of the condensed particles, and energy relaxation. The coupling between the reservoir and the condensate is described with semiclassical Boltzmann rates. This results in a dissipative term in the Gross-Pitaevskii equation for the condensate, which is proportional to the energy of the elementary excitations of the system. We analyze the main properties of a condensate described by this hybrid Boltzmann-Gross-Pitaevskii model, namely, dispersion of the elementary excitations, bogolon distribution function, first-order coherence, dynamic and energetic stability, and drag force created by a disorder potential. We find that the dispersion of the elementary excitations of a condensed state fulfills the Landau criterion of superfluidity. The condensate is dynamically and energetically stable as longs as it moves at a velocity smaller than the speed of excitations. First-order spatial coherence of the condensate is found to decay exponentially in one dimension and with a power law in two dimensions, similarly with the case of conservative systems. The coherence lengths are found to be longer due to the finite lifetime of the condensate excitations. We compare these properties with those of a condensate described by the popular "diffusive" models in which the dissipative term is proportional to the local condensate density. In the latter, the dispersion of excitations is diffusive which as soon as the condensate is put into motion implies finite mechanical friction and can lead to an energetic instability.

  13. Analytic first derivatives for a spin-adapted open-shell coupled cluster theory: Evaluation of first-order electrical properties

    SciTech Connect

    Datta, Dipayan Gauss, Jürgen

    2014-09-14

    An analytic scheme is presented for the evaluation of first derivatives of the energy for a unitary group based spin-adapted coupled cluster (CC) theory, namely, the combinatoric open-shell CC (COSCC) approach within the singles and doubles approximation. The widely used Lagrange multiplier approach is employed for the derivation of an analytical expression for the first derivative of the energy, which in combination with the well-established density-matrix formulation, is used for the computation of first-order electrical properties. Derivations of the spin-adapted lambda equations for determining the Lagrange multipliers and the expressions for the spin-free effective density matrices for the COSCC approach are presented. Orbital-relaxation effects due to the electric-field perturbation are treated via the Z-vector technique. We present calculations of the dipole moments for a number of doublet radicals in their ground states using restricted open-shell Hartree-Fock (ROHF) and quasi-restricted HF (QRHF) orbitals in order to demonstrate the applicability of our analytic scheme for computing energy derivatives. We also report calculations of the chlorine electric-field gradients and nuclear quadrupole-coupling constants for the CCl, CH{sub 2}Cl, ClO{sub 2}, and SiCl radicals.

  14. Analytic first derivatives for a spin-adapted open-shell coupled cluster theory: evaluation of first-order electrical properties.

    PubMed

    Datta, Dipayan; Gauss, Jürgen

    2014-09-14

    An analytic scheme is presented for the evaluation of first derivatives of the energy for a unitary group based spin-adapted coupled cluster (CC) theory, namely, the combinatoric open-shell CC (COSCC) approach within the singles and doubles approximation. The widely used Lagrange multiplier approach is employed for the derivation of an analytical expression for the first derivative of the energy, which in combination with the well-established density-matrix formulation, is used for the computation of first-order electrical properties. Derivations of the spin-adapted lambda equations for determining the Lagrange multipliers and the expressions for the spin-free effective density matrices for the COSCC approach are presented. Orbital-relaxation effects due to the electric-field perturbation are treated via the Z-vector technique. We present calculations of the dipole moments for a number of doublet radicals in their ground states using restricted open-shell Hartree-Fock (ROHF) and quasi-restricted HF (QRHF) orbitals in order to demonstrate the applicability of our analytic scheme for computing energy derivatives. We also report calculations of the chlorine electric-field gradients and nuclear quadrupole-coupling constants for the CCl, CH2Cl, ClO2, and SiCl radicals.

  15. Real-time propagation time-dependent density functional theory study on the ring-opening transformation of the photoexcited crystalline benzene

    NASA Astrophysics Data System (ADS)

    Tateyama, Yoshitaka; Oyama, Norihisa; Ohno, Takahisa; Miyamoto, Yoshiyuki

    2006-03-01

    Mechanism of the ring-opening transformation in the photoexcited crystalline benzene is investigated on the femtosecond scale by a computational method based on the real-time propagation (RTP) time-dependent density functional theory (TDDFT). The excited-state dynamics of the benzene molecule is also examined not only for the distinction between the intrinsic properties of molecule and the intermolecular interaction but for the first validation using the vibration frequencies for the RTP-TDDFT approach. It is found that the vibration frequencies of the excited and ground states in the molecule are well reproduced. This demonstrates that the present method of time evolution using the Suzuki-Trotter-type split operator technique starting with the Franck-Condon state approximated by the occupation change of the Kohn-Sham orbitals is adequately accurate. For the crystalline benzene, we carried out the RTP-TDDFT simulations for two typical pressures. At both pressures, large swing of the C-H bonds and subsequent twist of the carbon ring occurs, leading to tetrahedral (sp3-like) C-H bonding. The ν4 and ν16 out-of-plane vibration modes of the benzene molecule are found mostly responsible for these motions, which is different from the mechanism proposed for the thermal ring-opening transformation occurring at higher pressure. Comparing the results between different pressures, we conclude that a certain increase of the intermolecular interaction is necessary to make seeds of the ring opening (e.g., radical site formation and breaking of the molecular character) even with the photoexcitation, while the hydrogen migration to fix them requires more free volume, which is consistent with the experimental observation that the transformation substantially proceeds on the decompression.

  16. Renner-Teller Coupling in Open Shell Dihydrides: a Comparison of Theory with Optical Spectra of Neutral and Ionic Molecules

    NASA Astrophysics Data System (ADS)

    Duxbury, G.; Jungen, Ch.; Alijah, A.

    2013-06-01

    The studies of the Renner-Teller coupling in isoelectronic series of the neutral dihydrides, started with the experiments of Dressler and Ramsay on the absorption spectra of NH_{2} and of ND_{2} published in 1959, with a companion paper on the theory by Pople and Longuet Higgins. Subsequently experiments on their ionic counterparts, e.g. H_{2}O+, were carried out, initially using photoelectron spectroscopy. However it was not until the period starting in 1965 to 1980 that methods for calculating the vibronic interaction between the half-states were derived and tested. Complications arise owing the the role of the linear degeneracy of the two half states in the formation of the rovibronic structure, and the effects of the increasing spin-orbit interaction in the series from NH_{2} to SbH_{2}, and H_{2}O+ to H_{2}Se+ in facilitating fragmentation processes. Many of these molecular spectra were considered in great detail, but some, such as that of AsH_{2}, have had a less complete treatment of vibronic interaction, in part since the original study of its electronic spectrum took place in the period from 1966-67 before most of the vibronic coupling methods had been developed developed. We wish to show the interplay between the angular momentum effects caused by the large amplitude motion in a degenerate system, and those caused by a rapidly increasing spin-orbit coupling constant. Phil. Trans. Roy. Soc. 251,553(1959) Molec. Phys. 1,372(1958)

  17. Fractional supersymmetric Liouville theory and the multi-cut matrix models

    NASA Astrophysics Data System (ADS)

    Irie, Hirotaka

    2009-10-01

    We point out that the non-critical version of the k-fractional superstring theory can be described by k-cut critical points of the matrix models. In particular, in comparison with the spectrum structure of fractional super-Liouville theory, we show that (p,q) minimal fractional superstring theories appear in the Z-symmetry breaking critical points of the k-cut two-matrix models and the operator contents and string susceptibility coincide on both sides. By using this correspondence, we also propose a set of primary operators of the fractional superconformal ghost system which consistently produces the correct gravitational scaling critical exponents of the on-shell vertex operators.

  18. Item response theory analysis of the Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised in the Pooled Resource Open-Access ALS Clinical Trials Database.

    PubMed

    Bacci, Elizabeth D; Staniewska, Dorota; Coyne, Karin S; Boyer, Stacey; White, Leigh Ann; Zach, Neta; Cedarbaum, Jesse M

    2016-01-01

    Our objective was to examine dimensionality and item-level performance of the Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised (ALSFRS-R) across time using classical and modern test theory approaches. Confirmatory factor analysis (CFA) and Item Response Theory (IRT) analyses were conducted using data from patients with amyotrophic lateral sclerosis (ALS) Pooled Resources Open-Access ALS Clinical Trials (PRO-ACT) database with complete ALSFRS-R data (n = 888) at three time-points (Time 0, Time 1 (6-months), Time 2 (1-year)). Results demonstrated that in this population of 888 patients, mean age was 54.6 years, 64.4% were male, and 93.7% were Caucasian. The CFA supported a 4* individual-domain structure (bulbar, gross motor, fine motor, and respiratory domains). IRT analysis within each domain revealed misfitting items and overlapping item response category thresholds at all time-points, particularly in the gross motor and respiratory domain items. Results indicate that many of the items of the ALSFRS-R may sub-optimally distinguish among varying levels of disability assessed by each domain, particularly in patients with less severe disability. Measure performance improved across time as patient disability severity increased. In conclusion, modifications to select ALSFRS-R items may improve the instrument's specificity to disability level and sensitivity to treatment effects.

  19. An explicitly spin-free compact open-shell coupled cluster theory using a multireference combinatoric exponential ansatz: formal development and pilot applications.

    PubMed

    Datta, Dipayan; Mukherjee, Debashis

    2009-07-28

    the valence rank of the effective Hamiltonian operator and the excitation rank of the cluster operators at which the theory is truncated. Illustrative applications are presented by computing the state energies of neutral doublet radicals and doublet molecular cations and ionization energies of neutral molecules and comparing our results with the other open-shell CC theories, benchmark full CI results (when available) in the same basis, and the experimental results. Highly encouraging results show the efficacy of the method.

  20. Towards field theory in spaces with multivolume junctions

    NASA Astrophysics Data System (ADS)

    Fomin, P. I.; Shtanov, Yu V.

    2002-06-01

    We consider a spacetime formed by several pieces with common timelike boundary which plays the role of a junction between them. We establish junction conditions for fields of various spins and derive the resulting laws of wave propagation through the junction, which turn out to be quite similar for fields of all spins. As an application, we consider the case of multivolume junctions in four-dimensional spacetime that may arise in the context of the theory of quantum creation of a closed universe on the background of a big mother universe. The theory developed can also be applied to braneworld models and to the superstring theory.

  1. Superstrate CuInS2 photovoltaics with enhanced performance using a CdS/ZnO nanorod array.

    PubMed

    Lee, Dongwook; Yong, Kijung

    2012-12-01

    An air-stable, low-temperature, solution-based process for preparing CuInS(2) (CIS) superstrate solar cells using CdS-decorated ZnO nanorod (NR) arrays is reported. Efficient light harvesting and photoexcited charge transport were achieved by fabricating a ZnO NR window layer with a large p-n junction area via a hydrothermal reaction. A CdS buffer layer was deposited on a transparent ZnO NR substrate at room temperature via successive ion layer adsorption and reaction (SILAR) or nanocrystal layer deposition (NCLD). The prepared CdS/ZnO NR assembly was coated with a CIS absorber layer without the need for surface passivation organics or dispersion reagents. The CIS precursor solution, prepared using a metal salt, thiourea, and an amine solvent, yielded CIS nanocrystals (NCs) at temperatures up to 250 °C. The CIS/CdS/ZnO NR heterojunction structure exhibited an excellent photovoltaic performance compared to a planar ZnO film device due to enhanced light transmittance toward the absorber and a high charge collection efficiency. These results suggest that a superstrate CIS/CdS/ZnO NRs photovoltaic cell fabricated via the low-cost route described here has great potential as a next-generation solar cell device.

  2. Reduced Cu(InGa)Se2 Thickness in Solar Cells Using a Superstrate Configuration

    SciTech Connect

    Shafarman, William N.

    2015-03-30

    This project by the Institute of Energy Conversion (IEC) and the Department of Electrical and Computer Engineering at the University of Delaware sought to develop the technology and underlying science to enable reduced cost of Cu(InGa)Se2 manufacturing by reducing the thickness of the Cu(InGa)Se2 absorber layer by half compared to typical production. The approach to achieve this was to use the superstrate cell configuration in which light is incident on the cell through the glass. This structure facilitates optical enhancement approaches needed to achieve high efficiency with Cu(InGa)Se2 thicknesses less than 1 µm. The primary objective was to demonstrate a Cu(InGa)Se2 cell with absorber thickness 0.5 - 0.7 µm and 17% efficiency, along with a quantitative loss analysis to define a pathway to 20% efficiency. Additional objectives were the development of stable TCO and buffer layers or contact layers to withstand the Cu(InGa)Se2 deposition temperature and of advanced optical enhancement methods. The underlying fundamental science needed to effectively transition these outcomes to large scale was addressed by extensive materials and device characterization and by development of comprehensive optical models. Two different superstrate configurations have been investigated. A frontwall cell is illuminated through the glass to the primary front junction of the device. This configuration has been used for previous efforts on superstrate Cu(InGa)Se2 but performance has been limited by interdiffusion or reaction with CdS or other buffer layers. In this project, several approaches to overcome these limitations were explored using CdS, ZnO and ZnSe buffer layers. In each case, mechanisms that limit device performance were identified using detailed characterization of the materials and junctions. Due to the junction formation difficulties, efforts were concentrated on a new backwall configuration in which light

  3. Predicted and Totally Unexpected in the Energy Frontier Opened by LHC

    NASA Astrophysics Data System (ADS)

    Zichichi, Antonino

    2011-01-01

    Opening lectures. Sid Coleman and Erice / A. Zichichi. Remembering Sidney Coleman / G.'t Hooft -- Predicted signals at LHC. From extra-dimensions: Multiple branes scenarios and their contenders / I. Antoniadis. Predicted signals at the LHC from technicolor / A. Martin. The one-parameter model at LHC / J. Maxin, E. Mayes and D. V. Nanopoulos. How supercritical string cosmology affects LHC / D. V. Nanopoulos. High scale physics connection to LHC data / P. Nath. Predicted signatures at the LHC from U(I) extensions of the standard model / P. Nath -- Hot theoretical topics. Progress on the ultraviolet finiteness of supergravity / Z. Bern. Status of supersymmetry: Foundations and applications / S. Ferrara and A. Marrani. Quantum gravity from dynamical triangulation / R. Loll. Status of superstring and M-theory / J. H. Schwarz. Some effects of instantons in QCD / G.'t Hooft. Crystalline gravity / G.'t Hooft -- QCD problems. Strongly coupled gauge theories / R. Kenway. Strongly interacting matter at high energy density / L. McLerran. Seminars on specialized topics. The nature and the mass of neutrinos. Majorana vs. Dirac / A. Bettini. The anomalous spin distributions in the nucleon / A. Deshpande. Results from PHENIX at RHIC / M. J. Tannenbaum -- Highlights from laboratories. Highlights from RHIC / Y. Akiba. News from the Gran Sasso Underground Laboratory / E. Coccia. Highlights from TRIUMF / N. S. Lockyer. Highlights from Superkamiokande / M. Koshiba. Highlights from Fermilab / P. J. Oddone. Highlights from IHEP / Y. Wang -- Special sessions for new talents. Fake supergravity and black hole evolution / A. Gnecchi. Track-based improvement in the jet transverse momentum resolution for ATLAS / Z. Marshall. Searches for supersymmetric dark matter with XENON / K. Ni. Running of Newton's constant and quantum gravitational effects / D. Reeb.

  4. Higher spins and open strings: Quartic interactions

    SciTech Connect

    Polyakov, Dimitri

    2011-02-15

    We analyze quartic gauge-invariant interactions of massless higher spin fields by using vertex operators constructed in our previous works and computing their 4-point amplitudes in superstring theory. The kinematic part of the quartic interactions of the higher spins is determined by the matter structure of their vertex operators; the nonlocality of the interactions is the consequence of the specific ghost structure of these operators. We compute explicitly the 4-point amplitude describing the complete gauge-invariant 1-1-3-3 quartic interaction (two massless spin 3 particles interacting with two photons) and comment on more general 1-1-s-s cases, particularly pointing out the structure of 1-1-5-5 coupling.

  5. Unrestricted prescriptions for open-shell singlet diradicals: using economical ab initio and density functional theory to calculate singlet-triplet gaps and bond dissociation curves.

    PubMed

    Ess, Daniel H; Cook, Thomas C

    2012-05-24

    Here we present and test several computational prescriptions for calculating singlet-triplet (ST) gap energies and bond dissociation curves for open-shell singlet diradicals using economical unrestricted single reference type calculations. For ST gap energies from Slipchenko and Krylov's atom and molecule test set (C, O, Si, NH, NF, OH(+), O(2), CH(2), and NH(2)(+)) spin unrestricted Hartree-Fock and MP2 energies result in errors greater than 15 kcal/mol. However, spin-projected (SP) Hartree-Fock theory in combination with spin-component-scaled (SCS) or scaled-opposite-spin (SOS) second-order perturbation theory gives ST gap energies with a mean unsigned error (MUE) of less than 2 kcal/mol. Density functionals generally give poor results for unrestricted energies and only the ωB97X-D, the M06, and the M06-2X functionals provide reasonable accuracy after spin-projection with MUE values of 4.7, 4.3, and 3.0 kcal/mol, respectively, with the 6-311++G(2d,2p) basis set. We also present a new one parameter hybrid density functional, diradical-1 (DR-1), based on Adamo and Barone's modified PW exchange functional with the PW91 correlation functional. This DR-1 method gives a mean error (ME) of 0.0 kcal/mol and a MUE value of 1.3 kcal/mol for ST gap energies. As another test of unrestricted methods the bond dissociation curves for methane (CH(4)) and hydrofluoric acid (H-F) were calculated with the M06-2X, DR-1, and ωB97X-D density functionals. All three of these functionals give reasonable results for the methane C-H bond but result in errors greater than 50 kcal/mol for the H-F bond dissociation. Spin-projection is found to significantly degrade bond dissociation curves past ~2.2 Å. Although unrestricted Hartree-Fock theory provides a very poor description of H-F bond dissociation, unrestricted SCS-MP2 and SOS-MP2 methods give accurate results.

  6. An Application of the Theory of Open Quantum Systems to Model the Dynamics of Party Governance in the US Political System

    NASA Astrophysics Data System (ADS)

    Khrennikova, Polina; Haven, Emmanuel; Khrennikov, Andrei

    2014-04-01

    The Gorini-Kossakowski-Sudarshan-Lindblad equation allows us to model the process of decision making in US elections. The crucial point we attempt to make is that the voter's mental state can be represented as a superposition of two possible choices for either republicans or democrats. However, reality dictates a more complicated situation: typically a voter participates in two elections, i.e. the congress and the presidential elections. In both elections the voter has to decide between two choices. This very feature of the US election system requires that the mental state is represented by a 2-qubit state corresponding to the superposition of 4 different choices. The main issue is to describe the dynamics of the voters' mental states taking into account the mental and political environment. What is novel in this paper is that we apply the theory of open quantum systems to social science. The quantum master equation describes the resolution of uncertainty (represented in the form of superposition) to a definite choice.

  7. Kazama-Suzuki models of N = 2 superconformal field theory and Manin triples

    NASA Astrophysics Data System (ADS)

    Parkhomenko, S. E.

    2014-12-01

    Kazama-Suzuki coset models is an interesting class of N = 2 supersymmetric models of conformal field theory which are used to build realistic models of superstring in 4 dimensions. We formulate Kazama-Suzuki construction of N = 2 superconformal coset models using more general language of Manin triples and represent the corresponding N = 2 Virasoro superalgebra currents in explicit form. A correspondence between the Kazama-Suzuki models and Poisson homogeneous spaces is also established.

  8. Porous SiO₂/MgF₂ broadband antireflection coatings for superstrate-type silicon-based tandem cells.

    PubMed

    Wang, Na-Fu; Kuo, Ting-Wei; Tsai, Yu-Zen; Lin, Shi-Xiong; Hung, Pin-Kun; Lin, Chiung-Lin; Houng, Mau-Phon

    2012-03-26

    The purpose of this study is to reduce the glass substrate reflectivity over a wide spectral range (400-1200 nm) without having high reflectivity in the near-infrared region. After making porous SiO₂/MgF₂ double-layer antireflection (DLAR) thin film structure, the superstrate-type silicon-based tandem cells are added. In comparison to having only silicon-based tandem solar cells, the short-circuit current density has improved by 6.82% when porous SiO₂/MgF₂ DLAR thin film is applied to silicon-based tandem solar cells. This study has demonstrated that porous SiO₂/MgF₂ DLAR thin film structure provides antireflection properties over a broad spectral range (400-1200 nm) without having high reflectivity at near-infrared wavelengths.

  9. Matrix theory interpretation of discrete light cone quantization string worldsheets

    PubMed

    Grignani; Orland; Paniak; Semenoff

    2000-10-16

    We study the null compactification of type-IIA string perturbation theory at finite temperature. We prove a theorem about Riemann surfaces establishing that the moduli spaces of infinite-momentum-frame superstring worldsheets are identical to those of branched-cover instantons in the matrix-string model conjectured to describe M theory. This means that the identification of string degrees of freedom in the matrix model proposed by Dijkgraaf, Verlinde, and Verlinde is correct and that its natural generalization produces the moduli space of Riemann surfaces at all orders in the genus expansion.

  10. A class of exact classical solutions to string theory.

    PubMed

    Coley, A A

    2002-12-31

    We show that the recently obtained class of spacetimes for which all of the scalar curvature invariants vanish (which can be regarded as generalizations of pp-wave spacetimes) are exact solutions in string theory to all perturbative orders in the string tension scale. As a result the spectrum of the theory can be explicitly obtained, and these spacetimes are expected to provide some hints for the study of superstrings on more general backgrounds. Since these Lorentzian spacetimes suffer no quantum corrections to all loop orders they may also offer insights into quantum gravity.

  11. The Open University Opens.

    ERIC Educational Resources Information Center

    Tunstall, Jeremy, Ed.

    Conceived by the British Labor Government in the 1960's the Open University was viewed as a way to extend higher education to Britain's working class, but enrollment figures in classes that represent traditional academic disciplines show that the student population is predominantly middle class. Bringing education into the home presents numerous…

  12. Opening Talk: Opening Talk

    NASA Astrophysics Data System (ADS)

    Doebner, H.-D.

    2008-02-01

    Ladies and Gentlemen Dear Friends and Colleagues I welcome you at the 5th International Symposium `Quantum Theory and Symmetries, QTS5' in Valladolid as Chairman of the Conference Board of this biannual series. The aim of the series is to arrange an international meeting place for scientists working in theoretical and mathematical physics, in mathematics, in mathematical biology and chemistry and in other sciences for the presentation and discussion of recent developments in connection with quantum physics and chemistry, material science and related further fields, like life sciences and engineering, which are based on mathematical methods which can be applied to model and to understand microphysical and other systems through inherent symmetries in their widest sense. These systems include, e.g., foundations and extensions of quantum theory; quantum probability; quantum optics and quantum information; the description of nonrelativistic, finite dimensional and chaotic systems; quantum field theory, particle physics, string theory and quantum gravity. Symmetries in their widest sense describe properties of a system which could be modelled, e.g., through geometry, group theory, topology, algebras, differential geometry, noncommutative geometry, functional analysis and approximation methods; numerical evaluation techniques are necessary to connect such symmetries with experimental results. If you ask for a more detailed characterisation of this notion a hand waving indirect answer is: Collect titles and contents of the contributions of the proceedings of QTS4 and get a characterisation through semantic closure. Quantum theory and its Symmetries was and is a diversified and rapidly growing field. The number of and the types of systems with an internal symmetry and the corresponding mathematical models develop fast. This is reflected in the content of the five former international symposia of this series: The first symposium, QTS1-1999, was organized in Goslar (Germany

  13. Superparticle and superstring in AdS{sub 3} x S{sup 3} Ramond--Ramond background in the light-cone gauge

    SciTech Connect

    Metsaev, R. R.; Tseytlin, A. A.

    2001-07-01

    We discuss superparticle and superstring dynamics in AdS{sub 3} x S{sup 3} supported by R--R 3-form background using light-cone gauge approach. Starting with the superalgebra psu(1,1|2)(circle plus)psu (1,1|2) representing the basic symmetry of this background we find the light-cone superparticle Hamiltonian. We determine the harmonic decomposition of light-cone superfield describing fluctuations of type IIB supergravity fields expanded near AdS{sub 3} x S{sup 3} background and thus the corresponding Kaluza--Klein spectrum. We fix the fermionic and bosonic light-cone gauges in the covariant Green--Schwarz AdS{sub 3} x S{sup 3} superstring action and find the corresponding light-cone string Hamiltonian. We also obtain a realization of the generators of psu(1,1|2)(circle plus)psu (1,1|2) in terms of the superstring 2-d fields in the light-cone gauge.

  14. Unified theories and the early universe

    NASA Astrophysics Data System (ADS)

    Nanopoulos, D. V.

    1988-05-01

    The interface between particle physics and cosmology, particularly inflationary cosmology, is reviewed. Grand unified theories (GUT) and Big Bang Cosmology (BBC) are discussed. The standard model of particle physics was extended to GUTs, super GUTs or possibly superstring theories, while the standard BBC was extended to contain the inflationary era. Inflation predicts omega = 1 and adiabatic, scale invariant energy density perturbations, which will be tested in experiment. Present experimental values are much smaller than one, but it seems that mass is being missed (better light), and there is dark matter that may close the Universe. Particle theory provides a list of candidates, e.g., photino, massive neutrino, axion, for dark matter and particle experimenters are building dark matter detectors to test these ideas. Developments in galaxy formation and observational developments on the large structure of the Universe, may put under severe test the ideas of scale-invariant energy density perturbations.

  15. Non-empirical Prediction of the Photophysical and Magnetic Properties of Systems with Open d- and f-Shells Based on Combined Ligand Field and Density Functional Theory (LFDFT).

    PubMed

    Daul, Claude

    2014-09-01

    Despite the important growth of ab initio and computational techniques, ligand field theory in molecular science or crystal field theory in condensed matter offers the most intuitive way to calculate multiplet energy levels arising from systems with open shells d and/or f electrons. Over the past decade we have developed a ligand field treatment of inorganic molecular modelling taking advantage of the dominant localization of the frontier orbitals within the metal-sphere. This feature, which is observed in any inorganic coordination compound, especially if treated by Density Functional Theory calculation, allows the determination of the electronic structure and properties with a surprising good accuracy. In ligand field theory, the theoretical concepts consider only a single atom center; and treat its interaction with the chemical environment essentially as a perturbation. Therefore success in the simple ligand field theory is no longer questionable, while the more accurate molecular orbital theory does in general over-estimate the metal-ligand covalence, thus yields wave functions that are too delocalized. Although LF theory has always been popular as a semi-empirical method when dealing with molecules of high symmetry e.g. cubic symmetry where the number of parameters needed is reasonably small (3 or 5), this is no more the case for molecules without symmetry and involving both an open d- and f-shell (# parameters ∼90). However, the combination of LF theory and Density Functional (DF) theory that we introduced twenty years ago can easily deal with complex molecules of any symmetry with two and more open shells. The accuracy of these predictions from 1(st) principles achieves quite a high accuracy (<5%) in terms of states energies. Hence, this approach is well suited to predict the magnetic and photo-physical properties arbitrary molecules and materials prior to their synthesis, which is the ultimate goal of each computational chemist. We will illustrate the

  16. String theory in the early universe

    NASA Astrophysics Data System (ADS)

    Gwyn, Rhiannon

    String theory is a rich and elegant framework which many believe furnishes a UV-complete unified theory of the fundamental interactions, including gravity. However, if true, it holds at energy scales out of the reach of any terrestrial particle accelerator. While we cannot observe the string regime directly, we live in a universe which has been evolving from the string scale since shortly after the Big Bang. It is possible that string theory underlies cosmological processes like inflation, and that cosmology could confirm or constrain stringy physics in the early universe. This makes the intersection of string theory with the early universe a potential window into otherwise inaccessible physics. The results of three papers at this intersection are presented in this thesis. First, we address a longstanding problem: the apparent incompatibility of the experimentally constrained axion decay constant with most string theoretic realisations of the axion. Using warped compactifications in heterotic string theory, we show that the axion decay constant can be lowered to acceptable values by the warp factor. Next, we move to the subject of cosmic strings: linelike topological defects formed during phase transitions in the early universe. It was realised recently that cosmic superstrings are produced in many models of brane inflation, and that cosmic superstrings are stable and can have tensions within the observational bounds. Although they are now known not to be the primary generators of primordial density perturbations leading to structure formation, the evolution of cosmic string networks could have important consequences for astrophysics and cosmology. In particular, there are quantitative differences between cosmic superstring networks and GUT cosmic string networks. We investigate the properties of cosmic superstring networks in warped backgrounds, where they are expected to be produced at the end of brane inflation. We give the tension and properties of three

  17. Open G2 strings

    NASA Astrophysics Data System (ADS)

    de Boer, Jan; de Medeiros, Paul; El-Showk, Sheer; Sinkovics, Annamaria

    2008-02-01

    We consider an open string version of the topological twist previously proposed for sigma-models with G2 target spaces. We determine the cohomology of open strings states and relate these to geometric deformations of calibrated submanifolds and to flat or anti-self-dual connections on such submanifolds. On associative three-cycles we show that the worldvolume theory is a gauge-fixed Chern-Simons theory coupled to normal deformations of the cycle. For coassociative four-cycles we find a functional that extremizes on anti-self-dual gauge fields. A brane wrapping the whole G2 induces a seven-dimensional associative Chern-Simons theory on the manifold. This theory has already been proposed by Donaldson and Thomas as the higher-dimensional generalization of real Chern-Simons theory. When the G2 manifold has the structure of a Calabi-Yau times a circle, these theories reduce to a combination of the open A-model on special Lagrangians and the open B + B-bar-model on holomorphic submanifolds. We also comment on possible applications of our results.

  18. Solution-processed Cu2ZnSnS4 superstrate solar cell using vertically aligned ZnO nanorods.

    PubMed

    Lee, Dongwook; Yong, Kijung

    2014-02-14

    One-dimensional (1D) zinc oxide (ZnO) nanostructures are considered to be promising materials for use in thin film solar cells because of their high light harvesting and charge collection efficiencies. We firstly report enhanced photovoltaic performances in Cu2ZnSnS4 (CZTS) thin film solar cells prepared using ZnO nanostructures. A CdS-coated, vertically well-aligned ZnO nanorod (NR) array was prepared via a hydrothermal reaction and nanocrystal layer deposition (NCLD) and was used as a transparent window/buffer layer in a CZTS thin film photovoltaic. A light absorber CZTS thin film was prepared on the CdS/ZnO NRs in air by depositing a non-toxic precursor solution that was annealed in two steps at temperatures up to 250 °C. The crystallized CZTS phase completely infiltrated the CdS/ZnO NR array. The nanostructured ZnO array provided improved light harvesting behavior compared to a thin film configuration by measuring UV-vis transmittance spectroscopy. The prepared CZTS/CdS/ZnO NR device exhibited a solar energy conversion efficiency of 1.2%, which is the highest efficiency yet reported for nanostructured superstrate CZTS solar cells.

  19. The Rising Landscape: A Visual Exploration of Superstring Revolutions in Physics.

    ERIC Educational Resources Information Center

    Chen, Chaomei; Kuljis, Jasna

    2003-01-01

    Discussion of knowledge domain visualization focuses on practical issues concerning modeling and visualizing scientific revolutions. Studies growth patterns of specialties derived from citation and cocitation data on string theory in physics, using the general framework of Thomas Kuhn's structure of scientific revolutions. (Author/LRW)

  20. Comparison of the T1 and D1 diagnostics for electronic structure theory: a new definition for the open-shell D1 diagnostic

    NASA Astrophysics Data System (ADS)

    Lee, Timothy J.

    2003-04-01

    It is shown that the coupled-cluster T1 operator used in a previous study to define the open-shell D1 diagnostic is ill defined, and leads to an arbitrary definition of the open-shell D1 diagnostic. A new definition is proposed that eliminates this ambiguity and approximately restores the mathematical relationship previously noted between the closed-shell D1 and T1 diagnostics. Statistical comparison of the T1 and D1 diagnostics shows a very high degree of correlation between them for the molecular systems studied thus far, although it is argued that both diagnostics used together can provide more information than either can separately.

  1. Do we have a theory of early universe cosmology?

    NASA Astrophysics Data System (ADS)

    Brandenberger, Robert

    2014-05-01

    The inflationary scenario has become the paradigm of early universe cosmology, and - in conjunction with ideas from superstring theory-has led to speculations about an "inflationary multiverse". From a point of view of phenomenology, the inflationary universe scenario has been very successful. However, the scenario suffers from some conceptual problems, and thus it does not (yet) have the status of a solid theory. There are alternative ideas for the evolution of the very early universe which do not involve inflation but which agree with most current cosmological observations as well as inflation does. In this lecture I will outline the conceptual problems of inflation and introduce two alternative pictures - the "matter bounce" and "string gas cosmology", the latter being a realization of the "emergent universe" scenario based on some key principles of superstring theory. I will demonstrate that these two alternative pictures lead to the same predictions for the power spectrum of the observed large-scale structure and for the angular power spectrum of cosmic microwave background anisotropies as the inflationary scenario, and I will mention predictions for future observations with which the three scenarios can be observationally teased apart.

  2. Alone Together: A Socio-Technical Theory of Motivation, Coordination and Collaboration Technologies in Organizing for Free and Open Source Software Development

    ERIC Educational Resources Information Center

    Howison, James

    2009-01-01

    This dissertation presents evidence that the production of Free and Open Source Software (FLOSS) is far more alone than together; it is far more often individual work done "in company" than it is teamwork. When tasks appear too large for an individual they are more likely to be deferred until they are easier rather than be undertaken through…

  3. Cosmic superstring gravitational lensing phenomena: Predictions for networks of (p,q) strings

    SciTech Connect

    Shlaer, Benjamin; Wyman, Mark

    2005-12-15

    The unique, conical space-time created by cosmic strings brings about distinctive gravitational lensing phenomena. The variety of these distinctive phenomena is increased when the strings have nontrivial mutual interactions. In particular, when strings bind and create junctions, rather than intercommute, the resulting configurations can lead to novel gravitational lensing patterns. In this brief note, we use exact solutions to characterize these phenomena, the detection of which would be strong evidence for the existence of complex cosmic string networks of the kind predicted by string theory-motivated cosmic string models. We also correct some common errors in the lensing phenomenology of straight cosmic strings.

  4. Open Content in Open Context

    ERIC Educational Resources Information Center

    Kansa, Sarah Whitcher; Kansa, Eric C.

    2007-01-01

    This article presents the challenges and rewards of sharing research content through a discussion of Open Context, a new open access data publication system for field sciences and museum collections. Open Context is the first data repository of its kind, allowing self-publication of research data, community commentary through tagging, and clear…

  5. Two exercises in supersymmetry: a low-energy supergravity model and free string field theory

    SciTech Connect

    Preitschopf, C.R.

    1986-09-01

    The new features of a supersymmetric standard model in the presence of heavy families are studied. The minimal set of Higgs fields, the desert between the electroweak and the grand unification scale and perturbative values of the dimensionless parameters throughout this region are assumed. Using the numerical as well as the approximate analytic solution of the renormalization group equations, the evolution of all the parameters of the theory are studied in the case of large Yukawa couplings for the fourth family. The desired spontaneous symmetry breaking of the electroweak symmetry takes place only for a rather unnatural choice of the initial values of certain mass parameters at the grand unification scale. If it is gravitino mass smaller than 200 GeV the vacuum expectation values of the Higgs fields emerge necessarily in an interplay of the tree level Higgs potential and its quantum corrections and are approximately equal. The qurak masses of the fourth family are roughly 135 GeV, while the mass of the fourth charged lepton has an upper bound of 90 GeV. Further characteristic features of this scenario are one light neutral Higgs field of mass 50 GeV and gluino masses below 75 GeV. If the gravitino mass is higher than 200 GeV one obtains a scaled up version of the well-known three family, heavy top scenario with quark masses between 40 and 205 GeV and all superparticle masses heavier than 150 GeV except the photino, gluino, one chargino and one neutralino. The gauge-invariant theory of the free bosonic open string is generalized to treat closed strings and superstrings. All of these theories can be written as theories of string differential forms defined on suitable spaces. All of the bosonic theories have exactly the same structure; the Ramond theory takes an analogous first-order form. We show explicitly, how to gauge-fix each action to the light-cone gauge and to the Feynman-Siegel gauge.

  6. The Most General BPS Black Hole from Type II String Theory on a Six-Torus the Macroscopic-Microscopic Correspondence

    NASA Astrophysics Data System (ADS)

    Bertolini, M.; Trigiante, M.

    2002-12-01

    BPS black hole solutions in supergravity have been playing an important role in probing non-perturbative superstring dualities. The largest of these dualities is the conjectured U-duality, implemented by a discrete group of transformations U(Z), which represents the ultimate connection between all known superstring theories realized on various backgrounds. This picture suggests the existence of a unique fundamental quantum theory underlying the superstring theories, of which U-duality is an exact symmetry. In [1] this U-duality was conjectured to be encoded in the largest global symmetry group of the the field equations and Bianchi identities in the low-energy effective supergravity theory, which is described at classical level by a continuous semisimple Lie group U. The degree of supersymmetry preserved by BPS black holes in supergravity protects their physical quantities to a certain extent from quantum corrections so that they can be thought to correspond to solutions of superstring theory. Since moreover the BPS condition is U-duality invariant, these solutions naturally span an orbit of the U-duality group, which is a continuous collection of solutions at classical supergravity level and a discrete set at the superstring level. Supergravity represents the framework in which these orbits can be studied in most detail . A fruitful strategy therefore in order to study the microscopic features of BPS black holes in relation to their U-duality invariant properties would be to keep track in a precise mathematical fashion of the microscopic description of BPS black holes at this low-energy level and moreover to focus on the most general BPS black hole in a certain orbit modulo U-duality transformations, namely the generating solution. This is the main philosophy motivating the research project carried out in [3,4,5] where a macroscopic (supergravity) starting point was adopted for a systematic microscopic analysis of

  7. Open cycle thermoacoustics

    SciTech Connect

    Reid, Robert Stowers

    2000-01-01

    A new type of thermodynamic device combining a thermodynamic cycle with the externally applied steady flow of an open thermodynamic process is discussed and experimentally demonstrated. The gas flowing through this device can be heated or cooled in a series of semi-open cyclic steps. The combination of open and cyclic flows makes possible the elimination of some or all of the heat exchangers (with their associated irreversibility). Heat is directly exchanged with the process fluid as it flows through the device when operating as a refrigerator, producing a staging effect that tends to increase First Law thermodynamic efficiency. An open-flow thermoacoustic refrigerator was built to demonstrate this concept. Several approaches are presented that describe the physical characteristics of this device. Tests have been conducted on this refrigerator with good agreement with a proposed theory.

  8. Open Access

    ERIC Educational Resources Information Center

    Suber, Peter

    2012-01-01

    The Internet lets us share perfect copies of our work with a worldwide audience at virtually no cost. We take advantage of this revolutionary opportunity when we make our work "open access": digital, online, free of charge, and free of most copyright and licensing restrictions. Open access is made possible by the Internet and copyright-holder…

  9. Supergravity and superstring signatures of the one-parameter model at LHC

    SciTech Connect

    Maxin, James A.; Mayes, Van E.; Nanopoulos, Dimitri V.

    2009-03-15

    Many string constructions have a classical no-scale structure, resulting in a one-parameter model (OPM) for the supersymmetry breaking soft terms. As a highly constrained subset of mSUGRA, the OPM has the potential to be predictive. Conversely, if the observed superpartner spectrum at LHC is a subset of the OPM parameter space, then this may provide a clue to the underlying theory at high energies. We investigate the allowed supersymmetry parameter space for a generic one-parameter model taking into account the most recent experimental constraints. We find that, in the strict moduli scenario, there are no regions of the parameter space which may satisfy all constraints. However, for the dilaton scenario, there are small regions of the parameter space where all constraints may be satisfied and for which the observed dark matter density may be generated. We also survey the possible signatures which may be observable at the Large Hadron Collider (LHC). Finally, we compare collider signatures of OPM to those from a model with nonuniversal soft terms, in particular, those of an intersecting D6-brane model. We find that it may be possible to distinguish between these diverse scenarios at LHC.

  10. Opening Address

    NASA Astrophysics Data System (ADS)

    Yamada, T.

    2014-12-01

    Ladies and Gentlemen, it is my great honor and pleasure to present an opening address of the 3rd International Workshop on "State of the Art in Nuclear Cluster Physics"(SOTANCP3). On the behalf of the organizing committee, I certainly welcome all your visits to KGU Kannai Media Center belonging to Kanto Gakuin University, and stay in Yokohama. In particular, to whom come from abroad more than 17 countries, I would appreciate your participations after long long trips from your homeland to Yokohama. The first international workshop on "State of the Art in Nuclear Cluster Physics", called SOTANCP, was held in Strasbourg, France, in 2008, and the second one was held in Brussels, Belgium, in 2010. Then the third workshop is now held in Yokohama. In this period, we had the traditional 10th cluster conference in Debrecen, Hungary, in 2012. Thus we have the traditional cluster conference and SOTANCP, one after another, every two years. This obviously shows our field of nuclear cluster physics is very active and flourishing. It is for the first time in about 10 years to hold the international workshop on nuclear cluster physics in Japan, because the last cluster conference held in Japan was in Nara in 2003, about 10 years ago. The president in Nara conference was Prof. K. Ikeda, and the chairpersons were Prof. H. Horiuchi and Prof. I. Tanihata. I think, quite a lot of persons in this room had participated at the Nara conference. Since then, about ten years passed. So, this workshop has profound significance for our Japanese colleagues. The subjects of this workshop are to discuss "the state of the art in nuclear cluster physics" and also discuss the prospect of this field. In a couple of years, we saw significant progresses of this field both in theory and in experiment, which have brought better and new understandings on the clustering aspects in stable and unstable nuclei. I think, the concept of clustering has been more important than ever. This is true also in the

  11. Effective String Theory and Integrability

    NASA Astrophysics Data System (ADS)

    Mohsen, Ali

    In this dissertation several applications are collected were one deduces properties of UV complete string theories by examining low energy interactions on the world sheet of effective strings. As a first application, a UV complete asymptotically fragile theory is presented, which provides a very special theory in regards to the standard connection between causality and analyticity, and positivity conditions. Continuing with this approach, and exploiting the interplay between hidden symmetries and integrability, a no go theorem for the bosonic string is proved and the connection between double softness of branon amplitudes and integrability is elucidated. This theorem suggests considering supersymmetric strings and more generally Lorentz invariant fermionic strings. Analyzing the integrability of the former at tree level singles out critical dimensions where kappa-symmetry can exist, and unveils a hidden supersymmetry for GS-like actions. Whereas the analysis of the latter necessitates the use of the CCWZ machinery and results in the complete classification of Lorentz invariant fermionic strings, including among unexplored possibilities the GS, RNS and Heterotic superstrings in D=10. Finally, Zamolodchikov's method of integrable deformations of fixed point CFTs is applied for the bosonic string, which provides higher spin currents perturbatively and singles out the critical dimension in yet another paradigm.

  12. Topics in string theory

    NASA Astrophysics Data System (ADS)

    Jejjala, Vishnumohan

    2002-01-01

    This Thesis explores aspects of superstring theory on orbifold spaces and applies some of the intuition gleaned from the study of the non-commutative geometry of space-time to understanding the fractional quantum Hall effect. The moduli space of vacua of marginal and relevant deformations of N = 4 super-Yang-Mills gauge theory in four dimensions is interpreted in terms of non-commutative geometry. A formalism for thinking about the algebraic geometry of the moduli space is developed. Within this framework, the representation theory of the algebras studied provides a natural exposition of D-brane fractionation. The non-commutative moduli space of deformations preserving N = 1 supersymmetry is examined in detail through various examples. In string theory, by the AdS/CFT correspondence, deformations of the N = 4 field theory are dual to the near-horizon geometries of D-branes on orbifolds of AdS5 x S 5. The physics of D-branes on the dual AdS backgrounds is explored. Quivers encapsulate the matter content of supersymmetric field theories on the worldvolumes of D-branes at orbifold singularities. New techniques for constructing quivers are presented here. When N is a normal subgroup of a finite group G, the quiver corresponding to fixed points of the orbifold M/G is computed from a G/N action on the quiver corresponding to M/G . These techniques prove useful for constructing non-Abelian quivers and for examining discrete torsion orbifolds. Quivers obtained through our constructions contain interesting low-energy phenomenology. The matter content on a brane at an isolated singularity of the Delta27 orbifold embeds the Standard Model. The symmetries of the quiver require exactly three generations of fields in the particle spectrum. Lepton masses are suppressed relative to quark masses because lepton Yukawa couplings do not appear in the superpotential. Lepton masses are generated through the Kahler potential and are related to the supersymmetry breaking scale. The model

  13. The Problem of Hipparcos Distances to Open Clusters. II. Constraints from Nearby Field Theory. Report 2; ClustersConstraints from nearly Field Stars

    NASA Technical Reports Server (NTRS)

    Soderblom, David R.; King, Jeremy R.; Hanson, Robert B.; Jones, Burton F.; Fischer, Debra; Stauffer, John R.; Pinsonneault, Marc H.

    1998-01-01

    This paper examines the discrepancy between distances to nearby open clusters as determined by parallaxes from Hipparcos compared to traditional main-sequence fitting. The biggest difference is seen for the Pleiades, and our hypothesis is that if the Hipparcos distance to the Pleiades is correct, then similar subluminous zero-age main-sequence (ZAMS) stars should exist elsewhere, including in the immediate solar neighborhood. We examine a color-magnitude diagram of very young and nearby solar-type stars and show that none of them lie below the traditional ZAMS, despite the fact that the Hipparcos Pleiades parallax would place its members 0.3 mag below that ZAMS. We also present analyses and observations of solar-type stars that do lie below the ZAMS, and we show that they are subluminous because of low metallicity and that they have the kinematics of old stars.

  14. Bargaining for Open Skies

    NASA Technical Reports Server (NTRS)

    Wojahn, Oliver W.

    2001-01-01

    In this paper we analyze the bargaining problem between countries when negotiating bilateral air service agreements. To do so, we use the methods of bargaining and game theory. We give special attention to the case where a liberal minded country is trying to convince a less liberal country to agree to bilateral open skies, and the liberal country might also unilaterally open up its market. The following analysis is positive in the sense that the results help explain and predict the outcome of negotiations under different payoffs and structures of the bargaining process. They are normative in the sense that adequate manipulation of the bargaining conditions can ensure a desired outcome.

  15. BOOK REVIEW: Supersymmetry and String Theory: Beyond the Standard Model

    NASA Astrophysics Data System (ADS)

    Rocek, Martin

    2007-11-01

    When I was asked to review Michael Dine's new book, 'Supersymmetry and String Theory', I was pleased to have a chance to read a book by such an established authority on how string theory might become testable. The book is most useful as a list of current topics of interest in modern theoretical physics. It gives a succinct summary of a huge variety of subjects, including the standard model, symmetry, Yang Mills theory, quantization of gauge theories, the phenomenology of the standard model, the renormalization group, lattice gauge theory, effective field theories, anomalies, instantons, solitons, monopoles, dualities, technicolor, supersymmetry, the minimal supersymmetric standard model, dynamical supersymmetry breaking, extended supersymmetry, Seiberg Witten theory, general relativity, cosmology, inflation, bosonic string theory, the superstring, the heterotic string, string compactifications, the quintic, string dualities, large extra dimensions, and, in the appendices, Goldstone's theorem, path integrals, and exact beta-functions in supersymmetric gauge theories. Its breadth is both its strength and its weakness: it is not (and could not possibly be) either a definitive reference for experts, where the details of thorny technical issues are carefully explored, or a textbook for graduate students, with detailed pedagogical expositions. As such, it complements rather than replaces the much narrower and more focussed String Theory I and II volumes by Polchinski, with their deep insights, as well the two older volumes by Green, Schwarz, and Witten, which develop string theory pedagogically.

  16. Statistical inference and string theory

    NASA Astrophysics Data System (ADS)

    Heckman, Jonathan J.

    2015-09-01

    In this paper, we expose some surprising connections between string theory and statistical inference. We consider a large collective of agents sweeping out a family of nearby statistical models for an M-dimensional manifold of statistical fitting parameters. When the agents making nearby inferences align along a d-dimensional grid, we find that the pooled probability that the collective reaches a correct inference is the partition function of a nonlinear sigma model in d dimensions. Stability under perturbations to the original inference scheme requires the agents of the collective to distribute along two dimensions. Conformal invariance of the sigma model corresponds to the condition of a stable inference scheme, directly leading to the Einstein field equations for classical gravity. By summing over all possible arrangements of the agents in the collective, we reach a string theory. We also use this perspective to quantify how much an observer can hope to learn about the internal geometry of a superstring compactification. Finally, we present some brief speculative remarks on applications to the AdS/CFT correspondence and Lorentzian signature space-times.

  17. Relativistic Multireference Many-body Perturbation Theory for Open-shell Ions with Multiple Valence Shell Electrons: the Transition Rates and Lifetimes of the Excited Levels in Chlorinelike Fe X

    SciTech Connect

    Ishikawa, Y; Santana, J A; Trabert, E

    2009-09-30

    A recently developed relatistic multireference many-body perturbation theory based on multireference configuration-interaction wavefunctions as zeroth order wavefunctions is outlined. The perturbation theory employs a general class of configuration-interaction wve functions as reference functions, and thus is applciable to multiple open valence shell systems with near degeneracy of a manifold of strongly interacting configurations. Multireference many-body perturbation calculations are reported for the ground and excited states of chlorine-like Fe X in which the near degeneracy of a manifold of strongly interacting configurations mandates a multireference treatment. Term energies of a total of 83 excited levels arising from the 3s{sup 2}3p{sup 5}, 3s3p{sup 6}, 3s{sup 2}3p{sup 4}3d, 3s3p{sup 5}3d, and 3s{sup 2}3p{sup 3}3d{sup 2} configurations of the ion are evaluated to high accuracy. Transition rates associated with E1/M1/E2/M2/E3 radiative decays and lifetimes of a number of excited levels are calculated and compared with laboratory measurements to critically evaluate recent experiments.

  18. Open Education and the Open Science Economy

    ERIC Educational Resources Information Center

    Peters, Michael A.

    2009-01-01

    Openness as a complex code word for a variety of digital trends and movements has emerged as an alternative mode of "social production" based on the growing and overlapping complexities of open source, open access, open archiving, open publishing, and open science. This paper argues that the openness movement with its reinforcing structure of…

  19. Explaining the CMS e e j j and e pTj j excess and leptogenesis in superstring inspired E6 models

    NASA Astrophysics Data System (ADS)

    Dhuria, Mansi; Hati, Chandan; Rangarajan, Raghavan; Sarkar, Utpal

    2015-03-01

    We show that superstring-inspired E6 models can explain both the recently detected excess e e j j and e pTj j signals at CMS and also allow for leptogenesis. Working in an R -parity conserving, low-energy supersymmetric effective model, we show that the excess CMS events can be produced via the decay of exotic sleptons in Alternative Left-Right Symmetric Model of E6, which can also accommodate leptogenesis at a high scale. On the other hand, either the e e j j excess or the e pTj j excess can be produced via the decays of right-handed gauge bosons, but some of these scenarios may not accommodate letptogenesis as there will be strong B -L violation at low energy, which, along with the anomalous fast electroweak B +L violation, will wash out all baryon asymmetry. Baryogenesis below the electroweak scale may then need to be implemented in these models.

  20. Opening remarks

    SciTech Connect

    Hildebrand, S.G.

    1994-09-01

    Included in this paper are the opening remarks of S.G. Hildebrand, from Environmental Science Division, ORNL, to a conference on water resources and water resource issues. Wetlands are the focus of this talk, with an emphasis on conservation and land use to conserve wetland functions and values.

  1. Open Adoption

    ERIC Educational Resources Information Center

    Baran, Annette; And Others

    1976-01-01

    Adult adoptees are increasingly challenging the practice of sealing their birth records. The authors examine the historical roots of adoptive practices in this country and suggest that the time has come for open adoption to gain acceptance as an alternative. (Author)

  2. Opening education.

    PubMed

    Smith, Marshall S

    2009-01-02

    Spurred by the publication of Massachusetts Institute of Technology OpenCourseWare in 2002, the open educational resources (OER) movement, which has rapidly expanded and captured the imagination and energy of millions of creators and users throughout the world, now faces many opportunities and substantial challenges as it moves to become an integral part of the world's educational environment. The confluence of the Web and a spirit of sharing intellectual property have fueled a worldwide movement to make knowledge and education materials open to all for use. OER are content (courses, books, lesson plans, articles, etc.), tools (virtual laboratories, simulations, and games), and software that support learning and educational practice. OER are free on the Web, and most have licenses that allow copyright holders to retain ownership while providing specified rights for use in original and modified forms. At the least, OER have helped to level the distribution of knowledge across the world. A second promise of OER is to help transform educational practices. This article explores the history of and promises and challenges for OER.

  3. Lectures on the plane-wave string/gauge theory duality

    NASA Astrophysics Data System (ADS)

    Plefka, J. C.

    2004-02-01

    These lectures give an introduction to the novel duality relating type IIB string theory in a maximally supersymmetric plane-wave background to = 4, d = 4, U(N) super Yang-Mills theory in a particular large N and large R-charge limit due to Berenstein, Maldacena and Nastase. In the first part of these lectures the duality is derived from the AdS/CFT correspondence by taking a Penrose limit of the AdS5 × S5 geometry and studying the corresponding double-scaling limit on the gauge theory side. The resulting free plane-wave superstring is then quantized in light-cone gauge. On the gauge theory side of the correspondence the composite super Yang-Mills operators dual to string excitations are identified, and it is shown how the string spectrum can be mapped to the planar scaling dimensions of these operators. In the second part of these lectures we study the correspondence at the interacting respectively non-planar level. On the gauge theory side it is demonstrated that the large N large R-charge limit in question preserves contributions from Feynman graphs of all genera through the emergence of a new genus counting parameter - in agreement with the string genus expansion for non-zero gs. Effective quantum mechanical tools to compute higher genus contributions to the scaling dimensions of composite operators are developed and explicitly applied in a genus one computation. We then turn to the interacting string theory side and give an elementary introduction into light-cone superstring field theory in a plane-wave background and point out how the genus one prediction from gauge theory can be reproduced. Finally, we summarize the present status of the plane-wave string/gauge theory duality.

  4. Opening the Dutch Open Telescope

    NASA Astrophysics Data System (ADS)

    Rutten, R. J.; de Wijn, A. G.; Sütterlin, P.; Bettonvil, F. C. M.; Hammerschlag, R. H.

    2002-10-01

    We hope to "open the DOT" to the international solar physics community as a facility for high-resolution tomography of the solar atmosphere. Our aim is to do so combining peer-review time allocation with service-mode operation in a "hands-on-telescope" education program bringing students to La Palma to assist in the observing and processing. The largest step needed is considerable speedup of the DOT speckle processing.

  5. Collaborative Research and Development by EpiSolar and NREL of Processes and Materials for Flexible CdS/CdTe Superstrate Devices: Cooperative Research and Development Final Report, CRADA Number CRD-14-550

    SciTech Connect

    Barnes, Teresa

    2016-05-01

    The objective of this work is to collaborate with EpiSolar to develop and test processes that are consistent with the goals and milestones of an NREL FPace1 (Foundational Program to Advance Cell Efficiency) project entitled 'High-Temperature, Roll-to-Roll (RTR) CdTe Superstrate Devices Using Flexible Glass.' The primary milestone for this CRADA relates to demonstration of a 15% efficient laboratory device.

  6. Open University

    ScienceCinema

    None

    2016-07-12

    Michel Pentz est née en Afrique du Sud et venu au Cern en 1957 comme physicien et président de l'associaion du personnel. Il est également fondateur du mouvement Antiapartheid de Genève et a participé à la fondation de l'Open University en Grande-Bretagne. Il nous parle des contextes pédagogiques, culturels et nationaux dans lesquels la méthode peut s'appliquer.

  7. Information of Open Systems

    NASA Astrophysics Data System (ADS)

    Klimontovich, Yuri L.

    In the theory of communication two definitions of the concept "information" are known. One of them coincides according to its form with the Boltzmann entropy. The second definition of information is the difference between unconditional and conditional entropies. In the present work this latter is used for the definition of the information about states of open systems with various meanings of the control parameter. Two kinds of open systems are considered. The first class of systems concerns those which with zero value of the control parameter are in an equilibrium state. The information on an equilibrium state is equal to zero. During self- organizing in the process of departing from an equilibrium state the information increases. For open systems of this class the conservation law for the sum of the information and entropy with all values of control parameter is proved. In open systems of the second class the equilibrium condition is impossible. For them the concept "norm of a chaoticity" is introduced. It allows to consider two kinds of processes of self-organization and to give the corresponding definitions of information. The statement is carried out on a number of (classical and quantum) examples of physical systems. The example of a medico-biological system also is considered.

  8. Set theory and physics

    SciTech Connect

    Svozil, K.

    1995-11-01

    Inasmuch as physical theories are formalizable, set theory provides a framework for theoretical physics. Four speculations about the relevance of set theoretical modeling for physics are presented: the role of transcendental set theory (i) in chaos theory, (ii) for paradoxical decompositions of solid three-dimensional objects, (iii) in the theory of effective computability (Church-Turing thesis) related to the possible {open_quotes}solution of supertasks,{close_quotes} and (iv) for weak solutions. Several approaches to set theory and their advantages and disadvantages for physical applications are discussed: Cantorian {open_quotes}naive{close_quotes} (i.e., nonaxiomatic) set theory, contructivism, and operationalism. In the author`s opinion, an attitude, of {open_quotes}suspended attention{close_quotes} (a term borrowed from psychoanalysis) seems most promising for progress. Physical and set theoretical entities must be operationalized wherever possible. At the same time, physicists should be open to {open_quotes}bizarre{close_quotes} or {open_quotes}mindboggling{close_quotes} new formalisms, which need not be operationalizable or testable at the time of their creation, but which may successfully lead to novel fields of phenomenology and technology.

  9. OpenER, a Dutch Initiative in Open Educational Resources

    ERIC Educational Resources Information Center

    Schuwer, Robert; Mulder, Fred

    2009-01-01

    Over the period 2006-2008, the Dutch Open Universiteit Nederland conducted an experiment in which Open Educational Resources (OER) were offered in an effort to bridge the gap between informal and formal learning and to establish a new style of entry portal to higher education with no barriers at all. OpenER received considerable attention both in…

  10. Differential geometry of groups in string theory

    SciTech Connect

    Schmidke, W.B. Jr.

    1990-09-01

    Techniques from differential geometry and group theory are applied to two topics from string theory. The first topic studied is quantum groups, with the example of GL (1{vert bar}1). The quantum group GL{sub q}(1{vert bar}1) is introduced, and an exponential description is derived. The algebra and coproduct are determined using the invariant differential calculus method introduced by Woronowicz and generalized by Wess and Zumino. An invariant calculus is also introduced on the quantum superplane, and a representation of the algebra of GL{sub q}(1{vert bar}1) in terms of the super-plane coordinates is constructed. The second topic follows the approach to string theory introduced by Bowick and Rajeev. Here the ghost contribution to the anomaly of the energy-momentum tensor is calculated as the Ricci curvature of the Kaehler quotient space Diff(S{sup 1})/S{sup 1}. We discuss general Kaehler quotient spaces and derive an expression for their Ricci curvatures. Application is made to the string and superstring diffeomorphism groups, considering all possible choices of subgroup. The formalism is extended to associated holomorphic vector bundles, where the Ricci curvature corresponds to the anomaly for different ghost sea levels. 26 refs.

  11. Inflation-Theory Implications for Extraterrestrial Visitation

    NASA Astrophysics Data System (ADS)

    Deardoff, J.; Haisch, B.; Maccabee, B.; Puthoff, H. E.

    It has recently been argued that anthropic reasoning applied to inflation theory reinforces the prediction that we should find ourselves part of a large, galaxy-sized civilisation, thus strengthening Fermi's paradox concerning `Where are they?' Furthermore, superstring and M-brane theory allow for the possibility of parallel universes, some of which in principle could be habitable. In addition, discussion of such exotic transport concepts as `traversable wormholes' now appears in the rigorous physics literature. As a result, the `We are alone' solution to Fermi's paradox, based on the constraints of earlier 20th century viewpoints, appears today to be inconsistent with new developments in our best current physics and astrophysics theories. Therefore we reexamine and reevaluate the present assumption that extraterrestrials or their probes are not in the vicinity of Earth, and argue instead that some evidence of their presence might be found in certain high-quality UFO reports. This study follows up on previous arguments that (1) interstellar travel for advanced civilizations is not a priori ruled out by physical principles and therefore may be practicable, and (2) such advanced civilisations may value the search for knowledge from uncontaminated species more than direct, interspecies communication, thereby accounting for apparent covertness regarding their presence.

  12. Integrability of classical strings dual for noncommutative gauge theories

    NASA Astrophysics Data System (ADS)

    Matsumoto, Takuya; Yoshida, Kentaroh

    2014-06-01

    We derive the gravity duals of noncommutative gauge theories from the Yang-Baxter sigma model description of the AdS5 × S5 superstring with classical r-matrices. The corresponding classical r-matrices are 1) solutions of the classical Yang-Baxter equation (CYBE), 2) skew-symmetric, 3) nilpotent and 4) abelian. Hence these should be called abelian Jordanian deformations. As a result, the gravity duals are shown to be integrable deformations of AdS5 × S5. Then, abelian twists of AdS5 are also investigated. These results provide a support for the gravity/CYBE correspondence proposed in arXiv:1404.1838.

  13. Instanton Effective Action in Deformed Super Yang-Mills Theories

    SciTech Connect

    Nakajima, Hiroaki; Ito, Katsushi; Sasaki, Shin

    2008-11-23

    We study the ADHM construction of instantons in N = 2 supersymmetric Yang-Mills theory deformed in constant Ramond-Ramond (R-R) 3-form field strength background in type IIB superstrings. We compare the deformed instanton effective action with the effective action of fractional D3/D(-1) branes at the orbifold singularity of C{sup 2}/Z{sub 2} in the same R-R background. We find discrepancy between them at the second order in deformation parameters, which comes from the coupling of the translational zero modes of the D(-1)-branes to the R-R background. We improve the deformed action by adding a term with spacetime dependent gauge coupling such that the action reproduces the effective action of the fractional branes.

  14. Openness initiative

    SciTech Connect

    Duncan, S.S.

    1995-12-31

    Although antinuclear campaigns seem to be effective, public communication and education efforts on low-level radioactive waste have mixed results. Attempts at public information programs on low-level radioactive waste still focus on influencing public opinion. A question then is: {open_quotes}Is it preferable to have a program focus on public education that will empower individuals to make informed decisions rather than trying to influence them in their decisions?{close_quotes} To address this question, a case study with both quantitative and qualitative data will be used. The Ohio Low-Level Radioactive Waste Education Program has a goal to provide people with information they want/need to make their own decisions. The program initiated its efforts by conducting a statewide survey to determine information needed by people and where they turned for that information. This presentation reports data from the survey and then explores the program development process in which programs were designed and presented using the information. Pre and post data from the programs reveal attitude and knowledge shifts.

  15. Opening Address

    NASA Astrophysics Data System (ADS)

    Crovini, L.

    1994-01-01

    Ladies and Gentlemen To quote Mr Jean Terrien: "Physics must be one step ahead of metrology". A long-serving Director of the BIPM, he said these words when visiting the IMGC in 1970 as a member of the scientific board of our Institute. At that time it was still an open question whether the IMGC should start research work on the absolute measurement of silicon lattice spacing. Mr Terrien underlined the revolutionary character of x-ray interferometry and, eventually, he caused the balance needle to lean towards the ... right direction. Mr Terrien correctly foresaw that, like Michelson's interferometer of 1880, x-ray interferometry could have a prominent place in today's science and technology. And while, in the first case, after more than a century we can see instruments based on electromagnetic wave interaction within every one's reach in laboratories and, sometimes, in workshops, in the second case, twenty-five years since the first development of an x-ray interferometer we can witness its role in nanometrology. Today and tomorrow we meet to discuss how to go beyond the sixth decimal place in the value of the Avogadro constant. We are aware that the quest for this achievement requires the cooperation of scientists with complementary capabilities. I am sure that the present workshop is a very good opportunity to present and discuss results and to improve and extend existing cooperation. The new adjustment of fundamental constants envisaged by the CODATA Task Group is redoubling scientists' efforts to produce competitive values of NA. The results of the measurements of the silicon lattice spacing in terms of an optical wavelength, which were available for the 1986 adjustment, combined with the determination of silicon molar volume, demonstrate how such an NA determination produces a consistent set of other constants and opens the way to a possible redefinition of the kilogram. We shall see in these two days how far we have progressed along this road. For us at the

  16. Progress in string theory

    NASA Astrophysics Data System (ADS)

    Maldacena, Juan Martín

    D-Branes on Calabi-Yau manifolds / Paul S. Aspinwall -- Lectures on AdS/CFT / Juan M. Maldacena -- Tachyon dynamics in open string theory / Ashoke Sen -- TASI/PITP/ISS lectures on moduli and microphysics / Eva Silverstein -- The duality cascade / Matthew J. Strassler -- Perturbative computations in string field theory / Washington Taylor -- Student seminars -- Student participants -- Lecturers, directors, and local organizing committee.

  17. Using Open Space Technology for School Improvement.

    ERIC Educational Resources Information Center

    Cox, David

    2002-01-01

    Describes a theory referred to as Open Space Technology (OST), which holds that the most productive learning in conference settings takes place in the open space between formally scheduled conference sessions. Argues that OST can be applied to staff development days and other educational development programs. (Contains 10 references.) (NB)

  18. Open Education Revisited.

    ERIC Educational Resources Information Center

    Bough, Max, Ed.

    1979-01-01

    This journal provides 12 brief articles focused on open education. Topics explored include (1) open education and reading, (2) mainstreaming, (3) characteristics of an open teacher, (4) administration of an open concept school, (5) an existential methodology in the language arts, (6) social studies in open education, (7) open education in early…

  19. Open Standards, Open Source, and Open Innovation: Harnessing the Benefits of Openness

    ERIC Educational Resources Information Center

    Committee for Economic Development, 2006

    2006-01-01

    Digitization of information and the Internet have profoundly expanded the capacity for openness. This report details the benefits of openness in three areas--open standards, open-source software, and open innovation--and examines the major issues in the debate over whether openness should be encouraged or not. The report explains each of these…

  20. Communal Resources in Open Source Software Development

    ERIC Educational Resources Information Center

    Spaeth, Sebastian; Haefliger, Stefan; von Krogh, Georg; Renzl, Birgit

    2008-01-01

    Introduction: Virtual communities play an important role in innovation. The paper focuses on the particular form of collective action in virtual communities underlying as Open Source software development projects. Method: Building on resource mobilization theory and private-collective innovation, we propose a theory of collective action in…

  1. Trap-assisted recombination for ohmic-like contact at p-type Cu(In,Ga)Se2/back n-type TCO interface in superstrate-type solar cell

    NASA Astrophysics Data System (ADS)

    Chantana, Jakapan; Arai, Hiroyuki; Minemoto, Takashi

    2016-07-01

    Cu(In,Ga)Se2 (CIGS) solar cells with superstrate-type structure of soda-lime glass (SLG)/epoxy/Al/ZnO:Al (AZO)/ZnO/CdS/CIGS/back n-type transparent conductive oxide (TCO) electrode/Al are fabricated by lift-off process. AZO or In2O3:Sn (ITO) is used as the back n-type TCO electrode. Ohmic-like contact between p-type CIGS and n-type D-TCO (damage-TCO), namely, D-AZO or D-ITO, is formed through the trap-assisted recombination. The D-TCO, meaning TCO with high sputtering damage on the CIGS surface, is prepared under the optimization of its deposition condition, namely, the power density of 2.4 W/cm2 for D-AZO or 3.3 W/cm2 for D-ITO, for high defect density on the CIGS surface to promote the trap-assisted recombination. Ultimately, the superstrate-type CIGS solar cell with a bi-layer of D-AZO/AZO as back n-type TCO electrode with conversion efficiency (η) of 9.2% is achieved, which is 70% of η of the substrate-type CIGS solar cell before lift-off process. The bi-layer of D-AZO/AZO is utilized owing to high resistivity of D-AZO (about 0.1 Ω cm). On the other hand, the superstrate-type CIGS solar cell with D-ITO as the back n-type TCO electrode with η of 10.4% is attained, which is 93.7% of η of the substrate-type CIGS solar cell, where the resistivity of the D-ITO layer is low at about 5.0 × 10-3 Ω cm.

  2. Open questions in classical gravity

    SciTech Connect

    Mannheim, P.D. )

    1994-04-01

    In this work, the authors discuss some outstanding open questions regarding the validity and uniqueness of the standard second-order Newton-Einstein classical gravitational theory. On the observational side the authors discuss the degree to which the realm of validity of Newton's law of gravity can actually be extended to distances much larger than the solar system distance scales on which the law was originally established. On the theoretical side the authors identify some commonly accepted (but actually still open to question) assumptions which go into the formulation of the standard second-order Einstein theory in the first place. In particular, it is shown that while the familiar second-order Poisson gravitational equation (and accordingly its second-order covariant Einstein generalization) may be sufficient to yield Newton's law of gravity they are not in fact necessary. The standard theory thus still awaits the identification of some principle which would then make it necessary too. It is shown that current observational information does not exclusively mandate the standard theory, and that the conformal invariant fourth-order theory of gravity considered recently by Mannheim and Kazanas is also able to meet the constraints of data, and in fact to do so without the need for any so far unobserved nonluminous or dark matter. 37 refs., 7 figs.

  3. Coding Issues in Grounded Theory

    ERIC Educational Resources Information Center

    Moghaddam, Alireza

    2006-01-01

    This paper discusses grounded theory as one of the qualitative research designs. It describes how grounded theory generates from data. Three phases of grounded theory--open coding, axial coding, and selective coding--are discussed, along with some of the issues which are the source of debate among grounded theorists, especially between its…

  4. The Chaos Theory of Careers.

    ERIC Educational Resources Information Center

    Pryor, Robert G. L.; Bright, Jim

    2003-01-01

    Four theoretical streams--contexualism/ecology, systems theory, realism/constructivism, and chaos theory--contributed to a theory of individuals as complex, unique, nonlinear, adaptive chaotic and open systems. Individuals use purposive action to construct careers but can make maladaptive and inappropriate choices. (Contains 42 references.) (SK)

  5. On classical Yang-Baxter based deformations of the AdS5 × S5 superstring

    NASA Astrophysics Data System (ADS)

    van Tongeren, Stijn J.

    2015-06-01

    Interesting deformations of AdS5 × S5 such as the gravity dual of noncommutative SYM and Schödinger spacetimes have recently been shown to be integrable. We clarify questions regarding the reality and integrability properties of the associated construction based on R matrices that solve the classical Yang-Baxter equation, and present an overview of manifestly real R matrices associated to the various deformations. We also discuss when these R matrices should correspond to TsT transformations, which not all do, and briefly analyze the symmetries preserved by these deformations, for example finding Schrödinger superalgebras that were previously obtained as subalgebras of (2, 2|4). Our results contain a (singular) generalization of an apparently non-TsT deformation of AdS5 × S5, whose status as a string background is an interesting open question.

  6. Exact Spectrum of Anomalous Dimensions of Planar N=4 Supersymmetric Yang-Mills Theory

    SciTech Connect

    Gromov, Nikolay; Kazakov, Vladimir; Vieira, Pedro

    2009-09-25

    We present a set of functional equations defining the anomalous dimensions of arbitrary local single trace operators in planar N=4 supersymmetric Yang-Mills theory. It takes the form of a Y system based on the integrability of the dual superstring sigma model on the five-dimensional anti-de Sitter space (AdS{sub 5}xS{sup 5}) background. This Y system passes some very important tests: it incorporates the full asymptotic Bethe ansatz at large length of operator L, including the dressing factor, and it confirms all recently found wrapping corrections. The recently proposed AdS{sub 4}/three-dimensional conformal field theory duality is also treated in a similar fashion.

  7. On fractional quantum Hall solitons and Chern-Simons quiver gauge theories

    NASA Astrophysics Data System (ADS)

    Belhaj, Adil

    2012-05-01

    We investigate a class of hierarchical multiple layers of fractional quantum Hall soliton (FQHS) systems from Chern-Simons quivers embedded in M-theory on the cotangent on a two-dimensional complex toric variety V2, which is dual to type IIA superstring on a three-dimensional complex manifold CP1 × V2 fibered over a real line {R}. Based on M-theory/type IIA duality, FQHS systems can be derived from wrapped D4-branes on 2-cycles in CP1 × V2 type IIA geometry. In this realization, the magnetic source can be identified with gauge fields obtained from the decomposition of the R-R 3-form on a generic combination of 2-cycles. Using type IIA D-brane flux data, we compute the filling factors for models relying on CP2 and the zeroth Hirzebruch surface.

  8. Spinning superstrings at two loops: Strong-coupling corrections to dimensions of large-twist super Yang-Mills operators

    SciTech Connect

    Roiban, R.; Tseytlin, A. A.

    2008-03-15

    We consider folded (S,J) spinning strings in AdS{sub 5}xS{sup 5} (with one spin component in AdS{sub 5} and a one in S{sup 5}) corresponding to the Tr(D{sup S}{phi}{sup J}) operators in the sl(2) sector of the N=4 super Yang-Mills theory in the special scaling limit in which both the string mass {approx}{radical}({lambda})lnS and J are sent to infinity with their ratio fixed. Expanding in the parameter l=(J/{radical}({lambda})lnS) we compute the 2-loop string sigma-model correction to the string energy and show that it agrees with the expression proposed by Alday and Maldacena [J. High Energy Phys. 11 (2007) 019]. We suggest that a resummation of the logarithmic l{sup 2}ln{sup n}l terms is necessary in order to establish an interpolation to the weakly coupled gauge-theory results. In the process, we set up a general framework for the calculation of higher loop corrections to the energy of multispin string configurations. In particular, we find that in addition to the direct 2-loop term in the string energy there is a contribution from lower loop order due to a finite 'renormalization' of the relation between the parameters of the classical solution and the fixed spins, i.e., the charges of the SO(2,4)xSO(6) symmetry.

  9. Open Source, Openness, and Higher Education

    ERIC Educational Resources Information Center

    Wiley, David

    2006-01-01

    In this article David Wiley provides an overview of how the general expansion of open source software has affected the world of education in particular. In doing so, Wiley not only addresses the development of open source software applications for teachers and administrators, he also discusses how the fundamental philosophy of the open source…

  10. [Introduction to grounded theory].

    PubMed

    Wang, Shou-Yu; Windsor, Carol; Yates, Patsy

    2012-02-01

    Grounded theory, first developed by Glaser and Strauss in the 1960s, was introduced into nursing education as a distinct research methodology in the 1970s. The theory is grounded in a critique of the dominant contemporary approach to social inquiry, which imposed "enduring" theoretical propositions onto study data. Rather than starting from a set theoretical framework, grounded theory relies on researchers distinguishing meaningful constructs from generated data and then identifying an appropriate theory. Grounded theory is thus particularly useful in investigating complex issues and behaviours not previously addressed and concepts and relationships in particular populations or places that are still undeveloped or weakly connected. Grounded theory data analysis processes include open, axial and selective coding levels. The purpose of this article was to explore the grounded theory research process and provide an initial understanding of this methodology.

  11. Open access, open education resources and open data in Uganda.

    PubMed

    Salvo, Ivana Di; Mwoka, Meggie; Kwaga, Teddy; Rukundo, Priscilla Aceng; Ernest, Dennis Ssesanga; Osaheni, Louis Aikoriogie; John, Kasibante; Shafik, Kasirye; de Sousa, Agostinho Moreira

    2015-01-01

    As a follow up to OpenCon 2014, International Federation of Medical Students' Associations (IFMSA) students organized a 3 day workshop Open Access, Open Education Resources and Open Data in Kampala from 15-18 December 2014. One of the aims of the workshop was to engage the Open Access movement in Uganda which encompasses the scientific community, librarians, academia, researchers and students. The IFMSA students held the workshop with the support of: Consortium for Uganda University Libraries (CUUL), The Right to Research Coalition, Electronic Information for Libraries (EIFL), Makerere University, International Health Sciences University (IHSU), Pan African Medical Journal (PAMJ) and the Centre for Health Human Rights and Development (CEHURD). All these organizations are based or have offices in Kampala. The event culminated in a meeting with the Science and Technology Committee of Parliament of Uganda in order to receive the support of the Ugandan Members of Parliament and to make a concrete change for Open Access in the country.

  12. Type I/heterotic duality and M-theory amplitudes

    NASA Astrophysics Data System (ADS)

    Green, Michael B.; Rudra, Arnab

    2016-12-01

    This paper investigates relationships between low-energy four-particle scattering amplitudes with external gauge particles and gravitons in the E 8 × E 8 and SO(32) heterotic string theories and the type I and type IA superstring theories by considering a variety of tree level and one-loop Feynman diagrams describing such amplitudes in eleven-dimensional supergravity in a Horava-Witten background compactified on a circle. This accounts for a number of perturbative and non-perturbative aspects of low order higher derivative terms in the low-energy expansion of string theory amplitudes, which are expected to be protected by half maximal supersymmetry from receiving corrections beyond one or two loops. It also suggests the manner in which type I/heterotic duality may be realised for certain higher derivative interactions that are not so obviously protected. For example, our considerations suggest that R 4 interactions (where R is the Riemann curvature) might receive no perturbative corrections beyond one loop by virtue of a conspiracy involving contributions from (non-BPS) {Z}_2 D-instantons in the type I and heterotic SO(32) theories.

  13. Operational Shock Complexity Theory

    DTIC Science & Technology

    2005-05-26

    but lies essentially at the door of the Westerner’s perceived need for order, theory and lack of belief in the concept of fate.25 Finally, complexity...elsewhere and the entire system exhibits properties and behaviors different from the parts.61 The two main types of system are open and closed systems...62 Open systems take on board excess energy to replace that which is lost in order to continue operating and remain alive. Closed systems seek

  14. The Fifth Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Gravitation and Relativistic Field Theories. Parts A, B. Proceedings.

    NASA Astrophysics Data System (ADS)

    Blair, D. G.; Buckingham, M. J.

    Contents: Part A. 1. Rigorous and exact. Classical general relativity: highly non-linear behaviour. Spin, geometry and topology. Approximation methods. Exact solutions. Black hole physics. Alternative theories and torsion. 2. Quantum gravity. Critical accelerations. Quantum gravity. String theories. Cosmic strings, superstrings and supergravity. Quantum cosmology: wavefunction of the universe. Quantum cosmology. 3. Cosmology. Early cosmology and quantum field theory. Supersymmetry, multidimensional cosmology and Kaluza-Klein theory. Theoretical cosmology. Large-scale structure of the universe. Dark matter. Part B. 4. Mathematical astrophysics. Algebraic computing. Numerical relativity. Astrophysics of collapsed objects. Self gravitating systems. History of general relativity. 5. Observational astrophysics. Sources of gravitational radiation. Relativistic astrophysics. Supernovae. Observation of collapsed objects. Cosmic background. 5. Precision experiments. The fifth force. Measuring the gravitational interaction in precision space experiments. Resonant bar antennas. Laser interferometer antennas. Detection of gravitational radiation. Quantum technology for gravitational radiation detection. Precision clocks in general relativity.

  15. Summing Planar Bosonic Open Strings

    SciTech Connect

    Bardakci, Korkut

    2006-02-16

    In earlier work, planar graphs of massless {phi}{sup 3} theory were summed with the help of the light cone world sheet picture and the mean field approximation. In the present article, the same methods are applied to the problem of summing planar bosonic open strings. They find that in the ground state of the system, string boundaries form a condensate on the world sheet, and a new string emerges from this summation. Its slope is always greater than the initial slope, and it remains non-zero even when the initial slope is set equal to zero. If they assume the initial string tends to a field a theory in the zero slope limit, this result provides evidence for string formation in field theory.

  16. Superstrings in type IIB R-R plane-wave in semi-light-cone gauge and conformal invariance

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Partha

    2009-05-01

    We reconsider the analysis done by Kazama and Yokoi in arXiv:0801.1561 (hep-th). We find that although the right vacuum of the theory is the one associated to massless normal ordering (MNO), phase space normal ordering (PNO) plays crucial role in the analysis in the following way. While defining the quantum energy-momentum (EM) tensor one needs to take into account the field redefinition relating the space-time field and the corresponding world-sheet coupling. We argue that for a simple off-shell ansatz for the background this field redefinition can be taken to be identity if the interaction term is ordered according to PNO. This definition reproduces the correct physical spectrum when the background is on-shell. We further show that the right way to extract the effective equation of motion from the Virasoro anomaly is to first order the anomaly terms according to PNO at a finite regularization parameter epsilon and then take the epsilon → 0 limit. This prescription fixes an ambiguity in taking the limit for certain bosonic and fermionic contributions to the Virasoro anomaly and is the natural one to consider given the above definition of the EM tensor.

  17. Open for Business

    ERIC Educational Resources Information Center

    Voyles, Bennett

    2007-01-01

    People know about the Sakai Project (open source course management system); they may even know about Kuali (open source financials). So, what is the next wave in open source software? This article discusses business intelligence (BI) systems. Though open source BI may still be only a rumor in most campus IT departments, some brave early adopters…

  18. p-Adic Strings and Their Applications

    SciTech Connect

    Freund, Peter G. O.

    2006-03-29

    The theory of p-adic strings is reviewed along with some of their applications, foremost among them to the tachyon condensation problem in string theory. Some open problems are discussed, in particular that of the superstring in 10 dimensions as the end-stage of the 26-dimensional closed bosonic string's tachyon condensation.

  19. Open-closed string duality at tree level.

    PubMed

    Sen, Ashoke

    2003-10-31

    We study the decay of unstable D-branes in string theory in the presence of an electric field, and show that the classical open string theory results for various properties of the final state agree with the properties of closed string states into which the system is expected to decay. This suggests a duality between tree level open string theory on unstable D-branes and closed strings at high density.

  20. Topological defects in alternative theories to cosmic inflation and string cosmology

    NASA Astrophysics Data System (ADS)

    Alexander, Stephon H. S.

    The physics of the Early Universe is described in terms of the inflationary paradigm, which is based on a marriage between Einstein's general theory of relativity minimally coupled to quantum field theory. Inflation was posed to solve some of the outstanding problems of the Standard Big Bang Cosmology (SBB) such as the horizon, formation of structure and monopole problems. Despite its observational and theoretical successes, inflation is plagued with fine tuning and initial singularity problems. On the other hand, superstring/M theory, a theory of quantum gravity, possesses symmetries which naturally avoid space-time singularities. This thesis investigates alternative theories to cosmic inflation for solving the initial singularity, horizon and monopole problems, making use of topological defects. It was proposed by Dvali, Liu and Vaschaspati that the monopole problem can be solved without inflation if domain walls "sweep" up the monopoles in the early universe, thus reducing their number density significantly. Necessary for this mechanism to work is the presence of an attractive force between the monopole and the domain wall as well as a channel for the monopole's unwinding. We show numerically and analytically in two field theory models that for global defects the attraction is a universal result but the unwinding is model specific. The second part of this thesis investigates a string/M theory inspired model for solving the horizon problem. It was proposed by Moffat, Albrecht and Magueijo that the horizon problem is solved with a "phase transition" associated with a varying speed of light before the surface of last scattering. We provide a string/M theory mechanism based on assuming that our space-time is a D-3 brane probing a bulk supergravity black hole bulk background. This mechanism provides the necessary time variation of the velocity of light to solve the horizon problem. We suggest a mechanism which stablilizes the speed of light on the D-3 brane. We

  1. From Practice to Theory.

    ERIC Educational Resources Information Center

    Langberg, Arnold

    1984-01-01

    Describes the individualized program of Mountain Open High School which at first coincidentally resembed Maurice Gibbons'"Walkabout" concept and was subsequently more consciously shaped by theory. Students move through three phases culminating in challenging independent projects of practical use. (MJL)

  2. Open Smart Energy Gateway (OpenSEG)

    SciTech Connect

    2014-09-01

    The Open Smart Energy Gateway (OpenSEG) aims to provide near-real time smart meter data to consumers without the delays or latencies associated with it being transported to the utility data center and then back to the consumer's application. To do this, the gateway queries the local Smart Meter to which it is bound to get energy consumption information at pre-defined intervals (minimum interval is 4 seconds). OpenSEG then stores the resulting data internally for retrieval by an external application.

  3. Black hole solutions in string theory with Gauss-Bonnet curvature correction

    SciTech Connect

    Maeda, Kei-ichi; Ohta, Nobuyoshi; Sasagawa, Yukinori

    2009-11-15

    We present the black hole solutions and analyze their properties in the superstring effective field theory with the Gauss-Bonnet curvature correction terms. We find qualitative differences in our results from those obtained in the truncated model in the Einstein frame. The main difference in our model from the truncated one is that the existence of a turning point in the mass-area curve, the mass-entropy curve, and the mass-temperature curve in five and higher dimensions, where we expect a change of stability. We also find a mass gap in our model, where there is no black hole solution. In five dimensions, there exists a maximum black hole temperature and the temperature vanishes at the minimum mass, which is not found in the truncated model.

  4. Newton's constant in f(R,R{sub {mu}}{sub {nu}}R{sup {mu}}{sup {nu}},{open_square}R) theories of gravity and constraints from BBN

    SciTech Connect

    Nesseris, Savvas; Mazumdar, Anupam

    2009-05-15

    We consider corrections to the Einstein-Hilbert action, which contain both higher order and nonlocal terms. We derive an effective Newtonian gravitational constant applicable at the weak field limit and use the primordial nucleosynthesis (BBN) bound and the local gravity constraints on G{sub eff} in order to test the viability of several cases of our general Lagrangian. We will also provide a BBN constrain on the {open_square}R gravitational correction.

  5. String Theory and Gauge Theories

    SciTech Connect

    Maldacena, Juan

    2009-02-20

    We will see how gauge theories, in the limit that the number of colors is large, give string theories. We will discuss some examples of particular gauge theories where the corresponding string theory is known precisely, starting with the case of the maximally supersymmetric theory in four dimensions which corresponds to ten dimensional string theory. We will discuss recent developments in this area.

  6. Perturbative approach to Markovian open quantum systems

    PubMed Central

    Li, Andy C. Y.; Petruccione, F.; Koch, Jens

    2014-01-01

    The exact treatment of Markovian open quantum systems, when based on numerical diagonalization of the Liouville super-operator or averaging over quantum trajectories, is severely limited by Hilbert space size. Perturbation theory, standard in the investigation of closed quantum systems, has remained much less developed for open quantum systems where a direct application to the Lindblad master equation is desirable. We present such a perturbative treatment which will be useful for an analytical understanding of open quantum systems and for numerical calculation of system observables which would otherwise be impractical. PMID:24811607

  7. Gallbladder removal - open

    MedlinePlus

    ... the surgeon needs to switch to an open surgery if laparoscopic surgery cannot be successfully continued. Other reasons for removing the gallbladder by open surgery: Unexpected bleeding during the laparoscopic operation Obesity Pancreatitis (inflammation in the pancreas) Pregnancy ( ...

  8. Quantum Entanglement in Open Systems

    SciTech Connect

    Isar, Aurelian

    2008-01-24

    In the framework of the theory of open systems based on completely positive quantum dynamical semigroups, the master equation for two independent harmonic oscillators interacting with an environment is solved in the asymptotic long-time regime. Using the Peres-Simon necessary and sufficient condition for separability of two-mode Gaussian states, we show that the two non-interacting systems become asymptotically entangled for certain environments, so that in the long-time regime they manifest non-local quantum correlations. We calculate also the logarithmic negativity characterizing the degree of entanglement of the asymptotic state.

  9. BRST symmetry in the general gauge theories

    NASA Astrophysics Data System (ADS)

    Hyuk-Jae, Lee; Jae, Hyung, Yee

    1994-01-01

    By using the residual gauge symmetry interpretation of BRST invariance we have constructed a new BRST formulation for general gauge theories including those with open algebras. For theories with open gauge algebra the formulation leads to a BRST invariant effective action which does not contain any higher order terms in the ghost fields.

  10. Open Access Alternatives

    ERIC Educational Resources Information Center

    Tenopir, Carol

    2004-01-01

    Open access publishing is a hot topic today. But open access publishing can have many different definitions, and pros and cons vary with the definitions. Open access publishing is especially attractive to companies and small colleges or universities that are likely to have many more readers than authors. A downside is that a membership fee sounds…

  11. Openness as infrastructure

    PubMed Central

    2011-01-01

    The advent of open access to peer reviewed scholarly literature in the biomedical sciences creates the opening to examine scholarship in general, and chemistry in particular, to see where and how novel forms of network technology can accelerate the scientific method. This paper examines broad trends in information access and openness with an eye towards their applications in chemistry. PMID:21999327

  12. In Brief: Open government

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2010-03-01

    U.S. President Barack Obama's Memorandum on Transparency and Open Government requires federal agencies to take steps toward increased transparency, public participation, and collaboration. Agencies are accepting suggestions until 19 March 2010. For more information, visit http://www.whitehouse.gov/open and http://www.usa.gov/webcontent/open/tool_poc.shtml.

  13. Open Rotor Development

    NASA Technical Reports Server (NTRS)

    Van Zante, Dale E.; Rizzi, Stephen A.

    2016-01-01

    The ERA project executed a comprehensive test program for Open Rotor aerodynamic and acoustic performance. System studies used the data to estimate the fuel burn savings and acoustic margin for an aircraft system with open rotor propulsion. The acoustic measurements were used to produce an auralization that compares the legacy blades to the current generation of open rotor designs.

  14. Geographical Theories.

    ERIC Educational Resources Information Center

    Golledge, Reginald G.

    1996-01-01

    Discusses the origin of theories in geography and particularly the development of location theories. Considers the influence of economic theory on agricultural land use, industrial location, and geographic location theories. Explores a set of interrelated activities that show how the marketing process illustrates process theory. (MJP)

  15. Renormalization constants from string theory.

    NASA Astrophysics Data System (ADS)

    di Vecchia, P.; Magnea, L.; Lerda, A.; Russo, R.; Marotta, R.

    The authors review some recent results on the calculation of renormalization constants in Yang-Mills theory using open bosonic strings. The technology of string amplitudes, supplemented with an appropriate continuation off the mass shell, can be used to compute the ultraviolet divergences of dimensionally regularized gauge theories. The results show that the infinite tension limit of string amplitudes corresponds to the background field method in field theory.

  16. Openness, Web 2.0 Technology, and Open Science

    ERIC Educational Resources Information Center

    Peters, Michael A.

    2010-01-01

    Open science is a term that is being used in the literature to designate a form of science based on open source models or that utilizes principles of open access, open archiving and open publishing to promote scientific communication. Open science increasingly also refers to open governance and more democratized engagement and control of science…

  17. Educational Theory

    ERIC Educational Resources Information Center

    Schubert, Leo

    1973-01-01

    Briefly describes two antagonistic learning theories: the Association Theory proposed by Skinner and the Field or Cognitive Theory supported by Piaget. Suggests the need for consistency in theoretical approach in the teaching of science at the college level. (JR)

  18. Parallelism in Open Learning and Working Environments.

    ERIC Educational Resources Information Center

    Min, Rik

    1994-01-01

    Analyzes shortcomings of computer monitors, including one-way communication and organization of the monitor display, when they are used with multimedia in open learning environments. Solutions are described according to the concepts and theories developed by Min, Koopal, Gritter, Struyker, Boudier, Coleman, Miltenburg, and Van Schaick Zillesen…

  19. Interactions of massless higher spin fields from string theory

    SciTech Connect

    Polyakov, Dimitri

    2010-09-15

    We construct vertex operators for massless higher spin fields in Ramond-Neveu-Schwarz superstring theory and compute some of their three-point correlators, describing gauge-invariant cubic interactions of the massless higher spins. The Fierz-Pauli on-shell conditions for the higher spins (including tracelessness and vanishing divergence) follow from the Becchi-Rouet-Stora-Tyutin-invariance conditions for the vertex operators constructed in this paper. The gauge symmetries of the massless higher spins emerge as a result of the Becchi-Rouet-Stora-Tyutin-nontriviality conditions for these operators, being equivalent to transformations with the traceless gauge parameter in the Fronsdal's approach. The gauge invariance of the interaction terms of the higher spins is therefore ensured automatically by that of the vertex operators in string theory. We develop a general algorithm to compute the cubic interactions of the massless higher spins and use it to explicitly describe the gauge-invariant interaction of two s=3 and one s=4 massless particles.

  20. Open Babel: An open chemical toolbox

    PubMed Central

    2011-01-01

    Background A frequent problem in computational modeling is the interconversion of chemical structures between different formats. While standard interchange formats exist (for example, Chemical Markup Language) and de facto standards have arisen (for example, SMILES format), the need to interconvert formats is a continuing problem due to the multitude of different application areas for chemistry data, differences in the data stored by different formats (0D versus 3D, for example), and competition between software along with a lack of vendor-neutral formats. Results We discuss, for the first time, Open Babel, an open-source chemical toolbox that speaks the many languages of chemical data. Open Babel version 2.3 interconverts over 110 formats. The need to represent such a wide variety of chemical and molecular data requires a library that implements a wide range of cheminformatics algorithms, from partial charge assignment and aromaticity detection, to bond order perception and canonicalization. We detail the implementation of Open Babel, describe key advances in the 2.3 release, and outline a variety of uses both in terms of software products and scientific research, including applications far beyond simple format interconversion. Conclusions Open Babel presents a solution to the proliferation of multiple chemical file formats. In addition, it provides a variety of useful utilities from conformer searching and 2D depiction, to filtering, batch conversion, and substructure and similarity searching. For developers, it can be used as a programming library to handle chemical data in areas such as organic chemistry, drug design, materials science, and computational chemistry. It is freely available under an open-source license from http://openbabel.org. PMID:21982300

  1. Universality and string theory

    NASA Astrophysics Data System (ADS)

    Bachlechner, Thomas Christian

    The first run at the Large Hadron Collider has deeply challenged conventional notions of naturalness, and CMB polarization experiments are about to open a new window to early universe cosmology. As a compelling candidate for the ultraviolet completion of the standard model, string theory provides a prime opportunity to study both early universe cosmology and particle physics. However, relating low energy observations to ultraviolet physics requires knowledge of the metastable states of string theory through the study of vacua. While it is difficult to directly obtain infrared data from explicit string theory constructions, string theory imposes constraints on low energy physics. The study of ensembles of low energy theories consistent with ultra-violet constraints provides insight on generic features we might expect to occur in string compactifications. In this thesis we present a statistical treatment of vacuum stability and vacuum properties in the context of random supergravity theories motivated by string theory. Early universe cosmology provides another avenue to high energy physics. From the low energy perspective large field inflation is typically considered highly unnatural: the scale relevant for the diameter of flat regions in moduli space is sub-Planckian in regions of perturbative control. To approach this problem, we consider generic Calabi-Yau compactifications of string theory and find that super-Planckian diameters of axion fundamental domains in fact arise generically. We further demonstrate that such super-Planckian flat regions are plausibly consistent with theWeak Gravity Conjecture.

  2. Family systems theory, attachment theory, and culture.

    PubMed

    Rothbaum, Fred; Rosen, Karen; Ujiie, Tatsuo; Uchida, Nobuko

    2002-01-01

    Family systems theory and attachment theory have important similarities and complementarities. Here we consider two areas in which the theories converge: (a) in family system theorists' description of an overly close, or "enmeshed," mother-child dyad, which attachment theorists conceptualize as the interaction of children's ambivalent attachment and mothers' preoccupied attachment; (b) in family system theorists' description of the "pursuer-distance cycle" of marital conflict, which attachment theorists conceptualize as the interaction of preoccupied and dismissive partners. We briefly review family systems theory evidence, and more extensively review attachment theory evidence, pertaining to these points of convergence. We also review cross-cultural research, which leads us to conclude that the dynamics described in both theories reflect, in part, Western ways of thinking and Western patterns of relatedness. Evidence from Japan suggests that extremely close ties between mother and child are perceived as adaptive, and are more common, and that children experience less adverse effects from such relationships than do children in the West. Moreover, in Japan there is less emphasis on the importance of the exclusive spousal relationship, and less need for the mother and father to find time alone to rekindle romantic, intimate feelings and to resolve conflicts by openly communicating their differences. Thus, the "maladaptive" pattern frequently cited by Western theorists of an extremely close mother-child relationship, an unromantic, conflictual marriage characterized by little verbal communication and a peripheral, distant father, may function very differently in other cultures. While we believe that both theories will be greatly enriched by their integration, we caution against the application of either theory outside the cultures in which they were developed.

  3. Opening and Closing in Open Systems.

    ERIC Educational Resources Information Center

    Klapp, Orrin E.

    In open information systems, such as in the case of human interchange with the self and the environment, input quantities have no upper limits. The human information utilization system, however, is psychologically and behaviorally unable to accept ever increasing loads of information. Because of this apparent fact, human information systems should…

  4. Opening Up Access to Open Access

    ERIC Educational Resources Information Center

    Singer, Ross

    2008-01-01

    As the corpus of gray literature grows and the price of serials rises, it becomes increasingly important to explore ways to integrate the free and open Web seamlessly into one's collections. Users, after all, are discovering these materials all the time via sites such as Google Scholar and Scirus or by searching arXiv.org or CiteSeer directly.…

  5. Applications of the holographic principle in string theory

    NASA Astrophysics Data System (ADS)

    Button, Bradly Kevin

    The holographic principle has become an extraordinary tool in theoretical physics, most notably in the form of the Anti-deSitter Conformal Field Theory (AdS/CFT) correspondence, in which classical gravitational degrees of freedom in N-dimensions are related quantum field theory degrees of freedom in N -- 1 dimensions in the limit of a large number of fields. Here we present an account of the AdS/CFT correspondence, also known as the gauge/gravity duality, from its origins in the large N 'tHooft expansion, up to Maldacena's proposal that type IIB string theory in the presence of D-branes at low energy is dual to an N = 4, d = 4, U(N) super Yang-Mills on AdS5 . S5 . We begin with an extensive review of (super)string theory including D-branes. We then present the general formulation of the AdS/CFT in the supergravity background of AdS5 x S5 , along with several examples of how it is used in terms of the identification of bulk fields with operators on the boundary of a CFT. We move on to discuss two applications of the gauge/gravity duality. The first is the application of the holographic gauge/gravity correspondence to the QCD k-string. The second applies the AdS/CFT formalism to a Kerr black hole solution embedded in 10-dimensional heterotic sting theory. These two applications of the holographic gauge/gravity duality comprise the original work presented here. We follow with summaries and discussions of the background material, the original work, and future investigations.

  6. [From the cell theory to the neuron theory].

    PubMed

    Tixier-Vidal, Andrée

    2010-01-01

    The relationship between the cell theory formulated by Schwann (1839) and by Virchow (1855) on the one hand, and, on the other hand, the neuron theory, as formulated by Waldeyer (1891) and by Cajal (1906), are discussed from a historical point of view. Both of them are the result of technical and conceptuel progress. Both of them had to fight against the dominant dogma before being accepted. The cell theory opposed the school of Bichat, the vitalist philosophy and the positivist philosophy of Auguste Comte. The neuron theory, which is clearly based on the cell theory, was mostly concerned with the mode of interneuronal communication; it opposed the concept of contiguity to Golgi's concept of continuity. At present, the cell theory remains central in every field of Biology. By contrast, the neuron theory, which until the middle of the XXth century opened the study of the nervous system to a necessary reductionnist approach, is no longer central to recent developments of neurosciences.

  7. The study of the action of self-friction field on the atom and molecular structures by using combined Hartree-Fock-Roothaan theory for closed and open shells of any symmetry

    NASA Astrophysics Data System (ADS)

    Mamedov, B. A.; Çopuroğlu, E.

    2016-06-01

    In this work, we study the effects of self-friction field on the states of a single configuration of closed and open shells by using the Combined Hartree-Fock-Roothaan equations for atomic-molecular and nuclear systems. Here, we present a program that implements the evaluation of the various properties of atoms and molecular systems with respect to the various values of self-friction quantum numbers. An especially fast and accurate algorithm for the calculation of the self-friction multicenter molecular integrals is obtained by using one-range addition theorems. To demonstrate the action of self-friction field on the atomic and molecular systems we have performed the calculations of H2O, CH3, CH2 and NH3 molecules. For the derivations of the orbital, kinetic and total energies and linear combination coefficients, the results are given for various values of self-friction quantum numbers. For various values of self-friction quantum numbers the obtained results of the orbital, kinetic and total energies and linear combination coefficients have been analyzed.

  8. Egress door opening assister

    DOEpatents

    Allison, Thomas L.

    2015-10-06

    A door opening spring assistance apparatus is set forth that will automatically apply a door opening assistance force using a combination of rods and coil springs. The release of the rods by the coil springs reduces the force required to set the door in motion.

  9. Open Rotor Aeroacoustic Modelling

    NASA Technical Reports Server (NTRS)

    Envia, Edmane

    2012-01-01

    Owing to their inherent fuel efficiency, there is renewed interest in developing open rotor propulsion systems that are both efficient and quiet. The major contributor to the overall noise of an open rotor system is the propulsor noise, which is produced as a result of the interaction of the airstream with the counter-rotating blades. As such, robust aeroacoustic prediction methods are an essential ingredient in any approach to designing low-noise open rotor systems. To that end, an effort has been underway at NASA to assess current open rotor noise prediction tools and develop new capabilities. Under this effort, high-fidelity aerodynamic simulations of a benchmark open rotor blade set were carried out and used to make noise predictions via existing NASA open rotor noise prediction codes. The results have been compared with the aerodynamic and acoustic data that were acquired for this benchmark open rotor blade set. The emphasis of this paper is on providing a summary of recent results from a NASA Glenn effort to validate an in-house open noise prediction code called LINPROP which is based on a high-blade-count asymptotic approximation to the Ffowcs-Williams Hawkings Equation. The results suggest that while predicting the absolute levels may be difficult, the noise trends are reasonably well predicted by this approach.

  10. Open Source Molecular Modeling

    PubMed Central

    Pirhadi, Somayeh; Sunseri, Jocelyn; Koes, David Ryan

    2016-01-01

    The success of molecular modeling and computational chemistry efforts are, by definition, dependent on quality software applications. Open source software development provides many advantages to users of modeling applications, not the least of which is that the software is free and completely extendable. In this review we categorize, enumerate, and describe available open source software packages for molecular modeling and computational chemistry. PMID:27631126

  11. Opening up Education: The Collective Advancement of Education through Open Technology, Open Content, and Open Knowledge

    ERIC Educational Resources Information Center

    Iiyoshi, Toru, Ed.; Kumar, M. S. Vijay, Ed.

    2008-01-01

    Given the abundance of open education initiatives that aim to make educational assets freely available online, the time seems ripe to explore the potential of open education to transform the economics and ecology of education. Despite the diversity of tools and resources already available--from well-packaged course materials to simple games, for…

  12. Guidelines on Open Expression.

    ERIC Educational Resources Information Center

    Pennsylvania Univ., Philadelphia.

    These Guidelines on open expression at the University of Pennsylvania include: (1) a statement of principles, expressing support for freedom of thought, inquiry, speech and lawful assembly, and for the need to ensure continuing openness and effectiveness of channels of communication; (2) a description of the newly created Committee on Open…

  13. Open Source Vision

    ERIC Educational Resources Information Center

    Villano, Matt

    2006-01-01

    Increasingly, colleges and universities are turning to open source as a way to meet their technology infrastructure and application needs. Open source has changed life for visionary CIOs and their campus communities nationwide. The author discusses what these technologists see as the benefits--and the considerations.

  14. Creating Open Source Conversation

    ERIC Educational Resources Information Center

    Sheehan, Kate

    2009-01-01

    Darien Library, where the author serves as head of knowledge and learning services, launched a new website on September 1, 2008. The website is built with Drupal, an open source content management system (CMS). In this article, the author describes how she and her colleagues overhauled the library's website to provide an open source content…

  15. The Argument for Open

    ERIC Educational Resources Information Center

    Byrd, Rob

    2008-01-01

    Is open source business intelligence (OS BI) software ready for prime time? The author thoroughly investigated each of three OS BI toolsets--Pentaho BI Suite, Jaspersoft BI Suite, and Talend Open Studio--by installing the OS BI tools himself, by interviewing technologists at academic institutions who had implemented these OS BI solutions, and by…

  16. Open Rotor Aeroacoustic Modeling

    NASA Technical Reports Server (NTRS)

    Envia, Edmane

    2012-01-01

    Owing to their inherent fuel efficiency, there is renewed interest in developing open rotor propulsion systems that are both efficient and quiet. The major contributor to the overall noise of an open rotor system is the propulsor noise, which is produced as a result of the interaction of the airstream with the counter-rotating blades. As such, robust aeroacoustic prediction methods are an essential ingredient in any approach to designing low-noise open rotor systems. To that end, an effort has been underway at NASA to assess current open rotor noise prediction tools and develop new capabilities. Under this effort, high-fidelity aerodynamic simulations of a benchmark open rotor blade set were carried out and used to make noise predictions via existing NASA open rotor noise prediction codes. The results have been compared with the aerodynamic and acoustic data that were acquired for this benchmark open rotor blade set. The emphasis of this paper is on providing a summary of recent results from a NASA Glenn effort to validate an in-house open noise prediction code called LINPROP which is based on a high-blade-count asymptotic approximation to the Ffowcs-Williams Hawkings Equation. The results suggest that while predicting the absolute levels may be difficult, the noise trends are reasonably well predicted by this approach.

  17. Opening a New Door

    ERIC Educational Resources Information Center

    Waters, John K.

    2007-01-01

    A growing number of K-12 districts are taking the open source plunge, both to cope with tight budgets and to escape proprietary vendor lock-in and expensive upgrade cycles. With the potential for cost savings and a growing number of educational applications, open source software is proving to be an effective alternative for schools willing to make…

  18. OpenSearch Status

    NASA Technical Reports Server (NTRS)

    Newman, Doug; Silva, Sam; Mitchell, Andrew

    2016-01-01

    We will present an overview of our OpenSearch efforts over the past 6 months. We will discuss our Best Practices and those of CEOS concentrating on the compatibility issues between the two. We will also discuss the state of earth data OpenSearch implementations and their adherence to the standards, extensions and best practices available.

  19. Triggered plasma opening switch

    DOEpatents

    Mendel, Clifford W.

    1988-01-01

    A triggerable opening switch for a very high voltage and current pulse includes a transmission line extending from a source to a load and having an intermediate switch section including a plasma for conducting electrons between transmission line conductors and a magnetic field for breaking the plasma conduction path and magnetically insulating the electrons when it is desired to open the switch.

  20. Set theory and physics

    NASA Astrophysics Data System (ADS)

    Svozil, K.

    1995-11-01

    Inasmuch as physical theories are formalizable, set theory provides a framework for theoretical physics. Four speculations about the relevance of set theoretical modeling for physics are presented: the role of transcendental set theory (i) in chaos theory, (ii) for paradoxical decompositions of solid three-dimensional objects, (iii) in the theory of effective computability (Church-Turing thesis) related to the possible “solution of supertasks,” and (iv) for weak solutions. Several approaches to set theory and their advantages and disadvatages for physical applications are discussed: Canlorian “naive” (i.e., nonaxiomatic) set theory, contructivism, and operationalism. In the author's opinion, an attitude of “suspended attention” (a term borrowed from psychoanalysis) seems most promising for progress. Physical and set theoretical entities must be operationalized wherever possible. At the same time, physicists should be open to “bizarre” or “mindboggling” new formalisms, which need not be operationalizable or testable at the lime of their creation, but which may successfully lead to novel fields of phenomenology and technology.

  1. Stability of open pathways

    PubMed Central

    Flach, Edward H.; Schnell, Santiago

    2010-01-01

    We consider the steady state of an open biochemical pathway, with controlled flow. Previously we have shown that the steady state of open enzyme catalysed reactions may be unstable, which discourages the application of the quasi-steady-state approximation (QSSA) (IEE Proc. Syst. Biol. 153 (2006) 187). Here we examine basic open biochemical pathway structures, to see the stability of their steady states. Following De Leenheer et al. (J. Math. Chem. 41 (2007) 295), we employ the Gershgorin circle theorem, which elegantly assesses stability. This is the key tool for our analysis. Once we have the linear stability matrix laid out in a suitable form, the application of the method is straightforward. We find that in open biochemical pathways, simple chains, branches and loops always have stable steady states. We conclude that simple open pathways are stable. PMID:20875827

  2. Physics and proof theory

    PubMed Central

    Paleo, Bruno Woltzenlogel

    2012-01-01

    Axiomatization of Physics (and science in general) has many drawbacks that are correctly criticized by opposing philosophical views of science. This paper shows that, by giving formal proofs a more prominent role in the formalization, many of the drawbacks can be solved and many of the opposing views are naturally conciliated. Moreover, this approach allows, by means of proof theory, to open new conceptual bridges between the disciplines of Physics and Computer Science. PMID:24976655

  3. Time-dependent density functional theory/discrete reaction field spectra of open shell systems: The visual spectrum of [FeIII(PyPepS)2]- in aqueous solution.

    PubMed

    van Duijnen, Piet Th; Greene, Shannon N; Richards, Nigel G J

    2007-07-28

    We report the calculated visible spectrum of [FeIII(PyPepS)2]- in aqueous solution. From all-classical molecular dynamics simulations on the solute and 200 water molecules with a polarizable force field, 25 solute/solvent configurations were chosen at random from a 50 ps production run and subjected the systems to calculations using time-dependent density functional theory (TD-DFT) for the solute, combined with a solvation model in which the water molecules carry charges and polarizabilities. In each calculation the first 60 excited states were collected in order to span the experimental spectrum. Since the solute has a doublet ground state several excitations to states are of type "three electrons in three orbitals," each of which gives rise to a manifold of a quartet and two doublet states which cannot properly be represented by single Slater determinants. We applied a tentative scheme to analyze this type of spin contamination in terms of Delta and Delta transitions between the same orbital pairs. Assuming the associated states as pure single determinants obtained from restricted calculations, we construct conformation state functions (CFSs), i.e., eigenfunctions of the Hamiltonian Sz and S2, for the two doublets and the quartet for each Delta,Delta pair, the necessary parameters coming from regular and spin-flip calculations. It appears that the lower final states remain where they were originally calculated, while the higher states move up by some tenths of an eV. In this case filtering out these higher states gives a spectrum that compares very well with experiment, but nevertheless we suggest investigating a possible (re)formulation of TD-DFT in terms of CFSs rather than determinants.

  4. In Praise of Openness

    NASA Astrophysics Data System (ADS)

    Arunachalam, S.

    2010-10-01

    Open access brings greater visibility and impact to the work of scientists as is evidenced in the examples discussed in this paper. Researchers are often reluctant and afraid to deposit their works in Institutional Repositories. However, as is shown here, once they do so, they do not regret it. Open access will shortly become the norm and will be accepted by the vast majority of scientists. Seen through the lens of the philosophy of Bertrand Russell, the moral, economic and philosophical imperatives for open access are indeed strong.

  5. New string theory vacua with suppressed proton decay

    NASA Astrophysics Data System (ADS)

    Reinbacher, Rene

    In this thesis we construct new heterotic superstring vacua with suppressed proton decay. More concretely, we construct Calabi-Yau threefolds Z with fundamental group Z2xZ2 . These threefolds carry Ricci flat hermitian metrics [48] which we use to solve the gravitational part of the string theory equation of motions. Furthermore, these Calabi-Yau threefolds allow the existence of Z2xZ2 Wilson loops. On these threefolds Z we construct stable, holomorphic vector bundles with SU(4) structure group. It follows from a famous theorem by Donaldson [20], Uhlenbeck and Yau [47] that these vector bundles correspond to gauge field configurations whose fields strength obey the hermitian Yang-Mills equations. Therefore, in constructing these vector bundles, we solve the gauge theoretic part of the string theory equations of motion. These vacuum solutions of heterotic string theory give, in conjunction with Z2xZ2 Wilson loops, consistent four dimensional N = 1 supersymmetric vacua with three families of quarks and leptons. The four dimensional gauge group is the standard-model-like group SU3Cx SU2WxU 1YxU1 B-L. The additional gauge symmetry U(1) B--L is used to suppress the most egregious proton decay modes. In addition, we calculate in this thesis the moduli space of SU(n) x SU( m) vector bundles on simply connected Calabi-Yau spaces X. Such gauge configurations can arise in strongly coupled heterotic string theory in certain phase transitions [42], called small instanton transitions [52].

  6. Commentary: open access, open business, closed fairness!

    PubMed

    Moustafa, Khaled

    2015-01-01

    A strong trend to move from print to online publication is largely perceived in scientific and nonscientific fields. A growing number of publishers increasingly opt for online publication as an option or a compulsory alternative. From readers' perspective, this is a highly appreciated facility, but from the author's, things are different mainly because of excessive article processing charges (APC) that make the open access system sometimes as a hindrance for many authors but a lucrative enterprise for many shareholders, enticing the most traditional and conservative publishers.

  7. Opto-electronic properties of P-doped nc-Si-QD/a-SiC:H thin films as foundation layer for all-Si solar cells in superstrate configuration

    NASA Astrophysics Data System (ADS)

    Kar, Debjit; Das, Debajyoti

    2016-07-01

    With the advent of nc-Si solar cells having improved stability, the efficient growth of nc-Si i-layer of the top cell of an efficient all-Si solar cell in the superstrate configuration prefers nc-Si n-layer as its substrate. Accordingly, a wide band gap and high conducting nc-Si alloy material is a basic requirement at the n-layer. Present investigation deals with the development of phosphorous doped n-type nanocrystalline silicon quantum dots embedded in hydrogenated amorphous silicon carbide (nc-Si-QD/a-SiC:H) hetero-structure films, wherein the optical band gap can be widened by the presence of Si-C bonds in the amorphous matrix and the embedded high density tiny nc-Si-QDs could provide high electrical conductivity, particularly in P-doped condition. The nc-Si-QDs simultaneously facilitate further widening of the optical band gap by virtue of the associated quantum confinement effect. A complete investigation has been made on the electrical transport phenomena involving charge transfer by tunneling and thermionic emission prevailing in n-type nc-Si-QD/a-SiC:H thin films. Their correlation with different phases of the specific heterostructure has been carried out for detailed understanding of the material, in order to improve its device applicability. The n-type nc-Si-QD/a-SiC:H films exhibit a thermally activated electrical transport above room temperature and multi-phonon hopping (MPH) below room temperature, involving defects in the amorphous phase and the grain-boundary region. The n-type nc-Si-QD/a-SiC:H films grown at ˜300 °C, demonstrating wide optical gap ˜1.86-1.96 eV and corresponding high electrical conductivity ˜4.5 × 10-1-1.4 × 10-2 S cm-1, deserve to be an effective foundation layer for the top nc-Si sub-cell of all-Si solar cells in n-i-p structure with superstrate configuration.

  8. Packaging Theory.

    ERIC Educational Resources Information Center

    Williams, Jeffrey

    1994-01-01

    Considers the recent flood of anthologies of literary criticism and theory as exemplifications of the confluence of pedagogical concerns, economics of publishing, and other historical factors. Looks specifically at how these anthologies present theory. Cites problems with their formatting theory and proposes alternative ways of organizing theory…

  9. Defining Open Education

    ERIC Educational Resources Information Center

    Walberg, Herbert J.; Thomas, Susan Christie

    1974-01-01

    Authors believed that sharper definitions of open education can keep the current movement authentic to its early consensus ideals while avoiding dogma, orthodoxy, discipleships: charisma, and latter-day carpetbagging. (Author/RK)

  10. Open Rotor Spin Test

    NASA Video Gallery

    An open rotor, also known as a high-speed propeller, is tested in a wind tunnel. The propeller moves much more quickly than a standard propeller, and the blades of the propeller are shaped differen...

  11. PWC Opens up

    ERIC Educational Resources Information Center

    Weinstein, Margery

    2011-01-01

    Coming up with the latest and greatest learning curriculum for employees year after year can be overwhelming--especially if one works for a small or mid-size company with minimal resources. Fortunately, there is a burgeoning trend that three-time No. 1 Top 125er PwC is helping to "open" up. In creating PwC Open University, the professional…

  12. Open source molecular modeling.

    PubMed

    Pirhadi, Somayeh; Sunseri, Jocelyn; Koes, David Ryan

    2016-09-01

    The success of molecular modeling and computational chemistry efforts are, by definition, dependent on quality software applications. Open source software development provides many advantages to users of modeling applications, not the least of which is that the software is free and completely extendable. In this review we categorize, enumerate, and describe available open source software packages for molecular modeling and computational chemistry. An updated online version of this catalog can be found at https://opensourcemolecularmodeling.github.io.

  13. OpenTopography

    NASA Astrophysics Data System (ADS)

    Baru, C.; Arrowsmith, R.; Crosby, C.; Nandigam, V.; Phan, M.; Cowart, C.

    2012-04-01

    OpenTopography is a cyberinfrastructure-based facility for online access to high-resolution topography and tools. The project is an outcome of the Geosciences Network (GEON) project, which was a research project funded several years ago in the US to investigate the use of cyberinfrastructure to support research and education in the geosciences. OpenTopography provides online access to large LiDAR point cloud datasets along with services for processing these data. Users are able to generate custom DEMs by invoking DEM services provided by OpenTopography with custom parameter values. Users can track the progress of their jobs, and a private myOpenTopo area retains job information and job outputs. Data available at OpenTopography are provided by a variety of data acquisition groups under joint agreements and memoranda of understanding (MoU). These include national facilities such as the National Center for Airborne Lidar Mapping, as well as local, state, and federal agencies. OpenTopography is also being designed as a hub for high-resolution topography resources. Datasets and services available at other locations can also be registered here, providing a "one-stop shop" for such information. We will describe the OpenTopography system architecture and its current set of features, including the service-oriented architecture, a job-tracking database, and social networking features. We will also describe several design and development activities underway to archive and publish datasets using digital object identifiers (DOIs); create a more flexible and scalable high-performance environment for processing of large datasets; extend support for satellite-based and terrestrial lidar as well as synthetic aperture radar (SAR) data; and create a "pluggable" infrastructure for third-party services. OpenTopography has successfully created a facility for sharing lidar data. In the next phase, we are developing a facility that will also enable equally easy and successful sharing of

  14. The Open AUC Project.

    PubMed

    Cölfen, Helmut; Laue, Thomas M; Wohlleben, Wendel; Schilling, Kristian; Karabudak, Engin; Langhorst, Bradley W; Brookes, Emre; Dubbs, Bruce; Zollars, Dan; Rocco, Mattia; Demeler, Borries

    2010-02-01

    Progress in analytical ultracentrifugation (AUC) has been hindered by obstructions to hardware innovation and by software incompatibility. In this paper, we announce and outline the Open AUC Project. The goals of the Open AUC Project are to stimulate AUC innovation by improving instrumentation, detectors, acquisition and analysis software, and collaborative tools. These improvements are needed for the next generation of AUC-based research. The Open AUC Project combines on-going work from several different groups. A new base instrument is described, one that is designed from the ground up to be an analytical ultracentrifuge. This machine offers an open architecture, hardware standards, and application programming interfaces for detector developers. All software will use the GNU Public License to assure that intellectual property is available in open source format. The Open AUC strategy facilitates collaborations, encourages sharing, and eliminates the chronic impediments that have plagued AUC innovation for the last 20 years. This ultracentrifuge will be equipped with multiple and interchangeable optical tracks so that state-of-the-art electronics and improved detectors will be available for a variety of optical systems. The instrument will be complemented by a new rotor, enhanced data acquisition and analysis software, as well as collaboration software. Described here are the instrument, the modular software components, and a standardized database that will encourage and ease integration of data analysis and interpretation software.

  15. Grounded theory.

    PubMed

    Harris, Tina

    2015-04-29

    Grounded theory is a popular research approach in health care and the social sciences. This article provides a description of grounded theory methodology and its key components, using examples from published studies to demonstrate practical application. It aims to demystify grounded theory for novice nurse researchers, by explaining what it is, when to use it, why they would want to use it and how to use it. It should enable nurse researchers to decide if grounded theory is an appropriate approach for their research, and to determine the quality of any grounded theory research they read.

  16. rOpenSci - open tools for open science

    NASA Astrophysics Data System (ADS)

    Ram, K.

    2013-12-01

    Solving many of the basic and applied challenges in ecology and evolution requires access to large amounts of data, often spanning long spatial and temporal scales. The long-established model where researchers collect and analyze their own data will soon be replaced by one where disparate datasets are brought to bear on both basic and applied problems. As science becomes more data-driven, it faces a whole new set of challenges. Researchers will not only have to maintain expertise in their domains but also learn new skills to curate, retrieve, and analyze these newly available data. In order to fully realize the potential of data-driven science and allow researchers to draw insights from these vast data stores, we need to address challenges associated with all aspects of the research life cycle. To foster and support a new generation of data-driven science, my colleagues and I founded a project called rOpenSci (http://ropensci.org). The project is an integrated effort to build tools and training using Ecology and Evolution as a model community. In this talk I will outline several of the barriers that need to be overcome including better incentive mechanisms for data, training gaps, and lowering technical barriers.

  17. Probability Theory

    NASA Astrophysics Data System (ADS)

    Jaynes, E. T.; Bretthorst, G. Larry

    2003-04-01

    Foreword; Preface; Part I. Principles and Elementary Applications: 1. Plausible reasoning; 2. The quantitative rules; 3. Elementary sampling theory; 4. Elementary hypothesis testing; 5. Queer uses for probability theory; 6. Elementary parameter estimation; 7. The central, Gaussian or normal distribution; 8. Sufficiency, ancillarity, and all that; 9. Repetitive experiments, probability and frequency; 10. Physics of 'random experiments'; Part II. Advanced Applications: 11. Discrete prior probabilities, the entropy principle; 12. Ignorance priors and transformation groups; 13. Decision theory: historical background; 14. Simple applications of decision theory; 15. Paradoxes of probability theory; 16. Orthodox methods: historical background; 17. Principles and pathology of orthodox statistics; 18. The Ap distribution and rule of succession; 19. Physical measurements; 20. Model comparison; 21. Outliers and robustness; 22. Introduction to communication theory; References; Appendix A. Other approaches to probability theory; Appendix B. Mathematical formalities and style; Appendix C. Convolutions and cumulants.

  18. openPMD-viewer

    SciTech Connect

    Lehe, Remi

    2015-10-01

    Many simulation software produce data in the form of a set of field values or of a set of particle positions. (one such example is that of particle-in-cell codes, which produce data on the electromagnetic fields that they simulate.) However, each particular software uses its own particular format and layout, for the output data. This makes it difficult to compare the results of different simulation software, or to have a common visualization tool for these results. However, a standardized layout for fields and particles has recently been developed: the openPMD format ( HYPERLINK "http://www.openpmd.org/"www.openpmd.org) This format is open- source, and specifies a standard way in which field data and particle data should be written. The openPMD format is already implemented in the particle-in-cell code Warp (developed at LBL) and in PIConGPU (developed at HZDR, Germany). In this context, the proposed software (openPMD-viewer) is a Python package, which allows to access and visualize any data which has been formatted according to the openPMD standard. This package contains two main components: - a Python API, which allows to read and extract the data from a openPMD file, so as to be able to work with it within the Python environment. (e.g. plot the data and reprocess it with particular Python functions) - a graphical interface, which works with the ipython notebook, and allows to quickly visualize the data and browse through a set of openPMD files. The proposed software will be typically used when analyzing the results of numerical simulations. It will be useful to quickly extract scientific meaning from a set of numerical data.

  19. Open problems in understanding the nuclear chirality

    NASA Astrophysics Data System (ADS)

    Meng, Jie; Zhang, S. Q.

    2010-06-01

    Open problems in the interpretation of the observed pair of near-degenerate ΔI = 1 bands with the same parity as the chiral doublet bands are discussed. The ambiguities for the existing fingerprints of the chirality in atomic nuclei and problems in existing theory are discussed, including the description of quantum tunneling in the mean field approximation as well as the deformation, core polarization and configuration of the particle rotor model (PRM). Future developments of the theoretical approach are anticipated.

  20. Physicochemical insight into gap openings in graphene

    PubMed Central

    Zhu, Y. F.; Dai, Q. Q.; Zhao, M.; Jiang, Q.

    2013-01-01

    Based on a newly developed size-dependent cohesive energy formula for two-dimensional materials, a unified theoretical model was established to illustrate the gap openings in disordered graphene flakes, involving quantum dots, nanoribbons and nanoporous sheets. It tells us that the openings are essentially dominated by the variation in cohesive energy of C atoms, associated to the edge physicochemical nature regarding the coordination imperfection or the chemical bonding. In contrast to those ideal flakes, consequently, the gaps can be opened monotonously for disordered flakes on changing their sizes, affected by the dimension, geometric shape and the edge saturation. Using the density functional theory, accordingly, the electronic structures of disordered flakes differ to the ideal case because of the edge disorder. Our theoretical predictions have been validated by available experimental results, and provide us a distinct way for the quantitative modulation of bandgap in graphene for nanoelectronics. PMID:23524635

  1. Global OpenSearch

    NASA Astrophysics Data System (ADS)

    Newman, D. J.; Mitchell, A. E.

    2015-12-01

    At AGU 2014, NASA EOSDIS demonstrated a case-study of an OpenSearch framework for Earth science data discovery. That framework leverages the IDN and CWIC OpenSearch API implementations to provide seamless discovery of data through the 'two-step' discovery process as outlined by the Federation for Earth Sciences (ESIP) OpenSearch Best Practices. But how would an Earth Scientist leverage this framework and what are the benefits? Using a client that understands the OpenSearch specification and, for further clarity, the various best practices and extensions, a scientist can discovery a plethora of data not normally accessible either by traditional methods (NASA Earth Data Search, Reverb, etc) or direct methods (going to the source of the data) We will demonstrate, via the CWICSmart web client, how an earth scientist can access regional data on a regional phenomena in a uniform and aggregated manner. We will demonstrate how an earth scientist can 'globalize' their discovery. You want to find local data on 'sea surface temperature of the Indian Ocean'? We can help you with that. 'European meteorological data'? Yes. 'Brazilian rainforest satellite imagery'? That too. CWIC allows you to get earth science data in a uniform fashion from a large number of disparate, world-wide agencies. This is what we mean by Global OpenSearch.

  2. The Peer Reviewers' Openness Initiative: incentivizing open research practices through peer review

    PubMed Central

    Chambers, Christopher D.; Etchells, Peter J.; Harris, Christine R.; Hoekstra, Rink; Lakens, Daniël; Morey, Candice Coker; Newman, Daniel P.; Schönbrodt, Felix D.; Wagenmakers, Eric-Jan; Zwaan, Rolf A.

    2016-01-01

    Openness is one of the central values of science. Open scientific practices such as sharing data, materials and analysis scripts alongside published articles have many benefits, including easier replication and extension studies, increased availability of data for theory-building and meta-analysis, and increased possibility of review and collaboration even after a paper has been published. Although modern information technology makes sharing easier than ever before, uptake of open practices had been slow. We suggest this might be in part due to a social dilemma arising from misaligned incentives and propose a specific, concrete mechanism—reviewers withholding comprehensive review—to achieve the goal of creating the expectation of open practices as a matter of scientific principle. PMID:26909182

  3. Swimming into the Open

    ERIC Educational Resources Information Center

    Drayton, Brendaly; Rosser-Mims, Dionne; Schwartz, Joni; Guy, Talmadge C.

    2016-01-01

    This concluding chapter discusses the important contribution Black men's voices have made and can make to adult education theory and practice. Particular emphasis is placed on troubling the various factors that contribute to the silencing of those voices.

  4. Open system environment procurement

    NASA Technical Reports Server (NTRS)

    Fisher, Gary

    1994-01-01

    Relationships between the request for procurement (RFP) process and open system environment (OSE) standards are described. A guide was prepared to help Federal agency personnel overcome problems in writing an adequate statement of work and developing realistic evaluation criteria when transitioning to an OSE. The guide contains appropriate decision points and transition strategies for developing applications that are affordable, scalable and interoperable across a broad range of computing environments. While useful, the guide does not eliminate the requirement that agencies posses in-depth expertise in software development, communications, and database technology in order to evaluate open systems.

  5. Graph Theory

    SciTech Connect

    Sanfilippo, Antonio P.

    2005-12-27

    Graph theory is a branch of discrete combinatorial mathematics that studies the properties of graphs. The theory was pioneered by the Swiss mathematician Leonhard Euler in the 18th century, commenced its formal development during the second half of the 19th century, and has witnessed substantial growth during the last seventy years, with applications in areas as diverse as engineering, computer science, physics, sociology, chemistry and biology. Graph theory has also had a strong impact in computational linguistics by providing the foundations for the theory of features structures that has emerged as one of the most widely used frameworks for the representation of grammar formalisms.

  6. Game theory.

    PubMed

    Dufwenberg, Martin

    2011-03-01

    Game theory is a toolkit for examining situations where decision makers influence each other. I discuss the nature of game-theoretic analysis, the history of game theory, why game theory is useful for understanding human psychology, and why game theory has played a key role in the recent explosion of interest in the field of behavioral economics. WIREs Cogni Sci 2011 2 167-173 DOI: 10.1002/wcs.119 For further resources related to this article, please visit the WIREs website.

  7. Confabulation Theory

    NASA Astrophysics Data System (ADS)

    Solari, Soren; Smith, Andrew; Minnett, Rupert; Hecht-Nielsen, Robert

    2008-06-01

    Confabulation Theory [Hecht-Nielsen R. Confabulation theory. Springer-Verlag; 2007] is the first comprehensive theory of human and animal cognition. Here, we briefly describe Confabulation Theory and discuss experimental results that suggest the theory is correct. Simply put, Confabulation Theory proposes that thinking is like moving. In humans, the theory postulates that there are roughly 4000 thalamocortical modules, the “muscles of thought”. Each module performs an internal competition ( confabulation) between its symbols, influenced by inputs delivered via learned axonal associations with symbols in other modules. In each module, this competition is controlled, as in an individual muscle, by a single graded (i.e., analog) thought control signal. The final result of this confabulation process is a single active symbol, the expression of which also results in launching of action commands that trigger and control subsequent movements and/or thought processes. Modules are manipulated in groups under coordinated, event-contingent control, in a similar manner to our 700 muscles. Confabulation Theory hypothesizes that the control of thinking is a direct evolutionary outgrowth of the control of movement. Establishing a complete understanding of Confabulation Theory will require launching and sustaining a massive new phalanx of confabulation neuroscience research.

  8. Topology theory on rough sets.

    PubMed

    Wu, QingE; Wang, Tuo; Huang, YongXuan; Li, JiSheng

    2008-02-01

    For further studying the theories and applications of rough sets (RS), this paper proposes a new theory on RS, which mainly includes topological space, topological properties, homeomorphism, and its properties on RS by some new definitions and theorems given. The relationship between partition and countable open covering is discussed, and some applications based on the topological rough space and its topological properties are introduced. Moreover, some perspectives for future research are given. Throughout this paper, the advancements of the new theory on RS and topological algebra not only represent an important theoretical value but also exhibit significant applications of RS and topology.

  9. Theory into Practice Goes Exactly

    ERIC Educational Resources Information Center

    Griffiths, Jonny

    2007-01-01

    "Dimensions of possible variation" is a phrase that now occupies a safe place in the literature describing the application of education theory to education practice: "asking yourself what could be changed [in the task], while using the same approach or technique, opens up dimensions of possible variation. A set of exercises forming a sequence of…

  10. Open Entry/Open Exit Study. Final Report.

    ERIC Educational Resources Information Center

    Berg, Marvin

    Open entry/open exit refers to formats and procedures which allow learners to enter a program whenever they are ready and available, and allows them to leave or complete programs when competencies for job entry are attained. This study sought to provide base data on the concept of open entry/open exit by surveying involved individuals and to…

  11. Open-Source Colorimeter

    PubMed Central

    Anzalone, Gerald C.; Glover, Alexandra G.; Pearce, Joshua M.

    2013-01-01

    The high cost of what have historically been sophisticated research-related sensors and tools has limited their adoption to a relatively small group of well-funded researchers. This paper provides a methodology for applying an open-source approach to design and development of a colorimeter. A 3-D printable, open-source colorimeter utilizing only open-source hardware and software solutions and readily available discrete components is discussed and its performance compared to a commercial portable colorimeter. Performance is evaluated with commercial vials prepared for the closed reflux chemical oxygen demand (COD) method. This approach reduced the cost of reliable closed reflux COD by two orders of magnitude making it an economic alternative for the vast majority of potential users. The open-source colorimeter demonstrated good reproducibility and serves as a platform for further development and derivation of the design for other, similar purposes such as nephelometry. This approach promises unprecedented access to sophisticated instrumentation based on low-cost sensors by those most in need of it, under-developed and developing world laboratories. PMID:23604032

  12. Open Source in Education

    ERIC Educational Resources Information Center

    Lakhan, Shaheen E.; Jhunjhunwala, Kavita

    2008-01-01

    Educational institutions have rushed to put their academic resources and services online, beginning the global community onto a common platform and awakening the interest of investors. Despite continuing technical challenges, online education shows great promise. Open source software offers one approach to addressing the technical problems in…

  13. Presto: Open Inquiry!

    ERIC Educational Resources Information Center

    Hermann, Ronald S.; Miranda, Rommel J.

    2010-01-01

    Although inquiry-based science teaching has been around since the 1960s, many teachers are slow to incorporate inquiry principles into their science lessons. The authors address this issue by using an analogy between a magician's card trick and open inquiry. This analogy was chosen to portray a difference of perspective and demonstrate how the…

  14. The Open Storage Dilemma

    ERIC Educational Resources Information Center

    Orcutt, Kimberly

    2011-01-01

    Over the past three decades, open storage facilities have been established at four major museums in order to address the long-standing problem of lack of gallery space for putting collections on view. While making tens of thousands of objects available to visitors represents a great leap forward in accessibility, it raises inherent questions about…

  15. Massive and Open

    ERIC Educational Resources Information Center

    Fasimpaur, Karen

    2013-01-01

    MOOCs--massive open online courses--are all the rage these days, with hundreds of thousands of participants signing up and investors plunking down millions to get a piece of the pie. Why is there so much excitement about this new disruptive form of online learning, and how does this model apply to professional learning for teachers? Traditional…

  16. Openers for Biology Classes.

    ERIC Educational Resources Information Center

    Gridley, C. Robert R.

    This teaching guide contains 200 activities that are suitable for openers and demonstrations in biology classes. Details are provided regarding the use of these activities. Some of the broad topics under which the activities are organized include algae, amphibians, bacteria, biologists, crustaceans, dinosaurs, ecology, evolution, flowering plants,…

  17. Open Systems Interconnection.

    ERIC Educational Resources Information Center

    Denenberg, Ray

    1985-01-01

    Discusses the need for standards allowing computer-to-computer communication and gives examples of technical issues. The seven-layer framework of the Open Systems Interconnection (OSI) Reference Model is explained and illustrated. Sidebars feature public data networks and Recommendation X.25, OSI standards, OSI layer functions, and a glossary.…

  18. Evaluating Open Source Portals

    ERIC Educational Resources Information Center

    Goh, Dion; Luyt, Brendan; Chua, Alton; Yee, See-Yong; Poh, Kia-Ngoh; Ng, How-Yeu

    2008-01-01

    Portals have become indispensable for organizations of all types trying to establish themselves on the Web. Unfortunately, there have only been a few evaluative studies of portal software and even fewer of open source portal software. This study aims to add to the available literature in this important area by proposing and testing a checklist for…

  19. TIRES, OPEN BURNING

    EPA Science Inventory

    The chapter describes available information on the health effects from open burning of rubber tires. It concentrates on the three known sources of detailed measurements: (1) a small-scale emissions characterization study performed by the U.S. EPA in a facility designed to simulat...

  20. Van: An Open Letter

    ERIC Educational Resources Information Center

    Tieman, John Samuel

    2011-01-01

    This essay is an open letter from a classroom teacher to a concerned citizen. The letter lists a variety of problems caused largely by standardization and the more corrosive effects of positivism. Many of these problems are unknown to those outside the immediate school setting. While the letter focuses on a specific setting, an inner city school…

  1. Surgical wound care - open

    MedlinePlus

    Surgical incision care; Open wound care ... your wound again with sutures, you need to care for it at home, since it may take ... Your health care provider will tell you how often to change your dressing . To prepare for the dressing change: Clean your ...

  2. An Open Forum Article.

    ERIC Educational Resources Information Center

    Thieblot, Bernice A.

    1990-01-01

    Presents an open letter addressed to Morton B. Zuckerman of "U.S. News & World Report" concerning the magazine's survey/article "America's Best Colleges" which received a great deal of public attention. Criticizes the survey for failing to help families make better choices among institutions and failing to encourage colleges to do a better job for…

  3. Open Mind Conference

    NASA Technical Reports Server (NTRS)

    King, Alexander H.

    1995-01-01

    Open Mind, The Association for the achievement of diversity in higher education, met in conference in Albuquerque, New Mexico, between October 16 and 18, 1992. A number of workgroups met to discuss the goals, structure, and generally evaluate the Association and its achievements. A summary of the workgroup sessions and their minutes are included.

  4. Apraxia of lid opening.

    PubMed

    Ugarte, Marta; Teimory, Masoud

    2007-07-01

    We describe eyelid movement abnormalities in an 80-year-old man with apraxia of lid opening (ALO), resulting from involuntary levator palpebrae inhibition (ILPI) and pretarsal orbicularis oculi (OO) contraction. He was unable to open his lids at will following closure. Attempted eye opening resulted in forceful contraction of the frontalis muscle, backward thrusting of the head and lengthened lid closure. The inability to reopen the lids was not evident during spontaneous reflex blinking and he had no difficulty in keeping the lids open once they had been manually lifted up. There were no episodes of involuntary drooping of the eyelids or spasmodic contraction of the OO causing involuntary eyelid closure. Pursuit eye movements were not restricted, the vestibulo-ocular reflex was preserved and both horizontal and vertical saccades were normal. Despite the clinically visible persistence of pretarsal OO activity, treatment with botulinum toxin injections in the pretarsal and preseptal portions of the muscle did not reduce his difficulty in initiating lid elevation but he found some benefit using lid crutches. ALO is thought to be due to an abnormality in the supranuclear control of eyelid movement. ILPI can present either isolated or combined with blepharospasm. The excitatory levator palpebrae response necessary to lift the lids up is likely to be in very close connection with the OO antagonistic inhibitory response. Alterations in one or another pre-motor structure may result in inability to raise the lids due to inhibition of the levator palpebrae as well as persistence of the pretarsal OO.

  5. APS and Open Access

    NASA Astrophysics Data System (ADS)

    2011-03-01

    The movement toward Open Access continues to gain momentum. A brief review of APS efforts in this area will be presented by APS Editor in Chief, Gene Sprouse. Editors from Physical Review A, B, E, Focus, Letters, and X, Reviews of Modern Physics, and Physics will address your questions about publishing in this evolving environment.

  6. Open Educational Resources

    ERIC Educational Resources Information Center

    McShane, Michael Q.

    2017-01-01

    While digital products have made significant inroads into the educational resources market, textbooks and other print materials still command about 60 percent of sales. But whether print or digital, all of these commercial offerings now face threats from a burgeoning effort to promote "open" resources for education--that is, materials…

  7. Areal Theory

    NASA Astrophysics Data System (ADS)

    Curtright, Thomas

    2002-07-01

    New features are described for models with multi-particle area-dependent potentials, in any number of dimensions. The corresponding many-body field theories are investigated for classical configurations. Some explicit solutions are given, and some conjectures are made about chaos in such field theories.

  8. Expert "vs." Novice: Approaches Used by Chemists When Solving Open-Ended Problems

    ERIC Educational Resources Information Center

    Randles, C. A.; Overton, T. L.

    2015-01-01

    This paper describes the results of a qualitative study using ground theory to investigate the different approaches used by chemists when answering open-ended problems. The study involved undergraduate, industrialist and academic participants who individually answered three open-ended problems using a think aloud protocol. Open-ended problems are…

  9. Opening Reproducible Research

    NASA Astrophysics Data System (ADS)

    Nüst, Daniel; Konkol, Markus; Pebesma, Edzer; Kray, Christian; Klötgen, Stephanie; Schutzeichel, Marc; Lorenz, Jörg; Przibytzin, Holger; Kussmann, Dirk

    2016-04-01

    Open access is not only a form of publishing such that research papers become available to the large public free of charge, it also refers to a trend in science that the act of doing research becomes more open and transparent. When science transforms to open access we not only mean access to papers, research data being collected, or data being generated, but also access to the data used and the procedures carried out in the research paper. Increasingly, scientific results are generated by numerical manipulation of data that were already collected, and may involve simulation experiments that are completely carried out computationally. Reproducibility of research findings, the ability to repeat experimental procedures and confirm previously found results, is at the heart of the scientific method (Pebesma, Nüst and Bivand, 2012). As opposed to the collection of experimental data in labs or nature, computational experiments lend themselves very well for reproduction. Some of the reasons why scientists do not publish data and computational procedures that allow reproduction will be hard to change, e.g. privacy concerns in the data, fear for embarrassment or of losing a competitive advantage. Others reasons however involve technical aspects, and include the lack of standard procedures to publish such information and the lack of benefits after publishing them. We aim to resolve these two technical aspects. We propose a system that supports the evolution of scientific publications from static papers into dynamic, executable research documents. The DFG-funded experimental project Opening Reproducible Research (ORR) aims for the main aspects of open access, by improving the exchange of, by facilitating productive access to, and by simplifying reuse of research results that are published over the Internet. Central to the project is a new form for creating and providing research results, the executable research compendium (ERC), which not only enables third parties to

  10. Direct Simulation Monte Carlo: Theory, Methods, and Open Challenges

    DTIC Science & Technology

    2011-01-01

    SUPPLEMENTARY NOTES See also ADA579248. Models and Computational Methods for Rarefied Flows (Modeles et methodes de calcul des coulements de gaz rarefies ). RTO...either flow properties (e.g., temperature field in the flow ) or surface quantities (e.g., drag and lift for a vehicle) and these are measured by... flows , on the first time step one should use ½ Δt (Strang splitting) to maintain temporal accuracy. If measuring non-conserved variables (e.g

  11. Non-Hermitian Euclidean random matrix theory.

    PubMed

    Goetschy, A; Skipetrov, S E

    2011-07-01

    We develop a theory for the eigenvalue density of arbitrary non-Hermitian Euclidean matrices. Closed equations for the resolvent and the eigenvector correlator are derived. The theory is applied to the random Green's matrix relevant to wave propagation in an ensemble of pointlike scattering centers. This opens a new perspective in the study of wave diffusion, Anderson localization, and random lasing.

  12. Open inflation in the landscape

    NASA Astrophysics Data System (ADS)

    Yamauchi, Daisuke; Linde, Andrei; Naruko, Atsushi; Sasaki, Misao; Tanaka, Takahiro

    2011-08-01

    The open inflation scenario is attracting a renewed interest in the context of the string landscape. Since there are a large number of metastable de Sitter vacua in the string landscape, tunneling transitions to lower metastable vacua through the bubble nucleation occur quite naturally, which leads to a natural realization of open inflation. Although the deviation of Ω0 from unity is small by the observational bound, we argue that the effect of this small deviation on the large-angle CMB anisotropies can be significant for tensor-type perturbation in the open inflation scenario. We consider the situation in which there is a large hierarchy between the energy scale of the quantum tunneling and that of the slow-roll inflation in the nucleated bubble. If the potential just after tunneling is steep enough, a rapid-roll phase appears before the slow-roll inflation. In this case the power spectrum is basically determined by the Hubble rate during the slow-roll inflation. On the other hand, if such a rapid-roll phase is absent, the power spectrum keeps the memory of the high energy density there in the large angular components. Furthermore, the amplitude of large angular components can be enhanced due to the effects of the wall fluctuation mode if the bubble wall tension is small. Therefore, although even the dominant quadrupole component is suppressed by the factor (1-Ω0)2, one can construct some models in which the deviation of Ω0 from unity is large enough to produce measurable effects. We also consider a more general class of models, where the false vacuum decay may occur due to Hawking-Moss tunneling, as well as the models involving more than one scalar field. We discuss scalar perturbations in these models and point out that a large set of such models is already ruled out by observational data, unless there was a very long stage of slow-roll inflation after the tunneling. These results show that observational data allow us to test various assumptions concerning

  13. FAST OPENING SWITCH

    DOEpatents

    Bender, M.; Bennett, F.K.; Kuckes, A.F.

    1963-09-17

    A fast-acting electric switch is described for rapidly opening a circuit carrying large amounts of electrical power. A thin, conducting foil bridges a gap in this circuit and means are provided for producing a magnetic field and eddy currents in the foil, whereby the foil is rapidly broken to open the circuit across the gap. Advantageously the foil has a hole forming two narrow portions in the foil and the means producing the magnetic field and eddy currents comprises an annular coil having its annulus coaxial with the hole in the foil and turns adjacent the narrow portions of the foil. An electrical current flows through the coil to produce the magnetic field and eddy currents in the foil. (AEC)

  14. Naval open systems architecture

    NASA Astrophysics Data System (ADS)

    Guertin, Nick; Womble, Brian; Haskell, Virginia

    2013-05-01

    For the past 8 years, the Navy has been working on transforming the acquisition practices of the Navy and Marine Corps toward Open Systems Architectures to open up our business, gain competitive advantage, improve warfighter performance, speed innovation to the fleet and deliver superior capability to the warfighter within a shrinking budget1. Why should Industry care? They should care because we in Government want the best Industry has to offer. Industry is in the business of pushing technology to greater and greater capabilities through innovation. Examples of innovations are on full display at this conference, such as exploring the impact of difficult environmental conditions on technical performance. Industry is creating the tools which will continue to give the Navy and Marine Corps important tactical advantages over our adversaries.

  15. Plasma opening switch

    DOEpatents

    Savage, Mark E.; Mendel, Jr., Clifford W.

    2001-01-01

    A command triggered plasma opening switch assembly using an amplification stage. The assembly surrounds a coaxial transmission line and has a main plasma opening switch (POS) close to the load and a trigger POS upstream from the main POS. The trigger POS establishes two different current pathways through the assembly depended on whether it has received a trigger current pulse. The initial pathway has both POS's with plasma between their anodes and cathodes to form a short across the transmission line and isolating the load. The final current pathway is formed when the trigger POS receives a trigger current pulse which energizes its fast coil to push the conductive plasma out from between its anode and cathode, allowing the main transmission line current to pass to the fast coil of the main POS, thus pushing its plasma out the way so as to establish a direct current pathway to the load.

  16. Salinas : theory manual.

    SciTech Connect

    Walsh, Timothy Francis; Reese, Garth M.; Bhardwaj, Manoj Kumar

    2011-11-01

    Salinas provides a massively parallel implementation of structural dynamics finite element analysis, required for high fidelity, validated models used in modal, vibration, static and shock analysis of structural systems. This manual describes the theory behind many of the constructs in Salinas. For a more detailed description of how to use Salinas, we refer the reader to Salinas, User's Notes. Many of the constructs in Salinas are pulled directly from published material. Where possible, these materials are referenced herein. However, certain functions in Salinas are specific to our implementation. We try to be far more complete in those areas. The theory manual was developed from several sources including general notes, a programmer notes manual, the user's notes and of course the material in the open literature.

  17. OpenGL VGIS

    NASA Astrophysics Data System (ADS)

    Faust, Nickolas L.; Bhaumik, Dharmajyoti; Hodges, Larry F.; Ribarsky, William; Koller, David; Lindstrom, Peter

    1996-06-01

    Georgia Tech has developed the Virtual GIS (VGIS) system, a real time visualization system for terrain, image, and geographic information systems (GIS) data sets. The initial systems developed at Georgia Tech were non- realtime, but had fast generation of perspective scenes from multisources data sets and the ability to query for GIS attributes associated with terrain of 3D structures inserted within the terrain. The basic concept of a virtual GIS was implemented in realtime using the Silicon Graphics International graphics language. This system has been extended in capability to allow realtime traversal within a very large geographic database and to show the finest detail information available when it is near to the view point. Extensive work has been done in the management of large arrays of information and the efficient paging of that information into the rendering system. An effective level of detail management system is implemented to dynamically allocate the appropriate amount of detail relative to the viewer location. A major use of this system has been in the area of battlefield visualization. The advent of OpenGL as a defacto standard has now made it possible to provide the VGIS capacity on a number of other platforms, thereby extending its usefulness to other applications and users. OpenGL has been developed as a general purpose Graphics rendering toolkit that will be supported on various computers and special purpose rendering systems. There are hardware and software implementations of OpenGL. This should allow VGIS to operate on many systems, taking advantage of specialized graphics hardware when it is present. This paper addresses the implementation of the VGIS system in OpenGL and the use of the system in driving the Evans and Sutherland Freedom series graphics rendering hardware.

  18. OpenEIS Algorithms

    SciTech Connect

    2013-07-29

    The OpenEIS Algorithm package seeks to provide a low-risk path for building owners, service providers and managers to explore analytical methods for improving building control and operational efficiency. Users of this software can analyze building data, and learn how commercial implementations would provide long-term value. The code also serves as a reference implementation for developers who wish to adapt the algorithms for use in commercial tools or service offerings.

  19. Open Source Software Development

    DTIC Science & Technology

    2011-01-01

    Agency’s XMM-Newton Observatory, the Sloan Digital Sky Survey, and others. These are three highly visible astrophysics research projects whose...In scientific fields like astrophysics that critically depend on software, open source is considered an essential precondition for research to...space are made, this in turn often leads to modification, extension, and new versions of the astronomical software in use that enable astrophysical

  20. Open SHMEM Reference Implementation

    SciTech Connect

    Pritchard, Howard; Curtis, Anthony; Welch, Aaron; Fridley, Andrew

    2016-05-12

    OpenSHMEM is an effort to create a specification for a standardized API for parallel programming in the Partitioned Global Address Space. Along with the specification the project is also creating a reference implementation of the API. This implementation attempts to be portable, to allow it to be deployed in multiple environments, and to be a starting point for implementations targeted to particular hardware platforms. It will also serve as a springboard for future development of the API.

  1. OMG: Open Molecule Generator.

    PubMed

    Peironcely, Julio E; Rojas-Chertó, Miguel; Fichera, Davide; Reijmers, Theo; Coulier, Leon; Faulon, Jean-Loup; Hankemeier, Thomas

    2012-09-17

    Computer Assisted Structure Elucidation has been used for decades to discover the chemical structure of unknown compounds. In this work we introduce the first open source structure generator, Open Molecule Generator (OMG), which for a given elemental composition produces all non-isomorphic chemical structures that match that elemental composition. Furthermore, this structure generator can accept as additional input one or multiple non-overlapping prescribed substructures to drastically reduce the number of possible chemical structures. Being open source allows for customization and future extension of its functionality. OMG relies on a modified version of the Canonical Augmentation Path, which grows intermediate chemical structures by adding bonds and checks that at each step only unique molecules are produced. In order to benchmark the tool, we generated chemical structures for the elemental formulas and substructures of different metabolites and compared the results with a commercially available structure generator. The results obtained, i.e. the number of molecules generated, were identical for elemental compositions having only C, O and H. For elemental compositions containing C, O, H, N, P and S, OMG produces all the chemically valid molecules while the other generator produces more, yet chemically impossible, molecules. The chemical completeness of the OMG results comes at the expense of being slower than the commercial generator. In addition to being open source, OMG clearly showed the added value of constraining the solution space by using multiple prescribed substructures as input. We expect this structure generator to be useful in many fields, but to be especially of great importance for metabolomics, where identifying unknown metabolites is still a major bottleneck.

  2. Open-Source Data and the Study of Homicide.

    PubMed

    Parkin, William S; Gruenewald, Jeff

    2015-07-20

    To date, no discussion has taken place in the social sciences as to the appropriateness of using open-source data to augment, or replace, official data sources in homicide research. The purpose of this article is to examine whether open-source data have the potential to be used as a valid and reliable data source in testing theory and studying homicide. Official and open-source homicide data were collected as a case study in a single jurisdiction over a 1-year period. The data sets were compared to determine whether open-sources could recreate the population of homicides and variable responses collected in official data. Open-source data were able to replicate the population of homicides identified in the official data. Also, for every variable measured, the open-sources captured as much, or more, of the information presented in the official data. Also, variables not available in official data, but potentially useful for testing theory, were identified in open-sources. The results of the case study show that open-source data are potentially as effective as official data in identifying individual- and situational-level characteristics, provide access to variables not found in official homicide data, and offer geographic data that can be used to link macro-level characteristics to homicide events.

  3. Open-Source GIS

    SciTech Connect

    Vatsavai, Raju; Burk, Thomas E; Lime, Steve

    2012-01-01

    The components making up an Open Source GIS are explained in this chapter. A map server (Sect. 30.1) can broadly be defined as a software platform for dynamically generating spatially referenced digital map products. The University of Minnesota MapServer (UMN Map Server) is one such system. Its basic features are visualization, overlay, and query. Section 30.2 names and explains many of the geospatial open source libraries, such as GDAL and OGR. The other libraries are FDO, JTS, GEOS, JCS, MetaCRS, and GPSBabel. The application examples include derived GIS-software and data format conversions. Quantum GIS, its origin and its applications explained in detail in Sect. 30.3. The features include a rich GUI, attribute tables, vector symbols, labeling, editing functions, projections, georeferencing, GPS support, analysis, and Web Map Server functionality. Future developments will address mobile applications, 3-D, and multithreading. The origins of PostgreSQL are outlined and PostGIS discussed in detail in Sect. 30.4. It extends PostgreSQL by implementing the Simple Feature standard. Section 30.5 details the most important open source licenses such as the GPL, the LGPL, the MIT License, and the BSD License, as well as the role of the Creative Commons.

  4. Open systems storage platforms

    NASA Technical Reports Server (NTRS)

    Collins, Kirby

    1992-01-01

    The building blocks for an open storage system includes a system platform, a selection of storage devices and interfaces, system software, and storage applications CONVEX storage systems are based on the DS Series Data Server systems. These systems are a variant of the C3200 supercomputer with expanded I/O capabilities. These systems support a variety of medium and high speed interfaces to networks and peripherals. System software is provided in the form of ConvexOS, a POSIX compliant derivative of 4.3BSD UNIX. Storage applications include products such as UNITREE and EMASS. With the DS Series of storage systems, Convex has developed a set of products which provide open system solutions for storage management applications. The systems are highly modular, assembled from off the shelf components with industry standard interfaces. The C Series system architecture provides a stable base, with the performance and reliability of a general purpose platform. This combination of a proven system architecture with a variety of choices in peripherals and application software allows wide flexibility in configurations, and delivers the benefits of open systems to the mass storage world.

  5. Primary Open Rhinoplasty.

    PubMed

    Momeni, Arash; Gruber, Ronald P

    2016-10-01

    Rhinoplasty is perhaps the most complex cosmetic surgery procedure performed today. It is characterized by an intricate interplay between form and function, with patient satisfaction being dependent not only on improvement of nasal appearance but also resolution of preexisting airway symptoms. The prerequisite for successful execution of this challenging procedure is a thorough understanding of nasal anatomy and physiology. Hence, a thorough preoperative evaluation is at least as important and the surgical skill in performing the operation. Establishing an accurate diagnosis through a comprehensive nasal analysis is obligatory. As to the surgical approach, much has been written about the advantages and disadvantages of closed vs open rhinoplasty. The more commonly chosen open approach has numerous advantages, including improved visualization without distortion, thus, enabling precise diagnosis and correction of deformities. While the surgical treatment of existing nasal deformities is tailored to the needs of the individual patient, the authors have noted a total of 10 essential components to form the foundation for successful technical execution of rhinoplasty. These include: (1) septoturbinotomy; (2) opening the nose; (3) humpectomy/spreader flaps; (4) tip-plasty; (5) supratip-plasty; (6) columellar strut; (7) dorsal augmentation; (8) nasal base reduction; (9) osteotomies; and (10) rim grafts. Postoperative, a variety of problems, such as edema, may be successfully addressed without surgical intervention. Diligent postoperative management is critical in ensuring a positive patient experience. Finally, a comprehensive understanding of possible postoperative complications, such as bleeding, ecchymosis, edema, and persistent or new iatrogenic deformity is mandatory prior to offering rhinoplasty to patients.

  6. Inflation in anisotropic scalar-tensor theories

    NASA Technical Reports Server (NTRS)

    Pimentel, Luis O.; Stein-Schabes, Jaime

    1988-01-01

    The existence of an inflationary phase in anisotropic Scalar-Tensor Theories is investigated by means of a conformal transformation that allows us to rewrite these theories as gravity minimally coupled to a scalar field with a nontrivial potential. The explicit form of the potential is then used and the No Hair Theorem concludes that there is an inflationary phase in all open or flat anisotropic spacetimes in these theories. Several examples are constructed where the effect becomes manifest.

  7. Bispectrum from open inflation

    NASA Astrophysics Data System (ADS)

    Sugimura, Kazuyuki; Komatsu, Eiichiro

    2013-11-01

    We calculate the bispectrum of primordial curvature perturbations, ζ, generated during ``open inflation.'' Inflation occurs inside a bubble nucleated via quantum tunneling from the background false vacuum state. Our universe lives inside the bubble, which can be described as a Friedmann-Lemaȋtre-Robertson-Walker (FLRW) universe with negative spatial curvature, undergoing slow-roll inflation. We pay special attention to the issue of an initial state for quantum fluctuations. A ``vacuum state'' defined by a positive-frequency mode in de Sitter space charted by open coordinates is different from the Euclidean vacuum (which is equivalent to the so-called ``Bunch-Davies vacuum'' defined by a positive-frequency mode in de Sitter space charted by flat coordinates). Quantum tunneling (bubble nucleation) then modifies the initial state away from the original Euclidean vacuum. While most of the previous study on modifications of the initial quantum state introduces, by hand, an initial time at which the quantum state is modified as well as the form of the modification, an effective initial time naturally emerges and the form is fixed by quantum tunneling in open inflation models. Therefore, open inflation enables a self-consistent computation of the effect of a modified initial state on the bispectrum. We find a term which goes as langleζk1ζk2ζk3ranglepropto1/k12k34 in the so-called squeezed configurations, k3 << k1 ≈ k2, in agreement with the previous study on modifications of the initial state. The bispectrum in the exact folded limit, e.g., k1 = k2+k3, is also enhanced and remains finite. However, these terms are exponentially suppressed when the wavelength of ζ is smaller than the curvature radius of the universe. The leading-order bispectrum is equal to the usual one from single-field slow-roll inflation; the terms specific for open inflation arise only in the sub-leading order when the wavelength of ζ is smaller than the curvature radius.

  8. Bispectrum from open inflation

    SciTech Connect

    Sugimura, Kazuyuki; Komatsu, Eiichiro E-mail: komatsu@mpa-garching.mpg.de

    2013-11-01

    We calculate the bispectrum of primordial curvature perturbations, ζ, generated during ''open inflation.'' Inflation occurs inside a bubble nucleated via quantum tunneling from the background false vacuum state. Our universe lives inside the bubble, which can be described as a Friedmann-Lemaȋtre-Robertson-Walker (FLRW) universe with negative spatial curvature, undergoing slow-roll inflation. We pay special attention to the issue of an initial state for quantum fluctuations. A ''vacuum state'' defined by a positive-frequency mode in de Sitter space charted by open coordinates is different from the Euclidean vacuum (which is equivalent to the so-called ''Bunch-Davies vacuum'' defined by a positive-frequency mode in de Sitter space charted by flat coordinates). Quantum tunneling (bubble nucleation) then modifies the initial state away from the original Euclidean vacuum. While most of the previous study on modifications of the initial quantum state introduces, by hand, an initial time at which the quantum state is modified as well as the form of the modification, an effective initial time naturally emerges and the form is fixed by quantum tunneling in open inflation models. Therefore, open inflation enables a self-consistent computation of the effect of a modified initial state on the bispectrum. We find a term which goes as (ζ{sub k{sub 1}}ζ{sub k{sub 2}}ζ{sub k{sub 3}})∝1/k{sub 1}{sup 2}k{sub 3}{sup 4} in the so-called squeezed configurations, k{sub 3} << k{sub 1} ≈ k{sub 2}, in agreement with the previous study on modifications of the initial state. The bispectrum in the exact folded limit, e.g., k{sub 1} = k{sub 2}+k{sub 3}, is also enhanced and remains finite. However, these terms are exponentially suppressed when the wavelength of ζ is smaller than the curvature radius of the universe. The leading-order bispectrum is equal to the usual one from single-field slow-roll inflation; the terms specific for open inflation arise only in the sub-leading order

  9. Activity Theory.

    ERIC Educational Resources Information Center

    Koschmann, Timothy; Roschelle, Jeremy; Nardi, Bonnie A.

    1998-01-01

    Includes three articles that discuss activity theory, based on "Context and Consciousness." Topics include human-computer interaction; computer interfaces; hierarchical structuring; mediation; contradictions and development; failure analysis; and designing educational technology. (LRW)

  10. Closed and Open Systems: The Tavistock Group from a General System Perspective.

    ERIC Educational Resources Information Center

    Rugel, Robert P.

    1991-01-01

    Describes phases in the life of a Tavistock group composed of college students using concepts from Von Bertalanffy's general systems theory, MacKenzie's role theory, and Kantor's family theory. Discusses early, middle, and late phases of typical 16-session group as it moves from a closed to an open system. (Author/NB)

  11. The OpenSHMEM Analyzer

    SciTech Connect

    Hernandez, Oscar

    2014-07-30

    The OpenSHMEM Analyzer is a compiler-based tool that can help users detect errors and provide useful analyses about their OpenSHMEM applications. The tool is built on top of the OpenUH compiler (a branch of Open64 compiler) and presents OpenSHMEM information as feedback to the user. Some of the analyses it provides include checks for correct usage of symmetric variables in OpenSHMEM calls, out-of-bounds checks for symmetric data, checks for the correct initialization of pointers to symmetric data, and symmetric data alias information.

  12. The open science grid

    SciTech Connect

    Pordes, R.; /Fermilab

    2004-12-01

    The U.S. LHC Tier-1 and Tier-2 laboratories and universities are developing production Grids to support LHC applications running across a worldwide Grid computing system. Together with partners in computer science, physics grid projects and active experiments, we will build a common national production grid infrastructure which is open in its architecture, implementation and use. The Open Science Grid (OSG) model builds upon the successful approach of last year's joint Grid2003 project. The Grid3 shared infrastructure has for over eight months provided significant computational resources and throughput to a range of applications, including ATLAS and CMS data challenges, SDSS, LIGO, and biology analyses, and computer science demonstrators and experiments. To move towards LHC-scale data management, access and analysis capabilities, we must increase the scale, services, and sustainability of the current infrastructure by an order of magnitude or more. Thus, we must achieve a significant upgrade in its functionalities and technologies. The initial OSG partners will build upon a fully usable, sustainable and robust grid. Initial partners include the US LHC collaborations, DOE & NSF Laboratories and Universities & Trillium Grid projects. The approach is to federate with other application communities in the U.S. to build a shared infrastructure open to other sciences and capable of being modified and improved to respond to needs of other applications, including CDF, D0, BaBar, and RHIC experiments. We describe the application-driven, engineered services of the OSG, short term plans and status, and the roadmap for a consortium, its partnerships and national focus.

  13. Open-market innovation.

    PubMed

    Rigby, Darrell; Zook, Chris

    2002-10-01

    Companies in many industries are feeling immense pressure to improve their ability to innovate. Even in these tough economic times, executives have pushed innovation initiatives to the top of their priority lists, but they know that the best ideas aren't always coming out of their own R&D labs. That's why a growing number of companies are exploring the idea of open-market innovation--an approach that uses tools such as licensing, joint ventures, and strategic alliances to bring the benefits of free trade to the flow of new ideas. For instance, when faced with the unanticipated anthrax scare last fall, Pitney Bowes had nothing in its R&D pipeline to help its customers combat the deadly spores. So it sought help from outside innovators to come up with scanning and imaging technologies that could alert its customers to tainted letters and packages. And Dow Chemical and Cargill jointly produced a new form of plastic derived from plant starches--a breakthrough product that neither company could have created on its own. In this article, Bain consultants Darrell Rigby and Chris Zook describe the advantages and disadvantages of open-market innovation and the ways some companies are using it to gain competitive advantage. By importing ideas from the outside, the authors say, companies can collect more and better ideas from different kinds of experts. Creative types within a company will stick around longer if they know their ideas will eventually find a home--as internal R&D projects or as concepts licensed to outside buyers. Exporting ideas also gives companies a way to measure an innovation's real value. However, the authors warn against entering into open-market innovation without properly structuring deals: Xerox and TRW virtually gave away their innovations and had to stand by while other companies capitalized on them.

  14. Reusable fast opening switch

    DOEpatents

    Van Devender, J.P.; Emin, D.

    1983-12-21

    A reusable fast opening switch for transferring energy, in the form of a high power pulse, from an electromagnetic storage device such as an inductor into a load. The switch is efficient, compact, fast and reusable. The switch comprises a ferromagnetic semiconductor which undergoes a fast transition between conductive and metallic states at a critical temperature and which undergoes the transition without a phase change in its crystal structure. A semiconductor such as europium rich europhous oxide, which undergoes a conductor to insulator transition when it is joule heated from its conductor state, can be used to form the switch.

  15. Reusable fast opening switch

    DOEpatents

    Van Devender, John P.; Emin, David

    1986-01-01

    A reusable fast opening switch for transferring energy, in the form of a high power pulse, from an electromagnetic storage device such as an inductor into a load. The switch is efficient, compact, fast and reusable. The switch comprises a ferromagnetic semiconductor which undergoes a fast transition between conductive and insulating states at a critical temperature and which undergoes the transition without a phase change in its crystal structure. A semiconductor such as europium rich europhous oxide, which undergoes a conductor to insulator transition when it is joule heated from its conductor state, can be used to form the switch.

  16. Open airscrew VTOL concepts

    NASA Technical Reports Server (NTRS)

    Stepniewski, W. Z.; Tarczynski, T.

    1992-01-01

    The following concepts, based on using open airscrew(s) for VTOL maneuvers, are re-examined in light of current technology: (1) tip-driven helicopters, (2) compound helicopters; and (3) high-speed VTOL aircraft, represented by tiltrotors, tiltwings, retractoplanes and stoppable rotors. Criteria, permitting one to compare performance of aircraft using diverse lifting and propelling methods are established. Determination of currently possible performance, indication of near-future potentials, and comparison of those items with the baseline levels (as represented by contemporary shaft-driven helicopters, first generation tiltrotors, and commercial turboprop fixed-wind aircraft) constitutes bulk of this report.

  17. LISA: Opening New Horizons

    NASA Technical Reports Server (NTRS)

    Centrella, Joan M.

    2011-01-01

    The Laser Interferometer Space Antenna (LISA) is a space-borne observatory that will open the low frequency (approx.0.1-100 mHz) gravitational wave window on the universe. LISA will observe a rich variety of gravitational wave sources, including mergers of massive black holes, captures of stellar black holes by massive black holes in the centers of galaxies, and compact Galactic binaries. These sources are generally long-lived, providing unprecedented opportunities for multi-messenger astronomy in the transient sky. This talk will present an overview of these scientific arenas, highlighting how LISA will enable stunning discoveries in origins, understanding the cosmic order, and the frontiers of knowledge.

  18. Functional theories of thermoelectric phenomena

    NASA Astrophysics Data System (ADS)

    Eich, F. G.; Di Ventra, M.; Vignale, G.

    2017-02-01

    We review the progress that has been recently made in the application of time-dependent density functional theory to thermoelectric phenomena. As the field is very young, we emphasize open problems and fundamental issues. We begin by introducing the formal structure of thermal density functional theory, a density functional theory with two basic variables—the density and the energy density—and two conjugate fields—the ordinary scalar potential and Luttinger’s thermomechanical potential. The static version of this theory is contrasted with the familiar finite-temperature density functional theory, in which only the density is a variable. We then proceed to constructing the full time-dependent non equilibrium theory, including the practically important Kohn-Sham equations that go with it. The theory is shown to recover standard results of the Landauer theory for thermal transport in the steady state, while showing greater flexibility by allowing a description of fast thermal response, temperature oscillations and related phenomena. Several results are presented here for the first time, i.e. the proof of invertibility of the thermal response function in the linear regime, the full expression of the thermal currents in the presence of Luttinger’s thermomechanical potential, an explicit prescription for the evaluation of the Kohn-Sham potentials in the adiabatic local density approximation, a detailed discussion of the leading dissipative corrections to the adiabatic local density approximation and the thermal corrections to the resistivity that follow from it.

  19. Rewriting Modulo SMT and Open System Analysis

    NASA Technical Reports Server (NTRS)

    Rocha, Camilo; Meseguer, Jose; Munoz, Cesar

    2014-01-01

    This paper proposes rewriting modulo SMT, a new technique that combines the power of SMT solving, rewriting modulo theories, and model checking. Rewriting modulo SMT is ideally suited to model and analyze infinite-state open systems, i.e., systems that interact with a non-deterministic environment. Such systems exhibit both internal non-determinism, which is proper to the system, and external non-determinism, which is due to the environment. In a reflective formalism, such as rewriting logic, rewriting modulo SMT can be reduced to standard rewriting. Hence, rewriting modulo SMT naturally extends rewriting-based reachability analysis techniques, which are available for closed systems, to open systems. The proposed technique is illustrated with the formal analysis of: (i) a real-time system that is beyond the scope of timed-automata methods and (ii) automatic detection of reachability violations in a synchronous language developed to support autonomous spacecraft operations.

  20. Effective theories of universal theories

    DOE PAGES

    Wells, James D.; Zhang, Zhengkang

    2016-01-20

    It is well-known but sometimes overlooked that constraints on the oblique parameters (most notably S and T parameters) are generally speaking only applicable to a special class of new physics scenarios known as universal theories. The oblique parameters should not be associated with Wilson coefficients in a particular operator basis in the effective field theory (EFT) framework, unless restrictions have been imposed on the EFT so that it describes universal theories. Here, we work out these restrictions, and present a detailed EFT analysis of universal theories. We find that at the dimension-6 level, universal theories are completely characterized by 16more » parameters. They are conveniently chosen to be: 5 oblique parameters that agree with the commonly-adopted ones, 4 anomalous triple-gauge couplings, 3 rescaling factors for the h3, hff, hV V vertices, 3 parameters for hV V vertices absent in the Standard Model, and 1 four-fermion coupling of order yf2. Furthermore, all these parameters are defined in an unambiguous and basis-independent way, allowing for consistent constraints on the universal theories parameter space from precision electroweak and Higgs data.« less